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Chapter 1
Introduction

Abstract This chapter defines the Nonlinear Experimental Design problem and
traces its evolution. It is emphasized that the (continuous) Design Theory started
with a Non-linear problem.

In a brief look back at the origin of the methods discussed in this monograph, it
seems that the first real-life problems discussed were nonlinear rather than linear.
The Least Square Method originated from a nonlinear problem, thanks to the
Mozart of Mathematics: Carl Friedrich Gauss (1777–1855). Experimental Design
theory, so called by its founder Sir Ronald Aylmer Fisher (1890–1962), also
originated from a nonlinear problem. I shall briefly trace these problems.

One of the most famous data sets is the one collected in 1793 for defining a new
measurement unit: the meter, see the contribution of Stigler (1981) to the history of
Statistics. What is also very important is that for this particular data set:

• In recent statistical terms, a nonlinear function had to be finally estimated,
between the modulus of arc length (s), latitude (d) and meridian quadrant (L).

• A linear approximation was used in 1755 for this problem and a second order
expansion was applied in 1832.

The meter was eventually defined as equal to one 10,000,000th part of the
meridian quadrant, i.e. the distance from the North Pole to the Equator along a
parallel of longitude passing through Paris, and the linear approximation was in the
form:

g Lð Þ ¼ s

d
¼ h1 þ h2 � sin2 L

With h1 being the ‘‘length of a degree at the equator’’ and h2 ‘‘the excess of a
degree at the pole over one at the equator’’. Then the ellipticity (e) was estimated
through h1 and h2 by the following nonlinear relationship:

1
e
¼ 3 � h1

h2
þ 3

2
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It is clear that Gauss, see Plackett (1972) for details, treated the data in his own
remarkable mathematical way, considering a nonlinear function.

The first statistical treatment of a nonlinear function came from the pioneer of
modern Statistics, R. A. Fisher. He started work at Rothamsted Experimental
Station in 1919, and around 1922 he came across what is known as the dilution
series problem. A brief description is as follows. For a small volume u taken from
the volume V of a liquid containing n tiny organisms (such as bacteria), the
probability p that u contains no organisms can be evaluated as

p ¼ 1� u

V

� �n
ffi exp �nu=Vð Þ ¼ exp �huð Þ:

The parameter h, the density per unit volume, has to be estimated (see details in
Sect. 7.2). The question is how one should perform the experiment to get the best
possible estimate. The probability p in the above relation is expressed as a non-
linear function. Fisher solved this nonlinear problem in 1922, using a concept of
his own: his information.

Since Fisher’s pioneering work in experimental design, Statistics has become
involved in all experimental sciences: Chemistry, Biology, Pharmacology,
Industry, Psychology, Toxicology and so on. Of course statisticians do not provide
methods for designing experiments in isolation. However, in cooperation with the
experimenter, for whom the objective of an experiment is clear, the statistician
provides the most informative pattern of the experiment so that the required
objective can be achieved.

The objectives of the experimenter can be:

1. To obtain an estimate for a response y in some particular region using the input
variable vector u ¼ u1; u2; . . .; ukð Þ. This is the response surface problem
introduced by Box and Draper (1959).

2. To determine the best mathematical model describing most precisely the
investigated phenomenon. This is the discrimination problem between rival
models and was reviewed by Hill (1976).

3. In some sense, all or a subset of the parameters are to be estimated as well as
possible. This is the optimal experimental design problem originated by Smith
(1918).

The above-mentioned objectives are common to linear and nonlinear experi-
mental designs (LED and NLED), i.e. when the assumed suitable (and correct)
model, describing the underlying phenomenon, is linear or nonlinear with respect
to its parameters.

There is no such volume of review work in NLED, although work on experi-
mental designs started with a nonlinear problem, thanks to Gauss and Fisher. Some
work has been performed by Kitsos (1986), Ford et al. (1989) reviewed the prob-
lem, Kitsos (1989) worked with the sequential procedures and Abdelbasit and
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Plackett (1981, 1983) reviewed the nonlinear case for certain types of problems, but
they gave no attention to regression type experiments. Moreover Wu (1985a, b)
worked on binary response problems. A recent review was published by Kitsos
(2010b, 2012), while Chaudhuri and Mykland (1995) provided useful results on the
sequential nonlinear design, and Hu (1998) faced the same problem from the
Bayesian point of view.

However, the nonlinear experimental design problem finds applications in
many fields: as a regression problem (continuous case) in chemical kinetics
(chemistry, biology), as a binary model (discrete case) in testing explosives (the
so-called up and down method), in biological assays (for the percentile points see
Tsutakawa (1980) and Kitsos (1999) among others), fatigue experiments, educa-
tional studies and life testing. The calibration problem is eventually a nonlinear
problem, see Kitsos and Kolovos (2010), while for a geophysical application see
Zarikas et al. (2010). The calibration problem needs particular investigation (the
underlying model is linear, but a nonlinear function is possible and needs to be
estimated) but it is not discussed in this monograph. It is interesting to realize that
there are nonlinear models, the Michaelis–Menten model being one, which obtain
numerically a solution that is not necessarily unique, see Biebler et al. (2008).

The target of this monograph is to provide a solid statistical background and the
appropriate applications on the theory of NLED; to provide general optimality
criteria, in a theoretical framework; to provide methods and discuss problems
associated with nonlinear problems, appropriate for the application and to link the
NLED theory with the practical problems of various applications. So ‘‘a bridge’’ is
offered between a particular field of interest and NLED. It is considered as a
‘‘second level’’ book, and therefore some knowledge from Statistics, Mathematics
(and Linear Algebra for the theoretical background of Chap. 8) would be helpful
for the reader.

The emphasis will be on the target (3) described above and its related diffi-
culties. I tried to keep the design of this monograph ‘‘balanced’’: thus equal weight
is put on to the theoretical insight and to the applications. Keep in mind that the
theory was developed to face the applications rather, than just to construct a
mathematically elegant development.

As there is a strong link with the Linear Experimental Design, I shall also refer
to it when it is needed. A large portion of the monograph is devoted to discussion,
so as to create a rapport with the reader; doing so helps to clarify the ideas
introduced.

This monograph includes 23 Examples, 18 Tables with results from working
simulation studies, 7 Figures trying to explain the developed mathematical insight,
and 3 Simulation Studies fully discussed and explained in detail, in order to
link Theory and Applications, in reference to Optimal Experimental Design for
Non-Linear Models.

1 Introduction 3

http://dx.doi.org/10.1007/978-3-642-45287-1_8


References

Abdelbasit KM, Plackett RL (1981) Experimental design for categorized data. Int Stat Rev
49:111–126

Abdelbasit KM, Plackett RL (1983) Experimental design for binary data. JASA 78:90–98
Biebler KE, Schreiber K, Bode R (2008) Solutions to the Michaelis–Menten kinetics are not

necessarily unique. In: International conference of computing methods in sciences and
engineering (ICCMSE)

Box GEP, Draper NR (1959) A basis for the selection of a response surface design. JASA
54:622–654

Chaudhuri P, Mykland PA (1995) On efficient design on nonlinear experiments. Stat Sinica
5:421–440

Ford I, Kitsos CP, Titterington DM (1989) Recent advances in nonlinear experimental design.
Technometrics 31:49–60

Hill PDH (1976). Optimal experimental design for model discrimination. Ph.D. thesis, University
of Glasgow

Hu I (1998) On sequential designs in nonlinear problems. Biometrika 85:496–503
Kitsos CP (1986) Design and inference in nonlinear problems. Ph.D. thesis, University of

Glasgow, UK
Kitsos CP (1989) Fully sequential procedures in nonlinear design problems. Comp Stat Data Anal

8:13–19
Kitsos CP (1999) Optimal designs for estimating the percentiles of the risk in multistage models

in carcinogenesis. Biometrical J 41:33–43
Kitsos CP (2010) Adopting hypergeometric functions for sequential statistical methods. Bull

Greek Math Soc 57:251–264
Kitsos CP (2012) On the optimal continuous experimental design problem. Discussiones

Mathematicae Probab Stat 31(1–2):59–70
Kitsos CP, Kolovos KG (2010) An optimal calibration design for pH meters. Instrum Sci Technol

38(6):436–447
Plackett RL (1972) The discovery of the method of least squares. Biometrika 59:239–251
Smith K (1918) On the standard deviation of adjusted and interpolated values of an observed

polynomial function and its constants and the guidance they give towards a proper choice of
the distribution of observations. Biometrika 12:1–85

Stigler SM (1981) Gauss and the invention of least squares. Ann Stat 9:465–474
Tsutakawa RK (1980) Design of dose levels for estimating a percentage point of a logistic quantal

response curve. Appl Stat 29:25–33
Wu CFJ (1985a) Efficient sequential designs with binary data. JASA 80:974–984
Wu CFJ (1985b) Asymptotic inference from sequential design in a nonlinear situation.

Biometrika 72:553–558
Zarikas V, Gikas V, Kitsos CP (2010) Evaluation of the optimal design cosinor model for

enhancing the potential of robotic theodolite kinematic observation. Measurement
43(10):1416–1424

4 1 Introduction



Chapter 2
Motivation

Abstract The appropriate notation is introduced linking the Mathematical prob-
lem with the Experimentation. The linearization of the underlying model and
Fisher’s information is discussed and examples are discussed.

2.1 Introduction

Experimenters working in Laboratories, without being necessarily Mathemati-
cians, know that performing any experiment, in principle the following are needed:

• The experimental unit, appropriate for each particular field.
• The range of experimental conditions, known as design space.
• The measurements or responses (y) obtained at certain values of the explanatory

or input variables (u).

Usually, in Chemical problems, the experimenter designs in blocks, and the
experimental unit is the apparatus which provides the measurements. In Psy-
chology or Medicine the experimental units are the individual (usually particular
animals) under investigation, see Example 1. Thus the experiment is performed
through single binary observations. In Medicine or Toxicology the binary response
models are more often adopted, linking the ‘‘discrete’’ data, see Examples 4, 7 and
10 below. In Chemistry Kinetics, see Sect. 4.7 below, the ‘‘continuous’’ nonlinear
case is usually applied; see also Examples 8 and 13.

The Book of Science has been written with the Mathematical alphabet—do not
be afraid of this globalization! It can be easily proved even for the experimentalist.
Thus, in this Chapter the notation is introduced and the necessary assumptions and
definitions for the mathematical formulation of the nonlinear experimental design
problem. The appropriate discussion helps, especially the non-mathematicians, to
understand the problem at hand.

C. P. Kitsos, Optimal Experimental Design for Non-Linear Models,
SpringerBriefs in Statistics, DOI: 10.1007/978-3-642-45287-1_2,
� The Author(s) 2013
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2.2 Notation

The Euclidian space U � Rk in which the predictor variables (covariates or
explanatory variables or independent variables, or input variables) u = (u1, u2, …,
uk) take their values is known as experimental region or design space. An example
from chemical kinetics is ‘‘time’’ and from medicine ‘‘dose’’. The parameter space

H � RP is the set where the involved parameters h ¼ ðh1; h2; . . .; hPÞT take their
values. Let N be the family of measures n such that

nðu)� 0 , u 2 U and
Z

nðdu) ¼ 1: ð2:2:1Þ

Such a measure n is referred as a design measure, while the pair (U; n) will be
called the design. The support of the design (U; n), Supp(n), is the set of points u
for which the design measure is positive n uð Þ[ 0. This is only a theoretical
consideration. It might be a design point optimal, but with zero design measure,
n uð Þ ¼ 0, at this point u, and therefore with no practical use, as the experimenter is
not taking observations at this point. Practically speaking the design measure acts
as the proportion of observations devoted to the optimal design points. That is why
sometimes the following way to present a design measure is adopted

n ¼
u1 u2 . . . uk

p1 p2 . . . pk

8<
:

9=
;;
X

pi ¼ 1; pi ¼
ni

n

What are the optimal design points? One can certainly perform his/her exper-
iment at different values of the input variables. The optimal values are those values
which will provide a ‘‘useful predefined result’’—example: minimize the variance
of the parameters.

Let us denote by Mat(m; m) the set of m 9 m size matrices and let h 2
Matðp; 1Þ be the vector of parameters, ui 2 Mat(1, k) the predictor variable, i = 1,
2, …, n, with n the sample size.

For the response y it is assumed that either y 2 W � R or
y 2 f0; 1; . . .; kg; k� 1. When the response y is supposed to take any value in W,
it is also supposed that a regression model (in general nonlinear) exists consisting
in the deterministic portion fðu; hÞ and the stochastic portion, e, known as error,
linked through the (continuous) regression formulation

yi ¼ f(ui; hÞ þ ei: ð2:2:2Þ

Let us assume that fðu; hÞ ¼ hT gðuÞ with g being a (vector) continuous function
of u, hT is the transpose vector of h. Then the nonlinear problem is reduced to the
so called linear problem.

When W ¼ f0; 1; 2; . . .; kg the multiresponse problem is obtained. The most
common case is k ¼ l, i.e. a binary response. In this case the outcome takes only
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two values, Ti = 1 or 0, and it is linked with the covariates and the parameters
through a (discrete) probability model ‘‘S’’ with

P Yi ¼ 1ð Þ ¼ Tðui; hÞ; Pð� i ¼ 0Þ ¼ 1ffi Tðui; hÞ; ð2:2:3Þ

where ui is the value of u going with observation Yi, i = 1, 2, …,n

Example 1 Typical situation in Bioassays is to consider the models:

Logit model : Tðu; hÞ ¼ f1þ expðffih1ðuffi h2ÞÞgffi1; or

Probit model : T(u, hÞ ¼ ð
ffiffiffi
2
p

ph2Þffi1
Zu

ffi1

expðffiðuffi h1Þ2=ð2h2
2ÞÞdu:

ð2:2:4Þ

In both cases the parameter vector is h ¼ ðh1; h2Þ, with h1 the location
parameter and h2 the scale parameter.

2.3 Assumptions

Every theoretical approach is based on a number of assumptions. It is proposed to
keep the number of these assumptions limited. The following main assumptions
will be considered throughout this book. Let us refer to them as Assumption 1 or 2
etc. when they are recalled. When limiting results for the sequence of estimators hn

are considered the parameter space H is assumed to be compact. This is needed, as
in compact set (closed and bounded set) any sequence from this set converges
within this set, due to Bolzano-Weierstrass Theorem. For the errors the main
assumption which is imposed is:

Assumption 1 The errors ei are independent and identically distributed (iid) with
E(eiÞ ¼ 0 and VðeiÞ ¼ r2 [ 0; i ¼ 1; 2; . . .; n.

Under Assumption 1 for model (2.2.2) is: g ¼ gðu; hÞ ¼ E(y) ¼ f(u; hÞ:
And for the model (2.2.3) is: g ¼ gðu; hÞ ¼ E(y) ¼ T(u; hÞ:

Assumption 2 The iid (independent identically distributed) errors are normally
distributed with mean 0 and variance r2 [ 0.

As far as the function f concerned is needed to be smooth in the neighborhood
of ht, the true value of the parameter h. That is why it is assumed:

Assumption 3 The function f(u; hÞ is continuous in H at ht and the second order
derivatives of f with respect to h exist at and near ht.

For the introduced function T, concerning the binary response problems, recall
relation (2.2.3), it is assumed that:
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Assumption 4 T(u) is a monotonic differentiable function.

Moreover the function T(u) can be considered as a cumulative distribution
function of the random variable Z defined through the random variable Y as
follows

Y ¼
1 if Z� u

0 if Z [ u:

(

Then: P[Y ¼ 1� ¼ P[Z� u] ¼ T(u), say, and P[Y ¼ 0� ¼ P[Z [ u] ¼ 1ffi T(u).
Thus: E(Y) ¼ 1� T(u)þ 0� ð1ffi T(u)) ¼ T(u) ¼ g and VarðYÞ ¼ TðuÞ�

ð1ffi TðuÞÞ.
So the expected value and the variance of the new random variable Y are

evaluated through the function T(u).

Assumption 5 The assumed model used to plan the design is correct.

This Assumption is essential in practice, as the experimentalist, very often, tries
to elucidate which model is appropriate, with no statistical background for such a
target.

The theoretical framework is based on these assumptions, which can be easily
followed by the experimenter. Therefore it is recommended that the experimen-
talist should see if are fulfilled.

2.4 On the Existence of Estimators

When the experimental data is collected, the question arises whether it is possible
to obtain the appropriate estimates of the involved parameters. Therefore the
existence of the estimators requires a particular theoretical investigation. For the
(continuous) model (2.2.2) the following quantity is introduced

SnðhÞ ¼
X
ðyi ffi f(ui; hÞÞ2 ¼ yffi f(u; hÞk k2 ð2:4:1Þ

where �k k2 is the 12-norm. An estimate ĥ is the least squares estimate (LSE) if

SnðĥÞ ¼ minfSnðhÞ ; h 2 Hg ð2:4:2Þ

Under Assumption 2 it is known that this LSE coincides with the maximum
likelihood estimator (MLE). It can be proved that there exists such a LSE, under
certain conditions, see Wu (1981), who relaxed the conditions imposed in the
pioneering paper of Jennrich (1969).

For the binary response problem Silvapulle (1981) provided that conditions
under which the likelihood function L,

L / PfTðui; hÞgyif1ffi Tðui; hÞg1ffiyi ð2:4:3Þ
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can provide maximum likelihood estimators (Appendix A2). Roughly speaking
this occurs when the intersection of the sets of values taken by the explanatory
variables corresponding to successes and to failures is not the null set (see foot-
notes of Tables A4.1, A4.2, A4.4, in Appendix 4). This happens to be a necessary
and sufficient condition for the logit and probit models. Practically, a proportion
can not be estimated when only a data set of ‘‘successes’’ or only ‘‘failures’’ is
available. Moreover the estimators are not appropriate if the number of ‘‘suc-
cesses’’ (‘‘failures’’) is very small comparing to the total number of observations.

Now, having ensured that the likelihood equation can provide MLE and
denoting by l the log-likelihood the following matrix is defined

S(bh; nn; y) ¼ ffi o2‘

ohiohj

h ¼ bh
���

� �
ð2:4:4Þ

where nn is the design measure on n observations, called the sample information
matrix.

Example 2 Maximum likelihood estimates for the logit model can be obtained
through the, well known from the linear case, normal equations

X
Ti ¼

X
yi

X
uiTi ¼

X
yiui;

with Ti ¼ T(ui; hÞ as in (2.2.4).

One of the most important measures in Statistics is (the parametric) Fisher’s
information measure. There is also the entropy type of Fisher’s information
measure, but this is beyond the target of this book, see Kitsos (2011a, b). The
Fisher’s information matrix is introduced in the next section.

2.5 Fisher’s Information Matrix

There are two different types of Fisher’s information measures: the parametric one,
which will be presented next, and the entropy type which has been extended
(Kitsos and Tavoularis 2009), and is not discussed in this monograph. Both are
strongly related with the involved uncertainty in the physical phenomenon under
investigation. Sometimes, due to the cost of the experiment, the experimentalist
needs to run a small number of trials, and eventually estimate, adequately, the
involved parameters—one can imagine how useful the theoretical limiting results
are in such cases! But Fisher’s information is always there, helpful to the analysis,
even with a small sample size, see Sect. 6.4.

In non-linear problems the variance depends on the unknown parameter the
experimenter wants to estimate, i.e. r2 ¼ r2ðu; hÞ. That is r2 depends on the
design point and the parameter vector. In the linear case it is assumed independent
of the parameter vector h. In practice it may or may not be possible to assume that
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is ‘‘known’’, provided a guess, or knowledge from a previous experiment. In
principle, this is the main difference between the linear and the non-linear case.

Let rg denote the vector of partial derivatives (recall Assumption 1)

rg ¼ og
oh1

;
og
oh2

; . . .;
og
ohp

� �T

: ð2:5:1Þ

Then for the exponential family of models Fisher’s information matrix is
defined to be

I(h; u) ¼ rffi2ðrgÞðrgÞT: ð2:5:2Þ

Moreover in many of the nonlinear problems the covariate u and the parameter
h appear together linearly in the form hTu. Thus the following proposition holds:

Proposition 2.1 If g ¼ gðhTu) it can be proved that rg ¼ ½w(hTu)]1=2u with
w(z) ¼ ½og=oz]2; z ¼ hTu and therefore:

I(h; u) ¼ rffi2w(hTu)uuT:

This result describes that fact that if the nonlinear model is ‘‘intrinsic linear’’ as
far as the parameter concerns, g ¼ gðhTuÞ, then Fisher’s information matrix can be
evaluated proportional to the matrix produced only by the input vector u, i.e. equal
to rffi2w(hTu)uuT.

The concept of the average-per-observation information matrix will play an
important role in the developed scenario concerning the nonlinear experiment
design problem. It is defined for the nn, the n-point design measure, to be equal:

For the discrete case:

M(h; nnÞ ¼ nffi1
X

I(h; uiÞ;

For the continuous case:

M(h; nÞ ¼
Z

U

I(h; u)nðduÞ; n 2 N: ð2:5:3Þ

The theoretical insight of Caratheodory’s Theorem (Appendix 1), so essential
for the linear experiment design, can also be used for the average information
matrix in nonlinear problems, see Titterington (1980a). Now, suppose that the
matrix M ¼ M(h; nÞ is partitioned in the form:

M ¼ M11 M12

M21 M22

� �
ð2:5:4Þ

with M11 2 Mat (s, s), M12 2 Mat(s, pffi s), M22 2 Mat(pffi s, pffi s), 1� s \p.
Then the following matrix is defined:
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MS ¼ MSðh; nÞ ¼ M11 ffiM12Mffi22MT
12 ð2:5:5Þ

with Mffi22 being the generalized inverse of M22. The information matrix I, as in
(2.5.2), is considered partitioned in the same fashion. This partition is helpful when
interest lies in estimating the leading s\p parameters in the vector h, as it will be
explained in Sect. 3.6.

2.6 Linearization of the Model

The idea of the (design) matrix X, including all he input variables, is essential
when one is working with linear models, see Seber and Wild (1989) among others.
In nonlinear models the researcher can not define a matrix X in the same fashion.
This can be done only approximately through the partial derivatives of h, with h
taking its ‘‘true’’ value, ht. Then the following n9p matrix is defined

X ¼ ðxijÞ ¼
of(ui; hÞ

ohj
h¼ht
j : ð2:6:1Þ

Then the matrix X ¼ XðhÞ is formed as a function of h. The function fðu; hÞ,
recall (2.2.2), can be ‘‘linearized’’ through a Taylor series expansion, in the
neighborhood of ht as:

f(u; hÞ ¼ f(u; htÞ þ
X
ðhj ffi htjÞðofðu; hÞ=ohjÞ h ¼ htj ð2:6:2Þ

Following the pattern of linear regression models in the nonlinear regression
case, an approximation to the covariance matrix, of the estimates of the parame-
ters, can be defined as:

C ffi ½XTðhtÞX(htÞ�ffi1r2: ð2:6:3Þ

Moreover for all nonlinear problems a useful approximation to the covariance
matrix is Cffi1 ffi nM(ht; nÞ. Eventually for the average per-observation information
matrix M for the design measure n holds:

Mðh; nÞ ¼ 1
n
ðrgÞTrg ¼ r2

n
Cffi1ðbh; nÞ ð2:6:5Þ

Relation (2.6.5) describes that (asymptotically) the covariance matrix is the
inverse of the average per observation information matrix.

