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Preface

Offshore structures are unique in the field of engineering, as they pose many
challenges in the development and conceptualization of design. As innovative
platform geometries are envisaged to alleviate the encountered environmental loads
efficiently, detailed understanding of their analysis and basic design becomes
important. Structural dynamics, being an important domain of offshore engineering,
require intensive teaching and guidance to illustrate the fundamental concepts, in
particular as applied to ocean structures. With the vast experience of teaching this
subject and guiding research, a humble attempt is made to present the basics in a
closed form, which will be useful for graduate students and researchers. Chapters in
this book are organized such that the reader gets an overall idea of various types of
offshore plants, basic engineering requirements, fundamentals of structural
dynamics and their applications to preliminary design. Numerical examples and
application problems are chosen to illustrate the use of experimental, numerical and
analytical studies in the design and development of new structural form for deep-
water oil exploration. This book is an effort in the direction of capacity building of
practicing and consulting offshore structural engineers who need to understand the
basic concepts of dynamic analysis of offshore structures through a simple and
straightforward approach.

Video lectures of the courses available at the following websites: (i) http://nptel.
ac.in/courses/114106035; (ii) http://nptel.ac.in/courses/114106036; and (iii) http://
nptel.ac.in/courses/114106037, which also substitute the classroom mode of
understanding of the contents of this book.

My sincere thanks are due to my professors, colleagues and my students who
have given their valuable input and feedback to develop the contents of this book.
In particular, I wish to express my thanks to Mrs. Indira and Ms. Madhavi for their
editorial assistance and graphic art support extended during the preparation of
manuscript of the book. Author acknowledges the support extended by Centre of
Continuing Education, Indian Institute of Technology Madras for publishing this
book.
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I also owe a lot of thanks to all the authors and publishers who have earlier
attempted to publish books on structural dynamics and allied topics, based on which
I developed my concepts on the said subject.

Srinivasan Chandrasekaran
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Chapter 1
Introduction to Offshore Platforms

Abstract This chapter deals with the evolution of platform and various types of
offshore platforms and their structural action under different environmental loads.
The newly evolved structural forms and their discrete characteristics are discussed
in this chapter. This chapter also gives the reader a good understanding about the
structural action of different forms in the offshore. An overview of the construction
stages of offshore plants and their foundation systems is presented.

Keywords Offshore structures � Bottom-supported structures � Compliant
platforms � Tension leg platforms � Triceratops � Floating � Storage and regasification
unit

1.1 Introduction

Offshore structures are being challenged to counteract the depletion of oil resources
with the new set of discoveries. By 2010, the increase in drilling platforms induced
the demand for offshore structures in deep sea. Hence, the quest on the research and
development of the deep-water structures has resulted in the recent advancement
and thrust in this area. Expansion of the structures from shallow to deep waters
makes the accessibility difficult, and hence, the structures demand higher deck areas
consisting of additional space for third-party drilling equipment. Specific challenges
in Arctic regions in shallow waters that arise due to low temperature, remoteness,
ice conditions, ecosystem, and safety necessitate an adaptive design of offshore
platforms addressing these factors.

Development of offshore platforms depends on various factors:

• Structural geometry with a stable configuration
• Easy to fabricate, install, and decommission
• Low CAPEX
• Early start of production
• High return on investment by increased and uninterrupted production

© Springer India 2015
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Newly generated structural forms do not have any precedence to compare and
understand their behavior and complexities. It is therefore important to understand
the response of the structure and then select the structure that is most suitable to the
environment. This is one of the essential features of the front-end engineering
design (FEED). Figure 1.1 shows a drilling semisubmersible for deep-water drilling
with vertical riser storage.

1.2 Types of Offshore Platforms

Offshore platforms fall under three major categories: (i) fixed platforms; (ii) com-
pliant platforms; and (iii) floating platforms. They are further classified as follows:

(i) Fixed platforms

(a) Jacket platform
(b) Gravity platform

(ii) Compliant platforms

(a) Guyed tower
(b) Articulated tower
(c) Tension leg platform

Fig. 1.1 Deep-water drilling
semisubmersible with vertical
riser storage

2 1 Introduction to Offshore Platforms



(iii) Floating platforms

(a) Semisubmersible
(b) Floating Production Unit (FPU)
(c) Floating storage and offloading (FSO)
(d) Floating production, storage and offloading (FPSO) System
(e) Spar

1.2.1 Bottom-supported Structures

Energy is the driving force of the progress of civilization. Industrial advancements
were first stoked by coal and then by oil and gas. Oil and gas are essential com-
modities in world trade. Oil exploration that initially started ashore has nowmoved to
much deeper waters owing to the paucity of the resources at shallow waters (Bhat-
tacharyya et al. 2003). Until date, there are more than 20,000 offshore platforms of
various kinds installed around the world. Geologists and geophysicists search for the
potential oil reserve within the ground under ocean seafloor, and engineers take the
responsibility of transporting the oil from the offshore site to the shore location
(Dawson 1983). There are five major areas of operation from exploration to trans-
portation of oil: (i) exploration; (ii) exploration drilling; (iii) development drilling;
(iv) production operations; and (v) transportation (Chandrasekaran and Bhattachar-
yya 2011; Clauss et al. 1992; Clauss and Birk 1996). Ever since the first offshore
structure was constructed, more advanced design technologies emerged for building
larger platforms that cater to deeper water requirements; each design is unique to the
specific site (Ertas and Eskwaro-Osire 1991). A precise classification of the offshore
platform is difficult because of the large variety of parameters involved, such as
functional aspects, geometric form, construction, and installation methods. However,
the platforms are broadly classified based on the geometric configurations, in general
(Chandrasekaran 2013a, b, c). Offshore installations are constructed for varied pur-
poses: (i) exploratory and production drilling; (ii) preparing water or gas injection
into reservoir; (iii) processing oil and gas; (iv) cleaning the produced oil for disposal
into sea; and (v) accommodation facilities. They are not classified on the basis of their
functional use but based on their geometric (structural) form (Sadehi 1989, 2001,
2007; Sarpkaya and Isaacson 1981). As the platforms are aimed for greater water
depths, their structural form changes significantly; alternatively, the same form
cannot be used at a different water depth. It means that the geometric evolution of the
platform needs to be adaptive to counteract the environmental loads at the chosen
water depths (Patel 1989). Furthermore, the technological complexities faced by new
offshore platforms including analysis and design, topside details, construction, and
installation are not available in the open domain; they are protected and owned by the
respective companies/agencies as part of their copyright. Because of such practices,
knowledge on the complexities in designing the offshore plants is not available to the
practicing young engineers, in particular. Hence, prior to the knowledge of FEED, it
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is necessary to understand different structural forms of offshore structures, which are
successful in the past. As it is well known that each platform is unique in many ways,
learning about their structural configurations, limitations with respect to the sea states
and water depth, construction complexities, decommissioning issues, and their
structural action will be an important stage in the pre-FEED (Hsu 1981; Paik and
Thayamballi 2007).

The present trend is to design and install offshore platforms in regions that are
inaccessible and difficult to use the existing technologies (Anagnostopoulos 1982).
The structural form of every platform is largely derived on the basis of structural
innovativeness but not on the basis of the functional advantages. Revisiting the
existing platforms constructed around the world will impart decent knowledge to
offshore engineers (Gerwick 1986; Graff 1981a, b). Offshore platforms are classi-
fied either as bottom-supported or floating. Bottom-supported platforms can be
further classified as fixed or compliant-type structures; compliant means flexible
(mobility). Compliancy changes the dynamic behavior of such platforms. Floating
structures are classified as neutrally buoyant type (e.g., semisubmersibles, FPSO,
mono-column spars) and positively buoyant type (e.g., tension leg platforms). It is
important to note that buoyancy plays a very important role in floating-type offshore
structures, as the classifications are done based on buoyancy (Bea et al. 1999).
Table 1.1 shows the list of jacket platforms constructed worldwide.

Fixed-type platforms are called template-type structures, which consist of the
following:

• A jacket or a welded space frame, which is designed to facilitate pile driving and
also acts as a lateral bracing for the piles

• Piles, which are permanently anchored to the seabed to resist the lateral and
vertical loads that are transferred from the platform

• A superstructure consisting of the deck to support other operational activities

The jacket platform complex, shown in Fig. 1.2, consists of process, wellhead,
riser, flare support, and living quarters.

Table 1.1 Offshore jacket
platforms constructed
worldwide

Name of the platform Water depth (m) Country

Cognac Fixed Platform 312 US

Pompano 393 US

Bullwinkle 412 US

Canyon Station 91 US

Amberjack Fixed Platform 314 US

Alma Fixed Platform 67 Canada

North Triumph Fixed Platform 76 Canada

South Venture Fixed Platform 23 Canada

Blacktip 50 Australia

CaNguVang 56 Vietnam

East Belumut A 61 Malaysia
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The advantages of offshore jacket platforms are as follows: (i) support large deck
loads; (ii) possibility of being constructed in sections and transported; (iii) suitable
for large field and long-term production (supports a large number of wells);
(iv) piles used for foundation result in good stability; and (v) not influenced by
seafloor scour. Few disadvantages are as follows: (i) cost increases exponentially
with increase in water depth; (ii) high initial and maintenance costs; (iii) not
reusable; and (iv) steel structural members are subjected to corrosion, causing
material degradation in due course of service life.

1.2.1.1 Gravity Platform

In addition to steel jackets, concrete was also prominently used to build some
offshore structures. These structures are called gravity platforms or gravity-based
structures (GBS). A gravity platform relies on the weight of the structure to resist
the encountered loads instead of piling (API-RP2A 1989). In regions where driving
piles become difficult, structural forms are designed to lie on its own weight to resist
the environmental loads. These structures have foundation elements that contribute
significantly to the required weight and spread over a large area of the seafloor to
prevent failure due to overturning moments caused by lateral loads. Gravity plat-
forms are capable of supporting large topside loads during tow-out, which mini-
mizes the hookup work during installation. Additional large storage spaces for
hydrocarbons add up to their advantage. Their salient advantages include the fol-
lowing: (i) constructed onshore and transported; (ii) towed to the site of installation;
(iii) quick installation by flooding; and (iv) use of traditional methods and labor for
installation. Table 1.2 shows the list of gravity platforms constructed worldwide.
These platforms are also known to be responsible for seabed scouring due to large
foundations, causing severe environmental impact (Chandrasekaran 2013a).

Gravity platforms had serious limitations, namely (i) not suitable for sites of poor
soil conditions, as this would lead to significant settlement of foundation; (ii) long

Fig. 1.2 Bullwinkle steel
jacket
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construction period which thereby delays the early start of production; and
(iii) natural frequencies falling within the range of significant power of the input
wave spectrum (Boaghe et al. 1998). Gravity structures are constructed with rein-
forced cement concrete and consist of large cellular base, surrounding several
unbraced columns that extend upward from the base to support the deck and
equipment above the water surface (Reddy and Arockiasamy 1991). Gravity plat-
forms consist of production risers as well as oil supply and discharge lines, contained
in one of the columns; the corresponding piping system for exchange of water is
installed in another; and drilling takes place through the third column. This particular
type is referred as CONDEEP (concrete deep-water) structure and was designed and
constructed in Norway. During construction, base of the platform is constructed in
dry-dock after which it is floated and moored in a deep harbor. The construction is
then completed by slip-forming the large towers in a continuous operation until they
are topped off. The structure is then ballasted, and a steel prefabricated deck is
floated over the structure and attached to its top. The construction of gravity
platforms obviously requires deep harbors and deep tow-out channels. The

Table 1.2 Gravity platforms
constructed worldwide
(Courtesy: Pennwell
Publishing Co.)

Name of the platform Water depth (m)

Ekofisk 1 70

Beryl A 119

Brent B 140

Frigg CDP1 98

Frigg TP 1 104

Frigg MCP01 94

Brent D 142

Statfjord A 145

Dunlin A 153

Frigg TCP2 103

Ninian 136

Brent C 141

Cormorant 149

Statfjord B 145

Maureen 95.6

Stafjord C 145

Gulfaks A 133.4

GulfaksB 133.4

GulfaksC 214

Oseberg 100

Slebner 80

Oseberg North 100

Draugen 280

Heidrun 280

Troll 330
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floatation chambers are used as storage tanks, and platform stability is ensured
through skirts. Steel gravity platforms exist off Nigeria, where the presence of rock
close to seafloor ruled out the possibility of using piles to fix the structures to the
seabed. Figure 1.3 shows the Hibernia gravity base structure. The platform is a steel
gravity base structure with a weight of 112,000 ton and height of 241 m and has steel
skirts for penetration into the seabed.

1.2.2 Compliant Structures

To overcome the above negative factors, one should design a structural form, which
should attract fewer forces and remain flexible to withstand the cyclic forces. The
structural form is improved to overcome the geometric constraints imposed by the
fixed-type platforms. This is a special kind of reverse engineering, which makes
offshore platforms unique. This leads to continuous improvement from one platform
to the other. Hence, FEED is on a constant update as new structural forms are
attempted for oil and gas exploration in deep and ultra-deep waters (Chandrasekaran
2013b). Fixed-type offshore structures became increasingly expensive and difficult to
install in greater water depths. Hence, modified design concept evolved for structures
in water depths beyond 500 m.

Fig. 1.3 Hibernia gravity base structure
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A compliant tower is similar to that of a traditional platform, which extends from
surface to the sea bottom and transparent to waves. A compliant tower is designed to
remain flexible (adaptive) with the forces of waves, wind, and current. Classification
under compliant structure includes those structures that extend to the ocean bottom
and are anchored directly to the seafloor by piles and/or guidelines (Mather 2000).
Guyed towers, articulated tower and tension leg platform (TLP) fall under this cate-
gory. The structural action of complaint platforms is significantly different from that
of the fixed ones, as they resist lateral loads not by their weight but by their relative
movement. In fact, instead of resisting the lateral loads, the structural geometry
enables the platform to move in line with the wave forces. To facilitate the production
operation, they are position-restrained by cables/tethers or guy wires. By attaching
the wires to the complaint tower, majority of the lateral loads are counteracted by the
horizontal component of the tension in the cables; the vertical component adds to the
weight and improves stability (Chakrabarti 1994; Dawson 1983).

1.2.2.1 Guyed Towers

Guyed tower is a slender structure made up of truss members that rest on the ocean
floor and is held in place by a symmetric array of catenary guylines. The foundation
of the tower is supported with the help of spud can arrangement, which is similar to
the inverted cone placed under suction. The structural action of the guyed tower
makes its innovation more interesting, which is one of the successful form
improvements in the offshore structural design. The upper part of the guy wire is a
lead cable, which acts as a stiff spring in moderate seas. The lower portion is a
heavy chain, which is attached with clump weights. Under normal operating con-
ditions, the weights will remain at the bottom, and the tower-deck motion will be
nearly insignificant. However, during a severe storm, the weights on the storm-ward
side will lift off the bottom, softening the guying system and permitting the tower
and guying system to absorb the large wave loads. Since the guylines are attached
to the tower below mean water level close to the center of applied environmental
forces, large overturning moments will not be transmitted through the structure to
the base. This feature has evolved in the design of the tower to be of a constant
square cross section along its length, reducing the structural steel weight as com-
pared with that of a conventional platform (Moe and Verley 1980).

Exxon in 1983 installed the first guyed tower named Lena guyed tower in the
Mississippi Canyon Block in a 300 m water depth. Though the structural form
resembles a jacket structure, it is compliant and is moored by catenary anchor lines.
The tower has a natural period of 28 s in sway mode while bending, and torsion
modes have a period of 3.9 and 5.7 s, respectively. The tower consists of 12
buoyancy tanks of diameter 6 m and length of about 35 m. Around 20 guylines are
attached to the tower with clump weights of about 180 ton to facilitate the holding
of the tower in position. The advantages of guyed towers are (i) low cost (lower
than steel jacket); (ii) good stability as guylines and clump weights improve
restoring force; and (iii) possible reuse. The disadvantages are as follows: (i) high
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maintenance costs; (ii) applicable to small fields only; (iii) exponential increase in
cost with increase in water depth; and (iv) difficult mooring. These factors moti-
vated to further innovation in the platform geometry, which resulted in articulated
towers. Figures 1.4, 1.5, 1.6, 1.7, 1.8, and 1.9 show different types of platforms that
are existing in various oil fields around the world.

1.2.2.2 Articulated Towers

One of the earliest compliant structures that started in relatively shallow waters and
slowly moved into deep water is the articulated tower. An articulated tower is an
upright tower that is hinged at its base with a universal joint, which enables free
rotation about the base. When there was a need to improve the structural form from
fixed to compliant, researchers thought of both modes of compliancy, namely
(i) rotational and (ii) translational. Enabling large translational motion could make
the platform free from position-restrained, and hence, rotational compliancy was
attempted. In such geometric forms, it is important to note that the design introduces
a single-point failure deliberately, which is the universal joint (Choi and Lou 1991;
Helvacioglu and Incecik 2004). The tower is ballasted near the universal joint and
has a large buoyancy tank at the free surface to provide large restoring force
(moment). The tower extends above the free surface and accommodates a deck and
a fluid swivel. In deeper water, it is often advantageous to introduce double
articulation, the second one being at a mid-depth (Nagamani and Ganapathy 2000).
Provision of more articulation reduces the bending moment along the tower (Nazrul
and Suhail 2003). Fatigue is an important criterion for this type of system design as
the universal joints are likely to fail under fatigue loads. The advantages of

Fig. 1.4 Lena guyed tower in Mississippi Canyon Block
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articulated towers are as follows: (i) low cost; (ii) large restoring moments due to
high center of buoyancy; and (iii) protection of risers by tower. There are few
disadvantages: (i) suitable only for shallow water as the tower shows greater
oscillations for increased water depth, (ii) cannot operate in bad weather;
(iii) limited to small fields; and (iv) fatigue of universal joint leads to a single-point
failure.

Fig. 1.5 Articulated tower

Fig. 1.6 Tension leg platform

10 1 Introduction to Offshore Platforms



In both the above structural forms of complaint towers, it is seen that the
structure (tower) extends through the water depth, making it expensive for deep
waters. Therefore, successive structural forms are motivated toward the basic
concept of not extending the tower to the full water depth but only to retain it near
the free surface level. In such kinds of structural geometry, it is inevitable to make
the platform weight dominant. To improve the installing features and decommis-
sioning procedures, the geometry is attempted to be buoyancy dominant instead of

Fig. 1.7 Semisubmersible

Fig. 1.8 FPSO platform
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weight dominant (buoyancy force exceeds the weight by manifold). While this
enabled easy fabrication and installation, it also demanded skilled labor and high
expertise for installation and commissioning of such platforms. The evolved
structural geometry is TLPs (Vannucci 1996; de Boom et al. 1984; Yan et al. 2009;
Yoneya and Yoshida 1982; Demirbilek 1990).

1.2.2.3 Tension Leg Platform

A TLP is a vertically moored compliant platform. Taut mooring lines vertically
moor the floating platform, with its excess buoyancy; they are called tendons or
tethers. The structure is vertically restrained, while it is compliant in the horizontal
direction, which permits surge, sway, and yaw motions. The structural action
resulted in low vertical force in rough seas, which is the key design factor
(Chandrasekaran and Jain 2002a, b; Rijken et al. 1991). Substantial pretension is
required to prevent the tendons from falling slack even in the deepest trough, which
is achieved by increasing the free-floating draft (Chandrasekaran et al. 2006b).
Typical natural periods of the TLP are kept away from the range of wave excitation
periods and typically for TLP resonance periods of 132 s (surge/sway) and 92 s
(yaw) as well as 3.1 s (heave) and 3.5 s (pitch/roll), which are achieved through
proper design (Nordgren 1987). The main challenge for the TLP designers is to
keep the natural periods in heave and pitch below the range of significant wave
energy, which is achieved by an improved structural form (Paik and Roesset 1996;
Kobayashi et al. 1987; Low 2009). TLP technology preserves many of the

Fig. 1.9 SPAR platform
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operational advantages of a fixed platform while reducing the cost of production in
water depths up to about 1,500 m (Iwaski 1981; Haritos 1985; Chandrasekaran
et al. 2004, 2007a; Chandrasekaran and Jain 2004). Its production and maintenance
operations are similar to those of fixed platforms. TLPs are weight sensitive but
have limitations in accommodating heavy payloads (Tabeshpour et al. 2006;
Yoshida et al. 1984). Usually, a TLP is fabricated and towed to an offshore well site
wherein the tendons are already installed on a prepared seabed. Then, the TLP is
ballasted down so that the tendons may be attached to the TLP at its four corners.
The mode of transportation of TLP allows the deck to be joined to the TLP at
dockside before the hull is taken offshore (Bar-Avi 1999).

The advantages of TLPS are as follows: (i) mobile and reusable; (ii) stable as the
platform has minimal vertical motion; (iii) low increase in cost with increase in water
depth; (iv) deep-water capability; and (v) low maintenance cost. Few disadvantages
are, namely (i) high initial cost; (ii) high subsea cost; (iii) fatigue of tension legs;
(iv) difficult maintenance of subsea systems; and (v) little or no storage.

1.2.3 Floating Platform

Semisubmersibles, FPSO systems, FPUs, FSO systems, and spar platforms are
grouped under this category.

1.2.3.1 Semisubmersible

Semisubmersible marine structures are well known in the oil and gas industries and
belong to the category of neutrally buoyant structure. These structures are typically
moveable only by towing. These semisubmersibles have a relatively low transit
draft, with a large water plane area, which allows them to be floated to a stationing
location. On location, it is ballasted, usually by seawater, to assume a relatively
deep draft or semisubmerged condition, with a smaller water plane area, for
operation. Semisubmersible platforms have the principal characteristic of remaining
in a substantially stable position and have minimal motions in all the degrees of
freedom due to environmental forces such as the wind, waves, and currents. The
main parts of the semisubmersibles are the pontoons, columns, deck, and the
mooring lines. The columns bridge the deck and the pontoons, i.e., the deck is
supported by columns. Flotation of semisubmersibles is accomplished with pon-
toons. The pontoons provide a relatively large water plane area, as is desirable for
transit. When submerged for stationing and operations, the columns connecting the
pontoons to the upper deck present a lower water plane area, thereby attracting less
wave loads and thus reducing the motions.

The advantages of semisubmersibles are as follows: (i) mobility with high transit
speed (*10kts); (ii) stable as they showminimal response towave action; and (iii) large
deck area. Few disadvantages are as follows: (i) high initial and operating costs;
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(ii) limited deck load (low reserve buoyancy); (iii) structural fatigue; (iv) expensive to
move large distances; (v) availability of limited dry-docking facilities; and (vi) difficult
to handle mooring systems and land BOP stack and riser in rough seas.

1.2.3.2 Floating Production, Storage and Offloading (FPSO) Platform

FPSO is an acronym for floating production, storage and offloading systems. Off-
loading of the crude oil is usually to a shuttle tanker. Typically converted or newly
built tankers are examples of custom-made designs for production and storage of
hydrocarbons. These stored hydrocarbons are then transported by other vessels to
terminals or deep-water ports. The design variants of FPSO are FPS and FSO. FPS
is an acronym for floating production systems devoid of storage facility. Now, it is a
universal term to refer to all production facilities that float rather than structurally
supported by the seafloor, and typical examples include TLPs, spars, semisub-
mersibles, and shipshape vessels. FSO is an acronym for floating, storage and
offloading system. Like the FPSO, these are typically converted or newly built
tankers, and they differ from the FPSO by not incorporating the processing
equipment for production; the liquids are stored for shipment to another location for
processing. Offloading indicates transfer of produced hydrocarbons from an off-
shore facility into shuttle tankers or barges for transport to terminals or deep-water
ports. An FPSO relies on subsea technology for the production of hydrocarbons and
typically involves pipeline export of produced gas with shuttle tanker (offloading)
transport of produced liquids. FPSOs are usually ship-shaped structures and are
relatively insensitive to water depth. Mooring systems of FPSOs are classified as
‘permanent mooring’ or ‘turret mooring.’ Majority of FPSOs deployed worldwide
are permanently moored, i.e., the FPSOs with their moorings and riser systems are
capable of withstanding extreme storms in the field. On the other hand, discon-
nectable FPSOs have attracted more attention recently. They are typically turret
moored. Disconnectable turret is designed for FPSO to be able to disconnect to
avoid certain extreme environments.

The advantages of the FPSOs are as follows: (i) low cost; (ii) mobile and
reusable; (iii) reduced lead time; (iv) quick disconnecting capability, which can be
useful in iceberg-prone areas; (v) little infrastructure required; and (vi) turret
mooring system enables FPS (converted ship type) to head into the wind/waves
reducing their effect. Few disadvantages are as follows: (i) limited to small fields;
(ii) low deck load capacity; (iii) damage to risers due to motion; (iv) poor stability
in rough seas; and (v) little oil storage capabilities.

1.2.3.3 Spar Platform

A spar belongs to the category of neutrally buoyant structures and consists of a
deep-draft floating caisson. This caisson is a hollow cylindrical structure similar to a
very large buoy. Its four major components are hull, moorings, topsides, and risers.
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The spar relies on a traditional mooring system, i.e., anchor-spread mooring or
catenaries mooring system, to maintain its position. The spar design is commonly
used for drilling, production, or both. The distinguishing feature of a spar is its
deep-draft hull, which produces very favorable motion characteristics. The hull is
constructed by using normal marine and shipyard fabrication methods, and the
number of wells, surface wellhead spacing, and facilities weight dictates the size of
the center well and the diameter of the hull. In the classic or full cylinder hull forms,
the whole structure is divided into upper, middle, and lower sections. The upper
section is compartmentalized around a flooded center well housing different types
of risers, namely production riser, drilling riser, and export/import riser. This upper
section provides buoyancy for the spar. The middle section is also flooded but can
be configured for oil storage. The bottom section, called keel, is also compart-
mentalized to provide buoyancy during transport and to contain any field-installed,
fixed ballast. The mooring lines are a combination of spiral strand wire and chain.
Taut mooring system is possible due to small motions of the spar and has a reduced
scope, defined as the ratio of length of the mooring line to water depth, and cost
compared with a full catenary system. Mooring lines are anchored to the seafloor
with a driven or suction pile.

The advantages of spar platforms are as follows: (i) low heave and pitch motion
compared to other platforms; (ii) use of dry trees (i.e., on surface); (iii) ease of
fabrication; (iv) unconditional stability as its center of gravity is always lower than
the center of buoyancy, resulting in a positive GM (metacentric height); and
(v) derive no stability from its mooring system and hence does not list or capsize
even when completely disconnected from its mooring system. Few disadvantages
include the following: (i) Installation is difficult as the hull and the topsides can only
be combined offshore after the spar hull is upended; (ii) have little storage capacity
which brings along the necessity of a pipeline or an additional FSO; and (iii) have
no drilling facilities.

1.3 New-generation Offshore Platforms

As the availability of oil and gas reserves moves toward higher waters depths, oil and
gas exploration is targeted at deep and ultra-deep waters. As the encountered envi-
ronmental loads aremore severe in greater water depths, the geometric form of offshore
platforms proposed for deep and ultra-deep waters needs special attention. Apart from
being cost-effective, the proposed geometric form shall also have better motion
characteristics under the encountered forces arising from the rough sea. Offshore
structures that are found suitable for deep and ultra-deep waters are shown in Fig. 1.10.
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1.3.1 Buoyant Leg Structure (BLS)

Buoyant leg structures (BLSs) are tethered spars with single or group of cylindrical
water-piercing hulls; these are alternative structural forms to TLPs and conventional
spars. They are positively buoyant wherein the buoyancy exceeds the mass of the
structure. Although being positively buoyant, positive metacentric height is main-
tained to ensure the desired structural stability even after the removal of tethers
from the structure. This characteristic ensures high stability and deep draft, which
makes the structural form relatively insensitive to increased water depth. Since the
BLS is a deep-draft structure, the exposed structural part near the free surface is
reduced, and the forces exerted on the structure reduce when compared with the
conventional TLPs. Since the risers are inside the moon pool of the BLS, the forces
exerted on the risers are also minimized, but below the keel of the BLS, some forces
like wave or current act. Halkyard et al. (1991) initially proposed the concept of a
tension buoyant tower, which is modified subsequently by other researchers (Robert
and Capanoglu 1995; Perryman et al. 1995). The structural form of BLS is evolved
by combining the advantageous features of spars and TLPs where its deep-draft hull
limits the vertical motion to a significant extent (Shaver et al. 2001); BLS resembles
spar due to its shape and deep-draft feature, and its response behavior is similar to
that of a TLP due to its restoring system. BLS is simple to fabricate, easy to load-
out, tow, and install (Capanoglu et al. 2002). Figure 1.11 shows the views of
buoyant tower in the fabrication yard, while different stages of installation of BLS
are shown in Fig. 1.12. Installation process of BLS is the combination of the
installation procedures of spar and TLP. Since spar is a stable structure, it is
installed simply by free-floating, while TLP is generally installed by achieving
required pretension in tethers using the following techniques: (i) ballast; (ii) pull-
down; or (iii) both pull-down and ballast methods. During the installation of BLS,
the structure can be free-floated using its permanent ballast. Pretension in the tethers
can be achieved by the above-mentioned procedure. In the ballast method, the

Fig. 1.10 Different types of ultra-deep-water structures
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structure is additionally ballasted until it achieves the required draft; tethers are then
attached from the structure to the seafloor. Additional ballast is removed from the
structure to enable pretension in the tethers. In the pull-down method, free-floating
structure is pulled down until it achieves the required draft; excess buoyancy that is
transferred to the tethers helps to achieve the desired pretension. Pull-down and
ballast methods are the combination of the above-mentioned procedures. BLS
imposes improved motion characteristics and more convenient riser systems, as
they consist of simple hulls in comparison with spars or TLPs. BLS is more
economic than TLPs or spars due to the reduced cost of commissioning. The first
buoyant tower drilling production platform, CX-15 for Peru’s Corvina offshore
field, is installed in September 2012 at a water depth of more than 250 m with a
production capacity of 12,200 barrels per day.

1.3.2 Triceratops

More innovative geometric forms of offshore platforms are evolved in the recent
past to improve the motion characteristics of these platforms under deep and ultra-
deep waters. Triceratops, Non-ship shaped FPSOs and Min Doc are few of them.
The conceptual idea of a triceratops discussed in literature indicated favorable
characteristics of the platform under deep and ultra-deep waters (White et al. 2005);
Fig. 1.13 shows the conceptual view of the triceratops. Geometric innovativeness
imposed in the design by the introduction of ball joints between the deck and BLS
makes triceratops different from other new-generation offshore platforms.

Fig. 1.11 Buoyant tower in
the fabrication yard
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Fig. 1.12 Load out and installed structure in offshore field

Fig. 1.13 Conceptual view
of triceratops
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Triceratops consists of three BLS units, deck, and three ball joints between the BLS
units and the deck. The restoring system is either with restraining legs or with the
tether. Ball joints transfer all translations but not rotations about any axis, making
the platform different from other classic types of offshore structures. The distinct
motion characteristics of its structural members such as BLS and the deck provide
uniqueness to its structural behavior under lateral loads. Common types of offshore
platforms have rigid body motion due to the rigid connection between the members,
which makes the platform to respond as a single unit. As triceratops is integrated
with different structural elements, it behaves as a rigid body in all translations
degrees of freedom but not in rotations about any axis due to the presence of the ball
joints. Rotational responses of BLS differ from that of the deck. Studies focusing on
their response behavior become interesting as the responses of BLS and the deck
are dealt separately, which is not a common practice in most of the offshore plat-
forms. In addition, the derived geometric form has few advantages: (i) reduction in
forces exerted on the platform due to the decrease in the exposed part of the
structure near the free surface and (ii) protection of risers from lateral forces as they
are located inside the moon pool of the BLS. The presence of ball joints between
the deck and BLS restrains the transfer of the rotational motion of the deck from
BLS; translational motion and rotational motion of BLS under the encountered
environmental loads are significantly high. However, due to the deep draft of the
BLS, there is more possibility of unusual corrosion. Corrosion challenges can be
overcome by few techniques such as (i) frequent inspection using corrosion testing
probes; (ii) use of sacrificial anodes; (iii) anti-corrosive coatings; and (iv) use of
cathodic protection. The salient advantages are, namely (i) better motion charac-
teristics; (ii) suitable for deep waters; (iii) improved dynamics in comparison with
TLPs and spars; (iv) wells within protected environment and are laterally supported;
(v) simple structure; (vi) simple station keeping; (vii) easy to install and decom-
mission (installation can be part by part or as a whole structure); (viii) reusable and
relocated; (ix) simple restraining system (does not require high-strength systems
such as TLPs); (x) highly stable structure; and (xii) relatively low cost.

1.3.3 Floating, Storage and Regasification Units (FSRUs)

Transportation of unprocessed crude from the drilling/exploratory platform to the
onshore site involves expensive systems like transportation through pipes, large
vessels, etc., which makes the oil production more expensive. In particular, the
offshore platforms located offshore prove to be highly uneconomical. Key com-
ponents of FSRU consist of regasification equipment that transforms LNG at
−160 °C to has at high-pressure storage tanks, loading arms for receiving LNG,
export manifolds, and seawater pumps that uses seawater to regasify the LNG.
FSRU is the more cost-effective alternative to meet the lower demand of LNG than
traditional, land-based terminals. It contains regasification unit, gas turbine with
generator, air compressors, fuel pumps, firewater and foam systems, freshwater
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systems, cranes, lubrication oil system, lifeboats, and helipad. The LNG is stored at
−160° in double-walled insulated tanks to limit boil-off. The outer walls of the tank
are made of prestressed reinforced concrete or steel to limit the temperature during
storage period. Despite the high-quality insulation, a small amount of heat still
penetrates the LNG tanks, causing minor evaporation. The resulting boil-off gas is
captured and fed back into the LNG tank using compressor and recondensing
systems. This recycling process prevents any natural gas from escaping the terminal
under normal operating conditions. The LNG is subsequently extracted from the
tanks, pressurized, and regasified using heat exchangers. The tanks are equipped
with submerged pumps that transfer the LNG toward other high-pressure pumps.
The compressed LNG (at around 80 times atmospheric pressure) is then turned back
into a gaseous state in vaporizers. Once returned to its gaseous state, the natural gas
is treated in a number of ways, including metering and odorizing, before it is fed
into the transmission network.

The LNG is warmed using the heat from the seawater. This is done in a heat
exchanger (with no contact between the gas and the seawater), resulting in a slight
drop in the temperature of the seawater, which reaches 6 °C at the end of the
discharge pipe, quickly becoming imperceptible once diluted. Natural gas is
odorless. Although non-toxic, it is inflammable and is odorized to ensure even the
slightest leak can be identified. This is done by injecting tetrahydrothiophene
(THT), which is an odorant detectable in very small doses, at the terminal before the
natural gas is distributed.

Gas turbine equipped at the topside of the FSRU uses multiple units of gener-
ating capacity of up to 10–12 MW. The instrument air system provides air for the
plant and the instrument air in process control and maintenance. Inert gas (nitrogen)
is generated on demand by a membrane package using dry, compressed air. A
backup inert gas supply system consisting of compressor seals, cooling medium,
expansion drums, and utility stations is also provided. The oil pump provides high-
pressure oil to the engine. The fuel is pumped from the fuel tank to the primary fuel
filter/water separator, which is then pressurized to 650 kPa gauge pressure by the
fuel transfer pump. The pressurized fuel is passed through the secondary/tertiary
fuel filter. Water supply for the fire-fighting systems is supplied by firewater pumps
at a pumping rate of about 600–5,000 m3/h at the discharge flange at a pressure of
about 18 bar. A film-forming fluoroprotein (FFFP) concentrate system is provided
to enhance the effectiveness of the deluge water spray that protects the separator
module, which has high potential for hydrocarbon pool fires. FFFP is a natural
protein foaming agent that is biodegradable and non-toxic. The freshwater maker
system will utilize a reverse osmosis process to desalinate the seawater at the rate of
5 m3/h. The saline effluent from the freshwater is directed overboard through the
seawater discharge caissons, while the freshwater will be stored in a freshwater
tank. Water delivered to the accommodation module is further sterilized in a UV
sterilization plant before stored in a potable water header tank. The lubrication
system contains an oil cooler, oil filter, gear-driven oil pump, pre-lube pump, and an
oil pan that meets offshore tilt requirements. The internal lubrication system is
designed to provide a constant supply of filtered, high-pressure oil. This system
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meets the tilt requirements for non-emergency offshore operations. Lubrication oil
should have special features in offshore requirements such as (i) water solubility;
(ii) non-sheering on water surface; (iii) excellent lubrication properties; (iv) bio-
degradable; and (v) non-toxic to aquatic environment.

Exercise

1. With the depletion of onshore and offshore shallow water reserves,
the______________________________________ of oil in deep waters has
become a challenge to offshore industry.

2. An offshore structure has no ________________ access to dry land and may be
required to stay in ____________ in all weather conditions.

3. _________________________ differs from the other fixed structures strictly by
weight contained in their base structure.

4. Most floating production systems and virtually all semisubmersibles, FPSs and
FPSOs, produce oil and gas from the wells on the seabed called
__________________________.

5. _____________________ generally show very high displacements, which
demands protection of the well casings from the environment.

6. The tension leg platform is heave restrained by _________________.
7. Deep-water floating production systems are generally concentrated in

________________.
8. Offshore structures are classified by two independent parameters, namely

__________ and _____________.
9. A mobile offshore drilling unit [MODU] configuration is largely determined by

two parameters, namely________________ and ________________.
10. Production units have several functions such as ________, _________,

_________, _________, _________, and __________.
11. Functional requirements for offshore facilities are determined by the primary

variables _________, __________, and ______________.
12. Functional operation of offshore structures influences the _______________ of

the structure.
13. List two desirable characteristics of exploratory drilling platforms deployed in

extreme sea states: _____________ and ____________.
14. Three of the most common forms of drilling platforms are ____________,

_______________, and __________.
15. Drilling platforms with _______________ and _____________ are set on the

seafloor by ___________________.
16. Semisubmersibles have good ______________________ in severe environ-

ments and stay longer in drilling modes.
17. Jack-up rigs are usually _______________ during transit and are _________

from one site to the other.
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18. In shallow waters, the most common type of production platform is
____________________.

19. Production techniques may originate from _________________, and drilling
may be performed with _____________________.

20. Storage capacity of the structure is governed by the ____________ and
_______________.

21. Bottom-founded structure with notable exception in terms of construction
material is ________________.

22. Bottom-supported structures are also called as ____________.
23. Fixed structure behaves as a _________________ and usually resists the lateral

loads encountered.
24. __________________ bottom-supported structures are usually designed such

that their lowest natural frequency is below the energy content of the
__________.

25. ______, ___________, and ____________ cause the offshore structures to
deflect.

26. ____________ is achieved through taut moorings anchored to the seabed.
27. Floating structures have various __________________________.
28. __________ such as semisubmersible, spars, and drill ships are _____________

unrestrained and are allowed to have ___________ degrees of freedom such as
______________________________________________________.

29. ________________ such as tension leg platform, tethered buoyant towers, or
buoyant leg structures are ______________ to the seabed and _________
restrained.

30. Match the following:

1. Payload of bottom-supported structure (a) Resisted by vessel inertia and stability,
mooring strength

2. Regulatory and design practices: floating
structure

(b) Buoyancy

3. Environmental loads of floating structure (c) Resisted by foundation bearing capacity

4. Construction of bottom-supported
structure

(d) Resisted by strength of the structure
and foundation, compliant structure inertia

5. Payload of floating structure (e) Tubular space frame: fabrication yards

6. Installation of bottom-supported structure (f) Plate and frame displacement hull :
ship yards

7. Regulatory and design practices: bottom-
supported

(g) Barge (dry) transport and launch, upend,
piled foundation

8. Construction of floating structure (h) Wet or dry transport, towing to site
and attachment to preinstalled moorings

9. Installation of floating structure (i) Oil industry practices and government
petroleum regulation

10. Environmental loads of
bottom-supported structure

(j) Oil industry practices, government
petroleum regulation, and coast guard and
international maritime regulations
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31. _______________ platform is typically controlled by their functional gravity
loads and lateral force and overturning moments due to wind, wave, and
current.

32. For floating structure, it is necessary to evaluate __________ loads due to
_____________.

33. ___________ is a term used to define a system for keeping the facility within a
specified distance at the desired location.

34. Jack-up rigs are primarily used for __________; similar to __________ with
movable legs.

35. Semisubmersibles are __________ type of offshore structures, which are pri-
marily designed for _________ and ____________purposes.

36. Drill ships are primarily used for ______________.
37. Tension leg platform is primarily designed for _______________, which is

developed from semisubmersibles that are _____________ to the seafloor with
tethers.

38. __________ is designed primarily for production with a composition of steel
framed tubular structure attached to seabed with piles driven into seafloors.

39. _______ are typically large reinforced concrete, bottom-mounted structure
which resist the lateral loads by its self-weight.

40. ________________ is a structure designed for small field production, which is
composed of slender truss steel structure supported by __________ foundation.

Answers

1. Exploration and production
2. Fixed access; position
3. Gravity-based structure
4. Subsea wells
5. Floating platforms
6. Vertical tendons or tethers
7. Gulf of Mexico
8. Functions and configurations
9. Variable deck payload and transit speed requirements

10. Processing, drilling, work over, accommodation, oil storage, and riser support
11. Reservoir and fluid characteristics, water depth, and ocean environment
12. Configuration
13. Limited structural motions and good station keeping
14. Drill ships, jack-up barges, and semisubmersibles
15. Buoyant legs and pontoons; ballasting
16. Motion characteristics
17. Buoyant; towed
18. Fixed piled structures or jacket structures
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19. Wet or dry tress; subsea blowout preventer (BOP) or surface BOP.
20. Size of the shuttle tankers and frequency of the ships
21. Gravity-based structure
22. Fixed structure
23. Rigid body
24. Compliant; waves
25. Waves, wind, and current
26. Compliancy
27. Degrees of compliancy
28. Neutrally buoyant structures; dynamically; six; heave surge, sway, pitch, roll,

and yaw
29. Positively buoyant structures; tethered; heave
30. 1(c); 2(j); 3(a); 4(e); 5(b); 6(g); 7(i); 8(f); 9(h); 10(d)
31. Fixed
32. Inertial; acceleration
33. Station keeping
34. Exploratory drilling; barge
35. Floating; exploratory and production
36. Exploratory drilling
37. Production; tethered
38. Fixed jacketed structure
39. Gravity-based structures
40. Guyed tower; spud can
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Chapter 2
Environmental Forces

Abstract This chapter deals with different types of environmental loads on offshore
structures. It also includes code information regarding the loads. Step-by-step
method for load estimate on a cylindrical member and an example structure is
detailed. The procedure for estimating wave loads is illustrated through examples.
Solved numerical examples and exercise are given at the end for practice.

Keywords Wind forces � Wave forces � Aerodynamic admittance function �
Current forces �Wave theories �Marine growth � Design requirements � Allowable
stress method � Limit state method � Fabrication and erection loads

2.1 Introduction

Loads acting on offshore structures are classified into the following categories:

• Permanent loads or dead loads
• Operating loads or live loads
• Other environmental loads including earthquake loads
• Construction and installation loads
• Accidental loads

While the design of buildings onshore is influenced mainly by the permanent
and operating loads, the design of offshore structures is dominated by environ-
mental loads, especially waves, and the loads arising in the various stages of
construction and installation. In civil engineering, earthquakes are normally
regarded as accidental loads (see Eurocode 8), but in offshore engineering, they are
treated as environmental loads.

Environmental loads are those caused by environmental phenomena. These
include wind, waves, current, tides, earthquakes, temperature, ice, seabed move-
ment, and marine growth. Their characteristic parameters, defining design load
values, are determined in special studies on the basis of available data. According to
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US and Norwegian regulations (or codes of practice), the mean recurrence interval
for the corresponding design event must be 100 years, while according to the
British rules, it should be 50 years or greater. The different loads to be considered
while designing the structure are wind loads, wave load, mass, damping, ice load,
seismic load, current load, dead load, live load, impact load, etc.

2.2 Wind Force

Wind forces on offshore structures are caused by complex fluid-dynamics phe-
nomenon, which is generally difficult to calculate with high accuracy. Most widely
used engineering approaches to estimate wind forces on offshore structures are
based on few observations as listed below:

• When stream of air flows with constant velocity (v), it will generate force on the
flat plate of area (A).

• The plate will be placed orthogonal to the flow direction.
• This force will be proportional to (Av2).
• The proportionality constant is independent of the area, which is verified by

experimental studies.

Hence, the wind force on a plate orthogonal to the wind flow direction can be
determined by the net wind pressure as given below:

pw ¼ 1
2
qaCwv

2 ð2:1Þ

where qa is mass density of air (1.25 kg/m3), and Cw is wind pressure coefficient. It
is important to note that the mass density of air increases due to the water spray
(splash) up to a height of 20–20 m above MSL. Hence, the total wind-induced force
on the plate is given by:

Fw ¼ pwA ð2:2Þ

If the plate has an angle ðhÞ with respect to the wind direction, then the
appropriate projected area, normal to the flow direction, should be used in the above
equation. The wind pressure coefficient Cw is determined under controlled sta-
tionary wind flow conditions in a wind tunnel. It depends on the Reynolds number;
typical values of 0.7–1.2 are used for cylindrical members. Natural wind has two
components: (i) mean wind component (which is static component) and (ii) fluc-
tuating, gust component (which is a dynamic component). The gust component is
generated by the turbulence of the flow field in all the three spatial directions. For
offshore locations, mean wind speed is much greater than the gust component,
which means that in most of the design cases, a static analysis will suffice. The wind
velocity is given by:
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vðtÞ ¼ �vþ vðtÞ ð2:3Þ

where �v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
is the mean wind velocity and v(t) is the gust component. The

spatial dependence of the mean component is only through the vertical coordinate,
while v(t) is homogeneous in both space and time. Wind force in the directions
parallel (drag force) and normal to the wind direction (lift force) is given by:

FD ¼ 1
2
qCD�vzA

FL ¼ 1
2
qCL�vzA

ð2:4Þ

Wind spectrum above water surface is given by 1/7th power law, which is:

vz ¼ V10
z
10

h i 1
7

ð2:5Þ

where vz is the wind speed at elevation of z m above MSL, V10 is the wind speed at
10 m above MSL, and 10 m is called the reference height. Power law is purely
empirical and most widely used. It is tested with the actual field measurements and
found to be in good agreement. As Eq. (2.5) gives mean wind component, the gust
component can be obtained by multiplying a gust factor with the sustained wind
speed. Average gust factor (Fg) is in the range of 1.35–1.45; variation of the gust
factor along the height is negligible. The sustained wind speed, which is to be used
in the design, is the one minute average wind speed, according to the US Weather
Bureau. The product of sustained wind speed and the gust factor will give the
fastest mile velocity. 200 year sustained wind velocity of 125 miles per hour is to be
used for the design of offshore structures.

Wind produces a low-frequency excitation. The fluctuating component is
modeled probabilistically. Drag force on the members is caused by the encountered
waves and wind. Wave forces alone acting on the member will cause inertia and
drag forces, while earthquake forces cause only inertia forces on the members.
Hence, vibration of the structure induced by wind and waves is different from that
caused by earthquakes. For the design of members under wind loads, most of the
international codes prefer quasi-static analysis. Very slender and flexible structures
are wind-prone; for members under wave action, de-amplification takes place in
flexible structures due to compliancy. While considering wind as a dynamic pro-
cess, the following parameters are important:

• Length of the record: The record can be continuous, intermittent or a selective
whose values are usually above the threshold ones. For the record to be con-
tinuous, average values of the wind velocity is lesser than that of the intermittent
because of the longer length of the record when compared with the former.

• Wind spectrum: It is used as input for the structural analysis, which defines the
fluctuating wind component.

• Gust component: It is approximated by the aerodynamic admittance function.
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Aerodynamic admittance function is an intelligent way to define the cross-
spectrum in the analysis, indirectly. There are two reasons for using the aerodynamic
admittance function: (i) to bypass the rigorous random analysis and (ii) possibility of
an accurate measurement of this function through wind-tunnel experiments. In this
manner, the spatial variations of wind velocity are handled intelligently in the design.
Force due to wind is given by:

FwðtÞ ¼ 1
2
qaCwv

2A

¼ 1
2
qaCwA �vþ vðtÞ½ �2

¼ 1
2
qaCwA �v2 þ vðtÞð Þ2þ2�vvðtÞ

h i
by neglecting higher powers of gust component,

ffi �Fw þ qaCwA�vvðtÞ

ð2:6Þ

In the above equation, wind force is expressed as a sum of mean component and the
gust component. Wind is considered as an ergodic process; the (one-sided) power
spectral density of the wind process is then related to the wind spectrum as:

SþF ðxÞ ¼ qaCw A �v½ �2SþUðxÞ ð2:7Þ

Substituting Eq. (2.2) in Eq. (2.7) and rearranging the terms, we get:

SþF ðxÞ ¼
4 �Fw½ �2
½�v�2 v

x
ffiffiffi
A

p

2p�v

� �� �2
SþUðxÞ ð2:8Þ

In the above equation, force and the response spectra are connected by the aero-
dynamic admittance function, which varies as below:

for
x

ffiffiffi
A

p

2p�v
) 0; v

x
ffiffiffi
A

p

2p�v

� �
) 1

for
x

ffiffiffi
A

p

2p�v
) 1; v

x
ffiffiffi
A

p

2p�v

� �
) 0

ð2:9Þ

Aerodynamic admittance function is proposed through an empirical relationship by
Davenport (1977):

vðxÞ ¼ 1

1þ ð2xÞ4=3
h i

8<
:

9=
; ð2:10Þ
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Wind spectra for the design of offshore structures are listed below with the
details. For the reference height of z = 10 m, wind spectra as applied to offshore
structures are expressed in terms of circular frequency as given below:

Sþu xð Þ ¼ fGþ
u fð Þ ð2:11Þ

(i) Davenport spectrum

xSþu xð Þ
dU

2
p

¼ 4h2

1þ h2
� �4=3 ð2:12Þ

(ii) Harris spectrum

xSþu xð Þ
dU

2
p

¼ 4h

2þ h2
� �5=6 ð2:13Þ

Derivable variable h is given by:

h ¼ xLu
2pU10

¼ dLu
U10

; 0\h\1 ð2:14Þ

where Lu is integral length scale (=1,200 m for Davenport and 1,800 m for Harris
spectrum), d is surface drag coefficient referred to �U10. For offshore locations,
d ¼ 0:001. It is important to note that none of these spectrum used in the analysis of
wind speed is recorded offshore; they are based on onshore records. Hence, these
applications to offshore locations are questionable. They have serious problem
when used for low-frequency flexible structures. Alternatively, for large floating
structures, following spectra are recommended by Dyrbye and Hassen (1997):

(a) Kaimal spectrum

xSþu xð Þ
r2u

¼ 6:8 h

1þ 10:2 hð Þ5=3
ð2:15Þ

where r2u is the variance of U(t) at reference height of 10 m?
(b) API (2000) spectrum

xSþu xð Þ
ru zð Þ2 ¼

x	
xp


 �
1þ 1:5 x	

xp


 �h i5=3 ð2:16Þ
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where xp is peak frequency and r2z is the variance of U(t), which is not
assumed as independent.

