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Preface

Most elementary statistics books discuss inference for proportions and prob-
abilities, and the primary readership for this monograph is the student of statistics,
either at an advanced undergraduate or graduate level. As some of the recom-
mended so-called ‘‘large-sample’’ rules in textbooks have been found to be
inappropriate, this monograph endeavors to provide more up-to-date information
on these topics. I have also included a number of related topics not generally found
in textbooks. The emphasis is on model building and the estimation of parameters
from the models.

It is assumed that the reader has a background in statistical theory and inference
and is familiar with standard univariate and multivariate distributions, including
conditional distributions. This monograph may also be helpful for the statistics
practitioner who is involved with statistical consulting in this area, particularly
with regard to inference for one and two proportions or probabilities.

Chapter 1 looks at the difference between a proportion and probability.
It focuses on a proportion leading to the Hypergeometric model and its Binomial
approximation, along with inference for the proportion. Inverse sampling is also
considered. Chapter 2 focuses on estimating a probability and considers the
Binomial distribution in detail as well as inverse sampling. Exact and approximate
inferences for a probability are considered. In Chap. 3, the main focus is on
comparing two proportions or two probabilities and related quantities such as the
relative risk and the odds ratio from the same or different populations using the
Multi-hypergeometric or Multinomial distributions. Simultaneous confidence
intervals for several parameters are also considered. The Multinomial distribution
is the basis for a number of hypothesis and goodness of fit tests, and these are
discussed in Chap. 4 with particular attention given to 2 9 2 tables and matched
data. In Chap. 5, we look briefly at two logarithmic models for discrete data,
namely the log linear and the logistic models.

I would like to thank two reviewers for their very helpful comments on a
previous draft.

Auckland, New Zealand, June 2012 George A. F. Seber
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Chapter 1
Single Proportion

Abstract This chapter focusses on the problem of estimating a population pro-
portion using random sampling with or without replacement, or inverse sampling.
Exact and approximate confidence intervals are discussed using the Hypergeometric
distribution. Applications to capture-recapture models are given.

Keywords Proportion · Hypergeometric distribution · Simple random sample ·
Sampling fraction · Negative-Hypergeometric distribution · Binomial distribution ·
Confidence intervals for a proportion · Single capture-recapture model

1.1 Distribution Theory

Since this monograph is about modelling proportions and probabilities, I want to
begin by comparing the two concepts, proportion and probability, as these two ideas
are sometimes confused. If we have a population of N people and M are male, then
the proportion of males in the population is p = M/N . Suppose we now carry out
a random experiment and choose a person at random from the population. What we
mean by this is that we choose a person in such a way that every person is equally
likely to be chosen. If the population is small we could achieve this by putting the
names of everyone in a container, shuffling the names by rotating the container, and
drawing one name out. This kind of manual process is used in lottery games. For
example in New Zealand we have Lotto in which 40 numbered balls are tossed around
in a container until one eventually drops out.

For a large population of people we could number everyone and then choose a
number at random using a computer. In this case we can obtain the probability of
getting a male using the law of probability relating to equally likely events, namely if
we have N equally likely outcomes of an experiment (the so-called sample space) and
M of these have a given characteristic, then the probability of choosing a member
with the given characteristic is simply M/N or p again. This means that for the

G. A. F. Seber, Statistical Models for Proportions and Probabilities, 1
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2 1 Single Proportion

random experiment, p can now be regarded as a probability. If we then removed that
person from the population and chose a second person at random from the remainder,
then the probability of getting a male will be (M − 1)/(N − 1) if the first choice was
a male or M/(N −1) if the first choice was a female. This is called sampling without
replacement and the probability of choosing a male changes with each selection.
However if N and M are large (say 10,000 and 4,800) then p = 0.48 and the
respective probabilities for the second choice are 0.4799 and 0.48005, which could
both be approximated by 0.48. If we carried on this sampling without replacement
for say n times (the sample size), then provided n was a small enough fraction of N ,
the probability at each selection would remain approximately constant.

If we now changed the random experiment so that each selection is then returned to
the population, then the experimental conditions would be the same for each selection
so that the probability of choosing a male will be the same on each occasion, namely
p. This sampling experiment is called sampling with replacement, and under certain
conditions we saw above that sampling without replacement can be approximated by
sampling with replacement. If we now change the problem to that of tossing a coin,
then if the coin is perfectly balanced we would have two equally likely outcomes,
a head and a tail. In this case the probability of getting a head is 1

2 for each toss of
the coin. However no coin is perfectly balanced so that the probability of getting a
head will be an unknown probability pH , say. How do we define this unknown? If
we tossed the coin a very large number of times and tracked the proportion of heads
we would see that this proportion would eventually settle down to a number which
we can define as pH .

We see from the above discussion that there is an interplay between the use of
proportions and probabilities, and it is helpful to be clear as to which concept we are
dealing with in constructing statistical models for experimental situations. We can
therefore refer to p as a proportion or probability depending on the context. More
generally, we may be interested in more than one proportion such as in responses to a
questionnaire or voting preferences for a population. In what follows we focus on just
a single proportion and consider some distribution theory and associated inference.

Suppose that the population under investigation is of size N as before, and M
members are male, which we now call called the “marked” population so that
p = M/N is the proportion of marked in the population. If a random sample of
size n is taken from the population without replacement (called a simple random
sample or SRS)1 and X is the number marked in the sample,2 then X has a Hyper-
geometric distribution with probability function

f1(x) = Pr(X = x) =
(

M

x

)(
N − M

n − x

)/(
N

n

)
, (1.1)

1 The words “without replacement” are sometimes added to avoid ambiguity.
2 We shall generally use capital letters (e.g., X and Y ) for random variables, though this won’t
always be convenient, especially in sample survey theory.



1.1 Distribution Theory 3

where max{n + M − N , 0} ≤ x ≤ min{M, n}, though we usually have x =
0, 1, . . . , n.3 If q = 1 − p, it can be shown that an unbiased estimator of p is
P̂ = X/n with variance

σ 2(P̂) = var(P̂) = pq

n
r, (1.2)

where

r = N − n

N − 1
= 1 − n − 1

N − 1
> 1 − f, (1.3)

and f = n/N , the so-called sampling fraction. An unbiased estimate of the above
variance is

σ̂ 2(P̂) = v̂ar(P̂) = P̂(1 − P̂)

n − 1
(1 − f ). (1.4)

In inference, the focus is on the standard deviation σ and therefore on
√

1 − f , which
takes the values 0.89, 0.95, 0.98 when f = 0.2, 0.1, 0.05, respectively. This means
that f can generally be neglected if f < 0.1 (or preferably f < 0.05) and we can
then set r = 1 in (1.3).

If the sampling is with replacement, then, for each selection, the probability of
selecting a marked individual is p and the proportion can now be treated as a prob-
ability. Since the selections or “trials” are mutually independent and n is fixed, X
now has a Binomial distribution, denoted by Bin(n, p) with probability function

f2(x) =
(

n

x

)
px qn−x , x = 0, 1, . . . , n.

We shall use the notation X ∼ Bin(n, p) and discuss this distribution in more detail
in the next chapter. For this model we have

E(P̂) = p and var(P̂) = pq

n
, (1.5)

with unbiased variance estimate

v̂ar(P̂) = P̂(1 − P̂)

n − 1
. (1.6)

We see then that if f can be ignored, we can approximate sampling without
replacement by sampling with replacement, and approximate the Hypergeometric
distribution by the Binomial distribution. This approximation can be established
mathematically after some algebra using Stirling’s inequality and the fact we have
some large factorials, namely

√
πnn+1/2e−n+1/(12n+1) < n! <

√
πnn+1/2e−n+1/(12n).

3 For further properties of the Hypergeometric distribution see Johnson et al. (2005: Chap. 6).
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1.2 Inverse Sampling

Another method of estimating p is to use inverse sampling. Here sampling is con-
tinued without replacement until a fixed number of marked individuals, k, say, is
obtained. The sample size n is now a the random variable, say Y , with probability
function

f3(y) =
( M

k−1

)(N−M
y−k

)
( N

y−1

) · M − k + 1

N − y + 1

=
(y−1

k−1

)(N−y
M−k

)
(N

M

) , y = k, k + 1, . . . , N + k − M,

which is the Negative (Inverse)-Hypergeometric distribution. This probability func-
tion can be expressed in a number of different ways (Johnson et al. 2005 , p. 255).
We find that

E(Y ) = k
N + 1

M + 1
and var(Y ) = k(N + 1)(N − M)(M + 1 − k)

(M + 1)2(M + 2)
.

Our usual estimate k/Y of p = M/N is now biased. In estimating the inverse of a
parameter for a discrete distribution we can often find a suitable estimate based on
the inverse of a random variable with +1 or −1 added. We therefore consider

P̂in = k − 1

Y − 1
. (1.7)

Now

E(P̂in) =
N+k−M∑

y=k

k − 1

y − 1

(y−1
k−1

)(N−y
M−k

)
(N

M

)

=
N+k−1−M∑
y−1=k−1

M

N

(y−2
k−2

)(N−1−(y−1)
M−1−(k−1)

)
(N−1

M−1

)
= p,

by setting z = y − 1 and using the result that
∑

z f3(z) = 1 with new parameters
M −1, N −1, and k −1. Hence P̂in is an unbiased estimate of p. In a similar fashion
we can prove that

E

{
(k − 1)(k − 2)

(Y − 1)(Y − 2)

}
= M(M − 1)

N(N − 1)
. (1.8)
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To find a variance estimate it is helpful to define M̂ = N (k − 1)/(Y − 1) and
consider

vM = N 2(k − 1)2

(Y − 1)2 − (k − 1)(k − 2)N (N − 1)

(Y − 1)(Y − 2)
− N (k − 1)

(Y − 1)
. (1.9)

Then, using (1.8),

E(vM ) = E(M̂2) − M(M − 1) − M

= E(M̂2) − M2 = var(M̂).

(This method has been found useful for other discrete distributions, as we shall find
below.) It can then be shown after some algebra that an unbiased estimate of var(P̂in)

is

v̂ar(P̂in) = N−2vM

= (Y − k)(k − 1)(N − Y + 1)

N (Y − 1)2(Y − 2)

=
(

1 − Y − 1

N

)
P̂in(1 − P̂in)

Y − 2
. (1.10)

Salehi and Seber (2001) derived the above unbiased estimates directly using a theo-
rem due to Murthy (1957).

1.3 Application to Capture-Recapture

In the above discussion we have been interested in estimating p = M/N , where N
is known. A common and effective method for estimating the unknown size N of an
animal population is to mark or tag in some way M of the individuals, so that M is
now known. An estimate of N is then N̂ = M/P̂ = Mn/X . This estimator is not
only biased but the denominator can take a zero value. For simple random sampling,
an approximately unbiased estimator is

N∗ = (M + 1)(n + 1)

(X + 1)
− 1 (1.11)

with an approximately unbiased variance estimator

v∗ = (M + 1)(n + 1)(M − X)(n − X)

(X + 1)2(X + 2)
.

When M +n ≥ N , both estimators are exactly unbiased (see Seber 1982, Sect. 3.1.1).
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This method can also be applied in epidemiology to the problem of estimating the
number N of people with a certain disease (e.g., diabetes) from two incomplete lists
(Wittes and Sidel 1968). Each list “captures” a certain proportion of the N people
with diabetes, but will miss some; we need to estimate those missed from both lists.
In this case the first list (which “tags” the individuals by virtue of being on the first
list) gives us M (= n1) people with diabetes while the second list give us n (= n2)
people. Then, if the number on both lists is m (= n11), our estimate of N from (1.10)
now takes the form

N∗ = (n1 + 1)(n2 + 1)

(n11 + 1)
− 1.

This alternative notation is mentioned as it used in Sect. 5.1.3 for extending the
problem to more than two lists. One of the key assumptions, namely that the two
lists are independent, can be achieved if one of the lists is obtained through a random
sample such as a random questionnaire (e.g., Seber et al. 2000).

In the case of inverse sampling for a capture-recapture experiment, with k being
the predetermined number of marked and Y being the final random sample size, an
unbiased estimator of N is

N∗
in = Y (M + 1)

k
− 1

with exact variance (Seber 1982, Sect. 3.5)

var(N∗
in) = (M − k + 1)(N + 1)(N − M)

k(M + 2)
.

1.4 Inference for a Proportion

In order to obtain a confidence interval for p we first construct a confidence interval
for M and then divide it by N . In the case of simple random sampling without
replacement, X is a discrete random variable so that it is not possible to construct
an interval with an exact prescribed confidence so instead we focus on conservative
confidence sets. Given X = x , this implies finding a set of values of y depending on x
from the Hypergeometric probability function (1.1) that contains M with a confidence
of at least 100(1 − α) %. For example, a conservative two-sided confidence interval
for M is (ML , MU ), where ML is the smallest integer M such that

pr(X ≥ x) =
∑
y≥x

f1(y) >
α

2
,

and MU is the largest integer M such that

pr(X ≤ x) =
∑
y≤x

f1(y) >
α

2
.

http://dx.doi.org/10.1007/978-3-642-39041-8_5
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The above method of constructing a confidence interval is a standard one as it con-
sists of the set of all M0 such that a test of the hypothesis H0 : M = M0 versus the
two-sided alternative Ha : M �= M0 is not rejected at the α level of significance. We
essentially obtain the interval by “inverting” a family of hypothesis tests. Wendell and
Schmee (2001) call this method the T - method, and the interval is usually shorter (cf.
Buonaccorsi 1987) than the finite population version of the Clopper-Pearson interval
found in Cochran (1977). They also introduced their L-method based on the likeli-
hood function that appears to give intervals that are closer to the nominal confidence
level than those from the T -method. The above theory can be readily applied to
finding one-sided intervals. As iterative methods are available for computing various
terms of the Hypergeometric distribution, methods based on using the exact values
of the distribution rather than some approximation (e.g., by the Normal distribution
mentioned below) are becoming readily available, and these are generally preferred.
They can be used for any discrete distribution including distributions associated with
inverse sampling. Methods using these exact values are referred to as “exact” meth-
ods, which is confusing. However this usage is common in the literature so I will
continue to use it.

We saw above that the Hypergeometric distribution can be approximated by the
Binomial distribution when the sampling fraction f is small enough. When p is small,
another “rule of thumb” for the use of the approximation that is sometimes suggested
is p < 0.1 and n ≥ 60. The Binomial distribution and associated confidence intervals
are discussed in detail in Chap. 2.

It is also of interest to see how we can use a Normal approximation to construct
confidence intervals for p. A number of rules of thumb are available in the literature
such as N > 150, M > 50, and n > 50, or np > 4, for which P̂ is approximately
distributed as N (p, σ 2(P̂)). Using continuity corrections, an approximate two-sided
100(1 − α) % confidence interval is given by (pL , pU ), where pL and pU satisfy

pr(X ≥ x | p = pL) = 1 − Φ

⎛
⎝ x − 0.5 − npL√

npL(1 − pL) N−n
N−1

⎞
⎠ = α

2
,

and

pr(X ≤ x | p = pU ) = Φ

⎛
⎝ x + 0.5 − npL√

npU (1 − pU ) N−n
N−1

⎞
⎠ = α

2
,

where Φ(x) is the distribution function for the standard Normal N (0, 1) distribution.
Let z = z(α/2) be the 100(1 − α

2 ) percentile of the standard Normal distribution. If
y = N−n

N−1 z2, then setting a = ±z in Φ(a) for the above two equations, we have for
example

ynpL(1 − pL) = (x − 0.5 − npL)2,

http://dx.doi.org/10.1007/978-3-642-39041-8_2
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so that pL is the smaller root of the quadratic

p2(n2 + ny) − p[ny + 2n(x − 0.5)] + (x − 0.05)2.

Similarly pU is the larger root of

p2(n2 + ny) − p[ny + 2n(x + 0.5)] + (x + 0.05)2.

A crude approximation is to use the unbiased variance estimator σ̂ 2(P̂) instead
of σ 2(P̂) and, using a correction for continuity, we obtain the confidence interval

[pL , pU ] =
[

p̂ ± z1− α
2

√
N − n

N (n − 1)
p̂(1 − p̂) + 1

2n

]
.

