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Preface

In multivariate statistical analysis, elliptical distributions have recently provided an
alternative to the normal model. Most of the work, however, is spread out in journals
throughout the world and is not easily accessible to the investigators. Fang, Kotz,
and Ng presented a systematic study of multivariate elliptical distributions; however,
they did not discuss the matrix variate case. Fang and Zhang have summarized
the results of generalized multivariate analysis which include vector as well as
the matrix variate distributions. On the other hand, Fang and Anderson collected
research papers on matrix variate elliptical distributions, many of them published
for the first time in English. They published very rich material on the topic, but
the results are given in paper form which does not provide a unified treatment of
the theory. Therefore, it seemed appropriate to collect the most important results
on the theory of matrix variate elliptically contoured distributions available in the
literature and organize them in a unified manner that can serve as an introduction to
the subject.

The book will be useful for researchers, teachers, and graduate students in
statistics and related fields whose interests involve multivariate statistical analysis
and its application into portfolio theory. Parts of this book were presented by Arjun
K. Gupta as a one semester course at Bowling Green State University. Knowledge of
matrix algebra and statistics at the level of Anderson is assumed. However, Chap. 1
summarizes some results of matrix algebra. This chapter also contains a brief review
of the literature and a list of mathematical symbols used in the book.

Chapter 2 gives the basic properties of the matrix variate elliptically contoured
distributions, such as the probability density function and expected values. It also
presents one of the most important tools of the theory of elliptical distributions, the
stochastic representation.

The probability density function and expected values are investigated in detail in
Chap. 3.

Chapter 4 focuses on elliptically contoured distributions that can be represented
as mixtures of normal distributions.

The distributions of functions of random matrices with elliptically contoured
distributions are discussed in Chap. 5. Special attention is given to quadratic forms.
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viii Preface

Characterization results are given in Chap. 6.

The next three chapters are devoted to statistical inference. Chapter 7 focuses on
estimation results, whereas Chap. 8 is concerned with hypothesis testing problems.
Inference for linear models is studied in Chap. 9.

Chapter 10 deals with the application of the elliptically contoured distributions
for modeling financial data. We present distributional properties of the estimated
main characteristics of optimal portfolios, like variance and expected return assum-
ing that the asset returns are elliptically contoured distributed. The joint distributions
of the estimated parameters of the efficient frontier are derived as well as we
provide exact inference procedures for the corresponding population values. We also
study the distributional properties of the estimated weights of the global minimum
variance portfolio in detail.

In Chap. 11, we consider a further extension of matrix variate elliptically
contoured distributions that allows us to model the asymmetry in data. Here, first
the multivariate skew normal distribution is presented and its matrix generalization
is discussed. We also study the main properties of this distribution, like moments, the
density function, and the moment-generating function. Next, the skew ¢-distribution
is introduced as well as the general class of matrix variate skew elliptically con-
toured distributions. Moreover, we present the distributional properties of quadratic
forms in skew elliptical distributions and discuss the inference procedures. An appli-
cation into portfolio theory is discussed as well. Finally, an up-to-date bibliography
has been provided, along with author and subject indexes. The materials in the first
nine chapters are from the book Elliptically Contoured Models in Statistics by the
first two authors. The material in Chaps. 10 and 11 is taken from the papers of the
authors. Permission of their publishers Kluwer Academic Publishers (http://www.
wkap.com), Japan Statistical Society (http://www.jss.gr.jp), Springer (http://www.
springer.com), and Taylor and Francis (http://www.tandfonline.com/) is gratefully
acknowledged.

We would like to thank the Department of Mathematics and Statistics, Bowling
Green State University, and the Department of Mathematics, Humboldt University
of Berlin, for supporting our endeavor and for providing the necessary facilities to
accomplish the task. The first author is thankful to the Biostatistics Department,
University of Michigan, for providing him the opportunity to organize the material
in its final form. Thanks are also due to Professors D. K. Nagar, M. Siotani,
J. Tang, and N. Nguyen for many helpful discussions. He would also like to
acknowledge his wife, Meera, and his children, Alka, Mita, and Nisha, for their
support throughout the writing of the book. The second author is thankful to his
mother Edit for her support in the early stages of the work on this book. The
third author acknowledges the support of the Department of Statistics, European
University Viadrina and the German Research Foundation (DFG) via the Research
Unit 1735 “Structural Inference in Statistics: Adaptation and Efficiency”. Thanks
are also due to Professors W. Schmid and Y. Yelejko. He is also greatly thankful
to his wife Olha and to his children Bohdan and Anna-Yaroslava for providing
considerable help during the preparation of the book.
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Acronyms

We denote matrices by capital bold letters, vectors by small bold letters and scalars
by small letters. We use the same notation for a random variable and its values. Also
the following notations will be used in the sequel.

R”
PB(RP)
Sp

R+

R§

XA (x)

x(x=1)
A € RP*"
(l,‘j

A/

rk(A)
A>0
A>0

Al

tr(A)
etr(A)
Al
Afl
A
A1/2

the p-dimensional real space

the Borel sets in R”

the unit sphere in IR?

the set of positive real numbers

the set of nonnegative real numbers

the indicator function of A, that is y4(x) = 1if x € A and y4(x) =0
ifxgZA

the same as |, ..)(x) (tis a real number)

A is a p x n real matrix

the (i, j)th element of matrix A

transpose of A

rank of A

the square matrix A is positive definite (see also Sect. 1.2)

the square matrix A is positive semidefinite (see also Sect. 1.2)
determinant of the square matrix A

trace of the square matrix A

exp(tr(A)) if A is a square matrix

norm of A defined by ||A|| = \/tr(A’A)

inverse of A

generalized inverse of A, that is AA~A = A (see also Sect. 1.2)
let the spectral decomposition of A > 0 be GDG’, and define
A2 = GD'/2G/ (see also Sect. 1.2)

the set of p X p dimensional orthogonal matrices

the p x p dimensional identity matrix

the p-dimensional vector whose elements are 1’s; that is, e, =
(1,1,...,1) real matrix

Kronecker product of the matrices A and B (see also Sect. 1.2)

XV



XVi

A>B A — B is positive definite

A>B A — B is positive semidefinite
aj
a
vec(A) the vector | | | where a; denotes the ith column of p X n matrix
an
Ai=1,2,....n
J(X — f(X)) the Jacobian of the matrix transformation f
X~9 the random matrix X is distributed according to the distribution &
X~Y the random matrices X and Y are identically distributed
Cov(X) covarinace matrix of the random matrix X; that is Cov(X)
Cov(vec(X"))
ox(T) the characteristic function of the random matrix X at T; that is

E(etr(iT'X)), X, T € RP*"

For a review of Jacobians, see Press (1972) and Siotani, Hayakawa and Fujikoshi
(1985). We also use the following notations for some well known probability

distributions.

UNIVARIATE DISTRIBUTIONS:

N(u,0?) normal distribution; its probability density function is

)= ——ep{ -

where t € R, 6 € R",andx € R
B(a,b) beta distribution; its probability density function is

flx) = (1 —x)
B(a,b)
where a > 0,b >0, B(a,b) = %,and0<x< 1
t, Student’s ¢-distribution; its probability density function is

f(ﬂ=%<l+i)_w7

where n >0, and x € R
chi-square distribution; its probability density function is



Acronyms xvil

1 n_q X
X)= 3 x2 ' ex {—f},
fO) =5 ® P15
where n > 0, and x > 0
Xn chi distribution; its probability density function is

where n >0, and x > 0

Fam F distribution; its probability density function is
NCONTICIIN
flx)= T (VT (™) (*) )
(3)T(5) \m (1+2x) 2
where n,m=1,2,...,,and x > 0

Upmu U distribution, which is the same as the distribution of Hle v;; where v;’s
are independent and

n+l—i m
ViNB(Z’Z)

For the U distribution, see Anderson (2003), pp. 307-314.

MULTIVARIATE DISTRIBUTIONS:

N,(u,X) multivariate normal distribution; its characteristic function is

Ox(t) = exp {it’u + ;t’Zt} ,

where x,t,t € RP, X € RP*P,and X > 0
D(my,...,mp;mp,1)  Dirichlet distribution; its probability density function is

r(xem My
f(x) (m>H (“ix") ’

Hf’:ll I (m;) i=1
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where X = (x1,x2,...,%p) € RP,0< ¥ x;<1l,andm; >0,i=1,2,...,p
SMT,(o) multivariate skew z-distribution; its probability density function is

o'y

H(y) =2fr,(¥)Fr,, < 1 \/V+P> :

(v+yzly)z

where f7,(-) and Fr,(-) denote the probability density function and the

cumulative distribution function of central 7-distribution with k degrees of

freedom, respectively; y € R, v >0, o € R, X € IRP*P, and X > 0.
SMC(or) multivariate skew Cauchy distribution; its probability density function is

where Fr,(-) denotes the cumulative distribution function of central 7-
distribution with k degrees of freedom; y € R”, @ € RP, X € RP*?, and
2>0.

CSNp4(1,Z,D,v,A) closed skew normal distribution; its probability density
function is

8pa(y) = Cop(y; 11, Z)Dg[D(y — p); v, Al
with
' =@,0;v,A+DZD| )

where ¢;(x;1,%) and @;(x; 11,X) denote the probability density function
and the cumulative distribution function of the /-dimensional normal
distribution with mean vector u and covariance matrix X, respectively;
YERP, p,g>1,ueRP,veRI,DeRI*P, X cRP*P, X >0,A € RI™,
and A > 0.

MATRIX VARIATE DISTRIBUTIONS:

Npn(M,X® @) matrix variate normal distribution; its characteristic function is



Acronyms Xix
1
ox(T) = etr {iT’M + ZT’ETtp} ,

where M, X, T € RP*", X € RP*P, X >0, ® € R"",and ® >0
W,(Z,n) Wishart distribution; its probability density function is

X5 err {~1z71X
f(X): ‘ | np { }7
272|151, (%)

where X € RP*P X >0, X € RP*P, ¥ > 0, p, n are integers, n > p, and

1) L2 | —
) F(t—l 1)
i=1 2

Bf,(a7 b)  matrix variate beta distribution of type I; its probability density function
is

b p+1

x| 1, - X

f(X) - ﬁp(a7b) )

where a > 51, b > 251, B, (a,b) = BUED X € RPP, and 0 < X <1,

B;,’ (a,b) matrix variate beta distribution of type II; its probability density function
is

p+1

|X|a——‘1 +X| (a+b)
Bp(a b) ’

fX) =

where a > 221 b > 221 X € RP*P, and X > 0
Tpn(m,M, X, @) matrix variate T distribution; its probability density function is

_np —
T 21—~ <n+m;p 1)

1 ,
n(5) 121 |0

ntm+p—1

fX)= |+ (X-M)Z T (X-M) |

where m >0, M, X, T € RP*", X € RP*P, £ >0, ® € R, and ® >0



XX Acronyms

E,(M,Z®®,y) matrix variate elliptically contoured distribution; its charac-
teristic function

ox(T) = etr((iT'M)y(tr(T'ZT®)),

where T: pxn, M:pxn, X: pxp, ®:nxn, X>0, ® >0, and
v:[0,00) = R

For further discussion of B,(a,b), Bl (a,b), see Olkin and Rubin (1964) and
Javier and Gupta (1985b), and for results on 7}, ,(m,M, X, @), see Dickey (1967).
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Chapter 1
Preliminaries

1.1 Introduction and Literature Review

Matrix variate distributions have been studied by statisticians for a long time. The
first results on this topic were published by Hsu and Wishart. These distributions
proved to be useful in statistical inference. For example, the Wishart distribution
is essential when studying the sample covariance matrix in the multivariate normal
theory. Random matrices can also be used to describe repeated measurements on
multivariate variables. In this case, the assumption of the independence of the
observations, a commonly used condition in statistical analysis, is often not feasible.
When analyzing data sets like these, the matrix variate elliptically contoured
distributions can be used to describe the dependence structure of the data. This
is a rich class of distributions containing the matrix variate normal, contaminated
normal, Cauchy and Student’s ¢-distributions. The fact that the distributions in
this class possess certain properties, similar to those of the normal distribution,
makes them especially useful. For example, many testing procedures developed
for the normal theory to test various hypotheses can be used for this class of
distributions, too.

Matrix variate elliptically contoured distributions represent an extension of
the concept of elliptical distributions from the vector to the matrix case. Impor-
tant distribution results on vector variate elliptical distributions were derived by
Kelker (1970), Chu (1973), Dawid (1977) and Cambanis, Huang, and Simons
(1981). Quadratic forms in elliptical distributions were studied by Cacoullos and
Koutras (1984), Fang and Wu (1984), Anderson and Fang (1987), and Smith
(1989). Problems related to moments were considered by Berkane and Bentler
(1986a). Characterization results were given by Kingman (1972), Khatri and
Mukerjee (1987), and Berkane and Bentler (1986b). Kariya (1981), Kuritsyn
(1986), Anderson, Fang, and Hsu (1986), Jajuga (1987), Cellier, Fourdrinier, and
Robert (1989) and Griibel and Rocke (1989) focused on inference problems.
Asymptotic results were obtained by Browne (1984), Hayakawa (1987), Khatri
(1988) and Mitchell (1989). Special aspects of elliptical distributions were discussed

A K. Gupta et al., Elliptically Contoured Models in Statistics and Portfolio Theory, 3
DOI 10.1007/978-1-4614-8154-6_1, © Springer Science+Business Media New York 2013



4 1 Preliminaries

by Khatri (1980), Sampson (1983), Mitchell and Krzanowski (1985), Cacoullos
and Koutras (1985), Khattree and Peddada (1987), and Cléroux and Ducharme
(1989). Krishnaiah and Lin (1986) introduced the concept of complex elliptical
distributions. Some of the early results in elliptical distributions were summarized
in Muirhead (1982) and Johnson (1987). More extensive reviews of papers on this
topic were provided by Chmielewski (1981), and Bentler and Berkane (1985). The
most recent summary of distribution results was given by Fang, Kotz, and Ng
(1990).

Some of the papers mentioned above also contain results on matrix variate
elliptically contoured distributions; for example, Anderson and Fang (1987), and
Anderson, Fang, and Hsu (1986). Other papers, like Chmielewski (1980), Richards
(1984), Khatri (1987), and Sutradhar and Ali (1989), are also concerned with matrix
variate elliptical distributions. Fang and Anderson (1990) is a collection of papers
on matrix variate elliptical distributions. Many of these papers were originally
published in Chinese journals and this is their first publication in English. Fang
and Zhang (1990) have provided an excellent account of spherical and related
distributions.

The purpose of the present book is to provide a unified treatment of the theory
of matrix variate elliptically contoured distributions, to present the most important
results on the topic published in various papers and books, to give their proofs and
show how these results can be applied in portfolio theory.

1.2 Some Results from Matrix Algebra

In this section, we give some results from matrix algebra which are used in the
subsequent chapters. Except for the results on the generalized inverse, we do not
prove the theorems since they can be found in any book of linear algebra (e.g.
Magnus and Neudecker, 1988). Other books, like Anderson (2003) and Muirhead
(1982), discuss these results in the appendices of their books.

Definition 1.1. Let A be a p x p matrix. Then, A is called

(i) Symmetric if A’ = A.
(ii) Idempotent if A> = A.
(iii) Nonsingular if |A| # 0.
(iv) Orthogonal if AA" = A'A =1,,.
(v) Positive semidefinite and this is denoted by A > 0 if A is symmetric and for
every p-dimensional vector v, vV'Av > 0.
(vi) Positive definite and this is denoted by A > 0 if A is symmetric and for every
p-dimensional nonzero vector v, v'Av > 0.
(vii) Permutation matrix if in each row and each column of A exactly one element
is 1 and all the others are 0.
(viii) Signed permutation matrix if in each row and each column of A exactly one
element is 1 or —1 and all the others are 0.
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Theorem 1.1. Let A be p X p, and B be g x p. Then, we have the following results.

(i) IfA >0, then A~! > 0.
(ii) If A >0, then BAB' > 0.
(iii) If g < p, A > 0and rk(B) = g, then BAB' > 0.

Definition 1.2. Let A be a p x p matrix. Then, the roots (with multiplicity) of the
equation

A= AL =0

are called the characteristic roots of A.

Theorem 1.2. Let A be a p x p matrix and A1, Az, ..., A, its characteristic roots.
Then,

(i) |Al =TI}, A
(i) tr(A) =3, A
(iii) rk(A) = the number of nonzero characteristic roots.
(iv) A is nonsingular if and only if the characteristic roots are nonzero.
(v) Further, if we assume that A is symmetric, then the characteristic roots of A
are real.
(vi) A is positive semidefinite if and only if the characteristic roots of A are
nonnegative.
(vii) A is positive definite if and only if the characteristic roots of A are positive.

The next theorem gives results on the rank of matrices.

Theorem 1.3. (i) Let A be a p X q matrix. Then, rk(A) < min(p,q) and rk(A) =
rk(A") = rk(AA") = rk(A’A). If p = q, then rk(A) = p if and only if A is
nonsingular.

(ii) Let A and B be p x q matrices. Then, rk(A+B) < rk(A) + rk(B).

(iii) Let A be a px q, B aqxrmatrix. Then, rk(AB) < min(rk(A),rk(B)). If p=gq

and A is nonsingular then rk(AB) = rk(B).

Definition 1.3. Let A be a p X g matrix. If rk(A) = min(p,q), then A is called a
full rank matrix.

In the following theorem we list some of the properties of the trace function.

Theorem 1.4. (i) Let A be a p x p matrix. Then, tr(A) = tr(A’), and tr(cA) =
ctr(A) where c is a scalar.
(ii) Let A and B be p x p matrices. Then, tr(A+B) =tr(A) +tr(B).
(iii) Let A bea pxq, Bagqx p. Then, tr(AB) = tr(BA).
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Theorem 1.5. Let the p X p matrix A be defined by
dij = {x, l.fl:J. .

Then, |A| = (x—y)"~' (x+(p—1)y).

Now we give some matrix factorization theorems.

Theorem 1.6. (Singular value decomposition of a matrix)
Let A be a p x g matrix with p > q. Then, there exist a p X p orthogonal matrix G,
a g X q orthogonal matrix H and a g X q positive semidefinite diagonal matrix D

such that
D
A=G H
( 0 ) ’

where 0 denotes the (p — q) X q zero matrix. Moreover, rk(D) = rk(A).

Theorem 1.7. (Spectral decomposition of a symmetric matrix)
Let A be a p x p symmetric matrix. Then, there exist a p X p orthogonal matrix G
and a p X p diagonal matrix D such that

A =GDG'. (1.1)
Moreover, if A is of the form (1.1) then the diagonal elements of D are the
characteristic roots of A.

Definition 1.4. Let A be a p x p positive semidefinite matrix with spectral decom-
position A = GDG’. Let D'/2 be the diagonal matrix whose elements are the square
roots of the elements of D. Then we define A'/2 as A'/?2 = GD'/2G’.

Theorem 1.8. Let A and B be p X p matrices. Assume A is positive definite and B
is positive semidefinite. Then, there exist a p X p nonsingular matrix C and a p X p
diagonal matrix D such that

A=CC and B=CDC. (1.2)

Moreover, if A and B are of the form (1.2), then the diagonal elements of D are the
roots of the equation |B—AA| = 0.

Theorem 1.9. Let A be a p x g matrix with rk(A) = q. Then there exist a p X p
orthogonal matrix G and a q X q positive definite matrix B such that

1
A=G( 7)B
G<0>’

where 0 denotes the (p — q) X q zero matrix.
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Theorem 1.10. (The rank factorization of a square matrix)
Let A be a p x p matrix with rk(A) = q. Then, there exists a p X q matrix B of rank
q such that A = BB'.

Theorem 1.11. (Vinograd’s Theorem)
Assume A be a p x g, and B is a p x r matrix, where g < r. Then, AA' = BB’ if and
only if there exists a q x r matrix H with HH' =1, such that B = AH.

Theorem 1.12. Let A be a p X p, symmetric idempotent matrix of rank q. Then,
there exists a p X p orthogonal matrix G such that

1,0
A=G( )¢
6(lvo)e.

where the 0’s denote zero matrices of appropriate dimensions.

Theorem 1.13. Let A1, A,,..., A, be p X p, symmetric, idempotent matrices. Then,
there exists a p X p orthogonal matrix such that G'A;G is diagonal for every 1 <
i <nifandonly if AjAj = A A, for every 1 <i,j <n.

Theorem 1.14. Let A1, A;,..., A, be p X p, symmetric, idempotent matrices. Then,
there exists a p X p orthogonal matrix G such that

Lo 000
G’AlG:<(’)‘0>7G’A2G= 01,0 |,
000
000
..,G'AG={0L,0 |,
000

where r; =rk(A;), i=1,...,n, if and only if A;A; = 0 for every i # j.

Next, we give some results for the Kronecker product, also called direct product
of matrices.

Definition 1.5. Let A = (a;;) be a p X g, B an r x s matrix. Then the Kronecker
product of A and B, denoted by A ® B, is the (pr) x (gs) matrix defined by

a11B a12B a]qB
(lz]B a22B aqu

ARB=
apiB a,nB ... apB
Theorem 1.15. (i) If ¢ and d are scalars, then (cA) ® (dB) = cd(A®B).
(ii) If A and B are of equal dimension, then

(A+B)®C=(A®C)+(A®C), and C®(A+B)=(C®A)+(CRB).
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(iii) (A®@B)C=A®(B®C).
(iv) (A@B)Y=A"®B.
(v) If A and B are square matrices then

tr(A@B) =tr(A)r(B).
i) IfAispxq, Bisrxs, Cisqgxn, andD is s X v, then
(A®B)(C®D) = (AC)® (BD).
(vii) If A and B are nonsingular matrices, then A ® B is also nonsingular and
AoB) '=A"ToB .

(viii) If A and B are orthogonal matrices, then A R B is also orthogonal.
(ix) If A and B are positive semidefinite matrices, then A @ B is also positive
semidefinite.
(x) If A and B are positive definite matrices, then A Q@ B is also positive definite.
(xi) If Ais p X p, Bis g x g matrix, then |A @ B| = |A|7|B|?.
(xii) If Ais pxp, Bisqxq, A, A, ..., A, are the characteristic roots of A, and
Wi, U2, ..., Ug are the characteristic roots of B, then Ay, i=1,...,p, j=
1,...,q are the characteristic roots of A ®B.

Theorem 1.16. Let A and Ay be p x g, By and B, be r X s nonzero matrices.
Then, A1 @ B = Ay Q@ By, if and only if there exists a nonzero real number ¢ such
that A, = cA and B, = 1B,.

Definition 1.6. Let X be a p x n matrix and denote the columns of X by
X1
X2

X1,X2,...,X,. Then vec(X) =

Xp

Theorem 1.17. (i) Let X be a p xn, A g X p, and B n X m matrices. Then,
vec((AXB)') = (A®@B')vec(X').
(ii) Let X andY be p xn, A p X p, and B n X n matrices. Then
tr(X'AYB) = (vec(X))' (A @B/ )vec(Y').
(iii) Let X and Y be p x n dimensional matrices. Then
tr(X'Y) = (vec(X'))'vec(Y').

For a more extensive study of the Kronecker product, see Graybill (1969).
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Now we give some results on the generalized inverse of a matrix. Since this
concept is not so widely used in statistical publications, we prove the theorems in
this part of the chapter. For more on generalized inverse, see Rao and Mitra (1971).

Definition 1.7. Let A be a p x g matrix. If there exists a ¢ X p matrix B such that
ABA = A, then B is called a generalized inverse of A and is denoted by A™.

It follows from the definition that A~ is not necessarily unique. For example,
for any real number a, (1,a) is a generalized inverse of <(1)> However, if A is a

nonsingular square matrix, then A~ is unique as the following theorem shows.

Theorem 1.18. Let A be a p x p nonsingular matrix. Then, A~ is the one and only
one generalized inverse of A.

PROOF: The matrix A~! is a generalized inverse of A since AA~'A = I,A=A.

On the other hand, from AA~A = A we get A TAA"AA! = A TAA! Hence,

A-=A"1 m
Next, we show that every matrix has a generalized inverse.

Theorem 1.19. Let A be a p x g matrix. Then A has a generalized inverse.

PROOF: First, we prove that the theorem is true for diagonal matrices. Let D be
n X n diagonal and define the n x n diagonal matrix B by

| it £0
! 0, ifdi=0"

Then, DBD = D. Hence B, is a generalized inverse of D.
Next, assume that A is a p X g matrix with p > ¢. Using Theorem 1.6, we can find
a p x p orthogonal matrix G, a g x g orthogonal matrix H, and a positive semidefinite

diagonal matrix D such that
D
A=G H.

We already know that D has a generalized inverse. Define
B=H (D’, 0) G

Then, we obtain

ABA =G ('3>HH’ (D, O)G/G<13>H:G<13>H:A.

So B is a generalized inverse of A. If A is p x g dimensional with p < g, then A’
has a generalized inverse B. So A’‘BA’ = A’. Therefore, AB’A = A. Hence, B’ is a
generalized inverse of A. ]
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We know that if A is a nonsingular square matrix, then (A~!)" = (A’)~!. The
generalized inverse has the same property as the next theorem shows.

Theorem 1.20. Let A be a p x g matrix. Then, (A7) = (A’)”; that is B is a
generalized inverse of A, if and only if B' is a generalized inverse of A'.

PROOF: First, assume B is a generalized inverse of A. Then, ABA = A. Hence,
A'B’A’ = A’. So B’ is a generalized inverse of A’.

On the other hand, assume B’ is a generalized inverse of A’. Then, A’'B’'A’ = A’.
Hence, ABA = A and therefore B is a generalized inverse of A.

For nonsingular square matrices of equal dimension, we have (AB)~!' =
B~'A~!. However, for the generalized inverse, (AB)~ = B~A~ does not always

hold. For example, consider A = (1,0) and B = <(1)) Then, for any real numbers

aand b, (1
a

However, B"A™ =1+ ab is a generalized inverse of AB =1 onlyifa=0o0rb=0.
In special cases, however, (AB)~ =B~ A~ is true as the next theorem shows.

) is a generalized inverse of A and (1,b) is a generalized inverse of B.

Theorem 1.21. Let A bea p X q, B a p x p, and C a g x g matrix. Assume B and
C are nonsingular. Then, (BAC)~ = C"'A"B~L.

PROOF: The matrix F is a generalized inverse of (BAC)~ iff BACFBAC = BAC.
This is equivalent to ACFBA = A; thatis CFB=A",or F = Cc'A-B L [}

Theorem 1.22. Let A be a p x q matrix with rk(A) = q. Then, AA =1,,.

PROQF: It follows from Theorem 1.6, that there exists a p x p orthogonal matrix
G, a g x g orthogonal matrix H, and a g x ¢ positive definite diagonal matrix D

such that
D
A=G H.

Then, AA~ A = A can be written as

6(2)umra-o(®)n

Premultiplying the last equation by G’, we obtain

(D (D)

Hence,
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DHA"A\ (DH
0 Lo )
and consequently DHA™A = DH. Now, D and H are g x ¢ nonsingular matrices, so

we get ATA =1, [}

Theorem 1.23. Let A be a p X p matrix of rank q and let A = BB’ be a rank
factorization of A as it is defined in Theorem 1.10. Then, B"B =1, and B-AB~' =
I,. Moreover, B~'B~ is a generalized inverse of A.

PROOF: Since B is p x ¢ dimensional and rk(B) = ¢, from Theorem 1.22 we get
B"B =1, and

B AB '=B BBB '= B‘B(B_B)’ =LI,=1,.
We also have

AB 'B"A=BB'B 'B'BB'=B(BB)(B'B)B' =BLI,B=BB'=A. @

1.3 A Functional Equation

We close this chapter with a result from the theory of functional equations that will
prove to be useful in the derivation of many theorems about elliptically contoured
distributions. The theorem gives the solution of a variant of Hamel’s equation (or
Cauchy’s equation).

Theorem 1.24. Let [ be a real function defined on Ré the set of nonnegative
numbers. Assume that f is bounded in each finite interval and satisfies the equation

fx+y)=fx)f(y) forall x,yGRar.

Then either f(x) = 0 for all x or f(x) = ™ where a € R.
PROOF: See Feller (1957), p. 413. [ ]

Corollary 1.1. Let f be a bounded, not identically zero function defined on Ra” f
f satisfies the equation

fx+y)=f)f(y) forall x,y€eR]

then f(x) = e where k > 0.
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Chapter 2
Basic Properties

2.1 Definition

In the literature, several definitions of elliptically contoured distributions can be
found, e.g. see Anderson and Fang (1982b), Fang and Chen (1984), and Sutradhar
and Ali (1989). We will use the following definition given in Gupta and Varga
(1994b).

Definition 2.1. Let X be a random matrix of dimensions p X n. Then, X is said to
have a matrix variate elliptically contoured (m.e.c.) distribution if its characteristic
function has the form

ox(T) = etr(iT' M)y (tr(T' STD))

withT: pxn,M: pxn,XZ:pxp, @:nxnX>0,0>0,and y: [0,) = R.
This distribution will be denoted by E, ,(M, X ® @, y).

Remark 2.1. If in Definition 2.1 n = 1, we say that X has a vector variate elliptically
contoured distribution. It is also called multivariate elliptical distribution. Then the
characteristic function of X takes on the form

9x(t) = exp(it'm)y (£ Zt),

where t and m are p-dimensional vectors. This definition was given by many
authors, e.g. Kelker (1970), Cambanis, Huang and Simons (1981) and Anderson
and Fang (1987). In this case, in the notation E, ,, (M,2® @, ), the index n can be
dropped; that is, E,(m, X, y) will denote the distribution E,, 1 (m, X, y).

Remark 2.2. It follows from Definition 2.1 that |y(z)| < 1 fort € Ry .

The following theorem shows the relationship between matrix variate and vector
variate elliptically contoured distributions.

A K. Gupta et al., Elliptically Contoured Models in Statistics and Portfolio Theory, 15
DOI 10.1007/978-1-4614-8154-6_2, © Springer Science+Business Media New York 2013
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Theorem 2.1. Let X be a p x n random matrix and x = vec(X'). Then, X ~
E,n(M,2Q@®, ) if and only if X ~ Ep,(vec(M'), X @ @, y).

PROOF: Note that X ~ E, (M, X @ @, ) iff

ox(T) = etr(iT'M) y (tr(T'ZT®)) (2.1)
On the other hand, X ~ E,,(vec(M'), X ® @, ) iff
Ox(t) = exp(itvecM') ) y(t' (Z @ D)t).
Let t = vec(T’). Then
(1) = exp(i(vec(T')) vec(M')) y((vec(T')) (£ ® ®)vec(T')). 2.2)
Now, using Theorem 1.17, we can write
(vec(T')) vec(M') = tr(T'M) (2.3)
and
(vec(T')) (2 @ @)vec(T') = tr(T'ZT®D). (2.4)

From (2.1), (2.2), (2.3), and (2.4) it follows that ¢x(T) = ¢x(vec(T’)). This
completes the proof. [

The next theorem shows that linear functions of a random matrix with m.e.c.
distribution have elliptically contoured distributions also.

Theorem 2.2. Let X ~ E, ,(M,XZ® @, ). Assume C: gxm, A: qgxp, and B :
n X m are constant matrices. Then,

AXB+C~E,,,(AMB+C, (AEA/) ® (B/<1>B)7 V).
PROOQOF: The characteristic function of Y = AXB + C can be written as

etr(iT'Y))
etr(iT'(AXB + C)))
etr(iT'AXB))etr(iT'C)
etr(iBT'AX))etr(iT'C)
= ¢ox(A'TB )etr(iT'C)

etr(iIBT'AM) y(tr(BT'ASA'TB'®) )etr(iT'C)
etr(iT’"(AMB + C)) y(tr(T'(AXA")T(B'®@B))) .

This is the characteristic function of E, ,,(AMB+ C,(AXA")® (B'®B),y). m



2.1 Definition 17

Corollary 2.1. Let X~ E, ,(M,XQ @, ), and let ¥ = AA’" and @ = BB’ be rank
factorizations of X and @. That is, A is p X p1 and B is n X ny matrix, where p; =
rk(X), ny = rk(®). Then,

A (X=M)B'~ ~E, , (0.1, &1L, ,y).
Conversely, if Y ~ E,| (0,1, ®1L,,,y), then
AYB +M~E,,(M,Z2®,y).

with X = AA’ and @ = BB'.
PROOF: Let X ~ E,,(M,X® ®,y), ¥ = AA’ and @ = BB’ be the rank
factorizations of X and &. Then, it follows from Theorem 2.2 that

AT (X-M)B'™ ~E,, (0,(A" A" ) & (B 0B ) y).

Using Theorem 1.23, we get A-XA’~ =1, and B-®B'~ =1,,;, which completes
the proof of the first part of the theorem. The second part follows directly from
Theorem 2.2. ]

If x ~ E,(0,1,, y), then it follows from Theorem 2.2 that Gx ~ E, (0,1, ) for
every G € O(p). This gives rise to the following definition.

Definition 2.2. The distribution E,(0,1,,, y) is called spherical distribution.

A consequence of the definition of the m.e.c. distribution is that if X has m.e.c.
distribution, then X’ also has m.e.c. distribution. This is shown in the following
theorem.

Theorem 2.3. Let X ~ E, ,(M,XQ @, y). Then, X' ~ E, ,(M',® @ X, y).
PROOF: We have

iTM) y(1+(TET @)
iT'M)y(1r(T OTE)).

= etr

I
a
8
3
a2

This is the characteristic function of X' ~ E,, ,(M',® ® X, y). ]

The question arises whether the parameters in the definition of a m.e.c.
distribution are uniquely defined. The answer is they are not. To see this assume
that a, b, and ¢ are positive constants such that ¢ = ab, Xy = a¥, ©, = bDy,
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v2(2) = w1 (1z). Then, E, ,(M, 2, ® @1, 1) and E,, ,(M, 2, ® @3, y) define the
same m.e.c. distribution. However, this is the only way that two formulae define the
same m.e.c. distribution as shown in the following theorem.

Theorem 2.4. Let X ~ E, ,(M,Z; ® @1,y ) and at the same time X ~ E,, ,(Mp,
2 @ @y, yn). If X is nondegenerate, then there exist positive constants a, b, and ¢
such that ¢ = ab, and My =My, £y = aXy, @, =b®y, and Y12 (z) = ¥ (%Z)

PROQOF: The proof follows the lines of Cambanis, Huang and Simons (1981). First
of all, note that the distribution of X is symmetric about M; as well as about M.
Therefore, M; = M, must hold. Let M = M. Let us introduce the following
notations

Z]:[Gij,i,jZI,...,p; 121,2,
(DI:l(Pijaivjzla“';n; I=1,2.
Let k(a) denote the p-dimensional vector whose ath element is 1 and all the
others are 0 and 1() denote the n-dimensional vector whose bth element is 1 and

all the others are 0. Since X is nondegenerate, it must have an element x;, j, which
is nondegenerate. Since x;, j, = k'(io)X1(jjo), from Theorem 2.2 we get

Xigjo ~ E1(miyjo, 10k 19jojo» W1)

and

Xigjo ~ E1 (miojov 20igig 2®jg o> V).

Therefore, the characteristic function of x;, j, — m; j, is

o (t) = wi(t* 16iiy 10j0jo)
= WZ(ZZ 20 2¢j0j0) (2.5)

withr € R.

Since, ;0j,i, and ;¢;,;, (I = 1,2) are diagonal elements of positive semidefinite
matrices, they cannot be negative, and since x;, j, is nondegenerate, they cannot be
zero either. So, we can define

o — 25%0i02%jojo
1Gipig 1¢j0jo

Then, ¢ > 0 and y,(z) = y; (1z) forz € [0,0).

We claim that ¥, ® @ = ¢(Z ® @). Suppose this is not the case. Then, there
exists t € IRP" such that t'(X, ® @))t # ct' (2| ® @1)t. From Theorem 1.17, it
follows that there exists Ty € RP*" such that 1r(T,Z2To @) # ctr(Ty X1 To®y).
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Define T = uT(, u € IR. Then, the characteristic function of X — M at uT is
v (Lttr(T{)Z]To@l)) = l//z(uctr(Tf]ZlTQCDl)).

On the other hand, the characteristic function of X —M at uT( can be expressed as
Wz(utr(T622To(D2)). So

Wz(uctr(T621T0¢1)) = lyz(utr(T622T0q52)). (2.6)

If 1r(THZ 1 To®1) = 0 or tr(TyZ,To®P>) = 0, then from (2.6) we get that y(u) =0
for every u € IR. However, this is impossible since X is nondegenerate.
If tr(TyZ 1 To®1) # 0 and 17(THZ TP ) # 0, then define

d IV(T621T0¢1)
=C——
ZV(T622T0(I72)

Then, d # 0, d # 1, and from (2.6) we get W, (u) = y»(du). By induction, we get

Wva(u) =y (d'u) and y,(u) =y, <(;>nu) ,n=12 ...

Now either d" — 0 or (%)n — 0, and from the continuity of the characteristic

function and the fact that y(0) = 1 it follows that y,(u) = 0 for every u € R.
However, this is impossible. So, we must have X, @ @, = ¢(X; ® @;). From
Theorem 1.16 it follows that there exist a > 0 and b > 0 such that X, = aX,
@, = b®Py, and ab = c. This completes the proof. [

An important subclass of the class of the m.e.c. distributions is the class of matrix
variate normal distributions.

Definition 2.3. The p x n random matrix X is said to have a matrix variate normal
distribution if its characteristic function has the form

ox(T) = etr(iT'M)etr (—;T’ZT(D) ,

withT:pxn, M:pxn, X:pxp, @:nxn, X>0, d>0. This distribution is
denoted by N, ,(M,Z ® @).

The next theorem shows that the matrix variate normal distribution can be used
to represent samples taken from multivariate normal distributions.

Theorem 2.5. Let X ~ N, ,(ue),, X ®1,), where u € RP. Let X1,Xa,...,X, be the
columns of X. Then, X1,Xa,...,X, are independent identically distributed random
vectors with common distribution N,(U,X).
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PROOF: Let T = (ty,t5,...,t,) be p x n matrix. Then

t) t)
t 1|6
(PX(T) =etr|i : (»unuanu) etr 75 : Z(tltha"'vtn)

n

) n 1 n
= exp (z th’ju> exp (—2 Z“It’th]) -
j= j=

n . 1
= _lexp <zt'ju — 2t'thj> ,

J

which shows that X;,X,...,X, are independent, each with distribution N,(u, X).
|

2.2 Probability Density Function

IfX~E,,(M,X2®®,y) defines an absolutely continuous elliptically contoured
distribution, ¥ and @ must be positive definite. Assume this is not the case.
For example, ¥ > 0 but X is not positive definite. Then, from Theorem 1.7, it
follows that £ = GDG’ where G € O(n), and D is diagonal and d;; = 0. Let
Y =G/ (X—M). Then, Y ~ E, ,(0,D® @, y), and the distribution of Y is also
absolutely continuous. On the other hand, y;; ~ E1(0,0, y) so y;; is degenerate. But
the marginal of an absolutely continuous distribution cannot be degenerate. Hence,
we get a contradiction. So, £ > 0 and @ > 0 must hold when the m.e.c. distribution
is absolutely continuous.

The probability density function (p.d.f.) of a m.e.c. distribution is of a special
form as the following theorem shows.

Theorem 2.6. Let X be a p x n dimensional random matrix whose distribution is
absolutely continuous. Then, X ~ E, ,(M,X @ @, y) if and only if the p.d.f. of X
has the form

F(X) =23 @| h(r(X-M)'Z (X -M)® ), 2.7)

where h and  determine each other for specified p and n.

PROOF: 1. First, we prove that if X ~ E, ,(M, X @ @, y) and E, ,(M,Z @ @, y) is
absolutely continuous, then the p.d.f. of X has the form (2.7).

Step 1. Assume that M =0 and X ® @ =I,,,. Then, X ~ E,, ,(0,I, ® I,, ).
We want to show that the p.d.f. of X depends on X only through r(X'X). Let x =
vec(X'). From Theorem 2.1 we know that X ~ E,,,(0,1,,, y). Let H € O(pn), then,
in view of Theorem 2.2,
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Hx ~ E,,(0,HH', ) = Ep, (0,1, y) .

Thus, the distribution of x is invariant under orthogonal transformation. There-
fore, using Theorem 1.11, we conclude that the p.d.f. of x depends on x only through
x'x. Let us denote the p.d.f. of x by fi(x). We have f;(x) = h(x'x). Clearly, h only
depends on p, n, and . It follows from Theorem 1.17, that x'x = tr(X'X). Thus,
denoting the p.d.f. of X by f(X), we get f(X) = h(rr(X'X)).

Step 2. Now, let X ~ E,, ,(M, X ® @, y). From Corollary 2.1, it follows that Y =
Z’%(X - M)d)’% ~ Ep (0,1, ®1,,y). Therefore, if g(Y) is the p.d.f. of Y, then
g(Y) = h(tr(Y'Y)). The Jacobian of the transformation Y — X is |2_% \"|<I)_% 7.
So the p.d.f. of X is

f(X)=h (tr (<1>—%(fo)’2—%2—%()( fM)(D‘%)) =% ||t
= |z @ Eh(r (X-MYZ ' (X-M)@ "))

II. Next, we show that if a random matrix X has the p.d.f. of the form (2.7), then
its distribution is elliptically contoured. That is, assume that the p x n random matrix
X has the p.d.f.

SOX) = (2@ R (o (X-M)ZT (X -M)@ 7)),
then we want to show that X ~ E,, ,(M,Z @ @, y). Let Y = Z’%(X - M)CD’%.

Then, the p.d.f. of Y is g(Y) = h(tr(Y'Y)). Let y = vec(Y'). Then, the p.d.f. of y is
g1(y) = h(y'y). The characteristic function of y is

dy(t) = /IR L, exp(ity)h(y'y)dy,
where t € RP".
Next, we prove that if t; and t, are vectors of dimension pn such that t’ltl = t’ztz,

then ¢y (t;) = ¢y (t2). Using Theorem 1.11, we see that there exists H € O(pn), such
that t}H = t,. Therefore,

0y(t) = [ explit)h(y'y)dy
= / exp(ityHy)h(y'y)dy
R
Let z = Hy. The Jacobian of the transformation y — z is [H'|""* = 1. So
/ exp(it) Hy)h(y'y)dy = / exp(it)z)h(z HH'z)dz
IRP" RP"
= exp(it)z)h(z'z)dz

JIRP"

= ¢y(tl)~
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This means that ¢y(t;) = @y(t2). Therefore, ¢y(t) is a function of t't, which
implies that ¢y (T) is a function of ¢tr(T'T). Therefore, there exists a function y
such that ¢y (T) = y(¢r(T'T)). Thatis, y ~ E,, ,(0,1, ® L, ). Using Corollary 2.1,
weget X~ E, (M, 2@ ®,y). ]

Next we prove a lemma which will be useful for further study of m.e.c.
distributions.

Lemma 2.1. Let f be a function f : A X RP — IR, where A can be any set. Assume
there exists a function g : A X R — RY such that f(a,x) = g(a,x'x) for any a € A
and x € RP. Then, we have

p
2r?2

f(a,x)dx:T wrp_lg(a,rz)dr
RP F( ) 0

2
forany a € A.

PROOF: Let x = (x1,x2,...,x,)" and introduce the polar coordinates

x1 = rsinBysin6, . .. sin6,_»sin6,_
xp = rsinBysin6, ... sin0,_»c0s0,_;

x3 = rsinBysin6; ...cos0,_»

Xp—1 = rsin@icos6

Xp = rcosO,

where r >0,0< 6, <m,i=1,2,...,p—2,and 0 < 6,_; < 2m. Then, the Jacobian
of the transformation (x1,x2,...,x,) = (,01,02,...,0,_1) is

PV sin? =20, sin”? 30, . .. sinBp_.

We also have x'x = 2. Thus,

fla,x)dx = / g(a,x'x)dx

XERP xCIRP

o o [TC 2n
:/0/0/0.../0 g(a,rz)rpflsinpfzelsin”ﬁez...sinep,zdep,]...d@zdeldr

oms e
= F(p)/o P g(a,r?)dr. ]
2

The next theorem is due to Fang, Kotz, and Ng (1990).
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Theorem 2.7. Let g : R(T — R(T be a measurable function. Then, there exists a
constant c such that

cg(tr(X'X)), X &R

is the p.d.f. of the p x n random matrix X if and only if
0< / r””_lg(rz)dr < oo,
0

Moreover, the relationship between g and c is given by

N
217 [ re=lg(r2)dr

PROOF: By definition, cg(rr(X'X)), X € RP*", is the p.d.f. of a p x n random matrix
Xiff cg(y'y), y € R”" is the p.d.f. of a pn-dimensional random vector y. On the other
hand, cg(y'y), y € RP" is the p.d.f. of a pn-dimensional random vector y iff

/ cg(y'y)dy =1.
RPn

From Lemma 2.1, we get
21’7
n

/W cg(y'y)dy == ()

/ rp”_lg(rz)dr.
0
Hence, we must have
0< / P le(r?)dr < oo.
0

and

e I(5) _ .
2n'T Jo rr=lg(r?)dr

2.3 Marginal Distributions

Using Theorem 2.2, we can derive the marginal distributions of a m.e.c. distribution.

Theorem 2.8. Let X ~ E, ,(M, X ® @, ), and partition X, M, and X as

X Ml) (211 212)
X = s M= N and Y= 5
(Xz) <M2 Z:21 Z22
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where X1 is gxn, My isgxn, and X1y is g X q, 1 < q < p. Then,
Xi~Eg (M, 211 @D, y).

PROOF: Let A = (I,,0) be of dimensions g x p. Then, AX = X, and from

Theorem 2.2, we obtain X; ~ E, , ((Iq, 0)M, ((Iq7 0)X (Ig)) RO, q/) ,ie Xy~

Eq,n(M1u211®¢7W)' |
If we partition X vertically, we obtain the following result.

Theorem 2.9. Let X ~ E,, ,(M, X ® @, ), and partition X, M, and @ as

X=(X;,Xy), M=(M;,M,), and qb:(‘p” @‘2),

Dy Py
where X1 is p xm, My is p xm, and @11 ismxm, 1 <m < n. Then,
X|~E, (M, ZR@ @1, y). (2.8)

PROOF: From Theorem 2.3, it follows that

X’ M, D D
X/: 1)  E 1 11 12 >
(X/z> np((M/z)’((Dzl D) ik

Then (2.8) follows directly from Theorem 2.8. [
Theorem 2.10. Let X ~ E, ,(M,X® @, ), then x;j ~ Ei(mjj, 0ii¢j;, ¥).
PROOF: The result follows from Theorems 2.8 and 2.9. [}

Remark 2.3. 1t follows from Theorems 2.8 and 2.9 that if X ~ E,, ,(M, Z @ @, y)
and Y is a ¢ x m submatrix of X, then Y also has m.e.c. distribution; Y ~
E‘]-,m(M*aZ* b (I)*7 W)

2.4 Expected Value and Covariance

In this section, the first two moments of a m.e.c. distribution will be derived. In
Chap. 3, moments of higher orders will also be obtained.

Theorem 2.11. LetX ~E,,(M,X® @, y).

(a) IfX has finite first moment, then E(X) = M.
(b) IfX has finite second moment, then Cov(X) = cX @ @, where c = —2y'(0).
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PROOF: Step 1. First, let us assume M=0and X ® @ =1,,,. Then, X ~ E,, ,(0,1,®
L,vy).
(a) In view of Theorem 2.2, we have

(—1,)X ~ Epn (0.1, 0L, ).

Therefore, E(X) = E(—X), and E(X) = 0.
(b) Let x = vec(X’) Then x ~ E,,(0,1,,, y). The characteristic function of x is
Ox(t) = y(t't), where t = (11,...,1p,)". Then,

Ig(t) v (1) « 2
ot ot =y | X1 |-

=1

So,

and if i # j, then

Therefore,

9% 9x(t)

Iox(t)|
- Z‘I/(O) at,al‘j

or?

and

=0 if i#j.

t=0

Thus, Cov(x) = =2y (0)1,,,

Step 2. Now, let X ~ E, ,(M,Z ® @, y). Let ¥ = AA" and @ = BB’ be the rank
factorizations of X and @. Then, from Corollary 2.1, it follows that Y = A~ (X —
M)® ~ ~E, , (0,1, ®1,,) and X = AYB'. Using Step 1 ,we get the following
results:

(a) E(Y)=0.Hence E(X) =A0B'+M = M.
(b) Let x =vec(X'), y = vec(Y'), and = vec(M’). Then x = (A®B)y + U, and
Cov(y) = —2y'(0)I,,, and so

Cov(x) = —21//’(0)(A®B)I,,,,(A’®B’)
— —2y/(0)(AA) ® (BB')
= 2W(0)Z0 . -
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Corollary 2.2. With the conditions of Theorem 2.11, the ith (i=1,...,p) column
of the matrix X has the covariance matrix ¢;X and the jth row (j=1,...,n) has
the covariance matrix oj;P.

Corollary 2.3. With the conditions of Theorem 2.11,

Oix®j1

I b
\/ Cii O i du

that is, the correlations between two elements of the matrix X, depend only on X
and @ but not on .

Corr(xij,xx) =

PROOF: From Theorem 2.11, we get Cov(x;j,xi1) = cOx$j1, Var(x;j) = c0;;§;;, and
Var(xy) = cOw Py, where ¢ = —2y’(0). Therefore

coOiQji
\/ %00 ;i
Oix®j1

= —— .
v/ Cii O i du

Corr(xij,xx) =

2.5 Stochastic Representation

In Cambanis, Huang, and Simons (1981) the stochastic representation of vector
variate elliptically contoured distribution was obtained using a result of Schoenberg
(1938). This result was extended to m.e.c. distributions by Anderson and Fang
(1982b). Shoenberg’s result is given in the next theorem.

Theorem 2.12. Let v be a real function v : [0,00) — R. Then, y(t't), t € RF is
the characteristic function of a k-dimensional random variable X, if and only if
v(u) =[5 Q(r*u)dF (r), u > 0, where F is a distribution function on [0,) and
Qi (t't), t € R* is the characteristic function of the k-dimensional random variable
wy, which is uniformly distributed on the unit sphere in IR*. Moreover, F(r) is the

1
distribution function of r = (x'x)2.

PROOF: Let us denote the unit sphere in R* by Sy:
S ={x|x € R\;x'x =1},

and let A, be the surface area of Sy i.e.
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First, assume y(u) = [;°Q(r*u)dF(r). Let r be a random variable with
distribution function F(r), and let u; be independent of r and uniformly distributed
on S;. Define x = ruy. Then, the characteristic function of x is

9x(t) = E(exp(it'x))
= E(exp(it'ruy))
= E{E(exp(it'ruy)|r)}

= /OooE(exp(it/rllk) |V = y)dF(y)
- /0 " Gu O)AF ()
- [ 2uttoar).

Therefore, y(t't) = [;° Q(y*t't)dF (y) is indeed the characteristic function of the
k-dimensional random vector x. Moreover,

1

[~]

F(y)=P(r<y)=P((r*)2 <y) = P(((ru)'(ruy))? < y) = P((x'x)? < ).

Conversely, assume y(t't) is the characteristic function of a k-dimensional
random vector x. Let G(x) be the distribution function of x. Let dw(t) denote the
integration on Sy. We have y(u) = y(ut't) for t't = 1, and therefore we can write

wlu) = Aik [ watyaan

— L [ ouatydowt

Ap Js,

_ Aik /Sk / exp(iv/ut'x)dG(x)doy (1)

=/ (1 /Sk exp(i\/ﬁxlt)dwk(t)> dG(x)

Ay
= [ @ (Vi) (Vi) 46

= | Q(ux'x)dG(x)
Rm

~ [ 2uwar o)

where F(y) = P((x’x)% <y). ]
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Now, we can derive the stochastic representation of a m.e.c. distribution.

Theorem 2.13. Let X be a p X n random matrix. Let M be p X n, X be p X p, and
@ be n x n constant matrices, £ >0, @ > 0, rk(X) = py, rk(®) = ny. Then,

X~E,  (M,ZRd,y) (2.9)
if and only if
X ~M+rAUB’, (2.10)

where U is pi x ny and vec(U'") is uniformly distributed on S,,,,, r is a nonnegative
random variable, v and U are independent, ¥ = AA/, and @ = BB’ are rank
factorizations of X and ®. Moreover, y(u) = [ Qp n, (Pu)dF (r), u > 0, where
Qp 0, (f't), t € RP'™ denotes the characteristic function of vec(U'), and F(r)
denotes the distribution function of r. The expression, M+ rAUB’, is called the
stochastic representation of X.

PROOF: First, assume X ~ E, ,(M, X ® @, y). Then, it follows from Corollary 2.1,
that Y=A"(X-M)B'~ ~E, , (0,I,, @I, ,y). Thus,

y =vec(Y') ~ Epin (01,0, ).
So, y(t't), t € IRP'™ is a characteristic function and from Theorem 2.12, we get
W(u) :/0 Qplnl(y2u)dF(y)7 u>0,
which means that y ~ ru, where r is nonnegative with distribution function F(y), u
is uniformly distributed on S, ,,, and r and u are independent. Therefore, we can
write y & ru, where u = vec(U’). Now, using Corollary 2.1 again, we get

X ~ AYB'+ M ~ M + rAUB'.

Conversely, suppose X =~ M + rAUB’. Let u = vec(U’). Define

V(0 = [ @ (PP (),
where F(y) is the distribution function of r, u > 0. Then, it follows from The-
orem 2.12, that y(t't), t € R is the characteristic function of ru. So ru ~
Epn, (0,1, ,v) and hence,

U~ Ep o (0,1, @1, ).

Therefore,

X ~M+rAUB' ~E,,(M,(AA)® (BB'),y) =E,,(M,22®,y). m
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It may be noted that the stochastic representation is not uniquely defined. We can
only say the following.

Theorem 2.14. M; + r;A|UB| and My + r,A,UB), where U is py x ny, are two
stochastic representations of the same p X n dimensional nondegenerate m.e.c.
distribution if and only if M| = My, and there exist G € O(p1), H € O(ny), and

positive constants a, b, and c¢ such that ab = ¢, Ay = aA1G, By = bB1H, and

1
r) = Erl.

PROOF: The “if” part is trivial. Conversely, let X ~ M; +r;A;UB/ and X, ~ M, +
rgAzUBlz. Then

X~ E, (M, (A1A}) ® (B1B}), 1)
and

X~ Epn(My, (A2A}) @ (B2B)), ya),
where y;(u) = [5° Qp,n, *u)dF;(y), and F;(y) denotes the distribution function of
ri,i=1,2.

It follows, from Theorem 2.4, that M; = M,, and there exist a® > 0, b > 0,
and ¢? > 0 such that a’b* = 2, AxA}, = a*A1A), BB, = b?B B/, and y»(z) =

W (L%z) Now, from Theorem 1.11, it follows that there exist G € O(p;) and H €
O(ny) such that As = aA; G, and B, = bBH. Since, y»(z) = v (Cizz), we have

@) = [ Qo (R0)

()

- / @y, (P5) dFi ()

_ /0“’ Qi ((i) z) AR (y)

_ /0 Qpyn, (22)dF (ct).

Therefore F>(y) = Fi(cy), and
P(ry <y)=P(r; <cy) zP(%1 <y> .

Hence, rn = %rl. [}
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Remark 2.4. 1t follows, from Theorem 2.13, that U does not depend on y. On the
other hand, if p; and n| are fixed, ¥ and r determine each other.

Remark 2.5. Let E, ,(0,X @ @, y) and rAUB’ be the stochastic representation of
X. Then, A~XB'~ = rU, and tr((A~XB'~) (A~XB' 7)) ~ tr(r*U'U). Now,
tr((A"XB' ") (A"XB' 7)) =tr(B"XA' A XB'")
=tr(X’A’"A"XB'"B")
=tr(X'Z"X®).

Here we used A’“A~ = X, which follows from Theorem 1.23. On the other hand,
tr(U'U) = 1. Therefore, we get 1> ~ tr(X'Z~X® ).

If an elliptically contoured random matrix is nonzero with probability one,
then the terms of the stochastic representation can be obtained explicitly. First we
introduce the following definition.

Definition 2.4. Let X be a p x n matrix. Then its norm, denoted by [X]|, is
1

defined as
IIXII=< Z%) :
1j=1

That is, | X]| = (tr(X'X))%, and if n = 1, then we have ||x|| = (x'x)%.

7 [\/]m

The proof of the following theorem is based on Muirhead (1982).
Theorem 2.15. Let X ~ E, ,(0,L, @1, y) with P(X = 0) = 0. Then, X = || X|| HXTH
P(|IX|| > 0) =1, vec (HXT/H) is uniformly distributed on Sp,, and || X|| and H%H are

X is the stochastic representation of X.

PROOF Since X =0 iff tr(X’X) =0, P(||X|| > 0) = 1, follows so we can write
= ||IX[| X HXH Define x = vec(X'). Then, X ~ E,(0,1,,, v) and || X|| = ||x||. Hence,
=[x/l =
Let T(x) = HXH’ and G € O(pn). Then, we get GX ~ E,,(0,1,,,y), so x = Gx
and T'(x) ~ T (Gx). On the other hand,

Gx Gx
IGx] ~ Jixll

T(Gx) = =GT(x).

Hence, T'(x) ~ GT(x). However, the uniform distribution is the only one on
Spn which is invariant under orthogonal transformation. So, T'(x) is uniformly
distributed on S .
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Now, we define a measure (1 on Sp,. Fix B C Rg Borel set. Let A C Sy, be a
Borel set. Then,

u(A) = P(T(x) € A[|[X]| € B).

Since u(RP") =1, u is a probability measure on S,,.
Let G € O(pn). Then, G 'x ~ x, and we have

Thus, t(A) is a probability measure on S, invariant under orthogonal transfor-
mation, therefore, it must be the uniform distribution. That is, it coincides with the
distribution of T'(x). So, u(A) = P(T(x) € A), from which it follows that

P(T(x) €A||x||€e B)=P(T(x) €A).

Therefore, T(x) and ||x|| are independently distributed. Returning to the matrix
notation, the proof is completed. [

Muirhead (1982) has given the derivation of the p.d.f. of r in the case when
x ~ E,(0,I,,y) and x is absolutely continuous. Now for the elliptically contoured
random matrices, the following theorem can be stated.

Theorem 2.16. Let X ~ E, ,(0,X ® @, y) and rAUB’ be a stochastic representa-
tion of X. Assume X is absolutely continuous and has the p.d.f.

fX) =272 @ 2h(r(X' 7' X0 7).

Then, r is also absolutely continuous and has the p.d.f.
g(r)= =" h(r*), r>0.

PROOF: Step 1. First we prove the theorem for n = 1. Then, x ~ E,,(0, %, y) and so

y= A lx ~Ey0,I,,y).
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Therefore y has the p.d.f. h(y'y). Let us introduce polar coordinates:

y1 = r5in0;sin0, ...sinB,_>sinb,_
y2 = r5in0;sin0, ...sin6, _>cos6, 1

y3 = rsin0;sin6, ...cos6, >

Yp—1 = rsinBicos6
yp = rcos,
where r >0,0< 6; <m, i=12,...,p—2,and 0 < 6,1 < 27m. We want to
express the p.d.f. of y in terms of 7, 0, ..., 8,_1. The Jacobian of the transformation
(V15925 5¥p) = (1,01,...,0,_1) is P L5inP =20, 5in? =36, ... 5inB,_5. On the other
hand, y'y = r2. Therefore, the p.d.f. of (r,6,..., 0,_1) is

h(r*) P~ sinP 20y 5in” 30, . .. 5inb,_».

Consequently, the p.d.f. of r is

2 rm T
g(r) = rp_lh(rz)/o /0 /0 sinp_zelsinp_392...sinep,gdeldez...depfzdepfl

p—lh( 2) 27[L2’
=r r .

(%)

Step 2. Now let X ~ E}, ,(0,X ® @, y) and X ~ rAUB’. Define x = vec(X'), and
u = vec(U’). Then, x ~ E,,(0,X ® @, y), x has p.d.f. lzéﬁh(x’(z ® @)~ 'x), and

x ~ r(A ®@B)u. Using Step 1 we get the following as the p.d.f. of r,
21’7

8l = 1" W)
2

The stochastic representation is a major tool in the study of m.e.c. distributions.
It will often be used in further discussion.

Cambanis, Huang and Simons (1981), and Anderson and Fang (1987) derived
the relationship between the stochastic representation of a multivariate elliptically
contoured distribution and the stochastic representation of its marginals. This result
is given in the next theorem.

Theorem 2.17. Let X ~ E,, ,(0,1, ® I,, ) with stochastic representation X ~ rU.
Let X be partitioned into
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where X; is p; x n matrix, i = 1,...,m. Then,
X] rr]Ul
X2 rr2U2
X 77 Up

where 1, (r1,r2,...,rm), U1, Us,..., Uy, are independent, r; >0, i = 1,...,m,
2 _
XL =1

2 2 2 pin pan Pm—1n_ppmh
N T ~D<—,—,...,7;—>, 2.11
(11,1 Tm—1) ) 2 > (2.11)

and vec(Uy}) is uniformly distributed on Sy, i = 1,2,...,m.

PROOF: Since X ~ rU, we have

X
Xo

Q

ruU,
Xn
where r and U are independent. Thus it suffices to prove that

riUp
rnU;

FmUn
Note that U does not depend on y, so we can choose y(z) = exp (— 5), which means
X ~ N, ,(0,1, ®1L,). It follows that X; ~ N, »,(0,I,, ®I,) and X;’s are mutually
independent, i =1,...,m.
Now,

U i = (T T Xm)
XTI X X
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From Theorem 2.15 it follows that X; = ||X,||ﬁ where | X;|| and H%H are

!
i

independent and vec (m) /2 Up,; which is uniformly distributed on S,,,. Since,
X.

X;’s are independent, || X;|| and rxy are mutually independent, i = 1,2,...,m.
Therefore, we get
on (DX D01 | Pl XY
(XTI (Xl X 11l

1

Define r; = X and Uy = . i = 1,2,..m. Since |X[| = (12, [1Xi|%) 2. ri’s
1

are functions of || Xy, ||Xz]|,---, || Xm|. Hence, (ri,72,...,7m), U1, Us,..., U, are

independent. Moreover, || X;||? = tr(X/X;) ~ xgl_n and ||X;||>’s are independent. Now,

it is known that

( |1X [ X2 X012 ) ND(M pan pmfln.M)
A7 e YA 1D 4] R iR ). 4] 27277 2 72
(see Johnson and Kotz, 1972). Consequently, (r%, r%, e rrznfl) has the distribution
(2.11). ]

Corollary 2.4. Let X ~ E, ,(0,I, ®L,, y) with stochastic representation X =~ rU.
Let X be partitioned into
(%)
X,

. . X
where X1 is ¢ X n matrix, 1 < q < p. Then, M) ~ rnUi , where r, (r1,r),
X rrUs

U, U; are independent, r; >0, i = 1,2, F%+V§ =1, and r% ~B (%, WT’W). Also

vec(U)) is uniformly distributed on Sg, and vec(U)) is uniformly distributed on
Stp-gn-

2.6 Conditional Distributions

First, we derive the conditional distribution for the vector variate elliptically
contoured distribution. We will follow the lines of Cambanis, Huang, and Simons
(1981). The following lemma will be needed in the proof.

Lemma 2.2. Let x and y be one-dimensional nonnegative random variables.
Assume that y is absolutely continuous with probability density function g(y).
Denote the distribution function of x by F(x). Define z = xy. Then, z is absolutely
continuous on R* with p.d.f.
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h(z)zl/OMIg( )dF() (2.12)

If F(0) = 0, then z is absolutely continuous on R}, and if F(0) > 0, then z has
an atom of size F(0) at zero. Moreover, a conditional distribution of x given z is

L 5 S0 Le (%) dF (xo) if x0 >0, z0 >0, and h(zo) # 0

h(zo Xo

P(x < xolz=120) = 1 if x0 >0, andz =0 (2.13)
or xp >0, zo > 0and h(zp) =0
0 if x0<0.
PROOF:

P(0<z<z)) =P0<xy<z)

:/ P(0 < xy < zolx = x0)dF (x0)

—/ P0<y< )dF(xo)

—// (y)dydF (xo).

Let t = xgy. Then, y = XLO, dy = Xiodt and

/ / y)dydF (xp) / / ( )dtdF(xo)
(0,z0]
:/ /“’ 1, (’) dF (xo)dt
(0.20) JO X0~ \ X0
and this proves (2.12).

Since, y is absolutely continuous, P(y = 0) = 0. Hence,

P(x10y(2) = X0y (%)) = 1. (2.14)

Therefore, if F(0) = 0, then P(z =0) = 0, and so z is absolutely continuous on R;j .
If F(0) > 0, then P(z =0) = F(0) and thus z has an atom of size F(0) at zero.