2.6.1 Examples

To clarify the above theoretical background, the following examples are given,
helpful for the inquiring reader.
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Example 3 Recall Examples 1 and 2, as far as the logit model concerns. Given
that the linear approximation of the form

½1þ expðffih1ðuffi h2ÞÞ�ffi1 ffi 1=2þ 1=6 h1ðuffi h2Þ

holds under the assumption h1ðuffi h2Þj j � 3, then the normal equations, for the
logit model, approximately are:

n/2þ ðh1=6Þ
X
ðui ffi h2Þ ¼

X
yi

ð1=2Þ
X

ui þ ðh1=6Þ
X

uiðui ffi h2Þ ¼
X

uiyi

Solving the simultaneous equations the estimates of the parameters ðh1; h2Þ are
obtained.

In the following examples the idea of Fisher’s information matrix is clarified.
These examples will be reconsidered in the sequel of this development.

Example 4 Consider that model, in which P(y ¼ 1Þ ¼ T(hTu). That is the model T
is ‘‘intrinsic linear’’: the model can be non-linear, but the parameters and the input
variable are related linearly.

Let: h1 þ h2u1 ¼ z ¼ hTu and T0ðz) [ 0, h ¼ ðh1; h2Þ, u = (1, u1).

Then the log-likelihood ‘, will be ‘ ¼ logf T(z)Y½1ffi T(z)]1ffiYg þ const.
Therefore Fisher’s information matrix equals to

Iðh; nÞ ¼ Efðr‘Þðr‘ÞTg ¼ aðhÞ uuT;with aðhÞ ¼ T02½Tð1ffi TÞ�:

Application: T might be either the logit or probit model.

Example 5 For the nonlinear regression model g ¼ h1 ffi expðffih2uÞ; u 2 ½ffi1; 1�

Fisher’s information matrix is evaluated equal to

Iðh; nÞ ¼ ðrgÞðrgÞT ¼ 1 uexpðffibÞðffih2u)
uexpðffih2uÞ u2expðffih2uÞ

� �

Note that Iðh; nÞ is a function only of h2; I(h; nÞ = I(h2; nÞ, therefore the
covariance matrix, recall relation (2.6.5), depends on the parameters, but only on
the component h2 of the parameter vector (h1; h2). Notice that in linear models the
covariance matrix does not depend on the parameters.

Example 6 The nonlinear regression model used to describe growth phenomena is

g ¼ h1 expðh2uÞ; u 2 ½a, b�

The xij vectors i = 1, 2, …, n, j = 1, 2 can be formed according to (2.6.1) as
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xi1 ¼ og=oh1 ¼ exp(h2uiÞ; xi2 ¼ og=oh2 ¼ h1uiexp(h2uiÞ

The quantity SnðhÞ ¼
P
ðyi ffi h1exp(h2uiÞÞ2 is formed. In order to find the

Least Square Estimator ĥ, which minimizes SnðhÞ, the partial derivatives of SnðhÞ
are needed, which provide the ‘‘normal equations’’

X
ðyi ffi h1exp(h2uiÞÞexp(h2uiÞ ¼ 0X
ðyi ffi h1exp(h2uiÞÞh1uiexp(h2uiÞ ¼ 0:

Moreover, in this case, from the Hessian matrix and its’ expected value it is
eventually evaluated (recall (2.6.5)) that

rffi2nM(h; nnÞ ¼
P

exp(2h2uiÞ h1
P

uiexp(2h2uiÞ
h1
P

uiexp(2h2uiÞ h2P u2exp(2h2uiÞ

� �
:

Also, from (2.4.4) is evaluated that

rffi2S(bh; nn; y) ¼
P

exp(2bh2uiÞ ĥ1
P

uiexp(2bh2uiÞ
bh1
P

uiexp(2h2uiÞ A(y, u,bhÞ

 !
ð2:7:1Þ

where ffiAðy, u,bhÞ ¼ bh1
P

u2
i exp(bh2uiÞ fyi ffi 2bh1expðbh2uiÞg:

Example 7 Dose-Finding in Phase I/II Clinical Trials

The goals of a clinical trial, Thall and Russel (1998), are:

1. To perform an experiment that satisfies specific safety and efficacy
requirements,

2. To consider the trial early as it is likely that no dose is both safe and efficacious,
3. To estimate, with some risk, the rates of the events at the pre-decided level of

dose.

The dose response curve, for the logit model (recall Example 1), is the
cumulative odds model, to describe and to approach, the unknown dose-response
function. So the underlying model, describing the experiment, is nonlinear. A
binary indicator describes the levels of severe toxicity. The appropriate Clinical
Trial imposes a target to estimate that optimal level of the dose, among different
candidate dose levels, that satisfies both the efficacy and toxicity criteria.

For examples of non-linear models in Cancer Bioassays see Kitsos et al. (2009).

Example 8 Oxidation of benzene.

This model is, among the chemical reaction models, one with the most nec-
essary needed information: Includes 4 input variables and 4 parameters:

Model: g ¼ h1 exp ffih3u3ð Þh2 exp ffih4u3ð Þu1u2

h1 exp ffih3u3ð Þu1 þ u4h2 exp ffih4u3ð Þu2
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The input variables and the design space U are defined below, while the four
involved parameters belong to the parameter space H � R4,

u ¼ u1; u2; u3; u4ð Þ 2 U ¼ D1 � D2 � D3 � f5:75g � R4; with

D1 ¼ 10ffi3; 16� 10ffi3
� �

; D2 ¼ 10ffi3; 4� 10ffi3
� �

;D3 ¼ 623; 673½ �:

Moreover the introduced notation is:
g The initial reaction rate
u1 The concentration of oxygen
u2 The concentration of benzene
u3 ¼ 1=T ffi 0.0015428 T is the absolute temperature of the reaction
u4 The observed stoichiometric number
h1, h2, h3, h4 Model parameters arising from Arrhenius’ law.

Usually the real situation is not such complicated, see Sect. 4.7, i.e. indeed the
parameters involved are 2 or 3 and usually no particular knowledge concerning
one of them is needed. For the n-th order chemical kinetic models see Mane-
rswammy et al. (2009), while for a compilation of the Chemical Kinetics models
and the corresponding design theory see Kitsos and Kolovos (2013).

The above examples provide evidence that the nonlinear optimal experimental
design theory covers a broad range of applications as it will be also clarified in the
sequence.
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Chapter 3
Locally Optimal Designs

Abstract The locally optical design is discussed and the alphabetic optimal
designs are introduced, and the Geometrical insight is discussed. The canonical
form for a binary response problem is introduced, and its ‘‘affine’’ character is
discussed.

3.1 Introduction

The aim of the optimal experiment is to estimate appropriately the parameters
included in the model. It might be considered all p parameters, or a set of
s \ p linear combinations of the p parameters. In the sequel, when only s of the
parameters are to be estimated. It will be assumed that they are the first s com-
ponents of the vector h ¼ ðh1; h2; . . .; hPÞ and the notation hðSÞ ¼ ðh1; . . .; hSÞ shall
be used. The average information matrix, related approximately to the covariance
matrix, as in (2.5.3), is a natural starting point for the establishment of an opti-
mality criterion. That is, some real-valued function of M h; nð Þ can serve as a
criterion, to decide why one design is optimal comparing with others. Now, one
might ask: why the design is called locally optimal?

It is the h-dependence which leads to the term ‘‘locally optimal’’: the optimal
design depends on the true value of h and therefore it might be optimal ‘‘locally’’,
in the sense that it is optimal ‘‘around’’, in the neighborhood, of the parameter
value.

This h-dependence is the main point of difference between linear experimental
design, originated in Smith (1918) and the nonlinear case, originated in Fisher
(1922).

Thus in this chapter the appropriate criteria describing why the use of one
design is the best one, in comparison with other candidate designs, are provided. In
addition, the geometrical interpretation of these design criteria is briefly discussed.

C. P. Kitsos, Optimal Experimental Design for Non-Linear Models,
SpringerBriefs in Statistics, DOI: 10.1007/978-3-642-45287-1_3,
� The Author(s) 2013
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3.2 Formulation

Suppose that one wishes to estimate a set of linear combinations of the parameter
vector h ¼ h1; . . .; hPð Þ. This might lead to an estimation of the vector h itself,
some linear combinations of the p components of h or to s� p components. Let
Q 2 Matðs; pÞ 1� s� p be the matrix of the known coefficients defining and that
the quantities of interest are the linear forms, presented in compact form, Qh. If
rankðQÞ ¼ p, when s = p, the matrix Q is nonsingular. If s \ p then let us suppose
that rankðQÞ ¼ s. On the basis of the experiment the average (per observation)
information matrix M ¼ Mðh; nÞ is obtained. Notice that the inverse of the matrix
M might not exist (when det(M) = 0). In the sequel h is regarded as taking its true
value. Then the following operator JQ applied to M can be defined through the
above matrix Q:

JQðMÞ ¼ QM�ðh; nÞQT ð3:2:1Þ

with M� a generalized inverse of M and QT 2 Matðp; sÞ
Given the above notation a real valued function is needed, x say, applied to JQ

to be used as an optimality criterion. The function x has been chosen to be a
convex decreasing one on the set of nonnegative definite matrices, NMatðs; sÞ say,
i.e. xðAÞ�xðBÞ if the matrix A� B 2 NMatðs; sÞ and A;B 2 NMatðs; sÞ.

Definition 3.2.1 The design measure nffi is called x-optimal if and only if (iff):

x JQ Mðh; nffiÞ½ �
ffi �

¼ min x QM�ðh; nÞQT
ffi �

; n 2 N
ffi �

: ð3:2:2Þ

The following special cases of the concave function x and the matrix Q are
examined, which lead to the traditional definitions, adopted from the linear case.
The special cases for x are:

x :ð Þ ¼

x1 :ð Þ ¼ log det QM�QT
� �� �

x2 :ð Þ ¼ tr QM�QT
� �

x3 :ð Þ ¼ max eigenvalue of QM�QT
� �

x4 :ð Þ ¼ sup tr I h; uð ÞQM�QT
� �� �

8>>>><
>>>>:

ð3:2:3Þ

The most often considered special cases for Q are

Q ¼

A 2 Matðp; pÞ; rankðAÞ ¼ p
I 2 Matðp; pÞ � the identity matrix
A 2 Matðs; pÞ; rankðAÞ ¼ s
IS : 0½ �; IS 2 Matðs; sÞ; 0 2 Matðs; p� sÞ

c 2 Matðp; IÞ

8>>>><
>>>>:

ð3:2:4Þ

The above cases are the most often appeared under the theoretical framework
presented here. For practical applications see the following Sects. 3.3 and 3.4.
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Usually experimenters from Biology or Chemistry are referring to the logdet
criterion, with no explanation on how it has been decided; see for geometrical
explanation Sect. 3.7.

3.3 Special Cases

The following definitions are given for xð:Þ as in (3.2.3) and Q = A as in (3.2.4):

Definition 3.3.1 The design measure nffi is called (iff: if and only if)

DA(h)-optimal iff x1(.) is considered,
AA(h)-optimal iff x2(.) is considered,
EA(h)-optimal iff x3(.) is considered,
GA(h)-optimal iff x4(.) is considered. h

When Q ¼ I 2 Matðp; pÞ, the operator JI :ð Þ provides the generalized inverse of the
matrix M. In this case the so called U criterion is obtained, see Ford et al. (1989)
for a review. Under this notation, the traditionally described as U criterion, Kiefer
and Wolfowitz (1960), is / ¼ x � JI , where � denotes the composition of two
functions, see also Silvey (1980, Chap. 3). Thus the corresponding to xi, i = 1, 2,
3, 4 of (3.2.5) the classical case is obtained

/i ¼ xi � JI ; i ¼ 1; 2; 3; 4: ð3:3:1Þ

The ‘‘alphabetic’’ traditional definitions of these criteria are the following.

Definition 3.3.2 An optimal design measure nffi is called

D(h)-optimal iff u1 :ð Þ is considered,
A(h)-optimal iff u2 :ð Þ is considered
E(h)-optimal iff u3 :ð Þ is considered,
G(h)-optimal iff u4 :ð Þ is considered.

The reference to the parameter is only to emphasize that these criteria depend on
the parameter, while in the linear case the terms D, G, A, etc.-optimality are used.

For the optimality criteria D(h) and G(h). White (1973) extended Kiefer and
Wolfowitz’s (1960) equivalence theorem as it follows:

Theorem 3.3.1 For the optimal design measure nffi the following are equivalent.

1. nffi is D(h)-optimal.
2. nffi is G(h)-optimal.
3. Sup dðu; n; hÞ½ � ¼ p ¼ dim h, where dimh is the dimension of h 2 H � RP and

dðu; n; hÞ ¼ tr Iðh; uÞMðh; nÞ�1
n o

(with M assumed to be nonsingular). h
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When A 2 Matðp; pÞ nonsingular, there is no difference between the D-optimality
of a linear transformation A, DA(h) and D(h)-optimality. This is true due to the
fact that

det AM�1ðh; nÞAT
� �

¼ det M�1ðh; nÞ
� �

� detðAÞ½ �2 ð3:3:2Þ

This is not the case with other optimality criteria and this result is an essential
difference between the D-optimality and the other criteria.

D(h)-optimality minimizes the volume of the approximate confidence ellipsoids

for h, centered at the estimate of h, ĥ say. Moreover, the information matrix
M h; nffið Þ corresponding to the optimal design nffi is unique—when h takes its true
value—since x in this case is a strictly concave function. The duality theory for
the linear case, first tackled by Silvey (1972), and established by Sibson (1972) can
be applied in the nonlinear case when h ¼ ht, for the other criteria as well. Thus:
G(h) Optimality minimizes the maximum approximate variance of the estimated

future response, the interpretation for both D(h) and G(h) optimality has
been made, under Assumption 2, that of normal errors.

A(h) Optimality minimizes the sum of approximate variances of the parameter
estimates, as in the linear case, see Titterington (1980a).

E(h) Optimality seeks to minimize the variance of the worst-estimated linear
combination cTh, with cT c ¼ 1, see also Dette and Haines (1994).

Silvey (1980) reviews these criteria for the linear case, while Pukelsheim (1993)
offers a compact theoretical review of the criteria, mainly for the linear case.

A particular case is that of IS : 0½ �; IS 2 Matðs; sÞ the unit matrix and 0 2
Matðs; p� sÞ the zero matrix. This case is discussed in Sect. 3.4.

Now let us consider the case Q ¼ c 2 Matðp; 1Þ, i.e. Q is a vector. Assuming
that M�1ðh; nÞ exists and recalling Definition 3.2.1, it is

x JC M h; nffið Þ½ �f g ¼ min cT M�1ðh; nÞc; n 2 N
ffi �

ð3:3:3Þ

with x the identity function. This criterion minimizes the approximate variance of

a linear combination of ĥ and it is known as c(h)-optimality. Special interest is
given to the c-optimality, due to the excellent Geometrical interpretation of the
design measure. For completely discussed applications see Example 10 below and
Chap. 8.

3.4 Applications

In the linear case the above criteria are independent of h and thus the reference to
them is D, G, A, E-optimality. The nonlinear case can be treated as the linear,
when it is supposed that h is known.
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The D(h)-optimality criterion has been the most commonly used in practice,
ever since the pioneering work of Box and Lucas (1959), who obtained locally
optimal designs when n = p for a number of nonlinear models. For the exact
locally optimal design when n = p maximization of detðXT XÞ (see (2.6.1) for the
definition of the matrix X) is the equivalent to maximization of det (X) because,

D ¼ detðXT XÞ ¼ detðXÞ½ �2. Notice that det(X) exists, as it is supposed that the
created simplex is due to the assumption n = p.

Atkinson and Hunter (1968) suggested that n should be n = rp, the sample size
is a replication of the p-term design. Hence one should perform the experiment of
Box and Lucas for the p-point p-term model and replicate the experiment r times.
Box (1968) gave a generalization for n ¼ rpþ k; r [ 1; 0� k� p� 1:

Most of the work dealing with the chemical kinetic models is summarized in
Sect. 4.7. Given the ‘‘true’’ h the optimal design points for the covariates
involved has been listed. A(h)-optimality has been suggested by Titterington
(1980a) for dynamic systems. Little attention has been paid to E(h)-optimality in
applications. h

Example 9 Consider the logit and probit models [recall Example 1, see also
McCullagh and Nedler (1989)] under D(h)-optimality. This is essential because of
their use in applications. For the quantal response model of the form T ¼ TðhT uÞ
(recall Example 4), the D(h)-optimal design is concentrated at two points, namely:

u1 ¼ u0 � h1ð Þ=h2; u2 ¼ �u0 � h1ð Þ=h2 ð3:4:1Þ

with n1 ¼ n2 ¼ 0:5, which means allocate half observation at each optimal design
point, i.e. a D-optimal design. Then the value of the determinant of the average per

observation information matrix is Do ¼ det M h; u0ð Þ ¼ u0 � a u0ð Þ2=h2

n o
with

a u0ð Þ ¼ a u0; hð Þ as in Example 4.

Let us assume that the function Do ¼ Do u0ð Þ has a unique maximum at û0.
Then the two D-optimal points turn to be of the form

	û0 � h1ð Þ
h2

2 U

Moreover for the logit case it is: û0 ¼ 1:54; For the probit case it is: û0 ¼ 1:14:
If the design space U is symmetric about �h1=h2 and 	û0 � h1ð Þ=h2 2 U ¼

j; k½ � then the D(h)-optimal design is based on the end points of the interval, i.e.
u1 ¼ j; u2 ¼ k:

Notice that both logit and probit models are based on a two point symmetric
D-optimal design. The situation is similar for the

Double Exponential 1
2 expð�jujÞ
� �

at the points û0 ¼ 	0:768 and for

Double Reciprocal 1
2 ð1þ jujÞ

�2
� 	

at the points û0 ¼ 	0:390:
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No symmetry takes place for the

Complementary Log–Log ðexpðu� e2ÞÞ model:

The D-optimal design allocates half observations at û0 ¼ �1:338 and
û0 ¼ 0:980:

For the binary response optimal design problem, under logistic regression see
Mathew and Sinha (2001). h

Example 10 The c(h) optimality criterion can be used when the percentile point of
the logistic curve is asked to be estimated. The 100p percentile point, Lp of the
response curve T(u) is defined as the solution of the equation: T(Lp) = p, when
T(u) is the logistic. Then it is

TðLp; hÞ ¼ 1þ expð�ðh0 þ h1LpÞÞ
ffi ��1¼ p ð3:4:2Þ

Therefore

Lp ¼ �h�1
1 h0 þ lnðp�1 � 1Þ
� �

¼ ~Lpðh0; h1Þ ð3:4:3Þ

Thus Lp has been expressed as a non linear function of h0, h1. In bioassays the
median is the most common percentile of interest. It is easy to see that for p = 0.5
relation (3.4.3) is reduced to

L0:5 ¼ �ðh0=h1Þ ð3:4:4Þ

for the logit case. Clearly, designing as well as possible to get the best estimate of
Lp, has a practical use. The vector r~Lpis evaluated as

r~Lp ¼ �h�1
1 ð1; LpÞT ð3:4:5Þ

Let ni be the number of observations at ui for i = 1, 2, …, k. Then, for the MLE
bh ¼ bh0; bh1

� 	
, it is known, Kitsos (1986) that for k C 2, and

P
ni ¼ n large

Varðbh0; bh1Þ ffi
X

TðuiÞð1�TðuiÞÞui uT ni

n o�1
ð3:4:6Þ

in which u1 ¼ ð1; ui1ÞT : From (3.4.5) and (3.4.6) one obtains that

Var ðbLpÞ ffi ðr~LpÞT Var ðbh0; bh1Þr~Lp ð3:4:7Þ

Therefore minimization of VarðL̂pÞ is approximately equivalent to minimization of

cT M�1ðnÞ c ð3:4:8Þ

with c = (1, Lp)T and M-1(n) given by the right had side of (3.4.6). This is
equivalently to find the c(h)-optimal design, for the desired h ¼ ðh0; h1Þ. h
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From the above Example 10 it is clear that the c-optimal design, depends on the
vector c (the ‘‘ray’’ say, that hits the induced design space, see also Appendix II).
The question is to find for a design, acting as a basis for a vector c, and therefore
all the other designs will be considered, as a transformation of the ‘‘basic’’ one.
This design will be referred as the ‘‘canonical’’ form and it will be discussed
below.

3.5 Canonical Form of a Design (c(h)-Optimality)

It is known, Federov (1972, p 81), that D-optimal designs are invariant to any non-
degenerate linear transformation of the parameters.

It is in fact convenient, to have a design criterion, which will remain invariant
under certain transformations of the design space. Then it is possible to have a
design acting as a basis, a ‘‘canonical form’’ of the design, which, when it is
transformed, it would produce another one, a ‘‘daughter designs’’. So a family of
‘‘invariant’’ designs is introduced. The transformation defined below is based on
the above discussion and it is of the form:

h : U � Rk ! Z � Rk : u! h uð Þ ¼ z ¼ Bu ð3:5:1Þ

with B [ Mat (p, p), nonsingular.
Consider that nonlinear models in which the parameters appear in the linear

form with the covariate u, such as hT u ¼ h0 þ h1u1. Take as a design criterion that
of c(h)-optimality i.e. the general concave criterion function is of the form

UðMuÞ ¼ cT M�1
u c ð3:5:2Þ

with Mu ¼ Muðh; nÞ the average information matrix in U-space equals to

Mu ¼
X

aðh0 þ h1u1iÞc cT ð3:5:3Þ

and a(.) as in Example 4, and ci ¼ ð1; u1iÞT , c = (1, u1)T. Let us then define the
matrix B as

B ¼ 1 0
h0 h1


 �
ð3:5:4Þ

and

z ¼ Bu ¼ 1 0
h0 h1


 �
1
u1


 �
¼ 1

h0 þ h1u1


 �
¼ 1

z1


 �
ð3:5:5Þ
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Then the criterion (3.5.2) can be written as:

cT M�1
u c ¼ cT

X
i

að�Þcic
T
i

" #�1

c

¼ cT BTðBTÞ�1
X

i

að�Þcic
T
i

" #�1

B�1Bc

¼ ðBcÞT
X

i

að�Þ½Bci�½Bci�T
 !�1

ðBcÞ ¼ cT
z M�1

z cz

ð3:5:6Þ

The ray c and the average per observation information matrix on the Z space equal
to cz ¼ ð1; h0 þ h1u1ÞT ¼ ð1; z1ÞT ; Mz ¼

P
i

að:ÞzizT
i ; zi ¼ ð1; z1iÞT respectively.

Thus the equivalence of c(h) optimality in U space and Z space has been proved.
This is of practical use as a design can be constructed on a ‘suitable’ design space
with h0, h1 fixed and then transformed back to the design of interest. h

Now let us improve, extend and apply this line of thought. One of the most
appropriate statistical methods to evaluate the Relative Risk (RR) in practice, for
example in the dose–response experiments involving one or more variables, is the
logistic regression. The construction of local D- or c-optimal designs of the binary
response models have been discussed by Sitter and Torsney (1995a, b), while Ford
et al. (1992) introduced the one variable logistic model canonical form. This idea
is extended to p-variable logistic model.