However this method is more of historical interest.
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Chapter 2
Single Probability

Abstract The Binomial distribution and its properties are discussed in detail
including maximum likelihood estimation of the probability p. Exact and approxi-
mate hypothesis tests and confidence intervals are provided for p. Inverse sampling
and the Negative Binomial Distribution are also considered.

Keywords Bernoulli trials · Maximum likelihood estimate · Likelihood-ratio test ·
Inverse sampling · Negative-Binomial distribution · Exact hypothesis test for
a probability · Exact and approximate confidence intervals for a probability ·
Poisson approximation to the Binomial distribution

2.1 Binomial Distribution

An important model involving a probability is the Binomial distribution. It was
mentioned in Chap. 1 as an approximation for the Hypergeometric distribution. It is,
however, an important distribution in its own right as it arises when we have a fixed
number n of Bernoulli experiments or “trials.” Such trials satisfy the following three
assumptions:

1. The trials are mutually independent.
2. Each trial has only two outcomes, which we can label “success” or “failure.”
3. The probability p (= 1 − q) of success is constant from trial to trial.

2.1.1 Estimation

If X is the number of successes from a fixed number n of Bernoulli trials, then X
has the Binomial probability function

f1(x) =
(

n

x

)
px qn−x , x = 0, 1, . . . , n. (2.1)

G. A. F. Seber, Statistical Models for Proportions and Probabilities, 9
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Using the Binomial Theorem we note that

n∑
x=0

f1(x) = (p + q)n = 1.

Ignoring constants, the likelihood function is L(p) = px qn−x so that the maximum
likelihood estimator of p is obtained by setting

∂logL(p)

∂ p
= x

p
− n − x

1 − p
= 0,

namely P̂ = x/n. It is a maximum as the second derivative is negative. Also

−E

[
∂2logL(p)

∂ p2

]
= E

[
X

p2 + n − X

(1 − p)2

]

= n

p
+ n

1 − p

= n

pq
,

which is the inverse of the Cramér-Rao lower bound. As P̂ = X/n is unbiased and
has variance pq/n, it is the minimum variance unbiased estimator of p.

2.1.2 Likelihood-Ratio Test

To test the hypothesis H0 : p = p0 versus the alternative Ha : p �= p0 we can use
the likelihood-ratio test

Λn = L(p0)

supp L( p̂)
= px

0 (1 − p0)
n−x

p̂x (1 − p̂)n−x
.

When H0 is true, −2logΛn is asymptotically distributed as χ2
1, the Chi-square dis-

tribution with one degree of freedom. We reject H0 at the α level of significance if
the observed value of −2logΛn exceeds χ2

1(α), the upper α tail value.

2.1.3 Some Properties of the Binomial Distribution

Moments of the Binomial distribution can be found by differentiating or expanding
its moment generating function

Mx (t) = E(etx ) = (q + et p)n .
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For example, E(X) = M ′
x (0) = np and E(X2) = 1

2! M ′′
X (0) = n(n − 1)p2 + np.

Factorial moments are sometimes useful such as (setting y = x − r )

E[X (X − 1) · · · (X − r + 1)] =
n∑

x=r

x(x − 1) · · · (x − r + 1)
n!

x !(n − x)! px qn−x

= pr n · · · (n − r + 1)

n−r∑
y=0

(
n − r

y

)
pyqn−r−y

= pr n(n − 1) · · · (n − r + 1)(p + q)n−r

= pr n(n − 1) · · · (n − r + 1).

For example, setting r = 2, E[X (X − 1)] = p2n(n − 1).
One other result that has been found useful is in the situation of studying variables

like P̂−1 = n/X as an estimate of p−1. This raises problems as we can have X = 0.
A useful idea is to modify the variable and consider

E

(
n + 1

X + 1

)
= 1

p

n∑
i=0

n + 1!
(x + 1)!(n + 1 − x − 1)! px+1qn+1−(x+1)

= 1

p

n+1∑
y=1

(
n + 1

y

)
pyqn+1−y (y = x + 1)

= 1

p
[(p + q)n+1 − qn+1]

= 1

p
(1 − qn+1).

For large n, (n + 1)/(X + 1) is an approximately unbiased estimate of 1/p. This
technique works well with a number of other discrete distributions as we saw in
Chap. 1.

When n = 1, X becomes an indicator variable J , say, where J = 1 with proba-
bility p, and J = 0 with probability q. Then E(J ) = p and

var(J ) = E(J 2) − (E(J ))2 = p2 − p = pq.

If Ji is the indicator variable associated with the i th trial, we can now write X =∑n
i=1 Ji with mean np and variance

∑n
i=1 var(Ji ) = npq. Also, P̂ = X/n = J̄ so

that by the Central Limit Theorem P̂ is asymptotically N (p, pq/n).

http://dx.doi.org/10.1007/978-3-642-39041-8_1
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2.1.4 Poisson Approximation

If we let p → 0 and n → ∞ such that λn = np → λ, where λ is a constant, then
the Binomial moment generating function is given by

(q + pet )n =
[

1 − λn

n
(1 − et )

]n

→ e−λ(1−et ),

the moment generating function of the Poisson distribution, Poisson(λ), with mean
λ. We see then that the Binomial distribution can be approximated by the Poisson
distribution with mean np when p is small and n is large. Quantiles of the Poisson
distribution can be obtained from the Chi-square distribution using the result

pr(Y ≤ x) = pr(χ2
2(1+x) ≤ 2λ),

where Y ∼ Poisson(λ). We could use this result to construct an approximate confi-
dence interval for np and hence for p.

2.2 Inverse Sampling

Suppose we have a sequence of Bernoulli trials that continues until we have r suc-
cesses. If W is the number of failures, then the sample size Y = W + r is random
with the last trial being a success. Hence, W has a Negative-Binomial distribution
with probability function

f2(w) =
(

w + r − 1

r − 1

)
pr−1qw · p =

(
w + r − 1

r − 1

)
pr qw, w = 0, 1, . . . .

This probability function can be expressed in a number of different ways (Johnson
et al. 2005, Chap. 5). The moment generating function of W is Mw(t) = (Q0 −
P0et )−r , where

P0 = 1 − p

p
and Q0 = 1

p
.

Differentiating Mw(t) leads to

E(W ) = r P0 and var(W ) = r P0 Q0.

We now wish to find an unbiased estimator of p and an unbiased estimate of its
variance. We do this using estimators due to Murthy (1957) that were shown by
Salehi and Seber (2001) to apply to inverse sampling. Since W is a complete sufficient
statistic for p, it can be shown that the minimum variance unbiased estimator for p
is
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P̂in = r − 1

r + W − 1
= r − 1

Y − 1
,

which is the same as for sampling without replacement (Sect. 1.2). This is perhaps not
surprising as the same equality occurs with simple random sampling with or without
replacement. An unbiased variance estimator of var(P̂in) is (Salehi and Seber 2001)

v̂ar(P̂in) = P̂in(1 − P̂in)

Y − 2
.

Unbiasedness can also be proved directly using the methods of Sect. 1.2.

2.3 Inference for a Probability

There is a considerable literature on confidence intervals for the Binomial distribu-
tion. We begin by considering so-called “exact” confidence intervals mentioned in
Sect. 1.4, which are confidence intervals based on the exact Binomial distribution and
not on an approximation for it. This also leads to an exact hypothesis test. Because of
the discreteness of the distribution we cannot normally obtain a confidence interval
with an exact prescribed confidence of (1 − α) % but rather we aim for a (conserva-
tive) confidence level of at least 100(1 − α)%. After considering exact intervals we
will then derive some approximate intervals and tests based on approximations for
the Binomial distribution.

2.3.1 Exact Intervals

Given an observed value X = x for a Binomial distribution, we can follow the
method described in Sect. 1.4 to obtain an exact confidence interval. We want to
find probabilities pL and pU such that, for a two-sided confidence interval with
confidence 100(1 − α) %,

pr(X ≥ x | p = pL) =
n∑

i=x

(
n

i

)
pi

L(1 − pL)n−i = α

2
,

and

pr(X ≤ x | p = pU ) =
x∑

i=0

(
n

i

)
pi

U (1 − pU )n−i = α

2
.

The interval (pL , pU ) is known as the Clopper-Pearson confidence interval (Clopper
and Pearson 1934). The tail of the Binomial distribution can be related to the tail of
the F-distribution through the relationship (Jowett 1963)

http://dx.doi.org/10.1007/978-3-642-39041-8_1
http://dx.doi.org/10.1007/978-3-642-39041-8_1
http://dx.doi.org/10.1007/978-3-642-39041-8_1
http://dx.doi.org/10.1007/978-3-642-39041-8_1
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x∑
i=0

(
n

i

)
pi (1 − p)n−i = pr

{
Y ≤ (1 − p)(x + 1)

p(n − x)

}
, (2.2)

where Y has the F-distribution F(2(n − x), 2(x + 1)). If F1− α
2
(·, ·) denotes the

100(1 − α/2)th percentile of the F-distribution, then1

pL = x

x + (n − x + 1)F1− α
2
(2(n − x + 1), 2x)

and

pU = (x + 1)F1− α
2
(2(x + 1), 2(n − x))

n − x + (x + 1)F1− α
2
(2(x + 1), 2(n − x))

.

The percentiles of the F-distribution are provided by a number of statistical software
packages. The above interval is very conservative and the coverage probability often
substantially exceeds 1 − α. One way of dealing with this is to use the so-called
“mid p-value” where only half of the probability of the observed result is added to
the probability of more extreme results (Agresti 2007, pp. 15–16). This method is
particularly useful for very discrete distributions (i.e., with few well-spaced observed
values). One theoretical justification for its use is given by Hwang and Yang (2001).
Further comments about the method are made by Berry and Armitage (1995).

2.3.2 Exact Hypothesis Test

There is some controversy as to how to carry out an “exact” test of the hypothesis
H0 : p = p0 versus the two-sided alternative Ha : p �= p0. One method is as
follows. If p̂ < p0, we evaluate

g(p0) =
x∑

i=0

(
n

i

)
pi

0(1 − p0)
n−i = γ,

where 2γ is the p-value of the test. If p̂ > p0, we evaluate 1−g(p0)+pr(X = x) = δ,
where 2δ is the p-value of the test. We can use (2.2) to evaluate the p-value exactly
or use F-tables if the software is not available. This method is referred to as the TST
or Twice the Smaller Tail method by Hirji (2006, p. 59). As p-values tend to be too
large, some statisticians prefer to use the mid p-value, as mentioned above. It involves
halving the probability of getting the observed value x under the assumption of H0
being true. Hirji (2006, pp. 70–73) also defines three other methods for carrying out
the test,2 and discusses exact tests in general.

1 See, for example, http://www.ppsw.rug.nl/~boomsma/confbin.pdf.
2 See also Fay (2010).

http://www.ppsw.rug.nl/~boomsma/confbin.pdf
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2.3.3 Approximate Confidence Intervals

We saw above that P̂ is asymptotically N (p, pq/n), or more rigorously,

P̂ − p√
pq/n

is asymptotically N (0, 1).

An approximate two-sided 100(1 − α) % confidence interval for p therefore has
upper and lower limits that are solutions of the quadratic equation

( p̂ − p)2 = z(α/2)2 p(1 − p)

n
, (2.3)

where z(α/2) is the α/2 tail value of standard Normal N(0,1) distribution. This
confidence interval is usually referred to as the score confidence interval, though it is
also called the Wilson interval introduced in 1927 as it inverts the test H0 : p = p0
obtained by substituting p for p0 in (2.3). We note for later reference that z(α/2)2 =
χ2

1(α), where the latter is the 1 −α quantile of the Chi-squared distribution with one
degree of freedom.

An alternative method is based on the fact that

P̂ − p√
P̂(1 − P̂)/n

is also asymptotically N (0, 1)

yielding the confidence interval

p̂ ± z(α/2)

√
p̂(1 − p̂)

n
. (2.4)

This is usually referred as the Wald confidence interval for p, since it results from
inverting the Wald test for p. It is the set of p0 values having a p-value exceeding
α in testing H0 : p = p0 versus Ha : p �= p0 using the test statistic z = ( p̂ −
p0)/

√
p̂(1 − p̂)/n.

Agresti and Coull (1998) compared the above two methods and the exact con-
fidence interval and came to a number of conclusions. First, the score interval per-
formed the best in having coverage probabilities close to the nominal confidence
level. Second, they recommended its use with nearly all sample sizes and parameter
values. Third, the exact interval remains quite conservative even for moderately large
sample sizes when p tends to be 0 or 1. Fourth, the Wald interval fairs badly when
p is near 0 or 1, one reason being that p̂ is used as the midpoint of the interval
when the Binomial distribution is highly skewed. Finally, they provided an adaption
of the Wald interval with p̂ = x/n replaced by (x + 2)/(n + 4) in (2.4) (the “add
two successes and two failures” rule) that also performs well even for small samples
when α = 0.05.
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Brown et al. (2001) discussed the extreme volatility and oscillation of the Wald
interval’s behavior, due to the discreteness of the Binomial distribution, even when
n is quite large and p is not near 0 or 1. They showed that the usual rules given
in texts for when the Wald interval is satisfactory (e.g., np, n(1 − p) are ≥ 5 (or
10)) are somewhat defective and recommended three intervals: (1) the score (Wil-
son) interval, (2) an adjusted Wald interval they call the Agresti-Coull interval, and
(3) an interval based on Jeffrey’s prior distribution for p that they call Jeffrey’s
interval.

Solving the quadratic (2.3), the Wilson interval can be put in the form, after some
algebra,

p ∈ p̃ ± κn1/2

n + κ2 ( p̂q̂ + κ2/(4n))1/2,

where

κ = z(α/2), and p̃ = x + κ2/2

n + κ2 = x̃

ñ
, say.

The Agresti-Coull interval takes the form

p ∈ p̃ ± κ

√
p̃(1 − p̃)

ñ
.

Note that z(0.025) = 1.96 ≈ 2, which gives the above “add 2” rule. These two
intervals have the same recentering that can increase coverage significantly for p
away from 0 or 1 and eliminate systematic bias. Further simulation support for the
“add 2” rule is given by Agresti and Caffo (2000).

Using a Beta prior distribution for p, say Beta(a1, a2) (a conjugate prior for
the Binomial distribution), it can be shown that the posterior distribution for p
is Beta(a1 + x, a2 + n − x). Using Jeffrey’s prior (a1 = 1/2, a2 = 1/2),
a 100(1 − α) % equal-tailed posterior confidence interval (pL(x), pU (x)) is given
by

pL(x) = B

(
α

2
; x + 1

2
, n − x + 1

2

)
and pU (x) = B

(
1 − α

2
; x + 1

2
, n − x + 1

2

)
.

where pL(0) = 0, pU (n) = 1, and B(γ; m1, m2) is the γ quantile of the
Beta(m1, m2) distribution. Brown et al. (2001) considered further modifications
when p is near 0 or 1. They recommended either the Wilson or Jeffrey’s intervals for
n ≤ 40, while all three are fairly similar for n > 40, with the Agresti-Coull interval
being easy to use and remember, though a little wider.

Brown et al. (2002) added as a contender the interval obtained by inverting the
likelihood-ratio test that accepts the null hypothesis H0 : p = p0 of Sect. 2.1.2
at the α level of significance, though it requires some computation. It takes the
form
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{
p : x log p + (n − x)log (1 − p) ≥ x log p̂ + (n − x)log (1 − p) − χ2

1

(
α

2

)}
.

They also concluded that the Wilson, the likelihood ratio, and Jeffrey’s intervals are
comparable in both coverage and length, though the Jeffrey’s interval is a bit shorter
on average. Further comments are made by Newcombe (1998), who compared a
number of intervals.
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Chapter 3
Several Proportions or Probabilities

Abstract We discuss the Multi-hypergeometric and Multinomial distributions and
their properties with the focus on exact and large sample inference for comparing two
proportions or probabilities from the same or different populations. Relative risks
and odds ratios are also considered. Maximum likelihood estimation, asymptotic
normality theory, and simultaneous confidence intervals are given for the Multino-
mial distribution. The chapter closes with some applications to animal populations,
including multiple-recapture methods, and the delta method.