0:01� xpz

U zð Þ � 0:1 ð2:17Þ

Usually, a value of 0.025 is obtained in lieu of the values computed from the
above equation. Standard deviation and speed are given by:

ru zð Þ ¼ 0:15U zð Þ Zs
Z

� �0:125
:Z� Zs

0:15U zð Þ Zs
Z

� �0:275
:Z[ Zs

(
ð2:18Þ

where Zs is the thickness of the surface layer, which is usually taken as 20 m.

2.3 Wave Forces

Wind-generated sea surface waves shall be represented as a combination of series of
regular waves. Regular waves of different magnitude and wave lengths from dif-
ferent directions are combined to represent the sea surface elevation. Water particle
kinematics of regular waves is expressed by the sea surface elevation by various
wave theories (Srinivasan and Bhattacharyya 2012). Among all the theories, Airy’s
wave theory is commonly used because it assumes linearity between the kinematic
quantities and the wave height, which makes the wave theory simple. Airy’s theory
assumes a sinusoidal wave form of wave height (H), which is small in comparison
with the wave length (k) and water depth (d) as given below:

gðx; tÞ ¼ H
2
cosðkx� xtÞ

k ¼ 2p
k

_uðx; tÞ ¼ xH
2

coshðkyÞ
sinhðkdÞ cosðkx� xtÞ

_vðx; tÞ ¼ xH
2

sinhðkyÞ
sinhðkdÞ sinðkx� xtÞ

€uðx; tÞ ¼ x2H
2

coshðkyÞ
sinhðkdÞ sinðkx� xtÞ

€vðx; tÞ ¼ �x2H
2

sinhðkyÞ
sinhðkdÞ cosðkx� xtÞ

ð2:19Þ

30 2 Environmental Forces



Airy’s theory is valid up to mean sea level only. However, due to the variable
submergence effect, the submerged length of the members will be continuously
changing. This will attract additional forces due to their variable submergence at
any given time. To compute the water particle kinematics up to the actual level of
submergence, stretching modifications suggested by various researchers are used.

(a) Wheeler suggested the following modification in the horizontal water particle
velocity and acceleration to include the actual level of submergence of the
member:

_uðx; tÞ ¼ xH
2

cosh ky d
dþg

h i
 �
sinhðkdÞ cosðkx� xtÞ

€uðx; tÞ ¼ x2H
2

cosh ky d
dþg

h i
 �
sinhðkdÞ sinðkx� xtÞ

ð2:20Þ

(b) Chakrabarti suggested the modification as given below:

_uðx; tÞ ¼ xH
2

cosh kyð Þ
sinhðkðd þ gÞÞ cosðkx� xtÞ

€uðx; tÞ ¼ x2H
2

cosh kyð Þ
sinhðkðd þ gÞÞ sinðkx� xtÞ

ð2:21Þ

The sea state, in a short term, which is typically 3 h, is assumed as zero-mean,
ergodic Gaussian process. This can be defined completely by a wave spectrum. For
North Sea, Johnswap spectrum is recommended. For open sea conditions, Peirson–
Moskowitz (P–M) spectrum is recommended. In a long term, variation of sea state
is slower than the short-term fluctuations. It is often approximated by a series of
stationary, non-zero-mean Gaussian process, which is specified by the significant
wave height (Hs) and peak wave period (Tp). Following are a few relevant spectra,
applicable in the design of offshore platforms.

2.4 Wave Theories

Wave theories serve to calculate the particle velocities, accelerations, and the
dynamic pressure as functions of the surface elevation of the waves. For long-
crested regular waves, the flow can be considered two-dimensional and are char-
acterized by parameters such as wave height (H), period (T) and water depth (d), as
shown in Fig. 2.1. k ¼ 2p=L denotes the wave number, x ¼ 2p=T denotes the
wave circular frequency, and f ¼ 1=T denotes the cyclic frequency. Different wave
theories available are as follows:
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• Linear or first-order or Airy theory
• Stokes fifth-order theory
• Solitary wave theory
• Cnoidal theory
• Dean’s stream function theory
• Numerical theory by Chappelear

Figure 2.2 shows the chart for the selection of the most appropriate theory, based
on the parameters, H, T, and d. For example, linear wave theory can be applied
when H/gT2 < 0.01 and d/GT2 > 0.05, besides other ranges, as shown in the figure.

(a) PM spectrum for wave loads

Sþ xð Þ ¼ ag2

x5 exp �1:25
x
x0

� 
�4
" #

ð2:22Þ

Fig. 2.1 Definition of wave parameters

Fig. 2.2 Wave theory selection chart (Sarpakaya and Issacson 1981)
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where a is Phillips constant ffi 0.0081.
(b) Modified PM spectrum (2 parameters Hs;x0)

Sþ xð Þ ¼ 5
16

Hs
x4

0

x5 exp �1:25
x
x0

� 
�4
" #

ð2:23Þ

(c) International Ship Structures Congress (ISSC) spectrum (2 parameters Hs, �x)

Sþ xð Þ ¼ 0:1107Hs
x�4

x5 exp �0:4427
x
�x


 ��4
� �

x ¼ M1

M0

ð2:24Þ

where M1 and M0 are spectral moments.
(d) Johnswap spectrum (5 parameters Hs;x0o; c; sa; sbÞ

Sþ xð Þ ¼ ag2

x5 exp �1:25
x
x0

� 
�4
" #

caðxÞ ð2:25Þ

where c is the peakness parameter.

a xð Þ ¼ exp � x� x0ð Þ2
2r2x2

0

" #
ð2:26Þ

where �r is spectral width parameter and is given by:

ra ¼ 0:07; x�x0 ð2:27Þ

rb ¼ 0:09; x[x0 ð2:28Þ

The modified Phillips constant is given by:

a ¼ 3:25� 10�3H2
sx

4
0 1� 0:287 ln cð Þ½ � ð2:29Þ

c ¼ 5 for
Tpffiffiffiffiffi
Hs

p � 3:6 ð2:30Þ

¼ exp 5:75� 1:15
Tpffiffiffiffiffi
Hs

p
� �

for
Tpffiffiffiffiffi
Hs

p [ 3:6 ð2:31Þ

Hs ¼ 4
ffiffiffiffiffiffi
m0

p ð2:32Þ

where c varies from 1 to 7.
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Main force components, rising from the wave loads, are grouped as follows:
(i) Froude–Krylov force, which is caused by the pressure effects due to the undisturbed
incident waves; (ii) diffraction force, which is caused by the pressure effects due to
the presence of the structure in the fluid-flow domain; (iii) hydrodynamic added
mass and potential damping forces, which is caused by the pressure effects due to
the motion of the structural components in ideal fluid; and (iv) viscous drag force,
which is caused by the pressure effects due to the relative velocity between the
water particle and the structural component. For slender structures, Froude–Krylov
force and diffraction forces are idealized by a single inertia term. Velocity and
acceleration do not differ significantly from the values of the cylinder axis when
D=k < 0.2. When the waves act on the slender structures, the structure oscillates,
which will set up waves radiating away from it. Reaction forces are then set up in the
fluid, which will be proportional to the acceleration and velocity of the structure.
Reaction force proportional to the acceleration of the structure will result in an added
mass term, contributing to the inertia force. Reaction force proportional to the
velocity results in the potential damping force. If the structure is compliant, the added
mass forces associated with the relative acceleration between the fluid particles and
the structures are included. Drag force is computed by replacing the water particle
velocity with the relative velocity term. The total force acting normal to the axis of the
member is given by:

qn ¼ q dV � an þ ðCm � 1Þq dVðan � x
::
nÞ þ 1

2
qCd dAðvn � _xnÞ vn � _xnj j

¼ CmqdV � an � ðCm � 1ÞqdV x
::
n þ 1

2
qCd dAðvn � _xnÞ vn � _xnj j

ð2:33Þ

where q is density of fluid, (Cd, Cm) are the drag and inertia coefficients, (vn, an) are
velocity and acceleration of the water particle normal to the axis of the member, _x;€x
are the velocity and acceleration of the structure, and (dA, dV) are exposed area and
displaced volume of water per unit length, respectively.

The above equation has two main issues: first, the relative motion formulation is
valid only if the structure motion is of large amplitude; second, the relative velocity
formation of the drag produces both excitation and damping forces. In the above
equation, the most critical aspect is the evaluation of the drag and inertia coeffi-
cients, which is dependent on flow conditions, Keulegan–Carpenter number, and
Reynolds number. The recommended value of drag coefficient is 0.6–1.2, while that
of the inertia coefficient is 1.2–2.0, as seen in the literature (APR RP 2A). As in the
case of bottom-supported structures (gravity platforms), when the diameter of the
member is very large, incident waves are disturbed by the presence of the structure.
In such cases, viscous force becomes less significant due to the smaller values of the
ratio of wave height to member diameter (H/D ≪ 1). In such cases, the above
equations cannot be applied; it is recommended that the analyzer should use
numerical methods to determine the forces on the members.

Offshore structures have large plane area. Larger topside is required for
accommodating the equipment layout as discussed in the previous chapter. As the
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deck is supported by few column members, their spacing plays an important role in
order to reduce the interference of the waves by their presence. For a large spacing
of c/c distance of column members, there can be cancellation of forces. Let us
consider an example of the tension leg platform (TLP). For a typical size of topside
of 90 × 90 m, resting on four columns, phase angle (h) is given by the following
relationship:

h ¼ 2pDx
k

ð2:34Þ

where Dx is the c/c distance between the column members (leg spacing) and λ is the
wave length. For the spacing between the columns of 90 m and wave period of 10 s,
the phase angle will be 1.2π, which can cause cancellation of forces on members. It
is important to note that the spacing of the members is chosen in such a manner that
the force cancellation effects at the dominant wave frequencies are expected to have
close to the natural frequency of the platform. The forces on a submerged structure
in waves appear from the pressure distribution on its surface. For a small structure,
Morison equation is valid because the flow structure is complex. However, for large
structures (relative to the wavelength), the flow remains essentially attached to the
surface. It is therefore easier to compute this pressure field. If the computation of the
scattered wave potential is waived and its effect is incorporated by a force coeffi-
cient, then this force is called the Froude–Krylov force. Thus, the calculation of the
force is performed assuming that the structure does not distort the wave field in its
vicinity. The force is computed by a pressure-area method using the incident wave
pressure that is acting on the submerged surface of the structure. Then, a force
coefficient is used to account for the wave diffraction.

For a few basic shapes of the structural forms, a closed form expression is
obtained by the Froude–Krylov theory: (i) horizontal cylinder, (ii) horizontal half-
cylinder, (iii) vertical cylinder, (iv) sphere, (v) hemisphere, and (vi) rectangular
barge.

(a) Force on a horizontal cylinder is given by:

fH ¼ r‘
Z2p
0

p cos h dh

(b) Force on a vertical cylinder:

Consider a vertical cylinder placed on the ocean bottom and extended above the
still water level, as shown in Fig. 2.3:

Velocity potential is given by:

u ¼ gH
2x

coshðksÞ
coshðkdÞ sinhðkx� xtÞ ð2:35Þ
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Dynamic pressure is given by:

p ¼ q
@u
@t

¼ qg
H
2
coshðksÞ
coshðkdÞ cosðkx� xtÞ

ð2:36Þ

Horizontal force per unit length is given by:

fx ¼ q
Z2p
0

Z0

�d

@u0

@t
a cos h dh d‘

fx ¼ qgaH
2 coshðkdÞ

Z0

�d

coshðksÞds
Z2p
0

cos½ka cos h� xt� cos h dh

ð2:37Þ

This reduces to the following form, which accounts for the diffraction effect:

fx ¼ CH
pqgHa

k
J1ðkaÞ tanhðkdÞ sinxt ð2:38Þ

The above method of computing the forces by the incident wave alone is known as
Froude–Krylov theory. It does not give the correct value of the force, as the phase
value is accounted for in the equation. It is due to this fact a force coefficient is used
in the expression as a multiplier. For a vertical cylinder, the horizontal force
coefficient is taken as 2; for small values of ka; the value changes as ka increases.

r 

a 

d 

x
y 

θ

Fig. 2.3 Bottom-supported cylinder
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Table 2.1 shows the equations for forces using Froude–Krylov theory for different
geometric shapes of members.

Where V = submerged volume of the structure; CH and CV are force coefficients
in the horizontal and vertical directions, respectively; subscript zero indicates that
the amplitude of the water particle velocity or acceleration is computed at the center
of the geometric shape; and l1 and l3 are the length and underwater depth of the
rectangular block, respectively. The numerical values of C1–C4 depend on the
diffraction parameter ka and are given in Table 2.2. The forces in Table 2.1 are
given in terms of the water particle acceleration and velocity at the center of the
structure wherever possible. The force coefficients shown are applicable over a
small range of diffraction parameter. If the values of ka are much different from the
range given in the table, values of the force coefficients are to be used with caution.

Table 2.1 Forces on members of different geometric shapes using Froude–Krylov theory

Basic shape Horizontal force CH Vertical force CV Ka

range

Horizontal cylinder CHqV _u0 2.0 CVqV _v0 2.0 0–1.0

Horizontal half-
cylinder

CHqV _u0 þ C1xv0½ � 2.0 CVqV ½_v0 þ C2x u0� 1.1 0–1.0

Vertical cylinder
CHqV

2J1ðkaÞ
ka

sinh k‘1
2½ �

k‘1
2½ � _u0

2.0 – – –

Rectangular block
CHqV

sinh
k‘3
2½ �

k‘3
2½ �

sinh k‘1
2½ �

k‘1
2½ � _u0

1.5
CVqV

sinh
k‘3
2½ �

k‘3
2½ �

sinh k‘1
2½ �

k‘1
2½ � _v0

6.0 0–5.0

Hemi sphere CHqV _u0 þ C3xv0½ � 1.5 CVqV _v0 þ C4xu0½ � 1.1 0–0.8

Sphere CHqV _u0 1.5 CVqV _v0 1.1 0–1.75

Table 2.2 Numerical values
of C1–C4

ka C1 C2 C3 C4

0.1 0.037 15.019 0.042 12.754

0.2 0.075 7.537 0.085 6.409

0.3 0.112 5.056 0.127 4.308

0.4 0.140 3.825 0.169 3.268

0.5 0.186 3.093 0.210 2.652

0.6 0.223 2.612 0.252 2.249

0.7 0.259 2.273 0.292 1.966

0.8 0.295 2.024 0.332 1.760

0.9 0.330 1.834 0.372 1.603

1.0 0.365 1.685 0.411 1.482

1.5 0.529 1.273 0.591 1.156

2.0 0.673 1.105 0.745 1.034

2.5 0.792 1.031 0.867 0.989

3.0 0.886 0.999 0.957 0.977

3.5 0.955 0.989 1.015 0.978

4.0 1.000 0.087 1.945 0.985

2.4 Wave Theories 37



2.5 Current Forces

The presence of current in water produces the following distinct effects: Current
velocity should be added vectorially to the horizontal water particle velocity before
computing the drag force, because drag force depends on the square of the water
particle velocity. Current decreases slowly with the increase in depth, but even a
small magnitude of current velocity can cause significant drag force. This effect is
insignificant and generally neglected. Current makes the structure itself to generate
waves, which in turn creates diffraction forces. However, these values are negligible
for realistic value of current acting on the normal-sized members. The presence of
current is alternatively accounted by increasing the wave height to 10–15 % and
neglects the presence of current per se.

2.6 Earthquake Loads

Offshore platforms which do not have stiff connection with the seabed are indirectly
influenced by earthquakes; those which are bottom-supported are affected by
earthquakes directly. Compliant structures that are position-restrained by tethers
will be subjected to dynamic tether tension variations under the presence of
earthquake forces. This will give rise to the dynamic tether tension variations,
which in turn shall affect the response of the platform under lateral loads. Earth-
quakes give rise to the horizontal and vertical motions for a typical duration of
15–30 s. Earthquake acceleration exhibits random characteristics due to (i) the
nature of the mechanism causing earthquakes; (ii) wave propagation; (iii) reflection;
and (iv) deflection. Effects of earthquake forces give rise to horizontal and vertical
motions with durations of 15–30 s. Earthquake loads exhibit random characteristics
due to the nature of the mechanism causing earthquake, wave propagation,
reflection, and deflection. Earthquakes can result in inertia forces due to the
acceleration and damping forces due to the motion of the water particles.

In case of the analysis of compliant structures like TLPs, earthquake forces are
handled in an indirect manner. Water waves generated due to the ground motion are
neglected. Stiffness of TLP tether is modeled as axial tension members; slackening
of tethers is neglected. The dynamic tether tension variation, caused by the hori-
zontal motion of the earthquakes, is used to update the stiffness matrix of the TLP
using the following equation (Chandrasekaran and Gaurav 2008):

DT ¼ AE
‘

xðtÞ � xgðtÞ
� � ð2:39Þ

where x(t) is the instantaneous response vector of TLP and xg(t) is the ground
displacement vector, which is given by:
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xgðtÞ ¼

x1gðtÞ
0

x3gðtÞ
0
0
0

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ð2:40Þ

where x1g and x3g are the horizontal and vertical ground displacements, respec-
tively. Ground motions can be generated using Kanai-Tajimi ground acceleration
spectrum (K-T spectrum), which is given by:

Sx::gx
::
g
ðxÞ ¼ x4

g þ 4n2gx
2
gx

2

x2
g � x2


 �2
þ 4n2gx2

gx
2

2
64

3
75S0

S0 ¼
2ngr2g

pxgð1þ 4n2gÞ

ð2:41Þ

where S0 is the intensity of earthquake, xg is the natural frequency of the ground, ng
is the damping of the ground, and r2g is the variance of the ground acceleration.
These are the three parameters on which K-T spectrum depends on, which need to be
chosen for any analytical studies on TLP under seismic action. The above three
parameters should be estimated from the representative earthquake records by
established estimation processes (Chandrasekaran et al. 2006). For example, an
earthquake occurred in GoM, approximately at 250 miles WSW of Anna Maria,
Florida on September 10, 2006 at 14:56:07 (coordinated universal time). The signal
was epicentered 26.34N, 86.57W. Incidentally, MARS TLP was operating in the
Mississippi Canyon Block, which is also located in GoM. The three parameters S0,
xg, and ng are chosen such that the real earthquake is simulated for analysis purposes
(Chandrasekaran and Gaurav 2008). Studies showed that the dynamic tether tension
variations caused by the earthquake forces are in the order of about 65 % more than
that of the normal values. Even structures with rigid degrees of freedom like heave
are excited, which may result in the loss of functionality of the platform.

2.7 Ice and Snow Loads

Ice loads are dominant in offshore structures in the Arctic regions. Prediction of ice
loads is associated with a significant degree of uncertainty, as there are various ice
conditions that exist in the service life of an offshore platform. They are level ice,
broken ice, ice ridges, and icebergs. Offshore structures show different types of
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failure under ice loads, namely creep, cracking, buckling, spalling, and crushing. Ice
loads exhibit random variations in both space and time. They are classified into:
(i) total or global loads and (ii) local loads or pressure. Global loads affect the overall
motion and stability of the platform, while local loads affect the members at con-
nections. In the level ice condition, frequency of interaction between the structure
and ice is important; number of interactions per unit time is important to quantify the
ice loads on offshore platforms. Total ice force can result in a periodic loading and
can cause dynamic amplification in flexible/slender structures. Current codes include
equations for the extreme static ice loads, which depend on the geometric shape of
the structure. Studies show that ice loads in a conical structure are lesser than that of
the cylindrical structure (Sanderson 1988). This is because a well-designed cone
shape can change the ice-failure mode from crushing to bending. Estimating (pre-
dicting) ice forces on offshore platforms has a lot of uncertainties. Ice forces often
control the design of the platform in operational conditions, in particular. The design
ice loads use varying factors for level ice, first-year ridge ice, and multi-year ridge
ice; the factored values are 2, 5, and 7, respectively.

There are four approaches for addressing ice forces on offshore platforms:
(a) experimental studies on scaled models; (b) numerical studies; (c) field studies;
and (d) data mining. Experimental studies use scaling laws to determine the ice
loads and ice–structure interaction. This method claims many advantages due to the
capability of testing many types of structural shapes in large testing facilities.
However, such tests are expensive apart from a strong disagreement of the model
ice not being accurately scaled as of the sea ice. As the ice failure is dependent on
the geometric shape significantly, ice-failure behavior cannot be accurately studied.
This may result in overprediction of ice loads. Numerical modeling uses high-end
software to model ice forces for different interaction scenarios, which makes it very
cost-effective and instructive. However, limited validation of results with that of the
experiments is reported in the literature. The more practical way to estimate ice
loads is from data mining. Previous platforms can be visited to determine the ice
loads through field measurements. This will give a real picture of the ice loads. In
the frequency domain approach, excitation caused by ice loads is modeled as
sinusoidal pseudo-excitation, and the response is characterized by the transfer
function. Ice force spectrum on a narrow conical structure is given by:

Sþðf Þ ¼ A�F2
0
�T ð�dÞ

f c
exp � B

�T ðaÞf b

� �
ð2:42Þ

where A (=10) and B (=5.47) are constants; �F0 is the force amplitude on the
structure; �T ¼ Lb=v is the period of ice; Lb is ice-breaking length, which is typically
4–10 times of thickness of ice; v is the velocity; and a; b; c; d are constants whose
values are typically 0.64, 0.64, 3.5, and 2.5, respectively. Force amplitude on the
structure is given by:
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�F0 ¼ C rf h
2 D

Lc

� 
0:34

ð2:43Þ

where C is the constant; rf is bending strength of ice (0.7 MPa); h is the ice
thickness; D is the diameter of the ice cone, and Lc is the characteristic length of ice,
which is given by the following equation:

Lc ¼ Eh3

12gqw

� �0:25
ð2:44Þ

where E is Young’s modulus of ice (=0.5 GPa) and qw is density of water.

2.8 Marine Growth

Marine growth or biofouling is the ubiquitous attachments of soft and hard bio-
particles on the surface of a submerged structure. It ranges from seaweeds to hard
shelled barnacles. Its growth on the surface of the structure increases its diameter
and affects its roughness. Its main effect is to increase the wave forces on the
members by increasing not only exposed areas and volumes, but also the drag
coefficient due to higher surface roughness. In addition, it increases the unit mass of
the member, resulting in higher gravity loads and in lower member frequencies.
Depending upon the geographic location, the thickness of marine growth can reach
0.3 m or more. It is accounted for in the design through appropriate increases in the
diameters and masses of the submerged members.

2.9 Mass

Mass is contributed by the structural mass and hydrodynamic added mass of the
structure. For a slender structure, mass of the displaced volume of the structure will
be significant and should be considered in the analysis. Added mass depends on the
submerged volume of the platform, which also varies with respect to period of
vibration. This is due to the variation in buoyancy, which in turn changes the tether
tension variation that affects the natural frequency of motion. Based on the
equipment layout plan and the chosen structural form, one can compute the mass of
the platform readily. It is also important to establish the fact that a desired pro-
portion between center of buoyancy and center of mass is maintained to ensure
stability under free-floating conditions. This is important to enable smooth con-
struction process in case of floating.
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2.10 Damping

For steel offshore structures, structural damping is usually considered to vary from
0.2 to 0.5 % of that of the critical damping (Adams and Baltrop 1991). For concrete
structures, it can be of the order 0.5–1.5 %. Hydrodynamic damping originates from
the radiation damping and viscous damping effects. Radiation damping is deter-
mined using potential theory. It exhibits a strong dependence on frequency and
submergence effects. Literature shows that the drag damping is lower for structures
with large diameter column members (*0.1 %). Damping ratio for offshore
structures (wet structures), including the effects of added mass, can be expressed as
a ratio of that of the dry structures, as given below:

nwet ¼ nwet
ðm�

dryÞ ðx�
dryÞ

ðm�
wetÞ ðx�

wetÞ
ð2:45Þ

where m* and x* are generalized mass and frequency, respectively (Naess and
Moan 2013). Literature shows that the total damping ratio is about 2 % for the first
three modes of bottom-supported structures.

2.11 Dead Load

Dead load is the weight of the overall platform in air, which includes piling,
superstructure, jacket, stiffeners, piping, conductors, corrosion anodes, deck, rail-
ing, grout, and other appurtenances. Dead load excludes the following: weight of
the drilling equipment placed on the platform including the derrick, draw works,
mud pumps, mud tanks, etc.; weight of production or treatment equipment located
on the platform including separators, compressors, piping manifolds, and storage
tanks; weight of drilling supplies that cause variable loads during drilling such as
drilling mud, water, fuel, casing, etc.; weight of treatment supplies employed during
production such as fluid in the separator, storage in the tanks; drilling load, which is
approximate combination of derrick load, pipe storage, rotary table load, etc.

2.12 Live Load

Live loads are acting in addition to the equipment loads. They include load caused
by impacts of vessels and boats on the platform. Dynamic amplification factor is
applied to such loads to compute the enhanced live loads. Live loads are generally
designated as factor times of the applied static load. These factors are assigned by
the designer depending on the type of platform. Table 2.3 gives the live load factors
that are used in the platform design.
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2.13 Impact Load

For structural components which experience impact under live loads, the stipulated
live loads in Table 2.3 should be increased by an impact factor, as given in
Table 2.4. Deck floor loads can be taken as 11.95 kN/m2 in the drilling rig area,
71.85 kN/m2 in the derrick area, and 47.9 kN/m2 for pipe racks, power plants, and
living and accommodation areas.

2.14 General Design Requirements

Design methodology of offshore platforms differs with different types of offshore
structures. For example, vertical deformation will be lesser in case of bottom-
supported structures such as jacket platform and GBS. Such platforms are highly
rigid and tend to attract more forces. Hence, the design criteria should be to limit the
stresses in the members. Displacement of the members under the applied loads will
be insignificant. On the contrary, compliant structures are more flexible, as they all
displaced more under wave action. They also create more disturbances in the
waves. Hence, the design criteria will be to control displacement instead of limiting
the stresses in the members. Orientation of the platform is another important aspect
in the design. Preferred orientation is that members are oriented to have less pro-
jected area to the encountered wave direction. This induces lesser response on the
members. Predominant wave direction for the chosen site is made available to the
designer based on which the platform orientation is decided (Chandrasekaran and
Bhattacharyya 2012). Following are the list of data required for the design of
offshore structures:

Table 2.3 Typical live load values used in platform design (Graff 1995)

Description Uniform load on
decks (kN/m2)

Concentrated load on
deck (kN/m2)

Concentrated load
on beams

Walkway, stair 4.79 4.38 4.45 kN/m2

Areas >40 m2 3.11

Areas for light use 11.9 10.95 267 kN

Table 2.4 Impact factor for
live loads Structural item Load direction

Horizontal Vertical

Rated load in craned 20 % 100 %

Drilling hook loads – –

Supports of light machinery – 20 %

Supports of rotating machinery 50 % 50 %

Boat landings 890 kN 890 kN
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• Land topographical survey of sufficient area covering the chosen site for plat-
form installation

• Hydrographical survey of the proposed location (hydrographic charts are used
for this purpose)

• Information regarding silting at the site
• Wind rose diagram showing information on wind velocities, duration, pre-

dominant direction round the year
• Cyclonic tracking data showing details of the past cyclonic storm such as wind

velocities, direction, peak velocity period, etc., are indicated.
• Oceanographic data including general tide data, tide table, wave data, local

current, seabed characteristics, temperature, rainfall, and humidity
• Seismicity level and values of acceleration
• Structural data of existing similar structures, preferably in the close vicinity
• Soil investigation report

2.15 Steel Structures

The analysis of an offshore structure is an extensive task, embracing consideration
of the different stages, i.e., execution, installation, and in-service stages, during its
life. Many disciplines such as structural, geotechnical, naval architecture, and
metallurgy are involved. The analytical models used in offshore engineering are in
some respects similar to those adopted for other types of steel structures. Only the
salient features of offshore models are presented here. The same model is used
throughout the analysis with only minor adjustments to suit the specific conditions,
e.g., at supports in particular, relating to each analysis. Stick models (beam ele-
ments assembled in frames) are used extensively for tubular structures (jackets,
bridges, and flare booms) and lattice trusses (modules and decks). Each member is
(normally) rigidly fixed at its ends to other elements in the model. If more accuracy
is required, particularly for the assessment of natural vibration modes, local flexi-
bility of the connections may be represented by a joint stiffness matrix. In addition
to its geometrical and material properties, each member is characterized by
hydrodynamic coefficients, e.g., relating to drag, inertia, and marine growth, to
allow wave forces to be automatically generated. Integrated decks and hulls of
floating platforms, involving large bulkheads, are described by plate elements. The
characteristics assumed for the plate elements depend on the principal state of stress
to which they are subjected. Membrane stresses are taken when the element is
subjected merely to axial load and shear. Plate stresses are adopted when bending
and lateral pressure is to be taken into account. After developing a preliminary
model for analysis, member stresses are checked for preliminary sizing under dif-
ferent environmental loads.

The verification of an element consists of comparing its characteristic resistance(s)
to a design force or stress. It includes (i) a strength check where the characteristic
resistance is related to the yield strength of the element and (ii) a stability check for
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elements in compression where the characteristic resistance relates to the buckling
limit of the element. An element (member or plate) is checked at typical sections (at
least both ends and midspan) against resistance and buckling. This verification also
includes the effect of water pressure for deepwater structures. Tubular joints are
checked against punching under various load patterns. These checks may indicate the
need for local reinforcement of the chord using over-thickness or internal ring-
stiffeners. Elements should also be verified against fatigue, corrosion, temperature, or
durability wherever relevant.

2.16 Allowable Stress Method

This method is presently specified by American codes (API, AISC). The loads
remain unfactored, and a unique coefficient is applied to the characteristic resistance
to obtain an allowable stress as shown in Table 2.5.

‘Normal’ and ‘extreme,’ respectively, represent the most severe conditions under
which (a) the plant is to operate without shutdown and (b) the platform is to endure
over its lifetime.

2.17 Limit State Method

This method is enforced by European and Norwegian authorities and has now been
adopted by American Petroleum Institute (API) as it offers a more uniform reli-
ability. Partial factors are applied to the loads and to the characteristic resistance of
the element as given in Table 2.6. They reflect the amount of confidence placed in

Table 2.5 Coefficient for
resistance to stresses Condition Axial Strong axis bending Weak axis bending

Normal 0.60 0.66 0.75

Extreme 0.80 0.88 1.00

Table 2.6 Load factors
Limit state Load categories

P L D E A

ULS (normal) 1.3 1.3 1.0 0.7 0.0

ULS (extreme) 1.0 1.0 1.0 1.3 0.0

FLS 0.0 0.0 0.0 1.0 0.0

PLS (accidental) 1.0 1.0 1.0 1.0 1.0

PLS (post-damage) 1.0 1.0 1.0 1.0 0.0

SLS 1.0 1.0 1.0 1.0 0.0
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the design value of each parameter and the degree of risk accepted under a limit
state as discussed below:

• Ultimate limit state (ULS), which corresponds to an ultimate event considering
the structural resistance with appropriate reserve.

• Fatigue limit state (FLS), which relates to the possibility of failure under cyclic
loading.

• Progressive collapses limit state (PLS), which reflects the ability of the structure
to resist collapse under accidental or abnormal conditions.

• Service limit state (SLS), which corresponds to the criteria for normal use or
durability (often specified by the plant operator).

where the following explanations are applicable:
P represents permanent loads (structural weight, dry equipment, ballast, and

hydrostatic pressure)
L represents live loads (storage, personnel, and liquid)
D represents deformations (out-of-level supports and subsidence)
E represents environmental loads (wave, current, wind, and earthquake)
A represents accidental load (dropped object, ship impact, blast, and fire). The

material partial factors for steel are normally taken equal to 1.15 for ULS and
1.00 for PLS and SLS design. Guidance for classifying typical conditions into
typical limit states is given in Table 2.7.

The analysis of the offshore platform is an iterative process, which requires
progressive adjustment of the member sizes with respect to the forces they transmit,
until a safe and economical design is achieved. It is therefore of utmost importance
to start the main analysis from a model which is close to the final optimized one.
The simple rules given below provide an easy way of selecting realistic sizes for the
main elements of offshore structures in moderate water depth (up to 80 m) where
dynamic effects are negligible.

Jacket Pile Sizes

• Calculate the vertical resultant (dead weight, live loads, and buoyancy), the
overall shear, and the overturning moment (environmental forces) at the
mudline.

• Assuming that the jacket behaves as a rigid body, derive the maximum axial and
shear force at the top of the pile.

• Select a pile diameter in accordance with the expected leg diameter and the
capacity of pile-driving equipment.

• Derive the penetration from the shaft friction and tip bearing diagrams.
• Assuming an equivalent soil subgrade modulus and full fixity at the base of the

jacket, calculate the maximum moment in the pile and derive its wall thickness.
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Deck Leg Sizes

• Adapt the diameter of the leg to that of the pile.
• Determine the effective length from the degree of fixity of the leg into the deck

(depending upon the height of the cellar deck).
• Calculate the moment caused by wind loads on topsides and derive the

appropriate thickness.

Jacket Bracings

• Select the diameter in order to obtain a span/diameter ratio between 30 and 40.
• Calculate the axial force in the brace from the overall shear and the local

bending caused by the wave assuming partial or total end restraint.
• Derive the thickness such that the diameter/thickness ratio lies between 20 and

70 and eliminate any hydrostatic buckle tendency.

Table 2.7 Conditions specified for various limit states

Conditions Loadings Design
criterionP/L E D A

Construction P ULS,
TSLS

Load-out P Reduced wind Support
displacement

ULS

Transport P Transport wind
and wave

ULS

Tow-out
(accidental)

P Flooded
compartment

PLS

Launch P ULS

Lifting P ULS

In-place
(normal)

P + L Wind, wave and
snow

Actual ULS,
SLS

In-place
(extreme)

P + L Wind and
100 year wave

Actual ULS,
SLS

In-place
(exceptional)

P + L Wind and
10,000 year wave

Actual PLS

Earthquake P + L 10−2 quake ULS

Rare
earthquake

P + L 10−4 quake PLS

Explosion P + L Blast PLS

Fire P + L Fire PLS

Dropped
object

P + L Drill collar PLS

Boat
collision

P + L Boat impact PLS

Damaged
structure

P + reduced
L

Reduced wave
and wind

PLS
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Deck Framing

• Select spacing between stiffeners (typically 500–800 mm).
• Derive the plate thickness from formulae accounting for local plastification

under the wheel footprint of the design forklift truck.
• Determine by straight beam formulae the sizes of the main girders under

‘blanket’ live loads and/or the respective weight of the heaviest equipment.

The static in-place analysis is the basic and generally the simplest of all analyses.
The structure is modeled as it stands during its operational life and subjected to
pseudo-static loads. This analysis is always carried at the very early stage of the
project, often from a simplified model, to size the main elements of the structure.
The main model should account for eccentricities and local reinforcements at the
joints. For example, a typical model for North Sea jacket may feature over 800
nodes and 4,000 members. The contribution of appurtenances, such as risers,
J-tubes, caissons, conductors, boat-fenders, etc., to the overall stiffness of the
structure is normally neglected. They are therefore analyzed separately and their
reactions applied as loads at the interfaces with the main structure. Since their
behavior is nonlinear, foundations are often analyzed separately from the structural
model. They are represented by an equivalent load-dependent secant stiffness
matrix; coefficients are determined by an iterative process where the forces and
displacements at the common boundaries of structural and foundation models are
equated. This matrix may need to be adjusted to the mean reaction corresponding to
each loading condition. The static in-place analysis is performed under different
conditions where the loads are approximated by their pseudo-static equivalent. The
basic loads relevant to a given condition are multiplied by the appropriate load
factors and combined to produce the most severe effect in each individual element
of the structure. A dynamic analysis is normally mandatory for every offshore
structure, but can be restricted to the main modes in the case of stiff structures.

2.18 Fabrication and Installation Loads

These loads are temporary and arise during fabrication and installation of the
platform or its components. During fabrication, various structural components
generate lifting forces, while in the installation, phase forces are generated during
platform load-out, transportation to the site, launching and upending, as well as
during lifts related to installation. According to the Det Norske Veritas (DNV)
rules, the return period for computing design environmental conditions for instal-
lation and fabrication loads is three times as that of the duration of the corre-
sponding phase. API-RP2A, on the other hand, leaves this design return period up
to the owner, while the BS6235 rules recommend a minimum recurrence interval of
10 years for the design environmental loads associated with transportation of the
structure to the offshore site.
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2.19 Lifting Force

Lifting forces are functions of the weight of the structural component being lifted,
the number and location of lifting eyes used for the lift, the angle between each
sling and the vertical axis, and the conditions under which the lift is performed, as
shown in Fig. 2.4. All members and connections of a lifted component must be
designed for the forces resulting from static equilibrium of the lifted weight and the
sling tensions. Moreover, API-RP2A recommends that in order to compensate for
any side movements, lifting eyes and the connections to the supporting structural
members should be designed for the combined action of the static sling load and a
horizontal force equal to 5 % this load, applied perpendicular to the padeye at the
center of the pinhole. All these design forces are applied as static loads if the lifts
are performed in the fabrication yard. If, however, the lifting derrick or the structure

Fig. 2.4 Lifts under different conditions. a Derrick and structure on land. b Derrick on land,
structure on floating barge. c Derrick and structure in the sea
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to be lifted is on a floating vessel, then dynamic load factors should be applied to
the static lifting forces. A factor of 2 is applied for members and connections and
1.35 for all other secondary members. For load-out at sheltered locations, the
corresponding minimum load factors for the two groups of structural components
are 1.5 and 1.15, respectively.

2.20 Load-Out Force

These are forces generated when the jacket is loaded from the fabrication yard onto
the barge. If the load-out is carried out by direct lift, then, unless the lifting
arrangement is different from that to be used for installation, lifting forces need not
be computed. This is because lifting in the open sea creates a more severe loading
condition, which requires higher dynamic load factors. If load-out is done by
skidding the structure onto the barge, a number of static loading conditions must be
considered, with the jacket supported on its side. Such loading conditions arise from
the different positions of the jacket during the load-out phases as shown in Fig. 2.5.
Since movement of the jacket is slow, all loading conditions can be taken as static.

Typical values of friction coefficients for the calculation of skidding forces are as
follows: (i) steel on steel without lubrication (0.25); (ii) steel on steel with lubri-
cation (0.15); (iii) steel on Teflon (0.10); and (iv) Teflon on Teflon (0.08). A typical
ballast and displacement values are indicated in the figure.

2.21 Transportation Forces

These forces are generated when platform components (jacket, deck) are trans-
ported offshore on barges or self-floating. They depend upon the weight, geometry,
and support conditions of the structure (by barge or by buoyancy) and also on the
environmental conditions (waves, winds, and currents) that are encountered during
transportation. The types of motion that a floating structure may experience are
shown schematically in Fig. 2.6.

In order to minimize the associated risks and secure safe transport from the
fabrication yard to the platform site, it is important to plan the operation carefully
by considering the following (API-RP2A):

• Previous experience along the tow route
• Exposure time and reliability of predicted ‘weather windows’
• Accessibility of safe havens
• Seasonal weather system
• Appropriate return period for determining design wind, wave, and current

conditions, taking into account the characteristics of the tow such as size,
structure, sensitivity, and cost.
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The motion of the tow, i.e., the structure and supporting barge, generates
transportation forces. They are determined from the design winds, waves, and
currents. If the structure is self-floating, the loads are calculated directly. According
to API-RP2A, towing analyses must be based on the results of model basin tests or
appropriate analytical methods and must consider wind and wave directions par-
allel, perpendicular, and at 45° to the tow axis. Inertial loads shall be computed
from a rigid body analysis of the tow by combining roll and pitch with heave
motions, when the size of the tow, magnitude of the sea state, and experience make

Fig. 2.5 Different phases of jacket load-out by skidding
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such assumptions reasonable. For open sea conditions, typical values are 20° (for
single amplitude roll motion) and 10° for single amplitude pitch motion. The period
of roll or pitch is taken as 10 s, while heave acceleration is taken as 0.2 g. When
transporting a large jacket by barge, stability against capsizing is a primary design
consideration because of the high center of gravity of the jacket. Moreover, the
relative stiffness of jacket and barge may need to be taken into account together
with the wave slamming forces that could result during a heavy roll motion of the
tow, as shown in Fig. 2.7. Structural analyses are carried out for designing the tie-
down braces and the jacket members affected by the induced loads.

Fig. 2.6 Motion of floating objects during installation
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2.22 Launching and Upending Force

These forces are generated during the launch of a jacket from the barge into the sea
and during the subsequent upending into its proper vertical position to rest on the
seabed. A schematic view of the five stages the operation can be seen in Fig. 2.8.

Five stages in a launch-upending operation are as follows: (i) jacket slides along
the skid beams; (ii) jacket rotates on the rocker arms; (iii) jacket rotates and slides
simultaneously; (iv) detaches completely and comes to its floating equilibrium
position; and (v) jacket is upended by a combination of controlled flooding and
simultaneous lifting by a derrick barge. Both the static and dynamic loads for each

Fig. 2.7 View of launch barge and jacket undergoing motion

Fig. 2.8 Launching and upending
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stage of the above under the action of wind, waves, and current need to be included
in the analysis.

To start the launch, the barge must be ballasted to an appropriate draft and trim
angle and subsequently the jacket must be pulled toward the stern by a winch.
Sliding of the jacket starts as soon as the downward force (gravity component and
winch pull) exceeds the friction force. As the jacket slides, its weight is supported
on the two legs that are part of the launch trusses. The support length keeps
decreasing and reaches a minimum, equal to the length of the rocker beams, when
rotation starts. It is generally at this instant that the most severe launching forces
develop as reactions to the weight of the jacket. During the last two stages, variable
hydrostatic forces arise, which have to be considered at all members affected.
Buoyancy calculations are required for every stage of the operation to ensure fully
controlled, stable motion. Computer programs are available to perform the stress
analyses required for launching and upending and also to portray the whole oper-
ation graphically.

2.23 Accidental Load

According to the DNV rules, accidental loads are ill-defined with respect to
intensity and frequency, which may occur as a result of an accident or exceptional
circumstances. Examples of accidental loads are loads due to collision with vessels,
fire or explosion, dropped objects, and unintended flooding of buoyancy tanks.
Special measures are normally taken to reduce the risk from accidental loads. For
example, protection of wellheads or other critical equipment from a dropped object
can be provided by specially designed, impact resistant covers. An accidental load
can be disregarded if its annual probability of occurrence is less than 10−4. This
number is the estimate of order of magnitude and is extremely difficult to compute.

Exercise

1. The design stages of various offshore platform are _________, ___________,
and ______________.

2. The data collected during the FEED stage will be further verified to make sure
the _________ and _________ of such data for further use.

3. Loads on offshore structures are ____________ and ___________.
4. Gravity loads are arising from _________ and __________either permanent or

temporary.
5. Seismic loads are arising from derived type ___________.
6. Gravity loads are _____________, ______________, _____________,

______________, and ___________.
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7. Environmental loads are _____________, ______________, _____________,
______________, __________, and ___________.

8. The fluid loads are weight of fluid on the platform during _______________.
9. The wind speed at 10 m above ________________ is normally provided (V0).

10. Wind speed obtained shall be ____________ to the height above for the cal-
culation of wind speed.

11. The wind speed may be classified as ____________ and ________________.
12. ____________ are measured in an average less than 1 min in duration.
13. Wind loads shall be calculated as per ___________ guidelines.
14. Wind-driven waves are a major source of ______________on offshore

platforms.
15. Sustained wind speeds measured for ______________ duration shall be used to

compute global platform wind loads and gust wind which is measured for
_________ duration shall be used to compute the wind loads to design indi-
vidual members.

16. The wind pressure can be calculated as fw = ___________________.
17. The total force on the platform can be calculated as Fx = ______________.
18.

Calculate wind load on oblique directions Fθ =
19. In_____________________, a discrete set of design waves (maximum) and

associated periods will be selected to generate loads on the structure.
20. In the spectral method, an energy spectrum of the sea state for the location will

be taken and a ___________________ for the response will be generated.
21. Transfer function will be used to compute the ___________ in the structural

members.
22. Sea-state energy spectra available for use are ________, ___________, and

___________.
23. Tides may be classified as___________, _____________, and

_________________.
24. Combination of astronomical tide, wind tide, and pressure differential tide are

called ____________.
25. The forces exerted by waves are most dominant in governing the jacket

structures design especially the______________.

Exercise 55



26. The wave loads exerted on the jacket is applied laterally on all members, and it
generates __________________ on the structure.

27. Period of wind-generated waves in the open sea can be in the order of
_______________.

28. Waves are called ______________ and contain most part of ____________.
29. Relationship between significant wave height (Hs) and the maximum wave

height (Hmax) is ____________________.
30. Match the design wave height for various regions is tabulated below:

I. Bay of Bengal (a) 11 m for 1 year and 24 m for 100 years

II. Gulf of Mexico (b) 6 m for 1 year and 12 m for 100 years

III. South China Sea (c) 5 m for 1 year and 12 m for 100 years

IV. Arabian Sea (d) 14 m for 1 year and 22 m for 100 years

V. Gulf of Thailand (e) 12 m for 1 year and 24 m for 100 years

VI. Persian Gulf (f) 8 m for 1 year and 18 m for 100 years

VII. North Sea (g) 8 m for 1 year and 18 m for 100 years

31. Draw the current profile of wave-driven currents and tidal currents.
32. Name some standard spectrum available in the literature.
33. Ocean currents are classified into few types based on their nature they are

_______________, __________________, and
______________________________.

34. Write down the expression for current variation along the depth and explain the
terms involved in it.

35. Marine growth is an important part in increasing the loads on
________________.

36. Growth of marine algae increases the ______________ and
__________________which in turn increase the wave or current loading.

37. The thickness of marine growth generally _____________ with depth from the
mean sea level, and it is maximum in the _____________.

38. Splash Zone is a region where the water levels _______________ between low
to high.

39. Write down the expression for Morison equation and explain the terms
appropriately.

40. Algebraic sum of wave and current loads is different from calculation of load
by adding the horizontal water particle velocity with the current velocity and
computing the loads. This is because of
____________________________________________.

41. Interaction between the wave and current modifies the
____________________________.

42. Name some wave theories.
43. API-RP2A recommends to use a chart for such selection based on

___________ and ______________.
44. The reserve buoyancy is defined as buoyancy in ______________________.
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45. The buoyancy force can be calculated using ________________method and
______________ method.

46. Sketch a jacket structure and mark the MSL, LAT, and HAT in the jacket
structure.

47. Write down the empirical equation to estimate the force Fice.
48. Platforms located in the vicinity of the river mouth will be subjected to

______________.
49. Write down the empirical equation to estimate the force Fmud.
50. Scour is removal of seafloor soils caused by ____________ and

__________________.
51. Explain the force regime.
52. P-M spectral method describes the fully developed sea determined by

_______________ parameter that is __________________.
53. In P-M spectrum, fetch and duration are considered _____________.
54. ______________________spectrum is on basis of the assumption that the

spectrum is narrow banded, and individual wave height and wave period follow
Rayleigh distribution.

55. ISSC spectrum suggested modification in form of the
___________________________.

56. _____________________ proposed modification in the P-M spectrum in terms
of ________________________ and ____________________.

57. Write down the expression for Morison equation for force per unit length
experienced by the structure due to its motion through the water.

58. Site-dependent databases are being developed to characterize the time varying
fluid induced loads of ________, ___________, and ______________.

59. Explain the linear wave theory with the neat sketch and write the expression for
velocity potential.

60. List the assumptions based on which the Morison equation is derived.

Answers

1. front end engineering design (FEED) or concept selection; basic design;
detailed design

2. authenticity and reliability
3. gravity loads and environmental loads
4. dead weight of structure and facilities
5. gravity loads
6. structural dead loads; facility dead loads; fluid loads; live loads; and drilling

loads
7. wind loads; wave loads; current loads; buoyancy loads; ice loads; and mud

loads
8. operation

Exercise 57



9. lowest astronomical tide (LAT)
10. extrapolated
11. gust and sustained wind velocity
12. Gusts
13. API-RP2A
14. environmental forces
15. 10 min average; 3 s
16. 1/2 (ρgV2)
17. FθFxfw Ax Cs

18. FxcosðhÞ þ FysinðhÞ
19. design wave method
20. transfer function
21. stresses
22. PM spectra, Johnswap spectra, and ISSC spectra
23. astronomical tide, wind tide, and pressure differential tide
24. storm surge
25. foundation piles
26. overturning moment
27. 2–20 s
28. gravity waves and wave energy
29. Hmax = 1:86 Hs

30. I (f/g); II (e); III (a); IV (f/g); V (b); VI (c); VII (d)
31.

32. PM spectra; Johnswap spectra; and ISSC spectra
33. tidal current, wind-driven current, and current generated due to ocean

circulation

34. VT ¼ V0
y
h

� �1=7
VT is the tidal current at any height from seabed, V0 is the tidal

current at the surface, y is the distance measure in meter from seabed, and h is
the water depth

35. offshore structures
36. diameter and roughness of members
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37. decrease and splash zone
38. fluctuate
39. Morison equation FT ¼ FD þ FI ¼ 1=2CDqwDV Vj j þ p

4D
2CMqwa

� �
where FT is the total force, ρw is the density of water, CD and CM are the drag
and inertia coefficients, respectively, D is the diameter of the member including
marine growth, V is the velocity, and a is the acceleration

40. nonlinear term in the drag equation
41. wave parameters and wave field
42. linear/Airy wave theory; Stokes wave theory (up to 5th order approximations);

stream function wave theory (up to 22nd order approximations); cnoidal wave
theory

43. d/gT2 and H/gT2

44. excess of its weight
45. marine method and rational method
46.
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47. fice = C f A where fice crushing strength of ice varies between 1.5 and 3.5 MPa;
Cice = ice force coefficient varies between 0.3 and 0.7; and A area struck by ice
(diameter of member x ice sheet thickness)

48. mud load
49. Mud loads can be calculated using Fmud = Cmud τ D where Cmud = force

coefficient varies from 7 to 9; τ = shear strength of soil 5–10 kPa; and
D = Diameter of pile or member

50. currents and waves
51. 1. D/L > 1 condition approximate to pure reflection; D/L > 0.2 diffraction is

increasingly important; D/L < 0.2 diffraction is negligible; D/L0 > 0.2 inertia;
D/L0 < 0.2 drag dominant where D is the diameter of the structure; L is the
wave length; and L0 is the deepwater wavelength

52. one; wind speed
53. infinite
54. Bretschneider
55. Bretschneider spectrum
56. International Towing Tank Conference (ITTC); significant wave height and

zero crossing frequency
57.

f ¼ mx
::þCAq

p
4
D2 x

::þ 1
2
CDqDj _xj _x

58. wind, wave, and current
59.
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60. Assumptions are as follows:

• Flow is assumed to be not disturbed by the presence of the structure.
• Force calculation is empirical calibrated by experimental results.
• Suitable coefficients need to be used depending on the shape of the body or

structure.
• Validity range shall be checked before use and generally suitable for most

jacket type structures where D/L ≪ 0.2 where D is the diameter of the
structural member and L is the wave length.
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Chapter 3
Introduction to Structural Dynamics

Abstract This chapter deals with introduction to structural dynamics and its
application to offshore structures. Basics of single degree of freedom are discussed
to highlight the conventional mathematical model of single degree of freedom. Free
vibration analysis and forced vibration analysis are discussed with focus on few
important dynamic characteristics of the single-degree-of-freedom and multi-
degrees-of-freedom models. Solved numerical examples of determining natural
frequencies and mode shapes of different mathematical model of single-degree-of-
freedom and multi-degrees-of-freedom systems are included.