Indeed: for the Logit transformation, the logistic regression model is obtained;
see also Breslow and Day (1980). In such a case extending Example 1, the model is

y ¼ log
pðxÞ

1� pðxÞ ¼ b1 þ b2x2 þ b3x3 þ � � � þ bpxp þ re; e�Nð0; 1Þ ð3:5:7Þ

In order to obtain a group of affine transformations forming the canonical form
of the model (3.5.7), the following Proposition and Theorem, see Kitsos (2011a),
for details and proofs, are applied.

Proposition 3.5.1 The set of the (affine) transformations G as

G ¼ g ¼

1 0 � � � 0 0
0 1 � � � 0 0
..
. ..

.

0 � � � 1 0
b1 b2 � � � bp r

0
BBBBB@

1
CCCCCA
¼ Ip O

t

h r


 �
; g 2 R

ðpþ1Þ2

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
; ð3:5:8Þ

with Ip ¼ diagð1; 1; . . .; 1Þ 2 Rp�p; O ¼ ð0; . . .; 0Þ 2 R1�p; h ¼ ðb1; b2; . . .; bpÞ 2
R1�p and r 2 Rþ, R the set of real numbers, forms a group, under matrix
multiplication.
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Theorem 3.5.1 Consider any positive definite matrix M with det M 6¼ 0 and
vector c with the appropriate dimension, so that, N ¼ cTM�1c is valid. Then, N
remains invariant if c and M transformed under g.

This theoretical result practically means that the experimenter can work as fol-
lows: per-form the experiment with the ‘‘easiest’’ scale and position parameters—
those with some prior knowledge from previous experience. Then, transfer the
obtained results with an element from the group of the affine transformations and
still you have an optimal design. Returning to the initial design space, through the
inverse transformation, still you are moving within a class of optimal designs.
Thus it is recommended a two stage design:

1. Devote a portion of your experiments with the initial guesses
2. Perform the remaining experiments within the class of the design generated by

the group of transformations G.

When the model obtained from the part (2) above is fitted, still the canonical
form is appreciated: to evaluate how far you moved from it, how the model is
renewed. h

3.6 Designs for Subsets of Parameters

The asymptotic generalized variance of the estimators of the s-component vector
h Sð Þ ¼ h1; . . .; hSð Þ is defined to by the quantity

Vðh; nÞ ¼ n�1 det½Ms� ð3:6:1Þ

where Ms is as in (2.5.10). Note that Ms has to be nonsingular so that the vector h(s)

to be estimable. With the operator notation introduced above, it is easy to see that
when A ¼ ½Is : 0�; JAðMÞ ¼ Ms. Thereafter the notation /s as Us ¼ x o J½Is:0� is
used.

For the cases /i, i = 1,2,3,4 the following definition are given

Definition 3.6.1 The optimal design measure nffi is called

Ds(h)-optimal if /1s is considered,
As(h)-optimal if /2s is considered
Es(h)-optimal if /3s is considered
Gs(h)-optimal if /4s is considered. h

White (1973) stated an equivalence theorem for Ds(h) and Gs(h) optimality, similar
to that for the linear case, while Begg and Kalish (1984) applied the Ds(h) opti-
mality for the logistic problem.
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3.7 Geometrical Aspects

For the linear model (2.3.3) the geometry was built up not on the design space U,
but on its image through g, U0 ¼ gðUÞ say, known as induced design space.
Furthermore, for this transformation it is proved that the information matrix M(n)
is preserved expressed in terms of the family of design measures

N0 ¼ n0 ¼ ng�1; n 2 N
ffi �

ð3:7:1Þ

The geometrical approach to the linear optimal design of experiments has been
extensively covered by Titterington (1975, 1980a). The geometrical insight into
the linear problem is based on the pioneering equivalence theorems of Kiefer and
Wolfwitz (1960), for G- and D-optimality, while Karlin and Studden (1966),
worked for Ds optimality.

Under the above discussion the following ‘‘duality’ principles play an important
role in the realm of linear experimental design, and are summarized in the fol-
lowing Theorem.

Theorem 3.7.1 Let U0 be a compact set which spans RP (which spans the leading
s-dimensional co-ordinate subspace). Then:

1. The D-optimal design problem for U0 is the dual of the minimal ellipsoid
problem for U0 (Sibson 1972).

2. The Ds optimal design problem is the dual of the thinnest cylinder problem
(Silvey and Titterington 1973).

In both cases the two problems share a common extreme value. h

Based on Theorem 3.7.1 the minimal ellipsoid problem is that of finding an
ellipsoid of minimal content centered at the origin, containing U0. The kernel
matrix of this particular ellipsoid is the inverse of the information matrix, M�1ðnÞ,
equivalently the covariance matrix—which in linear case does not depend on the
involved parameter. The only possible effective support points of D-optimal
designs are points in U which, through g, correspond to the points where the
minimal ellipsoid ‘‘hits’’ U0.

The thinnest cylinder problem is that of finding a cylinder of minimum cross-
sectional content—with cylinder axis required to pass through the origin—which
spans Rs and which contains U0. The only possible effective support points, are
points in U whose images in U0 are points where the thinnest covering cylinder
hits U0.

These ideas from the linear case are discussed to clarify where this ellipsoid is,
and how it is influenced by the design measure and the information matrix, see also
Fig. 3.1. Now one can proceed to the nonlinear case, adopting the linear
development.
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The fact that the information matrix depends on the unknown parameter h, and
since f is not linear as it is g, encourage us to approach the problem slightly
differently.

When h takes its true value all the geometric aspects covered by Titterington
(1980a, b) can be applied to the nonlinear case. When somebody ends up the
experiment with an estimate of h, this estimate forms the geometry in a ‘‘local’’
sense, as the estimate might be any h in the neighborhood of ht. Thus D(h)
optimality corresponds to the minimal local ellipsoid. This line of thought is
discussed extensively:

Let ki; i ¼ 1; 2; . . .; p be the eigenvalues of Mðn; #Þ and therefore 1=ki; i ¼
1; 2; . . .; p are the eigenvalues of M�1ðn; #Þ. The eigenvalues 1=ki; i ¼ 1; 2; . . .; p
are proportional to the squares of the lengths of the axes of the confidence ellipsoid
(see also Sect. 6.3). For example, in principle, the three- dimensions ellipsoid has
the form

x2

a2
þ y2

b2
þ z2

c2
¼ 1;

The volume of this ellipsoid is V ¼ 4
3 pabc ¼ 4

3 p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k1k2k3
p

, were the eigenvalues are
equal to: 1=k1 ¼ 1=a; 1=k2 ¼ 1=b; 1=k3 ¼ 1=c and define the principal directions
of the ellipsoid, see Fig. 3.1 below.

Therefore, due to the eigenvalue properties, the alphabetic optimality criteria
can be geometrically interpreted as:

• Dð#Þ-optimality: min
Qp
i¼1

1
ki

.

Minimizes the generalized variance of the parameter estimates
(asdet M�1 ¼

Q 1
ki

). Equivalently, the volume of the ellipsoid is minimum.

Fig. 3.1 The confidence ellipsoid in 3 dimensions
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• Að#Þ-optimality: min
Pp
i¼1

1
ki

.

Minimizes the sum of the variance of the parameter estimates (as
trM�1 ¼

P
1
ki

).

• Gð#Þ-optimality is equivalent to Dð#Þ.
• Eð#Þ-optimality: min max 1

ki

n o
. Minimizes the variance of the least well-esti-

mated contrast, cTc ¼ 1 for the given vector c.

Recall that for given real numbers (scalars) ai; i ¼ 1; 2; . . .; n, with
Pn

i¼1 ai ¼
const: then

Qn
i¼1 avi

i with vi; i ¼ 1; 2; . . .; n rational numbers, receives its maxi-
mum value, only when ai ¼ aj; i 6¼ j. In such a case with ai ¼ ki, the above
mentioned eigenvalues, Dð#Þ-optimality is obtained.

The ellipsoid is reduced to a sphere when ki ¼ k; i ¼ 1; 2; . . .; n. So, Dð#Þ-
optimality has no relation with Að#Þ-optimality, intuitively. In distribution theory,
this is known as elliptically contoured and spherically contoured distributions, with
covariance matrix R or r2

In, see Fang et al. (1990). The above analysis was based
on the confidence regions, while Muller and Kitsos (2004) worked for optimality
criteria based on tolerance regions. The geometry of c-optimality is covered by
Elfving (1952).

This excellent theorem remains invariant to time, and has been used extensively
to the (eventually non-linear problem of) calibration problem, Kitsos and Kolovos
(2010). h

Elfving (1952) stated the geometrical characterization of c-optimality as
follows:

Consider the model

g ¼ E yjuð Þ ¼ f T uð ÞH; u 2 U:

As far as c-optimality is concerned, the optimal design weights of the obser-
vations can be obtained through the following geometrical argument:

Draw the convex hull C of the space Uo ¼ f Uð Þ and its reflection in the origin,
-UO.

Draw the vector c and let T1 be the point of intersection of c with C. Then T1

lies on the line which joins A 2 Uo and B0 2 0 � UOð Þ and which forms part of the
surface C.

Note that B0 is the reflection of B, see Fig. 3.2 below.
Then the c-optimal design is located at A and B with weights f, 1-f respec-

tivelywhere f= 1� fð Þ ¼ T1B0=AT1 and optimum variance: OT=OT1½ �2.
With the vector c being the (OT) in Fig. 3.2 and the point T1 is the intersection

of the vector c with the created convex hull, from the induced design space and its
reflexion.

The Elfving’s theorem, was related to quadratic loss, see Studden (1971), while
the geometry of the E-optimality was extensively discussed by Dette and Studden
(1993).
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The dependence on h influences the geometry in the nonlinear case, as the
geometric ideas are based on the approximation (asymptotically) of the covariance
matrix by [nM (h, n)]-1.

A particular special case of the partially nonlinear models is discussed below.

3.8 Partially Nonlinear Models

The question is, if all the involved parameters, in a nonlinear model are equally
important when an optimal experimental design approach is adopted. The answer
is that, roughly speaking only the non-linearly involved parameters are essential.
Indeed:

Hill (1980) defined a model to be partially nonlinear for the k parameters,
k \ p, iff

rf u; hð Þ ¼ B hð Þh u; hkð Þ ð3:8:1Þ

where B(h) is a matrix not depending on u but just on h ¼ h1; h2; . . .; hp

� �
; hk is

the vector of the k parameters which appear in a nonlinear way and h is a vector of
functions depending on hk. When (3.8.1) holds the D(h)-optimal design depends
only on hk.

Example 11 Consider the model describing decay (or growth) phenomena with
f u; hð Þ ¼ h1 � exp h2uð Þ. Then one can evaluate

rf u; hð Þ ¼ 1 0
0 h1


 �
expðh2uÞ

u expðh2uÞ


 �

Therefore, according to the above discussion, the D(h)-optimal design will
depend only on h2. This means that initial knowledge only for one parameter is
needed to define the optimal design points for this particular model. h

u

f (u)

O

B

A
0u

0u

1T

T

B

A

′

′
−

Fig. 3.2 Elfving’s theorem
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Khuri (1984) provided, for the model (3.8.1), a sufficient condition of the
following form for Ds(h)-optimality: Let hs be the ‘‘linear terms’’, hp�s be the
‘‘nonlinear terms’’ and consider B(h) partitioned as B hð Þ ¼ BT

1 hð Þ;BT
2 hð Þ

� �
,

B1 2 Mat s; pð Þ, B2 2 Mat p� s; pð Þ. Suppose the corresponding M h; nð Þ is as in
(2.5.3). A sufficient condition for a locally Ds hð Þ optimal design (for hs) to be
dependent only on hp�s is that matrix B2 hð Þ should be expressible in the form
B2 hð ÞP hð Þ Ip�s : K

� �
, where P hð Þ 2 Mat p� s; p� sð Þ and is nonsingular, Ip�s is

the identity matrix and K 2 Mat p� s; sð Þ does not involve h.

Example 12 Consider the Michaelis–Menten model with

f u; hð Þ ¼ h1u= h2 þ uð Þ:

For this model one can evaluate

rf u; hð Þ ¼ u h2 þ uð Þ�1; h1u h2 þ uð Þ�2
h iT

¼ 1 0
0 h1


 �
� u h2 þ uð Þ�1

u h2 þ uð Þ�2


 �

Thus (3.8.1) holds and therefore the D-optimal design, for the vector
h ¼ h1; h2ð Þ, depends only on h2. h

Now a more general case is considered, a model with both a linear part and a
nonlinear part. This model is referred as the proper partially nonlinear, and let us
suppose to be as follows:

f u; hð Þ ¼ 1 u; b1ð Þ þ m u; b2ð Þ ð3:8:2Þ

where b1 ¼ h1; h2; . . .; hsð Þ; b2 ¼ hsþ1; . . .; hp

� �
i.e. h ¼ b1; b2ð Þ and 1 u; b1ð Þ ¼

h0 þ h1uþ � � � þ hsus is a linear function of b1 and m u; b2ð Þ is any nonlinear
function of b2 The following proposition holds.

Proposition 3.8.1 For the model (3.8.4) the D(h)-optimal design depends on b2.
Moreover the Ds(h)-optimal design that estimates b1, also depends on b2.

Proof M ¼ M h; nð Þ ¼ M b2; nð Þ thus trivially, rf does not depend on b1. There-
fore the D(h)-optimal design depends on b2. Moreover M22 ¼ M22 b2; nð Þ and thus
the ratio det Mð Þ= det M22ð Þ is a function of b2 only. Therefore the Ds(h)-optimal
design depends on b2. h

Example 13
1. Let f u; hð Þ ¼ h1 � exp �h2u;ð Þ h2 [ 0:

The D-optimal design depends only on h2

2. Let f u; hð Þ ¼ h1 þ h2uþ sin h3uð Þ þ cos h4uð Þ:

It is easy to see that M22 is a function of h3; h4ð Þ. Therefore D(h) and D2(h)-
optimality depends on b2 ¼ h3; h4ð Þ only. h
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3.9 Discussion

Experimental design in the linear case started as an optimum allocation of the
observations at the optimum design points, which are eventually roots of a
hypergeometric function, Kitsos (2010).

In his pioneering work Fedorov (1972) summarized and extended all the linear
work. The main target through this theoretical framework is to obtain the appro-
priate algorithms to get the optimum design measure for estimating h. Moreover
Fedorov (1972) provided the first algorithm, but it was only in Wu and Wynn
(1978) that a general dichotomous convergence theorem was obtained, concerning
the convergence of the sequence of design measures.

The theoretical framework in the linear case is completed by the duality theory
which first came to light in Lagrangian theory, see Silvey (1972), Sibson (1972),
Silvey and Titterington (1973), Pukelsheim and Titterington (1983). The nonlinear
theory suffers from the dependence on the parameters, which should be estimated!

Recall (2.6.3), the average information matrix. Thus any function of M h; nð Þ
has to be based on the knowledge of the parameters that need to be estimated. This
h-dependence also occurs when, the underlying model is a linear regression
models and interest lies in a nonlinear function (also known as a nonlinear aspect)
of its parameters. An example is the curvature of the second degree linear model,
Ford and Silvey (1980), while Fornius (2008) worked on optimality concerning the
quadratic logistic.
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Chapter 4
Static Design

Abstract This chapter defines the Static design and various approaches are dis-
cussed. A number of applications from Chemical Kinetics are provided.

4.1 Introduction

In the linear case, with a typical example the p-term polynomial regression, the
D-optimal design has a tendency to use as optimal design points, the ‘‘end’’ points
of the design space, among others, when p C 2. Under some considerations,
(Fedorov 1972. Th. 2.2.3) the design points for D-optimality can be defined as roots
of a particular polynomial (Legendre, Jacobi, Laguerre, Hermite). Particular
examples, under the regression framework, have been demonstrated in Atkinson
and Donev (1992). The design at the p-term polynomial regression allocates
measure 1/p at these points. This result helps us to consider that there is a hyper-
geometric function that passes through the optimal design points, Kitsos (2011).

The situation is different in nonlinear problems. The design points can only be
defined under the ‘‘true’’ value of the unknown parameter h. Therefore a ‘‘guess’’
about h has to be supplied. The aim is then to gain knowledge about h with an

efficient estimate, ĥ, say, so that the covariance matrix Ĉov ¼ CovðĥÞ will be
approximated by n�1M�1 ht; nð Þ with ht the true value, see Franceshini and
Macchietto (2008) for an applied point of view. This h-dependence requires the
development of two alternative procedures for the construction of experimental
designs in practice:

• Procedure 1 Choose the optimal design points. Conduct the experiment once at
these points. This procedure shall be referred as static design.

• Procedure 2 Choose the possible optimal initial design points, based on a guess
of the parameter. Conduct the experiment at these points and estimate the
parameters. Re-assess the optimal design points, using the estimates of the
parameters obtained at the pervious stage. Conduct the experiment at these new

C. P. Kitsos, Optimal Experimental Design for Non-Linear Models,
SpringerBriefs in Statistics, DOI: 10.1007/978-3-642-45287-1_4,
� The Author(s) 2013
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points and get new estimates. Continue the procedure until a predefined stopping
rule is satisfied. This procedure shall be referred as sequential design.

In this chapter the static designs will be tackled. Sequential designs will be
discussed in Chap. 5.

4.2 Locally Optimal Approach

In practice the true h is unknown. Thus a guess for h might be submitted either
from previous experimental work or from theoretical considerations. The local
optimal design criteria discussed in Chap. 3, provide a line of thought on how this

guess, instead of the true h, is applied: to evaluate the estimator ĥ on the basis of
this experiment. Therefore static designs can be obtained by using a guess for h, in
the initial design. In Sect. 4.7 the optimal design points for a number of nonlinear
regression models from chemical kinetics, are summarized, see Kitsos (1986,
1995). The locally optimum settings of the covariates are also given. Based on
these guesses for the parameter, the appropriate optimal design points have been
evaluated in a number of papers in the literature, as there is not a global framework
for the entire non-linear model, as in linear case.

4.3 Lauter’s Approach

An attempt to avoid h-dependence has been discussed through S-optimality,
‘‘averaging’’ over all possible values of the parameter, Lauter (1974).

Definition 4.2.1 The design measure n* is called S-optimal iff

Sðn�Þ ¼ max SðnÞ; n 2 N where SðnÞ ¼
Z

ln Mðh; nÞj jmðdhÞ ð4:3:1Þ

and v is a given measure defined on some r-algebra of Rp. h

For the introduced S-optimality she proved the following equivalence theorem:

Theorem 4.3.1 Let d1ðh; n; uÞ ¼ ðrfÞT M�1ðh; nÞ ðrfÞ;N0 ¼ n :
R

d1ðh; n; uÞ
ffi

mðdhÞh1g
Then for N0 6¼ [ and SðnÞj jha for every n 2 No the following three conditions

are equivalent:

1. n 2 N0 is S-optimal.
2. n � minimizes max

R
d1ðh; n; uÞmðdhÞ; u 2 U

ffi �
¼ C

3. C ¼ p
R

mðdhÞ: h

32 4 Static Design

http://dx.doi.org/10.1007/978-3-642-45287-1_5
http://dx.doi.org/10.1007/978-3-642-45287-1_3


To avoid h-dependence, a prior distribution can be assumed for h and then proceed
using an average information matrix, independent of h, of the form MðnÞ ¼
Eh½Mðh; nÞffi: Moreover, for any weighting function w(.) on the parameter space H,
which may or may not be a formal prior density. Indeed one can use the fact that

MðnÞ ¼
Z

Mðh; nÞwðdhÞ ð4:3:2Þ

and construct a new criterion, with u as in (3.3.1)

UwðnÞ ¼
Z

u Mðh; nÞ½ ffiwðdhÞ ð4:3:3Þ

Another approach based on discrimination was proposed by Stone and Morris
(1985).

4.4 Stone and Morris Approach

Stone and Morris (1985) proposed two alternative criteria for the static design
problem. One of these criteria is based on the log-likelihood and the other one on
the sum of squares. Both require extra knowledge of two values h0; h00 of the
parameter of interest h. They also include the possibility of a nuisance parameter d.
The first criterion function, which must be maximized, is

CL ¼ E LRj h0; dð Þ � E LRj h00; d
� �

; with LR ¼ 1og p yj h0; d0ð Þ = p yjh00; d00ð Þ½ ffi
ð4:4:1Þ

were LR is the logarithm of the likelihood ratio for h0 and h00, with d evaluated at d0

and d00, the conditional maximum likelihood estimates for d. The ‘‘design for
discrimination’’ character of this criterion is obvious. Moreover the assumption of
a common d in (4.4.1), which must be pre-specified, must reduce the practical
utility of this criterion. Their second criterion also requires pre-specification of two
h0s, h0, h00. This criterion is

CS ¼ inf
X

ni h0; d0ð Þ � ni h00; d00ð Þ½ ffi2d0; d00 2
n o

ð4:4:2Þ

where ni (h, d) denotes the expectation of the i-th observation and A is a pre-
specified set. For this criterion, if there is no nuisance parameter, the result may be
a singular design from which h will be inestimable. Note that the specification of
the set A may present practical difficulties as well.

The fact that both CL and CS are based on two specified values for h, which the
experimenter eventually aim to estimate, makes these discrimination criteria rather
weak, as far a inference is concerned. Both the above criteria accepted a criticism
by Ford et al. (1989).
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4.5 Maxi–Min Criterion

Another alternative method of avoiding the h-dependence problem is the maxi-min
design approach. That is the solution of

max min hU M h; n½ ffið Þ½ ffi ; n2N; h 2H ð4:5:1Þ

is required, where by hU(.) is a function h of the criterion U. The maxi-min design
from (4.5.1) will provide that design, whose minimum value of hU(.), is greater
than that of any other. Even if the locally optimum criterion U is invariant under
transformations of the parameter space, it is not necessary that the maximin cri-
terion can be invariant. The locally optimal values of U, the criterion function,
may vary considerably with h, indicating that some of the h values may dominate
the construction of the good design. A function hU, which is of great use, in this
respect, is the efficiency measure defined as

hU M h; n½ ffið Þ :¼ Eff h; nð Þ ¼ U M h; nð Þ½ ffiDU M h; n�ð Þ½ ffi ð4:5:2Þ

with D ¼ = or� andn� ¼ n � ðhÞ the locally optimum design for h. h

Example 14 The maxi-min efficiency criterion for the calibration problem.
Consider the simple regression model with

n ¼ E yjuð Þ ¼ h0 þ h1u1 u1 2 U ¼ �1 ; 1½ ffi

where U is the design space. The target is to estimate the value of u1 = u0 given
n = H constant value i.e.

u0 ¼ H � h0ð Þ=h1

For the one-stage design the use of the criterion function U, (recall Sect. 3.3) either
as D-optimality for (h0, h1) or c-optimality for estimating u0. The D-optimal design
is of interest because it will investigate the effectiveness of the D-optimal design as
measured by the c-optimality criterion. For the calibration design problem the
maxi-min efficiency design turns out to be the D-optimal design, Kitsos (1986). h

4.6 Constant Information Designs

A constant information design is the one where the information of the associated
with a nonlinear design, M(h, n), is at least approximately independent of h.

Fisher (1922) came across this property in the dilution series experiment, which
will be discussed extensively, see Sect. 7.2. Abdelbasit and Plackett (1981, 1983)
discuss and extend Fisher’s work, and they propose constant information designs
because ‘‘the asymptotic dispersion matrix of the estimators is then the same,
whatever the values of the parameters’’. There is no doubt that this is an interesting
property, although is mainly applied in Quality Control problems. One can keep
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his conservations, that this might be considered as the only goal for a design of
experiment, see Ford et al. (1989). Typical alternative approach is the Sequential
Design, were the variance varies.