Keywords Multi-hypergeometric distribution · Multinomial Distribution · Com-
paring two proportions or probabilities · Relative risk · Odds ratio · Maximum like-
lihood estimation · Simultaneous confidence intervals for probabilities · Random
distribution of animals · Multiple-recapture models · Delta method

3.1 Multi-Hypergeometric Distribution

Suppose we have k subpopulations of sizes Mi (i = 1, 2, . . . , k), where
∑k

i=1 Mi =
N , the total population size. Let pi = Mi/N . A simple random sample of size
n is taken from the population yielding Xi from the i th subpopulation (i =
1, 2, . . . , k). The joint probability function of X = (X1, X2, . . . , Xk)

′ is the Multi-
hypergeometric distribution (see, for example, Johnson et al. 1997, Chap. 39),
namely

f (x) = pr(X = x) =
k∏

i=1

(
Mi

xi

)/(
N

n

)
, 0 ≤ xi ≤ min(n, Mi ),

k∑
i=1

xi = n.

(3.1)
Since we can add the subpopulations together we see that the marginal distribu-
tion of an Xi is also Hypergeometric, with two subpopulations Mi and N − Mi ,
namely

G. A. F. Seber, Statistical Models for Proportions and Probabilities, 19
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fi (xi ) =
(

Mi

xi

)(
N − Mi

n − xi

)/(
N

n

)
.

In a similar fashion we see that the probability function of X1 + X2 is the Multi-
hypergeometric distribution

f12(x1, x2) =
(

M1 + M2

x1 + x2

)(
N − M1 − M2

n − x1 − x2

)/(
N

n

)
.

From Sect. 1.1, var(Xi ) = npi (1 − pi )r , where r = (N − n)/(N − 1), and

var(X1 + X2) = nr(p1 + p2)(1 − p1 − p2).

To find the covariance, cov(X1, X2), of X1 and X2 directly requires some awkward
algebra. Fortunately we can use the following result:

cov(X1, X2) = 1

2
{var(X1 + X2) − var(X1) − var(X2)}

= rn{(p1 + p2)(1 − p1 − p2) − p1(1 − p2) − p2(1 − p2)}
= −rnp1 p2. (3.2)

We then find that if qi = 1 − pi , then

var(X1 − X2) = var(X1) + var(X2) − 2cov(X1, X2)

= nr{p1q1 + p2q2 + 2p1 p2}
= nr{p1 + p2 − (p1 − p2)

2}. (3.3)

3.2 Comparing Two Proportions from the Same Population

We consider two different situations depending on whether the proportions are based
on independent data or correlated data. The latter situation involving dependent data
is a special case of matched-pairs discussed further in Sect. 4.4.4.

3.2.1 Nonoverlapping Proportions

Suppose we wish to estimate the difference in the proportions p1 − p2 voting for
two candidates in an election with N voters. Let Yi be a random variable that takes
the value +1 if the sampled person prefers candidate one, −1 for candidate two, and
0 otherwise. Then, from Scott and Seber (1983), an estimator of p1 − p2 is

http://dx.doi.org/10.1007/978-3-642-39041-8_1
http://dx.doi.org/10.1007/978-3-642-39041-8_4


3.2 Comparing Two Proportions from the Same Population 21

P̂1 − P̂2 = X1 − X2

n
= Y ,

so that by the Central Limit Theorem,

P̂1 − P̂2 is asymptotically N (p1 − p2, r{p1 + p2 − (p1 − p2)
2}/n),

where r = (N −n)/(N −1). We can use the above result to make large sample infer-
ences about p1− p2. For example, replacing the pi by their estimates, an approximate
95 % confidence interval for p1 − p2 is

p̂1 − p̂2 ± 1.96{r [ p̂1 + p̂2 − ( p̂1 − p̂2)
2]/n}1/2. (3.4)

To test H0 : p1 = p2 we can use the Normal approximation

z0 = p̂1 − p̂2√
r( p̂1 + p̂2)/n

, (3.5)

where z0 is from N (0, 1). For a two-sided alternative Ha : p1 �= p2 we reject H0
at the α level of significance if |z0| > z(α/2), where α is the upper α point of the
N (0, 1) distribution.

3.2.2 Dependent Proportions

There is another common situation where the two proportions are dependent and
overlap (Wild and Seber 1993). Suppose we have a population of N people and a
sample of size n is chosen at random without replacement. Each selected person is
asked two questions to each of which they answer “Yes” (1) or “No” (2), so that
p12 is the proportion answering yes to the first question and no to the second, p11
is the proportion answering yes to both questions, and so forth. Then the proportion
answering yes to the first question is p1 = p11+p12 and the proportion answering yes
to the second question is p2 = p11 + p21. Let Xi j (i = 1, 2; j = 1, 2) be the number
observed in the sample in the category with probability pi j , let X1 = X11 + X12, the
number answering yes to the first question, and let X2 = X11 + X21 be the number
answering yes to the second question. The interest is then in comparing p1 and p2,
and in the popular press the fact that they overlap on p11 is often ignored in the
calculations. For example, only p̂1 = x1/n and p̂2 = x2/n are reported while x12
and x21 are not.

The four variables Xi j have a Multi-hypergeometric distribution, and

P̂1 − P̂2 = X1 − X2

n
= X12 − X21

n
= P̂12 − P̂21.
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Then
E(P̂1 − P̂2) = p12 − p21 = p1 − p2,

and, from (3.3),

var(P̂1 − P̂2) = 1

n2 var(X12 − X21)

= 1

n2 {var(X12) + var(X21) − 2cov(X12, X21)}
= r

n
{p12 + p21 − (p12 − p21)

2}. (3.6)

We can now use the above theory to make inferences about p1 − p2. However, if
we are only given the values p̂1 and p̂2, which is often the case with news reports,
what can we do? Using p11 + p12 + p21 + p22 = 1, we first note that

p12 + p21 = p1 + p2 − 2p11 = q1 + q2 − 2p22, qi = 1 − pi (i = 1, 2).

If d = |p12 − p21|, it follows from (3.6) and p12 + p21 > |p12 − p21| that

r

n
d(1 − d) ≤ var(P̂1 − P̂2) ≤ r

n
[min{(p1 + p2), (q1 + q2)} − (p1 − p2)

2].

Estimating pi by P̂i and d by |P̂1 − P̂2| we can use the estimated upper bound to
construct an approximate conservative confidence interval for p1 − p2, as in (3.4).

There may be a problem with the unknown responses “Don’t know” and “Non-
responses.” If we lump the unknown responses with the “No” responses, then we
are only looking at the proportions of people who are prepared to make a “Yes”
response. We could also include the unknown responses with the “Yes” responses in
one question and with the “No” responses in the other so as to minimize the differ-
ence P̂1 − P̂2. If this difference is still significant, then we have stronger evidence of
a real difference.

If we wish to test H0 : p1 = p2 we set p12 = p21 and use (3.5), namely

z0 = p̂12 − p̂21√
r( p̂12 + p̂21)/n

(3.7)

A lower bound for z0 is

|zL | = | p̂1 − p̂2|√
r · min(̂p1 + p̂2, q̂1 + q̂2)/n

.
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3.2.3 Two Independent Proportions

Suppose we have simple random samples of size ni from two independent Hyper-
geometric distributions with unknown proportions pi = Mi/Ni , sampling fractions
fi = ni/Ni , and estimators P̂i = Xi/ni . If ri = (Ni − ni )/(Ni − 1), then, by the
Central Limit Theorem,

P̂1 − P̂2 − (p1 − p2)√
r1 P̂1(1 − P̂1)/n1 + r2 P̂2(1 − P̂2)/n2

is approximately Normally distributed as N (0, 1) when ni pi , ni qi , and N are suffi-
ciently large. There are problems with this approximation when the fi are large, say
greater than 0.5 (Lahiri et al. 2007). In most applications, fi < 0.1 so that Binomial
approximations can be used along with the theory in the next section.

To test H0 : p1 = p2 (= p, say ) we can use the above Normal approxima-
tion with the common value of p now estimated by (X1 + X2)/(n1 + n2), giving a
score test. This test was compared with a bootstrap type of test called the E-test by
Krishnamoorthy and Thomson (2002) that involves computing sums of Hypergeo-
metric probabilities.

3.3 Comparing Two Probabilities from Independent Binomial
Distributions

We shall look at several different comparisons such as the difference, ratio (odds)
and odds ratio (defined below) for two probabilities. Estimation, hypothesis testing,
and confidence intervals, including exact procedures will be considered.

3.3.1 Difference of Two Probabilities

Like the single probability, this topic has received a great deal of attention. Suppose
we have independent samples from independent Binomial distributions Bin(ni , pi )

(i = 1, 2) and we wish to make inferences about δ = p1 − p2. If the number of
“successes” are respectively X1 and X2, then we have the estimator

δ̂ = P̂1 − P̂2 = X1

n1
− X2

n2

with variance
var(̂δ) = var(P̂1) + var(P̂2) = p1q1

n1
+ p2q2

n2
.
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Since P̂i is asymptotically Normal, the difference is also asymptotically Normal for
large ni . Replacing the pi by their estimates in var(̂δ) we have the usual 100(1−α)%
confidence interval

p1 − p2 ∈ ( p̂1 − p̂2) ± κ

√
p̂1(1 − p̂1)

n1
+ p̂2(1 − p̂2)

n2
, (3.8)

where κ = z(α/2). This interval can be obtained by inverting the so-called Wald test
for the hypothesis H0 : p1 = p2 (= p, say) and is sometimes referred to as the Wald
interval. This interval has poor coverage properties and a number of alternatives have
been suggested that we now consider.

Agresti and Caffo (2000) suggested replacing each p̂i by p∗
i and ni by n∗

i in (3.8),
where

p∗
i = x∗

i

n∗
i

= xi + κ2/2

ni + κ2 ≈ xi + 2

ni + 4
,

for 95 % confidence intervals, their so-called “add 2” rule. This performs well over
a wide range of parameter values and is easy to remember and compute. Because of
the variety of recommended (and uncertain) sample size guidelines for the Wald
intervals, Agresti and Caffo suggest that with their method, “one might simply
by-pass sample size rules.” Agresti and Min (2005, p. 519) found that the above
method “performs well in a broad variety of conditions, even with small samples.”
They also found that it performs at least as well as the Bayesian intervals, and usually
better, in terms of “the prevalence of under-coverage probabilities” when the samples
are small. The interval does tend to be wider though. A number of authors, in their
comparisons, refer to another version of the Agresti and Caffo interval that uses an
“add 1” rule.

Another method is the hybrid-score interval of Newcombe (1998, method 10),
which is computationally straightforward and performs well (cf. Brown and Li 2005).
From Eq. (2.3) with for p replaced by p1 and p2, respectively, we let (�i , ui ) be the
lower and upper roots of

( p̂i − pi )
2 = z(α/2)2 pi (1 − pi )

n
.

Then the lower and upper bounds (pL , pU ) of Newcombe’s 100(1−α)% confidence
interval are

pL = ( p̂1 − p̂2) − z(α/2)

√
�1(1 − �2)

n1
+ u2(1 − u2)

n2

and

pU = ( p̂1 − p̂2) + z(α/2)

√
u1(1 − u2)

n1
+ �2(1 − �2)

n2
.

http://dx.doi.org/10.1007/978-3-642-39041-8_2
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Roughly speaking, the method uses average boundary variance estimates.
There is one more method that is more computationally complex and requiring

an iterative method, which can be found by inverting the score test of the hypothe-
sis H0 : δ = d. Although this method performs no better than the previous closed
form methods, it is instructive to see how the inversion process works. Following
Mee (1984), we first find the maximum likelihood estimates p̃i of the pi subject to
the constraint p1 − p2 = d. The log likelihood function is the sum of the two log
likelihoods to which we add λ(p1 − p2 − d), where λ is a Lagrange multiplier. Dif-
ferentiating this expression with respect to p1 and p2 we get the maximum likelihood
equations

x1

p̃1
− n1 − x1

1 − p̃1
+ λ = 0,

x2

p̃2
− n2 − x2

1 − p̃2
− λ = 0, and p̃1 − p̃2 = d.

Setting p̂i = xi/ni , we find that these equations reduce to

p̃1 − p̂1

ṽ1
+ p̃2 − p̂2

ṽ2
= 0 and p̃2 = p̃1 − d,

where ṽi = p̃i (1 − p̃i )/ni . The confidence interval is then given by

{d : | p̂1 − p̂2|/(̃v1 + ṽ2)
1/2 < z(α/2)}.

Mee presents the p̃i as unique solutions of the following cubic equations (for 0 <

p̂i < 1, i = 1, 2, and d replaced by −d as he works with p2 − p1):

p̃1 = p̂1ṽ
−1
1 + ( p̂2 + d )̃v−1

2

ṽ−1
1 + ṽ−1

2

and p̃2 = p̃1 − d,

subject to the constraints 0 < p̃i < 1 (i = 1, 2). Iterative methods are proposed to
find the endpoints of the confidence interval and Mee suggests using the endpoints
of the Wald confidence interval as starting points. Closed form expressions are given
by Miettinen and Nurminen (1985) and discussed by Andrés and Tejedor (2002).

One parameter that has raised some interest is medicine is “the number needed to
treat” or NNT = 1/(p1 − p2). A confidence interval for it can be found, for example,
by inverting an interval for p1 − p2, provided the latter does not contain zero (cf.
Fagerland et al. 2011).

We can test the hypothesis H0 : p1 = p2 (= p, say) using the large sample score
test

z0 = p̂1 − p̂2√
p̂(1 − p̂)( 1

n1
+ 1

n2
)
,

where p̂ = (x1 + x2)/(n1 + n2). We reject H0 at the α level of significance if
|z0| > z(α/2). Since the square of a standard normal variable N (0, 1) has a chi-



26 3 Several Proportions or Probabilities

square distribution χ2
1, it can be shown after some algebra that the square of the

above statistic is the well-known Pearson’s chi-square test given in Sect. 4.4.2 later.
The reader should be aware that the whole subject of comparing two probabilities

is a diverse one as there are a variety of opinions expressed in the literature on the
most appropriate procedure. With the advent of better computing facilities, exact
rather than approximate methods are now being recommended. Such methods are
discussed in Sect. 4.4.3. These exact and approximate methods have been recently
compared by Fagerland et al. (2011), who give some recommendations.

3.3.2 Relative Risk

The difference between two proportions p1 − p2 is much more critical when the
proportions are near 0 (or 1) than near 1/2. For example, the proportion of people
experiencing side effects of a particular drug are usually small. If the observed pro-
portions of two drugs are 0.010 and 0.001, then the difference of 0.009 is the same as
if the two proportions were 0.510 and 0.501. However, in the first case, the first drug
has 10 times as many reactions as the second. A better measure in this case is the
relative risk φ = p1/p2. Assuming we have observations x1 and x2 from two inde-
pendent Binomial distributions, Bin(ni , pi ) (i = 1, 2), we would now be interested
in obtaining confidence intervals for φ. The obvious estimate of φ is φ̂ = p̂1/ p̂2,
where p̂i = xi/ni . However φ̂ has a highly skewed sampling distribution unless the
samples are very large. To get round this problem we can use a log transformation
that works well in normalizing the distribution when the underlying distribution is
skewed right, as for example when a binomial distribution has small pi (Katz et al.
1978). Using a Taylor expansion from (3.31) in the Appendix (Sect. 3.7) below, we
find that

var(log P̂i ) ≈ (1 − pi )/ni pi .

Hence for independent samples, we can sum the above expression for i = 1, 2,
replace each pi by its estimate, and obtain the following large sample 100(1 − α)%
confidence interval for log φ, namely

log( p̂1/ p̂2) ± z(α/2)

√
1 − p̂1

x1
+ 1 − p̂2

x2
.