Keywords Single-degree-of-freedom � Multi-degrees-of-freedom � Un-damped
free vibration � Forced vibration � Structural damping � Half power method �
Influence coefficient method � Dunkerley’s method � Stodla method � Mode
superposition � Mode truncation � Static correction

3.1 Introduction

For understanding the advantages of the offshore structural forms and action, it is
necessary to convert the structure into simple basic mathematical models for
dynamic analysis. However, it is important to note that complexities arising from
the mechanical and process equipment that forms a major part of topside activity of
offshore structures pose serious limitation to such idealized mathematical models
considered for dynamic analysis. Dynamic loads are defined as time-varying loads
whose magnitude, direction of application, or position vary continuously with time.
As repose to these applied loads, response of the structure also varies with respect
to time. Basic approaches to evaluate the response of structures to such dynamic
loads are (i) deterministic and (ii) non-deterministic. In deterministic approach, in
which the time history of the loading is fully known with the highly varying and
irregular load magnitude, loading can be classified as prescribed dynamic loading.
In non-deterministic approach, in which the time history of the loading is not
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completely known but can be defined in statistical sense, the loading is termed as
random dynamic loading. Deterministic analyses lead to displacement time history
corresponding to the given (completely known) load time history. Other aspects
such as stress, strain, and internal forces are derived from the established dis-
placement patterns. In case of non-deterministic analyses, results obtained will
provide statistical information of the displacement pattern under the action of a
statistically defined loading (random loads). Other aspects such as stress, strain, and
internal forces such as bending moment and shear shall be computed directly by
similar independent non-deterministic analyses rather than from deriving them from
the displacement results as in the earlier case.

Essential characteristics of dynamic loading are their time-varying nature and
presence of inertia force. Inertia force is the force, which resists acceleration, which
is the most essential characteristic of dynamic analysis as they represent a signif-
icant portion of the total load. As the applied load is time-varying, dynamic analysis
is never a single solution like static analysis and the response is then evaluated.

3.2 Fundamentals of Structural Dynamics

All bodies having mass and elasticity are capable of vibration. Mass is an inherent
property of a body, and elasticity causes relative motion of the parts. Due to an
external force, the body gets vibrated, and the internal inherent forces in the form of
elastic energy are developed, and this tries to bring back the structure to its original
position. At equilibrium, the total energy is converted to kinetic energy, and then, the
body continues to move in the opposite direction. Then, kinetic energy is converted
into strain or elastic energy due to which the body returns to its equilibrium position.
By this way, the vibratory motion is repeated indefinitely with the exchange of
energy. Thus, any motion, which repeats itself after an interval of time, is called
vibration. The major factors that cause vibration are the unbalanced centrifugal force
in the system, elastic property of the system, and external excitation.

Before getting into the subject, it is necessary to understand some terminologies.
A motion, which repeats itself after an equal interval of time, is called periodic
motion. The time taken to complete one cycle is called the time period, and the
number of cycles per unit time is called frequency. Free vibrations are the vibrations
which are caused due to initial displacement with the absence of an external force,
and their frequency is called natural frequency. The mode, which has the lowest
natural frequency, is called the fundamental mode of vibration. When the frequency
of the external vibration matches with the natural frequency of a vibrating body, the
amplitude of vibration becomes excessively large, and this is known as resonance.
Degree of freedom is defined as the number of independent displacement compo-
nents of a structural system that are necessary at any given time to represent the effect
of all significant inertia forces present in the system. Systems, which have infinite
number of degrees of freedom, are called continuous systems, and systems with finite
number of degrees of freedom are called discrete or lumped systems.
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3.3 Mathematical Model of Structural System

Idealization of offshore structures to simple mathematical models in dynamic
analysis is the most essential key point in the analysis. Generally, the analysis is
carried out by not considering the serious limitations and complexities arising from
the topside equipment (and their dynamic loads). More accurate analysis, incor-
porating the required details of dynamic response behavior of machineries (under
static condition and under operation), shall be carried out to understand the platform
behavior in more detail; this is beyond the scope of this chapter. Structural ideal-
izations originate from defining the degrees of freedom for the idealized mathe-
matical model. The inertia forces are mass proportional, and an approximate
method of understanding degree of freedom shall be oriented toward the number of
locations where the mass is said to be concentrated. Figure 3.1 shows an idealized
mathematical model of single-degree-of-freedom (SDOF) system. As the mass is
said to be lumped at one point and it is contained to move in only direction (marked
by an arrow direction), the shown model is an idealized case of SDOF system.
Basic and essential characteristics of the SDOF system are, namely (i) mass element
(m) representing the inertial characteristics of the system; (ii) spring element rep-
resented by stiffness (k) that identifies the presence of elastic restoring force and
potential energy of the system; (iii) damping element (c) or dashpot representing
frictional characteristics of energy loss or dissipation of energy in the system; and
(iv) an excitation force (f(t)) representing the external force acting on the system.
Energy is stored by the mass in the form of kinetic energy 1

2m _x2
� �

and by the spring
in the form of potential energy 1

2 kx
2

� �
. Dissipation energy will always act in the

opposite direction.
In the idealized SDOF system, it is not necessary that all the four parameters

need to be present. The most important are the mass element and spring element;
inertial force is characterized by mass element, which is one of the most important
features of dynamic analysis, and restoration to the mean position of the vibrating
mass under any given external/internal action of forces is characterized by spring
element. A system can be termed as un-damped system if damping element is not
present, and if the system is not excited by external force, it is called as free
vibration. As the system is constrained so that it can vibrate only in one direction, it
is termed as SDOF model.

Fig. 3.1 Single-degree-of-
freedom model
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3.4 Single-Degree-of-Freedom Model

The simplest vibratory system is described by a single mass connected to a spring
(and possibly a dashpot). The mass is allowed to displace only along the direction
of spring elongation. Restoration will be attained by the spring force of stiffness
(k) applied opposite to that of the external force. Figure 3.2 shows the free body
diagram of the single degree of freedom under external force f(t). Forces acting on
the body under the free state are, namely (i) external force f(t) acting to the right as
shown; (ii) internal restoration force offered by the spring acting in the direction
opposite to that of the applied external force; and (iii) damping force offered by the
dashpot acting in the direction opposite to that of the external force. Equilibrium of
these set of forces can be arrived by employing Newton’s second law of motion.
Using appropriate sign conventions for the force directions and by equating the net
force to the inertial force, we get a second-order, non-homogeneous ordinary dif-
ferential equation as given below:

m€xþ c _xþ kx ¼ f ðtÞ ð3:1Þ

with the initial conditions as x t ¼ 0ð Þ ¼ x0 and _xðt ¼ 0Þ ¼ _x0, the above equation
can be solved.

3.5 Equation of Motion

Equations of motion are equations that describe the behavior of a physical system in
terms of its motion as a function of time. The equation of motion can be obtained by
employing the following methods:

• Simple harmonic motion method
• Newton’s method
• Energy method
• Rayleigh’s method
• D’Alembert’s method

Consider the spring–mass system of simple pendulum, which is constrained to
move in the rectilinear manner along the axis of the spring. Springs of stiffness k,

Fig. 3.2 Free body diagram of single-degree-of-freedom model
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which is fixed at one end, carry a mass m at its free end. The body is displaced from
its equilibrium position vertically downward. The equilibrium position is called
static equilibrium. In equilibrium position, the gravitational pull W is balanced by
the force in the spring such that mg = W = kδ.

3.5.1 Simple Harmonic Motion Method (SHM Method)

The equation of motion using the SHM method involves three important consid-
erations: (i) Acceleration will be always proportional to its displacement or the
particle/body measured along the path; (ii) the body will always be directed toward
the equilibrium position (fixed point); and (iii) direction is opposite always toward
its motion.

€x 1� ðxÞ

€x ¼ �kx;

where k is the proportionality constant.

€xþ kx ¼ 0

3.5.2 Newton’s Law

The equation of motion using the Newton’s law of motion is derived by equating
the forces.

W � kðx0 þ xÞ ¼ m€x

W ¼ k ðx0Þ
m€xþ k xð Þ ¼ 0
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3.5.3 Energy Method

In a conservative system, the total sum of the energy is constant. In the vibratory
system, the energy is partly potential and partly constant. The kinetic energy is a
function of the velocity, and the potential energy is a function of displacement.

K:E: ¼ 1
2
m _x2

P:E: ¼ 1
2
kx2

d
dt

1
2
m _x2 þ 1

2
kx2

� �
¼ 0

_x m€xþ kx½ � ¼ 0

m€xþ kx ¼ 0

3.5.4 Rayleigh’s Method

It is assumed that maximum kinetic energy at the mean position is equal to the
maximum potential energy at the extreme position. If the motion is assumed to be
simple harmonic, then

x ¼ A sinxnt

where x = displacement of the body from mean position to the extreme position.

_x ¼ xnA cosxnt

Maximum velocity at mean position

_x ¼ Axn

So, maximum kinetic energy at the mean position = 1
2m _x2 ¼ 1

2mx
2
nA

2

Maximum kinetic energy at the extreme position = 1
2 kA

2

1
2
mx2

nA
2 ¼ 1

2
kA2

xn ¼
ffiffiffiffi
k
m

r

These methods are widely used for the determination of the natural frequency of the
system.
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3.5.5 D’Alembert’s Principle

D’Alembert’s principle states that if the resultant force acting on the body along with
the inertia force is zero, then the body will remain in the equilibrium. In this approach,
the dynamic problem is converted into a static problem. This methodology cannot be
applied to the multi-degree problem without proper understanding of the constraints.

F þ Fi ¼ 0

where F is the resultant force acting on the system and Fi is the inertial force.
It is to be mentioned that the inertial force and the accelerating force are equal in

magnitude but opposing in direction. The inertial force is an external force acting on
the body. Mathematically, the equation of motion for the spring–mass system in
vertical position can be written as

m€xþ kx ¼ 0

3.6 Un-damped Free Vibration

In the absence of external force f(t), the vibratory motion set in the body shall be
termed as free vibration. One may wonder how the body will vibrate in the absence
of any external force; it is the initial displacement given to the body makes it to
vibrate. Vibratory motion will be set also due to the presence of elastic restoring
force (kx) that continuously attempts to bring the vibrating mass to original position.
Such vibration induced by the initial displacement and not by the external force is
termed as free vibration. The whole action of restoration may also be influenced by
the presence of dashpot in the system. As explained earlier, there is no necessity of
the presence of dashpot in an idealized mathematical model of SDOF system. In the
absence of such damping force, the induced vibration is called un-damped vibra-
tion. In the present case of un-damped free vibration, there is no loss of energy due
to friction or resistance to this motion in any other form. In simple terms, if there is
no external force applied on the system making f ðtÞ ¼ 0, and therefore, the system
will experience free vibration. Motion of the system will be established by an initial
disturbance (i.e., initial conditions). Furthermore, if there is no resistance or
damping in the system making C = 0, the oscillatory motion will continue forever
with a constant amplitude. Such a system is shown in Fig. 3.3.

Fig. 3.3 Un-damped free
vibration of single-degree-of-
freedom model
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Based on the free body diagram explained earlier, equation of motion for
un-damped free system can be written as follows:

m€xþ kx ¼ 0 ð3:2Þ

Dividing by mass throughout, we get the following form:

€xþ k
m
¼ 0

€xþ x2 ¼ 0

where

x2 ¼ k
m

For the second-order differential equation as shown above, auxiliary equation is
given as follows:

D2 þ x2 ¼ 0

D ¼ �ix

Complimentary function is given as follows:

xðtÞ ¼ C1 cosxt þ C2 sinxt ð3:3Þ

Using the initial condition as explained earlier, the above equation reduces to the
following form:

xðtÞ ¼ x0 cosxt þ _x0
x
sinxt ð3:4Þ

where x0 and _x0 are initial displacements and velocities, respectively, and ωn is the
natural frequency of the said vibrating motion. It can be easily seen that the natural
frequency is dependent on the mass of the system and spring constant or restoring
force coefficient of the system; it is independent of the said initial displacement
given to preset the vibrating motion to the body.

3.7 Damped Free Vibration

While discussing the above case of free vibration of SDOF model, one may wonder
about the duration of such vibration being setup by the given initial displacement.
The duration of such vibration is hypothetically infinite, as no external (or) internal
agency is responsible to control such induced vibration. But in practice, one can
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notice that such vibrations do not extend for infinite time duration; the reason is that
some external agency is responsible to stop such vibration. Hence, it is now nec-
essary to update our existing mathematical model to include this factor in the
analysis. In case of any external force being responsible for controlling the vibra-
tion, air will offer resistance to such motion. In case of offshore structures, waves
contribute significantly toward this action, and hence, damping should be included
in the revised model. However, one may still consider the analysis under the
absence of any external force f(t). Hence, free vibration (no external force) of a
SDOF system with damping is shown in Fig. 3.4. Damping force is commonly
considered proportional to the magnitude of velocity of motion of the body, which
shall be applied in the direction opposite to the direction of external force f(t). This
is termed as viscous damping. Alternatively, resistance to vibratory motion may
also arise from friction between the following surfaces: (i) the plane on which the
body is moving and (ii) the plane of the body itself that is in motion. Such forces
arising purely from frictional resistance are termed as coulomb damping. In this
case, damping force depends on the coefficient of friction between the two surfaces
and remains independent of the velocity of motion of the body. It is customary
practice to assume viscous damping in dynamic analysis of offshore structures.
Damping that produces a damping force proportional to the mass’s velocity is
commonly referred to as ‘viscous damping,’ and is denoted graphically by a
dashpot. Reasons for not considering coulomb damping are explained in the later
part through a numerical example.

Damping is the resistance offered by a body to the motion of a vibratory system.
The resistance may be applied by a liquid or solid internally or externally. If the
value of the damping is small in the mechanical system, then it will have very less
influence on natural frequency. The main advantage of providing damping in
mechanical systems is just to control the amplitude of vibration so that the failure
occurring because of resonance may be avoided.

3.7.1 Viscous Damping

When the system is allowed to vibrate in a viscous medium, the damping is called
viscous. Viscosity is the property of the fluid by virtue of which it offers a resistance
to the motion of one layer over the adjacent one. When two plates are separated by
fluid film of thickness t and the upper plate is allowed to move parallel to the fixed

Fig. 3.4 Damped free
vibration of single-degree-of-
freedom model

3.7 Damped Free Vibration 71



plate with a velocity _x, then the net force F required for maintaining the velocity _x
of the plate is expressed as

F ¼ lA
t
_x

where A is the area of plate, t is thickness of the fluid film, and l is the coefficient of
absolute viscosity of the film. The force can also be written as follows:

F ¼ c_x

c ¼ lA
t

where c is viscous damping coefficient.

3.7.2 Coulomb Damping

Coulomb damping results from the sliding of two dry surfaces. Displacement of a
system in coulomb damping is shown in Fig. 3.5. Damping force is equal to the
product of the normal force and the coefficient of friction µ and is assumed to be
independent of the velocity once the motion is initiated. Because the sign of the
damping force is always opposite to that of the velocity, the differential equation of
motion for each sign is valid only for half-cycle intervals.

To determine the decay of amplitude, we resort to the work–energy principle of
equating the work done to the change in kinetic energy. By choosing a half-cycle
starting at the extreme position with velocity equal to zero and the amplitude equal
to X1, the change in the kinetic energy is zero and the work done on m is also zero.

Fig. 3.5 Displacement of a
system in coulomb damping
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1
2
k X2

1 � X2
�1

� �� Fd X1 þ X�1ð Þ ¼ 0

or

1
2
k X1 þ X�1ð Þ ¼ Fd

where X−1 is the amplitude after the half-cycle as shown in Fig. 3.5. By repeating
this procedure for the next half-cycle, a further decrease in amplitude of 2Fd=k will
be found, so that the decay in amplitude per cycle is a constant and is given as
follows:

X1 � X2 ¼ 4Fd

k

The motion will cease when the amplitude becomes less than D; at this position,
spring force is insufficient to overcome the static friction force, which is generally
greater than the kinetic friction force. It can also be shown that the frequency of
oscillation is the same as that of the un-damped system. Amplitude of the coulomb
damping system decays linearly with time. For damped free vibration of SDOF
system, equation of motion is given as follows:

m€xþ c _xþ kx ¼ 0 ð3:5Þ

This is a second-order, homogeneous, ordinary differential equation (ODE). If all
parameters (mass, spring stiffness, and viscous damping) are constants, then the
equation becomes linear with constant coefficients that can be solved by a simple
characteristic equation method. The characteristic equation for this problem is given
as follows:

ms2 þ csþ k ¼ 0 ð3:6Þ

This determines two independent roots that fall into one of the following three
cases:

1. If c2 � 4mk\0, the system is termed under-damped. The roots of the charac-
teristic equation are complex conjugates, corresponding to oscillatory motion
with an exponential decay in amplitude.

2. If c2 � 4mk ¼ 0, the system is termed critically damped. The roots of the
characteristic equation are repeated, corresponding to simple decaying motion
with at most one overshoot of the system’s resting position.

3. If c2 � 4mk[ 0, the system is termed over-damped. The roots of the charac-
teristic equation are purely real and distinct, corresponding to simple expo-
nentially decaying motion.
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To simplify the solutions coming up, we define the critical damping Cc, the
damping ratio ξ, and the damped vibration frequency xd as follows:

Cc ¼ 2m
ffiffiffiffiffiffiffiffiffi
k=m

p
¼ 2mxn

n ¼ c=Cc

xd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

q
xn

where xd is termed damped vibration frequency. This will be the same as the
natural frequency for an un-damped system. Solution in time domain is discussed
below for each of the three cases.

3.7.3 Under-damped Systems

When c2 � 4mk\0 (equivalent to ξ < 1 or c < Cc), the characteristic equation has a
pair of complex conjugate roots. The displacement solution for this kind of system
is given as follows:

xðtÞ ¼ e�nxnt A cos xdtð Þ þ B sin xdtð Þ½ � ð3:7Þ

With the initial conditions as x(t = 0) = x(0) and _xðt ¼ 0Þ ¼ _x, Eq. (3.7) becomes

xðtÞ ¼ e�nxnt x0 cos xdtð Þ þ _x0 þ nxnx0
xd

sin xdtð Þ
� �

ð3:8Þ

The displacement plot of an under-damped system is shown in Fig. 3.6.

Fig. 3.6 Response of
under-damped system
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The damping ratio ξ can be experimentally determined from the free response by
the logarithmic decrement method. To illustrate this approach, note from Eq. (3.8)
that the period of damped oscillations is given as follows:

T ¼ 2p
xd

Evaluate Eq. (3.8) at t = 0 and t ¼ 2p
xd

At t ¼ 0; xðtÞ ¼ x1 ¼ x0 ð3:9Þ

At t ¼ 2p
xd

; xðtÞ ¼ x2 ¼ e�nxn
2p
xd x0 ð3:10Þ

x1 and x2 are the two consecutive positive peaks of the response. Dividing Eq. (3.9)
by (3.10), we get the following form:

x1
x2

¼ e�nxn
2p
xd ¼ e

2pnffiffiffiffiffiffi
1�n2

p

ln
x1
x2

¼ 2pnffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

p ð3:11Þ

Equation (3.11) is called logarithmic decrement and is denoted by d.

d ¼ ln
x1
x2

¼ 2pnffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

p ð3:12Þ

Logarithmic decrement is also given by the following relationship:

d ¼ 1
n
ln

x
xn

ð3:13Þ

where x is the amplitude at particular maxima and xn represents the amplitude after
further n cycles.

3.7.4 Critically Damped Systems

When c2 � 4mk ¼ 0 (equivalent to ξ = 1 or c = Cc), the characteristic equation has
repeated real roots. Displacement time history is given as follows:

xðtÞ ¼ Aþ Btð Þe�xnt ð3:14Þ
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Using the given initial conditions, equation reduces to the following form:

xðtÞ ¼ e�xnt x0 þ _x0 þ xnx0ð Þt½ � ð3:15Þ

The critical damping factor Cc can be interpreted as the minimum damping that
result in non-periodic motion (i.e., simple decay). Displacement plot of a critically
damped system with positive initial displacement and velocity is shown in Fig. 3.7.

3.7.5 Over-damped Systems

When c2 � 4mk[ 0 (equivalent to ξ > 1 or c > Cc), the characteristic equation has
two distinct real roots. Displacement time history is given as follows:

xðtÞ ¼ Ae �nþ
ffiffiffiffiffiffiffiffi
n2�1

p	 

xnt þ Be �n�

ffiffiffiffiffiffiffiffi
n2�1

p	 

xnt ð3:16Þ

Using the given initial conditions, equation reduces to the following form:

xðtÞ ¼
x0xn nþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � 1

p
þ

h i
þ _x0

2xn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � 1

p e �nþ
ffiffiffiffiffiffiffiffi
n2�1

p	 

xnt

þ
�x0xn n�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � 1

p
þ

h i
� _x0

2xn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � 1

p e �n�
ffiffiffiffiffiffiffiffi
n2�1

p	 

xnt ð3:17Þ

The displacement plot of an over-damped system is shown in Fig. 3.8.

Fig. 3.7 Response of
critically damped system
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The motion of an over-damped system is non-periodic, regardless of the initial
conditions; larger the damping, longer the time to decay from an initial disturbance.
If the system is heavily damped ξ ≫ 1, the displacement solution takes the
approximate form as given below:

xðtÞ � x0 þ _x0
2nxn

1� e�2nxnt
� � ð3:18Þ

3.7.6 Half Power Method

This is used to calculate the damping from the response of the amplitude as shown
in Fig. 3.9. The first step is to locate the peak amplitude. Corresponding frequencies
are noted as f1 and f2.

xstffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2
� �2þ2bf

q ¼ xstffiffiffiffiffi
2f

p ¼ 1ffiffiffi
2

p xst
2f

� �

Solving we get b1 ¼ 1� f� f2; b2 ¼ 1þ f� f2. Simplifying and neglecting
higher powers, we get f ¼ b2�b1

2 ;

f ¼ 1
2

x2 � x1

xn

� �
¼ 1

2
f2 � f1
fn

� �

The value of the ζ depends upon the quality of the graph. The area representing
the energy should represent 50 % of the area of the spectrum. This is used only for
forced function. This is not related to degrees of freedom.

Fig. 3.8 Response of
over-damped system
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3.8 Forced Vibration

In the presence of external force f(t), the resulting vibration is termed as force
vibration. Such vibrations can be either un-damped or damped as the case may be
considered in the analysis. Examples of forced excitation include wave action on the
offshore platform that is inherently and always present in the system. Equation of
motion for forced vibration is given as follows:

m€xþ c _xþ kx ¼ f ðtÞ ð3:19Þ

Figure 3.10 shows damped SDOF system in the presence of external force f(t).
Subjecting the system to a harmonically varying load f(t) amplitude po and circular
frequency x, equation of motion is given as follows:

Fig. 3.9 Half power
bandwidth method

Fig. 3.10 Damped single degree of freedom under external excitation
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m€xþ c _xþ kx ¼ f ðtÞ ¼ po sinxt ð3:20Þ

Response of the single degree of freedom is further analyzed for two cases:
(i) un-damped and (ii) damped.

3.8.1 Un-damped Forced Vibration

Equation of motion is further modified as given below:

m€xþ kx ¼ f ðtÞ ¼ po sinxt ð3:21Þ

Complete solution of the above equation contains two parts, namely (i) comple-
mentary solution and (ii) particular integral. Complementary solution to the equa-
tion is given as follows:

xcðtÞ ¼ A cosxt þ B sinxt ð3:22Þ

Particular solution depends on the form of dynamic loading. In case of harmonic
excitation as considered in the present argument, it is simple to assume that the
resulting response shall also be harmonic and in phase with the loading. Particular
solution for the assumed conditions is given as follows:

xpðtÞ ¼ C sinxt ð3:23Þ

in which the amplitude C is to be evaluated. Substituting Eq. (3.23) in Eq. (3.21),
we get the following:

�mx2C sinxt þ kC sinxt ¼ po sinxt

Dividing throughout by (k sinxt) (which is nonzero in general) and k=m ¼ x2, we
get the following form:

C ¼ po
k

1

1� b2
ð3:24Þ

where β is defined as the ratio of frequency of the applied load to natural frequency
of the system and is given by the following relationship:

b ¼ x
xn
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Complete solution to the equation of motion is the sum of complementary solution
and particular integral as given below:

xðtÞ ¼ xcðtÞ þ xpðtÞ
xðtÞ ¼ A cosxt þ B sinxt þ po

k
1

½1� b2� sinxt
ð3:25Þ

In the above equation, constants A and B depend on the initial conditions. For the
system at rest fxð0Þ ¼ _xð0Þ ¼ 0g, it can be seen that

A ¼ 0 and B ¼ po
k

b

1� b2
	 


Substituting these in Eq. (3.25), we get the following:

xðtÞ ¼ po
k

1

½1� b2� ðsinxt � b sinxntÞ ð3:26Þ

where po=k ¼ xst is termed as static displacement that is caused by the applied
external load po and 1=ð1� b2Þ is the magnification factor (MF) representing the
amplification effect of the harmonically applied loading. Equation (3.26) contains
two distinct terms:

(i) sinxt term represents the response component at frequency of the applied
loading which is called steady-state response

(ii) b sinxnt represents the response component at natural frequency of vibration
and is termed as transient response. This depends on the initial conditions
assigned to the body and shall vanish eventually. It is interesting to note that
this term will not vanish in case of hypothetical un-damped system.

Therefore, in dynamic analysis, one is more interested in the steady-state
response.

3.8.2 Damped Forced Vibration

Considering equation of motion including viscous damping, Eq. (3.20) is modified
by dividing it by m and noting that c=m ¼ 2nxn; modified form is given as below:

€xðtÞ þ 2nxn _xðtÞ þ x2xðtÞ ¼ p0
m
sinxt ð3:27Þ

80 3 Introduction to Structural Dynamics



Complementary solution is given as follows:

xcðtÞ ¼ ½A cosxdt þ B sinxdt� expð�nxntÞ ð3:28Þ

Particular solution is of the following form:

xpðtÞ ¼ G1 cosxt þ G2 sinxt ð3:29Þ

Equation (3.29) contains both the harmonic terms that are essential, as the response
of a damped system shall not be in phase with the loading. Substituting in
Eq. (3.27) and rearranging the terms, we get the following form:

G1x2 þ G2x 2nxnð Þ þ G1x2
n

	 

cosxt

þ �G2x2 � G1x 2nxnð Þ þ G2x2 � p0
m

h i
sinxt ¼ 0 ð3:30Þ

In order to satisfy this equation for all values of t, it is necessary that each of the two
square bracket quantities equal zero; thus, it reduces to the form as given below:

G1ð1� b2Þ þ G2ð2nbÞ ¼ 0

G2ð1� b2Þ � G1ð2nbÞ ¼ po=k
ð3:31Þ

where β is the frequency ratio. Solving these two equations simultaneously, we get
the following:

G1 ¼ po
k

�2nb

ð1� b2Þ2 þ ð2nbÞ2
" #

G2 ¼ po
k

1� b2

ð1� b2Þ2 þ ð2nbÞ2
" # ð3:32Þ

Substituting the values and combining the results of complimentary solution,
Eq. (3.28) reduces the following form:

xðtÞ ¼ ½A cosxdt þ B sinxdt� exp �nxtð Þ

þ po
k

1

1� b2
� �2þ 2nbð Þ2

" #
½ð1� b2Þ sinxt � ð2nbÞ cosxt� ð3:33Þ

First term on the right-hand side of Eq. (3.33) represents transient response which
damps out in accordance with expð�nxntÞ; second term represents the steady-state
harmonic response, which will continue indefinitely. The constants A and B can be
evaluated for any given initial conditions, x(0) and _xð0Þ. As explained earlier,
transient response will not be of primary inters, and therefore, evaluation of con-
stants A&B is not discussed further.
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3.9 Steady-State Response

Steady-state response of equation of motion for a damped forced vibration, as
presented in Eq. (3.33), is given below:

xpðtÞ ¼ po
k

1

ð1� b2Þ2 þ ð2nbÞ2
" #

ð1� b2Þ sinxt � ð2nbÞ cosxt	 
 ð3:34Þ

This displacement can be interpreted easily by plotting two corresponding rotating
vectors in the complex plane as shown in Fig. 3.11. Components along the real axis
are identical to the terms of the above equation. Real component of the resultant
vector gives the steady-state response in the following form:

xpðtÞ ¼ q sinðxt � hÞ ð3:35Þ

Amplitude of the response is given as below:

q ¼ po
k
½ 1� b2
� �2þ 2nbð Þ2��1=2 ð3:36Þ

Phase angle by which the response lags behind the applied loading is given as
follows:

h ¼ tan�1 2nb

1� b2

� �
ð3:37Þ

where 0\h\180� is the range. Ratio of the resultant harmonic response amplitude
to the static displacement is termed as dynamic magnification factor and is given as
follows:

Fig. 3.11 Steady-state response of damped single-degree-of-freedom system
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D ¼ q
po=k

½ 1� b2
� �2þ 2nbð Þ2��1=2 ð3:38Þ

Figure 3.12 shows the variation of frequency ration with phase angle for different
values of damping ratios. Figure 3.13 shows the variation of dynamic magnification
factor with frequency ratio for different damping ratios.

3.10 Two-Degrees-of-Freedom Model

Systems that require two independent coordinates to specify their position during
vibration are termed as two-degrees-of-freedom systems. In general, a system
requiring n number of independent coordinates/parameters to specify its position is
called a system with n degrees of freedom. Two-degrees-of-freedom system is
therefore a specific case of a multi-degrees-of-freedom system. Number of degrees
of freedom generally equals the number of discrete masses of the system, but this is
not always true. Figure 3.14 shows two different forms of two-degrees-of-freedom

Fig. 3.12 Variation of
frequency ratio with phase
angle for damped vibration

Fig. 3.13 Variation of
dynamic magnification factor
with frequency ratio for
damped vibration
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models. Two masses connected by spring in series with stiffness k1 and k2 require
two independent coordinates, namely x1 and x2; the second system of two pendu-
lums connected by a rod of known stiffness, k, has two independent coordinates,
namely θ and Φ, respectively.

3.11 Un-damped Free Vibrations and Principal Modes
of Vibration

As a general rule, two-degrees-of-freedom system shall have two natural frequen-
cies. Under certain condition, it is possible for both the masses to vibrate at any of
these natural frequencies; this shall induce a definite relationship between the
amplitudes of the two displacement coordinates. This resulting configuration is
referred as principal mode of vibration; it is therefore easy to realize that a two-
degrees-of-freedom model shall have two principal modes of vibrations. Under
normal mode of vibration, both the masses pass through their respective mean
equilibrium position simultaneously and reach their extreme position simulta-
neously as well. In case of forced harmonic excitation, resultant vibration of the
masses takes place at the excitation frequency. Figure 3.15 shows a spring–mass
un-damped system with two degrees of freedom, x1 and x2, respectively. Masses are
constrained to move only in the vertical direction; masses m1 and m2 have dis-
placements x1 and x1, respectively, and are measured from their respective static
equilibrium positions. Free body diagram of the system under the action of forces is
also shown in Fig. 3.15.

(a) (b)

m1

m2
m1

m2

k1

k2

k 

O 

C 

B 

φ φθ

θ

Fig. 3.14 Two-degrees-of-freedom system models. a Mass and stiffness in series; b two
pendulums connected with a bar of stiffness k
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Equations of motion can be obtained by applying Newton’s second law of
motion. Let the displacements and forces are measured positive when acting
downward. Applying Newton’s law to the free body diagrams of the two masses m1

and m2, we get the following:

m1€x1 ¼ �k1x1 � k x1 � x2ð Þ ð3:39Þ

m2€x2 ¼ k x1 � x2ð Þ � k2x2 ð3:40Þ

Rearranging and rewriting the above equations, we get the following:

m1€x1 þ k þ k1ð Þx1 � kx2 ¼ 0 ð3:41Þ

m2€x2 þ k þ k2ð Þx2 � kx1 ¼ 0 ð3:42Þ

Considering that both the masses are vibrating at the same natural frequency ω but
with different amplitudes, solution of displacements is assumed as below:

x1 ¼ X1 sinxt ð3:43Þ

x2 ¼ X2 sinxt ð3:44Þ

m1 m1

m2m2

k1

k2

k

x1

x2

k1x1

k2x2

K(x1-x2) 

K(x1-x2) 

Fig. 3.15 Spring–mass
un-damped two-degrees-of-
freedom system
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Substituting for x1 and x2, Eqs. (3.41) and (3.42) are rewritten as follows:

�m1X1x
2 sinxt þ k þ k1ð Þx1 sinxt � kx2 sinxt ¼ 0 ð3:45Þ

�m2X2x
2 sinxt þ k þ k2ð Þx2 sinxt � kx1 sinxt ¼ 0 ð3:46Þ

Rearranging the terms in above equations, we get the following:

k þ k1 � m1x
2� �
X1 � kX2

� �
sinxt ¼ 0 ð3:47Þ

�kX1 þ k þ k2 � m2x
2� �
X2

� �
sinxt ¼ 0 ð3:48Þ

As assumed solutions involve sinxt, the term sinxt cannot be equal to zero all the
times. Therefore, Eqs. (3.47) and (3.48) simplify to the following:

k þ k1 � m1x
2� �
X1 � kX2 ¼ 0 ð3:49Þ

�kX1 þ k þ k2 � m2x
2� �
X2 ¼ 0 ð3:50Þ

The above equations are homogeneous linear algebraic equations in X1 and X2. By
carefully examining both the equations, it can be seen that two equations are
connected through spring constant k, in the absence of which these equations will
become independent. The spring k is therefore called a coupling spring. By
employing Cramer’s rule, these equations can be solved.

X1 ¼
0 �k
0 k þ k2 � m2x2












Dx
ð3:51Þ

X2 ¼
k þ k1 � m1x2 0

�k 0












Dx
ð3:52Þ

For solution other than the trivial one of x1 = x2 = 0, a necessary condition is given
as follows:

Dx ¼ ðk þ k1 � m1x2Þ �k
�k ðk þ k2 � m2x2Þ










 ¼ 0 ð3:53Þ

The above equation is termed as characteristic equation from which the values of x
are established. Simplifying and rearranging, we get the following:

m1m2x
4 � k þ k1ð Þm2 þ k þ k2ð Þm1½ �x2 þ k þ k1ð Þ k þ k2ð Þ � k2 ¼ 0 ð3:54Þ
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Dividing by m1m2, the above equation reduces to the following form:

x4 � k þ k1
m1

þ k þ k2
m2

� �
x2 þ kk1 þ kk2 þ k1k2

m1m2
¼ 0 ð3:55Þ

The above equation is a quadratic equation in x2 and can be solved for x. Alter-
natively, another approach can be used to obtain the mode shapes of vibration. Mode
shapes are the deflected profile of the vibrating masses indicating the relative position
of the masses at any specific frequency at which mode shape is plotted. Hence, for
every frequency of vibration, there exists a pre-defined pattern of displaced position
of the masses, which is termed as mode shape. Mode shape is a graphical display of
the relative amplitudes of two coordinates and their phase–angle relationship. Apart
from indicating the relative position of masses at any particular frequency of
vibration, mode shapes also indicate the qualitative measure of the design of the
system. For example, if the mode shape corresponding to the fundamental frequency
shows torsion, the system can be stated as unstable; in such cases, revision in the
design is sought. Equations (3.49) and (3.50) can be rewritten as follows:

X1

X2
¼ k

k þ k1 � m1x2 ð3:56Þ

X1

X2
¼ k þ k2 � m2x2

k
ð3:57Þ

Equating both, we get the following:

k
k þ k1 � m1x2 ¼

k þ k2 � m2x2

k
ð3:58Þ

m1m2x
4 � k þ k1ð Þm2 þ k þ k2ð Þm1½ �x2 þ k þ k1ð Þ k þ k2ð Þ � k2 ¼ 0 ð3:59Þ

The roots of the above quadratic equation may be written as follows:

x2 ¼ 1
2

k þ k1
m1

þ k þ k2
m2

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k þ k1
m1

þ k þ k2
m2

� �2

� 4
kk1 þ kk2 þ k1k2

m1m2

s2
4

3
5

ð3:60Þ

This can be further simplified as follows:

x2 ¼ 1
2

k þ k1
m1

þ k þ k2
m2

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k þ k1
m1

� k þ k2
m2

� �2

þ 4
k2

m1m2

s2
4

3
5 ð3:61Þ
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It can be seen that roots of the above equation shall yield positive real values of ω.
In the simplified form, above equation can be written as given below:

x2 ¼ 1
2

A�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � 4B

p� �
ð3:62Þ

Two finite positive values of the above equation, say for example, be denoted as x2
1

and x2
2. Out of the four values, namely (�x1;�x2), use of negative sign will

simply change the signs of the arbitrary constants X1 and X2; it does not affect the
solution. Lesser value of the above frequency is called fundamental frequency (or
first harmonic frequency). The general solution can be expressed as given below:

x1 ¼ X11 sinx1t þ X12 sinx2t ð3:63Þ

x2 ¼ X21 sinx1t þ X22 sinx2t ð3:64Þ

where X11;X12;X21 and X22 are the arbitrary constants which can be determined by
initial conditions. It is seen that mode shapes corresponding to each frequency
indicate the relative position of mass at that corresponding frequency; it is therefore
obvious that position of masses may not be the same. However, all masses can be
made to vibrate at a specific frequency such that all the masses will pass their
equilibrium position simultaneously and will reach their maximum displacements.
Such a pattern of mode of vibration is called the principal mode of vibration.
Fundamental mode of vibration is called first mode, and the next successive mode is
called second mode and so on. When the system vibrates in the first mode of
vibration (i.e., when x ¼ x1), amplitude ratio in Eqs. (3.56) and (3.57) becomes

X11

X21
¼ k

k þ k1 � m1x2
1
¼ k þ k2 � m2x2

1

k
¼ 1

l1
ð3:65Þ

X12

X22
¼ k

k þ k1 � m1x2
2
¼ k þ k2 � m2x2

2

k
¼ 1

l2
ð3:66Þ

Constants l1 and l2 represent amplitude ratios to frequencies x1 and x2, respec-
tively. Combining the above two expressions, we get the following:

kl1;2 ¼ k þ k1 � mx2
1;2 ð3:67Þ

Substituting for x2
1;2; we get the following:

kl1;2 ¼
m1

2
k þ k1
m1

� k þ k2
m2

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k þ k1
m1

� k þ k2
m2

� �2

þ4
k2

m1m2

s2
4

3
5 ð3:68Þ
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Since the quantity under the radical sign is greater than the quantity outside, the
sign of the quantity under the radical sign decides the sign of expression on the right.
Hence, l1 and l2 are of opposite signs. For any one of the amplitudes (X1 or X2) in the
ratio (X1/X2) is assumed to be unity, then the corresponding mode is called as normal
mode of vibration.

3.12 Multi-degrees-of-Freedom

All the concepts introduced in the single and two degrees of freedom can be
extended to multi-degrees-of-freedom systems. Equations of motion of a multi-
degrees-of-freedom can be derived using Newton’s second law of motion as
described earlier. However, it is advantageous and necessary to know few more
additional methods of writing equations of motion for multi-degrees-of-freedom.
For a multi-degrees-of-freedom system with n degrees, there exist n natural fre-
quencies, each associated with the corresponding mode shape. The method of
determining these natural frequencies from the characteristic equation is also
applicable to such systems. However, increase in the number of degrees of freedom
will make the characteristic equation more complex. Thanks to the property of
orthogonality that is exhibited by mode shapes of multi-degrees-of-freedom system,
analysis of such system is simplified.

3.13 Equation of Motion for Multi-degrees-of-Freedom
System

Consider an un-damped system shown in Fig. 3.16 having n degrees of freedom.
Differential equation for each mass can be written separately using Newton’s
second law. If x1; x2; x3; . . .xn are the displacements from the equilibrium position of
the respective masses at any instant, then

m1€x1 ¼ �k1x1 � k2ðx1 � x2Þ
m2€x2 ¼ k2 x1 � x2ð Þ � k3ðx2 � x3Þ
m3€x3 ¼ k3 x2 � x3ð Þ � k4 x3 � x4ð Þ
. . .

mn€xn ¼ kn xn�1 � xnð Þ

ð3:69Þ
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These equations can be arranged in the following forms.

m1€x1 þ k1x1 þ k2 x1 � x2ð Þ ¼ 0

m2€x2 � k2 x1 � x2ð Þ þ k3 x2 � x3ð Þ ¼ 0

m3€x3 � k3 x2 � x3ð Þ þ k4 x3 � x4ð Þ ¼ 0

. . .

mn€xn � kn xn�1 � xnð Þ ¼ 0

ð3:70Þ

The above equation is the required equation of motion, which can also be written in
the matrix form as given below:

m1 0 0 . . . 0

0 m1 0 . . . 0

0 0 m1 . . . 0

. . . . . . . . . . . . . . .

0 0 0 . . . m1

2
6666664

3
7777775

€x1
€x2
€x3
. . .

€xn

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

þ

ðk1 þ k2Þ 0 0 . . . 0

0 ðk2 þ k3Þ 0 . . . 0

0 0 ðk3 þ k4Þ . . . 0

. . . . . . . . . . . . . . .

0 0 0 . . . kn

2
6666664

3
7777775

x1
x2
x3
. . .

xn

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼

0

0

0

. . .

0

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ð3:71Þ

½M�f€xg þ ½K�fxg ¼ f0g ð3:72Þ

where [M] is a square matrix of nth order having only diagonal elements in this
case; [K] is a symmetric square stiffness matrix of order n, and {x} is a column
matrix of n elements corresponding to the dynamic displacements of the respective
n masses. Equation (3.72) is similar to that of the equation of motion of a single
degree of freedom except that [M] and [K] are a matrix of nth order where n is the
degree of freedom.
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3.14 Influence Coefficients

Equations of motion of a multi-degrees-of-freedom system can also be written in
terms of influence coefficients that are extensively used in structural dynamics. For
a linear spring, the force necessary to cause a unit elongation is called the spring
constant. In more complex systems, we can express the relation between the dis-
placement at a point and the forces acting at various other points of the system by
means of influence coefficients. There are two types of influence coefficients,
namely (i) flexibility influence coefficients and (ii) stiffness influence coefficients.
To illustrate the concept of an influence coefficient, let us consider the multi-
degrees-of-freedom spring–mass system shown in Fig. 3.16.

Fig. 3.16 Un-damped
multi-degrees-of-freedom
model
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Let the system be acted on by just one force Fj and let the displacement at point
i (i.e., mass mi) due to Fj be xij. The flexibility influence coefficient, denoted by aij,
is defined as the deflection at point i due to a unit load at point j. Since the deflection
increases proportionately with the load for a linear system, we have the following
relationship:

xij ¼ aijFj ð3:72Þ

If several forces Fj( j = 1, 2,…, n) act at different points of the system, then the total
deflection at any point i can be found by summing up the contributions of all force
Fj. This is given as below:

xi ¼
Xn
j¼1

xij ¼
Xn
j¼1

aijFj i ¼ 1; 2; . . .; n ð3:73Þ

Equation (3.73) can be expressed in matrix form as follows:

�x ¼ ½a�F ð3:74Þ

where �x and F are displacement and force vectors, and [a] is the flexibility matrix
and is given as follows:

½a� ¼
a11 a12 � a1n
a21 a22 � a2n
� � � �
an1 an2 � ann

2
664

3
775 ð3:75Þ

The stiffness influence coefficient, denoted by kij, is defined as the force at point
i due to a unit displacement at point j when all the points other than the point j are
restrained. Total force at point i, which is Fi, can be obtained by summing up the
forces due to all such displacements xj( j = 1, 2,…, n) and is given as follows:

Fi ¼
Xn
j¼1

kijxj i ¼ 1; 2; . . .; n ð3:76Þ

Equation (3.76) can be stated in matrix form as given below:

F ¼ ½k��x ð3:77Þ

where [k] is the stiffness matrix and is given as follows:

½k� ¼
k11 k12 � k1n
k21 k22 � k2n
� � � �
kn1 kn2 � knn

2
664

3
775 ð3:78Þ
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By comparing Eqs. (3.74) and (3.77), following relationship can be deduced:

�x ¼ ½a�F ¼ ½a�½k��x ð3:79Þ

It can be further seen that the following relationship also holds good.

½a�½k� ¼ ½I� ð3:80Þ

where [I] denotes the unit matrix. Equation (3.80) is equivalent to the following
statement:

½k� ¼ ½a��1 and ½a� ¼ ½k��1 ð3:81Þ

That is, the stiffness and flexibility influence coefficient matrices are inverse of one
another. Further, more interesting observations can be made as listed below:

• Since deflection at point i due to a unit load at point j is the same as the
deflection at point j due to a unit load at point i for a linear system (Maxwell’s
reciprocal theorem), we shall conclude that aij = aji and kij = kji.

• Flexibility and stiffness influence coefficients can be calculated from the prin-
ciples of basic structural mechanics.

• Influence coefficient matrix shall always be a square, symmetric matrix with
positive leading diagonal elements.

3.15 Eigenvalue Problem

Let us now consider a multi-degrees-of-freedom system shown in Fig. 3.16. Dif-
ferential equations of motion for the system are given as below:

½m1€x1 þ k1 þ k2ð Þx1� � k2x2 ¼ 0

�k2x1 þ ½m2€x2 þ k2 þ k3ð Þx2� � k3x3 ¼ 0

�k3x2 þ ½m3€x3 þ k3 þ k4ð Þx3� � k4x4 ¼ 0

. . .

�knxn�1 þ ðmn€xn þ knxnÞ ¼ 0

ð3:82Þ

For the principal mode of vibration, let us assume the solution as follows:

x1 ¼ X1 sinxt

x2 ¼ X2 sinxt

x3 ¼ X3 sinxt

. . .

xn ¼ Xn sinxt

ð3:83Þ
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Substituting Eq. (3.83) in Eq. (3.82) and canceling out the common terms, we get
the following:

½ k1 þ k2ð Þ � m1x
2�X1 � k2X2 ¼ 0

�k2X1 þ ½ k2 þ k3ð Þ � m2x
2�X2 � k3X3 ¼ 0

�k3X2 þ ½ k3 þ k4ð Þ � m3x
2�X3 � k4X4 ¼ 0

. . .

�knXn�1 þ ðkn � mnx
2ÞXn ¼ 0

ð3:84Þ

For the above equations, solution other than X1 = X2 = X3 = Xn = 0 is possible only
when the determinant composed of the coefficients of X’s vanishes; this condition is
expressed mathematically as below:

½ðk1 þ k2Þ � m1x2� �k2 � 0 0
�k2 ½ðk2 þ k3Þ � m2x2� �k3 0 0
0 �k3 � 0 0
� � � � �
� � � �kn ðkn � mnx2Þ
























¼ 0

ð3:85Þ

Solution to the above equation yields n values of ω2 corresponding to n natural
frequencies. Mode shapes can be obtained from Eq. (3.84).

3.16 Dynamic Matrix Method

Equation of motion of multi-degrees-of-freedom can be written in the matrix form
as shown below:

½M�f€xg þ ½K�fxg ¼ f0g ð3:86Þ

Pre-multiplying the above equation with [M] − 1, we get the following:

½I�f€xg þ ½D�fxg ¼ f0g ð3:87Þ

where [D] = [M] − 1K] is termed as dynamic matrix.
For free body vibrations, assuming displacement vector as a harmonic motion of

frequency ω, we get the following:

fxg ¼ fXg sinxt ð3:88Þ

f€xg ¼ �x2fxg ¼ kfxg ¼ �kfXg sinxt ð3:89Þ
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where λ = ω2 is the eigenvalue and {X} is the column giving the amplitudes of
respective masses, i.e., eigenvectors. In other words, λ and {X} are natural fre-
quencies and the corresponding mode shapes, respectively. Equation (3.87) reduces
to the form:

�k½I�fXg þ ½D�fXg ¼ f0g
½½D� � X½I��fXg ¼ f0g ð3:90Þ

The determinant formed from the above equation is given below:

½½D� � A½I�� ¼ 0 ð3:91Þ

The above equation is the frequency equation and gives n values of λ (for n degrees
of freedom). Further by substitution, mode shapes can be obtained.

3.17 Dunkerley’s Method

Dunkerley (1894) proposed an approximate method of determining fundamental
frequency of vibrating system. It is known as lower bound method as Dunkerley’s
frequency will always be lower. For a multi-degrees-of-freedom system, following
relationship is as proposed below (Dunkerley 1894):

1
x2

n
¼ 1

x2
1
þ 1
x2

2
þ 1
x2

3
þ � � � þ 1

x2
s

ð3:92Þ

where xn is the fundamental natural frequency of the system: x1;x2;x3. . . are the
natural frequencies of the system with each mass acting separately at its point of
application in the absence of other masses. This method shall be applicable only for
discrete systems.

