
Sutherland

US $44.99

Shelve in
Programming Languages/C++

User level:
Beginning–Intermediate

www.apress.com

SOURCE CODE ONLINE

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Learn C++ for Game DevelopmentRELATED

If you’re new to C++ but understand some basic programming, then Learn C++ for Game Development
lays the foundation for the C++ language and API that you’ll need to build game apps and applications.

Learn C++ for Game Development will show you how to:

• Master C++ features such as variables, pointers, flow controls, functions, I/O,
classes, exceptions, templates, and the Standard Template Library (STL)

• Write C++ games using object-oriented programming techniques: classes,
objects, inheritance, and polymorphism

• Use design patterns to simplify your coding and make more powerful games
• Manage memory efficiently to get the most out of your creativity
• Load and save games using file I/O, so that your users are never disappointed
• Work with concurrency and the advantages it brings

Most of today’s popular console and PC game platforms use C++ in their SDKs. Even the Android NDK
and now the iOS SDK allow for C++; so C++ is growing in use for today’s mobile game apps. Game
apps using C++ become much more robust, better looking, more dynamic, and better performing. After
reading this book, you’ll have the skills to become a successful and profitable game app or applications
developer in today’s increasingly competitive indie game marketplace.

What You’ll Learn:

• How to use the various C++ skill fundamentals: variables, pointers, flow controls,
functions, I/O, classes, exceptions, and more

• How to write C++ games using object-oriented programming techniques:
classes, objects, inheritance, and polymorphism

• How to use templates and the Standard Template Library (STL) in C++
• How to work with design patterns in C++ game development
• How to apply C++ to native game activities
• How to master concurrency and the gains in performance it brings

9 781430 264576

54499
ISBN 978-1-4302-6457-6

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

iii

Contents at a Glance

About the Author �� xv

About the Technical Reviewer �� xvii

Acknowledgments ��� xix

Introduction ��� xxi

Chapter 1: Beginning C++ ■ ���1

Part 1: Procedural Programming ■ �� 5

Chapter 2: Writing a Guessing Game with C++ Types ■ ���7

Chapter 3: Creating Calculators with Operators ■ ��17

Chapter 4: Beginning C++ Game Development with Arrays ■ ��37

Chapter 5: Functions, the Building Blocks of C++ ■ ���49

Chapter 6: Making Decisions with Flow Control ■ ��57

Chapter 7: Organizing Projects Using Files and Namespaces ■ ���71

Part 2: Object-Oriented Programming ■ �� 79

Chapter 8 : Object-Oriented Programming with Classes ■ ���81

Chapter 9 : Controlling Data with Access Modifiers ■ ��97

Chapter 10: Building Games with Inheritance ■ ���111

iv Contents at a Glance

Chapter 11: Designing Game Code with Polymorphism ■ ��127

Chapter 12: Copying and Assigning Data to Objects ■ ���139

Part 3: The STL ■ �� 145

Chapter 13: The STL String Class ■ ��147

Chapter 14: STL Array and Vector ■ ���157

Chapter 15: STL List ■ ���163

Chapter 16: STL’s Associative Containers ■ ��169

Chapter 17: STL’s Stack and Queue ■ ���177

Chapter 18: STL’s bitset ■ ���181

Chapter 19: Using the STL in Text Adventure ■ ���185

Part 4: Generic Programming ■ ��� 199

Chapter 20: Template Programming ■ ��201

Chapter 21: Practical Template Programming ■ ��205

Part 5: C++ Game Programming ■ �� 223

Chapter 22: Managing Memory for Game Developers ■ ���225

Chapter 23: Useful Design Patterns for Game Development ■ ��239

Chapter 24: Using File IO to Save and Load Games ■ ���253

Chapter 25: Speeding Up Games with Concurrent Programming ■ ����������������������������������267

Chapter 26: Supporting Multiple Platforms in C++ ■ ���277

Chapter 27: Wrapping Up ■ ���285

 Index ■ ���291

xxi

Introduction

The C++ programming language remains the de facto language for many game development studios
around the world. This is true because C++ provides a convenient, low-level programming language
that allows developers to straddle the line between high-level software engineering and low-level
coding to the metal. This makes it the language of choice for many high-performance and real-time
computer programming projects.

C++ is a language in active development. Many of the examples in this book use features that were
ratified and released in the C++11 standard. Some of the features used are not yet supported by one
of the major compiler vendors. This active and progressive language development is a major reason
for C++ remaining a widely used and relevant language. The fact that it's the only way to write
portable, in-house code across all of the types of computers and processors you find today makes
learning C++ a handy skill to have. Devices that support C++ range from mobile phones, game
consoles, ATMs, smart watches, to even glasses! C++ programmers will never be short of work.
I hope you find this book an invaluable resource in your journey to learning the C++ programming
language.

1

Chapter 1
Beginning C++

The C++ programming language was designed by Bjarne Stroustrup at Bell Labs, beginning in 1979.
The goal of the language was to provide useful features from other languages of the time, such as
Simula, with faster runtime performance. C was chosen as the basis for this new language due to its
execution speed, portability, and wide adoption.

The first major extension Stroustrup added to C was class support. Classes allowed a new
programming paradigm to be used with C: object-oriented programming (OOP). Stroustrup’s new
language quickly became known as C with Classes, eventually changed to C++ in 1983.

C++ has been in continual development since its inception. New features were added regularly
throughout the 1980s and 1990s and many of these have become essential tools for game
developers. Examples of these features that are covered in this book are virtual functions, templates,
and the Standard Template Library.

An ISO standard for C++ was first published in 1998. Standardizing a language gives compiler
writers a common set of features to implement if they wish to achieve C++ compatibility.
Standardization also benefits programmers writing code in C++ as it allows them to use a common
set of features that they can expect to behave in the same way when using multiple compilers
or multiple operating systems and computer architectures. There have been four C++ standards
released to date. The original standard is known as C++98. C++98 was added to with C++03, and
new experimental features were added to the language with C++TR1 (C++ Technical Review 1).
The current C++ standard is C++11.

This book focuses on the most up-to-date version of the standard. However, this presents us with
some challenges, as not all compilers have been updated to support all of the latest features of
C++’. It can be taken for granted that when I refer to C++ in this book I mean C++11; any topics that
require explicit reference to older C++ standards will be clear. The Microsoft’ C++ compiler included
with its Visual Studio integrated development environment (IDE), for example, does not include
support for constant expressions or type aliasing. (Don’t worry if you don’t understand these terms;
they are new C++11 features and are covered in the section relating to templates.) Notes are added
to the text in sections where relevant features are not supported by one of the major compilers.

2 CHAPTER 1: Beginning C++

Compilers
C++ is a compiled language; this means that the code is read by a program that converts the text
source files created by a programmer into instructions that can be executed by a processor. Different
settings in compilers, or different compilers, can be used to turn source files into instructions
suitable for completely different processor architectures, such as x86 and Armv7.

The major compilers currently in use are the following:

Microsoft Visual C++ Compiler (MSVC)	

GNU Compiler Collection (GCC)	

Apple LLVM	

Clang	

These are the compilers that this book is most concerned with, as they are the most likely to be
encountered by game developers. MSVC is the compiler included with the Microsoft Visual Studio
IDE and used when writing programs for Windows and Microsoft game consoles such as the
Xbox One. GCC is common on Linux platforms and is the default compiler used when building
native Android applications. Apple LLVM is the C++ compiler used when building OS X and iOS
applications. Clang is a relatively new program that acts as the front end for the LLVM compiler
(also used in the Apple ecosystem) and is included as an optional compiler by the current Android
Native Development Kit (NDK).

Some of the samples included in this book might not compile on your compiler of choice if that
compiler is incompatible with all of the latest features of C++11. Switching compilers if possible or
updating your software to the latest versions are possible options to work with these features.

Programming Paradigms
Programming paradigms are closely related to high-level programming styles. C++ does not enforce
a particular paradigm and provides flexible features to enable programmers to program in the
following paradigms.

Procedural Programming
Procedural programming involves writing ordered statements in blocks known as functions
(also known as procedures). Functions are used to encapsulate code that can be reused and to
improve code readability. C is also a procedural language and C++ contains the entire C language
as a subset, allowing C++ programs to be written in a fully procedural manner. Part 1 of this book
covers the aspects of C++ necessary to write procedural programs.

Object-Oriented Programming
OOP is supported through the addition of classes to C++. OOP involves designing a program as
a set of discrete objects. These objects hide their implementation and data from the calling code
(encapsulation), which allows specific implementation details to be changed at a later time without

3CHAPTER 1: Beginning C++

affecting other sections of the program. Inheritance and polymorphism are other important aspects
of the C++ OOP paradigm. OOP programming is the focus of Part 2 in this book.

Generic Programming
Generic programming is most likely the least understood paradigm in C++ despite its widespread
use via the Standard Template Library. Templates allow programmers to write classes that can
operate on different types via specializations. Template metaprogramming is a powerful technique
that confers the ability to write programs within the code that generate values and code at compile
time. Templates and Metaprogramming are covered in Part 4 of this book.

C++ Game Programming
C++ has been a major language of choice for game developers since its inception. All major gaming
platforms have supported and currently support C++ compilation. This includes Windows, Linux,
OS X, iOS, Xbox One, PlayStation 4, Wii U, and Android.

Part 5 of this book covers advanced C++ topics that programmers will find useful as hardware
becomes more powerful. These include design patterns, streams, memory management,
concurrency (multithreaded programming), and a look at how we can write code that supports
multiple game development platforms.

Our First C++ Program
Let’s take a look at a simple C++ program before we get started with the details of C++. Listing 1-1
shows a simple C++ program written in Microsoft Visual Studio Express 2012 for Windows Desktop.

Listing 1-1. Our First C++ Program

// Chapter1.cpp : Defines the entry point for the console application.
//

#include "stdafx.h"
#include <iostream>
#include <string>

using namespace std;

int _tmain(int argc, _TCHAR* argv[])
{
 cout << "What is your name?" << endl;

 string name {};
 cin >> name;

 cout << "You said your name is: " << name << endl;

 return 0;
}

4 CHAPTER 1: Beginning C++

The first two lines of this source code are comments. A double forward slash indicates that all text
following the // on the same line should be ignored by the compiler. Block comments are also
supported and are opened with /* and closed with */. You will see several uses of both forms of
comment throughout this book.

There are then several lines beginning with #include. This tells the compiler to include other files into
our program. We cover the difference between source and header files in Chapter 6.

The next line tells the compiler that we want to use the standard namespace. Namespaces are also
covered in Chapter 6.

The program then begins with the _tmain function. This is the first function called by the program
when writing Windows applications that target the console. Different operating systems have
different entry points and you’ll see these throughout this book as different examples are written to
target different operating systems and compilers. You should be able to easily alter the samples to
use the entry point for your system of choice.

The cout operator writes the text following the << operator to the console window. The cin operator
stops the program and waits for the user to enter text. We store the text entered into the name variable
and then use it to echo back the input the user entered.

The last line returns the value 0 from the function to let the operating system know that we finished
without error.

As you can see, this simple program asks for the user’s name and then repeats that name back to
the user. Congratulations: You’ve written your first C++ program.

Summary
This chapter has given you a very brief introduction to the C++ programming language. We’ve
looked at the basic history of the language, the current main C++ compilers, its major paradigms,
and a simple C++ program.

The next chapters look at how we can create some simple games using the C features of C++,
beginning with a look at the fundamental built-in types and operators in C++.

The examples in Chapters 2 and 3 are simple programs that will help you to understand how C++ types
and operators behave. The examples beginning in Chapter 4 see us begin to create a text adventure
game that we will develop to completion throughout the remainder of the book. Text adventure
games were very popular on early computers and they are an excellent way to learn C++ for game
development without requiring you to learn the intricacies of a platform-specific windowing system or
graphics application programming interface (API).

Part 1
Procedural Programming

The roots of the C++ programing language come from the C programming language. C provides the
basis for the C++ procedural programming paradigm.

Procedural programming involves using variables and functions to create reusable procedures that
constitute a full program. This part of the book introduces you to the features provided in C++ that
would allow you to write fully procedural programs.

This part of the book begins by looking at C++’s built-in types, operators, arrays, pointers and
references, and functions before finally looking at flow control statements and methods of structuring
your programs.

7

Chapter 2
Writing a Guessing Game
with C++ Types

You will begin the process of learning C++ by learning about the different built-in types that the
language supports. C++ has built-in support for integers, floating point numbers, booleans, and
enumerators. This chapter covers all of these types. We also look at the different types of operators
that can be used to manipulate and compare these types of values. It is useful to understand how
C++ handles variables before we begin to create programs in the language. To start, we take a
look at the difference between dynamically and statically typed languages, which includes how we
declare and define variables in C++.

Dynamic Versus Static Typed Languages
Variables in programming languages can be handled in two different ways. Dynamically typed
languages do not require the programmer to state explicitly which type should be used to store the
value. Dynamically typed languages can switch the type of a variable on the fly depending on how it
is being used.

Statically typed languages require the programmer to tell the compiler explicitly which type to use to
represent the data the variable will store. C++ is a statically typed language and creating variables in
C++ is a two-step process.

Declaring Variables
When we are introducing a new variable into a program, we are said to be declaring the variable.
This essentially means that we are telling the compiler that we would like to have a variable of a
specific type and with a specific name. C++ compilers require that all variables be declared before
they can be used in our programs. An example of a variable declaration would be:

int numberOfObjects;

8 CHAPTER 2: Writing a Guessing Game with C++ Types

This declaration tells the compiler that we would like to have an integer with the name
numberOfObjects; it does not tell the compiler what the variable contains or what it should be
used for.

Defining Variables
We can define our variable once we have declared it. Defining a variable involves telling the compiler
what its initial value should be. This is an example of a variable definition:

numberOfObjects = 0;

It's fairly common that we will define and declare some variables at the same time. Combining the
declaration and definition would resemble this line:

int numberOfObjects = 0;

We'll be looking at the places where it is appropriate to declare names to the compiler compared to
defining them as we move through this book. The rules for declaring and defining different variables
and types depend on the context in which they are being used.

Integers
The first set of types that we will be looking at in C++ is the integer types. The previous sections
have already shown how to declare and define an integer variable. To recap:

int numberOfObjects = 0;

This line of code declares and defines an integer variable. What this means to the compiler is that we
want to create a variable that is capable of storing whole numbers. Examples of integers are –1000,
0, 24, and 1345219. Integers can contain both positive and negative numbers.

The type int is just one of several different types that can store integers. The others are char, short,
and long. Table 2-1 shows the different ranges of values that can be stored in these types when
using MSVC.

Table 2-1. The MSVC Integral Types, with Minimum and Maximum Values

Type Name Number of Bytes Minimum Value Maximum Value

char 1 –128 127

short 2 –32,768 32,767

int 4 –2,147,483,648 2,147,483,647

long 4 –2,147,483,648 2,147,483,647

long long 8 –9,223,372,036,854,775,808 9,223,372,036,854,775,807

9CHAPTER 2: Writing a Guessing Game with C++ Types

As you can see there are five main types of integers when using C++. It's important to select a
variable that can accommodate all of the possible values you might wish to store. Failing to use a
type with enough possible values results in wrapping. That means that if you had a char variable
that currently stored 127 and you tried to add a one, the value in the variable would wrap and your
variable would then contain –128.

Unsigned Integers
C++ also supports unsigned versions of the integer types shown in Table 2-1. Table 2-2 shows the
ranges that these unsigned variable types can store.

Table 2-2. MSVC's Unsigned Integral Type Ranges

Type Name Number of Bytes Minimum Value Maximum Value

unsigned char 1 0 255

unsigned short 2 0 65,535

unsigned int 4 0 4,294,967,295

unsigned long 4 0 4,294,967,295

unsigned long long 8 0 18,446,744,073,709,551,615

Using unsigned types extends the range of available positive integers at the expense of losing all
negative integers. These types should be used in all cases where negative numbers will not be needed.

Two’s Complement
Before we move on to look at some other types of variables, it is important to understand how
the integer values we have covered are represented by the computer. You’ve seen that unsigned
numbers of varying numbers of bytes can store numbers ranging from 0 through to their maximum
size. In the case of a single-byte char that maximum number is 255.

This happens because a single byte is made up of 8 individual bits. Each bit represents the next
power of two from the last. Table 2-3 shows how you can think of the bits in a byte.

Table 2-3. The Bits Making Up a Single Byte: The Top Row Shows the Bit Number and the Bottom Row Shows the Value This Byte
Represents When Using Unsigned Variables

8

128

7

64

6

32

5

16

4

8

3

4

2

2

1

1

10 CHAPTER 2: Writing a Guessing Game with C++ Types

Table 2-3 shows the bit values for an unsigned char. When we have an unsigned char variable that
stores the value 255, all of the bits are turned on. This would be represented by 11111111 in binary.
If we add a 1 to this number the values will wrap and we will end up back at 00000000 as the 8 bits
cannot store a higher value. This is something that you will need to be aware of when using unsigned
integer variables.

When you want to represent negative numbers using signed variables, the processor will use Two’s
Complement. Two’s Complement works by using the highest bit to represent whether the number is
positive or negative. The highest positive number that can be stored in a char variable is 127 and is
represented in binary by 01111111. Adding 1 to this number gives us 10000000, which is –128 and
once again shows you how wrapping occurs in practice.

Switching between a positive and negative number is a simple process. You have to switch all of the
bits and add one. The number 1 is represented in binary by 00000001. To flip 1 to -1 we first flip all
of the bits to 11111110 (which is -2) , then add 1 to give us 11111111.

This is a brief introduction to how a processor represents the integer values your programs will store
in memory. We will cover some more binary representations of numbers in Chapter 3 when we look
at binary operators.

Floating Point Numbers
Floating point numbers in C++ are used to represent numbers with a decimal point. Examples of
these are –10.5, 0.3337, and 89.8376.

Like the signed integer types, floats can be used to store positive and negative numbers. Unlike
integers, though, there are no unsigned versions of floating point numbers. Defining a floating point
is done in the following way:

float decimalNumber = 1.0f;

When defining floating point variables in code, the value must be followed by an f. The reason for
this is that a number with a decimal point but no f is a double.

The current floating point standards require that floats be represented with 32 bits (or 4 bytes).
Thirty-two-bit floating point numbers might not have a large enough range for what we would like
to achieve under given circumstances, so C++ also supplies the double type. The float type can be
thought of as a single precision floating point number and the double type is then a double precision
floating point number. A double can be defined as follows:

double doubleNumber = 1.0;

Single precision floats are usually sufficient for all but a few scenarios in game development and are
generally faster and more efficient for the types of tasks we carry out.

11CHAPTER 2: Writing a Guessing Game with C++ Types

Boolean Values
Booleans are simple values that can only contain true or false. Booleans are usually, but not always,
implemented as a single byte char. A value of 0 is usually used to represent false and any nonzero
value is true. We rarely use numbers to represent booleans, as C++ contains the true and false
keywords. A couple of boolean variable declarations would be:

bool isTrue = true;
bool isFalse = false;

We’ve already seen in the previous section that functions can return boolean values to help create
statements that make sense to a human reader:

bool numberIsNaN = isnan(nan);

Booleans will also become useful once we start looking at flow control statements in Chapter 5.

Enums
C++ allows us to create an enumerated list of values. This is useful if we wish to convey sets of
things that have readable names. An example of an enum in C++ is:

enum class Color
{
 Red,
 Green,
 Blue
};

This has effectively contained a new type in C++, Color. We can create new variables of type Color
like this:

Color currentColor = Color::Red;

Using enums is a useful way to create code that is highly readable. Compare the preceding line to
this:

unsigned int currentColor = 0;

This code essentially does exactly the same as the preceding line, but it is much more difficult to
understand. We have no way of knowing that 0 was the color red and it was also possible to assign
the number 10 to currentColor, which wouldn’t be a valid color.

12 CHAPTER 2: Writing a Guessing Game with C++ Types

Enums also allow us to assign a value to each element. In the Color enum we currently have Red
assigned the value 0, Green 1 and Blue 2. In the enum definition we could have used the following:

enum class Color
{
 Red,
 Green = 10,
 Blue
};

In the preceding enum, Red is still 0, and Green is 10; however, Blue is 11, as it directly follows Green.
There are few occasions where we need to specify the values of enums as they are most useful for
creating more readable code; but it is useful to understand that this is possible because you will
come across code written by others that will use this feature.

It’s also important to note that the enum class is a C++11 construct. Prior to C++11 the enum would
have been created using the following:

enum Color
{
 Red,
 Green,
 Blue
};

C++11 style enums are known as strongly typed enums. The compiler will not allow you to
accidentally use integers in place of the enum values. It also wouldn’t have been possible to use the
value Red in two different enums.

enum Color
{
 Red,
 Green,
 Blue,
};

enum TrafficLights
{
 Red,
 Amber,
 Green
};

This is not allowed with older enums, as the code to define a variable would look like:

Color currentColor = Red;
TrafficLights = currentLight = Red;

As you can see, we have no way of knowing which Red is to be used. This is even worse with the
Green value, as it would have a different integer representation: 1 in Color and 2 in TrafficLights.
This could cause bugs in our code as it would be valid to use the TrafficLights version of Green

13CHAPTER 2: Writing a Guessing Game with C++ Types

when we really meant to use the Color version. The compiler would assume that we meant Blue as
both Color::Blue and TrafficLights::Green are representations of 2. Using an enum class, however,
means the code must look like this:

Color currentColor = Color::Red;
TrafficLights = currentLight = TrafficLights::Red;

As you can see, the strongly typed version of enums is much better and provides us with more
explicit code. Always use an enum class where possible in new code.

Enums are the last type introduced in this chapter. We can now spend the rest of the chapter looking
at the different types of operators that C++ supplies to work with our types.

Switching from One Type to Another
Sometimes while writing our programs we will have a value stored as one type, such as an int,
but we would like to use the value from our variable along with a value stored in another variable.
Fortunately C++ can automatically convert from some types to others. The following lines of code
provide some examples:

char charNumber = 1;
int intNumber = charNumber;
float floatNumber = intNumber;

C++ can implicitly convert numbers from one type to another. Going from smaller types to larger
types and from integer types to floats and floats to doubles as well as from integer types to bools are
all legal and carried out automatically by the compiler.

static_cast
Whereas moving from a smaller type to a larger type is safe, moving from a larger type to a smaller
type can cause a loss of data. For example:

int largeNumber = 1000;
char smallNumber = largeNumber;

In this case, the large number would likely be truncated from 1,000 to 127, as that is the largest
number that a signed char variable can hold. This type of data loss is known as a narrowing
conversion. C++ compilers give warnings about this type of conversion and many game
development studios like to keep their code error-free or enable compiler settings that cause all
warnings to become errors. Fortunately C++ provides us with a method to tell the compiler that we
were converting this value on purpose. This method is known as a static cast. An example of the
usage of static_cast would be:

char smallNumber = static_cast<char>(largeNumber);

This code tells the compiler that we are purposefully converting our type to a char and it will not
output any warnings for the conversion.

14 CHAPTER 2: Writing a Guessing Game with C++ Types

It’s also good practice to use static_cast when carrying out conversions to larger types (actually
called widening conversions) to make it clear and obvious to other programmers that we have used
the conversion on purpose and that it is not actually a mistake.

static_cast is evaluated by the compiler at compile time and will cause a compilation error if we are
trying to convert between incompatible types.

A Simple Guessing Game
We’ll use what you have learned about declaring and defining variables and integers to create a
simple guessing game. In the beginning the game will be basic; however, we will add to the game
throughout the remainder of this chapter to make the output more like a game.

For now we will ask the player to input a number and output that number and a random number
selected by the program. Listing 2-1 shows the program written to compile using C++ 4.7.3.

Listing 2-1. A Simple C++ Guessing Game

#include <ctime>
#include <cstdlib>
#include <iostream>
#include <string>

using namespace std;

int main()
{
 // Generate unique random numbers using the current time
 srand(time(NULL));
 // Get a random number between 0 and 99
 unsigned int numberToGuess = rand() % 100;

 cout << "Guess a number between 0 and 99" << endl;

 unsigned int playersNumber {};
 cin >> playersNumber;

 cout << "You guessed: "
 << playersNumber
 << " The actual number was: "
 << numberToGuess
 << endl;

 return 0;
}

Our guessing game source code begins by including the C++ header files necessary for the features
we use and declares that we will be using the std namespace.

15CHAPTER 2: Writing a Guessing Game with C++ Types

#include <ctime>
#include <cstdlib>
#include <iostream>
#include <string>

using namespace std;

The entry point for our program when using GCC is:

int main()

Listing 1-1 showed that the entry point when using MSVC was:

int _tmain(int argc, _TCHAR* argv[])

The first four lines of the main function are used to obtain a random number. The srand function
carries out an operation known as seeding. This uses the current time returned from the time
function to generate a sequence of random numbers.

// Generate unique random numbers using the current time
srand(time(NULL));

We declare and define a variable, numberToGuess, to store the value that we would like our player to
guess. The rand function returns the number and we use the modulus operator (%) to ensure that the
number remains less than 100. We cover the modulus operator in more detail in Chapter 3.

// Get a random number between 0 and 99
unsigned int numberToGuess = rand() % 100;

The remaining code is similar to Listing 1-1. We use cout to write text for the player to read and use
cin to allow the player to enter a guessed number. We finish by returning 0.

cout << "Guess a number between 0 and 99" << endl;

unsigned int playersNumber {};
cin >> playersNumber;

cout << "You guessed: "
 << playersNumber
 << " The actual number was: "
 << numberToGuess
 << endl;

return 0;

16 CHAPTER 2: Writing a Guessing Game with C++ Types

Summary
This chapter has given you a brief introduction to the built-in data types provided by C++ as well as
also taking a look at enums and the usage of static_cast to convert between these built-in types.

We then used this knowledge to create a very simple program to guess a number chosen by the
computer. At the moment, we do not have the ability to test whether the player guessed correctly;
that will come later in Part 1 when we look at flow control statements in Chapter 6. Chapter 3 covers
the operators that are available in C++. Operators are the means with which C++ allows us to create
logical programs that calculate and compute outcomes from our statements.

17

Chapter 3
Creating Calculators
with Operators

C++ provides operators that allow you to express all sorts of mathematical formulae in computer
programs. You have access to operators that allow us to carry out algebra, compare values, and
even manipulate the individual bit pattern of a variable’s value directly. This chapter is going to cover
these C++ operators and end by having you create a simple command line calculator.

The Assignment Operator
The first operator we are going to look at is the assignment operator. We have already been using
the assignment operator in the previous chapters as it is the operator that allows us to assign a value
to a variable. This operator uses the = symbol:

int number1 = 1;

As you can see we have assigned the value of 1 to an integer variable named number1. We can also
assign variable values to other variables:

int number2 = number1;

Here the program will read the value stored in number1 and assign that value to the variable number2.
As we saw in the previous chapter, the assignment operator can also automatically convert from one
variable type to another.

char charNumber = 1;
int intNumber = charNumber;

The assignment is one of the most widely used operators in C++; thankfully, it’s also easy to use and
fairly obvious in nature.

18 CHAPTER 3: Creating Calculators with Operators

The assignment operator can also be used in some pieces of code that aren’t necessarily very
readable. Take the following line, for instance:

number1 = number2 = number3 = 1;

C++ compilers will evaluate these statements from right to left. 1 is assigned to number3, which
would be assigned to number2, which would be assigned to number1, and all three variables will end
up storing 1. I wouldn’t recommend writing code like this.

Arithmetic Operators
C++ also allows us to carry out basic arithmetic operations and we have five of these available:

Addition operator	

Subtraction operator	

Multiplication operator	

Division operator	

Modulo operator	

The Addition Operator
The addition operator behaves exactly as you would expect: It allows us to add two numbers
together. The addition operator can add a value from the right to a value on the left and the result
can be used in a statement, like this:

int sum = number1 + number2;

Here we have added number2 to number1 and stored the result in a third variable named sum.

It is also possible to use the same values in all of the places in our addition statement, for example:

int number = 1;
number = number + number;

Here we end up with 2 being stored in the variable number after this code has executed.

The Subtraction Operator
The subtraction operator works exactly like the addition operator, although unsurprisingly it subtracts
one number from another and creates a result:

int number1 = 2;
int number2 = 1;
int result = number1 - number2;

This code would cause the value 1 to be stored in the variable result.

19CHAPTER 3: Creating Calculators with Operators

The Multiplication and Division Operators
These operators are also fairly self-explanatory; the multiplication operator multiplies numbers
together and the division operator divides the number on the left by the number on the right:

int number1 = 4;
int number2 = 2;
int multiplied = number1 * number2;
int divided = number1 / number2;

The result of the multiplication would be 8 and the result of the division would be 2.

The division operator, like the subtraction operator, has a result that depends on the order of the
variables.

int divided1 = number1 / number2;
int divided2 = number2 / number1;

After executing these lines of code, divided1 would store 2 as earlier but divided2 would store 0 as
4 cannot divide into 2. You can think of the results of the division as being rounded down to the
nearest whole integer. The following example shows a similar result.

int number1 = 5;
int number2 = 2;
int divided1 = number1 / number2;
int divided2 = number2 / number1;

In the preceding code, divided1 will contain 2 after execution. The actual math would be 5/2 = 2.5
or 2 remainder 1, but as integers can only store whole numbers we lose the extra 0.5 or remainder.
2/5 = 0 remainder 5, and again we lose the remainder; therefore divided2 will store 0.

float divided2 = static_cast<float>(number2) / static_cast<float>(number1);

Casting both numerator and denominator to float values (or dividing two float variables) would have
yielded a result of 0.5f. This is why it is important to use the correct type of variable for the job at hand.

The Modulo Operator
Our guessing game in Listing 2-1 has already shown a usage of the modulo operator. This can be
thought of as a remainder operator, as it will return the remainder of dividing one number by another.

int numerator = 12;
int denominator = 10;
int remainder = numerator % denominator;

The variable remainder shown here will store the value 2 as 12 divided by 10 equals 1 remainder 2.

20 CHAPTER 3: Creating Calculators with Operators

A Simple Arithmetic Calculator
We will now write a simple program that can show the results of the arithmetic operators. Listing 3-1
shows the code that will take two numbers and add them together. This sample code was created
using Xcode and the main function is suitable for creating command-line programs for OS X.

Listing 3-1. Adding Two Numbers

#include <iostream>
using namespace std;

int main(int argc, const char * argv[])
{
 cout << "Enter your first number: " << endl;
 float number1 = 0.0f;
 cin >> number1;

 cout << "Enter your second number: " << endl;
 float number2 = 0.0f;
 cin >> number2;

 float result = number1 + number2;
 cout << "The result of adding your two numbers is: " << result << endl;
 return 0;
}

We once again use cin and cout to communicate with users and ask them to enter two numbers.
We then store the result of an addition in the variable result and print the output to the console.
An example of the output from this program is shown here:

Enter your first number:
40
Enter your second number:
10
The result of adding your two numbers is: 50

Listing 3-2 shows a subtraction version of this program.

Listing 3-2. Subtracting Two Numbers

#include <iostream>
using namespace std;

int main(int argc, const char * argv[])
{
 cout << "Enter your first number: " << endl;
 float number1 = 0.0f;
 cin >> number1;

 cout << "Enter your second number: " << endl;
 float number2 = 0.0f;
 cin >> number2;

21CHAPTER 3: Creating Calculators with Operators

 float result = number1 - number2;
 cout << "The result of subtracting your two numbers is: " << result << endl;
 return 0;
}

Listing 3-3 shows a multiplication version of this program.

Listing 3-3. Multiplying Two Numbers

#include <iostream>
using namespace std;

int main(int argc, const char * argv[])
{
 cout << "Enter your first number: " << endl;
 float number1 = 0.0f;
 cin >> number1;

 cout << "Enter your second number: " << endl;
 float number2 = 0.0f;
 cin >> number2;

 float result = number1 * number2;
 cout << "The result of multiplying your two numbers is: " << result << endl;
 return 0;
}

Listing 3-4 shows a division version of this program.

Listing 3-4. Dividing Two Numbers

#include <iostream>
using namespace std;

int main(int argc, const char * argv[])
{
 cout << "Enter your first number: " << endl;
 float number1 = 0.0f;
 cin >> number1;

 cout << "Enter your second number: " << endl;
 float number2 = 0.0f;
 cin >> number2;

 float result = number1 / number2;
 cout << "The result of dividing your second number into your first is: "
 << result << endl;
 return 0;
}

22 CHAPTER 3: Creating Calculators with Operators

Last but not least, Listing 3-5 shows a modulo version of this program.

Listing 3-5. Finding the Remainder Between Two Numbers

#include <iostream>
using namespace std;

int main(int argc, const char * argv[])
{
 cout << "Enter your first number: " << endl;
 int number1 = 0;
 cin >> number1;

 cout << "Enter your second number: " << endl;
 int number2 = 0;
 cin >> number2;

 int result = number1 % number2;
 cout << "The remainder from dividing your second number into your first is: "
 << result << endl;
 return 0;
}

We have to change the variables in Listing 3-5 to int from float as the modulo operator can only
operate on integer values.

Now that we have covered the arithmetic operators, we will take a look at relational operators.

Relational Operators
C++ allows us to compare variable values using relational operators. These operators allow us to work
out if two variables are equal, not equal, one is greater than the other, or one is less than the other.
There are also operators to work out if variables are less than or equal, and greater than or equal.

Each of these operators provides a true or false result that can be stored in a bool. C++ provides the
following relational operators:

Equality operator	

Greater-than operators	

Less-than operators	

Equality Operators
The equals operator is ==. We can use this in the following way:

bool isEqual = number1 == number2;

isEqual will contain true if number1 and number2 store the same value; otherwise it will contain false.

23CHAPTER 3: Creating Calculators with Operators

C++ also contains an inequality operator that can be thought of as a not equals operation. It can be
used as follows.

bool isNotEqual = number1 != number2;

As we can see, the inequality operator uses an exclamation mark before the equals symbol.
This operator provides true when the two values are not the same and false if they are the same.

Greater-Than Operators
C++ also allows us to work out if a value stored in a variable is greater than another. We can do this
as follows:

bool isGreater = number1 > number2;

We can also tell if a number is greater than or equal to another:

bool isGreaterThanOrEqual = number1 >= number2;

Less-Than Operators
We can work out if a value is less than another using the less-than operator:

bool isLessThan = number1 < number2;

As with greater-than, there is a less-than or equal to operator:

bool isLessThanOrEqual = number1 <= number2;

We will create some small programs to show off the relational operators just as we did with the
arithmetic operators.

Simple Comparison Calculators
Listing 3-6 shows the source code for a simple program that tests the equality of two values.

Listing 3-6. Using the Equality Operator

#include "stdafx.h"
#include <iostream>

using namespace std;

int _tmain(int argc, _TCHAR* argv[])
{
 cout << "Enter your first number: " << endl;
 int number1 = 0;
 cin >> number1;

24 CHAPTER 3: Creating Calculators with Operators

 cout << "Enter your second number: " << endl;
 int number2 = 0;
 cin >> number2;

 bool result = number1 == number2;
 cout << "It is "
 << result
 << " that your first number is equal your second."
 << endl;

 return 0;
}

This sample application was created using Microsoft Visual Studio. The program will end very
quickly after the second value has been entered, so a good trick is to set a breakpoint on the return
line using the F9 key and to use debug mode to run the program using the F5 key.

The boolean value in this sample will be printed out as a 1 when the operation results in a true value
and 0 when the result is false.

Listing 3-7 shows a simple program using the inequality operator.

Listing 3-7. The Inequality Operator

#include "stdafx.h"
#include <iostream>

using namespace std;

int _tmain(int argc, _TCHAR* argv[])
{
 cout << "Enter your first number: " << endl;
 int number1 = 0;
 cin >> number1;

 cout << "Enter your second number: " << endl;
 int number2 = 0;
 cin >> number2;

 bool result = number1 != number2;
 cout << "It is "
 << result
 << " that your first number is not equal your second."
 << endl;

 return 0;
}

Listing 3-8 contains the source code for an example of the greater-than operator.

25CHAPTER 3: Creating Calculators with Operators

Listing 3-8. The Greater-Than Operator

#include "stdafx.h"
#include <iostream>

using namespace std;

int _tmain(int argc, _TCHAR* argv[])
{
 cout << "Enter your first number: " << endl;
 int number1 = 0;
 cin >> number1;

 cout << "Enter your second number: " << endl;
 int number2 = 0;
 cin >> number2;

 bool result = number1 > number2;
 cout << "It is "
 << result
 << " that your first number is greater than your second."
 << endl;

 return 0;
}

Listing 3-9 shows a use of the greater-than or equal to operator.

Listing 3-9. The Greater-Than or Equal To Operator

#include "stdafx.h"
#include <iostream>

using namespace std;

int _tmain(int argc, _TCHAR* argv[])
{
 cout << "Enter your first number: " << endl;
 int number1 = 0;
 cin >> number1;

 cout << "Enter your second number: " << endl;
 int number2 = 0;
 cin >> number2;

 bool result = number1 >= number2;
 cout << "It is "
 << result
 << " that your first number is greater than"
 << " or equal to your second."
 << endl;

 return 0;
}

26 CHAPTER 3: Creating Calculators with Operators

Listing 3-10 shows an example of the less-than operator.

Listing 3-10. The Less Than Operator

#include "stdafx.h"
#include <iostream>

using namespace std;

int _tmain(int argc, _TCHAR* argv[])
{
 cout << "Enter your first number: " << endl;
 int number1 = 0;
 cin >> number1;

 cout << "Enter your second number: " << endl;
 int number2 = 0;
 cin >> number2;

 bool result = number1 < number2;
 cout << "It is "
 << result
 << " that your first number is less than your second."
 << endl;

 return 0;
}

Finally, Listing 3-11 shows a use of the less-than or equal to operator.

Listing 3-11. The Less-Than or Equal To Operator

#include "stdafx.h"
#include <iostream>

using namespace std;

int _tmain(int argc, _TCHAR* argv[])
{
 cout << "Enter your first number: " << endl;
 int number1 = 0;
 cin >> number1;

 cout << "Enter your second number: " << endl;
 int number2 = 0;
 cin >> number2;

 bool result = number1 <= number2;
 cout << "It is "
 << result
 << " that your first number is less than "

27CHAPTER 3: Creating Calculators with Operators

 << " or equal to your second."
 << endl;

 return 0;
}

So far we have looked at arithmetic operators for carrying out basic mathematical operations and
relational operators for comparing the values stored in variables. The next set of operators supplied
by C++ is the bitwise operators, which allow us to modify the individual bits that make up our values.

Bitwise Operators
All of the values we have seen so far have been backed by bits stored in computer memory.
In a binary computer system, a single bit can either contain a one or a zero. We represent higher
numbers than these by using different patterns of bits. This section covers the operators that allow
us to manipulate bits.

As a programmer you will generally deal with data sizes in terms of numbers of bytes rather than
numbers of bits. A byte is a collection of 8 bits. We have already seen that the char data type
consists of a single byte and that an int consists of 4 bytes. This means that a char consists of 8
bits and an int is 32 bits.

We can think of the 8 bits of a byte as being represented in the same manner as in Table 3-1.

Table 3-1. The Unsigned char Bit Sequence for 137

128 64 32 16 8 4 2 1

1 0 0 0 1 0 0 1

The bit sequence in Table 3-1 represents the unsigned char value of 137. We have a bit telling us
that the value consists of a 1, an 8, and a 128. These are added together to give us 137.

The bitwise operators allow us to set and unset individual bits, test if bits are set, and even merge bit
patterns together. A set bit means that its value is 1 and an unset bit has the value 0. The rest of this
section looks at the bitwise operators available in C++ as well as the hexadecimal representation of
numbers.

Hexadecimal Number Representation
When we normally write numbers, such as 11, we are using the decimal number representation.
Decimal numbers have a base 10 format. We say it is base 10, as we have 10 unique digits,
0 through 9. Once we add one to 9 in a column, we reset the column to 0 and add a one to the
column to the left, so 9 becomes 10, 19 becomes 20, and 1999 becomes 2000.

28 CHAPTER 3: Creating Calculators with Operators

Note It’s probably not a coincidence that we have 10 fingers, or digits, on our hands and that our modern
counting systems are all based on the base 10 number system. The binary numbers we have been looking at
so far are actually numbers in the base 2 representation of numbers!

Table 3-1 shows how we can represent numbers in the binary format. 1 is 1, 2 in binary is 10, and 137
in binary is 10001001. Once we get to 32-bit values we have to keep track of 32 individual bits, and
things are even worse now that we are seeing processors that can operate on 64-bit values. To make
life easier for all, the hexadecimal number format can be used to represent large bitfields. Despite the
“hex” part leading us toward believing that we are dealing with sets of six, hexadecimal values actually
work in sets of 16, or base 16. The hexadecimal representation uses the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
A, B, C, D, E, and F where A, B, C, D, E, and F represent 10, 11, 12, 13, 14, and 15, respectively.

Table 3-1 can be used to work out that the binary value 1111 is actually the number 15. We can
represent the 8-bit value of 15 in C++ using the following line of code:

unsigned char hex15 = 0x0F;

If we wish to print a value out onto the console in hex format we tell cout in the following manner:

cout << std::hex << number << std::dec << number;

For the rest of this section we use simple 8-bit binary representations of numbers to show how the
bitwise operators change values in our code. This small section on hexadecimal numbers is useful,
as we would use this format for binary values in source code for shipping game titles.

C++ provides us with the following bitwise operators:

AND operator	

OR operator	

Exclusive OR operator	

Left Shift operator	

Right Shift operator	

The Binary & (AND) Operator
The & operator is known as the AND operator. Listing 3-12 shows how the & operator is used.

Listing 3-12. The Bitwise & Operator

#include "stdafx.h"
#include <iostream>

using namespace std;

29CHAPTER 3: Creating Calculators with Operators

int _tmain(int argc, _TCHAR* argv[])
{
 unsigned int first = 0x0F;
 unsigned int second = 0x18;
 unsigned int anded = first & second;

 cout << hex << showbase;
 cout << first << endl;
 cout << second << endl;
 cout << anded << endl;

 return 0;
}

Note We are using unsigned int and not unsigned char in these examples as cout prints character
symbols when using char types but converts to human-readable numbers when using int types.

We are using the & operator on the variables first and second in Listing 3-12 and storing the result
in anded. The first use of cout tells the output stream that we would like to show numbers in the hex
format. The showbase specifier tells the output stream that we would also like to show the 0x part of
the number. The output from this program would look like the following:

0xf
0x18
0x8

0x0f and 0x18 were our input numbers and 0x08 is the output generated. Table 3-2 shows how we
derive this result.

Table 3-2. The Result of Using Bitwise & on 0x0F and 0x18

128 64 32 16 8 4 2 1

first 0 0 0 0 1 1 1 1

second 0 0 0 1 1 0 0 0

anded 0 0 0 0 1 0 0 0

Table 3-2 shows how we can derive 0x08 as the result of an & between 0x0F and 0x18. We begin
with the right-most column and work our way to the left.

In the 1s column we have a 1 in first and a 0 in second; therefore the result bit is 0.

In the 2s column we have a 1 in first and a 0 in second; therefore the result bit is 0.

In the 4s column we have a 1 in first and a 0 in second; therefore the result bit is 0.

30 CHAPTER 3: Creating Calculators with Operators

In the 8s column we have a 1 in first and a 1 in second; therefore the result bit is 1.

In the 16s column we have a 0 in first and a 1 in second; therefore the result bit is 0.

All other columns have 0s in both values.

As you can see, to be able to have a 1 in a bit column in our result value the corresponding bit
column also had to be 1 in the first and second values. If either of the values was a 0 then the result
bit at the same column is also a 0.

The Binary | (OR) Operator
The Bitwise |, or OR, operator is used to determine if either of the bits in a given column is set to
1 in either of the two supplied values. Table 3-3 shows the result of using | with the same 0x0F and
0x18 values as the previous example.

Table 3-3. The Result of Using Bitwise | on 0x0F and 0x18

128 64 32 16 8 4 2 1

first 0 0 0 0 1 1 1 1

second 0 0 0 1 1 0 0 0

ord 0 0 0 1 1 1 1 1

The result of the | on the two values is 0x1F. We derived this using the following method from
left to right.

In the 1s column we have a 1 in first; therefore the result bit is 1.

In the 2s column we have a 1 in first; therefore the result bit is 1.

In the 4s column we have a 1 in first; therefore the result bit is 1.

In the 8s column we have a 1 in first; therefore the result bit is 1.

In the 16s column we have a 1 in second; therefore the result bit is 1.

All other columns have 0s in both values.

Using the | operator is as simple as using the & operator; however, the resulting bit for each column
is set to 1 if either of the bits from the two input values were 1.

The Binary ^ (Exclusive OR) Operator
Our last bitwise operator is the ^ (or Exclusive OR/XOR) operator. This operator differs from the |
operator by requiring that one of the two input values bits is set, but not both. Table 3-4 shows this
in practice.

31CHAPTER 3: Creating Calculators with Operators

The result from 0x0F ^ 0x18 is 0x17. As you can see, every column that contains a 1 and a 0 resulted
in a 1 being placed into the result. The columns that contain two 1s or two 2s all result in 0s being
stored.

The Left Shift (<<) Operator
You can use the left shift operator to move bits to the left by a specified number of bits. The following
code shows how we can use the shift operator.

unsigned int shifted = 1 << 1;

If you print the value stored in shifted you will see that it contains the number 2. This is because the
bit to the left of the first bit represents 2. The following patterns show what has happened.

128 64 32 16 8 4 2 1

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

If we had shifted the number of bits by 2 then shifted would have contained 4. When we use the
left shift operator, all of the bits at the right of the pattern are set to 0. This ensures that we do not
introduce new values into our variable.

A more complicated way of thinking about the shift operator is to imagine that we are multiplying the
left value by 2 raised to the power of the number of shifted bits. In our example, we had 1*(2^1)=2.
If we had shifted by 4 bits we would have 1*2^4=16.

The last thing you should consider when using left shift is what happens to values on the end.
Consider the following line of code.

unsigned int shifted = 0x80000000 << 1;

This code shows that we will shift the end bit off of the end. In this case shifted will store 0 after
execution. As all bits to the right of the shift are set to 0, any bits that are shifted out of the variable
will be lost.

Table 3-4. The Result of Using Bitwise ^ on 0x0F and 0x18

128 64 32 16 8 4 2 1

first 0 0 0 0 1 1 1 1

second 0 0 0 1 1 0 0 0

xord 0 0 0 1 0 1 1 1

32 CHAPTER 3: Creating Calculators with Operators

The Right Shift (>>) Operator
The right shift operator carries out the opposite operation to the left shift operator.

unsigned int shifted = 0x2 >> 1;

shifted contains 1 after executing this line of code. Again, if you shift values off the end then they
are lost.

There is a significant difference between the left and right shift operators. When left shifting, all of the
new values are set to 0. When right shifting the new bits depend on whether your value is a signed or
unsigned type. Unsigned types have the values at the left of the bit pattern set to 0. Signed types have
these set to the value contained in the sign bit. This means that positive values will have these bits set to
0 and negative values will have these bits set to 1. If you’re having trouble remembering why this would
be, you should go back over the description of twos complement numbers in the previous chapter.

Bitwise operators can be fairly complex to get your head around, but they can be a very powerful
tool for a programmer. The next set of operators that we will be looking at is the logical operators.

Logical Operators
We are going to cover logical operators here without covering any source examples. Logical
operators are at their most useful when combined with flow control statements, which we will look
at in Chapter 6. There are two logical operators: Logical AND (&&) and Logical OR (||). These behave
differently to the Bitwise & and | operators, so it is critical that you ensure that you are choosing the
appropriate operator for the task at hand.

Logical operators operate on two boolean values and return a boolean result.

The && Operator
The && operator simply tells us whether two booleans are both true. For example:

bool isTrue = true && true;
bool isFalse = false && true;
bool isFalse = true && false;
bool isFalse = false && false;
bool isTrue = true && true && true;

There isn’t any more to the && operator than this.

The || Operator
The || operator is as simple as the && operator. Some results when using || are as follows:

bool isTrue = true || true;
bool isTrue = false || true;
bool isTrue = true || false;
bool isFalse = false || false;
bool isTrue = true || false || false;

33CHAPTER 3: Creating Calculators with Operators

As you can see, the result is only false when all parameters in the || chain are false where they were
all true, to provide a true result using &&.

Another class of operators we can use in C++ are the unary operators. So far all of the operators we
have looked at have required two input values to create an output value. Unary operators can work
on a single variable.

Unary Operators
C++ provides a set of operators that can be used with a single variable as opposed to the operators
that take two operands as we have seen so far. There are arithmetic, logical, and binary unary
operators, which we look at in this section. First we take a look at the arithmetic unary operators.

Arithmetic Unary Operators
The arithmetic unary operators are the plus and negative operators, and the increment and
decrement operators.

Unary Negative Operator
The unary negative operator is used to negate a given value just as we do in general arithmetic. -x
means negate x. If x happened to be 4 then the value would become –4, if it was –3 the value would
become 3. It can be used in C++ code as follows:

int negatedValue = -4;
int positiveValue = -negatedValue;

positiveValue would contain 4 after executing these lines of code.

Unary Plus Operator
The unary plus operator simply returns the same value as it reads and therefore finds little use in
practical programming.

int valueA = 1;
int valueB = +valueA;

In the preceding code, valueB would also contain the number 1.

The Increment and Decrement Operators
The increment operator allows us to increase a value by one and the decrement operator allows
us to decrease a value by one. If we place the operator before the variable name, it is said to be
a preincrement or predecrement operator. If we place it after it is said to be a postincrement or
postdecrement operator. Listing 3-13 shows a small MSVC program that outputs various values
using these operators.