Taking exponentials of the above limits give us a confidence interval for φ. This
interval does not work well for small or moderate sample sizes but we can improve
the situation by adding 1/2 to each item giving us

log
(x1 + 0.5)(n2 + 0.5)

(n1 + 0.5)(x2 + 0.5)
±z(α/2)

√
1

x1 + 0.5
+ 1

x2 + 0.5
− 1

n1 + 0.5
− 1

n2 + 0.5
.

http://dx.doi.org/10.1007/978-3-642-39041-8_4
http://dx.doi.org/10.1007/978-3-642-39041-8_4
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When one of the two outcomes has a small probability (pi or qi ) we work with the
ratio of the probabilities for that outcome. For example, if the pi ’s are near 1 we can
work with the observations ni − xi , and with qi instead of pi . An exact procedure is
available in Sect. 3.4.2 below when the probabilities are from the same population.

A number of other methods are available and these are described and compared
by Fagerland et al. (2011).

3.3.3 Odds Ratio

One other parameter of interest is the so called “odds,” p/(1 − p), and the “odds
ratio”

θ = p1/(1 − p1)

p2/(1 − p2)
.

When p1 = p2, θ = 1. Replacing each pi by p̂i , we can then estimate θ by θ̂ =
x1(n2 − x2)/x2(n1 − x1). Once again we can use a log transformation, and, from a
Taylor expansion (Sect. 3.7.1), we get

var

[
log

(
Xi

ni − Xi

)]
≈
(

1

ni pi
+ 1

ni qi

)2

var(Xi ) = 1

ni pi
+ 1

ni qi
= 1

ni pi qi
.

As X1 and X2 are independent, we an add the variances and then replace parameters
by their estimates giving us the following large sample 100(1 − α)% confidence
interval for θ, namely (Woolf 1955)

θ̂ ± z(α/2)

√
1

x1
+ 1

n1 − x1
+ 1

x2
+ 1

n2 − x2
. (3.9)

To avoid problems with zero elements one can add 0.5 to each element (Gart 1966)
giving us the estimate

θ̃ = (x1 + 0.5)(n2 − x2 + 0.5)

(x2 + 0.5)(n1 − x1 + 0.5)
.

The variance expression can also be adjusted by adding 0.5 to each element in the
variance. Agresti (1999) discussed these adjustments and provided an alternative
adjustment based on the idea of “smoothing toward independence.” The odds ratio
is considered further in the next chapter when discussing 2 × 2 contingency tables.
Exact confidence intervals are discussed there. Various methods for θ are described
and compared by Fagerland et al. (2011).
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3.4 Multinomial Distribution

If we can approximate sampling without replacement by sampling with replacement,
we can set r = 1 above, and the Multi-Hypergeometric distribution (3.1) can be
replaced by the Multinomial distribution with probability function

f (x) = n!
x1!x2! · · · xk ! px1

1 px2
2 · · · pxk

k ,

k∑
1=1

pi = 1. (3.10)

As
∑k

1=1 xi = n, this form of the multivariate distribution, as with (3.1), is singular
and has a singular variance-covariance matrix, � = {cov(xi , x j )}. Its one advantage
is its symmetric formulation. Setting r = 1 in Sect. 3.1, we get var(Xi ) = npi qi and
cov(Xi , X j ) = −npi p j . If x· =∑k−1

i=1 xi , a nonsingular formulation is

g(x1, . . . , xk−1) = n!
x1!x2! · · · xk−1!(n − x·)! px1

1 px2
2 · · · pxk−1

k−1

(
1 −

k−1∑
i=1

pi

)n−x·

,

(3.11)
which we use below. The Multinomial distribution also arises when we have n fixed
Bernoulli trials but with k possible outcomes rather than just two, as with the Binomial
distribution.

Arguing as in Sect. 3.1, we can add probabilities together to show that any subset
is also Multinomial. In particular, the marginal distribution of Xi is Bin(n, pi ). For
further properties of the Multinomial distribution see Johnson et al. (1997, Chap. 35).

3.4.1 Maximum Likelihood Estimation

Referring to the nonsingular multinomial distribution, the log-likelihood function
(excluding constants) is a function of p = (p1, p2, . . . , pk−1)

′, namely

logL(p) =
k−1∑
i=1

xi log(pi ) + xk log(pk),

where pk = 1 −∑k−1
i=1 pi and xk = n −∑k−1

i=1 xi . Then

∂logL(p)

∂ pi
= xi

pi
− xk

pk
= 0 for i = 1, 2, . . . , k − 1. (3.12)

Solving these equations leads to p̂i = xi p̂k/xk , and summing i = 1, 2, . . . , k gives
us

1 =
k∑

i=1

p̂i = n
p̂k

xk
so that p̂i = xi

n
for i = 1, 2, . . . , k.
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Replacing observations xi by random variables Xi , we find that the vector P̂ =
n−1(X1, X2, . . . , X K−1)

′ has mean p and positive-definite variance-covariance
matrix n−1�, where

� =

⎛
⎜⎜⎝

p1q1 −p1 p2 −p1 p3 · · · −p1 pk−1
−p2 p1 p2q2 −p2 p3 · · · −p2 pk−1

· · · · · · ·
−pk−1 p1 −pk−1 p2 −pk−1 p3 · · · pk−1qk−1

⎞
⎟⎟⎠

= diag(p) − pp′.

Here diag(p) is a diagonal matrix with diagonal elements p1, . . . , pk−1. From Seber
(2008, result 15.7), with 0 < pi < 1 for all i ,

�−1 = diag(p−1) + p−1
k 1k−11′

k−1,

where diag(p−1) has diagonal elements p−1
i . The inverse of a positive definite matrix

is also positive definite (Seber 2008, result 10.27).
To prove that P̂ maximizes the likelihood, we note first that

− ∂2logL(p)

∂ pi∂ p j
= δi j

xi

p2
i

+ xk

p2
k

(i, j = 1, 2, . . . k − 1), (3.13)

where δi j = 1 if i = j and 0 otherwise. As the matrix

−
{

∂2logL(p)

∂ pi∂ p j

}
p=p̂

= n[diag(̂p−1) + p̂−1
k 1k−11′

k−1] = �−1
p=p̂

is positive-definite for 0 < p̂i < 1 (i = 1, 2, . . . , k − 1), p̂ is a maximum.
We note from (3.13) that the (expected) information matrix is

− E

{
∂2logL(p)

∂ pi∂ p j

}
= n�−1, (3.14)

and its inverse is the Cramér-Rao lower bound for random vectors (using the Löwner
ordering of positive-definite matrices; see Seber 2008, Sect. 10.1). This inverse is also
the variance-covariance matrix of P̂, which implies that P̂i is the unbiased estimator
of pi with minimum variance. More generally, h′P̂ is the unbiased estimator of h′p
with minimum variance.
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3.4.2 Comparing Two Probabilities from the Same Population

In this section we consider exact and approximate methods of inference. By summing
probabilities over categories for the Multinomial distribution, we see that the sum of
any of the Xi is Bin(n,

∑
i pi ). In particular, X1 + X2 is Bin(n, p1 + p2) and the

conditional distribution of X1 given X1 + X2 is

pr(X1 = x1, X2 = x2 | X1 + X2 = x1 + x2)

= pr(X1 = x1, X2 = x2)

pr(X1 + X2 = x1 + x2)

=
(

x1 + x2

x1

)(
p1

p1 + p2

)x1
(

p2

p1 + p2

)x2

, (3.15)

which is Bin(m, p), where m = x1+x2 and p = p1/(p1+ p2). To test the hypothesis
H0 : p1 = p2 we can carry out an exact test of p = 1

2 using the above distribution
and the method of Sect. 2.3.2. We can also obtain an exact confidence interval for p,
say (pL , pU ), that can be turned into a confidence interval for the relative risk

p2

p1
= 1

p
− 1,

namely (p−1
U − 1, p−1

L − 1).

Arguing as in Sect. 3.2, we can also use (3.4) and (3.5) with r = 1 to construct an
approximate confidence interval for p1 − p2 and to test p1 = p2.

3.5 Asymptotic Multivariate Normality

We saw in Sect. 2.1.4 that an estimate of a probability P̂i = Xi/n can be treated as a
sample mean, and we now extend this to vectors. Let Y be a k-dimensional random
vector that takes the unit Cartesian vector yi with probability pi (i = 1, 2, . . . , k),
where yi has all zero elements except 1 in the i th position. If there are n trials, yi

will have a frequency of xi (i = 1, 2, . . . , k) in the sample, and the joint probability
function of the n y-observations is

∏k
i=1 pxi

i . We then have the random vector

P̂k = (P̂1, P̂2, . . . , P̂k)
′

= 1

n
(X1, X2, . . . , Xk)

′

= 1

n

k∑
i=1

Xi yi

= Y, say.

http://dx.doi.org/10.1007/978-3-642-39041-8_2
http://dx.doi.org/10.1007/978-3-642-39041-8_2
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If P̂ = P̂(k−1), then, by the Multivariate Central Limit theorem,
√

n(P̂−p) is asymp-
totically distributed as a (k − 1)-dimensional Multivariate Normal distribution with
mean 0 and nonsingular variance-covariance matrix �. This result also follows from
the general result that a maximum likelihood estimator is asymptotically Normal.

Setting Xk = n −∑k−1
i=1 Xi , we find that

n(P̂ − p)′(p−1
k 1k−11′

k−1)(P̂ − p) = (n − Xk − n(1 − pk))
2

npk

= (Xk − npk)
2

npk
,

and, from the properties of the Multivariate Normal distribution (cf. Seber 2008,
result 20.25)

n(P̂ − p)′�−1(P̂ − p) =
{

k−1∑
i=1

(Xi − npi )
2

npi

}
+ (Xk − npk)

2

npk

=
k∑

i=1

(Xi − npi )
2

npi

=
k∑

i=1

X2
i

npi
− n (3.16)

is asymptotically distributed as a χ2
k−1.

An alternative and shorter derivation of the Eq. (3.16) involves using the singular
Multinomial distribution of P̂(k), and by augmenting p to p(k) = (p′, pk)

′ and � to
�(k), say (by changing the subscript k − 1 to k). Then, �−

(k) = diag(p−1
1 , p−1

2 , . . . ,

p−1
k ) is a generalized inverse of �(k) (as �(k)�

−
(k)�k = �(k)). We have immediately

(Seber 2008, result 20.29, with A = �(k))

n(P̂(k) − p(k))
′�−

(k)(P̂(k) − p(k)) =
k∑

i=1

(Xi − npi )
2

npi

is asymptotically χ2
k−1, as �(k)1k = 0 (from

∑k
i=1 pi = 1) implies that �(k) has

rank k − 1.
We can now use (3.16) for inference. For example, we can test the hypothesis

H0 : p = p0 using the large sample test statistic

X2
0 = n(P̂ − p0)

′�0
−1

(P̂ − p0), (3.17)
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This is (3.16) with p replace by p0, and it has approximately the χ2
k−1 distribution

when H0 is true. Here �0 is � evaluated at p = p0. The above statistic X2
0 is usually

referred to as Pearson’s goodness-of-fit test.

3.5.1 Simultaneous Confidence Intervals

If χ2
k−1(α) is the upper α point (the 1 − α quantile) of χ2

k−1, we have from (3.16)
with large n,

1 − α ≈ pr
[
n (P̂ − p)′�−1(P̂ − p) ≤ χ2

k−1(α)
]

= pr[n a′�−1a ≤ b], say,

= pr

[
n sup

h:h �=0

{
(h′a)2

h′�h

}
≤ b

]
, (from Seber 2008, result 12.1(b)),

= pr

[
n
(h′a)2

h′�h
≤ b, all h ( �= 0)

]

= pr

[ |h′P̂ − h′p|
(h′�h/n)1/2 ≤

√
χ2

k−1(α), all h ( �= 0)

]
.

Replacing random variables by their observed values, we can therefore construct a
confidence interval for any linear function h′p, namely

h′p ∈ h′̂p ±
√

χ2
k−1(α)

(
h′�h

n

)1/2

, (3.18)

and the overall probability for the entire class of such intervals is exactly 1 − α.
However the intervals can be very wide as the class of intervals is large. The above
algebra is the same as that used to derive Scheffé’s simultaneous intervals that arise
in regression analysis (cf. Seber and Lee 2003, p. 123).

There are several things we can now do. By choosing h to have 1 in the i th position
and 0 elsewhere we have h′p = pi and the confidence interval becomes

pi ∈ p̂i ±
√

χ2
k−1(α)

√
pi (1 − pi )

n
, (i = 1, 2, . . . , k − 1) (3.19)

or (pi L , piU ), where pi L and piU are the roots of the quadratic

( p̂i − pi )
2 = χ2

k−1(α)
pi (1 − pi )

n
. (3.20)
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By setting h = −1k−1 (since pk − 1 = −∑k−1
i=1 pi ) we see that (3.19) also holds for

i = k.
Another approach is to replace each pi by its estimate in � to get �̂. Equa-

tion (3.18) now becomes

h′p ∈ h′̂p ±
√

χ2
k−1(α)

(
h′�̂h

n

)1/2

, (3.21)

where

h′�̂h = h′diag(̂p)h − h′̂p̂p′h =
k−1∑
i=1

h2
i p̂i −

( k−1∑
i=1

hi p̂i

)2

. (3.22)

Let li = hi − hk , then, since
∑k

i=1 pi =∑k
i=1 p̂i = 1 we have that

k−1∑
i=1

li ( p̂i − pi ) =
k−1∑
i=1

hi ( p̂i − pi ) − hk(pk − p̂k) =
k∑

i=1

hi ( p̂i − pi ),

and it can be shown that

l′�̂l =
k−1∑
i=1

l2
i p̂i −

( k−1∑
i=1

li p̂i

)2

=
k∑

i=1

h2
i p̂i −

( k∑
i=1

hi p̂i

)2

. (3.23)

If h, p̂, and p are now expanded to k-dimensional vectors h(k), p(k), and p̂(k), then
the set of all l′(̂p − p) is the same as the set of all h′

(k)(̂p(k) − p(k)). This means we
can use (3.21) with expanded vectors to include pk provided we replace k − 1 by k
in �.

By choosing h(k) with 1 in the i th position and zeros elsewhere, the interval for
pi is then

pi ∈ p̂i ±
√

χ2
k−1(α)

√
p̂i (1 − p̂i )

n
, i = 1, 2, . . . , k. (3.24)

Again, by choosing h(k) appropriately, we also get intervals for all pairwise differ-
ences pi − p j , namely (cf. (3.4) with r = 1)

pi − p j ∈ p̂i − p̂ j ±
√

χ2
k−1(α)

(
p̂i + p̂ j − ( p̂i − p̂ j )

2

n

)1/2

. (3.25)
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3.5.2 Bonferroni Confidence Intervals

A different set of intervals, usually referred to as Bonferroni confidence intervals,
can be obtained using a Bonferroni inequality (see Seber 2008, Sect. 22.2). Let Ei

(i = 1, 2, . . . , r ) be the event that the i th confidence interval statement is true, that
is it contains the true parameter value with probability 1 − α/r . If Ei denotes the
complementary event of Ei , then

δ = pr

(
r⋂

i=1

Ei

)
= 1 − pr

(⋂
i

Ei

)
= 1 − pr

(⋃
i

Ei

)

≥ 1 −
r∑

i=1

pr(Ei ) = 1 − 1

r

r∑
i=1

α = 1 − α.

Here δ is the probability of getting all the statements correct, which is at least 1 −α,
the “overall” confidence we can attach to the set of r intervals. As noted by Miller
(1981, p. 8), the above inequality is surprisingly sharp, providing r is not too large
(say, r ≤ 5) and α is small, say 0.01. For further comments about this problem and
which quantity to control, see Hochberg and Tamhane (1987, pp. 9–12). Applying

this method to say r linear combinations h′p we replace
√

χ2
k−1(α) by z(α/2r) in

(3.18), with r = k in (3.21), and r = t in (3.24), where t = (k
2

)
. Goodman (1965)

has indicated that the Bonferroni intervals tend to be shorter than those in (3.24) or
(3.25).

3.6 Animal Population Applications

This topic is included as it provides good examples of model building using the above
models along with Binomial and Poisson models. This is a very big area of ongoing
research and we will consider some of the simpler applications only.