A design with a constant information structure does not remain invariant under
nonlinear transformations. Moreover under the maxi-min criteria, a number of
designs which are at least as good as equal information designs can be obtained.

Most of these methods have not been applied to any real application. Their
statistical background is not that widely applied, as the appropriate software has
not been developed yet. The appropriate alternative to the static designs is the
sequential way of designing, which is extensively discussed in the next chapter.

4.7 Applications from Chemical Kinetics

In this section some of the nonlinear models from the Chemical Kinetics are
presented. The underlying mathematical model, the appropriate initial conditions
for those parameters that influence the design points (recall Sect. 3.8) and the
optimal design points for the input variables, were the experimenter needs to know
in prior, in order to conduct the experiment are provided.

Example 15 The Mitscherlish equation of diminishing returns:

g ¼ h1 þ h2 exp h3uð Þ;U ¼ j; k½ ffi � R;H � R�xRþ

where
g is the expected amount of growth
h1 Hypothetical growth from an infinite amount of fertilizer
h1 ? h2 Rate at which additional increment of fertilizer decreases
u Amount of added fertilizer

Initial conditions for: only for the nonlinear parameters i.e. h0 = (h1, h2, h03)

D-Optimal design points are: j;� 1
h03
þ jeh03 � keh03k

expðh03jÞ � expðh03kÞ
; k: h

Example 16 The growth (or decay) law:

g ¼ h1 exp h2uð Þ;with ðh2i0Þ or h2h0ð Þ;U ¼ j; k½ ffi � R;H � RþxR

where
g is the amount of substance growth (or decay)

Initial conditions for: only for the nonlinear parameter h0 = (h1, h02)
D-Optimal design points are:

(1) For h02 [ 0 are: k� 1
h02
; k

(2) For h02 \ 0 are: j; j� 1
h02

. h
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Example 17 Irreversible reaction B ? C:

g ¼ exp �h1t1 exp �h2 1=T � 1=TOð Þ½ ffif g;
u ¼ t1; Tð Þ 2 U � RþxD; D ¼ 380; 450½ ffi: H � R2

where
g [B]
h1 the rate at specific temperature T0

h2 E/R being the proportion of the activation energy

Initial conditions for: T0 = 400, and h0 = (1.0, 16,000)
D-Optimal design points are: Notice that there are two input variables: t and T,
i.e. (t, T), and the optimal design points are
(0.419, 420), (8.209, 380). h

Example 18 Chemical reaction of the form A ? B ? C:

g ¼ h1= h1 � h2ð Þ½ ffi exp �h2tð Þ � exp �h1tð Þf g; u ¼ t 2 U ¼ Rþ: H � R2

where
g the amount of B present after time t, expressed as a function of the total

material present when initially (t = 0) only material A is present (n = [B])
h1 Rate constant A ? B,
h2 Rate constant B ? C

Initial conditions for: h0 = (0.7, 0.2). Then the D-Optimal design points are:

(1) For a D-optimal design for estimating both parameters design conduct the
experiment at 6.858 and at 1.229.

(2) For a D1-optimal design for estimating the parameter h1 conduct the experi-
ment at 1.17 and at 7.74.

(3) For a D1-optimal design for estimating the parameter h2 conduct the experi-
ment at 3.52 and at 5.64. h

Example 19 Chemical reaction of the form R ? P1 ? P

g ¼ h1h3P1ð Þ= 1þ h1P1 þ h2P2ð Þ; u ¼ P1; P2ð Þ 2 DxD:; D ¼ 0; 3½ ffi;
and H � R3

(The catalytic dehydration of Hexyl Alcohol Reaction).
where

g Speed of chemical reaction
P1 Partial pressure of product P1,
P2 Partial pressure of product P
h1 The absorption equilibrium constant for the reactant R
h2 The absorption equilibrium for the product P1
h3 The effective reaction rate constant
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Initial conditions for the parameters: h0 = (2.9, 12.2, 0.69)
The D-Optimal design points are the following:

(1) To estimate the vector h, then perform the design at the pairs of points with
values: (0.2, 0.0), (3.0, 0.0), (3.0, 1.0)

(2) To estimate two components of the vector h, let us say (h1, h2) when
h3 = 0.69 then perform the design at the pairs of points with values: (0.345,
0.0), (3.0, 0.795). h

Example 20 BET (Brunauer-Ermet-Teller) equation:

g ¼ h2h1P1ð Þ= 1� P1ð Þ 1þ h2 � 1ð ÞP1ð Þ½ ffi; u ¼ P1 2 D � R:D ¼ 0:05; 030½ ffi;H
� R2

where
g is the volume of gas absorbed on the solid P1
P1 P/P0 relative pressure
h1 the monolayer capacity,
h2 constant characteristic of the gas–solid

When initial conditions are provided, only for the parameter h2 = 2 then:
The D-Optimal design points are:
at 0.13 and at 0.30. h

There are certainly more models from chemical kinetics, see Kitsos and
Kolovos (2013), Munson-McGee et al. (2011) among others, but these examples
clarify how the experimentalist can gain time and money when the optimal design
theory is adopted. Kitsos and Kolovos (2013) provided an extensive analysis on
the chemical structure of a compilation of models, as well as the appropriate D-
optimal design for the chemical kinetic model under consideration. It is clear there
that most of the chemical kinetic models are with one or two variables and very
rare experimenter faces the problem of more than four variables.

In the following chapter the sequential approach of design is introduced.
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Chapter 5
Sequential Designs

Abstract The Sequential Principle of design is adopted as the point estimation
method and the theoretical insight is discussed, in a compact way. The Stochastic
Approximation iterative scheme is discussed as a particular case.

5.1 Introduction

The objective is to construct a design that eventually estimates, the unknown
parameter vector h, adequately. Adopting the sequential procedure an initial design
has to be chosen using prior knowledge of h to get an estimate of the parameters.
This estimate is useful as an initial guess to redesign, re-estimate and so on.
Important questions are:

• How is the initial design chosen?
• What measures of optimality are used?
• How is the design revised or continued?
• How inference will be assessed?

This Chapter attempts to answer these questions. One can proceed by either
designing in batches of observations or adding a single observation at a time into
the design: this is known as fully sequential design. This definition can be revised
by adding not a single observation per stage, but a number of observations equal
with the involved number of parameters, see Kitsos (1989). In such a case it can be
proved that if the initial design is D-optimal, then the limiting design is also a D-
optimal one.

C. P. Kitsos, Optimal Experimental Design for Non-Linear Models,
SpringerBriefs in Statistics, DOI: 10.1007/978-3-642-45287-1_5,
� The Author(s) 2013
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5.2 Background

Let us assume that the initial design has been constructed and an estimate ĥ has
been obtained. When a new design point is added (in terms of a batch of obser-
vations or a single observation) a new Fisher information matrix is obtained and a
new estimator is evaluated—either a LSE or a MLE. Thus a sequence of least

squares estimates ĥn is obtained. The establishment of a strong consistency for the
sequence of estimators (that might be vectors), provided that the parameter space

is compact, i.e. ĥn�!
as

h, as n!1 is an essential request.

The sequence of average information matrices obtained in this way is also a
strongly consistent sequence i.e. as n!1 relations (5.2.1) and (5.2.2) hold as
below

M ĥn; n
ffi �

�!as
M h; nð Þ ð5:2:1Þ

ffiffiffi
n
p
ðĥn � h�!L N 0; r2M�1ðh; nÞ

� �
ð5:2:2Þ

where L means convergence in distribution, to a multivariate normal distribution
as in (5.2.2), see for details Wu (1981). For the various definitions for the statistical
convergence of a sequence see Schervish (1995) among others.

It is suggested that the initial design should be built up at the optimum points of
the corresponding locally optimal design, on the basis of an initial guess for h. The
question is ‘‘how the next design point is chosen?’’ The answer is: choose as the
next design point the one that minimizes the estimator’s generalized variance. That
is a D(h)-optimality criterion is used for choosing the next design point. This
defines the following algorithm:

1. Define initial values h0 for the parameter vector h and perform the experiment.

2. From the initial design obtain an estimate, ĥ1 of h. Then
3. Choose as the next design point un+1, n = 1, 2… the one which minimizes

dðĥn � nn � unþ1Þ ¼ n�1 rf ĥn; unþ1

ffi �h iT

M�1 ĥn; nn

ffi �
rf ĥn; unþ1

ffi �h i

4. Perform the experiment at un+1 and get ĥnþ1

5. Repeat Steps 3 and 4 the required number of times.

Under very strong assumptions it can be proved that, as n!1.

det Mðh; nnÞ�!
a�s

det Mðh; nffiÞ ð5:2:3Þ
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where n* is the optimal measure. This limiting result holds for the particular case of
D(h)-optimality, when the initial design is D-optimal the limiting is also, providing
the stochastic approximation approach has been adopted, see Kitsos (1989) for
details, and Sect. 5.5. The study of the involved sequences, in a sequential design, is
a difficult task, as there are involved at the same time the sequence of parameters,
design points and design measures; see Chaudhuri and Mykland (1995).

5.3 Extensions

Establishment of the convergence of the sequence Mðĥn; nnÞ to M(h, n*) under
some criterion function exhibits many technical difficulties. One main virtue of the
linear theory is the dichotomous convergence theorem of Wu and Wynn (1978) for
any criterion function and for the sequence of information matrices M(nn)—notice
that there is no parameter dependence in linear case.

The idea of the directional derivative is essential in the optimal design theory. It
is introduced briefly below:

Let g be a function from Rn to �1;1ð Þ and let x ¼ x1; x2; . . .; xnð Þ. Then the
(Gateaux) directional derivative is defined at x in the direction of y to be:

G x; yð Þ ¼ lim
q!0þ

q�1 g x� qyð Þ � g xð Þf g

If g is differentiable then it can be proved that: G x; yð Þ ¼
P

yi og xð Þ=oxið Þ
The Frechet direction derivative is defined as: F x; yð Þ ¼ G x; y� xð Þ
Moreover, for a concave function g and x a point where g is finite then G(x,

y) exists for all y; this is valid whether or not g is differentiable at x.
Notice that the entries x, y might be matrices, as it happens in the optimality

theory. In the design contest, with the criterion / the directional derivative U is
corresponded to the above mentioned notation, whereas g ¼ /; G ¼ / and x, y can
be matrices. Notice that the entries x, y can be matrices, such as the average per
observation information matrix M. h

Based on the above discussion, Titterington (1980a), for any criterion function
u and its corresponding directional derivative U, it is suggested to choose as the
next design point un+1, that one which minimizes the quantity

dðĥn � nn � unþ1Þ ¼ U½Mðĥn; nnÞ; I(ĥn; unþ1Þ� ð5:3:1Þ

There are two difficult features concerning the sequential design.

• Firstly, as any design point comes into the design on the basis of a previous
estimate of the parameter, the design points are not statistically independent.
Thus the ‘‘information’’ matrix, as defined earlier, is not Fisher’s information
matrix, in the sense, that it does not necessarily provide an approximate
covariance matrix.
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• Secondly, at the s-th stage, say, the estimator hS has to be evaluated. This can be
done through the Newton–Raphson method, which might diverge if a poor
initial guess was considered.

These two problems are related to inference about h and will be faced in
practice in Chap. 7. Thus a number of simulations are performed, explaining the
existent theoretical problems. Moreover Ford et al. (1985) discussed the proce-
dures for obtaining valid inferences when the sequential nature of design is
adopted. Simply the results suggested are: work sequentially for the design and
perform the calculations for the average per observation information matrix as if it
is not a sequential design.

As far as the second point concerns, the Newton–Raphson iteration scheme is
the numerical method which supplies the estimate at stage s, say, through the
iteration

ĥS;kþ1 ¼ ĥS;k � S�1qs k ¼ 1; 2. . . ð5:3:2Þ

where ĥS;k is an estimate of the k-th iteration at the s-stage and S is the appro-
priately-evaluated Hessian of the log-likelihood, which has to present a non-zero
determinant, and qS the vector of first partial derivatives, recall Example 6. For a
more thorough discussion on the Newton–Raphson method in nonlinear problem
see any book on Numerical Analysis. A statistical version of the Newton–Raphson
method, known as Stochastic Approximation method (or the Robbins–Monro
scheme) will be discussed in Sect. 5.5.

The sequential idea of designing has also been faced from a Bayesian point of
view, Hu (1998). The criterion for parameter estimation is to choose that value hm

of h, for which the posterior density is a maximum. Moreover, in principle for
large sample situations the posterior distribution for h; p h ynj ; unð Þ, given a prior
distribution should be approximately normal with

p h ynj ; unð Þ ffi N hm; Bþ S hm; nn; ynð Þ�1
ffi �ffi �

ð5:3:3Þ

where the matrix B reflects the prior information, see Ford et al. (1989), for a
compact review. Relation (5.3.2) is essential in practice: the method converges
when the initial value is in the neighborhood of the limiting value. Otherwise it
diverges, and this creates problems. The solution is usually to apply a truncation of
the design space, and the iteration to try to ‘‘bring the estimators within the
truncated space’’, see also Chap. 7. Moreover it is recommended that with 2–3
iterations adopting the Bisection method, a ‘‘suitable initial guess’’, can be
obtained see Simulation studies I and II in Chap. 7.
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5.4 Binary Response Problems

Experiments with dichotomous outcomes can be faced in a variety of practical
situations. In these cases the ‘‘response’’ and the ‘‘non-response’’ outcome can be
presented in different ways. The existence of the parameters is essential, and must
be taken into consideration Sillvapule’s Theorem, see Appendix 2. Some practical
situations concerning the binary response problem are as follows:

• In testing explosives: Usually a weight is dropped on the explosive mixture from
a certain height. The dichotomous variable takes value ‘‘explode’’ or ‘‘not
explode’’.

• In entomological assays: A critical dose level can be associated with the insect
of interest. The response is ‘‘killed’’ or ‘‘not killed’’.

• In fatigue experiments: The strength of a certain material is tested. This response
is ‘‘strong’’ or ‘‘not strong’’.

• In educational studies: The tutor might have questions of the form: ‘‘right’’ or
‘‘wrong’’.

• In life testing: Experiment on the life cycle of a photographic film or safety
equipment such as fire extinguishers.

• In Toxicological studies: Experiments are performed as far as Cancer studies
concern on the binary response: ‘‘tumor’’, or ‘‘not tumor’’.

In this family of problems the main interest is usually devoted to the estimation
of a percentile Lp of the response curve. Usually this percentile is the median L0.5,
while in Cancer problems the ‘‘low dose extrapolation problem’’, can be consid-
ered as a percentile problem, see Kitsos (1999). The commonly used sequential
methods are the following:

– Spearman–Karber’s method
– Up-and-Down method (UD)
– Stochastic Approximation (SA).

The Spearman–Karber estimator was used in the early 1940s. Therefore it is not
described here. The Up-and-Down sequential scheme, mainly used in industrial
problems, can be described by the model:

unþ1 ¼
un � d if Yn ¼ 1
un þ d if Yn ¼ 0

�
ð5:4:1Þ

It was first applied on testing explosives, but it can be used to dose response
problems. The choice of the ‘‘step size’’ d is a problem. One suggestion is that it
should be a rough estimate of r, while the method has been discussed as an
example of a Markov process: from the definition of the method each run depends
only on the current situation. Eventually it was proved that the method is a Sto-
chastic Approximation method, see Sect. 5.6.
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As far as applications are concerned in binary response problems Wu (1985)
suggested a local approximation, to any unknown response, by the logistic, when
the quartile LP with p 2 ½0:1; 0:9� is to be estimated and he obtained fully efficient
estimates using the Stochastic Approximation scheme, which will be discussed in
Sect. 5.5.

5.5 Stochastic Approximation

Let us consider the problem of finding the root of the equation Q(x) = q, with Q(.)
a known function and q a given real number. This problem is based on non random
variables, and therefore it is non-stochastic. That is a ‘‘non-stochastic approxi-
mation’’ is assumed when solving Q(x) = q as above. But there are real life cases,
originated to Pharmacology, see the early work of Guttman and Guttman (1959),
were random variables are involved where Q(x) = q. Notice that if Q(,) is a
cumulative distribution function and 0 \ q \ 1, then the solution corresponds to
the percentile point and thus a Stochastic Approximation is considered.

The Stochastic Approximation (SA) method can be applied to an experiment
that is fully sequential, i.e. when knowledge about h is built by adding one
experimental unit at each stage of the experiment. Roughly speaking this is a
stochastic version of the Newton–Raphson (NR) iteration introduced by Robbins
and Monro (1951) in their pioneer work on SA. The method is an elegant one, as
far as the theoretical development is concerned. Avoiding the technicalities, and
the strong mathematical background needed for the full development of the
method, the practical aspects and essential applications of the method are dis-
cussed in Chap. 7.

A brief review of the theoretical insight of the method is presented next, again
avoiding most of the technicalities.

The SA method tries to evaluate the root, say h, of the following equation,

E Y uð Þf g :¼ T uð Þ ¼ p p 2 R: ð5:5:1Þ

where h is unique and the function T, as well as p are provided. Recall Sect. 2.3 for
the notation, and E mean Expected value, as usually. Notice the same notation h
for the root of the Eq. (5.5.1), as it is the involved parameter to be estimated. The
essential conditions needed are:

(C1) inf T uð Þ��pj j � d[ 0
(C2) T(u) non-decreasing and T0(h) = b [ 0.

Then it can be proved that a sequence an, n = 1, 2,… of real numbers exists with

an [ 0;
X

an ¼ 1;
X

a2
nh1 ð5:5:2aÞ
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in such a way that the sequence of stimuli (for the n-th observation un going with
the n-th response yn) the next observation will be at

unþ1 ¼ un�an yn � pð Þ n ¼ 2; 3; . . .; u1 arbitraire ð5:5:2bÞ

and converges to h in mean square, i.e. as n!1

lim Eðun � hÞ2 ¼ 0: ð5:5:3Þ

Recall that (C2) is actually Assumption 4 mentioned in Sect. 2.3. The physical
meaning of the sequence an can be thought as the ‘‘weight’’ associated with trial n.
A typical an might be an = n-1 or more generally any sequence satisfying the
relation

c0=n� an� c00=n: c0; c00 constants

Considering a more general form from the sequence

an ¼ c= nbð Þ; b ¼ T0ðhÞ ¼ T0 uð Þju¼h ð5:5:4Þ

and assuming that

Að Þ Yi ¼ aþ bðui�hÞ þ ei; b ¼ T0ðhÞ ð5:5:5Þ

with ei under Assumption 1 of Sect. 2.3, then it can be proved that, as n!1,

lim Eðun � hÞ2 ¼ 0; lim Varðun � hÞ ¼ r2c2= nb2 2c� 1ð Þ
� 	

; with c [ 0:5

ð5:5:6Þ

In Statistics, in principle, when sequences are examined, their ‘‘normality in
limit’’ is a very desirable property. Indeed under a number of assumptions the
sequence described turns in limit to a Normal distribution. Namely: with any an of
the form an = n-(1-e), e\ 1/2, and one more (!) assumption

Bð Þ E Y uð Þ � T uð Þf g2¼ r2 [ 0; for every u:

it can be proved that, as n!1

nð1�eÞ=2ðun � hÞ�!L Nð0; r2=2bÞ: ð5:5:7Þ

Moreover for the ‘‘simple’’ sequence, with C being a constant,

an ¼ C=n; n ¼ 1; 2. . . ð5:5:8aÞ

with C [ 1/2 K where K B inf[(T(u)-p)/(u-h)], then, as n!1,

ffiffiffi
n
p
ðun � hÞ�!L Nð0; r2C2=ð2bC � 1ÞÞ; bC [ 1=2; ð5:5:8bÞ
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From (5.5.8b) it is obvious that the asymptotic variance is minimized with an
optimal choice of C, Copt say, when

Copt ¼ b�1 ¼ ½T0ðhÞ��1 ð5:5:8cÞ

Recall that p is given but the c.d.f T will usually not be known, which happens
in real life problems. So the common problem of nonlinear situations is faced.
Without the knowledge of some quantities (here T, h) the optimal procedure (here
Copt and consequently un+1) can not be obtained. Thus the problem of creating the
sequence (5.5.5) contains the intrinsic problem of creating an approximation
for Copt.