Now, we prove (2.13). Since x > 0, we have P(x < xp) = 0 if xp < 0. Hence,
P(x <xplz) =0if xo < 0. If xg > 0, we have to prove that the function P(x < xp|z)
defined under (2.13) satisfies

[ ]P(x <xolz)dH (z) = P(x <x0,2 <r),
0,r

where H(z) denotes the distribution function of z and » > 0. Now,
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/[0]P<xSxo|z>dH<z>=P<x§xo|z= 0)+ / P(x < xo|)dH (2)

= H(0) +/(0’r] % (/(OJO] ;g (;) dF(X)) h(z)dz

1 /z
O+/ / —g| = )dzdF(x).
7+ Jong S 28 () 2070

Let u = . Then, J(u — z) = x, and so

/(04 1g< )dz—/(oﬁ;]g(u)du:P(0<y§;) )

Hence,
/ / dzdF( y=H(O)+ [ P (0 <y<’ ’x - x0> dF (xo)
(0.x0] /(0,7] x* (0.0 X

HO)—|—P(0<x§x0,O<y§;:)
H

—_— o~

0)+P(0<x<xp,0<xy<r)
72=0)+P0<x<x,0<z<7)
x=0,z=0)+P0<x<x,0<z<7r)
0<x<x,0<z<r)

where we used (2.14). [}
Now, we obtain the conditional distribution for spherical distributions.

Theorem 2.18. Ler x ~ E, (0,1, y) with stochastic representation ru. Let us par-

X1

tition X as X =
X2

), where X; is g-dimensional (1 < g < p). Then, the conditional

distributionee of X1 given X is (Xi|x2) ~ E, (O,Iq,lllesz)), and the stochastic

representation of (X{|Xy) is 7%, 2015 where uy is g-dimensional. The distribution
ofr”Xsz is given by

a) Prp<y=-2 (2.15)
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fory>0ifa>0andF(a) <1,
b)  Plrpo=0)=1 if a=0 or F(a)=1. (2.16)

Here F denotes the distribution function of r.

PROOQOF: From Corollary 2.4, we have the representation

X1 ~ rriug
X2 rraun ’
Using the independence of r, ri, u; and u,, we get

(X] ‘Xz) ~ (rr1u1 |Vl"2112 = Xz)
= (rrlw|r(1 = r})2uy = x2)
= (rry|r(1— r%)%ug =xp)uy,
and defining ro = (rr|r(1 — r%)%uz = Xp), we see that r and u; are independent;

therefore, (X |x2) has a spherical distribution.
Next, we show that

1 1 1
(rralr(1 =) s = x2) ~ (7 = heal )2 r(1 =) = el ).

!
If r(1— r%)%uz = Xy, then (r(l — rf)%uz r(l— rf)%uz = ||x2||* and therefore,

r2(1—r2) = ||x2||>. Hence, we get r* — 12 = ||x2||%, thus 273 = r? — ||x||? and

rr = (r?— ||X2H2)% Therefore,

1 1 1
(rrlr(1=r}) 2w = x0) = ((r* = [|x2[*) 2 |r(1 = 1) 202 = x2).

If x, = 0, then ||x; || = 0, and using the fact that u; # 0 we get

Nl

(P =[xl (1 =) 2w =x0) = (P = x|} r(1=r})2 = 0)

= (P = %) 2[r(1=})2 = |x2)).

If x; # 0, then we can write
1 1
(7 = x| r(1 =r}) 2wy = x)

1 1 x
- ((r2||x2||2)2|r(1rf)2u2|X2| 5 )

%2
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X2

1 1
:(<r2—||X2||2>z|r<1—r%>2=lezll and “2:M>

= (P =l =) = xll) |

where we used the fact that r, ry, and u, are independent. Since 1 —r3 ~ B (ﬂ, %)

its p.d.f. is

O
2r (% o .
) F(%)F(E’)?)yp Ty 0<y<d

P(rgu\r(lfr%)% =a) .17
P —— g-1 .
hgfu)fw]%%(%y 1= BT dF () if w>0,a>0, andh(a) £0
1 if u>0,anda=0
oru>0,a>0and h(a)=0
0 if u<0.
where
1 2r(%) a\pr—a-1 a2\ !
h(a):/ S (4 P )
(=) W (§) T (B52) \w w
Now,
2r(2 —g—1 2\ §-1
f(au] vlvr(% 1E(2%‘i) (s})l’ ! (1 fﬂ) dF (w)

Siaad (w? —a?) §-1 W (== 14a-2) g ()

Jiae) (w2 —a?) -1 w—(+p=a=1+a-2) 4F ()
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-1

[N

Jag W —a?)* W P"2)dF (w)

- . (2.18)
Siawn) W2 = @) 2w (=2 F ()
We note that i(a) = 0 if and only if
/( )(wz—az)%ilwf(pfz)dF(w), (2.19)

q_
and since (w2 — az) 27 hy=(-2) > 0 for w > a, we see that (2.19) is equivalent to
F(a) = 1. Therefore, h(a) = 0 if and only if F(a) = 1.

(a) If a > 0and F(a) < 1, then for r > 0 we have

= P(r< (P +d)|r(1-1)% =a). (2.20)
From (2.17), (2.18), and (2.20) we have

P(ra <y) = P(r<(’+a)2|r(1-r)? =a)

(SIS

w2 gF (w)

2 2
Jaw/az @)
Siawm W2 = @) 2w (r=2dF ()

(b) If r>0anda=0o0rr>0,a>0and F(a) = 1, then from (2.17) we get
Pir< (P +a)i|r(1-r) =a) =1.
Take y = 0, then we get
P(r, <0)=P(r<da|r(1—r?)? =a) = 1. 2.21)

Now, since r,2 > 0, (2.21) implies P(r, =0) = 1. ]

In order to derive the conditional distribution for the multivariate elliptical
distribution we need an additional lemma.

Lemma 2.3. Letx ~ E,(m, X, y) and partition X, m, X as

() () - (E)
X2 m) 21 X
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where X1, my are g-dimensional vectors and X117 is g X q, 1 < g < p. Let y ~

E,(0.1,,y) and partition y as 'y = (Y1 ), where y| is g-dimensional. Define
y2

22 =211 — 21222_2221 and let X112 = AA’ and 2o = A2A/2 be rank factor-

izations of X112 and X;. Then

<X1 ) ~ (ml +Ay; +Z1225,A0y2 )
X2 m; +Asy»

PROOF: Since <YI > ~ E,(0,1,,y), we have
y2

(ml + Ay +212222A2)’2) _ <m1 > n (A lezzzAz) (Y1>
m; + Aoy my 0 A y2

~E m; A 21222_21\2 A’ 0 "
P m; /) '\ 0 A, A/222_2221 A/2 ’

- F AA/+212252A2A/2252221 2122£2A2A/2 v
¢ ’ A2A12252221 A2A/2 ’

21— 21225200 + 21025, 5% XX Zzz) )
—E, (m, 2 - 2 2 2 wv). @2
r ( ( 22025,3 ArA) v

LO

0 0) , where
L is a nonsingular, diagonal s x s matrix, then X, must be of the form X1, = (K, 0)
where K is g x s. Indeed, otherwise there would be numbers i and j such that
1<i<gand g+s < j<pand 0 #0, 0;; = 0. Since Xy > 0, we must have
Oii Oji

Now we prove that X1, X5,X2 = X 5. If X35 is of the form X5, = <

> 0. However with 0;; # 0, ;; = 0, we have = —Gl% < 0 which

Gij Ojj
is a contradiction. Therefore, X, = (K, 0 )

Let X5, be partitioned as
AB
> =
22 ( CD >

By the definition of a generalized inverse matrix, we must have

(vo) (e0) (60)-(v3).

Gij Ojj

which gives
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("a"0) - (50)

-1
So LAL = L, and since L is nonsingular, we get A =L~!. Thus £, = (L B ) .

CD
Then,
_ L'B\/LoO
Z1pZ5En = (K,O)( c D) (00>

- o) (&)

= (K, 0)
=2

If X5, is not of the form X, = <I(; g) , then there exists a G € O(p — ¢) such that

L0

GXnG =
2 (00

) . Now, define

5 _ I, 0 2120 I, 0
0G 2o X 0G
_( Zn ZpG
~ \GZy GZnG' )’
Then, we must have

leG/(ngzG/)7 (GZzzG/) = 212(}/

That is, 212G/G22_2G/G222G/ = X1,G’, which is equivalent to 2122520 =X
Using X1,X5,%2 = X1 in (2.21), we have

<m1+Ay1+21222_2A2y2) _E (m <211—2122{2221+2122§2221 212) q/)
m; +Azy» PA\T 21 n)’

_ Zn 22
- (m’ (221 Zzz) ’W>
:EP(m7E7W)

which is the distribution of x. [}

Next, we give the conditional distribution of the multivariate elliptical distribu-
tion in two different forms.
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Theorem 2.19. Let x ~ E,(m, X, y) with stochastic representation m+rAu. Let F
be the distribution function of r. Partition X, m, X as

(2 11212 )
0 2n)’

<))

where X1, m are g-dimensional vectors and X1 is g x g, 1 < g < p. Assume
rk(XZ22) > 1. Then, a conditional distribution of X| given X; is

(X1[x2) ~ Eg(my + Z 1225, (%2 —m2), 2112, Yy(xy) )

where
Tha=2Z1u -2z, qx)=(x _mZ)IZEZ(Xz —my),
and
Vy(x,) (1) = /0 ) Qy(Pu)dF ) (r), (2.23)
where
(a)

I e e (W —a(x2)) w2 dF (w)
Fq(X2)(r) — < CI( 2)7 q( 2)+ 2]

(2.24)
f( 202) ) (W2 — q(x2)) 2~ 'w=(P=2dF (w)

forr>0ifq(x2) >0and F(\/q(x2)) < 1, and
(b)

Fyx,)(r) =1 forr>0ifq(x2) =0and F(\/q(x2)) = 1. (2.25)
PROOF: From Lemma 2.3, we get
(X] ) ~ (ml + Ay +212222A2y2)
X2 m; +Aoys ’

where AA" = 2, and A,A) = Xy, are rank factorizations of Xjj.,, Zy, and
<-“) ~ E,(0,1,,y). Thus,
y2

(X1|x2) = (M +Ay; +Z1225,A0y2my + Aryr =X)

=m;+Z 2, (Asyz|my +Aryr =x0) +A(y1me + Asyr, =)
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=m;+ 2122, (A2y2|A2y2 =X —mo) + A(y1 Aoy = xp —mp)
=m +212252(X2 — m2> +A(y1 |A£A2y2 = A; (X2 - m2)> . (2.26)

Now A Ay = Irk( ) and hence we get

22
(Y11AS Aoyr = A (xo —mp)) = (yi1]y2 = A; (X0 —my)). (2.27)

From Theorem 2.18, we get

(yily2 = Ay (x2— mZ)) ~ Eq(ovlqy Wq(xz)) )
where
q(x2) = (A; (x2 —m))'A; (x2 —mp)
= (Xz — mz)IAEIAE (X2 — Il’lg)
= (xp—my) 25, (%2 —my)

and Yy (x,) is defined by (2.23)—(2.25). Thus,

Ayily2 = A3 (2 —m2)) ~ E,(0,AA,y(x,))
= E4(0,Z112, Yy(xy))- (2.28)

Finally, from (2.26), (2.27), and (2.28) we get
(X1[x2) ~ Eg(my +Z 1225 (X2 —m2), 2112, Yy(xy))- u

Another version of the conditional distribution is given in the following theorem.

Theorem 2.20. Let x ~ E,(m, X, y) with stochastic representation m+ rAu. Let
F be the distribution function of r. Partition X, m, X as

) () (EE)
X2 my 2o X
where X1, m are g-dimensional vectors and X1y is g x g, 1 < g < p. Assume
rk(Z2) > 1.
Let S denote the subspace of IRP~4 defined by the columns of Xy, that is, y € S,

if there exists a € RP~4 such that y = Xpa.
Then, a conditional distribution of X| given X, is

(a) (x1]x2) ~ Eg(my +Z1225)(x2 —m2), X112, Yy(x,))
for xo € my + S, where q(Xy) = (xo —my)' X, (xo —my) and Vy(x,) IS defined
by (2.23)~(2.25).

(b) (x1]x2) =my forx, ¢ my +S.
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PROOF: It suffices to prove that P(x, ¢ my +S) = 0 since (X;|x2) can be arbitrarily
defined for x, € B where B is of measure zero. However, P(x; ¢ mp +S) =0
is equivalent to P(xy € my + S) = 1; that is, P(xp —mp € §) = 1. Now, x; ~
Ep_q(m2,2227 l[/) and so X2 —Imyp ~ Ep_q(07222, l[l)

Let k = rk(Zy;). Let G € O(p — q) such that GX,G' = <I(; g) , where L is a
diagonal and nonsingular k X k matrix and define y = G(x, —my). Then,

Lo
y~E, 4 <0, <0 0> ,1,/> . (2.29)

Partitiony asy = ()’1 >, where y; is k x 1. We have
Y2

P(xp—mp €8) =P(xp—mp =Zpa with ae R )
= P(G(xp —my) = GZ»G'Ga with ae RP™9)

=Ply= <L0>b with bER"_q>
by . k —g—k
( ) with by € R*,b, € RP71 )

with b € Rk>

Now, it follows from (2.29) that y> ~ E,_,_«(0,0,y) and so P(y, = 0) = 1.
Therefore, P(xo —my € S) = 1. ]

Now we can derive the conditional distribution for m.e.c. distributions.

Theorem 2.21. Let X ~ E, ,(M,XZ ® @, y) with stochastic representation M +
rAUB'. Let F be the distribution function of r. Partition X, M, X as

Xl) (Ml) (211212)
X= , M= , and X = )
(Xz M; 2o 2

where Xy is gxn, My isgxn, and X1 is gx g, 1 < q < p. Assume rk(Z) > 1.
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Let S denote the subspace of RP~D" defined by the columns of 2, & ®@; that
is, y €S, if there exists b € RP=D" sych that Yy = (Z2 ® @)b. Then, a conditional
distribution of X1 given X is

1. (Xl |X2) ~ Eq’n(M1 +Z1222_2(X2 - Mz),211~2 RO, Wq(Xz))
forvec(XS,) € vec(M)) + S, where q(Xs) = tr((Xo —M2)' 25, (Xo — M) @),

W) ( / Quu(Pu)dF (1), (2.30)
where
(a)
f (w2 —a )‘” 1 (pn—z)dF(W)
Fa(r) = 2oVt 2.31)
f y (w2 —a2) Tl (=2 dF ()
forr>0ifa>0and F(a) < 1, and
(b)
Fo(r)=1 forr>0ifa=0andF(a)=1. (2.32)

2. (X4[X2) =M, forvec(X}) ¢ vec(Mb) +S.

PROOF: Define x = vec(X'), x; = vec(X)), xo = vec(X}), m = vec(M'), m| =
vec(M]), and my = vec(M,). Then x = <2) and X ~ E,,(m, X ® @, y). Now
apply Theorem 2.20.

(1) Ifx; € vec(M)) + S, we have

(x1[x2) ~ Egn (ml +(ZR@)(ZnRd) (x2—my),

Znee)-Zned)(Zne®@) (212 ), lllq(xz)) (2.33)

where
q(x2) = (x2—my)' (2 @ )~ (x2 —my)

= (vec((X2 =M2)")) (25, @ @7 ) (vec(Xo — Mp)')
= tV((X2 — Mz)’Egz(Xg — Mz)q)i) .
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From (2.23) and (2.24) we get (2.30) and (2.31). Since X, € my + S, there exists
b € RP~9" such that x, — my = (X5 ® ®)b. Then, we have
(ZRRP)(Zne®) (xa-m) = (2nRP)(Z2nR @) (Z2ne P)b
(Z12Z5Zn@ @D d)b
(Z12ZZn @ d)b
(
(

Z122272 ®In)(222 ® (D)b
= 21222_2 ®In)(X2 — m2) .

We also have

EHRP)—(ZnRP)(Zn0®) (2@ )
=(Zne0)—(ZnZpZn)ed
= (21 —212Z;p2n)R.

Therefore, (2.33) can be written as
(X1[x2) ~ Egn(my + (21225, @1,) (%2 —m2), X112 @ P, Yy(xy))-
Hence,
(X1[X2) ~ Egn(My +Z1225, (X2 —M2), 2112 Q@ @, Wy(x,))-

(2) If x; ¢ vec(M)) + S, we get (X1 |x2) =my, so (X;|Xz) =M. n

Corollary 2.5. With the notation of Theorem 2.21, we have

pn_

1—F(w P 4+a®) T 2GR (r) ,w > a,

R pp—
(V' w2—a? )

where Kp = [, ..) (w2 —a?) % Yy (=2 gF (w).
PROQOF: From (2.31) we get,

Loy, 0 oy mm2dw
F = 2 > __dF
A () = (P 7 (P )~ Gl ),
where 12 +a* = w?. Hence,
n d
dF (w) = K pr~@n=2) (y? —&-az)%*l—rdF 2(r),

dw ¢



2.6 Conditional Distributions 47

where a < w < Va2 + r2. Therefore,

1-F r2+a2)%_1r_(q"_2)dFaz(r),wZa. ]

) =Ke [ oy

Theorem 2.22. Let X ~ E, ,(M,XZ ® @, ) with stochastic representation M +
rAUB’. Let F be the distribution function of r and X, M, X be partitioned as in
Theorem 2.21.

(1) Ifvec(X)) € vec(Mj) + S, where S is defined in Theorem 2.21, and

(a) If X has finite first moment, then
EX|[X2) =M +Z2X,,(X; —M;).
(b) If X has finite second moment, then
Cov(Xi[X2) =1 21120 P,

where ¢| = —21//4(X2)(0), and W,(x,) is defined by (2.30), (2.31) and (2.32).
(2) Ifvec(X)) ¢ vec(M}) +S, then E(X|X,) =M, Cov(X;|X3) =0.
PROQF: It follows from Theorems 2.11 and 2.21. [}

The next theorem shows that if the distribution of X is absolutely continuous,
then the constant ¢; in Theorem 2.22 can be obtained in a simple way. This
was shown by Chu (1973), but his proof applies only to a subclass of absolutely
continuous distributions. The following proof, however, works for all absolutely
continuous distributions.

Theorem 2.23. Let X ~ Ep’,,(M,E ® @,y) and X, M, X be partitioned as in
Theorem 2.21. Assume the distribution of X is absolutely continuous and it has
finite second moment.

Let

1

f2(X2) S —————
23| 2"

hy (tr ((Xz - Mz)/zz_zl (Xz - MZ)(D_l))

be the p.d.f. of the submatrix X,. Then,

[ ha(2)dz
Cov(X1[Xp) = L2251, 0@
ov(X1[Xz) 2 (r) 112D,
where r =tr (Xo —M,)'Z5, (Xo — M) @ 1).

PROOF: Step 1. First we prove the theorem for the case n = 1, m = 0. From
Theorems 2.21 and 2.22, we conclude that Cov(xi|x2) = ¢1X11.2, Where ¢; is
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determined by p, ¢, and x’222’21xz. Hence, c¢; does not depend on X1 and Xy,.
Thus without loss of generality, we can assume that Xy; = I, and Xy, = 0. Then

2o = Iq. Let x; = (xl,xz...xq)/, and f1 (xl,Xz) = |222|*%h1(x% +X/22521X2) be
the joint p.d.f. of x| and x,. Then,
o 2
x7 f1(x1,X2)dx
c1 = Var(x1|xp) = w1, Xo)dn
fr(x2)
_ fiowx%hl(x%+X/22£21X2)dx1
ha (%25, %2)

f(;x’x%hl (X% + X/222721 Xz)dxl
ho (%525, %2)

=2 (2.34)

Now, f>(x2) = [~ f1(x1,X2)dx], hence
m(6In) = [ %Iy ) dx
= 2/ By (x] + X525, %0 )dx -
0
So, ha(z) =2 5" h1 (¥ +z)dxi, for z > 0. Hence, for u > 0, we get

/ hz(z)dz:2/ / hi (6% +z)dxdz
Ju Ju JO
= 2/0 /0 x(z > why (x} +z)dxidz.
Letw= x%Jrzfu. Then, w? :x%Jrzfu and so J(z — w) = 2w. Hence,
/ hy(z)dz = 2/ / AW —x3 4+ u > u)hy (W? + u)2wdx,dw
u 0 0
= 4/ / 2 (W > xD)why (W? + u)dxdw
Jo Jo
00 w
:4/ / whi (W? + u)dx;dw
o Jo
o0 w
= 4/ (whl(wz—l-u)/ dxl) dw
0 0
= 4/ why (w? + u)wdw
0

—4 / W2y (W2 + u)dw. (2.35)
0
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Now from (2.34) and (2.35), we get

i h2(2)dz -
= ) where u=x)%,)x,.

Step 2. Next, let n =1, m # 0, and y = x —m. Then,

= h(z)dz
C =L 2 3.
ov(y1ly2) 2 () 1125

where u = y,25.'ys. Therefore,

Cov(x|x2) = Cov(y; +myly; =x; —my)

_ Ju e(@)dz g
2h2(u) 11-2,

where u = (xo —my) 2, (xo —my).
Step 3. Finally, let X ~ E,, ,(M,Z ® @, y). Define x = vec(X'). Now, for x we
can use Step 2. Therefore,

[ ha(2)dz
Xi|Xo) =225, 0@
Cov(Xi|X2) 2 (r) 112D,
where r =1tr (X — M)’ 25, (Xo —Mp) @ 1), m

2.7 Examples

In this section we give some examples of the elliptically contoured distributions. We
also give a method to generate elliptically contoured distributions.

2.7.1 One-Dimensional Case

Let p = n = 1. Then, the class Ej(m,0,y), coincides with the class of one-
dimensional distributions which are symmetric about a point. More precisely, x ~
Ei(m,o,y) if and only if P(x < r) = P(x > m—r) for every r € R. Some examples
are: uniform, normal, Cauchy, double exponential, Student’s 7-distribution, and the
distribution with the p.d.f.
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2.7.2 Vector Variate Case

The definitions and results here are taken from Fang, Kotz and Ng (1990). Let p > 1
andn=1.

2.7.2.1 Multivariate Uniform Distribution

The p-dimensional random vector u is said to have a multivariate uniform distribu-
tion if it is uniformly distributed on the unit sphere in IR”.

Theorem 2.24. Letx = (x1,x2,...,X,)" have a p-variate uniform distribution. Then
the p.d.f. of (x1,x2,...,Xp—1) is

1
r p p—1 -2 p—1
(,23) (1—2 %) : ;x,?<1.

T i=1
PROOF: It follows from Theorem 2.17 that (xl,xz, ,xl%fl) ~ D(%,...,%;%).
Hence, the p.d.f. of (x%,x%, ... 7x12,_1) is
_1
ENGIC TSI
T (1\\P H R in
(r(3)" = S
Since the Jacobian of the transformation (xy,x2,...,x,-1) = (|x1/,|x2/,...,[xp—1])
is 271 1 (beals feals - [pa]) s
1 1\ 2
-1 (P p=
© (%,
T2 i=1

Now because of the spherical symmetry of x, the p.d.f. of (x1,x2,...,x,_1) is the
p.d.f. of (|x1],]x2[,- .., [xp—1]) divided by 2P~ 1; that is

1
r P p—1 —2 p—1
(§><1_2x,.2> S Yea »
i=1

i=1




2.7 Examples 51

2.7.2.2 Symmetric Kotz Type Distribution

The p-dimensional random vector x is said to have a symmetric Kotz type
distribution with parameters ¢, r, s € R, i: p-dimensional vector, X: p X p matrix,
r>0,5s>0,2g+p>2,and X > 0ifits p.d.f. is

2g+p-2

X)= o F(%) — X— X X — X —
)= g 2 ) exp{—rl(x - x—F}

As a special case, take g =s=1and r = j Then, we get the multivariate normal
distribution with p.d.f.

oo | o )T x )
o= (2n)%|2\%e p{ 2 }

and its characteristic function is
) 1 /
ox(t) = exp(it'u)exp <_2t Et) . (2.36)

The multivariate normal distribution is denoted by N, (1, X).

Remark 2.6. The distribution, N,,([.L,Z), can be defined by its characteristic func-
tion (2.36). Then, X does not have to be positive definite; it suffices to assume that
2>0.

2.7.2.3 Symmetric Multivariate Pearson Type II Distribution
The p-dimensional random vector x is said to have a symmetric multivariate Pearson
type II distribution with parameters g € IR, i: p-dimensional vector, X: p X p matrix

with g > —1,and X > 0 if its p.d.f. is

f@r=?iiﬁilfu—@—m2*@—mv,
m2I (g+1)|Z]2

where (x —u)' X '(x—u) <1

2.7.2.4 Symmetric Multivariate Pearson Type VII Distribution

The p-dimensional random vector X is said to have a symmetric multivariate Pearson
type VII distribution with parameters g, r € R, i: p-dimensional vector, X: p X p
matrix with r >0, ¢ > £, and X > 0 if its p.d.f. is
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r x—u)X (x— -
e T (1 L xmys u)) | 037
(rr)2l (q—5)|2|2 r
As a special case, when g = ”TH, X is said to have a multivariate ¢-distribution

with r degrees of freedom and it is denoted by Mz, (r, i1, X).

Theorem 2.25. The class of symmetric multivariate Pearson type VII distributions
coincides with the class of multivariate t-distributions.

PROOF: Clearly, the multivariate ¢-distribution is Pearson type VII distribution.
We only have to prove that all Pearson type VII distributions are multivariate z-
distributions.

Assume x has p.d.f. (2.37). Define

r0:2<q—§> and 2022’%.

Then, Mt,(ro, 1t,Xo) is the same distribution as the one with p.d.f. (2.37). ]

The special case of multivariate 7-distribution when r = 1; that is, Mt,,(l, w,x)is
called multivariate Cauchy distribution.

2.7.2.5 Symmetric Multivariate Bessel Distribution
The p-dimensional random vector X is said to have a symmetric multivariate Bessel

distribution with parameters ¢, r € IR, : p-dimensional vector, X: p X p matrix with
r>0,¢g>—5,and X > 0if its p.d.f. is

f(x) =

2atp-ghpptar (¢+2) |22 ! r

- g - !
-z -t <[(x—u)’2 1(x—u)}2>
where K,(z) is the modified Bessel function of the third kind; that is K,(z) =

1 lg(2)—I4(2)
2 sin(gm)

arg(z)| < m, g is integer and
hd 1 z q-+2k
WO=F () he, ll<n

If g=0and r = %, o > 0, then x is said to have a multivariate Laplace
distribution.
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2.7.2.6 Symmetric Multivariate Logistic Distribution

The p-dimensional random vector X is said to have an elliptically symmetric logistic
distribution with parameters u: p-dimensional vector, £: p X p matrix with £ > 0 if
its p.d.f. is

PR S (S0 )
z|2 (1+exp{—(x—p)=~" (x—p)})?

with
ns « e
L1
= =75 727 ———dz.
r(%) /0 (1+e72)2
2.7.277 Symmetric Multivariate Stable Law
The p-dimensional random vector X is said to follow a symmetric multivariate stable

law with parameters g, r € IR, [: p-dimensional vector, X: p X p matrix with 0 <
g <1,r>0,and ¥ > 0 if its characteristic function is

9x(t) = exp(it'n — r(t Zt)7).

2.7.3 General Matrix Variate Case

The matrix variate elliptically contoured distributions listed here are the matrix
variate versions of the multivariate distributions given in Sect.2.7.2. Let p > 1 and
n>1.

2.7.3.1 Matrix Variate Symmetric Kotz Type Distribution
The p x n random matrix X is said to have a matrix variate symmetric Kotz type

distribution with parameters g, r, s € IR, M: pxn, X : px p, @ :nxn with r > 0,
§>0,2g+pn>2,2>0,and @ > 0if its p.d.f. is

r(%)
R (22 3] o)

2q+pn—2
Sr 2

fX) = [rr(X=M)yZ7 (X -M)@~ )

x exp{—rltr(X—M)Z{(X-M)® 1)}.
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Ifwetakeq:s:landr:%,

matrix variate normal distribution:

we obtain the p.d.f. of the absolutely continuous

_ /y—1 _ -1
F(X) =  X-M)z(X-M)o }

—————elr
(2m)% |23 | |2 { 2

The characteristic function of this distribution is
1
ox(T) = etr(iT'M)etr (—ZT'ZM(D) . (2.38)

Remark 2.7. If we define N, ,(M, X @ @) through its characteristic function (2.38),
then X > 0 is not required, instead it suffices to assume that ¥ > 0.

2.7.3.2 Matrix Variate Pearson Type II Distribution

The p x n random matrix X is said to have a matrix variate symmetric Pearson type
II distribution with parameters g € R, M: pxn, X : p X p, @ : n xn with g > —1,
X >0,and @ > 0ifits p.d.f. is

F(X) = r (% +q+1)

= — L (1—tr(X=M)Z ' (X =MD 1)),
n%r(q+1)|2|z|d>|’7( (( )Z )P7))

where t7(X -M)' 2 '/(X-M)®~ 1) < 1.

2.7.3.3 Matrix Variate Pearson Type VII Distribution
The p x n random matrix X is said to have a matrix variate symmetric Pearson type

VII distribution with parameters g, r € R, M: pxn, X : px p, @ :nxn withr > 0,
g>E,%>0,and @ > 0ifits p.d.f. is

fX)=

r'(q) (1 tr((X—M)’Z'(X—M)cD'))_q
(wr) 3T (¢ 1) 12|18 || r '
(2.39)

Particularly, when ¢ = 24, X is said to have a matrix variate #-distribution
with r degrees of freedom and it is denoted by Mz, ,(r,M,Z ® ®). It follows,
from Theorem 2.25, that the class of matrix variate symmetric Pearson type VII
distributions coincides with the class of matrix variate ¢-distributions.

When r = 1, in the definition of matrix variate ¢-distribution, i.e., Mt , (LM, Z®
@), then X is said to have a matrix variate Cauchy distribution.
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2.7.3.4 Matrix Variate Symmetric Bessel Distribution

The p x n random matrix X is said to have a matrix variate symmetric Bessel
distribution with parameters g, r € R, M: pxn, X : px p, @ : n x n with r > 0,
g>—5,%Z>0,and & > 0ifits p.d.f. is
%) = r(X=M)E{(X=M)® 1))z
©atpn—lg’y ppntq (q+ %) 1Z|2 |<;D|%

LK, ([tr((x_M)'zl(x_M)qbl)]z> |

r

where K,(z) is the modified Bessel function of the third kind as defined in
Sect.2.7.2.5. Forg=0and r = %, o > 0, this distribution is known as the matrix

variate Laplace distribution.

2.7.3.5 Matrix Variate Symmetric Logistic Distribution

The p x n random matrix X is said to have a matrix variate symmetric logistic
distribution with parameters M: pxn, X :px p, @ :nxnwithX >0,and @ >0
if its p.d.f. is

_ c etr(—(X-M)'Z" /(X -M)® )
Tz @) (+etr(—(X—MYZ (X—M)d1))?

fX)

with
pn
T2 pn_q €7Z
c=——+v 7?27 ——dz.
r (%) /0 (1+e72)?

2.7.3.6 Matrix Variate Symmetric Stable Law

The p x n random matrix X is said to follow a matrix variate symmetric stable law
with parameters g, r E R, M: pxn, X2 :pxp, @®:nxnwith0<g<1,r>0,
X >0, and @ > 0 if its characteristic function is

ox(T) = etr (iT'M) exp (—r(tr(T'EM®))?) .
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2.7.4 Generating Elliptically Contoured Distributions

If we have a m.e.c. distribution, based on it we can easily generate other m.e.c.
distributions. For vector variate elliptical distributions, this is given in Muirhead
(1982).

Theorem 2.26. Let X ~ E, ,(M,X ® @, y) have the p.d.f.

1
X)=—— h(tr(X—M)ZT ' (X-M)o 1)).
f(X) SHCE (tr(( ) ( )@7))

Suppose G(z) is a distribution function on (0,0). Let

g(X)zgl,,/szpznh<ltr((X—M)Z (X—M)® )>dG()

Z

Then, g(X) is also the p.d.f. of a m.e.c. distribution.
PROOF: Clearly, g(X) > 0. Moreover,

/}R g(X)ax

= # - a _ Iy—1 _ -1

- . /
:/0 /mxnwh("((x—M) (z2) ' (X-M)® ")) dXdG(2)

:/OmldG(z)zl.

Hence, g(X) is a p.d.f. Let r(w) = [z~ 7 h (%) dG(z). Then,

e MYE XM
%) = (X M2 (XM )

Therefore, g(X) is the p.d.f. of an elliptically contoured distribution. ]
Corollary 2.6. Let h(u) = (2m)~ 7 exp (—4%) in Theorem 2.26. Then, for any
distribution function G(z) on (0,e0),

1  _pn 1
g(X)MW/OZ eXP<ZZ"((XM)Z X-M)o ))dG()-

defines the p.d.f. of a m.e.c. distribution. In this case, the distribution of X is said to
be a mixture of normal distributions.
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In particular, if G(1) = 1 — & and G(6?) = £ with 0 < € < 1, 62 > 0, we obtain
the e-contaminated matrix variate normal distribution. It has the p.d.f.

_ 1 overr [~ Lx—wmys-tx -1
f(x)_—(zn)%z‘%@'% (1 s)t( S(X=M)Z (X~ M)® )
+ O_inetr (—Z;(X—M)’EI(X—M)d)I)




Chapter 3
Probability Density Function
and Expected Values

3.1 Probability Density Function

The m.e.c. probability density function has some interesting properties which will be
given in this chapter. These results are taken from Kelker (1970), Cambanis, Huang,
and Simons (1981), Fang, Kotz, and Ng (1990), and Gupta and Varga (1994c).

The first remarkable property is that the marginal distributions of a m.e.c.
distribution are absolutely continuous unless the original distribution has an atom
of positive weight at zero. Even if the original distribution has an atom of positive
weight at zero, the marginal density is absolutely continuous outside zero. This
is shown for multivariate elliptical distributions in the following theorem due to
Cambanis, Huang, and Simons (1981).

Theorem 3.1. Let x ~ E,(0,1,,, y) have the stochastic representation X ~ ru. Let

F(r) be the distribution function of r. Assume X is partitioned as x = ( ! >, where
X2

X1 is g-dimensional, 1 < g < p. Let X1 have the stochastic representation X| ~ riuj.
Then, the distribution of ri has an atom of weight F(0) at zero and it is absolutely
continuous on (0, ) with p.d.f.

zr (g) Sq71 ~ [}
— —(p—-2)(,2 _ 2 -1
gq(s) = — / r (r\—s7)7 dF(r), 0<s<eo. 3.1
r (%)F qu) $

PROOF: From Corollary 2.4, it follows that | ~ rro, where r3 ~ B(%,551).
Therefore, P(r; =0) = P(r =0) = F(0) and

PO<r <t)=P0<rrg<t)

_ /( POy <OAF()
0,00

A K. Gupta et al., Elliptically Contoured Models in Statistics and Portfolio Theory, 59
DOI 10.1007/978-1-4614-8154-6_3, © Springer Science+Business Media New York 2013
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t
p -

dF(r)

Joo
/ ( Z) dF (r)
Jow 7

~
N——

B
2

3N 1 —x) 2 YaxdF (r).

T 55 o))

2 2
Let x = %5. Then, J(x — 5) = 5; and we have

r(3) P
/<07°°>F<%)F2(”)/<0«mm(1,§)} (1=2) 7" dxdE (1)

~J
—
[S]3S
S—

2

r_q_q
2s q-2 s\ 2
-2 dsdF
0= T ($) T (5% /<o7min<mn =) ( r2> )

) / / Sqflr72fq+27(l7*l])+2(r2 — s2) ¥*1dde(r)
P—q 0,min(rt)]

2
B _
N ‘/(Ot] (2 /O min(rt)] (72 _S2)¥7ldF(r)dS7

from which (3.1) follows. ]

Corollary 3.1. Let x ~ E,(0,1,,y) and assume that P(x = 0) = 0. Let X ~ ru be
the stochastic representation of x and F (r) the distribution function of r. Partition

X into X = (Xl > where X1 is q-dimensional, 1 < q < p. Then, X is absolutely
X2

continuous with p.d.f.

o o ARy R ). (32)
Wy y>7

PROOQF: From Theorem 3.1, it follows that x; is absolutely continuous and if rju;
is the stochastic representation of x; then r| has the p.d.f.

2r ()57
rOr Y

Since, x; also has a m.e.c. distribution, its p.d.f. is of the form

g4(s) = /mr*@*z)(rz—sz)%*ldF(r), 0<s<o. (33)

fa(y) = hq(y/Y)- (3.4)
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From Theorem 2.16, it follows that

%
= sy (s?),5 >0, (3.5)
r(%)

and from (3.3) and (3.5), it follows that

(2 00 -
(%) = ——2— (2)7 / (2 — ) 2 (). (3.6)
=TT (559) )
Now, (3.2) follows from (3.4) and (3.6). [}

The following result was given by Fang, Kotz, and Ng (1990).
Theorem 3.2. Letx ~ E,(0,1,, y) with p.d.f. f(x) = h(X'X). Let X be partitioned as

X
and its p.d.f. is

X . . . . .
X = ( : ) where X1 is g-dimensional, 1 < g < p. Then, X is absolutely continuous

1¥) = oy [, Y9 b (3.7)

PROOQOF: Let ru be the stochastic representation of x and F be the distribution
function of r. Then, from Theorem 2.16, we get the p.d.f. of r as

27t —1y0.2
g(r)=—=<r"""h(r’). (3.8)
r(%)
From (3.2) and (3.8), we have
r (ﬁ) o pP=q 2717%
1) = e [ ) T T ar
! ir(259) Jyw? r(%)

P—4q

ot /.oo
(551) Jiyy)2

2

(r —yy) 5 lh(rz)dr.

’j

Let u = r%. Then, J(r — u) = 5- and we have

e [y .
- -y
r (50 by .
Marginal densities have certain continuity and differentiability properties. These
are given in the following theorems. The first theorem is due to Kelker (1970).

faly) =
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Theorem 3.3. Let x ~ E,(0,1,,y), 1 < p, with p.df. f(x) = h(X'x). Let x be
partitioned as X = (Xl ), where X1 is p — 1 dimensional. Let X| have the p.d.f.
x

fp—1(y) =hp—1(Y'Y). If hp—1(2) is bounded in a neighborhood of zy then h,_1(z) is
continuous at 7 = z.

PROQOF: From (3.7), we get

Thus,
hp—1(z) = /w(u—z)_fh(u)du. (3.9

Choose any 1 > 0. There exist kK > 0 and K > 0 such that if |z —z9| < k then
h(z) < K.Let € =min (k, g—j). Further let 8 be such that 0 < § < &, and z9p < z <

70 + 8. Then, we have

|hp—1(2) — hp—1(z0)] =

/Zm(ufZ)_%h(u)duf/w(ufzo)_%h(u)du

20

1

/z:+£ ((u—z)_% — (u—zo)_i) h(u)du

n /;0“‘ ((e=2)F = (w—20)"F) )

_/ZO(M_ZO)—%h(u)du
< / ((=2)" = (u—20)"*) h{u)du
+ -9t - - 20) ) M
+/Z:(M—ZO)*%h(u)du. (3.10)

Now,

/Zzo+£ ((u—z)_% _ (u—Zo)_%> h(u)du
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< [ gt

rZ0+E 1
< K/ (u—z)" 2du
JZ

< 2K(e+z20—2)7 <2V (3.11)
and
/ “(u—20)" S h(w)du < 2K (z—z9) "
%
< 24/€. (3.12)
Furthermore,
/(: (=274 = (w—20)7# ) h{u)du
< /Z; (= 0+ 8))F = (u—20)"#) h(w)du. (3.13)
We have
lim [(u—(zwa))*% —(u—ZO)*%} =0 for u>z+e,
and
0< (u—(20+8) 7~ (u—20) 2
< (u—(z0+8)77 — (u—20) 72
<(u—(x0+€)72 for u>z+e
Since,

/:Jrs(u— (Zo+£))7%h(u)du =hp_1(z0+€) <eo,

we can use the dominated Lebesgue convergence theorem to get

oo

1 1
li —2)7 2 —(u—=z9) 2 ) h(u)du=0.
m | (=24 = (u=20) 2 ) h(w)du

Therefore, there exists v > 0 such thatif 0 < § < v then

/Z(:s ((“—Z)f% —(u—Zo)f%)h(”)d”< g G4
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Hence, if § = min(g, v) then for z9 < z < z9 + 0, (3.10)—(3.14) give
n
hp-1(2) = hp-1(z0)| <4VE+ 3 <n.

Therefore, hj,_1 (z) is continuous from the right at zo. In a similar way, it can be
proved that /1,_ (z) is continuous from the left at zp. ]

The next theorem shows that the p — 2 dimensional marginal density of a
p-dimensional absolutely continuous multivariate elliptical distribution is differen-
tiable. This theorem is due to Kelker (1970).

Theorem 3.4. Let x ~ E,(0,1,,y), 2 < p, with p.df. f(X) = h(X'x). Let x be
X

X2
fp—2(¥) =hp—2(Y'y). Then, h,_>(z) is differentiable and

partitioned as X = ( ) where X1 is p — 2 dimensional. Let X\ have the p.d.f.

W, 5(z) = —mh(z). (3.15)

PROOF: From Theorem 3.2, we get
hyo(z) = n/ h(u)du, z>0. (3.16)
z

Hence, 1), ,(z) = —7h(z). ]

Remark 3.1. Theorem 3.4 shows that if p > 3 and the one-dimensional marginal
density of a p-dimensional absolutely continuous spherical distribution is known,
then all the marginal densities and also the density of the parent distribution can
be obtained easily. In fact, if f;(y) = h;(y'y), y € R/, denotes the p.d.f. of the j-
dimensional marginal, then from (3.15) we get

N
hji(z) = (—) hg")(z), z>0.

From (3.9), we have

From /;(z), we can obtain the other marginals using

LYo
hzj<z>=(—) W), 2>0.

T

Remark 3.2. Assume x ~ E,(0,I,, y) is absolutely continuous, p > 3. If f;(y) =
hi(y'y),y € R/, denotes the p.d.f. of the j-dimensional marginal then from (3.16)
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it follows that %;(z), z > 0 is nondecreasing for j = 1,2,...,p —2. Since fi(z) =
hy(z%), the p.d.f. of the one-dimensional marginal, is nondecreasing on (—e,0] and
nonincreasing on [0, o).

The results given in this chapter so far referred to the vector variate elliptically
contoured distributions. Their extension to the matrix variate case is straightforward
since X ~ E,, (0,1, ® L,, y) is equivalent to x = vec(X') ~ Ep,(0,1,,,y). The
following theorems can be easily derived.

Theorem 3.5. Let X ~ E, ,(0,1, ® I, y) have the stochastic representation X ~
rU. Let F(r) be the distribution function of r. Assume X is partitioned as X =

(Xl ) where X1 is g X n. Let X1 have the stochastic representation X =~ r1Uj.
2

Then, the distribution of r| has an atom of weight F(0) at zero and it is absolutely
continuous on (0,0) with p.d.f.

[

2r (Bt san—1 > —g)n
eon(s) = 2L ()5 [ ),

r(g)r ()

0<s<oo.

Corollary 3.2. With the notation of Theorem 3.5 we get P(X; =0) = P(X =0).

Theorem 3.6. LetX ~E,,(0,1,R1,, v) and assume that P(X =0). Let X~ rU be
the stochastic representation of X and F (r) the distribution function of r. Partition

X into X = (§1 >, where X1 is g x n, 1 < g < p. Then, Xy is absolutely continuous
2
with p.d.f.

r(y) -
V)= |
Jan(Y) w8 (e52) Juv)!

2

(r—q)
2

(P2 (2 — 1 (Y'Y)) (r).

Theorem 3.7. Let X ~ E, ,(0,1, @ 1L,,y) with p.d.f. f(X) = h(tr(X'X)). Let X be

partitioned as X = <§ ) where X1 is g X n, 1 < g < p. Then, X is absolutely
2

continuous with p.d.f.

(p—q)n

Jan(Y 7{ : )/th >( u—tr(Y'Y)) 2

(p— q)n

“h(u)du.

Theorem 3.8. Ler X ~ E, (0,1, @ L,,y), 1 < p, 1 <n, with pdf f(X)=

h(tr(X’X)). Let X be partitioned as X = <§ ), where X1 is gxn, 1 < g < p.
2

Let X have the p.d.f. fq,(Y)=hgn(tr(Y'Y)). Then, hy,(2) is differentiable and
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(i) If (p—q)nis even, (p—q)n="2j, then

Hn(z) = (~m) (),
(i) If (p—q)nisodd, (p—q)n=2j+1, then

2 ([ ot wan) = o).

Theorem 3.9. Let X ~ E, ,(0,1, @ L, y), pn > 3 with p.d.f. f(X) = h(tr(X'X)).
Let f1(y) = h1(y*) denote the p.d.f. of a one-dimensional marginal of X. Then, if we
know h(z), we can obtain h(z) in the following way.

(i) If pnisodd, pn =2j+ 1, then

(ii) If pnis even, pn =12j, then

h(z) = (—;)j(géi/zm(u—z)éhﬁ (w)du.

Theorem 3.10. Assume X ~ E, ,(0,1, ® L,,y) is absolutely continuous, p > 1,
n> 1L If fia(Y) = hj,(tr(Y'Y)), Y € R/*", denotes the p.df of the jxn
dimensional marginal, then hj(z), z > 0 is nondecreasing for j =1,2,...,p — L.
Moreover, the p.d.f. of the one-dimensional marginal is nondecreasing on (—eo,0]
and nonincreasing on [0,).

3.2 More on Expected Values

The stochastic representation can be used to compute the expected values of matrix
variate functions when the underlying distribution is elliptically contoured. In order
to simplify the expressions for the expected values, we need the following theorem
which is a special case of Berkane and Bentler (1986a).

Theorem 3.11. Let ¢(t) = w(t?) be a characteristic function of a one-dimensional
elliptical distribution. Assume the distribution has finite mth moment. Then,

%) (3.17)

{ (m! IJ/(%)(O) if mis even
0 if mis odd.
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PROOF: If the mth moment exists, say L,, then, ¢ (¢) also exists and ¢ ") (0) =
i" U, First we prove that

k
KA Ry (12, (3.18)

iy

where 0 < k < m, [z] denotes the integer part of z, and K¥ is a constant not depending
on y. We prove this by induction.

If k=0, we have ¢ (1) = y(r?), so KJ = 1. If k = 1 we get ¢’(¢) = 2ty/(¢?), and
the statement is true in this case, with K11 = 2. Assume the theorem is true up to
[ < m. Then, for k=141 we get

]
(Z)(k) (l) — Z (21’! _ l)K’lltZIlflfl l,/(n) (IZ)
L 1]

N‘+

|

+ 2K,lll2n7171 lI/(th])(ll)

']

M-~

=

|

.

~
|

1
= Y @n—k+ 1)K PRy ()

]

k
+ 2 ZKk 1 2n kw( )(12)

n

(S

n=[5]+1
_ (2 m it 1> Kt PRy D)
k—1
+ Y (21(,’;:}+(2n—k+1)K,’§*‘)r2"*"w<">(t2)
n=[5]+1
+ 2K PRy O (2). (3.19)

We have to distinguish between two cases.

(a) keven.
Then, [“1] = [5] and 2 [4] —k+ 1 = 1. Hence, (3.19) gives

k
z Kk 2n— n (2‘2),

iy

with
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(b) k odd.
Then, [%] = [%] +1and?2 [g] —k+1=0. From (3.19) we get

k
z k 2n— k (t2)
iy
with

Kk

n

2KE 1+ 2n—k+ DK S ] <n<k
2Kk_] 1fn—k

Hence (3.18) is established. Taking k = m and t = 0 in (3.18), we get

m (m) . .
0" (0) = K%w 2)(0) if m is even (3.20)
0 if mis odd.

If m is even, m = 2s say, then we have ¢(2%)(0) = >y, that is ¢(%)(0) =
(—1)*tps. Let x ~ N1(0,1), then s = %, y(z) = exp (—%), and l//(s)(z) =
(=1) exp (—%), from which y*)(0) = (—1) follows. Therefore,

o010 = k0= (L)

Thus, we get

from which it follows that KSZ"' = @ Comparing this with (3.20), we obtain

(3.17). m
Corollary 3.3. Let ¢(t) = y(t?) be as in Theorem 3.11, then
(i) 9(0)=1,

is differentiable, ¢'(0) =0,

has second derivative, 9" (0) = y'(0),
has third derivative, ¢" (0) = 0

has fourth derivative, $" (0) = 12y"(0).

(i) If y(t
(iii) If it
(iv) If y(t
) Ify(t

— — — —
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Corollary 3.4. Let ¢(r) =exp (—%) Then,

6 (0) = (-3)° (%%'), if mis even
0 if mis odd.

For example,

(i) 9(0)=1,
(ii) ¢'(0) =0,
(iii) ¢"(0) = —1,
(iv) ¢"(0) =0,
(v) ¢"(0)=3.

Now, we can derive the following results.

Theorem 3.12. Let X ~E, (0,2 ® ®,y) with P(X=0)=0. Let g =rk(X), m=
rk(®@) and rAUB' be the stochastic representation of X. Assume Y ~N,, ,(0,Z @ ®).
Let F be a subset of the p X n real matrices such that if Z € RP*", Z. € %, and a > 0,
then aZ € F and P(X ¢ F) =P(Y ¢ F) = 0. Let K(Z) be a function defined on
F such that if 7. € F and a > 0, then K(aZ) = a*K(Z) where k > —qm. Assuming
E(K(X)) and E(K(Y)) exist, we get

E(M)r(%)
2%1‘(%“‘)’

(b) IfX has the p.d.f. f(X)

(a) E(K(X))=E(K(Y))

1 Iy —1 —1
= — L (XX ) th
Z|3|D|% (er( )) then

77.7% f(‘)” an+k71h(Z2)dZ
2511 (—P";")

(c) Ifk=0, then E(K(X)) = E(K(Y)),
(d) Ifkis a positive even integer, then

(e) If k is a positive odd integer and K(aZ) = d*K(Z) holds for all a > 0, then
E(K(X))=0.

PROOF:
(a) K(X) and K(Y) are defined if X € .# and Y € .Z. Since

PX ¢ F)=PY ¢ F)=0,

we see that K(X) and K(Y) are defined with probability one.
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Let AU,B’ be the stochastic representation of Y. From the conditions of
the theorem, it follows that if aZ € % and a > 0, then Z € .%. Since,
P(X =0) =0, we have P(r =0) =0, and from P(rAU|B’' € .%) = 1, we get
P(AUB' € %) = 1. Thus K(AUB’) is defined with probability one. Moreover,
P(K(rAUB’) = r*K(AUB')) = 1. Therefore E (K (rAUB')) = E(r*K(AUB')).
Since, r and U are independent, we get
E(K(rAUB')) = E(/*)E(K(AUB')). (3.21)
Similarly,
E(K(rAUB')) = E(/5)E(K(AU,B)). (3.22)
However, AUB’ ~ AU,B’, hence
E(K(AUB')) = E(K(AU,B)). (3.23)

Now Theorem 2.16 shows that r; has the p.d.f.

Therefore,

Letz = r2 Then drz = and we have

=5

1 e qm+k 1 Z 1
Ky _ _Ay
E(r3) = ST (qz)/ exp( 2) 2\/2dz

qm+k 1 Z
= qm qm / eXp _5) dZ

(qm+k

=T ( (3.24)

Now, from (3.22) and (3.24) we get

E (K (Z%Uch%)) _ EK(Y))

E(r3)
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(4
25 (qm2+k)
Using (3.21), (3.23) and (3.25) we get
E(A)r (%
E(K(X)) = E(K(Y)) k(’ (%) (3.26)
2:I %*")
(b) Using Theorem 2.16, the p.d.f. of ris
277 10,2
qi(r) = —ax ™" ("), r=0.
rs)
Therefore,
1’77
/ @ P () dz. (3.27)

(©)
(d)

(e)

From (3.26) and (3.27), we get

m [P () dg
2%71F (pn;rk)

E(K(X)) = E(K(Y))

This is a special case of (a).

It follows from part (a), that E(K(X)) = cqm(y,k)E(K(Y)) where ¢, (y, k) is
a constant depending on ¢, m, k and y only. So, in order to determine ¢, (. k),
we can choose X ~ E (0,1, @ Ly, ), Y ~ N, (0,1, ®1,) and K(Z) = 2,
where z11 is the (1, 1)th element of the ¢ x m matrix Z. Then K (aZ) = a*K(Z),
a >0, is obviously satisfied. Now, x}, <#r(X'X) and hence |x; ¥ < (17(X'X)) 5.
Here r ~ (rr(X’ X))% and since r* is integrable, (1r(X’ X))% is also integrable
over [0,c0). Therefore, E(xX,) exists. Similarly, E(y%,) also exists.

Hence, we can write

E(x})) = com(w, OEG)). (3.28)

However, x1; ~ E1(0,1,¥) and y;; ~ N;(0,1). Then, from Theorem 3.11,
it follows that E(xX,) = L)’y/(%)(O) and from Corollary 3.4 we get that

s
E()) = - (kzl) (*%)(2) Hence cg (Y, k) = (— 2)( ) ( )( 0).
Take a = —1. Then, we have K(—Z) = (— )kK(Z) and since k is odd, we

get K(—Z) = —K(Z). However, X ~ —X and so K(
E(K(X))=E(K(—X)) = —E(K(X)) and hence E(K(

ES

K(—X). Therefore,
)) =0. |

>
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In the next theorem we examine expected values of functions which are defined
on the whole p x n dimensional real space. In contrast to Theorem 3.12, here we
do not require that the underlying distribution assign probability zero to the zero
matrix.

Theorem 3.13. Let X ~ E,, ,(0,X @ @, y). Let g = rk(X), m = rk(®) and rAUB’
be the stochastic representation of X. Assume Y ~ Ny, ,(0,X ® ®@). Let K(Z) be a
function defined on RP*" such that if Z. € RP*" and a > 0 then K (aZ) = a*K (Z)
where k > —qgm. Assume E(K(X)) and E(K(Y)) exist. Then,

(i) E(K(X)) = E(K(Y))Er(E)

28 (25k)’
(ii) Ifk =0 then E(K(X)) = E(K(Y)),
(iii) Ifk is a positive even integer, then

(iv) Ifk is a positive odd integer and K (aZ) = a*K(Z) holds for all a # 0, then
E(K(X))=0.
PROOF: Let r,AU,B’ be the stochastic representation of Y. Then, we have
E(K(rAUB')) = E(/*)E(K(AUB')) (3.29)
and
E(K(rnAU,B")) = E(A)E(K(AU,B')). (3.30)

However (3.29) and (3.30) are the same as (3.21) and (3.22). Therefore, the proof
can be completed in exactly the same way as the proof of Theorem 3.12. [}

Since moments of normal random variables are well known, using Theorem 3.14,
we can obtain the moments of m.e.c. distributions.

Theorem 3.14. Let X ~ E}, ,(0,1,®1L,,y). Let rU be the stochastic representation
of X. Then, provided the moments exist, we get

(A1) -y

P n
ﬂ%r( 5 +S) i=

1
r <+S,'j> , (3.31)
i 2

where s;j are nonnegative integers and s = Zl’-’:l Z;le sij. We also have

=

1j=

(anzs‘f> — ) (0) n,:, Zsﬁ]ﬁ[r< +s,,> : (3.32)

i=1j i=1j
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PROOF: We use Theorem 3.13. Let Z € RP*" and K(Z) =17, T\, 2, If a > 0,
then
K(aZ) = a*K(Z). (3.33)

IfY ~N,,(0,I,®1,), then the elements of Y are independently and identically
distributed standard normal variables, hence,

(H Hyz"’> “T11E (5. (3.34)

i=1j i=1j=1

and

5ij12%0
1

ST (2) 13 251
xb 22 2

_ 2T tsy) (3.35)

Now, from (3.33), (3.34), (3.35) and part (a) of Theorem 3.13 we obtain (3.31).
On the other hand, (3.33)—(3.35), and part (c) of Theorem 3.13 yield (3.31). m

The formula (3.31) is given in Fang, Kotz, and Ng (1990).
Theorem 3.15. Let X ~E, ,(0,X® @, y). Then, provided the left-hand sides exist,
(i) E(x,'ljl) =0.
(ii) E(xiljlxizjz) = _ZW/(O)Giliz ¢Jl]2
(iii) E(xiljlxizjzxi3j3) =0.
(iv)
E (i, Xy Xix js iy jy ) = AW (0)(Giyiy 8y j» Oy By, Otyi3 951 3 Oiniy O o

+ Giyiy $jy js Oiniz P js) -

PROOF: Step 1. Let Y ~ N, ,(0,I, ®1,,). Then, the elements of Y are independent,
standard normal variables, so

E(yij,) =0,
E(i,j1Yija) = Giyir 6jy jo
E(yijYinj»Yizjz) = 0,
E(YiyjiYirjpYisjaViajs) = Oi1iz8jy j» Oisig 83 ju + 831365, j3 8iniy 6

) 6]
6 i i4 6]1]4 6’2’3 6]2]3

+
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Step 2. Let X ~ N,,(0,X ® ®@). Let g = rk(X), m = rk(®) and rAUB’ be
the stochastic representation of X. Then, we can write X = AYB’, where Y ~
Np,,,(O,Iq®I ) Xij = Zl lzk 1 lkyk[blj,z AA/ and ® = BB'.

Using the result of Step 1, we get

=

p
E(xilll = (ZZ zlkyklbljl>

= ZailkE()’kl)bljl
Tk

=0.

n p n p
E(x;, j Xiyj,) = E ((2 > ai.kykzb/j1> (Z > aizsystszz>>
I=1k=1

t=1s5=1

N aikbij, ainsbijy E(Viayst)
Lkyt,s

= Y aikbij,aiysbyj, OksOu
Lk,t,s

= Y aixaiibij bij,
1k

= Gi1in®j, > -

E(xi, jy XiyjpXizj3) = E ((
[

n p
x (2 > aizr«ququ‘a))
g=1r=1

= Z ailkbljlai2sbtj2ai3rbqj3E(yklystyrq)
Lkit,s.q.r

=0.

E (i jy Xiy joXis jsXig jy ) = ((
!

n p n p
2 2 izrYrgbgjs 2 QiguYuwbw jy
g=1r=1 w=1u=1

= Z aj kbyj, Giysby j,

Lk,t,s,q,r,w,u

=

14 n p
Zailk)’klblh) (z Zaizs)’srbth)
1k=1

t=1s=1

M=

p nop
D ailkYklblh) <Z D aizsyslbtj2>

1 k=1 t=1s=1
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X ai3rbqj3 ai4ubwj4E(yklystyrqy:4w)

>

Lk,t,s,q,r,w,u

ailkbljl aizsbtjz

X Qiyrbg jy@iyuby j, (Oks Ot Gru 5qw
+ 6kr61q 6514 6tw + 5ku 6lw6v6tq)

D aik@ipibij bijy isriyrbyjs by,
kg

+ 2 Qi kQizkbrjy b1 j3 i sQiysbi jy b jy
kst

D aikigkbijy bijyinsainsbjy b
kst

= Oiyip ¢jl J2 Oisiy ¢j3j4 + Oiyiy ¢j1 3Oy ¢j2j4
+ GCiyiy ¢jl Jja Oy ¢1'2/3 :
Step 3. Let X

the functions

Kll ]l Z

= 2y j

75

~E,n(0,Z® @, y). Define, on the set of p x n dimensional matrices,

K;

i1,J1502,J253:J3

Z

(Z)
’1 15252 (Z)
(Z)
(Z)

Kll J1582,J2,13573 14, J4

Now, the results follow from Theorem 3.13.

= Ziyj1 %z jp
= Ziy j1%ix %03 3

= Ziy 1% %3 j3%ig ja -

Theorem 3.16. Letr X ~ E, ,(M,X ® @, ). Then, provided the left-hand sides

exist,

(i) E(xi1j1> = My jy -
(ii) E(xiyjiXirjy) =
(iii)

E(Xiy jy Xiy joXiz j3) =

_2V//(O)Gi1i2 ¢j1j2 + iy My .

/
-2y (O)(Gi1i2¢j1j2mi3/3 + O3 ¢j1/'3ml'2/2

+ O (szj} miljl) +my My o My iy -

(iv)

E(xiy jy Xiy jy Xis 3 Xigjy) = 49" (0)(

Ciyin®j1 j2 Oisis Djs js + Oiris P j3 Oinia P ja

+ Giyiy 07y j4 Oiniz Do j3)

- 211//(0) (miy jyMiy j, Oty Qs ju

+ My, j,Miy j3 Oiyiy ¢jzj4 + My, ji Miy jy Oiyiy ¢jzj3
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+ M j,Mis j3 iy iy ¢j1/4 + My j,Miy jy Oiyiy ¢/1j3
+ miy j31iy jy Oiyiy ¢jl/2) My iy My jy My j3 My g -

PROOF: Let Y =X —M. Then, Y ~ E, ,(0,%Z ® @, y) and using Theorem 3.15, we
obtain the first four moments of Y. Therefore,

() E(xi jy) = E(yiyjy +migjy) = mijy.
(ii)
E(xiyjyXirjy) = E(iyjy +miyjy) Vig o + i)
= Ei,jyYijp) +E iy ji )iy jy + E(Vigjp )iy jy
+ My i My j
= _2‘l//(0)6f1i2 Ojy j F 1y jy My jy -
(ii1)
E(xiy jyXinjoXiyj3) = E(iyjy +miy ) O jo + iy ) i j + i )

E iy jy Vi joVizjz) +E Vi jy Vin jo )Mis js
E

+

Vivj1Yizj3 )iz jo + E (Vig jo Vi j3 )iy jy

+ My jy My j, M

= _2‘//(0)(61'11'2(])11]'2’"1'3]3 + 0ii30j, j3Miy
+ Oiis Ojn jsMiy jy ) + My jy My jy Mis js -

(iv)

E(Xi, jy Xiy joXis jsXig jy) = E(Oiyjy +miyjy ) Vinjo + s j3)
X (Vigjy iz j3) Vigjy +Miyjy))
= E(iy jyYipjnVizjsViaja) +E Wiy jy Vin joViz j3 )My jy
+ E(Yiyjy YiyjpYiaja ) Mis j3 + E Viy j1 Vi j3Vigjs ) Mizjy
+ E(Viy joYis j3Yigja )My jy
+ E(Yiyjy Vigj )iy jsMig jy
+ E(Yiyjy Vi j3 ) Miy jyMig jy
+ E(Yiy jYig jy )iy joMis j3
+ E(YiyjpYis js )iy jyMiy jy
+ E( )

Yiy joYig ja )My j1 Mz j3
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+ E(Yiy j3Vig ja )iy jy Min jo - Miy jy My j My j3 My

= 4‘//”(0) (Giliz Dj1 jo Oizig Djs ju T Oiriz Dy j3 Oinia Djo s

+ Giiy 0jy ju Oiniz Djo js ) - 2‘//(0) (miljl Mi j, Oiziy O3 4

+ iy jyMis 5 Cisiy @ jy My jy My jy Oiiz B js

+ iy jyMis j3 Ciyiy By jy + M jo My j4 Oy i3 Dy js

+ My j3Miy jy iy, ¢J'1]'2) + My My o iy MGy [

Remark 3.3. The derivation of (i) and (ii) of Theorem 3.16 provides another proof
of Theorem 2.11.

Theorem 3.17. Let X ~ E, ,(M, X ® @, y) with finite second order moments. Let
co = —2y'(0). Then, for any constant matrix A, if the expressions on the left-hand
sides are defined, we have

(i) E(XAX) = coZA'®+MAM,

(i) E(XAX') = coZtr(A'®) + MAM,
(iii) E(X'AX) = co®@tr(ZA')+MAM,
(iv) E(X'AX') = co®A'Z + M/AM'.

PROOF:
)
P n
E(XAX);; Z Z Xik Qg1 X j
= (coGux; + mixm ;) ax
Ik
= 0 Y, Citaa Oj + Zmzkaklml j
Ik

= (C()ZA/(I) + MAM),‘]' .

(i)

E(XAX');; (

T [\/]m

n
2 Xik kX ji
= ¥\ (c00ij O + mixm ) ax
Ik
= c00;j Y, O + 3, Mixarm;;
Ik Ik

= (C()EIV(A/(D) + MAM/),']‘
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(iii) From Theorem 2.3, it follows that X' ~ E, ,(M/, @ ® X, y). Using (ii), we get
E(X'AX) = co®tr(A'Z) + M'AM.