3.6.1 Random Distribution of Animals

Suppose we have a closed animal population of unknown size N in an area of known
size A. By closed we mean that there is no movement in or out of the population
or any birth or death of animals during the study. The population area is split into k
areas of size ai so that A =∑k

i=1 ai . If we assume that the animals move randomly
and independently, we have N independent multinomial trials and the probability
that an animal is in area ai is pi = ai/A. If xi end up in this area, then the joint
distribution of the Xi is the Multinomial distribution with probability function
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N !∏k
i=1 xi !

k∏
i=1

pxi
i . (3.26)

Here the pi are known. If instead we assume that the number Xi in the i th area has a
Poisson distribution Poisson(μi ) with mean μi , and the Xi are mutually independent,
then, by the additive property of the Poisson distribution, T =∑k

i=1 Xi is Poisson(μ),
where μ =∑k

i=1 μi . The joint distribution of the Xi , given T = N , is

k∏
i=1

μxi
i

xi ! e−μi

/
μN

N ! e−μ,

which the same as (3.10) but with pi = μi/μ.

3.6.2 Multiple-Recapture Methods

In Sect. 1.3 we considered a model in which animals could be recaptured once. We
now extend this to when an animal can be captured more than once. We begin with
a closed population of unknown size N . A simple random sample of animals is
captured and given an identifying tag or mark before releasing the sample back into
the population and allowing the sample to re-disperse. A second random sample is
taken; the marked animals are noted and unmarked animals are marked. This process
is repeated k times. Let

ni = size of the i th sample (i = 1, 2, . . . , k),

xi = number of tagged animals in ni ,

ui = ni − xi ,

Mi =
i−1∑
j=1

ui (i = 1, 2, . . . , k + 1)

= total number of marked animals just before the i th sample is taken.

Since there are no marked animals in the first sample, we have x1 = 0, M1 = 0,
M2 = u1 = n1, and we define Mk+1 (= r say) as the total number of marked animals
in the population at the end of the experiment, that is the total number of different
animals caught throughout the experiment. Assuming fixed sample sizes, simple
random sampling implies we can use Hypergeometric distributions and obtain the
conditional probabilities

pr(xi | xi−1, . . . , x2, {ni }) =
(

Mi

xi

)(
N − Mi

ui

)/(
N

ni

)
(i = 2, 3, . . . , k).

http://dx.doi.org/10.1007/978-3-642-39041-8_1
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Multiplying these probabilities together gives us, after some algebra, the proba-
bility function

f1(x2, x3, . . . , mk | {ni }) =
k∏

i=2

(
Mi

xi

)(
N − Mi

ui

)/(
N

ni

)

=
∏k

i=2

(Mi
xi

)
∏k

i=1 ui !
· N !
(N − r)!

k∏
i=1

(
N

ni

)−1

, (3.27)

since N − Mi − ui = N − Mi+1 and u1 = n1. We wish to estimate the integer N ,
which we can do by setting the first difference of the log-likelihood equation equal
to zero. We define ∇g(N ) = g(N ) − g(N − 1) so that ∇ log N ! = log N . Then

∇ log f1 = log N − log(N − r) −
k∑

i=1

(log N − log(N − ni )) = 0

or

1 − r

N
=

k∏
i=1

(
1 − ni

N

)
. (3.28)

This is a (k − 1)th degree polynomial in N and it has a unique root greater than r
(Seber 1982, pp. 586–587). If [N̂ ] is the integer part of N̂ , then it will be within
1 of the maximum-likelihood estimate. We see that we don’t need distinguish-
ing marks for the animals as all we need is r , the number of different animals
caught.

If the sampling is determined by effort, then the ni will be random variables and
we can construct a different model as follows. Let aw be the number of animals
with a particular recapture history w, where w is a nonempty subset of the integers
{1, 2, . . . , k}; for example a245 is the number of animals caught in the second, fourth,
and fifth samples only, and r = ∑w aw. If the animals act independently, they can
be regarded as N independent “trials” from a multinomial experiment. The joint
probability function of the set of random variables {aw} is then

f2({aw}) = N !∏
aw!(N − r)! QN−r

∏
w

Paw
w , (3.29)

where Q = 1 −∑w Pw.
If we further assume that all individuals have the same probability pi (= 1 − qi ),

and for any individuals the events “caught in the i th sample (i = 1, 2, . . . , k)” are
independent, then
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Q =
k∏

i=1

qi , P245 = q1 p2q3 p4 p5q6 · · · qk = p2 p4 p5 Q

q2q4q5
etc.

so that (3.29) reduces to (Darroch 1958)

f3({aw}) = N !∏
w aw!(N − r)!

k∏
i=1

pni
i q N−ni

i (3.30)

From the assumptions, the {ni } are independent Binomial variables,

f4({ni }) =
k∏

i=1

(
N

ni

)
pni

i q N−ni
i

and dividing (3.30) by the above expression give us

f5({aw} | {ni }) = N !∏
w aw!(N − r)!

k∏
i=1

(
N

ni

)−1

.

We see that we arrive at the same estimate N̂ as, ignoring constants, the likelihood
is the same as (3.27).

The above interplay of Multinomial and Hypergeometric models is typical of the
more complex models developed for open populations when migration, birth, and
death are taking place (cf. Seber 1982, Sect. 13.1.6).

3.7 Appendix: Delta Method

In this section we consider a well-known method for finding large sample variances.
The theory is then applied to the Multinomial distribution. We also consider functions
of Normal random variables.

3.7.1 General Theory

We consider general ideas only without getting too involved with technical details
about limits. Let X be a random variable with mean μ and variance σ2

X , and let
Y = g(X) be a “well-behaved” function of X that has a Taylor expansion

g(X) − g(μ) = (X − μ)g′(μ) + 1

2
(X − μ)2g′(X0),
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where X0 lies between X and μ and g′(μ) is the derivative of g evaluated at X = μ.
Assuming second order terms can be neglected, we have E(Y ) ≈ g(μ) and

var(Y ) ≈ E[(g(X) − g(μ))2]
≈ E[(X − μ)2][g′(μ)]2

= σ2
X [g′(μ)]2.

For example, if g(X) = log X then, for large μ,

var(log X) ≈ σ2
X

μ2 . (3.31)

If X = (X1, X2, . . . , Xk)
′ is a vector with mean µ, then for suitable g,

Y = g(X) − g(µ) ≈
k∑

i=1

(Xi − μi )g
′
i (µ) + . . . ,

where g′
i (µ) is ∂g/∂Xi evaluated at X = µ. If second order terms can be neglected,

we have

var(Y ) ≈ E[(g(X) − g(µ))2]

≈ E

⎡
⎣ k∑

i=1

k∑
j=1

(Xi − μi )(X j − μ j )g
′
i (µ)g′

j (µ)

⎤
⎦

=
k∑

i=1

k∑
j=1

cov(Xi , X j )g
′
i (µ)g′

j (µ). (3.32)

3.7.2 Application to the Multinomial Distribution

Suppose X has the Multinomial distribution given by (3.10) and

g(X) = X1 X2 · · · Xr

Xr+1 Xr+2 · · · Xs
(s ≤ k).

Then, using the above approach with μi = npi ,

g(X) − g(µ)

g(µ)
≈

r∑
i=1

Xi − μi

μi
−

s∑
i=r+1

Xi − μi

μi
,

and it can be shown that (Seber 1982, pp. 8–9)
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var[g(X)] ≈ [g(µ)]2

n

{
s∑

i=1

1

pi
− (s − 2r)2

}
. (3.33)

Two cases of interest in this monograph are, s = 2r = 2 and s = 2r = 4. In the first
case g(X) = X1/X2 and

var[g(X)] ≈ [g(µ)]2
(

1

μ1
+ 1

μ2

)
. (3.34)

We are particularly interested in Y = log g(X), so that from (3.31),

var(Y ) ≈ var[g(X)]
[g(µ)]2 = 1

μ1
+ 1

μ2
. (3.35)

If g(X) is a product of two such independent ratios from independent Binomial
distributions, then we just add two more terms to var(Y ). We can estimate var(Y ) by
replacing each μi by Xi in (3.35).

Using similar algebra, we find that

var

[
log

(
X1 X2

X3 X4

)]
≈

4∑
i=1

1

μi
. (3.36)

3.7.3 Asymptotic Normality

In later chapters we are interested in functions of a maximum likelihood estimator,
which we know is asymptotically Normally distributed under fairly general condi-
tions. For example, suppose

√
n(µ̂n −µ) is asymptotically N (0,�(µ)). Then using

the delta method above,
√

n(g(µ̂) − g(µ)) is asymptotically distributed as N (0,σ2
g)

as n → ∞, where

σ2
g =

[(
∂g

∂µ

)
�(µ)

(
∂g

∂µ

)′]
.

This result also holds if we replace g by a vector function g giving us N (0,�g).
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Chapter 4
Multivariate Hypothesis Tests

Abstract We establish the asymptotic equivalence of several test procedures for
testing hypotheses about the Multinomial distribution, namely the Likehood-ratio,
Wald, Score, and Pearson’s goodness-of-fit tests. Particular emphasis is given to
contingency tables, especially 2×2 tables where exact and approximate test methods
are given, including methods for matched pairs.

Keywords Likelihood-ratio test · Wald test · Score test · Pearson’s goodness-of-fit
test · Deviance · Freedom equation hypothesis specification · Contingency tables ·
2 × 2 tables · Fisher’s exact test · Matched pairs · McNemar’s test

4.1 Multinomial Test Statistics

In this section we consider three well-known test statistics, namely the likelihood
ratio test, the Wald test, and the Score test. We show that all three test statistics are
asymptotically equivalent, and the score statistic is the same as Pearson’s goodness
of fit test statistic.

4.1.1 Likelihood-Ratio Test for p = p0

We begin by considering the likelihood-ratio test for testing H0 : p = p0 for the
nonsingular multinomial distribution (3.11), where p′ = (p1, p2, . . . , pk−1), p′

0 =
(p01, p02, . . . , p0k−1), and p0k = 1 − ∑k−1

i=1 p0i . Since P̂ (with P̂i = Xi/n) is a
consistent estimator of p, it converges in probability to p0 when H0 is true. If L(p)

is the likelihood function (ignoring constants), xk = n − ∑k−1
i=1 xi , and p̂k = xk/n,

the likelihood ratio is

G. A. F. Seber, Statistical Models for Proportions and Probabilities, 41
SpringerBriefs in Statistics, DOI: 10.1007/978-3-642-39041-8_4,
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Λ = L(p0)

L (̂p)
=

∏k
i=1 pxi

0i∏k
i=1 p̂xi

i

,

and

G2 = −2 log Λ

= 2n
k∑

i=1

p̂i log

(
p̂i

p0i

)

= 2n
k∑

i=1

( p̂i − p0i + p0i ) log(1 + yi )

(
yi = p̂i − p0i

p0i

)

where log(1 + yi ) = yi − y2
i /2 + y3

i /3 . . . for |yi | < 1 and yi converges to 0 in
probability. Hence

G2 = 2n
k∑

i=1

( p̂i − p0i + p0i )

[
p̂i − p0i

p0i
− ( p̂i − p0i )

2

2p2
0i

+ Op( p̂i − p0i )
3

]

= 2n
k∑

i=1

{
( p̂i − pi0) + ( p̂i − p0i )

2

p0i
− ( p̂i − p0i )

2

2p0i
+ Op( p̂i − p0i )

3
}

≈
k∑

i=1

(xi − np0i )
2

np0i

(
since

k∑
i=1

( p̂i − pi0) = 0

)
(4.1)

= X2.

This is Pearson’s statistic X2
0 of (3.17).

4.1.2 Wald Test

We note that

X2
0 =

k∑
i=1

(xi − np0i )
2

npi0

= n
k∑

i=1

( p̂i − pi0)
2

p̂i

{
1 − ( p̂i − pi0)

p̂i

}−1

= n
k∑

i=1

( p̂i − pi0)
2

p̂i

{
1 − ( p̂i − pi0)

p̂i
+ Op( p̂i − pi0)

2
}

http://dx.doi.org/10.1007/978-3-642-39041-8_3
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≈
k∑

i=1

(xi − n p̂i )
2

n p̂i

= W, say,

which is known as Wald’s test statistic of H0.

4.1.3 Score Test

There is one other test statistic due to Rao (1973) called the score statistic given by

S2 =
{(

∂ log L(p)

∂p

)′
D−1

(
∂ log L(p)

∂p

)}
p=p0

= n−1l′�l,

where
li = hi − hk = xi

pi
− xk

pk

(by (3.12)) and D−1 is the inverse of expected information matrix, which is n−1�

(from (3.14)). Using the identity in h given by (3.23), replacing p̂i by p0i , and setting
hi = xi/p0i , gives us

S2 = n−1(l′�l)p=p0

= n−1

⎧⎨
⎩

k∑
i=1

h2
i pi0 −

(
k∑

i=1

hi p0i

)2
⎫⎬
⎭

= n−1

⎧⎨
⎩

k∑
i=1

x2
i

p2
0i

p0i −
(

k∑
i=1

xi

p0i
p0i

)2
⎫⎬
⎭

=
k∑

i=1

x2
i

np0i
− n

=
k∑

i=1

(xi − np0i )
2

np0i
.

We see from (4.1) that Pearson’s statistic X2
0 is the score statistic S2 and it is asymp-

totically equivalent to the likelihood ratio test statistic and the Wald test statistic
for H0 : p = p0. Some computer packages compute all three statistics, though the
likelihood ratio and the Pearson (score) statistics are preferred.

http://dx.doi.org/10.1007/978-3-642-39041-8_3
http://dx.doi.org/10.1007/978-3-642-39041-8_3
http://dx.doi.org/10.1007/978-3-642-39041-8_3
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The asymptotic equivalence of the three statistics for a more general hypothesis
was shown by Seber (1966, Chap. 11) to hold for a random sample from any univari-
ate or multivariate distribution satisfying certain reasonable conditions. In Sect. 3.5
we saw that the Multinomial distribution arises from a random sample of discrete
vectors so that the asymptotic equivalence holds for general hypotheses involving
this distribution. The asymptotic equivalence for a such a hypothesis was also shown
to hold for independent observations with different means in nonlinear regression
models (and hence in linear models) by Seber and Wild (1989, Sect. 12.4; D should
be E(D)). In both of the above references, the Lagrange multiplier test mentioned
there is simply another formulation of the score test. To prove the equivalence of
the likelihood ratio, Wald, and Score test statistics, the asymptotic normality of the
maximum likelihood estimator is combined with some linearization to show that
the problem is asymptotically equivalent to testing a linear hypothesis for a Normal
linear model. In this case, all three test statistics are equal.

Summing up, we see that X2 and G2 take the memorable forms

X2 =
∑ (O − E)2

E
and G2 = 2

∑
O log

(
O

E

)
,

where O = Observed and E = Expected.

4.1.4 Deviance

In preparation for future chapters we introduce the concept of deviance. Let �S =
log L (̂p) denote the maximum of the log likelihood for the Multinomial distribution.
This model is referred to as a saturated model as the number of parameters equals
the number of observations and we have a perfect fit of data to model. If �0 is the
maximised log likelihood when H0 is true, then the likelihood-ratio test given in
Sect. 4.1.1 is G2 = 2(�S − �0). This difference is also called the deviance and it is
used for comparing models in this and the next chapter.