Approximations need iterations, iterations are sequences, so a ‘‘daughter’’
sequence of un is needed, bn say, which might converge, hopefully, to b. Simul-
taneously the ‘‘parent’’ sequence, will converge to h. The main virtue of SA is that
SA is a kind of regression of Y on u, and at the same time, Copt is a kind of slope
for the unknown T(h). Thus at stage n ? l one can have as ‘‘C’’ the slope coef-
ficient of the regression line formed from the data ui and Y(ui) i = 1, 2,… namely

C ffi b̂n ¼
X

ui � �unð ÞYi=
X

ui � �unð Þ2; n� 2; �un ¼ n�1
X

ui ð5:5:9Þ

Under a number of strict assumptions, described in Kitsos (1986), a number of
limiting results have been proved, the main one due to Lai and Robbins (1981) as
n!1

ðiÞ
ffiffiffi
n
p
ðun � hÞ�!L Nð0; r2=b2Þ iið Þlim un ¼ h ð5:5:10Þ

Moreover it holds that

lim f
X
ðui � hÞ2=log ng ¼ r2=b2: ð5:5:11Þ

The quantity R(ui - h)2 has been named the cost of the experiment. h

Example 21 Let ln(h) be the log-likelihood of the n observations for a model with
c.d.f p(yi|ui, h). Then for the n ? 1 observation the log-likelihood will be ln+1 and
equals

lnþ1ðhÞ ¼
X

logpðyijui; hÞ ¼ lnðhÞ þ pðynþ1junþ1; hÞ: ð5:5:12Þ

Let ĥn, ĥnþ1 be the MLE obtained from ln+1(h) and ln(h) respectively. Taking
the derivatives of the two sides of (5.5.12) one can see that

olnþ1ðhÞ
oh

¼ olnðhÞ
oh
þ o log pðynþ1junþ1; hÞ

oh

From the definition of MLE
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0 ¼ o lnðhÞ
oh ĥnþ1




 þ olog pðynþ1junþ1; hÞ
oh ĥnþ1






¼ olnþ1ðĥn þ ĥnþ1 � ĥnÞ
oh

þ SCðynþ1junþ1; ĥnþ1Þ

ffi 0þ ðĥnþ1 � ĥnÞ
o2 lnðĥnÞ

oh
þ SCðynþ1junþ1; ĥnÞ

ð5:5:13Þ

based on a first order Taylor expansion about hn, where by SC(.|.) the score
function for a single observation is denoted. From (5.5.13) the following appro-
priate recursion is obtained

ĥnþ1 ¼ ĥn �
1

o2 lnðĥnÞ=oh
SCðynþ1junþ1; ĥnÞ

Approximating the Hessian of the above relation by Fisher’s information

ĥnþ1 ¼ ĥn þ I�1ðĥnÞ SCðynþ1junþ1; ĥnÞ n ¼ 0; l; 2. . . ð5:5:14Þ

Iterative scheme (5.5.14) is a typical one: the new estimate is based on the old
one, adjusted by the information ‘‘in hands already’’. h

Example 22 Consider the nonlinear regression model y = exp(-hu) ? e.
Construct a SA scheme converging to the root of the equation ol=oh ¼ 0, i.e. to

the MLE of the parameter h. For the error term e it is assumed that follows
Assumption 2. The notation of Example 13 is used. Namely:

lnðhÞ ¼ const:�ð1=ð2r2ÞÞRðyi � expð�huiÞÞ2; o ln=oh

¼ �r�2Ruiexpð�huiÞ ðyi � expð�huiÞÞ

o2 ln
�
oh

2 ¼ �r�2R½ð�u2
i expð�huiÞÞ ðyi � expð�huiÞÞ þ u2

i expð�2huiÞ� and
therefore Fisher’s information is evaluated as

IðhÞ ¼ r�2Ru2
i expð�2huiÞ

Applying the recursion formula (5.5.14) it is

ĥnþ1 ¼ ĥn � I�1ðĥnÞ½unþ1expð�ĥnunþ1Þ ðynþ1 � expð�ĥnunþ1ÞÞ� ð5:5:15Þ

The information u2
i exp(-2hui) is asked to be minimized in each stage, as an

optimum design rule. Therefore taking the logarithm of the information and
evaluating the root of the derivative, it can be shown that, the optimum design rule
occurs when

Uiþ1 ¼ 1=ĥi i ¼ 0; l. . . ð5:5:16Þ

Substituting (5.5.16) in (5.5.15)
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ĥnþ1 ¼ ĥn � ½ð1=ĥnÞ e�1 yiþ1 � e�1
� �

�=
Xnþ1

ð1=ĥ2
i�1Þ expð�2ĥn=ĥi�1Þ� ð5:5:17Þ

as one point recursion. Assuming that in a long run ðĥn=ĥi�1 ffi 1Þ; the scheme
(5.5.17) is approximated by

ĥnþ1 ¼ ĥn � ð1=ĥnÞe ynþ1 � e�1
� �h i

=
Xnþ1

ð1=ĥ2
i�1Þ

" #
ð5:5:18Þ

In the long run the summation
Pnþ1
ð1=ĥ2

i�1Þ will be approximately equal to

(n ? 1) ĥ�2
n : Therefore, relation (5.5.18) can be approximated by

ĥnþ1 ¼ ĥn � ½ĥne= nþ 1ð Þ� ynþ1�e�1
� �

: ð5:5:19Þ

Scheme (5.5.19) is a stochastic approximation scheme in which the sequence
an is

an ¼ ĥne=ðnþ 1Þ

Moreover, assuming that the sequence of estimates lies in between a lower
bound, H1 and an upper bound Hu then it holds

Ran�H1e
X

1= nþ 1ð Þ and Ran�H2
ue2
X

1= nþ 1ð Þ2

Thus for the truncated sequence in which ĥnþ1 is defined by (5.5.19) unless the

right-hand side is less than H1 (in which case one has to define ĥnþ1 ¼ H1) or is

greater than Hu (in which case one has to define ĥnþ1 ¼ Hu).
Thus condition (5.5.2a) holds due to (5.5.15), therefore the SA scheme con-

verges to the root of the equation ol=oh ¼ 0, i.e. to the MLE h. h

Example 23 The Up and Down method is a Stochastic Approximation Scheme.
Indeed:
Recall iteration scheme (5.5.2b). When the ‘‘regression’’ Eq. (5.5.2b) is of the

form T Lp

� �
¼ p; p 2 0; 1ð Þ i.e. the 100p percentile of the response is to be

evaluated and (5.5.2b) is reduced to

Lp nþ1ð Þ ¼ LpðnÞ � an yn � pð Þ

When p = 0.5 then the median, m = L0.5, is to be estimated through

mnþ1 ¼ mn � an yn � 1=2ð Þ
¼ mn � an=2ð Þ 2yn � 1ð Þ
¼ mn � d 2yn � 1ð Þ

ð5:5:20Þ

Considering as an appropriate sequence an = 2d, relation (5.5.20) is equivalent
to (5.4.1). Thus the SA scheme has been reduced to the UD.
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5.6 Application to Cancer Problems

The Low Dose Extrapolation Designs are adopting different probability models,
Olin et al. (1995). One of them is Weibull distribution, also applied in Relative
Risk theory. Early estimates of a Virtually Safe Dose (VSD) were based on the
confidence intervals. The estimation of the confidence interval depends on the
assumed model, from the class of Multistage Models, Wosniok et al. (1999).

The essential differences between the candidate models heavily influence the
extrapolation towards zero. A linear approximation is usually considered,
extrapolating towards to zero, for all the models. Therefore it is very difficult to
choose the right model, as all of them, provide similar values in the neighborhood
of zero dose level.

Let X be the individual tolerance dose considered as a random variable, then the
function F(x) = P(X B x), with x being the dose level administered is of practical
use, see Example 2. Recall, that the function F(.) can be considered as a cumu-
lative distribution function and is, in principle, not known, but approximated.

The binary response problem ‘‘malignant tumor’’, ‘‘no-malignant tumor’’ can
be formulated as follows:

Yi ¼
1; ‘‘tumor’’ with probability FðxÞ
0; ‘‘no� tumor’’ with probability 1� FðxÞ

�

This scheme is typical to Bioassays. As the function F(x) is not known, it is
assumed that it can be approximated by different models, which might offer dif-
ferent results. The appropriate F(x) can be selected, applying Kolmogorov–
Smirnov test, see Wosniok et al. (1999). In most of the cases a logit model is
assumed, and for a Bayesian probit model see Consonni and Marin (2007).

In Life Testing problems the Weibull Model, from the class of Multistage
Models, is widely used. This is of the form:

F xð Þ ¼ 1�exp �hxsð Þ ð5:6:1Þ

with s being a shape parameter and if:

s [ 1 the model is sub-linear,
s \ 1 is subralinear,
s = 1 the model coincides with the so-called one-hit model, the exponential
distribution.

The one-hit model postulates that cancer is the result of a single cell, while the
Weibull model with the extra shape parameter, has a different hazard function and
it is widely used in a number of life-testing applications.

Suppose that the target is to estimate the Lp, p 2 (0, 1) percentile for the
Weibull model. This is equivalent to solve the equation G(x) = F(x) - p = 0. As
F(x) is the Cumulative distribution function the solution is the desired percentile,
see also Sect. 5.5. In practice only observations of G are given, the values
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yi = G(xi) ? ei are available, with ei being the errors with mean zero and variance
r2. The Stochastic Approximation Scheme, discussed in Sect. 5.5, is therefore
adopted to solve this equation, see for details Kitsos (1999).

Proposition 5.6.1 For the Weibull Model the sequence of the 100p percentiles:

Lp;nþ1 ¼ Lp;n� nhð1� pÞ Ls�1
p

ffi ��1
yn�pð Þ n ¼ 1; 2; . . .

converge (in mean square) to the real p-th percentile point Lp and this design
minimizes the variance, i.e. is a D-optimal design.

This iterative scheme converges, in mean square, to the appropriate percentile,
which in the case of Low Dose Extrapolation should be ‘‘small’’, example
p = 0.01.
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Chapter 6
Approximate Confidence Regions

Abstract The problem of the approximate confidence regions is discussed, under
the light of the introduced measures of nonlinearity. The first order autoregressive
model and Michaelis–Menten are discussed as particular cases.

6.1 Introduction

When an experiment has been performed statistical inference needs: point esti-
mation and the construction of the appropriate, possibly approximate, confidence
(intervals) regions.

In nonlinear problems the linear theory is applied, when constructing the
confidence intervals. Here is a particular case faced: Although the nonlinear case is
broader than the linear one, the nonlinear problem is not worked on to reduce it to
linear, but the effort is to extend results from the linear case to the nonlinear. The
cost one has to pay is the approximation involved and its lack of accuracy. The
accuracy depends on ‘‘how nonlinear’’ the function under consideration is. Thus,
the idea of a measure of nonlinearity was introduced, which is discussed in this
chapter. Moreover, when the design is constructed sequentially, the question lies
on how to evaluate the confidence interval. This is discussed in Sect. 6.5.

6.2 Background

Recall model (2.2.2), i.e. a classical nonlinear regression model, under Assump-
tions 2, 3 and 5. As the function f(.), the deterministic part of model (2.2.3), is
nonlinear, it is of interest to see ‘‘how much nonlinear’’ it is, by a Taylor
expansion.

C. P. Kitsos, Optimal Experimental Design for Non-Linear Models,
SpringerBriefs in Statistics, DOI: 10.1007/978-3-642-45287-1_6,
� The Author(s) 2013

51

http://dx.doi.org/10.1007/978-3-642-45287-1_2
http://dx.doi.org/10.1007/978-3-642-45287-1_2


The tangent hyper-plane to the solution locus (the surface in the sample space
generated by the points gi ¼ fðh; uiÞ, i = 1,2,…,n with e regarded as a variable),

see Seber and Wild (1989), at point fðĥÞ is given by

qðhÞ ¼ fðĥÞ þ X̂
0ðh � ĥÞ ð6:2:1Þ

where fðhÞ ¼ ðfðh; u1Þ; fðh; u2Þ; . . .; fðh; unÞÞT; X̂ ¼ XðĥÞ and X as in (2.6.1). In

principle ht (the true h) is needed, instead of ĥ, but ĥ is used in practice. In his
pioneering paper, Beale (1960) proposed a dimensionless empirical measure of
nonlinearity K�, defined by

K� ¼ ps2ðd2=d4Þ: ð6:2:2Þ

With s2 ¼ SnðĥÞ=ðn� pÞ, the estimated variance, recall (2.4.2), p the number of
parameters involved and

di ¼
X

nðhkÞ � qðhkÞk ki i ¼ 2; 4 ð6:2:3Þ

where fhkg is a set of m points in the neighborhood of h. h

The theoretical measure of nonlinearity according to Beale, K say, is the same
as K* but with r2 in place of s2, so, in principle, it is more realistic. The minimum
value of the theoretical measure of nonlinearity Ko, was named the intrinsic
nonlinearity of the assumed correct model. Although this measure attracted some
criticism, it is the first attempt to evaluate and involve to the approximations the
nonlinearity of the model. The introduced measure Ko is a sort of curvature of the
solution locus.

Bates and Watts (1980), using ideas from differential geometry, proved that Ko

is one quarter of the mean square intrinsic curvature. Moreover they proved that by
replicating the design r times the curvature at any point in any direction is reduced
by a factor 1=

ffiffi
r
p

. Thus, replication obtained its own geometrical interpretation;
however some examples refer rather to non-linear regression, than to the experi-
mental design theory.

6.3 Confidence Regions

Attempting to construct (approximate) confidence regions the target is always to
minimize their volume/area/length (equivalent to various optimality criteria,
mainly to D-optimal design). Hence optimal design might lead to minimum
approximate confidence regions. If relation (6.2.1) is true, i.e. the model is linear,
then a 100(1 - a) % confidence region corresponds to

SnðhÞ � SnðĥÞ ¼ ðh� ĥÞTðXT XÞðh� ĥÞffi ps2Fða; p; n� pÞ ð6:3:1Þ
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with SnðhÞ as in (2.4.1), s2 an estimate of r2; X as in (2.6.1) and F(a; p; n� pÞ as
usual the 100ð1� aÞ% of the F distribution, with p and n - p degrees of freedom.
Note that in nonlinear problems the estimator of r2 is, as in linear case

s2 ¼ SnðĥÞ
ðn� pÞ ð6:3:2Þ

But it is not an unbiased estimator of r2. Recall that the matrix X depends on an
estimate of h, and that (6.3.1) is a p-dimensional ellipsoidal, see Fig. 3.1 for p = 3
and Mðn; hÞ is approximated as in (6.3.1). Thus the approximation is based both on
the linearity and the dependence of X on h, and it defines the confidence ellipsoidal
‘‘locally’’ depending either on the estimate or ‘‘initial guess’’ of the parameter
vector.

The measure of nonlinearity discussed in Sect. 6.2 is employed to adjust the
nonlinear approximated confidence region, introducing an extra parameter as in
the l.h.s of (6.3.3) below

SnðhÞ � SnðĥÞffi k ps2Fða; p; n� pÞ: ð6:3:3Þ

The extra parameter is

k ¼

1; linearization without Beale0s assumption

1þ n
n�1

� �
Ko if p ¼ 1

1þ nðpþ2Þ
ðn�pÞp

h i
Ko if p� 2:

8>>><
>>>:

ð6:3:4Þ

Beale’s measure of nonlinearity involves the curvature of the nonlinear model,

which is less than 1
2 ðFða; p; n� pÞÞ

1
2 (Seber and Wild 1989, p. 135) with F being

the F distribution, with p and n - p degrees of freedom. So the supremum value of
Beale’s measure of nonlinearity, for models with two or more parameters, can be
reduced to

B ¼ 1þ n

n� 2
1ffiffiffiffi
F
p ð6:3:5Þ

Therefore, the approximate confidence region (6.3.3) can be, eventually, see Kitsos
(2001) for detail

ðh� bhÞT Iðbh; nÞðh� bhÞffiBps2Fða; p; n� pÞ: ð6:3:6Þ

When B = 1, a linear approximation is considered. This revised evaluation for the
confidence intervals was applied to the Michaelis–Menten model, for collected
data.

Thus the measure of nonlinearity was developed to adjust an approximation
form due to linearity, when a confidence region is constructed. It is clear now that
this measure attempts to consider ‘‘how much nonlinear’’ is the model, at that
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neighbourhood of the assumed parameter value. In the nonlinear case confidence
regions appear to have a ‘‘banana-shape’’ and they are not ellipsoids.

Hamilton and Watts (1985) argue that elliptical confidence regions (under
DðhÞ-optimality) that are suitable for large samples, are not appropriate for small
samples. Thus they tried to construct a quadratic approximation to the volume of
small sample confidence regions. They proposed a design criterion of the form

H ¼ a � log detfMðh; nÞg � logf1þ b � trQðh; nÞg ð6:3:7Þ

where a, b are constants, Mðh; nÞ is the average information matrix and Qðh; nÞ is a
matrix describing parameter effects. Due to the second term in (6.3.7) the criterion
H is not invariant under transformations of h. Moreover their criterion requires an
estimate of r2 which is not always available. The measure of nonlinearity dis-
cussed in Sect. 6.2 is employed to adjust the nonlinear approximated confidence
region.

In Sect. 6.4, the small sample problem is tackled in constructing confidence
intervals, adopting a sequential design procedure.

6.4 Simulation Study

The features of a fully sequential design appear in the autoregressive model, were
the parameter h is a real number.

yiþ1 ¼ hyi þ eiþ1; i ¼ 1; 2; . . .; n ð6:4:1Þ

The value of y1 is given, the errors eiþ1 satisfy the Assumption 2. Then at the
n-th stage an estimate of h; hn; is given by

ĥnþ1 ¼
X

yiyiþ1=
X

y2
i ð6:4:2Þ

where the summation runs from 1 to n. Notice that the first order autoregressive
model can be applied in Signal Process, Kitsos and Toulias (2012), who discussed
the confidence interval and the tolerance interval approach. Here the confidence
interval problem is discussed. The sample information In=r2 can be evaluated with
In ¼

P
y2

i . As Lai and Siegmund (1983) point out the following asymptotic result
holds for jhj � 1

I1=2
n ðĥn � hÞ�!LNðo;r2Þ ð6:4:3Þ

Ford et al. (1985) discuss this model. In the simulation study performed small
sample sizes of n = 10, 5 observations were used, for confidence level a = 0.05.
As the initial value y1 = 0.0 was considered and the error variance was assumed
r2 = 1. Different values of h were taken from the range �1; 5ffi hffi 1; 5, that is
even beyond the appropriate interval -1, +1) for the parameter h. Confidence
limits were evaluated according to:
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ĥ� tðn� 1; 1� a=2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

RSS=n� 1ð ÞI=ðn� 1Þ½ 	
p

ð6:4:4aÞ

with RSS being the residual sum of squares,

RSS ¼
X

y2
i � ĥ

X
yiþ1yi: ð6:4:4bÞ

To test the normality of the sequence hn the skewness and the kurtosis were
evaluated. From Table 6.1 it is easy to see that as far as the normality is concerned,
through the evaluated skewness and kurtosis, the results are unsatisfactory when
h 62 ð�1; 1Þ.

The mean squared error (MSE) is, of course, larger when the sample size is
reduced from n = 10 to n = 5 observations.

6.5 The Michaelis–Menten Model of Pharmacokinetics

A general theory for enzyme kinetics was firstly developed by Michaelis and
Menten (1913) in their pioneering work. The metabolism of an agent is described
by a reaction rate. The basic toxic kinetic model of metabolism is the Michaelis–
Menten (MM) model. This is discussed very briefly below:

When an enzyme E combines reversibly with a substrate S, to form an enzyme-
substrate complex ES, which can be dissociate or proceed to the product P, the
following scheme is assumed

Table 6.1 Simulation study on autoregressive model (6.4.1). Nominal level a = 0.05. Number
of simulations N = 1,000. Sample size n = 10, 5, y1 = 0.0, r ¼ 1

N h P MSE S K �h

10 -1.5 0.919 0.03 3.88 21.07 -1.44
-1.0 0.947 0.09 1.39 5.47 -0.84
-0.5 0.970 0.09 0.63 3.27 -0.42

0.0 0.967 0.10 -0.06 2.56 0.00
0.5 0.965 0.10 -0.58 3.01 0.41
1.0 0.955 0.09 -1.29 5.45 0.85
1.5 0.928 0.03 -3.96 22.21 1.45

5 -1.5 0.968 0.27 1.13 5.79 -1.29
-1.0 0.969 0.27 0.08 10.00 -0.82
-0.5 0.979 0.25 -0.09 6.05 -0.39

0.0 0.970 0.25 0.22 4.92 0.02
0.5 0.973 0.33 -0.58 4.95 0.79
1.0 0.975 0.61 -0.14 4.98 0.38
1.5 0.957 0.29 -1.23 6.02 1.29

P is the estimated coverage, S is the Average skewness of estimates, K is the Average kurtosis of

estimates and �h is the Average (ĥi), i = 1,2,…,n
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E + S
�!k1

 �
k2

ES�!k3 E + P ð6:5:1Þ

with k1, k2, k3 the associated rate constants. Let us denote KM ¼ k2þk3

k1
, known as

MM constant and Vmax = k3CTOT, CTOT = the total enzyme concentration.
Then a plot of the initial velocity of reaction u, against the concentration of

substrate, CS, will provide the MM rectangular hyperbola of the form

g ¼ VmaxCS

KM þ CS

: ð6:5:2Þ

Notice that the defined general form as in (2.2.2) holds with h = (Vmax, KM),
u = CS. It is very crucial to mention here that Biebler et al. (2008) pointed out
that, when numerical procedures for the solution of the fundamental differential
equation involved are adopted, and different initial triples are given, then one is
coming across of different results for the MM model.

From an optimal experimental design point of view for g as in (6.5.2) the target
is to evaluate, Fisher’s information, recall (2.5.1),

rg ¼ og

max

;
og

oKM

� �T

¼ Cs

KM þ Cs
;� VmaxCs

ðKM þ CsÞ2

 !T

: ð6:5:3Þ

Therefore, the average per observation information matrix, related to Fisher’s
information, recall (2.5.3), can be evaluated as:

r�2nMðh; nÞ ¼
Xn

i¼1

C2
s;i s

2
i �VmaxC2

s;i s
3
i

�VmaxC2
s;i s

3
i V2

maxC2
s;i s

4
i

� �
ð6:5:4Þ

with si = 1/(KM ? Cs,i), h = (Vmax, KM), i = 1,2,…,n .

Asymptotically, the covariance matrix, recall (2.6.5) is C ¼ Cðĥ; nÞ ¼
ðnMðĥ; nÞÞ�1.

For the MM, with CS [ (0, U], the locally D-optimal design at KM = K0

allocates half observations at points U and optCS with

OptCS ¼
K0U

2K0 þ U
;

were U is the maximum allowable substrate concentration. The corresponding
value of the determinant of the D-optimal design is

d ¼ V2
maxU6

16 K2
o ðK0 þ UÞ6

:

This value can be compared with the various values given by Endrenyi and Chan
(1981) under different approaches. If U 
 K0 the locally D-optimal design n is
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n� ¼ U K0

0:5 0:5

� �
;

i.e. Allocate half of the observations at the maximum value of the concentration of
substrate, U and at the initial guess for the MM constant, K0. This design can be
proved very helpful in applications, while for a Bayesian approach and applica-
tions see Matthews and Allcock (2004), and for a number of different design
approaches for MM model see Lopez-Fidalgo and Wong (2002).

In Chap. 7 it is studied, through two simulations, how the optimal experimental
design line of though is applied.
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Chapter 7
Simulation Studies

Abstract The dilution assessment and the first order growth model are Extensively
discussed, through two simulation studies. Various Strategies to tackle the problems
were adopted and compared.

7.1 Introduction

Up to this point, a strong theoretical background of the NLED problem has been
developed. This Chapter as well as the next one, are devoted to applications,
offering food for thought for Toxicology, Biostatistics, Engineering, Environ-
mentrics, Epidemiological studies and not only. This is ‘‘to put theory to work’’ on
particular problems. The difficulties which arise and the results obtained are dis-
cussed. Both the binary (Simulation I) and the continuous (Simulation II) cases are
tackled for one parameter and two parameters respectively. In this sequel the
problems simulated, and extensive interpretation of the results are described. The
discussed simulations are:

• Simulation I: The dilution series assessment (Sects. 7.2–7.6).
• Simulation II: The first order growth law (Sects. 7.7–7.8).

7.2 The Dilution Series Assessment

Experimenters and statisticians should be indebted to Rothamsted Experimental
Station as it has offered a job to the jobless Fisher! Since then, Fisher developed
the theory of experimental design and tackled the first nonlinear design problem in
1922. An example of the non-linear problems is that of the dilution series
assessment, which is described below.