3.18 Matrix Iteration Method

This is one of the most commonly used methods among iterative methods for deter-
mining eigenvalues (natural frequencies) and eigenvectors (mode shapes). With the
use offlexibilitymatrix [A] in the differential equations, thismethod is usedwhen only
the lowest eigenvalue and eigenvector of multi-degrees-of-freedom system are
desired. The advantage of this method is that the iterative process results in the
principle mode of vibration of the system and the corresponding natural frequency
simultaneously. Equation of motion in terms offlexibility matrix is written as follows:
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½A�½M�½€x� þ fxg ¼ f0g ð3:93Þ

Substituting {x} = {X} sin ωt, we get the following:

fXg ¼ x2½A�½M�fxg ð3:94Þ

The above equation is rewritten as follows:

fXg ¼ x2½B�fXg ð3:95Þ

½B� ¼ ½A�½M�

Equation (3.95) is of the form:

X1

X2

. . .
Xn

8>><
>>:

9>>=
>>; ¼ x2

b11 b12 . . . b1n
b21 b22 . . . b2n
. . . . . . . . . . . .
bn1 bn1 . . . bnn

2
664

3
775

X1

X2

. . .
Xn

8>><
>>:

9>>=
>>; ð3:96Þ

Iterative process is started by assuming a set of displacements for the right column of
Eq. (3.96) and then expanding the right-hand side which results in a column of
numbers. This is then normalized and compared with the new obtained value of the
displacement vector. The procedure is repeated until the new set of displacements
converges with that of the previous step of iteration. The iteration process with the use
of Eq. (3.96) converges to the lowest value of (1/ω2) so that the fundamental mode of
vibration is obtained. For next higher modes and natural frequencies, orthogonality
principle is applied to obtain a modified matrix that is free from the lower modes.

3.19 Stodola’s Method

This method is a quickly converging iterative process used for calculating the fun-
damental natural frequency of un-damped free vibrations for multi-degrees-of-
freedom systems. The procedure is to assume a reasonable deflection pattern for the
given multi-degrees-of-freedom model. This may be taken same as that of the static
deflection curve as in Rayleigh’s method. Determine inertia loading for the assumed
deflection in terms of ω2. For the system subjected to the inertia load, determine
corresponding (new) deflection pattern; this shall also be in terms of ω2. If the
assumed deflection pattern of step 1 converges with that of the derived ones of step 3,
then equate the two expressions of step 1 and step 3 which shall give the value of ω2.
If the deflection patterns do not match, then the derived deflection pattern obtained in
step 3 is used as starting point for the next iteration. This process is repeated until the
derived deflection pattern converges with the previous set of values. The method is
independent of the amplitudes of initially assumed values of displacement pattern,
and the convergence is very fast.
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3.20 Mode Superposition Method

For multi-degrees-of-freedom system, equation of motion is given as follows:

½M�f€xg þ ½C�f _xg þ ½K�fxg ¼ fFðtÞg ð3:97Þ

Any arbitrary vector {x} in a non-dimensional space can be represented as a linear
combination of the mode shapes. Thus,

x ¼
XN
r¼1

qrðtÞfuðrÞg ¼ Uq ð3:98Þ

where U is the modal matrix with each of its column representing mode shape and
{q} is the vector of modal coordinates related to the system coordinates. Now, the
following operations are performed:

½M�f€xg þ ½C�f _xg þ ½K�fxg ¼ fFðtÞg
pre-multiplying by UT

UTMU€qþ UTCU _qþ UTKUq ¼ UTF

ð3:99Þ

Since mode shape U is orthogonal with respect to [M] and [K], matrix triple
products involving [M] and [K] will yield diagonal matrices.

fuðrÞgTMfuðrÞg ¼ m�
r

fuðrÞgTCfuðrÞg ¼ c�r
fuðrÞgTKfuðrÞg ¼ k�r

fuðrÞgTF ¼ f �r

ð3:100Þ

where m�
r represents modal mass for mode r; c�r represents coefficient of viscous

damping in rth mode, k�r represents modal stiffness for rth mode, and f �r represents
modal force in rth mode, respectively. If mode shapes are mass-orthogonalized,
then the modal parameters reduce to the following:

m�
r ¼ 1:0

c�r ¼ 2nrxr

k�r ¼ x2
r

ð3:101Þ

Modal participation factor for rth mode is given as follows:

Cr ¼ furgTMr

furgTMfurg ð3:102Þ
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3.21 Mode Truncation

In a multi-degrees-of-freedom system, it is not necessary to include all modes to get
rational estimate of the total response; higher modes can be truncated. Response
vector {x} can be written as follows:

x ¼
XN̂
r¼1

qrðtÞfuðrÞg ð3:103Þ

where N̂ 	 N.
The number of modes to be included depends on (i) all modes having frequency

value lower than the highest frequency of the excitation force and (ii) at least 90 %
of the total mass of the structural system.

3.21.1 Static Correction for Higher Mode Response

Let us consider modal contribution to the total response as the sum of two parts as
shown below:

x ¼
X̂N
r¼1

fuðrÞgqrðtÞ þ
XN

S¼N̂þ1

fuðSÞgqsðtÞ ð3:104Þ

where the second term of the modal summation represents the error term due to the
truncation of the modal summation. Now,

Ms€qsðtÞ þ Cs _qsðtÞ þ KsqsðtÞ ¼ fs

qsðtÞ ¼ fs
Ks

� €qsðtÞ
x2

s
� 2ns _qsðtÞ

xs

ð3:105Þ

The first term in the above equation represents the response in sth mode if the load
is applied statically. The other two terms represent the dynamic correction to the
static response in the sth mode. It is also seen that the inertia term is inversely
proportional to the square of the natural frequency and the damping term is
inversely proportional to the natural frequency. Hence, in higher modes, contri-
bution for the dynamic response terms becomes insignificant in comparison with
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that of the static response. Hence, the response in higher modes can be approxi-
mated only from the static response. Now, the modal forces are given as follows:

fs ¼ fuðsÞgT f

x ¼
XN̂
r¼1

fuðrÞgqrðtÞ þ
XN

S¼N̂þ1

1
KS

fuðSÞgfuðsÞgT f

¼
XN̂
r¼1

fuðrÞgqrðtÞ þ
XN

S¼N̂þ1

FSf

ð3:106Þ

where FS represents the contribution of the sth mode toward the flexibility matrix
f of the system. It is important to note that the response of higher modes can be
approximated by considering the static response only; still it is necessary to com-
pute all the mode shapes in order to compute the contribution of higher modes to
the structural flexibility.

XN
S¼N̂þ1

1
KS

fuðSÞgfuðsÞgT ¼ K�1 �
XN̂
r¼1

1
Kr

fuðrÞgfuðrÞgT ¼ K�1�
XN̂
r¼1

Fr ð3:107Þ

The above equation shows that the higher mode contribution to the structural
flexibility is computed by subtracting the contribution of the lower modes from the
total structural flexibility matrix. Hence, the total response is given as follows:

x ¼
XN̂
r¼1

fuðrÞgqrðtÞ þ K�1 �
XN̂
r¼1

Fr

" #
f ð3:108Þ

The second term in the above equation is called static correction to account for the
higher mode response. It is also called missing mass correction.

3.22 Rayleigh–Ritz Method—Analytical Approach

In the coordinate system, total energy at any instant of time during the vibration
remains constant. We know that the total energy is the sum of potential energy (PE)
and kinetic energy (KE). When the mass reaches the maximum, the potential energy
is maximum and the kinetic energy becomes zero. When mass crosses the
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equilibrium position, potential energy becomes zero and the kinetic energy becomes
maximum. Considering this, the following equation is valid:

ðPEÞmax ¼ ðKEÞmax

1
2
M
Z l

0

y2dxx2 ¼ 1
2

Z l

0

EI
d2y
dx2

� �2

dx

�x2 ¼
1=2
R l
0 EI

d2
y

dx2
� �2

dx

1
2M
R l
0 y

2dx
¼ U

T

ð3:109Þ

where x be the frequency and m be the mass/unit volume
Procedure suggested by Rayleigh is as follows:

1. Any shape resembling the fundamental mode shape can be assumed; boundary
conditions should be satisfied.

2. By trial and error method, try many functions to get the lowest value of the
frequency from Eq. (3.109).

3. Profile or the shape function assumed should correspond to fundamental mode
and should satisfy the kinematics boundary condition.

In Ritz method, it is suggested that the shape function y is assumed such that it is
linear combination of different function with unknown parameters. For example:

let y ¼ au1ðxÞ þ bu2ðxÞ þ cu3ðxÞ þ � � � ð3:110Þ

The necessary condition is that Eq. (3.110) must completely satisfy all the BC.
For, ðPEÞmax ¼ ðKEÞmax;

x2 ¼ N ð3:111Þ

that is N ¼ U
T
; where U ¼ PE; T ¼ KE ð3:112Þ

Partially differentiating with respect to a:

@N
@a

¼
T @u=@a

� �
� u @T=@a

� �
T2 ¼ 0 ð3:113Þ

T @u=@a

� �
� u @T=@a

� �
¼ 0 ð3:114Þ

@u=@b�
U
T
@T=@b ¼ 0 ð3:115Þ
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@u=@c�
U
T
@T=@c ¼ 0 ð3:116Þ

@u=@d � U
T
@T=@d ¼ 0 ð3:117Þ

The above homogeneous equations lead to eigenvalue problem. Also, we know that
N ¼ U

T ¼ x2:

Hence, Eq. (3.117) becomes

@u=@d � x2 @T=@d

� �
¼ 0 ð3:118Þ

504EI � 6x2m:

Example 1
For a cantilever beam with uniformly distributed mass, determine the natural
frequency. Take length of the beam as 1 m.

x[  ]

Step 1: Boundary condition At x = 0; y = 0; which is satisfied; At x = 0; dydx ¼ 0;

which is also satisfied

U ¼ PE ¼ 1=2

Z l

0

EI
d2y
dx2

� �2

dx

dy
dx

¼ 2axþ 3bx2

d2y
dx2

¼ 2aþ 6bx
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Step 2:

U ¼ PE ¼ 1=2

Z l

0

EI 2aþ 6bxð Þ2

U ¼ EI
2

Z
4a2lþ 12b2l3 þ 12abl2

For unit length; U ¼ EI
2

Z
4a2 þ 12b2 þ 12ab

Step 3:

T ¼ 1
2
m
Z l

0

y2dx;

T ¼ 1
2
m
Z l

0

ax2 þ bx3
� �2

dx;

T ¼ 1
2
m

a2l5

5
þ b2l7

7
þ 2abl6

6

� �
;

For unit length; T ¼ 1
2
m

a2

5
þ b2

7
þ 2ab

6

� �

Step 4:
@u
@a

� x2 @T
@a

¼ 0

@u
@a

¼ EI
2

8aþ 12bð Þ
@T
@a

¼ m
2

2a
5
þ b
3

� �
EI
2

8aþ 12bð Þ � x2 m
2

2a
5
þ b
3

� �
¼ 0

ð3:119Þ

Step 5:
@u
@b

¼ EI
2

24aþ 12bð Þ
@T
@a

¼ m
2

2b
7
þ a
3

� �
EI
2

24aþ 12bð Þ � x2 m
2

2b
7
þ a
3

� �
¼ 0

ð3:120Þ
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15EIð8aþ 12bÞ � x2mð6aþ 5bÞ ¼ 0

21EIð12aþ 24bÞ � x2m 7aþ 6bð Þ ¼ 0

120EI � 6x2m
� �

aþ 180EI � 5x2m
� �

b ¼ 0

252EI � 7x2m
� �

aþ 504EI � 6x2m
� �

b ¼ 0

120EI � 6x2m 180EI � 5x2m

252EI � 7x2m 504EI � 6x2m

� �
a

b

� �
¼ 0f g

ð3:121Þ

It is in the form of ½A�fXg ¼ 0. The above equation can be solved to obtain
the natural frequency.

Example 2
As a simple supported beam of length L, total mass m also carries a concentrated
mass m at the center. Find its xn lowest of its transverse vibration.

M

L

M

a

(a)

(b)

[  ]

[  ]

[  ]

L/2[   ]

[  ]

(a) y = vertical deflection due to loads

Let U ¼ EI
2

Z l

0

d2y
dx2

� �2

dx

y ¼ a sin
px
‘

� �

Boundary condition

at x ¼ 0; y ¼ 0;

at x ¼ ‘; y ¼ 0;

at x = ‘/2; y = a; which is all satisfied.
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dy
dx

¼ p
‘

� �
a cos

px
‘

� �
dy
dx

¼ � p
‘

� �2
a sin

px
‘

� �

U ¼ EI
2

Z l

0

p
‘

� �2
a sin

px
‘

� �� �2
dx

¼ EI
2

Z l

0

p2

‘2

� �2

a2 sin2
px
‘

� �
dx

let
px
‘
¼ h; cos 2h ¼ 1� 2 sin2 h;

sin2 h ¼ 1
2

1� cos 2h
2

� �
¼ 1

2
1� cos

2px
‘

� �� �
¼ 1

2

Z l

0

1� cos
2px
‘

� �� �
dx

U ¼ EI
2

p4

‘4

� �
a2

1
2

Z l

0

1� cos
2px
‘

� �� �
dx

U ¼ EI
2

p
‘

� �4
‘a2

(a) Kinetic energy due to moment
Deflection at middle = a
Let the displacement x ¼ a cosxt; velocity =�ax sinxt; max velocity = j�axj
KE due to concentrated mass M ¼ 1

2MV2 ¼ 1
2M a2x2ð Þ

(b) Due to mass of the beam m

T ¼ 1
2

m
‘

� �Z‘
0

y2dx ¼ 1
2

m
‘

� �
x2
Z‘
0

y2dx

¼ 1
2

m
‘

� �
x2 a2

2

� �Z‘
0

1� cos
2px
‘

� �
dx

T ¼ mx2a2

4

where m is the total mass of the entire beam.

104 3 Introduction to Structural Dynamics



Total KE ¼ 1
2
Ma2x2 þ 1

4
M x2a2
� � ¼ 1

2
x2a2 M þM

2

� �
KEð Þmax ¼ PEð Þmax

x2 ¼
EI ‘=2
� �

p=‘
� �4

M þ M
4

� �

Comparison by Dunkerley’s Method

(a) Deflects due to central load, M

y11 ¼ 48EI
M‘3

(b) Deflects due to total load,

y22 ¼ 48EI
m‘3

1
x2

� �
¼ M‘3

48EI
þ m‘3

p4EI

x2 ¼ EI p=‘
� �4‘=2

1:013M þ M
2

� �

Exercise

1. All bodies possess ___________ and _________________ which results in
vibration of the body.

2. At equilibrium, whole of elastic energy is converted into
___________________ and the body continues to move in opposite direction
because of it.

3. Whole of the kinetic energy is converted into
___________________________ due to which the body again returns to the
equilibrium position.

4. Any motion which repeats itself after an interval of time is called
____________________.

5. A motion that repeats itself after equal interval of time is called
__________________.
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6. Number of cycles per unit time is called ________________.
7. Maximum displacement of a vibrating body from the equilibrium position is

called ___________________________.
8. When system vibrates without any external force, it is called

________________________.
9. Natural frequency is expressed in ______________________ (units).

10. Minimum number of ________________________________ required to
specify the motion of system at any instant is known as
___________________________.

11. Degree of freedom may vary between ______________________.
12. ________________ beam is an example for infinite degrees of freedom.
13. Motion of simple pendulum is an example for

_______________________________.
14. Resistance offered to the motion of the vibrating body is called

___________________.
15. When there is phase difference in the system, the vibrating motion can be

expressed as ____________________________________ (Hint: equation of
response).

16. When the frequency of external excitation is equal to natural frequency of the
vibrating body, then the system is in ______________________ and amplitude
of vibration becomes extensively ____________________.

17. Mechanical system consists of _________________, __________________,
and ______________________.

18. Continuous system is also called _____________________.
19. In a vibrating system, there is an exchange of energy from

___________________.
20. Energy is stored by mass in the form ________________ and spring in the

form of __________________.
21. Sketch the basic vibratory system with SDOF.
22. In the vibratory system, if the amount of external excitation is known in

magnitude, it is called ______________________________________.
23. If system vibrates indefinitely and the amplitude decays because of

_________________ and vanishes continuously, such kind of vibration is
called ________________________________.

24. _____________________________________ occurs as a result of interfer-
ence between two waves of slightly different frequencies moving along the
same straight line in the same direction.

25. If springs with stiffness k1 and k2 are connected in parallel, their effective
stiffness is equal to ____________________.

26. ‘Mass develops an inertia force proportional to its acceleration and opposite in
direction.’ This is stated by _____________________________.
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27. The tension leg platform is heave restrained by _________________.
28. Match the design wave height for various regions is tabulated below:

I. Bay of Bengal (a) 11 m for 1 yr and 24 m for 100 yrs

II. Gulf of Mexico (b) 6 m for 1 yr and 12 m for 100 yr

III. South China Sea (c) 5 m for 1 yr and 12 m for 100 yrs

IV. Arabian Sea (d) 14 m for 1 yr and 22 m for 100 yrs

V. Gulf of Thailand (e) 12 m for 1 yr and 24 m for 100 yrs

VI. Persian Gulf (f) 8 m for on 1 yr and 18 m for 100 yrs

VII. North Sea (g) 8 m for 1 yr and 18 m for 100 yrs

29. Growth of marine algae increases the ______________ and
__________________which in turn increase the wave or current loading.

30. In P-M spectrum fetch and duration are considered _____________.
31. Algebraic sum of wave and current loads is different from calculation of load

by adding the horizontal water particle velocity with the current velocity and
computing the loads. This is because of
____________________________________________.

32. Seismic loads are arising from derived type ___________.

Answers

1. Mass; restoring capacity (elasticity)
2. Kinetic energy
3. Elastic or strain energy
4. Vibration or oscillation
5. Periodic motion
6. Frequency
7. Amplitude
8. Free vibration
9. rad/s or hertz

10. Independent coordinates; degrees of freedom
11. Zero to infinity
12. Cantilever
13. Simple harmonic motion
14. Damping (friction)
15. x = A sin (ωt + φ)
16. Resonance; large
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17. Mass, stiffness and damping
18. Distributed systems
19. One form to another (PE to KE or vice versa)
20. Kinetic energy = 1=2m _x2; Potential energy = 1/2 kx2

21.

22. Deterministic vibration
23. Damping; transient vibration
24. Beating phenomenon
25. keff ¼ k1 þ k2
26. D’Alembert’s Principle
27. Vertical tendons or tethers
28. I (f/g); II (e); III (a); IV (f/g); V (b); VI (c); VII (d)
29. Diameter and roughness of members
30. Infinite
31. Nonlinear term in the drag equation
32. Gravity loads

Solved Numerical Examples

33. Determine the natural frequency of the mass m placed at one end of the
cantilever beam of negligible mass. (Hint: deflection = Wl3/3EI)

Deflection = WL3/3EI; stiffness = load/deflection; k = 3EI/L3; x ¼
ffiffiffi
k
m

q
¼ffiffiffiffiffiffi

3EI
L3m

q
rad/s or 1

2p

ffiffiffiffiffiffi
3EI
L3m

q
Hz

34. Determine the natural frequency of the mass m placed at the middle of the fixed
beam of length (L m) negligible mass. (Hint: deflection = Wl3/192EI)

Deflection = WL3/3EI; stiffness = load/deflection; k = 3EI/L3; x ¼
ffiffiffi
k
m

q
¼ffiffiffiffiffiffi

3EI
L3m

q
rad=s or 1

2p

ffiffiffiffiffiffi
3EI
L3m

q
Hz
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35. List the types of damped system and sketch the responses neatly.

36. Unknown mass m is attached to the one end of the spring of stiffness k having
the natural frequency of 12 Hz. When 1 kg mass is attached with the m and the
natural frequency of the system is lowered by 25 %, determine the value of
unknown mass m and stiffness k.
Let

f 1 ¼ 12 Hz ¼ 1
2p

ffiffiffiffi
k
m

r
Hz; f 2 ¼ 12
 75=100ð Þ ¼ 1

2p

ffiffiffiffiffiffiffiffiffiffiffiffi
k

mþ 1

r
Hz;

f 1=f 2 ¼ 12=9 ¼
ffiffiffiffi
k
m

r !, ffiffiffiffiffiffiffiffiffiffiffiffi
k

mþ 1

r !
¼ 1:333ð Þ2 ¼

k
m
k

mþ1

¼ mþ 1
m

;

m ¼ 1:2857 kg

12 ¼ 1
2p

ffiffiffiffi
k
m

r
; 12
 2p ¼

ffiffiffiffi
k
m

r
; 5;684:89 ¼ k

m
;

k ¼ 7;276:6592N/m

37. Cylinder of diameter D and mass m floats vertically in a liquid of mass density
ρ. It is made to oscillate by giving some initial displacement. Find the period of
oscillation. What will be the frequency if salty liquid of specific gravity 1.2 is
used?
Let us assume x is the displacement of the cylinder

Restoring force ¼ ðqAxÞg;
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According to Newton’s law, mxþ €qAxg ¼ 0

xn ¼
ffiffiffiffiffiffiffiffi
qAg
m

r
; T ¼ 2p

x
¼ 2pffiffiffiffiffiffi

qAg
m

q s

if salt water ρ = 1.2; xn ¼
ffiffiffiffiffiffiffiffiffiffi
1:2qAg

m

q
rad/s where A ¼ p

4 d
2

38. Find the natural frequency of the system

Take m = 20 kg; k = 1,000 N/m

x ¼
ffiffiffiffi
k
m

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7
 1;000
6
 20

r
¼ 7:637 rad/s
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39. Find the natural frequency of the system

Take E = 210 × 109 N/m2; I = 1.5 × 10−5 m4; k = 1,500 N/m; L = 3 m
(Hint: displacement x ¼ PL3

48EI)

Displacement x ¼ PL3
48EI; Take E = 210 × 109 N/m2; I = 1.5 × 10−5 m4;

k = 1,500 N/m; m = 100 kg

m[  ]

Keff ¼ 48EI
L3

þ k

Keff ¼ 48
 210
 109 
 1:5
 10�5

103

� �
þ 1;500 ¼ 152:7
 103 N/m;

x ¼
ffiffiffiffi
k
m

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
152:7
 103

100

r
¼ 39:0768 rad=s
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40. Find the natural frequency of the system

M = 500kg[            ]

k beam ¼ 3EI
L3 ¼ 3
 210
 109 
 1:5
 10�5

2:53
¼ 6:05
 105 N=m;

Keff ¼ 1
1

6:05
105þ5
105ð Þ þ 1
2
105

 !
þ 3
 105 ¼ 4:693
 105 N/m;

x ¼
ffiffiffiffi
k
m

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4:693
 105

500

r
¼ 30:6366 rad/s
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41. Sketch the simple SDOF mathematical model and explain the components of it.

42. Draw the mathematical model of the system
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43. Draw the Free body diagram of the system

44. Sketch the periodic loading and non-periodic loading
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45. Write the equation of motion for the system given below:

[     ]

[  ]

[  ][  ]

[  ]

[  ]

[  ]
[  ]

[          ][         ]

m€xþ c
b
l

� �2

_xþ a
l

� �2
x ¼ d

L
PðtÞ

46. A damper offers resistance 0.05 N at constant velocity 0.04 m/s. The damper is
used with stiffness of 9 N/m. Determine the damping ratio and frequency of the
system when the mass of the system is 0.10 kg.

Damping force F ¼ C _x

_x ¼ 0:04m/s;

F ¼ 0:05N

C ¼ F=_x ¼ 0:05=0:04 ¼ 1:25N s/m

Cc ¼ 2
ffiffiffiffiffiffi
km

p
¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9
 0:1

p
¼ 1:897N s/m

n ¼ C
Cc

¼ 1:25
1:897

¼ 0:658
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The system is under-damped. The frequency of damped vibration is given as
follows:

x ¼
ffiffiffiffi
k
m

r
¼

ffiffiffiffiffiffiffi
9
0:1

r
¼ 9:487 rad/s

xd ¼ x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

q
¼ 9:487

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 0:6582

p
¼ 5:379 rad/s

47. A vibrating system is defined by the following parameters: M = 3 kg,
k = 100 N/m, and C = 3 N s/m. Determine (a) the damping factor, (b) the
natural frequency of damped vibration, (c) logarithmic decrement, (d) the ratio
of two consecutive amplitudes, and (e) the number of cycles after which the
original amplitude is reduced to 20 %.
Critical damping is given as follows:

Cc ¼ 2
ffiffiffiffiffiffi
km

p
¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
100
 3

p
¼ 34:64N s/m

n ¼ C
Cc

¼ 3
34:64

¼ 0:086

x ¼
ffiffiffiffi
k
m

r
¼

ffiffiffiffiffiffiffiffi
100
3

r
¼ 5:773 rad/s

xd ¼ x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

q
¼ 5:773

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 0:0862

p
¼ 5:730 rad/s

d ¼ 2pnffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

p ¼ 2pð0:086Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 0:0862

p ¼ 0:5424

The ratio of two consecutive amplitudes is given as follows:

ed ¼ xn
xnþ1

xn
xnþ1

¼ e0:5424 ¼ 1:72

d ¼ 1
n
ln

xn
xnþ1

� �
n ¼ 2:96 cycles

The amplitude of the response will decay by 20 % in about 3 cycles.
48. A mass of 7 kg is kept on two slabs of isolators placed one over the other. One

of the isolators is synthetic rubber with stiffness of 5 kN/m and damping
coefficient of 100 N s/m; second isolator is fibrous felt of 10 kN/m and
damping coefficient of 400 N s/m. If the assembly is vibrated in the vertical
direction actuating the series of isolators, determine the damped and un-
damped natural frequencies of the system.
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Isolators are connected in series, and hence, equivalent stiffness and damping
coefficients can be readily determined.

1
ke

¼ 1
5;000

þ 1
10;000

ke ¼ 3;333:33 kN/m

Ce ¼ 1
100

þ 1
400

¼ 80N s/m

xn ¼
ffiffiffiffi
ke
m

r
¼ 21:822 rad/s

n ¼ Ce

2
ffiffiffiffiffiffiffiffi
kem

p ¼ 80

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið3;333:33
 7Þp ¼ 0:26

xd ¼ xn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

q
¼ 21:822

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� 0:262Þ

p
¼ 21:07 rad/s

49. A vibrating system having mass 1 kg is suspended by a spring of stiffness
1,000 N/m, and it is put to harmonic excitation of 10 N. Assuming viscous
damping determine the following: (i) resonant frequency; (ii) amplitude at
resonance; (iii) frequency corresponding to the peak amplitude; and (iv)
damped frequency. Take C = 40 N s/m.

(a) Frequency at resonance

x ¼ xn ¼ p
k=mð Þ ¼ p

1000=1ð Þ ¼ 31:62 rad=s

Damping factor n is given by:

n ¼ c=2mxn ¼ 40=ð2
 2
 31:62Þ ¼ 0:632

(b) Amplitude at resonance

xresonance ¼ F
Cxn

¼ 10
40
 31:62

¼ 7:91mm

(c) Frequency corresponding to the peak amplitude is given as follows:

xpeak ¼ xn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2n2

q
¼ 31:628


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð2
 0:6322Þ

p
¼ 14:185 rad=s

(d) Damped frequency is given as follows:

xd ¼ pð1� n2Þxn ¼ 31:62
pð1� 0:6322Þ
¼ 24:5 rad/s
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50. A body of mass 70 kg is suspended from a spring which deflects 2 cm under
the load. It is subjected to damping whose value is tuned to be 0.23 times of the
value that required for critical damping. Find the natural frequency of the un-
damped and damped vibrations and ratio of successive amplitudes for damped
vibrations. If the body is subjected to a periodic disturbing force of 700 N and
of frequency equal to 0.78 the natural un-damped frequency, find the amplitude
of forced vibrations and the phase difference with respect to the disturbing
force.
Spring stiffness k ¼ force=deflection ¼ ð70
 9:81Þ=ð2
 10�2Þ ¼ 34; 335N/m

n ¼ C=Cc ¼ 0:23

Un-damped natural frequency is given as follows:

xn ¼
ffiffiffiffi
k
m

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð34:335
 103Þ

70

r
¼ 22:15 rad/s

Damped natural frequency is given as follows:

xd ¼ pð1� n2Þxn

¼ 22:15

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� 0:232Þ

p
¼ 21:57 rad/s

Logarithmic decrement is given as follows:

d ¼ 2pn=
pð1� n2Þ

¼ 2p
 0:23=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� 0:232Þ

p
¼ 1:48

Ratio of successive amplitudes is given as follows:

A1

A2
¼ ed ¼ e1:48 ¼ 4:39

The relation is valid. Hence,

A= F=kð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� b2Þ2 þ

q
ð2
 n
 bÞ2

Given that F = 700 N, k = 34.335 × 103 N/m, β = 0.78

A ¼
700

34;335ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� 0:782Þ2 þ

q
ð2
 0:23
 0:78Þ2

¼ 0:038m
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Phase difference is given by:

tan h ¼ 2
 n
 b

1� b2
¼ 2
 0:23
 0:78

1� 0:782
¼ 0:916

h ¼ 420290

51. Determine the effect of mass suspended on the spring–mass system shown
below:

Let x and _x be the displacement and velocity of mass. Velocity of spring
element at a distance y from the fixed end may be written as _xy

l where ‘ is the
total length of spring. Kinetic energy of spring element dy is given as follows:

1
2

qdyð Þ _xy
l

� �2
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where ρ is the mass of spring per unit length. Total kinetic energy of the system
is then given as follows:

KE ¼ 1
2
m _x2 þ

Z l

0

1
2

qdyð Þ _xy
l

� �2

¼ 1
2
m _x2 þ 1

2
q _x2

l
3
¼ 1

2
m _x2 þ 1

6
ms _x

2

where mass of spring is ms ¼ ql
Potential energy of the system = 1

2 kx
2

Total energy of the system = K.E + P.E

1
2
m _x2 þ 1

2
ms

_x2

3
þ 1
2
kx2 ¼ constant

Differentiating the above equation w.r.t. time

m€xþ ms€x
3

þ kx ¼ 0

mþ ms

3

� �
€xþ kx ¼ 0

xn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

k
mþ ms

3

s
rad=s

52. Circular cylinder of mass 4 kg and radius 15 cm is connected to a spring of
stiffness 4,000 N/m as shown in the below figure. It is free to roll on horizontal
rough surface without slipping. Determine the natural frequency.
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Total energy of the system

T ¼ K:E: due to translator motionþ K:E: due to rotary motionþ P:E: of spring

¼ 1
2
m _x2 þ 1

2
I _h2 þ 1

2
kx2

¼ 1
2
mr2 _h2 þ 1

2
� 1
2
mr2 _h2 þ 1

2
kr2h2ðsince x ¼ rhÞ

T ¼ 3
4
m2r2 _h2 þ 1

2
kr2h2 ¼ constant

Differentiating with respect to time, we get the following:

0 ¼ 3
4
� 2mr2 _h€hþ kr2 _hh ¼ 0

3
2
mr2€hþ kr2h ¼ 0

xn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kr2

ð3=2Þmr2

s
¼

ffiffiffiffiffiffi
2k
3m

r
rad=s

53. In a two-degrees-of-freedom system shown in the below figure, let
m1 = m2 = m and k1 = k2 = k. Determine both the natural frequencies of
vibration and their amplitude ratios.

Equations of motion of the system can be written using Newton’s law
From the free body diagrams shown above, following equations can be written
as follows:
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m1€x1 ¼ �k1x1 � kðx1 � x2Þ
m2€x2 ¼ k1ðx1 � x2Þ � k2x2

Rearranging in matrix form,

m1 0
0 m2

� �
€x1
€x2

� �
þ k1 þ k �k

�k k þ k2

� �
x1
x2

� �
¼ 0

0

� �

Solving the above equation using the classical eigensolver and substituting
m1 = m2 = m and k1 = k2 = k, we get the following:

x2 ¼ 1
2

4k
m

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0þ 4k2

m2

r" #
¼ 3k

m
;
k
m

Therefore, the natural frequencies are

x1;2 ¼
ffiffiffiffiffi
3k
m

r
;

ffiffiffiffi
k
m

r

For the first principle mode of vibration, for x ¼
ffiffiffiffi
3k
m

q
, we get

X1

X2

� �
1
¼ 1

k
k þ k � m

3k
m

� �� �
¼ �1

Also, for the second mode of vibration x ¼
ffiffiffi
k
m

q
, we get

X1

X2

� �
1
¼ 1

k
k þ k � m

k
m

� �� �
¼ þ1

Thus, the two amplitude ratios are +1 and −1.
54. For the system shown in the below figure, find out the natural frequencies of

vibration and principal modes of vibration.
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Let the displacement of the two masses be x1 and x2 from mean equilibrium
positions. Assuming x1 [ x2, for the free body diagrams shown, the differential
equations of motion as obtained by applying Newton’s law are given as follows:

m€x1 ¼ �k x1 � x2ð Þ � kx1
2m€x2 ¼ k x1 � x2ð Þ � kx2

Let the assumed solutions be x1 ¼ A sinxt and x2 ¼ B sinxt
Substituting for x1 and x2 and their derivatives in the differential equations of
motion, we have

2k � mx2� �
A� kB ¼ 0

�kAþ 2k � 2mx2� �
B ¼ 0

The amplitude ratios from above two equations are as follows:

A
B
¼ k

2k � mx2 ¼
2k � 2mx2

k

or

2k � 2mx2� �
2k � mx2� � ¼ k2

Simplifying further, the quadratic equation in x2 is as follows:

x4 � 3k
m

� �
x2 þ 3k2

2m2

� �
¼ 0

The roots of quadratic equation are as follows:

x2 ¼ 3� ffiffiffi
3

p

2

� �
k
m

Therefore, x2
1 ¼ 2:366k=m and x2

2 ¼ 0:634k=m
So

x1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:366k=m

p
and x2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:634k=m

p
To obtain the first principal mode of vibration, substitute x2 ¼ 2:366 k=m in
the expression for amplitude ratio. We get the following:

A
B

� �
1
¼ 2k � 2mð Þ 2:366ð Þðk=mÞ

k
¼ 2k � 4:732k

k
¼ �2:732
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The second principal mode of vibration is obtained by substituting
x2 ¼ 0:634k=m

A
B

� �
2
¼ 2k � 2mð Þ 0:634ð Þðk=mÞ

k
¼ 0:732k

k
¼ 0:732

Mode shapes are shown in the figure.
55. One type of seismograph, a device that records earthquakes, can be modeled as

shown in the below figure. Determine (a) the differential equations of motion,
and (b) the frequency equation and the natural frequencies.

The figure shows the model of the seismograph in displaced position. Let the
displacement of the massM be x and that of the oscillating pendulum be θ from
static equilibrium position. Let us assume θ to be small. Applying Newton’s
law to the free body diagram of the mass, we have

M€x ¼ �kðx� ahÞ

Similarly, applying Newton’s law to free body diagram of the pendulum by
taking moments of inertia about the pivot O, we get the following:

I0€h ¼ �mgLhþ kaðx� ahÞ

Neglecting the mass moment of inertia of the bob about its own center of
gravity, we get

I ¼ mL2

For obtaining solutions to the differential equations of motion, let us assume that

x ¼ A sinxt and h ¼ B sinxt

ðk �Mx2ÞA� kaB ¼ 0

� kaAþ ðmgLþ ka2 � I0x
2ÞB ¼ 0
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Amplitude ratios are given as follows:

A
B
¼ ka

k �Mx2 ¼
mgLþ ka2 � mL2x2

ka

This leads to the quadratic equation in x2 as given below:

ðx2Þ2 � k
M

þ mgLþ ka2

mL2

� �
x2 þ kg

ML
¼ 0

x2
1;2 ¼

1
2

k
M

þ mgLþ ka2

mL2

� �
� 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k
M

þ mgLþ ka2

mL2

� �2
�4

kg
ML

s

56. Find the flexibility influence coefficients of the system shown below:

Let x1; x2; . . . and xn denote the displacements of the masses m1;m2; . . . and mn,
respectively. The flexibility influence coefficients of the system can be deter-
mined in terms of the spring stiffness k1, k2, and kn, as follows. If we apply a
unit force at mass m1, and no force at the other masses (F1 = 1, F2 = 0, F3 = 0),
as shown in Figure (b), the deflection of the mass, m1, is equal to δ1, = 1/
k1, = a11. Since the other two masses m2, and m3 move undergo rigid body
translation by the same amount of deflection δ1, we have, by definition:

a21 ¼ a31 ¼ d1 ¼ 1
k1

Next, we apply a unit force at mass m2 and no force at masses m1 and m3. As
shown in Figure (c), since the two springs k1 and k2 offer resistance, the
deflection of mass is given as follows:
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d2 ¼ 1
keq

¼ 1
k1

þ 1
k2

¼ k1 þ k2
k1k2

¼ a22

The mass m3 undergoes the same displacement δ2 (rigid body translation),
while the mass m1 moves through a smaller distance given by δ1 = 1/k1. Hence

a32 ¼ d2 ¼ k1 þ k2
k1k2

and a12 ¼ d1 ¼ 1
k1

Finally, when we apply a unit force to mass m3 and no force to masses m1 and
m2, as shown in Figure (d), the displacement of mass m3 is given as follows:

d3 ¼ 1
k1

þ 1
k2

þ 1
k3

¼ k1 þ k2 þ k3
k1k2k3

¼ a33

While the displacements of masses m2 and m1 are given by

d2 ¼ 1
k1

þ 1
k2

¼ k1 þ k2
k1k2

¼ a23

and

a13 ¼ d1 ¼ 1
k1

According to Maxwell’s reciprocity theorem, we have

aij ¼ aji

Thus, the flexibility matrix of the system is given as follows:

½a� ¼
1
k1

1
k1

1
k1

1
k1

ð 1k1 þ 1
k2
Þ ð 1k1 þ 1

2Þ
1
k1

ð 1k1 þ 1
k2
Þ ð 1k1 þ 1

k2
þ 1

k3
Þ

2
64

3
75

The stiffness matrix of the system can be found from the relation [k] = [a] − 1
or can be derived by using the definition of kij.

½k� ¼
ðk1 þ k2Þ �k2 0

�k2 ðk2 þ k3Þ �k3
0 �k3 k3

2
4

3
5

57. Determine the natural frequency coefficient of the spring–mass system shown
below by Dunkerley’s method?
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x1(t)
3k 2k k

x2(t)

m 2m 3m

X3(t)

m

1

2m 3m
3ka11 2k(a11-a21) k(a21-a31)

m

1

2m 3m
3ka12 2k(a22-a12) k(a22-a23)

[   ]
[      ]

[   ]
[     ]

[     ]
[  ]

[     ]

[       ]

[     ]
[               ][                ]

[   ]

[        ]
[   ]

[                ]
[     ]

[  ]

[     ]

[               ]
[     ]

[   ]

[        ]

[  ]

m

1

2m 3m
3ka13 2k(a23-a13) k(a33-a23)

[   ] [     ] [     ]

[ ]
[           ][            ][      ]

a11 ¼ a12 ¼ a13 ¼ 1=3k

a21 ¼ a31 ¼ 1=3k

a22 ¼ 1=3k þ 1=2k ¼ 5=6k

a22 ¼ a32 ¼ a23
a33 ¼ 1=3k þ 1=2k þ 1=k ¼ 11=6k

Influence coefficient matrix is given as follows:

a11 a12 a13
a21 a22 a23
a31 a32 a33

2
4

3
5

as compared with the Dunkerley’s matrix 1=m
1=x2

1 . . . . . .
. . . 1=x2

2 . . .
. . . . . . 1=x2

3

2
4

3
5

Dunkerley’s frequency is given as follows:

1=x2 ¼ 1=x2
1 þ 1=x2

2 þ 1=x2
3
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On substituting, we get the following:

1=x2 ¼ 3m=k

x ¼ 0:333
ffiffiffiffiffiffiffiffiffi
k=m

p
58. Determine the natural frequencies and modes shapes of the system shown in

the above figure by matrix iteration method? The influence coefficients are
given below:

a11 ¼ a12 ¼ a13 ¼ a21 ¼ a31 ¼ 1
2k

a22 ¼ a23 ¼ a32 ¼ 3
2k

a33 ¼ 5
2k

The equations for the above system in terms of influence coefficients can be
written as follows:

x1 ¼ 2ma11x1x2 þ 2ma12x2x2 þ 2ma13x3x2

x2 ¼ 2ma21x1x2 þ 2ma22x2x2 þ 2ma23x3x2

x3 ¼ 2ma31x1x2 þ 2ma32x2x2 þ 2ma33x3x2

The equation can be written in matrix form as

x1
x2
x3

8><
>:

9>=
>; ¼ mx2

2a11 2a12 2a13
2a21 2a22 2a23
2a31 2a32 2a33

2
64

3
75

x1
x2
x3

8><
>:

9>=
>;

¼ mx2

1
k

1
k

1
2k

1
k

3
k

3
2k

1
k

3
k

5
2k

2
64

3
75

x1
x2
x3

8><
>:

9>=
>;

x1
x2
x3

8><
>:

9>=
>; ¼ mx2

k

1 1 1=2

1 3 3=2

1 3 5=2

2
64

3
75

x1
x2
x3

8><
>:

9>=
>;

First iteration

Let us assume
x1
x2
x3

8<
:

9=
; ¼

1
1
1

8<
:

9=
;
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1
1
1

8<
:

9=
; ¼ mx2

k

1 1 1=2
1 3 3=2
1 3 5=2

2
4

3
5 ¼ 2:5

mx2

k

1
2:2
2:6

8<
:

9=
;

Second iteration

1
2:2
2:6

8<
:

9=
; ¼ mx2

k

1 1 1=2
1 3 3=2
1 3 5=2

2
4

3
5 1

2:2
2:6

8<
:

9=
; ¼ 4:5

mx2

k

1
2:555
3:133

8<
:

9=
;

Third iteration

1
2:555
3:133

8<
:

9=
; ¼ mx2

k

1 1 1=2
1 3 3=2
1 3 5=2

2
4

3
5 1

2:555
3:133

8<
:

9=
; ¼ 5:12

mx2

k

1
2:61
3:22

8<
:

9=
;

Fourth iteration

1
2:61
3:22

8<
:

9=
; ¼ mx2

k

1 1 1=2
1 3 3=2
1 3 5=2

2
4

3
5 1

2:61
3:22

8<
:

9=
; ¼ 5:22

mx2

k

1
2:61
3:23

8<
:

9=
;

So

1 ¼ 5:22
mx2

k
; x2 ¼ 1

5:22
k
m

Thus x1 ¼ 0:437
ffiffiffi
k
m

q
.

To find the second principle mode, the orthogonality relation is used as

x1
x2
x3

8><
>:

9>=
>; ¼ mx2

k

1 1 1=2

1 3 3=2

1 3 5=2

2
64

3
75 0 �m2

m1

x2
x1

� �
�m3
m1

x3
x1

� �
0 1 0

0 0 1

2
664

3
775

x1
x2
x3

8><
>:

9>=
>;

¼ mx2

k

1 1 1=2

1 3 3=2

1 3 5=2

2
64

3
75

0 � 2:61
1

� � � 1
2 3:23ð Þ

0 1 0

0 0 1

2
64

3
75

x1
x2
x3

8><
>:

9>=
>;

¼ mx2

k

0 �1:61 �1:11

0 0:39 �0:11

0 0:39 1:89

2
64

3
75

x1
x2
x3

8><
>:

9>=
>;
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First iteration

Let us say
x1
x2
x3

8<
:

9=
; ¼

1
0
�1

8<
:

9=
;

1
0
�1

8<
:

9=
; ¼ mx2

k

0 �1:61 �1:11
0 0:39 �0:11
0 0:39 1:89

2
4

3
5 1

0
�1

8<
:

9=
; ¼ 0:11

mx2

k

10:9
1

�17:18

8<
:

9=
;

Second iteration

10:9
1

�17:18

8<
:

9=
; ¼ mx2

k

0 �1:61 �1:11
0 0:39 �0:11
0 0:39 1:89

2
4

3
5 10:9

1
�17:18

8<
:

9=
;

¼ 2:28
mx2

k

7:65
1
�14

8<
:

9=
;

Third iteration

7:65
1

�14

8<
:

9=
; ¼ mx2

k

0 �1:61 �1:11
0 0:39 �0:11
0 0:39 1:89

2
4

3
5 7:65

1
�14

8<
:

9=
; ¼ 1:93

mx2

k

7:2
1

�13:5

8<
:

9=
;

Fourth iteration

7:2
1

�13:5

8<
:

9=
; ¼ mx2

k

0 �1:61 �1:11
0 0:39 �0:11
0 0:39 1:89

2
4

3
5 7:2

1
�13:5

8<
:

9=
;

¼ 1:875
mx2

k

7:13
1

�13:4

8<
:

9=
;

Fifth iteration

7:13
1

�13:4

8<
:

9=
; ¼ mx2

k

0 �1:61 �1:11
0 0:39 �0:11
0 0:39 1:89

2
4

3
5 7:13

1
�13:4

8<
:

9=
;

¼ 1:864
mx2

k

7:11
1

�13:37

8<
:

9=
;
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So

1 ¼ 1:864
mx2

k
x2 ¼ 0:73

ffiffiffiffiffiffiffiffiffi
k=m

p
rad/s

Similarly using orthogonality relation, we can find x3 which is found to be
x3 ¼ 1:41

ffiffiffiffiffiffiffiffiffi
k=m

p
59. Determine fundamental frequency of the system using Stodola’s method.

K1

K2

K3

M1

M2

M3

x1

x2

x3

[   ]

[   ]

[   ]

[   ]

[   ]

[   ]

[   ]

[   ]

[  ]

Force is necessary to cause deflection in the elastic system. In case of free
vibration, only imaginary force responsible for causing deflection is the inertia
force. Let Mr be the mass and Δr be the maximum deflection of the mass. ω be
the vibrating frequency. Maximum inertia force is m€x ¼ mrx2Dr
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Let us assume that m1 = m2 = m3 = m and k1 = k2 = k3 = k.

(1.0 + 1.8 + 2.24) = (5 + 9+11.21)mω2/k. Therefore, fundamental frequency is
given as follows:

x ¼
ffiffiffiffi
k
m

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 1:8þ 2:24Þ
ð5þ 9þ 11:21Þ

s
¼ 0:447

ffiffiffiffi
k
m

r
rad/s:

Corresponding mode shape is given by the following vector:
1
1:8
2:24

8<
:

9=
;

60. For coulomb damping system with mass m = 200 kg, k = 1,500 N/m, and
μk = 0.1 and calculate the decay per cycle. Take g = 9.81 m/s2.
The decay per cycle is 4 fd

k ¼ 4lkmg
k ¼ 4
 0:1
 200
 9:81

1;500 ¼ 0:5232m.

Description k1 m1 k2 m2 k3 m3

Assumed
deflection

1 1 1

Inertia force m1ω
2(1) m2ω

2(1) m3ω
2(1)

Spring force 3mω2 2mω2 mω2

Spring deflection 3mω2/
k1 = 3mω2/
k

2mω2/
k2 = 2mω2/
k

mω2/
k3 = mω2/
k

Calculated
deflection (m ω2/k)

3 5 6

1 1.67 2

Assumed
deflection

1 1.67 2

Inertia force mω2 1.67mω2 2mω2

Spring force 4.67mω2 3.67mω2 2mω2

Spring deflection 4.67mω2/k 3.67mω2/k 2mω2/k

Calculated
deflection (mω2/k)

4.67 8.34 10.34

1 1.79 2.21

Assumed
deflection

1 1.79 2.21

Inertia force mω2 1.79mω2 2.21mω2

Spring force 5mω2 4mω2 2.21mω2

Spring deflection 5mω2/k 4mω2/k 2.21mω2/
k

Calculated
deflection (mω2/k)

5 9 11.21

Converged values 1 1.80 2.24
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61. Consider the harmonic oscillator described by m€xþ x2
nx ¼ 0. Let m = 20 kg

and k = 1,800 N/m and calculate the response x(t) for initial condition
x0 ¼ xð0Þ ¼ 0:1 m; _v0 ¼ _xð0Þ ¼ 0:2m/s.

The natural frequency of the oscillator is xn ¼
ffiffiffi
k
m

q
¼

ffiffiffiffiffiffiffiffi
1;800
20

q
¼ 9:487 rad=s

Amplitude is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x20 þ vo

xn

� �2r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:12 þ 0:2

9:487

� �2q
¼ 0:1022m

The phase angle is u ¼ tan�1 vo
xoxn

� �
¼ tan�1 0:2

0:1
9:487

� � ¼ 11:9045 rad

xðtÞ ¼ Acos xt � uð Þ ¼ 0:1022 cos 9:487t � 11:9045ð Þm
62. It was observed that vibration amplitude of a damped SDOF system has fallen

by 50 % after five complete cycles. Assume that the system is viscous damped
and calculate the damping factor ζ. Let the no of cycles be 5 nos.

M ¼ 5; d ¼ 1
m
ln

xn
xmþn

� �
¼ 1

5
ln

xn
0:5xn

� �
¼ 0:1386

Considering the maximum f ¼ d
2p ¼ 0:1386

2p ¼ 0:0221 ¼ 2:2064%
63. Define damping ratio.

Damping ratio ¼ f ¼ damping constant
damping constant for crtically damped system

¼ C
Ccr

64. For SDOF system, m = 4 kg, k = 1.6 × 103 N m−1, and the two cases of
damping: (a) c1 = 80 N m−1 s−1; (b) c2 = 320 N m−1 s−1. Calculate the damping
ratio for the two cases.

xn ¼
ffiffiffiffi
k
m

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:6
 103

4

r
¼ 20 rad/s;

f1 ¼
C1

Ccr
¼ 80

2
 4
 20
¼ 0:5;

f2 ¼
C2

Ccr
¼ 320

2
 4
 20
¼ 2

65. A 200-kg machine is placed at the end of 1.8-m-long steel cantilever beam. The
machine is observed to vibrate with natural frequency of 21 Hz. What is the
moment of inertia of the beam’s cross section about its neutral axis.

xn ¼ 21 Hz ¼ 21
cycles

s

� �
2p

rad
cycle

� �
¼ 131:9469 rad/s;

kequ ¼ mx2 ¼ ð200 kg
 131:9 rad/sð Þ2Þ ¼ 3:4820
 106 N/m; kequ ¼ 3EI=L3;
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I ¼ kequ 
 L3
� �

= 3Eð Þ; I ¼ ð3:4820
 106 N/m
 1:83 m3Þ=ð3
 210
 109 N/m2Þ
¼ 3:2215
 10�5 m4:

66. A 60-kg drum of the diameter 40 cm containing the waste material of mass
density 1,100 kg/m3 is being hoisted by a 30-mm-diameter steel
(E = 210 × 109 N/m2) cable. When the drum is to be hoisted 10 m, the system
natural frequency is measured as 40 Hz. Determine the volume of the drum.
(Hint: Kequ = AE/L).