(iv) Since, X' ~ E, ,(M',®@ ® X, y), from (i) we have E(X'AX') = co®PA'Z +
M/AM. -

Theorem 3.18. Let X ~ E, ,(M, X ® @, y) with finite second order moment. Let
c0 = —2y'(0). Then for any constant matrices A, B, if the express ions on the left-
hand sides are defined, we have

(i) E(Xtr(AX)) = coZA'® +Mir(AM),

(i) E(Xtr(AX)) = coSAD + Mrr(AM),

(iii) E(X'tr(AX)) = co@AZ +M'tr(AM),

(iv) E(X'tr(AX)) = co®A'Z + M'tr(AM),

(v) E(tr(XAXB)) = cotr(ZA’®B) + rr(MAMB),

(vi) E(tr(XAX'B)) = cotr(ZB)tr(®A') + rr(MAM'B),

(vii) E(tr(XA)tr(XB)) = cotr(EB' @A) +tr(MA)tr(MB),
(viii) E(tr(XA)tr(X'B)) = corr(SB®A) +1r(MA)t+(MB).
PROOF:

@
nop
E(Xtr(AX)); Z > auxi
k=1i=1
= (coOudj +mijmy)ay
Ik
= c0 Y, Cuap Prj + mi Zaklmlk
Lk
= (coZA'® +Mitr(AM));;
(i1)
E(Xtr(AX')) = E(Xtr(XA"))
— E(Xtr(A'X))
= o ZAD + Mir(A'M)
= coZAD +Mrr(AM').

(iii) X' ~ E, ,(M,®® X, ).
E(X'tr(AX)) = E(X'tr(A'X))
= co®AZ +M'tr(A'M)
= co®AZ +M'tr(AM).
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(@iv) X' ~ Eer(M/z PR, W)
E(X'tr(AX)) = co@A’E + M'tr(AM').

)

E(tr(XAXB)) = E (i z"“lkzl’: lzn:xijlljkxklbli>
—lk=1/=1

i=1

Z COGik¢jl + mijmkl)ajkbli
Jik,d

co ( Z Gikajk(])ﬂbli) + 2 m;ja by

i,j.k,l i),k

= cotr(ZA'®B) +tr(MAMB).

p n n
E(tr(XAX'B)) = E (Z D z zjajkxlkbli>

Z o0 Qji + mijmy)a by
kil

= co (2 O'ilbzi> (Z ¢/kajk>
il il

+ Y mijajmyb;
i,j,k,l

= cotr(EB)tr(DA) +tr(MAM'B)
= cotr(EB)tr(PA') +1r(MAM'B).

(vi)

) M'w

(vii)
E(tr(XA)tr(XB)) = E ((i im%) (ﬁ‘, ixjkbkj>>
j=1k=1

i=1l=1
2 (co0ijQuk +mim ) aiiby;
kil

=co Y, OijbjPuai
i,j,k,l

79
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+ (Zmilali> <zmjkakj>
il ok

= cotr(ZB' @A) +tr(MA)ir(MB).
(viii)
E(tr(XA)tr(X'B)) = E(tr(XA)tr(XB'))
= cotr(EZB@A) +tr(MA)1r(MB')
= cotr(EB®A) +tr(MA)tr(M'B). [ ]
Theorem 3.19. Let X ~ E, ,(M,X® @, y) with finite third order moment. Let co =

—2y/(0). Then, for any constant matrices A and B, if the expressions on the left-
hand sides are defined, we have

(i) E(XAXBX) = co(MASB'® + ZB'M'A'® + XA’ ®BM) + MAMBM,
(ii)

E(X'AXBX) = ¢o(M'AZB'® + ®rr(ZB'M'A’) + ®PBM:r(AX))

+ M'AMBM,
(iii)
E(X'AX'BX) = ¢o(M'A®Dtr(ZB') + ®tr(AM'BY) + @A’ IBM)
+ M'/AM'BM,
(iv)
E(X'AXBX') = ¢o(M'AZtr(B®) + ®B'M'A’'S + ®PBM'tr(AX))
+ M'AMBM’,
(v)
E(XAX'BX') = ¢g(MA®B'X + Ztr(AM'B®) + ZBM'tr(A D))
+ MAM'BM’,
(vi)

E(X'AX'BX') = ¢co(M'ADB'S + ®B'MA'S + ®A'SBM')

+ M'AM'BM/,
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(vii)
E(XAX'BX) = co(MA®1r(BX) + ZB'MA' & + SBM1r(AD))
+ MAM'BM,
(viii)
E(XAXBX') = co(MAZtr(®B') + Ztr(AMB®) + SA' ®BM)
+ MAMBM'.
PROOF:
()]
n p n p
(XAXBX =F z z z kaklxlr rqgXqj
k=li=1r=1¢=1
=Y [co(Cumg; + OigOrjmir + Org$rjmic)
kl,rq
+ mymymy;jlagbyg
= Co[ Y, GuanGirbrgmgi+ Y, Cighrgmiraw Orj
k7[_’r7q k,/.r,q
+ Y, miay 014, j]
k,l,r,q
+ 2 mikaklmlrbrqmqj
k,l,r,q
= (co(ZA'®BM + SB'M'A'® + MAXB' @)
+ MAMBM);;.
(i)

p pP n p
E(X’AXBX),‘j =F <Z Z Z z xkiaklxlrbrqxqj>

= Y [co(Oudirmy; + Okg®ijmir + Olg@rjmyi)
k,l,r,q

+ myimymyjlagbry

81
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=00 [ (Zakl le) <Z ¢irbrqmqj>
kil rnq

+ ¢ij Z qubrqmlrakl
kl,rq

+ 2 mkiaklmlrbrqmqj
k,l,rq

+ Y M Oighrgy
k,l,rq

= (co(tr(AZ) DBM + ®rr(SB'M'A’) + M'ASB' @)
+ M'AMBM),;.

(iii)
E(X'AX'BX) = E(X'B'XA'X)’
= (co(tr(B'Z)®A'M + @tr(SXAM'B) + M'B'ZA®)
+ M'BMA'M)’
= co(M'ADtr(ZB') + @tr(AM'BX) + ®A’SBM)
+ M'AM'BM.
(iv)

n
2 XkiQl Xy rqqu>

=Y, [co(Ouirm g + OkjGigmiy + O1j Prgimii)

k.l,rq

E(X'AXBX');; = E (

WM@
T N\
il M=

+ myimymjglagbrg

=cp [ <2 a le) (Z Qirbrgm jq>
ol rq

+ Y, Oigbrgmiran ox;
k.l,rq

N (kz myiay, Glj> (% brq%r) 1

+ myiagmybygmi,

1
k,l,rq
— (co(®BM'1r(AZ) + OB'M'A’S + M'AZ1r(B®D))
+ MAMBM),;.
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V) X' ~E, ,(M, 02, y).

E(XAX'BX') = co(MA®B'S + Ztr(®B'MA’) + SBM'tr(AD))
+ MAM'BM’
= ¢o(MADB' + Ztr(AM'B®) + IBM'tr(AD))
+ MAM'BM’.

(vi) X'~ En,P(M/v PR, W)

E(X'AX'BX) = co(M'A®B'S + ®B'MA'X + ®A'XBM’) + M'AM'BM’.

(vii)
E(XAX'BX) = (E(X'B'XA'X"))/
= (co(M'B'Str(A’®) + DPAM'BZ + ®PA'M'1r(B'Y))
+ M'BMA'M')
= co(EBMitr(A®) + SB'MA’® + MA®1r(BX))
+ MAM'BM.
(viii)

E(XAXBX') = (E(XB'X'A'X))’
= (co(MB'®AZ + Ztr(B'M'A' @) + ZA'M'tr(B'®))
+ MB'M'A'M’)
= ¢co(ZA'OBM’ + Ztr(AMB®) + MAZ:r(®OB'))
+ MAMBM.. -
Theorem 3.20. LetX ~E, (M, X ® @, y) with finite third order moment. Let c) =

=2y (0). Then, for any constant matrices A and B, if the expressions on the left-
hand sides are defined, we have

(i)
E(Xtr(X'AXB)) = co(Mtr(A'Z)tr(B'®) + SA'MB' & + SAMB®)
+ Mtr(M'AMB),
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(it)
E(XBXtr(AX)) = co(MBZA/CD +>A'®BM + EB/(Dtr(AM))
+ MBM:r(AM),
(iii)
E(X’BXtr(AX)) = CO(M/BZA'CD + ®AXBM + Orr(AM)tr(BY))
+ M'BMtr(AM).

PROOF:
(M)

E(Xtr(X'AXB));; = E <x, i i

=Y [co(Cudjmrg + Cirdjgmuk + O1 Brgmi;)
k,l,rq

H M:
i [v]w

lkalrxrqbqk>

+ mjjmymeglag by,
=co| Y, Cuimgbeu®k
k,lrgq

+ Y oirarmbudig
k,l,r,q

+ mj; (quk%k) (Zmﬁn) ]
k.q nl

+ mij Y, myagmgbg
k,l,rq

= (co(ZAMB® + ZA'MB'® + Mtr(A'3)tr(B @)
+ MZ‘I’(MIAMB))Z‘]'.

(i)
n p n p
E(XBXtr(AX));; = E ((2 zxikbklxlj> (2 > arqxqr>>
k=1i=1

r=1g=1

Z th (ijmqr + Oig ¢krml/ + Oyq q)]rmzk)
k,l,r,

+ myamyjmg,|byay,
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= ¢ l (Z Citbii P j) (Zarqmqr>
il rq

+ Y CiglrgOrbram;
kl,rg

+ Y, mibu0igar;r
kl,rq

=+ (Zmikbklmlj> <Zarqmqr>
kI rq

= (co(ZB'®@1r(AM) + ZA'®BM +MBZA' @)
+ MBM:r+(AM)),;.

(iii)

E(X'BXtr(AX));; = E ((g éxkibk[xl ,») <Z D a,qxq,>>

r=1qg=

Z O-kl Gijmgr + qu(ptrml/ + 0y ¢jrmkl)
k,l,r,

+ myimy jmg by ay,

=cp |f]>ij (Zbklo'lk> (zarqmqr>
ol rq

+ 2 ¢irarqo-kqbklmlj
k,l,rq

+ Y, miibiO1gar9jr
klrg

+ (Z myibrgmy j) (Z arqmqr>
il rq

— (co(Dtr(BX)tr(AM) + ®AZBM + M'BZA’ @)
+ M/BMl‘I‘(AM)),’j. |
Theorem 3.21. Let X ~ E, ,(M,Z ® @, y) with finite fourth order moments. Let

co = —2y'(0) and kg = 4y" (0). Then, for any constant matrices A, B, and C, if the
expressions on the left-hand sides are defined, we have

(i)
E(XAXBXCX) = ko(5C' ®BA'® + SA'OBIC' @ + B D1r(AXC D))
+ co(MAMBXC'® + MASC'M'B'®
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(ii)

(iii)

(v)

(v)

3 Probability Density Function and Expected Values

+ SC'M'BM'A’® + MAXB ®CM
+ ZSB'M'A'®CM + ZA' ®GBMCM)
+ MAMBMCM,

E(X'AXBXCX) = ko(®@tr(XC' ®BXA’) + ®PBEC dtr(AY)
+ @CZA'ZB' @) + co(M'AMBZC' &
+ M'AXC'M'B'® + &tr(AMBMCX)
+ M'AXB'®@CM + @CM1r(AMBX)
+ ®BMCMtr(AX)) + M AMBMCM,

E(X'AX'BXCX) = ko(@tr(XC' ®@A')tr(BX) + ®A'XBXZC' &
+ @CZBIA®) + co(MAM'BEC' @
+ M'A®tr(MCZB) + ®tr(AM'BMCX)
+ M'A®CMtr(BX) + @CMtr(AM'BY)
+ ®A’XBMCM) + M'AM'BMCM,

E(X'AXBX'CX) = ko(®tr(EC'SA")tr(BD) + OBDir(AL)1r(CE)
+ OB ®tr(AZC'Y)) 4 co(M'AMB®1r(EC)
+ M'AXC'MB' @ + @1 (AMBM'CX)
+ MAZCMir(B®) + PB'M'A’ZCM
+ ®BM'CM:r(AZX)) +M AMBM'CM,

E(XAX'BXCX) = ko(EBZC'®tr(PA) + EB'EC DA’
+ XC'®A'tr(2B)) + co(MAM'BEC' @
+ MA®:r(BMCZ) + MA®CM1r(XB)
+ SC'M'B'MA'® + SB'MA’ &CM
+ EBMCMr(®A)) + MAM'BMCM,
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(vi)

E(X'AXBXCX') = ko(®PBEtr(EA)tr(®C) + DCOBIAZ

PROOF:
(i)

E(XAXBXCX);; = F (

+ @C'®BZA'S) + co(M'AMBZtr(PC)
+ M'AS1r(BMC®) + M'ASB &CM'

+ ®C'M'B'M'A'S + ®CM'tr(AMBX)
+ ®BMCM'1r(2A)) + M AMBMCM'.

H M'w
M'w

%>

=Y {ko[0it s O1gPr; + Ot @sr OrgPxj + OigPsj O Dr]
q,nl
kit,s

) M'u

n
Y XisagXikbiaxirCrgXy j)

1t=1s=1

+ co[mismu O1q@rj + misiy, Org P
+ mismg ;O P + MukMiy OigPsj + Myxig Ot Psr
+ mymy Oy Gsie] + migmymymg j }asbiicrg
= {ko[Curtast skbri O1gCrgOr
s
+ (Citb1 Oxj) (PsrCrq Orgaist )
+ GigCrqPrrbii O ast §s ]
+ co[misasmbi O1gCrq®r
+ MisQst O1qCrqmirby Pk j
+ MisQt Oy by Pier Crgy j
+ OigCrgMirbrimeas Gsj
+ Oubrimuas GsrCrqmy
+ Ot PsicbramyrCrqimy;]
+ misagmebm crgmg;
= (ko[ZA'®BEC'® + (ZB'&)1r(PCIA’)
+ ZC'®BA'®] + c)[MAMBZC' &
+ MAXC'M'B'® + MAXB'&CM

87



88

(i)

3 Probability Density Function and Expected Values

+ ZCM'BMA’'® + SB'M'A’&CM
+ ZA’®BMCM] + MAMBMCM); .

E(X'AXBXCX);; = E (

il Mw.

T Mw.

nop P
Z NN xsiasXikbrxircrgXgj
k=1t=1s=1

=y {k0[05t¢ik01q¢rj + O3 0ir Org P

q.nl
kit,s

+ O5q0ij 01 Prr] + co[msimy 0149y j

+ msimlrctq(ij + mgimy;j Oy Pir

-+ My Osq O+ Mgy jOg O

+ mymy Oy (Pik] + msimtkmlrmqj}astbklcrq

=Y kol(9ikbuiO1gCrq®r;) (Oxaist)

q.rl
kit,s

+ 0i-Crq Orq st Osibi P j
+ 0i(Osqast Oribii PrrCry )]

+ co[msiasmkby OgCrq®rj

+ mgiag thcrqmlrbkl q)kj

+ MiiGs Oy bry Oy Crgimy j

+ ¢ij ( qucrqmlrbklmtkast)

+ (@ircrgmg;) (Osibrmas: )

+ (Qubramyycrgmg;)(Osag)]

+ Mgy myCrgmg

= (ko[PBXZC'®tr(ZA) + ®CZA'ZB' @

+ @tr(ZAZB' @C)] 4 ¢y MAMBEC' &

+ MAXC'M'B'® + M'AXB'®CM

+ Otr(XC'M'B'M'A’) + @CMtr(EB'M'A’)
+ ®BMCM:r(2A)] + M'AMBMCM); ;.
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(iii)

(iv)

E(X'AX'BXCX);; = E <

E(X'AXBX'CX);;

f

89

H M»e
M=

=Y {ko[Gsk¢izGIq¢rj + O519ir kg s j
q.nl
kit.s

T M*c

P
2 Xsilst Xkt bklxlrcrqxqj>
1t=1s=1

+ Osq P10k O] + colmsimy: O1g Pr
+ MMy Okg Pr j + Misitmy Oy Gy
+ My Osq O j + Mgy O Qi
+ mymg O Qi) 4 mgimygmymg  Yag by crg
=Y ko[t Ocbri OigCrgPr
s
+ 0ir-CrgOtgbii Os1st Oy j
+ 0ij(OsqCrgPrrast ) (Oribir )]
+ co[myiag My by O1yCrgPrj
+ (msias @ j)(OkgCrgmirbia)
+ (msias @urcrgmg;) (Orbur)
+ @1 (OsqCrgmirbrimygas)
+ (Gircrgmy;) (Ogbrumiag)
+ QitGg Oscbggmyycrgimyg
+ mgiag My by Crgmyg
= (ko|®PA'ZBZC'® + PCIBIAD
+ O1r(ZC' DPA')r(ZB)] + co) MAM'BEC' @
+ MAQ1r(SC'M'B') + MAOCM1r(ZB)
+ Otr(SC'M'B'MA’) + OCMtr(EB'MA')
+ ®A'SBMCM] + M'AM'BMCM); .

M~

5

k=1t

M~
M~
M=

p
Y XsistXikbiaXriCrgXy j)

117 1s=1

I
2
I

“



90

V)

E(XAX'BXCX);

3 Probability Density Function and Expected Values

= {ko[Ou Pk Org 1} + Osr 0t Org P

q.rl
kit,s

+ Osq 91 Orr Pra] + co[msimy g P

+ My Org Py j + Migimy O Py

+ My Ogg O j + Myping Oy Ot

+ mymg Oy Qi) + Msimymymg; Yagbricrq

= 2 ko[(d)ikbqu)lj) (O'StClst)(Grqcrq)

q.rl
kit,s

+ (GibriP;) (OsrCrgOrgst)

+ 0ij(0sqCrgOrrais) (Pribia )]

+ col(mgias b @) (OrgCry)

+ Myt OrgCramybr P

+ (msi Gircrgmy ;) (uabr)

+ 01j(OsqCrgmirbrmas: )

+ Qubrmyas Ogrcrgimy

+ (Girbrimyicrgmg;) (Osas )]

+ MGy My by Crgiy j

= (ko|@BD1r(ZA)1r(EC) + (OB ®)rr(XCZA’)
+ Otr(ZC'EA)tr(®B)] + co[M'AMB®11(2C)
+ M'AXC'MB' & + M'AXCMr(®B)

+ O1r(SC'MB'M'A') + ®B'M'A’SCM

+ ®BM/'CMi#(ZA)] + MAMBM/'CM), ;.

S|

(82

q=

p n n
DY XisaaXibuXircrgXy,
lk=1t=1s

=1

=Y {ko[Oi st Cig®r; + O PsrCig s
nl
Kt
+ GigOsjOri Prr) + co[misni; 14y j

+ Mgy Oy @y j + Mising jOxy Prr
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(vi)

E(X'AXBXCX');; =

+ My Oig Qs + My iy Ot Gsr
+ mymy O Pst | + mismigmimg j }agbricrg

= Y ko[(OubriO1gcrybrj) (ssst)
q.nl
kit,s

+ Oitbii Oy CrqPsras: Pr j

+ (GigCrgPrras $s;) (Oibir)]

+ co[mis@siMig by O1gCrq Oy

+ (misas ¢ ) (OkgCrgmirbir)

+ (misag Grrcrgmy;)(Oribia)

+ OigCrgMirbiimis s Ps;

+ Oubrimyas Qs crgmyj

+ (Oibimircrymg;)(9sas )]

+ Mgy brymyycrgmy;

= (ko[SBEC Otr(®A) + SB'SC' PAD
+ ZC'OA'D1r(B)] + co) MAM'BEC' &
+ MA®+(SC'M'B') + MA@CM1r(SB)
+ XC'M'B'MA’® +XB'MA'dCM

+ IBMCMtr(®DA)] + MAM'BMCM); ;.

f(53555;

= {ko[Ou P01 9rg + Ot 9ir O Big

q,nl
kit,s

i M:
T [v]m
T Mu
i Mm

wastxtkbklxlrcrqqu>

+ 05 PigOr Prr] + co[msiny O1 Ory

+ MmO j Qg + Misim j4 Oy Qg

+ My Oy j Qig + MmOy Pir

+ mym g O Gige] + mgimymy,m g }as by crg

= Z ko[(¢ikbklo-lj) (Gstast) (er¢rq)

q,rl
kit,s

91
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3 Probability Density Function and Expected Values

+ GirCrqPiqbri Osisi Oy j

+ QigCrqgPrrbri 0115 O]

+ col(msiasmibii 015) (GrgCry)

+ (msitsi01) (DrgCramirbia)

+ Myids Oyib PrrCraim jq

+ QigCrgmyrbrymykag Oy

+ (ircrgmjq) (Csabumas)

+ (Qibrumiycrgmjq) (O ay )]

+ msiQgMybgimiycrgmijq

= (ko|PBZtr(ZA)ir(®C) + PCOBXAX
+ @C' ®BIA'Z] + co[M'AMBZ1r(0C)
+ MAZtr(®C'M'B') + MASB OCM/
+ OC'M'B'M'A’S + ®CM'1r(SB'M'A)
+ ®BMCM't+(ZA)] + MAMBMCM));. |

Theorem 3.22. Let X ~ E, ,(M,Z @ @, y) with finite fourth order moments. Let
co = —2y'(0) and kg = 4y" (0). Then, for any constant matrices A, B, and C, if the
expressions on the left-hand sides are defined, we have

(i)

(ii)

E(XA1r(XBXCX')) = ko(Z*B'®CDA + Z°B' ®A1r(CD)

+ ZB'®C' ®Air(X)) 4 co(MAsr(MBE)ir(CD)
+ MAt+(MC®B)tr(X) + SMBMC®OA

+ MA#+(MC ®BX) + SB'M'MC' ®A

+ SMC'M'B®A) + MA7+(MBMCM'),

E(XAXtr(BXCX')) = ko(EBEA'®C'® + ZA' dtr(BE)tr(CD)

+ ZB'ZA'®CD) + co(MAM:r(BE)1r(CD)
+ MAZBMC® + SMBMC®AM

+ MAZB'MC' @ + SB'MC ®AM

+ ZA'®tr(MC'M'B')) + MAM:-(BMCM'),
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(iii)
E(X'AXtr(BXCX')) = ko(@C' @tr(EBZA’) + O1r(AZ)1r(BE)tr(CD)
+ OCPDtr(EB'ZA’)) + co(M' AMtr(BX)tr(CP)
+ M'AXBMC® + @C'M'B'2AM

+ M'AZB'MC'® + ®CM'BZAM
+ ®tr(AX)ir(MCM'B)) + M'AMt-(BMCM'),

(iv)
E(XBXCX1r(AX)) = ko(EB'®CZA'® + SA' ®PBEC' &
+ ZC' PAZB @) + co(MBEC D1r(AM)
+ ZC'M'B'®1r(AM) + MBMCZA'
+ B ®CMir(MA) + MBZA' &CM
+ ZA'®BMCM) + MBMCM/r(AM),

(v)

E(X'BXCXtr(AX)) = ko(®CZA'®tr(BX) + PAXBEC' @
+ @Otr(ZB'XC'DA)) + co(M'BZC' @tr(MA)
+ @tr(MA)tr(MCXB) + M'BMCZA'®
+ @CMtr(BX)tr(MA) + M'BZA'@CM
+ ®AXBMCM) + M'BMCM:r(MA),

(vi)
E(X'BX'CXtr(AX)) = ko(®B'ECZA’ @ + PAZBD1(EC)
+ @tr(ZCIB®A)) + co(M'BOtr(MA)tr(XC)
+ ®tr(MA)tr(MB'SC') + M'BM'CZA' @
+ ®B'ZCMi(MA) + MBOASCM
+ ®AZBM'CM) + M'BM'CM:7(AM).

PROOF:

®

E(XAtr(XBXCX));; = E ((ix,-sasj) (i i i i ix,kbkgxlrcrqxtq>>

= g=lr=1I=1k=11=1

~
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(ii)

E(XAXtr(BXCX’))ij

3 Probability Density Function and Expected Values

=E Z xisaijtkbklxlrcrqxtq
q.rl
kit,s
= 2 {kO [Git d)skalld)rq + Oi d)sro-tt d)kq + Oit ¢sq th¢kr]
,nl
ki
+ co [mismtk Ojt q)rq + mismy, Ot (qu
+ Mg O Prr + Mgy, Ot Psg —+ My g Oy Py )
+ mismtkmlrmtq}asjbklcrq

= Y ko[(CuOubri $skas ;) ($rgCrg)
gl
kit,s

+ (Citbii PrgCrqOsras;) On

+ 0it O11bit PirCrg Psq s ]

+ col(misas ;) (Mucbri 01 ) (Qrgcry)

+ (misais) 01 (PrgCrgirbia)

+ (misag;) (Gubr QrCrgug)

+ CitmukbimiyCrqPsqas;

+ Oibrimymigcrq@sras;

+ GitMeqCrqmirbii Psias ]

+ (misas;) (mucbgmiycrgmg;)

= (ko[Z°B' ®A1r(®C) + ZB' &C DArr(X)
+ X?B'@CDA] + co[MAtr(MBZ)1r(dC)
+ MA#7(Z)tr(@C'M'B’) + MAtr(ZB' @CM')
+ XMBMC®A + XB'M'MC’ A

+ EMC'M'B' ®A] + MAr+(MBMCM') ).

“r(($ 5 ) ($55 S )

t=1s5=1

=F Z xisastxljbklxlrcrquq
q,nl
kit,s
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(iii)

E(X'AXtr(BXCX'));j = E ((

95

=Y {ko[CitDs; Ok Prg + it Osr Ok D jg + Ok Psq Ot O]

q.rl
kit,s

+ co [mismtjclk‘prq + mismlrotkq)jq
+ mismy, Grl¢jr + my jmy, O (Psq + my jmyq Oy Osr
+ mymyg Oy G ) + migmy jmympg Y ag by cry

= kol(Giuas bs;)(Oibir) (9rgcry)

q.rl
kit,s

+ Oitbki Oikst PsrCrgP g

+ Oikbi1 115 OsgCrg P jr]

+ col(misasmy ;) (Oubii ) ($rqcrq)

+ Misag Oyicbrimircrg@jq

+ Mis@st O b MicgCrg @i

+ Oy CrqQsqsy

+ CutbkiMigCrg Psr sy

+ (Oiras §sj) (migCrgmirbia)]

+ (misasmy ;) (mygcrgmirby)

= (ko[ZA' ®1r(ZB)tr(OC) + ZB'SA' OCD
+ ZBIA'OC' @] + co[MAMrr(EB)tr(®C)
+ MAXBMC® + MAXB'MC' @

+ ZBMC®AM + XB'MC' ®AM

+ ZA' Otr(MC'M'B')] + MAM:(MC'MB') ).

M=

t=1s=1

Y

=E | Y Xsitlst Xy jbraxirCraXeq
q.nl
kit,s

=Y {ko[0y0i;OuPrg + O 9ir Ok Djg + Oskc Pig O O]

q.rl
kit,s

+ co[mgim; jO1iPrg + mgim; O g
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(iv)

3 Probability Density Function and Expected Values

+ msimkqo_tld)jr + mtjmerskd)iq + my jMy, Ol Oir

+ MMy Oy ¢ij} + msimtjmlrmkq}astbklcrq

= 2 ko[d)ij((fstas[)(lebkl)(¢rqc”1)

q.rl
kit,s

+ ((])ircrqq)jq)(o'slbkl Oy dyt)
+ (9igCrq®jr) (OskbriOr1ast )]

+ CO[(msiaxtmtj)(o-klbkl) ((Prqcrq)

+ Myis Ocbiamy g P jq

+ MyiGs Oy by Mg Crq Qi

+ QigCrgmiybiy Ogragmy j

+ QirCrgMigybii Og1asmy j

+ ¢ij (Gstast) (mchqul[rbk[ )]

+ (msiagmy ;) (mygcrgmiyby)

= (ko[@tr(ZA)tr(ZB)tr(®C) + @CPtr(XB'ZA’)
+ @C' @tr(EBZA)] + co[M'AMt7(ZB)tr(@C)

+ M'AZBMC® + M'AXB'MC'®

+ ®C'M'B'ZAM + ®CM'BZAM

+ Otr(ZA)tr(MC'M'B)] + MAMt+(MC'M'B')); .

E(XBXCXtr(AX));; = E ((

M~
M=

t

P n p on
xtsast> (2 DI xikbklxlrcrqxqj>>

1s=1 qg=1r=11=1k=1

=E | Y XisasuXikbiaxiCraXqj
q.rl
kit,s

=Y {ko[01i®skO1gPr; + O Psr Oigxj + OrgPs ;O Dir]

q,nl
kit,s

+ ¢o [mtsmikalqd)rj +mt5mlr6iq¢kj

+ MMy Oy Prr + Mgy, Org Qs j + Mgy Oy P

+ mymg O Qg ] + mpgmigmymg Y ag by cry
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)

E(X’BXCX[F(AX))U
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= ko[Orits Gskbii OigCrq®rj
irs
+ OigCrq®srasi Oy Prj
+ Oitb PrrCrgOrgaise Bs]
+ co[(mixbii O1gCrg@rj) (Misas: )
+ (CigCrgmuirbig Oxj) (Mysag)
+ (Citbx Orrcrgmy ) (Mysag)
+ mixbgmyCrqOrq s P
+ Mixby O st PsrCrgmy j
+ Ol Qskbramyycrgiy ]
+ (mibimircrgmy;) (misas)
= (ko[ZA'®BXC'® + XC' ®PAZB' @
+ B/ OCZA' ] + co[MBEC drr(MA)
+ ZC'M'B'O1r(MA) + ZB' OCMrr(MA)
+ MBMCZXA'® +MBXA'&CM
+ A’ ®BMCM] + MBMCM:r(AM)),;.

M=

(g 8n) (2

t=1s5=1 g=1r=11

)4
N xkibrixircrgXg;
k=1

=E Z xtsa.ytxkibklxlrcrqxqj

gl
kit,s

= {ko[OuksiO140rj + C11Psr OicgPij + Org s Okt Pir]
i

+ co[mismy;O1q Prj + mugmy - Org Oij

-+ MMy Ot Qi+ MMy Org Ps j + Mgy Oy Psr

+ mymg Oy Qsi] 4 Mmysmyimymg j tasbgicry

=Y ko[@sitss Oribii O1gCroBrj
q.rl

kit,s

+ 0ij(d5-CrgOkgbriOnias)
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(vi)

E(X'BX'CXir(AX));; =

3 Probability Density Function and Expected Values

+ (9irCrgOrq@s $s;) (Orrbia )]

+ co[(miibriO1gCrqPrj) (Mysase )

+ 04 (mysast ) (OkgCrgmirbia)

+ (@ircrgmg;) (mysase ) (Okbi)

+ myibymyycryGrgs Ps;

+ myiby Oy as PsiCrgimy

+ Qsiast Oubrmycrgmg;

+ (myibrimyycgmy;) (Mysag)

= (ko|PAZBEC & + Drr(PCIBEA')

+ OCIA' O1r(ZB)] + co[MBEC D1r(MA)
+ @tr(MA)tr(EC'M'B’) + ®CM1r(MA)1r(EB')
+ M'BMCZA'® + M'BZA'@CM

+ ®AZBMCM] + M'BMCM:7(MA)); .

( ($50a) (515§ wniniens)

=

_
i
-

XesQst Xkibri Xy, r1CrqXqj

= Gtk(PSlo-rl](Plj + Oty 951 Okq Gij + O1qPs Opr it
/f',t,s

+ co[mysmii Oy @1 j + Mysiy Org i

+ MMy O Ot + Mgy Org Qs j -+ Myt Ot P

+ mymy Qg + mygmyimmgj }asgbrcrg

=Y ko[(¢sias kb $17) (OrgCrg)
q.nl
kit,s

+ ¢ij(¢slbkl(7chrq(7,ra5,)
+ Qitbi OkrCrqOrqast §s ]
+ col(miibri 1) (Messt ) (OrgCrg)

+ 9ij(musasy) (Okgergmribi)
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+ (Qubri Okrcrgmg ;) (musasi)

+ Myibgmy Cry Orgay O

+ Myibi P51 O Crgmy j

+ @sitss Oricbiamy Crgiy ]

+ (miibamyicrgmyg ) (msag)

= (ko|@PAZB®D1r(XC) + Drr(PB'ZC'TA')
+ OB'SCIA' @] + co[M'BDrr(MA)tr(2C)
+ Otr(MA)tr(XC'MB') + ®B'XCMrr(MA)
+ M'BM'CZA'® + MBOAXCM

+ OAZBM'CM] + M'BM'CMtr(AM));.

Remark 3.4. The expected values of many of the expressions in Theorems 3.18-
3.22 were computed by Nel (1977) for the case where X has matrix variate normal
distribution. If X ~ N,, ,(M, X @ @), then —2y’(0) = 1 and 4y"(0) = 1. Therefore
taking co = ko = 1, our results give the expected values for the normal case, and so
Nel’s results can be obtained as special cases of the formulae presented here.

Next, we give some applications of Theorems 3.18-3.22.

Theorem 3.23. Let X ~ E, ,(0,Z ®L,,, ) with finite fourth order moments. Let
Y=X (In - i) X'. Let co = —2y/(0) and ko = 4y (0). Then,

,
(i)
E(Y)=co(n—1)Z, (3.36)
(ii)
Cov(yij,yx) =ko(n—1)(0y0jx + 0i0j1) +(n— 1)2(k0 —c%)O',-ijl, (3.37)
(iii)
Var(yij) = (nko— (n—1)c§) (n — 1)07; + ko(n — 1) 0305 (3.38)
PROOF: Let A =T, — %
(i) Using Theorem 3.18, we get

/
€,€,

. )1) +0=co(n—1)X.

E(XAX') = coZtr ((In —
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(i) Let ™ be a p-dimensional column vector such that

lifi=m
"= =1,2,...,p; i=12,...,p.
ql {Olflfm, m 9 <y P 4 P

Then, y;; = ¢"'Yq/ = ¢'XAX'q’ and yi; = ¢*'Yq' = ¢*’XAX'q’. Now from
(3.36), it follows that
E(yij) = C()(n — l)O'ij and E(ykl) = C()(n— l)O'kl.

Since, X ~ E;, ,(0,Z ®1L,,y), we have X' ~ E, ,(0,I, ® X, y). Using Theo-
rem 3.22, we get

E(yijyu) = E(q"'XAX ¢’ ¢"'XAX'q')
= ¢"E(XAX'q’/ ¢"'XAX')(/
—q" (ko(Ztr(lnAI,,A)tr(qqu’z)
+ q/q“ Str(AL)tr(AL) —|—E(qjqk’)’Ztr(AInAIn)))ql
_ i’ 1 k1 Jj i’ Jok! I 2
= ko((n— 1)q"2q'tr(q"'2q’) +q"2¢’q"'2q' (n— 1)
+4q'2q"q"’2q (n— 1))
= ko ((n—1)0301j + (n—1)?0;01 + (n— 1)0301) .
Then,
Cov(yij,yu) = E(ijyx) — E(yij)E (i)
= ko ((n—1)0y01;+ (n—1)*0;;01 + (n— 1)0401)
— C(z)(nf 1)26,‘]'61(1
= ko(l’l - ])(G,‘[ij + Giijl) + (n — 1)2(](0 - C(z))G,'ijl

which proves (3.37).
(iii) Take k =i and [ = j in (3.37). Then,
2

Var(yij) =ko(n— l)(GiszrO',‘iij) +(n— 1)2(/(0 7C(2))Gij

= (n—l)(nko—(n—l)c%)cl-zj—i—ko(n—l)cﬁcjj. ]

Example 3.1. Let X ~ Mt,,(m,0,Z® @), m > 4, and Y = X (In - %) X'. We

want to find E(Y), Cov(yij,yx) and Var(y;;). In order to compute them, we need

to know ¢y = —2y'(0) and ko = 4y”(0). Let u = \;CIFIT' Then, u ~ Mt; 1 (m,0,1);




3.2 More on Expected Values 101

that is # has a one-dimensional Student’s ¢-distribution with m degrees of freedom.
(This will be shown in Chap. 4.) Hence, using Theorem 3.16 we get E (u*) = ¢ and
E(u*) = 3ko. It is known that

EW?) =

and

(m—2)(m—4)"

Hence, ¢y = % and ko = m. Now, using Theorem 3.23, we get

E(Y)=(n— 1)%2,
Cov(yij,yu) = (n—1) [w_;”;_@(ﬁuﬁjﬁcikcﬂ)
+ 00 (G )
=0

m—4
X O','[O'jk-‘rO'iijl-i-(l’l—l) l—m 0,0k
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2
m
— -1
" =) =4
2(n—1)
X GilQ;’k“"Giijl‘f‘WGiij] ,
and
m’ 2 2(n—1) ,
Var(ylj):(n_l)(m_z (m_4) sz+6ii6jj+ m—2 ij
2
m 2n+m—4 ,
= ) Gy 5 )



Chapter 4
Mixtures of Normal Distributions

4.1 Mixture by Distribution Function

Muirhead (1982) gave a definition of scale mixture of vector variate normal
distributions. Using Corollary 2.6, the scale mixture of matrix variate normal
distributions can be defined as follows (Gupta and Varga, 1995a).

Definition 4.1. LetM: p xn, X : p X p, and @ : n X n be constant matrices such that
X >0 and @ > 0. Assume G(z) is a distribution function on (0, ). Let X € RP*"
and define

1

gX = P i D
= ezl

x /mz—%m (1(XM)’2—1(XM)¢—1> dG(z).  (4.1)
0 2z

Then the m.e.c. distribution whose p.d.f. is g(X) is called a scale mixture of matrix
variate normal distributions.

Remark 4.1. In this chapter we will denote the p.d.f. of X ~ N, ,(M,X ® @) by
pr,n(M, STod) (X). With this notation, (4.1) can be written as

0= | iy, o020 (X)4G(E)

Remark 4.2. Let X be a p x n random matrix. Then, X~ E, ,(M,Z@ @, y), Z >0,
& > 0 has the p.d.f. defined by (4.1) if and only if its characteristic function is

dG(z), 4.2)

ox(T) = err(iT'M) /0 " etr (_zT’ETcD )

A K. Gupta et al., Elliptically Contoured Models in Statistics and Portfolio Theory, 103
DOI 10.1007/978-1-4614-8154-6_4, © Springer Science+Business Media New York 2013
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that is
y(v)= /Owexp (—%) dG(z).

This statement follows from a more general result proved later in Theorem 4.5.

Remark 4.3. From (4.2), it follows that X ~ E,, ,(M,Z Q@ @, y), X > 0, @ > 0 has

the p.d.f. defined by (4.1) if and only if X =~ 22Y where Y ~ Np,(M, X ® @), z has
the distribution G(z), and z and Y are independent.

The relationship between the characteristic function of a scale mixture of normal
distributions and its stochastic representation is pointed out in the next theorem, due
to Cambanis, Huang, and Simons (1981).

Theorem 4.1. Let X ~ E,, ,(0,1, ® I,, ) have the stochastic representation X ~
rU. Let G(z) be a distribution function on (0,°). Then,

w(v) = /0 " exp (—%) dG(z) 4.3)

if and only if r is absolutely continuous with p.d.f.

1 “ P
() = P"—l/ B exp(—2 ) ac(2). 44
v () b exP( 21) ) @4

PROOF: First, assume (4.3) holds. Then, with the notation of Remark 4.3, we can
write X ~ Z%Y. Hence, U ~ z%Y, and 17(r*U'U) ~ tr(zY'Y). Consequently,

P~ zar(Y'Y). (4.5)
Since Y ~ N, ,(0,1,®1,), and hence tr(Y'Y) ~ xﬁn. Now, X;%n has the p.d.f.

1 m_q w

fiw)=—m——w2Z e 2, w>0.

Denoting 72 by s, from (4.5) we obtain the p.d.f. of s as

70 = [ () st

pn

=1 1 s\ 2 s
S —— “%dG
/0 225 (8) (Z) ‘ @
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Since 7> = s, we have J(s — r) = 2r and so the p.d.f. of r is

1 < _pn 2
0= e [+ Tep (L)
(r) 217,1F(;727n)r o z P 2z (z)

which is (4.4).
The other direction of the theorem follows from the fact that  and y determine
each other. u

The question arises when the p.d.f. of a m.e.c. distribution can be expressed as
a scale mixture of matrix variate normal distributions. With the help of the next
theorem, we can answer this question. This theorem was first derived by Schoenberg
(1938) and the proof given here is due to Fang, Kotz, and Ng (1990) who made use
of a derivation of Kingman (1972).

Theorem 4.2. Let y : [0,%0) — R be a real function. Then, y(t't), t € R* is a
characteristic function for every k > 1 if and only if

w(u) = /O " exp (-%) dG(z), (4.6)

where G(z) is a distribution function on [0, o).

PROQF: First, assume (4.6) holds. Let kK > 1 be an integer and x be a k-dimensional
random vector with p.d.f.

g(x) = (2;)5 /sz,g exp (—le:) dG(z2).

Then, the characteristic function of x is

ou(t) = [ explitx)s(x)dx
= /Rk exp(it'x) (2;)§ /000[% exp <_X2/:> dG(z)dx

oo /
= / / exp(it'x)
0 Jrr

1
- exp (—XX> dxdG(z)
(27z)2 2z

= /Owexp (t/2tz> dG(z),

where we used the fact that [ exp(it’x)—— exp (7%) dx is the characteristic
(2mz)2

function of Ni(0,zI;) and hence is equal to exp (—%) Hence, y(t't) is the

characteristic function of x, where t € IR,
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Conversely, assume y(t't) is a characteristic function for every k > 1. Then, we
can choose an infinite sequence of random variables (x1,x,...), such that for every
k > 1 integer, the characteristic function of (x1,x2,...,x) is y(t't), where t € R*.
Let {n(1),7m(2),...,m(k)} be a permutation of the numbers {1,2,...,k}. Then the
characteristic function of (xz(1),Xz(2); - - -, Xz (k) ) is also y(t't). Hence, (x1,x2,...,X)
and (Xz(1),%z(2)---,¥z(k)) are identically distributed. Thus the infinite sequence
(x1,x2,...) is exchangeable.

Let (2,47, P) be the probability space on which x;,x3,...,x,,... are defined.
From De Finetti’s theorem (see Billingsley, 1979, p. 425), we know that there
exists a sub o-field of o/ say .# such that conditional upon .%#, x;’s are identically
distributed and conditionally independent. The conditional independence means that
for every integer n

n
P(x;eM;, i=1.2,....n.7) =[] Pxi € Mi|7) 4.7
i=1

where M; € Z(R), i = 1,2,...,n. Moreover, % has the property that for every
permutation of 1,2,...,n, say {m(1),7(2),...,m(k)},

Plxi €M, i=1,2,...,n|F) = P(xg; € M, i=1,2,...,n[.7). (4.8)
Let (x;|.% ) be a regular conditional distribution of x; given .% and E (x;|.% ), be

a conditional expectation of x; given .%, i = 1,2,.... Here, ® € Q (see Billingsley,
1979, p. 390). Then, for g : R — R integrable, we have

E(g(x)|. 7)o = /0 " ()d (i) 4.9)

(see Billingsley, 1979, p. 399). Now, it follows from (4.7) and (4.8) that for fixed
e Q,

P(xi EM|F)p =Pxi M, x; ER,i=2,... k| F )y
Pxy eM,xi R, x; €R,i=2,....k—1|F )

= P(x € M‘ﬁz)w

Hence, for fixed @ € €2, and any positive integer &,
(x1|F)o = (xk|F)w almost everywhere. (4.10)

Define

(1) = /]R A (x| F o, @.11)
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where t € R, and o € Q. Then, from (4.10) we get
O(t)w = / e d (x| F ) - (4.12)
JR

For fixed t € R, ¢(t), is a % -measurable random variable. On the other hand, for
fixed @, ¢ (), is a continuous function of ¢ since it is the characteristic function
of the distribution defined by (x;|-%# ). Since ¢(¢)y, is a characteristic function, we
have |¢(7)e| < 1 and ¢(0), = 1. We also have

0(~t)o=E(F)o =E(™1]F)o =9 (1)o.
From (4.9) and (4.12), we see that for any positive integer &,
0(1)o = E(™|.F)o. (4.13)
Using (4.7) and (4.13), we get
n n
E (exp (i ZIjx]) L@) =T1E (&%),
J=1 ®

j=1

n

=[[¢(t)e- (4.14)

j=1

o) ()

The left-hand side of the last expression is the characteristic function of
(x1,x2,...,X,). Hence, we get

E<ﬁ¢)(tj)> =w<it}>. (4.15)

1 .
Let u and v be real numbers and define w = (1> +v?)2. Then, we can write

Therefore,

E(|9(w)—¢(u)9(v)*) = E
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Using (4.15), we see that all four terms in the last expression equal y (2w2), hence,

E(|9(w) — ¢ (u)g(v)|*) = 0.
That means, ¢ (u)¢(v) = ¢ (w) with probability one, or equivalently ¢ (u),¢ (V) =

¢ (w)e for @ € C(u,v), where C(u,v) C  and P(C(u,v)) = 1.
Now, we have

P()0d(0)o =9¢(Ju))o for e C(u,0)
and
O(—u)p9(0)o = ¢(|u|)o for o e C(—u,0).

But ¢(0)p =1 and so ¢ (u)p = ¢(—u), for @ € C(u,0)NC(—u,0). However we

have already shown that ¢(—u), = ¢(u)e. Hence, ¢(u)y = ¢(u), and therefore
¢ (u)e is real for @ € C(u,0) NC(—u,0). Similarly, ¢ (v), is real for @ € C(0,v)N
C(0,—v).
Define
C= N {C(u,v) NC(u,0)NC(—u,0)NC(0,v) NC(0,—v)}.

u,vrational numbers

Then, P(C) =1, ¢ (u)pd (V) = ¢ (Vu? +v2), and ¢ (u) is real for u, v rational
and @ € C. However we have already shown that ¢(¢), is continuous in 7 for fixed
o € Q. Hence ¢(t) is real for all # € R and w € C. Moreover, with the notation

EWw=20¢ (ﬁ)w, we have
EMowé(n)o=,+n)o, 1>0,>0 (4.16)

Lol
for ¢}, t; rational. Since £(f), is continuous in 7, we conclude that (4.16) holds for
all nonnegative numbers #; and #,. Now using Corollary 1.1 we find that the solution
of (4.16) is

ENp=e " >0

where k() is a positive number depending on @ (see Feller, 1957, p.413). So, we
can write

where z(®) depends on . This is also true if ¢+ < 0 since ¢(—t)yp = ¢(¢)n. Now,
z(w) defines a random variable z with probability one. Therefore, we can write



4.1 Mixture by Distribution Function 109

o) =e ' (4.17)
and hence z = —2log¢(1). Since, ¢(1) is #-measurable, so is z, and we have
E(ylz) = E(E(y|.7)]z) (4.18)

For any random variable y. Now take y = ¢*1, then using (4.13), (4.17) and (4.18)
we get

E(e"™[z) = E(E(e"™[F)]z)

Hence, the characteristic function of x; is

w(?) = E(e™)
— E(E(™ |2))

—E (e*%fz)
= /Ow exp (—f) dG(z),

where G(z) denotes the distribution function of z. Thus,

v = [ exp(-3)d6(2)
which proves (4.6). |

We also need the following lemma.

Lemmad4.l. Let X ~E, ,(0,ZQ @, y). Let Y be a g x m submatrix of X such that
gm < pnand P(Y =0) = 0. Then Y is absolutely continuous.

PROOF: From Theorem 3.6, it follows that Y is absolutely continuous. [

Now, we can prove the following theorem.

Theorem 4.3. Let X ~ E, ,(M, X ® @,vy) such that P(X = M) = 0. Then, the
distribution of X is absolutely continuous and the p.d.f. of X can be written as a
scale mixture of matrix variate normal distributions if and only if for every integer
k > pn there exists Y ~ Eg ,,(M,21 ® @1, y1), such that qm > k, 1 >0, @1 >0
and Y has a submatrix Yy with Yy ~ X.
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PROOF: First, assume that for every integer k > pn there exists Y ~ E, ,(M, 21 ®
@1, y) such that gm > k and Y has a submatrix Y with Yo ~ X. Then, for fixed
k, from Remark 2.3, it follows that y; = y. Moreover, from Lemma 4.1, it follows

that the distribution of Yo and consequently that of X is absolutely continuous. Let
/

_1 _1
W = vec (21 (Y-M;)®, * |, then w ~ E,, (0,1, ). Let v be a k-dimensional

subvector of w. Then, v ~ E}(0,I;, ) and the characteristic function of v is ¢y (t) =
y(t't), where t € R*. Using Theorem 4.2, we get y(u) = ["exp (—%)dG(z).
Therefore, the p.d.f. of X is

800 = [ fy,, o500 (X)GE)

Next, assume that X can be written as a scale mixture of matrix variate normal
distlrlibutions; that is, the p.d.f. of X is g(X) = f(;x’pryn(MJZ@q;)(X)dG(z). Then,
we have

W = [ exp(-3)dG().

It follows from Theorem 4.2, that u/(t’ t),te IR¥ is a characteristic function for
every k > 1. Choose k > pn, and let g > p, m > n, such that gm > k. Define a
gm-dimensional random vector w such that w ~ E,,, (0,1, y). Let w = vec(S')
where S is ¢ x m matrix, then S ~ E, ,,(0,1, ® 1, ). Further define

X 0 o 0 MO
: <Olq—p>, 1 (OIM—n>’an 1 (00>,

11
where M is g x m. Let Y = X S®{ +M;. Then,

MO\ (= 0 @ 0
vere (W) (6 ) (G0l ) )

Y Y2
Y2 Yo
@, y) and hence X ~ Y. |

Partition Y into Y = ( ) where Y1 is p x n. Then, Y1 ~ E[w(M,Z ®

Example 4.1. Here, we list some m.e.c. distributions together with the distribution
function G(z) which generates the p.d.f. through (4.1).

(i) Matrix variate normal distribution:

G(1)=1.
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(ii) &-contaminated matrix variate normal distribution:
G(l)=1-¢, G(c*) =e.

(iii) Matrix variate Cauchy distribution:

G(z) = l/zt% ~ndr.
< an e

(iv) Matrix variate #-distribution with m degrees of freedom:

Glz) = ﬁ?;) /ozf(%)e’%dt.

Here, (a) and (b) are obvious, and (c) and (d) will be shown in Sect. 4.2.

Next, we give an example which shows that the p.d.f. of an absolutely continuous
elliptically contoured distribution is not always expressible as the scale mixture of
normal distributions.

Example4 2. Let x be a one-dimensional random variable with p.d.f. f(x) =

‘? o Assume f(x) has a scale mixture representation. Then, from Theorem 4.3,

there exists a g x m dimensional elliptical distribution Y ~ E, ,,(M,X| ® @1, y1),
such that gm > 5 and one element of Y is identically distributed as x. Therefore,
there exists a 5-dimensional random vector w such that w ~ E5(my,X,, ) and
w1 = X.

Now, f(x) = h(x*) where h(z) = ‘nf T2 Let the p.d.f. of w be f1(w ) hy((w—

my) X, (w—my)). It follows, from Theorem 3.4, that hy(z) = We have

ah(z)_ﬁi 1
dz  m dzl+z2

2\f z
T (l—l—z)

27

and

d%h(z) 72\@ 1-372
022 m (1+z72)3

_2v2 321 1

Consequently we get hy(z) = <5 (1112)3. However, h(z) <0 for 0 < z < v

and hence /(x?) cannot be a p.d.f. This is a contradiction. Therefore, f(x) cannot be
written as a scale mixture of normal distributions.

Next, we prove some important theorems about scale mixture representations.
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Theorem 4.4. Let A : RP*" — R?*™ be a Borel-measurable matrix variate
function. Assume that if X ~ N,,(M,X ® @) then the p.df of W = A(X)
is lN,,n(ME®¢)(W)' Then, if X ~ E,,(M,X ® @,y) with pdf gX) =

I Ty M Zed)(X)dG(2), the p.df of W= A(X) is

oA
I(W) = /0 B anezod (WG

PROOF: Let A C IR?*™. Then,

_ oA
/A l(W)dW—.A /0 B s (WAGE)AW

[
:/ /len<MZZ®q))(W)deG(Z)

_/ P(A(X) € A|X ~ Npn(M, 25 @ ®))dG(z)

_/ /W A X)) Sy, m:Z0@) (X)XdG(2)

= [ (X)) /O Fu, o5 (X)AGEX

= xa(A(X))g(X)X

RP*n

Corollary 4.1. Let X~ E,,(M,XQ @, y) with p.d.f.

:/0 pr.,,(M,zZ@(D)(X)dG(Z)-
Let C:gxm, A:qxp, andB : nxmbe constant matrices, such that rk(A) = q and
rk(B) = m. Then, from Theorems 4.4 and 2.2, it follows that the p.d.f. of AXB+ C
is
g (X)= /0 Tnyn(aMBCo(AZA) B DB (X)AG(2).
Furthermore, if X, M, and X are partitioned into
X:(Xl), :(M1)7 and Z:<211212>’
X, M, 2o Zn

where X1 :gxn, My :gxn,and X211 :qxq, | <q < p, then the p.d.f. of X is
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G00= [y, o0,2,000) (X6,
Corollary 4.2. Let X ~ E, ,(ue),, XL, y) with p.d.f. g(X), where

B /O'w Iy :Ze®) (X)dG(2).

Then,
(a) The p.d.f ofy, = Xe" is

@100 = | iy .2 (31)46)
(b) The p.df of Y» = X (In - i) X' is

82(Y2) = /0 Tw,(:Zn-1)(Y2)dG(2),
(c) Thep.df of Y3 =XX/, foru =0, is

§2(Ya) = [ i . (Y2)dG(2).

Theorem 4.5. Let A : IRP" — IRY*™ be a Borel-measurable matrix variate function.
Assume that if X ~ Ny, ,(M,X ® @), then E(A(X)) exists and it is denoted by
Ey . mZed)(d (X)). Then, if X ~ Ep, ,(M, X ® @, y) with p.d.f.

p.n

X)= /ow pr,n M,z2e®d) (X)dG(z),

such that E(A(X)) exists and it is denoted by Ep MZo®.y) (A(X)), we have

By 5e@)200) = | By, r e ((X))dG().
PROOF:
E

Ep.n(M72®d) W - Rpxn X

- /Rpxﬂ )/ Sy zZed) (X)dG(2)dX
- /pxn prn ZZ@‘I))(X)dXdG(Z)

B / NpuMZe®)(A(X))dG(2). -
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Corollary 4.3. With the notations of Theorem 4.5, if Cov(X) exists, then

Cov(X) = (/Omsz(z)> RO

Next, we give a theorem which shows the relationship between the characteristic
function of a scale mixture of normal distributions and the characteristic function
of a conditional distribution. This theorem is due to Cambanis, Huang, and Simons
(1981).

Theorem 4.6. Let X ~ E, ,(M,X® @, y) with p.d.f.
8= | iy, o020 (X)4G(E)
Let X, M, and X be partitioned as

X (M1> (211212>
X = , M= , and X = )
(Xz) M, 221 Zn

where X1 and M are g x n and 21} : g X q. Then, the conditional p.d.f. of X;|Xs
can be written as

a1(XifXa) = /O fNQ-"(M1+2122£21 (X2-M),2211,0D) (X)dGq(XZ)(Z)’ (4.19)

where q(Xz) = tr((Xa —M2)' 25,/ (X — Mo) @ 1) and

Isv- (e exp (7%) dG(v)

(p—q)n

Jov 2 exp (—g—i) dG(v)

G(2) if a>0, z>0, (4.20)

and Go(z) =1ifz>0.

PROOF: Let X ~ rX2U®? + M be the stochastic representation of X. Then, (4.4)
gives the p.d.f. of . It follows, from Theorem 2.21, that the stochastic representation
of X;|X has the form

1 1 .
X1|Xa & ryxy) EHULDT + (M + (X — M) 25, ).

Here, vec(UY ) is uniformly distributed on S,. It follows, from (2.31) and (4.4), that

a

v ctta? (r? faz)qun’lr_(p"_z)r""_1 fg"s’% exp (75—2‘) dG(s)dr

pn

NG az)%—lrf(nni)rzm*l Jo s~ Z exp (—%) dG(s)dr
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Let y?> = r> —a?, then J(r — y) = £, and we have

Jeymt [ exp( o 4 )dG( )dy
iyt f57 s~ % exp (—4E ) dG(s)dy

j yan- lj 57 exp( )exp( )dG(s)dy
e Hexp (*27) Jo yimtexp (Jz:) dydG(s)

P(raz < C) =

421

2 2
In order to compute [3*y?"~!exp (—;—S) dy we substitute = 5-. Then, J(y —

1) = #, and hence

/ y- lexp( )dy = (2s) s/ 17! exp(—1)dt
0

Substituting this into (4.21), we get

. ] poo _bn 2 2
i < Joy! [y sT 7 exp <f§—s)exp <f%>dG(s)dy
(raz < C) = f ZE_IT'(ﬂ) (g
0 2)s

(4.22)

¢ 1 gn—1 = CXp < P S
/ ST 1y / a - _ —ai 2
0 272 F(T) 0 $2 Is siTeXp(f‘l—)
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Hence the p.d.f. of 7 is

Now, from Theorem 4.1, this means that the p.d.f. of X;|X; has the form (4.19)
with G 2 (z) defined by (4.20). [

4.2 Mixture by Weighting Function

Chu (1973) showed another way to obtain the p.d.f. of a m.e.c. distribution from the
density functions of matrix variate normal distributions. For this purpose, he used
Laplace transform. We recall here that if f(¢) is a real function defined on the set of
nonnegative real numbers, then its Laplace transform, Z[f(¢)] is defined by

= Z[f()]
= /m e " f(t)de.
0

Moreover, the inverse Laplace transform of a function g(s) (see Abramowitz and
Stegun, 1965, p.1020) is defined by

g(s)

f() =27 g(s)]
— %m/cjje”g(s)ds,

where ¢ is an appropriately chosen real number. It is known that .~ ![g(s)] exists if
g(s) is differentiable for sufficiently large s and g(s) = o(s %) as s — o0, k > 1.
The following theorem was proved by Chu (1973) for the vector variate case.

Theorem 4.7. Let X ~ E,, ,(M, X ® @, y) with p.d.f. g(X) where
Cnp _ _
g(X) = [Z[72[@| 2h(tr(X-M)Z7 (X =M)@ ™).

Ifh(t), t € [0,%0) has the inverse Laplace transform, then we have

800 = [ fi, 1 50@) Wz, (4.23)
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where
w(z) = (2m)7 275 2 [h(21)]. (4.24)

PROQF: From (4.24), we get

pn

h(2r) = Z[(2m) " %@]
—/ )2 27 w(z)dz.

Hence,

g(X) = |Z|7%|d)|*%./0wetr (—;tr((X—M)’Z1(X—M)€D1)1>(2Zﬂ)2w(z)dz

7/ 2n)z |Z 12| |¢|2 r( %tr((X M)Z I(XM)Q_I)Z)W(Z)dZ

= /0 pr.n(Ma*lZ@(I))(X)W(Z)dz, .

Remark 4.4. Letg(x) = [y Tn 0.0 13)(X)w(z)dz. Assume, w(z) is a function (not a
functional), and define u(z) = w (). Then,

X)= /0 pr,,l(M.z)S@cD) (X)u(z)dz. (4.25)

Indeed, letr = % Then, J(z — 1) = liz and so (4.23) can be rewritten as

oo N
X) = /0 fN],An(MJE@@) (X)W ([) ﬁdl
N /0 Iy u i Zed) X)u(t)dr .
Remark 4.5. Even if w(z) is a functional the representation (4.25) may exist as parts

(a) and (b) of the next example show.

Example 4.3. Here, we list some m.e.c. distributions together with the functions
w(z) and u(z) which generate the p.d.f. through (4.23) and (4.25).

(a) Matrix variate normal distribution;
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(b) &e-contaminated matrix variate normal distribution;
w(z) = (1—€)8(z—1)+£8(z—0?), and
u(z) =(1-€)6(z—1)+€d6(z— 0'2).

(c) Matrix variate Cauchy distribution:

=.
4rz\/ ze=

(d) Matrix variate ¢-distribution with m degrees of freedom;

and
I (%)

w(z) =

)

mo om

()it
u(z) = }Wﬁ(z_ 1).

(e) The one-dimensional distribution with p.d.f.

V2o
e )
1.z
w(z) = \/—TTzsmi, and
1 1
M(Z) = \/7—25'11122

The functions w(z) in parts (a) and (c)—(e) are given in Chu (1973) and u(z) can be
easily computed from w(z).

Remark 4.6. Tt may be noted that u(z) is not always nonnegative as part (e) of
Example 4.3 shows. However, if it is nonnegative then defining G(z) = [; u(s)ds,
(4.25) yields g(X) = [~ pr_’n(M,zzg(p)(X)dG(z) which is the expression given in
Remark 4.1. We have to see that [;"u(s)ds = 1 but this will follow from the next
theorem if we take v = 0 in (4.26). Therefore, using Example 4.3 we obtain the
results in parts (c) and (d) of Example 4.1.

Now, we can state theorems similar to those in Sect. 4.1.
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Theorem 4.8. Let X ~ E, ,(M,X ® @, ) be absolutely continuous. Then, X has
the p.d.f. defined by (4.23) if and only if the characteristic function of X is

TXTO
74

ox(T) = etr(iT'M) /0 ) etr( )w(z)dz,

that is

y(v)= /Omexp (—;) w(z)dz.

Also, X has the p.d.f. defined by (4.25) if and only if

ox(T) = etr(iT'M) /Owetr <Z(T/22T(D)> u(z)dz,

that is
y(v) = / exp (_Q) u(z)dz. (4.26)
0 2
Theorem 4.9. Let A : RP*" — R?*™ be a Borel-measurable matrix variate

function. Assume that if X ~ N, ,(M,Z @ @) then the p.df of W = A(X)

is ll’},p‘ﬁ(Mv):@q))(W). Then, if X ~ Epo(M,Z @ ®,y) with pdf gX) =

I pr.n(M(.Z@(D)(X)w(z)dz, the p.d.f. of W= A(X) is
W)= /0 B e Zody (Ww()dz. 4.27)
IFe(X) = Jo fy,,m:Zed)X)u(2)dz, the p.df. of W= A(X) is

(W) = /0 lﬁp)n eZed) (Wu(@)dz. (4.28)

PROOF: In the proof of Theorem 4.4 if dG(z) is replaced by u(z)dz, we obtain
(4.28). In the same proof if we replace dG(z) by w(z)dz and N, ,(M,zX ® @) by
Npn(M,z7'2® @) we obtain (4.27). m

Corollary 4.4. LetX ~E, ,(M, 2 ® @, y) with p.d.f.

8(X) = /0 i Inynz1 Z0@)(X)w(2)dz.

Let C: g xm, A:qXp, and B:nx m be constant matrices, such that rk(A) = g
and rk(B) = m. Then, from Theorems 4.9 and 2.2, it follows that the p.d.f. of
AXB+Cis
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§O= [y, ammecoaZxomomy KWz,
If
g(X) = /0 Fr Sy (X)u(2)dz 4.29)
then
g (X) = /0 pr,,,(AMB+C,Z(AZA')®(BCDB/>>(X>“(Z)d1-

If X, M, and X are partitioned as
X= (X1> M= (Ml) ,and X = <Z“ 212) ,
Xo M, 2o 2

where X1 :gxn, My :qgxXn, andX11:q%xq, 1 <q<p, then the p.d.f. of X; is

X0 = [ Sy oo 15,00 X)Wz
and if (4.29) holds, then

X0 = [y, o0, o) (XDu()z.

Corollary 4.5. Let X ~ E, ,(ue,, X ®1L,, y) with p.d.f.

gX)= /0 pr‘n(“e;“ZqE@In) (X)w(z)dz

and L € RP. Then,
(a) The p.df of y1 = X is

n

81()’1)2/0 pr(u7Z—lZ/n)(y1)W(Z)dZ
(b) The p.df of Y» =X (In - i) X, for p<n—1,is

82(Y2) :/0 Swy (12 a1y (Y2)W(2)dz,

(c) Thep.df of Ys=XX, forp<nand u =0, is
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§a(¥2) = [ i (15 (Yw(a)dz.

I£8(X) = Jo Sy, (e, :Zer,) (X)u(z)dz and € RP. Then,

(a) The p.d.f ofy, = Xe" is

@100 = [ iy ez 0z

(b) The p.df of Y» = X (In e ) X' is

82(Y2) = [ iy o) (Yo ().

(c) The p.d.f. of Ys =XX/, for u =0, is

3(Y3) = /ONpr(zZJL) (Y3)u(z)dz.

Remark 4.7. 1t follows, from Example 4.3 and Corollary 4.4, that any submatrix of
a random matrix with Cauchy distribution also has Cauchy distribution. Also any
submatrix of a random matrix having z-distribution with m degrees of freedom has

t-distribution with m degrees of freedom.