34 CHAPTER 3: Creating Calculators with Operators

Listing 3-13. The Increment and Decrement Operators

#include "stdafx.h"
#include <iostream>

using namespace std;

int _tmain(int argc, _TCHAR* argv[])
{
 int value = 0;
 cout << value << endl;
 cout << value++ << endl;
 cout << ++value << endl;
 cout << value-- << endl;
 cout << --value << endl;
 return 0;
}

The output from this program is the following:

0
0
2
2
0

We achieve this in the following way. 0 is output in the first cout line as the variable value was
initialized to 0. The second cout also prints 0 as the postincrement operator returns the value of the
variable, then increases it; therefore, we print out 0 then add 1. The third cout uses a preincrement
operator; therefore, 1 is added to the variable, giving 2, which is then returned to cout for printing.
Our fourth cout uses a post decrement operator that causes the value 2 to be returned from the
variable before it is decremented to 1. The last cout decrements the variable to 0 before returning it
to the cout command for printing.

These operators will be useful when we look at arrays in Chapter 4.

The Logical Not Unary Operator
Logical Not allows us to flip the value of a boolean value. Using !, true becomes false and false
becomes true. We could determine if two values were not equal in the following way:

bool notEqual = !(valueA == valueB);

This is a simple example of how to use the ! operator.

The One’s Complement Operator
The operator, ~, can be used to flip all of the bits in a variable. Listing 3-14 shows a program to
print the output from the ~ operator.

35CHAPTER 3: Creating Calculators with Operators

Listing 3-14. The ~ Operator

#include "stdafx.h"
#include <iostream>

using namespace std;

int _tmain(int argc, _TCHAR* argv[])
{
 int test = 0x0000000F;
 cout << hex << ~test;
 return 0;
}

This program will write out 0xFFFFFFF0, which is the value 0x0000000F with all of the bits flipped from
0 to 1 and 1 to 0.

Summary
In this chapter we have covered all of the basic operators that we will be using to construct
procedural programs. These operators allow us to carry out arithmetic on variables, compare the
relationships between values in variables, and even carry out complicated operations on individual
bits inside variable values.

Every program we write uses combinations of these operators to carry out complicated and complex
tasks. The examples so far in this book have been basic programs that help us to understand the effects
of these operators on the types provided by the C++ programming language. The examples beginning
in Chapter 4 will actually start us on our journey into creating a text adventure game using C++.

37

Chapter 4
Beginning C++ Game
Development with Arrays

We will begin to create our first C++ game in this chapter. So far this book has looked at the various
types supplied by the C++ programming language as well as the operators that can be used to
alter and compare these types. The next major area of the C++ programming language that you
should understand to begin constructing complex programs is data storage. The individual types in
C++, such as int and char, can hold single values, but often we will want to be able to remember
multiple values all relating to similar things. We could achieve this by creating a unique variable for
every object with a value that we wish to remember; however, C++ provides us with arrays to store
multiple values together. This chapter takes a look at how arrays are used in C++ and also explores
how we can use arrays to begin our text adventure game.

The C++ Array
We looked at the various types supplied by C++ in Chapter 2, but each of the examples involved
looking at only a single variable at a time. When writing programs, we would rather work with
multiple pieces of data, as this is the type of task that computers are exceptionally good at.
The following line of code shows how we can define an array that contains five integers.

int intArray[5] = { 0, 1, 2, 3, 4 };

This code creates an array of five integers each containing the values 0 through 4. The individual
variables contained within an array are often referred to as the elements of the array. Listing 4-1
shows how we can use this array in a simple program.

38 CHAPTER 4: Beginning C++ Game Development with Arrays

Listing 4-1. C++ int Array

#include <iostream>

using namespace std;

int _tmain(int argc, _TCHAR* argv[])
{
 int intArray[5] = { 0, 1, 2, 3, 4 };
 cout << intArray[0] << endl;
 cout << intArray[1] << endl;
 cout << intArray[2] << endl;
 cout << intArray[3] << endl;
 cout << intArray[4] << endl;
 return 0;
}

The array operator [] is used to specify an index into an array. The index is a value that specifies
the offset of the variable that we would like to access. A common misunderstanding in computer
programming is the fallacy that programmers “count” from zero. This is not strictly the case;
programmers offset from zero and indexing into arrays is a perfect example of this.

The index 0 specifies that we would like the first element from the array and the index 1 specifies
that we would like the second element. Listing 4-1 supplied indexes to the array using hard-coded
literal values. You can also index into an array using a variable. Listing 4-2 gives an example of this.

Listing 4-2. A Variable Array Index

#include <iostream>

using namespace std;

int _tmain(int argc, _TCHAR* argv[])
{
 int intArray[5] = { 5, 6, 7, 8, 9 };

 unsigned int index = 0;
 cout << "Index: " << index << endl;
 cout << "Value: " << intArray[index++] << endl;

 cout << "Index: " << index << endl;
 cout << "Value: " << intArray[index++] << endl;

 cout << "Index: " << index << endl;
 cout << "Value: " << intArray[index++] << endl;

 cout << "Index: " << index << endl;
 cout << "Value: " << intArray[index++] << endl;

 cout << "Index: " << index << endl;
 cout << "Value: " << intArray[index++] << endl;
 return 0;
}

39CHAPTER 4: Beginning C++ Game Development with Arrays

We use an unsigned int as the array index, as we will never require a negative index into our array.
Our index is initialized to 0 to access the first element and we use the post increment operator to
increase the index by one after we print each value from the array.

Note You must make sure to initialize the array index to 0 in Listing 4-2 to ensure that we access the first
element of the array. If you had failed to initialize the index in production code, the variable could contain a
random value and access memory outside of the array. This always leads to bugs that are hard to locate and
fix. The same principle of always initializing should apply to all of your variables to avoid this problem.

Listing 4-2 has also changed the values in the array to prevent the same values from being printed
out for both the index and value lines. This helps show the relationship between the index and the
values contained within the array.

Arrays can be constructed using any type in C++. Listings 4-1 and 4-2 show arrays using the int
type but we could just as easily have used float, short, or bool (for example). char arrays have
special meaning in C++ under certain circumstances as they can be used to represent C style
strings.

Before we can look at the functions that C++ provides to manipulate C strings, you need to
understand how pointers work and their relationship with arrays and memory.

Pointers
Pointers are a fundamental aspect of the C++ language that allows it to deliver fast runtime
performance as a low-level programming language. Where variables allow us to manipulate the
values stored at specific locations in memory, pointers let us manipulate variables that store
addresses to other variables.

The concept of pointers can be a difficult one to explain, so let’s jump straight into some examples.
Listing 4-3 shows how we can use a pointer to find the value stored at a given memory address.

Listing 4-3. Using Pointers in C++

#include <iostream>

using namespace std;

int _tmain(int argc, _TCHAR* argv[])
{
 int variable = 5;
 int* variablePointer = &variable;

 cout << "Value of variable: " << variable << endl;

 cout << "Address of variable: " << &variable << endl;

40 CHAPTER 4: Beginning C++ Game Development with Arrays

 cout << "Value of variablePointer: " << variablePointer << endl;

 cout << "Value of variablePointer + 1: "
 << variablePointer + 1 << endl;

 cout << "Value of memory at dereferenced variablePointer: "
 << *variablePointer << endl;

 cout << "Value of memory at dereferenced variablePointer + 1: "
 << *variablePointer + 1 << endl;

 return 0;
}

This code creates an int variable and assigns it the value of 5. We then create a pointer to the variable.

 int variable = 5;
 int* variablePointer = &variable;

The * operator after the type name tells the compiler that we are creating a pointer. A pointer is a
variable with a value that is a memory address rather than an actual value. We assign the address of
variable to variablePointer by using the address-of operator &.

Figure 4-1 shows the output generated by the code in Listing 4-3.

Figure 4-1. The output from Listing 4-3

The first line shows the value of variable using cout as usual.

cout << "Value of variable: " << variable << endl;

The second line prints out the hexadecimal address of the variable using the address-of operator.

cout << "Address of variable: " << &variable << endl;

41CHAPTER 4: Beginning C++ Game Development with Arrays

The third line prints out the value of variablePointer. As variablePointer stores the address
of the variable, the value output is the same.

cout << "Value of variablePointer: " << variablePointer << endl;

Pointer Arithmetic
Listing 4-3 and Figure 4-1 show the results of pointer arithmetic.

cout << "Value of variablePointer + 1: " << variablePointer + 1 << endl;

This line shows that we can add to addresses stored by pointers; we can also subtract, multiply,
and divide pointers. Addition and subtraction usually make the most sense. The program has printed
0104FB6C as the address of variable. As the difference between the two addresses is 4 bytes,
variablePointer + 1 is 0104FB70. This is not a coincidence. The size of an integer in my program
is also 4 bytes. The compiler has added the size of 1 int to the address when we have used the
addition operator with the int*. The compiler will always add on the size of the data type pointed to
by the pointer multiplied by the number we are adding to the pointer variable. If our pointer had been
a short it would have added 2 bytes, not 4. If we had added 5 to the int pointer, the compiler would
have added 20 to the stored address.

Dereferencing Pointers
Once we have a pointer, we occasionally would like to know the value of the variable pointed to by
the pointer. You can see this in action in the last two cout statements in Listing 4-3.

cout << "Value of memory at dereferenced variablePointer: "
 << *variablePointer << endl;

cout << "Value of memory at dereferenced variablePointer + 1: "
 << *variablePointer + 1 << endl;

The pointer dereference operator is *. When this operator is used with a pointer variable, the
compiler will fetch the value of the variable pointed to by the pointer. In this case we dereference
the pointer and retrieve the value 5. The next line shows that the * operator is evaluated before the
arithmetic operator. In this case the 1 is added to the value pointed to by variablePointer and not
the address that is stored there; therefore the output from this line is 6.

Pointers and Arrays
The timing of the description of pointers goes hand in hand with the description of arrays as the
array index operator is carrying out pointer arithmetic for us behind the scenes. Compare Listing 4-4
with Listing 4-2.

42 CHAPTER 4: Beginning C++ Game Development with Arrays

Listing 4-4. Using a Pointer with an Array

int _tmain(int argc, _TCHAR* argv[])
{
 int intArray[5] = { 0, 1, 2, 3, 4 };

 cout << "Value: " << *intArray << endl;
 cout << "Value: " << *(intArray + 1) << endl;
 cout << "Value: " << *(intArray + 2) << endl;
 cout << "Value: " << *(intArray + 3) << endl;
 cout << "Value: " << *(intArray + 4) << endl;
 return 0;
}

Listing 4-4 creates a program that outputs the values stored in the array. However, it accesses the
values in the array by manipulating a pointer as opposed to using the index operator. Once again we
have used parentheses in our program to dictate the order in which our operators are evaluated.

As you can see, the array is created as usual; however, this time it is clear that the variable intArray
is actually a pointer to an int. We can manipulate the array variable using pointer arithmetic to
achieve the same result as using the index operator. The first value is accessed by dereferencing the
pointer, and each subsequent value is accessed by dereferencing the pointer after it has been offset
using pointer arithmetic.

Now that you know how to access arrays using either the index operator or pointers, we are ready to
tackle C style strings.

C Style Strings in Arrays
Listing 1-1 showed the use of a C++ style string using the string class. We look at this class in
detail in Chapter 13 once we have covered classes in more detail. Until then we can use arrays to
represent C style strings.

Note It is recommended that STL strings are used in new programs. STL strings automatically resize to
store strings of varying length and generally hide all of the complicated memory management processing that
can be involved when working with C style strings. This chapter covers C style strings, as you are likely to
come across these very often when dealing with older game code and legacy game engines or libraries.

Listing 4-5 shows how we can access a C style string via pointer.

Listing 4-5. A C Style String

#include <iostream>

using namespace std;

int _tmain(int argc, _TCHAR* argv[])

43CHAPTER 4: Beginning C++ Game Development with Arrays

{
 char* cStyleString = "CStyleString";

 cout << cStyleString << endl;

 return 0;
}

The value "CStyleString" in quotes is known as a string literal. The compiler creates a table of all of
the string literals in our program and stores them together in memory. We can access these string
literals by assigning them to a char*. When we use cout with a char* that stores the address of a
string literal it will print out the entire string and then stop.

C++ achieves this by adding an extra character to the end of C style strings, the null terminator. We
can see this in action using the code in Listing 4-6.

Listing 4-6. The NULL Terminator

#include <iostream>

using namespace std;

int _tmain(int argc, _TCHAR* argv[])
{
 char* cStyleString = "CStyleString";
 cout << (cStyleString[12] == '\0') << endl;

 return 0;
}

This program will print out a 1 as the 13th character of our string matches the null terminator
character, \0. As you can see, we can store the address of the string into a char*, and we can then
access individual characters using either pointer arithmetic or array indexing.

Note Characters by default in C++ programs (and in this book) all use the American Standard Code for
Information Interchange (ASCII) encoding. ASCII characters can be represented using single quotes such as
'a'. The null terminator is a special character and as such must be preceded by a \, '\0' using '0' would
represent the number zero and not the null terminator character. The actual decimal value of 'a' is 87, '0'
is 48, and '\0' is 0. You can find a full list of ASCII values at www.asciitable.com/

http://www.asciitable.com/

44 CHAPTER 4: Beginning C++ Game Development with Arrays

Working with C Style Strings
C++ provides functions to work with C style strings. We cover how functions operate and write our
own in Chapter 5; for now we list the different functions that C++ provides to work with strings.

strlen
strlen tells us how many characters are in a given string excluding the null terminator; this is
shown in Listing 4-7.

Listing 4-7. strlen

#include <iostream>

using namespace std;

int _tmain(int argc, _TCHAR* argv[])
{
 char* cStyleString = "CStyleString";
 cout << strlen(cStyleString) << endl;

 return 0;
}

This program outputs 12.

strcmp
strcmp compares two strings and returns 0 if they match. Listing 4-8 contains an example.

Listing 4-8. strcmp

#include <iostream>

using namespace std;

int _tmain(int argc, _TCHAR* argv[])
{
 char* cStyleString1 = "CStyleString";
 char* cStyleString2 = "CStyleString";
 cout << strcmp(cStyleString1, cStyleString1) << endl;

 return 0;
}

This program outputs 0.

45CHAPTER 4: Beginning C++ Game Development with Arrays

strcpy
strcpy copies a string from one array into another. Listing 4-8 provides an example.

Listing 4-8. strcpy

#include <iostream>

using namespace std;

int _tmain(int argc, _TCHAR* argv[])
{
 char* cStyleString1 = "CStyleString";
 char cStyleString2[13];
 strcpy(cStyleString2, cStyleString1);

 cout << cStyleString2 << endl;

 return 0;
}

It’s important to note that cStyleString2 contains enough space to store the 12 characters of the
string literal plus an extra character for the null terminator.

strcat
strcat allows us to join, or concatenate, two strings. Listing 4-9 provides an example.

Listing 4-9. strcat

#include <iostream>

using namespace std;

int _tmain(int argc, _TCHAR* argv[])
{
 char cStyleString1[13];
 strcpy(cStyleString1, "CStyle");
 char* cStyleString2 = "String";
 strcat(cStyleString1, cStyleString2);

 cout << cStyleString1 << endl;

 return 0;
}

cStyleString1 must have enough space to store the combined string, therefore we create an array
with space for 13 characters. We then use strcpy to copy "CStyle" into this array. strcat is used to
copy "String" into the end of cStyleString1 from cStyleString2.

46 CHAPTER 4: Beginning C++ Game Development with Arrays

Note There are more functions supplied by C++ for working with C style strings; however, it is better to use
the string class supplied by the Standard Template Library (STL) in modern C++ programs. We cover
STL strings in Chapter 13. You can find a reference for C style string functions at
www.cplusplus.com/reference/cstring/

Text Adventure Game
As you work through this book we will build a text adventure game on the console. In this chapter
we have looked at arrays, pointers, and C style strings. In the last two chapters we have looked at
types, operators, and interacting with the user using cin and cout.

We will begin by making our game a personal experience by asking the players for their name.
This will be used to make the game seem as though it knows the players while they play through the
game. Listing 4-10 shows the code that asks the players for their name.

Listing 4-10. Asking for the Player’s Name

#include <iostream>

using namespace std;

int _tmain(int argc, _TCHAR* argv[])
{
 cout << "Welcome to Text Adventure!" << endl << endl;
 cout << "What is your name?" << endl << endl;

 char playerName[1024];
 cin >> playerName;

 cout << endl << "Hello " << playerName << endl;

 return 0;
}

This code stores the player’s name into a char array that contains 1,024 letters. The game would run
into trouble if the player was to enter more characters than this, so we will use a string instead, as
shown in Listing 4-11.

Listing 4-11. Using an STL String for the Player Name

#include <iostream>
#include <string>

using namespace std;

int _tmain(int argc, _TCHAR* argv[])
{
 cout << "Welcome to Text Adventure!" << endl << endl;
 cout << "What is your name?" << endl << endl;

http://www.cplusplus.com/reference/cstring/

47CHAPTER 4: Beginning C++ Game Development with Arrays

 string playerName;
 cin >> playerName;

 cout << endl << "Hello " << playerName << endl;

 return 0;
}

Now the players can enter a name as long or as short as they like without issue. We will cover why
the string class is safer than a character array in Chapter 13.

Note We could use character arrays for player input until we cover strings. However, I do not like to
encourage the development of bad habits. If a player was to enter too many characters for our array to hold
we would suffer a buffer overrun and introduce bugs into our code that will cause the program to crash. STL
string does not suffer from this problem for reasons that are covered in Chapter 13.

Summary
This chapter has covered C++ arrays that allow us to store groups of data of the same type in
contiguous memory. Contiguous means that the elements of the array follow each other directly in
memory without having to jump to another location.

This can be seen in action when we index arrays or carry out pointer arithmetic. Modern processors
are designed with caches to operate at peak efficiency when dealing with contiguous memory
addresses and arrays, therefore, are vitally important to the performance of modern video games.

We cover more exotic data layouts later in this book when we introduce the STL, but it is important
to understand arrays to be able to write fast and efficient code under many circumstances.

C style strings are also an important concept to understand. Many current games are still written using
this style of string, although the STL provides a better string class implementation. This is usually
because it can still be faster to operate on arrays directly rather than work with classes. However,
accessing arrays directly comes with some concerns about program stability, especially when dealing
with user input. Overrunning the end of a buffer and overwriting memory used by other variables is a
common cause of hard-to-find bugs and potential security vulnerabilities in many games.

This chapter also introduced the concept of a function. Chapter 5 covers functions in more detail
and you will learn how to write some of your own.

49

Chapter 5
Functions, the Building Blocks
of C++

Modern games consist of hundreds of thousands of lines of code and can be worked on by teams
consisting of hundreds of people. C++ provides the ability to separate code into blocks called
functions to allow us to build more modular programs.

A function allows us to write a routine that can be reused throughout our program. The benefits of
this are significant. You saw this in the last chapter when we looked at some of the C++ functions
for working with strings. We did not have to write our own code to determine if two strings were the
same; instead, we could simply pass them both into a function and the return value told us the result
of the function.

This chapter covers how we write functions, including how to pass values to a function, how to pass
pointers to functions, and a special type of pointer, the reference.

Writing Our First Function
A C++ compiler requires that functions are declared and defined before they can be used, just as
with variables. It’s also possible to define and declare a function at the same time. Listing 5-1 shows
the code for a simple program that calls a single function.

Listing 5-1. Our First Function

#include <iostream>

using namespace std;

void PrintHello()
{
 cout << "Hello!" << endl;
}

50 CHAPTER 5: Functions, the Building Blocks of C++

int _tmain(int argc, _TCHAR* argv[])
{
 PrintHello();

 return 0;
}

Listing 5-1 contains a function named PrintHello. Functions in C++ always follow the same
format and PrintHello is as simple as a function can be. It does not return any values to the
code that calls the function and we also cannot pass any parameters to the function. To tell the
C++ compiler that we do not want the function to return a value, we specify void as its return
type. We can call a function by placing its name in our code followed by parentheses, as we have
done with PrintHello.

Passing Parameters to Functions
Functions tend to be more useful when we can pass values to them. We do this by specifying
parameters in the function signature. Listing 5-2 shows a function that contains parameters in its
signature.

Listing 5-2. Passing Values to Functions Through Parameters

#include <iostream>

using namespace std;

void PrintSum(int valueA, int valueB)
{
 cout << valueA + valueB << endl;
}

int _tmain(int argc, _TCHAR* argv[])
{
 PrintSum(3, 6);

 return 0;
}

The function PrintSum takes two parameters. Both parameters are of the type int and are
named valueA and valueB. When we call PrintSum in _tmain we pass it the values 3 and 6.
Inside the function the variable valueA contains the value 3 and valueB contains 6. The output
from the program is 9. Another way to achieve this result would be to return the sum from the
function.

51CHAPTER 5: Functions, the Building Blocks of C++

Return Values
Functions can return values to the calling code to be stored within variables or passed as
parameters to other functions. Listing 5-3 shows how to return a value from the function.

Listing 5-3. Returning Values from Functions

#include <iostream>

using namespace std;

int ReturnSum(int valueA, int valueB)
{
 return valueA + valueB;
}

int _tmain(int argc, _TCHAR* argv[])
{
 int sum = ReturnSum(3, 6);
 cout << sum << endl;

 return 0;
}

The function ReturnSum has a new return type in its signature: It now reads int rather than void.
Inside the function you now see that we use the return keyword to return the value from the +
operator. We store the returned value from ReturnSum into the variable sum, which is then used with
cout to print the result 9 to the console.

Any of the built-in types can be used as parameter or return types. The functions we have looked at
in Listings 5-1, 5-2, and 5-3 all pass and return their function by value. This means that the compiler
will make a copy of the values when they are being passed to or from the function. Sometimes we
would like to be able to alter the values that come into our function so that the calling code can
access the new values, and we can do this by passing in pointers.

Passing by Pointer
Listing 5-4 alters our previous example to pass the result of our sum back to the calling code using a
pointer.

Listing 5-4. Passing by Pointer

#include <iostream>

using namespace std;

void ReturnSum(int inValueA, int inValueB, int* outValue)
{
 *outValue = inValueA + inValueB;
}

52 CHAPTER 5: Functions, the Building Blocks of C++

int _tmain(int argc, _TCHAR* argv[])
{
 int sum = 0;
 ReturnSum(3, 6, &sum);
 cout << sum << endl;

 return 0;
}

Listing 5-4 initializes the variable sum to contain the value 0. ReturnSum now does not return a
value; instead it takes a pointer to an int as its third parameter. When we call ReturnSum we pass
the address of sum using &sum. Inside ReturnSum we alter the value stored at the pointer using the
following line:

*outValue = inValueA + inValueB;

The pointer dereference operator is used to tell the compiler that we want to change the value stored
at the pointer and not the pointer itself. In Listing 5-4 this achieves the result of altering the value of
sum from 0 to 9.

Note Pointers can be set to not contain a value. This is achieved by assigning nullptr to them. We’ll cover
nullptr in Chapter 6 when we look at flow control statements.

As well as being able to pass values by pointer, we can also pass them by reference.

Passing by Reference
When we pass by pointer we must explicitly dereference the pointer to be able to retrieve its value.
There’s also a possibility that the pointer might not point to a valid memory address but instead be
assigned a nullptr. If we dereference a nullptr our program will crash. If we use a reference then
we do not have to deference to obtain the value, we do not have to worry about nullptrs and we do
not have to use the address of operator when passing the initial variable to the function. You can see
this in Listing 5-5.

Listing 5-5. Passing by Reference

#include <iostream>

using namespace std;

void ReturnSum(int inValueA, int inValueB, int& outValue)
{
 outValue = inValueA + inValueB;
}

53CHAPTER 5: Functions, the Building Blocks of C++

int _tmain(int argc, _TCHAR* argv[])
{
 int sum = 0;
 ReturnSum(3, 6, sum);
 cout << sum << endl;

 return 0;
}

We now use the reference operator on the type for outValue; this looks like int&. We’re beginning
to see the same operators being used for different purposes in different contexts. When defining
a variable, the & operator after the typename tells the compiler to make the variable a reference.
When placed before a variable name, when assigning to a variable, or when passing to a function it
becomes the address-of operator.

Sooner or later in our programs we will want to pass large amounts of data into a function. One
option could be to add many parameters to the function signature, but this makes the code difficult
to maintain, as every time we change the function signature we will also have to change every call.
Luckily structures provide an alternative.

Structures
So far all of the variables we have been using have been single variables. Individual variables are
useful, but sometimes they can only take us so far. We will alter the sum example once again to
show how we can use a structure with a function. Listing 5-6 shows an example of passing a
structure to a function.

Listing 5-6. Passing a Structure to a Function

#include <iostream>

using namespace std;

struct SumParameters
{
 int valueA;
 int valueB;
 int result;
};

void ReturnSum(SumParameters& params)
{
 params.result = params.valueA + params.valueB;
}

int _tmain(int argc, _TCHAR* argv[])
{
 SumParameters sum;
 sum.valueA = 3;
 sum.valueB = 6;

54 CHAPTER 5: Functions, the Building Blocks of C++

 sum.result = 0;
 ReturnSum(sum);
 cout << sum.result << endl;

 return 0;
}

Listing 5-6 begins by defining our structure. We do this using the struct keyword. Immediately
after the keyword is the name we would like to use for our structure. This name behaves as though
we have created a new type. We can see this in the first line of _tmain where we declare the
variable sum.

Once we have a variable that is of a structure type, we can use the . operator to access its member
variables. We assign the values 3, 6, and 0 to the members of sum and then pass it by reference
to the function ReturnSum. The compiler would have made a copy of all three members if we had
passed the structure by value and therefore we would not have been able to read the proper result of
the sum from the result member.

You can use the information you have learned about functions in this chapter to modify the game we
have been writing.

Adding Functions to Text Adventure
We began our Text Adventure game in Chapter 4. At that time you didn’t know that we could store
data in structures or that we could use functions to make more readable programs. In this chapter
we will create a structure for the player and create a function that will be responsible for welcoming
the player. We do both of these in Listing 5-7.

Listing 5-7. Adding the Player struct and WelcomePlayer Function to Text Adventure

#include <iostream>
#include <string>

using namespace std;

struct Player
{
 string m_name;
};

void WelcomePlayer(Player& player)
{
 cout << "Welcome to Text Adventure!" << endl << endl;
 cout << "What is your name?" << endl << endl;

 cin >> player.m_name;

 cout << endl << "Hello " << player.m_name << endl;
}

55CHAPTER 5: Functions, the Building Blocks of C++

int _tmain(int argc, _TCHAR* argv[])
{
 Player player;
 WelcomePlayer(player);

 return 0;
}

Our program is now much more readable than before. The Player structure will be responsible for
storing all of the data related to our player object; for now we only need to keep track of the player’s
name. We pass the player variable by reference to the WelcomePlayer function. This allows us to add
all of the code necessary to welcome our players to a single function and this function can assign
the player’s name from cin directly into the Player reference.

Our _tmain function now has code that is almost plain English. This is the goal of our code for the
most part. Code that is human readable is very valuable when writing game programs. A lot of
the code written, especially code to be reused between projects, must be maintained by teams of
programmers. Having code that can be understood just by reading through it reduces the time it
takes to understand and make alterations to the code.

Summary
This chapter has covered the C-style functions and structures you can use while writing programs
in C++. Functions are the basic building blocks that allow us to write procedural programs. We have
learned how to use parameters and return values to help us write readable programs. We’ve also
looked at how pointers and references can be used to pass data into and out of functions. Finally,
we looked at how we can group variables into structures. Grouping data in this way allows us to
create our own types within the language. These types also aid us in writing programs that other
programmers can easily understand. You saw this put to good effect in our Text Adventure game
when we created a Player structure to group together data relating to our player.

Our programs are beginning to take a real form but they are still limited to carrying out basic
arithmetic. In the next chapter we will look at control flow statements that will allow our programs to
make decisions or repeat tasks over a large set of data.

57

Chapter 6
Making Decisions with Flow
Control

The programs that we have been writing until now have been very linear. That is, they begin with the
first line in main and carry on executing each line at a time until the program finishes with the return
statement on the last line of main. Sometimes we might decide to carry out different code paths
based on values we have stored in variables or repeat a section of code until some condition is
satisfied.

C++ provides us with statements that allow us to carry out these decisions and repetitions. This
chapter introduces the if, switch, for, and while statements. These statements collectively are
known as the flow control statements. We'll end the chapter by using flow control statements to add
some decision making to our Text Adventure game.

The if Statement
The first flow control statement that we will look at is the if statement. This statement allows us to
execute inside its curly braced block if the boolean we pass to it is true. Listing 6-1 shows a simple
if statement.

Listing 6-1. The if Statement

#include <iostream>

using namespace std;

int main(int argc, const char * argv[])

58 CHAPTER 6: Making Decisions with Flow Control

{
 if (true)
 {
 cout << "Print This!";
 }
 return 0;
}

This if statement will always enter into the block associated with it. This block begins with the
opening curly brace immediately following the statement and ends with the corresponding closing
curly brace. If we were to change the value in the expression from true to false the block would not
be entered and we would not see the output printed on the console.

Note The examples in this chapter have been created using Xcode. Be sure to check that the main
statement is correct for the integrated development environment (IDE) and platform you are using.

The else and else if Statements
The if statement allows us to make decisions in our code but usually we also want to be able to
execute code on other conditions or as a default. We can use the else and else if statements to
add more execution blocks to our if statements. Listing 6-2 shows how to use the else statement.

Listing 6-2. The else Statement

#include <iostream>

using namespace std;

int main(int argc, const char * argv[])
{
 if (false)
 {
 cout << "Print This When True!";
 }
 else
 {
 cout << "Print This When False!";
 }
 return 0;
}

Our if statement now evaluates to false. If this were to happen in Listing 6-1, we would see no
output from our program; however, the else statement in Listing 6-2 ensures that we will still see
output. Listing 6-3 adds an extra if into the code.

59CHAPTER 6: Making Decisions with Flow Control

Listing 6-3. The else if Statement

#include <iostream>

using namespace std;

int main(int argc, const char * argv[])
{
 if (false)
 {
 cout << "Print This When True!";
 }
 else if (true)
 {
 cout << "Print This When Else If Is True!";
 }
 else
 {
 cout << "Print This If All False!";
 }

 return 0;
}

Here you can see that the extra else if statement will cause the code to execute its block and miss
the else block. Listing 6-4 shows that we can have multiple else if blocks.

Listing 6-4. Multiple else if Blocks

#include <iostream>

using namespace std;

int main(int argc, const char * argv[])
{
 if (false)
 {
 cout << "Print This When True!";
 }
 else if (false)
 {
 cout << "Print This When First Else If Is True!";
 }
 else if (true)
 {
 cout << "Print This When Second Else If Is True!";
 }

60 CHAPTER 6: Making Decisions with Flow Control

 else
 {
 cout << "Print This If All False!";
 }

 return 0;
}

We can, in fact, have as many else if statements as we like. The else statement is also optional: It
is completely valid to have cases where no else statement is necessary.

Now we'll take a look at the for loop, which allows us to execute the same code block multiple
times.

The for Loop
The for loop allows us to iterate as many times as necessary. Listing 6-5 shows a simple for loop in
action.

Listing 6-5. A for Loop

#include <iostream>

using namespace std;

int main(int argc, const char * argv[])
{
 for (unsigned int i=0; i<10; ++i)
 {
 cout << "Loop Iteration: " << i << endl;
 }

 return 0;
}

The for loop statement consists of three parts:

An initializer, which sets the initial value of the loop index variable 	
(i.e., unsigned int i=0).

A test, in which the loop will continue to execute until the test statement 	
evaluates to false (i.e., i<10).

A continuation statement, which is executed at the end of each successful loop 	
before starting the next one (i.e., ++i).

The for loop in our example results in the output being printed to the console 10 times with the
values 0 through 9 appended to the end.

A more powerful example of this is to combine the for loop with an array, as shown in Listing 6-6.

61CHAPTER 6: Making Decisions with Flow Control

Listing 6-6. A for Loop Over an Array

#include <iostream>

using namespace std;

int main(int argc, const char * argv[])
{
 unsigned int array[10];

 for (unsigned int i=0; i<10; ++i)
 {
 array[i] = i * 2;
 cout << "Loop Iteration: " << array[i] << endl;
 }

 return 0;
}

This example shows how we can use the for loop index variable to index into an array. Here we
initialize each element of the array via iteration and print the results to the console. We can use this
technique to execute code on each element of an array, which is especially useful when writing
games.

Sometimes we do not know beforehand how many iterations of a given loop we would like to
execute. Thankfully C++ provides us with another loop statement that can handle this case, the
while loop.

The while Loop
A while loop just executes until its accompanying statement evaluates to false. Listing 6-7 shows a
simple example.

Listing 6-7. A while Loop

#include <iostream>
using namespace std;

int main(int argc, const char * argv[])
{
 unsigned int array[10];
 unsigned int count = 0;
 while (count < 10)
 {
 array[count] = count * 2;
 cout << "Loop Iteration: " << array[count++] << endl;
 }

 return 0;
}

62 CHAPTER 6: Making Decisions with Flow Control

Another type of while loop is the do . . . while loop. Listing 6-8 shows an example of this type.

Listing 6-8. A do . . . while Loop

#include <iostream>

using namespace std;

int main(int argc, const char * argv[])
{
 unsigned int array[10];
 unsigned int count = 0;

 do
 {
 array[count] = count * 2;
 cout << "Loop Iteration: " << array[count++] << endl;
 } while (count < 10);

 return 0;
}

The main difference between these two types of loop is that the do . . . while version will always
execute at least once. The test occurs at the end of the first iteration of the do . . . while whereas
the test occurs at the beginning of a standard while loop.

If count in Listing 6-7 had been initialized to 10, the loop would never have run, whereas in
Listing 6-8 it would have run once (and caused an array overrun).

There are also times when we are programming when we want to execute specific code for a given
value contained in a variable. C++ provides the switch statement for these moments.

The switch Statement
A switch statement can be used in place of an if . . . else if block when we have a set of literal
values that we wish to differentiate between. Listing 6-9 shows an example using an enum.

Listing 6-9. The switch Statement

#include <iostream>

using namespace std;

int main(int argc, const char * argv[])
{
 enum class Colors
 {
 Red,
 Green,
 Blue
 };

63CHAPTER 6: Making Decisions with Flow Control

 Colors color = Colors::Red;
 switch (color)
 {
 case Colors::Red:
 {
 cout << "The color is Red!";
 }
 break;

 case Colors::Green:
 {
 cout << "The color is Green";
 }
 break;

 default:
 {
 cout << "Unknown color!";
 }
 break;
 }

 return 0;
}

You can see from this example that the switch statement can be used to create blocks of code
(cases) that will execute for values that we are aware of at compile time. enums are perfect
candidates for this type of statement. Listing 6-9 did not include a case block for the Blue value. This
omission allowed us to look at the default case. The default case is supplied to provide a default
behavior to the switch so that we can properly handle situations that need either a default behavior
or to catch an error.

Listing 6-9 also sees the introduction of the break keyword. This new keyword allows us to break
out of a statement block. If we had missed this in our switch, the program would have created the
following output (assuming we add endl to each line):

The color is Red!
The color is Green!
Unknown color!

Missing the break in each block would cause the code to flow from one block to the next.
Sometimes this is the behavior we desire, but more often than not it is a bug.

Note This is our first mention of code bugs! Games are large projects and bugs can be caused by many
complicated interactions in code. This example of missing a single word is just one example of how bugs can
enter our code.

64 CHAPTER 6: Making Decisions with Flow Control

The break statement can be used to exit any of the loops we have covered in this chapter. If we had
a for loop and had a condition where we would like to stop execution, then we would be able to
use break, and the same goes for both versions of the while loop. C++ also provides the continue
keyword to control loops.

The break and continue Keywords
Listing 6-10 shows an example loop that contains both the continue and break statements.

Listing 6-10. Using continue and break

#include <iostream>

using namespace std;

int main(int argc, const char * argv[])
{
 unsigned int array[10];
 unsigned int count = 0;

 do
 {
 if ((count % 2) == 0)
 {
 ++count;
 continue;
 }

 array[count] = count;
 cout << "Loop Iteration: " << array[count++] << endl;

 if (count == 10)
 {
 break;
 }
 } while (true);

 return 0;
}

The output from our program is the following:

Loop Iteration: 1
Loop Iteration: 3
Loop Iteration: 5
Loop Iteration: 7
Loop Iteration: 9

65CHAPTER 6: Making Decisions with Flow Control

The first if statement that contains a mod operator and a relational equals operator tells the loop
to skip all of the even numbers when executing. Our output shows this by printing the current
iteration count.

The second if statement tells the loop to break once the count reaches 10. The last flow control
statement that we will look at in this chapter is the goto.

The goto Statement
The goto statement is frowned on by modern C++ developers, so I include it in this chapter merely
for the sake of completeness, so that you are aware of its existence and can work with it in legacy
code.

Note goto really is a rare sight in code today. In eight years I have only ever seen it used in a single
game! This Wikipedia entry explains some of the concerns that exist with the goto statement: http://
en.wikipedia.org/wiki/Goto#Criticism_and_decline

Listing 6-11 modifies Listing 6-10. This time we use a goto to end the loop rather than a break.

Listing 6-11. The goto Statement

#include <iostream>

using namespace std;

int main(int argc, const char * argv[])
{
 unsigned int array[10];
 unsigned int count = 0;

 do
 {
 if ((count % 2) == 0)
 {
 ++count;
 continue;
 }

 array[count] = count;
 cout << "Loop Iteration: " << array[count++] << endl;

 if (count == 10)
 {
 goto finished;
 }
 } while (true);

http://en.wikipedia.org/wiki/Goto#Criticism_and_decline
http://en.wikipedia.org/wiki/Goto#Criticism_and_decline

66 CHAPTER 6: Making Decisions with Flow Control

 finished:
 return 0;
}

A goto consists of two parts:

A label	

The 	 goto statement

A label is inserted into the code, which creates a named point to which we can jump. In this example
our label is finished. We can then use this label to have the goto command jump directly to that
point.

I have seen this used to move between the game loop, the frontend loop and a pause loop in game
code before. It's also been known for goto to be used to jump to error handling code. This might
seem to be a good idea, but there are always better options such as using break, a state machine for
game state, or return values or exceptions for handling errors.

In this chapter we have covered the essential flow control statements provided by C++. It's now time
to put these to good use in our Text Adventure game.

Adding a Game Loop to Text Adventure
For our Text Adventure to be a compelling game, we must add a loop that allows the player to
interact. We looked at the for loop and the while loop in this chapter. A for loop provides us with a
set number of iterations, so a while loop would be better suited to our needs for a game loop.

Listing 6-12 shows how we can use an enum, functions, references, relational operators, and a while
loop to write code that begins to resemble an interactive program.

Listing 6-12. The Text Adventure Game Loop

#include <iostream>
#include <string>

using namespace std;

The Player struct and WelcomePlayer functions have not changed since Chapter 5.

struct Player
{
 string m_name;
};

void WelcomePlayer(Player& player)
{
 cout << "Welcome to Text Adventure!" << endl << endl;
 cout << "What is your name?" << endl << endl;

67CHAPTER 6: Making Decisions with Flow Control

 cin >> player.m_name;

 cout << endl << "Hello " << player.m_name << endl;
}

We create a new function, GivePlayerOptions, to display the different choices players currently have
available to them.

void GivePlayerOptions()
{
 cout <<
 "What would you like to do? (Enter a corresponding number)"
 << endl << endl;
 cout << "1: Quit" << endl << endl;
}

The GetPlayerInput function reads the player's commands from the console and stores them into a
string reference.

void GetPlayerInput(string& playerInput)
{
 cin >> playerInput;
}

We use an enum, PlayerOptions, to represent the choices the players can enter. For now we only
have representations of Quit and None.

enum class PlayerOptions
{
 Quit,
 None
};

This function takes a reference to a string that represents a choice that could be made by the player.
The literal string "1" is used to represent the Quit option at the moment.

We use an if . . . else statement here to decide whether the player has entered an option that we
recognize. Strings can be compared using the compare function and will return 0 if the two strings
match. If the player's input matched "1" we set the chosenOption value to PlayerOptions::Quit, and
it is initialized to PlayerOptions::None. chosenOption is used as the return value of the function.

PlayerOptions EvaluateInput(string& playerInput)
{
 PlayerOptions chosenOption = PlayerOptions::None;

 if (playerInput.compare("1") == 0)
 {
 cout << "You have chosen to Quit!" << endl << endl;
 chosenOption = PlayerOptions::Quit;
 }

68 CHAPTER 6: Making Decisions with Flow Control

 else
 {
 cout << "I do not recognize that option, try again!"
 << endl << endl;
 }

 return chosenOption;
}

The RunGame function returns a bool, the shouldEnd variable. This function is designed to be called
from a loop and simply calls the other functions that represent the different stages of our game at
the moment. The return value from EvaluateInput is checked to determine if the player has decided
to quit the game.

bool RunGame()
{
 bool shouldEnd = false;

 GivePlayerOptions();

 string playerInput;
 GetPlayerInput(playerInput);

 shouldEnd = EvaluateInput(playerInput) == PlayerOptions::Quit;

 return !shouldEnd;
}

Our program's entry point is still the main function. This function calls WelcomePlayer then executes a
while loop that will iterate until the player has selected the quit option.

int main(int argc, const char * argv[])
{
 Player player;
 WelcomePlayer(player);

 bool isPlaying = true;
 while (isPlaying)
 {
 isPlaying = RunGame();
 }

 return 0;
}

We have now written a program that is beginning to resemble a game. We have put the core game
loop into place and from here we will be able to add new functionality to our existing functions.

69CHAPTER 6: Making Decisions with Flow Control

Summary
This chapter has introduced the flow control statements that are a core part of the C++ programming
language. These statements allow us to write game code that creates compelling interactive
experiences for our players. We can use if and switch statements to execute different code paths
depending on the values stored in variables at runtime. These values could be calculated from the
current state of the game or might be obtained from player input. You have also seen how we can
use loops to execute code repetitively. The for loop can be used to carry out an iterative block of
code over a fixed number of iterations and the while loop can be used to continue iterating until
some condition is met. You’ve also seen how we can use the continue and break keywords to gain
finer control over our loop execution.

We then used what we have learned to build a game loop for our Text Adventure game. We read
input from the player inside a while loop until they enter the option to quit. We used an if statement
to determine if the option the user entered matches the value we have chosen to represent quit.

The next chapter looks at program structure. It will show you how we can split our code across
multiple source files so that we can create projects that are more manageable. So far our program
has been relatively short and we have been working on our own. Professional game projects can
have tens of thousands of files and tens to hundreds of programmers all working at the same time.
You will learn how you can use source and header files, as well as namespaces, to modularize
your code.

71

Chapter 7
Organizing Projects Using Files
and Namespaces

In Chapter 6 we ended with a file that contains functions and structures that were related to completely
different high-level concepts. Some were there to control the game loop, others to obtain user input and
write output, and a structure to represent the player model. Eventually this code would become difficult
to manage and work with if we were to continue down this path of adding everything to a single file.

We have already seen that we can split new functions into declarations and definitions as well as
being able to use the #include directive to be able to use functionality that is contained within
separate files. All of the examples we have used so far have used the using namespace std;
directive. In this chapter we look at how we can organize our own programs into separate files and
also create namespaces to group together functionality. To wrap up, we’ll use what we learn to
reorganize our Text Adventure game to allow us to expand more easily in the coming chapters.

Source and Header Files
C++ supports the ability to separate code out into separate source and header files to better
organize programs. The header files of a project contain declarations of data types and functions
that can then be used in source files. Source files contain the definitions of functions that are built by
the compiler. Listing 7-1 shows the source code contained in a file named HelloWorld.cpp.

Listing 7-1. HelloWorld.cpp

#include <iostream>

using namespace std;

void HelloWorld()
{
 cout << "Hello World!";
}

72 CHAPTER 7: Organizing Projects Using Files and Namespaces

This very basic example shows that we can declare functions inside code files. This file itself does
not do anything interesting; it does not contain the entry point to our program. We would like to be
able to call this function from other places in our code base. To be able to do this we must create a
header file that contains a function declaration. Listing 7-2 shows our HelloWorld.h file.

Listing 7-2. HelloWorld.h

#pragma once

void HelloWorld();

The header file is very simple and contains our function declaration.

The #pragma once is necessary in header files to inform the compiler that we only want to include
this file a single time. If we do not have this line at the beginning of our header file we will suffer from
compile errors as the function definitions will occur more than once.

Note #pragma once is a modern compiler directive that is not supported by older compilers. In the
past, header files would have include guards instead. Include guards use #ifndef, #define, and #endif
to wrap header files and prevent the code from being included more than once. This is less efficient than
#pragma once, which can tell the compiler to skip opening the file and reduce compile times if it has been
processed before.

Now that we have a header file and a source file we will be able to use this to call our function from
other files. Listing 7-3 shows how we can do this.

Listing 7-3. Calling HelloWorld from _tmain

#include "stdafx.h"
#include "HelloWorld.h"

int _tmain(int argc, _TCHAR* argv[])
{
 HelloWorld();

 return 0;
}

We can see from this example that our source files can now be kept in a much neater and more
maintainable state. We simply include the HelloWorld.h file and we have access to the function that
it contains. As we move forward we will be using source and header files extensively. This simple
example covers all of the necessary details to be able to use these in our projects.

73CHAPTER 7: Organizing Projects Using Files and Namespaces

Creating Namespaces
Namespaces allow us to group functionality from multiple files into a single named code unit. This
allows us to keep our functions and data types together. It also has the added benefit of keeping our
new type and function names out of the global namespace. Usually we can only use a function name
a single time, so by using namespaces we can use the same function and type names in a different
context. Listing 7-4 shows an example that creates and uses two different namespaces.

Listing 7-4. Creating Namespaces

#include "stdafx.h"
#include <iostream>

namespace Player
{
 void PrintName()
 {
 std::cout << "My name is Bruce!" << endl;
 }
}

namespace Vehicle
{
 void PrintName()
 {
 std::cout << "I am a car!" << endl;
 }
}

using namespace Player;

int _tmain(int argc, _TCHAR* argv[])
{
 PrintName();

 Vehicle::PrintName();

 return 0;
}

This example shows the creation of two different namespaces, one named Player and another
named Vehicle. Both of these namespaces contain a function named PrintName. If these were not
contained within a namespace they would be required to have different names. Because they are
contained within namespaces their usage in the code must be qualified. We can qualify our use of
items contained in namespaces in two ways.

The first example is the Player namespace. We use the using namespace directive to inform all of the
following code that any type and function within the namespace can be used. You can see this in the
first line of the _tmain function, which can call PrintName directly.

74 CHAPTER 7: Organizing Projects Using Files and Namespaces

The second example is where we call Vehicle::PrintName. This form of qualification is more explicit.
This is the form of qualification I would recommend in this situation where we would be calling the
same named function from two different namespaces. The explicit qualification makes it clear which
of the namespace functions we would like to use.

This is also as complicated as we need namespaces to be for now. We will now rewrite the Text
Adventure example from the previous chapter to use multiple source files and namespaces.

Updating Text Adventure with Source Files, Header Files,
and Namespaces
By the end of Chapter 6 our Text Adventure game consisted of five functions, an enum class, and
a struct. The number of these elements will only increase as we flesh out the functionality of our
game. It would not take very long for our only source file to consist of thousands of lines of code and
be unmanageable.

In this section we are going to split the code we created in Listing 6-12 into separate files. We will
also use a namespace to group our game loop functions together. We begin by taking a look at the
Chapter7-TextAdventure.cpp file in Listing 7-5, which is included with the sample accompanying this
chapter.

Listing 7-5. Chapter7-TextAdventure.cpp

#include "stdafx.h"
#include "Player.h"
#include "GameLoop.h"

int _tmain(int argc, _TCHAR* argv[])
{
 Player player;
 GameLoop::WelcomePlayer(player);

 bool isPlaying = true;
 while (isPlaying)
 {
 isPlaying = GameLoop::RunGame();
 }

 return 0;
}

Our source file is now much shorter and much easier to read. The major differences to the function
when comparing it to the version in Listing 6-12 are the uses of the GameLoop namespace qualifier on
the WelcomePlayer and the RunGame function calls.

You can see at the top of the file that we now include two new header files, Player.h and
GameLoop.h. We'll take a look at Player.h in Listing 7-6.

75CHAPTER 7: Organizing Projects Using Files and Namespaces

Listing 7-6. Player.h

#pragma once

#include <string>

struct Player
{
 std::string m_name;
};

This file is very simple. All we have here is the definition of the Player struct. This might seem like a
waste, but I can assure you that this struct will grow in size as we build out our game.

Listing 7-7 shows the code contained in GameLoop.h.

Listing 7-7. GameLoop.h

#pragma once

#include "Player.h"
#include "PlayerOptions.h"

namespace GameLoop
{
 void WelcomePlayer(Player& player);

 void GivePlayerOptions();

 void GetPlayerInput(std::string& playerInput);

 PlayerOptions EvaluateInput(std::string& playerInput);

 bool RunGame();
}

We have created a namespace called GameLoop to contain our functions. This will prevent any
name clashes that might occur with functions in other files in the future. You might notice that the
header only contains the declarations for our functions. This is an important feature, as it provides
an optimization for the compiler and also makes the code easier to read for other programmers.
The compiler can build source files that call functions from this header file faster when it does not
need to read and compile the entire function declarations. Programmers can use the functions
faster by simply looking at the parameters the function takes and the types that they return. Other
programmers do not necessarily need to know exactly how the function operates internally.

The actual function definitions are contained in the GameLoop.cpp file shown in Listing 7-8.