Kequ ¼ AE
L

¼ p
 0:0152 m2ð Þ 210
 109 N=m2ð Þ
10 m

¼ 1:4844
 107 N=m;

xn ¼
ffiffiffiffiffiffiffiffi
kequ
m

r
; 40

cycles
s

� �
2p

rad
s

� �� �2
¼ 1:4844
 107

M
; M ¼ 235:0018 kg;

Mw = M − Md = 235.0018 − 60 = 175.0018 kg;
Volume of the drum = Mass/Mass density = 175.0018 kg/1,100 kg/
m3 = 0.1591 m3

67. For what value of m will resonance occur for the system shown below:

Springs are in parallel as the block is fixed and the equivalent stiffness of
3 × 105 N/m. Resonance occurs when excitation frequency 50 rad/s is equal to

natural frequency. 50 rad=s ¼ xn ¼
ffiffiffiffiffiffi
kequ
m

q
; m ¼ kequ

x2
n
¼ 3
105 N/m

50 rad/sð Þ2 ¼ 120 kg.

68. A 35-kg electric motor that operates at 60 Hz is mounted on the elastic
foundation of stiffness 3 × 106 N/m. The phase difference between the exci-
tation and steady-state response is 21°. What is the damping ratio of system?

xn ¼
ffiffiffiffi
k
m

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
 106N/m

35 kg

s
¼ 292:77 rad/s;

b ¼ x
xn

¼ 60 cycles/sð Þ 2p rad/cycleð Þ
292:77 rad/s

� �
¼ 1:2877;

tan h ¼ 2fb

1� b2
; tanð180� 21Þ ¼ 2
 f
 1:2877

1� 1:28772
; f ¼ 0:0982 ¼ 9:8154%
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69. Evaluate the frequency and mode shape for the MDOF system using influence
coefficient method. Use Dunkerley’s method to evaluate natural frequency of
the system.

4m

4m

4m

3K

3K

3K

[   ]

[   ]

[   ]

[   ]

[   ]

[   ]

½a� ¼ 1
3k

1 1 1
1 2 2
1 2 3

2
4

3
5

ω Dunkerley

1
x2 ¼ 4m

1
3k

� �
þ 4m

2
3k

� �
þ 4m

3
3k

� �
¼ 24m

3k

x2 ¼ 3k
24m

x ¼ 0:354

ffiffiffiffi
k
m

r
rad/s
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Influence coefficient method

x1
x2
x3

8<
:

9=
; ¼ mx2

3k

4 4 4
4 8 8
4 8 12

2
4

3
5 x1

x2
x3

8<
:

9=
;

Assuming
x1
x2
x3

8<
:

9=
; ¼

1
2
3

8<
:

9=
;;

x1
x2
x3

8><
>:

9>=
>; ¼ 24mx2

3k

4 4 4

4 8 8

4 8 12

2
64

3
75

1

1:83

2:33

8><
>:

9>=
>;

x1
x2
x3

8><
>:

9>=
>; ¼ 20:64mx2

3k

4 4 4

4 8 8

4 8 12

2
64

3
75

1

1:81

2:26

8><
>:

9>=
>;

x1
x2
x3

8><
>:

9>=
>; ¼ 20:28mx2

3k

4 4 4

4 8 8

4 8 12

2
64

3
75

1

1:80

2:25

8><
>:

9>=
>;

x1
x2
x3

8><
>:

9>=
>; ¼ 20:20mx2

3k

4 4 4

4 8 8

4 8 12

2
64

3
75

1

1:80

2:25

8><
>:

9>=
>;

20:20mx2

3k
¼ 1

x2 ¼ 3k
20:20m

x ¼ 0:385

ffiffiffiffi
k
m

r
rad/s
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70. Evaluate the frequency and mode shape for the MDOF system using influence
coefficient method. Use Dunkerley’s method to evaluate natural frequency of
the system.

K

K

K

m

m

m

[  ]

[  ]

[  ]

[  ]

[  ]

[  ]

½a� ¼ 1
k

1 1 1
1 2 2
1 2 3

2
4

3
5

ω Dunkerley

1
x2 ¼ m

1
k

� �
þ m

2
k

� �
þ m

3
k

� �
¼ 6m

k

x2 ¼ k
6m

x ¼ 0:408

ffiffiffiffi
k
m

r
rad=s

Solved Numerical Examples 137



Influence coefficient method

x1
x2
x3

8<
:

9=
; ¼ mx2

k

1 1 1
1 2 2
1 2 3

2
4

3
5 x1

x2
x3

8<
:

9=
;

Assuming
x1
x2
x3

8<
:

9=
; ¼

1
2
3

8<
:

9=
;;

x1
x2
x3

8><
>:

9>=
>; ¼ 6mx2

k

1 1 1

1 2 2

1 2 3

2
64

3
75

1

1:83

2:33

8><
>:

9>=
>;

x1
x2
x3

8><
>:

9>=
>; ¼ 5:16mx2

k

1 1 1

1 2 2

1 2 3

2
64

3
75

1

1:81

2:26

8><
>:

9>=
>;

x1
x2
x3

8><
>:

9>=
>; ¼ 5:07mx2

k

1 1 1

1 2 2

1 2 3

2
64

3
75

1

1:81

2:25

8><
>:

9>=
>;

x1
x2
x3

8><
>:

9>=
>; ¼ 5:05mx2

k

1 1 1

1 2 2

1 2 3

2
64

3
75

1

1:80

2:25

8><
>:

9>=
>;

5:05mx2

k
¼ 1

x2 ¼ k
5:05m

x ¼ 0:445

ffiffiffiffi
k
m

r
rad/s

71. Evaluate the fundamental frequency and mode shape for the MDOF system
using Dunkerley’s method, influence coefficient method, Stodola’s method,
and Rayleigh–Ritz method.
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6m

3m

2m

5K

3K

K

[   ]

[   ]

[   ]

[   ]

[  ]

[   ]

Dunkerley’s Method

½a� ¼ 1
15k

3 3 3
3 8 8
3 8 23

2
4

3
5

ω Dunkerley

1
x2 ¼ 6m

13
15k

� �
þ 3m

8
15k

� �
þ 2m

23
15k

� �
¼ 88m

15k

x2 ¼ 15k
88m

x ¼ 0:41

ffiffiffiffi
k
m

r
rad=s

Influence Coefficient Method

x1
x2
x3

8<
:

9=
; ¼ mx2

15k

18 9 6
18 24 16
18 24 16

2
4

3
5 x1

x2
x3

8<
:

9=
;
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Assuming
x1
x2
x3

8<
:

9=
; ¼

1
2
3

8<
:

9=
;;

x1
x2
x3

8><
>:

9>=
>; ¼ 54mx2

15k

18 9 6

18 24 16

18 24 16

2
64

3
75

1

2:11

3:78

8><
>:

9>=
>;

x1
x2
x3

8><
>:

9>=
>; ¼ 59:67mx2

15k

18 9 6

18 24 16

18 24 16

2
64

3
75

1

2:16

4:06

8><
>:

9>=
>;

x1
x2
x3

8><
>:

9>=
>; ¼ 61:80mx2

15k

18 9 6

18 24 16

18 24 16

2
64

3
75

1

2:18

4:15

8><
>:

9>=
>;

x1
x2
x3

8><
>:

9>=
>; ¼ 62:52mx2

15k

18 9 6

18 24 16

18 24 16

2
64

3
75

1

2:19

4:18

8><
>:

9>=
>;

x1
x2
x3

8><
>:

9>=
>; ¼ 62:79mx2

15k

18 9 6

18 24 16

18 24 16

2
64

3
75

1

2:19

4:19

8><
>:

9>=
>;

x1
x2
x3

8><
>:

9>=
>; ¼ 62:85mx2

15k

18 9 6

18 24 16

18 24 16

2
64

3
75

1

2:19

4:19

8><
>:

9>=
>;

62:85mx2

15k
¼ 1

x2 ¼ 15k
62:85m

x ¼ 0:49

ffiffiffiffi
k
m

r
rad/s
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Stodola’s Method

ð1þ 2:19þ 4:19Þ ¼ ð4:19x2þ 9:17x2þ 17:55x2Þm=k
x2 ¼ 7:38k

30:91m

x ¼ 0:49

ffiffiffiffi
k
m

r
rad/s

Description k1 = 5k m1 = 6m k2 = 3k m2 = 3m k3 = k m3 = 2m

Assumed deflection 1 2 4

Inertia force mω2(6) mω2(6) mω2(8)

Spring force 20mω2 14mω2 8mω2

Spring deflection 4mω2/k 4.67mω2/k 8mω2/k

Calculated
deflection (mω2/k)

4 8.67 16.67

1 2.17 4.17

Assumed deflection 1 2.17 4.17

Inertia force 6mω2 6.51mω2 8.34mω2

Spring force 20.85mω2 14.85mω2 8.34mω2

Spring deflection 4.17mω2/k 4.95mω2/k 8.34mω2/k

Calculated
deflection (mω2/k)

4.17 9.12 17.47

1 2.19 4.19

Assumed deflection 1 2.19 4.19

Inertia force 6mω2 6.57mω2 8.38mω2

Spring force 20.95mω2 14.95mω2 8.38mω2

Spring deflection 4.19mω2/k 4.98mω2/k 8.38mω2/k

Calculated
deflection(mω2/k)

4.19 9.17 17.55

Converged values 1 2.19 4.19
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Rayleigh–Ritz Method

(1) (2) (3) (4) (5) (6) = (3) × (5) (7) = (1) × (5)2

m ur0 FI ¼ mur0 ur00=X1 FI × ur00 m × ur00

6m
3m
2m

1
2
4

6m × 1 = 6m
3m × 2 = 6m
2m × 4 = 8m

X2 ¼ 4m
k þ 6mþ8m

3k

� � ¼ 8:67m
k

X3 ¼ 8:67m
k þ 8m

k

� � ¼ 16:67m
k

1
2.17
4.17

6m
k
13:02m

k
33:36m

k

R ¼ 52:38m
k

6 × (1)2 = 6
3 × (2.17)
2 = 14.13
2 × (4.17)
2 = 34.78
R ¼ 54:91

6m
3m
2m

1
2.17
4.17

6m × 1 = 6m
3m × 2 = 6.51m
2m × 4 = 8.34m

X1 ¼ 6mþ6:51mþ8:34m
5k

� � ¼ 4:17m
k

X2 ¼ 4:17m
k þ 6:51mþ8:34m

3k

� � ¼ 9:12m
k

X3 ¼ 9:12m
k þ 8:34m

k

� � ¼ 17:46m
k

1
2.19
4.19

6m
k
14:26m

k
34:94m

k

R ¼ 45:46m
k

6 × (1)2 = 6
3 × (2.19)
2 = 14.39
2 × (4.19)
2 = 35.11
R ¼ 55:5

6m
3m
2m

1
2.19
4.19

6m × 1 = 6m
3m × 2 = 6.57m
2m × 4 = 8.38m

X1 ¼ 6mþ6:57mþ8:38m
5k

� � ¼ 4:19m
k

X2 ¼ 4:19m
k þ 6:57mþ8:34m

3k

� � ¼ 9:17m
k

X3 ¼ 9:17m
k þ 8:38m

k

� � ¼ 17:55m
k

1
2.19
4.19

6m
k
14:39m

k
35:11m

k

R ¼ 55:5m
k

6 × (1)2 = 6
3 × (2.19)
2 = 14.39
2 × (4.19)
2 = 35.11
R ¼ 55:5
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72. Evaluate the fundamental frequency and mode shape for the MDOF system
using Stodola’s method.

2m

m

3m

2K

2K

K

2K

m

3K

4m

5m

[   ]

[   ]

[   ]

[  ]

[  ]

[   ]

[   ]

[  ]

[   ]

[   ]

[   ]
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ð1þ 1:97þ 3:83þ 4:56þ 4:84Þ ¼ ð28:95þ 56:9þ 110:83

þ 1320:05þ 140:12Þx2m=k

x2 ¼ 16:2k
468:85m

x ¼ 0:19

ffiffiffiffi
k
m

r
rad/s

73. Obtain all mode shapes and corresponding frequency of the system shown
below:

Description k1 m1 k2 m2 k3 m3 k4 m4 k5 M5

2k 2m 2k m k 3m 2k 4m 3k 5m

Assumed deflection 1 2 3 4 5

Inertia force (mω2) 2 2 9 16 25

Spring force (mω2) 54 52 50 41 25

Spring deflection
(mω2/k)

27 26 50 20.5 8.33

Calculated deflection
(mω2/k)

27 53 103 123.5 131.83

1 1.96 3.81 4.57 4.88

Assumed deflection 1 1.96 3.81 4.57 4.88

Inertia force (mω2) 2 1.96 11.43 18.28 24.4

Spring force (mω2) 58.07 56.07 54.11 42.68 24.4

Spring deflection
(mω2/k)

29.04 28.04 54.11 21.34 8.13

Calculated deflection
(mω2/k)

29.04 57.08 111.19 132.53 140.66

1 1.97 3.83 4.56 4.84

Assumed deflection 1 1.97 3.83 4.56 4.84

Inertia force (mω2) 2 1.96 11.49 18.24 24.2

Spring force (mω2) 57.9 55.9 53.93 42.44 24.2

Spring deflection
(mω2/k)

28.95 27.95 53.93 21.22 8.07

Calculated deflection
(mω2/k)

28.95 56.9 110.83 132.05 140.12

Converged values 1 1.97 3.83 4.56 4.84

3m 3m 5m

5K 5K 3K[   ]

[   ]

[   ]

[   ]

[    ]

[    ]
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½a� ¼ 1
15k

3 3 3
3 6 6
3 6 11

2
4

3
5

Influence coefficient method

x1
x2
x3

8<
:

9=
; ¼ mx2

15k

9 9 15
9 18 30
3 18 55

2
4

3
5 x1

x2
x3

8<
:

9=
;

Assuming
x1
x2
x3

8<
:

9=
; ¼

1
2
3

8<
:

9=
;;

x1
x2
x3

8><
>:

9>=
>; ¼ 72mx2

15k

9 9 15

9 18 30

3 18 55

2
64

3
75

1

1:88

2:92

8><
>:

9>=
>;

x1
x2
x3

8><
>:

9>=
>; ¼ 69:72mx2

15k

9 9 15

9 18 30

3 18 55

2
64

3
75

1

1:87

2:92

8><
>:

9>=
>;

x1
x2
x3

8><
>:

9>=
>; ¼ 69:63mx2

15k

9 9 15

9 18 30

3 18 55

2
64

3
75

1

1:87

2:92

8><
>:

9>=
>;

69:63mx2

15k
¼ 1

x2 ¼ 15k
69:63m

x ¼ 0:22

ffiffiffiffi
k
m

r
rad/s

II Mode shape

A1

B1

C1

8<
:

9=
; ¼

1
1:87
2:92

8<
:

9=
;

m1A1A2 þ m2B1B2 þ m3C1C2 ¼ 0

Solved Numerical Examples 145



3mA2 þ 5:61mB2 þ 14:6mC2 ¼ 0

A2 ¼ �1:87B2 � 4:87C2

A2

B2

C2

8<
:

9=
; ¼

0 �1:87 �4:87
0 1 0
0 0 1

2
4

3
5 A2

B2

C2

8<
:

9=
;

x1
x2
x3

8<
:

9=
; ¼ mx2

15k

9 9 15
9 18 30
3 18 55

2
4

3
5 0 �1:87 �4:87

0 1 0
0 0 1

2
4

3
5 A2

B2

C2

8<
:

9=
;

x1
x2
x3

8<
:

9=
; ¼ mx2

15k

0 �7:83 �28:83
0 1:17 �13:83
0 1:17 11:17

2
4

3
5 x1

x2
x3

8<
:

9=
;

Assuming
x1
x2
x3

8<
:

9=
; ¼

1
�1
1

8<
:

9=
;

x1
x2
x3

8><
>:

9>=
>; ¼ mx2

15k

0 �7:83 �28:83

0 1:17 �13:83

0 1:17 11:17

2
64

3
75

1

�1

1

8><
>:

9>=
>;

x1
x2
x3

8><
>:

9>=
>; ¼ �21mx2

15k

0 �7:83 �28:83

0 1:17 �13:83

0 1:17 11:17

2
64

3
75

1

0:71

�0:48

8><
>:

9>=
>;

x1
x2
x3

8><
>:

9>=
>; ¼ 8:28mx2

15k

0 �7:83 �28:83

0 1:17 �13:83

0 1:17 11:17

2
64

3
75

1

0:90

�0:55

8><
>:

9>=
>;

x1
x2
x3

8><
>:

9>=
>; ¼ 8:81mx2

15k

0 �7:83 �28:83

0 1:17 �13:83

0 1:17 11:17

2
64

3
75

1

0:98

�0:58

8><
>:

9>=
>;

x1
x2
x3

8><
>:

9>=
>; ¼ 9:05mx2

15k

0 �7:83 �28:83

0 1:17 �13:83

0 1:17 11:17

2
64

3
75

1

1:01

�0:59

8><
>:

9>=
>;
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x1
x2
x3

8><
>:

9>=
>; ¼ 9:10mx2

15k

0 �7:83 �28:83

0 1:17 �13:83

0 1:17 11:17

2
64

3
75

1

1:03

�0:59

8><
>:

9>=
>;
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x2
x3

8><
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9>=
>; ¼ 8:94mx2

15k

0 �7:83 �28:83

0 1:17 �13:83

0 1:17 11:17

2
64

3
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1

1:05

�0:60

8><
>:

9>=
>;

x1
x2
x3

8><
>:

9>=
>; ¼ 9:08mx2

15k

0 �7:83 �28:83

0 1:17 �13:83

0 1:17 11:17

2
64

3
75

1

1:05

�0:59

8><
>:

9>=
>;

9:08mx2

15k
¼ 1

x2 ¼ 15k
9:08m

x ¼ 1:29

ffiffiffiffi
k
m

r
rad/s

III Mode shape

A1

B1

C1

8<
:

9=
; ¼

1
1:87
2:92

8<
:

9=
;

A2

B2

C2

8<
:

9=
; ¼

1
1:05
�0:59

8<
:

9=
;

m1A1A3 þ m2B1B3 þ m3C1C3 ¼ 0

m1A2A3 þ m2B2B3 þ m3C2C3 ¼ 0

3mA3 þ 5:61B3 þ 14:6C3 ¼ 0

3mA3 þ 3:15mB3 þ 3mC3 ¼ 0

A3 ¼ �1:87B3 � 4:87C3; B3 ¼ 7:16C3; C3 ¼ C3

A3

B3

C3

8<
:

9=
; ¼

0 0 45:04
0 0 7:16
0 0 1

2
4

3
5 A3

B3

C3

8<
:

9=
;

x1
x2
x3

8<
:

9=
; ¼ mx2

15k

0 �7:83 �28:83
0 1:17 �13:83
0 1:17 11:17

2
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3
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0 0 1

2
4

3
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C3
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:

9=
;
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x1
x2
x3

8<
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9=
; ¼ mx2

15k

0 0 �84:89
0 0 �5:45
0 0 19:55

2
4

3
5 x1

x2
x3

8<
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9=
;

Assuming
x1
x2
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8<
:

9=
; ¼

1
�1
1

8<
:

9=
;

x1
x2
x3

8<
:

9=
; ¼ 84:89mx2

15k

0 0 �84:89
0 0 �5:45
0 0 19:55

2
4

3
5 �1

�1:06
0:23

8<
:

9=
;

x1
x2
x3

8<
:

9=
; ¼ 19:52mx2

15k

0 0 �84:89
0 0 �5:45
0 0 19:55

2
4

3
5 �1

�1:06
0:23

8<
:

9=
;

19:52mx2

15k
¼ 1

x2 ¼ 15k
19:52m

x ¼ 0:88

ffiffiffiffi
k
m

r
rad/s

u ¼
1 1 �1
1:87 1:05 �0:06
2:92 �0:6 0:23

2
4

3
5

xð1Þ
n ¼ 0:46

ffiffiffiffi
k
m

r
rad/s; xð2Þ

n ¼ 1:29

ffiffiffiffi
k
m

r
rad/s;

xð3Þ
n ¼ 0:88

ffiffiffiffi
k
m

r
rad/s

Exercise on Numericals

1. Using the spring–mass system as an example, show that loss of potential energy
of the mass due to displacement from the static equilibrium position will always
be canceled by the work done by the equilibrium forces of the spring.

2. Ratio of (k/m) of a spring–mass system is given as 4.0. If the mass is deflected
by 2 cm downward, measured for its equilibrium position and given an upward
velocity of 8 cm/s, determine its amplitude and maximum acceleration.
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3. Derive an expression to obtain damping ratio using half power band width
method.

4. The following data are given for a vibrating system with viscous damping.
Mass = 5 kg; k = 40 N/m; and C = 0.10 N/m s. Find logarithmic decrement and
ratio of any two successive amplitudes.

5. Draw the resonance response of a un-damped system and write the inferences.
6. Show that in a damped system, amplitude of maximum displacement is

bounded, even at resonance. What do you understand by this statement?
Illustrate your answer with an appropriate figure.

7. Show that the log decrement is also given by the equation: d ¼ 1
n ln

x0
xn

� �
where

xn represents amplitude after n cycles have elapsed. Plot also the curve showing
the number of cycles elapsed against ξ for the amplitude to diminish by 50 %.

8. In coulomb damping model, show that decay in the amplitude per cycle is
constant.

9. A spring–mass system is excited by a force of F0 sin (ωt). At resonance,
amplitude is measured as 0.58 cm. At 0.8 resonant frequency, amplitude
measured is 0.46 cm. Determine the damping ratio ξ of the system.

10. In a damped system, damping limits the resonance response amplitude. Plot the
number of cycles of the load versus resonance response and show that few
cycles of excitations are required to reach the nearly full response amplitude.

11. Starting with the matrix equation, K/s ¼ x2
sM/s, pre-multiply first with

KM−1, and using orthogonality relation /T
r M/s ¼ 0, show that

/T
r KM

�1K/s ¼ 0. Repeat this to show that /T
r KM�1½ �hK/s ¼ 0 for h = 1, 2, 3,

4, … n, where n is number of degrees of freedom.
12. Determine the influence coefficient matrix for the multi-degrees-of-freedom

system shown in the below figure:

k1 k2 k3

m1 m2

x2x1

[   ]
[   ]

[  ]
[  ]

[  ]

[  ]
[  ]

13. Determine the fundamental frequency of the system whose [M] and influence
coefficient matrix δ are given as below:

M ¼
60 0 0
0 100 0
0 0 80

2
4

3
5; ½d� ¼ 6 5 3

5 7 4
3 4 6

2
4

3
5
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14. What do you understand by mode shapes? Give its physical interpretation.
15. Why fundamental frequency is of great importance in structural dynamics?
16. A continuous structure has ________ number of degrees of freedom.
17. In structural dynamics, mass element represents ______ characteristics of the

structure and _______ represents elastic restoring force.
18. A sketch of the body, isolated from all other bodies, in which all forces external

to the body are shown is called _______.
19. An alternate approach which states that the system may be set in a state of

dynamic equilibrium is called __________.
20. Degree of freedom of a system is the number of independent coordinates

necessary to describe its position. True or false. If false, rewrite the correct
statement.

21. It is observed experimentally that amplitude of free vibration of certain
structure modeled as single degree of freedom decreases from 1 to 0.4 in 10
cycles. What is the % of critical damping?

22. The simplest form of periodic motion is ________.
23. What are the essential characteristics of a dynamic loading?
24. It is not always possible to obtain rigorous mathematical solutions for engi-

neering problems. Should you agree to this statement, then which provides a
reasonable link between the real physical system and mathematically feasible
solution?

25. It is not always of freedom, damping element represents only dissipation of
energy. Such pure elements do not exist in physical world this statement, then
which provides a ra mathematical model.

26. Do both the figures shown below represent mathematical models that are
dynamically equivalent? Explain your answer briefly.

27. In a SDOF model, spring is considered a linear spring. In other words, force–
displacement properties of the system are taken as linear. Is it a hypothetical
situation compared to the real dynamic behavior of structures? Explain.

28. Find time period of the structure shown in the below figure. Cross section of
the column is circular of 50 mm diameter, made of steel. Take Est as 2 × 105 N/
mm2, mass as 100 kg, length of the column as 2 m.
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29. A cantilever beam is shown in figure below has a lumped mass of 10 kg at its
tip. Length of the beam is 1.5 m and stiffness of springs attached to the mass is
100 N/m. For initial displacement of 25 mm and initial velocity of 0.5 m/s, find
the displacement and velocity of the system after 1 s. Take Est as 2 × 105 N/
mm2. Neglect the self-weight of the beam. Beam is made of a steel flat of size
6 mm × 100 mm.

30. A vibrating system having mass of 4.5 kg and stiffness of 3,500 N/m is
viscously damped so that ratio of two consecutive peaks is reduced from 1.0 to
0.85. Determine natural frequency, logarithmic decrement, damping ratio,
damping coefficient, and damped natural frequency.

31. What is the difference between vibration and oscillation?
32. What is negative damping? Explain it with an example.
33. Evaluate the frequency and mode shape for the MDOF system using influence

coefficient method. Use Dunkerley’s method to evaluate natural frequency of
the system.

2m

2m

2m

2K

3K

5K

m = 3500 kg; K = 1500 kN/m
[   ]

[    ]

[    ]

[    ]

[    ]

[    ]

[                                                    ]
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34. Evaluate the frequency and mode shape for the MDOF system using influence
coefficient method. Use Dunkerley’s method to evaluate natural frequency of
the system.

m 2 5

K 2 K[  ]
[  ]

[  ]
[  ]

[  ]
[  ]

m = 35 kN; K= 1000 kN/m 

35. Evaluate the frequency and mode shape for the MDOF system using influence
coefficient method. Use Dunkerley’s method to evaluate natural frequency of
the system.

5m

2m

2K

K

[  ]

[  ]

[  ]

[   ]

36. Evaluate the fundamental frequency and mode shape for the MDOF system
using Rayleigh–Ritz method and compare the frequency with Dunkerley’s
method.
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37.

5m

6m

m

2K

5K

6K

[   ]

[    ]

[  ]

[   ]

[  ]

[    ]

38. Evaluate the fundamental frequency and mode shape for the MDOF system
using Stodola’s method.

3 5 5

2 5 K[  ]
[  ]

[  ]
[  ]

[  ]
[  ]
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Chapter 4
Damping in Offshore Structures

Abstract This chapter deals with the methods of estimating damping in offshore
structures. Different types of damping models, their comparison, and suitability to
offshore structures are discussed in detail. Example problems are solved, and
estimation of damping using different models is explained.

Keywords Structural damping � Viscous damping � Coulomb damping � Rayleigh
damping � Caughey damping

4.1 Introduction

Under ideal conditions of no damping, if the system is set to vibration, it will be
excited indefinitely at constant amplitude at its natural frequency. But in real time,
any system set to vibration comes to rest, necessarily after passage of time; damping
offered by the presence of air may be one of the reasons. As such, un-damped
systems are hypothetical, since damping is inherently present in the atmosphere.
Further, ocean structures are under the influence of waves and current, which offers
significant amount of damping to the structural system that is set in vibration. The
basic types of damping are, namely (i) coulomb damping and (ii) viscous damping.
Coulomb damping results from sliding of two surfaces; it is also called dry damping
or friction damping. The damping force is the product of the normal force and the
coefficient of friction between the body surface and the plane of motion. Note that
the damping force in this case is independent of velocity of motion of the body
which is under vibration. In case of viscous damping, the damping force accounts
for the viscosity of the system. The presence of fluid medium around the body
significantly influences the damping force acting on the body. Damping force will
be proportional to the magnitude of the velocity and has the unit of N/(m s).
Viscous damping seems to be more relevant to offshore structural systems due to
the inherent presence of liquid medium around the body.

© Springer India 2015
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The frictional forces are not conservative, as they cannot be derived from a
potential function that is based on the displacement (response) of the vibrating
system. However, these forces are highly responsible for dissipation of energy or
conversion of energy from one form to the other. This results in reduction in
response to the structural system. The energy consumed by the friction forces is
converted into heat energy and dissipated by conduction, by convection to the fluid
surrounding the structure and by radiation.

The frictional forces in a system may arise due to any one of the following
physical processes (Wilson 1984). There can be friction among the materials,
leading to internal viscous damping. This is highly practical due to the use of modern
materials such as composites in offshore structures. At the connections or joints, due
to the presence of materials of different composition, bimetallic coupling can result
in friction forces. There can also be friction between two structural components,
leading to structural damping. There can be friction between the structural members
and fluid surrounding them, leading to external viscous damping. Lastly, there can
be friction between the structural members at their supports which are in contact with
them. This leads to coulomb damping. However, it is very difficult to quantify these
damping forces in a given system, as the causes for such forces are diverse.

Structural damping is usually considered to be 0.2–0.5 % of that of the critical
damping for steel platforms (Adams and Baltrop 1991). For concrete, this can be of
the order of 0.5–1.5 %. Hydrodynamic damping originates from the waves sur-
rounding the offshore structures. They are found in two common forms, namely (i)
radiation damping and (ii) viscous damping. Radiation damping is determined by
potential theory. It exhibits a strong dependence on frequency and submergence
effects. Literature shows that the drag damping is lower for a larger diameter
vertical column members in offshore structures; this is of the order 0.1 %. Damping
ratio of the marine structure, including the effect of added mass can be expressed as
the ratio of the dry structure, as given below:

nwet ¼ ndry
m�

dryx
�
dry

m�
wetx

�
wet

� �
ð4:1Þ

where m* and x� are generalized mass and frequency, respectively (Naess and
Moan 2013). Literature also shows that the total damping ratio is about 2 % for the
first three modes for gravity platforms.

Classical damping is an approximate idealization if similar damping is distrib-
uted throughout the structure. However, in offshore structures, uniform distribution
of damping throughout the structure is not applicable due to many reasons:
(i) variation in material properties of members at connections, (ii) use of composites
for variety of members, and (iii) deck and the substructure shall be even isolated so
that the large displacements of the deck under wind forces do not influence the
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substructure and that of the effects caused by waves do not influence the deck
motion, etc. Three damping models are popular for offshore structures, namely
(i) Rayleigh damping, (ii) Caughey damping, and (iii) modal damping. These are
explained below with examples.

4.2 Damping Models: Rayleigh Damping

Consider a mass proportional or a stiffness proportional damping as given below:

C ¼ a0M ð4:2Þ

C ¼ a1K ð4:3Þ

where a0 and a1 are constants having units as s
−1 and s, respectively. In both the cases,

C is diagonal by virtue of modal orthogonality properties; hence, these are classical
damping matrices. Physically, they represent damping models as shown in Fig. 4.1.

In case of mass proportional damping, damping can be negligibly small due to
air damping, but in offshore structures, this can be significantly high. In case of
stiffness proportional damping, dissipation of energy depends upon the relative
displacement between the successive mass points. Keeping [C] as proportional to
modal damping ratios, for the system with mass proportional damping, the damping
ratio will be given by

m1

m2

m3

m4
x4

x3

x2

x1a0m1

a0m2

a0m3

a0m4

a0k1

a0k2

a0k3

a0k4

k1

k2

k3

k4

k1

k2

k3

k4

(a) (b)

Fig. 4.1 Damping models a mass proportional damping b stiffness proportional damping
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Cn ¼ a0Mn

nn ¼
Cc

2Mnxn
¼ a0Mn

2Mnxn

nn ¼
a0
2

1
xn

ð4:4Þ

The damping ratio is inversely proportional to the natural frequency. Hence, a0 can
be settled to obtain a specified value of the damping ratio in naymode, as given below:

a0 ¼ 2nixi ð4:5Þ
With a0 determined, damping matrix [C] is known from Eq. (4.4). Similarly, for

stiffness proportional damping, we get the following relationships:

Cn ¼ a1Kn

nn ¼
Cc

2Mnxn
¼ a1x2

nMn

2Mnxn

nn ¼
a1
2
xn

ð4:6Þ

a1 ¼
2nj
xj

ð4:7Þ

With a1 determined from the above equation, damping matrix [C] can be
computed from Eq. (4.6). It is seen that both the damping models, being either mass
proportional or stiffness proportional, are not validating the actual behavior of the
offshore structures, experimentally. Hence to be consistent with the experimental
observations, Rayleigh damping is proposed for offshore structures. The damping
matrix will be proportional to both mass and stiffness as given below:

C ¼ a0M þ a1K ð4:8Þ

Damping ratio for nth mode of such a system is given by

nn ¼
a0
2

1
xn

þ a1
2
xn ð4:9Þ

Coefficients, a0 and a1, can be determined for a specific damping ratio (ni; nj) for
ith and jth modes, respectively. For the Fig. 4.2, one can pick up the damping ratio
in such a manner that it is same for both the chosen frequencies (xi;xj).
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nn ¼
a0
2

1
xn

þ a1
2
xn

ni ¼
a0
2

1
xi

nj ¼
a1
2
xj

ni
nj

� �
¼ 1

2

1
xi

xi

1
xj

xj

" #
a0
a1

� �
ð4:10Þ

For ni; nj ¼ n, then

a0
a1

� �
¼ 2xixj

x2
j � x2

i

xj �xi

� 1
xj

1
xi

" #
ni
nj

� �

a0 ¼ 2n
xixj

xi þ xj

a1 ¼ 2n
xi þ xj

ð4:11Þ

Knowing the constants a0 and a1, damping matrix [C] can be estimated using
Eq. (4.8). Few critical observations in applying this procedure are as follows:
(i) Modes (i, j) with specified damping ratios need to be chosen; and (ii) one must
select reasonable value of damping ratios for all the modes. For example, if one
wants to include third mode in the analysis with roughly the same damping ratio in
all the modes (which is desired), then one should select the third frequency such that
this condition is satisfied. Hence, truncation of modes, in such cases, is also
governed by the appropriate (nearly equal) damping ratios to the chosen frequencies.

Fig. 4.2 Rayleigh damping
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4.2.1 Example Problem

Let us consider the spring-mass system shown in Fig. 4.3. Let m be 3,500 kg and
k be 1,500 kN/m. Taking damping ratio for first two modes as 5 %, compute the
damping ratio for the third mode.

Solution
Please note that for classical damping, it is essential that the damping in all the
modes included in the analysis should be equal. Should we need to include the third
mode also in the analysis, then it is essential to check whether the third mode has
damping equivalent to that of the first two modes. By this way, it also necessitates
the truncation of higher modes in the dynamic analysis.

By following any standard procedure explained in the previous chapters, one can
readily determine all the frequencies and their corresponding mode shapes. The
computed values are given below:

x1 ¼ 0:57
ffiffiffiffiffiffiffi
k
m

� �q
01:414

ffiffiffiffiffiffiffi
k
m

� �q
2:163

ffiffiffiffiffiffiffi
k
m

� �qh i

After substituting for the values of mass and stiffness, we get the following:
x½ � ¼ 11:8 rad/s 29:27 rad/s 44:778 rad/s½ �: The corresponding mode shapes are
as given below:

Fig. 4.3 Example problem 4.2.1
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U½ � ¼
1 1 1

0:68 �1 �3:68

0:32 1 4:68

2
64

3
75

M½ � ¼ 3;500

1 0 0

0 1 0

0 0 1

2
64

3
75

K½ � ¼ 1;500� 103
1 �1 0

�1 2:5 �1:5

0 �1:5 3:5

2
64

3
75

a0 ¼ 2
x1x2

x1 þ x2

� �
ð0:05Þ ¼ 2

11:8� 29:27
ð11:8þ 29:27Þ

� �
ð0:05Þ ¼ 0:841

a1 ¼ 2n
x1 þ x2

¼ 2� 0:05
ð11:8þ 29:27Þ ¼ 0:0024

½C� ¼ a0M þ a1

½C� ¼ ð0:841� 3;500Þ
1 0 0

0 1 0

0 0 1

2
64

3
75þ 0:0024� 1;500� 103

1 �1 0

�1 2:5 �1:5

0 �1:5 3:5

2
64

3
75

¼
6543:5 �3600 0

�3600 11943:5 �5400

0 �5400 15543:5

2
64

3
75Ns/m

To find the damping ratio in the third mode:

nn ¼
a0
2

1
xn

þ a1
2
xn

n3 ¼
a0
2

1
x3

þ a1
2
x3

n3 ¼
0:841
2

1
44:778

� �
þ 0:0024

2
� 44:778 ¼ 6:31 %

As the damping ratios in all the modes are almost equal, all the three modes shall
be considered for the analysis.

4.3 Caughey Damping

If you wish to specify the damping ratios in more than two modes, then consider the
general for of the classified damping. Let the natural frequencies and mode shapes
satisfy the following relationship:
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Kur ¼ x2
rMur ð4:12Þ

Pre-multiplying Eq. (4.12) on both sides, we get the following:

uT
n ½KM�1K�ur ¼ x2

ru
T
n ½KM�1MK�ur ¼ 0 for n 6¼ r due to orthogonality ð4:13Þ

Further, pre-multiplying Eq. (4.12) on both sides, we get the following:

uT
n ½ðKM�1Þ2K�ur ¼ x2

ru
T
n ½KM�1KM�1M�ur

¼ x2
r ½KM�1K�ur ¼ 0 for n 6¼ r

ð4:14Þ

By repeated application of this procedure, a family of orthogonality relations can
be obtained. This can be expressed in a compact form, as given below:

uT
n C‘ ur ¼ 0 for n 6¼ r

C‘ ¼ ½KM�1�‘K for ‘ ¼ 0; 1; 2; . . .1
ð4:15Þ

Now, pre-multiplying and rewriting the above equation as follows:

C‘ ¼ M�1M ½K M�1�‘ K for ‘ ¼ 0; 1; 2; 3; . . .1
¼ M½M�1K� ½M�1K�. . .K
¼ M ½M�1K�‘ for ‘ ¼ 0; 1; 2; 3. . .1

ð4:16Þ

Alternatively, pre-multiplying Eq. (4.12) we get the following:

uT
nM K�1K ur ¼ x2

r u
T
n ½MK�1�M ur ð4:17Þ

By following the same procedure as discussed above, we get the following:

C‘ ¼ M ½M�1K�‘ for ‘ ¼ �1;�2;�3; . . .�1 ð4:18Þ

Combining Eqs. (4.16) and (4.18), we get the following:

C‘ ¼ M
X1
‘¼�1

a‘ ½M�1K�‘ ð4:19Þ
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It can be shown that in the above equation, N terms in the infinite series will be
independent. This shall lead to a general form of a classical damping matrix, which
is given by

C‘ ¼ M
XN�1

‘¼0

a‘ ½M�1K�‘ ð4:20Þ

where N is the number of degrees of freedom and al are constants. First three terms
in the series are given by

a0 M ½M�1K�0 ¼ a0 M

a1 M ½M�1K�1 ¼ a1 K

a2 M ½M�1K�2 ¼ a2 KM
�1K

ð4:21Þ

It can be seen that thefirst two terms in the series are same as theRayleigh damping.
Suppose, if one wishes to specify the damping ratios for J modes of the N degrees-
of-freedom system, then J terms need to be included in theCaughey series. They could
be any J of the N terms of Eq. (4.20). Typically, first J terms included will be

C ¼ M
XJ�1

‘¼0

a‘ ½M�1K�‘ ð4:22Þ

For nth mode, generalized damping is given by

Cn ¼ uT
nCun ¼

XN�1

‘¼0

uT
nC‘un

C‘ ¼ M½M�1K�‘
For ‘ ¼ 0 : uT

nC0un ¼ uT
n ða0MÞun ¼ a0Mn

For ‘ ¼ 1 : uT
nC1un ¼ uT

n ða1KÞun ¼ a1x
2
nMn

For ‘ ¼ 2 : uT
nC2un ¼ uT

n ða2KM�1KÞun

¼ a2x
2
nu

T
nKun ¼ a2x

2
n x2

nMn
	 
 ¼ a2x

4
nMn

ð4:23Þ

Hence, we get the following:

Cn ¼
XN�1

‘¼0

a‘x
ð2‘�1Þ
n Mn ð4:24Þ
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Damping ratio is given by:

nn ¼
Cn

2Mnxn

nn ¼
1
2

XN�1

‘¼0

a‘x
ð2‘�1Þ
n

ð4:25Þ

Coefficients, al can be determined from the damping ratios specified in any
J modes, by solving J algebraic equations of Eq. (4.25), for unknowns of a = 0, 1,
…, J − 1. With al determined, damping matrix [Cn] is known from Eq. (4.24) and
the damping ratios are given by Eq. (4.25).

4.3.1 Critical Problems Associated with Caughey Damping

• The algebraic equations of Eq. (4.25) are numerically ill-conditioned because
the coefficients (x�1

n ;xn;x3
n; . . . can differ by orders of high magnitude.

• If more than two terms are included in the Caughey series, [C] becomes a full
matrix, although [K] is banded and lumped mass matrix is diagonal. This will
increase the computational cost for analyzing large systems.

Hence, Rayleigh damping is preferred and assumed in most of the practical
cases.

4.3.2 Example Problem

Let us consider the spring-mass system shown in Fig. 4.4. Let m be 3,500 kg and
k be 1,500 kN/m. Evaluate classical damping matrix for all the three modes for
damping ratio of 5 %.

Solution
By following any standard procedure explained in the previous chapters, one can
readily determine all the frequencies and their corresponding mode shapes.

The computed values are given below.

x1 ¼ 0:57
ffiffiffiffiffiffiffi
k
m

� �q
01:414

ffiffiffiffiffiffiffi
k
m

� �q
2:163

ffiffiffiffiffiffiffi
k
m

� �qh i

After substituting for the values of mass and stiffness, we get the following:

x½ � ¼ 11:8 rad/s 29:27 rad/s 44:778 rad/s½ �:
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The corresponding mode shapes are as given below:

U½ � ¼
1 1 1
0:68 �1 �3:68
0:32 1 4:68

2
4

3
5

Caughey series for 3 degrees of freedom is given by

C ¼ a0M þ a1K þ a2KM�1K

nn ¼
1
2

X2
‘¼0

a‘x
ð2‘�1Þ
n

nn ¼
a0
2

1
xn

� �
þ a1xn

2
þ a2x3

n

2

2nn ¼
a0
xn

þ a1xn þ a2x3
n

2

0:05

0:05

0:05

8><
>:

9>=
>; ¼

1=11:48 11:8 11:83

1=29:27 29:27 29:273

1=44:778 44:78 44:7783

2
64

3
75

a0
a1
a2

8><
>:

9>=
>;

Determine a0, a1, and a2 and then obtain [C] using Eq. (4.24).

Fig. 4.4 Example problem
4.3.2
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4.4 Classical Damping Matrix by Damping Matrix
Superpositioning

We know that the damping matrixis given by the following equation:

uTcu ¼ C

Cn ¼ nnð2MnxnÞ
c ¼ uT

	 
�1
Cu�1

ð4:26Þ

Determining [Cn] using the above equation is inefficient because it requires
inversion of two matrices of order N. Hence alternatively, using the orthogonality
principle, we get the following:

uTmu ¼ M

It can be shown that

u�1 ¼ M�1uTm

ðuTÞ�1 ¼ muM�1
ð4:27Þ

From the Eq. (4.27), the required inverse matrices can be readily obtained
because M is a diagonal matrix of generalized modal mass Mn; hence, M

−1 is easily
computed as all the diagonal elements are (1/Mn). Further, [K] is a symmetric
matrix and this property can be advantageous to perform the required operation.
Substituting Eq. (4.27) in Eq. (4.26), we get the following:

c ¼ ½muM�1�C½M�1uTm� ð4:28Þ

Since [M] and [C] are diagonal matrices, Eq. (4.28) can be rewritten as follows:

c ¼ m
XN
n¼1

2nnxn

Mn
unu

T
n

" #
m ð4:29Þ

nth term in the above summation is the contribution of the nth mode to the damping
matrix [C], with its damping ratio nn. If this term in not included, then [C] will
imply zero damping ratio in the nth mode.

166 4 Damping in Offshore Structures



4.4.1 Critical Issues

• It is practical to include any first J modes even though N degrees of freedom
exist.

• Lack of damping in modes (J + 1) to N does not create any numerical problems
in an unconditionally stable time-stepping procedure is chosen to integrate the
equation of motion.

4.4.2 Example Problem

Let us consider the spring-mass system shown in Fig. 4.5. Let m be 3,500 kg and
k be 1,500 kN/m. Determine damping matrix by superimposing the damping
matrices for first two modes, each with 5 % damping ratio.

Solution
By following any standard procedure explained in the previous chapters, one can
readily determine all the frequencies and their corresponding mode shapes.

The computed values are given below.

x1 ¼ 0:57
ffiffiffiffiffiffiffi
k
m

� �q
01:414

ffiffiffiffiffiffiffi
k
m

� �q
2:163

ffiffiffiffiffiffiffi
k
m

� �qh i

After substituting for the values of mass and stiffness, we get the following:

x½ � ¼ 11:8 rad/s 29:27 rad/s 44:778 rad/s½ �:

Fig. 4.5 Example problem
4.4.2
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The corresponding mode shapes are as given below:

U½ � ¼
1 1 1

0:68 �1 �3:68
0:32 1 4:68

2
4

3
5

The damping matrix is given by Eq. (4.29). Individual term of the matrix is now
determined as below:

c1 ¼ 2ð0:05Þð11:8Þ
1:0

mu1u
T
1m

¼ 2ð0:05Þð11:8Þ
1:0

ð3;500Þ
1 0 0

0 1 0

0 0 1

2
64

3
75

1

0:68

0:32

8><
>:

9>=
>; 1 0:68 0:32½ �ð3;500Þ

1 0 0

0 1 0

0 0 1

2
64

3
75

c1 ¼ 106
14:46 9:83 4:63

9:83 6:68 3:15

4:63 3:15 1:48

2
64

3
75 ð4:30Þ

Similarly, for the second mode, we get the following:

c1 ¼ 2ð0:05Þð29:27Þ
1:0

mu2u
T
2m

¼ 2ð0:05Þð29:27Þ
1:0

ð3;500Þ
1 0 0

0 1 0

0 0 1

2
64

3
75

1

�1

0� 1

8><
>:

9>=
>; 1 �1 �1½ �ð3;500Þ

1 0 0

0 1 0

0 0 1

2
64

3
75

c1 ¼ 35:86� 106
1 �1 �1

�1 1 1

�1 1 1

2
64

3
75 ð4:31Þ

Now, the total damping matrix, after superpositioning two modes, is given by

C ¼ C1 þ C2

½C� ¼ 106
50:32 �26:03 �31:23

�26:03 42:54 39:01

�31:23 39:01 37:34

2
64

3
75 ð4:32Þ

Please note that the [C], as computed from the above method, implies that there
is no damping in the third mode, as only first two modes are considered.
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4.5 Evaluation of Damping from Experimental Results

Free vibration experiment is carried out to determine the natural frequency and
damping coefficient of the setup. Establishing the natural frequency and damping of
the system is one of the important steps in the experiments and will help to
determine the dynamic characteristics of the system. For heave free vibration, a
weight approximately 7 kg is placed carefully at CG location of the TLP model.
The weight is removed quickly, and the resulting motions are recorded using
accelerometers. A typical time history curve of the free vibration in heave direction
is shown in Fig. 4.6. A small nudge is given to the TLP model in the surge
direction, and the resulting motion is recorded. A time history plot of the free
vibration in terms of surge acceleration is shown in Fig. 4.7. The black line in the
figure is a 17-point moving average that depicts the variation of the surge accel-
eration without the high-frequency motions, making the overall surge variation and
specifically the time period easier to identify.

Fig. 4.6 Free vibration experiment—heave acceleration of model with perforated column

Fig. 4.7 Free vibration experiment—surge acceleration of model with perforated column
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Based on the results of free vibration tests carried out on the scaled model,
natural period and damping coefficient in heave and surge mode are obtained from
the time series shown in the above figures. Logarithmic decrement method is used
to determine the damping coefficient. Results obtained are shown in Table 4.1 for
the TLP with and without perforated columns. TLP with perforated columns shows
higher damping coefficient and higher time period in comparison with that without
perforated columns.

Exercise

1. What are the basic types of damping?
2. Explain Coulomb damping?
3. Explain viscous damping?
4. Structural Damping for steel is in the range of ______________________ and

for that of concrete is _____________________.
5. Rayleigh damping can be mathematically represented as _________________.
6. _____________________ is proposed for offshore structures.
7. If more than ____________ are included in the Caughey series, [C] becomes a

full matrix.
8. Free vibration experiment is carried out to determine the __________________

and _________________ of the setup.
9. ______________________ method is used to determine the damping

coefficient.
10. TLP with perforated columns shows ____________________ and

____________________in comparison to that without perforated columns.

Answers

1. The basic types of damping are as follows: (i) coulomb damping and
(ii) viscous damping

2. Coulomb damping results from sliding of two surfaces; it is also called dry
damping or friction damping. The damping force is the product of the normal

Table 4.1 Results of free vibration experiment

Description TLP without perforated column TLP with perforated column

Heave damped time period 0.17 0.18

Surge damped time period 4.68 5.61

Heave damping coefficient 0.014 0.02

Surge damping coefficient 0.148 0.251
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force and the coefficient of friction between the body surface and the plane of
motion. Note that the damping force in this case is independent of velocity of
motion of the body which is under vibration.

3. Viscous damping, the damping force accounts for the viscosity of the system.
The presence of fluid medium around the body significantly influences the
damping force acting on the body. Damping force will be proportional to the
magnitude of the velocity and has the unit of N/(m s). Viscous damping seems
to be more relevant to offshore structural systems due to the inherent presence
of liquid medium around the body.

4. 0.2–0.5 % and 0.5–1.5 %.
5. C = a0 M + a1K
6. Rayleigh damping
7. Two terms.
8. Natural frequency and damping coefficient
9. Logarithmic decrement

10. Higher damping coefficient and higher time period
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Chapter 5
Hydrodynamic Response of Perforated
Offshore Members

Abstract This chapter deals with hydrodynamic response of perforated cylinders
under regular waves through computational fluid dynamics (CFD). The chapter
deals with a brief introduction of fluid–structure interaction (FSI) and wave–
structure interaction. Variations in water particle kinematics along the depth when
encountered by perforated members are discussed in detail as they find a lot of
recent applications in the retrofitting and rehabilitation of offshore structural
members.