Example 4.4. Let X ~ E,, ,(1e},,X ®1,, y) have matrix variate 7-distribution with
PN 4

(1)

m degrees of freedom. Then applying Corollary 4.5 with w(z) = e
2

, wWe

see that

(a) The p.d.f. ofy; = Xe” is

m p m+p
m2n2l (=£ _ _mtp
g1(y1) = — & Fmtn(yr—p)'E" yr - )~
n:l (%)]Z]2

(b) The p.d.f. of Yo = X (I e) X' is

ma3r (m+pén—l)) )
m+p(n—1) n—p—2
g2(Y2) = e (5T
r(3)5 (%) 1217

(¢) The p.d.f. of Y3 =XX',if u =0, is

mzr(erpn)
Y N T
N S OTA AT

(m+1r(Z71Y5) " Yo

0 -
Here, I,(t) = N, (-5
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The mixture representation of the p.d.f. of a m.e.c. distribution makes it possible
to derive monotone likelihood ratio (MLR) properties. To do this, we also need the
following lemma (Karlin, 1956) given in Eaton (1972), p. B.2.

Lemma 4.2. Assume p(x,r) and ¢(r,0) are functions which have monotone likeli-
hood ratios. Then g(x,0) = [ p(x,r)q(r,0)dr also has monotone likelihood ratio.

Theorem 4.10. Let X ~ E,(ue,, 6L, y) with p.df g(x,c) where u € R and
g(x,0) :f;an(“emwzln)(x)u(z)dz. Assume

u(erry)u(eary) <u(eir)ul(car), (4.30)

forO<cy <cp 0<r <ny.

(a) Ifn> pand g(y,0) denotes the p.d.f. of y =X’ (In — e”e;’) X, then

n

81(y1,01)81(y2,02) > g1(y1,02)81(»2,01),

for0< o) <0y, 0 <y <yp thatis, g1(y,0) has MLR.
(b) Ifn>p, L =0, and g(v,0) denotes the p.d.f- of v =X'x, then

82(v1,01)82(v2,02) > g2(v1,02)82(v2,01),

Jor0 < o1 < 0, 0 < vy <y, that is, g(v,0) has MLR.
PROOF:
(a) We know, from Corollary 4.5, that

g1(»,0) = /Omel(zGZ,nfl)(Y)u(Z)dz

Let r = zo2. Then, z = é and J(z —>r) = é. Thus,

oo r 1
00601~ [y ()

o2

Let

) = n— = T n—
PO = Feata-nO) = Sy T

and g(r,0) = (é) é.

It is easy to see that p(y1,71)p(y2,72) = p(y1,72)p(y2,71), if 0 <1 <1y, 0 <
y1 < y2. Thus p(y,r) has MLR. It follows, from (4.30), that ¢(r,0) also has
MLR. Using Lemma 4.2, we obtain the desired result.
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(b) It follows, from Corollary 4.5, that

0207,0) = /O " ot ().

Then, proceeding in a similar way as in the proof of part (a), we find that g»(v, 5)
has MLR. |

The following theorem was given by Chu (1973) for the vector variate case.

Theorem 4.11. Let A : RP" — RY*™ be a Borel-measurable matrix variate func-
tion. Assume that if X ~ N, ,(M, X ® @), then E(A(X)) exists and it is denoted by
Ey,.MZed) (A(X)). Then, if X ~ E, ,(M,Z @ @, y) with p.d.f.

8(X) = /0 i Sy 1 Zad) (X)W (2)dz,

such that E(A(X)) exists and it is denoted by E, MEoD,y) (A(X)), we have

pn

Eg, mZo®.y)(A(X) = /0 Ey, M1 Zed)(A(X))w(z)dz. 4.31)
Ifg(X) = f()wa,,,,,(M,zZ@d))(X)”(Z)dz and E(A (X)) exists, then

Ep on.Sed .y (X)) = /O Ey oo (AX)u(2)dz. (4.32)

PROOF: In the proof of Theorem 4.5 if dG(z) is replaced by u(z)dz, we obtain
(4.31). In the same proof if we replace dG(z) by w(z)dz and N, ,(M,zX ® @) by
Npn(M,z7 12 ® @) we obtain (4.32). m

Corollary 4.6. With the notation of Theorem 4.10, if Cov(X) exists, then

Cov(X) = (/Ow v”is)ds) S0

and also

Cov(X) = ( /0 ; su(s)ds) S0 .



Chapter 5
Quadratic Forms and Other Functions
of Elliptically Contoured Matrices

5.1 Extension of Cochran’s Theorem to Multivariate
Elliptically Contoured Distributions

Anderson and Fang (1987) studied how results, similar to Cochran’s theorem can
be derived for m.e.c. distributions. This section presents their results. Results from
Anderson and Fang (1982b) are also used.

We will need the following lemma.

Lemma 5.1. Let X : p X n be a random matrix with p.d.f. f(XX'). Let A = XX/,
then the p.d.f. of A is

pn
T2

I (5)

n—p—1

Al f(A), A>0,

wherel;,(t):ﬂm,;]) LT (=5

i=1

PROOQF: See Anderson (2003), p. 539.

The next lemma generalizes the result of Lemma 5.1.

Lemma 5.2. Let X be a random p x n matrix, and write X = (X1,X»,..., X))
where X; is p X n;, i = 1,...,m. Assume X has the p.d.f. p(X) = f(XiX],XoX}, ...,
X, X],). Further let W; =X;X|, i = 1,...,m. Then, the p.d.f. of (W1,Wa,...,W,,) is

n
T2 m nj—p—1

[TIWil 2 f(Wi,Wa,.. . W,), Wi>0,i=1,...m. (5.1

PROOF: We prove, by induction, that the p.d.f. of (Wy,..., Wy, X;11,...,X,,) is

A K. Gupta et al., Elliptically Contoured Models in Statistics and Portfolio Theory, 125
DOI 10.1007/978-1-4614-8154-6_5, © Springer Science+Business Media New York 2013
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pZ, 1M
X1, X Xt 150, X )|X1X/1—W1 ..... XiX, =W, 1

M (%) 52

for k=1,...,m. In the proof, p(Y) will denote the p.d.f. of any random matrix Y.
If k =1, we can write

pP(W,.Xo, ... X)) = p(WXs, ... X)) p(Xa, ..., Xn)

pny

T mopol
:ﬁlwu T p(Xal X, X [x, x,—w, P(X2s 0 Xon)
P2
pny
"o (X1 X, X,
= 7] p ], 27...7 m XX,:W7
FP(%) 131=W1

where we used Lemma 5.1.
Now, assume the statement is true for k = [ < m. Then, for k =141, we get

p(wlv"'vwl+lvxl+2a .. '7Xm)
= p(W1+1|W1,...,WZ,X1+2,...,Xm)p(Wl,...,W,,XHL...,Xm)

P4l
T2 | | 1+1 p-1
= = gy | V]
L (%)
X p(Xl+1|W17'~-,WI7Xl+27“'7X )X[HXH_I_W/HP(WI;~~~3W17Xl+27"'axm)
Py '
T 2 EDS
=~y Wil 2
I (%54)
p(le"'7W17X1+1aXl+27"'7X )XI+IX[+1*W1+1
ﬂpn12+l —p pzt 1"
l+l
= gy Wil
L (%) ;- ("’)
X p(Xla"'7X17Xl+17Xl+27" ) >|X|X’ =Wi,... XlJrleJrlleJrl
PEAN g
T 2 nj—p—
= T
e o
X pXtse X1, X2, X [x, X =Wy X X =W

where we used Lemma 5.1 and the induction hypothesis. Taking k = m in (5.2) we
obtain (5.1). [}
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Definition 5.1. Let X ~ E,,(0,2 ® I,,y), £ > 0. Partition X as X =
(X1,Xa,...,Xp), where X; is p xn;, i = 1,...,m. Then, G (Z,%,....,22,y)
denotes the distribution of (X;X|,X,X},...,X,,X],).

Remark 5.1. 1f in Definition 5.1, £ = I,, we also use the notation G,L,,,(%l,...7
o, y); that is, I, can be dropped from the notation.

Remark 5.2. Definition 5.1 generalizes the Wishart distribution. In fact, if m = 1
and y(z) = exp (—%), then G, 1 (Z,%, y) is the same as W, (Z,n).

Theorem 5.1. Let X ~ E,,(0,X®1,,y), £ > 0 and rAU be the stochastic
representation of X. Partition X as X = (X1,Xy,...,X,,), where X; is p X n;,
i=1,...,m. Then,

(XiX),XoX), .., X, X0) =~ PA(z1V1,22Va, .o, 2 Vi) A, (5.3)

n n Ny 1. ! .
where (21,22, -y Zm—1) ~ D(%,%,..., 2 ,"%), Ytz =1, Vi = GU; with

vec(U.) uniformly distributed on Sy, and r, Vi,Va,....Vy, (21,22,...,2m) are

independent.

PROOF: From Theorem 2.17, it follows that

(X17X2; . -7Xm) ~ VA(\/ZTU17\/Z72U2,. . ‘7\/Z_mUm)7

from which (5.3) follows immediately. [}

Theorem 5.2. Let (Wi, Wa,... . W) ~ Gy (Z,%5,%,...., ", y), where W; is
pxp,i=1,....m Then, for 1 <l <m,

(Wl,wz,...,w,)NG,,,,(z ot )

a?a?w"vivw

PROOF: Define X ~ E,, ,(0,X ®1,,y) and partition X as X = (X1,X»,...,X,,),
where X; is p X n; dimensional, i = 1,...,m. Then, by Definition 5.1 we have

(X X, X0 X5, X X)) =~ (W, Wa, ... W)

Hence, (X]X/I,XQX/Z7 .. .,XIX;) ~ (W],Wz, .. .,W[). Let Y = (X17X2, .. .,Xl).
Then, Y ~ E,, ,+(0, X @ L+, y) with n* = ¥!_, n;. Therefore,

ny np ny
(X, X), XoX), ... X)X) ~ G,y (z,f e q/),

which completes the proof. [ |



128 5 Quadratic Forms and Other Functions of Elliptically Contoured Matrices

Theorem 5.3. Let (W1, Wa,... . W,,) ~ Gy (2,5, %,....,%2,y), where m > 1,
Wiispxp,i=1,...,m. Then,

ni+ny n n
(W1+W27W37~~~7Wm)NGp,m—l (25 12 27237"'72':”7W)'

PROOF: Let X be defined as in the proof of Theorem 5.2. Define X = (X;,X;) and
Y = (Xo,X3,...,X,,). Then,

(XoX0, X3X3, .., XnX;,) = (XiX] +XoX5,X3X5, .., X X),)
= (W] +W27W3,...7Wm).

We also have
Y = (X0,X3,..,Xn) ~Epu(0, 21, y).

Hence, (XoX),X3X4,... X, X ) ~ Gy (T, 0002 15 M which
0 3 m P 2 02 2 ¥
completes the proof. [}

Theorem 5.4. Let X ~E, ,(0,2®1,,y), X > 0and P(X =0) = 0 and stochastic

representation X ~ r23U. Partition X as X = (X1,X2,..,Xn), where X; is p X n;,
i=1,...m l<m<np<n,i=12...m—11<n, Lt W; =XX| i=
l,...,m—1, then the p.d.f. of (Wi, Wa,...,W,,_1) is given by

F(ﬂ) |Z‘_% m—1 ni—zp—l
"

ITIwi

2
r(E) ' (%)

p(wlvwb"'vwmfl) -

pPhm
-1

oo m—1
2—pn 2 —1
X L re—tr| X W; dF(r), (5.4
/(zr(lelmllwi»? ( ( Zi l)) (r), 4
where W; >0, i=1,...,m, and F(r) is the distribution function of r.

PROOF: Let Y = 72X, Y; = 72X, i = 1,2,...m, and V; = Y;Y/, i =
1,2,...,m—1.Then Y ~ E, ,(0,I, ®1,, y). From Theorem 3.6, it follows that the
density OfYZ(Yl,YQ,...,Ym,I)iS

f(Y17Y27"-7Ym—1) =
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Then, Lemma 5.1 gives the p.d.f. of (V,V3,...,V,_1) as

r(z m_1 nj—p—1
(pnm)l—[( 2) I, () 1131 [Vi| =2 (5.5)

(V17V27 m 1)

Since, (V1,Va,...,Vyu_1) = Z~2(W[,Wa,...,W,,_1)Z "2 and

J((V17V27"'7Vm—l) — (W17W2)--'awm—1)) = ‘Z|7 2 - I
from (5.5) we get

L(8) et e
reE e e H I

” 2opn [ 2 el e (1))
% /(tr(zlzmlw.»% d rr—tr| X 21 Wi 12| dF(r),
i=1 Wi i=

. — 1)( m 1) m—1_ .
and since ( ) |z~ e = |2|7%2f:11"‘, we obtain (5.6). [

p(W1>W27' '-,Wmfl)

If X is absolutely continuous, we obtain the following result.

Theorem 5.5. Let X ~ E,, ,(0,X®1,,y) have the p.d.f.

f(X) = L,,h(tr(x’z—lx)).

1Z[>

Partition X as X = (X1,Xa,..., X)), where X;is pxn;, i=1,....m, 1 <m < p. Let
W; =X X, i=1,...,m, then the p.d.f. of (Wi,Wa,...,W,,)

_n

2 2 m m
)4 W17W27"'7W - tr Zil W; y
( "=, n(%) ( ( =W

W;>0, i=1,...m. (5.6)

PROOF: Since the p.d.f. of X = (X1,Xs,...,X,,) is |Z| " 2h (erz7 '3 X/X]), from
Lemma 5.2, we obtain (5.6). [}
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Corollary 5.1. Let X~ E, (0,2 ®1,, y) with the p.d.f.

f(X) = Lh(tr(x’z—lx)).

bk
Then, the p.d.f. of A = XX is given by

pn n
s
p(&) = TLEL A (s 14)), Ao

I, (%)

Lemma 5.3. Let x and z be independent, and y and z be independent one-
dimensional random variables, such that P(x > 0) = P(y > 0) = P(z > 0) = 1 and
xz & yz. Assume one of the following conditions holds:

(i) Qrog;(t) # 0 almost everywhere
(i) P(x<1)=1.

Then, x =~ y.

PROOF: Note that xz ~ yz is equivalent to logx+logz ~ logy+log z, which is again
equivalent to

¢logx(t)¢logz(t) = (Plog)'(t)(blogz(t)a (5.7)
where ¢, (¢) denotes the characteristic function of x.

(i) Since ¢yq-(¢) # O almost everywhere, and the characteristic functions are
continuous, we get

q)logx (t) = (Plogy(t) :

Hence, x =~ y.

(ii) Since ¢,4.(0) = 1 and the characteristic functions are continuous, there exists
0 > 0, such that ¢y, () # 0 fort € (—96,9).
Then, from (5.7) we get

¢logy(t) = ¢logy(t) for 1€ (_676) (5.8)

Since P(x < 1) = 1, we have P(logx < 0) = 1. However, P(logx < 0) =1,
together with (5.8), implies that logx ~ logy (see Marcinkiewicz, 1938). Thus,
we get x = y. [

Theorem 5.6. Let (Wi, Wa,.... Wy) ~ Gpp (2,5, %,...., 84, v), where n; is
positive integer and Wi is px p,i=1,2,....mand X > 0. Let v be a p-dimensional
constant nonzero vector. Then,

ny np Ny *) 7 (59)

(V/W1V7v’W2V,...7V/WmV) ~ Gl,m (E,E,...,—,l//

where W*(z) = y(v'Zvz).
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PROOF: Let (X,X>,...,Xy) ~Epn(0,Z®1,, ), withn =37 n; and Xjis p x n;,
i=1,2,...,m. Then, by definition,

(X1X/1,X2X/2, .. -;XmX;n) ~ (W17W27 .. .,Wm).
Hence,
VXXV, vVXoXhv, .. VX, X V) & (VW v, VWov, .. VW,v) (5.10)
Define y; = v'X;, i = 1,2,...,m. Then, y; is n; x 1 and
(yllvy/27 .. 7y;n) = V/(X17X21 .. '7Xm)7
and hence,
(y/l’y,27 .- ay;n) ~ El,n(oavlzv®ln7 ll,) = Elm(ovln; W*)

with y*(z) = w(V'Zvz). Therefore,

ny np n *
(y/ly17y12y2)"'ay;ny"1)NGl,m (573’.“’7’”’ ) (511)
Since, yiy1 = vVXiXlv,i=1,2,...,m, (5.10) and (5.11) give (5.9). ]

Now, we derive some result which can be regarded as the generalizations of
Cochran’s theorem for normal variables to the m.e.c. distribution.

Theorem 5.7. Let X ~ Ep,n(O,E @I, v), X > 0 and assume there exists a

1
p-dimensional constant vector v such that PV 2X =0)=0. Let Abeannxn
symmetric matrix and k < n a positive integer. Then,

XAX' ~ G, (z, §w> (5.12)

if and only if A> = A and rk(A) = k.

PROOF: It is enough to consider the case X = I, because otherwise we can define
Y = X 7X, and XAX' ~ G, (Z,%, ) is equivalent to YAY' ~ G, (&, y).
First, assume A2 = A and rk(A) = k. Then, using Theorem 1.12, we can write

I; 0 ,
A:
c<00>c,

where G € O(n) and 0’s denote zero matrices of appropriate dimensions.
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Define n x k matrix C = <I(;‘> and let Y = XGC. Then, Y ~ E, (0,1, @ Iy, )

and
XAX' =YY (5.13)
From Definition 5.1, we have
YY' ~ G, (;w) . (5.14)

From (5.13) and (5.14), we obtain (5.12).
On the other hand, assume (5.12) holds, and define y = X'v. Then,

Y~ En(0,L, ") with y*(r) = y(V'vr).
Moreover, P(y = 0) = 0. From Theorem 5.2, we get
! k *
YAY~ G (5.9 ). (5.15)
Let y ~ ru be the stochastic representation of y. Then,

y' Ay ~ r*u’Au. (5.16)

Lety = (il ), where y; is k-dimensional. Then, from Corollary 2.4, we get
2

yi\ rv/wuy
<Y2> - <VV1—W112>’ G

where r, w, u; and u, are independent, u; is uniformly distributed on Si, u, is
uniformly distributed on S,,_4, and w ~ B (%, "T_k) Since y; ~ Ex (0,1, v*), we get

N =

Yiy1 NGI,I( w) (5.18)

From (5.17), we obtain
yiy1 = Pwuju; = rw. (5.19)
From (5.15), (5.16), (5.18), and (5.19), we get

u'Au ~ rw. (5.20)
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Since P(0 < w < 1) =1 and P(r*> > 0) = 1, we have P(r?w > 0) = 1. Therefore,
(5.20) implies P(w'Au > 0) = 1. Using (ii) of Lemma 5.3, from (5.20) we obtain
u’Au ~ w. Thus,

k n—k
'"Au~B| =, — |. 5.21
vro-s(81) sav

Define z ~ N,(0,1,). Then, from Theorem 2.15 it follows that ﬁ ~ u, and from
(5.21) we get

7 Az k n—k
—— ~B| =, —— . 5.22
2] (2’ > ) 622

I; 0
00
matrices of appropriate dimensions. Let t = Gz. Then, t ~ N,(0,1,) and ZAz _

, oI
ﬁ ~B(%5,%5%). However z ~ t

7Dz k n—k
—— ~B| =, —— . 2
2] (2’ > ) 629

From (5.22) and (5.23), we get

Now, A = GDG/, where G € O(n) and D = < > where 0’s denote zero

7Az - 7Dz
| ~

[zl |zl

(5.24)

Now, Z/Az = ||z]|*Z2% with ||z|> and Z2Z being independent. Moreover, 2Dz =
llz] (]|

||z||2ﬁ;ﬁ§, with ||z||? and ﬁ;ﬂ% being independent. Therefore, from (5.23), we get

7 Az ~ 7'Dz. Since, 2Dz ~ )(,3, we get

Az~ 7. (5.25)
Now, (5.25) implies that A% = A, and rk(A) = k. ]

Theorem 5.7 can be generalized in the following way.

Theorem 5.8. Let X ~ E,,(0,Z ®L,, ), X > 0 and assume there exists a

. . _1
p-dimensional constant vector v such that P(VE 2X=0)=0. Let A1, A,, ..., A,
be n X n symmetric matrices and ki, ka, ..., k, positive integers with Y7 k; < n.
y )4 8 i=1
Then,

ki k k

(XA X, XA X,.. .. XA, X') ~ G (2, AR ;’w) (5.26)
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if and only if
rk(A) =k;, i=1,....m, (5.27)
A?=A;, i=1,.,m (5.28)
and
AiAjZO, i#j, i,j:l,...,m. (529)

PROOF: As in Theorem 5.7, it is enough to consider the case X = I,.
First, assume (5.26)—(5.28) are satisfied. Then, from Theorem 1.14, there exists
G € O(n) such that

/ Lo / 000
GA1G=(0'0>, G'AG=[01,0
000

000

. ,GAG={01 0

000

Let k = X" k; and define the n x k matrix C = (I(f ) . Moreover, define the k x k

000
matrices C;= | 01X, 0 |,i=1,...,m. Then, GA;G=CC,C’,i=1,....,m.
000
Define Y = XGC. Then, Y ~ E,, (0,1, ® I, ) and

XAX =YCY, i=1,...,m. (5.30)
Partition Y into Y = (Y1,Y2,...,Y,,) where Y; is p X k;, i = 1,...,m. Then,
YCY =YY, i=1,...m (5.31)

and by Definition 5.1, we get

(5.32)

ki k k
(Y1 Y}, Y2Y5, ... Y Yo ) ~ G (2122;1,/) .

From (5.30), (5.31), and (5.32) we obtain (5.26).
Next, assume (5.26) holds. Then, it follows from Theorem 5.2, that
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k
XAlX’NGp71(2171//>7 i=1,...m

Using Theorem 5.7, we get rk(A;) = k; and Ai2 = A;. It also follows from
Theorem 5.2, that

ki k;
(XAIX/,XA]X/) ~ G[J,Z <2f, £7W) .

Now, using Theorem 5.3, we get

ki+k C
(X(A1+A])X/) NGp,l (12271’/) )1 #.}

Using Theorem 5.7 again, we get (A; +A;)> = A; + A ;. However, we already
know A? = A;, and A% = A;. Hence, we get A;A; = 0. m

Theorem 5.9. Let X ~ E,,(0,.Z @ L,,¥), X > 0 and assume there exists a

p-dimensional constant vector v such that P(V'Zf%X =0)=0. Let A and B
be symmetric idempotent n x n matrices, with 1 < rk(A) < n, 1 < rk(B) < n,
such that AB = 0. Then, XAX' and XBX' are independent if and only if X ~
Ny (0,06%1, ®1,), where 6% > 0.

PROOF: Without loss of generality, we can assume X = I,,.
Let n; = rk(A), ny = rk(B). Since A and B are symmetric, we have
BA = AB = 0. Using Theorem 1.14, we can find G € O(n), such that

1,00 000
GAG=|( 000], and GBG=|0L,0
000 000

. |
Let ng = n1 + ny and define the n x ny matrix C = ( 3" > Moreover, define the

ng X ng matrices C; = (I;;‘ g) and C, = <g I(:z
G'BG = CC,(C.

Define Y = XGC, then XAX’' = YC;Y' and XBX’' = YC,Y'. Partition Y into
Y= (Yl Y2>, where Y1 is p Xnp. Then, YC]Y/ = YlYll and YCQY/ = Yzle.

First, assume X ~ N, ,(0,6%I, ®1,). Then, Y ~ N,, ,,(0,6%1, ®1,,). Thus, the
columns of Y are independent and so are Y; and Y,. Hence, Y;Y} and Y,Y) are
independent. Therefore, XAX’ and XBX' are independent.

On the other hand, assume XAX' and XBX' are independent. Define y = X'v.
Then, y ~ E,(0,L,, y*), where y*(t) = y(v'vt). Moreover, P(y = 0) = 0. Since,

). Then, G'AG = CC;C’ and



136 5 Quadratic Forms and Other Functions of Elliptically Contoured Matrices

XAX' and XBX' are independent, so are y’Ay and y'By. Define w = G'y, then
w ~ E,(0,I,,y*) with P(w = 0) = 0. Let ru be the stochastic representation of w.
Wi
Then, P(r = 0) = 0. Partition w into w = | w, | where w; is n;-dimensional, and
W3
W 18 np-dimensional.
Vi Wi
Letr| \/zoup | be the representation of | w, | given by Theorem 2.17. Since
VB w3
P(r=0) =0, we get P(w; =0) = P(w = 0) = 0. Now, y'Ay = w|w; and yBy =

whws. Define wy = (Wl > Then, wo ~ Ep, (0,L+, y*). Let roug be the stochastic
w2

representation of wy. Then,
/ / ~ 2
(Wyw1, Waws) = r5(s1,52)

where r(% and (s1,s2) are independent, s; + s, = 1 and

5 NB(ﬂ @) (5.33)

wiw .
Moreover, w}w; ~ i and wiwi + wowy & r3 are independent. Therefore,
2
/ ~ 202 / — 2.2 .
Wi Wi =~ 0y X, and wowa &~ 0g ), for 0y > 0 (see Lukacs, 1956, p. 208). Since

r(% A W Wi + W, W, we have

ro~x; with p=pi+ps. (5.34)

— ww W W +wWhw whw
We also have =2 ~ M1™1 Consequently, &+ ~ TSN fand g v —272
52 W, W) 52 W, W2 W W +W, W)
B (5, 5). Hence,
p1 p2
5 NB(—,— . (5.35)
272

From (5.33) and (5.35), we get p1 = ny, pa = ny. Thus, p = ny. From (5.34), we
get r§ ~ G4 X - Since, ug is uniformly distributed on S,,, we get wo ~ Ny, (0,05 L, ).

. I 0%\ with o2 — %
Consequently, y*(z) = exp (77) Therefore, y(z) = exp (77) , with 0% = 7.
Hence, X ~ N, ,(0,06°I,®1,). m

Corollary 5.2. Let X ~ Epﬁ,,(O,I,J ®1,,¥) and let x; denote the ith column of X,
i=1,2,...,n. Definex= 13" x;and S(X) = L1 ¥ | (x; —X)(x; —X)'. Assume there
exists a p-dimensional constant vector v such that P(v'X = 0) = 0. Then, X and S(X)
are independent if and only if X ~ N, ,(0,0%1, ®1,) with 62 > 0.
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PROOF: If X ~ N, , (0, 621p ®1,), then x;’s constitute a random sample from the
distribution N, (0, 6%I,) and the independence of X and S(X) is a well-known result
(see Anderson, 2003, p. 74).

On the other hand, if X and S(X) are independent, then XX’ and S(X) are also
independent. We have XX’ = Xe, e/, X’ and

/
S(X) =X <I,, - e”"”) X'.

n

Let A =¢eye, and B =1, — ey Then, A and B satisfy the conditions of

n °

Theorem 5.9. Therefore X ~ N, ,(0,06%1, ®1,,). ]

5.2 Rank of Quadratic Forms

The main result of this section uses the following lemma proved by Okamoto (1973).

Lemma 5.4. Let X be a p x n random matrix with absolute continuous distribution.
Let A be an n x n symmetric matrix with rk(A) = q. Then

(i) P{rk(XAX') =min(p,q)} =1 and
(ii) P{nonzero eigenvalues of XAX' are distinct} = 1.

PROOQOF: See Okamoto (1973). [ ]

Matrix variate elliptically contoured distributions are not necessarily absolutely
continuous. However, as the following theorem shows (see Gupta and Varga, 1991),
aresult similar to that of Okamoto can be derived for this class of distributions also,
if we assume that the distribution is symmetric about the origin and it assumes zero
with probability zero.

Theorem 5.10. Let X ~ E;, ,(0,X ® @, y) with P(X =0) =0. Let A be an n x n
symmetric matrix. Then

(i) P{rk(XAX') = min(rk(X),rk(®A®))} =1 and
(ii) P{the nonzero eigenvalues of XAX' are distinct} = 1.

PROOF: Let rk(X) = g, rk(®) = m and let X = rCUD’ be the stochastic represen-
tation of X. Then, vec(U’) is uniformly distributed on S,,. Using Theorem 1.9 we

can write C = G (B

0 ), where G € O(p) and B is a ¢ x ¢ positive definite matrix.

Then
XAX' 0 P2G (BUD’ADU’B’ 0) G
0 0 ’
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where 0’s denote zero matrices of appropriate dimensions. Since P(X = 0) =0, we
BUD'ADU'B 0) G

have P(r = 0) = 0. Moreover, the nonzero eigenvalues of G ( 0 0

are the same as those of BUD’ADU'B’. Hence,
P{rk(XAX') = rk(BUD'ADU'B')} = | (5.36)
and

P{the nonzero eigenvalues of XAX’ are distinct}
= P{the nonzero eigenvalues of BUD’ADU'B’ are distinct}. (5.37)
Let X* = BB/, A* = D'AD and define Y ~ N, (0,Z* ® I,). Since B is
nonsingular, X* > 0 and so Y is absolutely continuous. Let Y ~ r*BU* be the
stochastic representation of Y. Then, vec(U*’ ) is uniformly distributed on Sym- Now,
YA*Y' = r*2BU*D’ADU*'B’ and therefore,
P{rk(YA*Y') = rk(BU*D/ADU*'B/)} = | (5.38)

and

P{the nonzero eigenvalues of YA*Y’ are distinct}

= P{the nonzero eigenvalues of BU*D’ADU*'B’ are distinct}.  (5.39)
However, from Lemma 5.4 we know that
P{rk(YA*Y') = min(q,rk(A*))} = 1 (5.40)
and
P{the nonzero eigenvalues of YA*Y’ are distinct} = 1. 5.41)
Moreover,
rk(A*) = rk(D'AD) > rk(DD'ADD’) > rk(D’DD’ADD/D/’) = rk(D’'AD),
where we used D™D = I, which follows from Theorem 1.23. Hence,

rk(A*) = rk(DD’ADD’) = rk(®AD).

Since vec(U’) ~ vec(U*'), we have U ~ U* and then (i) follows from (5.36),
(5.38), and (5.40) and (ii) follows from (5.37), (5.39) and (5.41). [}

If £ > 0 and @ > 0 in Theorem 5.10, we obtain the following result.
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Theorem 5.11. Let X ~ E,,(0,Z @ ®, ) with £ > 0, & > 0 and P(X = 0) = 0.
Let A be an n x n symmetric matrix. Then

(i) P{rk(XAX') =min(p,rk(A))} =1 and

(ii) P{the nonzero eigenvalues of XAX' are distinct} = 1.

PROQF: It follows, directly, from Theorem 5.10. [}

Corollary 5.3. Let X ~ E,, ,(11€),,X ® @, y), where p <n, u € R’, X > 0 and
@ > 0. Assume P(X = pe)) = 0. Let x; be the columns of X, i =1,...,n and
define x = %Z?:l x;. Then S(X) = % ' (xi —X)(x; —X)' is positive definite and its
characteristic roots are distinct with probability one.

PROOF: Here

/ /
S(X) =X (I,, - e’f”) X = (X - pe) (1,, - e”ne"> (X — el

NowletY=X—pe, andA=1,— ¢ Then, Y ~ Epn(0,20®,y), P(Y=0)=0,

n

S(X) = YAY' and from Theorem 5.11, we obtain the desired result. ]

5.3 Distributions of Invariant Matrix Variate Functions

In this section, we will derive the distributions of invariant functions of random
matrices with m.e.c. distributions. In order to do this, we will need the following
theorem (Gupta and Varga, 1994d).

Theorem 5.12. LetX~E, ,(0,X®®,y) with P(X=0) =0. Assume Y ~ N, ,(0,
X QD). Let F be a subset of the p X n real matrices, such that if Z € RP*", Z €
F,and a >0 then aZ € F and PX ¢ F)=P(Y & F) =0. Let K(Z) be a
function defined on F, such that if L € F and a > 0, then K(Z) = K(aZ). Then,
K(X) and K(Y) are defined with probability one and K (X) and K(Y) are identically
distributed.

PROOF: K(X) and K(Y) are defined if X € . and Y € .Z. Since P(X ¢ .F) =
P(Y ¢ .7) =0 we see that K(X) and K(Y) are defined with probability one.
Let r1AU;B’ be the stochastic representation of X and r,AU,B’, the stochastic
representation of Y. It follows, from the conditions of the theorem, that if aZ € %
and @ > 0 then Z € .%. Since P(X = 0) = 0, we have P(r; = 0) = 0. Since
P(riAUB' € #) =1, we get P(AU|B' € ) = 1. So, K(AUB’) is defined with
probability one. Moreover, P{K(r;AU;B') = K(AU,B')} = 1.
Similarly, P{K(r,AU,B’) = K(AU,B’)} = 1. But AU, B’ ~ AU;B’. Hence,
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K(AU|B') ~ K(AU,B’).

Therefore, K (rj AU B’) ~ K(r,AU,B’), which means K (X) ~ K(Y). ]

Remark 5.3. The significance of Theorem 5.12 is the following. Assume the con-
ditions of the theorem are satisfied. Then, it is enough to determine the distribution
of the function for the normal case, in order to get the distribution of the function,
when the underlying distribution is elliptically contoured.

Now, we apply Theorem 5.12 to special cases.

Theorem 5.13. Let X ~ E,, ,(0,1, ®1,,,y), with P(X =0) = 0. Let G : n X m be
such thatn—m > p and G'G =1,,,. Then,

(X(I, = GG')X') " 2XG ~ T, y(n— (m+p) +1,0,L,,L,).

PROOF: Let K(Z) = (Z(1,, — GG')Z’)’%ZG. Let .# = {Z|Z is p x n matrix, such
that Z(I, — GG’)Z' is nonsingular}. Clearly, if Z € RP*", Z € # and a > 0, then
al ¢ .7 c.% and a > 0, then

K(aZ) = (aZ(1, — GG')(aZ)) " 2aZG = (Z(1, — GG')Z') 2 ZG = K(Z).

Let E : n x m be defined as E = (I(': ) Then, E'E = G’G. Now, Theorem 1.11
says that there exists an n x n matrix H, such that HH’ = I, and G’'H = E'. That
means, H is orthogonal and H'G = E. So, we have

I,— GG =1,—HEE'H
— H(I, - EE )/

“n(n-(o))m

-H H = HDH/,
(0 In—m>

0 0

here D =
where (Olnm

) . Clearly, D = BB’, where B is an n x (n — m) matrix defined

asB = (I 0 ) Using Theorem 5.11, we get
n—m

P{rk(X(I, — GG"X') = min(rk(I, — GG'), p)}
=1.
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However, rk(I, — GG') = rk(HDH') = rk(D) = n— m, and since n —m > p, we see
that rk(X(I, — GG')X’') = p, with probability one. Therefore, X(I, — GG')X' is of
full rank with probability one. So, P(X ¢ %) = 0.

Hence, we can use Theorem 5.12. That means we can assume X ~ Np,,,(O7 I,® L,).
Let V=XH. Then, V ~ N, ,(0,I, ®I,,). Partition V as V = (V,V3), where V; is
p xm. Then, Vi ~ N, ,,(0,1,®1,), and Vo ~ N, ,,_, (0,1, ®1,_,,), where V; and
V, are independent. Now,

(X(I, - GG)X')"2XG = (XHDH'X') ?XHE
= (VBB'V') 2VE

)

1

= (VoV5) 2Vy.

D=

V()

Here, VoV, ~ W,(n —m,1,), Vi ~ N,,(0,I, ®1I,) and V; and V,V}
are independent. From Dickey (1967), we get that under these conditions,
(VZV’z)_%Vl ~Tpm(n—(m+p)+1,0,I,.1,) (also see Javier and Gupta, 1985a).

]

Theorem 5.14. Let X ~ E,, ,(0,1, ®1L,, ) with P(X =0) = 0. Let B: n xn be a
symmetric, idempotent matrix of rank m where m > p and n —m > p. Then,

(XX)~2 (XBX)(XX/) 2 ~BL (2271
r\2°" 2
PROOF: Let K(Z) = (ZZ')~2 (ZBZ)(ZZ/)"%. Let F = {Z|Z is p x n matrix, such
that ZZ' is nonsingular}. Clearly, if Z € RP*", Z € % and a > 0, then aZ € .#.
IfZ € .% and a > 0, then

K(aZ) = (PZZ))" (*ZBZ)(a*ZZ)"?
= (2Z)" ¥ (ZBZ)(ZZ)"*
= K(Z).
Using Theorem 5.11, we get
P{rk(XX') = min(rk(1,),p)} = 1.
Since m > p and n—m > p we have n > 2p and hence, n > p. Thus, min(rk(I,), p) =
p- Therefore, XX’ is of full rank with probability one. So, P(X ¢ .%) = 0. Similarly,

P(Y ¢ .#) = 0. Hence, we can use Theorem 5.12. That means we can assume
X ~ N, ,(0,I,®1,). Since B is a symmetric, idempotent matrix of rank m, there
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1,0

exists an n X n orthogonal matrix H, such that B = H ( 00

) H’'. We can write

00
Then, V ~ N, ,(0,I, ®I,,). Partition V as V = (V,V,) where Vi is p x m.
Then, Vi ~ N, (0,1, ®1L,), and Vo ~ Ny, ,,_, (0,1, ®1,_,,), where V| and V; are
independent.

Now,

(Iq 0> = CC’ where C is an n x m matrix defined as C = (I(;f) Let V=XH.

(XX)~2 (XBX/)(XX) "2 = (XHH'X')"? (XHCC'H'X)(XHH'X') "
= (VV))"2(VCC'V')(VV') "2

1

= (ViV} +VaVh) 3 (Vi V) (ViV} 4V, V) 5.

Here Vi V| ~ W,(m,I,,), Vo2V, ~ W,(n—m,1,) and V; V| and V,V}, are indepen-
dent. Finally from Olkin and Rubin (1964), we get that under these conditions

_1 _1 m n—m
(ViVi+VaVy) 2 (ViV])(ViV] + Vo Vs) "2 ~ B (2, 5 ) m

Theorem 5.15. LetX ~E,,(0,1,®1,,y) with P(X=0)=0. Let A and B be n x n
symmetric, idempotent matrices, rk(A) = ny, rk(B) = ny, such that ny, np > p and
AB = 0. Then,

(XAX')"? (XBX)(XAX') % ~ B (%2’12‘) .

PROOF: Let K(Z) = (ZAZ')~2 (ZBZ')(ZAZ')" 2. Let F = {Z|Z is p x n matrix,
such that ZAZ' is nonsingular}. Clearly, if Z € RP*", Z € F and a > 0, then
al € . IfZ € .7 and a > 0, then
K(aZ) = (*ZAZ') 2 (PZBZ)(PZAZ') "}
= (ZAZ/)"1(ZBZ')(ZAZ')"?
= K(Z).

Using Theorem 5.11, we get
P{rk(XAX') = min(rk(A),p)} = 1.

However rk(A) = n; > p, and hence min(rk(A), p) = p. Therefore, XAX' is of full
rank with probability one. So, P(X ¢ .%) = 0. Similarly, P(Y ¢ .%) = 0.
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Hence, we can use Theorem 5.12. That means we can assume X ~ N, ,(0,I, ®
I,). Since A and B are symmetric, idempotent matrices and AB = 0, there exists an
n x n orthogonal matrix H, such that

I, 00 000
HAH=| 0 00| and HBH=|0L,0
000 000

(see Hocking, 1985).

We can write HHAH = CC’ and H'AH = DD/, where C' = (I,,,,0,0) and D’ =
(0,1,,,0). Let V= XH. Then, V ~ N, ,(0,I, ®I,). Partition Vas V= (V{,V,,V3)
where Vi is p x ny and V, is p X ny. Then, Vi ~ N, (0,1, ®1, ) and V5 ~
Npn, (O,Ip ®1,,) where V| and V; are independent.

(XAX')"2 (XBX')(XAX') "2 = (XHCC'H'X')"2 (XHDD'H'X')(XHCC'H'X') "2
= (VCC'V') "2 (VDD'V')(VCC'V') 2

1

1
= (ViV])72(VaVy)(V V)72,

Here V1V ~ W, (n1,1,,), VoV} ~ W, (n2,1,) and V; V] and V,V} are independent.
Finally from Olkin and Rubin (1964), we get that under these conditions

1

ViV (V2 (Vi V)3~ B (2200, =

The next theorem shows that under some general conditions, Hotelling’s 72
statistic has the same distribution in the elliptically contoured case, as in the normal
case; that is, we get an F distribution.

Theorem 5.16. Let X ~ E,,(0,.Z @ L,,y) with P(X = 0) = 0. Assume
p <n. Let x; be the ith column of X, i =1,...,n. Let X = %Zl'-’zlxi. Define
S(X) = - 37, (xi — X)(x; — %)’ and T*(X) = n¥'S(x) " '%. Then

T>(X)n—p

n—1 p

~Fppp-

PROOF: Let A =1, — %2 2 Then, S(X) = XAX'. We also have X = 1Xe,. Thus,
T?(X) = ¢/, X' (XAX') ' Xe,.

Let K(Z) = €,Z/ (ZAZ') ' Ze,. Let ¥ = {Z|Z is p x n matrix, such that ZAZ/
is nonsingular}. Clearly, if Z € RP*", Z € .# anda > 0, thenaZ € . IfZ € F
and a > 0, then
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K(aZ) = &,aZ! (a*ZAZ') 'aZe,
= €7/ (ZAZ))"'Ze,
= K(Z).

From Corollary 5.3, we see that XAX' is of full rank with probability one. So,
P(X ¢ .#)=0. Similarly, P(Y ¢ .%) =0.

Hence, we can use Theorem 5.12. That means we can assume X ~ N,
(0,I, ®I,). However, for the normal case this is a well known result (see
Corollary 5.2.1 of Anderson, 2003, p. 176). [

Theorem 5.17. Let X ~ E, ,(ue,,, X ®1,,y) with P(X = pe),) =0 and u € R?.
Assume n> p. Let Y ~ Ny (1€}, Z ®1,), and S(X) = X (In - %) X'. Then, the

principal components of S(X) have the same joint distribution as the principal
components of S(Y).

PROOF: Let A = I, — %% and S(Z) = ZAZ' for Z € RP*". First, note that S(Z) =
S(Z — ue),) therefore, without loss of generality, we can assume L = 0.

Let K(Z) = { normalized characteristic vectors of ZAZ'}. Let # = {Z|Z is
p X n matrix, such that ZAZ' is nonsingular}. Clearly, if Z € RP*", Z € % and
a>0,thenaZ € .Z.If Z € . and a > 0, then obviously, K(aZ) = K(Z). Using
Corollary 5.3, we find that the characteristic roots of XAX' are nonzero and distinct
with probability one. So, P(X ¢ .%) = 0. Similarly, P(Y ¢ .%) = 0.

Now applying Theorem 5.12, we obtain the desired result. [



Chapter 6
Characterization Results

6.1 Characterization Based on Invariance

In this section, we characterize the parameters of m.e.c. distributions which are
invariant under certain linear transformations. First we prove the following lemma.

Lemma 6.1. The p X p matrix X defined by
T =al,+beye),

is positive semidefinite if and only if a > 0 and a > — pb.

PROQOF: From part (vi) of Theorem 1.2, we have to show that the characteristic
roots of X are nonnegative. From Theorem 1.5 we obtain

|2 —AL,| = |(a—A)L, +be,e)|
=((@a=A+b)—b)P Y a—A+b+(p—1)b)

= (a—A)" Ya+pb—A).

Hence, the characteristic roots of ¥ are A = a and A, = a + pb. Therefore, the
characteristic roots of X are nonnegative if and only if a > 0 and a + pb > 0. [}

Theorem 6.1. Let X ~E, ,(M,X® @, y) with p > 1 and ®@ # 0. Define

& = {P: Pis p X p permutation matrix},
Z = {R: Ris p X p signed permutation matrix}, and

¢ = {G: G is p X p orthogonal matrix}.

A K. Gupta et al., Elliptically Contoured Models in Statistics and Portfolio Theory, 145
DOI 10.1007/978-1-4614-8154-6_6, © Springer Science+Business Media New York 2013
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Then,

(a) Forevery P e P, PX ~ X if and only if M = e,’ where 1 € R", X = al, +
beye,, a,b € R, a>0, and a> —pb,

(b) ForeveryR e %, RX ~ X ifand only if M = 0 and X = al,,, where a > 0,

(c) Forevery G €9, GX = X ifand only if M = 0 and X = al,, where a > 0.

PROOF:

(a) First, assume that X ~ E, ,(e,u’, (al, + bepe;,) ® @, y) with a > 0, and a >
—pb. Then, from Lemma 6.1, X is positive semidefinite.
LetP € &. Then, PX ~ E,, ,(Pepu’, (P(al, + bepe),)P') @ @, ). Since Pe), =
e, and PP’ =1, we get PX ~ E), , (ep1t’, (al, + be,e),) @ @, y), which proves
that PX ~ X.

Next, assume X ~ E,, ,(M, X ® @, y) and PX =~ X for every P € &. Then,

PX ~ E, ,(PM,PZP’' ® @,y) and hence, PM = M and PXP’' = X for every
P € &. Now, we introduce the following notation. Let P(k,l), 1 < k,l < p
denote a p x p symmetric matrix, whose (i, j)th element is

1if i=j, i#ki#l
1if i=1, j=k
1if i=k, j=1

0 otherwise

Then, it is easy to see that P(k,l) € Z.
From P(1,i)M =M, i =2,...,p, we get M = e, i/, where i € R". From
P(1,)XP(1,i)=ZX,i=2,...,p we get
0ii = 011 (6.1)
and
o;j=o01; if j>i. (6.2)
If p > 3, then from P(2,i))XP(2,i) = X, i =3,...,p, we get
oij=o012 if j>3. (6.3)
From (6.1), it is clear that the diagonal elements of ¥ are equal, whereas (6.2)
and (6.3) show that the off-diagonal elements of X are also equal. Therefore,
X =al),+beye),, and |Z| = (a + pb)aP~!. From Lemma 6.1, in order for al,, +
bepe;7 to be positive semidefinite, we must have a > 0 and a > —pb.

(b) First assume that X ~ E,, ,(0,al, ® @, y) with a > 0. Let R € Z, then RX ~
E,»(0,aRI,R' @ @, y). Since RR’ =1,,, we have RX ~ X.
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Next, assume that X ~ E,, ,(M, X ® @, y) and RX =~ X for every R € Z. Let
R = —1I,, then RX ~ E, ,(—M, X ® @, y). Therefore M = —M i.e. M = 0.
Since & C #, X must be of the form al, + bepe;,, a>0and a > —pb. So,
X~ Epa(0, (al, +bepe),) @ @, y).

Let R be a p x p symmetric matrix, whose (i, j)th element is

—lif i=j=1
1 if i=j>1
0 otherwise

Then, R € % and RX ~ E,,(0,R(al, + be,e,)R' @ @, y). Since, R(al), +
be,e,)R" = al, + bRe,e,R’, we must have bRe,e), = be,e),, which can also
be written as

b(e,€, —Re,e,R) =0. (6.4)
Now, e,¢,, — Re,e,R is a matrix whose (i, /)th element is

2if i=1, j>2
2if >, j=1
0 otherwise

Hence, epe;] — Re,,e;,R # 0 and thus, from (6.4), we conclude that b = 0.
Therefore, X ~ E, ,(0,al, ® @, y) with a > 0.

First assume X ~ E, ,(0,al, ® ®@,y) with a > 0. Let G € ¢4, then GX ~
Ep(0,aGG' @ @, y) and since GG’ =1,,, we have GX ~ X.

On the other hand, if X ~ E, ,(0,al, ® ®@,y) and GX ~ X for every G € ¥,
then RX =~ X for R € % must also hold, since % C ¢. Then, using part (b), we
obtain X ~ E,, ,(0,al, ® @, y) with a > 0. [

Definition 6.1. Let X ~ Ep’,,(M,Z ® @,y). Then, X is called left-spherical, if
GX =~ X, for every G € O(p), right-spherical if XH ~ X for every H € O(n), and
spherical if it is both left- and right-spherical.

Theorem 6.2. Let X ~ E, ,(M,X ® @, y). Then, X is left-spherical if and only if
M = 0 and X = al,, with a > 0; right-spherical if and only if M = 0 and @ = bl,;;
and spherical if and only if M = 0, X = al, and @ = bl,,, with a > 0.

PROOF: It follows, from Theorem 6.1. [}
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6.2 Characterization of Normality

In this section, it is shown that if m.e.c. distributions possess certain properties, they
must be normal. The first result shows that the normality of one element of a random
matrix with m.e.c. distribution implies the normality of the whole random matrix.

Theorem 6.3. Let X ~ E, ,(M, X ® @, y) and assume that there exist i and j such
that x;j is nondegenerate normal. Then, X ~ N, ,(M, X ® @).

PROOF: It follows, from Theorems 2.10, that x;; ~ El(m,-j76,»,-¢jj,1//). Since

x;j is normal, we have y(z) = exp(—%). Then E,,(M,X ® ®@,y) becomes

Np (M, Z® @, y). ]
The following characterization results are based on independence.

Theorem 6.4. Let X ~ E,, ,(M,Z® @, y). If X has two elements that are nonde-
generate and independent, then X ~ N, ,(M, Z ® ®).

PROOQOF: Without loss of generality we can assume M = 0. Let us denote the two
independent elements of X by y and z. Then, we get

(2)~=((0)-(¢5)v)

From Theorem 2.8, we have y ~ E;(0,a, ) and from Theorem 2.19, we obtain

C C2
~E(Sza— "y ).
ylz 1<bz,a bﬂ//)

. . 2 .
Since, y and z are independent, y|z ~ y. Hence, y ~ E| (%z,a -5, q/*) and in view

of Theorem 2.4 we must have ;z = 0 for every z real number. This is possible, only

if ¢ = 0. Therefore,
y 0 a0l
(1)~2((0)(65) )

Now let y; = +/ay, 71 =+/bz, and w = <yl>.Then,w~E2(<g>,<(1)(1)>,1//>,

|

. .. . t .
and its characteristic function at t = (tl ) is
2

dw(t) = w((tl n) (é?) <2>) =y +15).
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The characteristic functions of y; and z; are @y, (t1) = y(?) and ¢, () = y(£3).
Since y and z are independent, so are y; and z;. Therefore, ¢y (t) = @y, (t1)9;, (2);
that is w(1? +13) = w(t})y(£3), or equivalently

vt +n)=vyt)y(t), 1120,52>0. (6.5)

Now, using Corollary 1.1 we see that y(t) = e ¥, k > 0, t > 0. Moreover, k = 0
is impossible since this would make y degenerate. Therefore, k > 0 and hence X is
normal. [}

Corollary 6.1. LetX~E,,(M,XQ®,y)andx;, i=1,...,ndenote the columns of
X. IfX1,X2,...,X, are all nondegenerate and independent, then X ~ N, ,(M, X @ @),
where @ is diagonal.

PROOF: This follows, from Theorem 6.4. Since if two columns are independent,
then any two elements, picked one from each of these columns will also be
independent. The structure of @ is implied by the fact that x;,x,...,Xx, are
independent and normal. [

Remark 6.1. For the case p = 1, a result similar to Corollary 6.1, was given by
Kelker (1970). However, he had stronger conditions since he made the diagonality
of @ an assumption of the theorem. The following theorem, although not a
characterization result gives the idea for a further characterization of normality.

Theorem 6.5. Let X ~ E, ,(M,X ® @,y) be nondegenerate, with finite second
order moment. Assume A :qxp, B:nxk, C:rxp, and D : nx1 are constant
matrices. Then, AXB and CXD are uncorrelated if and only if either AXC' = 0 or
B'®D = 0.

PROOF: Without loss of generality, we can assume M = 0. Then, using Theo-
rem 1.17, we can write

Cov(vec(AXB)',vec(CXD)') = E(vec(AXB)'(vec(CXD)')")
E((A & B vec(X') (vece(X)) (C' @ D))
-2y (0)(A®B)(Z® @)(C' ®D)
~2y/(0)(ASC) @ (B'®D).

Here, ¥'(0) # 0, since X is nondegenerate, so we must have (AXC’) ® (B'®D) =0.
This holds iff AXC’ = 0 or B'®D = 0. ]

Remark 6.2. Since, in the normal case, uncorrelatedness and independence are
equivalent, Theorem 6.5 implies that for X ~ N, ,(M, X ® @), AXB and CXD are
independent iff AXC’ = 0 or B’®@D = 0. This property of the matrix variate normal
distribution was obtained by Nel (1977).
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Theorem 6.5 shows that under certain conditions, two linear expressions in
a random matrix with m.e.c. distribution are uncorrelated, whereas Remark 6.2
says that if the underlying distribution is normal the two linear transforms are
independent. The question arises whether the independence of the linear transforms
characterizes normality in the class of m.e.c. distributions. The answer is yes, as the
next theorem shows.

Theorem 6.6. Let X ~E, ,(M,ZQ®,y)and A:qxp, B:nxk C:rxp, and
D : n x [ be constant nonzero matrices. If AXB and CXD are nondegenerate and
independent, then X is normal.

PROOF: Without loss of generality, we can assume M = 0. Since AXB and
CXD are independent, so are vec(AXB)' = (A @ B')vec(X') and vec(CXD)' =
(CoD')vec(X'). Letx = vec(X), thenx ~ E,,,, (0, X ®@ @, y). Let v’ be a nonzero row
of A®@B’ and w be a nonzero row of C®D'. Then, v'x and w’x are independent. Let

/ /!
H= (v/). Then Hx = <V/X) ~ E>(0,H(X @ ®)H', y). Since v'x and w'x are
w'x

w
independent and their joint distribution is elliptically contoured, from Theorem 6.4
we conclude that Hx is normal. Therefore, X is normal. [

The following characterization results are based on conditional distributions (see
Gupta and Varga, 1990, 1992, 1994a, 1997).

Theorem 6.7. Let X ~ E, ,(M,X ® @, y) be nondegenerate. Let X, M, and X be
. X M, Zn 2

partitioned as X = (Xz)’ M= (Mz)’ 2= (221 222), where X1 and M

are g x n and X is q X q. Assume rk(X2) > 1 and rk(X) —rk(Zy) > 1. Let

X |X2 ~ Eq.n(Ml +21222_21 (X2 — M2)7211~2 Q D, l[/q(xz)) with q(Xz) = tr((X2 —

M)’ X}, (X2 — M2)@7). Then, yy(x,) does not depend on X, with probability one

if and only if X ~ N, ,(M, Z @ ®).

PROOF: Itis known that if X ~ N, ,(M, Z® @), then y,x,) = exp (—%) and hence,
Y, (x,) does not depend on X (see, e.g. Anderson, 2003, p. 33).

Conversely, assume ,(x,) does not depend on X, for X, € A, where P(X; €
A) = 1. Thus, for X, € A, we can write W,x,) = Wo(z), where Y does not depend
on Xy. It follows from the definition of ¢(Xj), that it suffices to consider the case
M=0,X=1,, @ =1, (see Theorem 2.22). Let T be a p x n matrix and partition it

as T = (il > where T is g x n. Then, the characteristic function of X is
2

y(tr(T'T))
(tr(T/lTl —|—T/2T2))
(tr(T|Ty) +tr(THT2)). (6.6)

¢x(T)

v
v

On the other hand,
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(
(
(err(i(Xi T} +X2T5)))

(E(etr(i(Xi T} +X1T3))[X2))
(etr(iXoT5))E (E (etr(iX: T}) [X2))

(etr(iX2T5)) wo(tr(T T1))

= y(tr(TyT2)) wo(1r(Ti T1)). (6.7)

Let u = tr(T|T) and v = tr(T5T). Then, from (6.6) and (6.7), we obtain

Yutv) = y(u)yo(v) 638)

for u,v > 0. Taking u = 0 in (6.8), we get w(v) = yp(v). Hence, (6.8) gives

v(u+v)=yu)y(v) (6.9)

for u,v > 0. Now from Corollary 1.1 we see that y(z) = e, k > 0,1 > 0. Moreover,
k cannot be zero, since this would make X degenerate. Therefore, k > 0 and hence
X is normal. ]

The next theorem shows that the normality of the conditional distributional
characterizes the normal distribution in the class of m.e.c. distributions.

Theorem 6.8. Let X ~E, ,(M,X® @, ) be nondegenerate. Let X and X be parti-

tioned as X = <X1 > XY= (Z“ 212), where X1 is g X nand X1 is ¢ X q. Assume
X 2o 2o

rk(Z22) > 1 and rk(2) —rk(Z22) > 1. Then, P(X|X; is nondegenerate normal) = 1

ifand only if X ~ N, ,(M,Z ® ®@).

PROOF: It has already been mentioned in the proof of Theorem 6.7 that if X ~
Ny, (M, X ® @), then X |X; is nondegenerate normal with probability one.

Conversely, assume X|X; is nondegenerate normal with probability one. Then,
from the definition of ¢(X3), it follows that it suffices to consider the case M = 0,
X2 =1I,, @ =1,, where now ¢(X,) =tr(X,X>). So ¢(X) = 0 if and only if X, = 0.
Thus, P(q¢(X2) =0) = P(X, =0).

On the other hand, from Corollary 3.2 it follows that P(X; = 0) = P(X = 0).
Hence, P(¢(X;) = 0) = P(X = 0). However P(X = 0) > 0 is not possible since
this would imply that X;|X; is degenerate with positive probability. Therefore,
P(q(X3) = 0) = 0 must hold. Hence, there exists a set A C IR9*" such that P(X; €
A)=1.1fX; € A, then ¢(X») > 0 and X |X; is nondegenerate normal. So if X, € A,
then we get
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C(Q(Xz))1> .

X ‘X2 ~ Eq.,n(oalq @1, Wq(Xz)) with Wq(Xz)(Z) =exp (_ )

(6.10)

Here, ¢ denotes a function of ¢(X3), such that ¢(¢(X;)) > 0 for X, € A. Let
rq(Xz)Ul be the stochastic representation of X;|X;. Since

raxy) & r((XiX2) (X1]X2)),

from (6.10), we get

ras,) ~ €(a(X2)) 20 6.11)
The p.d.f. of xz, is
§0)= o yEleE yso. (6.12)
25T (%) ’

Let v? = ¢(¢(X3))y for fixed X, with v >0 and J(y — v) = mzv. Then,

VR Iy (x,), hence the p.d.f. of v, say p(v), is the same as the p.d.f. of r,(x, ). Therefore,
from (6.12) we get

2v V2 Tt —5 Vi(
P(v) = 25T (%) c(g(Xa)) (C(Q(Xz))) e M

2
= 1 = =17 2e4Xy)) (6.13)

I (%)2% 1 (c(q(X2))) %

Let rU be the stochastic representation of X and F be the distribution function
of r. By appealing to Corollary 2.5, from (6.13), we obtain

pn_

L= FQ) = Ky, [ o 07400y Dpgay
== 2
oo V2
— Ly, / (P 4 ¢(X2)) & ~lve Taa gy, (6.14)
V2—q(X2)
for z > q(Xy) where
K,x
LXZ — = q( 2) -

I (%)27  (c(q(X2))) 2

Substituting 1> = v> + ¢(Xz) and J(v — 1) = L in (6.14), we get
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2—q(Xy)

1-F(2) = Lx, / 124 X)) gy
Z

9(X5) © - 2
= Lx, e ™% / 1,7 %G gy (6.15)

Now, (6.15) holds for z > ¢(Xj). Differentiating (6.15), with respect to z, we get

2

F'(z) = Jx, 2" le 2@ for z>q(Xy), (6.16)

9(X3)

where Jx, = —Lx,e*@X2))

Let X5 € A and X7 € A and let z € [max(¢(X2,1),9(X22)),°°). Then, from
(6.16), it follows that ¢(¢(X21)) = ¢(q(Xz2)). Therefore, (6.10) shows that
By(X, 1) = Py(x,,)- Since P(A) = 1, this means that ¢,x,) does not depend on
X,, with probability one. Hence, from Theorem 6.7, it is easily seen that X is
normally distributed. [ |

The next characterization result shows that if a m.e.c. distribution is absolutely
continuous and one of its marginals has the p.d.f. whose functional form coincides
with that of the p.d.f. of the original distribution up to a constant multiplier, then the
distribution must be normal. More precisely, we can prove the following theorem.

Theorem 6.9. Let X ~ E,, ,(M, X ® @, y) be absolutely continuous with p.d.f.

2730 Eh(r(X - M) (X~ M)@ ™).

Let X, M, and X be partitioned as X = <X1 >, M = <M1 >, 2= (le 212),
X, M, 201 2

where X1 and M are g x n and 211 is g X g with 1 < g < p. Let the p.d.f. of X, be
[Zu 2 1@ S e ((Xa =My Z ! (X =M@ 7)),
Then, h and hy agree up to a constant multiplier; that is,
h(z) = chi(z) (6.17)
if and only if X is normal.
PROOF: If X is normal, then h(z) = (277)~ 2 exp (—%). Moreover, X is also normal
with hy(z) = (2m)~ 7 exp (=%). Thus, h(z) = (2n)wh1 (z), 50 (6.17) is satisfied

(g—p)n

withc= (2m) 2 .
Conversely, assume (6.17) holds. Without loss of generality, we can assume
M=0,X=1I,, @ =1, From (6.17), we get

h(tr(XX')) = chy (tr(X,X})). (6.18)
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We also use the fact that i (tr(X;X])), being marginal p.d.f. of X, can be
obtained from A(zr(XX')) through integration.

Let X = (X1,X,), then A(tr(XX')) = h(tr(X, X} + XoX3)) = h(tr(X,X}) +
1r(X5X})). Hence we have

M (X)) = [ b (XX + 1r(XoX5))dXo. (6.19)
R(P—a)xn
From (6.18) and (6.19), we get
I (tr(XiX,)) = ¢ / o (XX + 1r(XaX5) )Xo
R(P—a)xn

Hence
h(z) = C/ h(z+1r(XX5))dX,, z>0.
R(p—a)xn
Using (6.17) again, we have

h(z) = / I 2+ 1r(XoX)))dXs, 2> 0.
JR(P—4)xn

which can also be written as
h(z) = / Iy (z+1r(Y2Y)))dYs. (6.20)
R(P—q)xn
. Y, . /
Define the (p+¢) x n matrix Y = v, ) with Yy : pxn. Letz=tr(YY}). Then,
2
from (6.20), we have

htr(Y1Y))) = & / I (tr(Y1Y}) + 1r(Y2Y)))dYs. 6.21)

R(p—aq)xn

Now, the left-hand side of (6.21) is a p.d.f., since Y is p x n. Hence,
/ h(tr(Y,Y))dY, = 1.
RP*n
Therefore, integrating the right-hand side of (6.21), with respect to Y we get
C2/ / hl(l‘l"(Y1Y/])—|—l‘r(Y2Y/2))dY2dY] =1,
Rrxn JR(p—q)xn

which can be rewritten as

2 !
hi(tr(YY'))dY = 1.
/R(H(pw))xn ¢ 1( r( ))
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Therefore, ¢k (tr(YY')) is the p.d.f. of a (2p — g) x n random matrix Y with m.e.c.
distribution. Moreover, it follows from (6.21) and (6.17), that ch; (tr(Y;Y})) is the
p.d.f. of the p x n dimensional marginal of Y. Since Y; ~ E, ,(0,I, ®I,, y), we
must have

Y~ Ezpgn (07121)*(1 L, y).

By iterating the above procedure we see that for any j > 1, there exists a
(p+ j(p—q)) x nrandom matrix Y; with m.e.c. distribution, such that

Y~ Epj(p—q)n(0: Lyt jp—q) @1n, ¥).

Then it follows from the Definition 4.1, Theorem 4.3, and Remark 4.2, that there
exists a distribution function G(u) on (0,e0), such that

w(s) = /O " exp (—%) dG(u). (6.22)

Therefore,

and

Using (6.17), we get

b <<27r1z)”2" ot ) exp (=3 ) 46(w) 0. (6.23)

Using the inverse Laplace transform in (6.23), we obtain

( ! pn < qn ) dG(Z) =0.
(2nz)2  (2mz)>

Hence,
_pn (p—q)n
(2mz) " (1—(27rz) ; c) dG(z) =0.

2
However, this is possible only if G is degenerate at zo = ﬁc@*q)" ; that is,
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0if z <z
G p—
(2) {1iszzo.
Now, let zo = 6. Then, (6.22) gives ¥(s) = exp (—%2) which implies that X is

normal. [}

Since in the normal case Y, x,) does not depend on Xj, the conditional
distribution ryx,) |X is also independent of X,. Hence, for every k positive integer
the conditional moment E (r('; X) |X5), is independent of X;. The next theorem shows
that normal distribution is the only m.e.c. distribution which possesses this property.

Theorem 6.10. Let X ~ E, ,(M, X ® @,y) be nondegenerate. Let X and X be

partitioned as X = <X1 ) 2= <211 e ) where X is g xnand X1y is g X g with
X 2o Zn

1 < g < p. Assume rk(Xy) > 1 and rk(X) —rk(Zo3) > 1. Then, there exists positive

integer k such that E (r](;(X2> |X») is finite and does not depend on X, with probability

one if and only if X is normal. Here, r(x,) is the one-dimensional random variable,

appearing in the stochastic representation of X;|Xy:

X] ‘Xz =~ rq(X2)AU]B'.

PROOF: If X is normal, then y,(x,)(z) = w (—%). Hence, ’i(xz
rk(X) — rk(Zy,). Hence, E ('J;(Xz) IX») is the &th moment of Xt?] ,» Which is finite and
independent of Xj.