4.2 A More General Hypothesis

In the previous section we used a constraint form for the null hypothesis H0, namely
A(p) = p − p0 = 0, where more generally A is a matrix function of p and not just
a linear function. We now consider a different type of hypothesis.

http://dx.doi.org/10.1007/978-3-642-39041-8_3
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4.2.1 Freedom Equation Specification of H0

In genetics we are often interested in testing whether probabilities have a
specified structure. For example, the Hardy-Weinberg (H-W) law explains the con-
stancy of allele and genotype frequencies through the generations. With just two
alleles consisting of dominant A and recessive a with respective probabilities θ
and 1 − θ, the possible genotypes are AA, aa, and Aa. The H-W hypothesis states
that p1 = pr(AA) = θ2, p2 = pr(aa) = (1 − θ)2, and p3 = pr(Aa) =
2θ(1 − θ) = 1 − p1 − p2, that is pi = pi (θ), a function of θ. In human blood
genetics there are a number of different genetic markers (cf. Greenwood and Seber
1992), the most common being the ABO system with alleles A, B, and O and
corresponding probabilities pA, pB , and pO (= 1 − pA − pB). Assuming the
H-W law, the probabilities of the phenotypes A, B, AB, and O are, respectively,
p1 = pr(AA and AO) = p2

A + 2pA pO , p2 = pr(B B and B O) = p2
B + 2pB pO ,

p3 = pr(AB) = 2pA pB , and p4 = pr(O O) = p2
O = 1− p1 − p2 − p3. These prob-

abilities are obtained by expanding 1 = (pA + pB + pO)2. In this case pi = pi (θ),
where θ′ = (θ1, θ2) = (pA, pB). We see, in general, that we are interested in testing
H0 : pi = pi (θ) for i = 1, 2, . . . , k −1, where θ (∈ �) is a q-dimensional vector of
unknown parameters. This form of H0 is sometimes referred to as a freedom equation
specification of the hypothesis. Again it can be shown to be asymptotically equiva-
lent to testing a linear hypothesis for a Normal linear model (Seber 1964, Theorem
1; 1967).

4.2.2 General Likelihood-Ratio Test

We begin by making a number of basic assumptions concerning the parameter
θT = (θT 1, θT 2, . . . , θT q)′, the true value of θ, and pT = p(θT ) so that Taylor
expansions can be made in the neighbourhoods of θT and pT . These are (Agresti
2002, Sect. 14.2):

1. θT is not on the boundary of �.
2. All pT i > 0.
3. ∂ pi (θ)/∂θ j is continuous in a neighborhood of θT .
4. The matrix A = {∂ pi (θ)/∂θ j } has full rank q at θT .

The likelihood function is given by

L(p(θ)) =
k∏

i=1

pi (θ)xi ,

where p′ = (p1, p2, . . . pk−1) and pk = 1−∑k−1
i=1 pi . Let θ̂ be the maximum likeli-

hood estimate of θ, obtained by solving ∂ log L(p(θ))/∂θi = 0 for i = 1, 2, . . . , q.
The likelihood ratio test statistic for H0 is then
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Λ =
∏k

i=1 pi (̂θ)xi∏k
i=1 p̂xi

i

,

where p̂i = xi/n. If H0 is true, then p̂ and p(̂θ) will both tend to θT in probability
so that for n sufficiently large, p̂i − pi (̂θ) will be of small order. Then, using the
same argument that led to Eq. (4.1),

G2 = −2 log Λ

= 2n
k∑

i=1

p̂i log
p̂i

pi (̂θ)

= 2n
k∑

i=1

p̂i log

(
1 + p̂i − pi (̂θ)

pi (̂θ)

)

≈
k∑

i=1

(xi − npi (̂θ))2

npi (̂θ)
= X2.

When H0 is true, the likelihood-ratio test G2 is asymptotically distributed as
Chi-square with k − 1 − q degrees of freedom, the latter being the difference in
the number of “free” parameters for the unconstrained model and the model for
H0 (see also Agresti 2002, Chap. 14). Referring above to Sect. 4.1.4, we see that
G2 = 2(�S − �1), where �1 is the maximum value of the log likelihood under H0,
and G2 is the deviance for testing H0.

As with linear models, the validity of the multinomial model under H0 can be
checked by looking at certain residuals. The raw residuals ei = xi − npi (̂θ) can
be scaled in various ways to give a number of other residuals. For example, the

ei/

√
npi (̂θ) are referred to as Pearson residuals and satisfy

∑
i e2

i = X2 above. If
we divide the Pearson residuals by their estimated standard deviations, we get the
so-called adjusted residuals (Haberman 1974, p. 139) and we can treat them as being
approximately independently distributed as N (0, 1) under H0. A general formula
for such residuals is given by Seber and Nyangoma (2000, p. 185) as well as more
complex residuals available from nonlinear theory called projected residuals. These
residuals have smaller bias, where the bias results from so-called intrinsic curvature
effects. Certain components of deviance, called deviance residuals, can also be used
for diagnostics.

4.3 Contingency Tables

A two-way table of data as set out in Table 4.1 is described as a contingency table.
This data set can arise from a number of experimental situations that will be described
in detail below.
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Table 4.1 Two-way
contingency table

Categories Row totals
1 2 … J

1 x11 x12 … x1J r1

Group 2 x21 x22 … x2J r2

· · · · · · · ·
I xI 1 xI 2 … xI J rI

Column totals c1 c2 … cJ n

4.3.1 Test for Independence in a Two-Way Table

We now use the above theory to consider a contingency table where data from a single
Multinomial distribution are set out in the form of an I × J table of observations xi j

(i = 1, 2, . . . , I ; j = 1, 2, . . . , J ), as in Table 4.1, with pi j being the probability
of falling in the (i, j)th category or cell and

∑I
i=1

∑J
j=1 xi j = n. For example, we

might be interested in seeing if “handedness” and “ocular dominance” are related;
ocular dominance (eye dominance or eyedness) is the tendency to prefer visual input
from one eye to the other. The three row categories (I = 3) are “left-handedness,”
“right-handedness,” and “mixed handedness” (ignoring those who are ambidextrous,
which is rare), while the three column categories (J = 3) are “left-eyed,” “right-
eyed,” and “ambiocular.” Our hypothesis of interest is that handedness is independent
of ocular dominance, that is, we have row and column independence or H0 : pi j =
αiβ j , where

∑I
i=1 αi = 1 and

∑J
j=1 β j = 1. We therefore have p = p(θ), where

θ′ = (α1, . . . αI−1,β1, . . . ,βJ−1) = (α′,β′), q = I − 1 + J − 1 and k = I J . We
note that

I∑
i=1

J∑
j=1

pi j =
I∑

i=1

αi

J∑
j=1

β j = 1.

Also, it is readily shown that H0 is equivalent to testing pi j = pi · p· j , where pi · =∑
j pi j and p· j = ∑

i pi j .
We require the maximum likelihood estimates of the αi and the β j . The likelihood

function is

L(α,β) =
I∏

i=1

J∏
j=1

(αiβ j )
xi j

=
I∏

i=1

αri
i

J∏
j=1

β
c j
j ,

where ri = ∑J
j=1 xi j (the i th row sum) and c j = ∑I

i=1 xi j (the j th column sum).
Using Lagrange multipliers λ1 and λ2, we need to differentiate
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log L(α,β) + λi

(
I∑

i=1

αi − 1

)
+ λ2

⎛
⎝ J∑

j=1

β j − 1

⎞
⎠

with respect to αi and β j . Hence we solve

ri

αi
+ λ1 = 0,

I∑
i=1

αi = 1 and

c j

β j
+ λ2 = 0,

J∑
j=1

β j = 1.

We see that λ1 = λ2 = −∑I
i=1 ri = −∑J

j=1 c j = −n, and our maximum likeli-
hood estimates are

α̂i = ri

n
and β̂ j = c j

n
.

Hence
pi j (θ̂) = α̂i β̂ j = ri c j

n2 ,

and the statistic for the test of independence is therefore the much used Pearson’s
Chi-square statistic

X2 =
I∑

i=1

J∑
j=1

(xi j − npi j (θ̂))
2

npi j (θ̂)
=

I∑
i=1

J∑
j=1

(xi j − ri c j/n)2

ri c j/n
, (4.2)

which, under H0, is approximately distributed as the Chi-square distribution with

k − 1 − q = I J − 1 − (I − 1) − (J − 1) = (I − 1)(J − 1)

degrees of freedom. This approximation gets better with increasing npi j and is usually
reasonable if the npi j ≥ 5 for all i and j in 2 × 2 tables (though better methods are
given below), and all npi j ≥ 1 with no more than 20 % of the cells having npi j < 5
for larger tables (Cochran 1954).

Residuals for checking the validity of the model under H0 are

xi j − μ̂i j√
μ̂i j (1 − ri/n)(1 − c j/n)

,

where μ̂i j = ri c j/n. As these are approximately independently distributed as N (0, 1)

under H0, any cell whose residual exceeds 2 or 3 in absolute value indicates lack
of fit in that cell. If I J is at least 20 we can expect at least one cell to have a value
exceeding 2 by chance.
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4.3.2 Several Multinomial Distributions

Suppose that we have an I × J contingency table as in Table 4.1, but with a
different independent Multinomial distribution for each row. The observation xi j ,
with corresponding probability pi j , is now the frequency of the j th category in
the i th Multinomial distribution (i = 1, 2, . . . , I : j = 1, 2, . . . , J ), and the
row totals ri are now fixed. We also have

∑J
j=1 pi j = 1 for i = 1, 2, . . . , I .

Let p′
(i) = (pi1, pi2, . . . , pi J ), then the so-called hypothesis of homogeneity is

H0 : p(1) = p(2) = · · · = p(I ) (= p(0), say), where p′
(0) = (p01, p02, . . . , p0J ). We

shall now derive the likelihood-ratio test for H0.
For the unconstrained model, the likelihood function is

L({pi j }) =
I∏

i=1

J∏
j=1

p
xi j
i j ,

and treating each Multinomial distribution independently, the maximum likelihood
estimate of pi j is p̂i j = xi j/ri . Under H0, the likelihood function is now

L(p(0)) =
J∏

j=1

(
I∏

i=1

p
xi j
0 j

)
=

J∏
j=1

p
c j
0 j ,

where c j = ∑I
i=1 xi j is the j th column sum. Using a Lagrange multiplier for∑J

j=1 p0 j = 1, we get the maximum likelihood estimate p̂0 j = c j/n, where

n = ∑I
i=1 ri . The likelihood ratio is

Λ =
∏J

j=1 p̂
c j
0 j∏I

i=1
∏J

j=1 p̂
xi j
i j

,

and

−2 log Λ =
I∑

i=1

J∑
j=1

xi j log
p̂i j

p̂0 j
.

When H0 is true, p̂i j (= xi j/ri ) and p̂0 j will tend to the same limit. Using the same
argument that led to Eq. (4.1),

− 2 log Λ = 2
I∑

i=1

J∑
j=1

ri p̂i j log

(
1 + p̂i j − p̂0 j

p̂0 j

)

≈ 2
I∑

i=1

J∑
j=1

ri
( p̂i j − p̂0 j )

2

2 p̂0 j
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=
I∑

i=1

J∑
j=1

(
xi j − ri c j/n

)2

ri c j/n
. (4.3)

The number of “free” parameters for the general model is I (J − 1) and the number
for the hypothesized model is J − 1, with the difference being I (J − 1) − J − 1 =
(I − 1)(J − 1). From likelihood theory, (4.3) is asymptotically Chi-square with
(I − 1)(J − 1) degrees of freedom when H0 is true. We see that the above statistic
is the same as (4.2).

When J = 2 and we want to test whether the probabilities from I independent
Binomial distributions are equal or not, we can use an exact procedure involving
the Multi-hypergeometric distribution (Williams 1988). Simultaneous confidence
intervals for comparing these probabilities are available using the studentized-range
distribution with a score statistic (Agresti et al. 2008). The method can be applied to
a variety of measures, including the difference of proportions, odds ratio, and relative
risk.

4.4 2 × 2 Contingency Tables

The above tests of independence and homogeneity are large sample tests and may
not be appropriate with small samples. Of particular interest are 2 × 2 tables, where
homogeneity now refers to the special case of comparing independent binomial
distributions. These tables provide a good starting point for considering some of the
difficulties and have generated considerable research and some controversy. One of
the reasons for this is that such tables arise from variety of experimental situations,
illustrated by the examples below, that can cause confusion. Methods tend to fall into
one of three categories: no fixed marginal sums, one fixed marginal sum, and both
fixed marginal sums.

4.4.1 Examples

Example 1. Suppose we wish to compare the proportions of males and females
over 21 years who smoke. One method is to take a simple random sample of the
same size from each of the male and female populations and count the number of
smokers in each sample. The model for this is that of comparing two independent
Hypergeometric distributions. If the sampling fractions are small, this reduces to
comparing two independent Binomial distributions, a special case of Sect. 4.3.2. For
this example we have fixed row sums.

Example 2. We consider the same problem as Example 1, but this time we begin by
taking a simple random sample of size n from a combined population of males
and females of size N and then classify the people selected in terms of two
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categories—smoking status and gender. The model for the four subpopulations is
the Multi-hypergeometric distribution of Sect. 3.1, or, if the sampling fraction n/N
is negligible, we have the Multinomial distribution. This time we have random row
and column sums. Some would argue that smoking status is the response variable
and gender the explanatory variable so that we could treat the numbers of males and
females as (conditionally) fixed and analyze the data as in Example 1.

Example 3. We wish to study the effect on aspirin on the survival of stroke victims.
A group of stroke victims is randomly assigned to a treatment group or a placebo
group and the number of heart attacks (myocardial infarctions) are recorded for each
group over several years. This is a prospective sampling design (called a clinical
trial or experimental study) and it would generally be treated as comparing two
independent Binomial distributions even though the numbers of trials in each group
are random (though approximately equal). We could arrange to have equal numbers
in each group by having an even number of patients, then putting them in a random
order, numbering them and assigning odd numbers to one group and even numbers
to the other group.

Example 4. We wish to study the relationship between smoking and lung cancer.
Clearly we cannot assign one group to smoking and another group to nonsmoking.
Instead we can use a retrospective design and carry out a so-called case-control
(observational) study whereby we take a group of lung cancer patients (cases) and
compare them with a same-sized group of those who don’t have lung cancer (con-
trols). We then look at the past smoking history for each group. Here we can treat
the data as two independent populations—cases and controls. The problem is that
the proportions estimate the conditional probabilities of smoking for the two groups
given lung cancer status when what we really want are the reverse conditional prob-
abilities, namely the conditional probabilities of getting lung cancer given smoking
status. As Agresti (2002, p. 42) notes, we cannot estimate the latter without knowing
the proportion of the overall population having lung cancer and then use Bayes’ theo-
rem. This means that we cannot estimate differences or ratios of probabilities of lung
cancer; only for comparisons of the two probabilities of being a smoker. However,
McCullagh and Nelder (1983, p. 113)1 showed that the odds ratio θ of Sect. 3.3.3
can still be estimated and can then be interpreted conditionally in either direction.

Example 5. Sometimes, in an example like 4 above, the controls are matched to
the cases using a number of variables such as age, sex, weight, and so on. Members
of a matched pair are not independent so that alternative methods of inference are
needed. These are discussed in Sect. 4.4.4.

4.4.2 Chi-Square Test

We return to the large sample chi-square tests for independence and homogeneity.
After some algebra we find that X2 of (4.3) for 2 × 2 tables reduces to

1 See also Agresti (2002, pp. 45–46).

http://dx.doi.org/10.1007/978-3-642-39041-8_3
http://dx.doi.org/10.1007/978-3-642-39041-8_3
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X2 =
2∑

i=1

2∑
j=1

x2
i j

ri c j/n
− n

= n(x11x22 − x12x21)
2

r1r2c1c2
.

Here X2 is asymptotically χ2
1 when H0 is true. A better test is available if we replace

n by n − 1 and the expected cell counts are at least 1.2 If Yates’ correction for
continuity (Yates 1934) is used, X2 becomes

n(|x11x22 − x12x21| − 0.5n)2

r1r2c1c2
.

However, the exact methods given in the next section along with modern software
have made this controversial correction of historical interest only and should not be
used (Hirji 2006, p. 149; Lydersen et al. 2009, p. 1170).

We note that H0 : pi j = pi · p· j for independence reduces to p11 p22 − p12 p21 = 0
or

θ = p11/p12

p21/p22
= p11 p22

p12 p21
= 1.

The parameter θ is called the “odds ratio” (also called the “cross-products ratio”) for
this design using a Multinomial distribution, and its maximum-likelihood estimate is
θ̂ = x11x22/x12x21. As the distribution of θ̂ is highly skewed, even for quite large n,
it is preferable to use log θ̂ as it is more like a Normal random variable N (log θ,σ2),
where, using a Taylor expansion, σ is estimated by (cf. (3.36))

σ̂ =
√

1

x11
+ 1

x12
+ 1

x21
+ 1

x22
.