Listing 7-8. GameLoop.cpp

#include "GameLoop.h"
#include <iostream>

using namespace std;

76 CHAPTER 7: Organizing Projects Using Files and Namespaces

namespace GameLoop
{
 void WelcomePlayer(Player& player)
 {
 cout << "Welcome to Text Adventure!" << endl << endl;
 cout << "What is your name?" << endl << endl;

 cin >> player.m_name;

 cout << endl << "Hello " << player.m_name << endl;
 }

 void GivePlayerOptions()
 {
 cout << "What would you like to do? (Enter a corresponding number)"
 << endl << endl;
 cout << "1: Quit" << endl << endl;
 }

 void GetPlayerInput(string& playerInput)
 {
 cin >> playerInput;
 }

 PlayerOptions EvaluateInput(string& playerInput)
 {
 PlayerOptions chosenOption = PlayerOptions::None;

 if (playerInput.compare("1") == 0)
 {
 cout << "You have chosen to Quit!" << endl << endl;
 chosenOption = PlayerOptions::Quit;
 }
 else
 {
 cout << "I do not recognize that option, try again!"
 << endl << endl;
 }

 return chosenOption;
 }

 bool RunGame()
 {
 bool shouldEnd = false;

 GivePlayerOptions();

77CHAPTER 7: Organizing Projects Using Files and Namespaces

 string playerInput;
 GetPlayerInput(playerInput);

 shouldEnd = EvaluateInput(playerInput) == PlayerOptions::Quit;

 return !shouldEnd;
 }
}

Our functions have not changed since Listing 6-12. The main difference to pay attention to is the
namespace wrapping the function calls. Our GameLoop namespace has been extended to include the
function definitions, if we had not done this, the compiler would complain that it could not find our
functions when building.

PlayerOptions.h is our last new file and is shown in Listing 7-9.

Listing 7-9. PlayerOptions.h

#pragma once

enum class PlayerOptions
{
 Quit,
 None
};

This file is very simple and contains our enum class.

Hopefully this example will give you a feel for how we use multiple source and header files to
manage our source code. Make sure to download the sample accompanying this chapter from the
following web site http://www.apress.com/9781430264576.

Summary
This chapter has introduced concepts that C++ provides to help manage large software projects.
Video games definitely qualify as large and complex projects and productive development is only
going to happen through the proper use of header and source files and namespaces.

Header files allow us to create function declarations that can be included for use in multiple source
files. This is necessary to allow the compiler to optimize its processes and to allow programmers to
use functions without concerning themselves with the implementation details.

Having separate source files allows us to simplify the code. Having smaller source files makes
them more readable and also allows us to group functions with functionality that is similar to others
into the same source files. This concept of grouping functions related to similar concepts will be
expanded on in later in this book when we look at object-oriented programming.

http://www.apress.com/9781430264576

78 CHAPTER 7: Organizing Projects Using Files and Namespaces

Namespaces are another essential source code management technique. Where source files allow us
to group similar functions into files, namespaces provide a method for communicating these types
of groupings to the compiler. It is more common for namespaces to span multiple files and be used
to contain the functionality needed to represent an entire module of code. Code modularity is an
important concept that we will look at more and more as we progress.

This chapter brings us to the end of our look at procedural programming in the C style using C++.
The next part of the book covers object-oriented programming and specifically looks at the concept
of classes, how they are created and used, how we inherit from classes, and how we can use
polymorphism.

Part 2
Object-Oriented Programming

Procedural programming can allow you to write full programs without any more features being
required. However, C++ was built using C as its foundation, which means that you can write
programs in different ways.

Object-oriented programming introduces the concept of programming with objects. C++ allows you
to create blueprints for your objects in the form of classes. Classes allow you to express the design
of your programs in terms of collections of data contained within classes along with the operations
that can be applied to that data. Years of research has led to best practice being applied in
object-oriented programming, including the correct use of features such as polymorphism and
designing programs to fully utilize encapsulation, minimize coupling, and promote cohesion.

This part of the book introduces you to the features of C++ that enable you to use objects in your
programs as well as lay the foundations for you to be able to design programs following best
practices.

81

Chapter 8
Object-Oriented Programming
with Classes

The preceding part of this book covered a programming paradigm known as procedural programming.
This part introduces the concept of object-oriented programming (OOP). Procedural programming
was the major paradigm supported by the C programming language. The C++ programming language
was conceived to support OOP in the same syntax as a C programming language.

This chapter covers the major techniques behind designing OOP-based programs and then takes a
look at the class.

Object-Oriented Programming
Writing computer programs in the OOP style involves thinking about our programs at a high level.
So far you have been looking at low-level programming concepts such as deciding on which
variables to use and how to split your program into functions. Designing OOP involves considering
how objects will interact before deciding exactly which variables and methods will be used. You will
usually begin writing your program with a design document. This design might be long and complex
or short and to the point; this will depend on the requirements of the program you are working on.
The following short paragraph covers the design of our Text Adventure game so far.

The game begins by welcoming the user. This welcome state will ask the player to
enter their name so that we can personalize their gameplay experience. The game
then enters the game loop that continuously asks players to enter their input choice.
The quit option should always be available to the player and, when selected, exits
the program.

82 CHAPTER 8: Object-Oriented Programming with Classes

It is your job as a programmer to turn the design created by a game designer into a working
implementation. If you were using the OOP paradigm, you would take this design and break it down
into distinct objects in the program. We do this by looking for the nouns that exist in the design,
as they are ideal candidates to be turned into classes. Classes form a blueprint from which you can
create the individual objects in your program. The following nouns are present in the design and
could be considered suitable for being turned into classes:

Game	

User	

Player	

Name	

Game loop	

At this point you need to consider which of these really are suitable candidates for being turned
into classes. Game seems like an obvious choice for a class, as it can be the object that represents
the entire game. User might not be a good candidate for a class in our program. The user is the
person interacting with our program and does not need to be represented in the program itself;
however, a Player class would be useful to represent the current state of the players in our game.
Name appears to be data related to the player. You’ve seen so far that we can represent strings
in the game using the C++-supplied string class, which means we don’t have to create our own
class for the player name. The game loop from Listing 7-7 was created using a namespace and a
set of functions. In this chapter we look at how we can represent this using a class rather than a
namespace to group the functionality.

This section has given you a brief introduction to the OOP design process. The rest of this chapter
looks at how we can build programs out of classes in C++.

Encapsulation
One of the main questions that comes up with programmers who are new to OOP is “Why do we
even use classes?” There are many answers to this question, making it a complicated topic to
explain. We cover more of the advanced features provided by classes in C++ as we work through
this chapter. The first major benefit for the new programmer is the concept of encapsulation. Classes
in C++ allow us to group together data in the form of variables and functions, known as methods,
that operate on this data. The classes allow us to mark some of these variables and methods as
being hidden from the rest of the program.

This concept of data hiding is known as encapsulation. Encapsulation is a desirable feature of OOP
because it allows us to operate loosely on the basis of contracts in our programs. The classes we
write will have a public interface that other classes can expect to behave in a certain manner. This
interface will remain consistent to allow us to create easily maintainable programs; however, the
private data and methods can be changed as often as we need them to. This is another concept
that can be difficult to understand, so we will work through a class listing to see how this works in
practice. Listing 8-1 shows the code for our first class, Player.

83CHAPTER 8: Object-Oriented Programming with Classes

Listing 8-1. The Player Class

#pragma once

#include <string>

class Player
{
 std::string m_name;
};

The Player class in Listing 8-1 might look familiar. It is almost exactly the same as the Player struct
from Listing 7-6. All we have done is change the struct keyword to the class keyword. If you were
to do this in our Text Adventure example from the previous chapter, the code would no longer
compile. When you try to compile in Visual Studio you receive the following error:

Error 1 error C2248: 'Player::m_name' : cannot access private member declared in class 'Player'

This error occurs thanks to the encapsulation features of C++. Listing 8-2 shows why this is the case.

Listing 8-2. class vs. struct Encapsulation

class Player
{
private:
 std::string m_name;
};

struct Player
{
public:
 std::string m_name;
};

The code in Listing 8-2 makes the distinction between a class and a struct in C++ explicit. By default all
member variables and functions in a class are private. In a struct all members and methods are public.

Note A traditional C style struct cannot contain any methods (member functions). However, these are
allowed in C++, which means that the difference between a class and a struct in C++ is simply the default
access to member variables and functions.

The error thrown by the compiler is caused by the following line of code:

cin >> player.m_name;

84 CHAPTER 8: Object-Oriented Programming with Classes

When using public access, this line of code is allowed, which is why our program compiled without
errors in Chapter 7. We could fix the compile error by changing our class to code shown in Listing 8-3.

Listing 8-3. A public Class

class Player
{
public:
 std::string m_name;
};

There is a problem caused by having public member variables in C++: It breaks our encapsulation.
We might decide later to separate the player’s first name and surname into separate strings, for
example, and then code that relies on our Player class supplying a single name would break. The
proper way to fix the problem is to provide accessor methods. Listing 8-4 shows the Player class
with accessors for the name variable.

Listing 8-4. A Player Class with Accessors

class Player
{
private:
 std::string m_name;

public:
 void SetName(const std::string& name)
 {
 m_name = name;
 }

 const std::string& GetName() const
 {
 return m_name;
 }
};

You now have a class that respects the rules of encapsulation. The code that refused to compile
earlier can now be fixed using the following code.

string name;
cin >> name;
player.SetName(name);

This section has shown why you would use classes in C++ and how to create a basic class that
uses the benefits of encapsulation. To recap, the public specifier tells the compiler that any of the
following member variables and methods are accessible to code outside of the class. The private
access specifier informs the compiler that the following member variables and methods are only
accessible from inside the class; that is, from within public or private methods that make up the
class. The rest of this chapter looks at how we use classes properly in our code base.

85CHAPTER 8: Object-Oriented Programming with Classes

Constructors and Destructors
When you use the class keyword, you are actually informing the compiler to create a new type in the
C++ language. When you create a variable of a given type in C++ the first task to be completed is
generally initialization. C++ provides methods called constructors that are called when our classes
are initialized. Listing 8-5 adds a constructor to our Player class.

Listing 8-5. The Player Class Constructor

class Player
{
private:
 std::string m_name;

public:
 Player(const std::string& name)
 : m_name(name)
 {
 }

 void SetName(const std::string& name)
 {
 m_name = name;
 }

 const std::string& GetName() const
 {
 return m_name;
 }
};

The bold code in Listing 8-5 shows the class constructor. The constructor is a special method in C++
classes. It does not contain a return type as it can never return a value and it also contains an initializer
list. The initializer list is used to call the constructors on our member variables and Listing 8-5 shows
that we have called the string class constructor on m_name before the constructor function itself is
executed. We would use a comma if we had more variables to add to the initializer list:

Player(const std::string& name, int anotherVariable)
 : m_name(name)
 , m_anotherVariable(anotherVariable)
{
}

If you try to execute this code after adding this constructor you will see that there is another compile
error in the code.

Error 1 error C2512: 'Player' : no appropriate default constructor available

86 CHAPTER 8: Object-Oriented Programming with Classes

There are several implications to this error:

All classes must have a constructor.	

The compiler will create a default constructor if you do not specify one. This 	
default constructor calls the default constructors of all member functions if they
have them. Built-in types such as int do not have default constructors and are
therefore uninitialized. Default constructors do not take any parameters.

The compiler will not generate a default constructor if you specify a constructor.	

Our class no longer has a default constructor once we specified the constructor that takes the
string parameter, which means that we cannot create a class without passing a string to player.
The following line is the offending code:

Player player;

You can fix this in two ways, either by passing a string parameter:

Player player("defaultName");

or by adding your own default constructor to the Player class, as shown in Listing 8-6.

Listing 8-6. Adding a Default Constructor to Player

class Player
{
private:
 std::string m_name;

public:
 Player()
 {
 }

 Player(const std::string& name)
 : m_name(name)
 {
 }

 void SetName(const std::string& name)
 {
 m_name = name;
 }

 const std::string& GetName() const
 {
 return m_name;
 }
};

87CHAPTER 8: Object-Oriented Programming with Classes

Whether you add default constructors to your classes will depend on whether it is valid to do so.
Not all classes make sense when they are not passed values to initialize them. Class constructors
are called when objects of our class type are being created; class destructors are called when our
objects are being destroyed. Objects can be destroyed in a number of ways, but our code currently
only destroys objects when they are going out of scope. Listing 8-7 shows an example.

Listing 8-7. Going out of Scope

int _tmain(int argc, _TCHAR* argv[])
{
 Player player;
 GameLoop::WelcomePlayer(player);

 bool isPlaying = true;
 while (isPlaying)
 {
 isPlaying = GameLoop::RunGame();
 }

 return 0;
}

The Player constructor is called when the player variable is created. This code is calling the default
constructor. The player variable goes out of scope once the function that contains it returns. This
means that the destructor is called automatically after the return call is executed. Listing 8-8 shows
the Player class with a destructor added.

Listing 8-8. The Player Class destructor

class Player
{
private:
 std::string m_name;

public:
 Player()
 {
 }

 Player(const std::string& name)
 : m_name(name)
 {
 }

 ~Player()
 {
 }

 void SetName(const std::string& name)
 {
 m_name = name;
 }

88 CHAPTER 8: Object-Oriented Programming with Classes

 const std::string& GetName() const
 {
 return m_name;
 }
};

The destructor function also doesn’t specify a return type and does not return a value. The
destructor is created by having a function that is named the same as the class itself but with a
~ prepended. All classes have destructor methods but again, the compiler will create a default
destructor if we do not. You do not have any code to put into your destructor at the moment;
however, we will look at how they can be used to greater effect in later chapters.

Note When we are talking about the code that makes up a class we are talking about classes. When we talk
about variables that are of a class type, we refer to them as objects. That means the class is the type, and an
object is an instance of the class.

This section has shown you how to specify the methods that are called when objects are created
and destroyed. The rest of this chapter covers some more advanced features that will be useful as
we move through the rest of the book.

Method Overloading
C++ allows you to overload methods. This actually means that you can create methods of the same
name but that take different input parameters. You can see an example of this in Listing 8-9.

Listing 8-9. Overloading Player::SetName

class Player
{
private:
 std::string m_name;

public:
 Player()
 {
 }

 Player(const std::string& name)
 : m_name(name)
 {
 }

 ~Player()
 {
 }

89CHAPTER 8: Object-Oriented Programming with Classes

 void SetName(const std::string& forename, const std::string& surname)
 {
 m_name = forename;
 m_name.append(" ");
 m_name.append(surname);
 }

 void SetName(const std::string& name)
 {
 m_name = name;
 }

 const std::string& GetName() const
 {
 return m_name;
 }
};

Your Player class now contains two methods called SetName. You can call either of these methods
using the following lines:

player.SetName("Bruce Sutherland");
player.SetName("Bruce", "Sutherland");

The compiler automatically works out which of the two methods to call based on the parameters
being passed in. The first line here would call the method that simply assigns the string to m_name;
the second line would call the function that assigns the first name then appends a space before
appending the surname. Both functions result in m_name storing the same string value.

Methods can only be overloaded by having different parameter types. Methods with different names
are not overloaded, but the code will still compile. Methods that only have different return types are
not allowed. Listing 8-10 shows an example of this.

Listing 8-10. SetName with Different Return Types

void SetName(const std::string& name)
{
 m_name = name;
}

bool SetName(const std::string& name)
{
 m_name = name;
 return true;
}

If you try this in Visual Studio, you will see the following error:

error C2556: 'bool Player::SetName(const std::string &)' : overloaded function differs only by
return type from 'void Player::SetName(const std::string &)'

90 CHAPTER 8: Object-Oriented Programming with Classes

Methods aren’t the only things that C++ allows us to overload. We can also overload operators,
which allows us to use our classes like the built-in types.

Operator Overloading
Listing 8-11 shows our player class with an overloaded += operator.

Listing 8-11. Overloading Player's += Operator

class Player
{
private:
 std::string m_name;

public:
 Player()
 {
 }

 Player(const std::string& name)
 : m_name(name)
 {
 }

 ~Player()
 {
 }

 void SetName(const std::string& forename, const std::string& surname)
 {
 m_name = forename;
 m_name.append(" ");
 m_name.append(surname);
 }

 void SetName(const std::string& name)
 {
 m_name = name;
 }

 void operator+=(const std::string& name)
 {
 m_name.append(name);
 }

 const std::string& GetName() const
 {
 return m_name;
 }
};

91CHAPTER 8: Object-Oriented Programming with Classes

Our += operator is an assignment operator, which means we want to use it to modify our object.
You can see this in our operator method where we append the name string onto the object’s m_name
member variable. We can use this in the following manner:

player.SetName("Bruce");
player += " Sutherland";

Sometimes you might not want to modify the object, but instead would like to add the name to the
passed string and store a returned value. It might make more sense to overload the + operator in this
instance. Listing 8-12 shows an example of this.

Listing 8-12. The Overloaded + Operator

std::string operator+(const std::string& name)
{
 std::string output(m_name);
 output.append(name);
 return output;
}

This function appends the passed string parameter to the m_name member and returns the new string
that was created to store the result. We can use this operator in the following way.

player.SetName("Bruce");
string fullName = player + " Sutherland";

These examples are not the most useful and are being created just to show you how you can
incorporate operator overloading into your future classes. There’s also a drawback to the examples
we have looked at: We cannot chain the operators together. Listing 8-13 shows an assignment
operator that allows chaining.

Listing 8-13. Operator Chaining

const Player& operator=(const Player& player)
{
 m_name = player.name;
 return *this;
}

The major new keyword being used in this example is this. The this pointer is a built-in keyword
that C++ supplies. It is a pointer that stores the address of the current object. Our = operator returns
a constant reference to the current Player object. Listing 8-14 alters our WelcomePlayer method to
show how this allows operator chaining in practice.

Listing 8-14. Operator Chaining

void WelcomePlayer(Player& player)
{
 cout << "Welcome to Text Adventure!" << endl << endl;
 cout << "What is your name?" << endl << endl;

92 CHAPTER 8: Object-Oriented Programming with Classes

 string name;
 cin >> name;
 player.SetName("Bruce");
 Player player1, player2, player3, player4;
 player1 = player2 = player3 = player4 = player;

 cout << endl << "Hello " << player.GetName() << endl;
}

Operator chaining has allowed us to assign the value from player to all of the temporary Player
objects we have created. You can think of these statements being operated in the following order.

player4 = player;
player3 = player4;
player2 = player3;
player1 = player2;

Chaining makes sense for the assignment operator; however it might not make a lot of sense in
other areas. You will see examples of practical uses for operator overloading and chaining as
we move through the remaining chapters of the book.

Updating Text Adventure to Use Classes
Now that you have a grasp of what classes are and how they can be used, we will update the Text
Adventure game to be based around the principles of OOP. The first change you will make will be to
remove the GameLoop namespace and create a Game class. Listing 8-15 shows this new Game class.

Listing 8-15. The Game Class

class Game
{
private:
 Player m_player;

 void WelcomePlayer();
 void GivePlayerOptions();
 void GetPlayerInput(std::string& playerInput);
 PlayerOptions EvaluateInput(std::string& playerInput);

public:
 void RunGame();
};

Our Game class contains a private member variable representing our player and private methods to
update the game state. These methods are listed in the corresponding source file shown in
Listing 8-16.

93CHAPTER 8: Object-Oriented Programming with Classes

Listing 8-16. Game.cpp

#include "Game.h"
#include <iostream>

using namespace std;

void Game::WelcomePlayer()
{
 cout << "Welcome to Text Adventure!" << endl << endl;
 cout << "What is your name?" << endl << endl;

 string name;
 cin >> name;
 m_player.SetName(name);

 cout << endl << "Hello " << m_player.GetName() << endl;
}

void Game::GivePlayerOptions()
{
 cout << "What would you like to do? (Enter a corresponding number)"
 << endl << endl;
 cout << "1: Quit" << endl << endl;
}

void Game::GetPlayerInput(string& playerInput)
{
 cin >> playerInput;
}

PlayerOptions Game::EvaluateInput(string& playerInput)
{
 PlayerOptions chosenOption = PlayerOptions::None;

 if (playerInput.compare("1") == 0)
 {
 cout << "You have chosen to Quit!" << endl << endl;
 chosenOption = PlayerOptions::Quit;
 }
 else
 {
 cout << "I do not recognize that option, try again!" << endl << endl;
 }

 return chosenOption;
}

94 CHAPTER 8: Object-Oriented Programming with Classes

void Game::RunGame()
{
 WelcomePlayer();

 bool shouldEnd = false;
 while (shouldEnd == false)
 {
 GivePlayerOptions();

 string playerInput;
 GetPlayerInput(playerInput);

 shouldEnd = EvaluateInput(playerInput) == PlayerOptions::Quit;
 }
}

The examples so far in this chapter had all defined the class methods inside the class declaration.
Our Game class now declares the methods in the header file and creates the declarations in a source
file. You can see how we achieve this by prepending the class name to the method name like this:

void Game::WelcomePlayer()

Another change made to the methods when comparing them to the functions in Chapter 7 is that
they can now access the m_player object as a member variable rather than requiring that it be
passed into the methods. You can also see that we have moved our entire game loop into the
RunGame method. This is the change that has allowed you to make all of the other methods that make
up the Game class private. This is a good example of encapsulation, as any other code that now uses
the Game class can only ask it to run. All of its implementation details have been hidden behind its
public interface.

We have been altering our Player class as we moved through this chapter, and the final result is
shown in Listing 8-17.

Listing 8-17. The Player Class

class Player
{
private:
 std::string m_name;

public:
 void SetName(const std::string& name)
 {
 m_name = name;
 }

 const std::string& GetName() const
 {
 return m_name;
 }
};

95CHAPTER 8: Object-Oriented Programming with Classes

Our Player class has gone back to being very basic. At the moment, the default constructor and
destructor do everything we need for the class and the overloaded methods and operators that we
looked at in this chapter were purely instructional and actually don’t make much sense for the player
object. The player object will still grow over time; however, for now, storing the user’s name is all we
need it to do.

The last changes that you need to make to the code from Chapter 7 involve the main function.
The new main function is shown in Listing 8-18.

Listing 8-18. The main Function

int _tmain(int argc, _TCHAR* argv[])
{
 Game game;
 game.RunGame();

 return 0;
}

main is now very basic. It creates an instance of the Game class and then calls the only public method
that is exposed, RunGame. The player object is now a private member of Game, as are the functions
we had created to make the game loop more readable. We can now refer to those variables and
members generally as the implementation details of the class, and RunGame is part of the Game class’s
public interface.

Summary
This chapter has introduced you to the class concept of C++. Classes were the first feature that set
C++ apart from the C programming language. Adding classes to C allowed a new way of thinking
about computer programming to be used in C-style programs, object-oriented programming. In this
chapter you looked at how you can think about OOP from a high level and how you can turn a basic
design into a class design for a program by finding the nouns.

You then learned how to use classes effectively in C++ by creating them in a manner that helps
encourage encapsulation in your programming. You learned that by hiding data and methods inside
classes it is possible to create code that is more easily maintainable in the future. This is possible
because the details of how a class is implemented can be changed so long as the public methods
remain consistent and carry out their intended operations.

You’ve seen that classes are essentially a way for you to add your own user-defined types to the
C++ language and that C++ also provides features such as method and operator overloading to
make those types blend in with others. These features make writing code with classes simpler for
other programmers, but they rely on you to ensure that the operations that overloaded methods and
operators perform are consistent with how they have been used in other places in the C++ language.

The next chapter is going to shed some more light on some of the keywords that help make classes
more secure, make them faster, and to allow them to share data. We have already seen examples of
the const keyword and you’ve already created some implicitly inline methods without even realizing
it. The next chapter will make these concepts clearer.

97

Chapter 9
Controlling Data with Access
Modifiers

C++ allows you to control how data in variables can be accessed by using different access
modifiers. There are modifiers that tell the compiler that a variable should be shared among
classes or that the program cannot change the value of the variable after it has been initialized.
Unfortunately some of the keywords supplied by C++ are reused and mean different things in
different circumstances. I’ll cover the use of the static, const, mutable, and friend keywords in
C++, and their multiple uses in this chapter.

The static Keyword
The static keyword has four major uses in C++ programs:

It is used within functions to indicate that a variable should remember its value 	
each time the function is called.

It is used within classes to tell the compiler that each object created from the 	
class should share the same variable.

It is used within classes to tell the compiler that a method can be called without 	
having an object instance.

It is used to tell the compiler that a variable declared outside of a class or 	
function should have file scope rather than global scope.

These completely different uses for the static keyword make it difficult to master or even just
to remember which effect the word will have when you use it in your code. The following section
provides examples of each case to help you understand how static behaves in everyday usage.

98 CHAPTER 9: Controlling Data with Access Modifiers

Creating static Local Variables
The static local variable is the simplest version of static to understand. A normal local variable
will lose its value each time a function returns and will reset to the initialized value the next time the
function is called. Listing 9-1 shows an example of a normal local variable in action.

Listing 9-1. A Normal Local Variable

void NormalLocalVariable()
{
 int x = 0;
 std::cout << x++ << std::endl;
}

With the function source in Listing 9-1 the console will have the value 0 added every time we call the
function NormalLocalVariable. This is because the variable is re-created each time the function is
called. Listing 9-2 shows the code for a static local variable.

Listing 9-2. A static Local Variable

void StaticLocalVariable()
{
 static int x = 0;
 std::cout << x++ << std::endl;
}

This time you have told the compiler that you would like the variable x to be static. When you do
this, the compiler creates a variable in a location in memory that prevents it from being overwritten
each time the function is called (you will learn more about C++ memory management in Chapter
26). The effect of this is that the value stored in the variable is preserved and will increase with each
call. The non-static variable in Listing 9-1 always contained 0 when it was printed out, whereas the
variable in Listing 9-2 will print 0 on the first call, 1 on the second call, and so on.

The use of static local variables is a practice I wouldn’t recommend for normal code as it
encourages you to take shortcuts in the design of your code. These shortcuts almost always cause
you more difficult problems in the longer term. You’ll see how private member variables can be used
instead when we cover classes. It can be useful to use static variables to count the number of
times a function has been called or to time how long the execution of those function calls takes, but
static local variables are rarely the best design choice for standard game code.

Using static class Member Variables
The static keyword can also be used with class member variables. Listing 9-3 shows an example
class that contains a static member variable.

99CHAPTER 9: Controlling Data with Access Modifiers

Listing 9-3. A static Member Variable

class StaticCounter
{
private:
 static int m_counter;

public:
 void IncrementCounter()
 {
 ++m_counter;
 }
 void Print()
 {
 std::cout << m_counter << std::endl;
 }
};

int StaticCounter::m_counter = 0;

Using the static keyword on a member variable has a similar effect as using it on a local variable.
The variable will be created in static memory rather than within the memory space for the object
itself. You should pay special attention to the final line of this listing. Member variables that we
declare to be static must be defined and this usually occurs in the source file that accompanies
a header file for the class. A clear example of this is shown in the source code sample that
accompanies this chapter and can be downloaded from this book’s accompanying web site:
http://www.apress.com/9781430264576. This causes all objects created from this class type to share
the same static variable, which in Listing 9-4 is the m_counter variable. The source code in Listing
9-4 shows how we can call these functions.

Listing 9-4. Using the StaticCounter Class

StaticCounter counter1;
counter1.Print();
counter1.IncrementCounter();
counter1.Print();

StaticCounter counter2;
counter2.Print();
counter2.IncrementCounter();
counter2.Print();

These lines of code in a program would output 0, 1, 1, then 2. This happens because both counter1
and counter2 are sharing the same m_counter variable. Another way you could see this in action
would be to look at the address of the m_counter variable. Listing 9-5 shows how you can do this.

Listing 9-5. Getting the Address of m_counter

void Print()
{
 std::cout << m_counter << std::endl;
 int* address = &m_counter;
}

http://www.apress.com/9781430264576

100 CHAPTER 9: Controlling Data with Access Modifiers

If you were to run this code in your debugger you would be able to set a breakpoint on the line
containing the closing brace for the function block. Your debugger should have two variables shown
in the local variables window. Figure 9-1 shows the local variable window from a Visual Studio
integrated development environment (IDE).

Figure 9-1. The counter1 this address

Figure 9-2. The counter2 this address

Figure 9-1 shows the state of the debugger when execution stops in the Print method that has been
called on the counter1 object. You can see that the address of counter1 is stored in the this pointer
and is 0x00fcfad3. The address variable that stores the address of m_counter holds the address
0x00b6f680. Figure 9-2 shows the same variables when Print is called on the counter2 object.

You can see in Figure 9-2 that the value stored in this has changed. The Visual Studio debugger has
helpfully displayed the value in red to show that the value has changed. Both values in Figure 9-1
are red as they were both new values that were being shown. The address of counter2 is now stored
in the this pointer and is 0x00fcfac7. Despite the change in the object address, the address of m_
counter has stayed exactly the same and is a direct result of using the static keyword on the member
variable of the StaticCounter class. Every instance of the StaticCounter class would now use the
exact same m_counter variable and any change to this variable will be shared.

101CHAPTER 9: Controlling Data with Access Modifiers

Using static Member Methods
Listing 9-3 contained the IncrementCounter method, which we called on the counter1 and counter2
objects in Listing 9-5. This method was a standard method that relied on an existing object to
be usable. C++ also allows us to create static member methods that do not rely on an object to
be callable. Listing 9-6 shows an updated version of the StaticCounter class that uses a static
member method.

Listing 9-6. Using a static Member Method

class StaticCounterMethod
{
private:
 static int m_counter;

public:
 static void IncrementCounter()
 {
 ++m_counter;
 }

 static void Print()
 {
 std::cout << m_counter << std::endl;
 int* address = &m_counter;
 }
};

int StaticCounterMethod::m_counter = 0;

You can see in Listing 9-6 that the only changes that we make to turn our methods into static
methods is to add the static keyword at the beginning of their method signature. Listing 9-7 shows
how you can use these static methods.

Listing 9-7. Using static Methods

StaticCounterMethod::Print();
StaticCounterMethod::IncrementCounter();
StaticCounterMethod::Print();

StaticCounterMethod::Print();
StaticCounterMethod::IncrementCounter();
StaticCounterMethod::Print();

You can see in Listing 9-7 that we can now call these static methods in a different way than
non-static methods. First you use the name of the class, which is followed by the scope resolution
operator (::) and the name of the static function we would like to call. You have already used
the scope resolution operator when accessing variable and function names that exist inside of
namespaces. In this instance we are simply letting the compiler know that we’d like to access the
global variables or methods that are contained within the class.

102 CHAPTER 9: Controlling Data with Access Modifiers

Using static to Alter Global Scope
The last use of the static keyword allows you to tell the compiler that you would like a variable to
exist within the scope of a single file rather than in the global scope. Global variables are generally
frowned on as they break encapsulation in object-oriented programs and we won’t be using any in
our Text Adventure game that hold game data. You might come across these in production code,
though, so it’s good to know how to work with them. Listing 9-8 shows an example of a globally
scoped and a file scoped variable.

Listing 9-8. Globally Scoped and File Scoped Variables

#include "stdafx.h"
#include <iostream>
#include "extern.h"

int globalVariable = 0;
static int fileVariable = 0;

int _tmain(int argc, _TCHAR* argv[])
{
 IncrementGlobalCounters();
 std::cout << globalVariable << std::endl;

 return 0;
}

Listing 9-8 defines a global variable named globalVariable and a file variable named fileVariable.
The declaration of the function IncrementGlobalCounters is contained in the extern.h header file.
Listing 9-9 shows the contents of this basic file.

Listing 9-9. extern.h

#pragma once

void IncrementGlobalCounters();

The function definition is in extern.cpp, shown in Listing 9-10.

Listing 9-10. extern.cpp

#include "extern.h"

void IncrementGlobalCounters()
{
 extern int globalVariable;
 ++globalVariable;

 // Error - will not compile as fileVariable is not global!
 extern int fileVariable;
 ++fileVariable;
}

103CHAPTER 9: Controlling Data with Access Modifiers

Listing 9-10 introduces the extern keyword. You use extern to tell the compiler that it can search the
global scope for a variable of this name. In this case the variable will be found in the file containing
_tmain. Trying to use extern with fileVariable will cause an unresolved external symbol error when
you try to build. The variable is unresolved because fileVariable has been declared as static,
which means that it can only be used from within the file where it was declared.

This use of static to limit variables to file scope is deprecated. That means it is still supported but
no longer the recommended method for achieving file scoped variables. A more modern approach
is to use an anonymous namespace. Listing 9-11 alters Listing 9-8 to use an anonymous namespace
instead of a static variable.

Listing 9-11. Anonymous namespaces

#include "stdafx.h"
#include <iostream>
#include "extern.h"

int globalVariable = 0;

namespace
{
 int fileVariable = 0;
}

int _tmain(int argc, _TCHAR* argv[])
{
 IncrementGlobalCounters();
 std::cout << globalVariable << std::endl;

 return 0;
}

The anonymous namespace is simply a namespace that is not given a name. Any of the variables,
functions, or classes that you include inside the namespace will be accessible inside the file that
contains the anonymous namespace.

This section should have given you an idea of just how overloaded the static keyword is. The next
section covers the const keyword, which is not quite as overloaded but still confusing.

The const Keyword
A constant in C++ is a variable that cannot be changed. Constants are useful to store values that
you know at compile time, for passing values into methods that you don’t want to be able to change,
and for marking methods in classes that should not be allowed to change member variables. I’ll
cover these uses in the following sections.

104 CHAPTER 9: Controlling Data with Access Modifiers

Constant Variables
Constant variables are used to avoid having magic numbers in our code and to generally represent
values that we know at compile time and will never change during execution. Classic examples in
game programming are constant values used to represent pi or the values used to convert angles in
degrees to angles in radians and vice versa. Listing 9-12 shows how we can create some constant
variables to reference in our code.

Listing 9-12. Example Constant Variables

#include "stdafx.h"
#include <iostream>
#include "extern.h"

int globalVariable = 0;

namespace
{
 const unsigned int MAX_LOOPS = 10;
}

int _tmain(int argc, _TCHAR* argv[])
{
 for (unsigned int i = 0; i < MAX_LOOPS; ++i)
 {
 IncrementGlobalCounters();
 std::cout << globalVariable << std::endl;
 }
}

We have added a const unsigned int variable named MAX_LOOPS to our code from Listing 9-11. The
benefit of using a constant is that if you use the same variable in multiple places, you would only
have to change the value in a single place to ensure that the value is changed everywhere it is used.
You can see this benefit in Listing 9-13.

Listing 9-13. Using a const Variable in Multiple Places

unsigned int arrayOfValues[MAX_LOOPS];
for (unsigned int i = 0; i < MAX_LOOPS; ++i)
{
 arrayOfValues[i] = i;
 IncrementGlobalCounters();
 std::cout << globalVariable << std::endl;
 std::cout << fileVariable << std::endl;
}

If you fail to use a constant variable and instead use the value 10 in the array definition and in the
loop, you run the risk of introducing bugs. If the array was reduced to contain 5 elements and the
loop remained at 10 then the loop would overrun the end of the array and overwrite memory used to
store values in other variables.

105CHAPTER 9: Controlling Data with Access Modifiers

Constant Pointers
Pointers can also be made to be constant; however, the logic is a little more involved. Listing 9-14
shows the different types of pointer constant that we can create.

Listing 9-14. Three Types of Constant Pointer

const char* const NAME = "Bruce Sutherland";
const char* BOOK = "Learn C++ Game Development";
char* const YEAR = "2014";

The first example shows the type const char* const. When dealing with constant pointers we read
the type keywords from right to left so this first example gives us a constant pointer to a character
constant. In practice this means that you cannot change the address to which the pointer points or
the data that it points at.

The second example is a pointer to a character constant. You cannot change the text data but you
can change the address pointed to, so adding the following line would be valid.

BOOK = NAME;

This would result in both BOOK and NAME pointing to the string "Bruce Sutherland".

The remaining example is a constant pointer to character data. You can’t change the pointer but you
can change the data pointer to it, so you can do the following.

YEAR[0] = '3';

The array operator would not have compiled if it was used on either NAME or BOOK, as the character
data was constant.

Constant Parameters
It is a straightforward task to make parameters constant. Listing 9-15 shows a function with constant
parameters.

Listing 9-15. Constant Parameters

bool ConstParams(const int numLetters, const char* const stringData)
{
 return strlen(stringData) == numLetters;
}

This example uses a C-style string just for the purposes of the example. As you can see, we can
pass constant built-in types or constant pointers to functions or class member methods.

Constant Member Methods
This last section on constants will show you how to create constant member methods. Listing 9-16
shows an example.

106 CHAPTER 9: Controlling Data with Access Modifiers

Listing 9-16. A const Member Method

class ConstantExample
{
private:
 int m_counter;

public:
 ConstantExample() : m_counter(0) {}
 int GetCounter() const { return m_counter; }
 void IncrementCounter() { ++m_counter; }
};

You can create a const method by adding const to the end of the method signature. The implication
of this goes hand in hand with const variables. Listing 9-17 gives an example.

Listing 9-17. A const Reference

ConstantExample example;
const ConstantExample& constRefExample = example;
constRefExample.IncrementCounter();
constRefExample.GetCounter();

If you try to compile the code in Listing 9-17 you will receive an error. We cannot call
IncrementCounter using the const reference, as it is not a constant member method. You also
cannot call non-const members on constant pointers or on constant variables.

You will receive a compile error if you try to alter any member variables in const member methods.
Listing 9-18 shows how we can use the mutable keyword to tell the compiler that a member variable
can be changed in const member methods.

Listing 9-18. The mutable Keyword

class ConstantExample
{
private:
 int m_counter;
 mutable int m_countGets;

public:
 ConstantExample() : m_counter(0), m_countGets(0) {}
 int GetCounter() const { ++m_countGets; return m_counter; }
 void IncrementCounter() { ++m_counter; }
};

Listing 9-18 shows a good example of the mutable keyword. It is best used sparingly and usually
for debug information as the keyword technically goes against the normal usage of const member
methods. The code in Listing 9-18 allows us to count how many times the GetCounter method is
called even though is it a const member method and shouldn’t be able to change any member
values.

107CHAPTER 9: Controlling Data with Access Modifiers

Two More Keywords
Whereas static and const have several uses and will be common in your code, there are another
two keywords that make an appearance in C++ but don’t have such obvious effects. The first is the
inline keyword and the second is the friend keyword.

The inline Keyword
At different times in your programming journey you will have to consider different goals. Sometimes
you will need to write code that executes as quickly as possible and at others you will have to write
code that uses as little memory as possible. The inline keyword and inline member methods allow
us to ask the compiler to help us with this.

When you inline a method the compiler will skip the instructions it needs to call the method;
instead, the function body will be duplicated every time you call the method. This duplication of
instructions reduces the length of time it takes to call the method, but increases the amount of
memory used by duplicating the method throughout the code. For methods that are called many
times, this duplication could be significant. Listing 9-18 contained two functions, GetCounter and
IncrementCounter.

The compiler will attempt to inline these methods because the definitions are contained within
the class definition. You could achieve the same thing explicitly by making the changes shown in
Listing 9-19.

Listing 9-19. The inline Keyword

class ConstantExample
{
private:
 int m_counter;
 mutable int m_countGets;

public:
 ConstantExample() : m_counter(0), m_countGets(0) {}
 int GetCounter() const;
 void IncrementCounter();
};

inline int ConstantExample::GetCounter() const
{
 ++m_countGets;
 return m_counter;
}

inline void ConstantExample::IncrementCounter()
{
 ++m_counter;
}

108 CHAPTER 9: Controlling Data with Access Modifiers

You might find that your code is more readable if you move the method definitions out of the body of
the class. This is where the inline keyword helps. Now that you know how to make inline methods
you might be wondering why you would do this. Each time we call a function or method, the
compiler inserts code to set up the parameters, handle the return value, and ensure that the code
can carry on where it left off when the method returns. For simple methods this plumbing code can
take more time than the code contained in the method. You can use inline to avoid the cost of this
setup code. Compare the code in Listings 9-20 and 9-21.

Listing 9-20. A Non-inline Method

ConstantExample example;
const ConstantExample& constRefExample = example;

int count = constRefExample.GetCounter();

Listing 9-21. The Result of Using inline

ConstantExample example;
const ConstantExample& constRefExample = example;

++constRefExample.m_countGets;
int count = constRefExample.m_counter;

Listing 9-21 shows how the code would look if we had public access to the member variables of
constRefExample. This is how the compiler would write your code if you define GetCounter as an
inline method.

Note The inline keyword is just a compiler hint. The compiler can choose to ignore the keyword or it
can inline functions that do not have the keyword. This is especially true for inline methods that call other
methods or functions.

The friend Keyword
The friend keyword allows us to write classes that can access the private member variables and
methods of another class. You can see this in action in Listing 9-22.

Listing 9-22. The friend Keyword

class ConstantExample
{
 friend class ConstantExampleFriend;

private:
 int m_counter;
 mutable int m_countGets;

 int GetCounter() const;

109CHAPTER 9: Controlling Data with Access Modifiers

public:
 ConstantExample() : m_counter(0), m_countGets(0) {}
 void IncrementCounter();
};

inline int ConstantExample::GetCounter() const
{
 ++m_countGets;
 return m_counter;
}

inline void ConstantExample::IncrementCounter()
{
 ++m_counter;
}

class ConstantExampleFriend
{
public:
 int GetCounter(const ConstantExample& constantExample)
 {
 return constantExample.GetCounter();
 }
};

The ConstantExample::GetCounter method is private in Listing 9-22. This means that we would not
be able to access this method from an object of this type. I have added a line to ConstantExample to
inform the compiler that ConstantExampleFriend is a friend class of ConstantExample. Listing 9-23
shows how we can use this class to access the private ConstantExample::GetCounter method.

Listing 9-23. Using a friend class

ConstantExample example;
ConstantExampleFriend exampleFriend;
int count = exampleFriend.GetCounter(example);

Listing 9-23 shows that the count value contained in example can be accessed via an instance of
ConstantExampleFriend.

Summary
This chapter has covered a few utility keywords in the C++ language. The static, const, extern,
inline, and friend keywords allow you to control how variables are accessed and more important
allow you to communicate the intent of your code more clearly. Data that is to be shared and remain
consistent across multiple function calls can be made static. Variables that are never meant to be
changed can be marked as const.

The concepts that were introduced in this chapter can take some time to become second nature.
You will see several examples of inline and friend as we go through this book. I would recommend
that you avoid using inline, friend, and extern until you are more confident in your programming.

110 CHAPTER 9: Controlling Data with Access Modifiers

A good modern compiler will inline functions that it believes will benefit from the performance
boost automatically and the other two keywords can be a sign of code that might be better written
in a different way. The extern keyword is particularly rare in modern code as it generally goes
against the aim of object-oriented code to keep data and implementations behind interfaces using
encapsulation.

The next chapter will introduce you to inheritance. Inheritance allows us to create hierarchies of
classes and is particularly important for game development. The Text Adventure game you are
developing will become much more interesting in the next chapter as you create rooms, items, and
commands that allow a player to interact with the game world.

111

Chapter 10
Building Games with Inheritance

Being a productive video game developer involves writing well-organized code that can be reused
as often as possible. C++ classes provide a feature named inheritance that helps us achieve both
of these goals. Inheritance allows us to create generalized base classes that can be derived from to
create classes with a more specific purpose. In this chapter you learn how this allows us to share
behavior among classes.

Inheriting from a Base Class
The classic example used to explain inheritance to new programmers is that of motor vehicles. There
are multiple categories of vehicles, including cars, motorbikes, and trucks. All of these things can be
thought of as vehicles and therefore can be included in a vehicle category. All have common features
such as wheels, engines, and lights but all are obviously very different. If we were to make a game
that included vehicles we could easily represent these in a class hierarchy. Figure 10-1 shows how
we can visualize our class structure.

Vehicle

Car Motorbike Truck

Figure 10-1. The vehicle class hierarchy

The simple diagram in Figure 10-1 shows that we will have a base class named Vehicle and that
there will be three derived classes, one named Car, one named Motorbike, and one named Truck.
Listing 10-1 shows the code for the Vehicle class.

112 CHAPTER 10: Building Games with Inheritance

Listing 10-1. The Vehicle Class

class Vehicle
{
private:
 unsigned int m_numberOfWheels;

public:
 Vehicle();

 unsigned int GetNumberOfWheels() const;
};

Vehicle::Vehicle()
 : m_numberOfWheels(0)
{

}

unsigned int Vehicle::GetNumberOfWheels() const
{
 return m_numberOfWheels;
}

The Vehicle class contains a private variable that stores the number of wheels the vehicle has.
The variable is private and the Vehicle class does not provide a method to set it. Instead, classes
that derive from Vehicle will set their own number of wheels in their own constructor.

Note The constructor for the Vehicle class uses an initializer list to initialize its variables. An initializer list
ensures that the variables’ values are set before any of the code contained within the constructor is executed
and is the preferred method for initializing class member variables. You can use an initializer list in your class
constructors by following the constructor signature with a colon and placing the value to initialize within
brackets. Subsequent variables can be added to the list using commas.

Listing 10-2 shows the class definition for a Car.

Listing 10-2. The Car Class

class Car : public Vehicle
{
public:
 Car();
};

Car::Car()
{
 m_numberOfWheels = 4;
}

113CHAPTER 10: Building Games with Inheritance

The Car class is inheriting from Vehicle using public inheritance. You can inherit one class from
another by following the class name with a colon, followed by public then the name of the class you
wish to derive from. Listing 10-2 shows that we have derived Car from Vehicle.

If you enter the code from Listing 10-2 into your integrated development environment (IDE) and try to
compile you will be given a compiler error. The compiler cannot access m_numberOfWheels in the Car
constructor as it is a private member of Vehicle. One option would be to make m_numberOfWheels a
public variable; however, this would break our encapsulation and allow the variable to be accessed
from anywhere in our code. A better option is to use the protected keyword. Listing 10-3 updates
the Vehicle class with the protected keyword.

Listing 10-3. Using protected in Vehicle

class Vehicle
{
protected:
 unsigned int m_numberOfWheels;

public:
 Vehicle();

 unsigned int GetNumberOfWheels() const;
};

The protected keyword makes variables behave as though they are private to outside code; that is,
they still cannot be accessed directly by calling code. The key difference to private member variables
is that they can be accessed by derived classes. By declaring m_numberOfWheels as protected in the
Car class we can now access it directly in Car and set the number of wheels to 4. Listing 10-4 shows
some code to print the number of wheels each vehicle type contains.

Listing 10-4. Printing the Number of Wheels

void PrintNumberOfWheels()
{
 Vehicle vehicle;
 Car car;

 std::cout << vehicle.GetNumberOfWheels() << std::endl;
 std::cout << car.GetNumberOfWheels() << std::endl;
}

This function will result in 0 being printed followed by the number 4. It’s important that you
note what this function has achieved. The Car class defined in Listing 10-2 does not contain a
GetNumberOfWheels method, nor does it have a variable to store a number of wheels. The Car class
has inherited these from the Vehicle class. Listing 10-5 shows how you can inherit another class
from Vehicle, this time Motorcycle.

114 CHAPTER 10: Building Games with Inheritance

Listing 10-5. The Motorcycle Class

class Motorcycle : public Vehicle
{
public:
 Motorcycle();
};

Motorcycle::Motorcycle()
{
 m_numberOfWheels = 2;
}

You can see that we add our new class to PrintNumberOfWheels in Listing 10-6.

Listing 10-6. Adding Motorcycle to PrintNumberOfWheels

void PrintNumberOfWheels()
{
 Vehicle vehicle;
 Car car;
 Motorcycle motorcycle;

 std::cout << vehicle.GetNumberOfWheels() << std::endl;
 std::cout << car.GetNumberOfWheels() << std::endl;
 std::cout << motorcycle.GetNumberOfWheels() << std::endl;
}

Motorcycle inherits from Vehicle, just as Car does, but it sets the number of wheels to 2 and this is
printed out when we call the PrintNumberOfWheels function.

You now understand the basics of how to create classes that inherit behaviors from base classes.
Now I’ll move on to show you how this works in practice.

Constructors and Destructors in Derived Classes
In the previous section you saw that we can set values in member variables belonging to our parent
class if the variables were declared as protected or public. Listing 10-7 shows the constructors
from the Vehicle, Car, and Motorbike classes.

Listing 10-7. Your Vehicle, Car, and Motorbike Constructors

Vehicle::Vehicle()
 : m_numberOfWheels(0)
{

}

Car::Car()
{
 m_numberOfWheels = 4;
}

115CHAPTER 10: Building Games with Inheritance

Motorcycle::Motorcycle()
{
 m_numberOfWheels = 2;
}

The Vehicle class constructor sets m_numberOfVehicles to 0 in an initializer list. Car and Motorbike
assign the values directly as an initializer list cannot be used on nonmember variables from our base
class. What you might be surprised to hear is that the Vehicle constructor is called automatically
when we create a Car or Motorbike object. You can see this in practice by adding some logging code
to the constructors, which we do in Listing 10-8.

Listing 10-8. Adding Logging to Your Constructors

Vehicle::Vehicle()
 : m_numberOfWheels(0)
{
 std::cout << "Vehicle Constructed" << std::endl;
}

Car::Car()
{
 m_numberOfWheels = 4;

 std::cout << "Car Constructed" << std::endl;
}

Motorcycle::Motorcycle()
{
 m_numberOfWheels = 2;

 std::cout << "Motorcycle Constructed" << std::endl;
}

If you execute the PrintNumberOfVehicles function from Listing 10-6 once more you will see that we
have some new text in the output. It should read:

Vehicle Constructed
Vehicle Constructed
Car Constructed
Vehicle Constructed
Motorcycle Constructed
0
4
2

Vehicle Constructed is printed three different times. That is because the Vehicle constructor
is being called each time any class that derives from Vehicle is instantiated. The order of the
constructors is important: The constructors of parent classes are called before the constructors of
derived classes. You can see this in action where the Vehicle Constructed output text is printed
before both Car Constructed and Motorcycle Constructed.