Conversely, assume E (r’; (X)) |X5) is finite and does not depend on X;, with
probability one. Without loss of generality, we can assume M =0, X =1,, @ =1,,.
Then, we have ¢(X) = || Xz || and XX = rx, 2Ui. Hence we get tr(X X1)[X; ~

2tr(UjUy), and since rr(Uj Uy ) = 1, we get [|X, ||[X2 = rx, 2. Therefore,

) ~ X2 With g1 =

2
;
Xzl

E(IX1[[*[X2) = E(Ay2[Xa).

Hence, E(||X; ||¥|X5) is finite (with probability one) and independent of X.
Next, we show that P(X = 0) = 0. Assume this is not the case. Let 0 < Py =

PX=0)=P <(§;) = 0). Then P((X;|X2) = 0) > Py and P(E(||X1|[*|X2) =

0) > Py. Since E(||X{|*|X5) does not depend on X, with probability one, we have
P(E(][X1[*[X2) = 0) = 1. Hence, P((X;|Xz) =0) = 1.
Since,

P(Xi€B) = /IR P [X) € B)dFx, (X2),
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where Fx, is the distribution function of X, and B € Z(R7*"), we get
P(X; =0)=1. Then, from Corollary 3.2, we get P(X =0) = P(X; =0) = 1.
That means X is degenerate, which contradicts the assumptions of the theorem. So,
P(X=0)=0.

From Corollary 3.2, it follows that P(X; = 0) = 0. Let X ~ rU be the
stochastic representation of X and F be the distribution function of r. Then, using
Theorem 2.21, we obtain

P((Xi[X2) =0) =1 if  F([[Xaf)) =

and

1

F - X ) F s g (6.24)
L Kjx, |2 -/(X27W)( %2l )

ifz>0and F(||Xz||) < 1, where Fjx, 2(z) denotes the distribution function of ryx,
and

Ko = [ Il E s 2ar (),
J(I1Xa]|,)

From (6.24), we get

1 o w2 ds
R 017 & IXalP) ) (6.25)

Fixy|2(2) =
where 72 + || X3 |? = s2. Using (6.25), we obtain

E(rx, e X2) = /0 dFjx,2(2)

o
Kix, |2

[ P Xl 5 s 2ap (),
(I1Xz]l,)

Since, E (rﬁXsz |X») does not depend on X, it follows that there exists a constant
¢(k) which does not depend on X;, such that

[ %) s 2ap ()

(1Xall;)

= c(k —|[Xa[?)F s g 6.26
W[ Il () (6.26)

almost everywhere. Since P(X = 0) = 0, Theorem 3.5 shows that X, is abso-
lutely continuous. Therefore, ||X;|| is also absolutely continuous. Hence, (6.26)
implies that
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/(. )(52 _yz)qn;k,ls,(pnfz)dF(s) _ C(k)/( )(sz —yz)%flsf(pnfz)dF(s)
Wiked W iied

(6.27)

for almost every y (with respect to the Lebesgue measure) in the interval (0,yo),

where yo = inf{y : F(y) = 1}. Furthermore, (6.27) is also true if y > yy, because in

that case both sides become zero. Therefore, (6.27) holds for almost every y > 0.
Define the following distribution function on [0, )

B I sde(s)

In order to do this, we have to prove that [;°s*dF (s) is finite and positive. Now, F
is the distribution function of r, where X ~ rU is the stochastic representation of X.
Since, P(X = 0) = 0, we have P(r > 0) = 1. Hence, ;" s*dF(s) = E(r*) > 0. On
the other hand, let X ~ r;U; be the stochastic representation of X;. It follows from
Corollary 2.4, that

ry /&, (6.29)

where r and ¢ are independent and 1> ~ B (%, @). Now,

E(IX1]) = E(E(IX1]1X2))

is finite, since E(||X;|¥|X,) is finite and does not depend on Xj, with probability
one. Since r; = || X ||, we see that E(r%) is finite. From (6.29), we get E(r¥) =
E(r*)E(¢*) and E(r¥) is finite implies that E(r*) is finite. Since P(X = 0) = 0, we
have F(0) =0 and so H(0) = 0. Now, (6.27) can be rewritten in terms of H as

/(). )(SZ7y2)#—ls—(pn+k—2)dH(s) :C/(y )(SZ7y2)%—ls—(pn+k—2)dH(s).

(6.30)

Let r9p be a random variable with distribution function H. Further, let uy be
uniformly distributed over S, , independent of rg. Define y = roug. Then, y ~
Epnii (0,145, y*). Since H(0) =0, we get P(ro = 0) = 0. Thus, P(y = 0) = 0. Let
y1 be a (p — g)n + k-dimensional subvector of y and y», a (p — ¢)n-dimensional
subvector of yj. Then, it follows from Theorem 3.1, that both y; and y, are
absolutely continuous. Let /1 (y}y1) be the p.d.f. of y; and hy(y5y2) that of y».
Let y1 ~ r9,1Up,1 and y> =~ rp2Up be the stochastic representations of y; and y,
respectively. Moreover, Theorem 3.1 shows that the p.d.f. of rg 1 is

gl()’) :Cly(p—q)n+k—l/<y )(32—yz)%_ls_(p"""k_z)dH(S)

and that of rg 5 is
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—\n— qntk _
G0) = [ (2 ).
(v,e0)
Here c; denotes a positive constant, i = 1,2,.... It follows, from Theorem 2.16, that

((p—q)n+l<)+1gl )

_ C4‘/( )(s2_y2)%71s7(pn+k72)d1_](s)
y7l>0

hi(y*) = c3y~

and
hy(y?) = esy” Pl gy (y)
:C6/( )(SZ_yZ)%H{flsf(anrkfﬂdH(s).
Hence,
hi(y%) =C4/ (2 —y?) T s D gF () (6.31)
(,00)
and
2N 2 NI _(pn-2)
ha(y7) = ¢ ( )(s -y Tl dF(s). (6.32)
y’OO

Then, (6.27), (6.30), and (6.31) imply that h(y?) = c7h1(y?). Therefore, from
Theorem 6.9 we conclude that y; is normal. Since, y; is a subvector of y, it is
also normal. Hence, H(z) is the distribution of cg,1«. Then,

dH(z) = I(z)dz, (6.33)

where
pn+k—1 _ z=
1(z) =c9y <) e %, z>0. (6.34)

From (6.28), it follows that dH (z) = c10z*dF (z). Using (6.33) and (6.34), we obtain
2

3z
crz”"*le *8 dz = 7*dF(z). Hence,
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Since F is the distribution of r, we obtain that = c2 ¥ .. Therefore, X is normal g
The following theorem gives a characterization of normality based on conditional
central moments.

Theorem 6.11. LetX ~ E, ,(M,X ® @, y) be nondegenerate. Let X, M, and X be

. X1> (M1> (211212>
artitioned as X = M= , 2= , where X; and M are
P (Xz M, 2o X

gxnand X1y is g X q. Assume rk(Z) > 1 and rk(X) —rk(Z2) > 1. Assume also
that there exist nonnegative integers, kij, i =1,2,. ,q; j=1,2,...,n, satisfying k =

pY Z;?:l kij > 1, and such that K(X5) = (H 1 (xij— (x,-j|X2))kij|X2> is
nonzero with positive probability. Then K(X3) is ﬁmte and does not depend on X3,
with probability one if and only if X is normally distributed.

PROOF: If X is normal, then
X1 X2 ~ Ngn(Mi + 21225, (X2 —Mp), 21120 D).
Hence

(X1 —E(Xl |X2))|X2 ~ Nq‘,,((),zu.z ® (D)

Therefore, E (H?:l ]'[;?:l (xij —E(x; j|X2))ki.i \X2> is finite and does not depend
on X2.
Conversely, assume K(X3) is finite and does not depend on X,. Now,

X[ Xo ~Egn(My + 212205 (X2 = Mp), 2112 @ @, yyx,))
and hence
(X1 = E(X1[X2))[ X2 ~ Eg (0, 21122 P, Wyx,))-

Let r,(x,)AUB’ be the stochastic representation of (X; — E(X|X2))|Xz. Then,

HH xij — E(x;j[X2))"[X) ~ HH (AUB'); ” (6.35)

i=1j= tl/

The expected value of the left-hand side of (6.35) is finite and does not depend on
X,. Since r,(x,) and U are independent, taking expectation on both sides of (6.35),
we obtain

K(X2) = E(ryx,)|X2)E (HH (A*UB') ,,) : (6.36)

i=1j
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Now P(0 # |K(X2)| < ) > 0, therefore it follows, from (6.36), that

P <
However E (]'[?:1 =1 (A*UB/ )5” ) is a constant (say c) that does not depend Xj,
therefore (6.37) implies that

(HH A*UB) ,,) D > 0. (6.37)

i=1j

(H]‘[ A*UB') ,,) #0. (6.38)

i=1j

From (6.36) and (6.38), we get
k 1
E(ryx,)X2) = EK(X2)~

Therefore, E ( |X2) is finite and independent of X, with probability one.
Then, using Theorem 6 10, we conclude that X is normally distributed. [}

Theorems 6.7-6.11 are due to Cambanis, Huang, and Simons (1981). In The-
orem 6.11, however, the assumption that the conditional central moments are
nonzero, with probability one is missing. Without this assumption, the theorem is
not correct. To see this, take k11 = 1 and k;; =0, (i, j) # (1,1). Then

K(X2) = E((X11 — E(X11/X2))[X2)
E(X11X2) —E(X11/X2)
= 0.

Thus K(X3) is finite and does not depend on X, but X does not have to be normal.
In order to derive further characterization results, we need the following lemma.

Lemma 6.2. Let X ~ E, ,(0,2 ® @, y) with P(X = 0) = Py where 0 < Py < .
Then, there exists a one-dimensional random variable s and a p X n random
matrix L, such that s and L are independent, P(s = 0) = P, P(s =1)=1-"h,

L~E,, ( ) and X =~z sL. Moreover, P(L =0) =

PROOF: If Py = 0, choose s, such that P(s = 1) = | and the theorem is trivial.
If Py > 0, then let us define L in the following way. Define a measure A, on RP*"
in the following way: P, (B) = ﬁ (X € (B—{0})), where B is a Borel set in
RP*". Now, P,(IRP*") = P(X € (RP*" —{0})) = 1 PO = 1. Therefore, Py, defines

a probability measure on IRP*". Let L be a random matrlx whose distribution is
defined by A ; that is, P(L € B) = P.(B) for every Borel set B in IRP*".
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Let s be a one-dimensional random variable, with P(s =0) = Py, and P(s = 1)
1 — Py such that s is independent of L. Then we show X = sL.
Let B be a Borel set in R”*". Then

P(sLeB)=P(sLeB|s=1)P(s=1)+P(sL € B|s=0)P(s=0)
=PLeBls=1)P(s=1)+P0cBls=0)P(s=0)
P(LeB)(1-P)+P(0<€B)P

T P(XE (B {01)(1 - B+ z5(0)R)
0

=P(Xe(B-{0})+xs(0)R
If 0 € B, then B= (B—{0}) U{0} and yx5(0) = 1. Therefore
P(X € (B—{0}))+x8(0)P = P(X € (B—{0}))+P(X € {0})
= P(X€B).
If0 ¢ B, then B = B— {0} and y3(0) = 0. So,
P(X e (B—{0}))+ xp(0)Py =P(X €B).

Hence, X ~ sL. Therefore, the characteristic functions of X and sL are equal, i.e.

¢x(T) = ¢41.(T). Moreover,
¢s1(T) = E(etr(iT'sL))
= E(etr(iT'sL)|s = 1)P(s = 1) + E(etr(iT’sL)|s = 0)P(s = 0)
= E(etr(iT'L)|s = 1)(1 —Py) + E(1]|s = 0)Py
= E(etr(iT'L))(1—Py) +1-B
¢L(T)(1 - Ro) + P

hﬁ

Hence, ¢x(T) = ¢1.(T)(1 — By) + Py, and therefore

x(T)—PR _ y(tr(T'ZTP)) -
1-P 1—P

¢v(T) =

Furthermore, P(L = 0) = —xP(X € ({0} — {0})) = ]
Theorem 6.12. Let X ~ Ep,n(O,Zl QL,, y) with p < n. Assume

XX~ Gy (22.5,w2).

Then there exists ¢ > 0 such that X, = cZ1 and ¥ (z) = ¥ (f)
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PROQF: It follows, from Definition 5.1, that there exists a p X n random matrix Y,
such that Y ~ E;, 4 (0,2, ® L, y») and YY' ~ G, 1 (22, %, y2). So, we have XX’ ~
YY'. From Theorem 2.4, it suffices to show that X ~ Y.

First, note that if Z is a p x n matrix, then Z = 0 iff ZZ' = 0. Therefore,
P(X=0)=P(XX'=0) and P(Y =0) = P(YY' =0). Since, XX’ ~ YY’, we have
P(XX'=0)=P(YY' =0) and so, P(X=0) = P(Y =0).

Let us denote P(X =0) by Ry. If Py =1, then P(X=0) =P(Y=0) =1, and
hence, X ~ Y.

If Py < 1, then from Theorem 1.8, there exists a p X p nonsingular matrix H, such
that HX,H' =1, and HX | H' = D, where D is diagonal.

Let Vi =HXand V, =HY. Then, V| ~ E,, ,(0,D®1,, 1) and Vo ~ E}, ,(0,1,®
L, y»). Moreover, V; V| = HXX'H' and V,V}, = HYY'H'. So, we have V| V| ~
V2V’2. It suffices to prove that V| =~ V,, because if this is true, then H'V,~H 'V,
and so, X~ Y.

Using Lemma 6.2, we can write V; = s;L;, where s; and L; are independent,
s; is a one-dimensional random variable, with P(s; = 0) = Py, P(s;=1) = 1— P,
P(L; =0) =0 (i=1,2). So 5| & 5. Moreover, we have

1 — PR

Ll NE[’.,n (OaD®Im 1—P0

e
) and Ly~E,, <0,1p®ln, "’20) .

1-Py
If Py =0, then P(s; = 1) = P(s; = 1) = 1 and so, LiL} ~ s{L L} =~ V|V ~
VoV, a2 531, L ~ LiL,. If 0 < Py < 1, then for any Borel set B in IRP*" we have
P(V;V} € B) = P(s’L;L! € B)
= P(s?L;L} € B|s; = 1)P(s; = 1) 4+ P(s?L;L} € B|s; = 0)P(s; = 0)
= P(L,L; € B)(1—Py) + x5(0) .

Therefore,

(V,’Vﬁ» S B) — XB(O)PO
1-F

P
P(LL;€eB)=

Since, V; V| ~ V,V), we have P(V, V)| € B) = P(V,V} € B) and so, P(L|L} €
B) = P(L,L) € B). Hence, L L} ~ L,L}. Let rlD%Ul and U, be the stochastic
representations of L; and Ly, respectively. Then we have L1L/1 ~ r%D%UlU’lD%
and L,L), ~ r3U,U). Thus,
214 'Tys o 2 /
rlD2U1U1D2 ~ 72U2U2. (639)
Let W; = U; U} and W, = U,Uj. Since, U; ~ U,, we have W| ~ W,. Note that

(6.39) can be rewritten as

PDIW,D? ~ W, (6.40)
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From Theorem 5.11, it follows that P(rk(L;L}) = p) = 1. Since, L|L] is a
positive semidefinite p x p matrix, we get P(LjL] > 0) = 1. Now L,L| ~
L,L), and hence we have P(L,L} > 0) = 1. Therefore, P(rsW, > 0) = | and
P(r%DéwlD% > 0) = 1. Thus, the diagonal elements of r%Wz and r%D%WlD% are
positive, with probability one. If p = 1, then D is a scalar; D =c. If p > 1, then it
follows from (6.40) that

s 1
(Wa)1i ~ (r1D2W1D2)11
(rW2);i (r%D%WlD%> ) 7
12

or equivalently,

~ (6.41)
(W2)ii (D%WlDf)”
121
However, D? is diagonal so, (D%WlD%) = (Wy)jidjj, j=1,...,p and (6.41)
Ji
becomes
(Wo)ii (Wi dn
(W2)i  (Wi)i di
: ~ W) (W) Wou . Wi d ;
Since Wi ~ W,, we have (sz)‘i; ~ (Wll)liil and so, (Wll)liil ~ (W‘l)‘”‘ d#”‘ Since
P(%%%%:>O):J,mmismmﬂbkonWif%f:l,i:2“.wp.&xwegal):cy

where c is a scalar constant. From (6.39), we get
cr?U U = r3U,US.
Taking trace on both sides, we get
tr(er?U UL = 1r(r3 U, UY)
and hence,
crtr(UU)) = ratr(UoU).

Now, t7(UjU}) = tr(U,U}) = 1 and therefore, crf ~ r3 and ry ~ \/Erll. Let
r3 = rp, such that r3 is independent of U; and U,. Then, we have L; ~ r|D2U; =~
ﬁm(clp)%Ul = r3U; = r3Us. Since Ly =~ U, = r3Usy, we have L ~ L,. Since
51 & 52, we get s1L; = spL». Therefore V| = V;. [}

Now we can prove a result on the characterization of normality.
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Theorem 6.13. Let X ~E, (0,2, ®L,,y1), with p < n. Assume XX' ~ W,(22,n).
Then, X ~ N, (0,2, ®1,) and £; = X».

PROOF: The result follows immediately by taking ys(z) = exp(—%), in
Theorem 6.12.
The following theorem is an extension of Theorem 6.12.

Theorem 6.14. Let X ~ E, ,(0,2 @ @,y) and Y ~ Ep, (0,22 @ @, y»), with
21 >0,%2>0, and ®@ > 0. Assume XAX' ~ YAY' where A is an n x n positive
semidefinite matrix, with rk(A) > p. Suppose that all moments of X exist. Let

1
x = tr(X'Z'X®7"Y) and define my = E(x*), k= 1,2,.... If 35, (m%k) * = o,
then X = Y.

PROOF: Without loss of generality, we can assume that @ = I,,. Indeed, if @ # 1,
then, define X; =X® 2, Y, =Y® 2, and A| = ®2Ad2. Then, X| ~ E,,(0,Z; @
In,llll), Y1 ~ Ep,n(0722 ®In,l[/2), rk(Al) = rk(A) > D, XAX' = X1A1X/1, and
YAY' = Y1A1Y/1. So XAX’ ~ YAY' if and only if X1A1X’1 ~ Y1A1Y/1 and X ~Y
ifand only if X; = Y.

Hence, we can assume @ = I,. From Theorem 1.8, there exists a p X p
nonsingular matrix H such that HX{H' =1, and HX,H' = D, where D is diagonal.
Let Z; =HX and Z, = HY. Then, Z; ~ E,, ,(0,1,®L,, y) and Z, ~ E, ,(0,D®
L, y»). Moreover, Z1AZ, = HXAX'H' and Z,AZ), = HYAY'H'. Since XAX' ~
YAY', we have Z,AZ) ~ Z,AZ),. It suffices to prove that Z; ~ Z,, because if this
is true, then H™'Z; ~ H~'Z, and therefore X ~ Y. Since Z|AZ)| ~ Z,AZ), we get
P(Z1AZ] = 0) = P(Z,AZ), = 0).

If P(Z; =0) < 1 then, using Lemma 6.2, we can write Z; = s{L; where s;

and L; are independent, s; is a one-dimensional random variable with P(s; =0) =
P(Zy = 0), P(sy = 1) =1—P(Z; = 0), L| ~ E,, (0,1,,@1,,, %) and
P(L; = 0) = 0. Then, from Theorem 5.11, it follows that P(rk(L;AL}) = p) = 1.

Since, A is positive definite, this implies that
P(LlAL/l >0)=1. (6.42)

Consequently P(LjAL} = 0) = 0. Moreover,

P(Z,AZ} = 0) = P(s7L;AL} = 0)
= P(s? =0)
= P(s; =0)
= P(Z; =0).

Hence, P(Z|AZ} =0) < 1.
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If P(Z, = 0) < 1 then, using Lemma 6.2, we can write Zp = spLo where s,

and L, are independent, s, is a one-dimensional random variable with P(s, =
0)=P(Zy = 0), P(sy = 1) = 1 — P(Zy = 0), Ly ~ E,,, (0,D®In,%>
and P(L, = 0) = 0. Then, from Theorem 5.10, it follows that P(rk(L,AL}) =
min(rk(D), p)) = 1. From P(Z; = 0) < 1, it follows that rk(D) > 1. Hence,

P(rk(LoALL) > 1) = 1.
Thus, P(L,AL), = 0) = 0. Therefore,

P(Z,AZ) = 0) = P(s3L,AL) = 0)

Hence, P(Z,AZ),, = 0) < 1. Therefore, if either P(Z; =0) < 1 or P(Z, =0) < 1,
then we get P(Z1AZ}| = 0) = P(Z,AZ/, = 0) < 1 and hence, P(Z; = 0) < 1 must
hold for i = 1,2. However, then we get

P(Zy = 0) = P(Z,AZ, = 0)
— P(Z,AZ), = 0)
=P(Z,=0)

and P(s; = 0) = P(s, = 0). Hence, 51 = 5.

If either P(Z; =0) =1 or P(Z; = 0) = 1, then we must have P(Z; = 0) = 1 for
i = 1,2. Therefore, P(Z; = 0) = P(Z, = 0) is always true. Let Py = P(Z; = 0).

If Ph =1, then Z; = 0 = Z; and the theorem is proved.

If Py < 1, then we first prove that

L1AL’1 ~ L2AL’2. (6.43)
If Py=0, then P(s; =1) = P(sy =1) =1 and so,
L]ALII ~ S1L1AL/1 ~ Z]AZ’I ~ ZzAle ~ S2L2AL/2 ~ L2AL/2.
If 0 < Py < 1, then for any Borel set B in R”*", we have
(Z]AZ/ S B) P(SlLlAL/l S B)
P(SlLlALll S B|S1 = ])P(S] = 1)
+ P(lelALll €B|s; = O)P(S] = 0)
= P(L1AL} € B)(1 —Py) + x5(0) Py
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Therefore,

P(Z]AZ/I S B) — XB(O)PO

P(L1AL} € B) =
(L1AL) € B) 1R

Similarly,

P(ZoAZ) € B) — x5(0)Py

P(L,AL, € B) =
(LAL; € B) -

Since, Z1AZ| ~ Z,AZ), we get P(Z,AZ\| € B) = P(Z,AZ), € B) and so,
P(L AL} € B) = P(L,AL), € B). Therefore, L;AL) ~ L,AL) which establishes
(6.43).

Let ;U; and rZD%Uz be the stochastic representations of L; and L;. Here D is
diagonal. Then, we have L; AL} ~ r?U; AU and L,AL)} ~ r%D%UZAU’zD%. Hence,

PUAU, ~ D2 U,AU,D?. (6.44)

Let W, = UlAU'1 and W, = UzAU’z. Since U; ~ U,, we have W| ~ W,. So, (6.44)
can be rewritten as

Wi ~ r2DIW,D?. (6.45)

If p =1, then D is a scalar; D = cI;. If p > 1, then from (6.42) it follows that the
diagonal elements of L;AL] are positive, with probability one. From (6.43), it is
seen that P(L,AL) > 0) = 1 and the diagonal elements of L, AL are also positive
with probability one. Using (6.45), we obtain

1 1
(W _ (r%wasz)“
(Wi (3Diw,D?)

u

or equivalently,

(6.46)

However D? is diagonal and hence,
Therefore, (6.46) becomes

—~
S
S
v

1 .
)jj = (Wa)jjdjj, j=1,--p.

Won . (Wa)ndu
(W1)ii .
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W ~ W W)t (W11 diy

Since W; ~ W,, we have Wi~ Waa and so, Wi~ Wa)i i Now
P (% > O) = 1, which is possible only if ‘% =1,i=2,...,p. Consequently

we get D = cl,, where c is a scalar constant. From (6.45), we get
V%Wl ~ r%ch.
Taking trace on both sides, we have tr(r?W1) = tr(r3cW;), and hence,
P2tr(Wy) = ractr(W). (6.47)

Since, tr(UlU'l) =1, all the elements of U; are less than 1. Therefore, there exists
a positive constant K such that ¢r(U;U) < K. From Theorem 5.10, it follows that
P(rk(U;AU)) = p) = 1. Consequently U; AU > 0 with probability one. Therefore,
E((tr(W1))k) is a finite positive number for k = 1,2, .. .. From (6.47), it follows that

E(r)E((tr(W1))*) = E((cr3))E((tr(W2))F), k=1,2,....
Hence,
Er) =E((cr?)b), k=1,2,.... (6.48)
Since, Z; ~ s1L; and L| =~ r;U;, we can write Z; =~ s1r; Uy, where s;, r1, and U,
are independent.
Similarly, Z; = s5+/cr, Uy, with s5, rp, U, independent. Since s1 = s, we have

E=EGH=(1-R), k=0,1,2,.... (6.49)

From (6.48) and (6.49), it follows that
1 k
E ((cs%r%> ) =E ((s%r%)k) .

x = tr(X'Z7'X)
=tr(Z\H'Z'H'Zy)
= tr(ZﬁZl)
= s7ritr(U)UY)

— 3

Now,
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Thus, my = E ((s3r3)X) = E ((cs3r3)¥). However, if my is the kth moment of
1

1

a random variable and Y, ( )Zk = oo, then the distribution of the random

oy
variable is uniquely determined (see Rao, 1973, p. 106). Thus we have s%r% ~ cs% r%.

Therefore, s1r) & \/csara, and hence Z; ~ Z,. [}
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Chapter 7
Estimation

7.1 Maximum Likelihood Estimators of the Parameters

Let X ~ E, ,(M, X ® @, ), with p.d.f.

1

= Wh(zr(x ~-M)z ' (X-M)o ).

fX)

Let n > p and assume / is known. We want to estimate M, X, and @ based on a
single observation from X.

First, we show that, without imposing some restrictions on M, X, and @, indeed
the maximum likelihood estimators (MLE’s) do not exist.

Let a be a positive number for which k(a) # 0, and @ be any n x n positive

definite matrix. Let s be a positive number, and define k = %. LetVbeapxn

matrix such that V = k(I,,0), M = X — VCD%, and X = sI,,. Then, f(X) can be
expressed as

FX) = ———— h(tr(@V'Z 'Voi o))

|sP|2|D]2

1 _

- lmih(tr(kz(slp) 1Ip))

s7|CD|%

1 k> )
= ——5h —PD
57 |D|% <s

ha)

s7T|D|E

A K. Gupta et al., Elliptically Contoured Models in Statistics and Portfolio Theory, 173
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Therefore, if s — 0, then f(X) — oo. Hence, the MLE’s do not exist. This example
shows that even if @ is known, there are no MLE’s for M and X. Thus, we have to
restrict the parameter space, in order to get the MLE’s. The following lemma will

be needed to obtain the estimation results.

Lemma 7.1. Let X be a p X n matrix, U a p-dimensional vector, v an n-dimensional

vector and A an n X n symmetric matrix, such that v'Av # 0. Then,

(X —uvHAX—uv') =X (A — VAV

, Av Av !
JF(VAV)(XV/AV u XV’AV ul .

PROOF: The right hand side of (7.1) equals

AVV'A) X'

AvV'A

XAX —X ).¢
v/ Av
AvvA Av VA !
/ i ! _ e ! _ !
+ (VAY) <X (V’AV)2X vAvH THYAY THE )

= XAX' — XAvp' — uvAX' + (VAV) up’
= (X—pv)AX—pv'),

which is the left hand side of (7.1).

Now denote by x; the ith column of the matrix X, then

(xi =) (xi — ) = (X — pey,) (X — pey)’

-

1

ncex=Lvyn x.—1
and since X = - 3 | x; = - Xe,, we have

(xi —X)(x; —X)' = (X —%e, ) (X —%e,)’

[ AN
= (X — Xene,,) (X — Xe,,en)
n n
1 / 1 / ' !
=XI,— ;enen I,— ;enen X
=X11I Lee X'
= n— ;enen .

-

1

1

(7.1)
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Choosing v = e, and A = I,,, we have VAv = n, A — 1?‘[(“? =1, - %eneﬁl, and
XV‘,‘XV = %en. Then, from Lemma 7.1, we get
n n
!/ S !
2 xi—p)(xi—p) =3 (xi — %) (x; — %) +n(&—p) (X —p),
i=1 i=1
which is a well-known identity.
Theorem 7.1. Let X ~ E, ,(M, X ® @, ), with p.d.f.
1 _ _
fX) = ——h(tr(X-M)'Z (X-M)@ ),
PR
where h(z) is monotone decreasing on [0,0). Suppose h, X, and @ are known and
we want to find the MLE of M (say M), based on a single observation X. Then,

(a) M=X,
(b) If M = uv', where U is p- dimensional v is n-dimensional vector and v # 0 is

known, the MLE of 1L is I = x-@ S 1 , and
-1
(¢c) IfM s of the form M = pel,, the MLE of w is fi = X ff’p,?"
e)l
PROOF:
(a) It holds that
1
fX) = ——h(tr(X-M)'T ' (X-M)@ 1))
|Z[2|@|2

- 2|31|d>|5h <tr ((2—%(XM)¢—%)/ (2—%(XM)@—%))> .

Lety = vec (Z 2(X-M)P~ ) Then, we have

tr ((Zi(X—M)qbi)/ (zi(X—M)qbi)) —vYy.

Since & is monotone decreasmg in [0, ) the last expression attains its minimum
when y'y is minimum. Now y'y > 0 and y'y = 0 iff y = 0, therefore f(X) is
minimized for y = 0. This means that X = M. Hence, M=X.

(b) We have

1
X)= ——5h(tr(Z ' (X —uv)® (X —uv'))).
f(X) SHEE (27 (X—uv)@™ (X—puv)))
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Using Lemma 7.1, we can write

1_W>X/

1
X)= ————h(er (27" X[ D
fX) BT < ( { ( vVaoly
oy oy '
+ Vo lv) [ X——— X———
( )( voly “)( voly IJ)
1 (p—l I(D—l
(e (o - ) )
|Z|z| D2 VO 'y

o ly ' o ly
-1 1
Vo v)tr<<X Py ,u) p) (X Py u)))

Again, since i is monotone decreasing in [0,e0) the last expression attains

—1 / -1
its minimum when #r ((X D v f,u) >! (X D v ,u)) is minimum.

—1 —1
v vy v 'y

—1 /
Writing y = vec (Z -3 (X %,IV — u)) , we have to minimize yy'. Therefore,
v v

minimum is attained at y = 0. So we must have X

—1
/q()pj = u. Hence,
v

A%

oy
f=X———-.
H voly
(c) This is a special case of (b), with v =e,,. [

The next result is based on a theorem due to Anderson, Fang and Hsu (1986).

Theorem 7.2. Assume we have an observation X from the distribution E,, ,(M, X ®
D, y), where (M, X @ @) € Q C RP*" x RP"™P". Suppose 2 has the property that
if (Q,S) € Q2 (Qe RP", S e RP*P"), then (Q,cS) € Q2 for any ¢ > 0 scalar.
Moreover, let X have the p.d.f.

fX) (rr(X=M)Z7'(X-M)@™1)),

= niph
2|2 |@]2
where 1(z) = 27 h(z), 2> 0 has a finite maximum at 7 = z;, > 0. Furthermore,
suppose that under the assumption that X has the distribution Ny ,(M,X ® @),
(M,2® @) € Q, the MLE’s of M and X @ @ are M* and (X @ ®)*, which are
unique and P((X® @)* > 0) = 1. Then, under the condition X ~E,, ,(M,Z @ @, y),

(M,Z® ®) € Q, the MLE’s of M and £ ® ® are M = M* and (2@ ®) =
’Z’—: (2 ® ®@)* and the maximum of the likelihood is

(£0 @) 2h(z).
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PROOQOF: Define

z 10)
Z = , D= — (7.2)
|7 @[
and z = tr((X—M)' 2~/ (X —M)@!). Then, we have
tr(X=M)Z7T/(X-=M)p;!
7= ( )i(l )1). (7.3)
|Z|7[@]n
Therefore, we can write
F(X) = ——— ()
=~ .z
' z|%|@|
=25 r(X-M)Z (X -M)D; 1)~ F (7.4)

Hence, maximizing f(X) is equivalent to maximizing [(z) and (tr((X —
M) (X —=M)®; )" 7. If X ~ N,pu(M,Z ® @), then h(z) = (21) Te 3,
and

pn  pn

I(z) = (2r) 777 e 3.

Therefore,

dl(z) _m (pn pn_y _z g 1\ _:
e 7 ol 547 (== 3
iz (2m) (2 7227 e 242 5 )¢

1 n n
= 7(27r)*‘n71%71

5 e 2(pn—2).

Consequently, /(z) attains its maximum at z = pn. From the conditions of the
pn

theorem it follows that under normality, (t((X — M)’/ (X -M)®; ')~ 7 is

maximized forM=M*and 2,  @; = (X, @ P)* = M. Since, (tr(X—

|(Za@)|P
M)z (X - M)(Dl_l))’% does not depend on £, in the case of X ~ E,, ,(M, Z ®
@, ), it also attains its maximum for M = M=M*and I, Q @ = (Z10d)) =
(Z1® @1)*. On the other hand, /(z) is maximized for z = z;,. Then, using (7.2) and
(7.3) we get

(Z20) = |(Z2 )7 (X 2 d)

aqlia 1, —
= [Z]7[D|" (2 @ D)



178 7 Estimation

r(X—M)YS; (X-M)d; '

_ ST
Zh
ntr(X—M)'Z H(X - M) ;! i}
_ pf (( ) 1 ( ) 1 )<Zl ®d)1)
Zn pn
n
=Mz o @)
Zh
The maximum of the likelihood is
1 1
———h(z) = [(Z@ D)2 h(z). [ ]
(Z@P)|2
Remark 7.1. Assume X ~ N, ,(M, X ® @). Then
h(z) = (2n)_%e_% I(z) = <i> 7 e 3
b 271_ b

pn

and /(z) attains its maximum at z; = pn. Moreover, h(z,) = (2me)™ 2 .

It is natural to ask whether z;,, as defined in Theorem 7.2, exists in a large class of
m.e.c. distributions. The following lemma, essentially due to Anderson, Fang, and
Hsu (1986), gives a sufficient condition for the existence of zj,.

Lemma 7.2. LetX ~E, ,(M,X ® @, y) have the p.d.f.

1

= h(r(X-M)Z ' (X-M)D 1))
SHCE (er(( ) )))

f(X)

Assume h(z), (z > 0) is continuous and monotone decreasing, if z is sufficiently
large. Then, there exists zj > 0, such that 1(z) = z'2 h(z) attains its maximum at
Z=2Zp

PROOF: From Theorem 2.16, r = (tr((X —M)'Z~1(X — M)(D’l))% has the p.d.f.

pi(r) = (), 20

p20y) = oy ETh(y) y=>0
r(%)

Consequently,
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yu
T2

rigy’

“h(y)dy = 1.

Therefore, f;’y%_lh(y)dy —0asz—oo.
Now, let ¢+ = 5. Then we prove that for sufficiently large z, g(z) <

cftwy%n’lh(y)dy, where c is a constant.
If np > 1 then

If np =1, then

However, f,“y%’lh(y)dy — 0 as 1 — oo, thus /(z) — 0 as z — . Moreover, /(0)
0Ah(0) = 0. Since, /(z) is continuous, nonnegative and lim;_,0/(z) = lim;—,«/(z) =
1(z) attains its minimum at a positive number z;,.

=l

For the next estimation result we need the following lemma, given in Anderson
(2003, p. 69).
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Lemma 7.3. Let A be a p X p positive definite matrix and define a function g on
the set of p X p positive definite matrices as

¢(B) = —nlogB| —1r(B~'A).

A

Then, g(B) attains its maximum at B = 7 and its maximum value is

A
g (> = pn(logn— 1) —nlog|A|.
n

PROOF: We can write

g(B) = —nlog|B| —tr(B'A)
n(log|A| —log|B|) —tr(B™'A) — nlog|A|
= nlog|B~'A| —tr(B~'A) —nlog|A|.

Now, g(B) is maximized for the same B as 4(B) = nlog|B~'A| —tr(B~'A). We have

h(B) = nzog‘B*‘A%A%

1t L
—tr (B AZA2

- nlog‘A%B’lA%

i (A%B*IA%) .

Now, from Theorem 1.1, it follows that A%B’IA% is also positive definite and from
Theorem 1.7, it can be written as

AZB'A? = GDG/,

where G is p X p orthogonal and D is p x p diagonal with positive diagonal elements
A, A2, ., Ap. We obtain

P p
h(B) = nlog (HL) =Y A
i=1 i=1

p
=Y (nloghi — 4;).
i=1
Now, 33#)5) = ll — 1. Thus from 815723) =0,wegetd =n,i=12,...,p. Hence,

h(B) attains its maximum when D = nI, and so

AB'A? = Gnl, G =,
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Therefore, B! = nA~!, and then B = 2. Moreover,
A A
) = ntog (|2]) = tr(n
¢ (i) = ton ([5]) oo
= pn(logn—1) —nlog|A|. m

Theorem 7.3. Let X ~ E, ,(M, X ® @, y) have the p.d.f.

1

= h(r(X-M)Z ' (X-M)D 1)),
SHCE (er(( )2 )2))

f(X)

where n > p and the function 1(z) = 27 h(z), z € [0,00), attains its maximum for a
positive z (say zp,). Suppose h, M, and @ are known, and we want to find the MLE
of X (say X), based on a single observation X. Then,

s=Lx-Mmox-m).
Zh

PROOF: Step 1. First, we prove the result for normal distribution; that is, when
X ~ Npu(M,Z® ®). Here, h(z) =exp (—5), and

-1 o -1 o l
£%) = (I X-M)o (X M>>}_

n—netr
2n)7 |2|%| D)k { 2

Taking logarithm of both sides of the last equation and applying Lemma 7.3, we
obtain that f(X) attains its maximum in X, if

3= %(XfM)(D_l(XfM)’.

Step 2. Let X ~ E, ,(M, X ® @, y). Since we proved, in Step 1, that for the
normal case, the MLE of X is %(X —M)® ! (X—-M)/, by using Theorem 7.2 we get

A 1
s=Pox—myo'(x-M) = Lx-mo ' (x-Mm)'.
ipn n Zh

It follows, from Theorem 5.11, that rk((X — M)® (X —M)’) = p with
probability one. Hence, P(2 > 0) = 1. ]

The next result is an extension of a result of Anderson, Fang, and Hsu (1986).
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Theorem 7.4. Let X ~ E,, ,(uvV',Z ® @, y) have the p.d.f.

1

= W}l(”((x —uV)T (X -y ),

f(X)

where n > p, WL is a p-dimensional vector, v is an n-dimensional nonzero vector, and
the function 1(z) = 2% h(z), z € [0,0), attains its maximum for a positive z (say z).
Suppose h, v, and @ are known and we want to find the MLEs of i and X (say [i
and %) based on a single observation X. Then

! .
A=X—Y" and sz<cb—1

B (D_IVV/(D_1>X,
voly Z '

voly
In the special case, when v = e,, we have

! .
A=X—"" 4nq zsz<q>—1—

D e @! X
e dle zZ '
n n h

e dle,
PROOF: Step 1. First we prove the result for normal distribution; that is, when

X ~ N, , (v, £ @ ®). Here, h(z) = exp (—3).
Using Lemma 7.1, the p.d.f. of X can be written as

1 1 o lywo!
(2m) % 2|3 | @]} 2 vorly

oy oy !
o (X, 4) (o ) |)
O v) voly K voly H

Minimizing the expression on the right-hand side, we get

1 -1
o1y o X(o1 - 2w )y
a=X — and X= =¥

Vo v n

As noted in Remark 7.1, /(z) is maximized for z;, = pn. Thus,

. o 'wo!

$-Px (@' - ) X',

Zn vVoTly

Step2.LetX ~ E,, ,(uv, X ®@ @, y). We found the MLE’s of u and X for the normal
case in Step 1. Now using Theorem 7.2, we get
L o ly
H= vaoly
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and

11
X(‘Dil _ O wo )X/ _ _
2:@ V'qsilv :BX <(I)_1(D IVVIII) 1>X’.
Zp n Zn vVoTy

From Theorem 5.11 it follows that with probability one,

qul /@71 @71 /¢7l
(X (o' = Y2 X ) —min( k(@ - YT ) p).
voly voly

1 -1
Since, d 1 - L WP _ 5

Nl—=

S ]
(In - W) @7 and @ is of full rank,

vy vy
we have
o 'vwo! O IW D2
O L B P e
vVoTly Vo y
O I D1
= k) =k (qs)
/(I)—l
e (22
VO v
=n—1
where we used part (ii) of Theorem 1.3. Hence, P(£ > 0) = 1. ]

7.2 Properties of Estimators

Now, we derive the distributions of the estimators of ( and X. These theorems are
based on Anderson and Fang (1982a).

Theorem 7.5. X ~E,,(uv',X® @, y) have the p.d.f.

1

FX) = —r—h
SHOE

(rr(X—pv') 2 (X —pv) @),

where n > p, I is a p-dimensional vector and v is an n-dimensional nonzero vector,
v#0. Let

(p—l (I)_l /(p—l
f=X—"V and A=X[0 -7 \x/.
voly voly
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(a) Then, the joint density of {I and A is
. Vo iy Al R P
pliA) = O
AN
)

I,
“1A)). (7.5)

+tr(Z

(b) A ~E, (,u, V/TI’IVZ’ l//) and {1 has the p.d.f.

. 2(V’®71V)%”@ = opn=1)—1302 dea—lora \y—l/n

pi(f) = F(’“"’”)Izll L h(r"+V' @~ v(—p) X7 (—p))dr.
2
2
(7.6)
(c) A~Gp, (Z,";Zl,l,l/) and its p.d.f. is given by
LN oo

pa(A) = — 2T AL P2 4 er(Z71A) . (1.7)

r(5)5 (554 =] Jo

PROOQOF:

(a) First, we derive the result for the case @ =1I,.

Let G € O(n), whose first column is \/\VTV and let us use the notation G =

(\/%,Gl). Since G is orthogonal, we have GG’ = I,; that is, \/%\/% +
GG| =1,. Thus,

v

GG =L, ——-. (7.8)
v'v
Define Y = XG. Then,
YNE,,,,,(/.LV/G,Z,'@I,”I//). (7.9)

Partition Y as Y = (y;,Y2), where y; is a p-dimensional vector. Since, G is
orthogonal, v'G| = 0. Therefore,

VG =V (\/:TV,&) = (VV'v,0).

Now, (7.9) can be written as

(¥1,Y2) ~ Epu(VVVU,0), 2 1L, p). (7.10)



7.2 Properties of Estimators 185

_ _v_ — _v_ N — YL
Moreover, (y1,Y2) = X(\/W’G1> = (X\/‘T‘ﬂXGl)’ hence [I = e and
using (7.8) we get A = Y, Y5.
Now, the density of Y; that is, the joint density of y; and Y is

p3(y1, Y2 )= 21| h((y1—VVv) Z7 (y1 = VViv) +r(Y4Z7'Y)))

zlﬁh«ylmm’z-%ylmu>+rr<z-1YzYa>>.<7-11>

Using Lemma 5.2, we can write the joint density of y; and A as

p(n—1)

”T\AVH?H %
I, ("3%) |Z|2

h((y1 —VV'vp)' 27 (y1 — VVivu) +tr(Z7TA)). (7.12)

pa(y1,A) =

We have y; = V/V/vfl. Hence, J(y; — fl) = (v'v) 2. Therefore, the joint p.d.f. of
[ and A is

) BV — ) E N (- ) er(E1A)).

(7.13)
Now, for @ # I, define X* = ) Then, X* ~ E, ,(uv*', 2 ®1,,y), with
v =@ Ty, Thus, we get v*/v: = v @~ ly,

*

* k]
f=X" v*va* and A=X* (1,1 — VV) X+,

v*Iy*

So, using the ﬁrst part of the proof, from (7.13), we obtain (7.5).
(b) Since, I = X2

D 1 , we get

LB vVoly 2®v/<1>_1<17(1>_1v = I s
[J, 14 .uv,q)_lvv (V/(D_IV)Z Hl/ 4 u7V,(D_1V 7W .

Now, assume @ = I,,. Then, from (7.11), we derive the p.d.f. of y; = VV'v{l, as

ps(y1) = / p3(y1,Y2)dYs. (7.14)
Rp*(n—1)

Let W = =~ 2Y,. Then, J(Ys > W) = \E|% and from (7.11) and (7.14) we
get
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1 n—
ps(y) = = [ (= VA= - V)
|Z|2 RP>(n—1)
+ tr(WW'))dW. (7.15)

Writing w = vec(W’), (7.15) becomes

1
|2|% JRp(n—1)

ps(y1) =

h((y1 =VVvp) 27 (y1 = VV'vi) + w'w)dw

Using Lemma 2.1, we get

(1)
1 27" oo
PS(YI) — ﬁL/ rp(n*l)flh(rz_,'_(yl_1/V/vu)/
\2|7r<@) 0

X T (y1 — V) )dr

Since I = (V’V)’%yl and J(y; — f1) = (v'v) 2, the p.d.f. of i is given by

p _p=1) -
_ M / P02 v (i — ) 7 (- p))dr
-1
F( ) bk

=

pi(

7. 16)
For @ #1,, define X* = X® 2. Then, X* ~ E,, ,(uv*, Z ®L,, y), with v*
@~ 2v. Thus, we getvV'v  =v® lvand i = X*
(7.6).
(c) First, assume @ =1,,. Then from (7.10) we get

= ,*v* and from (7.16) we obtain
Y2 ~ Ep,nfl (032 ®In717 llf)

Hence, by Definition 5.1, A = Y,Y5 ~ G, (Z,%5}, y), and its p.d.f., using
(7.12), is given by

P2(A) = /W pa(y1,A)dy;. (7.17)

Let w = 2_%(y1 —Vv/Vv'vu). Then, J(y; — Q1) = |2 2, and using (7.12) and

(7.17) we can write

p(n—1)
T

S A=

bk |Ah-/ h(W'w+tr(Z~ A))dw

Using polar coordinates, we get
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p(n—1) p
2 n— 2 2 bt
PaA) = AT [T R (A
n, (%) |z r)Jb

277 |A| 2! o
= T2 [Al ,H/ P (P +tr(Z7A))dr.

(55 (%) 2= Jo

For @ # I, define X* = X® 2. Then, X* ~ E,,(uv", X @ 1,,y), with
v = CD’%V. Since, A = X* (In — %Vv*,:) X* and A does not depend on v*, it
has the same distribution under the m.e.c. distribution with @ = I,, as under the
m.e.c. distribution with @ # I,,. [

Theorem 7.6. Let X ~ E,, ,(0,X® @, y) have the p.d.f.

f(X) h(tr(X'Z7 X0 1)),

PHEE
where n > p. Let B=X®"'X/, then B ~ Gp,1 (Z, 5 l//), and the p.d.f. of B is
e

AACED

h(tr(Z7'W)).

PROOF: First, assume @ = I,. Then, by Definition 5.1, we have B = XX’ ~

Gp,1 (2,4, v). Moreover, we have f(X) = ‘le% h(tr(2~'XX’)). Using Lemma 5.1,

we obtain the p.d.f. of B as

T2 n—p—1
_ 2

h(tr(Z7'B)). (7.18)

For @ # 1, define X* = X® 2. Then, X* ~ E,, ,(0, E®1L,, ), with v: = &~ 2,
Since, B = X*X*/ and the distribution of B is the same under the m.e.c. distribution
with @ = I, as under the m.e.c. distribution with @ #1I,,. [}

Before we derive the joint density of the characteristic roots of the estimators of
X, we give a lemma taken from Anderson (2003).

Lemma 7.4. Let A be a symmetric random matrix. Let Ay > Ay > ... > A, be
the characteristic roots of A, and assume that the density of A is a function of

(M, A2, Ap), ie. f(A) =g(A1,Aa,..., Ap). Then, the p.df. of (A1, A2,...,Ap) is

2
_ 7 g(A, A2 s Ap) Tic (A — A))
L (%)
PROOF: See Anderson (2003), p. 538. [}

p(ll,ﬂq,...,lp)
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Theorem 7.7. Let X ~ E,, ,(uv',1, ® ®@,y) have the p.d.f.

l —_
JX) = Sphr(X =) (K- pv)e))
where n > p, I is a p-dimensional vector and v is an n-dimensional nonzero vector,
Sl
v#£0. LetA:X(Q)*l _ M)X/

Further let Ay > Ay > ... > A, be the characteristic roots of A. Then, the p.d.f.
of (M, A2, ., Ap) s

n—p

o (132+n) » -1
P, 22,.. . Ap) = (Hl,)

&)L )55 =

P
x [T —4) / r”lh<r2+z{li>dr. (7.19)

i<j

PROOF: From (7.7), the p.d.f. of A is

pn

2n e (2%
pz(A):F(2> (Tl) (HA) /Orp h(r +i§{li>dr

4

'E

and then, using Lemma 7.4, we obtain (7.19). [}

Theorem 7.8. Let X ~ E, ,(0,1,® @, y) have the p.d.f.
1
f(X) = —h(tr(X'X@™1)),
@[>

where n > p. Let B=X®'X'. Furtherlet Ay > Ay > ... > Ap be the characteristic
roots of B. Then, the p.d.f. of (A1, A2,..., ) is

n—p—1

p(p+n) 7 p
p(ll,lz,...,lp)z 7() (Hl) H()vi—z.j)h (z%) . (7.20)

L (%) i<
PROOQOF: From (7.18), the p.d.f. of B is

n—p—1

iy = TR h&’“)

L ("7)

and using Lemma 7.4, we obtain (7.20). [}
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Next, we want to give a representation of the generalized variance of the
estimator of X, for which we need the following result.

Lemma 7.5. Let X ~ N, ,(0,1, ® L,), with n > p. Then, there exists a lower
triangular random matrix T (that is, t;; = 0 if i < j), such that

G~ Xnivr P=1.p, (7.21)
tij ~N(0,1), i>j, (7.22)
tij, 1>] areindependent, (7.23)
and XX' =~ TT'.
PROQF: See Anderson (2003), p. 253. [}

Theorem 7.9. Let X ~ E,, ,(0,2 Q@ @, y) have the p.d.f.

f(X) h(tr(X'Z7 X)),

L

where n > p. Let X ~ rX JUD? be the stochastic representation of X. Let B =
X&~ !X/, then

p .
~7r ;’ .
B| ~ 27|Z H'Hly’p (7.24)
(2?:1 yi)
where
Vi~ Xpins i=1...p, (7.25)
Ypt1 ~ Xppony s and (7.26)
2
yi, i=1,...,p+1 areindependent. (7.27)

PROOF: It follows, from Theorem 7.6, that the distribution of B does not depend on
®. So, we can assume @ =1,,.
LetV~N,,(0,I,®I,). Then, from Theorem 2.15, it follows that U ~ v__

/1r(VV)
Assume X and V are independent. Then, we get
Xnrsi ¥V
Vir(VV')
and hence,
A\ A [VV/|
Bl = XX/|~ |[PZi—— 53| = /|5
B = XX~ r 22 L v vy
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From Lemma 7.5, we can find a lower triangular matrix T, such that
VV =~ TT,

and T satisfies (7.21), (7.22) and (7.23). Then,
p
V|~ ]
i=1

and

tr(VV') = ZIHI—i—ZtU

i>j

Define y; = t”, =1,...,pand y,1 = Y jtij. Then, (7.24)—~(7.27) are satisfied. |
Theorems 7.8 and 7.9 are adapted from Anderson and Fang (1982b). Now, we

study the question of unbiasedness of the estimators of tt and X.

Theorem 7.10. LetX ~E,,(M,X® @, y).

(a) Then, M = X is an unbiased estimator of M.
(b) IfM, @, and y are known then

-1
2ny’(0)
is an unbiased estimator of X.

(c) IfM = uv', U is a p-dimensional vector, v is an n-dimensional nonzero vector,
d)

3= X-M)® (X -M)

v #0, vand @ are known, then I = X

is an unbiased estimator of .
Moreover, if y is also known, then

_ —1lyv/p—1
1 X (q)l D w :D ) <’
2(n—1)y’(0) Vo ly

is an unbiased estimator of X.

M

2=

We assume that the first-order moment of X exists when we state the unbiasedness
of the estimators of W and that the second-order moment exists when we consider
the unbiasedness of the estimators of X.

PROOQOF:

(@) E(M) =E(X) =M.

(b) Let Y = (X —M)® 2. Then, Y ~ E, ,(0,E @1, y). So £| =
it follows, from Theorem 3.18 that

!
2W ( >YY and

- —1

E(X)= —W,(O)(—ZW(O))Z"(L) =2
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(¢) Now we have

oy vVoly
) = 'LL :lJ_,

E(m:E(Xv’(Dlv voly

From Theorem 3.18, we obtain

E(%,) = fm(fzwm)z:r <(q>—1qj:g_/i_l) qb)

+ uv <®l—m) vu'
= ni 12 (tr(I,,)—tr <§¢1V1V‘i>> +u (V/(DIV_W> '
and since tr (?;,VIVV/) =tr (::g:l:) = ::g:i: =1, we get
E(Ez)zn_lz(n—l)w:z. =

The next theorem focuses on the sufficiency of the estimators.

Theorem 7.11. Let X ~ E, ,(M,X ® @, ), with the p.d.f.

f(X) h(tr(X—M)'Z /(X —M)D 1)),

I

and assume @ is known.

(a) If X is known, then M = X is sufficient for M.

(b) IfM is known, then A = (X —M)® (X — M)’ is sufficient for X.

(c) IfM = uv', where U is a p-dimensional vector, and v # 0 is an n-dimensional
known vector, then ({1,B) is sufficient for (U, X), where

. o ly

(Dfl /§D71
LV o B=x[o' - YT \x.
vVoly

vVoly
PROOF:

(a) Trivial.

(b) This statement follows, if we write

f(X) h(er(E7 (X -M)@ ™ (X ~M)']))

L
1

= Wh(lr(Z”A))
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(c) Using Lemma 7.1, we can write
FX) = ———h (tr (21 [x (q>1 _ e wer
|Z|% || vVoly

oy o ly '
-1
- e (x5 ) (Xv/@lv‘“)D)

- - r -1 'p—1 N N li )
—|2|%|q)|gh(t (T B+ (Vo) (A —pu)(f—pu)]))

This proves that ({1,B) is sufficient for (u,X). ]

Remark 7.2. LetX ~E, ,(ue,,Z ®1,,y) have the p.d.f.

1

= Wh(”((x — €))7 (X —pe)))),

f(X)

where U is a p-dimensional vector and £ : R(J)r — Ré a decreasing function. Let
g: Rg — Rg be an increasing function. Assume we have an observation from X
and want to estimate g. Then, I = X%;l = X is a minimax estimator of y under
the loss function /(z) = g((z — u)’X~'(z — u)). This result has been proved by
Fan and Fang (1985a). In another paper, Fan and Fang (1985b) showed that if in
addition to the above mentioned conditions, we assume that n > p > 4, and g is
a convex function whose second derivative exists almost everywhere with respect
to the Lebesgue measure and P(X = pe),) = 0, then X is an inadmissible estimator

) X, where

of u. More precisely, they showed that the estimator fI. = (1 —

—

X2 x

X

£=X(1,~ %)X and

2pn—p+2)(n—1)(p—2)(p—3)
O = p ) (p— ) —2pn+ 20t p—2)

dominates X. As a consequence, [I. is also a minimax estimator of .



Chapter 8
Hypothesis Testing

8.1 General Results

Before studying concrete hypotheses, we derive some general theorems. These
results are based on Anderson, Fang, and Hsu (1986) and Hsu (1985b).

Theorem 8.1. Assume we have an observation X from the distribution E,, ,(M, X ®
D, y), where (M, X @) € Q C RP*" x RP"*P", and we want to test

Hy: M,Z@®)cw against H: (MXZ®)ec Q- o, 8.1)

where @ C Q. Suppose Q and ® have the properties that if Q € RP*", S € RP"*P",
then (Q,S) € Q implies (Q,cS) € Q and (Q,S) € w implies (Q,cS) € w for any
positive scalar c. Moreover, let X have the p.d.f.

1

= h(r(X—M)Z I (X-M)> 1)),
SHCE (er(( ) )))

fX)

where 1(z) = 27 h(z) (z > 0) has a finite maximum at z = zj, > 0. Furthermore,
suppose that under the assumption that X ~ N, ,(M,Z ® @), (M, Z® @) € Q,
the MLE’s of M and £ @ @ are M* and (X @ ®)*, which are unique and
P(Z®)*>0)=1.

Assume also that under the assumption that X ~ N, ,(M,Z ® @), (M,Z® @) €
o, the MLE’s of M and £ @ @ are My and (X ® @), which are unique and P((X ®
D);>0)=1.

Then, the likelihood ratio test (LRT) statistic for testing (8.1) under the as-

sumption that X ~ E, ,(M,Z @ @, V), is the same as under the assumption that

X ~Npu(M,Z® @), namely %.

PROOF: From Theorem 7.2 it follows that under the condition E, ,(M, 2 ® @, y),

T~

(M, 2@ ®) € Q, the MLE’s of M and £ ® @ are M = M* and (£ @ @) = %(2@

A K. Gupta et al., Elliptically Contoured Models in Statistics and Portfolio Theory, 193
DOI 10.1007/978-1-4614-8154-6_8, © Springer Science+Business Media New York 2013
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®@)* and the maximum of the likelihood is
(E@®)| 2h(z).

Similarly, under the condition E, ,(M,Z® @, y), (M,X ® @) € o, the MLE’s of

_

M and X ® @ are My = M} and (Z@ @)y = %(2 ® @) and the maximum of the
likelihood is

N |
(ZQ D)ol 2h(z).
Hence, the LRT statistic is

— np |
(Z@®)o| 2h(z) _ 5 (2O P _ <(2®(D)*|)2
(TOR) k@) |yt MESP
Zh
which is equivalent to the test statistic %. m
0

Theorem 8.2. Assume we have an observation X from the absolutely continuous
distribution Ep, ,(M, 2@ @, y), where (M, X @ @) € Q = Q; x £, with Q; € RP*",
Q) € RP"™P". We want to test

Hy: (M,ZQ®)ew against H : (M,XZR®)eQ— o,

where © = 0] X @y, 0] C Q), Wy C Q. Assume that 0 € ). Let f(Z) be a test
statistic, such that f(cZ) = f(Z) for any scalar ¢ > 0. Then, we have the following

(a) If
f(2)=f(Z-M) (8.2)

for every M € @, then the null distribution of f(X) is the same under X ~
Epn(M, 2@ @, y), as under X ~ Ny, ,(M, Z ® ®).

(b) If f(Z) = f(Z —M) for every M € Q, then the distribution of f(X), null as
well as the nonnull, is the same under X ~ Ep, ,(M, X ® @, y), as under X ~
Nppn(M,Z® ®).

PROOF:

(2) Let X~ E,,(M,Z®®,y), M€ o. Define Y =X — M. Then Y ~ E,, ,(0,Z®
@, y) and f(X) = f(X—M) = f(Y). Thus, the distribution of f(X) is the same
as the distribution of f(Y).
From Theorem 5.12, it follows that the distribution of f(Y) is the same under
Y~E, (0,X®®,y),as under Y ~ N, ,(0,X® @). However, f(Y) = f(Y+
M), therefore, the distribution of f(Y) is the same under Y ~ N, ,(0,X ® @),
asunder Y ~ N, ,(M, 2 ® @).
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() Let X ~ E,,(M,Z® ®,y), M € Q. Define Y =X —-M. Then Y ~
Epn(0,X ® @,y) and the proof can be completed in exactly the same way
as the proof of part (a). [

Corollary 8.1. Assume that the conditions of Theorem 8.2 are satisfied, including
the condition of part (b). Assume that a test based on f(X) is unbiased under X ~
Np (M, X ® @). Then the same test is also unbiased under X ~ E, ,(M, X ® @, y).

If a test based on f(X) is strictly unbiased under X ~ Ny, ,(M, X ® ®@); that is,
the power function is greater under Hy than under Hy; then the same test is also
strictly unbiased under X ~ Ep, ,(M, X ® @, y).

PROOF: Since the distribution of the test statistic does not depend on v, neither does
the power function. Now, the unbiasedness is determined by the power function.
So, if the test is unbiased when y(z) = exp (—%), then it is also unbiased for the
other y’s. The other part of the statement follows similarly. [

Next, we look at the hypothesis testing problem from the point of view of
invariance.

Theorem 8.3. Assume we have an observation X from the absolutely continuous
distribution Ep, ,(M, X Q@ @, y), where (M, X @ @) € Q = Q; x £, with Q| € RP*",
Q, € RP"™P" and we want to test

Hy: M,2®)cw against H: M ZQ®) € Q— o,

where @ = © X @, @] C 1, @y C L. Let 0 € ;. Assume the hypotheses are
invariant under a group G of transformations g : RP*™ — RP*", such that g(X) =
cX, ¢ > 0 scalar. Let f(X) be a test statistic invariant under G. Then, we have the
following.

(a) If g(X) =X—M, M € @, are all elements of G, then the null distribution of
f(X) is the same under X ~ E, ,(M,Z® @, y), as under X ~ N, ,(M,Z ® D).

(b) If g X) =X-—M, M € Q, are all elements of G, then the distribution of f(X),
the null as well as the nonnull is the same under X ~ E, ,(M,X ® @, y), as
under X ~ N, ,(M,Z @ ®).

PROOF: The results follow from Theorem 8.2, since the invariance of f(X), under
the transformation g(X) = ¢X, ¢ > 0 implies f(X) = f(cX), ¢ > 0; the invariance
under the transformation g(X) = X —M, M € o, implies f(X) = f(X - M),
M € wj, and the invariance under the transformation g(X) = X —-M, M € Qy,
implies f(X) = f(X—M),M € ;. ]

Corollary 8.2. Assume that the conditions of Theorem 8.3 are satisfied, including
the condition of part (b). Assume that a test based on f(X) is unbiased under X ~
Np (M, X Q@ @). Then, the same test is also unbiased under X ~ E,, ,(M,Z @ @, y).
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If a test based on f(X) is strictly unbiased under X ~ N, ,(M, X ® @), then the
same test is also strictly unbiased under X ~ E, ,(M, 2 ® @, y).

PROOF: It follows from the proof of Theorem 8.3 that the conditions of
Theorem 8.2 are satisfied including the conditions of part (b). Thus Corollary 8.1
can be applied, which completes the proof. [

Further aspects of invariant statistics are studied in the following theorems.

Theorem 8.4. Assume we have an observation X, from the absolutely continuous
distribution X ~ E,, (M, Z @ @, y), where (M, X @ @) € Q C RP*" x RP"*P", and
we want to test

Hy: M,Z@®) € w against H: ( M,ZR®)e€ Q- o,

where @ C Q. Let G be a group of the linear transformations g : RP*" — IRP*",
where g(X) = C1XCy + C3 with Cy : p X p, Cy : nx n, and C3 : p X n matrices.
Then, the hypotheses are invariant under G when X ~ E,, ,(M,X ® @, ), if and
only if the hypotheses are invariant under G when X ~ N, ,(M, X ® @).

Also suppose that the sufficient statistic T (X) for (M, X ® @) € Q is the same
under X ~ E, ,(M,Z ® @,y) as under X ~ N, ,(M,Z ® ®@). Then, f(X) is an
invariant of the sufficient statistic under G when X ~ E,, ,(M, X ® @, y), if and only
if f(X) is an invariant of the sufficient statistic under G when X ~ N, ,(M, X @ ®).

PROOF: Assume the hypotheses are invariant under G when X ~ E, ,(M, 2 ®
D, y). Let g € G. Then, g(X) = C;XC; + C3. Now,

g(X) ~ E, ,(CiMC; + C3, (C1ZC}) ® (CLPC3), y) (8.3)

Thus, we have

(i) If (M, 2 ® @) € o then (C;MC, +C3,(C12ZC)) @ (CLPC,)) €
and
(i) f (M,2® @) € Q — o then (C;MC; +C3,(C12C)) ® (CLPCy)) e Q- .

Now, assume X ~ N, ,(M, X ® @). Then
8(X) ~ N, ,(CIMC; + C3, (C12C)) ® (CLPC3)) (8.4)

and it follows from (i) and (ii) that the hypotheses are invariant under G when X
is normal.

Conversely, assume the hypotheses are invariant under G when X ~ N,, ,(M, Z ®
@) and g € G. Let g(X) = C;XC; + C;. Then, we have (8.4), and (i) and (ii)
follow. Since in the case of X ~ Ep,n(M,Z ® @, y), (8.3) holds, (i) and (ii)
imply that the hypotheses are invariant under G when X ~ E, ,(M,Z ® @, y).
Therefore, the invariant test statistics are the same for the normal case as for
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X~E,,(M,X®®,y). Since, by assumption, the sufficient statistic is the same for
X normal as for X ~ E, ,(M, X ® @, y), the statement about f(X) follows. ]

The next result follows easily from the above theorem.