An approximate 100(1 − α)% confidence interval for log θ is log θ̂ ± z(α/2)̂σ or
(a, b), giving the corresponding interval (ea, eb) for θ. This so-called Woolf logit
interval does not perform well if any count is small. If, however, we replace each xi j

by xi j + 0.5 in θ̂ and σ̂ (Agresti 2007, p. 31) we obtain Gart’s adjusted logit interval
that always performs quite well and can be recommended without judging whether
some count is “small” or not.

In the case of testing for homogeneity we are comparing two independent Bino-
mial distributions and θ becomes p1(1 − p2)/p2(1 − p1). We see that θ = 1 if
and only if p1 = p2. As we saw in Sect. 3.3.3, the same confidence interval for θ
applies here. Bayesian confidence intervals and their relative performance compared
to frequentist intervals are discussed by Agresti and Min (2005) and Proschan and
Nason (2009).

2 Richardson (1994) and Campbell (2007).

http://dx.doi.org/10.1007/978-3-642-39041-8_3
http://dx.doi.org/10.1007/978-3-642-39041-8_3
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4.4.3 Fisher’s Exact Test

When some of the xi j are small, Fisher in 1934 proposed an exact test3 of H0 : θ = 1
that could be applied to either the multinomial model with four cells or to two
independent binomial samples. The method consists of considering all the tables that
have the same row (ri ) and column (c j ) sums as the observed table and evaluating the
probability distribution of x11 given H0 is true. By conditioning on all the row and
column sums, one xi j determines the other three, and therefore the whole table. If
we have two independent Binomial distributions and θ = p1(1 − p2)/[p2(1 − p1)],
then it can be shown that

pr(X11 = x11 | X11 + X21 = c1)

=
(

r1

x11

)(
r2

c1 − x11

)
θx11

/ c1∑
u=0

(
r1

u

)(
r2

c1 − u

)
θu .

This distribution can be used to obtain “exact” confidence intervals for θ (Troendle
and Frank 2001).

When θ = 1, p1 = p2, and the probability function of X11 is the Hypergeometric
distribution

pr(x11) =
(

r1

x11

)(
r2

x21

)/(
n

c1

)

= r1!r2!c1!c2!
x11!x12!x21!x22!n! . (4.4)

If the data come from a Multinomial distribution, then conditional on r1 (which
also fixes r2), we find that X11 and X21 have independent Binomial distributions,
namely for i = 1, 2, Xi1 ∼ Bin(ri , pi1/pi ), where pi = pi1 + pi2. This leads to the
case above when we fix c1 and c2, but with the difference that θ = p11 p22/p12 p21.

In both cases, if the hypothesis is H0 : θ ≤ 1, the alternative hypothesis is Ha :
θ > 1, and θ̂ = x11x22/x12x21 > 1, then we reject H0 if the probability of getting
a value greater than or equal to the observed value of θ̂ is small enough (e.g., less
than α). This probability can be computed exactly. If Ha : θ �= 1, then several two-
sided tests are possible (Agresti 2007, p. 93). A common method, already previously
mentioned, is to define the two-sided p-value as twice the smallest tail (TST), that
is twice the smallest of the one-sided p-values. Agresti makes the important point:
“To conduct a test of size 0.05 when one truly believes that the effect has a particular
direction, it is safest to conduct the one-sided test at the 0.025 level to guard against
criticism.” These issues are discussed further by Hirji (2006, pp. 206–210).

The above so-called conditional tests are somewhat conservative, especially when
the groups sizes are small or the probabilities are close to 0 or 1. One adjustment that

3 As in previous chapters exact means using the exact values of the underlying probability distrib-
ution rather than an approximation.
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has support is to use the so-called mid p-value discussed in Sects. 2.3.1 and 2.3.2.
As noted there, the mid p-value is half the probability of the observed result plus the
probability of more extreme values. The conditional mid-p test is less conservative
but does not always preserve the test size. Its performance approximates that of an
unconditional test (Lydersen et al. 2009, p. 1168).

One can also invert the exact test to construct exact confidence intervals. Again a
mid-p adjustment can be used. Agresti and Min (2001) showed that inverting a two-
sided test is usually better than inverting two-one sided tests. Details of the general
hypothesis theory are given by Lehmann and Romano (2005, Sects. 4.5 and 4.6).
Software is available for such tests, for example, StatXact version 9.4

There has been some controversy over the use of the above exact test as it is a
conditional test, conditional on c1 and c2 (Agresti 1992, p. 148). Mehrotra et al.
(2003) discussed various unconditional exact tests and provided evidence that an
exact test based on the score statistic outperforms Fisher’s test, as does Boschloo
(1970) test, in which the p-value from Fisher’s test is used as the test statistic. Their
key message is that care is needed in choosing an unconditional test. Lydersen et al.
(2009) recommend the use of unconditional exact tests, which means not conditioning
on any marginals that are not fixed by the design. Their paper should be consulted
for details.

4.4.4 Correlated Data

The test for homogeneity in a 2 × 2 table requires that the two Binomial distribu-
tions are independent. In many situations this is not the case as the data from the
two distributions are correlated. For example, consider the following scenarios with
possibly increasing correlation.

Example 6. Suppose we have a sample of people (the target population) exposed to
a certain situation (e.g., radiation) and the number possessing a certain attribute, A
say, (e.g., cancer) is recorded. We then match up each individual in that group with
a similar individual who has not been exposed and record the number with A in the
matched sample. This will give us the table of data, Table 4.2 that we return to later.
We want to test whether there is a difference between the two groups with respect to
attribute A.

Example 7. We want to answer the question of whether members of a couple tend
to possess the same characteristic (e.g., tall or not tall). This is an observational
study that would be based on a random sample of couples. The two groups, men and
women, form matched samples, matched by marriage.

Example 8. One way of getting matched pairs in an experiment is to use a random
sample of twins. For example, we may wish to examine the effectiveness of some
“treatment” by assigning the treatment randomly to one of the pair and the “control”

4 See http://www.cytel.com/pdfs/SX9_brochure_final-2.pdf.

http://dx.doi.org/10.1007/978-3-642-39041-8_2
http://dx.doi.org/10.1007/978-3-642-39041-8_2
http://www.cytel.com/pdfs/SX9_brochure_final-2.pdf
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Table 4.2 Matched pairs Treatment 2
A present A absent

Treatment 1 A present x11 x12

A absent x21 x22

to the other member. Here we would expect the degree of correlation between the
samples to be greater than in Example 7.

Example 9. The strongest correlation occurs when the same group of people is
used for each sample. For instance, given a random sample of people, each person
undergoes two tests on separate occasions to see if there is a negative or positive
result for each test. Another example is when each person has to respond “Yes” or
“No” to each of two questions, as in Sect. 3.2.2.

These examples can be treated the same way as Example 6, that we now return to
but with the exposed sample referred to as receiving Treatment 1 and the unexposed
sample as receiving Treatment 2 for more generality. From Table 4.2, we see that
x11 and x22 tell us nothing about the difference in the two samples as they yield the
same outcome in each case.

However, if the two samples were the same with regard to the presence or absence
of A, then we would expect x12 and x21 to be approximately equal. Our hypothesis
of no difference is then H0 : p12 = p21. If x = x12 + x21, then, under H0, each of
the x observations has a probability of 1/2 of contributing to x12 and a probability of
1/2 of contributing to x21. Conditioning on x , we can treat X12 as being Bin(x, p),
and H0 is now p = 1/2. We can therefore carry out an exact test of p = 1/2 using
the theory of Sect. 2.3.2, and most software packages do this for all x . Under H0, X12
has mean x/2 and variance x/4 so that we can we can use a Normal approximation
for x > 10 (though some recommend larger values of x). Hence, when H0 is true,
we have the score test

z0 = (x12 − x/2)√
x/4

= x12 − x21√
x12 + x21

,

which is approximately N (0, 1), and z2
0 is approximately χ2

1. The latter test is known
as McNemar’s test (McNemar 1947). If a continuity correction is used, the test
becomes

z2
0 = (|x12 − x21| − 1)2

x12 + x21
.

However, such corrections are not necessary when we have an exact test, though
asymptotic methods considered below can be useful in a classroom setting.

We saw in the example of Sect. 3.2.2 that if p1 is the probability of A being
present in the target sample and p2 the same probability for the matched sample,
then δ = p1 − p2 = p12 − p21. We now consider constructing a confidence interval
for δ. Our estimator of δ is D̂ = P̂1 − P̂2 = (X12 − X21)/n with mean δ and
(assuming we have a Multinomial situation or we can ignore the sampling fraction

http://dx.doi.org/10.1007/978-3-642-39041-8_3
http://dx.doi.org/10.1007/978-3-642-39041-8_2
http://dx.doi.org/10.1007/978-3-642-39041-8_3
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if Hypergeometric) with variance (see (3.6))

σ2(D̂) = 1

n

{
p12 + p21 − (p12 − p21)

2
}
.

The Wald large sample confidence interval for δ is then

d̂ ± z(α/2) σ̂(D̂),

where d = (x12 − x21)/n and σ̂(D̂) is σ(D̂) with each pi j replaced by xi j/n. This
interval does not perform well with small samples.

Under H0 : δ = 0, and setting p12 − p21 = 0 we obtain an alternative variance
estimate

σ̂2
0(D̂) = p̂12 + p̂21

n
= x12 + x21

n2 .

The score test statistic then becomes

z0 = d

σ̂0(D̂)
= x12 − x21√

x12 + x21
,

which is McNemar’s test once again.
A confidence interval for δ can be obtained by inverting the score test for testing

H0 : δ = d using a method analogous to Mee’s method described in Sect. 3.3.1.
The method requires the maximum likelihood estimation of p12 and p21 subject to
p12 − p21 = d (Tango 1998).

A natural extension to the matched pairs problem in which two probabilities
are compared is to measure further binary characteristics so that we end up with
multivariate binary data. Agresti and Klingenberg (2005), in discussing this problem,
give the example where one group are given a drug while the other group are given a
placebo. The percentages of the groups having various side effects are then compared.
We then have two vectors to compare, one for the drug and the other for the placebo.
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Chapter 5
Logarithmic Models

Abstract In this chapter we consider log-linear and logistic models for handling
contingency tables, multinomial distributions, and binomial data. The role of the
deviance in hypothesis testing is discussed. The log-linear model is applied to an
epidemiological problem involving the merging of incomplete lists.

Keywords Log-linear models · Contingency tables · Logistic models ·
Multiple-recapture · Epidemiology

5.1 Log-Linear Models

There is a large class of models called generalized linear models where an appropriate
transformation transforms a parameter such that we have a linear regression involving
explanatory variable(s), which may be continuous or categorical.1 This is a big subject
and the aim of this chapter is to provide some general background only for just two
logarithmic transformations to give some idea of the models used.

5.1.1 Contingency Tables

There is a close parallel between the analysis of logarithmic models for contingency
tables and analysis of variance models (see Seber and Lee 2003, Chap. 8) that we
now demonstrate. Given an I × J contingency table from a Multinomial distribution
with μi j = npi j , we can consider a model of the form

log μi j = λ + λ
(1)
i + λ

(2)
j + λ

(12)
i j , (5.1)

1 See, for example, McCullagh and Nelder (1989) and Hardin and Hilbe (2007).

G. A. F. Seber, Statistical Models for Proportions and Probabilities, 59
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where the λ
(12)
i j are usually referred to as first-order interactions. On the left-hand side

we have I J parameters and on the right-hand side 1+I +J+I J parameters so that we
need to apply some constraints to the above parameters for identifiability, as we would
in a two-way analysis of variance. The simplest constraints are λ

(1)
I = λ

(2)
J = 0,

λ
(12)
I j = 0 ( j = 1, 2, . . . , J ), and λ

(12)
i J = 0 (i = 1, 2, . . . , I − 1), giving a total of

I J estimable parameters, one for each observation. We now find that the hypothesis
of independence between rows and columns, that is the independence of the two
categorical variables defining the table, is true when the λ

(12)
i j are all zero, as then

μi j = eλeλ
(1)
i eλ

(2)
j = ai b j ,

say. In fact it can be shown that

log μi j = λ + λ(1)
i + λ(2)

j

if and only if pi j = pi · p· j for all i and j , where pi · = ∑
j pi j etc. (Christensen

1997, pp. 49–50). This result is readily demonstrated for a 2 × 2 table, as the log
odds is given by (cf. (5.1))

log θ = log

{
p11 p22

p12 p21

}
= log

{
μ11μ22

μ12μ21

}
= λ

(12)
11 + λ

(12)
22 − λ

(12)
12 − λ

(12)
21 ,

a contrast in the interactions. This contrast is zero (i.e. θ = 1) if and only if all
the λ

(12)
i j are zero. For an I × J table, each odds ratio corresponds to an interaction

contrast and the contrast is zero if the ratio is 1. If all these contrasts are zero, then
the interactions are all zero. A similar result holds if we now have independent
Multinomial distributions. The interactions are zero if and only if the Multinomial
distributions have the same probabilities, that is, p1 j = p2 j = · · · = pI j , j =
1, 2, . . . , J .

The above method can be applied to higher-way tables. For example, given a
three-way contingency table with three categorical variables, observed frequencies
xi jk , and μi jk = E(Xi jk) = npi jk , where

∑
i
∑

j
∑

k pi jk = 1, we can fit the model

log μi jk = λ + λ
(1)
i + λ

(2)
j + λ

(3)
k + λ

(12)
i j + λ

(23)
jk + λ

(13)
ik + λ

(123)
i jk , (5.2)

where the λ
(12)
i j , λ(23)

jk , and λ
(13)
ik are first-order interactions, and the λ

(123)
i jk are second-

order interactions. This mimics the higher-way layouts in analysis of variance. In
fitting such models we are interested in testing whether some of the parameters are
zero, for example λ

(12)
i j = 0 for all i, j in the two-way layout modelled by (5.1). In

the three-way layout modelled by (5.2) we might start with testing λ
(123)
i jk = 0 for

all i, j, k, and, if that hypothesis is not rejected, we set all the λ(123)
i jk equal to zero,

and then test whether all or some of the first order interactions are zero for our new
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model. With all interactions zero we end up with the model

log μi jk = λ + λ
(1)
i + λ

(2)
j + λ

(3)
k ,

which implies that all three categorical variables defining the table are independent.
This is true if and only if all possible odds ratios are equal to 1 (Christensen 1997,
pp. 38–40). Successively reducing the number of parameters in a model provides
a “nested” approach to hypothesis testing where each model in the sequence is a
special case of the previous one. We discuss this process in the next section.

5.1.2 Test Statistics

Suppose we wish to test a hypothesis H0 for an I × J × K three-way table, and the
maximum likelihood estimate of μi jk = npi jk , given H0 is true, is μ̂i jk = n p̂i jk .
Then, as we found for a two-way table in the previous chapter, we can use two test
statistics, the likelihood ratio and the Pearson goodness-of fit statistics. The Pearson
statistic is

X2 =
I∑

i=1

J∑
j=1

K∑
k=1

(xi jk − μ̂i jk)
2

μ̂i jk
, (5.3)

which is distributed as χ2
k when H0 is true. Here k is I J K − f , where f is the number

of independent (“free”) model parameters. To obtain the likelihood-ratio test statistic
we require minus twice the difference in the maximum values of the log likelihoods
for the hypothesized model and the underlying model, namely

2(�S − �0) = 2
I∑

i=1

J∑
j=1

K∑
k=1

xi jk log

(
xi jk

μ̂i jk

)
, (5.4)

where �0 is the maximum log likelihood under H0 and �S is the same for the saturated
model (Sect. 4.1.4). We note that (5.3) is a quadratic approximation to (5.4), which
can be proved using the method of Sect. 4.1.1.