116 CHAPTER 10: Building Games with Inheritance

C++ supplies classes with a destructor as well as a constructor. Listing 10-9 shows what destructors
for the Vehicle, Car, and Motorcycle classes could look like.

Listing 10-9. Vehicle, Car, and Motorcycle Destructors

Vehicle::~Vehicle()
{
 std::cout << "Vehicle Destructed" << std::endl;
}

Car::~Car()
{
 std::cout << "Car Destructed" << std::endl;
}

Motorcycle::~Motorcycle()
{
 std::cout << "Motorcycle Destructed" << std::endl;
}

Destructors are defined in a similar manner to constructors. They do not have a return value and
they use the name of the class. A destructor is shown to be different from a constructor by having
the ~ symbol added to its name.

If you execute the PrintNumberOfWheels function again with these destructors in place you will see
the following output:

Vehicle Constructed
Vehicle Constructed
Car Constructed
Vehicle Constructed
Motorcycle Constructed
0
4
2
Motorcycle Destructed
Vehicle Destructed
Car Destructed
Vehicle Destructed
Vehicle Destructed

You can deduce a few things from this output. First, you can see that any local variables that are created
from classes are automatically destroyed when the function returns. This is known as going out of
scope. Second, you can see that destructors are called automatically when locally instantiated objects
go out of scope. Third, you can see that the destructors for the base classes are also called; that is,
~Vehicle is called for both Car and Motorcycle. Finally, you should note that the objects are destroyed
in the reverse order in which they were created. The motorcycle object is destroyed before car, which is
destroyed before vehicle. This is a useful feature that we use to our advantage later in this book.

Method overriding is the final feature of class inheritance you’ll learn in this chapter.

117CHAPTER 10: Building Games with Inheritance

Method Overriding
Earlier in this chapter, you saw how we can change the number of wheels in derived classes by
changing the value of a variable in the derived class’s constructor. Although that is a more correct
method for achieving this, I will show you how we could have achieved a similar outcome using
method overriding in this chapter. To use method overriding we will create a GetNumberOfWheels
method in each of our three classes. Listing 10-10 shows these methods.

Listing 10-10. Overriding GetNumberOfWheels

unsigned int Vehicle::GetNumberOfWheels() const
{
 return 0;
}

unsigned int Car::GetNumberOfWheels() const
{
 return 4;
}

unsigned int Motorcycle::GetNumberOfWheels() const
{
 return 2;
}

Now each of your classes has a method with an identical name. In the PrintNumberOfWheels method
so far, each call to GetNumberOfWheels called Vehicle::GetNumberOfWheels, which returned the value
stored in m_numberOfWheels. With method overriding the compiler will call the GetNumberOfWheels
method for the appropriate class; therefore, we will see calls to Car::GetNumberOfWheels and
Motorcycle::GetNumberOfWheels in the proper place in our PrintNumberOfWheels function.

Updating Text Adventure
The Text Adventure game you are building has fairly limited functionality at this point. In this chapter
we are going to add some rooms to the game and update Player to be inherited from a class named
Entity.

Creating an Entity Class
Entity will be our game’s base class for all objects that exist in the game world. Listing 10-11 shows
the code for Entity.

Listing 10-11. The Entity Class

class Entity
{
public:
 void Update() {}
};

118 CHAPTER 10: Building Games with Inheritance

Our Entity class at the moment is very straightforward; all we want it to do is provide our inherited
classes with an Update method. The Update method can be important when developing game
software, as your program will likely be updating your objects once per frame.

Adding Inheritance to the Player Class
Your Player class can now be changed to inherit from Entity. The new Player class can be seen in
Listing 10-12.

Listing 10-12. Inheriting Player from Entity

class Player
 : public Entity
{
private:
 std::string m_name;

public:
 Player()
 {
 }

 void SetName(const std::string& name)
 {
 m_name = name;
 }

 const std::string& GetName() const
 {
 return m_name;
 }
};

You will see what the Player class’s Update method will look like once we have added some rooms
for the player to move through.

Adding Rooms
To be able to have the player move through rooms in the game you will need to create a Room class,
and the code for this is shown in Listing 10-13.

Listing 10-13. The Room Class

class Room
 : public Entity
{
public:
 enum class JoiningDirections
 {
 North = 0,
 East,

119CHAPTER 10: Building Games with Inheritance

 South,
 West,
 Max
 };

private:
 Room* m_pJoiningRooms[JoiningDirections::Max];

public:
 Room();

 void AddRoom(JoiningDirections direction, Room* pRoom);
 Room* GetRoom(JoiningDirections direction) const;
};

Room::Room()
{
 for (unsigned int i = 0;
 i < static_cast<unsigned int>(JoiningDirections::Max);
 ++i)
 {
 m_pJoiningRooms[i] = nullptr;
 }
}

void Room::AddRoom(Room::JoiningDirections direction, Room* pRoom)
{
 m_pJoiningRooms[static_cast<unsigned int>(direction)] = pRoom;
}

Room* Room::GetRoom(Room::JoiningDirections direction) const
{
 return m_pJoiningRooms[static_cast<unsigned int>(direction)];
}

For now, a Room is a simple object. We have inherited from Entity and have created an array to store
pointers to connecting rooms. There is an enum class that is used to enumerate the four different
directions in which rooms can be connected to the current room. The value of North is set to 0 in our
enum class as we will be using these values to index into our array of Room pointers. You can see this
in action in the method Room::AddRoom where we must static_cast the value of direction to be able
to index into our array and assign the passed Room* to the correct array member. The final method
in Room is GetRoom, which will allow us to get the pointer to a room adjoining any given room for the
supplied direction.

Now that you have a room class you will be able to add some rooms to our Game class. You can see
how this is done in Listing 10-14.

120 CHAPTER 10: Building Games with Inheritance

Listing 10-14. Adding a Room Array to Game

class Game
{
private:
 static const unsigned int m_numberOfRooms = 4;
 Room m_rooms[m_numberOfRooms];

 Player m_player;

 void InitializeRooms();
 void WelcomePlayer();
 void GivePlayerOptions() const;
 void GetPlayerInput(std::string& playerInput) const;
 PlayerOptions EvaluateInput(std::string& playerInput) const;
public:

 void RunGame();
};

The Game class now has an array that stores all of the Room objects our game requires. We can
increase the number of rooms by increasing the value stored in the static const variable
m_numberOfRooms. The new method, InitializeRooms, is shown in Listing 10-15 and is responsible
for creating the connections between the different Room objects.

Listing 10-15. Game::InitializeRooms

void Game::InitializeRooms()
{
 // Room 0 heads North to Room 1
 m_rooms[0].AddRoom(Room::JoiningDirections::North, &(m_rooms[1]));

 // Room 1 heads East to Room 2, South to Room 0 and West to Room 3
 m_rooms[1].AddRoom(Room::JoiningDirections::East, &(m_rooms[2]));
 m_rooms[1].AddRoom(Room::JoiningDirections::South, &(m_rooms[0]));
 m_rooms[1].AddRoom(Room::JoiningDirections::West, &(m_rooms[3]));

 // Room 2 heads West to Room 1
 m_rooms[2].AddRoom(Room::JoiningDirections::West, &(m_rooms[1]));

 // Room 3 heads East to Room 1
 m_rooms[3].AddRoom(Room::JoiningDirections::East, &(m_rooms[1]));
}

It is important to make sure that any Room that connects to another also has that Room connect back
or the player might be able to get into a Room and not able to get back out. Listing 10-16 shows an
option for where you can call InitializeRooms.

121CHAPTER 10: Building Games with Inheritance

Listing 10-16. Calling InitializeRooms from Game::RunGame

void Game::RunGame()
{
 InitializeRooms();

 WelcomePlayer();

 bool shouldEnd = false;
 while (shouldEnd == false)
 {
 GivePlayerOptions();

 string playerInput;
 GetPlayerInput(playerInput);

 shouldEnd = EvaluateInput(playerInput) == PlayerOptions::Quit;
 }
}

Now that you have some Room objects in the game, you will need to keep track of which Room the
player is currently in. You can do this by adding a pointer to a Room to the Player object. Listing 10-17
shows how this can be achieved.

Listing 10-17. Adding a Room Pointer to Player

class Room;

class Player
 : public Entity
{
private:
 const Room* m_pCurrentRoom;
 std::string m_name;

public:
 Player()
 {
 }

 void SetName(const std::string& name)
 {
 m_name = name;
 }

 const std::string& GetName() const
 {
 return m_name;
 }

122 CHAPTER 10: Building Games with Inheritance

 void SetCurrentRoom(const Room* pCurrentRoom)
 {
 m_pCurrentRoom = pCurrentRoom;
 }

 const Room* GetCurrentRoom() const
 {
 return m_pCurrentRoom;
 }
};

The Player class contains a pointer to a Room object and accessor methods to set and retrieve the
current Room.

Note We did not have to include Room.h in the Player.h file to add a pointer to the Player class. What
you see in Listing 10-17 is known as a forward declaration. A forward declaration can be used when only
a pointer or reference to an object is used in a header file and not the object itself. You are only required to
include the full class definition if you were going to call a method on an object or instantiate a class in any
given file.

I’ve added another line to InitializeRooms to set the Player's current Room pointer in Listing 10-18.

Listing 10-18. Setting m_player's Current Room

void Game::InitializeRooms()
{
 // Room 0 heads North to Room 1
 m_rooms[0].AddRoom(Room::JoiningDirections::North, &(m_rooms[1]));

 // Room 1 heads East to Room 2, South to Room 0 and West to Room 3
 m_rooms[1].AddRoom(Room::JoiningDirections::East, &(m_rooms[2]));
 m_rooms[1].AddRoom(Room::JoiningDirections::South, &(m_rooms[0]));
 m_rooms[1].AddRoom(Room::JoiningDirections::West, &(m_rooms[3]));

 // Room 2 heads West to Room 1
 m_rooms[2].AddRoom(Room::JoiningDirections::West, &(m_rooms[1]));

 // Room 3 heads East to Room 1
 m_rooms[3].AddRoom(Room::JoiningDirections::East, &(m_rooms[1]));

 m_player.SetCurrentRoom(&(m_rooms[0]));
}

Now that you have rooms and a way to store which room the player is in, you should add some
options to allow the player to move through those rooms.

123CHAPTER 10: Building Games with Inheritance

Moving Through Rooms
Listing 10-19 updates the Game::RunGame method to store the user’s selected option and call a new
UpdateOnOption method.

Listing 10-19. Updating Game::RunGame

void Game::RunGame()
{
 InitializeRooms();

 WelcomePlayer();

 bool shouldEnd = false;
 while (shouldEnd == false)
 {
 GivePlayerOptions();

 string playerInput;
 GetPlayerInput(playerInput);

 PlayerOptions selectedOption = EvaluateInput(playerInput);
 shouldEnd = selectedOption == PlayerOptions::Quit;
 if (shouldEnd == false)
 {
 UpdateOnOption(selectedOption);
 }
 }
}

RunGame now stores the result from EvaluateInput and calls UpdateOnOption if the player has
not chosen to quit. Before I show you the code for UpdateOnOption we will look at the updated
GivePlayerOptions and EvaluateInput methods in Listing 10-20.

Listing 10-20. Updating GivePlayerOptions and EvaluateInput

void Game::GivePlayerOptions() const
{
 cout << "What would you like to do? (Enter a corresponding number)"
 << endl << endl;
 cout << "1: Go North" << endl << endl;
 cout << "2: Go East" << endl << endl;
 cout << "3: Go South" << endl << endl;
 cout << "4: Go West" << endl << endl;
 cout << "5: Quit" << endl << endl;
}

PlayerOptions Game::EvaluateInput(string& playerInput) const
{
 PlayerOptions chosenOption = PlayerOptions::None;

124 CHAPTER 10: Building Games with Inheritance

 if (playerInput.compare("1") == 0)
 {
 cout << "You have chosen to Go North!" << endl << endl;
 chosenOption = PlayerOptions::GoNorth;
 }
 else if (playerInput.compare("2") == 0)
 {
 cout << "You have chosen to Go East!" << endl << endl;
 chosenOption = PlayerOptions::GoEast;
 }
 else if (playerInput.compare("3") == 0)
 {
 cout << "You have chosen to Go South!" << endl << endl;
 chosenOption = PlayerOptions::GoSouth;
 }
 else if (playerInput.compare("4") == 0)
 {
 cout << "You have chosen to Go West!" << endl << endl;
 chosenOption = PlayerOptions::GoWest;
 }
 else if (playerInput.compare("5") == 0)
 {
 cout << "You have chosen to Quit!" << endl << endl;
 chosenOption = PlayerOptions::Quit;
 }
 else
 {
 cout << "I do not recognize that option, try again!" << endl << endl;
 }

 return chosenOption;
}

Your player will now see options 1 through 5 to choose which room to move to or whether he or she
would like to quit. The last task required is to move the m_player object to the new selected Room.
Listing 10-21 shows how you can achieve this in the new UpdateOnOption method.

Listing 10-21. Moving the Player in UpdateOnOption

void Game::UpdateOnOption(PlayerOptions selectedOption)
{
 if (selectedOption == PlayerOptions::GoNorth ||
 selectedOption == PlayerOptions::GoEast ||
 selectedOption == PlayerOptions::GoSouth ||
 selectedOption == PlayerOptions::GoWest)
 {
 Room::JoiningDirections directionToMove
 = Room::JoiningDirections::North;

125CHAPTER 10: Building Games with Inheritance

 switch (selectedOption)
 {
 case PlayerOptions::GoEast:
 {
 directionToMove = Room::JoiningDirections::East;
 }
 break;

 case PlayerOptions::GoSouth:
 {
 directionToMove = Room::JoiningDirections::South;
 }
 break;

 case PlayerOptions::GoWest:
 {
 directionToMove = Room::JoiningDirections::West;
 }
 break;
 }

 const Room* pPlayerCurrentRoom = m_player.GetCurrentRoom();
 const Room* pNewRoom = pPlayerCurrentRoom->GetRoom(directionToMove);
 if (pNewRoom != nullptr)
 {
 m_player.SetCurrentRoom(pNewRoom);
 }
 else
 {
 const char* strDirection = "North";
 switch (selectedOption)
 {
 case PlayerOptions::GoEast:
 {
 strDirection = "East";
 }
 break;

 case PlayerOptions::GoSouth:
 {
 strDirection = "South";
 }
 break;

 case PlayerOptions::GoWest:
 {
 strDirection = "West";
 }
 break;
 }

126 CHAPTER 10: Building Games with Inheritance

 cout << "There is no room to the "
 << strDirection << endl << endl;
 }
 }
}

The UpdateOnOption method can be broken down into three main sections. First it works out which
direction the player would like to move in from the supplied option. It does this using the first switch
statement in the method. It then updates the current Room pointer stored by m_player so long as the
Room we are trying to move to is valid and not a nullptr. If the chosen Room is a nullptr, the method
then outputs to the player that there is no room in the direction in which he or she tried to move.

You now have the ability to move through the game world. Congratulations! We could stop learning
about C++ at this point and have the ability to write a full-text adventure game with everything you
have learned so far; however, your code would be very long and you would find yourself repeating
certain code over and over again. The rest of this book will try to expand your knowledge of C++
and show you how some more advanced features of the language can be used to cut down on the
amount of code you have to write.

Summary
This chapter has introduced you to the concept of class inheritance. The inheritance you’ve seen in
this chapter is useful for sharing behavior and code between objects that can be logically grouped
together. Vehicles are a classic example used to introduce new programmers to inheritance, as it is
a simple set of objects to group logically and they have simple features that can be used to show
differences between different members of the set.

You’ve seen in this chapter that the access specifier (public, protected, and private) used when
declaring class member variables has an important part to play in sharing data between base
classes and their derived children. You’ve also learned that constructors and destructors play an
important role in the creation and destruction of objects and in which order they are called. Finally
you learned that it’s possible to alter the behavior of a derived class by overriding methods that exist
in a parent class by defining a method with the same signature in the derived class.

The following chapter is going to introduce you to the concept of polymorphism. Polymorphism
allows us to create class interfaces and abstract out class implementations. This is a very powerful
technique that you will find used in game play, engine, and cross-platform game programming.
The code you have seen in this chapter for the Text Adventure game will be rewritten once you
understand the concepts behind polymorphism and you will see how much simpler and clean-looking
your code can be.

127

Chapter 11
Designing Game Code
with Polymorphism

You saw how inheritance can be used to design reusable code in the last chapter. In this chapter
you will learn how the power of inheritance can be unlocked in much more useful ways through
the power of polymorphism. C++ supports the ability to access classes of different types through
pointers to a base class, known as polymorphism. The program can determine the type of the object
at runtime and call the correct method. The mechanism supplied by C++ to tell the compiler that a
method can be different in the base class to any derived classes is the virtual method.

Virtual Methods
You have seen that methods in class hierarchies can be overridden, which allows the compiler to call
a given method for a class type rather than call the version from the base class when accessing an
object of a given type. When you use polymorphism, the compiler cannot tell what the actual type of
the object is and therefore we must write our methods in a different manner. Listing 11-1 shows how
the Vehicle class can be modified to turn the GetNumberOfWheels method into a virtual method.

Listing 11-1. Creating a Virtual Method

class Vehicle
{
public:
 Vehicle();

 ~Vehicle();

 virtual unsigned int GetNumberOfWheels() const
 {
 return 0;
 }
};

128 CHAPTER 11: Designing Game Code with Polymorphism

You create virtual methods by adding the virtual keyword to the beginning of the method signature.
The method GetNumberOfWheels is now a virtual method. To get the benefit of this, Listing 11-2
updates the Car and Motorcycle classes to make their GetNumberOfWheels methods virtual.

Listing 11-2. Making GetNumberOfWheels Virtual in Car and Motorcycle

class Car : public Vehicle
{
public:
 Car();
 ~Car();

 virtual unsigned int GetNumberOfWheels() const
 {
 return 4;
 }
};

class Motorcycle : public Vehicle
{
public:
 Motorcycle();
 ~Motorcycle();

 virtual unsigned int GetNumberOfWheels() const
 {
 return 2;
 }
};

The code in Listing 11-2 completes our updates to the GetNumberOfWheels methods in the Vehicle,
Car, and Motorcycle classes. Listing 11-3 modifies the PrintNumberOfWheels method to make use of
polymorphism.

Listing 11-3. Using Polymorphism in PrintNumberOfWheels

void PrintNumberOfWheels()
{
 Vehicle vehicle;
 Car car;
 Motorcycle motorcycle;

 Vehicle* pVehicle = &vehicle;
 std::cout << pVehicle->GetNumberOfWheels() << std::endl;

 pVehicle = &car;
 std::cout << pVehicle->GetNumberOfWheels() << std::endl;

 pVehicle = &motorcycle;
 std::cout << pVehicle->GetNumberOfWheels() << std::endl;
}

129CHAPTER 11: Designing Game Code with Polymorphism

The code in PrintNumberOfWheels now accesses the GetNumberOfWheels methods of Vehicle,
Car, and Motorcycle through a pointer to the Vehicle class. The output from this program is still
correct. The first std::cout will print 0, the second will print 4, and the third will print 2. This is
a perfect example of polymorphism in action: This code calls the Car::GetNumberOfWheels and
Motorcycle::GetNumberOfWheels methods through a Vehicle pointer.

Once you begin to write more complex polymorphic programs you will find you’ll need to cast to the
proper derived types in certain circumstances. C++ provides the dynamic_cast for these situations.

Downcasting and Upcasting with dynamic_cast
Moving between different types at runtime is usually an unsafe operation. In complex code it can
sometimes be difficult to be sure where pointers have come from, what they point to, and which
other classes exist in the class hierarchy for a given type. You should use dynamic_cast in these
situations to be sure that your code does not crash when converting between types. Listing 11-4
adds some code to PrintNumberOfWheels to show you how dynamic_cast can be used.

Listing 11-4. Using dynamic_cast to Downcast

void PrintNumberOfWheels()
{
 Vehicle vehicle;
 Car car;
 Motorcycle motorcycle;

 Vehicle* pVehicle = &vehicle;
 std::cout << pVehicle->GetNumberOfWheels() << std::endl;

 pVehicle = &car;
 Car* pCar = dynamic_cast<Car*>(pVehicle);
 if (pCar != nullptr)
 {
 std::cout << pCar->GetNumberOfWheels() << std::endl;
 }

 pVehicle = &motorcycle;
 pCar = dynamic_cast<Car*>(pVehicle);
 if (pCar != nullptr)
 {
 std::cout << pCar->GetNumberOfWheels() << std::endl;
 }
}

Listing 11-4 has two dynamic_cast calls to convert the current value stored in pVehicle to a pointer
to a Car object. The result of a dynamic_cast can either be a valid pointer to the requested class or
nullptr. This means that we must ensure that the result of a dynamic_cast is valid before trying to
dereference the resulting pointer or our application can crash. The first cast in Listing 11-4 results in
a valid pointer and therefore the number of wheels for a car will be printed out. The second cast will
fail and return nullptr. Both of these casts were attempts at a downcast. You can visualize a class

130 CHAPTER 11: Designing Game Code with Polymorphism

hierarchy as having the base class at the top and all child classes below that. Casting from a higher
class to a lower class is a downcast and the opposite is an upcast. The code in Listing 11-5 is safer
than the code in Listing 11-4, as we use dynamic_cast to upcast to the Vehicle pointer.

Listing 11-5. Upcasting

void PrintNumberOfWheels()
{
 Vehicle vehicle;
 Car car;
 Motorcycle motorcycle;

 Vehicle* pVehicle = dynamic_cast<Vehicle*>(&vehicle);
 std::cout << pVehicle->GetNumberOfWheels() << std::endl;

 pVehicle = dynamic_cast<Vehicle*>(&car);
 Car* pCar = dynamic_cast<Car*>(pVehicle);
 if (pCar != nullptr)
 {
 std::cout << pCar->GetNumberOfWheels() << std::endl;
 }

 pVehicle = dynamic_cast<Vehicle*>(&motorcycle);
 pCar = dynamic_cast<Car*>(pVehicle);
 if (pCar != nullptr)
 {
 std::cout << pCar->GetNumberOfWheels() << std::endl;
 }
}

The upcasts to Vehicle in Listing 11-5 are all much safer than the previous implicit casts. This would
not matter too much in this example code, as we know all of the objects derive from Vehicle, but in
production code you might not be able to guarantee that a given pointer derives from a specific
base class.

Creating Interfaces with Pure Virtual Methods
The Vehicle class has a value to return for GetNumberOfWheels. In a proper program it would be
unlikely that we would want to be able to create basic Vehicle objects as we are more likely to want
to create instances of Car or Motorcycle. It also makes little sense for a Vehicle to have any number
of wheels, even none. We can turn Vehicle into an interface by making its GetNumberOfWheels class a
pure virtual method. Listing 11-6 shows how to do this.

Listing 11-6. Making Pure Virtual Methods

class Vehicle
{
public:
 virtual unsigned int GetNumberOfWheels() const = 0;
};

131CHAPTER 11: Designing Game Code with Polymorphism

Pure virtual methods are created by adding = 0 to the end of the method declaration. The method
then does not contain a body, as we do not wish to have any code associated with the method in
this class. Adding a pure virtual method to a class turns the class into an abstract class. Abstract
classes cannot be instantiated, which means we can no longer create Vehicle objects. You will
need to remove the instance of Vehicle in PrintNumberOfWheels. Listing 11-7 shows a version of the
function with this removed.

Listing 11-7. Removing Vehicle from PrintNumberOfWheels

void PrintNumberOfWheels()
{
 Car car;
 Motorcycle motorcycle;

 Vehicle* pVehicle = dynamic_cast<Vehicle*>(&car);
 Car* pCar = dynamic_cast<Car*>(pVehicle);
 if (pCar != nullptr)
 {
 std::cout << pCar->GetNumberOfWheels() << std::endl;
 }

 pVehicle = dynamic_cast<Vehicle*>(&motorcycle);
 pCar = dynamic_cast<Car*>(pVehicle);
 if (pCar != nullptr)
 {
 std::cout << pCar->GetNumberOfWheels() << std::endl;
 }
}

Another effect of the pure virtual method is that it turns Vehicle into an interface class. Interface
classes are usually simply referred to as interfaces. Any pure virtual methods in a parent class must
be overridden in a class that you wish to be able to instantiate. You might recall that the notion of
contracts was touched on in Chapter 8 when we discussed OOP. Using interfaces is one method
that you can use to define these contracts. You can try commenting out the GetNumberOfWheels
methods from the Car and Motorcycle classes to see the compiler errors that are generated.

Using Polymorphism in Text Adventure
The options that have been supplied to the player in Text Adventure have so far been coded procedurally.
You can make it much easier to add new options by using a more object-oriented approach to the
system. Listing 11-8 shows the Option interface that you can use to create future options.

Listing 11-8. The Option Class

class Option
{
protected:
 PlayerOptions m_chosenOption;
 std::string m_outputText;
 std::string m_optionText;

132 CHAPTER 11: Designing Game Code with Polymorphism

public:
 Option(PlayerOptions chosenOption, const std::string& outputText)
 : m_chosenOption(chosenOption)
 , m_outputText(outputText)
 {
 }

 void Option::SetOptionText(const std::string& optionText)
 {
 m_optionText = optionText;
 }

 const std::string& GetOutputText() const
 {
 return m_outputText;
 }

 PlayerOptions GetChosenOption() const
 {
 return m_chosenOption;
 }

 virtual bool Evaluate(const std::string& optionText, Player& player) = 0;
};

The Option class stores the PlayerOption value that it represents as well as the text that is output to
the player and a string to compare to the text the player enters. You can then derive specific classes
from Option, the MoveOption and QuitOption classes. Listing 11-9 shows the MoveOption class and
Listing 11-10 shows the QuitOption class.

Listing 11-9. The MoveOption Class

class MoveOption
 : public Option
{
private:
 Room::JoiningDirections m_directionToMove;

public:
 MoveOption(Room::JoiningDirections joiningDirection,
 PlayerOptions chosenOption,
 const std::string& outputText)
 : Option(chosenOption, outputText)
 , m_directionToMove(joiningDirection)
 {
 }

 virtual bool Evaluate(const std::string& optionText, Player& player);
};

133CHAPTER 11: Designing Game Code with Polymorphism

bool MoveOption::Evaluate(const std::string& optionText, Player& player)
{
 bool handled = false;

 if (m_optionText.compare(optionText) == 0)
 {
 const Room* pPlayerCurrentRoom = player.GetCurrentRoom();
 const Room* pNewRoom = pPlayerCurrentRoom->GetRoom(m_directionToMove);
 if (pNewRoom != nullptr)
 {
 player.SetCurrentRoom(pNewRoom);
 std::cout << "You have chosen to "
 << m_outputText << std::endl << std::endl;
 }
 else
 {
 const char* strDirection = "North";
 switch (m_chosenOption)
 {
 case PlayerOptions::GoEast:
 {
 strDirection = "East";
 }
 break;

 case PlayerOptions::GoSouth:
 {
 strDirection = "South";
 }
 break;

 case PlayerOptions::GoWest:
 {
 strDirection = "West";
 }
 break;
 }

 std::cout << "There is no room to the "
 << strDirection << std::endl << std::endl;
 }

 handled = true;
 }

 return handled;
}

The MoveOption class now contains all of the code necessary to work out if the player has chosen
to move to another room and the code necessary to change the Player class Room pointer to the
appropriate Room object.

134 CHAPTER 11: Designing Game Code with Polymorphism

Listing 11-10. The QuitOption Class

class QuitOption
 : public Option
{
private:
 bool m_shouldQuit;

public:
 QuitOption(const std::string& outputText)
 : Option(PlayerOptions::Quit, outputText)
 , m_shouldQuit(false)
 {
 }

 bool ShouldQuit() const { return m_shouldQuit; }
 virtual bool Evaluate(const std::string& optionText, Player& player);
};

bool QuitOption::Evaluate(const std::string& optionText, Player& player)
{
 m_shouldQuit = m_optionText.compare(optionText) == 0;

 if (m_shouldQuit == true)
 {
 std::cout << "You have chosen to quit!" << std::endl << std::endl;
 }

 return m_shouldQuit;
}

The QuitOption determines whether the player has chosen to quit the game. Listing 11-11 shows
how you can add these options to the Game class.

Listing 11-11. Adding the New Options to Game

class Game
{
private:
 static const unsigned int m_numberOfRooms = 4;
 Room m_rooms[m_numberOfRooms];

 Player m_player;

 MoveOption m_moveNorthOption;
 MoveOption m_moveEastOption;
 MoveOption m_moveSouthOption;
 MoveOption m_moveWestOption;
 QuitOption m_quitOption;

 static const unsigned int m_numberOfOptions = 5;
 Option* m_options[m_numberOfOptions];

135CHAPTER 11: Designing Game Code with Polymorphism

 void InitializeRooms();
 void WelcomePlayer();
 void GivePlayerOptions() const;
 void GetPlayerInput(std::string& playerInput) const;
 PlayerOptions EvaluateInput(std::string& playerInput);
public:
 Game();

 void RunGame();
};

There are four MoveOption instances, one QuitOption instance, and an array of Option pointers.
The constructor of the class is also new. Listing 11-12 shows the constructor for Game.

Listing 11-12. The Game Class Constructor

Game::Game()
 : m_moveNorthOption(Room::JoiningDirections::North,
 PlayerOptions::GoNorth,
 "Go North")
 , m_moveEastOption(Room::JoiningDirections::East,
 PlayerOptions::GoEast,
 "Go East")
 , m_moveSouthOption(Room::JoiningDirections::South,
 PlayerOptions::GoSouth,
 "Go South")
 , m_moveWestOption(Room::JoiningDirections::West,
 PlayerOptions::GoWest,
 "Go West")
 , m_quitOption("Quit")
{
 m_options[0] = dynamic_cast<Option*>(&m_moveNorthOption);
 m_options[1] = dynamic_cast<Option*>(&m_moveEastOption);
 m_options[2] = dynamic_cast<Option*>(&m_moveSouthOption);
 m_options[3] = dynamic_cast<Option*>(&m_moveWestOption);
 m_options[4] = dynamic_cast<Option*>(&m_quitOption);
}

The Game class constructor initializes the Option class objects and the array of pointers. Next you
need to update the Game::GivePlayerOptions method. You can see how this is done in Listing 11-13.

Listing 11-13. Updating Game::GivePlayerOptions

void Game::GivePlayerOptions() const
{
 cout << "What would you like to do? (Enter a corresponding number)"
 << endl << endl;
 for (unsigned int i = 0; i < m_numberOfOptions; ++i)
 {
 Option* option = m_options[i];
 const unsigned int chosenOption = i + 1;
 cout << chosenOption << ": " << option->GetOutputText() << endl << endl;

136 CHAPTER 11: Designing Game Code with Polymorphism

 std::ostringstream chosenOptionString;
 chosenOptionString << chosenOption;
 option->SetOptionText(chosenOptionString.str());
 }
}

The GivePlayerOptions method loops over the array of Option pointers, displays the options that
the user can select for each option, and sets the option text on the Option object. This method now
does not have to be changed as we add new options to the option array. The user input option
will automatically update as we change the array and the output text that we enter into the Option
constructors. The EvaluateInput method also gets an update in Listing 11-14.

Listing 11-14. The EvaluateInput Method

PlayerOptions Game::EvaluateInput(string& playerInput)
{
 PlayerOptions chosenOption = PlayerOptions::None;

 for (unsigned int i = 0; i < m_numberOfOptions; ++i)
 {
 Option* option = m_options[i];
 bool handled = option->Evaluate(playerInput, m_player);
 if (handled == true)
 {
 chosenOption = option->GetChosenOption();
 break;
 }
 }

 if (chosenOption == PlayerOptions::None)
 {
 cout << "I do not recognize that option, try again!" << endl << endl;
 }

 return chosenOption;
}

The EvaluateInput method has been simplified. It now also loops over the Option array and calls
Evaluate on each Option object. The last method to get an update is RunGame in Listing 11-15.

Listing 11-15. The RunGame Method

void Game::RunGame()
{
 InitializeRooms();

 WelcomePlayer();

 bool shouldEnd = false;

137CHAPTER 11: Designing Game Code with Polymorphism

 while (shouldEnd == false)
 {
 GivePlayerOptions();

 string playerInput;
 GetPlayerInput(playerInput);

 PlayerOptions selectedOption = EvaluateInput(playerInput);
 shouldEnd = selectedOption == PlayerOptions::Quit;
 }
}

The UpdateOnOption method from Chapter 10 has been removed, as the code from that method has
been moved into the MoveOption class. This allows you to remove the call to that method from the
RunGame class.

Summary
This chapter has introduced polymorphism. This allows you to write code that is more flexible and
reusable. You have seen that base class pointers combined with virtual methods allow a programmer
to create interfaces and code that allows programs to evaluate their behavior at runtime for the
correct course of action. You have also seen how the dynamic_cast allows you to ensure that
you can safely move from one type of object pointer to another. Pure virtual functions were then
introduced, along with an example of how you can create abstract classes that enforce specific
methods to be overridden in classes that derive from that class.

The chapter ended with a practical example of how you can use polymorphism to improve your
code in a number of ways. The Option class creates a simple interface for in-game options. The
MoveOption and QuitOption classes show how you can use virtual methods to create types to
represent specific actions. Finally, you saw that polymorphism can be used to write methods that are
reusable and easily maintainable. New options can be added to Text Adventure without the need to
alter the Game GivePlayerOptions and EvaluateInput methods.

139

Chapter 12
Copying and Assigning Data
to Objects

You have seen how we can pass data into functions by value, by reference, or by pointer. If you
choose to pass a class object into a function by value, C++ will make a copy of the class. This copy
operation happens automatically or implicitly. This chapter is going to show you some of these
implicit operations that can occur when using classes in your programs and the ways in which you
can alter and manage these implicit operations.

Copy Constructors
Classes in C++ can use constructors and destructors to initialize and clean up the objects that
you use in your programs. C++ also allows you to specify a copy constructor that is called when
an object is being copied into a new instance of an object. Listing 12-1 shows a simple copy
constructor.

Listing 12-1. A Copy Constructor

class Player
 : public Entity
{
private:
 const Room* m_pCurrentRoom;
 std::string m_name;

public:
 Player()
 {
 }

140 CHAPTER 12: Copying and Assigning Data to Objects

 Player(const Player& originalPlayer)
 {
 m_pCurrentRoom = originalPlayer.m_pCurrentRoom;
 m_name = originalPlayer.m_name;
 }

 void SetName(const std::string& name)
 {
 m_name = name;
 }

 const std::string& GetName() const
 {
 return m_name;
 }

 void SetCurrentRoom(const Room* pCurrentRoom)
 {
 m_pCurrentRoom = pCurrentRoom;
 }

 const Room* GetCurrentRoom() const
 {
 return m_pCurrentRoom;
 }
};

The copy constructor in Listing 12-1 is a constructor method that takes a constant reference to an
object of the same type of class; in this case the Player copy constructor takes a constant reference
to another Player object. Copy constructors are an added cost when passing objects into functions.
Usually you would be better served by passing a constant reference into the function instead. Copy
constructors are mostly useful when you wish to return a new instance of an object from a function.
When you do this, the object you are returning will go out of scope and be destroyed after the
function has returned. Returning objects by value ensures that you are not exposed to bugs caused
by trying to return references to local variables that no longer exist. Listing 12-2 shows two different
functions that take a player by value and by constant reference.

Listing 12-2. Passing by Value and const Reference

void CopyPlayer(Player player)
{

}

void PassPlayerByConstReference(const Player& player)
{

}

141CHAPTER 12: Copying and Assigning Data to Objects

Any code that you could place inside these methods would be identical and all of the data contained
by both would also be the same. The major difference between the two methods is the length of time
it takes to execute the two. Passing player by value would invoke the copy constructor, whereas
passing a constant reference does not. Using a constant reference therefore avoids the time taken to
call the copy constructor method and the length of time it takes to execute a full copy of the class.

Passing by a constant reference also helps protect programmers against another more subtle
problem. The first method has passed the class by value and therefore the player parameter is a
copy of the original object. If you then called any methods that set values on the parameter, that data
would be lost when the function returns. You can get around this by declaring the copied object as
const; however, at that point there’s no reason why you wouldn’t also use a reference. Using const
variables with copied objects will cause the compiler to throw errors if you try to call public methods
on the object, which helps to avoid a source of errors and bugs in your games.

Assignment Operators
Although copy constructors will be invoked when passing objects by value into functions or
methods, assignment operators are invoked when using the = operator on objects. Listing 12-3
shows how you can overload an assignment operator on the Player class.

Listing 12-3. The Player Assignment Operator

class Player
 : public Entity
{
private:
 const Room* m_pCurrentRoom;
 std::string m_name;

public:
 Player()
 {
 }

 Player(const Player& originalPlayer)
 {
 m_pCurrentRoom = originalPlayer.m_pCurrentRoom;
 m_name = originalPlayer.m_name;
 }

 Player& operator=(const Player& originalPlayer)
 {
 m_pCurrentRoom = originalPlayer.m_pCurrentRoom;
 m_name = originalPlayer.m_name;
 return *this;
 }

142 CHAPTER 12: Copying and Assigning Data to Objects

 void SetName(const std::string& name)
 {
 m_name = name;
 }

 const std::string& GetName() const
 {
 return m_name;
 }

 void SetCurrentRoom(const Room* pCurrentRoom)
 {
 m_pCurrentRoom = pCurrentRoom;
 }

 const Room* GetCurrentRoom() const
 {
 return m_pCurrentRoom;
 }
};

An assignment operator is passed a constant reference to the object that is being assigned from.
This allows you to copy all of the relevant fields to the object being assigned to. There is a major
difference between a copy constructor and an assignment operator. A copy constructor is invoked
when a new object is being created and can be initialized by copying from an existing object. The
assignment operator is invoked when assigning to an already existing object. Listing 12-4 shows an
example.

Listing 12-4. Invoking an Assignment Operator

Player newPlayer;
newPlayer = m_player;

You can now use general arithmetic assignment operators with your classes so long as you remember
to overload the assignment operator appropriate for assigning to your class as in Listing 12-3.

Move Semantics
Move semantics are useful when dealing with some more complex C++ code. We’ll cover some
cases where move semantics are useful later in this book, but for now I’ll show you how you can
add move constructors and move assignment operators to your classes. Move semantics differ
from normal copy constructors and assignment operators in that they operate on rvalue references.
An rvalue reference is denoted in C++ using a double ampersand. These rvalue references can only
be used when working with temporary objects, which can be created under many circumstances
in C++, such as when returning objects from functions by value. Listing 12-5 shows a move
constructor for the Player class.

143CHAPTER 12: Copying and Assigning Data to Objects

Listing 12-5. The Player Move Constructor

Player(Player&& tempPlayer)
{
 m_pCurrentRoom = tempPlayer.m_pCurrentRoom;
 m_name = tempPlayer.m_name;

 tempPlayer.m_pCurrentRoom = nullptr;
 m_name.clear();
}

The double reference symbol in a move constructor means that the reference being passed in is an
rvalue reference. rvalue references occur when passing temporary objects into methods. This occurs
often when using STL containers, which we’ll be looking at in Part 3 of this book. It’s also important
to clear the data from the object passed into the move constructor, and you’ll see why this is the
case when we look at memory management in Part 5. A move assignment operator can also be
added to your classes. Listing 12-6 shows how to do this.

Listing 12-6. A Move Assignment Operator

Player& operator=(Player&& tempPlayer)
{
 if (this != &tempPlayer)
 {
 m_pCurrentRoom = tempPlayer.m_pCurrentRoom;
 m_name = tempPlayer.m_name;

 tempPlayer.m_pCurrentRoom = nullptr;
 m_name.clear();
 }

 return *this;
}

Summary
This short chapter has introduced you to the methods that can be added to classes to allow you to
pass data around in your programs. These are not particularly useful as stand-alone procedures,
but they will be very useful in the next part of this book when we look at the STL. The STL provides
us with containers to store many objects in data structures and we will be using copy constructors,
assignment operators, and move semantics liberally throughout that entire part of the book.

You have seen how copy constructors allow you to make copies of classes. This occurs most often
when passing objects into functions by value; however, you will usually be satisfied with passing
most objects by a const reference to avoid the cost of invoking the copy constructor. You’ve
also seen how you can overload assignment operators to copy data from one object to another
preexisting object. Finally, you saw how move semantics can be added to your classes. You’ll see
better how these are useful later in this book.

Part 3
The STL

Modern programming languages come with many features, data structures, and algorithms out
of the box. C++ is no exception. The Standard Template Library (STL) provides interfaces to a
preexisting library of functionality that will allow you to write better programs faster.

The STL provides you with tools to manage collections of objects, execute algorithms on those
collections, and learn how to best structure the data in your applications.

This part of the book will help you learn the differences between the different STL containers and
when to use each in your programs. You’ll also see the string class in action, which will help you
work with strings in a much easier manner than using raw C strings.

The STL also provides excellent exposure to the syntax required to use templates in your programs.
This will be very useful in the next part of the book when you learn how to create your own
templates.

147

Chapter 13
The STL String Class

The next few chapters of this book are going to introduce you to the Standard Template Library
(STL). The STL contains classes that you can use to manipulate strings, store objects, and access
them using several different patterns. The STL also provides iterators to traverse collections and
algorithms for carrying out different types of operations on your data sets. You have already been
using the STL string class throughout this book. This chapter looks at the different methods that
the STL provides for working with classes and points out some of the reasons why using this class is
more desirable than dealing with raw C strings.

Standard string and basic_string
The STL should give you a brief clue that we will be using templates of classes to create concrete
types. You’ll learn how to create your own templates in Part 4 of this book when we cover the
Generic Programming Paradigm. For now, all you need to know is that templates behave exactly as
their name suggests and provide a blueprint for the compiler to create specific classes.

The string class is implemented in exactly this way. The template basic_string is used to generate
four different types of standard strings. Listing 13-1 shows how the STL uses type aliases to
generate these types.

Listing 13-1. The STL basic_string Aliases

using string = basic_string<char>;
using u16string = basic_string<char16_t>;
using u32string = basic_string<char32_t>;
using wstring = basic_string<wchar_t>;

There are a few operations happening here, so I’ll talk you through the important parts. The first
thing to notice is how you can create template specializations. The basic_string<char> is creating a
specialization of the basic_string template using the char data type. As you have seen, a char is a
data type that can store a single byte of data. Listing 13-1 also creates specializations of basic_string
using char16_t, char32_t, and the wchar_t data types. Two bytes are generally used to store wchar_t
data types and always used to store char16_t and four bytes are used to store char32_t data.

148 CHAPTER 13: The STL String Class

The other important aspect of the lines in Listing 13-1 is the fact that they create type aliases. You’ve
been using the string alias already in this book. What the alias has done is allow you to use the
string keyword when declaring string variables rather than having to type the full typename, which
would be basic_string<char>.

The concepts of template specialization and type aliases are all you need to understand about
templates to be able to use the functionality provided by the STL.

Note Type aliases are a modern feature of C++11. If your compiler does not support type aliases, you can
use an older style. The code typedef basic_string<char> string; would serve a similar purpose.

Constructing Strings
The basic_string template provides many different types of constructors for creating instances of
strings. Listing 13-2 shows how to create empty strings.

Listing 13-2. An Empty String

string emptyString;

Listing 13-3 shows how you can create strings from a C-style string literal.

Listing 13-3. A Literal String

string literalString{ "This is a literal string!" };

You can also use a copy constructor to copy a string as shown in Listing 13-4.

Listing 13-4. Copying a String

string copiedString{ literalString };

This example has copied the literalString from Listing 13-3 into copiedString. This means that
both literalString and copiedString contain the literal "This is a literal string!". They are
both still discrete copies, so any changes you make to one do not affect the other.

It’s also possible to initialize new strings from substrings; that is, to specify the specific start
position and optionally the number of characters you wish to copy. Listing 13-5 shows the possible
substring initializers.

Listing 13-5. Initializing Strings with Substrings

string listerStartPosition{ "This is a literal string!", 5 };
string listerStartPositionAndNumber{ "This is a literal string!", 5, 4 };

This example will result in literalStartPosition containing "is a literal string!" and
literalStartPositionAndNumber will contain "is a". This is because the start position 5 is passed into
both and in the second line we also specify that we would only like to copy the next four characters.

149CHAPTER 13: The STL String Class

Working with Strings
Once you have your data in a string object there are many different methods provided by basic_string
that operate on the internal string data. The first set of useful functions allows you to ask and alter the
string’s size and capacity. Table 13-1 shows the different methods supplied to work with the size of
your string data.

Table 13-1. basic_string Capacity Methods

Method Description

n=str.size() The number of letter elements in the string.

n=str.length() Returns the same value as size().

n=str.max_size() The maximum possible string length.

str.resize(n, c) Resizes the string. If the size is shorter than before, trailing characters are lost. If the
size is longer than before, the new elements are initialized to the supplied character.

str.resize(n) Calls str.resize(n, '\0')

n=str.capacity() Returns the amount of memory allocated to store the string.

str.reserve(n) Asks the string to increase the capacity to at least the supplied value.

str.shrink_to_fit() Asks the string to reduce the capacity to just large enough to fit the size of the string.
Some implementations of basic_string allocate more memory than is needed in case
you try to add more to the string later.

str.clear() Removes the current string data and reduces size to 0 but might leave capacity
unchanged.

b=str.empty() Returns true if size() == 0.

Note: str is a string, n is a number, c is a single character, and b is a boolean.

This set of methods allows you to determine the size of your strings and the amount of memory
being used by your string data. They also allow you to modify the memory requirements of your
strings. Table 13-2 shows the methods you can use to modify your strings.

Table 13-2. basic_string Modifiers

Method Description

str&=str.append(str) Append a string to the current string.

str&=str.append(str, pos, n) Append a substring starting at pos and n length to a string.

str&=str.append(cstr*) Append a C-style string literal to a string.

str&=str.append(cstr*, n) Append n characters from a C-style string.

Note: str is a string, cstr is a C-style string, c is a single character, and n is a number.

150 CHAPTER 13: The STL String Class

The methods in Table 13-2 show how you can append data to the end of an existing string. Each
of the types also have a corresponding overloaded += operator, meaning that you can append to a
string using code that resembles a normal arithmetic equation.

The same types are also supported by the assign methods. Where append adds the supplied text to
the end of your strings, assign replaces the data in your string with the supplied text. The assign
methods are also implemented as the overloaded = operators.

It’s also possible to access individual characters in our string using the array operator. str[0] would
return the first character of a given string. It’s rare that you’ll want to access string data in this
manner, and the next section covers a more useful way of traversing string data.

Accessing String Data Through Iterators
Iterators are going to become second nature to you as you work with the STL. All of the data
containers supplied by the STL use the iterator pattern to supply you access to their individual
elements. In the case of a string, an iterator gives access to a single character in your string. You can
use iterators to traverse the data structure forward and backward. Listing 13-6 shows how you can
loop over a string and print out the individual characters using iterators.

Listing 13-6. Looping over a String

void StringIterators()
{
 using namespace std;

 string myString{ "This is my string!" };
 for (string::iterator iter = myString.begin(); iter != myString.end(); ++iter)
 {
 cout << *iter << endl;
 }
}

The type for a string iterator is string::iterator. The methods begin and end return iterators that
represent the beginning and end of our string data. The iterator we declare is named iter and we
can move to the next element in the string using the increment operator. You can see that we must
dereference iter to gain access to the data that is contained at the current position in the string.
It’s also possible to decrement string::iterator and you can see this in action in Listing 13-7.

Listing 13-7. Decrementing string::iterator

for (string::iterator iter = myString.end()-1; iter != myString.begin(); --iter)
{
 cout << *iter << endl;
}

A better way to move backward through a string from end to beginning is to use string::reverse_
iterator, which you can see in Listing 13-8.

151CHAPTER 13: The STL String Class

Listing 13-8. string::reverse_iterator

for (string::reverse_iterator iter = myString.rbegin(); iter != myString.rend(); ++iter)
{
 cout << *iter << endl;
}

The reverse_iterator is used with the methods rbegin and rend. Listing 13-9 shows the const
versions of the iterators.

Listing 13-9. Const Iterators

for (string::const_iterator iter = myString.cbegin(); iter != myString.cend(); ++iter)
{
 cout << *iter << endl;
}

for (string::const_reverse_iterator iter = myString.crbegin();
 iter != myString.crend();
 ++iter)
{
 cout << *iter << endl;
}

Constant iterators are different from normal iterators in that you cannot modify the data to which they
are pointing. Listing 13-10 shows how you could have modified the data pointed to by an iterator.

Listing 13-10. Using Iterators to Alter Data

for (string::iterator iter = myString.begin(); iter != myString.end(); ++iter)
{
 *iter = 'a';
 cout << *iter << endl;
}

This simple example shows how you can modify data through an iterator dereference. Trying to
assign through a const_iterator would result in a compile error. If your loops are designed to only
read from your collection using an iterator you should prefer a const_iterator to ensure that no
mistakes are made that can alter your data.

There is also a more modern way of looping over all of the elements in an STL collection, the
range-based for loop. You can use a range-based for loop with any C++ type that has a begin and
end method; this includes classes that you write yourself. Listing 13-11 shows a range-based for
loop with our string.

Listing 13-11. Range-Based for

for (char &letter : myString)
{
 cout << letter << endl;
}

152 CHAPTER 13: The STL String Class

This for loop allows you to alter the data at each element as the element is accessed through a
reference variable. You can avoid this by making the type a const variable as shown in Listing 13-12.

Listing 13-12. Range-Based for with Constant Access

for (const char &letter : myString)
{
 cout << letter << endl;
}

A better way to write your range-based for loops might be to use the auto keyword as in Listing 13-13.