Keywords Hydrodynamic response � Experimental studies � Perforated
cylinders � Wave–structure interaction � Water particle kinematics � Retrofitting �
Rehabilitation � Offshore structures � Tension leg platforms

5.1 Fluid–Structure Interaction

Fluid–structure interaction (FSI) plays an important role for structures placed in the
path of flowing fluid. The presence of structure alters fluid flow field in its vicinity.
Degree of compliance offered by the structure adds further complexity due to the
reaction it offers to the excited force. Even though structures remain flexible (e.g.,
TLP) in certain degrees of freedom, dynamics becomes important. It is not their
deformation capacity that is looked upon in this context. FSI becomes more
important when the flow is steady flow, may be in the form of current or a vertical
shear. But in real sea state, structures experience large oscillating forces in the flow
direction. When structures are placed in the flowing fluid, the flow pattern is altered.
Restraints are developed in the fluid medium to maintain the position of the
structure. Forces acting on the structures in fluid medium shall be classified as drag
(acting in-line with the direction of flow) and lift (transverse to the direction of
flow). Further, drag force can be classified as higher and smaller frequency com-
ponents. These components will be functions of the geometry of the structure and
flow conditions. Lift forces contain oscillatory components with multiple
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frequencies. On the downstream side, flow will return to its unaltered condition.
This is due to fluid viscosity and damping. The region of altered flow directly
behind the structure is called wake region. In the wake regions, there will be one-to-
one relationship between the extent of wake region and restraint loads. This implies
that in the wake region, frequency content is determinant and is same as that of the
restraint loads, which enables the determination of FSI in a closed form.

The data shown in Table 5.1 represent the case for cylinder whose axis is normal
to the flow direction. Flow is without turbulence and boundary effects.

5.2 Vertical Cylinders in Uniform Flow

Vertical cylinders experience loading from the flowing fluid, and the FSI will be
defined by Reynolds number for cylinders that are infinitely long, smooth, and
fixed. Cylinder roughness and fluid turbulence reduce boundary value on either side
of supercritical region. If the length of the cylinder is finite, this will introduce 3D
aspect to the flow. Ends of cylinder will affect drag and lift coefficients; they are
also dependent on the location of the cylinder. Vortex shedding pattern will also be
affected (Table 5.2).

5.3 Flow in Deep Waters

In deep waters, flow is not uniform with depth and results in positive shear.
Velocity will be greater than that near the surface. When vertical cylinder is in shear
flow condition, 3D flow regime will occur. Under positive shear, wake region

Table 5.1 Flow regimes in uniform flow

Flow region Re range Flow condition Forces on cylinder

Laminar 0–40 No separation of flow Drag forces occurring in the
direction of flow

Subcritical 40–5E05 Broken stream lines Lift forces depend on Strouhal
number

Steady drag force + smaller
oscillating drag forces at double the
frequency of lift force

Supercritical 5E05–7E05 III-defined vortices Drag forces decrease rapidly

Lift and drag forces will be seen at
higher frequencies

Transcritical >7E05 Vortices will be
persistent

Similar to subcritical range

Turbulent flow due
to randomness in
fluid viscosity
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experiences vertical upward flow. Variation in stagnation pressure causes down-
ward flow along the length. The flow is sheared from upstream to downstream.
There is downward flow on the U/S side and upward flow on the D/S side, as shown
in Fig. 5.1.

The shear flow effect reduces the pressure coefficient at the top of the cylinder
and increases the coefficient at the bottom. The pressure coefficient also changes
with the strength of shear. In uniform flow, vertical cylinder will show vortices at
the same frequency over its entire length, whereas in shear flow, frequency changes
continuously.

Table 5.2 Reduced velocity range

Flow
region

Reduced
velocity

Vortex shedding Types of vibration caused

I 1.7–2.3 Symmetric
shedding

In-line oscillation only

II 2.8–3.2 Alternate
shedding of
vortices

Predominantly in-line vibrations

Some transverse vibrations are also seen

III 4.5–8.0 Alternate
shedding of
vortices

Predominantly transverse vibration

In-line vibrations are seen at frequency twice as
that of the transverse vibration

This is called figure eight motion

Source Humphries and Walker (1987)
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Fig. 5.1 Flow in deep waters
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5.4 Horizontal Cylinder in Uniform Flow

Examples of horizontal cylinders are subsea pipelines, members of floating break
waters, pontoons, etc. These members will be influenced by current and waves.
Under uniform flow field, horizontal cylinder will generate waves near upper
boundary (free surface). Wave resistance depends upon Froude number.

Froude number Fr ¼ U2= 2gy1ð Þ

Y1 is the depth of immersion, measured from the axis of the cylinder to free surface.
When Y1 ≫ radius, maximum wave resistance will occur, and minimum will occur
when Fr < 0.375. Boundary effects and end effects of the cylinder introduce 3D
effect in the flow past the cylinder of finite length. The major difference between
horizontal and vertical cylinder is the appearance of lift force. When horizontal
cylinder is located near boundary, flow will become unsymmetrical. Lift force will
become a function of cylinder diameter and distance to the boundary. Horizontal
cylinders will also be subjected to flow-induced vibrations.

5.5 Horizontal Cylinder in Shear Flow

Under shear flow, velocity variation across the face of the structure will be sig-
nificant. Ratio of turbulence to velocity variation across horizontal cylinder is
higher than that of a vertical cylinder. For increase in shear parameter, Strouhal
number increases because of increase in vortex shedding frequency. With a fixed
horizontal cylinder, load at a given velocity for a positive shear is more than that of
uniform flow. At free surface, vertical load in both positive and negative shear
increases significantly in comparison with uniform flow. Dynamic vertical loads on
the cylinder at mid-depth under positive and negative shear contain higher energy at
high frequencies. Near the surface, there is significant reduction. Horizontal cyl-
inder at free surface suppresses eddy shedding and wake formation. Steady com-
ponent of vertical load increases significantly for horizontal cylinder at free surface.

5.6 Blockage Factor

Closely spaced members, connected in different orientations, cause distortion in the
fluid field around them. For closely spaced members, the structure becomes dense.
For dense structures, flow field slows down as it travels through the structure. This
causes blockage effect and complicates the actual velocity field around the struc-
ture. Load on the structure increases due to this blockage. Drag force is summed for
each member in the dense structure. In case of group of vertical cylinders present in
the flow field, blockage factor CBF = 0.25 S/D (for 0 < S/D < 4.0) = 1.0 for
S/D = 4.0, where S is c/c distance of the cylinder and D is diameter.
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5.7 Wave–Structure Interaction (WSI)

When waves past cylinder, it causes oscillating in-line force on the cylinder. In
addition, free surface also changes in case of a submerged cylinder. Large structures
placed in wave field alter incident waves in its vicinity. If the dimension of the
structure is large compared to the wave length, flow remains attached to the
structure. When waves pass a cylinder, it causes oscillating in-line force on the
cylinder. In addition, free surface also changes in case of a submerged cylinder.
Several procedures can be used to explain the potential function generated in the
vicinity, knowing the incident wave potential. Flow around the structure is assumed
to remain attached. Separation is neglected and the fluid is assumed to be incom-
pressible and irrotational, and structure is assumed to be rigid. Wave amplitude is
assumed to be small. Fluid flow in the neighborhood is described by velocity
potential. Velocity potential under linear theory is given by:

U ¼ u eð�ixtÞ ð5:1Þ

where φ is spatial part of total velocity potential and ω is incident wave frequency.
Total potential is the sum of potential of incident wave component and potential of
scattered wave component. Scattered wave component is normally represented by
continuous distribution of waves. It is assumed as superposition of numerous
waves. Boundary value problem, defined in terms of Laplace partial differential
equations, is transformed into original partial differential equations, in potential
theory. Boundary condition includes ocean floor, free surface, submerged surface of
the structure, and radiation condition, as flow approaches infinity.

5.8 Perforated Cylinders

5.8.1 Wave Forces on Perforated Members

Several analytical studies are reported in the literature highlighting the wave forces
on porous bodies. Wang and Ren (1994) are one of the earliest to study wave
interaction with a concentric surface-piercing porous outer cylinder protecting an
impermeable inner cylinder. Free-surface elevation, net hydrodynamic forces, and
wave-induced overturning moments on both cylinders are examined. Based on the
analytical investigations carried out, it is seen that inner cylinder experienced more
forces from long-period waves in comparison with that from short-period waves with
decrease in annular spacing between the outer perforated cylinder and inner cylinder.
Results showed that the existence of exterior porous cylinder reduces hydrodynamic
force on the inner cylinder. Cylindrical breakwater is porous in the vicinity of the free
surface and impermeable at some distance below the free surface; significant
reduction is reported in wave field and hydrodynamic forces experienced by the inner
cylinder (William and Li 1998). Interaction of waves with arrays of bottom-mounted,
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surface-piercing circular cylinders is investigated through numerical studies
(Williams and Li 2000). It is shown that the porosity of the structure results in a
significant reduction in both the hydrodynamic loads experienced by the cylinders
and the associated wave run-up. William et al. (2000) investigated the interaction of
waves and free-floating circular cylinder with porous side walls. The porous region is
bounded on top and bottom by impermeable end caps, which resulted in an enclosed
fluid region within the structure. It is found that the permeability, size, and location of
the porous region have a significant influence on the horizontal component of the
hydrodynamic excitation and reaction loads, while their influence on the vertical
components is relatively minor. Neelamani et al. (2002) carried out experimental
investigations of seawater intake structure consisting of a perforated square caisson
encircling a vertical suction through physical model studies. They found that the ratio
of force on perforated caisson to the force on caisson with 10% porosity is reduced to
a maximum of 60 % with increase in the porosity of the caisson from 1.6 to 16.9 %.
This ratio is found to increase with the increase in relative wave height and decrease
with increase in relative width. Neelamani and Muni (2002) examined wave forces
on a vertical cylinder protected by vertical and inclined perforated barriers;
numerical studies showed that there is a significant reduction in forces on the vertical
cylinder due to perforated barriers.

Song and Tao (2007) studied 3D short-crested wave interaction with a con-
centric porous cylindrical structure. It is recommended that porous effect should be
chosen lesser than 2 in order to provide meaningful protection to the interior
cylinder from the wave impact. Vijayalakshmi et al. (2008) carried out experimental
investigations on perforated circular cylinder encircling an impermeable cylinder at
a constant water depth for regular and random waves. Porosity of the outer cylinder
is varied from 4.54 to 19.15 % to study its influence on variations in wave forces in
the vicinity of the chosen twin-cylinder system. Numerical method is developed on
the basis of the application of boundary integral equation on a porous body with
appropriate boundary conditions; porosity is modeled using the resistance coeffi-
cient and added mass coefficient for regular waves. It is seen that the resistance
coefficient increased with the increase in porosity and wave height except for a
porosity of 4.54 %; added mass coefficient is almost negligible. Based on the
experimental results, porosity of 10–15 % is recommended to have significant effect
on force reduction. Sankarbabu et al. (2007) investigated the influence of hydro-
dynamic wave forces on a group of cylinders, wave run-up, and free-surface ele-
vation in their vicinity. Results showed that the forces on inner cylinders are
reduced in the presence of an outer porous cylinder when compared to that of the
direct wave impact. Sankarbabu et al. (2007) investigated the hydrodynamic per-
formance of a dual cylindrical caisson breakwater (DCBW) that is formed by a row
of caissons; these caissons consist of porous outer cylinder circumscribing an
impermeable inner cylinder. Based on the analytical studies carried out, it is seen
that an optimum ratio of radius of inner cylinder to the outer exists as 0.5 for a
satisfactory hydrodynamic performance of the DCBW; it shows improved stability
and wave transformation in its vicinity. Further, they concluded that the influence of
porosity on the variation of forces, run-up on the caissons, and the surface elevation
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in the vicinity of the DCBW are found to be significant up to a value of 1.0; any
further increase in this value results in lesser variation of the above parameters.
Zhao et al. (2009) studied the interaction of waves and a porous cylinder with an
inner horizontal porous plate; effects of porosity and position of the inner plate are
investigated. It is shown that increase in porosity reduces wave exciting forces and
efficiency of wave dissipation; inner plate eliminates the sloshing mode in surge and
pitch degrees of freedom. The arrangement is recommended for effective wave
energy dissipation when located at still water surface.

5.8.2 Wave Forces on Offshore Structures with Perforated
Members

Ker and Lee (2002) examined the coupling problems associated with wave–structure
interaction (WSI) of linear waves and porous tension leg platform (TLP),
analytically. They found that the drag force in the porous body changes the response
behavior of TLP significantly; at resonance frequencies, this change is significant.
They also found that for long-period waves, porous TLP remains relatively trans-
parent and is similar to that of an impermeable one, while it dissipates most of the
wave energy for short-period waves. Zhong and Wang (2006) carried out analytical
studies on solitary waves interacting with surface-piercing concentric porous cyl-
inders. It was found that the hydrodynamic forces on inner cylinder increase and that
of the exterior cylinder decrease with the decrease in the annular spacing. Forces on a
single porous cylinder are reduced significantly in comparison with that of an
impermeable cylinder of the same diameter. Further, it is also shown that for larger
porosity of the outer cylinder, larger hydrodynamic forces are encountered on the
inner cylinder and lesser on the outer cylinder. Existence of exterior porous cylinder
reduces hydrodynamic force on the interior cylinder. Vijayalakshmi et al. (2007)
verified this fact through experimental investigations by measuring wave forces and
run-up on the twin, concentric perforated cylinders; results are compared with those
predicted by the boundary integral method and found satisfactory. Porous effects on
thin permeable plates are well quantified by Li et al. (2006); predicted values of
porous effects of reflection and transmission coefficients that are estimated using
analytical model are validated with experimental results. Jayalekshmi et al. (2010)
investigated the dynamic response of a TLP under random waves and the effect of
riser dynamics on platform behavior; an in-house finite element code is developed by
the authors to perform the analysis. A random sea state is generated using the PM
spectrum. Water particle kinematics is calculated using Airy’s linear wave theory,
and the load is evaluated using the relative form of the Morrison equation; variable
submergence and current forces are also taken into account.

Adrezin et al. (1996) carried out dynamic analysis of complaint offshore struc-
tures and reiterated the fact that coupled motion analysis induces significant
response in all active degrees of freedom of TLP under linear waves. Kim et al.
(2007) discussed various nonlinearities associated with the analysis of TLPs under
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regular waves; the effect of these nonlinearities on the dynamic response and
various strategies to solve the equation of motion for the fully coupled dynamic
analysis are discussed in detail (Chakrabarti 1984, 1987, 1994). Zeng et al. (2007)
conducted parametric studies of TLPs with large amplitude motion. Dynamic
response predicted by linear and nonlinear models are compared; they showed that
the nonlinear responses of TLP, considering the effects induced by large amplitude
motions, differ from that of the linear model, significantly. Two different approa-
ches for response calculations are compared with wave approach angle as one of the
primary factors in the parametric study. Kurian et al. (2008) conducted parametric
studies on TLPs under random waves. Authors used PM spectrum, Airy wave
theory, relative form of Morrison equation, and Newmark-Beta time integration
scheme to obtain the response in time domain. Mass, damping and stiffness
matrices that are required to calculate the response are derived from the literature
(Chandrasekaran and Jain 2002; Chandrasekaran et al. 2004). Although coefficients
used in the process of determining response are on the basis of recommendations
made by other authors, both numerical and experimental investigations carried out
by the authors are considered valid due to a close comparison of the same. Studies
are also carried out by researchers to illustrate the influence of wave approach angle
on the response of TLP in regular sea (Chandrasekaran et al. 2007; Kim et al. 2007).
Numerical studies carried out on triangular TLP under a variety of wave approach
angles showed that nonlinear Stokes’s fifth-order wave theory is well suited for
deep-sea structures such as TLPs to estimate dynamic response. Significance of
other nonlinearities caused by change in tether tension and variable submergence
effect is on the dynamic response of TLPs are also highlighted in the studies.
Experimental studies carried out on the response analysis of TLPs showed the scale
effect on the response quantities; variations between the analytical and experimental
results are attributed to the boundary effect on the scaled model during experiments
(Joseph et al. 2004).

5.8.3 Critical Review

A detailed review of the literature on wave interaction on porous cylinders is
presented. Influence of porous region on the forces experienced by inner cylinder in
the presence of perforated outer cover is highlighted. Both experimental and ana-
lytical studies carried out by various researchers show a common agreement of
significant force reduction on the inner cylinder with perforated outer cover. Several
studies highlighting the dynamic response of offshore TLPs under regular and
random waves are also discussed; various nonlinearities associated with the
response behavior of TLPs under waves are presented. Few experimental investi-
gations carried out on dynamic response of TLP with perforated members are also
discussed. It is seen from the above review that experimental investigations on
dynamic response of TLPs with perforated outer cover are scarce in the literature;
hence, the current research study justifies the defined objectives.
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5.9 Experimental Investigations on Perforated Cylinders

Perforated cylindrical structures reduce WSI and scouring problems considerably.
Existence of exterior porous cylinder reduces the hydrodynamic forces on inner
cylinder caused by the direct wave impact. It is seen from the literature that for
reduced annular spacing, long waves impose larger forces on the inner cylinder than
the short waves. Based on the experimental investigations carried out, researchers
recommended porosity of about 10–15 % beyond no appreciable reduction in
hydrodynamic response is seen. Preliminary experimental investigations are carried
out to study the hydrodynamic response of perforated cylinders in regular waves.
Variations of forces due to regular waves in a cylinder, with and without perforated
cover, are measured. Experimental setup for the study is shown in Fig. 5.2. To
evaluate the influence of porosity and diameter of perforations, three scaled models
comprising outer cylinder of 315 mm diameter and inner impermeable cylinder of
110 mm in diameter are fabricated with uniform annular space. Steel frames are
used for clamping the inner cylinder and the outer cylinder in the wave flume;
model is suspended with a clear gap of about 50 mm above the seafloor, ensuring a
cantilever action. Strain gauges are placed along the inner cylinder to determine the
forces. Regular waves of height ranging from 5 to 25 cm for time periods of 1–2 s
are generated for the tests.

Fig. 5.2 Experimental setup to study response on perforated cylinder
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Details of the inner and outer cylinders used for the study are given in Table 5.3.
Diameter of perforations and length of perforations are varied to achieve different
porosity ratios. Perforation ratios are in compliance with the Indian Standard Code of
Practice IS 4985:2000. Figure 5.3 shows the inner and outer cylinders with different
perforations; details of strain gauges affixed on the inner cylinder can also be seen.

Inner cylinder is fixed at one end, and the other end is set free to enable the
cylinder to behave similar to that of cantilever beam. Known bending stresses are
created by applying point load at a constant distance of 50 mm from the free end.
Bending strain in the inner cylinder, with and without perforated outer cylinders, is
measured during the passage of regular waves. Regular waves with wave heights
5–25 cm in the intervals of 5 cm and wave periods of 1–2 s in the intervals of 0.2 s
are considered in the study. Bending strains are post-processed to determine
hydrodynamic forces on the inner cylinder; their variations along its length are also
studied. Maximum values of hydrodynamic forces computed on the inner cylinder
encompassed by outer cylinders with different porosity are measured; a typical

Table 5.3 Geometric details of cylinders considered for the study

Description Inner cylinder Outer cylinder

A B C

Diameter (mm) 110 315 315 315

Thickness (mm) 4.4 8.7 8.7 8.7

Perforation diameter (mm) – 10 15 20

Length of the cylinder (mm) 1,900 1,930 1,930 1,930

Length of perforations (mm) – 1,450 1,050 1,050

No. of perforations along length – 41 26 24

No. of perforations along circumference – 28 24 24

Porosity (%) – 6.3 10.6 16

Fig. 5.3 Perforated cylinders
considered for the study:
a inner cylinder; b outer
cylinder (A); c outer cylinder
(B); and d outer cylinder (C)
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value for 25 cm wave height is given in Table 5.4. It can be seen that force reduction
decreases with increase in porosity as the inner cylinder shall be exposed to more
hydrodynamic load due to increased porosity. Further, force on the inner cylinder
decreases significantly for short-period waves compared to long-period waves.

Figures 5.4 and 5.5 show the force variation in inner cylinder, encompassed with
outer cylinders with different porosities; the plots are drawn for different wave
heights varying from 5 to 25 cm, respectively. Wave periods are selected appro-
priately with respect to the cylinder diameter so that the model remains in Morison
regime. It is seen from the figures that force variation in the inner cylinder is
nonlinear; decrease in wave force is not proportional to increase in time period and
wave height as well.

The model investigated is built to a scale of 1:140, and the force reduction cor-
responding to the prototype cylinders with different porosities is shown in Table 5.5.

Based on the experiments conducted, it is seen that hydrodynamic forces on the
inner cylinder decrease with the decrease in porosity. This reduction in the forces is
significant for short-period waves when compared to long-period waves; variation

Table 5.4 Hydrodynamic
forces for 25 cm wave
height (N)

Wave period (s) Inner cylinder Outer cylinder

A B C

1.2 24.77 5.80 9.07 12.53

1.4 20.17 5.26 7.69 9.67

1.6 17.19 4.05 6.05 8.83

1.8 16.84 4.00 7.42 9.51

2.0 15.29 4.93 6.22 9.19
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is nonlinear and is not proportional to either the increase in wave height or wave
period. The size of perforations and porosity influences hydrodynamic forces on
cylindrical members significantly. It is also seen that the maximum force reduction
is about 76 % and minimum is about 17 %. Presented study highlights the
advantages of deploying perforated cylinders as outer cover on the impermeable
inner cylinders. This has direct application of force reduction on the inner cylinders;
though the application is not desired for new design, but recommended as an
alternative method of retrofitting of offshore structures. The derived conclusions,
based on the experiments conducted, emphasize the known concept of force
reduction on inner cylinders; the study quantifies the values for different porosities
and size of perforations, which can be seen as an original contribution to the design
of offshore structures with perforated members.

Table 5.5 Force reduction in inner cylinder

S. No. Description Model (1:140) Prototype

1 Water depth (m) 1.0 140

2 Diameter (inner cylinder) 0.11 m 15.4 m

3 Force reduction (H = 25 cm; T = 1.2 s)

With outer cylinder A 18.97 N (76.59 %) 52.05 MN

With outer cylinder B 15.70 N (63.38 %) 43.08 MN

With outer cylinder C 12.24 N (59.63 %) 33.58 MN

4 Force reduction (H = 5 cm; T = 2 s)

With outer cylinder A 1.37 N (35.54 %) 4.62 MN

With outer cylinder B 0.85 N (29.02 %) 2.86 MN

With outer cylinder C 0.51 N (17.41 %) 1.72 MN

Fig. 5.5 Force variation in cylinders (WH = 25 cm)
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5.10 Experimental Investigations on Perforated TLP Model

The pilot study of the present project is focused on detailed experimental investi-
gations carried out on impermeable inner cylinder encompassed by a larger outer
cylinder with perforations along its length. By varying the porosity and diameter of
perforations, their influence on the hydrodynamic response of the cylindrical
member is examined. As an extended concept of the study, offshore TLPs with
perforated members are experimentally investigated. Offshore TLPs are hybrid
structures whose heave motion is highly damped, posing operational advantages;
however, large surge, sway, and yaw motions cause inconvenience to people on
board though the platform remains stable for operational sea state. In order to
reduce the wave impact on pontoons and cylindrical members of TLPs, perforated
cylinders shall be used as an outer cover to the members at highly stressed regions.
It is one of the practical techniques to retrofit offshore coastal and offshore struc-
tures and also to improve their structural safety. In this present experimental study,
a 1:150 scale model of a prototype TLP is fabricated with and without perforated
outer column. Dynamic response in various active degrees of freedom and tether
tension variations are studied under the regular waves of different time period and
wave heights. Details of the model are given in Table 5.6. Figure 5.6 shows the
views of the TLP model considered for the study.

Table 5.6 Details of TLP model

Description Notation Units Prototype TLP Model (1:150)

Water depth D m 450 3

Material Steel Acrylic sheet

Unit weight of the material ρ kg/m3 7,850 1,200

Side of the deck S m 70 0.47

Diameter of each leg d m 17 0.1

Draft T m 32 0.21

Total buoyancy FB kN 521,600 0.153

Self-weight of TLP + payload W kN 351,600 0.104

Fig. 5.6 Front view of TLP model: a without perforated cover; b with perforated cover
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The outer perforated column is 150 mm in diameter with a height of 180 mm.
The middle third portion of the outer column is perforated with holes of 5 mm
diameter spaced at 12-mm intervals, resulting in a porosity of 13.5 %; outer column
is connected to the inner column through a 10-mm thick ring to maintain the
required annular space. A reasonable comparison is possible through the attempted
study as the static characteristics such as mass and the center of gravity (KG) of the
model remain nearly the same irrespective of the presence of the perforated cover.
Table 5.7 shows the comparison of mass of acrylic and aluminum perforated
covers. Figure 5.7 shows the experimental setup of the current study.

Free-vibration tests are carried out to determine the natural frequency and
damping coefficient of the model. Figures 5.8 and 5.9 show the surge and heave
acceleration of the free-vibration tests of the model with perforated cover (PC);
Table 5.8 shows the results of the test. Establishing the natural frequency of the
system will help to determine the range of the wave periods.

The model was subjected to waves in the head sea direction whose time periods
are varied in the range of 0.8–2.4 s; wave heights are varied in the range of 5–9 cm.
Figures 5.10, 5.11, and 5.12 show the response of TLP model in surge and heave
degrees of freedom and tether tension variation, respectively.

Table 5.7 Comparison of mass of acrylic and aluminum perforated covers

Part Weight (kg) Weight of cover (as percentage TLP) (%)

TLP without perforated cover 9.04 –

Perforated cover (acrylic) 2.48 27.4

Perforated cover (aluminum) 0.69 7.6

Fig. 5.7 Experimental setup: a components of the model; b instrumentation
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It is seen that response of TLP is reduced in the presence of outer perforated cover.
Tether tension variation also shows significant reduction in the presence of outer
perforated cover. Hydrodynamic response on TLPs with outer perforated covers is
also investigated for different wave approach angles. Table 5.9 shows the average
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Table 5.8 Results of
free-vibration experiment Description TLP without

PC
TLP with
PC

Heave damped time period 0.17 0.18

Surge damped time period 4.68 5.61

Heave damping coefficient 0.014 0.02

Surge damping coefficient 0.148 0.251
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Fig. 5.10 Surge RAO for
7-cm wave

Fig. 5.11 Heave RAO for
7-cm wave

Fig. 5.12 Tether tension
variation for 7-cm wave

Table 5.9 Average surge
response reduction Wave period (s) Average response reduction (%)

0.80 13.35

1.20 7.07

1.60 6.78

2.00 18.01

2.40 24.84
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reduction in surge response for different wave periods; the maximum response
reduction seen is about 24 % due to the presence of outer perforated cylinders.

Presented study highlights the advantages of deploying perforated column
members for TLP as outer cover on the impermeable inner cylinders. This has direct
application of force reduction on the inner cylinders; though the application is not
desired for new design, but recommended as an alternative method of retrofitting of
offshore structures.

5.11 Numerical Studies on Perforated Cylinders

Numerical studies on perforated cylinders are carried out through simulation in
STAR-CCM+ software. An attempt is made to simulate the hydrodynamic response
of perforated cylinder with porosity 6.3 %, which is similar to that of perforated
outer cylinder, designated as A in the experimental studies. Simulation through
STAR-CCM+ software is chosen due to the numerical capabilities enabled in
different modules to simulate viscous drag and turbulence effects that are caused by
perforations. Details of the simulation, as attempted through several stages of the
numerical modeling, are discussed in steps; various settings such as mesh and
physics models used in the study and their significance are also presented.

5.11.1 Development of the Numerical Models

A model of the perforated cylinder is CATIA V5. Figure 5.13 shows the model of
the perforated outer cylinder generated in the software. Table 5.10 shows the details
of both inner and perforated outer cylinder, while Table 5.11 shows the details of
the perforations. Using ‘Pocket’ tool, perforations are created along the circum-
ference and length of the outer cylinder using ‘Circular pattern’ and ‘Rectangular
pattern’ tools, respectively. Figures 5.14 and 5.15 show images of outer perforated
cylinder and the assembly of inner with perforated outer cylinder, respectively.

Fig. 5.13 Perforated outer
cylinder
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Table 5.10 Details of cylinders

Details of cylinders Inner cylinder (mm) Outer cylinder A (mm)

Diameter 110 315

Length 1,900 1,930

Thickness 4.4 8.7

Table 5.11 Details of perforations

Details of perforations Outer cylinder A

Diameter of the perforation 10 mm

Length of perforation 1,450 mm

Number of perforations along the length 41

Number of perforations along the circumference 28

Porosity 6.3 %

Fig. 5.15 Inner cylinder with
perforated outer cylinder

Fig. 5.14 Perforations along
the circumference and length
(Chandrasekaran et al. 2014)
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Two different geometries, namely (i) inner cylinder and (ii) inner cylinder with
perforated outer cylinder, are exported from CATIA V5, and new simulations are
generated in STAR-CCM+ from the imported files. Figures 5.16 and 5.17 show the
mesh generation of inner cylinder and inner cylinder with perforated outer cover,
respectively; distribution of elements attained using the chosen volume control
makes the mesh denser in the fluid region, as can be seen from the figures.

Subsequently, ‘Generate volume mesh’ tool is used to generate the mesh;
716,801 cells and 2,167,056 faces are generated for simulation of the inner cylinder,
while 3,242,875 cells and 9,671,484 faces are generated for that of the inner cyl-
inder with perforated outer cylinder, which is a fairly dense mesh. Several physics
models are activated to simulate the wave forces on both the numerical models of
inner cylinder and inner cylinder with perforated outer cylinder. A total of
16 physics models are used in the present simulation and activated. A new first-
order wave is created under the ‘Waves’ child node of the ‘VOF Waves’ node in the
list of chosen physics models. The ‘Point on Water Level’ is set to 0.54 m for the
simulation of inner cylinder and 0.8825 m for the simulation of inner cylinder with

Fig. 5.16 Domain of inner cylinder generated with volumetric control (Chandrasekaran et al.
2014)

Fig. 5.17 Domain of inner cylinder with perforated outer cylinder generated with volumetric
control (Chandrasekaran et al. 2014)
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perforated outer cylinder; the chosen values also match the relevant values used in
the experimental investigations. Wave amplitude is set to be 0.05 m. Specification
type is set to ‘Wave period’ and numerical simulations are run for six waves for
each model, for wave periods of 1.0–2 s with an interval of 0.2 s. The ‘Volume
Fraction’ is set to composite, and the method of each of the phases, water and air, is
set to ‘Field Function.’ Boundaries in the region are set to match various types
of boundary conditions, namely (i) ‘Inlet’ boundary is set as a velocity inlet;
(ii) ‘Outlet’ boundary is set as a pressure outlet; and (iii) ‘Inner cylinder’ and ‘Outer
perforated cylinder’ are set as wall boundaries. The ‘Velocity Specification’ method
in the velocity inlet is changed to ‘Components’, and the ‘Velocity’ and ‘Volume
Fraction’ values are set identical to the experimental setup. Similarly, the ‘Volume
Fraction’ and ‘Pressure’ settings of the pressure outlet are also set accordingly. The
‘Time-Step’ property of the ‘Implicit Unsteady’ solver is set to 0.01 s. Under the
‘Stopping Criteria’, the ‘Maximum Inner Iterations’ property is set to 10, and
the ‘Maximum Physical Time’ is set to 10 s. The ‘Initialize Solution’ tool is
selected to activate the required simulation. An iso-surface with an iso-value of 0.5
and a scalar set to ‘Volume Fraction > Water’ is used to visualize the free surface.
Scalar is used to visualize both the inner cylinder and inner cylinder with perforated
outer cylinder as shown in Figs. 5.18 and 5.19, respectively.

Fig. 5.18 Simulation of inner cylinder (Chandrasekaran et al. 2014)

Fig. 5.19 Simulation of inner cylinder with perforated outer cylinder (Chandrasekaran et al. 2014)
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Both the simulated models, namely inner cylinder and inner cylinder with per-
forated outer cylinder, are subjected to unidirectional waves of 10 cm wave height.
Wave periods are varied from 1 to 2 s with 0.2 s interval; Reynolds-Averaged
Navier–Stokes equation is solved, which is assumed to be converged when the
residuals decrease by multiple orders before settling around 0.001. Figures 5.20 and
5.21 show the variation of forces on inner cylinder with and without perforated outer
cover, respectively, for wave height of 10 cm and wave periods ranging from 1 to 2 s.

Forces on inner cylinder with and without perforated outer cylinder are obtained
from the numerical simulation for 10 cm wave height and wave periods ranging
from 1 to 2 s; obtained results are shown in Tables 5.12 and 5.13 for inner cylinder
with and without perforated outer cylinder, respectively; comparison with the
results obtained from the experimental investigations is also shown.

It can be seen from the tables that forces on inner cylinder without perforated
outer cover, computed from both the numerical simulations and experimental
results, are ranging from 1.99 to 13.63 % with an average error of 7.08 %. In case of

Fig. 5.20 Force on inner cylinder (WH = 10 cm; WP = 1.6 s) in numerical simulation

Fig. 5.21 Force on inner cylinder with perforated outer cylinder in numerical simulation
(WH = 10 cm; WP = 1.6 s)
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forces computed on inner cylinder with perforated outer cylinder, errors between
numerical simulations and experimental results range from 2.51 to 11.28 %, with an
average of 7.5 %. Figure 5.22 shows the graphical comparison of the results
obtained from numerical simulation and experimental investigations. It is also seen
from the figure that both the results agree well within the acceptable error of
tolerance for the chosen range of wave periods.

Based on the experimental investigations and numerical studies carried out, it is
seen that the force estimates between both the studies are in good agreement,
validating the numerical procedure adopted in the study. Few problems associated
with the simulation are (i) high cell numbers and (ii) larger domain attempted to

Table 5.12 Forces on inner cylinder (WH = 10 cm)

Wave period (s) Numerical (N) Experimental (N) Error in %

1.0 11.06 10.11 8.59

1.2 10.2 8.81 13.63

1.4 8.45 7.69 8.99

1.6 6.84 6.65 2.78

1.8 6.52 6.39 1.99

2.0 6 5.61 6.50

Table 5.13 Forces on inner cylinder with perforated outer cylinder (WH = 10 cm)

Wave period (s) Numerical (N) Experimental (N) Error in %

1.0 4.02 3.73 −7.81

1.2 3.65 3.28 −11.28

1.4 3.106 3.03 −2.51

1.6 2.75 2.85 3.51

1.8 2.51 2.77 9.39

2.0 2.32 2.59 10.42

Fig. 5.22 Comparison of
forces on inner cylinder with
and without perforated outer
cylinder
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simulate the conditions as that of the wave flume resulted in not yielding the
velocity profile variation at the desired points along the cylinder. An attempt shall
be made to simulate the numerical model for a 2D plate with relatively smaller
domain so as to trace the variation of velocity profile along the water depth; in
addition, parametric studies such as (i) size of perforation, (ii) perforation ratio, and
(iii) location of perforation will be examined to derive the velocity profile variation
under the influence of the chosen parameters. When the train of waves hits the
cylinder, the energy get dissipated due to back and forth movement causing a partial
breaking of waves. Hence, this phenomenon acts as a good energy dissipation
technique, which is an economical approach preferred by the design engineers. The
reflection of the waves may also cause force on the outer porous cylinder. The
horizontal velocity is a function of following parameters:

V ¼ f ðq; g;D;H; a; r; dÞ ð5:2Þ

where ρ is the mass density of water, g is the acceleration due to gravity, D is the
diameter of the cylinder,H is the wave height, σ is the frequency of wave, a is the area
of perforation, and d is the water depth. The present study is done for the perforation
ratio between 10 and 15 %. Hence, the above is transformed as given below:

V ¼ f
H
L

or
H
d

or
d
l
or Ka;

a
D2 ; r

ffiffiffiffi
D
g

s !
ð5:3Þ

H/L parameter is generally used for the deep-water conditions. For clear
understanding, the sea states are represented with H/L parameters. The sea states are
grouped into three categories such as steep, medium, and low wave steepness.
H/L ranging between 0.0051 and 0.0167 is categorized as waves with low steep-
ness; H/L ranging between 0.0198 and 0.0445 is categorized as medium wave; and
H/L ranging between 0.0491 and 0.1002 is categorized as steep waves. The cylinder
is subjected to unidirectional waves of considered sea states. The horizontal
velocity variation along the depth is derived. Figures 5.23, 5.24, and 5.25 show the
horizontal velocity profile along the depth of cylinder for different sea states.

The zones of perforation are marked by a dotted line, and solid horizontal line
indicates the mean sea level (MSL) of the cylinder. Velocity variations at few
sections are plotted for discussion. For the all H/L considered, the profile of hori-
zontal velocity along the water depth is highly nonlinear in the zone of perforation.
It is also noted that there is a phase change in the velocity profile between the zones
of perforation. As we know, the water particles try to take a shorter path during the
flow; they try to escape through the nearby perforation, which leads to phase change
in the perforation zones. The velocity variation along the depth of the cylinder with
outer perforation cover is compared with the velocity profile without outer perfo-
ration cover; the plots show a significant deviation of the velocity vector with
perforated cover. Hence, the study of water particle kinematics has become very
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Fig. 5.24 Horizontal velocity variation for various percentages of perforation with wave steepness
0.0103

Fig. 5.23 Horizontal velocity variation for various percentages of perforation with wave steepness
0.0051
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important with the perforation cover. The peak also changes its phase for different
perforation ratio, which is clearly shown in the Fig. 5.26.

The variations of horizontal velocity at MSL for different perforation ratio for the
considered sea states are non-proportional. This plot confirms that the range of
perforation found optimum is between 11 and 12 % with the considered geometrical
parameters. Figure 5.26 shows the variation of horizontal velocity along the depth
of the cylinder with and without perforation for different chosen sections such as
Sects. 1-1 and 2-2, as shown in Fig. 5.27.

The plot indicates that there is significant reduction of horizontal velocity along
the wave advancing direction. From the plot, it is also seen that the horizontal
velocity which is associated directly with horizontal force increases in the region of
perforation as it is placed just beneath the free surface. It is seen that the horizontal
components of hydrodynamic characteristics are significantly influenced by the
presence of porous zone. Figures 5.28, 5.29, and 5.30 show that the reduction in the
horizontal velocity reduces with the reduction of wave steepness.

It is seen from the figures that there is no significant variation in the velocity
component between the sections for the waves with low steepness. It is also seen that
in the zone of perforation, the velocity profile is highly nonlinear. There is significant
reduction in the horizontal velocity along the wave advancing direction. Steeper
waves show higher reduction in the velocity than the waves with mild wave

Fig. 5.25 Horizontal velocity variation for various percentages of perforation with wave steepness
0.0164
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Fig. 5.26 Horizontal velocity at mean sea level for various wave steepness
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steepness. The design charts provided aids directly the design engineers to derive the
horizontal velocity for different sea states and perforation ratio for the chosen geo-
metric model. Based on the numerical studies conducted, the optimum percentage of
perforation ratio for the chosen geometric model is recommended as 11–12 %.
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0 

0.05 

0.1 

0.15 

0.2 

0.25 

0.3 

0.35 

0.4 

0.45 

0.5 

-0.1 0 0.1 0.2 0.3 0.4 0.5 

D
ep

th
 in

 c
yl

in
de

r 
 in

 m  

Horizontal Velocity (m/s) 

Section 1 - 1 

Section 2 - 2 
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Exercise

1. List and explain briefly the forces acting on the structure?
2. In the _______________________, there will be one-to-one relationship

between the extent of wake region and restraint loads.
3. Variation in ___________________ causes downward flow along the length.
4. In _________________, vertical cylinder will show vortices at the same fre-

quency over its entire length, whereas in shear flow, frequency changes
__________________.

5. Horizontal cylinders will also be subjected to ______________________
______________.

6. Explain blockage factor?
7. _______________ in porosity reduces wave exciting forces.
8. ______________________ in the porous body changes the response behavior

of TLP significantly.
9. Perforated cylindrical structures reduce ______________ and

_________________ considerably.
10. Introduction of perforated member acts as a ____________________________,

which is an economical approach. Profile of horizontal velocity along the water
depth is highly ____________________ in the zone of perforation.
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Answers

1. Forces acting on the structures in fluid medium shall be classified as drag
(acting in-line with the direction of flow) and lift (transverse to the direction of
flow). Further, drag force can be classified as higher and smaller frequency
components. These components will be functions of the geometry of the
structure and flow conditions. Lift forces contain oscillatory components with
multiple frequencies. On the downstream side, flow will return to its unaltered
condition. This is due to fluid viscosity and damping. The region of altered flow
directly behind the structure is called wake region.

2. Wake regions.
3. Stagnation pressure.
4. Uniform flow; continuously.
5. Flow-induced vibrations.
6. Closely spaced members, connected in different orientations, cause distortion in

the fluid field around them. For closely spaced members, the structure becomes
dense. For dense structures, flow field slows down as it travels through the
structure. This causes blockage effect and complicates the actual velocity field
around the structure. Load on the structure increases due to this blockage.

7. Increase.
8. Drag force.
9. Wave–structure interaction and scouring problems.

10. Good energy dissipation technique; Nonlinear.
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Chapter 6
Introduction to Stochastic Dynamics

Abstract This chapter deals with introduction to stochastic dynamics and its
application to offshore structures. This chapter introduces the basics of reliability
approach to the ultimate load design, levels of reliability, methods of reliability,
reliability estimates, and limitation. The limitations and advantages of stochastic
models are also explained. A quick preview about FOSM and advanced FOSM is
also given in this chapter. Introduction to fatigue and fracture assessment is also
provided.

Keywords Stochastic dynamics � Ultimate load � Reliability � FOSM � Advanced
FOSM � Offshore structures

6.1 Introduction

In most of the cases, offshore structures are exposed to the environmental loads that
can be modeled as a piecewise stationary process. A stationary process is one for
which the statistical properties such as mean value and standard deviation are same
for all points in time (or) position. Hence, the following equation holds good:

mx ¼ E X tð Þ½ � ¼ constant ð6:1Þ

For the condition mx = mx(t) to be satisfied, autocorrelation function is given by:

RXðsÞ ¼ E½XðtÞXðt þ sÞ� to remain function of s only ð6:2Þ

To check whether the following are independent of time:

m̂xðtÞ ¼ 1
N

XN
j¼1

xjðtÞ ð6:3Þ
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R̂xðt; t þ sÞ ¼ 1
N

XN
j¼1

xjðtÞxjðt þ sÞ ð6:4Þ

If they remain independent of time, the process is said to be a stationary process.
Stationary process is defined by satisfying the condition given in Eq. (6.1):

The auto-covariance function should be as follows:

CXðsÞ ¼ E½ðXðtÞ � mxÞðXðt þ sÞ � mxÞ� ¼ function of s only ð6:5Þ

For a stationary process, transfer between the load and the response can be
modeled as linear, time-invariant, while the system can be characterized by a
transfer function. Hence, the relationship between variance spectrum of the
response (called response spectrum) and variance spectrum of load (called load
spectrum) is determined by a transfer function.

Let F(t) denote a stochastic load process. Assuming that F(t) acts as a linear,
time-invariant system, which has an impulse response function hFX(t), for each
realization f(t) of F(t), we get the corresponding realization x(t) of the response X(t).
Hence,

xðtÞ ¼
Z1
�1

hFXðsÞ f ðt � sÞds

¼
Z1
0

hFXðsÞ f ðt � sÞds

because hFXðsÞ ¼ 0 for s\0

ð6:6Þ

Equation (6.6) establishes the connection between the realization of the load
process and the corresponding realization of the response process. This connection
can also be described as below:

XðtÞ ¼
Z1
0

hFXðsÞFðt � sÞds ð6:7Þ

The above equation interprets that there exists a relation between all the cor-
responding pairs of realization of F(t) and X(t). It is important to note that the
impulse response function or the transfer function, which determines the connection
between the load and the response, is completely defined by the properties of the
linear system. This remains independent of any given load. In the term of hFX(t),
index FX is to be understood only as the visual indicator for the connection between
F(t) and X(t). For example, if Y(t) is the response of the load process G(t), acting on
the same linear system, then hGY(t) = hFX(t).
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6.1.1 Mean Value of the Response Process

Assuming that f1(t),…, fN(t) is the sequence of realization of F(t), let x1(t),…, xN(t),
which denotes the corresponding response realization, then

1
N

XN
j¼1

xjðtÞ ¼ 1
N

XN
j¼1

Z1
0

hFXðsÞfjðt � sÞds ð6:8Þ

¼
Z1
0

hFXðsÞ
1
N

XN
j¼1

Z1
0

fjðt � sÞds
8<
:

9=
; ð6:9Þ

This leads to the following relationship:

E½XðtÞ� ¼ lim
N!1

1
N

XN
j¼1

xjðtÞ ¼
Z1
0

hFXðsÞ lim
N!1

1
N

XN
j¼1

fjðt � sÞ
( )

ds ð6:10Þ

¼
Z1
0

hFXðsÞE½Fðt � sÞ� ds ð6:11Þ

If F(t) is a stationary process, then mF = E[F(t)] is a constant. Then,

E½XðtÞ� ¼ mF

Z1
0

hFXðsÞds ð6:12Þ

It can be seen that the above equation is independent of time. Hence,

mX ¼ E X tð Þ½ � ¼ constant ð6:13Þ

Let HFXðxÞ be the transfer function that corresponds to the impulse response
function of hFX(t). Then,

HFXð0Þ ¼
Z1
0

hFXðsÞds

E½XðtÞ� ¼ mFHFXð0Þ ¼ mX

ð6:14Þ
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For the system, whose equation of motion is given by:

m€uþ c _uþ ku ¼ P0 cosðxtÞ ð6:15Þ

The transfer function for the linear system, described by the above equation of
motion, is given by HFXðxÞ. For the steady-state response of the system under the
given excitation load, the dynamic amplification factor D is given by:

D ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� b2Þ2 þ ð2nbÞ2

q ð6:16Þ

For a weakly damped system, we also know that the maximum amplification
factor is given by:

Dmax ¼ 1
2n

ð6:17Þ

For ξ = 2 %,Dmax = 25, which implies that, even small oscillating forces may lead
to large responses. For the analysis of structural response to various forcing fre-
quencies, it is therefore better to introduce a complex-valued function as given below:

HðxÞ ¼ HðxÞj je�iu

uðtÞ ¼ HðxÞj jP0 cosðxt � uÞ ð6:18Þ

In the above equation, HðxÞ gives the amplitude amplification and ϕ gives the
phase shift. For example, if HðxÞ ¼ 0:001, for a particular frequency x, then a
force amplitude of 100 N will give rise to the displacement of 0.1 m at this
frequency. The generalized expression for the steady-state response of the oscil-
lating system is given by:

upðtÞ ¼ q cosðxt � uÞ
q

xstatic
¼ q

P0=K

� � ¼ D

Hence,

upðtÞ ¼ P0

K
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� b2Þ2 þ ð2nbÞ2
q cosðxt � uÞ

ð6:19Þ

Comparing Eqs. (6.18) and (6.19), we get

HðxÞ ¼ 1
K

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� b2Þ2 þ ð2nbÞ2

q ð6:20Þ

206 6 Introduction to Stochastic Dynamics



where HðxÞ is called the transfer function or frequency response function, which
maps the response behavior of the linear system to the external forcing function. It
is seen that this function is proportional to the dynamic amplification factor. It
contains all relevant information about the dynamic amplification. Incorporating
also the information related to the phase shift, transfer function is modified as:

HðxÞ ¼ 1
K

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� b2Þ2 þ ð2nbÞ2

q e�iu ð6:21Þ

The reason, why it is easier to use e�i/, in comparison to sinϕ or cosϕ is that

d
dt
ðeiuÞ ¼ i

du
dt

ðeiuÞ; where eiu factor does not change
eiu1eiu2 ¼ eiðu1þu2Þ ¼ eiu3 ; where the product of two factors are of the same kind:

The above two properties give many advantages in the derivations. Further,
HFX(0) = (1/k) and mX = (mF/K). This means that the mean value of the response is
equal to the product of the mean value of the load and the system response to a
static load of unit size; hence, the following equation holds good:

mX ¼ HFXð0ÞmF ð6:22Þ

It is seen from the above equation that, for the excitation force with zero mean
value, response also has zero mean value.