C. P. Kitsos, Optimal Experimental Design for Non-Linear Models,
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It is desired to determine the concentration of micro-organisms in a solution. In
this case various dilutions are sampled. For every dilution whether or not there is
sterility is recorded. Let us use the following notation.

u: a small volume that is taken out of a volume V, of liquid which contains N,
N: the number of tiny organisms, from U ¼ ½U1;Uu�, the design space.
h: The density per unit volume, i.e. h ¼ N=V.
The probability that the volume contains no organisms is

p ¼ 1� u=Vð ÞNffi expð�Nu=VÞ ¼ expð�huÞ

y: The binary response describing the phenomenon defined as

y ¼ 1 : no organism in u sterileð Þ;
y ¼ 0 : organisms in u fertileð Þ:

The probability model describing the experiment is therefore

p y u; hjð Þ ¼ expð�huÞ y ¼ 1
1� expð�huÞ y ¼ 0

ffi
h � 0 ð7:2:1Þ

The aim is to estimate h as appropriate as possible. Model (7.2.1) might
describe also the probability that an insect survives a dose of u units of a certain
insecticide, while in carcinogenesis problems it appears as the ‘‘one hit model’’.
The following results hold:

Claim 1: Fisher’s information I(u; hÞ, for a single observation, for model
(7.2.1) is

Iðh; uÞ ¼ u2=ðexpðhuÞ � 1Þ ð7:2:2Þ

Proof From (7.2.1) the log-likelihood function ‘ ¼ ‘ðy u; ej Þ ¼ log pðy u; hj Þ will be

‘ ¼ ‘ðy u; ej Þ ¼ �hu y ¼ 1
logð1� expð�huÞÞ y ¼ 0

ffi
:

Therefore the second degree partial derivative is

o2‘=oh2 ¼ 0 y ¼ 1
� u2 expð�huÞ½ �= 1� expð�huÞ½ �2 y ¼ 0

ffi
:

Thus Fisher’s information equals to

Iðh; uÞ ¼ Eð�o2‘=oh2Þ ¼ 0pð1 u; hj Þ
þ u2 expð�huÞ
� �

= 1� expð�huÞ½ �2pð0 u; hj Þ
¼ u2 expð�huÞ=ð1� expð�huÞÞ:

Then (7.2.2) is obtained, q.e.d. h
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The target is to maximize Fisher’s information, so that the variance to be
minimum, recall (2.6.5). Thus it is proved that:

Claim 2: The maximum of Iðh; uÞ is obtained when

hu� ¼ 1:59 ð7:2:3aÞ

Proof Indeed from Claim 1 it is:
oIðh; uÞ=ou ¼ 0 i.e. 2 ¼ 2 expð�huÞ þ hu:
The equation hðzÞ ¼ 2 expð�zÞ þ z� 2 ¼ 0, with z ¼ hu can be solved

numerically by the Newton–Raphson iterative scheme. h

The optimum experimental design point then can be evaluated explicatively due
to Claim 2, namely:

Claim 3: The optimum design point, the one which minimizes the variance, i.e.
that which corresponds to DðhÞ—optimality, depends on h, due to (7.2.3a) and
equals to

u� ¼ 1:59=h if 1:59=h 2 U
U1 or Uu otherwise

ffi
: ð7:2:3bÞ

The form of the probability model (recall (2.2.3) with Tðu; hÞ as in (7.2.1)) will
be binomial with success probability p ¼ p(1 u,hj Þand number of successes the
number of sterile samples. In terms of probability, the value u� ¼ 1:59=h corre-
sponds to probability level p = 0.2. Notice that the optimal design point depends
on the parameter the experimenter wants to estimate! It seems reasonable to keep
the probability levels between [0.025, 0.0975], truncating [0, 1]. This truncation
proceeds with the calculations and it evaluates the MLE, recall Silvapulle’s
Theorem, Sect. 2.4 and Appendix 2, as a whole batch of successes or failures will
provide no estimates. Therefore, throughout the simulations the bounds U1, Uu can
be used. Then the end points of the restricted design space U, can be evaluated
from the relations

expð�htUuÞ ¼ 0:025; expð�htU1Þ ¼ :975; ð7:2:4Þ

where ht is the ‘‘true’’ value of h. As such a value ht ¼ 3:18 was chosen. This value
corresponds to u� ¼ 0:5 from (7.2.3a). Thus from (7.2.4) Ul and Uu are evaluated
as

U1 ¼ 0:00796 Uu ¼ 1:160: ð7:2:5aÞ

Note that U1 would represent the optimal design point for h ¼ 199:70 and Uu

for h ¼ 1:370. Therefore the parameter space H ¼ H1;Hu½ � is also restricted, with

H1 ¼ 1:370 Hu ¼ 199:70: ð7:2:5bÞ

Eventually a truncated parameter space is obtained, with no loss of the gen-
erality, corresponding to the truncated design space. This means that when the
estimators are not within the above limits, presented in (7.2.5b), the experimenter
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tries to ‘‘bring the estimators within it’’. This is a useful technique working with
practical problems.

7.3 The Strategy of Simulation I

Adopting the sequential procedure for designing, the next design points are chosen
the ones which minimize Fisher’s information, see also the Algorithm in Sect. 5.2.

Claim 4: In the first stage s = 1, the estimator of h; h1 say, can be explicitly
evaluated from the data as

ĥ1 ¼ �u1 ln r�1
X

yi

� �
: ð7:3:1Þ

Proof
(1) The likelihood function and the first and second order derivatives are

Lðh; u; yÞ ¼ P expð�huiÞyið1� expð�huiÞÞ1�yi

¼ expð�h
X

uiyiÞPð1� expð�huiÞÞ1�yi )

‘ðhÞ ¼ logðLð:ÞÞ ¼ �h
X

uiyiþ
X
ð1� yiÞ lnð1� expð�huiÞÞ )

‘0ðhÞ ¼ �
X

uiyi �
X
ð1� yiÞ ui expð�huiÞ½ �= 1� expð�huiÞ½ �ð�Þ

‘00ðhÞ ¼ �
X
ð1� yiÞ ui expð�huiÞ½ �= 1� expð�huiÞ½ �2:

The MLE is obtained from the equation ‘0ðhÞ ¼ 0. The Newton–Raphson
iteration scheme is applied to obtain the solution of the equation ‘00ðhÞ ¼ 0, namely

hmþ1 ¼ hm � ‘0ðhmÞ=‘00ðhmÞ; h0 given, m ¼ 1; 2. . .:

(2) Evaluation of ĥ1.

For the first batch of observations, ui = u1, i = 1, 2… with the number of
replications to be r, r = 5, 25, 50, from (*) it is obtained that

‘0ðhÞ ¼ �u1

Xr

yi þ u1

Xr

ð1� yiÞ expð�hu1Þ=ð1� expð�hu1ÞÞ ¼ 0

)
Xr

yi ¼ expð�hu1Þ=ð1� expð�hu1ÞÞ½ �
Xr

ð1� yiÞ

)
Xr

yi � expð�hu1Þ
Xr

yi ¼ expð�hu1Þ r�
Xr

yi

 !

) r expð�hu1Þ ¼
Xr

yi ) ð7:3:1Þ: h

62 7 Simulation Studies

http://dx.doi.org/10.1007/978-3-642-45287-1_5


The bounds of h can be used as the estimates of h, in the extreme cases, beyond

the defined parameter space. It can be proved that if all yi’s are 1 then ĥ ¼ 0 and

when all yi’s are 0 then ĥ ¼ 1. Therefore one can avoid situations, especially with
small batches, when the MLE (see above) could not be evaluated. The MLE exists
and was evaluated iteratively when 0 �

P
yi � n: this is equivalent with the

implication that there is not a whole batch of zeros or units. This point is
emphasized, as it is not always considered. The numerical method of Newton–
Raphson (NR) was used to solve, at each stage, the likelihood equation (see Claim

4, part (1) of the proof above) for the evaluation of ĥ.
The Newton–Raphson method converges when the initial value lies in the

neighborhood of the solution. Therefore this difficulty has to be overcome, which
happened often when small batches were used in early stages of the sequential
design. The Bisection method was used with a rather ‘‘large initial interval’’, [0.01,
100.3] so that to obtain a ‘‘good’’ initial value. This initial value ‘‘feeds’’ the
Newton–Raphson method.

The question arisen is: why the Bisection method is not adopted, through out all
the estimation. The answer is that Bisection method leads to mini-max decision
problems, which is a completely different theoretical approach, while Newton–
Raphson is acting as a stochastic approximation, see also Sect. 5.5.

As far as the design points are concerned the procedure can be described by,
recall also (7.2.3b):

usþ1 ¼
1:59=hs if usþ1 2 U

U1 if ĥs � h1

U2 if ĥs � hu

8<
: s ¼ 1; 2; . . .; smax: ð7:3:2Þ

The maximum number of stages, smax, say, depends on the number of repli-
cations r chosen. Simulations were carried out for r = 5, 25, 50, and sample size
n = 100 therefore smax = 20, 4, 2, respectively.

The estimates corresponding to (7.3.2) were obtained through

ĥs ¼

�uo ln 1
n

P
yi

� �
if s ¼ 1

Hu if all y0is ¼ 0; s � 1
Hl if all y0is ¼ 1

ĥ evaluated through
NR if r ¼ 50

Bi sec tion and NR if r ¼ 5; 25

ffi :

8>>>><
>>>>:

ð7:3:3Þ

Therefore the design points and the estimates at each point are well defined
through the introduced truncation and the discussed numerical techniques.

To investigate the dependence of the design procedure on the initial design
points the values h1 ¼ 2:196 and h2 ¼ 7:15 were chosen as the unknown (‘‘far’’
from the ‘‘true value’’ 3.18) starting values. These values of h lead to corre-
sponding design points u = 0.72 and u = 0.22 in (7.3.2) and probability levels
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p = 0.1 and p = 0.5 respectively. Assuming that the ‘‘true’’ value is ht ¼ 3:18,
this corresponds to a local optimum design point u* = 0.5, with probability level

p = 0.2. For the final estimate ĥ, i.e. when n = 100 observations were used, an
approximate confidence interval can be evaluated as

ĥ� 1:96=ð1=Sðĥ; nn; yÞÞ ð7:3:4Þ

where Sðĥ; nn; yÞis the sample information, recall (2.4.4). That is, although in the
sequential design the design points are not entering the design independently of the
response (7.3.4) offers reliable results. The confidence interval is constructed by
‘‘pretending’’ that the design points were independent of the response. The
experiment was repeated 1,000 times.

7.4 Simulation Procedures

Different procedures were applied to tackle the dilution problem under the strategy
described above. These strategies or approaches help the researcher to receive food
for thought, about the design he has to conduct in prior. These procedures will be
referred as P1, P2 etc. In all cases the sample size was chosen n = 50 or 100.

P1. Static design: The optimal static design (recall Chap. 4) will be the one which
takes all the observations at the locally optimal point for the true h, as in
(7.2.3b). Notice that as only one parameter is involved, all the design criteria
D-, G, A-optimality coincide. But usually D-optimality is referred as it is
easier to be adopted from the experimenters. Therefore the n observations
were taken at u� ¼ u� hstð Þ where hst is the ‘‘starting value’’ for h, and the MLE
was calculated. Results in Table A4.1, Appendix 4.

P2. Sequential design, equal batches: The batch sequential method of designing
was adopted. Equal batches were used to reach the total sample size n. Results
in Table A4.2, Appendix 4.

P3. Sequential design, unequal batches: The design was started out with a batch of
25 or 50 observations. The MLE was evaluated explicitly at the first stage.
Thereafter, i.e. when s = 2, 3, …, smax, the number of replications, r’ say, was
taken to be 5. The values of smax are 15 and 10 correspond to the initial
batches 25 and 50 observations. Results in Table A4.3, Appendix 4.

P4. Fully sequential design (Stochastic Approximation): Batches of 5, 25, 50
observations were used to start off the design. One observation was then added,
i.e. r0 ¼ 1, to the design and only one step of the Newton–Raphson iteration was
used to produce the estimate of h. This is the Stochastic Approximation scheme
discussed in Sect. 5.5. Results in Table A4.4, Appendix 4.

P5. Fully sequential design (Full Maximum Likelihood at the end): The data are as
in P4 but the exact MLE is obtained at the end of the experiment. Results in
Table A4.5, Appendix 4.
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The notation used in Appendix 4 is:
hst Starting value for h.
r Number of observation per batch, r = 5, 25, 50.
ECP Estimated Coverage Probability i.e. the proportion of times out of the

1000 simulations the true value of h was captured in the confidence
interval. ‘‘Outliers’’ are the cases with only success (failures).

h The average value of the estimates, h
^

i
, produced in N = 1000 simulations.

S Estimated skewness of. h
^
.

K Estimated kurtosis of h
^
.

EMSE Estimated Mean Square Error of the 1000 evaluated h
^

i
’s through:

EMSE ¼ est:Var( h
^
Þ þ ½est:Bias( h

^
Þ�2

The ‘‘true’’ value of h = 3.18 and the sample size n was either 50 or 100.

7.5 Discussion I

It is easy to see that the total information for h, and therefore the variance of h can
be evaluated (asymptotically) explicitly as, see (7.2.2):

ðnIðu,hÞÞ�1 ¼ ½nu2=ðexpðhtuÞ � 1Þ��1 ð7:5:1Þ

When the design allocates all the n observation at the point u, procedure P1 is
adopted. Table 7.1 provides the value of n-1 I-1 (u, h) for the design points
selected to start the design, under different sample size. Therefore, a guide for the
evaluated mean squares is provided, when a static design is performed, so that it
can be compared with the sequential procedures.

Let us consider and investigate each procedure separately.

• P1

Sample sizes n = 100 or 50 and also the extreme sample size of n = 1000 were
applied to study the asymptotic behavior of the one point, one stage design. For
n = 1000, the reader verifies that EMSE is not too far from the expected value (see
Table 7.1). As the sample size gets smaller, EMSE of course increases. The
normality of the vector of estimates behaves quite well, when n = 1000, but it gets
worse when n drops to 50.
Thus the sample size is very critical especially when nearing to the end points of
the probability levels in (7.2.4). This happens when u1 = .72 which corresponds to
probability level p = 0.1. At the extreme case scenario, of a batch of yi’s that all
equal to zero, no MLE is evaluated then. Thus the one-stage design does not have
the opportunity to improve the estimate, when n = 50, from this pathological
situation.
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• P2

When n = 100 and r = 50 (or n = 50 and r = 25) the so called two stages design
is created. In the two stages design if, in the first stage, the estimator is a ‘‘poor’’
one, the design does not have the opportunity to recover in the next stage. But,
when the initial estimate is ‘‘reasonable’’, it is improved in the second stage. This
is less likely when the initial batch is 5 or 25 observations. The design behaves
similarly with r = 5, 25 when n = 100.

• P3

There is not a two stage design in P3. When 5 observations are used in the first
batch, P3 coincides with P2. When 25 observations were used as the first batch, the
EMSE obtained was slightly better than the equal batch procedure P2, when a
point far from the true value was considered. When r = 50 the design had
‘‘enough time to recover’’ from a possible bad estimate at first stage.

• P4

As only one observation was added at each stage, the sample size n = 75 was also
used as an intermediate stage between n = 50 and n = 100. The aim was to check
how far things can be improved, by adding only one observation. The performance
of the procedure is largely independent of the initial batch size and the value hst,
although there is a little more variability when n = 50.

• P5

There is little difference between P4 and P5. Under different sample sizes the
EMSE are close to that of P4. The comments for P4 are similar to those of P5.

The procedures mentioned above can be divided into two categories.

• One stage design (Procedure P1)
• Sequential design:

– Block design (Procedures P2 and P3)
– Fully sequential design (Procedures P4 and P5).

Table 7.1 Evaluating the asymptotic variance

u/n 0.72 0.50 0.22

1000a 0.0171 0.0156 0.0208
100 0.171 0.156 0.208
75b 0.231 0.208 0.278
50 0.342 0.312 0.416
a only for P1, b only for P4, P5
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Truncation helps the experimenter to ‘‘bring the design back’’ to the sample
space defined, as it is a waste of time to look outside of the parameter space H for
estimates.

The Bisection method is a rather slow numerical method as far as convergence
rate is concerned, whilst Newton–Raphson has at least second order convergence
rate. Thus with Bisection the initial value h0 to feed Newton–Raphson was in the
neighborhood of the solution of the likelihood equation.

As far as normality of the estimators is concerned, acceptable behavior is
observed with n = 100, and reasonable with n = 50. According to R. A. Fisher:
‘‘Nothing that we say shall be true, except in the limit when the sample is
indefinitely increased; a limit obviously never obtained in practice’’. This situation
is described in P1 where with n = 1000 everything seems to be acceptable, except
the sample size. That particular idea of ‘‘practice’’ was behind this simulation
study and it seems to us that n = 100 is quite ‘‘large’’ and n = 50 is ‘‘reasonable’’.

After the discussion of the experience of the Simulation Study I, Simulation
Study II follows.

7.6 The First Order Growth Law

Biological processes concerning a measure of growth y, of plants or animals can
be expressed through a regression set-up, known as growth law.

Consider the period ranging from lower U1 up to the upper Uu, with the input
variable u denoting time in this application. The expected initial value of y (i.e.
when u = 0) is denoted by h1 [ 0. The rate of increase of biological process is
denoted by h2 [ 0. The phenomenon can be described by the nonlinear regression
model, recall (2.2.2)

Yi ¼ h1expðh2uiÞ þ ei; i ¼ 1; 2; . . .; n u 2 U ¼ U1; Uu½ �: ð7:6:1Þ

The error term ei is under Assumption 2, when inference is made. Under the
criterion of D hð Þ-optimality the locally optimal two point design allocates half
observation at the optimal design points

u1 ¼ Uu � 1=h2; u2 ¼ Uu ð7:6:2Þ

where h2 [ 0. Therefore supplying a ‘‘guess’’ h20, for h2 a static design can be
produced. For the so called decay model, i.e., when h2 [ 0, the design points are

u1 ¼ U1; u2 ¼ U1 � 1=h2: ð7:6:3Þ

The designs (7.6.2) or (7.6.3)—notice the symmetry—depend only on h2, as
they are considered partially-nonlinear (recall Example 6). The aim is to use this
model under different sequential design procedures and to investigate the esti-
mation problem, the distribution of the sequence of parameter-estimators, as well
as the construction of the confidence intervals.
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7.7 Strategy and Procedures of Simulation II

The optimum design measure n� ¼ 1=2 for the two points (7.6.2), corresponds to
the D-optimal design. Keeping the sample size n = 40 constant and the following
procedures (the notation is P1, P2, etc. for them) are discussed.

P1. Static Design: One stage design. Allocate half observations as in (7.6.2)
providing h20, a guess for the true value of the parameter, h2t.

P2. Two-stage Design: Use half of the observations in the first stage, i.e.
allocate one fourth of observations at each optimal design point. Obtain the esti-

mate of the parameter ĥ. Use them to redesign as in (7.7.2) using ĥ2 instead of h2.
The other three procedures are sequential ones and only the number of stages is
changed.

P3. Five-stage Design: Use 8 observations in each stage.
P4. Ten-stage Design: Use 4 observations in each stage.
P5. Fully-sequential Design: Two observations at each stage, i.e. allocate one

observation at each ‘‘optimal’’ point at each stage.
One can start the design with different h2 values, considering them as ‘‘far’’ from
the unknown true value, of the form h2f ¼ h2t; h2t þ 2; h2t � 2. Let us denote by
h2t ¼ 1; 2; 3; 4 the ‘‘true’’ value of h2. The value of h1 was kept constant, h1 ¼
10:0; as the design does not depend on it. The design points were evaluated, due to
(7.6.3), according to

u�1S�1 ¼ 1� 1
.

ĥ2S; u�2S�1 ¼ 1 ð7:7:1Þ

with ĥ2S being the estimate of h2 at stage s.
Claim I: For the first stage (s = 1), in sequential procedures, or for the static
design the estimate for h can be evaluated explicitly as

ĥ1 ¼ �y11 	 exp �ĥ2u11

� �
; ĥ2 ¼ ln �y11 � ln �y12½ �=u12 ð7:7:2Þ

Proof Let j = 1, 2 denote the two points where the observations are obtained. Let
I denote the number of stages, i = 1, …, I and ni the number of observations at
each point in each stage. Then the sum of squares, SS, equals to:

SS ¼
X2

j¼1

XI

i¼1

Xni

K¼1

yjik � h1eh2ujL
� �2

" #( )

¼
X2

j¼1

XI

i¼1

Xni

K¼1

yjiK � �yij:

� �2 þ ni �yji: � h1eh2uji
� �2

" #( )

¼
X2

j¼1

XI

i¼1

Xni

K¼1

yjiK � �yij:

� �2þ
X2

j¼1

XI

i¼1

�yji: � h1eh2uji
� �2

¼ SS1 þ SS2:

68 7 Simulation Studies



Considering ni constant through the experiment, i.e. equal replications, r say, at
each point each time. Thus:

SS2 ¼ r
X2

j¼1

XI

i¼1

�yji: � h1eh2uji
� �2

:

To obtain the estimates at the first stage i = 1, notice that eventually it is
desired to minimize SS2 of the form

ðy11: � h1 expðh2u11ÞÞ2 þ ðy21: � h1 expðh2u21ÞÞ2
� �

That is, both the terms must be equal to zero i.e.

h
_

1 exp h
_

2u11

� �
¼ �y11

h
_

1 exp h
_

2u21

� �
¼ �y21

�y11:=�y21:
¼ exp h

_

2 u11 � u21ð Þ
� �

Hence relation (7.7.2) is obtained. h

In other stages, when s [ 1, the estimates where obtained through the modified
Newton–Raphson scheme, for solving a multivariate equation, which very briefly
states:

Let f be a function f : Rk �!Rk with a root f i.e. f ðfÞ ¼ 0. When k = 1, to
evaluate the root f the iteration, known as Newton–Raphson, of the form:

xi�1 ¼ xi � f ðxiÞ=f 0ðxiÞ; i ¼ 0; 1; 2. . .:

converges to the root. When k [ 1 the above scheme is generalized to:

xi�1 ¼ xi � ðDf ðxiÞÞ�1f ðxiÞ; i ¼ 0; 1; 2. . . �ð Þ

where DfðxiÞis the n 9 n Jacobian matrix with elements ofl=oxij, l, j = 1, 2,…, k.
In this case the root is a vector. Assuming that DfðxiÞis nonsingular. Moreover the
iteration scheme (*) can be modified in the form:

xiþ1 ¼ xi � kðDf ðxiÞÞ�1f ðxiÞ; k 2 ð0; 1Þ; i ¼ 0; 1; 2. . .:

Let us settled k = 0.5, for this study, as the modification parameter, i.e. a ‘‘half-
step’’ of the Newton–Raphson iteration was used to approach the solution, i.e., to
solve the normal Eq. (2.7.5). h
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Claim II: To minimize SS2 the following calculation are needed:

F1 ¼
oSS2

oh1
¼ �2

XX
ni �yji: � h1eh2uji
� �

eh2uji

F2 ¼
oSS2

oh2
¼ �2

XX
ni �yji: � h1eh2uji
� �

h1ujie
h2uji

ni ¼ r

F1 ¼ �r
XX

�yji:e
h2uji þ h1r

XX
eh2uji
� �2

F2 ¼ �rh1

XX
�yji:ujie

h2uji þ h2
1r
XX

uji eh2uji
� �2

The equations F1 = 0 and F2 = 0 are need to be solved, using the
Newton–Raphson method. The elements of the Hessian matrix H(i, j) i = 1, 2,
j = 1, 2 are:

H 1; 1ð Þ ¼ r
XX

eh2uji
� �2

H 1; 2ð Þ ¼ �r
XX

�yjiujie
h2uji þ 2h1r

XX
uji eh2uji
� �2

H 2; 1ð Þ ¼ �r
XX

�yjiujie
h2uji þ 2h1r

XX
uji eh2uji
� �2

H 2; 2ð Þ ¼ �rh1

XX
�yjiu

2
jie

h2uji þ 2h2
1r
XX

ujie
h2uji

� �2

Now, at each stage the estimate ĥ2S was substituted into the Hessian (see above)

when ĥSþ1 ¼ ĥ1Sþ1 	 ĥ2Sþ1

� �
was to be evaluated, through Newton–Raphson. The

average per observation information matrix M ¼ Mðh; nÞ (recall Example 6) was

evaluated at h ¼ ĥ Smaxð Þ, i.e. the estimate at the last stage. Simultaneous and
individual approximate confidence intervals were evaluated; recall (6.3.1), through

h� ĥ
� �T

M h; nð Þ h� ĥ
� �


 2s2F 2; 38; 0; 95ð Þ ð7:7:3Þ

ĥ1 � 1; 96
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M�1

ii h; nð Þs2
� �q

; i ¼ 1; 2 ð7:7:4Þ

respectively. The notation: s2 a suitable estimate of r2, i.e. residual sum of squares
divined by 38 df, F, as usual, denotes the F distribution, and M�1

ii :ð Þ the diagonal
elements of M-1(.). Approximate confidence intervals are obtained through (7.7.3)
when the design points are predetermined and not obtained sequentially. The

coverage probabilities for both ĥ1 and ĥ2 individually and jointly were evaluated,
see Appendix 5.