Listing 13-13. Using auto in Range-Based for Loops

for (auto &letter : myString)
{
 letter = 'a';
 cout << letter << endl;
}

for (const auto &letter : myString)
{
 cout << letter << endl;
}

If you were to do this, you would change the type of string template specialization without being
required to change all of your range-based for loops. Listing 13-14 shows how auto can also be
useful for standard for loops.

Listing 13-14. Using auto with Standard for Loops

for (auto iter = myString.begin(); iter != myString.end(); ++iter)
{
 cout << *iter << endl;
}

for (auto iter = myString.cbegin(); iter != myString.cend(); ++iter)
{
 cout << *iter << endl;
}

The auto keyword in these examples automatically detects if the iterator is constant or not.
This saves you from having to use the correct type of iterator in your definitions, makes it easier to
switch between string types, and still gives const correctness when using cbegin and cend.

Searching Within Strings
The C++ STL supplies methods to allow you to search for data within strings. Listing 13-15 gives
you an example of the find method in action.

153CHAPTER 13: The STL String Class

Listing 13-15. The string::find Method

string myString{ "This is my string!" };
void FindInString(string myString)
{
 size_t found = myString.find("is");
 if (found != string::npos)
 {
 cout << "\" is\" found at position: " << found << endl;
 }

 found = myString.find("is", found+1);
 if (found != string::npos)
 {
 cout << "is found at position: " << found << endl;
 }
}

The example in Listing 13-15 shows two different versions of found. The first finds the first instance
of “is” in the string and returns the index where it can be found. This first call will return 2 for the is
that makes up part of This. The find method will return the constant value string::npos if it fails to
find the supplied data. We can then call find again and pass in the start position for the search.
In our example we pass in the position of the previously found instance and add 1 to skip over
it. This second call returns 5 when it finds the word is. The rfind method will carry out the same
operation but search backward through the string and myString.rfind("is") would return 5. rfind
can also take a position value to start working back from.

It’s also possible to search for a single character in a supplied set using find_first_of. Listing 13-16
shows this method in action.

Listing 13-16. The string::find_first_of Method

found = myString.find_first_of("msg");
if (found != string::npos)
{
 cout << "is found at position: " << found << endl;
}

This method does not look for the entire phrase msg; instead it looks for m, s, and g individually.
In our example the first of these characters is the s in This and therefore the method returns 3.
There are also complementary methods find_last_of, find_first_not_of, and find_last_not_of.
These methods behave as you would expect: find_last_of finds the last character in the supplied
set, find_first_not_of finds the first character not in the set, and find_last_not_of finds the last
character not in the set.

Formatting Data with stringstream
If you’ve used the C or C++ programming languages in the past, you might be familiar with the
printf method for formatting string data. Even today many C++ programmers still use this older
C-style method of formatting data for use within strings. This book, however, covers the more
modern method for formatting string data, using iostream modifiers. You have already seen some

154 CHAPTER 13: The STL String Class

examples of iostream modifiers in action. One of the most common modifiers is std::endl and
earlier in the book you also used the std::hex and std::showbase modifiers with cout. Listing 13-17
shows a method that uses a stringstream to format data into a string.

Listing 13-17. stringstream Modifiers

#include <iostream>
#include <sstream>
#include <iomanip>
#include <ios>
void StringStreamExample()
{
 stringstream myStringStream;

 myStringStream << "Hi" << endl;

 cout << "width: " << myStringStream.width() << endl;
 myStringStream << 123 << endl;
 myStringStream << setw(10) << 123 << endl;
 myStringStream << setw(0) << 123 << endl;

 myStringStream << 123.567 << endl;
 myStringStream << setprecision(4) << 123.567 << endl;
 myStringStream << fixed << setprecision(2) << 123.567 << endl;
 myStringStream << defaultfloat << setprecision(0) << 123.567 << endl;

 myStringStream << 110 << endl << showbase;
 myStringStream << hex << 110 << endl;
 myStringStream << oct << 110 << endl;
 myStringStream << dec << 110 << endl << noshowbase;

 string myString = myStringStream.str();
 cout << myString;
}

You can see in Listing 13-17 that you can use a stringstream object in the same way we have been
using the cout object to write to the console window. This means that all of the modifiers that are
available to cout are also available to stringstream and later in the book you’ll see how they’re also
available when writing and reading files.

The specific examples of modifiers that you can see in Listing 13-17 are the setw, setprecision,
fixed, defaultfloat, showbase, noshowbase, hex, oct, and dec modifiers. The setw modifier ensures
that the number specified is the minimum number of characters written to the stream. In this case
we will write the value 123 and 7 padding characters, in this case spaces, into the stream. We clear
the width by setting the value of the width back to 0.

The setprecision modifier is used to round numbers. This will round floating point values. The value
of 4 in the example will round 123.567 to 123.6. When we use the fixed modifier, we are telling
the stream to fix the number of decimal places using the value set by setprecision. Therefore
<< fixed << setprecision(2) will round our number to 123.57. The last line related to floating point
values removes the fixed modifier by reinstating the defaultfloat setting and setting the precision
back to its default value of 0.

155CHAPTER 13: The STL String Class

We can also alter the way decimal numbers are represented by outputting them as hexadecimal
values, octal values, or back to decimal values. We can also use the showbase and noshowbase
to include or remove the 0x appendage on hexadecimal numbers or the 0 appendage on octal
numbers.

The last operation shown with the stringstream is to obtain a string representation of the data
we have created. This is necessary, as we cannot use a stringstream object as an input to cout.
The str method is provided by the stringstream class for this purpose.

Summary
This chapter has given you an introduction to the STL string library. This is the first time you have
had to consider how C++ uses templates to specialize generic code into specific implementations.
This process is used throughout the STL and the string class is a perfect introduction to this
concept. You’ve used strings in the examples contained in this book from the very beginning, which
goes to show the flexibility and power of the ability of C++ ability to have generic code be hidden
from programmers. Understanding how templates can be used in such a manner will give you an
advantage over many programmers, as there are many who believe templates are too complex to be
used in day-to-day code.

You’ve seen in this chapter how you can access and manipulate string data in C++ programs using
the methods provided by STL rather than using the older C-style string methods. This can lead to
your code being more robust, as the string class is a first class type in C++. As you’ve seen, C-style
strings are nothing more than arrays that end with a null terminator and rely on convention to ensure
that they are implemented properly. The string class avoids this problem by enforcing the proper
null termination of strings without requiring the user to remember to accommodate them.

Another advantage to C++ strings is that the storage for string data is automatically handled by the
class. When appending C-style strings, you would be responsible for allocating new arrays large
enough to hold both strings and ensuring that the data are copied properly, deleted properly, and
null terminated properly. This can lead to length functions when a single line of C++ code can carry
out the same operation. Thanks to the nature of C++ and the STL we do not need to look at memory
management topics until much later in this book.

You’ve also seen in this chapter that STL containers can be accessed through iterators. This is a
common design pattern in C++ and all STL containers use the same access method. You will see
this in action throughout the rest of this book, including in the next chapter, where we look at the
STL array and vector containers.

157

Chapter 14
STL Array and Vector

You saw in Chapter 13 that the STL provides different types of string classes by specializing a
template to create different implementations. This is where the template part of the STL comes from.
The STL string classes are what we call containers, because they store string data. In this chapter
you will see two more of the STL’s containers in the array and vector templates.

STL’s array class can be used in place of the built-in array types that you have seen earlier in
this book. This allows you to use arrays in the same way you would use other STL containers; for
example, the STL array template provides iterator access to the array elements. The size of an
STL array is still determined at compile time. Sometimes you might not know how many elements
you will need to store in your collection, and this is where the vector template is useful. A vector
stores any number of elements and can dynamically grow and shrink to accommodate more or less
items at runtime. Let’s take a look at how these templates can be used.

The STL Array Template
Before we get into STL arrays, it is worth remembering how to define a traditional C-style array in
C++, as shown in Listing 14-1.

Listing 14-1. A Traditional C-Style Array

const unsigned int ARRAY_SIZE = 5;
int oldArray[ARRAY_SIZE] = { 0, 1, 2, 3, 4 };

Hopefully you find that familiar. Listing 14-2 shows how you can construct an array holding the same
values using a C++ STL array container.

Listing 14-2. An STL array Container

const unsigned int ARRAY_SIZE = 5;
std::array<int, ARRAY_SIZE> newArray = { 0, 1, 2, 3, 4 };

158 CHAPTER 14: STL Array and Vector

As you can see, the syntax changes a bit when using an STL array. You can see the now familiar
template specialization syntax at work. The first template parameter tells the compiler that you
would like to use the int type for storing the values in our array. The second parameter then tells
the compiler how many elements we would like our array to hold. Now that you know how to create
arrays using the STL array template, I can show you some examples of why this is desirable over
using standard C-style arrays. Listing 14-3 shows several examples of different ways you can use to
find elements in an array.

Listing 14-3. Searching in an array

using MyArray = std::array<int, ARRAY_SIZE>;
void FindInArray(MyArray myArray)
{
 for (unsigned int i = 0; i < ARRAY_SIZE; ++i)
 {
 if (myArray[i] == 2)
 {
 cout << "Found: " << myArray[i]
 << " at position: " << i << endl;
 }
 }

 for (auto iter=myArray.begin(); iter!=myArray.end(); ++iter)
 {
 if (*iter == 2)
 {
 cout << "Found: " << *iter << endl;
 }
 }

 for (auto& number : myArray)
 {
 if (number == 2)
 {
 cout << "Found : " << number << endl;
 }
 }

 MyArray::iterator found = find(myArray.begin(), myArray.end(), 2);
 if (found != myArray.end())
 {
 cout << "Found : " << *found << endl;
 }
}

The very first line in Listing 14-3 creates a type alias for our array type. You get a benefit when using
type aliases with template specializations in two ways. First it means that you do not have to type
out the full template specialization each time you wish to refer to that type. It also means that if you
need to change the type that you only have to change it in the type alias and it will apply to all of the
places where the type alias is used. The alias MyArray can now be used in place of std::array<int,
ARRAY_SIZE> everywhere in our code.

159CHAPTER 14: STL Array and Vector

The first for loop in Listing 14-3 shows the standard method for looping through array elements.
This syntax is the same whether looping over a C-style array or when using the STL array template.

The second loop uses iterators in the same manner as you saw when looping over the characters in
your strings in Chapter 13. You can then also see the range-based for loop used.

The last example is something a little different: It uses an STL algorithm to find the element we
would like in the array. You have already seen that the STL provides containers that you can use to
store elements and now you can see that the STL also provides algorithms that operate on those
containers. This algorithm is the find and it works by taking an iterator marking the beginning of
a range and an iterator marking the end of a range as well as the value we wish to search for. The
beginning and end iterators supplied to find do not have to be the beginning and end iterators
from your collection; they could have been the second and third iterators from our array. The find
function returns an iterator to the first element that matches the supplied value. If no values match,
it returns the end iterator that you passed in. You can see this result tested in the if statement
following the find call.

The STL Vector Class
The STL array takes a size parameter that tells the compiler exactly how big we need the array to
be before our program ever runs. However, we might not always know how many elements we will
need. When this is the case, we can use the STL vector template. Listing 14-4 shows how you can
specialize vector.

Listing 14-4. Specializing STL vector

using namespace std;
using MyVector = vector<int>;
MyVector myVector = { 0, 1, 2 };
myVector.push_back(3);
myVector.push_back(4);

Listing 14-4 shows that you can add new values to a vector even after it has been initialized. The
vector automatically resizes itself if it needs more memory to store the new element. You can
also insert elements into other places in a vector and erase elements. Listing 14-5 shows how this
is done.

Listing 14-5. vector insert and erase

MyVector::const_iterator iter = myVector.cbegin() + 1;
myVector.insert(iter, 5);
myVector.erase(iter);

The insert and erase methods take a constant iterator to the position where we would like the insert
and remove operator to take place. The insert shown in Listing 14-5 would result in our vector
storing the values 0, 5, 1, 2, 3, 4 in that order, and the erase would remove from the same location,
which would remove the 5. It does not remove the 1, as the iterator points to the second location in
the vector, which is occupied by 5 after the insert. Each element after that location has moved one
position to the right.

160 CHAPTER 14: STL Array and Vector

You’ll be glad to know that thanks to the standardization of the STL, the loops we looked at in
Listing 14-3 with the STL array also work in exactly the same way for the vector template. Listing 14-6
shows these vector loops.

Listing 14-6. Finding Values in a vector

void FindInVector(MyVector myVector)
{
 for (unsigned int i = 0; i < myVector.size(); ++i)
 {
 if (myVector[i] == 2)
 {
 cout << "Found: " << myVector[i]
 << " at position: " << i << endl;
 }
 }

 for (auto iter = myVector.begin(); iter != myVector.end(); ++iter)
 {
 if (*iter == 2)
 {
 cout << "Found: " << *iter << endl;
 }
 }

 for (auto& number : myVector)
 {
 if (number == 2)
 {
 cout << "Found : " << number << endl;
 }
 }

 MyVector::iterator found = find(myVector.begin(), myVector.end(), 2);
 if (found != myVector.end())
 {
 cout << "Found : " << *found << endl;
 }
}

Sorting Arrays and Vectors
The STL provides many different algorithms that can operate on your data, and one of the more
useful is sort. This algorithm does exactly what you think it might: It sorts elements into order. The
sort function takes an iterator to the first and last elements of the range we would like to sort and
can optionally take a function to determine the sort order. Listing 14-7 shows this in action.

161CHAPTER 14: STL Array and Vector

Listing 14-7. std::sort

bool Descending(int first, int second)
{
 return first > second;
}

void SortVector()
{
 MyVector myVector = { 0, 1, 2, 3, 4 };

 sort(myVector.begin(), myVector.end(), Descending);
 for (auto& value : myVector)
 {
 cout << value << endl;
 }

 sort(myVector.begin(), myVector.end());
 for (auto& value : myVector)
 {
 cout << value << endl;
 }
}

The first call to sort reverses the order of our vector. This is achieved by the Descending function.
If this supplied function returns true, the elements are left in the current order; if it returns false,
the elements are switched. A practical example would be the elements 0 and 1. When these two
numbers are compared, 0 > 1 is false; therefore the elements would be switched to 1, 0, which is
what we want.

The second sort call does not take a comparison function as a parameter, so by default this would
use the comparison first < second.

Summary
The fact that the code in Listings 14-3 and 14-6 is identical other than for the types passed into
the function is a perfect example of the flexibility of the STL. The STL containers are written to be
interchangeable and the correct container should be used for the correct purpose.

You have seen in this chapter that you can replace your use of C-style arrays with STL array with
no impacts on any of the code you are writing. You can still use the [] operator to access values.
However, the STL implementation of array also allows you to use the powerful iterators and
algorithms that it supplies to coexist with the container classes.

The array should be used any time you have a collection of values to store and you know the exact
number you will need at compile time. If you need a collection that can grow or shrink as your
program runs, you should use the vector.

162 CHAPTER 14: STL Array and Vector

Both of these containers are excellent at storing sets of data that you plan to access in a linear
fashion as the data is stored together in memory. They do have some drawbacks, however. The
array container cannot be resized, which means you need to know at compile time how many
elements you would like to store. The vector stores its data internally inside an array. When you add
elements and the vector requires more room it will create another array, usually double the size of
the current array and copy all of the elements from the old array to the new array. In the next chapter
we will look at another linear STL container, the List, which can be used when you need to add and
remove elements to a linear collection often without having to worry about the resize performance
required by a vector.

163

Chapter 15
STL List

The STL list template is another linear data collection. The previous chapter briefly mentioned
the difference between array, vector, and list, and this chapter goes into more detail about why
and when you would use these different collections. The main point to remember is that you should
always use the correct tool for the job at hand. Video games rely on extracting the most performance
possible from the target hardware, and access times to data in collections is a major bottleneck with
modern processors. This chapter shows you how to build your own list class in an effort to help
you understand the difference between arrays and linked lists.

Understanding Array and List Memory Layouts
An array is a very efficient method for storing a fixed number of elements. The compiler will pack
each of the elements in your array into a contiguous block of memory. You can see this contiguous
memory in action when you work with pointers to arrays and you move between array elements
using pointer arithmetic. As integers are usually 4 bytes in size, you can move from one integer to
the next in an array by adding 4 bytes to the current memory address for the element you have a
pointer to. The same happens when we are working with arrays of any given type: The compiler
can automatically work out the number of bytes required to represent the type and move between
elements efficiently.

This contiguous memory access suits modern processors due to their use of cache memory. A
processor can calculate arithmetic and other instructions at a much faster rate than it can read from
memory. To combat this, processors read from memory in blocks known as cache lines into an
on-die fast memory. It’s not uncommon for processors to read in blocks of 64 or 128 bytes. Even if
you need to read only 4 bytes of memory to access an integer, the processor will read a full cache
line. This means that array accesses are very efficient on modern processors because whole chunks
of an array can be read into the processor’s cache when you access the first element in the array.

164 CHAPTER 15: STL List

The problem with arrays arises when you do not know exactly how many elements you need at
compile time. Compilers require you to inform them of how many elements will be in your array so
that they can allocate the proper memory for storage. The vector class provides a resizable array,
but this is a little bit of a trick. The vector works by providing more storage than you actually need
when the vector is initialized. If you add more elements than the vector currently has capacity for,
the template requests a new array from the operating system, which is usually double the size of the
current capacity. The vector then copies all of the elements from the old array into the new array.
If you are doing this resizing often, a vector can prove to be a fairly slow container.

A linked list, on the other, hand does not store its elements in a contiguous block of memory.
Instead each element in the list stores a pointer to the next and previous elements in order. This
provides a container that is resizable and can provide for fast inserting and removal of elements
in the list. However, because the list is noncontiguous in memory, the processor cannot use its
cache as effectively when traversing the list. Many C++ courses like to teach the list, as it’s a good
introduction to data structures. Unfortunately for game developers, the list is rarely a good choice
for code that you would like to perform as efficiently as possible due to the cache implications. This
chapter shows you how to create your own list and how to use the STL list, but you should always
keep the memory and cache implications in mind.

Building a List Class
Building a linked list is a fairly straightforward process once you understand how to use pointers.
If you need to recap what pointers are and how they work, I suggest that you reread Chapter 4
before continuing. Listing 15-1 shows the ListNode class.

Listing 15-1. ListNode

class ListNode
{
private:
 void* m_Data = nullptr;
 ListNode* m_Last = nullptr;
 ListNode* m_Next = nullptr;

public:
 ListNode(void* data)
 : m_Data{data}
 {
 }

 void* GetData()
 {
 return m_Data;
 }

 void SetLast(ListNode* last)
 {
 m_Last = last;
 }

165CHAPTER 15: STL List

 ListNode* GetLast()
 {
 return m_Last;
 }

 void SetNext(ListNode* next)
 {
 m_Next = next;
 }

 ListNode* GetNext()
 {
 return m_Next;
 }
};

Listing 15-1 represents a very basic implementation of a double linked list. A single linked list would
only have pointers to the next element in the list, but our ListNode class has pointers to both the
next and the previous nodes. ListNode also stores a void* to the data that the node represents.
A better way to implement this would have been to create our own templates, and I’ll begin to cover
how to do this in Part 4 of this book. You’ll get a better appreciation of how the class operates by
looking at some code that puts it to use, such as in Listing 15-2.

Listing 15-2. Using ListNode

void OurList()
{
 unsigned int firstData = 1;
 ListNode first(&firstData);

 unsigned int secondData = 2;
 ListNode second(&secondData);

 unsigned int thirdData = 3;
 ListNode third(&thirdData);

 first.SetNext(&second);

 second.SetLast(&first);
 second.SetNext(&third);

 third.SetLast(&third);

 for (ListNode* iter = &first; iter != nullptr; iter = iter->GetNext())
 {
 unsigned int* number = static_cast<unsigned int*>(iter->GetData());
 cout << *number << endl;
 }
}

166 CHAPTER 15: STL List

The OurList function creates three nodes to add to our list, each storing an unsigned int to illustrate
the result when we loop over the list. What you can see is that the m_Next pointer of first is set to
point to the ListNode second. In turn second points back to first and forward to third and third
points back to second.

The for loop in the function then traverses the list and prints the value stored by each. It does this
by faking an iterator to the list. In fact, all we do is get a pointer to first, then have the iter pointer
be updated to iter->GetNext() each time the loop iterates. Eventually we get to third’s m_Next
pointer, which will be set to nullptr, and the loop ends. At this point you could delve deeper into
implementing your own lists; however, I would recommend sticking to the STL list template. All of
the features you might like in a list have already been implemented and the STL list is compatible
with all of the iterator types and algorithms that also support other STL containers.

The STL List Template
You will not be surprised to hear that STL’s list syntax is very similar to that of vector. You can see
this in Listing 15-3.

Listing 15-3. STL list

using namespace std;
using MyList = list<int>;

MyList myList = { 0, 1, 2 };
myList.push_back(3);
myList.push_back(4);
MyList::const_iterator iter = myList.cbegin();
++iter;
Iter = myList.insert(iter, 5);
myList.erase(iter);

There is only a single difference between this code when using a list compared to using a vector:
list iterators cannot be modified using the + and - operators. Instead we get the iterator and then
use the ++ or -- operators to move to the position in the list where we would like to insert or erase
elements. The iterator we have also remains pointing to the same element after we insert into
myList. To be able to remove the correct element we had to catch the new iterator returned by the
insert method.

The last major difference in usage between list and vector is that the [] operator is not supported
by list. This makes sense if you think back to the way that these containers store their elements in
memory. Generally vector is implemented using arrays internally, which means that it’s easy to use
the [] operator and pointer arithmetic to offset into the array to get the proper element for a given
index. This operation doesn’t make any sense for a list where the underlying implementation does
not store elements contiguously in memory.

STL’s list implementation supports all of the same iterator types and the find algorithm that we
looked at in Chapter 14. The sort function is a little different and is implemented as a method rather
than a stand-alone function. Listing 15-4 shows the list::sort method in action.

167CHAPTER 15: STL List

Listing 15-4. list::sort

bool Descending(int first, int second)
{
 return first > second;
}

void SortList()
{
 MyList myList = { 0, 1, 2, 3, 4 };
 myList.sort(Descending);
 for (auto& value : myList)
 {
 cout << value << endl;
 }

 cout << endl;

 myList.sort();
 for (auto& value : myList)
 {
 cout << value << endl;
 }
}

The implication of this difference is that you cannot sort ranges of values within the list; you can only
sort the entire list at once.

Summary
This chapter has shown you how you can use the STL list template. I began by discussing the
differences between the way array, vector, and list store their elements in memory, along with a
basic explanation of how these differences affect the performance of the different containers.

I then covered how you could create your own very basic list implementation to help you
understand how the list behaves differently than an array or vector at a code level. Finally we
looked at how the STL list shares some iterator and algorithm types with array and vector, but
also how it differs with respect to the array operator and the sort method.

The next chapter covers four more STL containers: set, map, unordered_set, and unordered_map.
These containers provide slight variations on the binary search tree and hash map data structures
and are very useful when you need to sort and access very large sets of data.

169

Chapter 16
STL’s Associative Containers

All of the STL containers you have seen so far have stored individual data elements. In this chapter
you will be introduced to associative containers. These containers associate a key with the data
values that you are inserting. In the case of the map and unordered_map containers, you are required
to supply a value to use as the key, whereas the set and unordered_set containers automatically
generate keys from the data you supply. I’ll explain the differences between each of these containers
as I work through some examples in this chapter, beginningwith the set container.

The STL set Container
You won’t be surprised to find out that a set is a template class and you are required to specialize
the set container to store the types you require. Listing 16-1 gives an example of how you can
specialize the set template.

Listing 16-1. Specializing set

using namespace std;
using MySet = set<int>;

Once you have specialized a set template you can initialize a container in the same manner as other
STL containers. Listing 16-2 shows how you can create and add values to a set.

Listing 16-2. Initializing and Adding to set Containers

MySet mySet = { 2, 1, 0 };
mySet.emplace(4);
mySet.insert(3);

There are two important aspects of Listing 16-2 to which you should pay particular attention. The first is
the emplace method used. This method has the same result as the insert method in that the value will be
added to the set. However, emplace is actually faster at achieving this than insert in some circumstances.
It achieves this speed improvement by avoiding a copy construction when using a set with class types.
You should always use emplace rather than insert with all containers when it is available.

170 CHAPTER 16: STL’s Associative Containers

The second important aspect is the values we are adding to the set. The first curious feature is that
the numbers are not in order. A set will automatically sort the values as they are added, which is
one of the reasons you might consider using a set rather than an array, vector, or list. After the
final line that inserts the value 3, the set will contain the numbers 0, 1, 2, 3, and 4 in order. The other
important feature of the values is that they are all unique. If we had tried to add duplicate values
to the set, they would be ignored. This is important to remember and is different to the behavior of
array, vector, and list, which would allow you to add duplicate values.

The sample code that accompanies this chapter shows examples of using a set with iterators and the
STL find algorithm. This code is identical to the iterator-based and range-based for loops that you
have seen with previous containers in Chapters 14 and 15. Hopefully you have begun to get the hang
of how to access elements in STL containers.

The next container I will show you is map. A map is conceptually similar to a set, but it requires that
you provide a key along with your data.

The STL map Container
All of the containers you have seen so far take a single value and store these individual values at
discrete locations. The map container is different: It requires that you supply a key along with the
value to be stored. You then use this key to retrieve the value from the map. When inserting elements
into a map, you are required to supply the values using the pair template. Listing 16-3 shows the
template specializations for the map and pair templates.

Listing 16-3. Specializing map and pair

using namespace std;
using MyMap = map<int, string>;
using MyPair = pair<int, string>;

The map and the pair templates are supplied matching parameters to ensure that we are adding the
correct types to the map. If we tried to supply the wrong types to a map, the compiler would generate
an error.

You can see in Listing 16-4 just how we add elements to our map.

Listing 16-4. Adding Elements to a map

MyMap myMap = { { 2, "Two" }, { 1, "One" }, { 0, "Zero" } };

MyPair node{ 4, "Four" };
myMap.insert(node);

myMap.emplace(3, "Three");

The definition of a map can take a list of pairs that should be in the map at the time of its creation.
In this example we have added pairs representing the values Zero, One, and Two, along with their
respective integer representations as keys.

171CHAPTER 16: STL’s Associative Containers

The insert method requires the use of our pair template to add values to myMap. You can see
that we first construct the MyPair object node with the key 4 and value Four. After this, I’ve added
an example of the emplace method. You can see how it can be more efficient to use emplace
compared with insert in this example. You can leave out the creation of the pair object and a
subsequent copy from the pair into the map by using emplace. The map shares a property with set:
Both containers sort their values as they are entered. A map container will sort the keys into order
as the elements are entered. This is the reason you would use a map rather than a set. If you have a
complex class that you would like to store objects of in a map then the sorting and retrieval of these
objects would be more efficient if you supplied simple data types such as integers as keys. It would
also be possible to store two objects that are identical into a map by giving both objects different
keys, as only the keys in a map are required to be unique.

Unsurprisingly, a map cannot be iterated with exactly the same code as some of the other containers,
as it stores elements as key–value pairs and our loops must take this into account. Listing 16-5
shows an example of how we can loop over all of the elements stored in a map.

Listing 16-5. Looping over a map

for (const auto& node : myMap)
{
 cout << "First: " << node.first << " Second: " << node.second << endl;
}

The for loop itself is the same and C++ has allowed us to abstract out the MyPair type by using the
auto keyword in its place. You can access the key and value stored in a pair using the first and
second variables. The first variable stores the key and second stores the value.

The find method also supplies an iterator to a map that represents a pair element, as you can see in
Listing 16-6.

Listing 16-6. Using map::find

MyMap::iterator found = myMap.find(2);
if (found != myMap.end())
{
 cout << "Found First: " << found->first << " Second: " << found->second << endl;
}

To find a value in a map you can use the find method on the map itself, not the stand-alone find
algorithm. The find method takes the key you wish to search for as a parameter and if that key does
not exist, the end element of the map is returned.

Binary Search Trees
At this point we have covered five different STL containers. In the previous chapter I explained the
difference between the way a list and a vector are implemented. set and map are also implemented
differently to the linear containers. The map and set containers are implemented as binary search trees.

A node in a binary search tree stores pointers to two nodes, one to the left and one to the right.
Figure 16-1 shows a visual representation of a tree.

172 CHAPTER 16: STL’s Associative Containers

The binary search tree stores the tree in a sorted order to make it a very efficient structure when
looking up nodes. The head node of the tree in Figure 16-1 stores the value 4. If we were looking
for the node that stores the value 2, we would begin by comparing 2 against the value at the head,
which is 4. If our search value is equal to the current node, we have found our value. If it is lower we
move to the left node; if it is higher we move to the right node. As 2 is less than 4, in our example
we would move to the left node. We would then repeat this process at the new node. We compare
first to the value of the node, and 2 equals 2, so we know that we have found the node we were
searching for.

The process of repeating the same operation over and over like this is known as recursion. We
generally implement recursive algorithms using functions that call themselves. Listing 16-7 shows an
implementation of a simple TreeNode class that can be used to recursively search a binary tree structure.

Listing 16-7. A simple TreeNode

class TreeNode
{
private:
int m_value;

TreeNode* m_pLeft = nullptr;
TreeNode* m_pRight = nullptr;
public:
TreeNode(int value)
: m_value{value}
{}

TreeNode* Find(int searchValue)
{
TreeNode* pResult = nullptr;

if (m_value == searchValue)
{
pResult = this;
}
else if (m_pLeft != nullptr && m_value > searchValue)
{
pResult = m_pLeft->Find(searchValue);
}
else if (m_pRight != nullptr && m_value < searchValue)

1 3 7

2 5

4

Figure 16-1. A binary search tree

173CHAPTER 16: STL’s Associative Containers

{
pResult = m_pRight->Find(searchValue);
}

return pResult;
}
};

All of the code you need to search for a value inside a binary search tree is contained within the Find
method in Listing 16-7. If you imagine that we have used this class to represent the tree in Figure 16-1,
then you would have a pointer to the tree head node stored in our program. You can then call Find on
this node and pass it a value to search for.

If we pass in 1, the first if statement in Find would fail. The second if statement would pass so we
would return the result of m_pLeft->Find. This call to find would follow the same process: The first
if would fail and we would return the result of m_pLeft->Find. This call to find will see the first if
statement pass, so we do not call another function; we simply return this. At this point, all of our
function calls will unwind. Our last call to Find returns this to the second call to Find, which returns
the pointer to the first call to Find, which finally returns it back to the variable being assigned.

Searching for values in a binary tree is, generally, a faster operation than searching through an array,
vector, or list. In those collections you would have to potentially compare against every element
if the value you were looking for was at the very end of the collection. A binary search tree is much
more efficient. In Figure 16-1 we would only ever have to make 3 comparisons to search against 7
different values. If we were to add another level to the tree, we would have 4 comparisons to make
against 15 different values, and another layer would be 5 comparisons for 31 values. You can see
how quickly these numbers are rising for each level in a binary search tree.

Note Recursion can be a complicated topic for beginning programmers to understand as it ties in with the
concept of the program stack. We’ll cover more about this stack in Chapter 22.

The other major algorithm for traversing a collection is called iteration. You have already seen
multiple examples of iteration in action and the iterator types you have seen in use take their name
from this algorithm. Iterating a binary search tree involves visiting each node in turn, and you can use
iterators on a set and a map to visit each element in order.

Binary search trees are one way to store data in associative containers, and another is to use a
hash map.

Fast Data Access Using a Hash Map
A binary search tree structure provides fast access to sorted data. The tree is automatically sorted
when adding data and you’ve seen how a search of that data can be done very quickly. It is possible
to use an even faster structure than a binary search tree when you do not need to iterate over sorted
data. A hash map has a constant time insert and retrieval of a value. This means that it will take the
same length of time to insert the first element as it will to insert the tenth or the millionth. It also has a
constant time retrieval of data. This means that finding data in a container does not increase the time
elapsed along with the number of elements the container holds.

174 CHAPTER 16: STL’s Associative Containers

Hash maps achieve this by turning the key into a hash value and then using that hash to store the
data in an appropriate bucket. The process of writing a hash map is a complicated task, but luckily
for us the STL provides us with two ready-made hash map containers, the unordered_set and the
unordered_map.

STL unordered_set and unordered_map
The code for unordered_set and unordered_map is going to look very familiar. Listing 16-8 shows
how you can specialize these templates.

Listing 16-8. Specializing unordered_set and unordered_map

using namespace std;
using MyUnorderedSet = unordered_set<int>;
using MyUnorderedMap = unordered_map<int, string>;
using MyPair = pair<int, string>;

The unordered_set and unordered_map container templates take the same parameters as the set
and map containers. The unordered_set stores a value and calculates the key automatically for the
value,whereas the unordered_map requires that you specify the type to use for the key followed by
the type for the value.

You can then initialize and add elements to these containers in the same way you did before,
as Listing 16-9 shows.

Listing 16-9. Initializing and Adding to unordered_set and unordered_map

MyUnorderedSet myUnorderedSet = { 2, 1, 0 };
myUnorderedSet.emplace(4);
myUnorderedSet.insert(3);

MyUnorderedMap myUnorderedMap = { { 2, "Two" }, { 1, "One" }, { 0, "Zero" } };
myUnorderedMap.emplace(3, "Three");
MyPair node{ 4, "Four" };
myUnorderedMap.insert(node);

The code to find elements in an unordered_set is similar to what you have seen previously, either
using the find algorithm or the find method. Listing 16-10 shows both versions.

Listing 16-10. Using find with unordered_set

MyUnorderedSet::iterator found = find(myUnorderedSet.begin(), myUnorderedSet.end(), 2);
if (found != myUnorderedSet.end())
{
cout << "Found : " << *found << endl;
}

found = myUnorderedSet.find(2);
if (found != myUnorderedSet.end())
{
cout << "Found : " << *found << endl;
}

175CHAPTER 16: STL’s Associative Containers

Values in an unordered_map are accessed a little differently. You will have to use either the [] operator
or the at method. Both are shown in Listing 16-11.

Listing 16-11. Using [] and at

string& myString = myUnorderedMap[2];
cout << "Found : " << myString << endl;

myString = myUnorderedMap.at(2);
cout << "Found : "<< myString << endl;

These methods differ in a very significant way. The [] operator can be used to insert or retrieve
values from an unordered_map. If the key 2 had not existed in myUnorderedMap, a new string would
have been added to the map and its reference returned. If the key did already exist, the current string
would have been returned. The at method never adds a new element to our unordered_map, instead
it throws an exception. Listing 16-12 shows how you can update the at call to handle exceptions.

Listing 16-12. Handling Exceptions

try
{
string& myString = myUnorderedMap.at(5);
cout << "Found : " << myString << endl;
}
catch (const std::out_of_range& outOfRange)
{
cout << "Out of range error: " << outOfRange.what() << endl;
}

Your program would have crashed with an unhandled exception error if you had called this code
without the try...catch block. Throwing your own exceptions is as easy as using the throw
keyword, as you can see in Listing 16-13.

Listing 16-13. Throwing Exceptions

void ExceptionExample()
{
if (true)
{
throw -1;
}
}

Catching an exception from this method is shown in Listing 16-14.

176 CHAPTER 16: STL’s Associative Containers

Listing 16-14. Catching Exceptions

try
{
ExceptionExample();
}
catch (int errorValue)
{
cout << "Error: " << errorValue << endl;
}

Note You’ll see the unordered_map put to practical use in Chapter 21, which covers an EventManager
class that stores Event objects keyed by a unique ID value.

Summary
This chapter has introduced you to STL containers based on binary search trees and the hash maps.
These containers provide alternatives to the other containers, which are of particular benefit when
you are dealing with large sets of data. The set and map containers are useful when you need to have
data that is regularly iterated over and you need to be in order, but you also need to find individual
elements regularly. The unordered_set and unordered_mapcontainers are useful when you need to
know that inserting and retrieving values will always take the same length of time to execute and you
do not need the data to be sorted.

The next chapter introduces you to the stack and queue containers. These containers are more
specialized versions of existing data structures. Stacks can be used to add and remove elements
from the top of the container, whereas queues act in a first in, first out manner.

177

Chapter 17
STL’s Stack and Queue

The STL containers you have seen so far have all provided options for storing and retrieving values
and are suited to different circumstances. The stack and queue containers are designed for different
reasons. Although they do store values, their behavior is much more important. I’ll show you exactly
how these containers behave in this chapter.

Note The game examples in this book don’t use these containers, but I didn’t want to leave them out. You
might find a stack useful in a game where you are building a UI system and want to track the path to the
current screen. I’ve also found a queue to be useful in event systems where you wish to process events in
the exact order in which they were received.

The STL stack Container
The stack container is used when you would like a container that can only be accessed in a last in,
first out behavior. You can think of this like a tower of blocks. When you place a block onto a tower,
that is the only block you can then remove. Hopefully you can see how this container is useful more
for its behavior than for its ability to contain values. Listing 17-1 shows how you can specialize the
stack container.

Listing 17-1. Specializing the stack Container

using namespace std;
using MyStack = stack<int>;

You should be growing comfortable with the syntax used when specializing templates. Listing 17-2
shows how we can create an instance of a stack and add values to it.

178 CHAPTER 17: STL’s Stack and Queue

Listing 17-2. Creating a stack and Adding Values

MyStack myStack;
myStack.emplace(0);
myStack.push(1);
myStack.push(2);

The stack provides a push method to push values onto the top of the stack. Once again you can see
that this container also has the more optimal emplace method, which provides a faster way to place
elements onto the top.

Now that you have values in a stack, you cannot access the data using array operators or iterators,
as that would break the last in, first out behavior the stack provides. Instead the stack provides the
top method, which you can see in use in Listing 17-3.

Listing 17-3. Using stack::top

cout << "Top of the stack: " << myStack.top() << endl;

The code in Listing 17-3 would print the number 2. When you decide that you no longer need the
value on the top of the stack, you use the pop method to remove the top element from the stack.
This is shown in Listing 17-4.

Listing 17-4. Using stack::pop

myStack.pop();

cout << "Top of the stack: " << myStack.top() << endl;

The cout call in Listing 17-4 would print the number 2 to your console. You can push and pop values
to and from a stack as often as you deem necessary. The last remaining important call on a stack
is the empty method. A call to myStack.empty() would return a boolthat when true means that your
stack contains no values.

That’s all there is to know about the stack container. The queue container is very similar but provides
first in, first out access to its elements.

The STL queue Container
Whereas the stack provides last in, first out access, the queue container provides first in, first out
access. You can visualize this as being like a conveyor belt. The first item you place onto the belt will
be the first item to reach the end of the belt and each subsequent added item will arrive in that order.
Listing 17-5 shows all of the code you need to use a queue container.

179CHAPTER 17: STL’s Stack and Queue

Listing 17-5. The queue Container

using namespace std;
using MyQueue = queue<int>;

MyQueue myQueue;
myQueue.emplace(0);
myQueue.emplace(1);
myQueue.emplace(2);

cout << "Front of the queue: " << myQueue.front() << endl;

myQueue.pop();

The call to front in Listing 17-5 would print 0 to the console. After the call to pop, a call to front
would result in 1 being returned. The queue class also provides a back method to retrieve the last
element in a queue, but you cannot remove this element. I haven’t shown this method in action,
as I have never found much use for it. The queue container is used for its first in, first out properties.

Summary
This chapter was short and sweet. The stack and queue containers are much more limited than other
containers. Although their purpose is to store elements in a manner similar to the other containers
provided by the STL, they are actually designed to provide restrictions on how you can access their
elements.

The stack provides a last in, first out access pattern, whereas the queue provides a first in, first out
pattern.

The next chapter covers the last type of STL container you will see in this book, the bitset.

181

Chapter 18
STL’s bitset

The last STL container type object that I cover is the bitset. I say STL type because the bitset is
not strictly a container. It does not support iterators, the range-based for loops, or STL’s algorithms.
A bitset is used for tracking individual boolean values in a combined set. A traditional method for
achieving the same result are flags implemented using bitwise operators and shifts.

Creating bitset Objects
A bitset is yet another template provided by the STL. A major difference between a bitset and
other STL containers is that you are not required to specify a type for the bitset. You can see in
Listing 18-1 that the only parameter taken by the template is the number of bit flags we would like
the bitset to contain.

Listing 18-1. Specializing bitset

#include <bitset>

using namespace std;

namespace
{
 const unsigned int NUMBER_OF_BITS = 5;
}

using MyBitset = bitset<NUMBER_OF_BITS>;

This code allows us to create bitsets that consist of 5 bits. We could create a bitset containing
more or fewer bits by altering the value passed into the template.

182 CHAPTER 18: STL’s bitset

Listing 18-2 shows the different constructors you can use to initialize bitsets.

Listing 18-2. bitset Constructors

MyBitset defaultConstructor;
MyBitset unsignedLongConstructor{ 0x17 };
MyBitset stringConstructor{ string{ "11011" } };

There are three constructors you can use. The first is the default constructor, which initializes all bits
to zero. The second constructor uses an unsigned long to initialize the bits. In this example, I have
used a literal value to pass into the constructor. The last constructor takes a string containing 1s and
0s representing the value you wish each bit to contain.

Working with bitsets
A bitset provides methods to carry out several different operations. These can be split into methods
that query the current state of the bitset and methods that are used to alter the bits. Listing 18-3
shows the methods you can use to gather information about your bitset.

Listing 18-3. Querying bitsets

cout << boolalpha;

cout << "Size of the bitset: " << stringConstructor.size() << endl;
cout << "Number of set bits: " << stringConstructor.count() << endl;

cout << "Is any bit set? " << stringConstructor.any() << endl;
cout << "Are all bits set? " << stringConstructor.all () << endl;
cout << "Are no bits set? " << stringConstructor.none() << endl;

for (unsigned int i = 0; i < stringConstructor.size(); ++i)
{
 cout << "Bit " << i << " value: " << stringConstructor[i] << endl;
 cout << "Bit " << i << " test: " << stringConstructor.test(i) << endl;
}

The bitset template provides methods to query the size and count of a bitset. The size method
should return the size you passed into the template and count will return the number of bits that you
have set to true. Figure 18-1 shows the output you can expect to see when you execute the code
from Listing 18-3.

183CHAPTER 18: STL’s bitset

There are also helper methods that can tell you if any, all, or none of the bits are set. Finally you can
see two methods to query the status of individual bits. You can either use the array operator and
index or you can use the test method.

There are three methods supplied that allow you to alter the values stored in the bitset. These are
shown in Listing 18-4.

Listing 18-4. Altering Bits

stringConstructor.set(1, false);
stringConstructor.set(1);
stringConstructor.set();

stringConstructor.reset(0);
stringConstructor.reset();

stringConstructor.flip(4);
stringConstructor.flip();

The three methods are set, reset, and flip. Figure 18-2 shows the results of these lines of code in
the order in which they appear in Listing 18-4.

Figure 18-1. The output generated by executing the code in Listing 18-3

184 CHAPTER 18: STL’s bitset

The set method has been overloaded to provide different functionality. The first example takes a bit
index and a value to set the bit to. The second takes just an index, and this method will then set the
given bit to 1. The final version of set will make all of the bits in the set 1.

The reset method has similar behavior. It can be passed an index that will reset the given bit to 0 or
it can be used without parameters, which sets all bits to 0. The flip method also has two versions:
When given an index it will change the given bit from true to false or false to true and when given
no parameters it flips the values of all bits.

Summary
The bitset template is a simple object provided by the STL to give programs an easy and reusable
bit flag implementation. Bitsets can be used in game development in a number of situations. I have
seen them used particularly often in multiplayer development, where transmitting the state of an
object over the Internet requires that programmers pack data into as small a location as possible.
Packing boolean values into individual bits is as small as you can possibly get.

This was our last chapter looking at the containers provided by the STL. The next chapter covers
a full implementation of the Text Adventure game. The examples of the game you have seen
so far have been compromised by the fact that we had not yet covered STL containers. Game
programming involves a lot of data object management and storing objects in appropriate data
structures is essential. Now that you have seen the different containers the STL provides, you’ll be in
a better position to see how we can write a game in a more structured manner.

Figure 18-2. The results from the code in Listing 18-4

185

Chapter 19
Using the STL in Text Adventure

So far you have seen how a game can be built using classes, member variables, and C-style arrays.
In this chapter you will see how you can use some of the STL classes covered in this part of the
book to simplify the code you have been creating. This chapter uses polymorphism to store pointers
to base classes in our STL containers. If you need a recap on polymorphism and how it is used, you
should read over Chapter 11.

Some gameplay elements are also added to this chapter. Our Text Adventure game now has an
end state. There are two enemies in the game world and the player must find and kill both of these
enemies. Before the player will be able to attack the enemies, they must be armed with a weapon.
This gameplay logic is relatively simple and there are still only a handful of rooms in the world. This is
to help keep the code size small so you can get a good grasp on how to write a complete game.

Using STL array to Store Room Pointers
When you last saw the code for the Text Adventure game it was using a standard C-style array in
the Game class to store the Room objects. In this chapter we switch over to using an STL array.
Listing 19-1 shows the STL array code.

Listing 19-1. Using an STL array to Store Rooms

class Game
{
private:
 static const unsigned int m_numberOfRooms = 4;
 using Rooms = std::array<Room, m_numberOfRooms>;
 Rooms m_rooms;
};

186 CHAPTER 19: Using the STL in Text Adventure

Here you can see a const unsigned int that stores the number of rooms our game contains. The
game will have the same T layout for the game rooms that we used in Chapter 12. The second line
uses a type alias to reduce the amount of typing we would need to reference the type of the array in
other places in the code. We then use the alias to create the array of rooms.

The rest of the code to deal with the Rooms array remains the same. This is one of the main reasons
you should switch from old C-style arrays to newer style arrays. The newer style arrays can be used
with other STL algorithms and also provide iterator support, which C-style arrays do not.

The Rooms array change is relatively straightforward, but the changes to the Options are much more
substantial.

Using a vector and a map to Store Options
In Chapter 11 the Option pointers were stored in a C-style array in the Game class. This chapter
reworks the Option storage entirely. The first significant change is that the Option pointers are no
longer stored in the Game class. Each Room object stores pointers to the relevant options instead. This
allows us to do some things a little differently. One drawback of the previous solution was that all of
the options were presented for every room. In this chapter, we only show options that have a logical
action. This means the player will never see an option to move east if the current Room does not
have a Room joining to the east. This is a general improvement in usability.

The options for moving between rooms and for quitting the game are constant operations that
never change. Our new gameplay logic also includes operations that can only be performed once.
These are the options to open a chest and the option to attack an enemy. For simplicity’s sake, the
enemies in our game are currently killed in a single attack and a chest can only be opened once.
When players carry out these actions, they will not be shown them a second time. This gives us two
different classes of options, dynamic options and static options.

We will be storing the dynamic options in a vector. This would allow us to have as many dynamic
options as necessary and allow us to add new options as the game progresses. Our static options
will be stored in a map. The map allows the Option pointers to be associated with a key. The key will
be used to access the Option pointer quickly regardless of how many static options we add.

While we’re looking at the Room class you can also see that the JoiningRooms array has been updated
to an STL array, as shown in Listing 19-2.

Listing 19-2. Using STL Containers in the Room Class

class Room
 : public Entity
{
public:
 enum class JoiningDirections
 {
 North = 0,
 East,
 South,
 West,
 Max
 };

187CHAPTER 19: Using the STL in Text Adventure

private:
 using JoiningRooms = std::array<Room*, static_cast<size_t>(JoiningDirections::Max)>;
 JoiningRooms m_pJoiningRooms;

 using StaticOptions = std::map<unsigned int, Option*>;
 StaticOptions m_staticOptions;
 unsigned int m_staticOptionStartKey{ 1 };

 using DynamicOptions = std::vector<Option*>;
 DynamicOptions m_dynamicOptions;
};

A type alias is created for all three of the STL containers in use. The JoiningRooms alias uses a
static_cast to convert the JoiningDirections::Max enum element into a usable size for the STL
array. The compiler would give you a specialization error because it cannot implicitly cast an enum
class value, and the static_cast avoids this error. There are additional type aliases, one for the map
to store static options and one for the vector that stores the dynamic options.

The map is keyed by unsigned integers that will allow us to use the numbers entered by the user to
access the relevant pointer for the selected option. They keys are set automatically by the Room class
as the Options are added so we set the initial key to 1.

Note Initializing m_staticOptionStartKey in this manner is using a new C++11 feature. Before C++11
only static constants that were declared using built-in types could be initialized inside a class. C++11 added
the ability to initialize members where they are declared to reduce the size of constructors.

Listing 19-3 shows the new methods that have been added to the Room class to add dynamic and
static options.

Listing 19-3. Adding Dynamic and Static Options to Room

void Room::AddStaticOption(Option* option)
{
 assert(option != nullptr);
 m_staticOptions[m_staticOptionStartKey++] = option;
}

void Room::AddDynamicOption(Option* option)
{
 assert(option != nullptr);
 m_dynamicOptions.push_back(option);
}

188 CHAPTER 19: Using the STL in Text Adventure

The static options are added to the map using the [] operator. The key being used is postincremented
on each insert call. The AddDynamicOption method uses the vector::push_back method to push the
new option into the vector. Both methods have a call to assert in their first line that will trigger if the
Option pointer being added is a nullptr. This will allow you to track down invalid options while your
program is running.

Now that the options are stored within a Room instance, the class is required to have a method to
print the available options to the player, which is shown in Listing 19-4.