Corollary 8.3. In Theorem 8.4 if G is a group of linear transformations then the
hypotheses are invariant under G without specifying what particular absolutely
continuous m.e.c. distribution we are working with.

Corollary 8.4. Assume that the conditions of Theorem 8.4 are satisfied. Also
assume the hypotheses are invariant under a group G of linear transformations
and that s(X) is a maximal invariant of the sufficient statistic under G when
X ~Npn(M,Z®®). Then s(X), is also a maximal invariant of the sufficient statistic
under G when X ~ E, ,(M, 2@ @, y).

PROOF: From Theorem 8.4 it follows that s(X) is an invariant of the sufficient
statistic under G when X ~ E,, ,(M,X ® @, y). On the other hand, the maximal
invariance of s(X) means that s(X) = s(X*) iff there exists g € G, such that
g(X) = X* and this property does not depend on the distribution of X. [}

Theorem 8.5. Assume we have an observation X from the absolutely continuous
distribution X ~ E), ,(M, X ® @, ), where (M, 2@ @) € Q = Q x £, with ; €
RP*" Q, € RP"*P", We want to test

Hy: M,Z@®)cw against H: (M2 ®)ec Q- o,

where @ = 0] X , O] € Q, y € ). Let 0 € @;. Assume the hypotheses are
invariant under a group G of linear transformations g : RP*" — RP*", where
g(X) = C1XCy+ C3 with Cy : px p, C, : nxn, and C3 : p X n matrices and
the transformations g(X) = cX—M, ¢ > 0, M € Q| are all elements of G. Also
suppose that the sufficient statistic T(X) for M, Z ® @) € Q is the same under
X~E,,(M,Z®®,y) as under X ~ N, ,(M,Z® @).

If s(X) is a maximal invariant of the sufficient statistic under G and a test based
on s(X) is uniformly most powerful invariant (UMPI) among the tests based on the
sufficient statistic in the normal case, then the same test is also UMPI among the
tests based on the sufficient statistic when X ~ E,, ,(M,Z @ @, y).

PROOF: From Theorem 8.4, it follows that the invariant of the sufficient under G,
in the normal case are the same as when X ~ E,, ,(M,X ® @, y). Corollary 8.4
implies that s(X) is a maximal invariant statistic of the sufficient statistic when X ~
E,(M,Z® @,y). Since 0 € w; and the transformations g(X) = cX—-M, ¢ > 0,
M € Q; are all elements of G, from part (b) of Theorem 8.3 it follows, that s(X) has
the same distribution under X ~ E,, ,(M, X ® @, y) as under X ~ N, ,(M, X ® @).
Since, s(X) is maximal invariant, every invariant test can be expressed as a function
of s(X) (see e.g. Lehmann 1959, p. 216). Therefore, the distributions of the invariant
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statistics are the same under X ~ E), ,(M, X ® @, y) as under X ~ N, ,(M, 2 @ ®).
Thus, if s(X) is uniformly most powerful among invariant tests in the normal case
then it has the same property when X ~ E,, ,(M, 2 ® @, y). [

8.2 Two Models

Now, we describe the parameter spaces in which we want to study hypothesis testing
problems.

8.2.1 Modell

Let x1,X»,...,X, be p-dimensional random vectors, such that n > p and x; ~
E,(u,X,y), i = 1,...,n. Moreover, assume that x;, i = 1,...,n are uncorrelated
and their joint distribution is elliptically contoured and absolutely continuous. This
model can be expressed as

X ~Ep(ue,ZoL,y), (8.5)

where X = (x1,X2,...,X,). Then the joint p.d.f. of x1,X3,...,X, can be written as

i=1

fX)= ﬁh (i(xi_u)/z_l(Xi—li)>. (8.6)

Assume [(z) = 27 h(z), z > 0 has a finite maximum at z = zj, > 0. Define

>
I

-

n
x; and A=) (x;—X)(x;—X)".
i=1

S| =

i=1

Then x = X%, A =X (I,, - %) X' and from Theorem 7.11, the statistic T(X) =
(%,A) is sufficient for (u,X).

If y(z) = exp(—%), then X ~ E, ,(ue),,Z ®1,). In this case X|,Xa,...,X, are
independent, and identically distributed random vectors each with distribution

Np(u,X). Inference for this structure has been extensively studied in Anderson
(2003).
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8.2.2 Model I1

Let x(li) , xg), .. .,x,(f;.) be p-dimensional random vectors, such thatn; > p,i=1,...,q,
and xg.l) ~E,(n,Zi ), j=1,...,n;, i =1,...,q. Moreover, assume that X;l), i=
1,...,q, j = 1,...,n; are uncorrelated and their joint distribution is also elliptically

contoured and absolutely continuous. This model can be expressed as

en1 ®u] In1 ®21
enz ®.u2 Ing ®Z2

X~ Epn : 5 : 5 llf (87)
€, U, Inq ®X,

where n =37 | n; and

X,(Z)

Then, the joint p.d.f. of xy), i=1,...,q, j=1,...,n; can be written as

S = g s |Z o (ZZ Y (xﬁ”—m)) (8.8)

i=1j

Assume (z) = 22 h(z), z > 0 has a finite maximum at z = z; > 0. Define

i ;=5 =1
and A=3 A; Alsoletx =3¢ 3% x"and B=3¢ 3 () —5)(x) —x).

Then, we get
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Thus,

q , .
fX) = Hq_11|2|nh (;"(Zil (A +n&Y —p) (&Y m)’)))

hence the statistic ()‘(('),...,)‘((q),Al,...,Aq) is sufficient for (u],...,uq,zh...,zq).
If y(z) = exp (—%), then

enl®ﬂ1 In1®21

e, QU L,®2%,
X~ N pn ’ . 2 ) " .
e, QU I, ®Z,
In this case xgi),xg), .. .,x,(é) are independent, and identically distributed random
variables each with distribution N, (u;,%;), i = 1,...,q. Moreover, Xy), i=1,...,q,
Jj=1,...,n; are jointly independent. Inference for this structure has been studied in
Anderson (2003).
A special case of Model I is when £ = ... = X, = X. Then the model can also

be expressed as
X ~ EPsVl((nule;ll auZe:ly .o '7;uqe;/1q)az ®In7 w>7
where n =¥ | n; and

X=x) . xD k2 @ )

1o Xn Xy Xy s X)Xy ).
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This leads to the same joint p.d.f. of xy), i=1,...,q,j=1,...,n; as (8.7); that is

i=1j

0 MTAR
)= o (zz o m))

8.3 Testing Criteria

In this section, we give results on testing of hypotheses for the two models of
Sect. 8.2. We use the notations of that section. We also use the theorems in Sect. 8.1
which show, that in certain cases, the hypothesis testing results of the theory of
normal distributions can be easily extended to the theory of m.e.c. distributions.
This section is based on Anderson and Fang (1982a), Hsu (1985a,b), and Gupta and
Varga (1995b).

8.3.1 Testing That a Mean Vector Is Equal to a Given Vector

In Model I (see Sect. 8.2.1) we want to test

Hy: p=p, against Hp: u# . (8.9)

We assume that ¢ and X are unknown and [t is given. Note that problem (8.9) is
equivalent to testing

Hy: u=0 against H;: u#0. (8.10)

Indeed, if uy # 0 then define x; = x; — ty, i =1,...,n and u* = p — . Then,
problem (8.9) becomes

Hy: u* =0 against Hp: u*#0.
Problem (8.10) remains invariant under the group G, where
G = {g|g(X) = CX, Cis p x p nonsingular}. (8.11)

Now, we can prove the following theorem.
Theorem 8.6. The likelihood ratio test (LRT) statistic for problem (8.9) is

T = nln—1)(x— o) A" (R— o).

(o), where T2n ()= (nfllipr,nfp(Ot)

n—

The critical region at level ot is T> > szn 1

and F, ,_, () denotes the 100 % point of the F,, ,_, distribution.
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If Hy holds, then (::f;p T? ~ Fpy—p. Moreover; if 11, = 0 then T? is the maximal

invariant of the sufficient statistic under G.

PROOF: From Theorem 8.1 it follows that the LRT statistic is the same as in the
normal case; that is, Hotelling’s T2 statistic. Since problems (8.9) and (8.10) are
equivalent, we can focus on (8.10). Then, G satisfies the conditions of part (a) of
Theorem 8.3 (here w; = {0}) and T? is invariant under G, so the null distribution
of T? is the same as in the normal case. Thus, the corresponding results of the
normal theory can be used here (see Anderson 2003, Chap.5). Since T2 is the
maximal invariant in the normal case, from Corollary 8.4 it follows that it is also
maximal invariant for the present model. [

The nonnull distribution of 72 depends on y. The nonnull p.d.f. of T2 was
derived by Hsu (1985a). He also showed that if p > 1, then the T>-test is locally
most powerful invariant (LMPI). On the other hand, Kariya (1981) proved that if & is

a decreasing convex function, then the 72-test is uniformly most powerful invariant
(UMPI).

8.3.2 Testing That a Covariance Matrix Is Equal to a Given
Matrix

In Model I (see Sect. 8.2.1), assume that % is decreasing. We want to test
Hy: X=X, against H|: X #ZX). (8.12)

We assume that (t and X are unknown and Xy > 0 is given. It is easy to see that,
problem (8.12) is equivalent to testing

Hy:X =1, against H;:X#I, (8.13)
Theorem 8.7. The LRT statistic for the problem (8.12) is
T=|Z; A2 h(1r(Z5 ' A)).
The critical region at level o is
< 1y(a),

where Ty (0t) depends on y, but not on Xo. The null distribution of T does not depend
on .

PROOF: From Theorems 7.2 and 7.4 it follows that
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max f(X) = |[Z(A®L)[ 2 h(z)
n.2>0 Zn

pn

= (2) " hiart.

On the other hand, from Theorem 7.1, we obtain

max_ f(X)

- — X — % VI-1(X — %e
LB F(X) = bl (X—5e)) 55 (X —xe))

1
= —h(tr(Z,'A)).
1Zo|? 0

Thus, the likelihood ratio test statistic is given by

1 —1
maxu,Z:ZO-f(X) B ‘Zolgh(”’(zo A))
pn

X0/ 0 (1)

Zh

pn
\ 7o

— = A h(er(Z A (”) .

| 0 | ( ( 0 )) Z h(Zh)

Hence, the critical region is of the form 7 < 7y (ct). Since, (8.13) is equivalent
to (8.12), it follows that the null distribution of 7 does not depend on X,. Hence,
Ty (o) does not depend on Xy, either. ]

In this problem, the distribution of the test statistic T depends on .

8.3.3 Testing That a Covariance Matrix Is Proportional to a
Given Matrix

In Model I (see Sect. 8.2.1) we want to test
Hy:X=0%%, against H;:ZX +# 0°Z, (8.14)

where U, X, o2 are unknown, o2 > 0 is a scalar, and Yo > 0 is given. Problem
(8.13) remains invariant under the group G, where G is generated by the linear
transformations

(i) g(X) =X, ¢ > 0scalar and
(i) g(X)=X+ve,, vis p-dimensional vector.

It is easy to see that, problem (8.14) is equivalent to testing
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Hy: £ =0%, against H;:ZX# o0, (8.15)
Theorem 8.8. The LRT statistic for problem (8.14) is
_ o IxgtAp

1y—1
tr (EZO A)

S

The critical region at level o is
T<1(00),

where T(0t) is the same as in the normal case and it does not depend on Xy.
The distribution of T is the same as in the normal case. The null distribution of T
does not depend on X. T is an invariant of the sufficient statistic under G.

PROOF: From Theorem 8.1 it follows that the LRT statistic is the same as in the
normal case. It is easy to see that 7 is invariant under G. Moreover, G satisfies the
conditions of part (b) of Theorem 8.3; therefore, the distribution of 7 is the same as
in the normal case. Hence, the corresponding results of the normal theory can be
used here (see Anderson 2003, Sect. 10.7). Since (8.15) is equivalent to (8.14), it
follows that the null distribution of T does not depend on X. Hence, 7(¢t) does not
depend on X, either. [}

Remark 8.1. Since the distribution of 7 is the same as in the normal case, its
moments and asymptotic distribution under the null hypothesis are those given by
the formulas in Anderson (2003, pp. 434-436), Gupta (1977), and Gupta and Nagar
(1987, 1988), for the normal case.

Remark 8.2. Nagao’s (1973) criterion,

n—1 PA 2
tr| ——1
2 ’ <trA p ) ’
is also an invariant test criterion under G and hence, it has the same distribution as
in the normal case (see also Anderson 2003, pp. 436-437).

8.3.4 Testing That a Mean Vector and Covariance Matrix Are
Equal to a Given Vector and Matrix

In Model I (see Sect. 8.2.1) we want to test

Ho:u=uyand X =X, against Hj: U # ugorX # 2%y, (8.16)



8.3 Testing Criteria 205

where 1, X are unknown and (1, and X > 0 are given. It is easy to see that, problem
(8.16) is equivalent to testing

Hyp: u=0andX =1, against Hy:u#0orX#I,. (8.17)
Theorem 8.9. The LRT statistic for problem (8.16) is
T= 25 AR (r(Z0 " A) + (X — o) 2 (X — 1)) -
The critical region at level o is
T< 1y (),

where Ty (o) depends on y, but not [, or Xo. The null distribution of T does not
depend on |1 or Xy.

PROOF: From Theorems 7.2 and 7.4 it follows that

pn

_(2)* -4
s 1(%) - (Zh) h(z) AL,

On the other hand,

f(X) h(tr((X—uoeﬁz)’za'(x—uoe;)))

max = m
I»l=.u()-,2=20 ‘ZO|2

1 _ _ 1
= ——h(tr(Z5 A) (& — 1) T (R — ) -
| 202

Therefore, the likelihood ratio test statistic is given by

maxy_y 55, f(X) ‘2:)‘% h(tr(Z'A) +n(X— o) Zy (K= o))
= —pn

.20 S (2) % naials

Zh

pn

(= &) en(x o) 25 (x-e) (£)

n

_1Z'A
h(zn)
Hence, the critical region is of the form 7 < TW(OC). Since, (8.17) is equivalent to

(8.16), it follows that the null distribution of 7 does not depend on (1, or Xy. Hence,
Ty (o) does not depend on p, or Xy, either. ]

In this problem, the distribution of the test statistic T depends on y. Nevertheless,
Quan and Fang (1987) have proved that the test defined in Theorem 8.9 is unbiased.
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8.3.5 Testing That a Mean Vector Is Equal to a Given Vector

and a Covariance Matrix Is Proportional to a Given
Matrix

In Model I (see Sect. 8.2.1) we want to test
Hy: u=pyand X = o%%y against Hj: U # UyorX # 0’2,

where u, X, o2 are unknown, 6 > 0 is a scalar, and Wos Zo > 0 are given.
Note that problem (8.18) is equivalent to testing

Hy: u=0and X = 0'21,, against Hj:u#0orX # 0'21,,.
Problem (8.19) remains invariant under the group G, where
G ={g|g(X) =X, ¢ > Oscalar}.
Theorem 8.10. The LRT statistic for problem (8.18) is
2o A2

T= i

(tr (%z(ﬂA) + (% Bo)Zo ! (x— Ho)) :

The critical region at level a. is

7 < 1(),

(8.18)

(8.19)

where T(t) is the same as in the normal case and it does not depend on U or X.
The null distribution of T is the same as in the normal case and it does not depend
on Ly or Xo. Moreover, if iy = 0 then T is an invariant of the sufficient statistic

under G.

PROOF: From Theorem 8.1 it follows that the LRT statistic is the same as in the
normal case. However, since Anderson (2003) does not give the corresponding result

for the normal case, we derive it here.

So, assume X ~ N, ,(ue),,~ ®1I,) and we want to test (8.18). Then, from

Theorem 7.2, Remark 7.1 and Theorem 7.4 it follows that

A l pn
max f(X) = |—®In|_% - e 7
w.x>0 n (2m)z
pn
n va pn n
— (= “T|A|" 2.
(27r) ¢ Al

Next, we want to maximize f(X) under Hy where
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1 1 _ _ / NN
FX)= | 5050 A ) (0°50) (5]

Then,

doef(X) _ 1 L (5 A) (R o) 55 (% — o))

do? 202 20
and from % =0, we obtain
s 1r(Z5'A) 0l )55 (5 o)
pn
Thus,

max X
u:u0,2:0220>0f( )

= () ¥ 5ol (5 A) 5 — ) B3 (R )5

Therefore, the likelihood ratio test statistic is given by

maxXy_p, X=622,>0 f(X)

max‘u_’2>0f(X)
)T e ol S A) sy B ()
(2';) e
=5 'Al2

o -
2

(rr(L25"A) + 5% po) 5 (X~ o))

Thus, the critical region is of the form 7 < 7(¢t). Since problems (8.18) and (8.19)
are equivalent, we can focus on (8.19). It is easy to see that 7 is invariant under G if
1o = 0. Moreover G satisfies the conditions of part (a) of Theorem 8.3, so the null
distribution of 7 is the same as in the normal case and, since problems (8.18) and
(8.19) are equivalent, it does not depend on i, or Xo. Therefore, 7(cr) is the same
as in the normal case and it does not depend on p, or Xy. [}

In this case, the nonnull distribution of 7 depends on y. Nevertheless Quan and
Fang (1987) have proved that the LRT is unbiased if 4 is decreasing.
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8.3.6 Testing Lack of Correlation Between Sets of Variates

In Model I (see Sect. 8.2.1), we partition X; into g subvectors

!
x
X; = .
Xl(q)
where xlm is pj-dimensional, j =1,...,q,i=1,...,n. Partition X and A into
PATIPAT) ...Elq A11A12...A1q
B 201 X ... 22,1 B Ari Ay ... Azq
ZaZp .. Xy A Ap ... Ay

where X;; and A;; are p; X p;, j=1,...,q. We want to test

Hy: X =0 ifl<j<k<gqagainst
H : there exists j, k such that X j; # 0. (8.20)

Problem (8.20) remains invariant under the group G, where G is generated by the
linear transformations

C

G
(i) g(X) = CX with C = : , where C; is p; x p; nonsingular

&

matrix, j =1,...,q,
(i) g(X) =X+ ve), where v is p-dimensional vector.

Theorem 8.11. The LRT statistic for problem (8.20) is

o Al
I A

The critical region at level o is
T < 1),

where T(0t) is the same as in the normal case. The distribution of T is the same as in
the normal case. If Hy holds, then T ~ H?:z vi, where vy, v3, ... , v, are independent
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and v; ~ Up, 5. n—p,» With p; = 2;;11 pj, i =2,...,q. The LRT is strictly unbiased;
that is, if Hy holds, then the probability of rejecting Hy is greater than o. T is an

invariant of the sufficient statistic under G.

PROOF: From Theorem 8.1 it follows that the LRT statistic is the same as in the
normal case. It is easy to see that T is invariant under G. Moreover G satisfies
the conditions of part (b) of Theorem 8.3. Therefore, the distribution of 7 is the
same as in the normal case. Hence, the corresponding results of the normal theory
can be used here (see Anderson 2003, Chap.9). The strict unbiasedness follows
from Corollary 8.2 and the normal theory. [

Remark 8.3. Since the distribution of 7 is the same as in the normal case, its
moments and asymptotic distribution under the null hypothesis are these given by
the formulas in Anderson (2003, pp. 388-390), and Nagar and Gupta (1986), for the
normal case.

Remark 8.4. Nagao’s criterion (see Anderson 2003, p. 391) is also invariant under
G and hence, it has the same distribution as in the normal case. Thus, its asymptotic
distribution under the null hypothesis is given by the formulas in Anderson (2003,
p- 391).

Hsu (1985b) has proved that the LRT in Theorem 8.11 is admissible.

8.3.7 Testing That a Correlation Coefficient Is Equal to a
Given Number

In Model I (see Sect. 8.2.1), let p = 2. Then X and A can be written as

2
o 010 ap a

22( i P 122> and A:< 11 12)7
po10y O; az1 ax

where 67 = 011, 05 = 05 and p = \/% We want to test
Hy: p=po against Hj:p # po, (8.21)

where U and X are unknown and |pg| < 1 is given. Problem (8.21) remains invariant
under the group G, where G is generated by the linear transformations

C1l 0
0 [65)
(i) g(X) =X+ ve], where v is p-dimensional vector.

(i) g(X)=CX, withC = ( ) where c; and c¢; are positive scalars and
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Theorem 8.12. The statistic

a2

Vanazn’

is maximal invariant of the sufficient statistic under G. The distribution of r is the
same as in the normal case. The LRT for problem (8.21) at level o has the critical
region

r=

r<ri(a) or r>n(a),

—(1—p2)V/1—c +(1—p3)V1=c .

where ri(a) = %, n(a) = % and c is chosen such that
pyct1—pg pyct1—pg

under H)
P(r<r(a)+P(r>n(a)=co.

The values of ri (o) and ry() depend on py, but they are the same as in the normal
case.

PROQF: Since G satisfies the conditions of Corollary 8.4 and in the normal case, r
is a maximal invariant under G (see Anderson 2003, p. 126), it follows that r is also
maximal invariant under G in the present case. Moreover, G satisfies the conditions
of part (b) of Theorem 8.3 and r is invariant under G. Therefore, the distribution of
r is the same as in the normal case. Furthermore it follows from Theorem 8.1 that
the LRT statistic is the same as in the normal case. Thus, the corresponding results
of the normal theory can be used (see Anderson 2003, Sect. 4.2).

Remark 8.5. Since the distribution of r is the same as in the normal case, its
asymptotic distribution, as well as the asymptotic distribution of Fisher’s z statistic,
are the same as those given by the formulas in Anderson (2003, pp. 131-134), and
Konishi and Gupta (1989). Therefore, the tests based on Fisher’s z statistic can also
be used here.

Remark 8.6. 1t is known (e.g., see Anderson 2003, p. 127) that in the normal case,
for the problem

Hy: p=py against Hi:p>0
the level o test, whose critical region has the form
r>r3(o)

is UMPI. Then, it follows from Theorem 8.5 that the same test is also UMPI in the
present case.



8.3 Testing Criteria 211

8.3.8 Testing That a Partial Correlation Coefficient
Is Equal to a Given Number

In Model I (see Sect. 8.2.1) partition X and A as
211212) (AIIAIZ)
X = and A= ,
(221 Zn Ay Ay
where X1 and Ay are 2 x 2. Assume p > 3, and define

Zia=Z1 21225 % and Aja=A1 —ApAy Ay

We use the notation

O11. o12. aipy. ap.
Siia= ( 113,....p O12 3....,p) and A, = ( 113,...,p @12 3,...,,;)7
021.3,...p 022.3...p az1.3,..p 422.3..p

Then, pi23,.p = is called the partial correlation between the

first two variables, having the (p — 2) variables fixed (see Anderson 2003, p. 34).
We want to test

Hy: p123,..p=po against Hi: p123..p 7 Po, (8.22)

where (t and X are unknown and |py| < 1 is given.
Problem (8.22) remains invariant under the group G, where G is generated by the
linear transformations

(i) g(X) =CX, with C = (Cl C2>, where C; = (Cl 0 ) c1, ¢y positive

C3 C4 0 [6)
scalars, C; is any 2 X (p —2) matrix, C3 = 0 is (p —2) x 2 matrix, and
Ci=1,.
. . Ci C . .
(ii) g(X)=CX, with C = <C3 C4)’ where C; =1, C; is 2 X (p — 2) matrix,
C,=0,C3=0is (p—2) x 2 matrix, and C4 is a (p —2) X (p — 2) nonsingular
matrix.

(iii) g(X) =X+ ve/,, where v is p-dimensional vector.

Theorem 8.13. The statistic

is a maximal invariant of the sufficient statistic under G. The distribution of r12.3,....
is the same as in the normal case and it is the same as the distribution of r in
Sect. 8.3.7, where we replace n by n — p+2.
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PROOF: Since G satisfies the conditions of Corollary 8.4 and in the normal case,
12.3,..p 1S a maximal invariant under G (see Anderson 2003, p. 159), it follows

that r is also a maximal invariant in the present case. Moreover, G satisfies the

.....

the normal case, r23,..., has the same distribution as » when 7 is replaced by
n— p+2 (see Anderson 2003, p. 143). [}

Because of the relation between the distribution of r12.3 .. , and r, all statistical
methods mentioned in Sect. 8.3.7 can also be used here. So, for example, Fisher’s z
test can be applied here. Also, the test based on r123,... , for the problem

yees

Hy: p123,.p=po against Hi:rps,.. p>po

is UMPL

8.3.9 Testing That a Multiple Correlation Coefficient Is Equal
to a Given Number

In Model I (see Sect. 8.2.1), let us partition X and A as
z—("” Gﬁ) and A—(““ a )
o1 In a Ay )’

. ) - [/ X5 0 .
where 01 and s1; are one-dimensional. Then, pi.2,. , = %121 is called the

multiple correlation between the first variable and the other (p — 1) variables (see
Anderson 2003, p. 38). We want to test

Ho: p12,..p=0 against Hj:pia. p#0, (8.23)

where (1 and X are unknown. Problem (8.23) remains invariant under the group G,
where G is generated by the linear transformations

C1 0/

0 C,
(p—1) x (p— 1) nonsingular matrix.

(i) g(X) =X+ ve/, where v is p-dimensional vector.

(i) g(X)=CX, with C = ( ) where ¢ is nonnegative scalar and C; is a

Theorem 8.14. The statistic

’A—1
ajA,; a
ai
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is maximal invariant of the sufficient statistic under G. The distribution of 7.5, p is

_, T
the same as in the normal case. If Hy holds, then ZTII’ l_lf?;"’ ~ Fp_1 n—p. The LRT
2,0p

for problem (8.23) at level o has the critical region

.....

where Fp_lﬁn_p(a) denotes the 100 % point of the F,_1 ,_p distribution. The LRT is
UMPI.

PROQF: Since G satisfies the conditions of Corollary 8.4 and in the normal case,
F1.2,..p is a maximal invariant under G (see Anderson 2003, p. 157), it follows
that 7.5, is also maximal invariant under G in the present case. Moreover, G
satisfies the conditions of part (b) of Theorem 8.3 and 75, ... , is invariant under G.
Therefore, the distribution of 7.5 ... , is the same as in the normal case. Furthermore,
from Theorem 8.1 it follows that the LRT statistic is the same as in the normal case.
Thus, the corresponding results of the normal theory can be used (see Anderson
2003, Sect. 4.4). It follows from Anderson (2003, p. 157), that in the normal case,
the LRT is UMPI. Therefore, by Theorem 8.5, the LRT is also UMPI here. [}

Remark 8.7. Since the distribution of 7.5, is the same as in the normal case,
its moments and distribution under the nonnull hypothesis are those given by the
formulas in Anderson (2003, pp. 149—-157), for the normal case.

8.3.10 Testing Equality of Means

In Model II (see Sect. 8.2.2),let X; = X, = ... =X, = X. We want to test
Ho: [y =p,=...=U, against
H\ : there exist 1 < j <k < g, such that it ; 7 (8.24)

where U1;,i=1,2,...,qg and X are unknown. Problem (8.24) remains invariant under
the group G, where G is generated by the linear transformations

(i) g(X) = (I,®C)X, where C is p x p nonsingular matrix,
(ii) g(X)=X—e,®vV, where v is p-dimensional vector.

Theorem 8.15. The LRT statistic for problem (8.24) is

= AL
B
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The critical region at level a. is
T< Up,q—l,n(a)a

where Uy, 41 n(0t) denotes the 100 % point of the U, 41 , distribution. If Hy holds,
then T~ Up 41 4. T is an invariant of the sufficient statistic under G.

PROOF: From Theorem 8.1 it follows that the LRT statistic is the same as in the
normal case. It is easy to see that 7 is invariant under G. Moreover, G satisfies the
conditions of part (a) of Theorem 8.3. Therefore, the null distribution of 7 is the
same as in the normal case. Hence, the corresponding results of the normal theory
can be used here, see Anderson (2003, Sect. 8.8), Pillai and Gupta (1969), Gupta
(1971, 1975), Gupta, Chattopadhyay, and Krishnaiah (1975), and Gupta and Javier
(1986). [

The nonnull distribution of 7 depends on y. Nevertheless, Quan (1990) has
proved that if / is decreasing then the LRT is unbiased.

8.3.11 Testing Equality of Covariance Matrices

In Model II (see Sect. 8.2.2), we want to test

Hy: X, 222:...:Zq against
Hj : there exist 1 < j <k < g, such that X; # Xy, (8.25)

where y; and 2;,i=1,2,...,q are unknown. Problem (8.25) remains invariant under
the group G, where G is generated by the linear transformations

(i) g(X)=(I,®C)X, where C is p x p nonsingular matrix,
enl ® Vi
() gX)=X- en, ®v,: |» Where v; is p-dimensional vector, i = 1,2,...,q.
€y, @Vy
Theorem 8.16. The LRT statistic for problem (8.25) is

q w7
T— ITL A2 T
- n o pn
|Al2n>
The critical region at level o is
T<17(00),

where T(t) is the same as in the normal case. The distribution of T is the same as
in the normal case. T is an invariant of the sufficient statistic under G.
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PROOF: From Theorem 8.1 it follows that the LRT statistic is the same as in the
normal case. It is easy to see that 7 is invariant under G. Moreover, G satisfies the
conditions of part (b) of Theorem 8.3. Therefore, the distribution of 7 is the same as
in the normal case. Hence, the corresponding results of the normal theory can be
used here, see Anderson (2003, Sect. 10.2), and Gupta and Tang (1984). [}

Remark 8.8. Bartlett’s modified LRT statistic

ni—1

_ 1., A 2
Al

is also invariant under G. So from Theorem 8.3 it follows that the distribution of 7}
is the same as in the normal case. Quan (1990) showed that the o level test with
critical region

7 < 71(0x)

is unbiased if # is decreasing.
Nagao’s test statistic

q -1 2
tr(AJAT —1,)
2 i P
n=(Mn-1) _—
is also invariant under G and has the same distribution as in the normal case.

For further details on Bartlett’s modified LRT statistic and Nagao’s test statistic,
see Anderson (2003, pp. 413-415).

8.3.12 Testing Equality of Means and Covariance Matrices

In Model II (see Sect. 8.2.2), we want to test

Ho: y=p,=...=U, and Xy =2X,=...=2%, against (8.26)
H\ : there exist 1 < j <k < g, suchthat u; # u; or X; # X,
where t; and 2;,i=1,2,...,q are unknown. Problem (8.26) remains invariant under
the group G, where G is generated by the linear transformations

() g(X) = (I,® C)X, where C is p x p nonsingular matrix,
(i) g(X) =X —e,®YV, where v is p-dimensional vector.
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Theorem 8.17. The LRT statistic for problem (8.26) is

n;

[T, A2

T=— 77—
B2

The critical region at level a. is
T<17(0x)

where T(0t) is the same as in the normal case. The null distribution of T is the same
as in the normal case. T is an invariant of the sufficient statistic under G.

PROOF: From Theorem 8.1 it follows that the LRT statistic is the same as in the
normal case. It is easy to see that 7 is invariant under G. Moreover, G satisfies the
conditions of part (a) of Theorem 8.3. Therefore, the distribution of 7 is the same as
in the normal case. Hence the corresponding results of the normal theory can be
used here (see Anderson 2003, Sect. 10.3). [}

The nonnull distribution of 7 depends on y. Nevertheless, Quan and Fang (1987)
have proved that the LRT is unbiased if / is decreasing.

Remark 8.9. Since the null distribution of 7 is the same as in the normal case, its
moments, distribution, and asymptotic distribution under the null hypothesis are
those given by the formulas in Anderson (2003, Sects. 10.4-5) for the normal case.

Remark 8.10. Bartlett’s modified LRT statistic

ni—1

_ H?:] |A;| "2
B

is also invariant under G. So from Theorem 8.3 it follows that its null distribution is
the same as in the normal case (see Anderson 2003, pp. 412-413).
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Applications



Chapter 9
Linear Models

9.1 Estimation of the Parameters in the Multivariate
Linear Regression Model

Let X,X2,...,X, be p-dimensional vectors, such that x; ~ E,(Bz;, X, y), where z;
is a g-dimensional known vector, i = 1,...,n, and B is a p X g unknown matrix.
Moreover, assume that x;, i = 1,...,n are uncorrelated and their joint distribution is
elliptically contoured and absolutely continuous. This model can be expressed as

X ~ Ep,(BZ, 21, y), ©9.1)

where X = (X1,X2,...,X,); Z = (21,22,...,2Z,) is a ¢ X n known matrix; B (p X q)
and X (p x p) are unknown matrices. Assume rk(Z) = q and p + g < n. The joint
p.d.f. of x;,X5,...,X, can be written as

f(X) = lnh i(xi—Bzi)’z”(x,-—Bzi)
iz \&a

= ﬁh(rr(X—BZ)’Z*I(X—BZ)). 9.2)

Assume (z) = 22 h(z), z > 0 has a finite maximum at z = z; > 0. First, we find the
MLE’s of B and X.

Theorem 9.1. The MLE’s of B and X for the model (9.1) are given by

B=X7'(z2)"! 9.3)
and
$=2xq,-7@2zz)'0)X. (9.4)
Zh
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PROOF: From Theorem 1.3 it follows that rk(ZZ') = g and since ZZ' is g X g, it is
nonsingular.

Note that B and BZ determine each other uniquely. Indeed, from B we get BZ by
postmultiplying B by Z, and from BZ we can obtain B by postmultiplying BZ by
Z/(2Z/)~'. Hence finding the MLE of B is equivalent to finding the MLE of BZ.

If X ~ N, ,(BZ,X®]1,), then the MLE’s of B and X are (see Anderson 2003,
Sect. 8.2),

B =X7/'(2Z')"!
and
* 1 * * !
I* =~ (X-B*Z)(X-B*Z).
n
We can rewrite X* as

1
= -X(1,-72/ (22 '2)(1, -2/ (2Z))'Z2)X’
n

1

-X(1, -7/ (22 '7)X'.

n

Then, by using Theorem 7.2, we obtain the MLE’s of B and X as

B=X7'(zz)"!

and
. 1
$=""2xq,-z2zz) '2)X
Inn
= Pxa,-z@zz)'z2)X'. u
Zh

The distributions of B and £ can also be obtained, and are given in the following
theorem.

Theorem 9.2. The distributions of the MLE’s of B and X for the model (9.1) are
given by

ﬁ NEP#(B?Z@(ZZ/)_l»lV)v (95)

and

Zh ¢ n—gq
—2~G X — . 9.6
p p~l< ’ 2 71)”) ( )
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PROOF: From (9.1) and (9.3) we obtain
B~E,,BZZ (2Z) "\ 2 (22) 27 (22", vy)
= Ep,qB,Z®(ZZ)7 ', y).

Then from (9.4) we get

%’12 = X(1, -2/ (2Z)'Z)X’
=X(I, -2/ (27" '2)(X(1, -7/ (22)"'7)) . 9.7)
From (9.1) we get

X(I,~2/(22')"'Z) ~ E,,(BZ(1, ~Z/(22))"'2), 22 (1, ~ Z/(ZZ/)'Z)
x (L -Z/(22)"'7),y)
=Epn(0,22 (1, ~ 7 (22')"'Z),y). 9.8)

Now define the p x n random matrix, Y, by
Y~E, (0,231, y) 9.9)
Then,

Y(I,-7Z(22)'2)Y =Y(1, -7/ (22)'2)(1, -2 (ZZ))~'Z2)Y  (9.10)
= (Y1, -7 (22)7'72)) (YN, -2 (2Z))"'7))

and since
Y(1, -7 (2Z)"'2) ~E,, (0,22 (1, Z(2Z))"'7),y), 9.11)
from (9.7), (9.8), (9.10), and (9.11) we get

S YL, —Z/(22) 7 Z)Y (9.12)
P

However, the matrix (I, —Z/(ZZ')~'Z) is idempotent of rank n — g. Hence, using
Theorem 5.7, we get

Y1, -7 (2Z)7'2)Y ~ G, (27 ¥7 l//) :

Next, we find the unbiased estimators of B and X.
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Theorem 9.3. The statistics B and
R S
2y (0)(n—q)

for model (9.1) are unbiased for B and X, if the second order moment of X exists.

Sy X(I, -7 (22 'z2)X

PROOF: From (9.5) it follows that E(B) = B. On the other hand, from
Theorem 3.18, we get

EX(1,-7/(22)'7)X))

—1
- 2y/(0)(n—q)
+BZ(1,—Z/(22)"'2)Z'B’
1
= HE(W—Q)
=z u

(=2y/(0)Ztr(1, — 2/ (2Z))'Z)

The question of sufficiency is studied in the following theorem. First, we prove a
lemma.

Lemma 9.1. Let X be p x n, B be p x g, and Z be q x n matrices with rk(Z) = q.
Define B =XZ/(ZZ!)~!, then

(X-BZ)(X-BZ) = (X-BZ)(X-BZ)' +(B-B)ZZ' (B—B)'. (9.13)

PROOF: We can write

A

(X-BZ)(X-BZ) = (X-BZ+(B-B)Z)(X-BZ+ (B-B)Z)
= (X-BZ)(X-BZ)'+(B-B)ZZ' (B-B)
+ (X-BZ)Z (B-B) +(B-B)Z(X-BZ). (9.14)
However,
(X-BZ)Z = (X-XZ'(27))"'2)7/ =XZ' —XZ' =0
so the last two terms in (9.14) vanish. Thus, from (9.14), we get (9.13). [}

Theorem 9.4. In model (9.1), B and £ are sufficient for B and X.
PROOQOF: From (9.2) and Lemma 9.1, we get
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f(X) = ‘21|nh(tr(2*‘(X—BZ)(X—BZ)’))
= ﬁh(n(:*l[(x—ﬁZ)(X—ﬁZ)#(E—B)ZZ’(B—B)’])).
Now,

(X-BZ)(X-BZ) = (X-XZ'(2Z))"'2)(X-XZ'(2Z')'7)
=X(I,-2/(27)'2)1, -7/ (22))'7)X’
=X(I,-2(22))"'z2)X
>

2
Hence,

1 & = N
fX) = 5 (tr (21 ﬁfz +(B—B)ZZ'(B - B)’] )) ,
which proves the theorem. [}
Next, we focus on some optimality properties of the MLE’s for model (9.1).
Here, we assume that X has a finite second order moment. Let the p x 1 vector a
and the ¢ x 1 vector ¢ be given and assume that we want to estimate & = a’Bc.
We are interested in a linear unbiased estimator of £, that is an estimator which
can be written in the form £* = v'vec(X'), where v is a pn-dimensional vector and
E(E) =¢.

The MLE of & is E = a’'Be. This is a linear estimator of & since
a'Be = a'XZ/(27/)" ¢
= vec(a'XZ/(2Z)) " '¢)
= (2 ®(c/(2Z)'Z))vec(X).

Moreover, 3 is unbiased for & since
E()=aEB)c=aBc=¢.

The next result, also called multivariate Gauss-Markov theorem, shows that

~

Var(&) < Var(&*) for any linear unbiased estimator &*.

Theorem 9.5. (Gauss-Markov Theorem) Let X be a p X n random matrix, with
E(X) =BZ and Cov(X) = X ®1,, where B (p x q), and X (p x p), are unknown
matrices and Z (q x n) is a known matrix. Assume rk(Z) = q and a (p x 1) and ¢
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(q % 1) are known vectors. Let & = a'Be, and define & = a'Be. If £* = v'vec(X') is

A

any linear unbiased estimator of &, then Var(&) < Var(&*).
PROOQOF: See Timm (1975, p. 187). [ ]

Theorem 9.5 does not require that X have a m.e.c. distribution. Now, we show
that if the distribution of X is elliptically contoured, we can get a stronger result. In
order to do this, we need the following lemma due to Stoyan (1983).

Lemma 9.2. Let x and y be two one-dimensional random variables. Then,

E(f(x) <E(f())
holds for all increasing, real function f if and only if
P(x<a)=P(y<a),

foralla e R.
PROOQOF: See Stoyan (1983, p. 5). [ ]

Now, we can derive the result on m.e.c. distributions.

Theorem 9.6. Assume model (9.1) holds and X has a finite second order moment.
Leta(px 1), and ¢ (q x 1) be known vectors, & = a'Be, and define & = a'Be. Assume
E* =v'vec(X') is a linear unbiased estimator of €. Let 1(z) be a loss function, where
1:]0,00) = [0,0), [(0) = 0, and (z) is increasing on [0,°). Then,

E(U(§ &) <E((E"-&])).

That is, £ is optimal in the class of linear unbiased estimators for the loss function L.

PROOF: Since &* = v'vec(X') and it is unbiased for &, that is, E(&*) = &, we have
&~ E1(&,62, ). We also have & ~ Ey(£,02., ).
Now, from Theorem 9.5, it follows that

Var(€) < var(£).
However, from Theorem 2.11 we get
Var(§) = —2y/(0)0} and Var(§") = ~2y/(0)cf..
Thus,

(9.15)

mgn
INA
Kl
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Define a random variable z as z ~ E; (0,1, ). Then, we have & — & ~ ¢z and
&* — & = 0¢-z. Consequently, for every real positive a, we obtain

P(I€ —¢&| < a) = P(oglz < )

—p z|<“> (9.16)
(<2

P(|&" =& <a) = P(og:|z| < a)

—P <|z < “) 9.17)

0-5*

and

From (9.15), (9.16), and (9.17), it follows that

P(E &l <a)>P(IE" —¢&| <a).

Then, from Lemma 9.2, we obtain
E(I(|E—&|)) <E((|E" —£])).

|
Next, we prove an optimality property of X. First, we need some concepts and

results from the theory of majorization. They are taken from Marshall and Olkin
(1979). Assume x is an n-dimensional vector X' = (x1,xz,...,%,). Then X(1) > Xp) =
.. 2 x|, denote the components of X in decreasing order.
Now, let x and y be two n-dimensional vectors. Then, we say that y majorizes
x, and denote this by x <y, if ¥/ x;y < XLy, j=1,...,n—1and 3} xp =
i1 V-
Let[ib be a real function, defined on R". Then, we say that ¢ is Schur-convex, if
from x <y, X,y € R", it follows that ¢ (x) < ¢(y).

Lemma 9.3. Let x1,x2,...,X, be exchangeable, random variables and define x =
(x1,X2,--,Xn)". Assume A is a real function defined on R" X R" and it satisfies the
following conditions:

(i) A(z,a)is convexina € IR", ifz € R" is fixed,

(i) A((zr(1)>2n(2)s+ - »Zn(n))s (@r(1), Ar(2)s - - - sz (m))) = A(2Z,2) for all permuta-
tions T of the first n positive integers, and
(iii) A(z,a) is Borel measurable in z, if a is fixed.

Then, ¢(a) = E(A(x,a)) is symmetric and convex in a.

PROOF: See Marshall and Olkin (1979, pp. 286-287). [}
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Lemma 9.4. Let ¢ be a real function defined on R". If ¢(a) is symmetric and
convex in a € R", then ¢(a) is Schur-convex.

PROOF: See Marshall and Olkin (1979, pp. 67-68). [

Lemmas 9.3 and 9.4, together with the definition of a Schur-convex function,
imply the following theorem.

Theorem 9.7. Let x1,x2,...,x, be exchangeable, random variables and define x =
(x1,%2,--.,Xs)". Let a1 and a; be n-dimensional vectors such that a; < a,. Assume
A is a real function defined on R" x R" and it satisfies the conditions (i), (ii) and
(iii) of Lemma 9.3. Then E(A(x,a;)) < E(A(x,az)) ifa; < ay.

PROOF: From Lemma 9.3, it follows that ¢(a) = E(A(x,a)) is symmetric and
convex in a. Then, from Lemma 9.4 we get that ¢(a) is Schur-convex, and this
means, by definition, that E(A(x,a;)) < E(A(x,a;)) ifa; < aj. ]

The following theorem proves another result about an estimator of X.

Theorem 9.8. Assume model (9.1) holds, X has a finite second order moment, and
v is known. Let

R -1

dy=————
2y'(0)(n—q)

Assume X* is an unbiased estimator of X that has the form X* = XCX/, where C

is a positive semidefinite n x n matrix depending on X. Let 1(z) be a loss function,
where [ : [0,00) — [0,00), [(0) = 0, and I(z) is increasing on [0,0). Then,

X(I, -7 (22 '72)X'.

E(l(tr(EyZ~ ) <E((r(Z* 7).

PROOF: Let * be an unbiased estimator of X, which can be written as ~* = XCX'.
From Theorem 3.18, we get

E(Z*) = E(XCX') = —2y/(0)2tr(C') + BZCZ'B'.

So, in order for X* to be an unbiased estimator of X, we must have tr(C) = W(lo)

and ZCZ' = 0. Since C is positive semidefinite, we can write C = HDH', where H
is orthogonal, and D is diagonal with nonnegative elements. Therefore, ZCZ' = 0

implies ZHDH'Z' = 0, which can be rewritten as (ZHD% ) (ZHD% )’ = 0. Hence,

ZHD? — 0,
ZC =ZHD?D?H' =0,
3" =XCX = (X—BZ)C(X - BZ),
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and
tr(Z* ) = (22 E0)

= tr(Z"3 (X~ BZ)HDH (X — BZ)'> " }).

Now define L = X2 (X—BZ)H, where L ~ E,, ,(0,I, ®I,,,y), and let L = rU be
the stochastic representation of L. Then,
tr(Z* X1 = tr((rU)D(rU))
= 2tr(UDU).

Since ZC = 0 and rk(Z) = g, g diagonal elements of D are zero, and since

tr(C) = T(lo)’ the sum of the others is %. Define d; = d;;, i = 1,...,n, and

d = (dy,dy,...,d,) . Let the vector d, corresponding to EU be denoted by d. Since
(I, — Z/(ZZ')"'Z) is an idempotent matrix with rank n — g, we see that n — g

elements of d are equal to WM, and the rest are zeros. Since, djj] > dpy >

2 dyg), We get ﬁzi':fld[i] < %Z{=1d[i]’j: 1,...,n—qg—1, hence

o= (:22) (avim)

_ 5
=g &

e

14

IA
X
~
I
\:—‘
E
|
9
|

_

and ¥/, afm = T(l@ =%!,d;, j=n—q,...,n. Therefore,

d=<d.

Letu;, i =1,...,n denote the ith column of the matrix U. Then,

n
Ptr(UDU) = rtr <Z d,u,u?)

i=1

n
=y dir*ulu;
i=1

n
= Z d,’W,‘
i=1

=wd,
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where w; = rulu;, i =1,...,n,and w = (wy,wy,...,w,)". Consequently, w; > 0 and
wi,wa,...,w, are exchangeable random variables.

Define the real function A on R" x R" as follows: A (z,t) =(2't), where z,t € R".
Then, A satisfies the conditions of Theorem 9.7, d < d and w has exchangeable
components. Thus, we get

E(I(Wd)) <E(I(Wd)).
However, w'd = #’tr(UDU’) = tr(X*X7 1), so we get

E(I(tr(EyZ~ 1)) < E(I(tr(Z*Z71))). u
Corollary 9.1. Under the conditions of Theorem 9.8,

Etr(EyZ Y <E@r(Z*z7 1))

Theorems 9.6 and 9.8 were derived by Kuritsyn (1986) for vector variate
elliptically contoured distribution. The results here are the extensions of the results
of that paper to the case of matrix variate elliptically contoured distribution.

9.2 Hypothesis Testing in the Multivariate Linear
Regression Model

In this section, once again, we focus on model (9.1). We use the notations of
Sect.9.1. The results are taken from Hsu (1985b).

Let the matrix B be partitioned as B = (B;,B;), where By is p x g1 (1 < g1 < q),
and partition Z, as Z = (;1 ) , where Z is g1 x n. Let g = g — gq1. Define A = ZZ/

2

A A
Ao A
j=1,2. Also, define Aj;, =Aj| — A12A;2' Ajj. We want to test the hypothesis

and partition A as ( >, where Ay is g1 x q1. Then, A;; = Z,-Z;., i=1,2,
Hp: By =B] against H;: By # Bj, (9.18)

where B and X are unknown and B is a p X g; given matrix. Note that problem
(9.18) is equivalent to testing

Hy: B =0 against Hj: B #0. (9.19)
Indeed, if B} # 0, then define X* = X — BjZ;. Then, we get
X"~ E,,(BZ-BiZ,ZR1,,y)
=Epa((B1 —B},B2)Z,2®1,,y)

and B = Bj is equivalent to By — B} = 0.
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Problem (9.19) remains invariant under the group G, where G is generated by the
linear transformations

(i) g(X)=CX, where C is p x p nonsingular matrix and
(il) g(X) =X+LZ,, where L is p X ¢, matrix.

Now, we derive the likelihood ratio test for the problem (9.18).
Theorem 9.9. The LRT statistic for problem (9.18) is

IX(L, — Z/(22)) ' Z)X/|

T = .
(X~ BiZ1)(L, ~ Zy(ZaZ) ' 22) (X~ B Z1)]

The critical region at level a is
T < Upgin—4q(@),

where U, 4, n—q(0t) denotes the 100 % point of the U,, 4, n—q distribution. If Hy holds,
then T ~Up 4, n—q. Moreover, if Bf = 0 then T is an invariant of the sufficient statistic
under G.

PROOF: From Theorem 8.1, it follows that the LRT statistic is the same as in the
normal case. Since problems (9.18) and (9.19) are equivalent, we can focus on
(9.19). The statistic 7 is invariant under G. Moreover, G satisfies the conditions of
part (a) of Theorem 8.3. Therefore, the null distribution of 7 is the same as in the
normal case. Thus, the corresponding results of the normal theory can be used here
(see Anderson 2003, Sect. 8.4.1). [}

For more on the null distribution of the test statistic and the asymptotic null
distribution, see Anderson (2003, Sects. 8.4-8.5), Pillai and Gupta (1969), Gupta
(1971), Gupta and Tang (1984, 1988), and Tang and Gupta (1984, 1986, 1987).

Next, we focus on the invariance properties of problem (9.18). The results are
based on Anderson (2003). Define Z] = Z; — Z1Z’2(Z2Z’2)_1Z2 and B; = B> +
B1Z,Z)(Z,Z,)". Then, BZ =B\ Z, + B,Z> = B\ Z} + B3 Z,,

ZiZy = (L) — 1 Zy(Zo25) " 1a) (2 — Z5(222) "' 207,
= 242 — 1,75 (2,7 1,7, — 2,75 (2, 7)) 2,7,
+ 2,25 (2,2)) " 1,7 (2, 7)) ' 7,2
= 7,2} - 1,7, (1,7)) ' 1,2,

and
77, = (2, — 1\ Z)(1,Z)) '71,)Z),
= 7.2, - 1.7,(1,7},) "' 7,Z),
=0.
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Thus, (9.1) can be written in the following equivalent form:

X~E, (BiZ +B3Z,, 2 21,,y), (9.20)
where ZZ;’' = A}y, and ZjZ), = 0. We want to test

Hy: By =0 against Hj: B; #0. (9.21)

Problem (9.21) remains invariant under group G, where G is generated by

(i) g(Z7) =KZ;, where K is g x ¢ nonsingular matrix, and by the transformations

(ii)
g(X)=CX, where Cis p x p nonsingular matrix, and (9.22)

(iii)
g(X)=X+LZ;, whereLis p X g, matrix. (9.23)

Then, we have the following theorem.

Theorem 9.10. The maximal invariant of A11.2, and the sufficient statistic Band £
under G is the set of roots of

IH—1IS| =0, (9.24)

where H = ﬁlAH.zﬁ'l and S = %’12 Here ﬁl denotes the p X q1 matrix in the

partitioning of B into B = (B,B,). Moreover, if Hy holds in (9.21), then the
distribution of the roots of (9.24) are the same as in the normal case.

PROOF: In Anderson (2003, Sect. 8.6.1), it is shown that the roots of (9.24) form
a maximal invariant under the given conditions. Since the subgroup of G, which is
generated by the transformations (9.22) and (9.23), satisfies the conditions of part
(a) of Theorem 8.3, the null distribution of the roots of (9.24) is the same as in the
normal case. [}

It is easy to see that the LRT statistic, 7, is a function of the roots of (9.24):
7 =|I,+HS™!|. Other test statistics, which are also functions of the roots of (9.24)
are the Lawley-Hotelling’s trace criterion: ¢7(HS™!); the Bartlett-Nanda-Pillai’s
trace criterion: ¢7(H(S +H)™'); and the Roy’s largest (smallest) root criterion,
that is, the largest (smallest) characteristic root of HS!. Then, they have the
same null distribution as in the normal case. For a further discussion of these
test statistics, see Anderson (2003, Sect. 8.6), Pillai and Gupta (1969), and Gupta
(1971). These invariant statistics were also studied by Hsu (1985b) for the case
of m.e.c. distributions and it was also shown that the LRT, the Lawley-Hotelling’s
trace test, the Bartlett-Nanda-Pillai’s trace test, and the Roy’s largest root test, are
all admissible.
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Remark 9.1. Since the multivariate analysis of variance (MANOVA) problems can
be formulated in terms of the regression model (9.1), and most hypotheses in
MANOVA can be expressed as (9.19), the results of Theorem 9.9 can be used here.
As a consequence, the LRT statistics are the same as those developed in the normal
theory and their null distributions and critical regions are also the same as in the
normal case. For the treatment of the MANOVA problems in the normal case, see
Anderson (2003, Sect. 8.9).

9.3 Inference in the Random Effects Model

In Sect.9.1, the p-dimensional vectors, Xi,Xz,...,X, have the property that x; ~
E,(Bz;,X,y), where B is a p x ¢ matrix and z; is a g-dimensional vector, i =
1,2,...,n. This can also be expressed as X; = Bz; +v;, where v; ~ E,(0,X,y),

i=1,2,...,n. The vectors z;, i = 1,2,...,n are assumed to be known. On the other
hand, the matrix B is unknown, but it is also constant. The random vectors v;,
i=1,2,...,n are called the error terms. Let V = (vy,v2,...,v,). Then, the model

(9.1) can be expressed as
X=BZ+V, where V~E,,(0,ZxL,v).

We get a different model if we assume that the vectors z;, i = 1,2,...,n are also

Z; m; 210
random. Define y; = <Vi)’ and assume that y; ~ E1 4 <( 0’) , < 01 22> ,l[/),

where m; is a g-dimensional known vector, i = 1,2,...,n, and X, g X g, X2, (p —
q) x (p — q), are unknown matrices. In this case, we suppose that B and m; are
known. Moreover, let y;, i = 1,2,...,n be uncorrelated and assume that their joint
distribution is elliptically contoured. Then, this model can be expressed as

X=BZ+V, where V~E,, M , z1 0 RAR (9.25)
' 0 0 22

where ¢ < p, X = (X1,X2,...,X,) is pXn, Z is g X n, and V is p x n. Assume that
the p X ¢ matrix B and the ¢ X n matrix M are known, but the g x ¢ matrix X; and
the (p — q) X (p — ¢) matrix X, are unknown. Also assume that rk(B) = ¢, and the

. V4 .
random matrix Y = V) has finite second order moment.

We want to find the optimal mean-square estimator of Z given X. This is
equivalent to finding E(Z|X). We need the following result.

Lemma 9.5. Let X ~ E,,(M,Z @ @,v), with stochastic representation X =~
rAoUBY,. Let F be the distribution function of r. Define Y = AXB, with A (¢ X p),
B (n x m) matrices, rk(A) = g, and rk(B) = m. Then,
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(a) If E(X|Y) exists, we have
EX|Y) =M+ XA (AXA)" (Y — AMB)(B'®B) 'B'®.
(b) If m=n, K=® =1, and Cov(X|Y) exists, we have
Cov(X|Y) =k(Z —ZA/(AZA)'AZ) ®1,,
where k = 721;/;()(2) and Yyx,) is defined by (2.30)—(2.32) with q(Xa) =

tr((Y — AM) (AZA") "1 (Y — AM)). Moreover, if the distribution of X is
absolutely continuous and the p.d.f. of Y = AX is

1

_ - r _ ! n—1 _
SOY) = o (Y= AMY(AZA) (Y- AM)). 920
then
[T by (r)dr
ki 2/’11(7‘) ’

where r =tr((Y — AM) (AZA")~ (Y — AM)).
PROOF: If g = p, and n = m, the theorem is obvious. So, assume gm < pn.

Step 1. Assume n =1, x ~ E,(0,1,,y), and B = 1. Using Theorem 1.9, we can
write A = PDQ, where P is a ¢ X g nonsingular matrix, Q is a p x p orthogonal
matrix, and D is a ¢ x p matrix with D = (I,,0). Then,

E(xly) = E(x|Ax)
= E(x|PDQx)
= Q'E(Qx|PDQx)
= Q'E(Qx|DQx). (9.27)

Let z = Qx. Then z ~ E,(0,I,,y) and DQx = z;, where z = <zl>, Z) is
2

g-dimensional vector. From Theorem 2.22, it follows that E(z»|z;) = 0 and
Cov(22|z() = kI,_4 where k = —21//:1(,‘2) and W, (y,) is defined by (2.30)—(2.32) with
q(x2) = Zz;. On the other hand, E(z,|z,) = z;. Therefore,

E(z|z1) =D'Dz. (9.28)
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From (9.27) and (9.28), it follows that
E(xly) = Q'D'DQx

= Q'D'PP P 'PDQx
= A'(PP')'Ax

= A/(PDQQ'D'P) 'Ax
= A'(AA)'Ax
— A(AA))!
and
Cov(x|y) = E(xx'ly) — E(x|y)(E(x]y))’
= E(Q'zZ Q|PDz) — E(Q'z|PDz)(E(Q'z|PDz))’
= Q'|[E(z2'|Dz) — E(z|Dz)(E(z/Dz))']Q. (9.29)
Now,
E(z|Dz) = E(z|z;) = D'Dz, (9.30)
/ / / /
E(22|D2) = E ((zlz/1 z]zlz) |Z1) _ (E(zlz}zl) E(zlzlz|zl)) 7
0z 12} E(zp2}|21) E(222}|2))
E(z12)|2) = 212} = Dzz'D/,
E(z212|21) = 21 E(2)]21) = 0,
E(eyd) 1) = E(ml)7, =0, and
E(2:2)|21) = E(2225|21) — E(22]21)E (22|21)" = Cov(22]21) = kI .
However,

7;2;1 = X Q'D'DQx
= x'A’(AA)1Ax
=y'(AA)ly.

So, k = _2W¢;(XZ) and W, (y,) is defined by (2.30)~(2.32) with q(x2) =y (AA)!
Hence,

E(zZ'|Dz) = D'Dzz'D'D + k(1, — DD'). 9.31)
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If the distribution of x is absolutely continuous and the p.d.f. of y = Hx is given by
(9.26), then the p.d.f. of z; = DQx is /; (2|21 ). Hence k = frz’,j;gj))‘”, with r =7 z; =
Y (AA)"ly.

It follows from (9.29), (9.30), and (9.31) that

Cov(xly) = Q' (D'Dzz'D'D + k(I, — DD’) — D'Dzz'D'D)Q
=k(I,—Q'D'DQ)
=k(I, —A'(AA)TA).
Step2.Let X~ E, ,(M, 2 ® @, y). We have

X')|vec(Y')) = ((vec(X —M) +vec(M'))|vec(AXB)')

(vec

X vec(Z72 (X — M)®~2)')) +vec(M'). (9.32)

Now, vec(Z’% (X— M)(D’%)’ ~ Epn(0,1,,, y) and using Step 1, we get
E((vec(X72 (X~ M)®2))|((AZ?) ® (B'®?))vec(S 2 (X~ M)d~2)))
= ((Z?A)® (P?B))((AZ?27A") @ (B'®IdIB)) " (AX?) ® (B'd?))
X vee(Z 1 (X —M)® 1)
= (ZA/(AZA))'AZ?) @ (OIB(B'OB) B/ ®? vec(Z (X — M)d )
= vec(Z2A'(AXA’) 'A(X — M)B(B'®B) 'B'®?)'. (9.33)
From (9.32) and (9.33), we get
EX|Y) =M+2A'(AZA') " 'A(X-M)B(B'®B) 'B'®
=M+ XA (AZA')"(Y - AMB)(B'®B) 'B'®.

If m =n and B = @ =1,,, then from Step 1, it follows that

Cov((vee(E™2 (X~ M)))|(AZ?) 1, vec(S 2 (X~ M))))
= k(I — (S2A'(AZA))'AZY) @ 1,)

= k(I,— Z2A/(AZA')'AZ?) @1, (9.34)
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It follows from (9.32) and (9.34), that
Cov(X|Y) =k(Z —ZA/(AZA)'AZ) @1,

where k = —21//(’](&) and y,(x,) is defined by (2.30)~(2.32) with ¢(Xz) = tr((Y —
AM)'(AZA)"1(Y —AM)).
If the distribution of X is absolutely continuous, then k = f,zl}::i((zr;dz’ with r =
tr((Y — AM) (AZA") "1 (Y — AM)). ]
Now, we find the optimal mean square estimator of Z given X.

Theorem 9.11. Assume that in model (9.25), rk(B) = q and the random matrix
Y = (‘Z[) has a finite second order moment. Let rAgUBY, be the stochastic

representation of Y and F be the distribution function of r. Then, the optimal mean-
square estimator of Z. given X is

2=E(ZX)=M+ZXB'(BZ;B +X,) ' (X —BM).
Furthermore,
Cov(Z|X) =k(Z, — Z,B'(BZ|B' + 2,) 'BZ)) @1,

where k = 721//[']()(2) and Yy, is defined by (2.30)~(2.32) with q(x) = tr((X —
BM) (BZ B’ +X,)" (X —BM)). IfY is absolutely continuous and the p.d.f. of X is

R R R
f(X)_|B21B’+22|%h(I (X—BM)(BZ;B' + %) (X~ BM)))
then
[ h(t)dt
k= 2h(r)

where r =tr((X —BM)'(BZ,B’' + X;) (X -~ BM)).

PROOF: We have X = (B,1,,) (‘Z,) . Hence,

X~ Epn(BM, (BZB'+X2) @1, y).
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Using Lemma 9.3, we get
#((9)2)-(3)- (0 2) G ew (3 2) ()]
x-wa) ()

(o) (5wt

X

_ (M+ZB'(BXB + ;) (X—BM)
N > (BXZB' + %) /(X - BM) ’

Thus,
2=E(ZX)=M+ZXB'(BZ;B +X,) ' (X-BM).
We also get
Z 21 0 B / -1
C X )=k — BX B +X BX, X~ L.
o ((2)) 4((3 2) - (3 Ywsiw s 55,32,
Therefore,

Cov(Z|X) =k(Z, —Z,B'(BZ|B' + X,) 'BX)) 01,

where k = 72111(’“ ) and Wy () is defined by (2.30)—(2.32) with q(x) =tr((X—

X2

BM)'(BZ|B' + X,) (X - BM)).
If <€> is absolutely continuous, then

[ h(t)dt
K=o
with r = tr((X —BM)'(BZB' + X,) /(X — BM)). m

The results of this section were derived by Chu (1973) for the vector variate case.



Chapter 10
Application in Portfolio Theory

10.1 Elliptically Contoured Distributions in Portfolio Theory

The mean-variance analysis of Markowitz (1952) is important for both practitioners
and researchers in finance. This theory provides an easy access to the problem of
optimal portfolio selection. However, in implementing pricing theory one is faced
with a number of difficulties. The mean-variance approach seems to provide almost
optimal results only if the distribution of the returns is approximately normal or the
utility function looks roughly like a parabola. Kroll, Levy, and Markowitz (1984)
reported that the mean-variance portfolio has a maximum expected utility or it is at
least close to a maximum expected utility.

The practical pitfalls of the mean-variance analysis are mainly related to the
extreme weights that often arise when the sample efficient portfolio is constructed.
This phenomenon was studied by Merton (1980), who among others argued that
the estimates of the variances and the covariances of the asset returns are more
accurate than the estimates of the means. Best and Grauer (1991) showed that
the sample efficient portfolio is extremely sensitive to changes in the asset means.
Chopra and Ziemba (1993) concluded for a real data set that errors in means are
over ten times as damaging as errors in variances and over 20 times as errors in
covariances. For that reason many authors assume equal means for the portfolio
asset returns or, in other words, the global minimum variance portfolio (GMVP).
This is one reason why the GMVP is extensively discussed in literature (Chan,
Karceski, and Lakonishok 1999). The GMVP has the lowest risk of any feasible
portfolio. The subject of our paper are the weights of the GM VP portfolio.