6.2 Auto-Covariance of the Response Process

It is seen from the above section that for mF = 0, mX is also zero. Hence, for F(t) to
be a stationary process, it is convenient to assume F′(t) = F(t) − mF, which also has
zero mean value. Let X′(t) be the response to the load process, F′(t). Then,

X 0ðtÞ ¼
Z1
0

hFXðsÞ F0ðt � sÞ ds

¼
Z1
0

hFXðsÞFðt � sÞds�
Z1
0

hFXðsÞ mF ds

¼ XðtÞ � mX ð6:23Þ
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For X′(t) to have a zero mean value, F(t) and F′(t) have the same auto-covariance.
Then, the following relation holds good:

xjðtÞxjðt þ sÞ ¼
Z1
0

hFXðs1Þ fjðt � s1Þ ds1�
Z1
0

hFXðs2Þ fjðt þ s� s2Þds2

¼
Z1
0

Z1
0

hFXðs1ÞhFXðs2Þ fjðt � s1Þ fjðt þ s� s2Þds1ds2 ð6:24Þ

It is also known that:

E½XðtÞXðt þ sÞ� ¼ lim
N!1

1
N

XN
j¼1

xjðtÞxjðt þ sÞ ð6:25Þ

Hence, Eq. (6.24) can be rewritten as:

¼
Z1
0

Z1
0

hFXðs1ÞhFXðs2Þ lim
N!1

1
N

XN
j¼1

fjðt � s1Þfjðt þ s� s2Þds1ds2

¼
Z1
0

Z1
0

hFXðs1ÞhFXðs2ÞE½Fðt � s1ÞFðt þ s� s2Þ�ds1ds2

¼
Z1
0

Z1
0

hFXðs1ÞhFXðs2ÞCFðsþ s1 � s2Þds1ds2

ð6:26Þ

Since F(t) is assumed to be stationary, E½XðtÞXðt þ sÞ� will also be independent
of time. The auto-covariance CX(τ) will be as same as the auto-correlation RX(τ), as
the process is a zero mean process. Then, the following relation holds good:

CXðsÞ ¼
Z1
0

Z1
0

hFXðs1ÞhFXðs2ÞCFðsþ s1 þ s2Þds1ds2: ð6:27Þ

6.3 Response Spectrum

Let SX(ω) be the variance spectrum of the response of the process X(t) and SF(ω) be
the variance spectrum of the load process F(t), then variance spectrum of X(t) will
be defined by the Fourier transform of the auto-covariance of the response, which is
given by
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SXðxÞ ¼ 1
2p

Z1
�1

CXðsÞe�ixsds

SXðxÞ ¼
Z1
0

hFXðs1Þ

Z1
0

hFXðs2Þ
1
2p

Z1
�1

CFðsþ s1 � s2Þe�ixsdsds2ds1

Put sþ s1 � s2 ¼ h; dh ¼ ds; then

SXðxÞ ¼
Z1
0

hFXðs1Þ

Z1
0

hFXðs2Þ
1
2p

Z1
�1

CFðhÞe�ixhdheixðs1�s2Þds2ds1

ð6:28Þ

SXðxÞ ¼ HFXð�xÞHFXðxÞSFðxÞ because eð�ixÞ� ¼ eix and hFXðtÞ is a real function.
Imposing the above condition, we get:

HFXð�xÞ ¼
Z1
0

hFXðtÞeixtdt ¼
Z1
0

hFXðtÞe�ixt�dt

Z1
0

hFXðtÞe�ixt�dt ¼ HFXðxÞ�

SXðxÞ ¼ HFXðxÞj j2SFðxÞ

ð6:29Þ

The above equation gives the relationship between the response spectrum SXðxÞ
and the load spectrum SFðxÞ. Please note that Eq. (6.29) does not contain infor-
mation about the phase shift between the load and the response; only amplitude
amplification is known. From the response spectrum, one can compute several other
statistical quantities that are important for assessing the response. For example,
standard deviation of the response is obtained as follows:

mX ¼ HFXð0ÞmF

r2X ¼
Z1
�1

HFXðxÞj j2SFðxÞdx
ð6:30Þ

For X(t) be the response of a linear system with transfer function HFXðxÞ to a
stationary load process F(t), RHS of the Eq. (6.30) for standard deviation is to be
computed numerically. For very less damping, HFXðxÞj j2 becomes narrow around
the resonance frequency, xr. This implies that the main contribution to the integral
Eq. (6.30) comes from a small interval around xr, which is evident from the
Fig. 6.1.

If SF(ω) varies much slower than that of HFXðxÞj j2, then it is often possible to
replace SF(ω) in Eq. (6.30) by S0 = SF(ωr). Hence, Eq. (6.30) can be rewritten as
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r2X ¼ S0

Z1
�1

HFXðxÞj j2dx ð6:31Þ

This procedure of replacing the input spectrum by a constant (S0) is called white
noise approximation. A typical feature of the response spectrum of a weakly
damped system is that it is narrow-banded. This follows the fact that the response
spectrum, to a large extent, is determined by the value of HFXðxÞj j2. With the white
noise approximation, variance is given by Eq. (6.31).

6.4 Stochastic Process

Dynamic analyses can be carried out in two ways depending on the description of
loads, namely (i) deterministic analysis, which requires the complete knowledge of
load time history and (ii) stochastic analysis where statistical concepts are used to
specify the loads. For example, when waves or wind loads are described in terms of
statistical quantities, then the response should also be described and analyzed in
terms of same kind of quantities.

6.4.1 Example of Stochastic Modeling

Sea surface elevation, X(t), is a good example of a random variable. A stochastic
process is an abstract notion in a similar manner as that of a random variable.
The values of the variables that can be observed physically are the outcomes, which
are usually referred as realizations. A sea surface time history that has a high
randomness can be easily overcome by assuming the time history to be a realization

Fig. 6.1 Amplitude
amplification for various
damping ratios
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of ergodic stationary process. The assumption implies that the statistical informa-
tion about the process is in fact contained in a single realization of the process. For
example, cumulative distribution function (CDF) FX(t)(x) assumes the values lesser
than or equal to x, as given below:

FXðtÞðxÞ ¼ lim
T!1

T½xðtÞ� x�
T

where T denotes the record length and T ½xðtÞ� x� denotes the total amount of time
during T where ½xðtÞ� x�. The quantity X(t) is called as a stochastic process if X(t) is
a random variable for each value of t in an interval (a, b).

6.4.2 Example of a Stochastic Process

Assume X as a random variable, which is normally distributed with a mean value
m and standard deviation σ (>0). Its probability density function is given by:

fXðxÞ ¼ 1ffiffiffiffiffiffi
2p

p
r
exp � 1

2
x� m
r

h i2� �

If g(t) is known, which is a real function defined for (−∞ < t < ∞), then

g tð Þ ¼ cosðxtÞ

where ω is a positive constant. Hence, X(t) = Xg(t) is also a stochastic process
defined for the same interval (−∞ < t <∞). Realization of the process is then given
as a product of g(t) with an outcome x of the random variable X. In that case, the
following equation holds good:

xðtÞ ¼ xgðtÞ

Hence, if g(t) = cos(ωt); its realization could be harmonic function of the same
period, but with a different amplitude. Hence, the mean value is given by:

mXðtÞ ¼ E X g tð Þ½ � ¼ E X½ �g tð Þ ¼ mg tð Þ
rXðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½X gðtÞ2 � mgðtÞ2�

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½X2�gðtÞ2 � m2gðtÞ2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½X2 � m2 gðtÞj j�

p
¼ r gðtÞj j
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For each value of t, g(t) is a constant; Hence X(t) = Xg(t) is also normally
distributed if g tð Þ 6¼ 0

The probability density function of X(t) becomes:

f XðtÞðxÞ ¼ 1ffiffiffiffiffiffi
2p

p
r gðtÞj j exp � 1

2
x� mgðtÞ
r gðtÞj j

� �2
( )

:

6.5 Return Period

Let Z be a random variable. Then,

p ¼ Prob Z[ z½ � ¼ 1� FZ zð Þ ð6:32Þ

Assuming that we can make series of observations of Z, mean number of
observations to the first observed or measured value of X exceeds z is called the
return period for exceedance of z, which is denoted by �RðzÞ.

�RðzÞ ¼ 1
p
¼ 1

1� FZðzÞ ð6:33Þ

This equation can be described as an average of (1/p) trails conducted before an
event of probability p occurs. �RðzÞ refers to the number of observations, and these
are assumed to be statistically independent. If return period needs to be explained in
terms of time, one needs to know the time interval between the observations. If the
observation interval is Dt, then the return period, in terms of time, is given by:

RðzÞ ¼ Dt �RðzÞ ð6:34Þ

The observation interval must be chosen sufficiently long such that individual
observations become approximately independent. For example, a design load with a
probability of 10−2 being exceeded during 1 year is often used in offshore struc-
tures. If we let F(t) denote the relevant load process considered for the design and ξ
denote the corresponding load level, then

ProbðZ[ nÞ ¼ 0:01; where Z ¼ max ðFðtÞÞ; 0� tÞ� 1 year:

Return period of exceedance of ξ then becomes as follows:

�RðzÞ ¼ 1
ProbðZ[ nÞ ¼

1
0:01

¼ 100 years ð6:35Þ
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Reference period, in this case, is 1 year, and therefore, return period of
exceedance is 100 years. It is important to note that the time-varying loads, caused
by waves, cannot be considered stationary over an extended period. This means that
the quantities such as yearly maxima must be computed using long-term statistics.
Return periods are also computed based on the risk associated. This is a common
practice in case of earthquake loads and seismic design of structures. For example,
design basis earthquake (DBE) has a risk level of 10 % at occurrence of 50 years
and that of maximum credible earthquake (MCE) is 2 %. Based on the risk asso-
ciated, return period is computed as below:

R ¼ 1� 1� 1
T

	 
n

For DBE, 0:1 ¼ 1� 1� 1
T

	 
50
yields return period ðTÞ as 475 years

ForMCE, 0:02 ¼ 1� 1� 1
T

	 
50
yields a retrun period of 2;500 years:

ð6:36Þ

6.6 Safety and Reliability

Safety is a measure used to indicate the reliability. But this demands a traditional
way of analysis. Reliability offers probabilistic meaning to this traditional concept.
Extension of reliability analysis also includes the consequences of failure. Safety
assessment and risk characterization are vital for offshore plants. Since risk is the
realization of hazard and hazard scenario is unavoidable in any process industry, the
most important aspect of reliability is to account for all uncertainties that make
the structure vulnerable to failure under a pre-defined limit state. Accuracy of the
reliability studies depends on how accurately these uncertainties are accounted for
in the analysis. Many assumptions are made during the reliability analyses, which
influence the accuracy of the reliability studies. Furthermore, it is also important to
note that analytical formulation of the limit state surface and integration of the
probability density function within the domain of interest is also very complex.

6.7 Reliability Framework

In the general sense, offshore platform should perform its intended function for a
specified period of time under specific conditions. In the mathematical sense or
narrow sense, reliability is estimating the probability of the structure for not
attaining the limit state of collapse within the specified conditions, for the specified
period of time.
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Reliability ¼ 1� Pf ð6:37Þ

which implies the fact that it is (R − S), where R is the resistance of the structure and
S is the load effects. For the resistance greater than the load effects, the structure is
always in the safe domain. If the load effects and resistance are expressed by their
respective PDF as fsðSÞ and fsðRÞ, respectively, then probability of failure is given by:

Pf ¼ Prob ðR� SÞ ð6:38Þ

¼
Z1
0

fRðsÞ � fsðsÞds

¼ fmð0Þ
ð6:39Þ

where M is called margin of safety, which is given by (R − S). If the probability
density function ffmðmÞg and CDF FmðmÞ are known, then probability of failure Pf

can be computed analytically or numerically as given below:

(a) R and S are normally distributed

If R and S are normally distributed, then

pf ¼ u �bð Þ ð6:40Þ

where the reliability index is given by:

b ¼ lR � lSffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2R � r2S

p ð6:41Þ

(b) R and S are log-normally distributed

In such cases, reliability index is given by:

b ¼ bLN ¼
ln lR

lS

ffiffiffiffiffiffiffiffiffiffiffi
ð1þV2

S Þ
ð1þV2

RÞ

r	 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnð1þ V2

RÞð1þ V2
S Þ

p ð6:42Þ

bLN �
lR
lS

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
R þ V2

S

p ð6:43Þ
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6.8 Ultimate Limit State and Reliability Approach

For an implicit failure probability in the design under random load effects, the
following equations hold good:

lS ¼ BSSC ð6:44Þ

(a) For BS ≤ 1.0, VS = 0.15–0.30 and lR ¼ BRRC

where BS reflects the ratio of the mean load if the period of variation is annual and
then it should refer to the annual value of probability of failure. Sc is the charac-
teristic value with 100 years return period. For (R, S) be log-normal, the following
equation holds good:

bLN ¼
ln lR

lSffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
R þ V2

S

p ð6:45Þ

For (VRVS) be the partial safety factor of 1.5, BS = 0.8, BR = 1.0, VR = 0.15, the
above equation reduces to the following form:

¼ ln 1:1
0:8ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:102 þ 0:202
p ¼ 13:5 ð6:46Þ

Ultimate limit state can affect the design since the method is based on the
maximum load effect. It is also affected by the strength of the material, which is
determined traditionally. Reliability framework is based on establishing a limit state
function g(x) for a single R and S, where the limit state function g(x) is subjected to
large uncertainties. The preferable design format is then given by:

Rc

VR
�Vs1S1c þ Vs2S2c ð6:47Þ

where subscript stands for the characteristic value, R is the resistance, S is the load
effect, cR is the resistance factor, VS1VS2 are the load factors. Resistance refers to a
characteristic strength of 5 % of the fractal materials’ strength, while load effect
refers to the annual probability of exceedance of 10−2. Design criterion is now
given by g (Rd, S1d, S2d) > 0.

Rd ¼ Rc

VR

S1d ¼ VS1S1C
S2d ¼ S2cV2c

ð6:48Þ
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For multiple values of (R and S), the structure is subjected to different load
combinations for which the bending failure criteria can be formulated as:

gðR1;R2;R3; S1j; S2jÞ :¼ 1� Sij
R1

þ S2j

1� S1j
R2

� �
R3

2
4

3
5 ð6:49Þ

The above equation can also be set as:

¼ 1� X1

X1
þ X3

1� X1
R4

� �
2
4

3
5 ð6:50Þ

where S1j, S2j, etc., are load effects for different combination and R is the resistance
(the count j stands for load type). The above equation is based on the Perry-
Robertson approach in which R1, R2 be the axial force and R3 be the Euler load. In
the partial design values of (R and S), they are represented by their respective
characteristic values. But in the reliability study, they are considered random
variables.

6.9 Short-term Reliability of Single Load Effect

If the resistance (R) is constant overtime and the load effect is of the single load (S),
then the characteristics value of the load effect can be obtained from the distribution
of the individual maximum of the largest value in a given time period. The reli-
ability problem can be arrived based on the extreme value of statistics to charac-
terize Smax.

Fracture probability in the short time period is given by:

Pf ðtÞ ¼ ProbðgðR; max
0� t� T

SðQðtÞÞ� 0

¼ ProbðgðR; Smax Tð Þ� 0 ð6:51Þ

where g(·) is the limit state function, R is the structural resistance, and S in the load
effect resulting from the load process Q(t).

6.9.1 Up-Crossing Approach

The alternate approach is the up-crossing rate approach. This is time-dependent
reliability, while the main interest lies in the time (tf) to the first failure.
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For a simple problem, following equation holds good:

MðtÞ ¼ g R; SðtÞð Þ ¼ R� SðtÞ ð6:52Þ

tf is the first time when M(t) = 0 that is when tf is the time of first excursion of
M(t) from positive to negative value assuming M(t) is a continuous process.

Probability of failure is the period [0, T] and is equivalent to the probability that
tf < T

Pf ¼ 1� Prob tf [ T
� �

¼ 1� Prob N tð Þ ¼ 0 ..
.
M 0ð Þ[ 0

� �
Prob M 0ð Þ[ 0ð Þ ð6:53Þ

where N(t) is the number of up-crossing in (0, t) or number of crossing from safe to
failure design. M(t) = R − S(t) is in the safe domain at zero time. If M(0) > 0
signifies the safety margin. In general, calculation of Pf is a complex task and
approximate solution can be achieved by assuming N(t) as a Poisson process that is
uncertainty of level R by s(t) is independent with the mean rate of vþs Rð Þ ¼ v�m 0ð Þ
per unit time:

Prob N Tð Þ ¼ 0ð Þ ¼ vþs Rð ÞT� �0
0!

e�vþ Rð ÞT
s ¼ e�vþ Rð ÞT

s ð6:54Þ

Also Prob M Tð Þ[ 0ð Þ ¼ 1� Pf ð0Þ, which means that the probability of number
of failure at t = 0; hence Pf oð Þ ¼ 0 then Pf ðtÞ is given by

Pf Tð Þ ffi 1� e�vþ Rð ÞT
s ffi vþs Rð ÞT ¼ v�m oð ÞT ð6:55Þ

As a special case, when s(t) is a Gaussian process, then

vþs Rð Þ ¼ vþ0 exp �ðR� lsÞ2
2r2s

 !

vþ0 ¼ vþs 0ð Þ
ð6:56Þ

For the given value of random variable X ¼ ðX1; . . .;XnÞT that represents those
uncertainties, the conditioned failure probability is determined by down-crossing of
0 by M(t; X) for t� 0.

Pf xð Þ ¼ Prob min
0� t�T

M t ..
.
x

� �
� 0

� �
¼ 1� exp �v�m 0; xð ÞT
 � ð6:57Þ

where v�m 0; xð Þ is the zero down-crossing rate which depends on the parameter of
vector x. The total failure probability considering the uncertainty in X can be
calculated by unconditional probability, as given below:
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Pf ¼
Z
x

Pf xð Þfx xð Þdx ð6:58Þ

The integral represents expected value of Pf ðxÞ. Hence, Pf can be calculated as a
random value, as shown below:

Pf ffi 1
N

XN
i¼1

Pf ðxiÞ: ð6:59Þ

6.10 Long-term Reliability of Single Load Effect

For a non-stationary process M(t; x) which could be for a long-term, failure
probability is given by:

Pf xð Þ ¼ 1� exp �
ZT
0

v�m 0; t; xð Þdt
8<
:

9=
; ð6:60Þ

where v�m 0; t; xð Þ is the mean down-crossing rate which depends as the sea state and
changes with time. For the given set of properties of the sea states, let W be the
captured value, which is given by

W ¼ Hs;Tp; uc; uw;wave
*

;wind
*

; current
*

� �

where Hs is the significant wave height, Tp spectral peak period, uc current velocity,

uw mean wave speed, and wave
*

;wind
*

; current
*

are wave, wind, current direction.
Pre-requisite of the long-term failure probability is to impose an ergodicity
assumption on the environmental process W = W(t), then

Pf xð Þ ¼ 1� exp �T
Z
w

v�m 0;w; xð Þfx wð Þdw
8<
:

9=
; ð6:61Þ

where v�m 0;w; xð Þ derives mean zero down-crossing rate of M for the sea state
W = w:

fw wð Þ ¼ PDF ofW ð6:62Þ
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The full long-term failure probability occurring for both environment variability
and parameter uncertainty is given by:

Pf ¼
Z
x

Pf xð Þfx xð Þdx: ð6:63Þ

6.11 Levels of Reliability

Reliability studies are considered in different levels in the literature. Level I is
focusing on the probability aspects of the problem. Suitable characteristic values of
the random variables are introduced in the safety analysis. Main objective of this
level of study is to minimize the deviation of the design values from that of the
target value. For example, load-resistance factor design (LRFD) is of level I of
reliability. Level II has two values for each parameter to be defined in the analysis,
namely mean and standard deviation. Level III is a complete analysis of the
problem addressing the multi-dimensional probability density function of random
variables, which is extended over the safety domain. Reliability is expressed in
terms of suitable safety indices. In level IV, engineering economics is also applied
in the reliability study. This level of reliability study is usually applied to structures
of strategic importance. The study includes cost-benefit analysis, rehabilitation,
consequence of failure, and return on capital investment.

Reliability methods offer many advantages: (i) they account for the uncertainties;
(ii) they are rational methods to estimate safety; and (iii) they offer decision-making
support for non-economic and better balanced design. Optimal distribution of
material among various components of structure can be benefitted through a con-
stant update mechanism, on the basis of which FEED function of engineering
judgment are circumscribed. Reliability studies expand the knowledge of uncer-
tainties in the response of the structure. There are few obstacles in implementing the
reliability studies to the offshore plants in operation. They are classified as inertial,
cultural, and philosophical. Different types of variables used in reliability study
are, namely (i) elementary variables (static variables) like material properties,
(ii) geometry of the platform, (iii) boundary conditions, and (iv) issues related to the
location and behavior dependent data.

Failure modes such as limit stress and limit displacement depend upon the
system variables, which are in turn dependent on location behavior and failure
modes. There are different steps of reliability, namely elementary level, component
level, system level, and detailed field investigation. The first step is handled by
stochastic modeling, while the second step can be handled by probabilistic study of
failure of components. In case of system-level studies, probabilistic studies on the
failure of the whole system can be investigated. One of the serious limitations of
reliability study is that it requires a large amount of data on the failure scenario.
Other parameters that influence the accuracy of the results of the reliability studies
are as follows:
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1. Separation of two variables, namely safety domain and failure domain.
2. Nature of variables, namely external or internal and whether they are inde-

pendent or not.
3. Effect of time indicating the static content or the cyclic (dynamic) content.
4. Form of the performance function, which is dependent on the physical model of

the system.

6.12 Reliability Methods

The main interest is to develop a reliability method in relation to modeling the
materials and structures. The primary advantage of the reliability method in
structures is to calculate the reliability estimates by nominal or conditional prob-
ability; reliability index; serviceability of failure to stochastic date description.
Three fields of application are particularly targeted; they are as follows:

1. Exceptionally highly innovative structures for which experience accumulated in
last few certainties are inadequate. Reliability methods were first used for
designing offshore platform.

2. Design of ordinary-type structures with codes whose current evolutions offer
possibility of calibration of partial coefficients using reliability methods.

3. Monitoring of structures during the life span so that repair strategies can be
optimized through reliability.

6.12.1 Advantages of Reliability Methods (ASC-83)

The advantages of reliability methods are as listed below

• Offer a realistic procession of uncertainties and the methods for evaluating the
safety factors that are often too arbitrary.

• Offer decision-making support for more economic and better balanced design.
• Analyze failure modes and measure the reliability provided by application and

regulations.
• Allow the optimal distribution of material and arrange various components of

the structure.
• Benefit from the experience acquired in design by updating on the basis of

feedback from the experience.
• Expand the knowledge of uncertainty in response to the structure.

There are some obstacles in the implementation of these advantages. They are as
follows:
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• These methods demand new approach and call to our thinking and working
pattern.

• Because it is more of a probabilistic approach and lesser statistical approach, it
demands more mathematical concepts rather than engineering skills.

• They explicitly underscore the acceptance of risk, and using safety coefficients,
they demand the judgment and decision.

• One should have minimum statistical knowledge of elementary properties of
variables, and we need to use these in modeling.

6.13 Stochastic Models

The stochastic modeling essentially helps to establish variability by best-suited
probability density function. They can be done by two approaches, namely natu-
ralist’s approach and physicist’s approach. Reliability is also an observation of the
sample that estimates μ, SD, and variance. This often gives ad hoc estimates or
estimates by interval. These estimates are themselves a random variable, since
based on this best judgment, PDF has to be determined. Alternatively, as per the
physicist’s approach, this seeks to understand the variability of the material’s
behavior on a microscopic scale. Results of reliability calculation depend on the
quantity of data. But these data are always insufficient due to limitations that arise
from the size of test samples, infinite domain, and distribution trails. Reliability
analysis also requires failure scenario, which separates the situation that the
designer decides as acceptable from those of the other. Complexities of reliability
are mainly due to the nature of the random variables, effect of time, mechanical
models and the form of performance function chosen for the analysis.

6.13.1 First-Order Second-Moment Method (FOSM)

In this case, first-order Taylor series approximation of the limit stat function is used
for the analysis. Only second moments of the random variables are used to estimate
the probability of failure. Limit state function is defined as:

M ¼ R� S ð6:64Þ

where R and S are statistically independent and assumed to be normally distributed.
Hence, following relationship holds good:

lm ¼ lR � lS ð6:65Þ

rm ¼ rR2 þ rS2 ð6:66Þ
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Probability of failure is given by:

Pf ¼ P M\0ð Þ
¼ P R� Sð Þ\0½ � ð6:67Þ

If M is the normal variant, then

Pf ¼ /
�lm
rm

� �
ð6:68Þ

b ¼ reliability index ¼ lm
rm

ð6:69Þ

where ϕ is the case CDF of standard normal variable. Probability of failure is given by:

Pf ¼ 1�/
lR � lS
r2R þ r2S

� �
ð6:70Þ

If R and S are log-normal, then following relationship holds good:

Pf ¼ 1� ;
ln lR

lS

ffiffiffiffiffiffiffiffiffiffiffi
ð1þV2

S Þ
ð1þV2

RÞ

r	 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnð1þ V2

RÞð1þ V2
S Þ

p
2
664

3
775 ð6:71Þ

Advantages and disadvantages of FOSM method are summarized in Table 6.1.

6.13.2 Advanced FOSM

As seen above, dependency of the reliability index on the chosen form of the limit
function is one of the major drawbacks of FOSM. Further, the reliability index
computed on the assumption that the random variables are statistically independent
and normally distributed poses an additional complexity to FOSM. This makes its
application limited to problems validating the above assumptions. In a more generic

Table 6.1 Merits and demerits of FOSM of reliability

Advantages Disadvantages

It is easy to use Results can cause serious errors. The tool used for the
distribution function cannot be approximated by
normal distribution

It does not require knowledge of
distribution of random variables

Values of β depend on the specific form of the limit
state function. This is an invariance problem

222 6 Introduction to Stochastic Dynamics



form, advanced FOSM gives reliability index; Hasofer Lind method is one of the
advanced FOSMs, which is discussed below.

The key point of the method is to estimate a design point, which is the minimum
distance of failure from the origin. The minimum distance is the safety index (βHL).
The method actually transforms the random variable into a reduced form, which can
be given as:

Xi ¼ xi � xi
rxi

for i ¼ 1; 2; . . .; nf g ð6:72Þ

This reduced variable will have a zero mean and unit standard deviation, which
is a special process of distribution. Hence, the performance function G(x) = 0 is
converted into G(x′) = 0 to enable the mapping between the required domains.
Reliability index βHL is given by:

bHL ¼
ffiffiffiffiffiffiffiffiffi
xdxTd

q
ð6:73Þ

where xd is the minimum distance of the design point from the origin, which is also
referred as a check point.

Following cases are specific:

Case 1: Limit state function is linear

Let us considerM ¼ R� S ð6:74Þ

The reduced values are computed for the domain mapping, as discussed below:

R ¼ R� lR
rR

ð6:75Þ

S ¼ S� lS
rS

ð6:76Þ

M ¼ ðrR þ lRÞ � ðrS þ lSÞ ð6:77Þ

As the limit state function moves closer to the origin, failure region is mapped.
Reliability index is given by:

b ¼ lR � lSffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2R þ Rr2R

p ð6:78Þ
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Case 2: Limit state function is nonlinear

In such cases, computing the minimum distance for calculating the reliability index
actually becomes an optimization problem.

bHL ¼ D ¼ p
xð Þt xð Þ ð6:79Þ

The above function is to be minimized subject to the condition that G(x) = 0 for
many random variables (x1, x2,…, xn), which originates from the safe state of the
domain; G(x) < 0 indicates failure. Hence G(x) > 0 denotes the minimum distance
from the origin to a point on the limit state function, which is called design point.
The problem is now reduced to determining the coordinates of the design point,
geometrically or analytically. By this definition, reliability index becomes invariant
as the minimum distance remains constant regardless of the shape of the limit state
function. Using the Lagrange multipliers, one can find the minimum distance as
given below:

bHL ¼ �Pn
i¼1 x

0
di

@G
@0xdiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
@G
@Xdi

� �2r ð6:80Þ

where @G
@Xdi

is the partial derivative, evaluated at the design point with coordinates
(xdi, xd2, …).

6.14 Fatigue and Fracture

Fatigue design of marine structures requires a description of long-term variation of
local stress caused by wave action, variable buoyancy, slamming, and vortex
shedding. Main contribution to fatigue damage is caused by the frequency of load
occurring that are of the order of 10–20 % of that of extreme load effects in the
service life. Fatigue failures are catastrophic as they come without warning and
cause significant damage. Physical process of fatigue consists of initiation of crack,
stable crack growth, and unstable crack growth until rupture. Once the crack is
initiated, it will tend to grow in a direction orthogonal to the direction of the
oscillatory tensile stresses. Fatigue is a challenging failure mode to deal with
because the initiation process of fatigue is unpredictable; difficulties exist in map-
ping the studies carried out in the lab scale to real structures. Fatigue failure is
controlled by the following: (i) design, material, and structural detailing to address
the probability of crack initiation; (ii) regular inspection during construction and
operation; and (iii) following repair procedures as advised by the design loads. In
case of design, the limiting conditions are already defined in advance, which are
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referred as limit states. This will include the case of failure at some defined extreme
loads, which will include fatigue life requirements. Commonly checked limit state
for marine structures are strength under extreme loading, fatigue life, fracture, and
deflection. It is a common practice to present the results of strength, fatigue, and
fracture as unity check.

Let U ¼ actual or factored load
Acceptable load which is used for strength check.

For fatigue, the unity check is U ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Design life damagem

p
where

m ¼ �slope�1 of S–Ncurve:

6.15 Fatigue Assessment

When the steel member is subjected to large fluctuating tensile stress, small cracks
develop; these cracks grow in size and further progress, which make the structure to
break. For machinery design where the stress fluctuation is similar throughout the
design life, cyclic stresses are kept below the endurance limit. But for structures,
this method is not permissible as the mixture of large-amplitude and small-ampli-
tude stresses occur due to environmental loads. Hence, it becomes necessary to
design the structures for intended fatigue life. Common design approach is nothing
but the usage of S–N curve. These curves are based on experiments conducted on
different types of structures. Fatigue failure can be detected by the occurrence of
visible cracks, thickness of the crack, and complete loss of load-carrying capacity.

6.15.1 SN Approach

Test on the steel specimen subjected to fluctuating loading showed that the number
of cycles to failure (N) is inversely proportional to the stress range that is maximum
and minimum stress, let it will be S, which is the power of m:

N / 1
sm

N ¼ ASm�1

If measures are taken to prevent corrosion, then for constant amplitude of stress
cycling there is a cutoff stress below which no fatigue occurs. This is found to be
2 × 108 cycles. For variable amplitude stress cycling, which is the most general case
with the marine structures, the cutoff value of stress decreases as the fatigue crack
grows. The slope of S–N curve changes beyond 107 cycles from m to m + 2. This
effect is significant if one is looking for the higher order of fatigue lives. Hence, for
preliminary analysis, S–N curve can be taken as linear, which often simplifies the
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analysis. Over the range where m is constant, the S–N curves are plotted as straight
line on log–log scale, whose slope is (−1/m). Since S–N curves are experimentally
plotted, for welded specimen, m = 3. Local stress concentration effect is caused by
the shape of welds, and the specimen reduces the value of constant A. Increase in
thickness reduces the fatigue life and hence A. Fatigue life decreases in freely
corroding condition. Tubular joints have been subjected to a separate study, and a
number of cycles are used for T-joints. One of the most proffered curve is UK
T-Curve, which is given in Fig. 6.2.

S–N curve may be typically be formulated as

N ¼ ASm�1

N ¼ ASm�1 for s[ s0;
N ¼ 1 for s� s0;

or

N ¼ A1S
�m1 for s[ s0;

N ¼ A2S
�m2 for s� s0;

ð6:81Þ

where the point of intersection between the two equations will be (N′, S′) with

N
0 ¼ A1 S

0
� ��m1¼ A2 S

0
� ��m2
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Fig. 6.2 Typical S–N curve
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Alternatively S–N curve defined by A = Ac is used to design the checks:

log10 Ac ¼ l� 2S

where μ is the mean value of parameter of log10N and S is the standard deviation of
parameter of log10N.

Consider typical μ ≈ 12; S ≈ 0.2; hence, Ac
lA

� 0:4. It is noted that A ¼

Aref
tref
t

� �m=4
where Aref is the reference parameter in the S–N curve, t and tref are the

plate thickness and the reference plate thickness, which are measured in mm.
S–N curves are traditionally determined by constant amplitude testing with large

stress method:

R ¼ rmin

rmax
[ 0:5 ð6:82Þ

Simplifying that stress, we can obtain the crack opening mode. Factors affecting
S–N curve are relaxation of residual stresses, external loading with partly com-
pression, and crack closure effects, which would make the actual crack growth
lesser than the implied load by the stress ranges used in the existing S–N curve.

6.16 Miner’s Rule

For variable amplitude environmental loading, the S–N curve provides information
on constant amplitude loading, which is supplemented by Miner’s rule. This allows
the number of drift amplitude cycle and concept of fatigue damage based on this
rule. Fatigue damage for a joint, under n cycles of constant amplitude loading when
it could be taken as N = AS−m cycles, is given by n/N. If the joint is subjected to
variable amplitude loading, the load on the cycles can be divided into groups of
approximately equal stress ranges. If there are g such groups with almost equal
stress range in a given variable amplitude loading, then let sg be the stress range in
each group and ng be the number of cycles in each group. Fatigue damage for each
group will be

Dg ¼ ng
Ng

where Ng ¼ AS�m
g ð6:83Þ

Miner’s rule states that the failure under variable amplitude loading which will
occur when

XG
g¼1

Dg ¼ 1 ð6:84Þ
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Fatigue analysis will often refer to the values of ng and Sg as the fatigue
spectrum.

6.17 Fatigue Loading and Fatigue Analysis

Local stresses for fatigue design need to be determined for the temporal and spatial
variation.

Figure 6.3 shows the spatial definition of notch, hot spot in the plane surface.
Figure 6.4 shows the hot spot. For welded structures, the main parameter that
represents the variation in time is called the stress range. This approach is based on
the fact that tensile residual stresses are always present and that all stress cycles
effectively derive the crack. The spatial stress variation can be accounted for by
using nominal hot spot stress approach. Fatigue loading is a dynamic load such as
wind, wave, and machine operation on marine structures. The primary source of the
fatigue loading is the wave loads. Global analysis of the fatigue loading causes
undesirable effects on the members. Local stress analysis is carried out to determine
the hot spot stresses.

Fig. 6.3 Spatial definition of
notch, hot spot and surface in
a plane surface

Fig. 6.4 Hot spot stresses
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6.18 Time Domain Fatigue Analysis

Time domain fatigue analysis results in time series of stress. For narrowband
Gaussian response, the cycles are well defined. For more general stress time his-
tories, cycle counting methods have to be applied to all types of response time
series. Time domain methods use only the information provided by the series of
peaks (local maximum) and valleys (local minima). According to different methods
of constructing the effective stress ranges from these identified peaks and valleys,
various cycle counting methods are used. The procedures are described by ASTM-
1985. This includes peak counting, range counting, level-crossing counting, and
rain flow counting. Among these, rain flow counting is the best for fatigue damage
estimates.

6.18.1 Rain Flow Counting

This method was first proposed by Matsuishi and Endo (1968). Let us consider a
stress time series of peaks and valleys with the time axis vertically downwards.
Lines connecting peaks and valley from a series of pagoda roofs are constructed.
Each rain flow begins at the beginning of the time series at the inside every peak
and valley. Rain flow initiating at a peak (or a valley) drop down until it reaches
peak more positive (or a valley, more negative) than the peak (or the valley) from
where it started. Rain flow also stops when it meets the rain flow roof assume. Rain
flow must terminate at the end of the time series. Horizontal length of each rain flow
is counted as half-cycle with that stress range.

6.18.1.1 Methodology

1. Reduce the time history to a sequence of (tensile) peaks and (compressive)
troughs.

2. Imagine that the time history is a pagoda.
3. Turn the sheet clockwise 90°, so the starting time is at the top.
4. Each tensile peak is imagined as a source of water that ‘drips’ down the pagoda.
5. Count the number of half-cycles by looking for terminations in the flow

occurring when:

• it reaches the end of the time history;
• it merges with a flow that started at an earlier tensile peak; or
• it encounters a trough of greater magnitude.

6. Repeat Step 5 for compressive troughs.
7. Assign a magnitude to each half-cycle equal to the stress difference between its

start and termination.
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8. Pair up half-cycles of identical magnitude (but opposite sense) to count the
number of complete cycles. Typically, there are some residual half-cycles.

From Fig. 6.5, it is observed that rain flow starts at a valley point 1 drops down
to 2 and 3 and so on. The cycle ends at 10, which is found to be a peak. These are 9
half-cycles that could be extracted. The rain flow initiates at valley point 1 and
drops down to 2 and ends at 4 because the following valley has smaller value than
initiating at point 1. Since the half-cycle 1–2–4 is identified, the same rule is applied
to half-cycle 5–6. The second rain flow starts at 2 and ends at 3 because the success
peak at 4 is larger than 2 similarly half-cycle 4–5–7 and 8–9 are extracted half-cycle
7–8–9 is found because time series end at 10. Half-cycles 3–2′, 6–5′, and 9–8′ are
determined because of rain flow starts at 3, 6, and 9 peaks meets the rain flow at
roofs above. When all half-cycle are exhausted, the horizontal length of each cycle
is used as an effective stress range to calculate the fatigue damage based on the
linear damage accumulation law (Table 6.2).

DRC �DRFC �DLCC ¼ DNBð Þ�DPC ð6:85Þ

DRC be the fatigue damage estimated by range counting
DRFC be the rain flow counting
DLCC be the level-crossing counting
DPC be the peak counting
DNB be the narrowband approximation

Fig. 6.5 Example of rain flow counting
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6.19 Deterministic Fatigue Analysis

The deterministic fatigue analysis method applies Miner’s rule. The loading of the
structure is represented by loading cases g = 1 to G, each with a defined number of
cycles ng

� �
and time T. The structure is analyzed to determine the stress Sg for each

group and hence the total damage Dt in time T. If the value of T is chosen as a year,
then the fatigue life is 1=Dyear. When fatigue damage is high, majority of damage
occurs on the low cycle end of the curve, where M is typically 3. But when the
structure is subjected to dynamic loading and the band of periods near the natural
period, then the small change in an assumed period of the applied load changes the
result significantly. Marine structures which are subjected to wind and wave loading
act as period-dependent filters. As a result, the number of cycles of stress response
may differ from the number of loading cycles. This difficulty can be handled in
spectral analysis. Deterministic fatigue analysis is often performed using semiem-
pirical relationship. When structures are subjected to waves, only 1 wave analysis is
used to describe the lifetime stress history of the structure. For long-term exceed-
ance to be Weibull function:

Table 6.2 Rain flow
counting Rain flow cycles by path

Path Cycles Stress range

A–B 0.5 3

B–C 0.5 4

C–D 0.5 8

D–G 0.5 9

E–F 1.0 4

G–H 0.5 8

H–I 0.5 6

Rain flow, total cycles

Stress range Total cycles Path

10 0 –

9 0.5 D–G

8 1.0 C–D, G–H

7 0 –

6 0.5 H–I

5 0 –

4 1.5 B–C, E–F

3 0.5 A–B

2 0 –

1 0 –
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n stress[ rð Þ ¼ no exp
r
ro

� �h

ln no

( )
ð6:86Þ

where n is the number of stress cycles exceeding stress in no cycles, ro is stress that
is exceeded once in no cycles, and h is the parameters (0.5–1.5) that depend on load
and response characteristics of the structures. For long-term exceedance to be log-
linear,

n Wave height[Hð Þ ¼ no exp � H
H0

� �
ln no

� �
ð6:87Þ

where Ho is the wave height exceeded once in the number of cycles known. H is the
wave height exceeded n times in the number of cycles. The long-term exceedance
can be considered with single-slope S–N curve to estimate the fatigue damage in nL
cycles.

For Weibull distribution:

DL ¼ nLrmo
A

C 1þ m
h

� �
ln noð Þm=h

" #
ð6:88Þ

For log-linear wave, height exceedance is given by:

DL ¼ nL aHb
o

� �m
A

C 1þ bmð Þ
ln noð Þbm

" #

Γ is a gamma function defined as

Cðg) ¼
Z1
0

xg�1e�xdx ð6:89Þ

This is a standard function and the values are available in standard tables.

6.20 Spectral Fatigue Analysis

Spectral fatigue analysis is applicable to structures that are executed by dynamic
loading which has statistically stationary properties for a large number of stress
cycles, for example, wind turbulence and wave load. The spectral method uses the
shape of the stress spectrum to determine the number of stress cycles of various
sizes. The stress spectrum can be narrowbanded or broadbanded.
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6.20.1 Narrowband Spectrum

To perform fatigue calculation, we should compute zeroth and second moment of
the spectrum about the line f = 0. It is common to assume Rayleigh distribution of
the stress range in a given stress spectrum. m0 and m2 can be computed using
numerical integration technique, that is, by trapezoidal rule. m0 is the area under the
spectrum which will correspond to variance of the signal and represented as the
spectrum. For the spectrum with the Hz frequency axis, the square root of the ratio
of second moment (m2) to the area (mo) is the mean zero-crossing period of the
signal.

TZ ¼
ffiffiffiffiffiffi
mo

m2

r
ð6:90Þ

The number of stress cycles (n) in time (T) in seconds is given by

n ¼ T
Tz

ð6:91Þ

Rayleigh distribution assumes the plot of the shear range σr as:

p rrð Þ ¼ rr
4m0

exp � r2r
8mo

� �
ð6:92Þ

In T seconds, the number of stress cycles (δn) in the band ðdrrÞ cantered as rr is
given by

dn ¼ n � p � ðrrÞ drrð Þ

Fatigue damage associated with that band of stress cycle

dD ¼ dn
N

¼ dn
Ar�m

r
¼

n rr
4m0

� �
exp � rr

8mo

2
� �h i

drr

Ar�m
r

ð6:93Þ

Fatigue damage of all σ cycles band is found by integration, which is given by

D ¼
Z1
0

n rr
4m0

� �
exp � rr

8mo

2
� �h i

drr

Ar�m
r

D ¼ n
4Am0

Z1
0

rð1þmÞ
r exp � r2r

8mo

� �
drr

ð6:94Þ
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The integral has a standard solution of S–N curve, which is a gamma function:

Z1
0

xa exp �bx2
� �

dx ¼ C aþ1
c

� �
C B

aþ1
cð Þ� � ð6:95Þ

where C gð Þ ¼ R1
0
xðg�1Þexdx:

6.20.2 Broadband Spectrum

There are many methods available to explain how to count the stress range cycles in
stationary broadband time history. Rain flow counts in largest cycles are extracted
first. The smaller cycles are considered superimposed on the larger cycle. This is
considered the most reliable method for fatigue σ range counting. Each crest is
matched with the following trays. Now, the above definition is of use for frequency-
domain calculation because the definition of cycles was set up in terms which were
not amenable with statistical analysis. The spectral fatigue damage analysis of
structures subjected to random loading assumes that the signal is stationary,
Gaussian, and random. Results are generally produced for mean period of zero
crossing per unit time.

TZ ¼
ffiffiffiffiffiffi
m0

m2

r
ð6:96Þ

For mean time between the peaks or crests per unit:

Tc ¼
ffiffiffiffiffiffi
m2

m4

r
ð6:97Þ

where mn is the nth moment of the PSD function.

mn ¼
Z1
0

f nSrr fð Þdf ð6:98Þ

Srrðf Þ is one-sided stress spectrum, f is the frequency in Hz.
mn values are obtained by numerical integration.

An irregularity factor, β is defined as b ¼ Tc
Tz
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β is an important factor in fatigue analysis because difficulty of prediction of σ cycle
distribution from a σ spectrum is largely determined by whether its value lies
between 0 and 1. As it approaches 1, the signal becomes narrowband, and proba-
bility density of the peak is given by

p rp
� � ¼ rp

mo
exp � r2p

2mo

 !
ð6:99Þ

Cycle counting in this case is relatively easy. As β approaches zero, signal
becomes more like with noise. In this case, signal is said to be completely wide-
band. Probability density function peaks become Gaussian:

p rp
� � ¼ 1ffiffiffiffiffiffiffiffiffiffiffi

2pm0
p exp � r2p

2mo

 !
ð6:100Þ

In reality, the response is neither narrow nor completely wideband. It is in
between, so one can apply correction factors to the solution. Several researchers
attempted to correct the narrowband fatigue damage calculation for the effects of a
broad bandwidth. They are developed by generating sample time histories from
stress spectra using inverse Fourier transform, and then, a conventional rain flow
cycle count can be obtained.

6.20.2.1 Wirsching’s Correction Factor

DRF ¼ kDNBðM;2Þ

DRF = rain flow-counting damage; DNB = damage calculated using NB formula.

k M;2ð Þ ¼ a mð Þ þ 1� a mð Þ½ �ð1� 2ÞcðmÞ
a mð Þ ¼ 0:926�0:333 m

c mð Þ ¼ 1:587�2:323 m

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

q

6.20.2.2 KAM and Doves—Alternative Approach

This expression uses equivalent σ range parameter called σefr. The idea is to con-
ceive total linearity cumulative fatigue damage caused by constant amplitude σ
range using rain flow cycles extracted from the stress cycle.

6.20 Spectral Fatigue Analysis 235



refr ¼
Z1
0

rmr p rrð Þdrr
2
4

3
5

refr ¼ 2
ffiffiffiffiffiffiffiffi
2m0

p
kðm; eÞC m

2
þ 1

� �h i1=m

6.20.2.3 Chaudhary and Dover Approach

Based on the study of peak distribution in different sea-state spectra, following
equation is proposed by Chaudhary and Dover (1985):

refr ¼ 2
ffiffiffiffiffiffiffiffi
2m0

p emþ2

2
ffiffiffi
p

p C
mþ 1
2

� �
þ b

2
C

mþ 2
2

� �
þ err bð Þ b

2
C

mþ 2
2

� �	 
1=m
ð6:101Þ

where err bð Þ ¼ 0:3012 bð Þ þ 0:4916 bð Þ2þ 0:918 bð Þ3�2:3534 bð Þ4�3:3307 bð Þ5þ
15:654 bð Þ6�10:7846 bð Þ7 for 0:13\b\0:96.

6.20.2.4 Hancock’s Equation

Hancock and Gall (1985) proposed equations to include β and ε into narrowband
equation:

refr ¼
ffiffiffiffiffiffiffiffi
2m0

2
p

bC
m
2
þ 1

� �h i1=m
refr ¼ b

ffiffiffiffiffiffiffiffi
2m0

2
p

2� e2
� �

C
m

2� e2
þ 1

� �h i1=m ð6:102Þ

The above factors are used to amend the traditional narrowband approach. An
alternate approach is to avoid narrowband assumption and to develop fatigue life
prediction in terms of rain flow ranges.

Probability density function of rain flow ranges PRF rrð Þ is given as:

PRF rrð Þ ¼
D1=Q

� �
e�2=Q þ D2Z

�
R2

� �
e�z2=2R2 þ D3Ze

�z2=2

2m
1=2
o

b ¼ Tc
TZ

¼
ffiffiffiffiffiffiffiffiffiffiffi
m2

2

m0m4

s ð6:103Þ
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x ¼ Tc
TZ

¼ m1

m0

ffiffiffiffiffiffi
m2

m4

r
; Z ¼ rr

2
ffiffiffiffiffiffi
m0

p

D1 ¼
2 xm � b2
� �
1þ b2

D2 ¼ 1� b� D1 þ D2
1

1� R
D3 ¼ 1� D1 � D2

R ¼ b� xm � D2
1

1� b� D1 þ D2
1

Q ¼ 1:25 b� D3 � RD2ð Þ
D1

mn ¼
R1
0
f nSrr fð Þdf which is given as nth moment used in above equation.

refr ¼
Z1
0

rmb rrð Þdrr ð6:104Þ

Now instead of b rrð Þ, substitute PRF rrð Þ in the above equation to obtain the
effective stress range.

For n ¼ T=Tc damage can be estimated by:

D ¼ T
Tc

� �
1
A

� �Z1
0

rmr PRF rrð Þdrr ð6:105Þ

6.20.2.5 Summary of Broadbanded Fatigue Damage Calculation

A general solution for fatigue damage can be obtained for wideband case using the
rain flow range probability density function. There is one stress range for each peak
stress in the response so that the number of the stress range in time T is T=TC

. The
equation for damage in time T is given by

D ¼ T
Tc

� �
1
A

� �Z1
0

rmr PRF rrð Þdrr ð6:106Þ
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6.21 Stress Concentration Factor (SCF)

Fatigue damage estimates are highly dependent on the stress cycle range, which
need to be considered in the S–N curve.

N ¼ AS�m

But in marine structures, stress concentration effects in the joints should be
augmented for using them in the fatigue damage estimates. For plated construction,
the procedure is quite simple to determine the applied stress with an additional
stress concentration factor by equations or graphs. But when the crack growth is
expected from a sharp notch or corner, which is not a part of the geometry, stresses
may show infinite enhancement that makes the S–N curve approach unsatisfactory.
For example, tubular joints show stress changes rapidly in the vicinity of the joint
which has no reference stress in the S–N curve approach. This problem is generally
solved by extrapolating the stress from 2 points away from the weld. Approximate
stress concentration factor, as per the designer’s choice, can be used. In a tubular
joint, fatigue is dominated by the stress perpendicular to weld, so the other stress
components need to be considered in the damage estimates.

6.22 Crack Propagation

Application of fracture mechanics to the fatigue of the steel structures uses Paris and
Erdogan (1983) law. The law states that the crack growth dað Þ in δN cycles in the
applied stress range of rrð Þ is given by

da ¼ C yrr
ffiffiffiffiffiffi
pa

p
 �m
dN

da ¼ C dK½ �mdN ð6:107Þ

where y is the crack and geometry-dependent factor. For a through thickness crack
that occurs at the center of a very wide plate, y = 1; a is the crack length, which
increases with the increase in the applied stress cycles; C and m are material-
dependent constants. For example, typical mean values for C and m for BS 4,360
grade 50D steel is C ¼ 5:2
 10�12 to 7:1
 10�12 meters =MPa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
metersð Þm

p
where m = 3.

Unit of C is complex, which makes the conversion difficult. Hence, the fol-
lowing table can be used (Table 6.3).

Fatigue crack propagation based on fracture mechanics is normally worked out
in a tabular form (Table 6.4):

Each row of the table calculates the crack growth in every δN cycle, which is
chosen so that δa is reasonably small when compared with the value of crack length
(a); this makes the crack length independent of the increment of the crack growth.
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6.22.1 Step-by-Step Procedure to Compute the Fatigue Crack
Propagation

Step 1 An initial value of the crack length (a) is known at the beginning of the
calculation

Step 2 Stress range σr may vary for the wave to wave case; hence, it is advisable
to use σefr

refr ¼ m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

rmri

vuut

It is important to note that growing crack leads to the reduction of stiff-
ness and causes redistribution of stresses away from the crack. This
would require computation of the effective stress for different crack
length. But for simplification, this need not be done.

Step 3 y is calculated at each stage of the crack growth.
Step 4 Dk ¼ yrr

ffiffiffiffiffiffi
pa

p
Step 5 δN is selected to give small changes in the crack length. Depending on the

rate of crack growth, this value may be selected corresponding to the
number of cycles in 1 year or 1 month, etc.

Step 6 da ¼ Cðyrr
ffiffiffiffiffiffi
pa

p Þm.
Step 7 Crack length (a) is increased from a to (a + δa).
Step 8 Use the effective stress, same as in Step 2.
Step 9 y is calculated now for the new crack length.

Step 10 Thus, all the values in the above table will be filled up in the sequential
manner.

Calculation is repeated for as many crack growth increments as that are required
to reach a critical crack size. Computation is terminated until the defect may be then
large enough to result in failure due to large stress values.

Table 6.3 C conversion table
To convert From to Multiply C by

Crack size m to mm 103(1−m/2)

Stress MPa to kPa 10−3m

Stress MPa to Pa 10−6m

Table 6.4 Fatigue crack
propagation a σr y Δk δN δa

1 2 3 4 5 6
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Exercise

1. Explain stationary process?
2. Explain impulse response function or the transfer function?
3. HðxÞ is called the transfer function or ______________ function.
4. Write down the equation which gives the relationship between the response

spectrum SXðxÞ and the load spectrum?
5. The procedure of replacing the input spectrum by a constant (S0) is called

____________________________.
6. Explain the two approaches in dynamic analysis?
7. Explain return period?
8. Safety is a measure used to indicate the ____________________.
9. Reliability offers _____________________ meaning to this traditional concept.