Listing 19-4. Printing the Available Options

void Room::PrintOptions() const
{
 for (unsigned int i = 0; i < m_dynamicOptions.size(); ++i)
 {
 const Option* option = m_dynamicOptions[i];
 std::cout << i + 1 << ": " << option->GetOutputText() << std::endl << std::endl;
 }

 for (StaticOptions::const_iterator iter = m_staticOptions.cbegin();
 iter != m_staticOptions.cend();
 ++iter)
 {
 const Option* option = iter->second;
 const unsigned int chosenOption = iter->first + m_dynamicOptions.size();
 std::cout << chosenOption << ": "
 << option->GetOutputText() << std::endl << std::endl;
 }
}

The PrintOptions method must print out all of the dynamic options followed by the static options.
Each option is preceded by an index number that the player will then be asked to enter. A for loop
is used to track the option number to be printed for the dynamic options, and you can see this in the
cout statement where we add 1 to i when printing.

Constant iterators are used to loop over the static options. Each static option is keyed starting from
1 so we can add the size of m_dynamicOptions to each key to find the appropriate index for each
static option. The iterators represent key–data pairs with the key stored in the first member of the
pair and the Option pointer stored in second.

The Room class will also be responsible for evaluating the player’s input. Listing 19-4 shows the
Room::EvaluateInput method.

Listing 19-5. Room::EvaluateInput

Option* Room::EvaluateInput(unsigned int playerInput)
{
 Option* option = nullptr;
 const unsigned int numDynamicOptions = m_dynamicOptions.size();
 if (playerInput <= numDynamicOptions)

189CHAPTER 19: Using the STL in Text Adventure

 {
 unsigned int dynamicIndex = playerInput - 1;
 option = m_dynamicOptions[dynamicIndex];
 m_dynamicOptions.erase(m_dynamicOptions.begin() + dynamicIndex);
 }
 else
 {
 option = m_staticOptions.at(playerInput - numDynamicOptions);
 }
 return option;
}

The player has been presented options that could include dynamic and static options. The static options
have been offset by the number of dynamic options, so EvaluateInput must account for this offsetting.
It does this by determining if the entered number is less than the number of dynamic options. If it is then
the chosen options can be used as an index into the m_dynamicOptions vector after subtracting 1.

Note We must subtract 1 because the vector indexes begin at 0; however, we have shown the player
choices beginning at 1, because not many nonprogrammers like to begin counting from 0.

If the player’s input was greater than the number of dynamic options, we can calculate the key for
the map of static options by subtracting the number of dynamic options from the player’s input. This
will work when there are no dynamic options, as the subtraction will remove 0 from the player input
and we do not need to subtract 1 from the key as we initialized the map’s keys beginning at 1.

The most important part of this method to pay attention to is the line that calls erase on
m_dynamicOptions. This is the line that makes these options dynamic, as it ensures that each
dynamic option can only be called once and it means that the options presented to the player after
the option has been executed will be different. This is less than ideal from a usability perspective,
as the user will be presented different numbers to choose the same actions; however, I felt it was a
useful exercise in showing how a vector can be used for dynamic data sets.

Adding Gameplay to Text Adventure
Now that we have a mechanism in place to add dynamic and static options to Room instances, it’s time
to look at a couple of gameplay elements. The first gameplay element will be the ability to open chests
and retrieve their contents. To do this we will need a Chest class. Listing 19-6 shows the class definition.

Listing 19-6. The Chest Class

class Chest
 : public Entity
{
private:
 const Item* m_item;
 bool m_isOpen{ false };

190 CHAPTER 19: Using the STL in Text Adventure

public:
 Chest(const Item* item);
 void Update();

 bool IsOpen() const
 {
 return m_isOpen;
 }

 const Item* Open()
 {
 m_isOpen = true;
 return m_item;
 }
};

The Chest class inherits from Entity. This makes sense, as a Chest will be an object that exists in
the game world in its own right. Chest has two member variables, one to store a pointer to an Item
and a bool to track if the Chest is open.

The Open method sets m_isOpen to true and returns the pointer to the stored Item to the caller.
The Item class is shown in Listing 19-7.

Listing 19-7. The Item Class

class Item
{
private:
 std::string m_name;

public:
 Item(const std::string& name)
 : m_name{ name }
 {

 }

 virtual ~Item() {}

 const std::string& GetName() const
 {
 return m_name;
 }
};

The only useful functionality provided by the Item class is to store a string that contains the Item’s
name. This allows us to print the name of the Item to the player when they pick it up. This means
that we need an Item that the player can collect. Listing 19-8 shows the Sword class.

191CHAPTER 19: Using the STL in Text Adventure

Listing 19-8. The Sword Class

class Sword
 : public Item
{
public:
 Sword()
 : Item("Sword")
 {

 }
};

The Sword class does not do anything particularly exciting; its only method is a constructor that is
used to pass the string "Sword" through to the Item parent class constructor.

The interesting work is done by our new OpenChestOptions class, which derives from Option, shown
in Listing 19-9.

Listing 19-9. The OpenChestOption Class

class OpenChestOption
 : public Option
{
private:
 Chest* m_chest;

public:
 OpenChestOption(Chest* chest, const std::string& outputText)
 : m_chest{chest}
 , Option(PlayerOptions::OpenChest, outputText)
 {

 }

 virtual void Evaluate(Player& player);
};

The OpenChestOption class stores a pointer to the Chest object on which it will operate. It also overrides
the Evaluate method from the Option parent class. The Evaluate method is shown in Listing 19-10.

Listing 19-10. OpenChestOption::Evaluate

void OpenChestOption::Evaluate(Player& player)
{
 if (m_chest->IsOpen() == false)
 {
 const Item* item = m_chest->Open();
 player.AddItem(item);

 std::cout << "You picked up a " << item->GetName() << " from the chest!"
 << std::endl << std::endl;
 }
}

192 CHAPTER 19: Using the STL in Text Adventure

The Evaluate method is where the Chest::Open call is made. The method first checks to see if the
Chest is closed; if it is, then the Open call is made and the Item pointer is passed to Player::AddItem.
The last task is to print a message informing the player which Item was obtained from the Chest.

The Evaluate method brings us nicely to our next example of STL containers in our game. The Player
class requires storage for the Item objects that the user can obtain. You can see in Listing 19-11
that a vector<Item*> has been added to the Player class.

Listing 19-11. The Player Class’s Item vector

class Player
 : public Entity
{
private:
 using Items = std::vector<Item*>;
 Items m_items;

 void AddItem(const Item* item)
 {
 m_items.push_back(const_cast<Item*>(item));
 }

 bool HasWeapon()
 {
 bool hasWeapon = false;

 for (const Item* item : m_items)
 {
 const Sword* sword = dynamic_cast<const Sword*>(item);
 if (sword != nullptr)
 {
 hasWeapon = true;
 break;
 }
 }

 return hasWeapon;
 }
};

Listing 19-11 only shows the new code that has been added to Player. We now have an alias for the
Item* vector, the vector instance and two new methods, AddItem and HasWeapon.

AddItem is simply used to push new items onto the m_items vector. The HasWeapon method is a little
more interesting. It uses a dynamic_cast to determine if the current Item pointer is actually a Sword
class. A dynamic_cast will return nullptr if the type conversion is invalid; therefore, only objects that
are actually Swords will successfully return a valid Sword pointer. Once we have a valid Sword pointer
we know that the player has a weapon, so hasWeapon can be set to true and we can break out of our
loop. The loop in question is a range-based for loop that takes advantage of our STL class.

The Player class has a method to determine whether the player is armed or not because we are
going to add enemies to some of the Room objects. Listing 19-12 shows the Enemy class.

193CHAPTER 19: Using the STL in Text Adventure

Listing 19-12. The Enemy Class

class Enemy
 : public Entity
{
public:
 enum class EnemyType
 {
 Dragon,
 Orc
 };

private:
 EnemyType m_type;
 bool m_alive{ true };

public:
 Enemy(EnemyType type)
 : m_type{ type }
 {

 }

 bool IsAlive() const
 {
 return m_alive;
 }

 void Kill()
 {
 m_alive = false;
 }
};

Text Adventure will support two different kinds of enemies for now, Dragons and Orcs. These types
have been represented in the EnemyType enum. The only other member variable is a bool that
determines if the Enemy is dead or alive; this goes along with the two helper methods, IsAlive and
Kill, which query and set the state of the m_alive variable.

As you might have guessed, there is a new class derived from Option that allows the user to kill the
enemies. Listing 19-13 shows the AttackEnemyOption class.

Listing 19-13. The AttackEnemyOption Class

class AttackEnemyOption
 : public Option
{
private:
 Enemy* m_enemy;

public:
 AttackEnemyOption(Enemy* enemy, const std::string& outputText);

 virtual void Evaluate(Player& player);
};

194 CHAPTER 19: Using the STL in Text Adventure

Listing 19-14 shows the code for the Evaluate method.

Listing 19-14. AttackEnemyOption::Evaluate

void AttackEnemyOption::Evaluate(Player& player)
{
 std::cout << std::endl << "You have chosen to " << m_outputText
 << std::endl << std::endl;

 if (player.HasWeapon())
 {
 if (m_enemy->IsAlive())
 {
 m_enemy->Kill();

 std::cout << "You killed it!" << std::endl << std::endl;
 }
 }
 else
 {
 std::cout << "You need to find a weapon before attacking monsters!"
 << std::endl << std::endl;
 }
}

The Player::HasWeapon method is put to good use here to make sure that the user can only attack
enemies when they are armed. The final changes required to tie everything together are in the Game
class, which is shown in Listing 19-15.

Listing 19-15. The Updated Game Class

class Game
{
private:
 static const unsigned int m_numberOfRooms = 4;
 using Rooms = std::array<Room, m_numberOfRooms>;
 Rooms m_rooms;

 Player m_player;

 AttackEnemyOption m_attackDragonOption;
 AttackEnemyOption m_attackOrcOption;
 MoveOption m_moveNorthOption;
 MoveOption m_moveEastOption;
 MoveOption m_moveSouthOption;
 MoveOption m_moveWestOption;
 OpenChestOption m_openSwordChest;
 QuitOption m_quitOption;

 Sword m_sword;
 Chest m_swordChest;

 Enemy m_dragon;
 Enemy m_orc;

195CHAPTER 19: Using the STL in Text Adventure

 void InitializeRooms();
 void WelcomePlayer();
 void GivePlayerOptions() const;
 void GetPlayerInput(std::stringstream& playerInput) const;
 PlayerOptions EvaluateInput(std::stringstream& playerInput);
public:
 Game();

 void RunGame();
};

The Game class now has two AttackEnemyOption instances, an OpenChestOption, a Sword, Chest, and
two Enemy class instances. These are initialized in the constructor, shown in Listing 19-16.

Listing 19-16. The Game Constructor

Game::Game()
 : m_attackDragonOption(&m_dragon, "Attack Dragon")
 , m_attackOrcOption(&m_orc, "Attack Orc")
 , m_moveNorthOption(Room::JoiningDirections::North, PlayerOptions::GoNorth, "Go North")
 , m_moveEastOption(Room::JoiningDirections::East, PlayerOptions::GoEast, "Go East")
 , m_moveSouthOption(Room::JoiningDirections::South, PlayerOptions::GoSouth, "Go South")
 , m_moveWestOption(Room::JoiningDirections::West, PlayerOptions::GoWest, "Go West")
 , m_openSwordChest(&m_swordChest, "Open Chest")
 , m_quitOption("Quit")
 , m_swordChest(&m_sword)
 , m_dragon(Enemy::EnemyType::Dragon)
 , m_orc(Enemy::EnemyType::Orc)
{

}

Listing 19-17 shows how these are added to the Room instances using the new AddStaticOption and
AddDynamicOption methods. This is done in the Game::InitializeRooms method.

Listing 19-17. Game::InitializeRooms

void Game::InitializeRooms()
{
 // Room 0 heads North to Room 1
 m_rooms[0].AddRoom(Room::JoiningDirections::North, &(m_rooms[1]));
 m_rooms[0].AddStaticOption(&m_moveNorthOption);
 m_rooms[0].AddStaticOption(&m_quitOption);
 m_rooms[0].AddDynamicOption(&m_openSwordChest);

 // Room 1 heads East to Room 2, South to Room 0 and West to Room 3
 m_rooms[1].AddRoom(Room::JoiningDirections::East, &(m_rooms[2]));
 m_rooms[1].AddStaticOption(&m_moveEastOption);
 m_rooms[1].AddRoom(Room::JoiningDirections::South, &(m_rooms[0]));
 m_rooms[1].AddStaticOption(&m_moveSouthOption);
 m_rooms[1].AddRoom(Room::JoiningDirections::West, &(m_rooms[3]));
 m_rooms[1].AddStaticOption(&m_moveWestOption);
 m_rooms[1].AddStaticOption(&m_quitOption);

196 CHAPTER 19: Using the STL in Text Adventure

 // Room 2 heads West to Room 1
 m_rooms[2].AddRoom(Room::JoiningDirections::West, &(m_rooms[1]));
 m_rooms[2].AddStaticOption(&m_moveWestOption);
 m_rooms[2].AddStaticOption(&m_quitOption);
 m_rooms[2].AddDynamicOption(&m_attackDragonOption);

 // Room 3 heads East to Room 1
 m_rooms[3].AddRoom(Room::JoiningDirections::East, &(m_rooms[1]));
 m_rooms[3].AddStaticOption(&m_moveEastOption);
 m_rooms[3].AddStaticOption(&m_quitOption);
 m_rooms[3].AddDynamicOption(&m_attackOrcOption);

 m_player.SetCurrentRoom(&(m_rooms[0]));
}

The GivePlayerInput method is now much simpler, as you can see in Listing 19-18.

Listing 19-18. Game::GivePlayerInput

void Game::GivePlayerOptions() const
{
 cout << "What would you like to do? (Enter a corresponding number)" << endl << endl;

 // Print the options for the room
 m_player.GetCurrentRoom()->PrintOptions();
}

The EvaluateInput method has some slightly more complicated code, shown in Listing 19-19.

Listing 19-19. Game::EvaluateInput

PlayerOptions Game::EvaluateInput(stringstream& playerInputStream)
{
 PlayerOptions chosenOption = PlayerOptions::None;
 unsigned int playerInputChoice{ 0 };
 playerInputStream >>playerInputChoice;

 try
 {
 Option* option = m_player.GetCurrentRoom()->EvaluateInput(playerInputChoice);
 option->Evaluate(m_player);
 chosenOption = option->GetChosenOption();
 }
 catch (const std::out_of_range&)
 {
 cout << "I do not recognize that option, try again!" << endl << endl;
 }

 return chosenOption;
}

197CHAPTER 19: Using the STL in Text Adventure

The user’s input has been captured into a stringstream that is used to get the unsigned int option
selected. There is then a try…catch block. This is exception handling in C++. Exceptions can be
generated by any code you call that does not result in a valid operation. In our case we could be
passing an invalid option to the Room::EvaluateInput method. This invalid option would be used to
try to get a pointer from the static options map and when the key could not be found, the map code
would throw an out_of_range exception.

Note If we failed to catch this exception, our program execution would stop, but by handling the exception
we have been able to show the user an appropriate error message and carry on.

The last method to get an update is the RunGame method. Listing 19-20 shows the updates to
this method.

Listing 19-20. Game::RunGame

void Game::RunGame()
{
 InitializeRooms();

 WelcomePlayer();

 bool playerWon = false;
 bool playerQuit = false;
 while (playerQuit == false && playerWon == false)
 {
 GivePlayerOptions();

 stringstream playerInputStream;
 GetPlayerInput(playerInputStream);

 PlayerOptions selectedOption = EvaluateInput(playerInputStream);
 playerQuit = selectedOption == PlayerOptions::Quit;

 playerWon = m_dragon.IsAlive() == false && m_orc.IsAlive() == false;
 }

 if (playerWon == true)
 {
 cout << "Congratulations, you rid the dungeon of monsters!" << endl;
 cout << "Type goodbye to end" << endl;
 std::string input;
 cin >>input;
 }
}

198 CHAPTER 19: Using the STL in Text Adventure

The main change here is that a win condition has been added to the game loop. The while condition
now checks to see whether the user has chosen the quit option or if they have won. The playerWon
bool is set to true once both of the enemies in the game world have been killed, which also means
the player successfully opened the Chest.

Summary
This update to Text Adventure concludes this part of the book. I’ve given you a whirlwind tour of the
most useful STL containers for game developers and you should now be able to use these in your
own projects with ease.

This chapter has shown some practical examples of how you can deploy STL containers in game
code. You’ve seen that STL array can be used for data that you know will remain constant, such as
the Rooms in the world or the JoiningDirections in each Room. You’ve also seen how a vector can be
used for more dynamic data structures. Text Adventure uses vectors to store dynamic options that
are erased after they are used and also to hold the Player class’s inventory, which would allow the
inventory to grow until the memory available on the computer is exhausted. You also saw how a map
can be used to provide convenient access to objects via a key–data pair relationship.

Hopefully by now you’re also comfortable with the C++ syntax for specializing templates. The next
part of this book is going to show you how you can create your own template methods and classes
to do some really neat and powerful things in the C++ programming language.

Part 4
Generic Programming

Although the STL provides a ready-made library of templates to cover many requirements, there is
no escaping the fact that you will eventually need to use the ability to create your own templates.

The C++ template compiler is a complex, underused, and exceptionally useful piece of software.
As well as letting you abstract types out of your classes to create generic and reusable code, the
template compiler can also let you calculate constant values at compile time. This type of template
programming is known as template metaprogramming.

This part of the book introduces you to the features C++ provides to create your own templates.
It also shows you how to use some built-in template metaprograms and even ends with an example
of how you can create your own template metaprogram.

201

Chapter 20
Template Programming

Parts 1 and 2 of this book introduced you to concepts and features of the C++ programming
language that allow the procedural programming paradigm and the object-oriented programming
paradigm. C++ provides functions and control flow statements that allow you to break your
programs down into reusable blocks and it provides classes that allow you to encapsulate your data
and bundle it with methods that act on that data. C++ also supports a third programming paradigm,
generic programming.

Generic programming is conceptually more complicated than the procedural and object-oriented
programming paradigms. You can think of generic programming in C++ as programming with types.
You’ve seen examples of this in the previous part of this book when you saw how to specialize STL
containers. The STL containers are generic in that they do not know which type they are until the
code is compiled. When you specialize a template, you are required to pass the types as arguments.
This process creates a new type; vector<int> is a completely different type to vector<char>.

Templates were created to provide this type abstraction in programs. After templates were
implemented, programmers started to discover that templates could do much, much more than
just abstract out types. They discovered that the template compiler could evaluate constant values
and compile new constant values. This has given rise to another element to template programming
known as template metaprogramming.

This chapter gives a brief introduction to template compilation by discussing the difference
between compile time and runtime evaluation, the difference between const and constexpr, and the
difference between assert and static_assert.

Compile Versus Runtime Time Compilation
Compilers are complex pieces of software that are capable of turning your source code into
instructions that can be consumed by a processor. During the compilation process, they are also
capable of carrying out other tasks, including preprocessing and optimization. The compiler is
also responsible for processing templates. Templates are generic and therefore the source code
itself cannot resolve the types in use in the template code. The compiler could try to instantiate a
version of the template for every single type and class in your program, but this would likely be very

202 CHAPTER 20: Template Programming

slow and require much more memory than necessary. Instead the compiler creates specializations
of templates as and when it encounters them in your code. This process of creating specialized
templates from the generic templates is why the compiler considers vector<int> to be a different
type to vector<char>.

Note As you have seen in previous chapters, it can be a great idea to use type aliases to make it clear in
your code when a template specialization is declaring a new type.

What the template compiler does then is generate specific source code that is turned into
instructions by subsequent steps in the compiler. This has led to the ability of the template compiler
to be considered Turing complete. Being Turing complete means that the template compiler is
considered capable of carrying out all of the computation capabilities of an early computer created
by Alan Turing. In effect, the template compiler in C++ is able to do many things outside of just
making types generic.

Before we look at how templates can be used in game code in the next chapter, we need to cover
some of the basics. Listing 20-1 shows how a simple template can be created.

Listing 20-1. Creating a template Class

template <typename T>
class Template
{
private:
 T* m_ptr;

public:
 Template(T* ptr)
 : m_ptr{ptr}
 {

 }
};

Listing 20-1 shows how we can tell the compiler that we would like our class to contain a member
variable that is of an unspecified type. This is achieved in the very first line with template <typename T>.
The <> syntax should be familiar from the STL chapters and is also the form we use to specify the
name for our generic type, in this case T.

Note Where Listing 20-1 uses the typename keyword, it’s also possible to use the class keyword. The
class keyword was initially used to declare template types, but it was superseded by the typename
keyword to reduce the overloading on the class keyword. Some older code might still use the class
keyword for compatibility, but typename should be used in any new code.

203CHAPTER 20: Template Programming

The class can use the T type in place of a standard type. The compiler will replace the T anywhere it
is used with the type supplied when the template is specialized. Listing 20-2 shows how this class
template can be specialized.

Listing 20-2. Specializing a Template

int value = 1;
Template<int> pointer(&value);

When we compile our program the compiler will automatically create a class for the Template<int>
type that replaces T with int.

The remainder of this chapter looks at the way we can specify constant values to be used by the
template compiler and look at the difference between a runtime and compile time assert.

const Versus constexpr
C++11 introduced the constexpr keyword to coexist with the const keyword. You’ve already seen
const used in this book. In those instances we used const to create variables that were unable to
be changed by the program after they were defined. These variables are runtime variables. We can
have constants defined inside local variables using values passed from parameters. Parameters
themselves can even be constant and in these cases there is no way for the compiler to know
whether the values the variables contain are literal constant values or values determined at runtime.

The constexpr keyword has been added to aid in this distinction. If you create a variable using
constexpr the compiler will throw a compiler error if it cannot determine the value of the variable at
compile time.

Note Unfortunately, at the time of writing, Microsoft has not yet added support in their latest compiler
included with Visual Studio 2013.

Listing 20-3 shows two scenarios where const and constexpr will provide different results.

Listing 20-3. const Versus constexpr

const double constValue = sin(0.5);
constexpr double constexprValue = sin(0.5);

void ConstFunction(double value)
{
 const double constValue = value;
 constexpr double constexprValue = value;
}

204 CHAPTER 20: Template Programming

The first two lines of Listing 20-3 will compile without issue. The compiler can work out the value of
the result from the sin function at compile time and store the values in the variables. The constexpr
variable inside the ConstFunction, however will result in a compile error. GCC gives the following
output message: error: ‘value’ is not a constant expression. This happens because the compiler
cannot guarantee that the method will not be passed a value that it cannot determine at compile time.

assert Versus static_assert
The assert and static_assert methods have the same runtime versus compile time distinction as
const and constexpr. An assert is used to halt your program’s execution if you pass in false at
runtime. Listing 20-4 shows a use of assert.

Listing 20-4. assert

#include <cassert>
int main()
{
 assert(2 == 3);
}

The 2 == 3 expression will result in false being passed to the assert. This will cause the code
execution to stop in your debugger and allow you to continue. A static_assert on the other hand
causes the compiler to throw an error. Listing 20-5 shows a static_assert.

Listing 20-5. static_assert

#include <cassert>
int main()
{
 static_assert(2 == 3, "Two does not equal three");
}

When you compile this code using GCC you should see the following error: error: static assertion
failed: Two does not equal three. This is the purpose of the string being passed to the
static_assert: It is printed out as part of your compile error. These type of asserts are very useful
when trying some template metaprogramming.

Summary
This chapter has shown you the very basics of how to create templates in your own code, including
the difference between compile time and runtime evaluation through a look at the difference between
const and constexpr, and assert and static_assert. You’ve seen a basic use of the template and
typename keywords and how these are used to create type abstractions in your code.

The remaining chapter in this part of the book covers how you can use templates in the Text
Adventure game in the form of template function, template classes, and finally an example of how
template metaprogramming can be used to calculate an SDBM hash at compile time.

205

Chapter 21
Practical Template Programming

This chapter introduces you to some practical template examples so you can see how they can be
deployed in your game development projects. You’ll see how to implement a Singleton class that
will allow you to create objects that can be accessed from anywhere in your code base. The Singleton
pattern also ensures that you can only create a single instance of those classes.

You’ll then see how you can create an event broadcasting system. This system itself will not use
templates, but we will be creating some friend functions that will be implemented using templates
to ensure that the objects being passed as parameters are set up to listen for events. The event
manager class will also use a template function that will calculate hash values to uniquely identify
the events in our system. Both of these example template functions will be showing you template
metaprogramming in action.

This chapter starts with the Singleton pattern.

Creating Singleton Classes with Templates
A Singleton class is used to create a single instance of an object in your program. This object
uses a static member variable and static functions to allow your code to access the object without
requiring you to pass it through all of your code. There are multiple methods you can use to implement
singletons. One common approach is to add a static member and functions to classes manually. This
approach is error prone if you create enough singletons, so it would be better to find a more consistent
approach. It turns out that we can use a template and inheritance to create a single implementation
that we can add to any class. Listing 21-1 shows the source code required to create a Singleton.

Listing 21-1. The Singleton Class

template <typename T>
class Singleton
{
private:
 static T* m_instance;

206 CHAPTER 21: Practical Template Programming

public:
 Singleton()
 {
 assert(m_instance == nullptr);
 if (m_instance == nullptr)
 {
 m_instance = static_cast<T*>(this);
 }
 }

 virtual ~Singleton()
 {
 m_instance = nullptr;
 }

 static T& GetSingleton()
 {
 return *m_instance;
 }

 static T* GetSingletonPtr()
 {
 return m_instance;
 }
};

template <typename T>
T* Singleton<T>::m_instance = nullptr;

There are three main aspects of this class that you should pay attention to with respect to
implementing template classes. The very first line of Listing 21-1 shows that you use the template
keyword to tell the compiler that we are creating a template. Using typename T then tells the
compiler that the type T will be provided when we specialize this template in our code. The type T is
then used to create a static pointer to a T object named m_instance.

The last important piece of template code is the definition of the m_instance variable on the last line.
The template <typename T> keywords are needed again as the variable definition exists outside
of the template class block.

The Singleton constructor contains an assert to alert you if you try to create more than a single
instance of a particular object. There is also a static cast as the pointer in the constructor will be
of type Singleton, not type T. It’s safe to use a static cast and not a dynamic cast in this instance
because we will only ever be casting from a Singleton to the type that derived from Singleton.
Listing 21-2 shows how we can use the Singleton template when creating another class, the
EventManager.

207CHAPTER 21: Practical Template Programming

Listing 21-2. The EventManager Class

#include "Singleton.h"

class EventManager
 : public Singleton<EventManager>
{
};

You can see here that the Singleton class is derived from by EventManager, but you also pass the
type EventManager to the Singleton template. This is a template programming pattern known as
the curiously recurring template pattern (you can get more information about this topic from
http://en.wikipedia.org/wiki/Curiously_recurring_template_pattern). You can now create and
delete Singleton derived classes in the manner shown in Listing 21-3.

Listing 21-3. Instantiating the EventManager

void Game::RunGame()
{
 new EventManager();

 InitializeRooms();

 WelcomePlayer();

 bool playerWon = false;
 bool playerQuit = false;
 while (playerQuit == false && playerWon == false)
 {
 GivePlayerOptions();

 stringstream playerInputStream;
 GetPlayerInput(playerInputStream);

 PlayerOptions selectedOption = EvaluateInput(playerInputStream);
 playerQuit = selectedOption == PlayerOptions::Quit;

 playerWon = m_dragon.IsAlive() == false && m_orc.IsAlive() == false;
 }

 if (playerWon == true)
 {
 cout << "Congratulations, you rid the dungeon of monsters!" << endl;
 cout << "Type goodbye to end" << endl;
 std::string input;
 cin >>input;
 }

 delete EventManager::GetSingletonPtr();
}

http://en.wikipedia.org/wiki/Curiously_recurring_template_pattern

208 CHAPTER 21: Practical Template Programming

The bold lines of code in Listing 21-3 contain the first uses of new and delete that you have seen
in this book. You don’t need to worry about the details of what these keywords do at the moment,
as we’ll be covering dynamic memory allocation in detail in Chapter 24. You can however place a
breakpoint in the Singleton constructor and destructor to see those in action.

We’ll add more code to the EventManager class before it will prove to be useful, so we cover that now.

Implementing the EventManager Class
The EventManager is going to store Event objects in an unordered_map. The keys to this map will be
hash values calculated from strings that will be used to register events, attach listeners to events,
and eventually send the events. This means that you will need an Event class, an EventHandler
class, and a method to convert strings into unique hashes. Once these classes are all in place and
operational we’ll replace the current method used to detect when the player has chosen to quit the
game with the new event system.

The EventHandler Interface
Listing 21-4 shows the code for the EventHandler interface.

Listing 21-4. The EventHandler Interface

class Event;

class EventHandler
{
public:
 virtual void HandleEvent(const Event* pEvent) = 0;
};

The EventHandler interface is very basic. It simply provides a base class from which other classes
can derive to give themselves a common interface that can be used by the rest of the event system.
The Event class is one place where this is important, as it stores a vector of EventHandler pointers.

The Event Class
The Event class will be used to represent an individual event within the EventManager. This event
class is responsible for forwarding the event to all attached listener objects. To achieve this, the
Event class will store EventHandler pointers in a vector. You can see this in Listing 21-5.

Listing 21-5. The Event Class

using EventID = int;

class EventHandler;

class Event
{

209CHAPTER 21: Practical Template Programming

private:
 using EventHandlerList = std::vector<EventHandler*>;
 using EventHandlerListIterator = EventHandlerList::iterator;

 EventHandlerList m_listeners;
 EventID m_id;

public:
 explicit Event(EventID eventId);

 void Send();
 void SendToHandler(EventHandler& eventHandler);
 void AttachListener(EventHandler& eventHandler);
 void DetachListener(EventHandler& eventHandler);

 EventID GetID() const { return m_id; }
};

The Event class has a vector of EventHandler pointers. These are pointers to objects that have
derived from EventHandler and are listening for a specific event. An Event also has an EventID
variable that allows the event to be identified.

The explicit keyword before the constructor ensures that instances of the class can only be created
when passing in an EventID or integer type. The class also has methods that are used to attach and
detach listeners and for sending the event either to all listeners of a specific EventHandler. Listing 21-6
shows the code for the AttachListener and DetachListener methods.

Listing 21-6. The AttachListener and DetachListener Methods

void Event::AttachListener(EventHandler& eventHandler)
{
 m_listeners.push_back(&eventHandler);
}

void Event::DetachListener(EventHandler& eventHandler)
{
 for (EventHandlerListIterator iter = m_listeners.begin();
 iter != m_listeners.end();
 ++iter)
 {
 if (&eventHandler == *iter)
 {
 m_listeners.erase(iter);
 break;
 }
 }
}

The AttachListener and DetachListener methods are responsible for adding and removing a given
EventHandler object from the m_listeners vector. This vector becomes useful when you would like
to send the Event to all of the pointers it stores, as you can see in Listing 21-7.

210 CHAPTER 21: Practical Template Programming

Listing 21-7. The Event::Send Method

void Event::Send()
{
 for (auto& listener : m_listeners)
 {
 if (listener != nullptr)
 {
 listener->HandleEvent(this);
 }
 }
}

The Send method is straightforward. It simply loops all over the m_listeners vector and calls the
HandleEvent method on each valid entry.

The SendToHandler method is given in Listing 21-8. It sends the message to a single EventHandler
rather than all of them.

Listing 21-8. The Event::SendToHandler Method

void Event::SendToHandler(EventHandler& eventHandler)
{
 auto found = std::find(m_listeners.begin(), m_listeners.end(), &eventHandler);
 if (found != m_listeners.end())
 {
 (*found)->HandleEvent(this);
 }
}

This time we use the find STL algorithm to get an iterator to the entry that stores our EventHandler
and then call HandleEvent if it is found.

Now that we have an interface for EventHandlers and a class to represent Events, we can look at
how the EventManager class is implemented.

The EventManager Implementation
Listing 21-9 shows the member variables and methods contained in the EventManager class.

Listing 21-9. The EventManager Members and Methods

class EventManager
 : public Singleton<EventManager>
{
 friend void SendEvent(EventID eventId);

 template <typename T>
 friend void SendEventToHandler(EventID eventId, T* eventHandler);

 friend bool RegisterEvent(EventID eventId);

211CHAPTER 21: Practical Template Programming

 template <typename T>
 friend void AttachEvent(EventID eventId, T* eventHandler);

 template <typename T>
 friend void DetachEvent(EventID eventId, T* eventHandler);

private:
 using EventMap = std::unordered_map<EventID, Event*>;
 using EventMapIterator = EventMap::iterator;

 EventMap m_eventMap;

 void SendEvent(EventID eventId);

 void SendEventToHandler(EventID eventId, EventHandler& eventHandler);
 bool RegisterEvent(EventID eventId);

 void AttachEvent(EventID eventId, EventHandler& eventHandler);

 void DetachEvent(EventID eventId, EventHandler& eventHandler);

public:
 virtual ~EventManager();
};

The EventManager class has an interesting design. The Event objects are stored in an unordered_map
using the EventID as a key. There are also private member methods that contain the behavior of the
class: SendEvent, SendEventToHandler, RegisterEvent, AttachEvent, and DetachEvent. There are also
public friend methods that are used to wrap these function calls and use template code. I’ll show
you the code for the private methods first then talk you through how and why the public friend
functions are used. Listing 21-10 contains the code for the RegisterEvent method.

Listing 21-10. EventManager::RegisterEvent

bool EventManager::RegisterEvent(EventID eventId)
{
 bool added = false;

 EventMapIterator result = m_eventMap.find(eventId);
 if (result == m_eventMap.end())
 {
 Event* pNewEvent = new Event(eventId);

 if (pNewEvent)
 {
 std::pair<EventID, Event*> newEvent(eventId, pNewEvent);
 auto addedIter = m_eventMap.insert(newEvent);
 added = addedIter.second;
 }
 }

 assert(added);
 return added;
}

212 CHAPTER 21: Practical Template Programming

The RegisterEvent method first searched the m_eventMap variable using find to see if an Event with
the same eventID already exists. If it does not, then a new Event object is created and added to the
unordered_map. The AttachEvent and DetachEvent methods find the Event object for the specified
eventID and add or detach the supplied EventHandler object, using the code shown in Listing 21-11.

Listing 21-11. The EventManager AttachEvent and DetachEvent Methods

void EventManager::AttachEvent(EventID eventId, EventHandler& eventHandler)
{
 EventMapIterator result = m_eventMap.find(eventId);
 assert(result != m_eventMap.end());
 if (result != m_eventMap.end())
 {
 assert(result->second);
 result->second->AttachListener(eventHandler);
 }
}

void EventManager::DetachEvent(EventID eventId, EventHandler& eventHandler)
{
 EventMapIterator result = m_eventMap.find(eventId);
 assert(result != m_eventMap.end());
 if (result != m_eventMap.end())
 {
 assert(result->second);
 result->second->DetachListener(eventHandler);
 }
}

These methods are quite simple: They find the Event object for the given eventID and call the Event
class’s AttachListener or DetachListener, respectively. The SendEvent and SendEventToHandler
methods are equally simple and shown in Listing 21-12.

Listing 21-12. The EventManager SendEvent and SendEventToHandler Methods

void EventManager::SendEvent(EventID eventId)
{
 EventMapIterator result = m_eventMap.find(eventId);
 if (result != m_eventMap.end())
 {
 assert(result->second);
 if (result->second)
 {
 result->second->Send();
 }
 }
}

213CHAPTER 21: Practical Template Programming

void EventManager::SendEventToHandler(EventID eventId, EventHandler& eventHandler)
{
 EventMapIterator result = m_eventMap.find(eventId);
 if (result != m_eventMap.end())
 {
 assert(result->second);
 if (result->second)
 {
 result->second->SendToHandler(eventHandler);
 }
 }
}

The destructor for the EventManager class is also interesting. It is responsible for cleaning up
the Event objects in the unordered_map. As they were created using the new keyword, they must
be destroyed using the delete keyword (I cover this in detail in Chapter 24). The EventManager
destructor is given in Listing 21-13.

Listing 21-13. The EventManager Destructor

EventManager::~EventManager()
{
 for (EventMapIterator iter = m_eventMap.begin(); iter != m_eventMap.end(); ++iter)
 {
 Event* pEvent = iter->second;
 if (pEvent)
 {
 delete pEvent;
 iter->second = nullptr;
 }
 }

 m_eventMap.clear();
}

The destructor iterates over the m_eventMap variable, deletes each Event, and sets the second
member on the iterator to be nullptr.

Now I can show you the public friend functions that wrap the EventManager private methods.
Listing 21-14 shows the code for the SendEvent friend function.

Listing 21-14. The SendEvent friend Function

inline void SendEvent(EventID eventId)
{
 EventManager* pEventManager = EventManager::GetSingletonPtr();
 assert(pEventManager);
 if (pEventManager)
 {
 pEventManager->SendEvent(eventId);
 }
}

214 CHAPTER 21: Practical Template Programming

The point of using this friend function is to reduce the amount of code we must write each time we
would like to send an Event. If we did not have this friend function, we would need to write the six
lines it contains each time. Instead of this we can simply write

SendEvent(someEvent);

The friend function also safely checks that the Singleton EventManager class has been
created. This is useful, as there might be situations in which you might like to test without the
EventManager. The SendEvent function itself is relatively simple and calls the SendEvent private
member on the EventManager class. This is a benefit of the friend function: It can access
the private members and methods of any class it is a friend of. Using this technique you can
ensure that only the public friend functions can be used to interact with the EventManager.
Listing 21-15 shows the RegisterEvent function, which is equally straightforward.

Listing 21-15. The RegisterEvent Function

inline bool RegisterEvent(EventID eventId)
{
 bool added = false;

 EventManager* pEventManager = EventManager::GetSingletonPtr();
 assert(pEventManager);
 if (pEventManager)
 {
 added = pEventManager->RegisterEvent(eventId);
 }

 return added;
}

The other three functions interact with the EventManager in a similar way; however, they do have a
significant difference. They contain a little template metaprogramming. Listing 21-16 shows all three
remaining functions.

Listing 21-16. The SendEventToHandler, AttachEvent, and DetachEvent friend Functions

template <typename T>
inline void SendEventToHandler(EventID eventId, T* eventHandler)
{
 static_assert(std::is_base_of<EventHandler, T>::value,
 "Class provided is not derived from EventHandler");

 EventManager* pEventManager = EventManager::GetSingletonPtr();
 assert(pEventManager);
 if (pEventManager)
 {
 pEventManager->SendEventToHandler(
 eventId, *static_cast<EventHandler*>(eventHandler));
 }
}

215CHAPTER 21: Practical Template Programming

template <typename T>
inline void AttachEvent(EventID eventId, T* eventHandler)
{
 static_assert(std::is_base_of<EventHandler, T>::value,
 "Class provided is not derived from EventHandler");

 EventManager* pEventManager = EventManager::GetSingletonPtr();
 assert(pEventManager);
 if (pEventManager)
 {
 pEventManager->AttachEvent(eventId, *static_cast<EventHandler*>(eventHandler));
 }
}

template <typename T>
inline void DetachEvent(EventID eventId, T* eventHandler)
{
 static_assert(std::is_base_of<EventHandler, T>::value,
 "Class provided is not derived from EventHandler");

 EventManager* pEventManager = EventManager::GetSingletonPtr();
 assert(pEventManager);
 if (pEventManager)
 {
 pEventManager->DetachEvent(eventId, *static_cast<EventHandler*>(eventHandler));
 }
}

The important line in these three methods is the static_assert and the code it contains:

static_assert(std::is_base_of<EventHandler, T>::value, "Class provided is not derived from EventHandler");

The is_base_of keyword is actually a C++11 built-in template metaprogram. It is used to
determine at compile time if a type is derived from another. In our case we supply a type to the
templates using the typename T syntax as usual and then we pass this type T into the second
parameter of is_base_of. The template compiler will calculate if the EventHandler class is a parent
of the supplied class and set the value variable to be either true or false. Using this template
metaprogram ensures that we can never attach or detach objects that are not derived from
EventHandler by combining it with static_assert, which will throw an error when we are building
our game.

The EventManager class is complete, but before you can use it I’m going to show you how you can
write your own template metaprogram to calculate unique event IDs.

216 CHAPTER 21: Practical Template Programming

Calculating SDBM Hash Values Using a Template
Metaprogram
The SDBM hash algorithm is used to turn a stream of bytes into an integer representation. The
algorithm has a very low chance of producing the same value for two different sets of data, which
makes it ideal for our purposes. It’s also really easy to implement in C++, as you can see in
Listing 21-17.

Listing 21-17. The SDBM Hash Function

inline unsigned int SDBMHash(const std::string& key)
{
 unsigned int result = 0;

 for (unsigned int i = 0; i < key.length(); ++i)
 {
 int c = key[i];
 result = c + (result << 6) + (result << 16) - result;
 }

 return result;
}

The algorithm iterates over the data, in this case a string, and uses the value of each character in an
additive algorithm that manipulates the current result using bit shifts and subtractions. The problem
with this function as implemented is that it will execute at runtime. This might be desired for some of
our data; however, for any constexpr values that we know of at compile time it would be much better
to preprocess the hashes. This makes the function a perfect target for template metaprogramming.
Listing 21-18 shows the code that achieves this.

Listing 21-18. The SDBMCalculator Template Metaprogram

template <int stringLength>
struct SDBMCalculator
{
 static inline int Calculate(const char* const stringToHash, int& value)
 {
 int character =
 SDBMCalculator<stringLength - 1>::Calculate(stringToHash, value);
 value = character + (value << 6) + (value << 16) - value;
 return stringToHash[stringLength - 1];
 }

 static inline int CalculateValue(const char* const stringToHash)
 {
 int value = 0;
 int character = SDBMCalculator<stringLength>::Calculate(stringToHash, value);
 value = character + (value << 6) + (value << 16) - value;
 return value;
 }
};

217CHAPTER 21: Practical Template Programming

template <>
struct SDBMCalculator<1>
{
 static inline int Calculate(const char* const stringToHash, int& value)
 {
 return stringToHash[0];
 }
};

This code is going to be a little tricky for new C++ programmers to get their head around. Listing 21-19
shows how this code would be used in your code.

Listing 21-19. Using the SDBMCalculator Template Metaprogram

constexpr int QuitEvent = SDBMCalculator<9>::CalculateValue("QuitEvent");

The template metaprogram is passed the length of the string as its template parameter and the string
to hash as a function parameter. The static CalculateValue function is the function that is called.
This function then calls the static Calculate method in the SDBMCalculator struct. You can see
that the Calculate method calls itself. This is the very nature of template metaprogramming: The
programs generally consist of recursive function calls. The Calculate method calls Calculate on an
SDBMCalculator template, which is passed stringLength - 1 as its parameter.

Our QuitEvent string has a length of 9 so the template metaprogram will recurse down until Calculate
can hit the terminating condition. You can see the terminating condition in the specialized version
of the struct. This struct doesn’t have any template parameters, but its Calculate function has a
hard-coded parameter of 1. This specialized version of the function does not call any other version of
Calculate so the calls begin to unwind at this point. If we were to print out the character and value
after each step, the output would be:

Q
81

u
5313636

i
676857093

t
-223462225

E
-175116458

v
1572988576

e
-111689275

218 CHAPTER 21: Practical Template Programming

n
509456361

t
687295179

This works because the stringLength passed to each SDBMCalculator template is used to index into
the string with 1 subtracted. Then as we start with the length of the string calling the SDBMCalculate
method recursively down until we hit 1, we access the characters in the string in order.

Template metaprogramming can be hard to understand when you’re just learning C++. Don’t worry
about that too much for now. Come back to this code in the future when you’re ready to tackle some
more template metaprogramming.

We’ll update our QuitOption to use messages now that we can create a unique ID for the QuitEvent.

Using an Event to Quit the Game
Using an event to quit the game is relatively straightforward. To begin we’ll update the
QuitOption::Evaluate method to send the QuitEvent. Listing 21-20 shows how this is done.

Listing 21-20. Updating QuitOption::Evaluate

namespace
{
 constexpr int QuitEvent = SDBMCalculator< >::CalculateValue("QuitEvent");
}

void QuitOption::Evaluate(Player& player)
{
 SendEvent(QuitEvent);
}

You can finally see the benefit of using the friend functions with the EventManager, as sending the
QuitEvent is just a single line of code!

The main change required is to inherit the Game class from EventHandler as shown in Listing 21-21.

Listing 21-21. Updating the Game Class

class Game
 : public EventHandler
{
private:
 static const unsigned int m_numberOfRooms = 4;
 using Rooms = std::array<Room, m_numberOfRooms>;
 Rooms m_rooms;

 Player m_player;

219CHAPTER 21: Practical Template Programming

 AttackEnemyOption m_attackDragonOption;
 AttackEnemyOption m_attackOrcOption;
 MoveOption m_moveNorthOption;
 MoveOption m_moveEastOption;
 MoveOption m_moveSouthOption;
 MoveOption m_moveWestOption;
 OpenChestOption m_openSwordChest;
 QuitOption m_quitOption;

 Sword m_sword;
 Chest m_swordChest;

 Enemy m_dragon;
 Enemy m_orc;

 bool m_playerQuit{ false };

 void InitializeRooms();
 void WelcomePlayer();
 void GivePlayerOptions() const;
 void GetPlayerInput(std::stringstream& playerInput) const;
 void EvaluateInput(std::stringstream& playerInput);
public:
 Game();

 void RunGame();

 virtual void HandleEvent(const Event* pEvent);
};

The three bold lines are the only changes to the class definition. It is now derived from the
EventHandler interface and overrides the HandleEvent method. There is also a bool, m_playerQuit,
used to store whether the player has chosen to quit, which is initialized to false.

Listing 21-22 shows the changes that are needed in the Game::RunGame method.

Listing 21-22. Updating Game::RunGame

void Game::RunGame()
{
 new EventManager();

 RegisterEvent(QuitEvent);
 AttachEvent(QuitEvent, this);

 InitializeRooms();

 WelcomePlayer();

220 CHAPTER 21: Practical Template Programming

 bool playerWon = false;
 while (m_playerQuit == false && playerWon == false)
 {
 GivePlayerOptions();

 stringstream playerInputStream;
 GetPlayerInput(playerInputStream);

 EvaluateInput(playerInputStream);

 playerWon = m_dragon.IsAlive() == false && m_orc.IsAlive() == false;
 }

 if (playerWon == true)
 {
 cout << "Congratulations, you rid the dungeon of monsters!" << endl;
 cout << "Type goodbye to end" << endl;
 std::string input;
 cin >>input;
 }

 DetachEvent(QuitEvent, this);
 delete EventManager::GetSingletonPtr();
}

The RunGame method now has code to create an EventManager, to register the QuitEvent, and to
attach itself as a listener for that event. The last two lines also detach from the event and delete the
EventManager. The other main change is that EvaluateInput is no longer required to return the chosen
option. We now catch the event in the HandleEvent method, which you can see in Listing 21-23.

Listing 21-23. The Game::HandleEvent Method

void Game::HandleEvent(const Event* pEvent)
{
 if (pEvent->GetID() == QuitEvent)
 {
 m_playerQuit = true;
 }
}

Handling events is really easy. You just need to check the ID of the Event and carry out the required
action, which in this case is setting the m_playerQuit variable to true. If we had attached to more
events we could have used else if statements to check against more EventIDs.

221CHAPTER 21: Practical Template Programming

Summary
This chapter has introduced you to some practical examples of template programming. You’ve seen
how to use templates to create classes with variables with types that are determined at compile
time. You’ve also seen how to create functions and methods that use templates.

Using standard templates like this allows you to write generic class implementations that can be
specialized with specific types at a later point in time. This is really useful to reduce the need to
copy and paste code when you might have been tempted to re-create a class to store a different
type of object.

This chapter also introduced the topic of template metaprogramming. This is a complex and useful
piece of C++ functionality but isn’t used in a lot of code. It can be hard for many programmers to
understand and is seen as a relatively advanced topic. You saw in this chapter that C++ has some
built-in template metaprograms such as is_base_of and you also saw how you can create your own
template metaprograms. These programs are recursive in nature and can provide a good opportunity
to optimize your code by shifting calculations from runtime to compile time.

The next part of this book covers more general game programming topics, as this part has drawn
the theoretical programming in C++ to a close. The next part covers design patterns, I/O streams,
memory management, concurrent programming, and cross-platform game development.

Part 5
C++ Game Programming

The previous parts of this book have mostly covered the theory of C++ programming with practical
examples. This part of the book changes the focus to cover more general game development
problems and how you can use the C++ features you’ve seen in action to solve those problems.

This part of the book introduces concepts from game development such as memory management,
design patterns, IO, and concurrent programming. Hopefully these practical game development
examples will encourage you to continue your journey and enter the world of professional game
development.

225

Chapter 22
Managing Memory for Game
Developers

This chapter is the first in the last part of this book, which will cover general game development
topics that are important for new programmers to attempt to grasp. The first of these chapters is
going to introduce you to the C++ memory model and the implications of using different types
of memory.

Memory management is a very important topic in game development. All games go through a period
in development where memory is running low and the art team would like some more for extra
textures or meshes. The way memory is laid out is also vitally important to the performance of your
game. Understanding when to use stack memory, when to use heap memory, and the performance
implications of each are important factors in to being able to optimize your programs for cache
coherency and data locality. Before you can understand how to approach those problems you will
need to understand the different places where C++ programs can store their data.

There are three places in C++ where you can store your memory: There is a static space for storing
static variables, the stack for storing local variables and function parameters, and the heap (or free
store) from where you can dynamically allocate memory for different purposes.

Static Memory
Static memory is handled by the compiler and there isn’t much to say about it. When you build your
program using the compiler, it sets aside a chunk of memory large enough to store all of the static
and global variables defined in your program. This includes strings that are in your source code,
which are included in an area of static memory known as a string table.

There’s not much else to say regarding static memory, so we’ll move on to discussing the stack.

226 CHAPTER 22: Managing Memory for Game Developers

The C++ Stack Memory Model
The stack is more difficult to understand. Every time you call a function, the compiler generates code
behind the scenes to allocate memory for the parameters and local variables for the function being
called. Listing 22-1 shows some simple code that we then use to explain how the stack operates.