Results about the distribution of the estimated optimal weights and the estimated
risk measures are of great importance for evaluating the efficiency of the underlying
portfolio (Barberis 1999; Fleming, Kirby, and Ostdiek 2001). Jobson and Korkie
(1980) studied the weights resulting from the Sharpe ratio approach under the
assumption that the returns are independent and normally distributed. They derive
approximations for the mean and the variance of the estimated weights, together
with the asymptotic covariance matrix. In Jobson and Korkie (1989) a test for the

A K. Gupta et al., Elliptically Contoured Models in Statistics and Portfolio Theory, 237
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mean-variance efficiency is derived. A performance measure is introduced which is
related to the Sharpe ratio. Britten-Jones (1999) analyzed tests for the efficiency of
the mean-variance optimal weights under the normality assumption of the returns.
Using a regression procedure the exact distribution of the normalized weights is
derived. Okhrin and Schmid (2006) proved several distributional properties for
various optimal portfolio weights like, e.g., the weights based on the expected utility
and the weights based on the Sharpe ratio. They considered the case of finite sample
size and of infinite sample size as well.

In all of the above cited papers the stock returns are demanded to be independent
and normally distributed. The assumption of normality is found appropriate due to
positive theoretical features, e.g., the consistency with the mean-variance rule, the
equivalence of multiperiod and single period decision rules, the consistency with
the assumptions of the capital asset pricing model (Stiglitz 1989; Markowitz 1991).
Fama (1976) found that monthly stock returns can be well described by a normal
approach. However, in the case of daily returns the assumption of normality and
independence might not be appropriate since it is very likely that the underlying
distributions have heavy tails (Osborne 1959; Fama 1965, 1976; Markowitz 1991;
Rachev and Mittnik 2000). For such a case the application of the multivariate t-
distribution has been suggested by Zellner (1976) and Sutradhar (1988). Moreover,
the assumption of independent returns turns out to be questionable, too. Numerous
studies demonstrated that frequently stock returns are uncorrelated but not indepen-
dent (Engle 1982, 2002; Bollerslev 1986; Nelson 1991).

In this chapter we assume that the matrix of returns follows a matrix elliptically
contoured distribution. As shown in Bodnar and Schmid (2007) this family turns
out to be very suitable to describe stock returns because the returns are neither
assumed to be independent nor to be normally distributed. Furthermore, it is in
line with the results of Andersen, Bollerslev, Diebold, and Ebens (2001) and
Andersen, Bollerslev, and Diebold (2005) who showed that daily returns normalized
by the realized volatility can be well approximated by the normal distribution.
The family covers a wide class of distributions like, e.g., the normal distribution,
the mixture of normal distributions, the multivariate 7-distribution, Pearson types
Il and VII distributions (see Fang, Kotz, and Ng 1990). Elliptically contoured
distributions have been already discussed in financial literature. For instance, Owen
and Rabinovitch (1983) showed that Tobin’s separation theorem, Bawa’s rules of
ordering certain prospects can be extended to elliptically contoured distributions.
While Chamberlain (1983) showed that elliptical distributions imply mean-variance
utility functions, Berk (1997) argued that one of the necessary conditions for the
capital asset pricing model (CAPM) is an elliptical distribution for the asset returns.
Furthermore, Zhou (1993) extended findings of Gibbons, Ross, and Shanken (1989)
by applying their test of the validity of the CAPM to elliptically distributed returns.
A further test for the CAPM under elliptical assumptions is proposed by Hodgson,
Linton, and Vorkink (2002). The first paper dealing with the application of matrix
elliptically contoured distributions in finance, however, seems to be Bodnar and
Schmid (2007). They introduced a test for the global minimum variance. It is
analyzed whether the lowest risk is larger than a given benchmark value or not.
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10.2 Estimation of the Global Minimum Variance

In the formulation of the mean-variance portfolio problem (e.g., Markowitz 1952;
Samuelson 1970; Constandinidis and Malliaris 1995) a portfolio consisting of k
assets is considered. The weight of the i-th asset in the portfolio is denoted by w;.
Letw = (w1,..,wy) and w1 = 1. Here 1 denotes a vector whose components are all
equal to 1. Suppose that for the k-dimensional vector of asset returns at a fixed time
point 7 the second moments exist. We denote the mean of this vector by u and its
covariance matrix by V. Then the expected return of the portfolio is given by w'u
and its variance is equal to w'Vw.

When an investor is fully risk averse optimal weights can be obtained by
minimizing the portfolio variance w'Vw subject to w'1 = 1. If V is positive definite
the weights are presented as

v

=_——. 10.1
rv-11 (10.1

WM

The portfolio constructed using such weights is known as global minimum variance
portfolio. Its variance is given by

oy =wVw= (10.2)

rv-Iit’
The quantity o7, is an important measure for evaluating the portfolio because it
measures its risk behavior.

Because V is an unknown parameter the investor cannot determine . He has
to estimate V using previous observations. Given the sample of portfolio returns of
k assets X, .., X, the most common estimator of V is its empirical counterpart, i.e.

. 1 & 1 1
V:nilz(xt—i)(xt—i)': 1X(I—nll’>X’ (10.3)

t=1 n—

with X = (x1,..,X,). Replacing V by V in (10.2) we get the estimator 67, of o7
Assuming that the variables x1,..,X, are independent and identically distributed
with x; ~ Ni(u, V) it follows from Muirhead (1982, Theorem 3.2.12) that

However, the assumptions of normality and of independence are not appropriate
in many situations of practical interest. Many authors have shown that, e.g., the
distribution of daily stock returns is heavy tailed (cf., Osborne 1959; Fama 1965,
1976; Markowitz 1991; Mittnik and Rachev 1993). In this section we derive the
exact distribution of 63, = 1/ 1'V~'1 under a weaker assumption on the underlying
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sample, namely we assume that X follows a matrix variate elliptically contoured
distribution. Such a result is useful because it provides an important characteristic
of the estimator 67 and it allows to determine confidence intervals and tests for the
risk measure 67, under non-normality.

10.2.1 Distribution of the Global Minimum Variance

For an arbitrary k-dimensional vector 7 the density of the random variable Q
defined as

731
0={n-1) o (10.4)
is derived in this section. Because it turns out that the distribution of Q does not
depend on 7 it immediately leads to the distribution of the global minimum variance
estimator 6.

The stochastic representation of the random matrix X is essential for deriving the
distribution of Q. Let X be positive definite. It holds that X ~ Ej ,(M,X ® L,, y)
if and only if X has the same distribution as M + R si/2 U, where Uis a kxn
random matrix and vec(U’) is uniformly distributed on the unit sphere in R*", R is
a nonnegative random variable, and R and U are independent (see Theorem 2.13).

The distribution of R? is equal to the distribution of ¥/ (x; — ;)= (x; — ;).
If X is absolutely continuous, then R is also absolutely continuous and its density is

zn.nk/Z

fr(r) = W k] h(i’2> (10.5)

for r > 0 (cf. Theorem 2.16). Note that for the matrix variate normal distribution
R}2V ~ xﬁk, where the index N refers to the normal distribution.

Theorem 10.1. Let X = (xi...X,) ~ Ex,(u1,X®1,,y) and n > k. Let X be
positive definite. Then it holds that

(a) Q has a stochastic representation R*b, i.e., Q ~ R>b. R is the generating
variable of X. The random variables R and b are independent and it holds
that b ~ B(%, "kfz’”k). The distribution function of Q is given by

Z

F* 1 nk—n+ n—
Fo(y) = ( )/O (1-2)"F 1P (Y dz. (106)

(b) Suppose that X is absolutely continuous. Then the density of Q is given by
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nnk/Z

r(ank)r(nkfszrk

k1 (% k—ntk—
foly) = & ! /0 1D By (14 1)) dt L ().
(10.7)
PROOF:
(a) Using V= L= X(I—11'/n)X’ and the stochastic representation of the random
matrix X we get

N
V 1R221/2U(I—11’/n)U’21/2.
P

Thus we obtain that

'z I

0~ R? =R>Q,

—1
v (21/2U(I - 11’/n)U’Zl/2) T
with
-1
0. =7z"'¢/7 (E‘/2U(I— 11’/n)U’z‘/2) .

The random variables R and Q. are independent.

The similar presentation is obtained when X is matrix normally distributed, i.e.
Oy ~ Rlzv Q.. with independent variables Ry and Q.. The index N is again used to
indicate on the normal case. Because R,z\, ~ )(,%k and R]ZV Q, ~ ){37 « (cf. Muirhead,
1982, Theorem 3.2.12), it follows with Fang and Zhang (1990, p. 59) that there
exists a random variable b ~ B( ”T’k, "k%"“{) which is independent from Ry such
that R} Q. = R%b. We observe that P(R%, > 0) = P(b > 0) = P(Q. > 0) = 1.
Because P(b < 1) = 1 it follows with Lemma 5.3 that O, ~ b.

Now we obtain the general decomposition of Theorem 10.1 by applying the
results derived for normal variables. Since b can be chosen independent from R
and using that R and Q. are independent we get with Fang and Zhang (1990,
p- 38) that

0~ R*Q, ~R*b.

Thus we have proved the stochastic representation for matrix variate elliptically
contoured distributions. The representation (10.6) is directly obtained by using
the well-known distribution theory for transformations of random vectors.

(b) The second part of Theorem 10.1 is an immediate consequence of part (a). 1

Note that the distribution of Q does not depend on 7.
Using (10.6) the distribution function of Q can either be calculated explicitly or
at least by numerical integration. The results of Theorem 10.1 permit to derive a test
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that the risk of the global minimum variance portfolio 67, = —2y/(0)/1’X~'1 does
not exceed a certain value. For a given number £ > 0 the testing problem is

Hy:0} <& against H :0f>E&. (10.8)

This means that an investor is interested to know whether the risk of the global
minimum variance portfolio is greater than a certain risk level & or not. The test
statistic is given by

—2y'(0)(n=1)65 _ E(RD)(n—1)6j
: = e . (10.9)

R, is the generating variable of x;. Equation (10.9) is valid since x| ~ Ex(u, X, )
and thus x; has the stochastic representation y + R, X~ 12y, Consequently it follows
that

V = Cov(x|) = E(R?) E(='/?U*U*'z!/?)

2 2
_ E(R;*) E(RIZ\,*ZI/ZU*U*’ZI/z) _ E(R*)
E(RN*)

where R%* ~ ,3 This implies (10.9). If the value of the test statistic is larger than ¢
the hypothesis H; is accepted. The critical value ¢ is determined as the solution of
Fp(c) = 1— o where o is the level of significance.

Theorem 10.1 can also be used for constructing a confidence interval of 6. It is
given by

—2y/(0) (n—1) 63 —2y/(0) (n—1) 63

Cl (69)

where ¢ and c¢; are the solutions of Fp(c1) =1—0/2 and Fp(c2) = /2.
Using the stochastic representation of the random variable Q, the moments of the
estimator of the global minimum variance are obtained. It follows that for i € IV

i 2i
B(63) = 93 g 1y EO)

5 ERY) K T+ TI(4)
ERY a1 () T )

provided that E(R*) exists. This leads to
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Var(6y) = ( n(n—k) nk+2E(R2)? ) (n_1)2 M-
Applying Theorem 3.17 (iii) and 3.22 (iii) we get that
E(R}) = —2y/(0)k, E(R*) = nk (nk+1+4y"(0))

because T /2(X — M) ~ E;,(0,T; @ L,, y).
This shows that 61%,, is an asymptotically unbiased estimator of 61%,1. An unbiased

estimator is given by =+ 6.

10.2.2 Examples

In this section we consider some special families of matrix variate elliptical
distributions. Besides the normal approach we consider several alternative models
having heavier tails. We calculate the density of the global minimum variance
portfolio. The moments can be easily derived and are left to the interested reader.
The confidence intervals and the test statistics will be discussed in the next section.

Example 10.1. (The matrix variate normal distribution)
The density generator function for the multivariate normal distribution is

h(r) = : L exp(—3) (10.10)

T2 @71 y ° nk—n+k—2 y
fQ(y) = F(nz;k r nk72,1+k)y2 eXp(—E)/O t 2 CXp(—ti)dt
! nsk_y Yy
S
regpE T2

This is the density function of the y2-distribution with n — k degrees of freedom.

Example 10.2. (The matrix variate symmetric Pearson type VII distribution)
If a k x n random matrix X follows a matrix variate symmetric multivariate Pearson
Type VII distribution then X has a density generator s with

I'(qg) t kn

Flg k) L H) " a>g. r>0. a0l

hkn,r,q(t) = (nr)fnk/Z 7
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From Theorem 10.1 it holds that
nk
% (wr) 2T (q) w_
foY) = — i Y’ :
r)r=s=) rIg-%)
% / tnkfn;rk72 (1 +y(t+ 1))7th
0 r
_nk
_ r2T(q) y%"—l
LNt (g - 15)
g oo Y _
y 11/ nkn+k2( v )q
1+= t 1 dt
x ( + r 0 + 142
~(n-k)j2 —(g—tk g k)
= :—k K kail(HrX) T
B(Taq_ 7) r
(n—k)/2,2(q—nk/2) r(n—k) :

Here f;, ,, denotes the density of the F — distribution with (n,m) degrees of freedom
For the matrix variate r— distribution it holds that
F—boo.

1
frel) = — fukr () = Z3(0) as

Example 10.3. (The matrix variate symmetric Kotz type distribution)
The k x n random matrix X has a matrix variate symmetric Kotz type distribution if

(2 ke
h(t) = —; s 2( 2 )k . r2q+2‘k 2 9V exp (—rts) (10.12)
)

with r,s > 0, g € IR such that 2g + nk > 2.
We restrict ourselves to the case s = 1. Then we obtain

k
I'(5) P T

fQ(y) = (nTk)F(nk n+k) (2q+nk 2)
)/m e 2(1—|—t) exp(—ryt)dt

X exp

(% 0 0
Bt ()

T (e
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nk—n+k 2g+nk—n+k

x U( I > ,7y)

where U (a, b, x) is the confluent hypergeometric function.

10.2.3 Determination of the Elliptical Model

Next we want to illustrate how the obtained theoretical results of the previous
sections can be applied in analyzing financial data. We consider daily data from
Morgan Stanley Capital International for the equity markets returns of three
developed countries (Germany, UK, and USA) for the period from January 1993 to
December 1996. In our study we make use of the advantages of matrix elliptically
contoured distributions. First, the returns at different time points are uncorrelated
and second, the return distribution is elliptically contoured.

It has to be noted that up to now no test of goodness of fit is available for the
present modeling. Our procedure is a compromise which is obtained by combining
existing methods. In order to examine whether the returns of a stock are elliptically
symmetric at all we use a test suggested by Heathcote, Cheng, and Rachev (1995).
The type of the elliptically contoured distribution is determined by applying the
moments test of Fang and Zhang (1990). The analysis will lead to a matrix variate
t-distribution. Other tests on elliptical symmetry were derived by Beran (1979);
Baringhaus (1991); Manzotti, Perez, and Quiroz (2002), and Zhu and Neuhaus
(2003).

We consider the daily returns of the equity markets for each country separately.
For each stock the sample of returns of size n is splitted into m = [n/q] subsamples
of size g. The i-th subsample consists of the g(i — 1) 4 1,...,gi-th observations.
In our analysis q is taken equal to 5 or 10. The test of Heathcote, Cheng, and Rachev
(1995) is applied to analyze whether the 5- or 10-day vector of returns is elliptically
contoured, respectively. Denoting the subsample by Z1, .., Z,, the null hypothesis of
elliptical symmetry is rejected iff (see Heathcote, Cheng and Rachev (1995))

iy sin((Zj — 1) tom)
moy, (tom)

> Za) (10.13)

where z45 is the 100(1 — o/2) percentile of the standard normal distribution. i,
is the vector whose components are all the same and equal to the sample mean. The
function o,(.) is defined by

i) = 2 20D S (2, sin((2 -7,

2
+ (Um (2t)> t/zmt7 teS,, C R
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Table 10.1 The values of

/G (ti) Dimension Germany UK USA

O,

i 5 1.4593 14536 1.6101
10 1.4926 15195 15149

with

M=

N ) (2 )

1 & _
Un(t) = " 2 cos((Zj—M,)'t) , Zm =
j=1 J

1

The symbol ty,, € S, is a point where the function G,%,(.) reaches its maximum
value on the compact S,,. The set S,, of t = (11,...,t,)" is contained in a ball of
the radius ||r,,||, where r,, is the first zero of U,(.). Heathcote, Cheng and Rachev
(1995) showed that r,, is of a greater magnitude than the first t (in Euclidean norm)
for which t’A,,t = 2 where A,, = i 7‘1=1 Z; Z’j. Hence, we choose r,;, as a solution
of the following minimization problem

mint't subject to tA,t=2. (10.14)
teR

Solving it by constructing the Lagrangian we obtain that
t—AA,t=0 and tA,t=2.

The first k equations of the system have non-zero solution iff [I— AA,,| = 0. Hence,
1/A is an eigenvalue with eigenvector t of the matrix A,,. It holds that t't = 24.
Thus, the radius of the ball is equal to \/2/Auq Where Ay is the maximum
characteristic root of the matrix A,,.

In the statistics (10.13) the point ty,, € S,, is chosen to obtain the maximum value
of the function o, (.). However, it holds that

l . — \/
i1 sin((Zj —1L,,) "tom) ‘ L] 7
me(tOm) Gm(tOm) Om (tlm)

where ty,, is a point of S,,,.

First the radius of the ball for each country and for the five and ten dimensional
vector of returns are calculated. Then a vector ty,, € S,, is chosen. For the five
dimensional case we fix ty,, = (180,180,180,180,180)" for German and UK and
tim = (190,190,190,190,190)" for USA. In the ten dimensional case the vector,
whose components are equal to 100 is chosen for Germany and UK, and the
vector with elements equal to 150 for USA. The values of 1/0,,(t;,;) are given
in Table 10.1. The hypothesis of elliptical symmetry can be rejected in none of the
cases for the significance level o = 0.1.
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Table 10.2 The values of the test statistics of the moments test proposed by Fang and
Zhang (1990) (cf. Sect. 10.2.3) (here: ¢ = 10, critical values for oo = 0.1: 15.99 for I
moment, 68.80 for II moment)

Count.\d.f. 5 6 7 nor

Imom. IImom. Imom. Il mom. I mom. Il mom. I mom. I mom.
Germany 13.67 37.53 13.67 48.92 13.67 55.75 13.67 75.71
UK 6.14  29.67 6.14  34.59 6.14  37.59 6.14 84.49
USA 424  12.11 424 1694 424 1997 4.24 178.68

In order to construct a confidence interval or to make a test for the variance of the
global minimum variance portfolio it is necessary to know the type of the elliptical
distribution. Many authors proposed to use the ¢-distribution for modeling daily
returns. Blattberg and Gonedes (1974) compared two heavy tailed statistical models
for stock returns, stable distributions and the ¢-distribution. They concluded that
the student model provided a better fit for daily stock returns than the symmetric-
stable model. In their study they showed that the degree of freedom for the -model
fluctuates between 2.53 and 13.26 with the mean of 4.79. Furthermore, the most
estimates of the degree of freedom are located in the interval (4,6). Following these
proposals we fitted a multivariate 7-distribution to our empirical data. Again, in the
same way as described above, we examined each stock separately by building 5- and
10-day samples, respectively. The moments test of Fang and Zhang (1990, p. 185)
is applied to analyze the goodness of fit. We used the testing procedure for the first
and second sample moments. The test cannot be applied for higher moments since
they do not exist for a multivariate ¢-distribution with a small degree of freedom.
Table 10.2 presents the results of the test for subsamples of size g = 10. We fitted
a 10-dimensional normal and #-distribution to the data. The degree of freedom of
the 7-distribution was chosen equal to 5,6, and 7. Taking the level of significance
equal to o = 0.1 the critical value is equal to 15.99 for the test based exclusively on
the first moments and 68.80 for the test using the second moments. While the null
hypothesis is not rejected for the ¢-distribution the normal approach is excluded by
the test based on the second moments.

This analysis leads us to the decision to model the data by a matrix variate
t-distribution in the next section.

10.2.4 Tests for the Global Minimum Variance

Here we want to illustrate how our results can be applied. We divide our data set of
daily returns in two sub-samples. The first one, that includes the data from the first
2 months of 1993, is used to estimate the mean vector and the covariance matrix.
Table 10.3 shows the sample means and the sample covariance matrix of the stock
returns. Because X = V/(—2y/(0)) we also get an estimator of X. Later on these
values are used as the parameters of our model. The second sub-sample consists
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Table 10.3 The sample mean and the sample covariance matrix of the daily returns of Germany,
UK, USA determined with the observations of January 1993 and February 1993. In the table the
values of the sample covariance matrix are multiplied by 1,000, i.e., 1,000Cov(x)

Germany UK USA
Mean 0.000530 0.000508 0.000539
Germany 0.1146 0.0244 —0.0036
UK 0.0244 0.1165 0.0218
USA —0.0036 0.0218 0.0195

Table 10.4 Critical values ¢ = F, (1 — &) for the test introduced in Sect. 10.2.1

d.f. n=20 n=21 n=22 n=23

oa=005 o=01 o=005 a=01 =005 a=01 a=005 oa=0.1
93.51 61.62 99.14 65.59 104.8 69.36 110.4 73.12
73.66 51.68 78.04 54.79 82.41 57.91 86.79 61.02
62.76 45.80 66.44 48.53 70.12 51.27 73.80 54.00
55.91 41.97 59.16 44.45 62.40 46.93 65.65 49.41
nor 26.30 23.54 27.59 24.77 28.87 25.99 30.14 27.20

AU A A
I

Il
N o v oA

of the values obtained within one of the following months. It is tested whether the
variance of the global minimum portfolio within that month is less than or equal to
the preselected value & = 1.05 6. The value & is determined with the observations
of the first sample. 67 is the sample estimator for the global minimum variance
based on the first sub-sample. Our null hypothesis says the risk within the month
under consideration exceeds the risk of the comparative month more than 5 %. The
critical values for the significance levels 0.05 and 0.1 are presented in Table 10.4.
The last row contains the critical values for the normal distribution. Because the
number of opening days of the stock exchanges may vary from 1 month to another
we give the results for the sample sizes n € {20, ..,23}. In Table 10.5 the number of
rejections per year of the null hypothesis in (10.8) is shown. This is done for the 5%
(10 %) level of significance for the months from March 1993 to December 1996.

Choosing a significance level of 5 % the null hypothesis is rejected only once for
a t-distribution with 4 degree of freedom, twice for the 7-distribution with 5, 6, and
7 degree of freedom, but 11 times for the normal distribution. For a significance
level of 10% more signals are obtained. These results are given in Table 10.5 in
parenthesis. If a matrix variate ¢-distribution is selected we have 5 — 6 rejections
of the null hypothesis while the normal approach leads to 15 ones. The misleading
assumption of normally distributed daily returns results in more frequent rejections
of the null hypothesis and thus, in many cases, an analyst will unnecessarily adjust
the underlying portfolio.
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Table 10.5 Number of rejections per year of the null hypothesis considered in (10.8) by the test
of Sect. 10.2.1 (here: £ = 1.05- 6,%,,, o = 5% in parenthesis oo = 10 %)

D\Y 1993 1994 1995 1996
d=4 0(0) 0Q) 0(0) 13)
d=5 0(0) 12) 0(0) 13)
d=6 0(0) 13) 0 (0) 13)
d=17 0(0) 12) 0(0) 13)
nor 2 (4) 4(6) 1(1) 44)

10.3 Test for the Weights of the Global Minimum Variance
Portfolio

The aim of the present section is to derive a test for the general linear hypothesis
of the GMVP weights. This hypothesis is treated in great detail within the theory
of linear models (e.g., Rao and Toutenburg 1995). It covers a large number of
relevant and important testing problems. Our test statistic is derived in a similar
way. Contrary to linear models its distribution under the alternative hypothesis is
not a non-central F-distribution. This shows that our results cannot be obtained in
a straightforward way from the theory of linear models. A great advantage of the
approach suggested in this paper is that the assumptions on the distribution of the
returns are very weak.

There are several possibilities how an optimal portfolio can be determined. For
the expected quadratic utility the portfolio weights are chosen to maximize

wi— %W/VW subjectto 1'w=1,

where o > 0 describes the risk aversion of an investor. This leads to the weights

v-11 i . ., vhrv!
WEU:m+a R[J. with Q:V _W

Another approach consists in maximizing the Sharpe ratio of a portfolio without

a risk free asset. The Sharpe ratio is still one of the most popular measures for the

evaluation of a portfolio and the asset performance (Cochrane 1999; MacKinley

and Pastor 2000). The problem of determining optimal weights can be solved by
maximizing

/

- subjectto  1'w=1.
wVw

The solution is given by

V'u
Wsr = 71,‘]71“
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provided that 1'V~'u # 0. The portfolio with maximum Sharpe ratio can be
equivalently presented as a global tangency portfolio in a classical quadratic
optimization problem. In the case when an investor is fully risk averse, the weights
in the sense of quadratic utility maximization and the weights of the Sharpe ratio
transform to the weights

v11

Wu =Ty

which are the weights of the GMVP.

10.3.1 Distribution of the Estimated Weights of the Global
Minimum Variance Portfolio

The estimator Wy, of wy, is given by

v
vt

A

Wi (10.15)

where V is given in (10.3). Note that for a normal random sample V is positive
definite with probability 1 if n > k. Okhrin and Schmid (2006) proved that in
this case all marginal distributions of Wj; with dimension less than k follow a
multivariate z-distribution.

Here we consider linear combinations of the GMVP weights. Let I; € R, i =
l,....,p,1<p<k—1,andletL’ = (I;,...,1,). We are interested in

LV-1 vt Lviiy
=L S ( 1 . r ) 10.1
Wep = WWu = Ty T v v (10.16)
Applying the estimator (10.3) we get
. . |/AVLS N A ' RV
Wiy = Ly = <1/V—11""’1/V—11) (10.17)

Next we want to derive the distribution of Wr.,. The next theorem is due to Bodnar
and Schmid (2008a).

Theorem 10.2. Let Xy,...,X, be independent and identically distributed random
variables with x| ~ Ny (U, V). Let n >k > p > 1. Let G = (g;;) be a k x k— 1 matrix
with components gi; =1, gr; = —1 fori=1,..,k—1, and 0 otherwise. If rk(LG) = p
then it follows that
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. 1 LQL'

WL;p pr <}’l—k+1, WL;p7 m 1/\711> .
PROOF: We denote the components of wy; by WML WM and of Wy, by
Wm1,-- -, Wk Let Wy = (Wum i, WM k—1 ) and Q be the matrix consisting of the

k — 1 rows and columns of Q. Okhrin and Schmid (2006) showed that the first k — 1
components of Wy, which we denote by \?VM, follow an k — 1-variate ¢-distribution
with n — k + 1 degrees of freedom and parameters Wy, and Q/((n—k-+1)1'V~'1).
Because the sum over all components of Wy, is equal to 1 we can write Wy, = Gwy,
with a k x k — 1 matrix G of rank k — 1. If 7k(L.G) = p then by using the properties
of elliptically contoured distributions it follows that

. 1 .
Ly =LGWy ~ 1, <n —kt L LWy, LGQG’L’) .
P

Because Q1 = 0 it can be seen that GQG’ = Q and thus the assertion is proved. |

Applying the properties of the multivariate z-distribution we get that E(W.,) =
wy., and for k < n—2 that

1 LQL

VarWey) = S v

(10.18)

Theorem 10.2 says that linear combinations of the components of Wy, are again
t-distributed. However, if the matrix V cannot be estimated by historical data, it does
not provide a test for w;., because the distribution of Wy, still depends on V.

10.3.2 The General Linear Hypothesis for the Global
Minimum Variance Portfolio Weights

Following Markowitz (1952) efficient portfolios are obtained by minimizing the
variance of the portfolio return given a certain level of the expected portfolio return.
The problem of testing the efficiency of a portfolio has been recently discussed
in a large number of studies. In the absence of a riskless asset Gibbons (1982),
Kandel (1984), Shanken (1985) and Stambaugh (1982) have analyzed multivariate
testing procedures for the mean-variance efficiency of a portfolio. Jobson and Korkie
(1989) and Gibbons, Ross, and Shanken (1989) derived exact F'-tests for testing the
efficiency of a given portfolio. More recently, Britten-Jones (1999) has given the
exact F-statistics for testing the efficiency of a portfolio with respect to portfolio
weights which is based on a single linear regression. In this section we introduce a
test of the general linear hypothesis for the GMVP weights. First, in Sect. 10.3.2
we consider the normal case. In Sect. 10.3.3 the results are extended to matrix
elliptically contoured distributions.
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As above let L be a p x k matrix and r be a p-dimensional vector. L. and r are
assumed to be known. We consider the general linear hypothesis which is given by

Hy:Lwy =71 against Hy:Lwy #r.

This means that the investor is interested to know whether the weights of the GMVP
fulfill p linear restrictions or not. This is a very general testing problem and it
includes many important special cases (cf. Greene 2003, pp. 95-96).

In Theorem 10.2 it was proved that Wi, follows a p-variate multivariate ¢-
distribution with n — k + 1 degrees of freedom, location parameter wy,, and scale
parameter LQL’/1’V~!'1. This result provides a motivation for considering the
following test statistic for the present testing problem

T = ’%k(l’v—ll) (WL;p—r)l(LQL/) I(WL;,,—r) : (10.19)

This quantity is very similar to the F statistic for testing a linear hypothesis within
the linear regression model. Because the distribution of the underlying quantities
is different than in the case of a linear model we cannot apply these well-known
results.

Now let F; ; denote the F-distribution with degrees i and j. Its density is written
as f; ;. In the following we make also use of the hypergeometric function (cf.
Abramowitz and Stegun 1965)

I'c) &T(a+i)(b+i) 7

ZFl(“’b’c;x):r(a)r(b)Zo Tleti) it

The technical computation of a hypergeometric function is a standard routine within
many mathematical software packages like, e.g., in Mathematica.

Theorem 10.3. Let Xy,...,X, be independent and identically distributed random
variables with x; ~ Ni(u,V). Let n >k > p > 1. Let M' = (L', 1) and

rk(M) =p+1.

(a) The density of T is given by

Fr(®) = foni(x) (14 1)~ (kEp)/2 (10.20)
n—k+p n—k+p p px A
XzF‘( 2 2 ’2’n—k+px1+),>

with A =1'V"1(r—wz,) (LQL") "' (r —wp,).

(b) Under the null hypothesis it holds that T ~ F), ,, .
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PROOF:

(a) Let M = (L/,l) and MV~'M' = {Hij}i,j=1,Zs val M = {I:Iij}i,j=172 with
Hpy =1V 11, Hy =1V '1,H,=LV '1,H, =LV '1,H;; =LV 'L/,
and Hj; = LV~'L. Because (n— 1)V ~ W(n —1,V) and rk(M) = p+ 1 we
get with Theorem 3.2.11 of Muirhead (1982) that

(n— 1) (MY 'M) ™ ~ W,y (n—k+p, MV M) 1) |

Now it holds with B = LRL' that

ISP [ ﬁ71 _ﬁil "’\VL'p
MY M = " N A A A A B
( ) <_Wi;p B ! (H22 —H21H”1H12) 1

because Wi, = 1:112 /ﬁzz. We obtain with Theorem 3.2.10 (ii) of Muirhead
(1982)

TN S 1) S

1
= ff(nfl)ﬁ’lvAvL;l,\(nfl)ﬁ*I (_Cl/za - Cr(C) [C|2

p/2
H
= (271:2)217/2 exp (_222 (a+Cl/z(r—wL;p))/(a+C1/2(r—wL;[,))) :

This is the density of the p-dimensional normal distribution with mean C'/?(r —
wi.») and covariance matrix I/Hp, i.e.

V= THY BT (g —1)l(n— 1B = € ~ N(H,'CV(r —wi).T).
Consequently
(1= D) UV (Wi — 1) B! (=) (0= DB = C ~ 22, )

with A(C) = Hps (r — wy,) C(r — wy,p).
From Muirhead (1982, Theorem 3.2.12) we know that

1'v-1
(n—1) w1~ Xt -

Moreover, applylng Theorem 3.2.10 (i) of Muirhead (1982) it follows that Hy,
is 1ndependent of B~ and B~ L. ;p and thus H22 is independent of B! and
(Wr,p — 1) B! (W, —r). Putting these results together we obtain

T|(n—1)B™'=C ~ F,, 11 -
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Because (n— 1)B~! ~ W,(n—k+ p,B~") with B = LQL’ we obtain that

fr(x) = C>0fp,n7k,l(C) (x)wp(n—k+p,B1)(C)dC.

Here f; ;; denotes the density of the non-central F-distribution with degrees
i and j and noncentrality parameter A and w), is the density of the Wishart
distribution W),. If = 0 we briefly write f; ;. It holds that (e.g., Theorem 1.3.6
of Muirhead (1982))

Fon—tka()*) = fpn-ko(x) exp (—/1(2(»)

o ((n—k+p)/2)i A(C)’ px "
8 Z(‘) (p/2); i! (2(n—k—|—px)) '

Let us denote

v 1((n—k+p)/2)i px i
KD = 577 (2(n_k+px))'

Then it follows that

Fr(3) = fymilx zk exp<_x<c>> i

C>0 2 Zp(n7k+p)/21;(”*k%)

n—k+p n—k— 1
x [B| 2 etr <_2BC> dC

>0

> n—k+p 1
= e k(i Bl 72
fonesl) TR0 [ B e

=N (IIV’l 1(r —wyz;) C(r— WL;")>[

1
X etr (—2(B +1V (e —w)(r— WL;p)/)C> dC

_n—k+p

- 1(r—wp,)(r— WL;p)/|

n—k+
= fpn-ik(®)[B]7Z"
x Zk YAV E(((r—wip) Clr—wip)))
where C follows a p-dimensional Wishart distribution with n — k + p degree of

freedom and parameter matrix B = (B-+1'V~'1(r — wz;,)(r—wz.,)")~!. From
Theorem 3.2.8 of Muirhead (1982) we obtain that
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E(((r— WL;p)/C(r - WL;p))i)
=2 ((n—k+p)/2)i (r—=wr,,)B(r—we,))’

_ o (r—wrp)B l(r—wy,) i
=2 (=2 (B T )

Finally

fr (x) = fp.n—k(x)(l + 1v! 1(1‘ - WL;]J),I'}7l (I‘ - "‘VL;11))7(’17]€JFF)/2

" i (n=k+p)/2)i((n—k+p)/2)i
i—0 i!(l’/2)i

( pxl’V_ll(l' — WL;p)/B_l (r— wL;P) )i
(n—k+px)(14+1V-11(r—wz,) B~ (r—wg,))

= frat(®)(1+1V 1(r—wg,) B! (r— WL;1>))7(n7k+p)/2

n—ktp n—kt+pp  px UV —wip) B! (r—wy) )

F( I 5~
S ) 2 2 n—ktpx AUV (r—wi, ) B (r—wg,)

Thus the result is proved.
(b) The statement follows by noting that A = 0 under H and

n—k+p n—k+p p
2F1( 2 2 ’20> I
It is remarkable that the distribution of 7 depends on the parameters ¢t and V and
the matrices of the linear hypothesis L and r only via the quantity A. The parameter
A can be interpreted as a noncentrality parameter. This fact simplifies the power
study of the test. In Fig. 10.1 the power of the test, i.e. 1 — Fr(c) with F), ,_(c) =
0.9, is shown as a function of A and p. Note that the T-statistic under H; does
not possess the non-central F-distribution which is obtained in the theory of linear
models. The number of observations 7 is equal to 260 and k is equal to 7. The figure
illustrates the good performance of the test. Even for small values of A the test has a
high performance. Moreover, it can be seen that its power decreases if p increases.

Theorem 10.3 has many important applications. If, e.g., the analyst wants to test
whether the GMVP weight of the first stock in the portfolio Wy 1 is equal to a given
value ri, perhaps a reference value from a previous time period, we choose p = 1
andl; = (1,0,...,0). Then we get

(1/‘771 )Z(WM 1 —r1)2

T=(n-
V- llv — (k. 1\?“ )2

with V! = (V; o )) For the one-sided hypothesis the statistic

T \/7 1/V 11(WM17I’1)
Vv - sk o))
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0.1+

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
Noncentrality Parameter

Fig. 10.1 Power function of the test for the general hypothesis (cf. Theorem 10.3) for various
values of p € {l,..,6} and 10% level of significance. The number of portfolio assets is equal to
k =7 and number of observations is n = 260

can be used which under the null hypothesis follows a ¢-distribution with n — k&
degrees of freedom. Moreover, Theorem 10.3 provides a test for the hypothesis that,
e.g., two stocks have the same weights in the GMVP or that all weights are equal
to reference (target) values. Consequently it can be used as a tool for monitoring
the weights of the GMVP and it permits a decision whether the portfolio should be
adjusted or not.

The above result can be applied to construct a 1 — o two-sided confidence interval
for wy;, as well. It is given by the set of all r satisfying that 7'(r) < F}, ,_t.1—q-

10.3.3 The General Linear Hypothesis for the Global
Minimum Variance Portfolio Weights in an Elliptical
Model

Using the stochastic representation of the random matrix X and Theorem 5.1.1 of
Fang and Zhang (1990), it is proved in Theorem 10.4 that the statistics W;., and T
are distribution-free on the class of elliptically contoured distributions.



10.3 Test for the Weights of the Global Minimum Variance Portfolio 257

Theorem 10.4. Letx = (X;...X,) ~ Ep,(u1', XL, ). Let X be positive definite
and suppose that X is absolutely continuous. Let n > k > p > 1. G is used as in
Theorem 10.2.

(a) If rk(LG) = p then

1 LQL )

WL;p ~ 1, (n—k+l,WL;p7’l_lc_|_1 m

(b) If rk(L',1) = p+ 1 then the density of T is the same as in (10.20).
PROOF: Using the stochastic representation we obtain that

(n—1)V~R 2V?U(1- %11’)U’21/2.
Consequently it holds that

1
I (zV20(1-11/n)U'S ‘/2) 1

(=
1/( s12uI- 11//n)U/21/2) B!
(R

-1
I %vzl/zu(l—n'/n)u’zlﬂ) 1

-1
% (Rfvzl/ZU(I— 11’/n)U’21/2) 1

Thus W;., has the same distribution as in the case of independent and normally
distributed random vectors. Analogously, it can be seen that LQL/ /1 V-1 is
distribution-free on the class of elliptically contoured distributions and thus the
same property holds for T'. [}

Theorem 10.4 says that the distribution of linear combinations of the estimated
GMVP weights and the distribution of 7 are independent of the type of elliptical
symmetry of the portfolio returns. Thus, in case of a fully risk averse investor neither
the mean vector nor the distributional properties of asset returns have an influence
on the optimal portfolio weights. In order to apply these results it is sufficient to
know that the distribution of the data is a member of the family of matrix elliptical
distributions but it is not necessary to have knowledge of the exact distribution.
This assumption does not exclude the Pareto stable family and the multivariate -
distribution. Although the covariance matrix does not exist for the stable family
(contrary to the normal case) and not always for the ¢-distribution, the results of
Theorem 10.4 are valid for these distributional families, too.
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Table 10.6 95% and 90 % two-sided confidence intervals for the GMPV weights of France,
Germany, Italy, Japan, Spain, U.K., and U.S.

Country FR GE IT JP Sp U.K. U.S.

95% LCL —0.0640  0.0292  —0.008 0.1162  —0.1751 —0.0170  0.4301
95% UCL 0.1890  0.2107  0.0987 0.2680 0.0131 0.2615  0.6475
90% LCL —0.0525  0.0374  —-0.0032  0.1230  —0.1666 —0.0044  0.4399
90% UCL 0.1776  0.2025 0.0939  0.2612 0.0046 0.2489  0.6377

10.3.4 International Global Minimum Variance Portfolio

Based on the daily data from January 1, 1994 to December 31, 1994 an international
global minimum variance portfolio is determined. Such a portfolio is of interest
for an investor focused on international trading because it can be regarded as a
benchmark portfolio for his investment. Confidence intervals for various linear
restrictions are derived. Bodnar and Schmid (2007) proposed to model daily stock
returns by matrix elliptically contoured distributions. Following the results of
Sect. 10.2.3 the assumption of the matrix elliptical symmetry cannot be rejected
for the considered data. Here we make use of this extremely useful family of matrix
valued distributions.

In Table 10.6 separate confidence intervals for the GMVP weights of each
country are presented. The problem of multiple comparisons (here 7) is taken into
account by using the Bonferroni inequality. The null hypothesis of a weight of size 0
is not rejected for the French, Italian, Spanish, and UK returns. The GMVP weights
of Germany, Japan, and USA are positive. The GMVP weight of the USA is the
largest one. Its size is larger than the sum of the weights of all remaining countries.
The null hypothesis of a weight of size 0.5 cannot be rejected for a 10% level of
significance. The upper bound of the 95 % one-sided confidence interval for the US
weight is equal to 0.6475. This result turns out to be of interest because it does
not support an investor who allocates his whole wealth into the US market. It is
not in line with the result obtained by Britten-Jones (1999) for monthly price data.
Finally, the lower bound for a 95 % one-sided confidence interval for the sum of the
GMVP weights of the Germany, Japan, UK, and USA is given by 0.848. This shows
the benefits of a portfolio allocation to the four developed markets, i.e., Germany,
Japan, UK, and USA. They are able to explain nearly the whole development of the
portfolio.

10.4 Inference for the Markowitz Efficient Frontier

In order to construct an optimal portfolio Markowitz (1952) proposed to choose the
portfolio with the smallest risk for a given level of average portfolio return. Merton
(1972) showed that the set of all of these optimal portfolios lies on a parabola in the
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mean-variance space, the so-called efficient frontier. This parabola is determined
by three characteristics. The first two define the location of the vertex, while the
third one is the slope parameter. Assuming the asset returns to be independently
and normally distributed, Jobson (1991) obtained an asymptotic confidence region
of the efficient frontier, while Bodnar and Schmid (2009) derived an exact joint
confidence set of the three parameters of the efficient frontier. This set is used to
determine a region in the mean-variance space where all optimal portfolios lie with
a given probability (1 — o).

Because the parameters of the efficient frontier are unknown quantities, the
investor cannot construct the efficient frontier. Usually, the sample efficient frontier
is used instead of the population efficient frontier (see, e.g. Bodnar and Schmid
2008b; Kan and Smith 2008), which is obtained by replacing the unknown param-
eters of the asset returns distribution with the corresponding sample counterparts.
However, Basak, Jagannathan, and Ma (2005) and Siegel and Woodgate (2007)
showed that the sample efficient frontier is overoptimistic and overestimates the
true location of the efficient frontier in the mean-variance space. In order to correct
this overoptimism Kan and Smith (2008) suggested an improved estimator of the
efficient frontier, while Bodnar and Bodnar (2010) derived the unbiased estimator
of the efficient frontier.

In the above cited papers, the assumption of independence and normality
is maintained. However, these assumptions might not be appropriate in many
situations of practical interest. Many authors have shown that the distribution of
daily stock returns is heavy tailed (e.g., Fama 1965; Markowitz 1991; Mittnik and
Rachev 1993; Chen, Gupta, and Troskie 2003).

10.4.1 Derivation of the Efficient Frontier

First, we derive an expression for the efficient frontier assuming that the asset returns
are elliptically contoured distributed. If a random vector x is elliptically contoured
distributed with the location parameter ¢ and the dispersion matrix X then it has the
following stochastic representation (see, e.g. Fang and Zhang (1990, p. 65))

x~ U +7xu, (10.21)

where u is uniformly distributed on the unit sphere in R¥ and the generating variable
7 is independent of u.

We derive an expression for the efficient frontier using the formulas for the
expected return and the variance of the optimal portfolio in the sense of maximizing
the expected utility function (EU portfolio). Let w = (wy,...,w;)’ denote the vector
of portfolio weights, i.e. w; is the part of the investor’s wealth invested into the ith
asset. Then the expected return of the portfolio with the weight vector w is given
by R, = WE(x) = w'u, while its variance is V,, = w'Var(x)w = %#)W’Ew. The
weights of the EU portfolio are obtained by maximizing
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YE()

4 WEw (10.22)

R Vr ="l

under the constraint w'1 = 1. There y > 0 is the coefficient of the investor’s risk
aversion. The solution of (10.22) is given by

2t | >zt

_ 1 - _ 51
WEu—m—‘rY Qu with Q=2""— s 11 (10.23)

where 7 = vE (i) /k. Using the weights (10.23), the expected return and the variance
of the EU portfolio are obtained as

/2711 . .
REU:%” 'WQu=Rouv +7 s, (10.24)
and
E(P) 1 L E() E(7) L E(P)
= — = — 10.2

Vev=——" 751 TV T HQu=— Vo +7 7 ——s, (1025

where
x! 1
RGMV = ﬁ y and VGMV = m (1026)

are the expected return and the variance of the global minimum variance portfolio
(GMV portfolio) and s = u'Qu. The GMV portfolio is a special case of the EU
portfolio that corresponds to the case of the fully risk averse investor, i.e. Y = oco.

The Egs. (10.24) and (10.25) are considered as the parametric equations of the
efficient frontier. Solving (10.24) and (10.25) with respect to 7, the efficient frontier
is expressed as

k E (7
(R—Romy)? = 57 (V — (kr )VGMV) . (10.27)

From (10.27) we conclude that the efficient frontier depends on the asset return
distribution. If E (7%) > k, then the risk of the investment is higher than in the normal
case. Moreover, there is a decrease in the overall market profitability since in (10.27)
the slope coefficient of the parabola is multiply by k/E () < 1. When E () — oo,
the slope coefficient of the parabola tends to zero. In this case the efficient frontier
degenerates into a straight line and the only efficient portfolio is the GMV portfolio.

The same result is obtained by considering 7. Note, that ¥ can be considered as
a coefficient of risk inversion in elliptical models. If y = oo and E () < oo, the EU
portfolio transforms to the GMV portfolio. From the other side, if E(7?) = oo there
is no solution of the optimization problem since in this case we get that

(R—Romv)* = —sVomv -
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10.4.2 Sample Efficient Frontier in Elliptical Models

Let xy,...,X, be a sample of the asset returns. We assume that the asset returns
follow a matrix variate mixture of normal distributions with mean vector y and
dispersion matrix X. Any mixture of normal distributions belongs to the family of
elliptically contoured distributions with stochastic representation of x; given by

X ~ U +r2z;, (10.28)

where z; ~ Ni(0,I) and Z = (z,...,2,) is independent of r. We denote this
distribution by Ey , (1, X ®1,,g), where g is the so-called density generator which
is fully determined by the distribution of r.

Note, that the asset returns are not assumed to be independently distributed in
(10.28). The assumption of independence is replaced with a weaker one that the
asset returns are uncorrelated. The random variable r determines the tail behavior of
the asset returns. The model (10.28) is in-line with the recent modeling of the daily
behavior of the asset returns. The daily asset returns are heavy-tailed distributed
and they are not independent (see, e.g. Engle 1982, 2002; Bollerslev 1986; Nelson
1991).

Because ¢ and X are unknown parameters of the asset returns distribution, the
investor cannot use (10.27) to construct the efficient frontier. These quantities have
to be estimated from the historical values of the asset returns before the efficient
frontier is determined. We consider the sample estimators of these parameters
given by

. 1
x; and X =
] n—1

Vi

S |-

o= > (xj—)(x;— Q). (10.29)
j=1

J

Using E(7)/k = E(r*) and plugging (10.29) instead of ¢ and X in (10.27), the
sample efficient frontier is expressed as

(R—Reuv)* = =—=8(V —E(*)WVomv), (10.30)
E(r?)
where
R S 'a 1 R
Remv = — 71# , Vomy = ———, and §=0'Qa, (10.31)
s s
withQ=3"-3""1rs"" )51

Theorem 10.5 is taken from Bodnar and Gupta (2009). It presents the distribution
properties of Reuv, Vo, and $.
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Theorem 10.5. Let X = (xy,...,X,) ~ Ep,, (U, X ®1,,8). Assume that X is positive
definite. Let k > 2 and n > k. Then it holds that

(a) Givenr = ro, Vony is independent of (Rgmv ,§).

(b) (n— 1)VGMv/VGMV|” =Ty~ r(%%r%—k'

n(n—k+1) ~
(©) =1 =70 ~ Fi i n ks 1ns/i2

5 A I4+72y
(d) RGMV|S:yar:VON</V<RGMV; . I}VGMVVZ)

(e) The joint density function is given by

nn—k+1)

fIéGMV’VGMV’SA(LZ’y) - /0 (k— I)VGMVV(% N<RGMVa1+’{ijGMVV(2))(X)
n—1 nn—k+1)
ET ) — dry.
Xfxnz—k(VGMVr(z) Z)kafl,nkarl,ns/r(z) ( (n _ 1)(k _ l)y)fr(ro) )

PROOF: Given r = ry it holds that the x;’s are independently distributed with
Xi|[r=rg~ Nk(u,rgz). Application of Lemma 1 of Bodnar and Schmid (2009)
leads to the statement of the theorem. The theorem is proved. [

10.4.3 Confidence Region for the Efficient Frontier

A joint test for three characteristics of the efficient frontier is given by
Ho : Romyv = Ro, Vomv = Vo, s = 50 (10.32)
against
Hi: Royy =Ry #Ropor Vgyy =Vi #Vyors=s1 #59.

For testing (10.32) we use the results of Theorem 10.5, which motivate the
application of the test statistic T = (T, Ty, Ts)" with

Romv —R
Tr = /1 o, (10.33)
Vo140
Ty = (n—1)YeM". (10.34)
Vo
nn—k+1) .,
Ts h—D(n— 1)” Qi. (10.35)
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Similar test statistic was considered by Bodnar and Schmid (2009) in the normal
case. The distribution of T is derived in Theorem 10.6 under the null and alternative
hypotheses.

Theorem 10.6. Ler X = (X1,...,X,) ~ Ep (U, Z ®1,,8). Assume that X is positive
definite. Let k > 2 and n > k. Then it holds that

(a) Let Ry = R1, Voyuv = V1, and s = s1. The density of T is given by

_ a1 [T z
fT(x7y7Z) - n /0 rO fxf,k <r(2)'rl> fN(\/ﬁ5(y>7r(2)n)(x) (1036)

x fr, (¥).fr(ro)dro .

—1ln—k+1,ns] /r%

with 8(y) = \/ﬁll/ 1+nf;j_1y, n= Vl/Vo, M= (Rl —Ro)/\/vl, and
s1=u'Qu.

(b) Under the null hypothesis the density of T under Hy is given by

)fr(ro)dry.
(10.37)

fr2) = [ 2h IR0 01,

—1,n—k+1 ,nso/rg

PROOF: The proof of Theorem 10.6 follows from Proposition 3 of Bodnar and
Schmid (2009) by considering first the conditional distribution of X given r = rg
and then integrating over ry. The theorem is proved. [}

The results of Theorem 10.6 are used to derive the power function of the test for

(10.32) which depends on u and X only through the quantities 1, A;, and s1. The
power function is equal to

Gra(n. o) =1= [ (1=Gra(m) (1038)
2-a/2 [S1-a/2
x /ZQ/Z 1&/2 fN(\/ﬁﬁ(y%nr(Z))(x)kafl.nkarl.nxl/r% (y)fr(ro)dydxdr07

where

Xnki—a)2 Xi—ica2
1 n—k;1—o n—k;a
Gry.a(n) =1 Fxr%—k (T]r(z) ) +Fl,3,k < Tlr(% )
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Fig. 10.2 Power of the test based on T for testing problem (10.32) as a function of 1 =V, /V; and
A1 = (R1 — Ry)/+/Vi (data of Sect. 10.4.6, s1 = 0.224157, n = 60, k = 5, and & = 5%). The asset
returns are assumed to be matrix z-distributed with 5 degrees of freedom

Fig. 10.3 Power of the test based on T for testing problem (10.32) as a function of 1 = V; /V; and
A1 = (Ry — Ro)/+/Vi (data of Sect. 10.4.6, s1 = 0.224157, n = 60, k = 5, and & = 5%). The asset
returns are assumed to be matrix 7-distributed with 15 degrees of freedom

and 1 —a = (1—a&)>, ie. & = 1 — v/1— o. The quantities Sg/2 and s1_g ; are the
lower and upper bounds of the (1 — é&)-confidence interval for s.

In Figs. 10.2 and 10.3, we present (10.38) as a function of 1 and A, in the case
of the matrix ¢-distribution with 5 degrees of freedom and in the case of the matrix
t-distribution with 15 degrees of freedom. The figures show that the test for (10.32)
is more powerful when the matrix 7-distribution with lager number of degrees of
freedom, i.e. with the smaller tails, is considered.
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Next, we construct the joint confidence set for the three characteristics of the
efficient frontier. From Theorem 10.6, it follows that, given r = ry, the statistics T,
Ty, and Ts are mutually independent. This fact simplifies the construction of the
confidence region. In order to account for the uncertainty of the generating variable
r,weput 1 —a = (1—a*)* e.g. o = 1 — /1 — a. Using the fact that for given r =
ro X;’s are independently distributed with x;|r = ro ~ Ni(, réZ ), the simultaneous
confidence set <7 (ry) consists of all points (Rgyv,Vemy, ) that satisfy

A

N 1 §
2 _ 2 2
(Remv —Remv )™ < U a2 <n+n—1) Vemvry,

(n—
Vomy € lz 2 272
"0Xn k1 a*/z "0 Xn ko )2

2a 2 A
I"Osa*/zg S Sl"oS],a*/Z.

The confidence interval for s is obtained as a confidence interval for the noncentral-
ity parameter of the noncentral F'-distribution (see Lam (1987)).

Let Fr(rmax) = 1 — o* /2 and Fg(rpin) = 0* /2. Then the confidence region for
the efficient frontier is defined as the border of the set {7 (r) : rmin < ¥ < Fyax s
which is given by

~

N

R 1
(Remv —Romv)* < Z%,a*/z (nJrn—l) Vomv 'y for Reyy >Remv, (10.39)

A

N 1 §
(RGMV_RGMV)Z < Zia*/z <n+71—1> VGMV Timin TOT RGMV<RGMV7 (10.40)

n—1 VGMV n—1 VGMV A A
Vemv € [rz( 2) ’r(z 2) =[Vi,V.] (10.41)
maxAn—k;1—o* /2 " minAn—k;a* )2
FoinSor 2 <8 < TaxSiar 2 (10.42)

We denote this set by .o7*. Because the efficient frontier lies in the mean-variance
space, it would be interesting to derive the expression for <7* in the mean-variance
space. Note, that the confidence region for the efficient frontier consists of all
parabolas (R — Rgyv)? = s(V — Vomy), where Rgyy and Vgyy satisfy (10.39)-
(10.41) and s satisfies (10.42). It can be expressed as

B = {(R —RGMV)2 = S(V — VGMV) : (RGMV7VGMVaS) S 527*} . (10.43)

\/ —1V
8 = 21 ooy 1+ " GMV (10.44)

”Xn kel — oc*/2

Let
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/ \/ — 1V,
fu = 211 n GMV Tmax 7 (10.45)

.
”Xn karz

1
t = . (10.46)

(n—1)
H‘Z] s )251-0 /27 Ellir) I

Using the proof of Theorem 1 of Bodnar and Schmid (2009), we get the expression
of .

Theorem 10.7. [t holds that B is equal to the set of all pairs (R,V) satisfying all
of the following conditions

v > oy for RER
Timax X1 —a* /2
1
Vzz” a*/z% Fonax (R — Ry )? forRell
V< AZM‘F Sat 2" min (R RGMv+gu) forRel,

minfn—k;o* /2

. (10.47)

Tinax n—k;1—a* /2

1y, 1 _ A 2
VZM"'Sl_a*/zrmgx(R_RGMV_gl) Jor Re I
-2 nn-1) 2
oot 2RI lryzmxl) (R—Remv)? forRel}
1+Z1 o 251 )2 n 1491
1)V, 1 ) A 2
v > Va4 Loy mae (R—Ramy — gu) Jor Re Iy

rmm n—k;o* /2

where I} = [RGMV + g1,Romy +&i/tl I = [Remv +g1/t Romy + gu/t], 14 =
(Romv + gu/t,), It = [Romv — gu, Romv — g1, and I = [Reyy — gu, +o0).

10.4.4 Unbiased Estimator of the Efficient Frontier

Basak, Jagannathan, and Ma (2005) and Siegel and Woodgate (2007) showed
that the sample efficient frontier is overly optimistic and overestimates the true
location of the efficient frontier in the mean-variance space. Bodnar and Bodnar
(2010) corrected the overoptimism of the sample efficient frontier by deriving the
unbiased estimator of the efficient frontier assuming the asset returns to be normally
distributed. In Theorem 10.8, we extend this result by assuming the asset returns to
follow a matrix variate mixture of normal distributions.

Theorem 10.8. Let X = (xy,...,X,) ~ Ep (U, Z ®1,,8). Assume that X is positive
definite. Let k > 2 and n > k. Let E(r*) and E(r~?) exist. Then the unbiased
estimator of the efficient frontier



10.4 Inference for the Markowitz Efficient Frontier 267

V(R,V) = (R—Rouv)* — ﬁs(v —E(r)Vemv)

is given by

(n—2)(n—1) Vo 1
n—K)(n—k—1) M " EGE(F?)
(n—k=2)(n—1) 4

V(R V) = (R—Reuv)* — "

n—k—1_ k—1

(= f—T)(V—E(ﬁ)E(ﬂ)vaMV). (10.48)
PROOF: Consider
E(yu(R,V)) = E(E(yu(R,V)|r))
(n—2)(n—1)

ZE(E((R—IéGMV)ZV))—n E(E(Vamv|r))

(n—k)(n—k—1)
1 n—k—1 k—1
’E(rz)E(rz)E(( no1 E6IN=—-)
(n—k—=2)(n—1)
(n—k—1)(n—k)

x (V=E(P)E(?) E(Veuv[r)))

where in the last equality we use that § and Vgyy are independent given r (see
Theorem 10.5).
Now from Theorem 10.5, we obtain

E(E((R—Romv)*|r)) = (R—Reuv)* + E(Var(Rguv |r))
= (R — RGMV)2 + Var(E(I?GMV 1$,r)) + E(Var(I?GMV |§, r))
1

1
= (R—Remv)” + Var(Rouy) + E((+ —E(3|r))Vouyr?)
n—2 1 s
= (R—Reuv)*+E = Womvr?).
( Gmv)”+ ((n(n—k—1)+n—k—1r2) Gmvr”)

The last equality follows from the fact that (see Johnson, Kotz, and Balakrishnan
(1995, p. 481))

n—-1 s (m—1)k-1)

E@$)r) = 3 .
(81r) n—k—1r2  nn—k—1)

(10.49)

Hence,
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(n=2)E(*)Vomv | sVomv
nn—k—1) n—k—1

E(E((R—Romv)*|r)) = (R—Remv)* +

(10.50)
Application of (10.49) and
N n—k
E(Vouy|r) = — Vomy (10.51)
leads to
1 n—k—1_ k—1
FAEe (o 6 =)
- —k=2)(n—1) _ 4
v E(AEE N kD0l b
X (V= ECEC) = E Ve )
1 -2 2 on—k=2 2
E(rz)E(,,_z)s (r=(V—E()E(r )n—k—IVGMVr )
1 wn—k—2
= —E(rf)—— . 10.52
E(rZ)S(V (r )n—k—1VGMV) (10.52)
From (10.51) we get
(n—=2)(n—1) N n—2 )
E(E(V, =——FE . 10.53
=iy n—k—1) 2 EVemvIn) = o7 E()Vouy (10.53)
Putting (10.50), (10.52), and (10.53) together, we obtain
E(yu(R,V)) = (R—Reuv)* — E(VZ)S(V —E(r*)Veuy) =0.
The last equality completes the proof of the theorem. [

Although for determining the population efficient frontier E(r?) need only exist,
for constructing an unbiased estimator both the moments E (r?) and E (r—2) are used.

10.4.5 Overall F-Test

In Sect. 10.4.1, it was shown that if ¥ = oo the efficient frontier degenerates into a
straight line. If s = O the efficient frontier is also a straight line without imposing
any assumption on 7. In both cases, there is only one optimal portfolio, namely
the GMV portfolio. Assuming the asset returns to be matrix elliptically contoured
distributed Bodnar and Schmid (2008a) derived an exact test on the weight of
the GMV portfolio, while Bodnar (2007, 2009) considered sequential procedures
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for monitoring the weights of the GMV portfolio and of the tangency portfolio,
respectively.
Next, we consider a test for testing s = 0. The test hypothesis is given by

Hp:s=0 against H;:5s>0. (10.54)

For testing (10.54) we use the results of Theorem 10.5. Because the non-central
F-distribution with s = 0 is a central F-distribution, it holds that the null hypothesis
is rejected if

nn—k+1)

Y

§>F 1 nkttil-a - (10.55)

Fi—1 n—k+1:1—o denotes the (1 — or)-quantile of the central F-distribution with k — 1
and n — k+ 1 degrees of freedom. Note, that the distribution of the test statistic
(10.55) does not depend on the distribution assumption imposed on the asset returns
within the class of matrix elliptically contoured distributions. Thus, the test can
easily be carried out using the the (1 — ¢)-quantile of the central F-distribution.

10.4.6 Empirical Illustration

In order to get a better understanding for the results presented in Sect. 10.4.3
we consider an example with real data in this section. We make use of monthly
data from Morgan Stanley Capital International for the equity market returns of
five developed countries (UK, Germany, USA, Canada, and Switzerland) for the
period from July 1994 to June 1999. The parameters of the efficient frontier are
estimated by

Rouy = 0.0145664,  Vgyy =0.0010337, and § = 0.221457. (10.56)

It holds that k =5 and n = 60. We put o = 0.15, i.e. a* = 0.0.0398,
o2 = 0.000133, §;_gxp = 0.4849, z_g: ) = 2.05566, xf_k;a*/z = 35.64, and

xf_k; 1—q+/2 = 18.64. Next we insert these values in Theorem 10.7 to obtain the

85 % confidence region of the efficient frontier in the mean-variance space which is
bordered by five parabolas. When the matrix of the asset returns is assumed to be
t-distributed with 5 degrees of freedom, it is given by
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Fig. 10.4 Geometric structure of the 85 %-confidence region for the efficient frontier in the mean-
variance space. The estimated parameters of the efficient frontier are given by Rgyy = 0.0145664,
Vouy = 0.0010337, and § = 0.224157. The asset returns are assumed to be matrix z-distributed

with 5 degrees of freedom
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In case of the matrix ¢-distribution with 15 degrees of freedom, we get the
following expression of the 85 % confidence region of the efficient frontier
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V > 0.000309 for R€ R
(I) 'V >4.61(R—0.0145664)2 for R € [~0.01191,0.006377]
(I) 'V <0.003224 4 14156.6 (R+0.01191)? for R € [~0.01191, 4-o)
(II1) V > 0.000309 + 0.8222 (R — 0.02276)* for R € [0.02276,0.0687)
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(V) V >0.003224+0.8222 (R—0.041)>  for R € (0.0939, o)

The geometrical structure of both the confidence regions are shown in Figs. 10.4
and 10.5. We observe that the area of the confidence region is smaller when the
asset returns are assumed to be matrix z-distributed with 15 degrees of freedom than
in the case of the matrix #-distribution with 5 degrees of freedom. There are also a
number of portfolios with negative expected returns in Fig. 10.4 that belong to the
confidence region. This set is much larger than the one given in Fig. 10.5.



Chapter 11
Skew Elliptically Contoured Distributions

11.1 Skew Normal Distribution

Various multivariate skew normal distributions have been proposed in the literature,
with each one of them aiming to characterize a particular aspect of a given
phenomenon. For example, one emphasizes invariance under quadratic forms,
another one uses a general latent structure to define distributions, etc.; see Genton
(2004) for an overview. Nevertheless, most of these skew normal distributions are
special cases of the closed skew normal (CSN) family of distributions as defined
in Dominguez-Molina, Gonzalez-Farias, and Gupta (2003). The CSN class of
distributions is closed under the operations of marginalization and conditioning
basic to statistical modeling, includes the normal distribution, and enjoys some of
the appealing properties of the latter. In particular, the expressions for its marginal
and conditional densities are similar to those for the normal case. However, the
distributions included in the CSN class are, in general, skewed.

Here we consider the extension of the CSN distribution from the vector to
the matrix case. The distribution we propose implicitly defines the matrix variate
generalizations of many other multivariate skew normal in the literature, and permits
the inclusion of dependence structures, such as those for panel data, which are basic
to the analysis of stochastic frontier models.

The articles by Aigner, Lovell, and Schmidt (1977) and Meeusen and van Den
Broeck (1977) were seminal to the development of models capable of describing
the production efficiency of companies. In them, the concept of a stochastic
frontier was introduced via the model y = f(x;f3) + €, where the error term,
€ = v—u, is composed of a symmetric disturbance term, v, which represents
measurement error, and by the non-negative, firm-specific term u which captures
technical inefficiencies. This formulation of the error structure seeks to explain how
companies with the same technical ability to manage their resources might end up
with different output levels, due to the unobservable shocks v. Developments over
the last 30 years in the specification and estimation of frontier production functions
are discussed in Coelli, Prasada Rao, O’Donnell, and Battese (2005).