10. Explain the levels of reliability?
11. List the advantages of reliability methods?
12. The stochastic modeling essentially helps to establish variability by best-suited

_____________________________.
13. Differentiate merits and demerits of FOSM of reliability?
14. The reliability index computed on the assumption that the random variables are

____________________ and ___________________________an additional
complexity to FOSM.

15. _____________________________ of marine structures requires a description
of long-term variation of local stress caused by wave action, variable buoyancy,
slamming and vortex shedding.

Answers

1. A stationary process is one for which the statistical properties such as mean
value and standard deviation are same for all points in time (or) position.
Hence, the following equation holds good. For a stationary process, transfer
between the load and the response can be modeled as linear, time-invariant,
while the system can be characterized by a transfer function. Hence, the rela-
tionship between variance spectrum of the response (called response spectrum)
and variance spectrum of load (called load spectrum) is determined by a
transfer function.

2. Impulse response function or the transfer function, which determines the
connection between the load and the response, is completely defined by the
properties of the linear system. This remains independent of any given load.
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3. Frequency response.

HFXð�xÞ ¼
Z1
0

hFXðtÞeixt dt ¼
Z1
0

hFXðtÞe�ixt�dt

Z1
0

hFXðtÞe�ixt�dt ¼ HFXðxÞ�

4.

HFXð�xÞ ¼
Z1
0

hFXðtÞeixt dt ¼
Z1
0

hFXðtÞe�ixt�dt

Z1
0

hFXðtÞe�ixt�dt ¼ HFXðxÞ�

SXðxÞ ¼ HFXðxÞj j2SFðxÞ
5. White noise approximation.
6. Dynamic analyses can be carried out in two ways depending on the description

of loads, namely (i) deterministic analysis, which requires the complete
knowledge of load time history and (ii) stochastic analysis where statistical
concepts are used to specify the loads. For example, when waves or wind loads
are described in terms of statistical quantities, then the response should also be
described and analyzed in terms of same kind of quantities.

7. Return period of exceedance of ξ then becomes as follows:

�RðzÞ ¼ 1
Pr obðZ[ nÞ ¼

1
0:01

¼ 100 years

Reference period, in this case, is 1 year, and therefore, return period of
exceedance is 100 years. It is important to note that the time-varying loads,
caused by waves, cannot be considered stationary over an extended period. This
means that the quantities such as yearly maxima must be computed using long-
term statistics. Return periods are also computed based on the risk associated.
This is a common practice in case of earthquake loads and seismic design of
structures.

8. Reliability.
9. Probabilistic.

10. Reliability studies are considered in different levels in the literature. Level I is
focusing on the probability aspects of the problem. Suitable characteristic
values of the random variables are introduced in the safety analysis. Main
objective of this level of study is to minimize the deviation of the design values
from that of the target value. For example, LRFD is of level I of reliability.
Level II has two values for each parameter to be defined in the analysis, namely
mean and standard deviation. Level III is a complete analysis of the problem
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addressing the multi-dimensional probability density function of random vari-
ables, which is extended over the safety domain. Reliability is expressed in
terms of suitable safety indices. In level IV, engineering economics is also
applied in the reliability study. This level of reliability study is usually applied
to structures of strategic importance. The study includes cost-benefit analysis,
rehabilitation, consequence of failure, and return on capital investment.

11. The advantages of reliability methods are as listed below

• Offer a realistic procession of uncertainties and the methods for evaluating
the safety factors that are often too arbitrary.

• Offer decision-making support for more economic and better balanced
design.

• Analyze failure modes and measure the reliability provided by application
and regulations.

• Allow the optimal distribution of material and arrange various components
of the structure.

• Benefit from the experience acquired in design by updating on the basis of
feedback from the experience.

• Expand the knowledge of uncertainty in response to the structure.

12. Probability density function.
13.

14. Statistically independent and normally distributed poses.
15. Fatigue design.

Advantages Disadvantages

It is easy to use Results can cause serious errors. The tool used for the
distribution function cannot be approximated by
normal distribution

It does not require knowledge of
distribution of random variables

Values of β depend on the specific form of the limit
state function. This is an invariance problem
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Chapter 7
Applications in Preliminary Analysis
and Design

Abstract This chapter deals with a few application problems in the design and
development on new offshore structures based on the dynamic analyses. Studies
presented in this chapter are based on the recent research conducted by the author,
which are presented as a part of intuitive studies to the readers.

Keywords Design � Offshore structures � Preliminary design � Triceratops �
Buoyant leg structure � Ball joints � Response isolation � Structural forms � Wave
directionality � Springing � Ringing � Tension leg platforms

7.1 Free Vibration Response of Offshore Triceratops

Offshore triceratops is relatively a new type of compliant structure suitable for
deepwater oil exploration. The structural form of the platform enables to counteract
the encountered environmental loads efficiently. Triceratops consists of three or
more buoyant leg structures (BLSs) to achieve the required buoyancy, to support
the deck structure, to restrain system, and to serve storage requirements. The deck
and BLSs are connected by ball joints that transfer translational motion but restrain
rotations from BLS to deck and vice versa. Free-decay studies are conducted on
1:150 scaled model, in free-floating and tethered conditions experimentally, ana-
lytically and numerically; natural periods in heave and pitch/roll degrees of freedom
are discussed for installation and decommissioning purposes. Experimental and
analytical free-decay tests are conducted on the installed structure in surge and
heave degrees of freedom; experimental, analytical, and numerical results are in
good comparison. Based on the studies carried out, it is seen that the free-floating
natural periods of both single BLS and tethered triceratops are away from the
bandwidth of encountered wave periods, making the proposed platform safe and
suitable for the chosen sea state and ultra-deep waters.

© Springer India 2015
S. Chandrasekaran, Dynamic Analysis and Design of Offshore Structures,
Ocean Engineering & Oceanography 5, DOI 10.1007/978-81-322-2277-4_7
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7.2 New Structural Form

There exist many offshore structures for deep waters such as compliant towers,
tension leg platforms (TLPs), spars, semi-submersibles, and FPSOs. Recent
developments focus on the optimization of structural form of compliant structures
with respect to their cost, reduction in structural response, and enhancing their
payload capacities. Operational features including the stability of tethered buoyant
platforms are addressed by performing stochastic stability analysis (Muhuri and
Gupta 1983). Buchner et al. (1999) discussed the complexities in model tests
carried out on the new state-of-the-art deepwater offshore basin of Maritime
Research Institute Netherlands (MARIN). Jayalekshmi et al. (2010) investigated the
effect of tether-riser dynamics on the response characteristics of deepwater TLPs in
water depths 900 and 1,800 m under random waves in time domain; statistical
values of responses are found to increase with increase in water depth and signif-
icant increase is observed when risers are included in the analysis. Comparative
studies carried out on TLPs with two different geometries that show the triangular
TLPs are cost effective (Chandrasekaran and Jain 2002). It is also shown that
triangular TLPs exhibit lesser response in the surge and heave degrees of freedom
than that of the four-legged (square) TLPs. Chandrasekaran et al. (2007) presented
the response behavior of triangular TLP under regular waves using Stokes nonlinear
wave theory, and results show that the response in surge and pitch degrees of
freedom obtained using Stokes’ theory is lesser than that obtained using the Airy’s
wave theory.

Offshore triceratops is relatively a new concept with respect to the structural
form that is attempted for ultra-deep waters (Charles et al. 2005); the chosen
structural form enables reduction of response when compared with conventional
deepwater offshore structures such as TLPs, imparting economic, and structural
advantages in the design. Triceratops consists of BLS, deck structure, ball joint, and
foundation system, which is usually with tethers. BLS is a positively buoyant,
floating, deep-draft structure intended for use in ultra-deep waters (Rodert and
Cuneyt 1995). It is simple cylindrical structure that is used to provide required
buoyancy to support deck structure, buoyant leg, and tethering system. BLS unit
appears to resemble a spar due to its deep draft, but the restraining system resembles
the behavior of a TLP; restraining system provides less rotational stiffness, and
hence the pitch and roll responses are more than TLP but lesser than spar (Shaver
et al. 2001). Capanoglu et al. (2002) showed a good comparison of the results of
model tests with that of the analytical studies of a BLS. Chandrasekaran et al.
(2010, 2011) carried out analytical and experimental studies on offshore triceratops
under unidirectional regular waves; the influence of ball joint on the response of the
deck in pitch and heave degrees of freedom are focused. Limitations of the
experimental investigations on triceratops for ultra-deep waters are also discussed in
detail. In the present study, natural period of free-floating and tethered (600 m)
triceratops is examined to analyze few critical features: (i) installation; (ii) opera-
tional; and (iii) decommissioning feasibility. Foundation system is chosen as
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tethered system since flexible behavior is economical for ultra-deep waters. Ball
joint is placed between the BLS and deck to reduce the rotational response of the
deck when the BLS is exposed to wave, current, and impact loads; in addition, it
reduces rotational response of BLS units when the deck is exposed to aerodynamic
loads. In the present study, triceratops consists of three BLS units whose geometric
form and mass distribution are derived from Norwegian TLP at 600 m water depth;
vertical center of gravity (VCG) to draft ratio is maintained as 0.5, as desired for
deep-draft compliant structures. Free-decay oscillation studies are performed
experimentally, analytically, and numerically on 1:150 scaled free-floating and
tethered models; mass properties and structural details of both the models are given
in Tables 7.1 and 7.2, respectively, while Fig. 7.1 shows the elevation of the scaled
model considered for the study.

7.3 Model Details

BLS units are fabricated with acrylic cylinders of 100 mm diameter. Two-tier deck
systems are fabricated with 1.5-mm thick aluminum sheets and placed at two
different elevations to maintain the required VCG. Three tethers are connected to
respective the BLS units using steel wire ropes of 0.3 mm diameter. Ball joints are
made of Perspex material and placed between BLS units and the deck. Mild steel
rods are used for the permanent ballast in each of the BLS unit so as to match the
mass properties close to that of the prototype. Accelerometer and inclinometers are
placed on the BLS units, while the deck is placed with the instruments to measure
heave and pitch responses. Figure 7.2 shows the model commissioned in the
wave flume.

Table 7.1 Mass properties of free-floating and tethered offshore triceratops

Details Free-floating Tethered

Prototype (ton) Model (kg) Prototype (ton) Model (kg)

Payload 4,059 1.2 4,059 1.2

Ball joint 1,013 0.3 1,013 0.3

Leg weight 18,225 5.4 18,225 5.4

Ballast 21,032 6.23 21,032 6.23

Additional ballast 8,635 2.56 – –

Pretension – – 8,635 2.56

Total 52,982 15.7 52,982 15.7

Displacement 52,982 15.7 52,982 15.7
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Table 7.2 Details of prototype and model of free-floating and tethered triceratops

Details Free-floating Tethered
Prototype (m) Model (mm) Prototype (m) Model (mm)

Water depth 600 4,000 600 4,000
Draft 97.5 645.5a 97.5 650
Each buoyant leg structure

Outer diameter 15 100.0 15 100.0
c/c distance 70 467.0 70 467.0
Cylinder height 120.0 800.0 120.0 800.0
VCG −51.36 −337.8 −58.87 −392.5
rx, ry 31.81 212.1 33.31 222.05
rz 4.98 33.2 5.02 33.49
Deck

rDx, rDy 24.9 165.9 24.9 165.9
rDz 24.6 164.5 24.6 164.5
VCG 46.35 309.0 46.35 309.0
VCG of the whole structure −55.39 −236.07a −49.23 −328.22
Tetherb t kg
Pretension 8,652 2.56

kN/m N/mm
AE/l 84,000 3.73
l length of the tether; Aw water plane area
a Corrected to flume density
b Bare tether

 

570 
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235mm 
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Sea bed

0.3mm dia. steel tether

Ballast
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Water level

Ball joint
1.5mm thick aluminium deck plates 

Fig. 7.1 Details of the scaled model
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7.4 Experimental Studies

7.4.1 Free-floating Studies

This study is significant for installation and decommissioning purposes of the newly
proposed triceratops. Though buoyancy of triceratops is more than the total mass of
the structure, additional ballast is required to achieve the required buoyancy during
installation. Free-floating heave and pitch periods are studied to avoid resonance
during installation. As installation can be planned with each BLS unit separately or
with the complete structure on the basis of the capacity of the lifting equipment
available, free-floating studies are carried out on both the single BLS unit and on
the complete structure as well. As the displacement of single BLS unit is lesser than
the complete triceratops, lifting equipment of larger capacity is not required for
installation, which would result in significant saving of installation cost.

7.4.2 Free-decay Studies on Tethered Triceratops

On removal of additional ballast at the free-float state, tethers are pre-tensioned. The
structure is now tested for free oscillations in surge and heave degrees of freedom.

7.5 Analytical Studies

The analytical studies are performed in ANSYS AQWA software. The free-floating
model is analyzed at 4 m water depth, while the tethered model of prototype is
analyzed at 600 m water depth. Since BLS units are Morison elements, the line
elements are modeled with segments, and the deck is modeled as quadratic plate
elements; inbuilt ball joint is used in the analysis. Since BLS units do not have rigid

Fig. 7.2 Model installed in the wave flume
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body motion, each BLS unit is considered a separate structure (3 structures) and
connected to deck structure (4th structure) with ball joints. The flume water density
is also considered in the analysis. Prototype of tethered triceratops is modeled at
600 m water depth; tethers are modeled as steel wire ropes. Free-floating analytical
models of single BLS, triceratops, and tethered triceratops are shown in Fig. 7.3.
Free-decay test is carried out analytically by subjecting the structure to zero wave
amplitude and necessary initial conditions in the respective degree of freedom.
Equation of motion for the free-decay test is as follows:

M þMa½ �€X þ C½ � _X þ ½K�X ¼ 0 ð7:1Þ

where M is mass matrix; Ma is the added mass matrix, [C] is the damping matrix,
[K] is the stiffness matrix at any instantaneous position and €X; _X;X

� �
are accel-

eration, velocity, and displacement, respectively. Stiffness matrix of the structure, in
free-floating condition is given by:

0 0 0 0 0 0
0 0 0 0 0 0
0 0 qgAw qgAp �qgAp 0
0 0 qgAp DgGMLa �qgAp �DgGMLa

0 0 �qgAp �qgAp DgGMLo �DgGMLo

0 0 0 0 0 0

2
6666664

3
7777775

ð7:2Þ

where [K] is stiffness matrix, ρ is density of seawater, g is acceleration due to
gravity, Aw is water plane area, Ap is projected area in respective degree of freedom,
Δ is displacement, GMLa and GMLo are the lateral and longitudinal meta-centric
heights, respectively; stiffness matrix coefficients include changes in tether stiffness,
hydrostatic stiffness, and hydrodynamic stiffness.

Fig. 7.3 Analytical model of single BLS, free-floating triceratops, and tethered triceratops
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7.6 Empirical Prediction

Heave natural period of single BLS and triceratops is predicted empirically. Added
mass of the cylindrical BLS units is found by using semi-sphere volume whose
radius is taken as same as that of the cylinder. Tethered surge natural period is also
found empirically from the following equation (Faltinsen 1990).

T ¼ 2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M þMað Þ

p
l

� �
s

ð7:3Þ

where p is pretension and l is the length of the tether. Table 7.3 shows the
comparison of the results of model tests and empirical prediction.

Based on the studies carried out, it has been found that the installation of
triceratops can be done with each BLS unit separately or as a complete structure;
free-floating periods are not matching with the wave periods in both the cases and
hence no resonance during installation. Should the transportation be economical,
installation cost can be minimized by installing each BLS unit separately. As the
natural periods of tethered triceratops are also not matching with that of the wave
periods, structural performance will be better during operational conditions.
Permanent ballast in BLS units results in significant reduction in the pretension in
tethers in comparison with that of TLPs. Hence offshore triceratops does not require
high-strength tethers as required for TLPs. Since it has vertical restraining system,
heave response is lesser than that of spar, making offshore triceratops more
economical for ultra-deep waters.

Table 7.3 Natural periods of
the structure DOF Experimental Analytical Numerical

Single BLS

Heave 1.6 1.6 1.59

Roll 1.59 1.38

Pitch 1.59 1.38

Free-floating triceratops

Heave 1.66 1.65 1.65

Roll 8.04 8.57

Pitch 8.04 8.57

Tethered triceratops

Surge 11.92 13.6 11.9

Heave 0.48 0.4
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7.7 Wave Directionality Effects on Offshore Triceratops

The primary objective of the current study is to investigate the nonlinear dynamic
response characteristics of offshore triceratops under regular waves for different
wave approach angles. In the present study, 1:150 scaled model of offshore tri-
ceratops is investigated under regular waves by varying the wave period. Geometric
characteristics of the platform and mass distribution are derived from Norwegian
TLP (Minoo and Joel 1991) at a water depth of 600 m for equivalent buoyancy as
that of the TLP. Buoyancy of pontoons of TLP is distributed to each BLS unit by
increasing its draft; this is required to ascertain symmetric response in all BLS units
for the considered wave approach angles. Mass distribution and geometric prop-
erties are given in Tables 7.4 and 7.5, respectively. BLS units are fabricated with
acrylic material, and PVC ball joints are placed between the deck and the BLS
units. Deck consists of two aluminum plates of 570 mm width and 1.5 mm
thickness that are placed at two levels so as to obtain the representative value of
center of gravity of the deck. In order to ensure equal payload distribution on each
BLS unit, triangular geometry of the deck plate is chosen for the study; center of
gravity of the BLS units and the deck is maintained on the same vertical axis.
Components of the triceratops are shown in Fig. 7.4. Figure 7.5 shows the 1:150
scaled model considered for the study. The model is free-floated by ballasting each
BLS unit; ballast mass is kept equivalent to the amount of pretension in each tether.
Experimental studies are carried out in the wave flume of 4 m width, at a water
depth of 4 m. Details of prototype and scaled wave data are given in the Tables 7.4
and 7.5. Dynamic response of the platform is measured for three different wave
approach angles with reference to the axis of symmetry of the structure; details of
instrumentation are shown in Fig. 7.6. Two accelerometers (surge/sway of BLS,
heave of deck) and two inclinometers (pitch/roll of BLS and deck) are used to
measure the acceleration and pitch responses. Surge, heave, and pitch RAOs
(response amplitude operators) of the model are scaled up to the prototype and
plotted for BLS units and the deck under the regular wave loads; three wave
approach angles namely 0°, 90°, and 180° are considered in the present study.

7.8 Discussions of Experimental Studies

Free oscillation tests are conducted on free-floating and tethered models of the
structure to determine their natural periods of vibration. These tests are conducted
in two stages: (i) each BLS is freely floated by ballasting, while free oscillation tests
are conducted on single BLS in heave and pitch degrees of freedom; and (ii) deck is
connected to BLS units through ball joints for a desired draft of 650 mm, and
subsequently free oscillation tests are conducted on the whole platform. Tethers are
then connected to the model, and the platform is de-ballasted to enable the desired
pre-tension in tethers. Free-floating natural periods and theirs scaled-up values of
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the prototype are given in Table 7.3. It is seen that natural periods of the platform
are away from the bandwidth of the operation wave periods; this is advantageous
during installation, operation, and decommissioning as well.

Table 7.4 Details of model and prototype of free-floating and tethered triceratops

Description Free-floating Tethered

Prototype (m) Model (mm) Prototype (m) Model (mm)

Water depth 600 4,000 600 4,000

Draft 97.5 645.5a 97.5 650

Each buoyant leg structure

Outer diameter 15 100.0 15 100.0

c/c distance 70 467.0 70 467.0

Length 120.0 800.0 120.0 800.0

VCG from MSL −51.36 −337.8 −58.87 −392.5

VCB from MSL −48.75 −322.8 −48.75 −325.0

(m2) (mm2) (m2) (mm2)

Water plane area 176.71 7,854.0 176.71 7,854.0

t-m2 kg-mm2 t-m2 kg-mm2

Ixx, Iyy 16,550,362 217,947.2 14,892,025 196,109

Izz 146,775.3 1,932.8 81,067.6 1,067.6

(m) (mm) (m) (mm)

rx, ry 31.81 212.1 33.31 222.05

rz 4.98 33.2 5.02 33.49

Deck m2 mm2 m2 mm2

Deck area 6,330.86 281,372 6,330.86 281,372

IDxx, IDyy 1,256,831 16,550.9 1,256,831 16,550.9

IDzz 1,236,483 16,282.9 1,236,483 16,282.9

rDx, rDy 24.9 165.9 24.9 165.9

rDz 24.6 164.5 24.6 164.5

VCG −46.35 −309.0 −46.35 −309.0

VCG of the whole structure −55.39 −236.07a −49.23 −328.22

Tether t kg

Pretension 8,652 2.56

kN/m N/mm

AE/l 84,000 3.73

Area of tether 0.211 m2 0.07b mm2

(m) (mm)

Length of the tether 502.5 3,350.0

kN/m2 N/mm2

Modulus of elasticity 2 × 108 2 × 105

a Corrected to flume density
b Bare tether
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Surge/sway and heave RAOs are shown in Figs. 7.7 and 7.8, respectively. It is
seen from Fig. 7.7 that the variations in surge/sway responses are not significant for
different wave approach angles; however, it shows maximum variation for 180°
wave approach angle. Figure 7.8 shows significant influence of wave directionality

Table 7.5 Natural period of
the structure(s) 1:150 model

Degree of
freedom

Free-floating
triceratops

Free-floating
BLS

Tethered

Surge – – 11.92

Heave 1.66 1.60 0.48

Pitch 8.04 1.59 –

Prototype

Surge 145.98

Heave 20.33 19.59 5.88

Pitch 98.47 19.47

Fig. 7.4 Components of triceratops
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Fig. 7.5 Plan and elevation of the scaled model

Fig. 7.6 Instrumentation for different wave approach angles
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on heave RAO; variation is minimum at 0° and maximum at 90°. Variations in
heave response for different wave approach angles shall be attributed to the phase
lag of BLS legs when compared with that of the approaching waves. Pitch RAOs of
BLS and deck are shown in Figs. 7.9 and 7.10. It is seen from the figures that there
are no significant variations in the pitch response of both the deck and BLS units for
different wave approach angles; compliancy offered by the ball joints shall be seen
as a major contributing factor to this behavior. Pitch in the deck is observed mainly
due to the transfer of heave from BLS to deck. Pitch/roll response of BLS is similar
in all wave approach angles, indicating circular mass distribution in the BLS.

Experimental investigations are carried out on the scaled model of offshore
triceratops to ascertain the influence of wave directionality on its response behavior.
Experimental results show that the wave directionality does not influence surge/
sway response of the platform significantly. Comparison of surge/sway RAO with
that of heave shows that the structure is restrained in heave degree of freedom,
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which is expected for a compliant platform. Wave directionality does not influence
pitch response of both the deck and BLS units; compliancy offered by the ball joints
shall be seen as a major contributing factor to this behavior. For the chosen deck of
triangular geometry, reduced rotational response under different wave approach
angles reinforces the suitability of triceratops for irregular sea states; insensitivity of
pitch/roll response for different wave approach angles indicates circular mass dis-
tribution in the BLS. Presented studies validate the suitability of offshore triceratops
for ultra-deep water; however, more detailed analytical investigations are preferable
to strengthen the present experimental observations.
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7.9 Springing and Ringing Responses of Tension Leg
Platforms

Certain class of offshore structures exhibits highly intense nonlinear behavior called
springing and ringing. Dynamic response of compliant structures like TLPs under
impact and non-impact waves responsible for ringing and springing phenomenon is
of large interest to marine engineers. This section describes the mathematical
formulation of impact and non-impact waves and discusses the method of analysis
of TLPs of triangular geometry under these wave effects. Responses of square and
equivalent triangular TLPs are compared. Heave response in square TLPs shows
bursts, but there are no rapid buildups; gradual decays are seen in most cases
looking like a beat phenomenon, while such results are not predominantly noticed
in case of equivalent triangular TLPs. Ringing caused by impact waves in pitch
degree of freedom and springing caused by non-impact waves in heave degree of
freedom in both the platform geometries are undesirable, as they pose serious threat
to the platform stability. Analytical studies conducted show that equivalent trian-
gular TLPs positioned at different water depths are less sensitive to these unde-
sirable responses, thus making it as a safe alternative for deepwater oil explorations.
The study presented can be seen as a prima facie to understand the geometric design
and form development of offshore structures for deepwater oil exploration.

7.9.1 Springing and Ringing

Springing and ringing shown by a certain class of compliant offshore structures
namely TLPs and gravity-based structures (GBSs) gained research focus since they
were first observed in a model test of the Hutton TLP in the North Sea in 1980s
(Mercier 1982). Springing is caused in the vertical/bending modes by second-order
wave effects at the sum frequencies; this behavior is common in both mild and
severe sea states. Ringing is attributed to strong transient response observed in these
modes under severe loading conditions triggered presumably by passage of a high,
steep wave. This transient response further decays to steady state at a logarithmic
rate depending on the system damping. Figure 7.11 shows a schematic view of

Fig. 7.11 Schematics of springing and ringing
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springing and ringing. TLPs are generally designed to keep their natural frequencies
in heave, pitch, and roll degrees of freedom, several times above the dominant wave
frequency, whereas structural frequencies in surge, sway, and yaw degrees of
freedom are designed to be lower than the dominant wave frequency as shown in
Fig. 7.12. Though TLPs are designed with this kind of shift in their structural
frequencies, springing and ringing still become important when the range of
structural frequency is several times higher than the dominant wave frequencies. As
a result, ringing can not only cause total breakdown of these platforms even in
moderate storms but can also hamper daily operations and lead to fatigue failure
(Winterstein 1998; Ude et al. 1994; Marthinsen et al. 1992). Studies on ringing and
springing response had a primary focus on large volume structures that are domi-
nated by wave diffraction inertial-type loading and minimally affected by drag
forces (Natvig 1994; Jefferys and Rainey 1994; Faltinsen et al. 1995); these studies
discussed the response of TLPs and GBS with slender cylinders. Kim and Zou
(1995) and Kjeldsen and Myrhaug (1979) observed that waves causing ringing
response are highly asymmetric. Gurley and Kareem (1998) showed that viscous
loads are also capable of inducing ringing response of members with large wave-
length-to-diameter ratios, where instantaneous moment acting on the cylinder is a
quadratic function of wave elevation. The precursors of ringing and springing
phenomenon are given as (i) the generation of high-frequency force necessitating
the presence of steep, near-vertical wave fronts; and (ii) resonant buildup due to
subsequent loading within the range of the time period of TLP. This could be
realized by setting the dominant wave frequency as several times as the natural
frequency of the structure. Also frequency at which ringing occurs is well above the
incident wave frequency and is close to the natural frequency of the structure.

7.10 Evolution of Platform Geometry

Natvig and Vogel (1995) reported several advantages of TLPs with triangular
geometry namely: (i) no tether tension measurements required on day-to-day
operation; (ii) increased tolerances for the position of foundation; and (iii) increased

Fig. 7.12 Frequency range of TLPs relative to dominant wave frequency
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draft and heel tolerances, making it more advantageous than four-legged square
TLPs. Triangular TLPs that are statically determinate can have foundations placed
with larger tolerances without affecting tether behavior. With the near-equal load
sharing of all tethers of triangular TLP despite weather directions, the maximum
load level in one group reduces, thus resulting in decreased cross-sectional material
of tethers, which is an important area for cost savings in TLPs while they show
lesser response under regular and random waves as well (Chandrasekaran and
Jain 2002a, b). Stability analysis performed on triangular TLPs under impact
loading and influence of wave approach angle showed that they are more stable in
the first mode of vibration in comparison with square TLPs, while impulse loading
acting on their corner column affects their performance behavior significantly
(Chandrasekaran et al. 2006, 2007a, b). The aspects of platform geometry that affect
tether loading and tether system thus become the focus on design of future TLPs.

7.11 Mathematical Development

A ringing event involves the excitation of transient structural deflections at/close to
the natural frequency of the platform arising at third harmonic of the incident wave
field, whereas springing effect involves excitation of motion in vertical degree of
freedom, for example, in heave in TLPs due to nonlinear forces arising at the
second harmonic of the incident waves (see, e.g., Peter et al. 2006). The shape of
the impact wave generating ringing is hence crucial and is experimentally observed
that these waves are steep and asymmetric with respect to both horizontal and
vertical axes; Kim et al. (1997) recommended to use laboratory-generated ringing
waves in case of non-availability of any analytical wave models. Therefore, the
generation of impact wave time histories from currently available wave theories and
random wave elevation spectrums suffers from potential difficulties such as the
following: (i) shape of experimentally observed ringing waves being different from
analytical ones; (ii) absence of a systematic method to categorize such steep,
irregular, and asymmetric waves; and (iii) insufficiency of these theories to generate
extreme waves that could cause impact forces. These limitations restrict the use of
existing theories for generation of impact waves that are associated with the onset of
ringing (see for example, Son 2006). Thus, the necessity of steep waves conforming
to experimentally generated waves calls for implementation of a higher-order
nonlinear wave kinematic theory and nonlinear fluid model. On the other hand, this
could lead to complicated mathematical formulations that will become computa-
tionally inefficient when solved numerically. Because of these reasons, several
researchers (Ronalds and Stocker 2002, 2003; Ronalds 2003) successfully simu-
lated ringing and springing waves using Airy’s wave theory and used dynamic
Morison equation for force evaluation. Also in the current study, water particle
kinematics for ringing and springing waves is obtained using Airy’s wave theory
from a randomly generated sea surface elevation using Pierson Moskowitz (PM)
spectrum. The original PM spectrum, a function of wind velocity, is modified as a
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function of modal frequency and later modified again as a function of significant
wave height and modal frequency (Michel 1999). For ringing to be present in the
considered sea state, dominant wave frequency should be several times higher than
surge natural frequency. Therefore, modal frequency used in the PM spectrum is
chosen to be about five times of the surge frequency. The modified one parameter
formula given by Eq. (7.4) is employed in the present study. Figure 7.13a shows the
PM spectrum.

Sgg xð Þ ¼ 8:1� 10�3g2

x5 exp �1:25
xm

x

� �4
	 


ð7:4Þ

where g is acceleration due to gravity, ωm is the modal frequency, and Sηη is the
power spectral density of wave height. Wave elevation, η(t), realized as a discrete
sum of many sinusoidal functions with different angular frequencies, and random
phase angles is given by:

g tð Þ ¼
Xn
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Sgg xið ÞDxi

q
� cos xit � uið Þ ð7:5Þ

where ωi are discrete sampling frequencies (Dωi = ωi − ωi−1), n is the number of
data points, and /i are random phase angles. Range of random phase angles are set
to decide the generated wave to be an impact or a non-impact wave. Impact waves
shall have wave profile with a peak at a particular time (t0) that will be distinctly
higher than other wave heights; wave heights that become comparable at all time
periods and lie within the prescribed limits are termed as non-impact waves. For
generating a non-impact wave profile, phase angles /i are chosen as random
numbers within the range [0, 2π]. For an impact wave at an arbitrary time t0, /i is
chosen in the range [0, 0.01] at time t = t0; Eq. (7.5) is subsequently modified as
given below:

g tð Þ ¼
Xn
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Sgg xið ÞDxi

q
� cos xi t � t0ð Þ � uið Þ ð7:6Þ

A sample impact and non-impact wave thus generated using the above equations
is shown in Fig. 7.13b, c, respectively.

7.12 Analytical Model of TLP

Equivalent geometrical configuration of triangular TLP is evolved on the basis of
equation of equilibrium applied in the static sea conditions. For TLPs of square and
triangular geometry, the respective equations are given as follows:
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FB ¼ 4ðT0Þsquare þW ð7:7Þ

FB ¼ 3ðT0Þsquare þW ð7:8Þ

where FB is the buoyant force, T0 is the initial pre-tension in each tether, and W is
the total weight of the platform. Equivalent triangular TLP is arrived by considering
two cases namely: (i) buoyant force and initial pre-tension per tether are considered
equal for both the geometries resulting in reduced total pretension in triangular
TLP; and (ii) total initial pre-tension, weight, and buoyancy are kept the same for
both geometries thereby increasing the initial pretension per tether in the triangular
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Fig. 7.13 a PM spectrum for wave height elevation. b Impact wave profile with impact wave at
t = 10 s. c Non-impact wave profile
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TLP. The platform considered in the study is a rigid body having six degrees of
freedom. Figure 7.14 shows the plan and elevation of the triangular TLP having
plan dimension as Pl used in the study.

Unidirectional waves with incident angle normal to one of the pontoons are
considered. Maximum absolute response in pitch degree of freedom is obtained
when the waves are normally impinged; other degrees of freedom namely sway,
roll, and yaw that are activated by a non-normal wave show minimal effects. Four
square TLPs at different water depths, reported in the literature (Chandrasekaran
and Jain 2002a), are considered for the analysis, and their geometric properties are
given in Table 7.6, whereas Table 7.7 shows time periods of equivalent triangular
TLPs with initial pre-tension same as that of these square ones. Hydrodynamic
coefficients of drag (Cd) and inertia (Cm) used in Morison equation are asserted to
be independent of the wave frequencies. Cd is taken as unity, while Cm is assumed
to vary along the water depth (Chandrasekaran et al. 2004) and is interpolated for
the entire water depth using a second-degree polynomial as given below:

Cm yð Þ ¼ p1 � y2 þ p2 � yþ p3 ð7:9Þ

where y is the water depth measured from sea bed; p1, p2, and p3 are coefficients
used for interpolation and given in Table 7.8. Tethers are modeled as elastic cables
with axial AE/l when taut, and zero when they slack.

Fig. 7.14 a Plan and b elevation of example TLP
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7.13 Hydrodynamic Forces on TLP

Modified Morison’s equation accounting for the relative motion between the
platform and waves is used to estimate hydrodynamic force per unit length f(t) on
the members of TLP and is given by:

f ðtÞ ¼ pD2
C

4
qCm€uþ 1

2
qCdDcð _u� _xÞ _u� _xj j � pD2

C

4
ðCm � 1Þq€x ð7:10Þ

where _x;€x are the horizontal structural velocity and acceleration, _u; €u are the hor-
izontal water particle velocity and acceleration, ρ is mass density of sea water, Cd

and Cm are hydrodynamic drag and inertia coefficients, and Dc is diameter of

Table 7.6 Geometric properties of square TLPs considered

Property TLP1 TLP2 TLP3 TLP4
Weight (kN) 351,600.00 330,000.00 330,000.00 370,000.00

FB (kN) 521,600.00 465,500.00 520,000.00 625,500.00

T0 (kN) 170,000.00 135,500.00 190,000.00 255,500.00

Tether length, ‘(m) 568.00 269.00 568.00 1,166.00

Water depth (m) 600.00 300.00 600.00 1,200.00

CG (m) 28.44 27.47 28.50 30.31

AE/‘ (kN/m) 84,000.00 34,000.00 82,000.00 45,080.00

Plan dim (m) 70.00 75.66 78.50 83.50

D and Dc (m) 17.00 16.39 17.00 18.80

rx (m) 35.10 35.10 35.10 35.10

ry (m) 35.10 35.10 35.10 35.10

rz (m) 35.10 42.40 42.40 42.40

Table 7.7 Natural wave
periods and frequencies of
equivalent triangular TLPs
with T0 per tether same

Case Natural time period (s) Natural frequency (Hz)

Surge Heave Pitch Surge Heave Pitch

TLP1 98.00 1.92 2.110 0.0102 0.5208 0.4739

TLP2 87.20 1.96 2.155 0.0115 0.5102 0.4640

TLP3 97.00 1.92 2.060 0.0103 0.5208 0.4854

TLP4 132.0 3.11 3.120 0.0076 0.3215 0.3205

Table 7.8 Values of
coefficients for interpolation
of Cm

Description p1 p2 p3
TLP1 7.780 × 10−7 −9.667 × 10−4 1.8

TLP2 3.111 × 10−6 −1.933 × 10−3 1.8

TLP3 7.778 × 10−7 −9.667 × 10−4 1.8

TLP4 1.944 × 10−7 −4.833 × 10−4 1.8
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pontoons, respectively. As there is no significant variation in water depth for the
pontoons at the bottom, constant Cd (as 1.0) and Cm (as 2.0) values are used for
them. The last term in Eq. (7.10) is the added mass term and is taken as positive
when the water surface is below mean sea level. The hydrodynamic force vector
F(t) is given by:

FðtÞf g ¼ F1 F2 F3 F4 F5 F6f gT ð7:11Þ

where F1, F2, and F3 are total forces in surge, sway, and heave degrees of freedom
and F4, F5, and F6 are moments of these forces about X, Y and Z axes, respectively.

7.14 Dynamics of Triangular TLP

Equation of motion describing the dynamic equilibrium between the inertia,
damping, restoring, and exciting forces can be assembled as follows:

½M�f€xg þ ½C�f _xg þ ½K�fxg ¼ fFðtÞg ð7:12Þ

where [M] is the mass matrix, [C] is the damping matrix, [K] is the stiffness matrix,
and {F(t)} is the force vector as defined by Eq. (7.11).

7.14.1 Mass Matrix

The structural mass is assumed to be lumped at each degree of freedom. Hence, it is
diagonal in nature and constant. The added mass Ma due to the water surrounding
the structural members is also been considered up to MSL. The presence of off-
diagonal terms in mass matrix indicates contribution of added mass due to the
hydrodynamic loading in the activated degrees of freedom due to unidirectional
wave load.

½M� ¼

M1 þMa11 0 0 0 0 0
0 M2 0 0 0 0
0 0 M3 þMa33 0 0 0
0 0 0 M4 0 0
Ma51 0 Ma53 0 M5 0
0 0 0 0 0 M6

2
6666664

3
7777775

ð7:13Þ

where M11 = M22 = M33 = total mass of the structure, M4 is mass moment of inertia
about the x axis ¼ Mr2x ,M5 is mass moment of inertia about the y axis ¼ Mr2y ,M6 is

mass moment of inertia about the z axis ¼ Mr2z , and rx, ry, and rz are radius of
gyration about the x, y, and z axes, respectively. Ma11, Ma33 are added mass terms in
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surge and heave degrees of freedom, Ma51, Ma53 are added mass moment of inertia
due to the additional mass in surge and heave degrees of freedom, respectively. The
presence of off-diagonal terms indicates contribution of added mass due to
hydrodynamic loading. The contribution of added mass up to MSL has already
been considered along with the force vector. The added mass terms are given by:

Ma11 ¼ 0:25pqD2 Cm � 1½ �xsurge ð7:14Þ

Ma33 ¼ 0:25pqD2 Cm � 1½ �xheave ð7:15Þ

7.14.2 Stiffness Matrix

The coefficients Kij of the stiffness matrix of triangular TLP are derived from the
first principles, as presented in the literature (Chandrasekaran and Jain 2002a), and
the same has been used in the current study.

½K� ¼

K11 0 0 0 0 0
0 K22 0 0 0 0
K31 K32 K33 K34 K35 K36

0 K42 0 K44 0 0
K51 0 0 0 K55 0
0 0 0 0 0 K66

2
6666664

3
7777775

ð7:16Þ

The coefficients of the stiffness matrix have nonlinear terms due to cosine, sine,
square root, and square terms of the structural displacements. Furthermore, tether
tension changes due to TLP motion making [K] response dependent. Off-diagonal
terms reflect the coupling effect between various degrees of freedom. Change in
tether tension updates [K] at every time step and also changes buoyancy of TLP. It
is interesting to note that coefficients of [K] continuously vary at every time step
and are replaced by new values based on the structural response of TLP.

7.14.3 Damping Matrix

Damping matrix [C] is assumed to be proportional to initial values of [M] and
[K] and is given by:

½C� ¼ a0 M½ � þ a1 K½ � ð7:17Þ

where a0 and a1 are, respectively, the stiffness and mass proportional damping
constants. Damping matrix given by the above equation is orthogonal as it permits
modes to be uncoupled by eigenvectors associated with the undamped Eigen
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problem. Damping constants a0 and a1 are determined by choosing the fractions of
critical damping (ξ1 and ξ2) at two different frequencies (ω1 and ω2) and solving
simultaneous equations for a0 and a1.

a0 ¼ 2 n2x2 � n1x1ð Þ= x2
2 � x2

1

� � ð7:18Þ

a1 ¼ 2x1x2 n1x2 � n2x1ð Þ= x2
2 � x2

1

� � ð7:19Þ

Damping attributable to a0[K] increases with increasing frequency, whereas
damping attributable to a1[M] increases with decreasing frequency. In the current
study, value of these coefficients are obtained using the above equations by taking
damping ratio ζ = 0.05 in surge and yaw degrees of freedom. Free vibration analysis
is performed to find out natural frequencies of the platform corresponding to these
degrees of freedom and found that damping ratios maintain reasonable values for all
the other modes which are contributing significantly to the response. Initial pre-
tension in all tethers is assumed to be equal and total pretension changes with the
motion of platform. The equation of motion is solved in time domain by employing
Newmark’s integration scheme by taking α = 0.25 and β = 0.5. The solution
procedure incorporates the changes namely: (i) stiffness coefficients varying
with tether tension; (ii) added mass varying with sea surface fluctuations; and
(iii) evaluation of wave forces at instantaneous position of the displaced platform
considering the fluid structure interaction. Behavior under wave loading becomes
nonlinear, and components of the equation of motion at each step components are
updated. Ten terms in the power series are found to be sufficient to give conver-
gence in the iterative scheme. The time step Δt has been taken as 0.1 s, which is a
relatively small value in comparison with the natural period (Tn) and hence yields
accurate values for the response.

7.15 Ringing Response

Ringing is usually a phenomenon attributed to response of compliant structures
such as TLPs under impact waves. Figures 7.15, 7.16 and 7.17 show heave, pitch,
and surge responses of all four cases of TLPs under impact waves, namely
(i) square TLPs; (ii) equivalent triangular TLPs with T0 per tether same as that of
square; and (iii) equivalent triangular TLPs with total T0 same as that square,
respectively. It can be seen that the response is primarily triggered in pitch degree of
freedom for a wide range of time period similar to the response of a bell vibrating
for a longer time when struck by a large impact force. This is noticed in both the
geometries of TLPs, which shall be attributed to a ringing response. Though a
similar response is noticed under the influence of non-impact waves also, it can be
seen that the intensity of pitch response caused by the latter is less compared with
that caused by impact waves. By comparing the ringing response in pitch degree of
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Fig. 7.15 Response of square TLPs to impact waves. a Response of TLP1. b Response of TLP2.
c Response of TLP3. d Response of TLP4
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Fig. 7.16 Response of equivalent triangular TLPs to impact waves (T0 per tether same).
a Response of TLP1. b Response of TLP2. c Response of TLP3. d Response of TLP4
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Fig. 7.17 Response of equivalent triangular TLPs to impact waves (total T0 same). a Response of
TLP1. b Response of TLP2. c Response of TLP3. d Response of TLP4
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freedom of TLP1 and TLP3 at the same water depth but with different tether tension,
it can be seen that increased tether tension enhances pitch response due to impact
waves in both the geometries; however, pitch response of triangular TLPs of both
cases (i and ii) is lesser than the square ones. Further comparison of pitch response
of TLP2, TLP3, and TLP4 under impact waves shows increase in water depth from
300 to 600 m increases the response by about 50 %, and further increase to 1,200 m
enhances the response by 100 %. This behavior is seen in both the geometries, but it
is interesting to note that increase in water depth does not enhance the ringing
response in pitch degree of freedom in triangular TLP (with T0 per tether same case)
as much as the square ones (see for example, pitch response of TLP3 and TLP4 of
triangular TLP with same T0 per tether case). It is also important to note that the
influence of increase in water depth on pitch response of triangular TLPs with total
T0 same as that of square is even lesser. By considering TLPs as most suitable for
deepwater situation, it can be seen that ringing response in pitch degree of freedom
in triangular TLPs (T0 per tether same case) under impact waves is lesser that of the
square ones, and it is further reduced for triangular TLP with total T0 same as square
(see for example, TLP4). While attributing pitch response to impact waves, which is
clearly a ringing phenomenon, as undesirable, triangular TLPs showing lesser
response in this front make them a focus for futuristic design of TLPs in deep water.

7.16 Springing Response

The response behavior of TLPs with different geometry shows a near resonating case
of heave response under non-impact waves. This phenomenon is usually known as
springing. Figures 7.18, 7.19 and 7.20 show heave, pitch, and surge responses of all
four cases of TLP under non-impact waves, namely (i) square TLPs; (ii) equivalent
triangular TLPs with T0 per tether same as that of square; and (iii) equivalent tri-
angular TLPs with total T0 same as that square, respectively. It can be seen that heave
response is triggered at a frequency near to that of its natural frequency causing
springing response. The broad band in frequency response commonly noticeable in
both the geometries indicates more energy concentration near the natural frequency
of heave degree of freedom. By comparing springing response in heave degree of
freedom of TLP1 and TLP3 at same water depth but with different tether tension, it is
seen that heave response under non-impact waves decreases with increase in tether
tension for same water depth in both the geometries; however, heave response of
triangular TLPs of both the equivalence cases is lesser than the square ones. Further,
increase in water depth from 300 to 600 m increases the heave response by about
45 %, and further increase in water depth to 1,200 m increases it to about 100 %.
Though this behavior is common to both the geometries, increase in water depth does
not enhance heave response in both equivalent cases of triangular TLPs (see for
example, TLP2, TLP3 and TLP4). It is quite interesting to note that the response in
case of triangular TLPs with total T0 same as that of square is even lesser. It can be
seen that springing response in heave degree of freedom of triangular TLPs (of both
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Fig. 7.18 Response of square TLPs to non-impact waves. a Response of TLP1. b Response of
TLP2. c Response of TLP3. d Response of TLP4
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Fig. 7.19 Response of equivalent triangular TLPs to non-impact wave. a Response of TLP1.
b Response of TLP2. c Response of TLP3. d Response of TLP4
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equivalence case) under non-impact waves is lesser than that of square ones (see for
example, TLP4). Further, almost heave response in all square TLPs shows bursts, but
there are no rapid buildups and gradual decays in most cases, looking like a beat
phenomenon. This is possibly due to the superimposition of waves of nearly same
frequency, while such results are not predominantly noticed in case of equivalent
triangular TLPs. This type of response makes square TLPs more prone also to fatigue
failure due to repeated buildup and decay of tether forces. Heave response under non-
impact waves, which is clearly a springing response, poses a threat to the platform
stability since they occur closer to the natural frequency of heave degree of freedom
causing a near resonating case. Triangular TLPs showing lesser response in com-
parison with square in this front make them more attractive for deepwater conditions.
The response in surge degree of freedom does not show any such undesirable phe-
nomenon under the influence of impact and non-impact waves as well probably
because of its high degree of compliancy.

7.17 Significance of Springing and Ringing Response

As such, ringing and springing response, occurring at the natural frequency of one
of the stiff degree of freedom, say heave, can endanger the stability of the platform.
In addition, ringing can not only cause total breakdown of these platforms even in
moderate storms but also can hamper daily operations and lead to fatigue failure.
The variations in dynamic response with respect to water depth and tether tension
are presented by showing their influence on springing and ringing response. While
some of these observations are already noticed in case of square TLPs, the amount
of change in the response has been quantified in this study apart from presenting
their influence on platform geometry. Note that the choice of equivalent triangular
TLPs as an example highlights the vulnerability of heave motion characteristics of
the stiff system.

Some of the specific conclusions that can be drawn from the study are as
follows: (i) impact waves cause ringing response in pitch degree of freedom in both
the geometries; (ii) increased tether tension enhances pitch response in both the
geometries under impact waves, but this enhancement is less in triangular TLP
(with same T0 case) compared with square; (iii) increase in water depth enhances
pitch response due to impact waves for both geometries of TLPs, but this increase is
less in triangular TLPs compared with square ones; (iv) pitch response in triangular
TLPs (T0 per tether same case) under impact waves is much reduced as compared to
square, and it is further reduced for triangular TLP with total T0 same as square;
(v) the broad band in frequency response of heave degree of freedom under non-
impact waves, occurring near to its natural frequency of TLPs of both geometries, is
attributed to springing; (vi) heave response under non-impact waves decreases with
increase in tether tension for same water depth in both the geometries, but it is
further less in case of triangular TLPs; and (vii) beat phenomenon noticed in heave
response of square TLPs under non-impact waves is not seen in triangular TLPs.
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Exercise

1. Triceratops consists of ___________________________________ to achieve
the required buoyancy, to support the deck structure, to restrain system and to
serve storage requirements.

2. BLS is a ___________________, ___________________, ____________
_______ intended for use in ultra-deep waters.

3. ___________________ is placed between the BLS and deck to reduce the
rotational response of the deck when the BLS is exposed to wave, current and
impact loads.

4. ___________________________ is carried out analytically by subjecting the
structure to zero wave amplitude and necessary initial conditions in the
respective degree of freedom.

5. Write the Equation of motion for the free-decay test?
6. ______________________________ in BLS units results in significant

reduction in the pretension in tethers in comparison with that of TLPs.
7. Offshore structures exhibit highly intense nonlinear behavior called

______________ and ________________.
8. Explain Springing and Ringing response of TLP’s?
9. ______________________ of compliant structures like TLPs under impact and

non-impact waves responsible for ringing and springing phenomenon is of
large interest to Marine Engineers.

10. A __________________ event involves the excitation of transient structural
deflections at/close to the natural frequency of the platform arising at third
harmonic of the incident wave field.

Answers

1. Three or more BLSs.
2. Positively buoyant, floating, deep-draft structure.
3. Ball joint.
4. Free-decay test.
5. Equation of motion for the free-decay test is as follows

M þMa½ �€X þ C½ � _X þ ½K�X ¼ 0

where M is mass matrix; Ma is the added mass matrix, [C] is the damping
matrix, [K] is the stiffness matrix at any instantaneous position and €X; _X;X

� �
are acceleration, velocity and displacement, respectively.

6. Permanent ballast.
7. Springing and Ringing.
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8. Springing is caused in the vertical/bending modes by second-order wave effects
at the sum frequencies; this behavior is common in both mild and severe sea
states. Ringing is attributed to strong transient response observed in these
modes under severe loading conditions triggered presumably by passage of a
high, steep wave. This transient response further decays to steady state at a
logarithmic rate depending on the system damping.

9. Dynamic response.
10. Ringing.
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