Listing 22-1. A Simple C++ Program

void function2(int variable1)
{
 int variable2{ variable1 };
}

void function1(int variable)
{
 function2(variable);
}

int _tmain(int argc, _TCHAR* argv[])
{
 int variable{ 0 };
 function1(variable);

 return 0;
}

The program in Listing 22-1 is very simple: It begins with _tmain, which calls function1 which calls
function2. Figure 22-1 illustrates what the stack would look like for the main function.

_tmain: variable= 0

Figure 22-1. The stack for _tmain

function1.variable = _tmain.variable

_tmain.variable = 0

Figure 22-2. The added stack frame for function1

The stack space for main is very simple. It has a single storage space for the local variable named
variable. These stack spaces for individual functions are known as stack frames. When function1 is
called, a new stack frame is created on top of the existing frame for _tmain. Figure 22-2 shows this
in action.

227CHAPTER 22: Managing Memory for Game Developers

When the compiler creates the code to push the stack frame for function1 onto the stack it also
ensures that the parameter variable is initialized with the value stored in variable from _tmain. This
is how parameters are passed by value. Finally, Figure 22-3 shows the last stack frame for function2
added to the stack.

_tmain.variable = 0

function1.variable = _tmain.variable

function2.variable1 = function1.variable

function2.variable2 = function2.variable1

Figure 22-3. The complete stack frame

The last stack frame is a little more complicated but you should be able to see how the literal
value 0 in _tmain has been passed all the way along the stack until it is eventually used to initialize
variable2 in function2.

The remaining stack operations are relatively simple. When function2 returns the stack frame
generated for that call is popped from the stack. This leaves us back at the state presented in
Figure 22-2, and when function1 returns we are back at Figure 22-1. That’s all you need to know to
understand the basic functionality of a stack in C++.

Unfortunately things aren’t actually this simple. The stack in C++ is a very complicated thing to fully
understand and requires a bit of assembly programming knowledge. That topic is outside the scope
of a book aimed at beginners, but it’s well worth pursuing once you have a grasp of the basics. The
article “Programmers Disassemble” in the September 2012 edition of Game Developer Magazine is
an excellent introductory article on the operation of the x86 stack and well worth a read, available
free from http://www.gdcvault.com/gdmag.

This chapter hasn’t covered the ins and outs of how references and pointers are handled on the
stack or how return values are implemented. Once you begin to think about this, you might begin to
understand how complicated it can be. You might also be wondering why it’s useful to understand
how the stack works. The answer lies in trying to work out why your game has crashed once it is in
a live environment. It’s relatively easy to work out why a game crashes while you are developing, as
you can simply reproduce the crash in a debugger. On games that have launched, you might receive
a file known as a crash dump, which does not have any debugging information and simply has the
current state of the stack to go on. At that point you need to look out for the symbol files from the
build that let you work out the memory addresses of the functions that have been called, and you
can then manually work out which functions have been called from the addresses in the stack and
also try to figure out which function passed along an invalid memory address of value on the stack.

This is complicated and time-consuming work, but it does come up every so often in professional
game development. Services such as Crashlytics for iOS and Android or BugSentry for Windows PC
programs can upload crash dumps and provide a call stack for you on a web service to help alleviate
a lot of the pain from trying to manually work out what is going wrong with your game.

The next big topic in memory management in C++ is the heap.

http://www.gdcvault.com/gdmag

228 CHAPTER 22: Managing Memory for Game Developers

Working with Heap Memory
So far in this book I have avoided using dynamic memory as much as possible because manually
managing dynamically allocated memory is sometimes challenging, slower than using stack memory,
and also very often unnecessary. Managing dynamic memory will become more important for you
once you advance to writing games that load data from external files, as it’s often impossible to
tell how much memory you’ll need at compile time. The very first game I worked on prevented
programmers from allocating dynamic memory altogether. We worked around this by allocating
arrays of objects and reusing memory in these arrays when we ran out. This is one way to avoid the
performance cost of allocating memory.

Allocating memory is an expensive operation because it has to be done in a manner that prevents
memory corruption where possible. This is especially true on modern multiprocessor CPU
architectures where multiple CPUs could be trying to allocate the same memory at the same time.
This chapter, like the last, is not intended to be an exhaustive resource on the topic of memory
allocation techniques for game development, but instead introduces the concept of managing
heap memory.

You saw the use of the new and delete operators in Chapter 21 when creating the Singleton
EventManager object. Listing 22-2 shows a simple program using the new and delete operators.

Listing 22-2. Allocating Memory for a class Dynamically

class Simple
{
private:
 int variable{ 0 };

public:
 Simple()
 {
 std::cout << "Constructed" << std::endl;
 }

 ~Simple()
 {
 std::cout << "Destroyed" << std::endl;
 }
};

int _tmain(int argc, _TCHAR* argv[])
{
 Simple* pSimple = new Simple();
 delete pSimple;
 pSimple = nullptr;

 return 0;
}

229CHAPTER 22: Managing Memory for Game Developers

This simple program shows new and delete in action. When you decide to allocate memory in C++
using the new operator, the amount of memory required is calculated automatically. The new operator
in Listing 22-2 will reserve enough memory to store the Simple object along with its member
variables. If you were to add more members to Simple or inherit it from another class, the program
would still operate and enough memory would be reserved for the expanded class definition.

The new operator returns a pointer to the memory that you have requested to allocate. Once you
have a pointer to memory that has been dynamically allocated, you are responsible for ensuring that
the memory is also freed appropriately. You can see that this is done by passing the pointer to the
delete operator. The delete operator is responsible for telling the operating system that the memory
we reserved is no longer in use and can be used for other purposes. A last piece of housekeeping
is then carried out when the pointer is set to store nullptr. By doing this we help prevent our code
from assuming the pointer is still valid and that we can read and write from the memory as though
it is still a Simple object. If your programs are crashing in seemingly random and inexplicable ways,
accessing freed memory from pointers that have not been cleared is a common suspect.

The standard new and delete operators are used when allocating single objects; however, there
are also specific new and delete operators that should be used when allocating and freeing arrays.
These are shown in Listing 22-3.

Listing 22-3. Array new and delete

int* pIntArray = new int[16];
delete[] pIntArray;

This call to new will allocate 64 bytes of memory to store 16 int variables and return a pointer to the
address of the first element. Any memory you allocate using the new[] operator should be deleted
using the delete[] operator, because using the standard delete can result in not all of the memory
you requested being freed.

Note Not freeing memory and not freeing memory properly is known as a memory leak. Leaking memory
in this fashion is bad, as your program will eventually run out of free memory and crash because it eventually
won’t have any available to fulfill new allocations.

Hopefully you can see from this code why it’s beneficial to use the available STL classes to avoid
managing memory yourself. If you do find yourself in a position of having to manually allocate
memory, the STL also provides the unique_ptr and shared_ptr templates to help delete the memory
when appropriate. Listing 22-4 updates the code from Listing 22-2 and Listing 22-3 to use unique_ptr
and shared_ptr objects.

230 CHAPTER 22: Managing Memory for Game Developers

Listing 22-4. Using unique_ptr and shared_ptr

#include <memory>

class Simple
{
private:
 int variable{ 0 };

public:
 Simple()
 {
 std::cout << "Constructed" << std::endl;
 }

 ~Simple()
 {
 std::cout << "Destroyed" << std::endl;
 }
};

int _tmain(int argc, _TCHAR* argv[])
{
 using UniqueSimplePtr = std::unique_ptr<Simple>;
 UniqueSimplePtr pSimple1{ new Simple() };
 std::cout << pSimple1.get() << std::endl;

 UniqueSimplePtr pSimple2;
 pSimple2.swap(pSimple1);
 std::cout << pSimple1.get() << std::endl;
 std::cout << pSimple2.get() << std::endl;

 using IntSharedPtr = std::shared_ptr<int>;
 IntSharedPtr pIntArray1{ new int[16] };
 IntSharedPtr pIntArray2{ pIntArray1 };

 std::cout << std::endl << pIntArray1.get() << std::endl;
 std::cout << pIntArray2.get() << std::endl;

 return 0;
}

As the name suggests, unique_ptr is used to ensure that you only have a single reference to
allocated memory at a time. Listing 22-3 shows this in action. pSimple1 is assigned a new Simple
pointer and pSimple2 is then created as empty. You can try initializing pSimple2 by passing it
pSimple1 or using an assignment operator and your code will fail to compile. The only way to pass
the pointer from one unique_ptr instance to another is using the swap method. The swap method
moves the stored address and sets the pointer in the original unique_ptr instance to be nullptr.
The first three lines of output in Figure 22-4 show the addresses stored in the unique_ptr instances.

231CHAPTER 22: Managing Memory for Game Developers

This output shows that the constructor from the Simple class is called. The pointer stored in
pSimple1 is then printed out before the call to swap is made. After the call to swap pSimple1 stores a
nullptr that is output as 00000000 and pSimple2 stores the address originally held there. The very
final line of the output shows that the destructor for the Simple object has also been called. This is
another benefit we receive from using unique_ptr and shared_ptr: Once the objects go out of scope
then the memory is freed automatically.

You can see from the two lines of output immediately before the line containing Destroyed that the
two shared_ptr instances can store a reference to the same pointer. Only a single unique_ptr can
reference a single memory location, but multiple shared_ptr instances can reference an address.
The difference manifests itself in the timing of the delete call on the memory store. A unique_ptr will
delete the memory it references as soon as it goes out of scope. It can do this because a unique_ptr
can be sure that it is the only object referencing that memory. A shared_ptr, on the other hand, does
not delete the memory when it goes out of scope; instead the memory is deleted when all of the
shared_ptr objects pointing at that address are no longer being used.

This does require a bit of discipline, as if you were to access the pointer using the get method on
these objects then you could still be in a situation where you are referencing the memory after it has
been deleted. If you are using unique_ptr or shared_ptr make sure that you are only passing the
pointer around using the supplied swap and other accessor methods supplied by the templates and
not manually using the get method.

Writing a Basic Single Threaded Memory Allocator
This section is going to show you how to overload the new and delete operators to create a very
basic memory management system. This system is going to have a lot of drawbacks: It will store a
finite amount of memory in a static array, it will suffer from memory fragmentation issues, and it will
also leak any freed memory. This section is simply an introduction to some of the processes that
occur when allocating memory, and it highlights some of the issues that make writing a fully featured
memory manager a difficult task.

Figure 22-4. The output from Listing 22-4

232 CHAPTER 22: Managing Memory for Game Developers

Listing 22-5 begins by showing you a structure that will be used as a header for our memory
allocations.

Listing 22-5. The MemoryAllocationHeader struct

struct MemoryAllocationHeader
{
 void* pStart{ nullptr };
 void* pNextFree{ nullptr };
 size_t size{ 0 };
};

This struct stores a pointer to the memory returned to the user in the pStart void* variable,
a pointer to the next free block of memory in the pNextFree pointer, and the size of the allocated
memory in the size variable.

Our memory manager isn’t going to use dynamic memory to allocate memory to the user’s program.
Instead it is going to return an address from inside a static array. This array is created in an unnamed
namespace shown in Listing 22-6.

Listing 22-6. The Unnamed namespace from Chapter22-MemoryAllocator.cpp

namespace
{
 const unsigned int ONE_MEGABYTE = 1024 * 1024 * 1024;
 char pMemoryHeap[ONE_MEGABYTE];
 const size_t SIZE_OF_MEMORY_HEADER = sizeof(MemoryAllocationHeader);
}

Here you can see that we allocate a static array of 1 MB in size. We know that this is 1 MB as the
char type is one byte in size on most platforms and we are allocating an array that is 1,024 bytes
times 1,024 KB in size for a total of 1,048,576 bytes. The unnamed namespace also has a constant
storing the size of our MemoryAllocationHeader object, calculated using the sizeof function. This
size is 12 bytes: 4 bytes for the pStart pointer, 4 bytes for the pNextFree pointer, and 4 bytes for the
size variable.

The next important piece for code overloads the new operator. The new and delete functions that
you have seen so far are just functions that can be hidden in the same way you can hide any other
function with your own implementation. Listing 22-7 shows our new function.

Listing 22-7. The Overloaded new Function

void* operator new(size_t size)
{
 MemoryAllocationHeader* pHeader =
 reinterpret_cast<MemoryAllocationHeader*>(pMemoryHeap);
 while (pHeader != nullptr && pHeader->pNextFree != nullptr)
 {
 pHeader = reinterpret_cast<MemoryAllocationHeader*>(pHeader->pNextFree);
 }

233CHAPTER 22: Managing Memory for Game Developers

 pHeader->pStart = reinterpret_cast<char*>(pHeader)+SIZE_OF_MEMORY_HEADER;
 pHeader->pNextFree = reinterpret_cast<char*>(pHeader->pStart) + size;
 pHeader->size = size;

 return pHeader->pStart;
}

The new operator is passed the size of the allocation we would like to reserve and returns a void*
to the beginning of the block of memory to which the user can write. The function begins by looping
over the existing memory allocations until it finds the first allocated block with a nullptr in the
pNextFree variable.

Once it finds a free block of memory, the pStart pointer is initialized to be the address of the free
block plus the size of the memory allocation header. This ensures that every allocation also includes
space for the pStart and pNextFree pointer and the size of the allocation. The new function ends by
returning the value stored in pHeader->pStart ensuring that the user doesn’t know anything about
the MemoryAllocationHeader struct. They simply receive a pointer to a block of memory of the size
they requested.

Once we have allocated memory, we can also free that memory. The overloaded delete operator
clears the allocations from our heap in Listing 22-8.

Listing 22-8. The Overloaded delete Function

void operator delete(void* pMemory)
{
 MemoryAllocationHeader* pLast = nullptr;
 MemoryAllocationHeader* pCurrent =
 reinterpret_cast<MemoryAllocationHeader*>(pMemoryHeap);
 while (pCurrent != nullptr && pCurrent->pStart != pMemory)
 {
 pLast = pCurrent;
 pCurrent = reinterpret_cast<MemoryAllocationHeader*>(pCurrent->pNextFree);
 }

 if (pLast != nullptr)
 {
 pLast->pNextFree = reinterpret_cast<char*>(pCurrent->pNextFree);
 }

 pCurrent->pStart = nullptr;
 pCurrent->pNextFree = nullptr;
 pCurrent->size = 0;
}

This operator traverses the heap using two pointers, pLast and pCurrent. The heap is traversed until
the pointer passed in pMemory is matched against an allocated memory block stored in the pStart
pointer in a MemoryAllocationHeader struct. Once we find the matching allocation we set the
pNextFree pointer to the address stored in pCurrent->pNextFree. This is the point at which we create
two problems. We have fragmented our memory by freeing memory potentially between two other
blocks of allocated memory, meaning that only an allocation of the same size or smaller can be filled

234 CHAPTER 22: Managing Memory for Game Developers

from this block. In this example, the fragmentation is redundant because we have not implemented
any way of tracking our free blocks of memory. One option would be to use a list to store all of
the free blocks rather than storing them in the memory allocation headers themselves. Writing a
full-featured memory allocator is a complicated task that could fill an entire book.

Note You can see that we have a valid case for using reinterpret_cast in our new and delete
operators. There aren’t many valid cases for this type of cast. In this case we want to represent the same
memory address using a different type and therefore the reinterpret_cast is the correct option.

Listing 22-9 contains the last memory function for this section and it is used to print out the contents
of all active MemoryAllocationHeader objects in our heap.

Listing 22-9. The PrintAllocations Function

void PrintAllocations()
{
 MemoryAllocationHeader* pHeader =
 reinterpret_cast<MemoryAllocationHeader*>(pMemoryHeap);

 while (pHeader != nullptr)
 {
 std::cout << pHeader << std::endl;
 std::cout << pHeader->pStart << std::endl;
 std::cout << pHeader->pNextFree << std::endl;
 std::cout << pHeader->size << std::endl;

 pHeader = reinterpret_cast<MemoryAllocationHeader*>(pHeader->pNextFree);

 std::cout << std::endl << std::endl;
 }
}

This function loops over all of the valid MemoryAllocationHeader pointers in our head and prints
their pStart, pNextFree, and size variables. Listing 22-10 shows an example main function that uses
these functions.

Listing 22-10. Using the Memory Heap

int _tmain(int argc, _TCHAR* argv[])
{
 memset(pMemoryHeap, 0, SIZE_OF_MEMORY_HEADER);

 PrintAllocations();

 Simple* pSimple1 = new Simple();

235CHAPTER 22: Managing Memory for Game Developers

 PrintAllocations();

 Simple* pSimple2 = new Simple();

 PrintAllocations();

 Simple* pSimple3 = new Simple();

 PrintAllocations();

 delete pSimple2;
 pSimple2 = nullptr;

 PrintAllocations();

 pSimple2 = new Simple();

 PrintAllocations();

 delete pSimple2;
 pSimple2 = nullptr;

 PrintAllocations();

 delete pSimple3;
 pSimple3 = nullptr;

 PrintAllocations();

 delete pSimple1;
 pSimple1 = nullptr;

 PrintAllocations();

 return 0;
}

This is a very simple function. It begins by using the memset function to initialize the first 12 bytes of
the memory heap. memset works by taking an address, then a value to use, then the number of bytes
to set. Each byte is then set to the value of the byte passed as the second parameter. In our case we
are setting the first 12 bytes of pMemoryHeap to 0.

We then have our first call to PrintAllocations and the output from my run is the following.

0x00870320
0x00000000
0x00000000
0

236 CHAPTER 22: Managing Memory for Game Developers

The first line is the address of the MemoryAllocationHeader struct, which for our first call is also the
address stored in pMemoryHeap. The next line is the value stored in pStart, then pNextFree, then size.
These are all 0 as we have not yet made any allocations. The memory addresses are being printed as
32-bit hexadecimal values.

Our first Simple object is then allocated. It turns out that because the Simple class only contains
a single int variable, we only need to allocate 4 bytes to store it. The output from the second
PrintAllocations call confirms this.

Constructed
0x00870320
0x0087032C
0x00870330
4

0x00870330
0x00000000
0x00000000
0

We can see the Constructed text, which was printed in the constructor for the Simple class and then
that our first MemoryAllocationHeader struct has been filled in. The address of the first allocation
remains the same, as it is the beginning of the heap. The pStart variable stores the address from
12 bytes after the beginning as we have left enough space to store the header. The pNextFree
variable stores the address after adding the 4 bytes required to store the pSimple variable, and the
size variable stores the 4 from the size passed to new. We then have the printout of the first free
block, starting at 00870330, which is conveniently 16 bytes after the first.

The program then allocates another two Simple objects to produce the following output.

Constructed
0x00870320
0x0087032C
0x00870330
4

0x00870330
0x0087033C
0x00870340
4

0x00870340
0x0087034C
0x00870350
4

0x00870350
0x00000000
0x00000000
0

237CHAPTER 22: Managing Memory for Game Developers

In this output you can see the three allocated 4-byte objects and each of the start and next
addresses in each allocation header. The output is updated again after deleting the second object.

Destroyed
0x00870320
0x0087032C
0x00870340
4

0x00870340
0x0087034C
0x00870350
4

0x00870350
0x00000000
0x00000000
0

The first allocated object now points to the third and the second allocated object has been removed
from the heap. A fourth object is allocated just to see what would happen.

Constructed
0x00870320
0x0087032C
0x00870340
4

0x00870340
0x0087034C
0x00870350
4

0x00870350
0x0087035C
0x00870360
4

0x00870360
0x00000000
0x00000000
0

At this point pSimple1 is stored at address 0x0087032C, pSimple2 is at 0x0087035C, and pSimple3 is at
0x0087034C. The program then ends by deleting each allocated object one by one.

Despite the problems that would prevent you from using this memory manager in production code,
it does serve as a useful example of how a heap operates. Some method of tracking allocations is
used so that the memory management system can tell which memory is in use and which memory is
free to be allocated.

238 CHAPTER 22: Managing Memory for Game Developers

Summary
This chapter has given you a very simple introduction to the C++ memory management model.
You’ve seen that your programs will use static memory, stack memory, and heap memory to store
the objects and data to be used by your games.

Static memory and stack memory are handled automatically by the compiler, and you’ve already
been using these types of memory throughout this book without having to do anything in particular.
Heap memory has higher management overhead, as it requires that you also free the memory
once you have finished using it. You’ve seen that the STL provides the unique_ptr and shared_ptr
templates to help automatically manage dynamic memory allocations. Finally, you were introduced
to a simple memory manager. This memory manager would be unsuitable for production code, but
it does provide you with an overview of how memory is allocated from a heap and how you can
overload the global new and delete methods to hook in your own memory manager.

Extending this memory manager to be fully featured would involve adding support for reallocating
freed blocks, defragmenting contiguous free blocks in the heap, and eventually ensuring the
allocation system is thread safe. Modern games also tend to create multiple heaps to serve different
purposes. It’s not uncommon for games to create memory allocators to handle mesh data, textures,
audio, and online systems. There could also be thread-safe allocators and allocators that are not
thread safe that can be used in situations where memory accesses will not be made by more than
one thread. Complex memory management systems also have small block allocators to handle
memory requests below a certain size to help alleviate memory fragmentation, which could be
caused by frequent small allocations made by the STL for string storage, and so on. As you can see,
the topic of memory management in modern games is a far more complex problem than can be
covered in this chapter alone.

239

Chapter 23
Useful Design Patterns for Game
Development

Design patters are like blueprints for your code. They are systems you can use to complete tasks
that are very similar in nature that arise while you are developing games. Just as STL data structures
are reusable collections that can be used when needed to solve specific problems, design patterns
can be utilized to solve logical problems in your code.

There are benefits to using design patterns in your game projects. First, they allow you to use a
common language that many other developers will understand. This helps reduce the length of time
it takes new programmers to get up to speed when helping on your projects because they might
already be familiar with the concepts you have used when building your game’s infrastructure.

Design patterns can also be implemented using common code. This means that you can reuse this
code for a given pattern. Code reuse reduces the number of lines of code in use in your game, which
leads to a more stable and more easily maintainable code base, both of which mean you can write
better games more quickly.

You’ve already seen at least one design patter used in this book already. Chapter 21 showed how
you could use a template class to create a Singleton object. You can think of a Singleton as a
reusable logical object that provides you with the ability to ensure that only a single instance of a
given class is created and accessed throughout your game code. This chapter introduces you to
three more patterns: the Factory, the Observer and the Visitor.

Using the Factory Pattern in Games
The factory pattern is a useful way to abstract out the creation of dynamic objects at runtime.
A factory for our purposes is simply a function that takes a type of object as a parameter and returns
a pointer to a new object instance. The returned object is created on the heap and therefore it is the
caller’s responsibility to ensure that the object is deleted appropriately. Listing 23-1 shows a factory
method that I have created to instantiate the different types of Option objects used in Text Adventure.

240 CHAPTER 23: Useful Design Patterns for Game Development

Listing 23-1. A Factory for Creating Option Instances

Option* CreateOption(PlayerOptions optionType)
{
 Option* pOption = nullptr;

 switch (optionType)
 {
 case PlayerOptions::GoNorth:
 pOption = new MoveOption(
 Room::JoiningDirections::North,
 PlayerOptions::GoNorth, "Go North");
 break;
 case PlayerOptions::GoEast:
 pOption = new MoveOption(
 Room::JoiningDirections::East,
 PlayerOptions::GoEast, "Go East");
 break;
 case PlayerOptions::GoSouth:
 pOption = new MoveOption(
 Room::JoiningDirections::South,
 PlayerOptions::GoSouth,
 "Go South");
 break;
 case PlayerOptions::GoWest:
 pOption = new MoveOption(
 Room::JoiningDirections::West,
 PlayerOptions::GoWest,
 "Go West");
 break;
 case PlayerOptions::OpenChest:
 pOption = new OpenChestOption("Open Chest");
 break;
 case PlayerOptions::AttackEnemy:
 pOption = new AttackEnemyOption();
 break;
 case PlayerOptions::Quit:
 pOption = new QuitOption("Quit");
 break;
 case PlayerOptions::None:
 break;
 default:
 break;
 }

 return pOption;
}

As you can see, the CreateOption factory function takes a PlayerOption enum as a parameter and
then returns an appropriately constructed Option. This relies on polymorphism to return a base
pointer for the object. The knock-on effect of this use of polymorphism is that any factory function

241CHAPTER 23: Useful Design Patterns for Game Development

can only create objects that derive from its return type. Many game engines manage this by having
all creatable objects derive from a common base class. For our purposes, in the context of learning,
it’s better to cover a couple of examples. Listing 23-2 shows a factory for the Enemy derived classes.

Listing 23-2. The Enemy Factory

Enemy* CreateEnemy(EnemyType enemyType)
{
 Enemy* pEnemy = nullptr;
 switch (enemyType)
 {
 case EnemyType::Dragon:
 pEnemy = new Enemy(EnemyType::Dragon);
 break;
 case EnemyType::Orc:
 pEnemy = new Enemy(EnemyType::Orc);
 break;
 default:
 assert(false); // Unknown enemy type
 break;
 }
 return pEnemy;
}

If you were to create new inherited classes for these enemy types at some point in the future, you
would only be required to update the factory function to add these new classes to your game. This is
a handy feature of using factory methods to take advantage of polymorphic base classes.

So far all of the Option and Enemy objects in Text Adventure have been member variables within the
Game class. This doesn’t work too well with factory objects because the factory will create the objects
on the heap, not using stack memory; therefore the Game class must be updated to store pointers to
the Option and Enemy instances. You can see how this is done in Listing 23-3.

Listing 23-3. Updating Game to Store Pointers to Option and Enemy Instances

class Game
 : public EventHandler
{
private:
 static const unsigned int m_numberOfRooms = 4;
 using Rooms = std::array<Room::Pointer, m_numberOfRooms>;
 Rooms m_rooms;

 Player m_player;

 Option::Pointer m_attackDragonOption;
 Option::Pointer m_attackOrcOption;
 Option::Pointer m_moveNorthOption;
 Option::Pointer m_moveEastOption;
 Option::Pointer m_moveSouthOption;
 Option::Pointer m_moveWestOption;
 Option::Pointer m_openSwordChest;
 Option::Pointer m_quitOption;

242 CHAPTER 23: Useful Design Patterns for Game Development

 Sword m_sword;
 Chest m_swordChest;

 using Enemies = std::vector<Enemy::Pointer>;
 Enemies m_enemies;

 bool m_playerQuit{ false };

 void InitializeRooms();
 void WelcomePlayer();
 void GivePlayerOptions() const;
 void GetPlayerInput(std::stringstream& playerInput) const;
 void EvaluateInput(std::stringstream& playerInput);
public:
 Game();

 void RunGame();

 virtual void HandleEvent(const Event* pEvent);
};

Game now references the Option and Enemy instances via a type alias that is defined in the respective
Option and Enemy class definitions. These aliases are shown in Listing 23-4.

Listing 23-4. The Option::Pointer and Enemy::Pointer Type Aliases

class Option
{
public:
 using Pointer = std::shared_ptr<Option>;

protected:
 PlayerOptions m_chosenOption;
 std::string m_outputText;

public:
 Option(PlayerOptions chosenOption, const std::string& outputText)
 : m_chosenOption(chosenOption)
 , m_outputText(outputText)
 {

 }

 const std::string& GetOutputText() const
 {
 return m_outputText;
 }

 virtual void Evaluate(Player& player) = 0;
};

243CHAPTER 23: Useful Design Patterns for Game Development

class Enemy
 : public Entity
{
public:
 using Pointer = std::shared_ptr<Enemy>;
private:
 EnemyType m_type;
 bool m_alive{ true };

public:
 Enemy(EnemyType type)
 : m_type{ type }
 {

 }

 EnemyType GetType() const
 {
 return m_type;
 }

 bool IsAlive() const
 {
 return m_alive;
 }

 void Kill()
 {
 m_alive = false;
 }
};

The Pointer aliases in both classes have been defined using the shared_ptr template. This
means that once the instances have been created by the factories you will not need to worry about
where the objects should be deleted. The shared_ptr will automatically delete the instance as soon
as you no longer hold a shared_ptr reference.

Updating the Game class constructor is the next important change when using the two factory
functions. This constructor is shown in Listing 23-5.

Listing 23-5. The Updated Game Constructor

Game::Game()
 : m_attackDragonOption{ CreateOption(PlayerOptions::AttackEnemy) }
 , m_attackOrcOption{ CreateOption(PlayerOptions::AttackEnemy) }
 , m_moveNorthOption{ CreateOption(PlayerOptions::GoNorth) }
 , m_moveEastOption{ CreateOption(PlayerOptions::GoEast) }
 , m_moveSouthOption{ CreateOption(PlayerOptions::GoSouth) }
 , m_moveWestOption{ CreateOption(PlayerOptions::GoWest) }
 , m_openSwordChest{ CreateOption(PlayerOptions::OpenChest) }
 , m_quitOption{ CreateOption(PlayerOptions::Quit) }
 , m_swordChest{ &m_sword }

244 CHAPTER 23: Useful Design Patterns for Game Development

{
 static_cast<OpenChestOption*>(m_openSwordChest.get())->SetChest(&m_swordChest);

 m_enemies.emplace_back(CreateEnemy(EnemyType::Dragon));
 static_cast<AttackEnemyOption*>(m_attackDragonOption.get())->SetEnemy(m_enemies[0]);

 m_enemies.emplace_back(CreateEnemy(EnemyType::Orc));
 static_cast<AttackEnemyOption*>(m_attackOrcOption.get())->SetEnemy(m_enemies[1]);
}

The constructor now calls the factory methods to create the proper instances needed to initialize the
shared_ptr for each Option and Enemy. Each Option has its own pointer, but the Enemy instances are
now placed into a vector using the emplace_back method. I’ve done this to show you how you can
use the shared_ptr::get method along with static_cast to convert the polymorphic base class to
the derived class needed to add the Enemy. The same type of cast is needed to add the address of
m_swordChest to the m_openSwordChest option.

That’s all there is to creating basic factory functions in C++. These functions come into their own
when writing level loading code. Your data can store the type of object you’d like to create at any
given time and just pass it into a factory that knows how to instantiate the correct object. This
reduces the amount of code in your loading logic, which can help reduce bugs! This is definitely a
worthwhile goal.

Decoupling with the Observer Pattern
The observer pattern is very useful in decoupling your code. Coupled code is code that shares too
much information about itself with other classes. This could be specific methods in its interface or
variables that are exposed between classes. Coupling has a couple of major drawbacks. The first
is that it increases the number of places where your code must be updated when making changes
to exposed methods or functions and the second is that your code becomes much less reusable.
Coupled code is less reusable because you have to take over any coupled and dependent classes
when deciding to reuse just a single class.

Observers help with decoupling by providing an interface for classes to derive which provide
event methods that will be called on objects when certain changes happen on another class. The
Event system introduced earlier had an informal version of the observer pattern. The Event class
maintained a list of listeners that had their HandleEvent method called whenever an event they were
listening for was triggered. The observer pattern formalizes this concept into a Notifier template
class and interfaces that can be used to create observer classes. Listing 23-6 shows the code for
the Notifier class.

Listing 23-6. The Notifier Template Class

template <typename Observer>
class Notifier
{
private:
 using Observers = std::vector<Observer*>;
 Observers m_observers;

245CHAPTER 23: Useful Design Patterns for Game Development

public:
 void AddObserver(Observer* observer);
 void RemoveObserver(Observer* observer);

 template <void (Observer::*Method)()>
 void Notify();
};

The Notifier class defines a vector of pointers to Observer objects. There are complementary
methods to add and remove observers to the Notifier and finally a template method named Notify,
which will be used to notify Observer objects of an event. Listing 23-7 shows the AddObserver and
RemoveObserver method definitions.

Listing 23-7. The AddObserver and RemoveObserver method definitions

template <typename Observer>
void Notifier<Observer>::AddObserver(Observer* observer)
{
 assert(find(m_observers.begin(), m_observers.end(), observer) == m_observers.end());
 m_observers.emplace_back(observer);
}

template <typename Observer>
void Notifier<Observer>::RemoveObserver(Observer* observer)
{
 auto object = find(m_observers.begin(), m_observers.end(), observer);
 if (object != m_observers.end())
 {
 m_observers.erase(object);
 }
}

Adding an Observer is as simple as calling emplace_back on the m_observers vector. The assert is
used to inform us if we are adding more than one copy of each Observer to the vector. The remove
is achieved by using find to get an iterator to the object to be removed and calling erase if the
iterator is valid.

The Notify method uses a C++ feature that you have not seen so far, method pointers. A method
pointer allows us to pass the address of a method from a class definition that should be called on a
specific object. Listing 23-8 contains the code for the Notify method.

Listing 23-8. The Notifier<Observer>::Notify Method

template <typename Observer>
template <void(Observer::*Method)()>
void Notifier<Observer>::Notify()
{
 for (auto& observer : m_observers)
 {
 (observer->*Method)();
 }
}

246 CHAPTER 23: Useful Design Patterns for Game Development

The Notify template method specifies a method pointer parameter. The method pointer must have a
void return type and take no arguments. The type of a method pointer takes the following format.

void (Class::*VariableName)()

Class here represents the name of the class the method belongs to and VariableName is the name
we use to reference the method pointer in our code. You can see this in action in the Notify method
when we call the method using the Method identifier. The object we are calling the method on here is
an Observer* and the address of the method is dereferenced using the pointer operator.

Once our Notifier class is complete, we can use it to create Notifier objects. Listing 23-9 inherits
a Notifier into the QuitOption class.

Listing 23-9. Updating QuitOption

class QuitOption
 : public Option
 , public Notifier<QuitObserver>
{
public:
 QuitOption(const std::string& outputText)
 : Option(PlayerOptions::Quit, outputText)
 {

 }

 virtual void Evaluate(Player& player);
};

QuitOption now inherits from the Notifier class, which is passed a new class as its template
parameter. Listing 23-10 shows the QuitObserver class.

Listing 23-10. The QuitObserver Class

class QuitObserver
{
public:
 virtual void OnQuit() = 0;
};

QuitObserver is simply an interface that provides a method, OnQuit, to deriving classes. Listing 23-11
shows how you should update the QuitOption::Evaluate method to take advantage of the Notifier
functionality.

Listing 23-11. Updating QuitOption::Notifier

void QuitOption::Evaluate(Player& player)
{
 Notify<&QuitObserver::OnQuit>();
}

247CHAPTER 23: Useful Design Patterns for Game Development

Now you can see the very clean template method call. This simple call will call the OnQuit method on
every object that has been added as an observer on the QuitOption. That’s our next step: The Game
class is updated to inherit from QuitObserver in Listing 23-12.

Listing 23-12. The Game Class QuitObserver

class Game
 : public EventHandler
 , public QuitObserver
{
private:
 static const unsigned int m_numberOfRooms = 4;
 using Rooms = std::array<Room::Pointer, m_numberOfRooms>;
 Rooms m_rooms;

 Player m_player;

 Option::Pointer m_attackDragonOption;
 Option::Pointer m_attackOrcOption;
 Option::Pointer m_moveNorthOption;
 Option::Pointer m_moveEastOption;
 Option::Pointer m_moveSouthOption;
 Option::Pointer m_moveWestOption;
 Option::Pointer m_openSwordChest;
 Option::Pointer m_quitOption;

 Sword m_sword;
 Chest m_swordChest;

 using Enemies = std::vector<Enemy::Pointer>;
 Enemies m_enemies;

 bool m_playerQuit{ false };

 void InitializeRooms();
 void WelcomePlayer();
 void GivePlayerOptions() const;
 void GetPlayerInput(std::stringstream& playerInput) const;
 void EvaluateInput(std::stringstream& playerInput);
public:
 Game();
 ~Game();

 void RunGame();

 virtual void HandleEvent(const Event* pEvent);

 // From QuitObserver
 virtual void OnQuit();
};

248 CHAPTER 23: Useful Design Patterns for Game Development

The bolded lines show that the Game class inherits from QuitObserver, now has a destructor,
and overloads the OnQuit method. Listing 23-13 shows how the constructor and destructor are
responsible for adding and removing the class as a listener to QuitOption.

Listing 23-13.NThe Game Class Constructor and Destructor

Game::Game()
: m_attackDragonOption{ CreateOption(PlayerOptions::AttackEnemy) }
, m_attackOrcOption{ CreateOption(PlayerOptions::AttackEnemy) }
, m_moveNorthOption{ CreateOption(PlayerOptions::GoNorth) }
, m_moveEastOption{ CreateOption(PlayerOptions::GoEast) }
, m_moveSouthOption{ CreateOption(PlayerOptions::GoSouth) }
, m_moveWestOption{ CreateOption(PlayerOptions::GoWest) }
, m_openSwordChest{ CreateOption(PlayerOptions::OpenChest) }
, m_quitOption{ CreateOption(PlayerOptions::Quit) }
, m_swordChest{ &m_sword }
{
 static_cast<OpenChestOption*>(m_openSwordChest.get())->SetChest(&m_swordChest);

 m_enemies.emplace_back(CreateEnemy(EnemyType::Dragon));
 static_cast<AttackEnemyOption*>(m_attackDragonOption.get())->SetEnemy(m_enemies[0]);

 m_enemies.emplace_back(CreateEnemy(EnemyType::Orc));
 static_cast<AttackEnemyOption*>(m_attackOrcOption.get())->SetEnemy(m_enemies[1]);

 static_cast<QuitOption*>(m_quitOption.get())->AddObserver(this);
}

Game::~Game()
{
 static_cast<QuitOption*>(m_quitOption.get())->RemoveObserver(this);
}

The bolded lines again show the relevant updates to the code. The last update in Listing 23-14
implements the OnQuit method.

Listing 23-14. The Game::OnQuit Method

void Game::OnQuit()
{
 m_playerQuit = true;
}

This is all there is to implementing the observer pattern. This has achieved another decoupling
between the QuitOption class and any other classes in the game that need to know about quit
events. The observer class is especially useful when creating game framework code for systems
such as online features. You can imagine a situation where you implement a class to download
leaderboards from a web server. This class could be used in multiple game projects and each
individual game could simply implement its own class to observe the downloader and act
appropriately when the leaderboard data has been received.

249CHAPTER 23: Useful Design Patterns for Game Development

Easily Adding New Functionality with the Visitor Pattern
One of the main goals of writing reusable game engine code is to try to avoid including
game-specific functionality in your classes. This can be hard to achieve with a pure object-oriented
approach, as the aim of encapsulation is to hide the data in your classes behind interfaces. This
could mean that you are required to add methods to classes to work on data that are very specific to
a certain class.

We can get around this problem by loosening our encapsulation on classes that must interact with
game code, but we do so in a very structured manner. You can achieve this by using the visitor
pattern. A visitor is an object that knows how to carry out a specific task on a type of object. These
are incredibly useful when you need to carry out similar tasks on many objects that might inherit
from the same base class but have different parameters or types. Listing 23-15 shows an interface
class you can use to implement Visitor objects.

Listing 23-15. The Visitor Class

class Visitor
{
private:
 friend class Visitable;
 virtual void OnVisit(Visitable& visitable) = 0;
};

The Visitor class provides a pure virtual method OnVisit, which is passed an object that inherits
from a class named Visitable. Listing 23-16 lists the Visitable class.

Listing 23-16. The Visitable Class

class Visitable
{
public:
 virtual ~Visitable() {}

 void Visit(Visitor& visitor)
 {
 visitor.OnVisit(*this);
 }
};

The Visitable class provides a Visit method that is passed the Visitor object. The Visit method
calls the OnVisit method on the Visitor. This allows us to make the OnVisit method private, which
ensures that only Visitable objects can be visited and that we are always passing a valid reference
to the OnVisit method.

The visitor pattern is very simple to set up. You can see a concrete example of how to use the
pattern in Listing 23-17, where the Option class from Text Adventure has been inherited from
Visitable.

250 CHAPTER 23: Useful Design Patterns for Game Development

Listing 23-17. The Updated Option Class

class Option
 : public Visitable
{
public:
 using Pointer = std::shared_ptr<Option>;

protected:
 PlayerOptions m_chosenOption;
 std::string m_outputText;

public:
 Option(PlayerOptions chosenOption, const std::string& outputText)
 : m_chosenOption(chosenOption)
 , m_outputText(outputText)
 {

 }

 const std::string& GetOutputText() const
 {
 return m_outputText;
 }

 virtual void Evaluate(Player& player) = 0;
};

The only change required is to inherit the Option class from Visitable. To take advantage of this,
a Visitor named EvaluateVisitor is created in Listing 23-18.

Listing 23-18. The EvaluateVisitor Class

class EvaluateVisitor
 : public Visitor
{
private:
 Player& m_player;

public:
 EvaluateVisitor(Player& player)
 : m_player{ player }
 {

 }

 virtual void OnVisit(Visitable& visitable)
 {
 Option* pOption = dynamic_cast<Option*>(&visitable);

251CHAPTER 23: Useful Design Patterns for Game Development

 if (pOption != nullptr)
 {
 pOption->Evaluate(m_player);
 }
 }
};

The EvaluateListener::OnVisit method uses a dynamic_cast to determine if the supplied visitable
variable is an object derived from the Option class. If it is, the Option::Evaluate method is called.
The only remaining update is to use the EvaluateVisitor class to interface with the chosen option in
Game::EvaluateInput. This update is shown in Listing 23-19.

Listing 23-19. The Game::EvaluateInput Method

void Game::EvaluateInput(stringstream& playerInputStream)
{
 PlayerOptions chosenOption = PlayerOptions::None;
 unsigned int playerInputChoice{ 0 };
 playerInputStream >>playerInputChoice;

 try
 {
 Option::Pointer option =
 m_player.GetCurrentRoom()->EvaluateInput(playerInputChoice);
 EvaluateVisitor evaluator{ m_player };
 option->Visit(evaluator);
 }
 catch (const std::out_of_range&)
 {
 cout << "I do not recognize that option, try again!" << endl << endl;
 }
}

As you can see, the code has been updated to call the Visit method on the Option rather than
calling the Evaluate method directly. That’s all we needed to do to add the Visitor pattern to the
Text Adventure game.

This example isn’t the best use of the Visitor pattern, as it is relatively simple. Visitors can come
into their own in places such as a render queue in 3-D games. You can implement different types of
rendering operations in Visitor objects and use that to determine how individual games render their
3-D objects. Once you get the hang of abstracting out logic in this way, you might find many places
where being able to provide different implementations independently of the data is very useful.

Summary
This chapter has given you a brief introduction to the concept of design patterns. Design patterns
are exceptionally useful as they provide a ready-made toolbox of techniques that can be used to
solve many diverse problems. You’ve seen the Singleton, Factory, Observer, and Visitor patterns
used in this book, but there are many, many more.

252 CHAPTER 23: Useful Design Patterns for Game Development

The de facto standard textbook on software engineering design patterns is Design Patterns: Elements of
Reusable Object Oriented Software by Gamma, Helm, Johnson, and Vlissides (also known as the “Gang
of Four”). If you find this concept interesting, you should read their book. It covers the examples
shown here as well as other useful patterns. Bob Nystrom, a former software engineer at EA, has
provided a free online collection of design patterns relevant to game development. You can find his
web site here: http://gameprogrammingpatterns.com/.

You’ll find many patterns relevant and helpful when trying to solve game development problems.
They also make your code easier to work with for other developers who are also versed in the
common techniques that design patterns provide. Our next chapter is going to look at C++ IO
streams and how we can use them to load and save game data.

http://gameprogrammingpatterns.com/

253

Chapter 24
Using File IO to Save and
Load Games

Saving and loading game progress is a standard feature of all but the most basic games today. This
means that you will need to know how to handle the loading and saving of game objects. This chapter
covers one possible strategy for writing out the data you will need to be able to reinstate a player’s game.

First we look at the SerializationManager class, which uses the STL classes ifstream and ofstream
to read and write from files. Then we cover how to update the Text Adventure game to be able to
save which room the player is in, which items have been picked up, which enemies are dead, and
which dynamic options have been removed.

What Is Serialization?
It would be good to cover what serialization is before we serialize the game’s different classes.
Serialization in computer programming covers the process of converting data into a format that can
be written out by the program and read in at a later point in time. There are three major systems in
modern games that take advantage of serialization.

The first is the save game system that will also be the basis for this chapter. Classes are serialized
into a binary data file that can be read by the game at a later point in time. This type of serialization
is essential for players to be able to retain their game data between different runs of the game and
even on different computers. Transferring saved games between different machines is now a key
feature of Xbox Live, PlayStation Network, Steam, and Origin.

The second main use of serialization is in multiplayer gaming. Multiplayer games need to be able
to convert game object state into a small a number of bytes as possible for transmission over
the Internet. The program on the receiving end then needs to be able to reinterpret the stream
of incoming data to update the position, rotation, and state of opponent players’ and projectiles.
Multiplayer games are also required to serialize the win conditions of the round players are
participating in so that winners and losers can be worked out.

254 CHAPTER 24: Using File IO to Save and Load Games

The remaining systems are more useful during game development. Modern game toolsets and
engines provide the ability to update game data at runtime. Player properties such as health or the
amount of damage dealt by weapons can be updated by game designers while the game is running.
This is made possible using serialization to convert data from the tool into a data stream that the
game can then use to update its current state. This form of serialization can speed up the iteration
process of game design. I’ve even worked with a tool that allows designers to update all of the
current connected players in a multiplayer session midround.

These aren’t the only forms of serialization you will encounter during game development, but they
are likely to be the most common. This chapter focuses on serializing game data out and in using
the C++ classes ofstream and ifstream. These classes provide the ability to serialize C++’s built-in
types to and from files stored in your device’s file system. This chapter shows you how to create
classes that are aware of how to write out and read in their data using ifstream and ofstream. It
will also show you a method for managing which objects need to be serialized and how to refer to
relationships between objects using unique object IDs.

The Serialization Manager
The SerializationManager class is a Singleton that is responsible for keeping track of every object
in the game that can have its state streamed out or is referenced by another savable object. Listing
24-1 covers the class definition for the SerializationManager.

Listing 24-1. The SerializationManager Class

class SerializationManager
 : public Singleton<SerializationManager>
{
private:
 using Serializables = std::unordered_map<unsigned int, Serializable*>;
 Serializables m_serializables;

 const char* const m_filename{"Save.txt"};

public:
 void RegisterSerializable(Serializable* pSerializable);

 void RemoveSerializable(Serializable* pSerializable);

 Serializable* GetSerializable(unsigned int serializableId) const;

 void ClearSave();

 void Save();

 bool Load();
};

255CHAPTER 24: Using File IO to Save and Load Games

The SerializationManager class stores pointers to Serializable objects in an unordered_map. Each
of the Serializable objects will be given a unique ID that is used as the key in this collection. The
file name we would like to use for the save file is stored in the m_filename variable.

There are three methods used to manage the objects that are handled by the SerializationManager
class. The RegisterSerializable, RemoveSerializable, and GetSerializable methods are shown
in Listing 24-2.

Listing 24-2. The RegisterSerializable, RemoveSerializable, and GetSerializable Methods

void SerializationManager::RegisterSerializable(Serializable* pSerializable)
{
 assert(m_serializables.find(pSerializable->GetId()) == m_serializables.end());
 m_serializables.emplace{ pSerializable->GetId(), pSerializable };
}

void SerializationManager::RemoveSerializable(Serializable* pSerializable)
{
 auto iter = m_serializables.find(pSerializable->GetId());
 if (iter != m_serializables.end())
 {
 m_serializables.erase(iter);
 }
}

Serializable* SerializationManager::GetSerializable(unsigned int serializableId) const
{
 Serializable* pSerializable{ nullptr };
 auto iter = m_serializables.find(serializableId);
 if (iter != m_serializables.end())
 {
 pSerializable = iter->second;
 }
 return pSerializable;
}

These methods are all fairly straightforward and manage adding, removing, and retrieving
Serializable addresses from the m_serializables unordered_map.

The Save method is responsible for looping over all of the Serializable objects and asking them to
write their data to an ofstream object. Listing 24-3 shows the Save method and how the ofstream
object is initialized and moved.

Listing 24-3. The SerializableManager::Save

void SerializationManager::Save()
{
 std::ofstream file{ m_filename };
 file << true;
 file << std::endl;

256 CHAPTER 24: Using File IO to Save and Load Games

 for (auto& serializable : m_serializables)
 {
 Serializable* pSerializable = serializable.second;
 file << pSerializable->GetId();
 file << std::endl;
 pSerializable->OnSave(file);

 file << std::endl;
 file << std::endl;
 }
}

An ofstream object is initialized by passing it the file name you wish to write to. You can then use the
standard << operator to write data to the file. The o in ofstream stands for output, the f for file, and
stream for its ability to stream data, meaning we are working with an output file stream.

The Save method begins by writing out a true. This bool is used to determine if the save game has
a reinstatable save game inside. We write out false later when the player has completed the game.
Save then loops over all of the stored Serializable objects, writes out their unique ID, and calls the
OnSave method. The std::endl is being written out just to make the text file a little more readable
and easier to debug.

The opposite action to Save is Load, shown in Listing 24-4.

Listing 24-4. The SerializationManager::Load Method

bool SerializationManager::Load()
{
 std::ifstream file{ m_filename };
 bool found = file.is_open();
 if (found)
 {
 bool isValid;
 file >> isValid;
 if (isValid)
 {
 std::cout <<
 "Save game found, would you like to load? (Type yes to load)"
 << std::endl << std::endl;
 std::string shouldLoad;
 std::cin >> shouldLoad;
 if (shouldLoad == "yes")
 {
 while (!file.eof())
 {
 unsigned int serializableId{ 0 };
 file >> serializableId;
 auto iter = m_serializables.find(serializableId);

257CHAPTER 24: Using File IO to Save and Load Games

 if (iter != m_serializables.end())
 {
 iter->second->OnLoad(file);
 }
 }
 }
 }
 else
 {
 found = false;
 }
 }
 return found;
}

The Load method is a little more involved than Save. You can see that it is using an ifstream, input
file stream, rather than an ofstream. The ifstream is initialized using the file name to load. The
is_open method in ifstream is used to determine if a file with the given name was found. If the
player has never played the game, then no save file will exist; this check ensures that we do not try
to load a game when no save game exists.