The EMSE’s (Estimated Mean Square Error) for h1 and h2 were evaluated, as

well as logdetM0, with M0 as the right hand side of (2.7.1) with h ¼ ĥ Smaxð Þ. The
results are in Tables A5.3–A5.7, in Appendix 5. Table A5.6 provides the measures
of efficiency evaluated for h2 individually and for the design, i.e. for h. As such
measures it was used
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Eff hið Þ ¼
EMSE for hi in static designð Þ

EMSE for hi in design under studyð Þ ; i ¼ 1; 2 ð7:7:5aÞ

Eff hð Þ ¼ log det M0 of design under study
log det M0 for static design

ðð7:7:5bÞÞ

The results are presented in Appendix 5 Tables 7.7–7.14.

7.8 Discussion II

The logdetM0, of course, achieves its maximum value, when h2F ¼ h2T; i.e. when
Mðh; nÞ becomes large at the ‘‘true’’ value of the parameter, that is the ‘‘local’’
ellipsoid is minimum at that point, recall Sect. 3.7. The EMSE are, as expected,
smaller when h2F ¼ h2T. There is not much difference when the true value is
approached either from smaller or larger values.

As far as the coverage probabilities are concerned, on the average, their values
are close to 0.95 and all the methods perform well. Among the sequential pro-
cedures (P3, P4, P5), the fully sequential procedure, P5, leads to better EMSE.
The normality of the vectors of estimates, obtained from 1000 simulations, seems
to behave very well. Table A5.8 provides evidence for this as all the kurtosis
values are very close to 3 and the skewness values are very close to zero.

The efficiency of the static design for h2, when the starting values are ‘‘far from
the true value’’ (recall: the true value it is not known) is rather poor. In one-stage
design h1 is treated as known and there is no chance—as there is other stage—for
the estimator to deviate much from its true value, this supports the adoption of the
sequential design procedure. Table A5.8 supports the comment that the efficiency
in the procedures is getting on the average better in the order P1 \ P2 \P3
\ P4 \ P5.

Notice that the sequential nature of the design for nonlinear models:

• May often be irrelevant to the manner of obtaining estimators and constructing
confidence intervals based on familiar sampling theory methods.

• There are cases were sequential design procedures can result in ‘‘tighter’’
inferences, i.e. shorted confidence intervals. Among them the fully sequential
design might provide the tightest inference.

Thus, although the static design for the true h might be experimentally eco-
nomical, the absence of knowledge about h suggests that a sequential procedure
should be adopted.
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Chapter 8
Optimal Design in Rythmometry

Abstract The ‘‘cosinor’’ model is introduced and the various optimal design for
this model are discussed. The application of this model either to Bio-assays, as
Rythmometry, or to Engineering is explained.

8.1 Introduction

In this Chapter a specific illustration of a nonlinear design problem is presented.
The so-called cosinor model (Nelson et al. 1979) has been proposed, at the
beginning, as a model for biological time series. An example of such a time series
is that of circadian rhythms in normal and asthmatic patients. Recently the model
was adopted for an engineering application, see Zarikas et al. (2010). A form of the
cosinor model, depending on clock or calendar time, concerning bio-rhythms, has
been applied by Hetzel and Clark (1980). Confidence intervals and related sta-
tistical analysis, for fitting the nonlinear regression model, has been developed by
Nelson et al. (1979).

The problem is studied from the point of view of experimental design: what are
the optimum times during the day that the measurements have to be recorded. How
many times per day should the measurement take place and how should these
times be weighted optimally (i.e. what the design measure is).

Various optimal design procedures are discussed, such as D- and especially
c-optimality, from a geometrical point of view, due the Elfving’s theorem; see
Chap. 3, Fig. 3.2. The efficiencies are compared with the locally optimum design.
In the real life data set, originated from an engineering application, a gain in
observation has been recorded, Zarikas et al. (2010). As the design depends on
time, u will be replaced by t in the sequel. The unit for t is time in days.

C. P. Kitsos, Optimal Experimental Design for Non-Linear Models,
SpringerBriefs in Statistics, DOI: 10.1007/978-3-642-45287-1_8,
� The Author(s) 2013
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8.2 Background

Some rhythms (either from Biology or from Engineering) can be described by the
following cosine model, known as the cosinor model:

yðtÞ ¼ gðt; hÞ þ e with gðt; hÞ ¼ h0 þ h1 cosðxt þ h2Þ ð8:2:1Þ

where:
y(t) is the response at time t, i.e. the biological/engineering rhythm under

consideration
h0 the mesor: The ‘‘mean’’ value about which oscillation occurs
h1 the amplitude: The half difference between the highest and lowest

value during the oscillation in a complete cycle (360� or 24 h)
h2 acrophase : Timing of high point in degrees
x angular frequency = degrees/unit time. Consider x = 2p to corre-

sponds to a complete cycle
e the error term under Assumption 2, when inference is made and under

Assumption 1, when only the design is discussed, t 2 ½0; 1�
The model is illustrated in Fig. 8.1.

From a practical (clinical or engineering) point of view the ratio h1/h0 is the
parameter of interest. This represents the ratio of the amplitude of the cyclic
variation to the overall mean. Let us assume a period of one day, i.e. consider
x = 2p. The reference point for phase is 0� or 00.00 h since cos0� = 1. Zero time
is taken as 00.00 h on the first day, when the study started. It is easy to see, from
Fig. 8.1, that the case h1/h0 \ 1 is the only one which has a physical meaning in
the problem, while the dual attracts only mathematical interest. Interest is
restricted to the h1/h0 \ 1 case.

Expanding the cosine term g(t, h), recall (8.2.1), it is

gðx; hÞ ¼ h0x0 þ b1x1 þ b2x2 ð8:2:2Þ

with b1 ¼ h1 cos h2; b2 ¼ �h1 sin h2; x0 ¼ 1; x1 ¼ cos 2pt; x2 ¼ sin 2pt:

ð8:2:2aÞ

Therefore model (8.2.1) can be written as

yðtÞ ¼ WTðtÞbþ e; b ¼ ðh0; b1; b2Þ; WTðtÞ ¼ ðx0; x1; x2Þ ð8:2:3Þ

When the model (8.2.2) is fitted estimates for h1 and h2 can be obtained through:

ĥ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb̂2

1
þ b̂2

2Þ
q

; ĥ2 ¼ x̂þ j ð8:2:4Þ

where x̂ ¼ arctan b̂2=b̂1

���
��� and j is an appropriate constant. The value 2h1 is the

peak to the trough estimate and x is the estimate of the phase of the rhythm i.e. the

time of the computed acrophase. For different values of b̂1; b̂2 it is:
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b̂1; b̂2 [ 0 then ĥ2 ¼ �x̂ðj ¼ 0Þ
b̂1\0; b̂2 [ 0 then ĥ2 ¼ �pþ x̂ðj ¼ �pÞ
b̂2\0; b̂1\0 then ĥ2 ¼ �p� x̂ðj ¼ �pÞ
b̂1 [ 0; b̂2\0 then ĥ2 ¼ �2pþ x̂ðj ¼ �2pÞ

In the sequel the design problem will be discussed for a nonlinear function of the
parameters of the linearized model (8.2.3).

8.3 D-Optimal Design

For the model (8.2.1) it is known that in clinical or engineering practice an interest
is mainly in estimating efficiently the relative stability i.e. the ratio

g ¼ gðh0; h1Þ ¼ h1=h0 ð8:3:1Þ

is asked to be estimated as well as possible. Therefore the optimum designs for
estimation of g were considered. For the model (8.2.2) the design space, X say, is a
circle, defined by

x0 ¼ 1; x2
1 þ x2

2 ¼ 1: ð8:3:2Þ

The centre of the circle is on the x0 axis at point (1, 0, 0); see Fig. 8.2. With its
dual design space [cycle with center (-1, 0, 0)] form a cylinder.

Then it follows (Fedorov 1972, p.75) that the points of the D-optimal design
must lie on the given circle. Moreover, any equally-weighted design whose sup-
port coincides with the vertices of any regular polygon, inscribed in the circle, is a
D-optimal one. For instance a four point equally spaced and equally weighted
design will be a D-optimal design. Consider that, in contrast, under c-optimality a
two point unequal weighted design will be produced in Sect. 8.4, see for details
Kitsos et al. (1988).
For the model (8.2.2) the average per observation information matrix was evalu-
ated for this four point design, mentioned above. It equals (recall (2.5.3) for the
discrete case)

Fig. 8.1 A typical cosine
function: gðt; hÞ
¼ h0 þ h1 cosð2pt þ h2Þ
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nMðnÞ ¼
n

P
cosð2ptiÞ

P
sinð2ptiÞP

cosð2ptiÞ
P

cos2ð2ptiÞ
P

cosð2ptiÞ sinð2ptiÞP
sinð2ptiÞ

P
cosð2ptiÞ sinð2ptiÞ

P
sin2ð2ptiÞ

0
@

1
A ð8:3:3Þ

Take the 4 points to be: t; tþ 1=2; tþ 1=2; tþ 3=4
i.e. in angles correspond to : 2pt; 2ptþ p=2; 2ptþ p; 2ptþ 3p=2:

Let di ¼ 2pt þ Ti;Ti ¼ 0; p=2; p; 3p=2. It is easy to see that
X

cos di ¼
X

sindi ¼ 0;
X

cos2 di ¼
X

sin2di ¼ 2: ð8:3:4Þ

Thus for n observations obtained in n/4 days, (8.3.3) is reduced to

nM ¼
n 0 0
0 2 n=4ð Þ 0
0 0 2 n=4ð Þ

0
@

1
A ¼ n ffi diag 1; 1=2;

1=2

� �
ð8:3:5Þ

Interest is in estimating (8.3.1), written as

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

1 þ b2
2

� �q� 	
=h0: ð8:3:6Þ

Thus the approximate variance of g is :

nVarðĝÞ ffi r2 rgð ÞT M�1 rgð Þ ð8:3:7Þ

where rg is the vector of partial derivatives of g(.) and equals to

ðrgÞT ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

1 þ b2
2

� �q� 	
=h2

0; b1= h0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

1 þ b2
2

� �q� 	
; b2= h0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

1 þ b2
2

� �q� 	� 	

¼ h�1
0 �h1=h0; b1=h1; b2=h1ð Þ

ð8:3:8Þ

Fig. 8.2 The design space X in 3-dimensions and the -X
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Substituting (8.3.8) to (8.3.7) the approximate variance, V4 say, is obtained for
an equally-spaced, equally-weighted, 4-point design

V4 ¼ ðr2=ðnh2
0ÞÞ½ðh1=h0Þ2 þ 2�: ð8:3:9Þ

Note that from (8.3.7) the problem is approximately equivalent to a locally
c-optimal design where ‘‘c’’ is given by (8.3.8).

8.4 c-Optimal Design

For given h0, h1, h2 and therefore b1, b2 the locally c-optimal design problem is to

min cT M�1ðnÞc; n 2 N

 �

ð8:4:1Þ

With c ¼ c0; c1; c2ð ÞT¼ rg as in (8.3.8) and nMðnÞ as in (8.3.3) i.e. n imposes a
measure which puts weight 1/n at t1, t2, …, tn 2 [0,1). In principle it is required an
optimal design measure n on [0, 1) to solve (8.4.1). Elfving (1952) developed a
geometrical approach to obtain c-optimal designs, see Sect. 3.7 and Fig. 3.2. Due
to this theorem considering the reflection -X of the design space X, then a
cylinder is formed through the connection X and -X, with the x0-axis as the x-axis
and ‘‘direction’’ or ‘‘generation’’ the circle X, see Fig. 8.3.
The equation of the cylinder C, as in Fig. 8.3, is

C ¼ x0; x1; x2ð Þ: � 1� x0� 1; x2
1 þ x2

2 ¼ 1

 �

: ð8:4:2Þ

Moreover any point on the cylinder C is either

(1) On the curved surface (ray r1, point R1 in Fig. 8.3) or
(2) On one of the side (ray r2, point R2 in Fig. 8.3).

Any ray R can be written

R ¼ Dc0;Dc1;Dc2ð Þ; D [ 0f g ð8:4:3Þ

for some c0, c1, c2. In particular, the case where c0, c1, c2 is as in (8.3.8) is
considered. The ray hits the axis xo = 1 at D = 1/c0 = -h0/h1 therefore the point
of intersection is (1, c1/c0, c2/c0). Two cases (1) and (2) were distinguished as
follows:

if ðc2
1 þ c2

2Þ
2=c2

0 [ 1 then r1 is considered
\1 then r2 is considered

ð8:4:4Þ

It is easy to verify that

ðc2
1 þ c2

2Þ
2=c2

0 ¼ h0=h1ð Þ2: ð8:4:5Þ
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The geometry of the problem suggests Elfving’s theorem in order to tackle the two
cases described above.

Case I Consider points such as R1, i.e. h1/h0 \ 1.

Thus for h1=h0\1 it can be proved, see Kitsos et al. (1988), that it should be
allocated

n ¼ 0:5 1� h1=h0ð Þ percentage of observations at point � h2=2p

1� n ¼ 0:5 1þ h1=h0ð Þ percentage of observations at point p� h2=2p
ð8:4:6Þ

For the two point design the corresponding 3 9 3 average per observation infor-
mation matrix M ¼ Mðh; nÞ is singular with rank r(M) = 2. Considering the
general form of Mðh; nÞ in (8.3.3), for this particular case, it is easy to verify that
under (8.4.6)

Mðh; nÞ ¼
1 ð2n� 1Þ cos h2 �ð2n� 1Þ sin h2

ð2n� 1Þ cos h2 cos2 h2 � cos h2 sin h2

�ð2n� 1Þ sin h2 � cos h2 sin h2 sin2 h2

0
@

1
A ð8:4:7Þ

Substituting n in (8.4.7) from (8.4.6), for the optimal design measure n ¼ n2 say,
the average per observation information matrix is obtained as

Mðh; n2Þ ¼
1 �ðh1=h0Þ cos h2 ðh1=h0Þ sin h2

�ðh1=h0Þ cos h2 cos2 h2 � cos h2 sin h2

ðh1=h0Þ sin h2 � cos h2 sin h2 sin2 h2

0
@

1
A

To solve (8.4.1) the generalized inverse M�ðh; n2Þ is needed. Using a matrix result
(Appendix 3, (v)) it is for h2 6¼ p

2

� �

MCðh; n2Þ ¼
cos2 h2 ðh1=h0Þ cos h2 0

ðh1=h0Þ cos h2 1 0
0 0 0

0
@

1
A 1

cos2 h2 1� h1
2

h2
0

� � ð8:4:8Þ

Hence for n ¼ n2 and

0x

2x

1x

0

1r
2rK

K

L

LX X

C

− ′

′

Fig. 8.3 The design space X
and its reflection -X form the
cylinder C for the (8.2.2)
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cT ¼ ðrgÞT ¼ ð1=h0Þ �h1=h0; b1=h1; b2=h1ð Þ ¼ ð1=h0Þð�h1=h0; cos h2;� sin h2Þ

it is

cTM�ðh; nÞc ¼ ð1=h0Þ2 ð8:4:9Þ

Therefore the approximate variance V2, for the two point c-optimal design is

V2 ¼ VarðcT ĥÞ ¼ ð1=h0Þ2r2=n; h1=h0\1 ð8:4:10Þ

Case II Consider points such as R2. i.e. h1=h0 [ 1.

This case has a limited practical application and has been investigated for theo-
retical fulfillment, see Kitsos et al. (1988).

8.5 Restricted Design Space

One important practical difficulty related with the optimal designs of Sect. 8.4 is
that they require measurements to be made when the response function is maxi-
mum and minimum. The latter typically occurs, at least in biological rhythms, in
the early hours of the morning.

It might be desirable for the design to be restricted to more social hours, i.e.
avoid taking measurements during the night. The restriction of the design is
considered to a portion 1 - T, say of the day, where T is the length of the night-
time period, e.g. 11 pm till 7 am, see Fig. 8.4. Moreover it is assumed that the
minimum of the response function occurs at the middle of T and the maximum, in
1 - T, occurs at the middle of this interval. Any design depends on h1=h0 and h2.
Moreover the restriction on time means that the new design space, XN, say, is no
longer a circle and hence the idea of a full cylinder is no any longer available. The
cylinder will be ‘‘truncated’’, as shown in Fig. 8.5.

After some algebra, see Kitsos et al. (1988) and through the quantity q, given
bellow

q ¼ ð1=3h0Þ2 ð4jþ 1Þ2ð1� nÞ þ ð2� jÞ2n�=½nð1� nÞ
h i

; j ¼ h0=h1 ð8:5:1Þ

the approximate variance for the three point optimally-weighted truncated design
is

V3 ¼ VarðcT ĥÞ ¼ qr2=n ð8:5:2Þ

The corresponding design weight n3 can be evaluated with T = 1/3 as

n3 ¼ ½0:5ðjþ 1Þ�=½0:25þ j� ð8:5:3Þ
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Thus the design measure still depends on the ratio h1h0, the unknown quantity
one is trying to estimate. If it is desired to construct an equally-weighted, 3 point
design, in this truncated case, the corresponding approximate variance it would be

V�3 ¼ ð2=3h2
oÞ 2ðjþ 1Þ2 þ ð2� jÞ2
h i

r2=n ð8:5:4Þ

In the next paragraph a synopsis is presented of the above results and the
efficiencies of the designs are evaluated.

8.6 Synopsis

Let us summarize the results obtained in previous sections for the optimal design
for estimating the function g ¼ ho=h1 of the parameters ho, h1 of the nonlinear
model nðt; hÞ ¼ ho þ h1 cosð2pt þ h2Þ. The efficiency results are tabulated in
Table 8.1. For the results evaluated in Sects. 8.3–8.5 efficiencies can be obtained.
For the un-truncated case, the four point and the two point designs are compared

E2;4 ¼ V2=V4 ¼ 1=½ðh1=hoÞ2 þ 2� ð8:6:1Þ

The truncated design compared to the un-truncated unequally weighted design
gives efficiency equals to

Fig. 8.4 A typical situation when the rhythm is ‘‘going down’’ during the night

Fig. 8.5 The truncated space XN and its corresponded truncated cylinder
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E2;3 ¼ V2=V3 ¼ ½9n3ð1� n3Þ�=½j1ð1� n3Þ þ j2n3� ð8:6:2Þ

With: j1 ¼ ðh1=ho þ 1Þ2; j2 ¼ ð2� h1=hoÞ2; n3 as in (8.5.3)
For the equally weighted truncated design compared with the two point design

it can be proved that

E�2;3 ¼ V2=V�3 ¼ 3 2ðh1=hoÞ2 þ ð2� h1=hoÞ2
h i�1

ð8:6:3Þ

The efficiencies and the design measures have been evaluated for different
values of h1=ho\1, given in Tables 8.1 and 8.2. It is interesting to notice that
truncation does not greatly influence the nature of the design. Thus, an equally
weighted truncated design can be recommended. Based on previous experience in
biorhythms, the ratio h1=ho does not exceed 0.3. In principle in the nonlinear case,
an optimal design depends on the parameters it is planning to estimate. In
Table 8.1 this dependence is reflected. However, for small values of h1=ho, there is
a little difference between the optimal designs. Thus it is recommended to choose
D- or c-optimality, and provide a guess for h1=ho, and then continue the perfor-
mance of the design as in Chap. 4.

8.7 Engineering Application

The cosinor optimal experimental design was suitably adopted for the Robotic
Total Stations (RTS). Operating in a tracking mode, Zarikas et al. (2010) applied
the statistical model discussed above. RTS or Robotic Theodolite is a new gen-
eration topographic instrument, which is capable of recording the coordinates of a
moving target (reflector) through 3D space. In recent years, with the advent of
technology, modern RTS are used complementary to other systems (such as GPS
and accelerometers), for measuring the displacements of civil engineering struc-
tures that exhibit a cyclic pattern of motion.

Optimal Experimental Design techniques were adopted and demonstrated
suitably the c- or D- optimal design. Therefore a fully exploit of the potential RTS
as far as the computation of the amplitude of displacements when a sinusoidal fit
was assumed. The experimental design was employed for the generation of a series
of fully controlled sinusoidal oscillations of the known modal characteristics. The
comparisons between two different, but equal sample sizes, was mainly investi-
gated. The first sample consists in data measurements consecutively distributed

Table 8.1 Efficiencies when h1=ho\1 for the proposed designs

h1=ho 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

E2,4 0.50 0.49 0.48 0.46 0.44 0.42 0.40 0.37 0.35
E2,3 0.53 0.51 0.48 0.46 0.44 0.42 0.40 0.39 0.37
E2,3 0.49 0.49 0.48 0.46 0.44 0.42 0.40 0.37 0.35
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along the design space. The second sample consists in data following the optimal
design criteria. The proposed c- or D-optimal design provides the estimation
method of the amplitude of sine or cosine waves, with the minimum possible
dispersion. The problems are

(a) Where is the optimal design point located, during a certain period and
(b) What is the number of observations allocating to the optimal design points.
Given the sinusoidal form of oscillation adopted in the experiments, the model of

motion reads

YðtÞ ¼ A0 þ A1 sinð2pftÞ þ e or YðtÞ ¼ A0 þ A1 cos 2pft � p=2ð Þ ð8:7:1Þ

In Eq. (8.7.1), A0, A1 and f denote the mean value of Y(t), the amplitude and the
frequency of oscillation respectively. Following the discussed above method,
A1\A0 and therefore, the c-optimal design criterion suggests that N measurements
should be obtained with the following weights,

N
2 1� A1

A0

� �
Measurements at t1 ¼ p

2

N
2 1þ A1

A0

� �
Measurements at t2 ¼ p

2 þ p
ð8:7:2Þ

Alternatively, one might choose the optimal design points at time locations t1 ¼ h
and t2 ¼ hþ p. Equivalently, for convenience reasons one may perform for
antipodal observations every cycle.

Two estimates of the variance of the effective amplitude A1/A0 were produced
based on two equally sized data samples. As it is mentioned the first data sample
was built up to adhere the optimal design criteria, whereas the second one was set
up to contain a continuous stream of consecutively measurements of the raw data.
In order to facilitate comparisons, the non linear regression model (8.7.1) was
adopted. At an implementation stage any statistical or mathematical software
package can be used.

Analysis of the results reveals a reduction (of the order of 3–10 %) in the
variance of the effective amplitude if the optimal design method is used. More
importantly, this is irrespective of the dataset used. From the analysis of the results
a number of points become evident. The degree of reduction in the amplitude
variance is practically insusceptible to changes in the amplitude of oscillation.