A K. Gupta et al., Elliptically Contoured Models in Statistics and Portfolio Theory, 273
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Assuming a cross-sectional data structure, Dominguez-Molina, Gonzélez-Farias,
and Ramos-Quiroga (2004) proposed a stochastic frontier model based on the
CSN distribution as given in Gonzélez-Farias, Dominguez-Molina, and Gupta
(20044a). Their proposal encompasses nested submodels with an increasing degree
of complexity for the covariance structure, but within the framework of normal
measurement errors and truncated normals for inefficiencies. Specifically, their
model is

y=f(X;8)+v+Gu (11.1)

where y is a vector consisting of the value-added values for p firms, f is the
production function commonly based on the Cobb-Douglas model with lagged input
variables, v ~ N, (0,X) models measurement error, and u ~ N;(V,A), q > p, where
Ng(v,A) denotes the N, (v, A) distribution truncated below at ¢. The random vector
u models technological inefficiencies in groups of firms, and is weighted by the
p % g full row rank matrix G. Also, it is assumed that v is independent of u,
f(X;B)=(f(x1;8),.... f(xp;B)), X = (x1,...,Xp)  is a known matrix of covariates
and B is unknown. The matrix G gives flexibility to the model. If it is left unspecified
it can be estimated and used to validate model assumptions. On the other hand, it
can be defined as G =1, or G = —I,, for firm-specific cost efficiencies or technical
inefficiencies, respectively.

The definition of the density of the CSN distribution, given by Dominguez-
Molina, Gonzélez-Farias, and Gupta (2003), is

Definition 11.1. Consider p > 1, ¢ > 1, u € R?, v € R?, D an arbitrary g X p
matrix, ¥ and A positive definite matrices of dimensions p X p and ¢ X gq,
respectively. Then the density function of the CSN distribution is given by

8p.q(¥) =Cop(y; 1, Z)@g[D(y — p);v,A], yER",
with
C'=@,0;v,A+DID| (11.2)

where ¢ (x;t,%) and @;(x;u,X) denote the probability density function and the
cumulative distribution function of the /-dimensional normal distribution with mean
vector U and covariance matrix X, respectively.

We will denote that the p-dimensional random vector y is distributed according
to a CSN distribution with parameters ¢, i, X, D, v, A by y ~ CSN, ,(1,X,D,v,A).

Dominguez-Molina, Gonzélez-Farias, and Ramos-Quiroga (2004) show that the
density of the compound error term in model (11.1), € = v+ Gu, is

gle)= (Dq‘l (0;¢—v,A)0,(e;Gv,0)@,[AGO (e —GV);e— v, Y],
where 6 =X +GAG and Y = A — AG'0'GA. Thus,
g ~CSN,,(Gv,0,AG'87 ! c—v,T)
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The most important properties of the CSN distributions are their closure proper-
ties. For example, the joint distribution of independent CSN variables belongs to the
same family as do the sums of independent CSN random variables. These closure
properties allow one to study the distributional properties of random samples in a
tractable way, and are very useful when considering the extension to the matrix
variate case under certain types of dependencies. In what follows, we give various
results which, apart from being of interest in themselves, also provide the building
blocks for the matrix variate extension and the investigation of its properties.

The moment generating function of the CSN distribution, given in Gonzélez-
Farfas, Dominguez-Molina, and Gupta (2004a), allows us to easily derive the
moments of the distribution and to prove important distributional results. It is given
in closed form as

My(s) = ®,(DZs;v,A+DID)
YW @,(0;v,A +DEDY)

SHH3SLs oo e (11.3)

The following proposition gives an alternative marginal representation of the CSN
distribution which is useful, for instance, when conducting simulation or calculating
moments. Moreover, the probabilistic structure defined within it can be applied
directly in stochastic frontier modeling. A simpler version of this result was given
in Dominguez-Molina, Gonzélez-Farias, and Ramos-Quiroga (2004).

Theorem 11.1. Let v~ Ny(0,1,), u~N;(0,A+DXD’) and u be independent of v.
Then the distribution of

y=p+((E"'+DA"'D) 2v+ID/(A+DED) 'u
is CSN, (11, 2,D,v,A).
PROQF: In order to obtain the distribution of y we use the mgf technique. Now,
My(s) = MM, [(E7' +D'A~'D) " 2s]M,[(A + DED') "' DX
— U (ET 4D AT D) s 48 ZD(A+DID) | (A+DID)(A+DED) ' DZs

@,(DZs;v,A +DZD')
@,(0;v,A+D2D)

_ @,(DZs; v, A +D2D,)es'ue%s’[(Z"+D/A"D)—1+ED’(A+DZD’)-1DE]s
D,(0;v,A+DXD’)

Using the Sherman-Morrison-Woodbury formula, we obtain

(Z'+D'A"'D) '+ D' (A+DZD) DX =X
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Thus,
My (S) _ (Dq(DZS; V,A +D2D/) eS//J.Jr%S/ZS7
D,(0;v,A+DXD’)
which is the mgf of a CSN, ,(1,X,D, v, A) random vector. ]

This representation in terms of normals and truncated normals is far more general
than other representations given in the literature in terms of sums. Moreover, it
proves to be very flexible when modeling different error structures for the stochastic
frontier model.

An alternative way of motivating the closed skew normal distribution is via a
hidden truncation process which, in many applications, will be highly plausible.
For example, when the observational mechanism for measuring a variable is such
that we only record a value when an external condition is satisfied, an asymmetric
distribution will often be induced. The hidden truncation characterization also
furnishes a useful means of establishing some of the properties of skew distributions,
by so doing providing greater insight as to how they arise. For the hidden
truncation process, we first condition a normal random vector on a set of latent
variables subject to certain given restrictions (e.g., Z > 0), thus generating a CSN
distribution. Then, if we consider operations such as marginalization, conditioning,
or addition, their application results in distributions which are also members of
the CSN family. However, it is important to point out that we can reverse this
procedure in the following way. First, carry out the corresponding marginalization,
conditioning, or addition procedure on the normal random vector and then consider
the hidden truncation process. This will lead to exactly the same distribution,
as shown in Dominguez-Molina, Gonzdlez-Farias, and Gupta (2003). The same
argument applies when we obtain the joint distribution of independent CSN random
variables. Using the conditioning approach of Dominguez-Molina, Gonzalez-Farias,
and Gupta (2003), we provide a simple derivation of the distribution function of a
CSN random vector which proves to be useful in the study of dependence structures
via copulas (Nelsen 2006).

The next theorem is due to Dominguez-Molina, Gonzalez-Farias, and Gupta
(2007).

Theorem 11.2. The distribution function of a CSN random vector 'y, with parame-
ters U, 2, D, v, A is given by

b 2D’
Fpaq(yo’.uazaDava) :Cd)erq |:()(7;)> ; <“f) ) (DZ A+DZD/):|

where C is as given in (11.2).

PROOF: By definition, Fp,q(yo; t,~,D,v,A) = P(y < yp). Now, from the exten-
sion of the Copas and Li model given in Gonzélez-Farias, Dominguez-Molina, and
Gupta (2004a), we obtain that



11.2 Matrix Variate Skew Normal Distribution 277

P(y <yo) = P(wo < yolz > 0)
_ P(WOSY())ZEO)
N P(z>0)
_ P(WOS)’Oa_ZZO)
P(-2>0)
= CP(wo <yp,—2>0).

The result follows on noting that

(%)= [(0) (it )] .

Although the conditioning argument provides a means with which to derive
elegant proofs for certain results, it cannot be used, for instance, in the calculation
of moments. For the latter, the representation in terms of sums is far more useful.
Hence, we will use the marginal representation given in Theorem 11.1 when
considering the application of the matrix variate extension of the CSN distribution
to the stochastic frontier analysis in Sect. 11.4.

11.2 Matrix Variate Skew Normal Distribution

In this section we introduce the matrix variate generalization of the CSN distribu-
tion.
First, we define the p X m random matrix of observations as

X11 -.- Xpl
X=| . = (X1y---sXm),
Xpl «ve Xpn
where x; (p x 1),i=1,...,mis the ith column of X. Here, X1, ...,X,, can be thought

as a sample of size m from a p-dimensional population, but it is not necessary to
assume thatx ...,X,, are independent. The random matrix X is said to have a matrix
variate normal distribution with mean matrix M (p X m) and covariance matrix
Q (pm x pm) if vec(X') ~ Npy(vec(M'),Q). We denote the probability density
function and the cumulative distribution function of X as

Op.m(XsM, Q) = ¢p(vec(X);vec(M), Q)

and

D, n(X;M, Q) = D, (vec(X);vec(M), 2).
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Using the above and the material on the CSN distribution presented in the
preceding two sections, we are now in the position to define its matrix variate
extension.

Definition 11.2. A random matrix Y (p x m) is said to have a matrix variate closed
skew normal (MVCSN) distribution with parameters M (p x m), S (pm X pm), B
(gn x pm), L (g X n), and Q (gn x gn), with S > 0 and Q > 0, if

vec(Y') ~ CSNppgn[vec(M'),S,B,vec(L'),QJ.
We use the notation
Y ~ CSNy jn:qn(M,S,B,L,Q) (11.4)

to denote the fact. In most cases, the matrices S and B will have specific structures.
Properties for the parametrization (11.4) are obtained immediately from Gonzélez-
Farias, Dominguez-Molina, and Gupta (2004a).

When working with random matrices it is important to bear in mind how
the random matrix, Y, is assembled. Here we consider the situation in which
Y = (yi1,...,¥n) is a sample of independent and identically distributed random
vectors with y; ~ CSN,, ,(u,%,D,v,A) random vectors. Due to Corollary 2.4.1
of Gonzélez-Farias, Dominguez-Molina, and Gupta (2004b), we know that the
distribution of vec(Y) = (y},...,y,) is

CSan,qn(ln ®.u7ln ®27In ®D7 ln ® VaIn ®A)7
and hence
Y ~CSNppign(1, 01,1, 22,1, 0D, 1,0 v,I,® A).

Thus, assuming iid columns for Y we obtain the distribution of Y’, not that of
Y as we might have hoped for. In order to obtain the distribution of Y, we first
consider the distribution of the transpose of a MVCSN matrix. We start by defining
the commutation matrix which transforms vec(A) into vec(A’). The commutation
matrix, K, (mp x mp) is defined as K,,, = ¥ | Zle (H;; ® ng), where the (i, j)th
element of H;; (m X p) is 1 and all its other elements are 0. Then, if

X~ CSNp,m;q,n (M,S,B,L,Q) )
the distribution of X’ can be obtained from the fact that vec(X) = K,,,vec(X').
Using Theorem 1 of Gonzélez-Farias, Dominguez-Molina, and Gupta (2004b) and
Theorem 1.2.22 of Gupta and Nagar (2000), we then obtain that

X' ~ CSN, pin.g(M', K pSK i, BK 1, L, Q) .
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Moreover, if S=¥ ® X with £ (p x p) > 0 and ¥ (m x m) > 0, then
X' ~ CSNy ping(M, ¥ @ £, BK , L, Q) .

This follows because, from Egs. (1.2.3) and (1.2.5) of Gupta and Nagar (2000),
K,;I‘, =K, and K,,,,(¥ ® 2)K,,, = ¥ ® Z. Finally, returning to the distribution
of Y = (y1,---,¥n), we can use the above results to obtain

Y ~CSNp pgn(L, @', 21, L, 0D, (1,2 V)KL, ®A).

Alternatively, a matrix variate CSN distribution can be obtained using an exten-
sion of the hidden truncation argument of Copas and Li (1997). This construction,
which may be more natural in many experimental settings, proceeds as follows.

Define the independent normal random matrices U; ~ N, ,(0,S) and U ~
qu,,(O,Q), where, as previously, S is mp x mp and Q is ng x ng. Now, consider
the matrices W =M+ U; and Z = —L +DUE’ 4+ U,, where Dis ¢ X p, Eis n x m
and, as before, M is p x m and L is g X n. Then the joint distribution of W and Z is

(3)nen(%)4]

_ S S(D'®QE)
@= ((D@E)S Q+(D®E)S(D’®E’)> '

where

Now, if Y ~ W|{Z > 0} we obtain that
F(Y) = Képm(Y:M,S) P, [E(Y —M)D".L,Q],
where K~! = @,,[0;L,Q+ (DX E)S(D’' ® E')]. Hence,
Y ~ CSNp jugn(M,S,D®E,L,Q),

which is a particular case of (11.4).

11.2.1 Basic Properties

Here we present certain basic properties of the MVCSN distribution. We consider
the distribution of linear transformations of MVCSN matrices and then give the
distributions moment generating function.

First, we consider a closure property for linear transformations of MVCSN
matrices of the form W = A;YA,. This kind of transformation admits contrasts
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among rows as well as among columns which, for the usual setting of random
matrices, would allow contrasts among individuals and among attributes.

Theorem 11.3. Consider Y ~ CSNy, g n(M,S,B,L,Q) and let Ay (ny x p) and A,
(m X ny) be matrices such that A = A1 ® A’2 has full row rank. If W = A1 YA, then
W ~ CS]V,,hnz;q’n(MA,SA,BA,L,QA), where MA = AlMAg, SA = ASA/, BA =
BSA'S, ', and Qs = Q+BSB’' —BSA'S'ASB'.

PROOF: Using Theorem 1.2.22 of Gupta and Nagar (2000) we obtain that

vec(W') = (A ®A%)vec(Y'). The result then follows from Theorem 1 of Gonzalez-
Farias, Dominguez-Molina, and Gupta (2004b). [}

Prior to presenting the moment generating function of the MVCSN distribution,
we need to introduce some additional notation. We consider the partitioned matrices
B = (B},...,B)) and S = (S},...,S;,)’, where B; is n x mp, i = 1,...,q and S; is
pxmp, j=1,...m.Let T (p x m) be an arbitrary matrix,

T = [BiSvec(T'),...,B,Svec(T')] and S = [Syvec(T'),...,Spvec(T')].

Theorem 11.4. Let Y ~ CSNp jp:q.n(M,S,B,L,Q). Then the moment generating
function of Y is given by

@, ,(T;L',Q+BSB)
@,,(0;L',Q+BSB)

My(T) = Eetr(Y'T) = etr <M’T + ;S’T> . (11.5)

PROOF: Due to the fact that tr(Y'T) = (vec(T'))'vec(Y'), and also that vec(Y') ~
CSNpm:gn(vec(M'),S,B,vec(L'),Q), we obtain from (11.3) that

®@,,(BSvec(T’);vec(L’),Q+BSB')

E(etr(Y'T)) = @,,(0:vec(L/),Q+ BSB/)

X exp (vec(T’))/vec(M/)—l—%(V@C(T’))’Svec(T/) . (11.6)

Now, by noting that BSvec(T’) = vec(T) and Svec(T’) = vec(S), we obtain
(vec(T"))'Svec(T') = tr(S'T).

Finally, (11.5) results by making use of these results, together with the definition of
D, ,(),in (11.6). ]

The moment generating function for the MVCSN distribution with the parametri-
zation S =X Q@Y and B=D®E, where X (p x p) and ¥ (m x m) are positive
definite and D (n x p) and E (g x m) are arbitrary matrices, is given by the following
corollary.
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Corollary 11.1. Let Y ~ CSNp .gn(M,Z @ ¥, D ® E,L,Q). Then the moment
generating function of Y is given by

@y, (E¥T'IDL,Q + (DID) © (EYE)) <
etr
2

1
My(T) = 22 MT+-T'ZTY | .
(1) == O L.Q (DID) G (E¥E) ¥ )

11.3 Quadratic Forms of the Matrix Variate Skew Normal
Distributions

As is well known, the distributional properties of quadratic forms of normal
variables play a key role in classical inference. Certain results for quadratic
forms of skew normal variates have appeared recently in the literature. Azzalini
and Capitanio (1999, Sect. 3.3), discuss the independence of quadratic forms and
present a theorem which is similar to the Fisher-Cochran theorem given in Rao
(1973, Sect.3b.4). Loperfido (2001) considers quadratic forms for skew normal
random vectors. Genton, He, and Liu (2001) derive the moments of skew normal
random vectors and their quadratic forms, and consider applications in time series
analysis and spatial statistics. Finally, Wang, Boyer, and Genton (2004) establish
an equivalence between the chi-square and generalized skew normal distributions.
They also show how properties of the chi-square distribution extend to the univariate
and multivariate skew normal distributions. In what follows, we present three results
related to the quadratic forms of MVCSN matrices. As will become evident, these
results draw heavily on the work of Dominguez-Molina, Gonzalez-Farias, and
Gupta (2003) on quadratic forms of CSN variates.

Theorem 11.5. Let A (rxm), B (px p), C(mxs), r<m, s <m, and
Y ~ CSNp jnign(0, 22 ¥, DRE,L,Q).
Then the moment generating function of Z = AY'BYC is

_ D..[0;L,Q+ (DRE)O(D' O F)]
~ ®,,[0;L.Q + (DZD') © (E¥E))]

Ly —2(SB) @ (PCT'A)| 2,
(11.7)

Mg(T)
where © = [I,,, —2(BXZ) @ (CT'AY)] L.
PROOQOF: From (1.2.6) of Gupta and Nagar (2000), we obtain that
tr(AY'BYCT) = (vec(Y'))' (B®@ (CT'A))vec(Y').

The result then follows from Proposition 13 of Dominguez-Molina, Gonzalez-
Farias, and Gupta (2003). [
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Corollary 11.2. Let Y ~ CSNp:1.1(0,Z @ ¥, D®E,0,v), A = C =1, then
Y'X Y has a Wishart distribution with parameters m, p, and W, that is Y'X “ly ~
Wu(p,W).

PROOF: Using the specified values of the parameters of the distribution of Y in
(11.7), we obtain that

_ ®1[0:0,v+ (DIE)O (D' E)]
~ @[0:0,v+ (DID) @ (EVE')]

My (T) L, — 2L, @ (PT')| 7,

which simplifies to Mz(T) = |I,, — 2¥T/|~%. m
Note that, as a direct consequence of Corollary 11.2, if y has a
CSN,1(0,X,6,0,1) distribution then yy'~W,(1,X).

Corollary 11.3. Let Y ~ CSN;, 1.,,(0,Z, T ® E,0,Q), where T is part of the
spectral decomposition of £, X = T'AT"" and Q is diagonal. Then Y'X~'Y ~ %g-

PROOF: Given that T is a real number, we deduce that
O=[,- 2 'D)er =1, -2L,aT]' =1, -2L,7] ' = (1-27) "L,
Now,

. _ —1 / ! .
My(T) = Q"”[O’Ogjoil;’%?ELZIZ),T)?@E%) B, azz ey
_ Dy[0;0,Q+ (1 -27)" ' ((DD) @ (EE))]

B ,,[0;0,Q+ (DZD') ® (EE')]

_1
T, — 21,72

(1-27)"%. n

11.4 A Multivariate Stochastic Frontier Model

In this section we extend the relationship between the closed skew normal distribu-
tion and the stochastic frontier models to the matrix case using a similar approach to
that used by Dominguez-Molina, Gonzélez-Farias, and Ramos-Quiroga (2004) for
the vector case.

In what follows, we will use the notation U ~ NS, (M,S) to denote that U is a
Nun(M,S) random matrix truncated below at C. That is, the truncation is of the
type U > C, where W > C means W;; > Cj;, i = 1,...,m, j = 1,...,n. Note that
U > C = vec(U') > vec(C').

Consider, now, production data on p firms at time f. We assume a
stochastic frontier model for time ¢ of the form y,=(X;p,)+&:, where
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(Xe; B)=(Fx16: By), - - - f(xpe; By))'s X = (X1r,...,Xp)" is a known matrix of
covariates, 3, is unknown, & = (81,,...,€p,)’ is a random vector of compound
errors and & = v, + Gu,, with v, = (vi,...,Vp)", ; = (uy;,...,u,)" and G is a
p X g weighting matrix. We use Y to denote the p x m matrix of the value added
observations for the p firms at timest = 1,...,m, i.e.,

Vil -+ Xim
Y= =(¥1y--,¥m)-

Ypl -« Xpm

A joint model for such production data can be written as
Y=F+0, (11.8)

where F = (f(y1,8),--,f(¥Ym:Bp)), © = V+GU, V= (vq,...,Vy), and U =
(ul,...,um).

We choose, in fact, to consider a slightly more general model for the compound
errors, namely,

© =V+DUE,

where V.~ N,,,,(0,S), U ~ ngm (L,Q),D (p x g), E (mxm), and V is independent
of U. By pre-multiplying the matrix of technical inefficiencies, U, by D we can
incorporate common inefficiencies within groups of similar companies. Similarly,
by post-multiplying U by E’, time related inefficiency effects can be allowed for.
Note that the matrix V is no longer constrained to merely reflect measurement error.
Indeed, depending on the structure of the variance matrix S, it can also incorporate
random effects such as random intercepts and time-induced correlations among the
columns of Y. Given that vec(©") = vec(V') + (D ® E)vec(U’), we obtain from
Dominguez-Molina, Gonzalez-Farias, and Ramos-Quiroga (2004) that the density
of the compound error ©® = V + DUE’ is

g(@) = @,,(0:C-L,Q)¢,.(O:DLE’,0)
X @ {Q(D' ® E')6~![vec(© —DLE')];vec(C —L),T},

where § =S+ (DRE)Q(D'®E/)and Y = Q- Q(D'®E )6~ ' (D®E)Q. Thus, ©
has a matrix variate closed skew normal distribution. Specifically,

© ~ CSN mgm(DLE',6,Q(D'®E)0~' ,C~L,T).

Model (11.8), with the compound error structure @ = V + DUE/, includes the
following submodels as special cases:
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* Model I (Homoscedastic and uncorrelated errors). D an arbitrary p X ¢ matrix,
E=1,,S=1,8%,and Q=1,,®A, where X (p x p) and A (g X g) are covariance
matrices.

* Model Il (Heteroscedastic and uncorrelated errors). D an arbitrary p X g matrix,
E =1,, S and Q block diagonal matrices of the form § = @®* | X;, and Q =
@, A;, with @ denoting the matrix direct sum operator (see Horn and Johnson
1985, p. 24). The result of A @ B is a block diagonal matrix. Here, X; (p X p) and
A; (m X m) are covariance matrices, i =1, ...,m.

* Model III (Correlated errors). If any of the matrices E, S, or Q are non block
diagonal.

11.5 Global Minimum Variance Portfolio Under the Skew
Normality

In this section, we study the impact of skewness on the performance of the global
minimum variance portfolio. The GMVP plays an important role in the Markowitz’s
mean-variance analysis. This portfolio lies on the vertex of the efficient frontier
which is a parabola in the mean-variance space (see e.g., Merton 1972; Bodnar and
Schmid 2008b, 2009). It is also a unique portfolio, whose weights are independent
of the mean vector u of the asset returns. Because of this property, the estimator of
the GMVP weights does not suffer from the error in the means which is much larger
than the error in the variances and covariances (see, e.g. Merton 1980; Best and
Grauer 1991). It makes the GMVP portfolio attractive for practitioners as well as
for researchers in the financial sector (see, e.g., Jagannathan and Ma 2003; Bodnar
and Schmid 2008a).

Let w denote the weights of the portfolio. Then, the weights of the GMVP are
obtained by minimizing the portfolio variance w'Vw under the constraint w'l, = 1.
The solution is given by

v,

- 11.9
1,V-11, (19

Wemy =

Because V is an unknown parameter of the asset return distribution, the vector
of the GMVP weights cannot be calculated in practice. The investor estimates V by
V and then plugs V in (11.9) instead of V. We consider the sample estimator of the
covariance matrix given by

1

n—1 14
J

1

n—1

V:

(x;—Q)(x;— Q) = X'MX  with ﬂ:lzxj. (11.10)
=1 noiz

Here, M =1, — %1,,1; is a symmetric idempotent matrix such that M = M’ and
MM =M.
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The weights of the global minimum variance portfolio are estimated by

V1,

P (11.11)
1,V-11,

Wemy =

We consider a linear combination of the GMVP weights. Letl; € R”,i=1,...,q,
1<g<p—1l,andL’ = (l;,...,1;). We are interested in

LV-'1 Iv-11 LV-I11,\/
. =L - P :(1 P ”) 11.12
Wha = Wy = pyen, — \pv, v, (11.12)
Using the estimator (11.10), we get
Iv-11 IV,
Wiy = Loy = ( LY p a ”) . (11.13)

Lyv-11,” v,

In order to derive the distributional properties of W;., we need the following
result.

Theorem 11.6. Let X ~ CSN,, p.1,1(1, @ u', 1, ® X, D' @ E',0,v) with n > p. Then
(n—1)V ~W,(n—1,X) (p-dimensional Wishart distribution with n — 1 degrees of
freedom and the covariance matrix X).

PROOF: From Corollary 11.2 of Dominguez-Molina, Gonzélez-Farias, and Gupta
(2007) the moment generating function of (n — 1)V = X'MX is given by

M, o) = 20+ DO, —2MZ) 9 T'Z) {(DSE))
(VA ®(0;0,v+ (D'D) @ (E'2E))

X L, —2(M@ZT)| 1/
=L, —2MaZT)|["'/2.

The last equality is independent of E and D. Hence, the expression of the moment
generating function is equal to the moment generating function of the sample
covariance matrix under the assumption of normality, i.e. if D = 0, or E = 0,,.
Because under normality the sample covariance matrix is Wishart with n — 1 degrees
of freedom, the proposition follows.

Using Theorem 11.6 and the proof of Theorem 1 of Bodnar and Schmid (2008a),
we obtain the distribution of W;., when the matrix of the asset returns follows a
matrix variate closed skew normal distribution.

Theorem 11.7. Let X ~ CSN,, p;1,1 (1, 01", 1, 2, D'QE',0,v) withn>p>g> 1.
LetM' = (L', 1,) and rk(M) = g+ 1. Then
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1 LRL
n—p+11,x1,

)

Wiy ~tg(n—p+1, Wrg,

where

L1,
rx'1,

Wiy = and R=3"'-37'1,1,z7"/1/2711, (11.14)

As a consequence of Theorem 11.7, we obtain some interesting results. First,
because the parameters of the multivariate ¢-distribution, namely the scale vector
and the dispersion matrix, are only functions of X, the distribution of Wz, is
independent of D and E. On the other hand, the distribution of the asset returns
does depend on D and E. Since the covariance function is a function of D and E, we
obtain that the true vector of the GMVP weights is given by

d2

_ _2_ 9% _ gwRrh-1
Womy = v 1117 = = ”v+D’DjE2’2EEE) 1y
LV, o2 9 _gpyn
P( T y+D'DE'XE ) P
S R |

/ n(v+D'DE'ZE) 242K X 'E
_ = (11.15)
1(Z " +242 : 1
p(Z7 4245 n(v+D’DE’2E)72d12.E’Z_IE) P

and, hence, Wz, is a biased estimator of wy., if D # 0, and E # 0,,. Moreover, the
GMVP weights cannot be estimated by replacing the matrix V by the sample covari-
ance matrix V. In Sect. 11.5.1, we present an alternative method of estimating V.

For providing further investigation on how large is the impact of skewness on the
performance of the global minimum variance portfolio, a test for linear combination
of the GMVP weights is applied. We consider the general linear hypothesis which
is given by

Hy:Lwgyy = wo against Hy :Lwgyy # wy. (11.16)
This means that the investor is interested in knowing whether the weights of the
GMVP fulfill g linear restrictions or not. This is a very general testing problem and

it includes many important special cases (cf. Greene 2003, pp. 95-96).
To test (11.16) Bodnar and Schmid (2008a) derived the following test statistic

n—k( e 1 N S
T — T(1PV 1,,) (WL;q—w0> (LRL) (wL;q—wo). (11.17)
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Although this quantity is very similar to the F statistic for testing a linear hypothesis
within the linear regression model, its distribution is different than in the case
of a linear model. Consequently, the well-known results, obtained for the linear
regression model, cannot be applied directly.

Theorem 11.8 is taken from Bodnar and Gupta (2013).

Theorem 11.8. Let X ~ CSN,LVP;M(1n®u’,ln®E,D’®E’,O,v) withn>p>qg>1.
Let M' = (L', 1,) and rk(M) = g+ 1. The density of T is given by

Fr(x) = fan-p(x) (14 2)~(=pF0)/2 (11.18)
n—p+q n—p+q q. gx A
X ZFI( 27 2 "2n—p+agx 1+7L)

with & =1, 5711, (wo — W)/ (LRL') ™! (wo — Wp,).

The proof of Theorem 11.8 follows from Theorem 11.6 and the proof of Theorem
2a of Bodnar and Schmid (2008a). If E = 0, or D = 0, the null hypothesis is
rejected if T > F, ;,_p.1—q, Where F ,_p.1_o stands for the 1 — a quantile of the
central F-distribution with g and n — p degrees of freedom. However, if E # 0, and
D # 0, the decision rule T > F, ;.1 might reject the null hypothesis with the
probability larger than o although the vector of the target GMVP weights wy is
correctly specified.

11.5.1 Model Estimation

Since the dimension of the vector D is n and we deal with the sample of size n,
in the following it is assumed that the skewness is the same within the sample of
each asset, i.e. D = 1,,. In this section, we study on the estimation procedure for the
suggested model of Sect. 11.2. For this aim, we modify the estimation method for
the closed skew normal distributions considered by Flecher, Naveaua, and Allard
(2009). Namely, the parameters of the model are estimated by the method of the
weighted moments. In Theorem 11.9, we derive an expression for these moments,
which is used later.

Theorem 11.9. Let Y ~ CSN,, 1.1,1(u, X, E/ O v) with p > 1. Let h(y) be a real
valued function such that E (h(Y)exp (cY’ )) exists. Then

E ((1 —2¢)P2h(Y)exp (cY'Z™ =exp ( ) E(h(Y"))
(11.19)

forc < 1/2 where Y* ~ CSN,,J;L](ﬁ[J, ﬁ&EﬂO,v}.
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PROQOF: We have
E ((1 —2¢)P/%h(Y)exp (cY’E’lY)>

-2 /y (1= 267 2h(y )exp (e3'Sy) by (y: 0, Z) BLE(y — 1)/ /)y

: 1 1
= 2exp (ICZCH/EIPQ '/yh(ywp(y;mu, EZ)Q(E/(Y—H)/W)‘JY

The theorem is proved.

Next, we present the estimation procedure. The scale matrix X is estimated from
the fact that (n — 1)V ~ W,(n — 1,X), where V is defi ned in (11.10). Note that it
is not our aim to derive an estimation procedure for all of the model parameters. In
Sect. 11.6, we calculate the probability of type I error rate for the test (11.16) in the
case of real data and for this reason we need only the estimators of the scale matrix X
and of the product E = (v+nE’ XE)~'/2E. Moreover, since in the moment identities
such a product is present, it seems that the estimation of v could be difficult. Note
that

2
E(xj) =u+ \\/[E(v—l—nE’ZE)l/zE

E((1—2¢)Px exp (exiz7'x)))

_ C  ry—1 1 ﬁ / 1/2
exp(l_zcyz ,u>(1 ,Ll+f( +71_2 E'XE)"/°E)

E((1-2¢)"exp (ex;Z7'x;)) = exp (lcz,u/z]li) :
—-2c
Equating the theoretical moments with the sample moments we obtain
S=v (11.20)

X=[0+———=(0+nk'SE)" /2R (11.21)

)_(¢_exp< ¢ ﬁ’ﬁ‘“)( ! ﬁ+£(9+ _R'SE)V2R) (11.22)

¢ = ew( - ﬂ’ﬁlﬂ) : (11.23)

where
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1—2c)P/2 & -
Xy = (70 zxiexp (CXZ»E lxi) ,
n i=1
(1—2c)P/? &

Now letd = /¥ +nE/'SE and b = | /9 + 12 F/SE, then from (11.21), (11.22),
and (11.23), we obtain

Application of (11.23) and the identity E'SE = 122¢(h? — 4?) leads to

2nc

Further let @ = a/b and é = ]JZC. Then,

(a% — %)’((p)/i_l(ai— %x(p) — ai . (G—¢&)%n()=0  (11.24)
N DAV T
(CX—$X¢) Z(CX—$X¢)+ (5_1)7m(1—a) (1—5—2) =0 (11.25)

15575 — 20 n($
b= "’XA_IX‘p ol n@ (11.26)
x5 x— 2:n(e)
. VEEE o= 2 in(§)2— (%87 5= Z1n(8)) ()55 59— 25 1n(§))

Substituting from (11.26) into (11.25), we obtain an identity which depends only
on one parameter ¢. It is solved by applying the regula falsi (see, e.g., Conte and de
Boor 1981). Then the estimators of X, i, and E= (v+nE’2E)_1/2E are calculated
yielding

[\
Il
=<

(11.27)

%), (11.28)

=)
I
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1. 1.
1_&(cx—$x¢). (11.29)

[ )
SIS

The suggested estimator (11.28) is not surprising. It is noted that u is no longer
the mean vector of the closed skew normal distribution and, consequently, the
sample mean does not provide a good fit in general case. Note that an improved
estimator of the covariance matrix can be obtained by

e g

v 2B v

SIES

%) (11.30)

—_—

(

11.5.2 Goodness-of-Fit Test

When a model is fitted to real data, one would like to know how good it can describe
the observable dynamics of data and if it can be applied at all. In statistics such
questions are usually treated with goodness-of-fit tests. Although the skew normal
distributions have been already successfully applied to real data (cf. Adcock 2005;
Harvey, Leichty, Leichty, and Muller 2010; Framstad 2011), the problem of testing
their validity is not dealt in detail. This is the aim of the present section, namely we
derive a goodness-of-fit test for the matrix variate closed skew normal distribution.

Several goodness-of-fit tests for the univariate skew normal distributions are
discussed in the literature (see e.g., Gupta and Chen 2001; Mateu-Figueras, Puig,
and Pewsey 2007; Meintanis 2007, 2010; Cabras and Castellanos 2009; Pérez
Rodriguez and Villasefior Alva 2010). It seems that the first goodness-of-fit test
is suggested by Gupta and Chen (2001) who applied the Kolmogorov-Smirnov
test statistic and the Pearson’s 2 test. Mateu-Figueras, Puig, and Pewsey (2007)
extended these results to the case with estimated parameters, while Cabras and
Castellanos (2009) presented the Bayesian goodness-of-fit test for the skew normal
model. Further approaches can be found by Meintanis (2007, 2010) as well as by
Pérez Rodriguez and Villasenor Alva (2010).

On the other hand, there is only one paper that deals with testing the hypothesis
of skew normality in the multivariate case (cf. Meintanis and Hlavka 2010), and no
result for the matrix variate skew normal distribution is available. Meintanis and
Hlavka (2010) suggested the application of the moment generating function for
testing the multivariate skew normality and dealt the bivariate case in detail. The
situation is much more complicated in the matrix variate case. Here, the decision
about the goodness of model is based only on a single observation. In this section,
we extend the approach of Meintanis and Hlavka (2010) to the matrix variate
case. In the derivation, we use the analytical expression of the moment generating
function of the matrix variate closed skew normal distribution.

Let X ~ CSNy p.1,1 (1, @ p', I, ® Z,D' @ E’,0,v). Then the moment generating
function of X is obtained from the fact that vec(X') ~ CSN,p;1 (vec(1, @ 1), Z @
I,,E'®D’,0,v) and it is expressed as (cf. Dominguez-Molina, Gonzélez-Farfas, and
Gupta 2007, Proposition 3.2)
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My (T) = E(etr(X'T))=2® ((vec(T'))'vec(ZED');0,v+D'DE'SE)  (11.31)
1
X exp ((vec(T'))/vec(lfl ® u)-l—i(vec(T/))/(Z ® I,l)vec(T/)> . (11.32)
The application of the rules of matrix differentiation (see Harville 1997,

Chap. 15) leads to

Svee(m)) — Mx(T) (vee(l, @ ) +(Z @ T)vec(T)) (11.33)
+ exp <(vec(T'))’vec(1:l @u)+ %(vec(T’))’(z ®In)vec(T’))

x 2(v+D'DE'ZE) "'/

X ¢ ((VeC(T/))/VeC(ZED/)§O,V+D'DE/ZE) vec(ZED').

Let a be an arbitrary vector which is orthogonal to vec(XED’) and has a norm
equal to one, i.e.

a'vec(ZED')=0 and ada=1. (11.34)
Then from (11.33) we get

a/m —Mx(T)a' (vec(1, @ ) + (£ @1,)vec(T')) = 0. (11.35)

Equation (11.35) is used for the derivation of the test statistic defined by
Ty = np / D2w(T)dT, (11.36)

where w(T) is a suitable weight function and D? is the empirical counterpart of D2
expressed as

03 - (w21

2
n W—MX(T)a (vec(1n®,u)+(2®ln)vec(T))) , (11.37)

which is obtained by substituting for the moment generating function Mx (T) by the
empirical one given by

My (T) = etr(X'T) = exp ((vec(T")) vec(X')) . (11.38)
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If the assumption of the matrix variate closed skew normal distribution is valid for
the data analyzed then the values of the statistic 7, ,, should be close to zero. On the
other hand, a large value of T}, ,, is a signal for the rejection of the null hypothesis.

Next, we rewrite (11.37). The aim is to obtain an analytical expression that is
easy to use in practice. Following Meintanis and Hlavka (2010) we let

w(T) = HH T” = exp (—(vec(T')) vec(T')) a2 (11.39)

Inserting (11.39) into (11.37) and using the identity

(w = exp ((vec(T")) vec(X')) vec(X') (11.40)
we get
Tn,w = 77::5/2 /_m (a’vec(X’) —a (vec(lz ®‘LL) + (2®In)V€C(T/)))2

x exp (2(vec(T')) vec(X')) exp (—(vec(T')) vec(T')) dT

= 77::5/2 exp (—(vec(X'))'vec(X"))

X /_: (a'(vec(X') —vec(1, @ p)) —a' (Z® In)vec(T'))2
x exp (—(vec(T') — vec(X')) (vec(T") — vec(X'))) dT
The last integral is simply

n"2E ((a'(vec(x') —vee(1, 1)) — a'(Z@In)vec(Y'))2> ,

where vec(Y') ~ Ny (vec(X'), 31). Hence,
Ty = npexp (—(vec(X'))vec(X))
¥ E ((a/(vec(x’) —vec(l,®u)) —a'(Z ®In)vec(Y'))2>
= npexp (~(vee(X'))'vee(X)))
x ((a' (vec(X') —vee(1, @ ) — ' (£ ®1,)vec(X'))?
+ a'(Z*®1,)a/2) .

Hence, for testing the null hypothesis of the matrix variate closed skew normal
distribution, i.e.,
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Hy: X ~CSN,p11(1,ou' 1, X, D'QE,0,v) (11.41)
against
Hy: X~ CSNypi (1,0, 1, 2, D' @FE,0,v)
the following test statistic is derived

Ty = npexp (—(vec(X')) vec(X')) (11.42)
x ((a'(vec(X') —vec(1, @) —a' (Z® L)vec(X'))?+a'(Z?® I,)a/2) .

It is noted that the distribution of the test statistic 7, ,, is not trivial under both the
null and the alternative hypothesis. The situation is even more complicated when
the parameter uncertainty is taken into account, i.e. if the parameters t, X, and E
are replaced by the corresponding estimators derived in Sect. 11.5.1.

For the application of the suggested testing procedure in a practical situation we
use parametric bootstrap as follows:

(1) In the first stage a sample of size N from the matrix variate closed skew normal
distribution is generated with the corresponding parameters. For the simulation
of the sample we make use of the relationship between the matrix variate closed
skew normal distribution and the corresponding multivariate one given by (cf.
Dominguez-Molina, Gonzélez-Farias, and Gupta 2007)

If X~CSNypi1(1L,@u' I, 22, D QFE,0,v)
then vec(X') ~ CSNupi11(1,@ 1, 2L, E @D',0,v).

Then the stochastic representation of the multivariate closed skew normal
distribution, namely (see, e.g., Dominguez-Molina, Gonzélez-Farias, and Gupta
2007, Proposition 2.1)

vee(X') ~ 1,0 u+ (7' @1, + (E@D)(E @D')/v) " 2vec(Z))
+ (Z1,)(E@D)(v+D'DE'ZE) /2|7
=1 ou+(E"'oL+ (EoD)E @D)(1+7)""vec(Z')
+ (ZeL)(ExD)|z],
where v = D'DE'ZE /v, vec(Z') ~ Nyp(0,1,,), zo ~ -47(0,1) and vec(Z'), zo
are independent, is applied. In Sect. 11.5.1 we derive estimators for u, X, and
E, but it is pointed out that it is not easy to estimate v or/and . Thus, several

values of ¥ are considered in the first stage of the bootstrap procedure, and for
each value of ¥ a sample of size N is generated.
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Table 11.1 The estimated parameters of the skew normal distribution (¢ = 1.0287 and & =
0.9560254)

x i E Y
—0.003192 —0.012447 0.0191695 0.0032143 0.0018796 0.0015245 0.0007313 0.0013129
—0.001172 —0.011944 0.0223120 0.0018796 0.0022471 0.0014159 0.0006440 0.0009754
0.001057 —0.011135 0.0252522 0.0015245 0.0014159 0.0023945 0.0005513 0.0012291
0.0003413  —0.008289 0.0178766 0.0007313 0.0006440 0.0005513 0.0011300 0.0006633
—0.000847 —0.016930 0.0333126 0.0013129 0.0009754 0.0012291 0.0006633 0.0022025

(2) For each element of the generated sample the value of the test statistic T}, . (7),
k=1,...,N is calculated.

(3) Finally, the sequences T, ,,.x(¥) are used for determining the critical values of
the test for each 7.

(4) The p-values can alternatively be computed in the third stage. It is performed by
including the value of the test statistic calculated from the data into the sequence
T,k (V) for each v and determining its position in the corresponding ordered

sequence T,,(’va) (%).

11.5.3 Application to Some Stocks in the Dow Jones Index

In order to get a better understanding for the results presented in Sect. 11.5 we
consider an example of real data in this section. Further results of applications
of skew distributions in portfolio theory were considered by Athayde and Flores
(2004), Patton (2004), Mencia and Sentana (2009), Adcock (2010). We make use of
weekly data of five stocks which are included in the Dow Jones index. The choice of
data is motivated by the paper of Jondeau and Rockinger (2006) who showed that the
skewness in weekly stock returns of the USA companies can significantly influence
the portfolio selection on this market. The assets in the study are the stocks of the
Boeing Co, Disney (Walt) Co, Hewlett-Packard, Altria Group INC, and Microsoft
Corp. The data is taken for the period from the 3rd of January 2007 to the 5th of
October 2009 and it includes n = 145 observations for each stock.

In Table 11.1, the estimators of the parameters of the skew normal distribution
described in Sect. 11.5.1 are presented. We observe that X provides a poor estimator
of the location vector . The improved estimator fi consists of much smaller
elements which are more than 20 times smaller than the corresponding components
of X. As a result, the application of the vector X leads to misleading results, i.e. the
investor expects more (or less) from the holding asset. Consequently, the decision
about buying, holding, or selling the asset could be wrong when X is used for
estimating of u.

In Fig. 11.1a—e, the histograms for the data considered are plotted. The densities
presented in the figures are calculated by using the kernel density estimation with
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Fig. 11.1 Histograms and the kernel density estimators for the weekly returns of the (a) Boeing
Co, (b) Disney (Walt) Co, (c) Hewlett-Packard, (d) Altria group INC, and (e) Microsoft Corp

the normal kernel. We observe that the densities of the Boeing Co and Altria Group
INC returns are skewed to the left, while the densities of the Disney (Walt) Co,
Hewlett-Packard, and Microsoft Corp returns are skewed to the right.

Stronger results are presented in Fig. 11.2. Here, we apply the goodness-of-fit
test of Sect. 11.5.2 to the data considered with the estimated parameters given in
Table 11.1 for ¥ € [0.1,10]. Although, in Table 11.1 the estimator of E instead
of E is present it can be used since we need only the direction of the vector
E for determining a which is orthogonal to vec(XED’) = (w;,w})". The vector
a= (aha’z)’/(a% + abay) is calculated with ay = wy and a; = —w)wa /wy.

In Fig. 11.2, we plot the p-values of the test as a function of 7. The calculated
value of the test statistic is 0.0018504. We observe that the p-values are large for
all of the considered values of v. They are always larger than 0.948. This result
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Fig. 11.2 The p-values of the goodness-of-fit test for the matrix variate closed skew normal
distribution as a function of ¥ = D'DE'XE/v applied to the weekly returns of the Boeing Co,
Disney (Walt) Co, Hewlett-Packard, Altria group INC, and Microsoft Corp

confirms that the weekly asset returns can be well described by the matrix variate
closed skew normal distribution.

Next, the main results of this section are presented. We apply the results of
Theorem 11.8 for studying the impact of skewness on the inference procedures
about the GMVP weights. For each estimated weight of the portfolio we test if
this weight corresponds to the true value calculated from (11.15), i.e the following
hypothesis is tested

Hoi:wemv, = wo,i = Wemv,i against Hyi:wemvi # Wo,i = Wemv,i

(11.43)

for i = 1,2,3,4,5. For testing Hy; the following statistic is considered
(c.f. Theorem 2)

2, . ~
p) (WGMV,iwaMV,i)2

pi) = (02




11.6 General Class of the Skew Elliptically Contoured Distributions 297

Table 11.2 The estimated and true weights of the global minimum variance portfolio are given
in the first two columns (p = 5 and n = 145). The estimated values of A for the individual test on
the GMVP weight of each asset and the corresponding estimated probability of the type I error are
presented in the third column and the fourth column of the table (ot = 0.05) respectively

Womy Womv A P(T > Fyn_pi—a|Wo)
—0.047986 —0.103944 0.0061412 0.152132
0.1379042 0.1618053 0.0007404 0.061879
0.1278034 0.1280838 0.00000014 0.050002
0.6523426 0.5494764 0.0195875 0.378095
0.1299362 0.2645785 0.0334062 0.575389

The results are given in Table 11.2. In the first column we present the estimators
of the GM VP weights obtained from (11.11) with V as in (11.10). The vector of true
weights is obtained from (11.15) by substituting the unknown parameters V and E
with the corresponding estimators (11.27) and (11.29). We observe that the elements
of the vectors Wgyy and Wy are different. The largest deviation is present for the
Microsoft Corp asset while the Altria Group INC asset is ranked second. This result
shows that the skewness influences the covariance matrix of the asset returns and
as a result it has a significant impact on the portfolio weights. Moreover, the results
obtained about the distributional properties of the GMVP weights are in line with
the statistical theory. The sample mean and the sample covariance matrix are hardly
interpretable if the distribution of data is not symmetric.

In the third column of Table 11.2 we present the estimators of A for each test
(11.43). The largest value of A is obtained for the Microsoft Corp asset and it is equal
to 0.0334062. Finally, in the last column of Table 11.2 the estimated probabilities of
the type I error for each test are given. In the case of the Altria Group INC asset and
the Microsoft Corp asset, the estimated probabilities are larger than 37 % with the
significance level of 5 %. Hence, because of the skewness, which is ignored when
the normal distribution is fitted to the asset returns, the probability of rejection of
the null hypothesis is more than seven times larger than the significance level of test.

11.6 General Class of the Skew Elliptically Contoured
Distributions

Definition 11.3. A random matrix Y (p X m) is said to have a matrix variate
extended skew elliptical (MVESE) distribution with pdf generator / and parameters
M (p x m), S (mp x mp), B (ng x mp), L (g X n), Q (ng X nq), where S > 0 and
Q>0,if

vec(Y') ~ ESEpyng[vec(M'),S,B,vec(L'),Q, h].
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Here, ESE denotes the extended skew-elliptical distribution as given in Gonzélez-
Farfas, Dominguez-Molina, and Gupta (2004a). We denote this relation by Y ~
ESE, n;qn(M,S,B,L,Q,h).

Using similar arguments to those employed in Sect. 11.2, it is also possible to
derive the matrix variate skew-elliptical distribution for which the parameter matrix
B =D®E, where D (n x p) and E (¢ X m) are arbitrary matrices.

As partial cases of this general family of distributions in the next two subsections
we consider the skew ¢-distribution and the skew Cauchy distribution which are
investigated by Ramos-Quiroga (2004) in detail.

11.6.1 Multivariate Skew t-Distribution

The multivariate skew normal distribution has been studied by Gupta and Huang
(2002), Gupta and Kollo (2003), Azzalini and Dalla Valle (1996), Azzalini (2005),
Arellano-Valle and Azzalini (2006), Pewsey (2000), and its applications are given
in Azzalini and Capitanio (1999). This class of distributions includes the normal
distribution and has some properties like the normal and yet is skew. It is useful in
studying robustness. Following Gupta and Kollo (2003), the random vector x (p x 1)
is said to have a multivariate skew normal distribution if it is continuous and its
density function is given by

fx(x) =2¢,(x;2)@('x), x € R?, (11.44)

where X > 0, oo € RP. It is denoted by X ~ SN,(Z, ), to mean that the random
vector X has p-variate skew normal density (11.44). The moment generating
function of x is

, 5>
My(t) =203 %t [ %) (e e, (11.45)
(1+o0'Za)2

This distribution family is not in the elliptically contoured family (see Gupta and
Nagar 2000).
The mean vector and the covariance matrix of x are given by

2
px = E(x) = 56

cov (x) = X — p )

where 6 = (1 + a'Za)’%a. Note that the mean vector (i, given by Azzalini and
Capitanio (1999) is in error. Gupta and Kollo (2003) have further defined the
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SNy(u,Z, o), family where u is the location parameter asy =X+ ~ SN, (U, Z, o).
Azzalini and Dalla Valle (1996) defined SN,(£2,0) where Q is the correlation
matrix.

It may be noted that in the multivariate case very few models are available
for dealing with non-normal data, especially so for modeling the skewness. The
univariate skew distributions have been studied by Gupta, Chang, and Huang (2002).
Next, we define the general multivariate skew z-distributions.

Definition 11.4. Let x = (x1,...,x,) ~ SN,(Z,a) and W ~ 2 independent of x.
Then the joint distribution of y; = x;/\/W /v, j =1,...,p is defined as the
multivariate skew ¢-distribution with v degrees of freedom.

We denote it as y = (yi,...,yp) ~ SMT,(ct). This may be called multivariate
skew t with common denominator as in Cornish (1954), Dunnett and Sobel (1954),
and Laurent (1955). Branco and Dey (2001) derive similar result by considering
t-distribution as a special case of scale mixture of normal distribution.

Now we can find the join density of y. The joint p.d.f. of y1,y2,...,y, is given by

fv(y’(x) _ _ 21 i /ww#_le—(l+v*1y/2*ly)%q> < Waly> dy
(2mv)2|2|222T (§) /o Vv

v
2
(11.46)
To evaluate the integral in (11.46) we need the following result.
Lemma 11.1. Let U ~ y?, then
Ey®(aVU +b) = F_,(aVk) (11.47)

where @(-) is the c.d.f. of standard normal distribution and ka 2 (+) is the c.d.f. of

non-central t-distribution with k degrees of freedom and non-centrality parameter

82 =1~
PROOF: Let Z ~ N(0, 1), then
Ey®(a\/'U +b) = EyP[Z < a'U + b|U]

7 —
-0 <avklU

JUJk
= P[T} < aV/k]
= F%k‘;# (aVk).

Now using the above lemma we can write (11.46) as

= EyP
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fv(y;a)=2(l+v_1y/§_lyf ST Fu® (Odyllﬁ>
(mv)Z|Z|2T (%) (v+yZy)2

where U ~ 2, p- Hence

—1 —1ly)——2" v+p /
fv(y;a)=2<1+v >y > I M(( O‘y

m)
v+yZly):
(11.48)

where Fp,(-) is the c.d.f. of central 7-distribution with k degrees of freedom. Or
equivalently Y ~ SMT, () if its p.d.f. is given by
o'y

f(ysa) =2fr,(y) m,,( 1@), yE€RP. (11.49)

(v+yZly)?
From the definition and the density function (11.49) of SMT, (), the following
properties can be easily seen.

(i) SMT,(0) = MT,— multivariate ¢-distribution with v degrees of freedom, where
usually ¥ is replaced by the corresponding correlation matrix R.
(i) lim f,(y, o) =2¢,(y; Z)@(a'y) i.e. the multivariate skew 7-distribution tends
y—boo
to the multivariate skew normal distribution as v — ee.
(iii) Note that Y2 X F(1,v) = 2 since X2 ~ x}. Here F(m,n) denotes the

W /v
Snedecor’s F distribution with degrees of freedom m and n. Furthermore, the
joint distribution of (Y]2, . ,sz) is multivariate F-distribution with parameters

1,1,...,1,v+ p (see Finney 1941).
(iv) The quadratic form y’X~'y ~ pF(p,v), since

W/’

and X' 'x ~ x[% (see Gupta and Kollo 2003; Azzalini and Dalla Valle 1996).
Note that this distribution does not depend on ¢. This therefore extends the
multivariate normal theory to the multivariate skew normal or the multivariate
t- to multivariate skew ¢-distribution.

11.6.1.1 Expected Values

Let y ~ SMT,(c). Since y = v!/2W~1x and the mean vector and the covariance
matrix of X ~ SN,(Z, ) are given by Gupta and Kollo (2003) and Azzalini and
Dalla Valle (1996), we get

2v 2o
T(v=2)(1+a'Za)z2

&
=
=
I
|

, v>2 (11.50)
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v 2v—4)aa'x
=—— 23 |I— , >4, 11.51
Sl oy sy [ 7t(v—2)(1+a’2a)} v (151
For o = 0, from (11.50) and (11.51) we get the moments of multivariate ¢-

w
v
dent, the product moments of y1,2,...,y, are easily found as

distribution. Further, since x; = x;/ j=1,...,p,and W and x; are indepen-

! —
.url Ty rp E

P

Hyjj

J=1

— g (wE) E B I
—v ( ) 1157 ).

V\E G5 (G L]
:<2> e (I ) S ais)

2

If x1,...,x, are mutually independent, then

.....

P R
’ v ;erl—‘(Q_l?Irj) ' ri
Weon=(5) T —mr 2 S TTEED ¢ (11.53)

The marginal distribution of x; is univariate skew normal and its moments can be
computed easily.

11.6.2 Multivariate Skew Cauchy Distribution

The special case of the multivariate skew ¢-distribution for ¥ =1 is

v+p
2

£y, a) ar () 1+ *1i ) (11.54)
Y, 0) = ——=+— viIiYya .
' ()51 (%) =)
o'y
x Fr,,, TVv+p |, YyER?,
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and may be called standard multivariate skew ¢-distribution. For v = 1, this
distribution is defined as the multivariate skew Cauchy distribution with density

_ptl
2

() (e, o'y T
fly;o) = T 1+Zyj FTp+1 T|> yER".
p 2
(HZY?)
1

(11.55)

Definition 11.5. The random vector y is said to have multivariate skew Cauchy
distribution if its density function is given by (11.55).

It will be denoted by y ~ SMC(ct). From the density (11.55) it is seen that
the multivariate skew-Cauchy distribution does not belong to the class of spherical
distributions (see Gupta and Nagar 2000) whereas the multivariate Cauchy does.

It may be noted that the SMC(0), which is

1
r) (s T
f(¥:0) = ——=~ [ 1+ 20y] , —ee<y;<oo (11.56)
(m) 2 1
gives the multivariate Cauchy density. Then (11.56), for p = 1, gives the standard
Cauchy C(0,1), density. However the univariate skew Cauchy, obtained from
(11.55)forp=1is

. p— 2 7')) — 00 (e}
f(y,a)—n(l+y2)FTz <\/§am>, <y < oo, (11.57)

This definition of univariate skew Cauchy distribution is not unique (see Gupta,
Chang, and Huang 2002).
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right-spherical distribution, 147
spherical distribution, 147
Chi distribution, xvii
Chi-square distribution, xvi
Conditional distribution
matrix variate elliptically contoured
distribution, 34, 44, 45
mixtures of normal distributions, 114
multivariate elliptical distribution, 41-43
spherical distribution, 36
Correlation
matrix variate elliptically contoured
distribution, 26
multiple, 212
partial, 211
testing, 208, 209
Covariance matrix
matrix variate elliptically contoured
distribution, 24, 26
maximum likelihood estimator, 176, 182,
184,187
mixtures of normal distributions, 114, 123
testing, 202-204, 206, 214, 215
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D

Dirichlet distribution, xvii

Distribution of maximum likelihood
estimators, 183-192

Double exponential distribution, 49

E
Efficient frontier
confidence region, 262-266
estimation, 261, 262
overall F-test, 268, 269
testing, 262-264
unbiased estimator, 266—268
Elliptical distribution (see Matrix variate
elliptically contoured distribution and
Multivariate elliptical distribution)
e-contaminated matrix variate normal
distribution, 57, 111, 118
Expected value
global minimum variance, 242, 243
global minimum variance portfolio weights,
251
matrix variate closed skew normal
distribution, 287, 288
matrix variate elliptically contoured
distribution, 24, 66-102
mixture of normal distributions, 113, 123
multivariate skew t-distribution, 300, 301

F
Factorization theorems for matrices, 6, 7
Fisher’s z statistic, 210, 212

G
Gauss-Markov theorem, 223
Generalized inverse of a matrix, 9, 10
Global minimum variance
confidence interval, 242
estimation, 239, 240
expected value, 242, 243
testing, 242, 247-249
Global minimum variance portfolio weights
estimation, 250, 285, 286
expected value, 251
testing, 249-257, 286, 287
Goodness-of-fit test
matrix variate closed skew normal
distribution, 290-294
matrix variate elliptically contoured
distribution, 245-247
Group of linear transformations, 197

Subject Index

H

Hamel’s equation, 11

Hotelling’s T? statistic, 143, 202

Hypergeometric function, 252, 287

Hypothesis testing (see also Testing), 193-216,
228-230, 252,256, 263, 268, 287,
290-293

I

Idempotent matrix, 4
Invariance of tests, 195-198
Inverse Laplace transform, 116

K

Kotz type distribution
matrix variate symmetric, 53, 244
symmetric, 51

Kronecker product, 7, 8

L
Laplace distribution
matrix variate, 55
multivariate, 52
Laplace transform, 116
inverse Laplace transform, 116
Lawley-Hotelling’s trace criterion, 230
Left-spherical distribution, 147
characterization, 147
Likelihood ratio test, 193, 201, 203, 205, 207
Linear regression model
hypothesis testing, 228-230
maximum likelihood estimators, 220-223,
225-228
optimal mean-square estimator in the
random effects model, 231-236
Linear transform
matrix variate closed skew normal
distribution, 280
matrix variate elliptically contoured
distribution, 16, 17
Logistic distribution
elliptically symmetric, 53
matrix variate symmetric, 55

M
Marginal distribution
matrix variate elliptically contoured
distribution, 23, 24, 29, 32, 34, 109
multivariate elliptical distribution, 23, 29,
32,34, 109
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Matrix
characteristic roots, 5
factorization theorems, 6, 7
generalized inverse, 9, 10
idempotent, 4
Kronecker product, 7, 8
nonsingular, 4
norm, 30
orthogonal, 4
permutation matrix, 4
positive definite, 4
positive semidefinite, 4
rank, 5, 137-139
rank factorization, 7
signed permutation matrix, 4
singular value decomposition, 6
spectral decomposition, 6
symmetric, 4
trace, 5
vec operation, 8
Vinograd’s theorem, 7
Matrix variate closed skew normal distribution
definition, 278, 279
density, 279
estimation, 287-290
expected value, 287, 288
goodness-of-fit test, 290-294
linear transforms, 280
moment generating function, 280
quadratic forms, 281, 282
testing, 290-294
Matrix variate elliptically contoured
distribution
characteristic function, 15-17, 19
conditional distribution, 34, 45-47
correlation, 26
covariance, 24-26
definition, xx, 15
expected values, 24-26, 66—102
goodness-of-fit test, 245-247
linear transforms, 16, 17
marginal distributions, 23, 24, 32, 34, 109
mean, 24
principal components, 144
quadratic forms, 125, 127-137
relationship between matrix variate and
multivariate elliptically contoured
distributions, 15
stochastic representation, 26-32, 34
transpose, 17
Matrix variate normal distribution(see also
Normal distribution), xviii, 19
Maximal invariant statistic, 197
Maximum likelihood estimator
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covariance, 176, 182, 184, 187
distribution, 183-192
linear regression model, 220-223,
225-228
mean, 175-177, 182-187, 190-192
minimax, 192
sufficiency, 191, 192
unbiasedness, 190, 191
Mean
matrix variate elliptically contoured
distribution, 24
maximum likelihood estimator, 175-177,
182-187, 190-192
testing (see also Testing), 201, 202,
205-207,213,214
Minimax property of maximum likelihood
estimator, 192
Mixture representation of matrix variate
normal distribution, 109, 116-123
Mixtures of normal distributions, 57, 103—-123
conditional distributions, 114, 115
covariance, 114, 123
definition, 103
expected values, 113, 119-123
linear transform, 120, 121
quadratic forms, 113, 120, 121
Mixtures of normal distributions by weighting
functions, 116123
covariance, 123
expected value, 123
linear transform, 120, 121
monotone likelihood ratio, 122, 123
quadratic forms, 120, 121
Moment generating function
matrix variate closed skew normal
distribution, 280
skew normal distribution, 275
Monotone likelihood ratio property of mixtures
of normal distribution, 122, 123
Multiple correlation coefficient, 212,213
Multivariate analysis of variance, 231
Multivariate elliptical distribution
characteristic function, 15
conditional distribution, 39—-44
definition, 15
marginal distributions, 39, 40
Multivariate normal distribution (see also
Normal distribution), xvii
Multivariate skew Cauchy distribution, xviii,
301,302
Multivariate skew t-distribution
definition, xviii, 299
density, 299, 300
expected value, 300, 301
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N

Nagao’s criterion, 204, 209, 215

Nonsingular matrix, 4

Norm of a matrix, 30

Normal distribution, xvi—xviii, 72
e-contaminated matrix variate, 57, 111, 118
characterization, 135-137, 148—158, 160,

164

definition, xvi—xviii, 19
matrix variate, Xvii, xviii, 19, 243
mixture representation, 111, 118, 119
multivariate, xvii

(0}
Orthogonal matrix, 4

P
Partial correlation coefficient, 211,212
Pearson type II distribution

matrix variate, 54

symmetric multivariate, 51
Pearson type VII distribution

matrix variate, 54, 243

symmetric multivariate, 51
Permutation matrix, 4
Positive definite matrix, 4
Positive semidefinite matrix, 4
Principal components of matrix variate

elliptically contoured distribution, 144

Q
Quadratic forms
matrix variate closed skew normal
distribution, 281, 282
matrix variate elliptically contoured
distribution, 125, 127-137
mixtures of normal distributions, 113, 120,
121

R

Rank factorization of a matrix, 7

Rank of a matrix, 5

Right-spherical distribution
characterization, 147
definition, 147

Roy’s largest (smallest) root criterion, 230

S

Schoenberg’s theorem, 26, 27
Schur-convex function, 225, 226
Signed permutation matrix, 4

Subject Index

Singular value decomposition of a matrix, 6
Skew normal distribution
definition, xviii, 274
density, 274
distribution function, 276
moment generating function, 275
stochastic representation, 275
Spectral decomposition of a matrix, 6
Spherical distribution
characterization, 147
conditional distributions, 36—39
definition, 17, 147
Stable law
matrix variate symmetric, 55
symmetric multivariate, 53
Stochastic representation of matrix variate
elliptically contoured distribution,
26-32,34
Student’s t-distribution
multivariate, 52
Student’s t-distribution, xvi, 49, 101, 250, 257,
285
matrix variate, xix, 54, 111, 118, 121
Sufficiency of maximum likelihood estimator,
191,192
Symmetric matrix, 4

T
Test
invariance, 195-198
likelihood ratio, 193, 201, 203, 205, 207
unbiasedness, 195
uniformly most powerful invariant, 197,
198
Testing
correlation coefficient is equal to a given
number, 209, 210
covariance matrix is equal to a given
matrix, 202, 203
covariance matrix is proportional to a given
matrix, 203, 204
efficient frontier, 262-264
equality of covariance matrices, 214,215
equality of means, 213,214
equality of means and covariance matrices,
215,216
global minimum variance, 242, 247-249
global minimum variance portfolio weights,
249-257, 286, 287
lack of correlation between sets of variates,
208,209
matrix variate closed skew normal
distribution, 290-294



Subject Index

mean vector and a covariance matrix are
equal to a given vector and matrix, 204,
205
mean vector is equal to a given vector, 201,
202,204,205
mean vector is equal to a given vector and
a covariance matrix is proportional to a
given matrix, 206, 207
multiple correlation coefficient is equal to
zero, 212,213
partial correlation coefficient is equal to a
given number, 211,212
Trace of a matrix, 5
Transpose of a matrix variate elliptically
contoured distribution, 17

U
Unbiased test, 195
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Unbiasedness of maximum likelihood
estimator, 190, 191
Uniform distribution, 50
multivariate, 50
Uniformly most powerful invariant test, 197,
198

\%

Vec operation, 8

Vector variate elliptically contoured
distribution (see multivariate elliptical
distribution), 15

Vinograd’s theorem, 7

W
Wishart distribution, xix, 127
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