In the case of nested hypotheses in the three-way table, we might proceed as fol-
lows and consider testing H1 : all second order interactions zero using the deviance
2(�S − �1). If this is not rejected we can test H12 : all first order interactions zero
assuming H1 is true using the difference

2(�1 − �12) =
I∑

i=1

J∑
j=1

K∑
k=1

xi jk log(μ̂
(1)
i jk/μ̂

(12)
i jk ) (5.5)

= 2(�S − �12) − 2(�S − �1),

http://dx.doi.org/10.1007/978-3-642-39041-8_4
http://dx.doi.org/10.1007/978-3-642-39041-8_4


62 5 Logarithmic Models

which, from (5.4), is the difference of the two deviances, one for each model. Here
μ̂

(1)
i jk and μ̂

(12)
i jk are the estimates under H1 and H12, respectively. The deviances play

the same role as sums of squares in analysis of variance models. We note that each
deviance is asymptotically chi-square when its hypothesized model is true. Also,
2(�1 − �12) is asymptotically statistically independent of 2(�S − �1), a result that
is true quite generally (Seber 1967). From the general theory of log-linear models
(e.g., Agresti 2002, p. 364) and a certain orthogonality property that we also meet in
analysis of variance models, we have that (5.5) is equal to

I∑
i=1

J∑
j=1

K∑
k=1

μ̂
(1)
i jk log(μ̂

(1)
i jk/μ̂

(12)
i jk ),

which leads to the quadratic approximation, Pearson’s statistic,

X2 =
I∑

i=1

J∑
j=1

K∑
k=1

(μ̂
(1)
i jk − μ̂

(12)
i jk )2/μ̂

(12)
i jk .

While the difference of the two deviances in (5.5) leads to a likelihood-ratio test,
the same does not hold for their quadratic approximations that give us the Pear-
son statistics. For further details concerning two-way and multiway-way tables see
Agresti (2002), Fienberg (1980), and Bishop et al. (1975). Log-linear models can
also be expanded to include explanatory quantitative variables as with analysis of
covariance in linear models (Christensen 1997, Chap. 7).

5.1.3 Application of Log Linear Models to Epidemiology

A common epidemiological problem is that of estimating the number n of people
with a certain disease (e.g., diabetes) from several incomplete lists (e.g., doctors’
records, hospital records, pharmaceutical records, society memberships, and popu-
lation surveys). Each list “captures” a certain proportion of the n people and will miss
some, so we then end up with several incomplete lists. This approach is called the
multiple-recapture or multiple-records method and has been applied to wide variety
of populations, for example drug addicts and homeless people to name two.

To estimate the number n with a certain disease we need to be able to estimate
the number of people with the disease not on any list. We do this by constructing a
model for the lists and then use the model to estimate those not captured at all. If
there are K lists, we then have 2K capture histories with each history consisting of
a K -dimensional vector consisting of 0’s and 1’s, where 1 denotes captured and 0
denotes not captured. For example, if K = 3, an individual with the history (1, 0, 1)

represents being on lists 1 and 3 but not on list 2. In general, the data give us an
incomplete 2K contingency table, incomplete as we don’t know the number not on
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any list with capture history (0, 0, . . . , 0). The model we endeavor to fit is the log
linear model of Sect. 5.1.1 to the multi-dimensional contingency table.

We now demonstrate the method for the simplest case of K = 2. The capture
histories now take the form (1, 1), (0, 1), (1, 0), and (0, 0) with corresponding fre-
quencies n11, n01, n10, and n00, where n00 is unknown. Using the model (5.1) with
μi j = npi j , where pi j is the probability of having capture history (i, j), and applying
identifiability restrictions to reduce the number of parameters, we can express the
model in the form

log μ11 = λ + λ(1)
1 + λ(2)

1 + λ(12)
11

log μ01 = λ − λ(1)
1 + λ(2)

1 − λ(12)
11

log μ10 = λ + λ(1)
1 − λ(2)

1 − λ(12)
11

log μ00 = λ − λ(1)
1 − λ(2)

1 + λ(12)
11 .

As we have four parameters but only three observations ni j , we have to make at least
one assumption. If the lists are independent, then μ11 = np1 p2, μ01 = nq1 p2, etc.,
where pi (= 1 − qi ) is the probability of being on the i th list. The interaction term
λ(12)

11 is now zero, thus reducing the number parameters by 1.
An alternative parametrization that gives clearer meaning to the parameters is as

follows:

log μ11 = λ

log μ01 = λ + λ
(1)
1

log μ10 = λ + λ
(2)
1

log μ00 = λ + λ
(1)
1 + λ

(2)
1 + λ

(12)
11 ,

where λ
(12)
11 = log[p00 p11/(p01 p10)], the log odds ratio. With independence, λ(12)

11 =
0, λ = log(np1 p2), λ

(1)
1 = log(q1/p1), and λ

(2)
1 = log(q2/p2). As we have three

observations n11, n01, and n10, we can estimate λ, λ(1)
1 , and λ(2)

1 , and hence estimate
n (and n00) using a GLIM package. Both parametrizations lead to the same estimate
of n.

The assumption of independence will hold if one of the two lists is a random
sample from the general population. In this case estimates can be found more directly
(cf. Sect. 1.3 with N instead of n) without recourse to a log-linear model, which is
used here for demonstration purposes. For K lists we can use a general log linear
model, but we need to make at least one assumption as in the two-list model, the usual
assumption being the highest order interaction is zero. We can then test whether other
interactions can be set equal to zero, and once we arrive at the final model we can use it
to estimate n. The idea of using a log-linear model for an incomplete 2K contingency
table was introduced by Fienberg (1980) and developed further by Cormack (1989)
in the capture-recapture context. Some epidemiological background is given in two

http://dx.doi.org/10.1007/978-3-642-39041-8_1
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papers written by an international working group (IWG 1995a,b). Problems arising
from list dependence and heterogeneity are discussed in the first paper. An additional
complication arises when errors are made in forming the lists (e.g., mistyping a name)
that requires a modification of the multinomial model (cf. Seber et al. 2000; Lee et al.
2001). The method adapts a technique from ecology (cf. Seber and Felton 1981) that
uses the notion of double tagging where the information on a person (e.g., name, age,
sex, blood pressure, blood glucose level etc.) is split into two parts representing two
“tags.” A mistake in transmitting a part of this information is equivalent to a either
a one-tag or two-tag loss.

5.2 Logistic Models

In a Binomial experiment with n trials, one might want to model a relationship
between p, the probability of “success,” and an explanatory variable x . One simple
model is p(x) = β0+β1x , but this has the problem that p(x), or its estimate, may not
lie in [0, 1]. We have seen above that we can define μ(x) = np(x) and then use the log
transformation to get, for example, log μ(x) = α + β1x , say, where α = log n + β0.
Other transformations, however, have been used such as probit[p(x)], logit [p(x)],
and −log[1 − p(x)].

As the relationship between p(x) and x is usually nonlinear, a useful generalised
linear model is the so-called logistic model

p(x) = exp(β0 + β1x)

1 + exp(β0 + β1x)
,

so that now 0 ≤ p(x) ≤ 1. Taking the log odds,

g(x) = logit [p(x)] = log

[
p(x)

1 − p(x)

]
= β0 + β1x, (5.6)

so that
p(x)

1 − p(x)
= eβ0(eβ1)x ,

which leads to a multiplicative interpretation of the odds.
Agresti (2007, pp. 219–220) described a useful connection between the log-linear

and logistic models. Referring to Eq. (5.2), suppose variable 2, say Y , is binary taking
values 1 and 2 and we treat it as a response variable, with variables 1 and 3 treated as
explanatory (independent) variables at levels i and k respectively. Then, if λ

(123)
i jk = 0

for all i, j, k in (5.2), Agresti showed that given X = i and Z = k
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logit[ pr(Y = 1)] = log

[
pr(Y = 1)

1 − pr(Y = 1)

]

= log

[
pr(Y = 1 | X = i, Z = k)

pr(Y = 2 | X = i, Z = k)

]

= log

(
μi1k

μi2k

)
= log μi1k − log μi2k

= α + β(1)
i + β(3)

k ,

where α etc. are linear combinations of the λ parameters. We see then that the
loglinear model with its second interaction zero leads to an additive logistic regression
model. This type of connection can be utilised to examine interaction effects in log-
linear models. We now consider some applications of logistic models.

5.2.1 Independent Binomial Distributions

We first consider k independent Binomial variables Yi . Suppose when x = xi , Yi has
a Binomial distribution with parameters ni and p(xi ), where (5.6) holds for each xi .
Then the log likelihood function for the parameters β0 and β1 is

log[L(β0,β1)] =
k∑

i=1

{yi log p(xi ) + (ni − yi ) log(1 − p(xi ))}.

Differentiating with respect to β0 and β1 leads to the maximum likelihood estimates
β̂0 and β̂1, the fitted line β̂0 + β̂1x , and estimate

p̃(xi ) = exp(β̂0 + β̂1xi )

1 + exp(β̂0 + β̂1xi )
.

To test H0 that the logit regression model holds, we can use the likelihood-ratio
test statistic (and the deviance)

2(�S − �0) = 2

{
k∑

i=1

yi log

(
p̂i

p̃(xi )

)
+

k∑
i=1

(ni − yi ) log

(
1 − p̂i

1 − p̃(xi )

)}
, (5.7)

where p̂i = xi/ni for the saturated model. As there are k pi s and two regression
parameters, we find that for large ni the above deviance is approximately distributed
as χ2

k−2 when H0 is true. Setting p̃i = p̃(xi ), the Pearson statistic is
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X2 =
k∑

i=1

[
(yi − ni p̃i )

2

ni p̃i
+ [(ni − yi ) − ni (1 − p̃i )]2

ni (1 − p̃i )

]

=
k∑

i=1

[
(yi − ni p̃i )

2

ni p̃i
+ (yi − ni p̃i )

2

ni (1 − p̃i )

]

=
k∑

i=1

(yi − ni p̃i )
2

ni p̃i (1 − p̃i )
.

The above two test statistics are preferred to the Wald test statistic. For testing
H1 : β1 = 0 or constructing a confidence interval for β1, one can use the usual
Wald statistic β̂1/SE , where SE is the estimate of the standard deviation (so-called
standard error) of β̂1. However, although the Wald statistic takes a simple form, it is
generally preferable to use the likelihood test to test H1 and then invert this test to
obtain a confidence interval for β1.

Software for carrying out the computations uses an iterative re-weighted least
squares estimation because the Binomial variables having different variances. If the
ni are small, then both statistics are not appropriate and this problem is discussed by
Hosmer and Lemeshow (2000, Chap. 5). A common situation is when each ni = 1 so
that we have one observation for each of k different Binomial trials, and yi = 1 or yi =
0. We then see that �S = 0. Ryan (2009, pp. 315–319) has a good exposition of this
case. Various other measures of testing goodness-of-fit are available including exact
inference (Ryan 2009, Sects. 9.6–9.8; see also Agresti 2002, Sect. 6.7). If possible,
the data can be grouped; for example, if x is the age of an individual then ages can
be grouped into specific age groups. Various grouping strategies are available (e.g.,
Hosmer and Lemeshow 2000, Sect. 5.2). Logistic regression can also be applied
to qualitative explanatory variables using a model such as logit (pi ) = β0 + βi ,
resembling a one-way analysis of variance model. Another formulation may use
dummy variables in the regression model.

All the methods used for analyzing linear models can be applied here, for example,
we can include further explanatory variables, construct confidence intervals, and
look at diagnostic methods such as residual analysis, model fitting, model selection,
and stepwise methods (Hosmer and Lemeshow 2000, Chaps. 4 and 5; Agresti 2007,
Chap. 6; Ryan 2009, Chap. 9). Various residuals based on scaled versions of the
difference yi − n p̃i can be used to examine how well a model fits the data. For
example, referring to samples from the above binomial models, the Pearson residual
takes the form

ei = yi − n p̃i√
ni p̃i (1 − p̃i )

,

where
∑

i e2
i = X2. The standardised residual is obtained by dividing yi −n p̃i by its

standard error. An alternative residual is the deviance residual, which is the square
root of (5.6) with the same sign as the raw residual yi − n p̃i .
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One interesting example of fitting two explanatory variables occurs in epidemi-
ology where exposure to a risk factor is recorded as being present or absent and we
wish to adjust for a continuous variable x2 = z, say (e.g., age). A possible model is
then

logit p(x1, z) = β0 + β1x1 + β2z,

where x1 takes values 0 or 1 reflecting exposure or not, and z is age. As in linear
regression, we may get so-called “confounding” between the two variables so that
our model becomes

g(x1, z) = logit p(x1, z) = β0 + β1x1 + β2z + β12x1z,

and we have an “interaction” term β12. When β12 = 0 we get parallel lines

g(1, z) = β0 + β1 + β2z and

g(0, z) = β0 + β2z.

The above theory with its focus on binary outcomes can also be applied to more
than two outcomes, thus leading to logistic modeling of the Multinomial distribution.

5.2.2 Logistic Multinomial Regression Model

We assume we have a nominal response random variable Y that falls in category i
with probability pi (i = 1, 2, . . . k), where

∑k
i pi = 1. We first pair each category

with a baseline category such as the last category k. If there were only two categories
i and k so that pk = 1 − pi , we could work with

log

(
pi

pk

)
, i = 1, 2, . . . , k − 1.

which would be the log odds for pi , that is logit pi . Suppose we have a single
explanatory variable x , then we could consider the model

gi (x) = log

(
pi

pk

)
= αi + βi x, i = 1, 2, . . . k − 1.

We see that the above equation implies for any arbitrary categories r and s that

log

(
pr

ps

)
= log

(
pr/pk

ps/pk

)
= log

(
pr

pk

)
− log

(
ps

pk

)

= (αr + βr x) − (αs + βs x)

= (αr − αs) + (βr − βs)x,
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which is again a straight line. When k = 2, we get an ordinary logistic regression
for a binary response. When k = 3,

pi (x)

p3(x)
= egi (x) for i = 1, 2, 3,

where g3(x) = 0, and
∑3

i=1 pi (x) = 1. Then solving the above equations we get

p3(x) = 1

1 + ∑2
i=1 eg(xi )

and hence

pi (x) = egi (x)∑3
i=1 egi (x)

, i = 1, 2, 3.

Suppose that our response variable falls in category i with frequency yi (i =
1, 2, . . . , k) so that the yi have a multinomial distribution (cf. Eq. (3.10)), and we
assume the straight line regression model above. Then, dropping constants, the like-
lihood function for the parameters α = (α1,α2, . . . αk)

′ and β = (β1,β2, . . . ,βk)
′

is

L(α,β) =
k∑

i=1

yi log[p(xi )],

where

pi (x) = egi (x)∑k
i=1 gi (x)

and gk(x) = 0.

Software is available for finding the maximum likelihood estimates of the regression
parameters. A global test of fit for the regression model can be carried out using
the either Pearson’s goodness of fit test statistic or the deviance statistic, where the
maximum likelihood fitted cell counts are compared with the observed cell counts
yi . As with the binary case k = 2 described in the previous section, the above
regression model can be extended to include further explanatory variables as well as
the diagnostic and model selection techniques generally associated with linear models
(e.g., Agresti 2002, pp. 219–229: Christensen 1997, Chap. 6). Computer packages, as
well as computing estimates and goodness-of-fit tests, also compute standard errors
of various estimated parameters, and produce test statistics for various hypotheses.
Agresti (2002), in his Appendix A, has collected together references to software,
with an emphasis on SAS, for analyzing categorial data.2 Ryan (2009, Sect. 9.18)
also describes some of the common software packages for logistic regression. Some
packages include the Wald and score tests as well as the likelihood ratio test.

2 For additional information, related to the 3rd (2012) edition of his book, on other packages see
http://www.stat.ufl.edu/~aa/cda2/cda.html.

http://dx.doi.org/10.1007/978-3-642-39041-8_3
http://www.stat.ufl.edu/~aa/cda2/cda.html
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Logistic regression can also be used for handling other situations such as, for
example, matched studies (Agresti 2002, Chap. 10; 2007, Sect. 8.2; Hosmer and
Lemeshow 2000, Chap. 7) and ordinal data ( Agresti 2002, Chap. 7 and 2010; Hosmer
and Lemeshow 2000, Sect. 8.2).
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