In contrast, the degree of reduction in the amplitude variance becomes more
evident as the oscillation frequency increases. This finding is considered to be
important, as at higher oscillation frequencies a smaller number of measurement

Table 8.2 Evaluating the design measures when h1=ho\1 for D- and c-optimal designs

Design h1=ho 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1. ni 0.25 for all i = 1, 2, 3, 4 and for every h1=ho

2. n1 0.45 0.40 0.35 0.30 0.25 0.20 0.15 0.10 0.05
n2 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
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recordings contribute per oscillation cycle, and therefore, the benefit of using the
proposed optimal design it becomes more apparent. Furthermore, it can be con-
cluded that the significance of applying the optimal design is fully exploited
in situations were functioning an analytical instrument to its operational limits and
for datasets with large dispersion values.
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Chapter 9
Discussion

Abstract An extensive discussion of the provided methodology and applications
is provided, to help the reader to realize the importance of this particular field and
encourage him to adopt it in practice.

This monograph aims to develop a solid and compact theoretical insight of the
Nonlinear Optimal Experimental Design problem and to provide food for thought
on how to apply the discussed theory on real life cases. That is why a number of
examples were extensively discussed. Relevant chemical kinetic models were
studied, avoiding chemical and statistical technicalities. The three simulations
were completely analyzed and discussed. The objective was to construct a design
that eventually estimates the unknown parameter vector h, as adequate as possible.
Thus there is no reference to designs for discriminating two rival nonlinear-
models, see Atkinson and Federov (1975), or to any other kind of designs.

Needless to say, the theoretical insight of the nonlinear case is broader than for
the linear one. The theoretical approaches developed over time do not focus on
reduction from nonlinear to linear. A solid statistical background for the linear
case, either continuous or discrete, has been created. This theoretical insight was
used in the NLED application to extend the nonlinear case. The NLED is heavily
dependent on (a number of) the involved parameters.

Notice than the Up and Down (UD) and Stochastic Approximation (SA)
methods tackled in Sects. 5.4 and 5.5 have the following common characteristics:

1. They deal with the fully sequential method of design.
2. They have a nonparametric flavor.
3. They were developed to estimate the parameter of interest, usually a single one

and not a subset of several parameters.

The fully sequential nature is obvious as one observation is made at each stage.
Moreover both the UD and SA methods are ‘‘Markovian’’ in the sense that the
choice of each run depends only on the current situation. The nonparametric
feature of the discrete (binary) methods is based on the fact that a functional of the
unknown response T(.) was estimated, usually the p-th percentile Lp.

C. P. Kitsos, Optimal Experimental Design for Non-Linear Models,
SpringerBriefs in Statistics, DOI: 10.1007/978-3-642-45287-1_9,
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The assumption made about the cumulative distribution function (cdf) T(.) is
that it is either normal or logistic, leading to probit or logit analysis. The virtue of
the logit model lies in its simplicity and approximation to the normal distribution
in the range p 2 0:2; 0:8½ �. Moreover the canonical form discussed regarding the
binary models is essential. This can be helpful when working within a group of
transformations: movement from orbit to orbit can keep invariance under Affine
Geometry principles.

Geometry can be really very helpful to understand the optimality criteria: D-
optimality minimizes the volume of the confidence ellipsoidal, and remains
invariant to linear transformation. This is not the case for A-optimality, since the
confidence ellipsoidal volume might remain constant, but not the axes of the
ellipsoidal. The c-optimality criterion is based on Elfving’s geometrical-oriented
theorem.

In the linear case, the sequential nature of the design is based on the aug-
mentation of the data rather than an approach to estimate the parameters. The
optimal design point are ‘‘well defined’’ in the linear case. In the nonlinear case the
optimal design points depend on the parameters we want to estimate, and therefore
are not well defined. Therefore in such a case the locally optimal design is defined,
declaring this parameter dependence.

As far as the simulations are concerned, the first one referred, eventually, to a
nonlinear problem as a ratio estimate was discussed through the first order auto-
regressive model, so by its ‘‘nature’’ was sequential. The dilution assessment was a
different type of problem—binary or discrete—which could be faced either
sequentially or as a static design. Various approaches were discussed, to provide
evidence that ‘‘a design of the experiment’’ is necessary. Consequently, a strategy
has to be followed and not just to perform an experiment many times ‘‘to see how
the results turn out’’. There is a need to investigate an adequate statistical pro-
cedure, providing the best estimate of the parameter under investigation. In fact,
the discrete case of the linear case is a rather complicated theoretical approach,
which has much in common with Number Theory and Combinatorics.

The last simulation was about a two-parameter nonlinear model, from the
continuous case. As in almost all cases, initial information is not needed for all the
parameters involved. The fully sequential approach was developed based on two
observations, as the number of the parameters at each stage. Truncation was
applied and might prove helpful in real situations.

The rhythmometry problem shows that an application might have a strong
mathematical insight: Geometry and Analysis were used to evaluate the D- and
c-optimal design points for this particular problem. Although it was first consid-
ered as a medical application, it was also applied to engineering research, proving
that the lines of thought for fields that might be considered disjoined are not that
different!

All the practical investigations were based on the developed theory, but actually
the sample size did not reach infinity (!). Even with small sample sizes approxi-
mated confidence intervals were obtained. Moreover the models found in the
bibliography were mainly focused on no more than four parameters; five

86 9 Discussion



parameters is the worst case scenario. Certainly the theoretical development for
‘‘any p-term vector of parameters’’ goes beyond the real situation.

The theoretical approach makes researchers hesitate to follow it, but practice
shows that one can adopt the theory. The only problem seems to be the lack of
communication; neither the experimenter nor the statistician invites anyone to ‘‘his
own cloud’’!
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Appendix 1

A1.1 Caratheodory’s Theorem

Definition 1
The set S is called convex if all points s 2 S of the form

s ¼ a � s1 þ ð1� aÞ � s2; s1; s2 2 S; a 2 ½0; 1ffi

are elements of S.

Definition 2
The set of points, S* say, with elements

s� ¼
X

aisi;
X

ai ¼ 1; ai 2 0; 1½ ffi; si 2 S

is a convex set. S* is called the convex hull of the set S.

Theorem (Caratheodory)
Each point s* in the convex hull S* of any subset S, of the n-dimensional space,

can be represented in the form

s� ¼
Xnþ1

1

aisi; ai� 0; si 2 s;
Xnþ1

1

ai ¼ 1

If s* is a boundary point of the set S*, then anþ1 can be set equal to zero.
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Appendix 2

A2.1 Silvapulle’s Theorem

Silvapulle (1981) stated and proved the conditions under which the existence of
the MLE in binary problems is guaranteed.

Let u1; u2; . . .; ur be the design points corresponding to responses yi ¼ 1;
i ¼ 1; . . .; r and urþ1; . . .; un corresponding to responses yi ¼ 0; i ¼ r þ 1; . . .; n:
Consider the convex cones:

S ¼ fRjiui; ji� 0:8i ¼ 1; . . .; rg
F ¼ fRjjuj; jj� 0:8j ¼ r þ 1; . . .; ng

Then the following theorem holds.

Theorem
Let the condition (L) be defined by

ðLÞ S \ F 6¼£ or one of S or F is RP � H

Then for the binomial response model:

Prob(yi ¼ 1Þ ¼ TðuT
i hÞ

1. The MLE ĥ of h exists and the minimum set {h} is bounded only when (L) is
satisfied.

2. Suppose that ‘ðhÞ ¼ �R log TðuihÞ � R logð1� TðuT
i hÞÞ is a proper closed

convex function on RP. Then the MLE ĥ exists and the minimum set fĥg is
bounded if and only if (L) is satisfied.

3. Suppose that � log T and log 1� Tð Þ are convex and u1i ¼ 1 for every i. Then ĥ

exists and the minimum set fĥg is bounded if and only if S \ F 6¼£: Let us
further assume that T is strictly increasing at every t satisfying

0hTðtÞh1: Then h is uniquely defined if and only if S \ F ¼£:
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SpringerBriefs in Statistics, DOI: 10.1007/978-3-642-45287-1,
� The Author(s) 2013

91



An example where the MLE does not exist is considered in Figure A2.1, where
there is no ‘‘inter-blocking’’ condition between the sets S (set of successes) and F
(set of failures).

Fig. A2.1 No intersection
between the set S and the set
F
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Appendix 3

A3.1 Conditional Inverse

Definition
Let A [ Mat(m, n). Ac is conditional inverse iff AAcA=A

• The generalized inverse is also a conditional inverse. The opposite not
necessarily true. The main Properties are:

1. rank(Ac) C rank(A)
2. rank(Ac A) = rank(AAc) = rank(A) = tr(AAc) = tr(AcA)
3. AAc, AcA are idempotent matrices
4. AcA = I ) rank(A) = n, AAc = I ) rank(A) = m
5. If A of rank r is partitioned as

A ¼ B C
D E

ffi �
then Ac ¼ B�1 0

0 0

ffi �
; with B of rank r:
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Appendix 4

A4.1 Simulation I Results

Tables A4.1, A4.2, A4.3, A4.4, A4.5

Table A4.1 Simulation study I, procedure P1

N hst ECP h S K EMSE

1,000 2.196 0.953 3.18 0.23 2.97 0.018
3.18 0.954 3.19 0.02 2.97 0.015
7.15 0.958 3.18 0.05 2.93 0.019

100 2.196 0.950 3.24 0.59 3.98 0.204
3.18 0.952 3.2 0.53 3.47 0.172
7.15 0.952 3.0 0.17 3.29 0.201

50 2.196 0.977 3.31 1.52 5.09 0.454*
3.18 0.958 3.28 0.56 3.43 0.365
7.15 0.935 3.22 0.38 3.27 0.462

*Two ‘‘outliers’’ were not considered, therefore N=998.

Table A4.2 Simulation study I, procedure P2

N hst r ECP h S K EMSE

100 2.196 5 0.937 3.23 0.55 3.86 0.20
25 0.946 3.24 0.66 3.85 0.20
50 0.945 3.25 1.64 8.46 0.22*

3.18 5 0.946 3.26 0.51 3.63 0.16
25 0.950 3.19 0.45 3.72 0.16
50 0.950 3.20 0.42 3.35 0.15

7.15 5 0.955 3.23 0.36 2.83 0.17
25 0.946 3.23 0.36 3.09 0.19
50 0.955 3.24 0.36 2.96 0.20

50 2.196 5 0.954 3.28 0.83 4.32 0.43
25 0.962 3.46 3.12 12.16 1.14#

3.18 5 0.952 3.26 0.77 3.78 0.39

(continued)
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Table A4.2 (continued)

N hst r ECP h S K EMSE

25 0.948 3.24 0.99 4.32 0.35#

7.15 5 0.947 3.29 0.68 3.64 0.42
25 0.940 3.28 0.57 3.46 0.43

*Two ‘‘outliners’’ were not considered, therefore N=998 (see Appendix A2.II).
# Three ‘‘outliners’’ were not considered, therefore N=997.(see Appendix A2.II)

Table A4.3 Simulation study I, procedure P3.

N hst r ECP h S K EMSE

100 2.196 5* 0.937 3.23 0.55 3.86 0.20
25 0.944 3.21 0.51 3.43 0.19
50 0.948 3.23 0.75 3.97 0.20

3.18 5* 0.946 3.20 0.51 3.63 0.16
25 0.947 3.20 0.51 3.28 0.17
50 0.961 3.20 0.46 3.31 0.15

7.15 5* 0.955 3.23 0.36 2.83 0.17
25 0.947 3.20 0.44 3.36 0.17
50 0.949 3.19 0.36 3.21 0.18

50 2.196 5* 0.954 3.28 0.83 4.32 0.43
25 0.942 3.21 1.09 1.28 0.51

3.18 5* 0.952 3.26 0.77 3.78 0.39
25 0.953 3.26 0.88 5.43 0.38

7,15 5* 0.947 3.29 0.68 3.64 0.42
25 0.948 3.26 0.43 2.98 0.39

*From Table A4.2 (r=r’=5).

Table A4.4 Simulation study I, procedure P4.

N hst r ECP h S K EMSE

100 2.196 5 0.955 3.21 0.45 3.53 0.16
25 0.959 3.23 0.48 3.21 0.18
50 0.957 3.23 0.60 3.83 0.19

3.18 5 0.960 3.21 0.46 3.33 0.15
25 0.952 3.21 0.75 4.37 0.16
50 0.962 3.20 0.59 3.84 0.15

7.15 5 0.953 3.24 0.32 2.77 0.17
25 0.956 3.24 0.41 3.23 0.19
50 0.946 3.22 0.37 3.25 0.20

75 2.196 5 0.943 3.22 0.64 3.74 0.24

(continued)
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Table A4.4 (continued)

N hst r ECP h S K EMSE

25 0.951 3.24 0.57 3.22 0.25
50 0.954 3.25 0.96 5.51 0.28

3.18 5 0.948 3.23 0.60 3.65 0.23
25 0.945 3.23 0.82 4.45 0.23
50 0.955 3.23 0.68 3.80 0.22

7.15 5 0.958 3.25 0.38 3.05 0.23
25 0.953 3.26 0.49 3.38 0.26
50 0.941 3.21 0.43 3.43 0.28

50 2.196 5 0.956 3.26 0.67 3.53 0.37
25 0.948 3.30 0.92 4.28 0.46

3.18 5 0.949 3.24 0.89 3.89 0.33#

25 0.946 3.24 0.98 4.04 0.34*
7.15 5 0.948 3.26 0.69 4.02 0.38

25 0.948 3.29 0.46 3.14 0.44

# N = 997, *N = 998

Table A4.5 Simulation Study I, Procedure P5.

N hst r ECP h S K EMSE

100 2.196 5 0.961 3.24 0.58 3.90 0.17
25 0.946 3.23 0.44 3.17 0.18
50 0.956 3.23 0.41 3.43 0.17

3.18 5 0.967 3.23 0.37 3.17 0.15
25 0.958 3.21 0.32 3.17 0.15
50 0.954 3.21 0.44 3.55 0.16

7.15 5 0.958 3.28 0.58 3.47 0.17
25 0.952 3.23 0.57 4.05 0.18
50 0.954 3.21 0.20 3.06 0.18

75 2.196 5 0.955 3.27 0.64 3.78 0.25
25 0.947 3.24 0.55 3.46 0.24
50 0.976 3.33 0.86 3.90 0.46*

3.18 5 0.961 3.24 0.59 3.64 0.22
25 0.955 3.22 0.54 3.66 0.21
50 0.955 3.25 0.82 4.43 0.37

7.15 5 0.951 3.24 0.65 3.80 0.23
25 0.951 3.25 0.60 3.86 0.25
50 0.951 3.22 0.24 3.15 0.23

50 2.196 5 0.959 3.31 0.70 3.65 0.40
25 0.957 3.28 0.82 4.61 0.41

3.18 5 0.950 3.26 0.78 4.11 0.37
25 0.947 3.25 0.73 4.24 0.36

(continued)
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Table A4.5 (continued)

N hst r ECP h S K EMSE

7.15 5 0.955 3.28 0.58 3.47 0.37
25 0.958 3.28 0.82 4.52 0.41

*N = 999
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Appendix 5

A5.1 Simulation II Results

Tables A5.1, A5.2, A5.3, A5.4, A5.5, A5.6, A5.7, A5.8

Table A5.1 Simulation study II, procedure P1

h2T h2F Coverage probabilities EMSE Ln det M0

h1 and h2 h1 h2 h1 h2

1.0 1.0 0.943 0.961 0.954 50(.) 57(*) 5.470
3.0 0.954 0.955 0.953 138 168 5.096

2.0 2.0 0.942 0.955 0.954 26 28 6.606
4.0 0.945 0.952 0.946 50 56 6.437

3.0 1.0 0.947 0.958 0.958 46 46 7.201
3.0 0.961 0.956 0.954 8.4 9 7.991
5.0 0.943 0.942 0.941 12 13 7.895

4.0 2.0 0.957 0.968 0.967 3.4 3 9.211
4.0 0.947 0.940 0.940 2.2 2.3 9.478
6.0 0.953 0.953 0.954 2.7 2.3 9.415

(.) All values 9 10-3 (*) All values 9 10-5

Table A5.2 Simulation study II, procedure P2

h2S h2F Coverage probabilities EMSE ln det M0

h1 and h2 h1 h2 h1 h2

1.0 1.0 0.955 0.962 0.959 47(.) 53(*) 5.470
3.0 0.945 0.952 0.954 73 88 5.355

2.0 2.0 0.943 0.939 0.942 30 32 6.606
4.0 0.945 0.950 0.950 35 40 6.541

3.0 1.0 0.953 0.949 0.949 14 14 7.758
3.0 0.946 0.954 0.947 9 9.5 7.990
5.0 0.954 0.959 0.960 10 10 7.950

(continued)
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Table A5.2 (continued)

h2S h2F Coverage probabilities EMSE ln det M0

h1 and h2 h1 h2 h1 h2

4.0 2.0 0.957 0.968 0.971 2.4 2 9.367
4.0 0.952 0.943 0.942 2.2 2.3 9.478
6.0 0.949 0.968 0.969 2.2 2 9.451

(.) All values 9 10-3 (*) All values 9 10-5

Table A5.3 Simulation study II, procedure P3

h2S h2F Coverage probabilities EMSE ln det M0

h1 and h2 h1 h2 h1 h2

1.0 1.0 0.945 0.949 0.952 50(.) 55(*) 5.470
3.0 0.944 0.949 0.950 56 65 5.435

2.0 2.0 0.953 0.956 0.956 27 29 6.605
4.0 0.948 0.944 0.946 31 34 6.584

3.0 1.0 0.941 0.945 0.943 10 10 7.913
3.0 0.950 0.938 0.942 9 9.5 7.991
5.0 0.946 0.945 0.944 9.4 10 7.977

4.0 2.0 0.947 0.943 0.945 2.3 2.3 9.438
4.0 0.957 0.960 0.960 2 2.1 9.478
6.0 0.951 0.953 0.954 2.1 2.4 9.468

(.) All values 9 10-3 (*) All values 910-5

Table A5.4 Simulation study II, procedure P4

h2S h2F Coverage probabilities EMSE ln det M0

h1 and h2 h1 h2 h1 h2

1.0 1.0 0.950 0.941 0.945 52(.) 60(*) 5.470
3.0 0.948 0.938 0.939 56 63 5.453

2.0 2.0 0.955 0.962 0.960 26 28 6.606
4.0 0.942 0.943 0.943 30 32 6.595

3.0 1.0 0.948 0.941 0.946 10 10 7.953
3.0 0.942 0.940 0.938 10 10 7.990
5.0 0.957 0.964 0.965 8 8 7.984

4.0 2.0 0.953 0.957 0.957 2 2 9.458
4.0 0.950 0.951 0.950 2 2.2 9.478
6.0 0.955 0.958 0.960 2 2 9.473

(.) All values 9 10-3 (*) All values 9 10-5
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Table A5.5 Simulation study II, procedure P5

h2S h2S Coverage probabilities EMSE ln det M0

h1 and h2 h1 h2 h1 h2

1.0 1.0 0.944 0.955 0.953 46(.) 53(*) 5.471
3.0 0.954 0.950 0.955 52 59 5.463

2.0 2.0 0.936 0.931 0.935 30 32 6.605
4.0 0.946 0.954 0.951 27 30 6.601

3.0 1.0 0.946 0.944 0.946 9.5 10 7.973
3.0 0.956 0.951 0.950 8.7 9.4 7.990
5.0 0.946 0.944 0.946 9 9 7.987

4.0 2.0 0.957 0.947 0.945 2.2 2 9.468
4.0 0.941 0.944 0.940 2.4 2.5 9.478
6.0 0.958 0.970 0.971 1.9 2 9.476

(.) All values 9 10-3 (*) All values 910-5

Table A5.6 Simulation study II, skewness and kurtosis for parameter h2

Procedure P1 P2 P3 P4 P5

h2S h2F (1) (2) (1) (2) (1) (2) (1) (2) (1) (2)

1.0 1.0 -0.001 2.91 0.015 2.67 0.074 2.99 0.042 2.88 0.020 3.16
3.0 -0.002 3.01 0.092 3.05 0.125 3.29 -0.066 3.00 0.092 2.87

2.0 2.0 -0.012 2.98 -0.023 3.17 0.005 2.60 -0.008 2.83 0.083 3.24
4.0 0.001 3.16 0.014 2.83 -0.101 2.85 0.019 2.58 0.020 3.17

3.0 1.0 0.097 3.40 0.020 2.96 -0.135 2.91 0.101 2.85 0.020 2.86
3.0 -0.052 2.97 -0.039 2.94 -0.045 2.84 -0.043 3.09 0.019 2.69
5.0 0.044 2.74 0.014 3.04 0.067 2.86 0.009 2.90 0.035 3.06

4.0 2.0 -0.034 2.88 0.034 2.76 0.038 2.94 -0.195 2.99 0.089 2.88
4.0 -0.013 2.90 -0.001 3.20 0.064 2.66 0.054 3.13 0.010 2.97
6.0 0.019 3.09 -0.064 2.99 –0.005 2.89 -0.194 2.98 -0.109 2.94

(1) Skewness h2, (2) Kurtosis h2

Table A5.7 Simulation study II, evaluating efficiencies for h1

Procedure P1 P2 P3 P4 P5

h2T h2F

1.0 1.0 1.0 1.06 1.0 0.96 1.08
3.0 0.36 0.68 0.89 0.89 0.96

2.0 2.0 1.0 0.86 0.96 1.0 0.81
4.0 0.5 0.74 0.83 0.86 0.96

3.0 1.0 0.20 0.60 0.84 0.84 0.88
3.0 1.0 0.93 0.93 0.84 0.96
5.0 0.75 0.84 0.89 1.05 0.93

4.0 2.0 0.64 0.91 0.95 1.10 1.0
4.0 1.0 1.0 1.10 1.10 0.91
6.0 0.81 1.0 1.04 1.10 1.15
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Reference

Silvapulle MJ (1981) On the existence of the maximum likelihood estimators for the Binomial
response models. J Roy Stat Soc 43:310–313

Table A5.8 Simulation study II, efficiencies for h2 and h = (h1, h2)

Procedure P1 P2 P3 P4 P5

h2S h2F (1) (2) (1) (2) (1) (2) (1) (2) (1) (2)

1.0 1.0 1.0 1.0 1.0 1.0 1.03 1.0 0.95 1.0 1.07 1.0
3.0 0.34 0.93 0.64 0.98 0.88 0.99 0.90 0.99 0.97 0.99

2.0 2.0 1.0 1.0 0.87 1.0 0.96 1.0 1.0 1.0 0.87 1.0
4.0 0.50 0.97 0.70 0.99 0.82 0.99 0.88 0.98 0.93 0.99

3.0 1.0 0.20 0.90 0.64 0.97 0.90 0.99 0.90 0.99 0.90 0.99
3.0 1.0 1.0 0.95 1.0 0.95 1.0 0.90 1.0 0.96 1.0
5.0 0.69 0.99 0.90 0.99 0.90 1.0 1.12 0.99 1.0 0.99

4.0 2.0 0.76 0.97 1.15 0.99 1.0 0.99 1.15 0.99 1.15 0.99
4.0 1.0 1.0 1.0 1.0 1.09 1.0 1.04 1.0 0.92 1.0
6.0 1.0 0.99 1.15 1.0 0.96 0.99 1.15 0.99 1.15 1.0

(1) Efficiency for h2 recall (7.7.5a), (2) Efficiency for h2 recall (7.7.5b)
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