The next check is used to determine if the save file that does exist has a valid save state inside. This
is done using the >> operator, just as is done when using cin. This is what happens next when cin is
used to ask the player if he or she would like to load the save game. If the player types anything but
yes, then game will start without loading.

There is then a while loop that is checking if the eof method is returning true. The eof method is
determining whether the method has hit the end of file. The inner section of this loop reads the
unique ID from the file, retrieves the Serializable from the map, and then calls the OnLoad method
on that object.

The last SerializationManager method is ClearSave, which is used to write out a file with false as
its only value. Listing 24-5 shows this method.

Listing 24-5. The SerializationManager::ClearSave Method

void SerializationManager::ClearSave()
{
 std::ofstream file{ m_filename };
 file << false;
}

The SerializationManager class is fairly simple. The Serializable class is also straightforward
and is listed in Listing 24-6.

Listing 24-6. The Serializable Class

class Serializable
{
 unsigned int m_id{ 0 };

258 CHAPTER 24: Using File IO to Save and Load Games

public:
 explicit Serializable(unsigned int id)
 : m_id{ id }
 {
 SerializationManager::GetSingleton().RegisterSerializable(this);
 }

 Serializable::~Serializable()
 {
 SerializationManager* pSerializationManager =
 SerializationManager::GetSingletonPtr();
 if (pSerializationManager)
 {
 pSerializationManager->RemoveSerializable(this);
 }
 }

 virtual void OnSave(std::ofstream& file) = 0;
 virtual void OnLoad(std::ifstream& file) = 0;

 unsigned int GetId() const { return m_id; }
};

The Serializable class is intended to be inherited by the classes you would like to be able to save
between game sessions and is therefore implemented as an interface. This is achieved by making
the OnSave and OnLoad method purely virtual.

Each Serializable also stores an ID in the m_id variable. The constructor and destructor
automatically adds and removes the object from the SerializationManager object that it accesses
via the Singleton pattern.

Saving and Loading Text Adventure
The first step toward being able to save and load the game is to create the SerializationManager.
Listing 24-7 shows the updated main function.

Listing 24-7. The Updated main Function

int _tmain(int argc, _TCHAR* argv[])
{
 new SerializationManager();

 Game game;
 game.RunGame();

 delete SerializationManager::GetSingletonPtr();

 return 0;
}

259CHAPTER 24: Using File IO to Save and Load Games

Creating and deleting the SerializationManager in main ensures that it exists for the entirety of the
Game::RunGame method. The game is saved when the player chooses to quit, and Listing 24-8 shows
how this is achieved.

Listing 24-8. Saving the Game

void Game::OnQuit()
{
 SerializationManager::GetSingleton().Save();
 m_playerQuit = true;
}

A call to SerializationManager::Save is added to the Game::OnQuit method. The Load and
ClearSave methods are added to Game::RunGame in Listing 24-9.

Listing 24-9. The Game::RunGame Method

void Game::RunGame()
{
 InitializeRooms();

 const bool loaded = SerializationManager::GetSingleton().Load();
 WelcomePlayer(loaded);

 bool playerWon = false;
 while (m_playerQuit == false && playerWon == false)
 {
 GivePlayerOptions();

 stringstream playerInputStream;
 GetPlayerInput(playerInputStream);

 EvaluateInput(playerInputStream);

 for (auto& enemy : m_enemies)
 {
 playerWon = enemy->IsAlive() == false;
 }
 }

 if (playerWon == true)
 {
 SerializationManager::GetSingleton().ClearSave();
 cout << "Congratulations, you rid the dungeon of monsters!" << endl;
 cout << "Type goodbye to end" << endl;
 std::string input;
 cin >> input;
 }
}

260 CHAPTER 24: Using File IO to Save and Load Games

The WelcomePlayer method is now updated to ask the players if they would like to load their save
game in Listing 24-10.

Listing 24-10. Updating Game::WelcomePlayer

void Game::WelcomePlayer(const bool loaded)
{
 if (!loaded)
 {
 cout << "Welcome to Text Adventure!" << endl << endl;
 cout << "What is your name?" << endl << endl;

 string name;
 cin >> name;
 m_player.SetName(name);

 cout << endl << "Hello " << m_player.GetName() << endl;
 }
 else
 {
 cout << endl << "Welcome Back " << m_player.GetName() << endl << endl;
 }
}

WelcomePlayer now greets players with a Welcome Back message once the game has loaded and
reinstated the name they entered when they first played the game.

The next change to the Game class code is to pass a unique ID into the constructor of each object we
would like to be a Serializable. The Game constructor is one place where this happens, as shown in
Listing 24-11.

Listing 24-11. The Game Class Constructor

Game::Game()
: m_attackDragonOption{
 CreateOption(
 PlayerOptions::AttackEnemy,
 SDBMCalculator<18>::CalculateValue("AttackDragonOption")) }
, m_attackOrcOption{
 CreateOption(
 PlayerOptions::AttackEnemy,
 SDBMCalculator<15>::CalculateValue("AttackOrcOption")) }
, m_moveNorthOption{
 CreateOption(
 PlayerOptions::GoNorth,
 SDBMCalculator<15>::CalculateValue("MoveNorthOption")) }
, m_moveEastOption{
 CreateOption(
 PlayerOptions::GoEast,
 SDBMCalculator<14>::CalculateValue("MoveEastOption")) }

261CHAPTER 24: Using File IO to Save and Load Games

, m_moveSouthOption{
 CreateOption(
 PlayerOptions::GoSouth,
 SDBMCalculator<15>::CalculateValue("MoveSouthOption")) }
, m_moveWestOption{
 CreateOption(
 PlayerOptions::GoWest,
 SDBMCalculator<14>::CalculateValue("MoveWestOption")) }
, m_openSwordChest{
 CreateOption(
 PlayerOptions::OpenChest,
 SDBMCalculator<20>::CalculateValue("OpenSwordChestOption")) }
, m_quitOption{
 CreateOption(
 PlayerOptions::Quit,
 SDBMCalculator<10>::CalculateValue("QuitOption")) }
, m_swordChest{ &m_sword, SDBMCalculator<5>::CalculateValue("Chest") }
{
 static_cast<OpenChestOption*>(m_openSwordChest.get())->SetChest(&m_swordChest);

 m_enemies.emplace_back(
 CreateEnemy(
 EnemyType::Dragon,
 SDBMCalculator<6>::CalculateValue("Dragon")));
 static_cast<AttackEnemyOption*>(m_attackDragonOption.get())->SetEnemy(m_enemies[0]);

 m_enemies.emplace_back(
 CreateEnemy(
 EnemyType::Orc,
 SDBMCalculator<3>::CalculateValue("Orc")));
 static_cast<AttackEnemyOption*>(m_attackOrcOption.get())->SetEnemy(m_enemies[1]);

 static_cast<QuitOption*>(m_quitOption.get())->AddObserver(this);
}

As you can see, each factory function now takes a hashed string that is used to construct the object
and supply a unique ID for the SerializationManager’s unordered_map. This unique key is also useful
for game objects to be able to save out their references to other objects. You can see this in
Listing 24-12, in which the source code for Player::OnSave is shown.

Listing 24-12. The Player::OnSave Method

void Player::OnSave(std::ofstream& file)
{
 file << m_name;
 file << std::endl;
 file << m_items.size();
 file << std::endl;

262 CHAPTER 24: Using File IO to Save and Load Games

 for (auto& item : m_items)
 {
 file << item->GetId();
 file << std::endl;
 }
 file << m_pCurrentRoom->GetId();
 file << std::endl;
}

The Player::OnSave method writes out the name the user supplied when beginning his or her game.
It then writes out the number of items in the m_items collection. Each item’s ID is written out and
finally the m_pCurrentRoom ID is written out. The block of text in the save file for a player looks like
the following:

1923481025
Bruce
1
3714624381
625001751

The first line is the unique ID of the Player object, followed by the m_name, the number of Items, the
ID of the one item, and finally the ID of the Room the player was in at the time he or she quit.

The Player::OnSave method is mirrored by the Player::OnLoad method in Listing 24-13.

Listing 24-13. The Player::OnLoad Method

void Player::OnLoad(std::ifstream& file)
{
 file >> m_name;
 unsigned int numItems;
 file >> numItems;
 for (unsigned int i = 0; i < numItems; ++i)
 {
 unsigned int itemId;
 file >> itemId;
 Item* pItem =
 dynamic_cast<Item*>(
 SerializationManager::GetSingleton().GetSerializable(itemId));
 m_items.emplace_back{ pItem };
 }

 unsigned int roomId;
 file >> roomId;
 Room* pRoom =
 dynamic_cast<Room*>(
 SerializationManager::GetSingleton().GetSerializable(roomId));
 m_pCurrentRoom = pRoom->GetPointer();
}

263CHAPTER 24: Using File IO to Save and Load Games

The OnLoad method reads the m_name variable out of the file, then the number of items. There is
then a for loop that reads out the IDs of each item and retrieves a pointer to the Item from the
SerializationManager. Each Serializable pointer is converted into an Item pointer using a
dynamic_cast.

The Room pointer is a little more challenging. The Player class does not store a raw pointer to the
Room object; instead, a shared_ptr was used. Listing 24-14 shows how the Room class has been
updated to store a shared_ptr to itself, which can be used to retrieve a valid shared_ptr when
retrieving the object from the SerializationManager.

Listing 24-14. The Room Class

class Room
 : public Entity
 , public Serializable
{
public:
 using Pointer = std::shared_ptr<Room>;

 enum class JoiningDirections
 {
 North = 0,
 East,
 South,
 West,
 Max
 };

private:
 using JoiningRooms = std::array<Pointer, static_cast<size_t>(JoiningDirections::Max)>;
 JoiningRooms m_pJoiningRooms;

 using StaticOptions = std::map<unsigned int, Option::Pointer>;
 StaticOptions m_staticOptions;
 unsigned int m_staticOptionStartKey{ 1 };

 using DynamicOptions = std::vector<Option::Pointer>;
 DynamicOptions m_dynamicOptions;

 Pointer m_pointer{ this };

public:
 explicit Room(unsigned int serializableId);

 void AddRoom(JoiningDirections direction, Pointer room);
 Pointer GetRoom(JoiningDirections direction) const;

 Option::Pointer EvaluateInput(unsigned int playerInput);
 void AddStaticOption(Option::Pointer option);
 void AddDynamicOption(Option::Pointer option);
 void PrintOptions() const;

264 CHAPTER 24: Using File IO to Save and Load Games

 virtual void OnSave(std::ofstream& file);
 virtual void OnLoad(std::ifstream& file);

 Pointer GetPointer() const { return m_pointer; }
};

Now any time any part of our code wishes to store a shared_ptr to a Serializable object, it should
be retrieving the pointer from a shared place. The easiest place for this to be is on the object itself,
which is registered with the SerializationManager via its unique ID.

The Room class has to save and load the state of its dynamic options. Listing 24-15 shows the save
and load methods.

Listing 24-15. Room::OnSave and Room::OnLoad

void Room::OnSave(std::ofstream& file)
{
 file << m_dynamicOptions.size();
 file << std::endl;
 for (auto& dynamicOption : m_dynamicOptions)
 {
 file << dynamicOption->GetId();
 file << std::endl;
 }
}

void Room::OnLoad(std::ifstream& file)
{
 m_dynamicOptions.clear();

 unsigned int numDynamicOptions;
 file >> numDynamicOptions;
 if (numDynamicOptions > 0)
 {
 for (unsigned int i = 0; i < numDynamicOptions; ++i)
 {
 unsigned int optionId;
 file >> optionId;
 Option* pOption =
 dynamic_cast<Option*>(
 SerializationManager::GetSingleton().GetSerializable(optionId));
 if (pOption)
 {
 Option::Pointer sharedPointer = pOption->GetPointer();
 m_dynamicOptions.emplace_back{ sharedPointer };
 }
 }
 }
}

265CHAPTER 24: Using File IO to Save and Load Games

The OnSave method loops over all of the dynamic options and saves their unique IDs after saving
the number of dynamic options the state has. The OnLoad method begins by clearing the existing
dynamic options and then reinstates each option from the SerializationManager. Once again this is
done using a dynamic_cast and retrieving a shared_ptr from the Option class instances.

The Chest class and the Enemy classes are the only other classes with added OnSave and OnLoad
methods. These are used to save the m_isOpen and m_alive variables from these classes and are
shown in Listing 24-16.

Listing 24-16. The Chest::OnSave, Chest::OnLoad, Enemy::OnSave, and Enemy::OnLoad Methods

virtual void Chest::OnSave(std::ofstream& file)
{
 file << m_isOpen;
}

virtual void Chest::OnLoad(std::ifstream& file)
{
 file >> m_isOpen;
}

virtual void Enemy::OnSave(std::ofstream& file)
{
 file << m_alive;
}

virtual void Enemy::OnLoad(std::ifstream& file)
{
 file >> m_alive;
}

These simple methods round out the last of the class changes to support the saving and loading
of the Text Adventure game. At this point I’d encourage you to get the sample code from the
accompanying web site and take a look at the execution of the program in your debugger to get a
feeling for how the ability to be able to reference objects via a centralized system using unique IDs
can be very useful.

Summary
This chapter has given you an overview of a simple mechanism for implementing the ability to save
and load your games. The ifstream and ofstream classes provide a simple mechanism for writing
and reading file data for your programs. These classes follow the usual conventions for stream types
in C++ and should be easily recognizable from the cin, cout, and stringstream examples you have
already seen throughout this book.

One of the most important lessons to take away from this chapter is the fact that pointers are not
transferrable from one game session to the next. This is true for trying to implement a loading and
saving system and is also true for implementing a multiplayer game. Pointer addresses cannot be sent
from one computer to another to refer to any given object. Instead objects need to be created with a
consistent and persistent unique ID and registered with a centralized system, which ensures there are
no key clashes and can provide access to objects wherever it might be needed in your code.

267

Chapter 25
Speeding Up Games with
Concurrent Programming

Processor manufacturers have hit a ceiling on the number of cycles their CPUs can execute per
second. This can be seen with modern CPUs in desktop computers, tablets, and mobile phones
where CPU speeds are rarely seen over the 2.5 Ghz mark.

CPU manufacturers have taken to adding more and more cores to their CPUs to provide more and
more performance. The Xbox One, PlayStation 4, Samsung Galaxy phones, and desktop CPUs all
have access to eight CPU cores to execute programs. This means that programmers of modern
software need to embrace multithreaded, concurrent programming if they wish their programs to
get the most out of modern computing devices and feel fluid and responsive for their users. Game
programmers have to think about concurrency even across different processors. The Xbox One and
PlayStation 4 actually have dual quad-core CPUs, audio CPUs, and GPUs all executing code at the
same time.

This chapter will introduce multicore CPU programming so that you can have a basic understanding
of how C++ allows you to execute code on multiple threads, how to ensure that those threads
share resources responsibly, and how to make sure that all of the threads are destroyed before your
program ends.

Running Text Adventure in Its Own Thread
I’m going to show you how to create a thread in this section that will execute the Game::RunGame
method. This will mean that the main game loop is running in its own execution thread and our main
function is left to carry out other tasks. Listing 25-1 shows how to create a game thread.

268 CHAPTER 25: Speeding Up Games with Concurrent Programming

Listing 25-1. Creating a Thread

#include "GameLoop.h"
#include <thread>

void RunGameThread(Game& game)
{
 game.RunGame();
}

int _tmain(int argc, _TCHAR* argv[])
{
 new SerializationManager();

 Game game;
 std::thread gameThread{ RunGameThread, std::ref{ game } };
 assert(gameThread.joinable());
 gameThread.join();

 delete SerializationManager::GetSingletonPtr();

 return 0;
}

C++ provides the thread class that will automatically create a native operating system thread and
execute a function that you pass into its constructor. In this example, we are creating a thread
named gameThread that will run the RunGameThread function.

RunGameThread takes a reference to a Game object as a parameter. You can see that we are using
std::ref to pass the game object to gameThread. You need to do this because the thread class
constructor makes a copy of the object being passed in. Once it has this copy and starts the
thread, the destructor is called on the copy. Calling ~Game will call ~Player, which will unregister
our m_player object from the SerializationManager. If this happens, our game will crash, as the
m_player object will not exist whenever the game tries to load the user’s save game. The std::ref
object avoids this by storing a reference to the game object internally and making copies of itself.
When the destructors are being called, they are called on the ref object and not on the object
passed. This prevents the crash you would otherwise experience.

Execution continues on your original thread once the new thread has been created and is running
the function you supplied. At this point you can carry out some other tasks. Text Adventure doesn’t
have any other jobs to complete at the moment, and therefore execution would carry on, delete the
SerializationManager, and return. This would cause another crash because your gameThread would
go out of scope and try to destroy your running thread. What you really want to happen is for _tmain to
stop executing until the task being carried out in gameThread has completed. Threads complete when
their function returns and in our case we will be waiting for the player to either quit or win the game.

You make a running thread wait for another by calling join on the other thread’s object. The
joinable method is supplied to make sure that the thread you would like to wait on is one that is
valid and running. You can test this by placing a breakpoint on the delete SerializationManager
line. Your breakpoint will not be hit until you complete your game.

269CHAPTER 25: Speeding Up Games with Concurrent Programming

That’s all there is to creating, running, and waiting for threads in C++. The next task is to work out
how to make sure that threads can share data between each other without causing issues.

Sharing Data Between Threads Using Mutexes
Multithreaded programming introduces problems. What happens if two threads try to access the
same variables at exactly the same time? Data can be inconsistent, data can be wrong, and changes
can be lost. In the very worst examples your programs will crash. The updated main function in
Listing 25-2 shows an example of a program that would crash when both threads access the same
functions at the same time.

Listing 25-2. A Version of _tmain That Would Crash

int _tmain(int argc, _TCHAR* argv[])
{
 new SerializationManager();

 Game game;
 std::thread gameThread{ RunGameThread, std::ref{ game } };
 assert(gameThread.joinable());
 while (!game.HasFinished())
 {
 // Stick a breakpoint below to see that this code
 // is running at the same time as RunGame!
 int x = 0;
 }
 gameThread.join();

 delete SerializationManager::GetSingletonPtr();

 return 0;
}

This code would crash because the Game::HasFinished method is being called repeatedly. It is
guaranteed that both the main thread and the game thread would try to access the variables inside
HasFinished at the same time. Listing 25-3 contains the Game::HasFinished method.

Listing 25-3. Game::HasFinished

bool HasFinished() const
{
 return (m_playerQuit || m_playerWon);
}

The Game class tries to write to the m_playerWon variable once every loop. Eventually the main thread
will try to read the m_playerWon variable at the same time as the game thread is writing to it and the
program will close. You solve this problem by using mutual exclusion. C++ provides a mutex class
that blocks execution on multiple threads around accesses to shared variables. By adding the code
from Listing 25-4 you can create a mutex in the Game class.

270 CHAPTER 25: Speeding Up Games with Concurrent Programming

Listing 25-4. Creating a mutex

std::mutex m_mutex;
std::unique_lock<std::mutex> m_finishedQueryLock{ m_mutex, std::defer_lock };

We have two parts to our mutex, the mutex itself and a wrapper template named unique_lock, which
provides convenient access to the behavior of the mutex. The unique_lock constructor takes a mutex
object as its main parameter. This is the mutex that it acts on. The second parameter is optional;
if it is not supplied, the unique_lock obtains a lock on the mutex immediately but by passing
std::defer_lock we can prevent this from happening.

At this point you might be wondering exactly how a mutex works. A mutex can be locked and
unlocked. We class the process of locking a mutex as obtaining a lock. The unique_lock template
provides three methods to work with the mutex: lock, unlock, and try_lock.

The lock method is a blocking call. This means that your thread’s execution will stall until the mutex
has been successfully locked by the thread you called lock from. If the mutex is already locked by
another thread, your thread will wait until the mutex becomes unlocked before proceeding.

The unlock method unlocks a locked mutex. Best practice is to hold your lock for as few lines
of code as possible. Generally this means that you should do any calculations you need before
obtaining a lock, obtain the lock, write the result to the shared variable, and then unlock immediately
to allow other threads to lock the mutex.

The try_lock method is a nonblocking version of lock. This method returns true if the lock was
obtained or false if the lock was not obtained. This allows you to do other work, usually in a loop
within the thread until such time that the try_lock method returns true.

Now that you have seen the code to create a lock, I can show you how to use the unique_lock
template to prevent your Text Adventure game from crashing. Listing 25-5 uses the lock to protect
access to the m_playerQuit and m_playerWon variables in the HasFinished method.

Listing 25-5. Updating Game::HasFinished with the unique_lock

bool HasFinished() const
{
 m_finishedQueryLock.lock();
 bool hasFinished = m_playerQuit || m_playerWon;
 m_finishedQueryLock.unlock();
 return hasFinished;
}

The HasFinished method now calls the lock method on m_finishedQueryLock before it calculates
the value to be stored in the hasFinished variable. The lock is released before the return statement in
the method to allow any waiting threads to be able to lock the mutex.

This is only the first step in being able to protect our program from crashes. The HasFinished
method is called on the main thread but the m_playerWon and m_playerQuit variables are written
to from the game thread. I have added three new methods to protect these variables in the game
thread in Listing 25-6.

271CHAPTER 25: Speeding Up Games with Concurrent Programming

Listing 25-6. The Game::SetPlayerQuit and Game::SetPlayerWon Methods

void SetPlayerQuit()
{
 m_finishedQueryLock.lock();
 m_playerQuit = true;
 m_finishedQueryLock.unlock();
}

void SetPlayerWon()
{
 m_finishedQueryLock.lock();
 m_playerWon = true;
 m_finishedQueryLock.unlock();
}

bool GetPlayerWon()
{
 m_finishedQueryLock.lock();
 bool playerWon = m_playerWon;
 m_finishedQueryLock.unlock();
 return playerWon;
}

This means that we are required to update the Game::OnQuit method as shown in Listing 25-7.

Listing 25-7. The Game::OnQuit Method

void Game::OnQuit()
{
 SerializationManager::GetSingleton().Save();
 SetPlayerQuit();
}

The Game::OnQuit method now calls the SetPlayerQuit method, which uses the m_finishedQueryLock
to protect the variable access. The RunGame method needs to be updated to use the SetPlayerWon
and GetPlayerWon methods and is shown in Listing 25-8.

Listing 25-8. Updating Game::RunGame

void Game::RunGame()
{
 InitializeRooms();

 const bool loaded = SerializationManager::GetSingleton().Load();
 WelcomePlayer(loaded);

 while (!HasFinished())
 {
 GivePlayerOptions();

272 CHAPTER 25: Speeding Up Games with Concurrent Programming

 stringstream playerInputStream;
 GetPlayerInput(playerInputStream);

 EvaluateInput(playerInputStream);

 bool playerWon = true;
 for (auto& enemy : m_enemies)
 {
 playerWon &= enemy->IsAlive() == false;
 }

 if (playerWon)
 {
 SetPlayerWon();
 }
 }

 if (GetPlayerWon())
 {
 SerializationManager::GetSingleton().ClearSave();
 cout << "Congratulations, you rid the dungeon of monsters!" << endl;
 cout << "Type goodbye to end" << endl;
 std::string input;
 cin >>input;
 }
}

The bold lines show the updates to this method to support the mutex protection around our shared
variables. There’s an attempt to follow best practice by using a local variable to work out if the player
has won the game before calling the SetPlayerWon method. You could wrap the entire loop in a mutex
lock mechanism, but this would slow your program, as both threads would be spending longer in a
state where they were simply waiting for locks to be unlocked and not executing code.

This extra work is one reason why splitting a program into two separate threads does not give a
100% increase in performance as there is some overhead to waiting for lock to synchronize access
to shared memory between the threads. Reducing these synchronization points is key to extracting
as much performance as possible from multithreaded code.

Threads and mutexes make up a low-level view of multithreaded programming. They represent
abstract versions of operating system threads and locks. C++ also provides higher level threading
abstractions that you should use more often than threads. These are provided in the promise and
future classes.

Using Futures and Promises
The future and promise classes are used in a pair. The promise executes a task and places its result
in a future. A future blocks execution on a thread until the promise result is available. Fortunately
C++ provides a third template to create a promise and future for us so that we don’t have to
manually do this over and over.

273CHAPTER 25: Speeding Up Games with Concurrent Programming

Listing 25-9 updates the Game::RunGame to use a packaged_task to load the user’s save game data.

Listing 25-9. Using a packaged_task

bool LoadSaveGame()
{
 return SerializationManager::GetSingleton().Load();
}

void Game::RunGame()
{
 InitializeRooms();

 std::packaged_task< bool() > loaderTask{ LoadSaveGame };
 std::thread loaderThread{ std::ref{ loaderTask } };
 auto loaderFuture = loaderTask.get_future();
 while (loaderFuture.wait_for(std::chrono::seconds{ 0 }) != std::future_status::ready)
 {
 // Wait until the future is ready.
 // In a full game you could update a spinning progress icon!
 int x = 0;
 }
 bool userSaveLoaded = loaderFuture.get();
 WelcomePlayer(userSaveLoaded);

 while (!HasFinished())
 {
 GivePlayerOptions();

 stringstream playerInputStream;
 GetPlayerInput(playerInputStream);

 EvaluateInput(playerInputStream);

 bool playerWon = true;
 for (auto& enemy : m_enemies)
 {
 playerWon &= enemy->IsAlive() == false;
 }

 if (playerWon)
 {
 SetPlayerWon();
 }
 }

274 CHAPTER 25: Speeding Up Games with Concurrent Programming

 if (GetPlayerWon())
 {
 SerializationManager::GetSingleton().ClearSave();
 cout << "Congratulations, you rid the dungeon of monsters!" << endl;
 cout << "Type goodbye to end" << endl;
 std::string input;
 cin >>input;
 }
}

The first step was to create a function, LoadSaveGame, to be executed in another thread.
LoadSaveGame calls the SerializationManager::Load method. The LoadSaveGame function pointer is
passed into the packaged_task constructor. The packaged_task template has been specialized with
the type bool(). This is the type of the function; it returns a bool and does not take any parameters.

Then std::ref is used to pass the packaged_task into a thread. When a packaged_task is passed to
a thread it can be executed, as a thread object knows how to handle packaged_task objects. This
is true because a packaged_task object overloads an operator, which allows it to be called just like
a function. This overloaded function call operator calls the actual function used to construct the
packaged_task.

The main thread can now call the get_future method on the packaged_task. A future is used in
threaded programs to allow you to set up tasks that will provide returned values at some point in
the future. You could call get immediately on the future, but as get is a blocking call, your thread
would stall until the future result is available. Listing 25-9 shows an alternate implementation where
wait_for is used to check if the future result is available.

The future::wait_for method takes a value from the std::chrono set of duration classes. In this
case, we are passing in std::chrono::seconds{ 0 }, which means the method will return instantly
with a result. The possible return values in our case come from the std::future_status enum class
and are ready or timeout. The timeout value will be returned until the player’s game is loaded or he
or she chooses to start a new game. At that point we can call the future::get method, which stores
the value returned from SerializationManager::Load, via the LoadSaveGame function passed to
loaderTask.

That wraps up your brief introduction to multithreaded C++ programming.

Summary
In this chapter you have been introduced to some of the classes C++ provides to allow you to add
multiple execution threads to your programs. You first saw how threads can be created to execute
functions. Calling functions in this manner allows the operating system to run your threads on more
than one CPU thread and speed up the execution of your program.

When you use threads you need to make sure that your threads do not conflict when accessing
variables and sharing data. You saw that the mutex can be used to manually provide mutually exclusive
access to variables. After showing a mutex in action, I then introduced you to the packaged_task
template, which automatically creates a promise and a future to better manage your concurrent
tasks at a higher level than the base thread and mutex.

275CHAPTER 25: Speeding Up Games with Concurrent Programming

Using threads like this can allow you to provide better responsiveness to players. They aren’t
particularly effective in this task in a text-based game, but they can be used to provide more CPU
execution time per frame in a 3D graphics-based game or for situations such as having a constantly
updating loading or progress bar when long-running tasks are executing on other CPUs. Better
responsiveness or faster frame rates improve usability and players’ perception of your games.

The next and last chapter in this book will show you techniques that you can use to write code that
will compile on multiple platforms. This will be useful if you find yourself in a situation where you
want to write games that can run on iOS, Android and Windows Phones, or Windows and Linux, or
even consoles such as the Xbox One and PlayStation 4. You might even write a game that can run
on all of these in the same way an engine such as Unity can.

277

Chapter 26
Supporting Multiple Platforms
in C++

There will come a time in your game development career when you have to write code that will only
work on a single platform. That code will have to be compiled out of other platforms. You will more
than likely also have to find alternative implementations for each of the platforms you will be working
on. Classic examples of such code can usually be found in interactions between your game and
online login and microtransaction solutions such as Game Center, Google+, Xbox Live, PlayStation
Network, and Steam.

There can be more complicated problems between different platforms. iOS devices run on Arm
processors; Android supports Arm, x86, and MIPS; and most other operating systems can be run
on more than a single instruction set. The problem that can arise is that compilers for each of these
CPU instruction sets can use different sizes for their built-in types. This is especially true when
moving from 32-bit CPUs to 64-bit CPUs. In these situations pointers are no longer 32 bits in size;
they are, in fact, 64 bits. This can cause all sorts of portability problems if you assume that types and
pointers are of a fixed size. These issues can be very difficult to track down and will usually cause
either graphical corruption or you will see your programs simply crash at random times.

Ensuring Types Are the Same Size on Multiple Platforms
Ensuring that your program uses the same size of types in your programs on multiple platforms will
be easier than you might initially think. The C++ STL provides a header called cstdint that contains
types that are of a consistent size. These types are:

int8_t and uint8_t
int16_t and uint16_t
int32_t and uint32_t
int64_t and uint64_t

278 CHAPTER 26: Supporting Multiple Platforms in C++

The int8_t and uint8_t provide integers that are 8 bits or one byte in length. The u version is
unsigned and the non-u version is signed. The other types are similar but of their equivalent fixed
length. There are 16-bit versions, 32-bit versions, and 64-bit versions of integers.

Note You should avoid using the 64-bit integers for the time being unless you explicitly need numbers that
cannot be stored within 32 bits. Most processors still operator on 32-bit integers when doing arithmetic. Even
64-bit processors that have 64-bit memory addresses for pointers still do normal arithmetic using 32-bit ints.
In addition, 64-bit values use twice as much memory as 32-bit values, which increases the RAM required to
execute your program.

The next problem that might arise is that the char type might not be the same on all platforms.
C++ does not supply a fixed-size char type, so we need to improvise a little. Every platform I have
developed games on has used 8-bit char types, so we’re only going to account for that. We will,
however, define our own char type alias so that if you ever do port code to a platform with chars
larger than 8 bits then you will only have to solve the problem in a single place. Listing 26-1 shows
the code for a new header, FixedTypes.h.

Listing 26-1. FixedTypes.h

#pragma once
#include <cassert>
#include <cstdint>
#include <climits>

static_assert(CHAR_BIT == 8, "Compiling on a platform with large char type!");
using char8_t = char;
using uchar8_t = unsigned char;

The FixedTypes.h file includes cstdint, which gives us access to the 8- to 64-bit fixed-width
integers. We then have a static_assert that ensures that the CHAR_BIT constant is equal to 8.
The CHAR_BIT constant is supplied by the climits header and contains the number of bits that are
used by the char type on your target platform. This static_assert will ensure that our code, which
includes the FixedTypes header, will not compile on platforms that use a char with more than 8
bits. The header then defines two type aliases, char8_t and uchar8_t, which you should use when
you know you specifically need 8-bit chars. This isn’t necessarily everywhere. Generally you will
need 8-bit char types when loading data that was written out using tools on another computer that
did use 8-bit character values because the length of the strings in the data will have one byte per
character rather than more. If you’re not sure if you do or don’t need 8 bits specifically, you’re better
sticking to always using 8-bit chars.

The last problem solved in the cstdint header is for using pointers on platforms with different-sized
pointers to integers. Consider the code in Listing 26-2.

279CHAPTER 26: Supporting Multiple Platforms in C++

Listing 26-2. An Example Bad Pointer Cast

bool CompareAddresses(void* pAddress1, void* pAddress2)
{
 uint32_t address1 = reinterpret_cast<uint32_t>(pAddress1);
 uint32_t address2 = reinterpret_cast<uint32_t>(pAddress2);
 return address1 == address2;
}

There are a handful of cases where you might be required to compare the values of two addresses
and you could case the pointers to 32-bit unsigned ints to achieve this comparison. This code,
however, is not portable. The following two hexadecimal values represent different memory locations
on 64-bit computers:

0xFFFFFFFF00000000
0x0000000000000000

If you cast these two values to uint32_t the two hex values stored in the unsigned integers will be:

0x00000000
0x00000000

The CompareAddresses function would return true for two different addresses because the upper 32
bits of the 64-bit addresses have been narrowed without warning by reinterpret_cast. This function
would always work on systems with 32-bit pointers or less and only break on 64-bit systems.
Listing 26-3 contains the solution to this problem.

Listing 26-3. An Example of a Good Pointer Comparison

bool CompareAddresses(void* pAddress1, void* pAddress2)
{
 uintptr_t address1 = reinterpret_cast<uintptr_t>(pAddress1);
 uintptr_t address2 = reinterpret_cast<uintptr_t>(pAddress2);
 return address1 == address2;
}

The cstdint header provides intptr_t and uintptr_t, which are signed and unsigned integers with
enough bytes to completely store an address on your target platform. You should always use these
types when casting pointers into integer values if you would like to write portable code!

Now that we’ve covered the different issues we can encounter with different-sized integers and
pointers on different platforms, we’ll look at how we can provide different implementations of classes
on different platforms.

Using the Preprocessor to Determine Target Platform
Straight off the bat in this section, I’ll show you a header file that defines preprocessor macros
to determine which platform you are currently targeting. Listing 26-4 contains the code for the
Platforms.h header file.

280 CHAPTER 26: Supporting Multiple Platforms in C++

Listing 26-4. Platforms.h

#pragma once

#if defined(_WIN32) || defined(_WIN64)

#define PLATFORM_WINDOWS 1
#define PLATFORM_ANDROID 0
#define PLATFORM_IOS 0

#elif defined(__ANDROID__)

#define PLATFORM_WINDOWS 0
#define PLATFORM_ANDROID 1
#define PLATFORM_IOS 0

#elif defined(TARGET_OS_IPHONE)

#define PLATFORM_WINDOWS 0
#define PLATFORM_ANDROID 0
#define PLATFORM_IOS 1

#endif

This header achieves the task of converting preprocessor symbols provided by the Windows,
Android, and iOS build tools into single definitions that we can now use in our own code. The
_WIN32 and _WIN64 macros are added to your build on Windows machines, whereas __ANDROID__
and TARGET_OS_IPHONE exist when building Android and iOS applications. These definitions can
change over time, and an obvious example is the _WIN64 macro, which did not exist before the 64-
bit versions of the Windows operating system and this is the reason for wanting to create our own
platform macros. We can add or remove from Platforms.h as we see fit without affecting the rest of
our program.

I’ve updated the Enemy classes to have platform-specific implementations to show you how you can
put these platform-specific classes into action. Listing 26-5 shows that the Enemy class has been
renamed EnemyBase.

Listing 26-5. Renaming Enemy to EnemyBase

#pragma once

#include "Entity.h"
#include "EnemyFactory.h"
#include "Serializable.h"
#include <memory>

class EnemyBase
 : public Entity
 , public Serializable

281CHAPTER 26: Supporting Multiple Platforms in C++

{
public:
 using Pointer = std::shared_ptr<EnemyBase>;

private:
 EnemyType m_type;
 bool m_alive{ true };

public:
 EnemyBase(EnemyType type, const uint32_t serializableId)
 : m_type{ type }
 , Serializable(serializableId)
 {

 }

 EnemyType GetType() const
 {
 return m_type;
 }

 bool IsAlive() const
 {
 return m_alive;
 }

 void Kill()
 {
 m_alive = false;
 }

 virtual void OnSave(std::ofstream& file)
 {
 file << m_alive;
 }

 virtual void OnLoad(std::ifstream& file)
 {
 file >>m_alive;
 }
};

The class isn’t pure virtual as we don’t actually have any platform-specific code to add as this is an
exercise for illustrative purposes. You can imagine that a proper base class for platform abstraction
would have pure virtual methods that would have platform-specific code added.

The next step is to create three classes for our different platforms. These are shown in Listing 26-6.

282 CHAPTER 26: Supporting Multiple Platforms in C++

Listing 26-6. WindowsEnemy, AndroidEnemy, and iOSEnemy

class WindowsEnemy
 : public EnemyBase
{
public:
 WindowsEnemy(EnemyType type, const uint32_t serializableId)
 : EnemyBase(type, serializableId)
 {
 std::cout << "Created Windows Enemy!" << std::endl;
 }
};

class AndroidEnemy
 : public EnemyBase
{
public:
 AndroidEnemy(EnemyType type, const uint32_t serializableId)
 : EnemyBase(type , serializableId)
 {
 std::cout << "Created Android Enemy!" << std::endl;
 }
};

class iOSEnemy
 : public EnemyBase
{
public:
 iOSEnemy(EnemyType type, const uint32_t serializableId)
 : EnemyBase(type, serializableId)
 {
 std::cout << "Created iOS Enemy!" << std::endl;
 }
};

These three classes rely on polymorphism to allow the rest of the program to work with the
EnemyBase class rather than the platform-specific implementations. The last problem to solve is how
to create these classes. Fortunately the Factory pattern gives us a ready-made solution. Listing 26-7
updates EnemyFactory to create the correct type of EnemyBase for our implementation.

Listing 26-7. Updating EnemyFactory with Platform-Specific Types

namespace
{
#if PLATFORM_WINDOWS
#include "WindowsEnemy.h"
 using Enemy = WindowsEnemy;
#elif PLATFORM_ANDROID
#include "AndroidEnemy.h"
 using Enemy = AndroidEnemy;

283CHAPTER 26: Supporting Multiple Platforms in C++

#elif PLATFORM_IOS
#include "iOSEnemy.h"
 using Enemy = iOSEnemy;
#endif
}

EnemyBase* CreateEnemy(EnemyType enemyType, const uint32_t serializableId)
{
 Enemy* pEnemy = nullptr;
 switch (enemyType)
 {
 case EnemyType::Dragon:
 pEnemy = new Enemy(EnemyType::Dragon, serializableId);
 break;
 case EnemyType::Orc:
 pEnemy = new Enemy(EnemyType::Orc, serializableId);
 break;
 default:
 assert(false); // Unknown enemy type
 break;
 }
 return pEnemy;
}

The CreateEnemy function itself has only changed in one way. Its return type is now EnemyBase rather
than Enemy. This is the case because I’ve used a type alias to have the Enemy keyword map to the
correct platform-specific Enemy version. You can see this in action in the unnamed namespace before
the function. I check each platform definition, include the appropriate header, and finally add using
Enemy = to set the type alias to the correct type.

The Factory pattern is the perfect method to use when you need to implement platform-specific
versions of classes. The Factory allows you to hide the implementation details of the creation of
objects from the rest of your program. This leads to code that is easier to maintain and reduces the
number of places in your codebase where you have to change things around to add new platforms.
Reducing the time to port to a new platform could be a lucrative business opportunity and open up
new potential revenue streams for your company.

Summary
This brings us to the end of your introduction to game programming in C++. This book has walked
you through the main programming paradigms in C++ from procedural programming to object-
oriented programming through to generic programming. You’ve also seen how the STL can provide
you with ready-made data structures as well as algorithms to work on and with those structures.

The last part of this book has introduced you to some topics that will be important for you to
learn as you go through your game development career. Mastering managing memory, concurrent
programming, and higher level topics such as design patterns will ensure that you and your
programs can adapt to whatever the future brings.

285

Chapter 27
Wrapping Up

The C++ programming language is a tool that will serve you well while trying to build video games.
It provides low-level access to processors, which allows you to write efficient code for a wide variety
of computer processors.

This book has shown you various techniques, features, and paradigms that you can apply to
your own programming efforts. You’ve seen that C++ can be used to write procedural programs
or object-oriented programs. Procedural programs can be created consisting only of functions,
variables, and structs, whereas object-oriented programs are built from classes.

C++ extends these two paradigms by also allowing for generic programming. This type of
programming is supported through the ability to create templates. Templates are used to create
blueprints for classes with abstract types. The template compiler is responsible for creating
specialized instances of template classes at compile time. C++ uses templates to provide the
Standard Template Library. The STL supplies many data structures and algorithms so that you do
not have to write every program from scratch.

An Overview of Text Adventure
This book ended with a very simple text adventure game that you can now expand into a full game
if you wish. Listing 27-1 shows the Game class definition. This class encapsulates all of the types of
programming C++ provides.

Listing 27-1. The Game Class Definition

class Game
 : public EventHandler
 , public QuitObserver
{
private:
 static const uint32_t m_numberOfRooms = 4;
 using Rooms = std::array<Room::Pointer, m_numberOfRooms>;
 Rooms m_rooms;

286 CHAPTER 27: Wrapping Up

 Player m_player;

 Option::Pointer m_attackDragonOption;
 Option::Pointer m_attackOrcOption;
 Option::Pointer m_moveNorthOption;
 Option::Pointer m_moveEastOption;
 Option::Pointer m_moveSouthOption;
 Option::Pointer m_moveWestOption;
 Option::Pointer m_openSwordChest;
 Option::Pointer m_quitOption;

 Sword m_sword;
 Chest m_swordChest;

 using Enemies = std::vector<EnemyBase::Pointer>;
 Enemies m_enemies;

 std::mutex m_mutex;
 mutable std::unique_lock<std::mutex> m_finishedQueryLock{ m_mutex, std::defer_lock };
 bool m_playerQuit{ false };
 void SetPlayerQuit()
 {
 m_finishedQueryLock.lock();
 m_playerQuit = true;
 m_finishedQueryLock.unlock();
 }

 bool m_playerWon{ false };
 void SetPlayerWon()
 {
 m_finishedQueryLock.lock();
 m_playerWon = true;
 m_finishedQueryLock.unlock();
 }

 bool GetPlayerWon()
 {
 m_finishedQueryLock.lock();
 bool playerWon = m_playerWon;
 m_finishedQueryLock.unlock();
 return playerWon;
 }

 void InitializeRooms();
 void WelcomePlayer(const bool loaded);
 void GivePlayerOptions() const;
 void GetPlayerInput(std::stringstream& playerInput) const;
 void EvaluateInput(std::stringstream& playerInput);
public:
 Game();
 virtual ~Game();

287CHAPTER 27: Wrapping Up

 void RunGame();

 virtual void HandleEvent(const Event* pEvent);

 // From QuitObserver
 virtual void OnQuit();

 bool HasFinished() const
 {
 m_finishedQueryLock.lock();
 bool hasFinished = m_playerQuit || m_playerWon;
 m_finishedQueryLock.unlock();
 return hasFinished;
 }
};

The Game class shows how you can construct classes in C++. There is a parent class from which Game
derives. This class provides an interface that includes virtual methods. The Game class overrides these
virtual methods with specific instances of its own. A perfect example of this is the HandleEvent method.

Game also shows how you can customize STL templates for your own uses. There is an array of
Room::Pointer instances as well as a vector of EnemyBase::Pointer instances. These types of
pointers are created using type aliases. Type aliases in C++ allow you to create your own named
types and are generally a good idea. If you ever need to change the type of an object at a later date
you can get away with just changing the type alias. If you hadn’t used an alias you would be required
to manually change every location where the type had been used.

There is also a mutex present in the Game class. This mutex is a clue to the fact that C++ allows you
to write programs that can execute on multiple CPU cores at once. A mutex is a mutual exclusion
object that allows you to ensure that only a single thread is accessing a single variable at one time.

Listing 27-2 contains the final source code for the Game::RunGame method. This method consists of
code that shows how you can iterate over collections and use futures.

Listing 27-2. The Game::RunGame Method

void Game::RunGame()
{
 InitializeRooms();

 std::packaged_task< bool() > loaderTask{ LoadSaveGame };
 std::thread loaderThread{ std::ref{ loaderTask } };
 auto loaderFuture = loaderTask.get_future();
 while (loaderFuture.wait_for(std::chrono::seconds{ 0 }) != std::future_status::ready)
 {
 // Wait until the future is ready.
 // In a full game you could update a spinning progress icon!
 int32_t x = 0;
 }
 bool userSaveLoaded = loaderFuture.get();
 WelcomePlayer(userSaveLoaded);

288 CHAPTER 27: Wrapping Up

 while (!HasFinished())
 {
 GivePlayerOptions();

 stringstream playerInputStream;
 GetPlayerInput(playerInputStream);

 EvaluateInput(playerInputStream);

 bool playerWon = true;
 for (auto& enemy : m_enemies)
 {
 playerWon &= enemy->IsAlive() == false;
 }

 if (playerWon)
 {
 SetPlayerWon();
 }
 }

 if (GetPlayerWon())
 {
 SerializationManager::GetSingleton().ClearSave();
 cout << "Congratulations, you rid the dungeon of monsters!" << endl;
 cout << "Type goodbye to end" << endl;
 std::string input;
 cin >>input;
 }
}

The range-based for loop can be used in conjunction with the auto keyword to provide easy,
portable iteration over many STL collections. You can see it in action in RunGame where there is a loop
over the m_enemies vector.

A paired_task is used to execute save game loading on a separate thread of execution. The
std::thread::get_future method is used to acquire a future object that lets you know when the
task you were executing has been completed. This approach to loading can be used to allow you to
load games while updating a dynamic loading screen.

There is also an example of how to use cin and cout to read player input and write out messages to
the console. Input and output are fundamental concepts for game developers as they are essential
to providing the interactivity that players expect from games.

289CHAPTER 27: Wrapping Up

Summary
Game development is a fun but demanding field to enter. There are many areas to explore, learn, and
attempt to master. Very few people become proficient in all areas of game development, but their
programming skills are usually transferable. Programmers can specialize in graphics programming,
network programming, gameplay programming, or other fields such as audio and animation.
There will never be a shortage of tasks for programmers to undertake as most large games
are written in C++ with code bases that have been around for 10 to 20 years. Engines such as
Cryengine, Unreal, and Unity are written in C++ and provide support for scripting languages
to create game logic. C++ is a perfect choice for someone looking to begin a career in game
development that will take them into an AAA game development studio at some point.

I hope you’ve found this book an enjoyable entry into your journey down the path of your chosen career.

Symbols ■
&& operator, 32
|| operator, 32

A ■
AddDynamicOption method, 188
AddItem method, 192
Addition operator, 18
Allocating memory, 228

overloaded delete function, 233
overloaded new function, 232
unnamed namespace, 232

AND operator, 28
AndroidEnemy class, 282
Apple LLVM, 2
Arithmetic calculator, 20
Arithmetic operations

addition, 18
division operator, 19
modulo, 19
multiplication, 19
subtraction, 18

Arithmetic unary operators, 33
assert method, 204
Assignment operators, 17

invoking, 142
Player class, 141

at method, 175
AttackEnemyOption class, 193

B ■
basic_string capacity methods, 149
Binary | (OR) operator, 30
Bitwise operators

AND operator, 28
Binary | (OR) operator, 30

bit sequence, 27
^ (exclusive OR) operator, 30
hexadecimal number, 27
left shift (<<) operator, 31
right shift (>>) operator, 32

C ■
C++

const keyword
constant member methods, 105
constant variables, 104
parameters, 105
pointers, 105

friend keyword, 108
inline keyword, 107
static keyword

global and file scoped variables, 102
static class member variables, 98
static local variables, 98
static member methods, 101

C++98, 1
Calculators

equality operators, 23
greater-than operator, 25
greater-than or equal to operator, 25
inequality operator, 24
less than operator, 26
less-than or equal to operator, 26

C++ array, 37
C++ guessing game

boolean values, 11
dynamics vs. static typed languages

declaring variables, 7
defining variables, 8

enums, 11–12
floating point numbers, 10
integers, 8–9

Index

291

rand function, 15
srand function, 15
static_cast, 13
two’s complement, 9–10
unsigned integers, 9

CHAR_BIT constant, 278
char data type, 27
Chest class, 189
Clang, 2
Class inheritance

IDE, 113
logging code, 115
method overriding, 117
motorcycle class, 114
printing number of wheels, 113
protected keyword, 113
public inheritance, 113
Text Adventure

Entity class, 117
GivePlayerOptions and

EvaluateInput methods, 123
InitializeRooms, 120
Player class, 118
Room array, 120
Room class, 118
Room pointer, 121–122
RunGame, 121, 123
UpdateOnOption method, 124

vehicle class hierarchy, 111
vehicle constructor, 114
vehicle destructor, 116

C++ multiple platforms
AndroidEnemy class, 282
bad pointer cast, 279
CHAR_BIT constant, 278
CompareAddresses function, 279
CreateEnemy function, 283
EnemyFactory updation, 282
FixedTypes.h, 278
good pointer comparison, 279
iOSEnemy class, 282
Platforms.h, 280
renaming Enemy to

EnemyBase, 280
types, 277
WindowsEnemy class, 282

Compilers, 2, 201
constexpr keyword, 203
Contiguous memory, 163
Copy constructors

constructor method, 140
value and constant reference, 140

Coupled code, 244
C++ programming language

compilers, 2
CPU

game.RunGame() method, 268
RunGameThread function, 268
thread creation, 268

data sharing threads
Game::HasFinished method, 269
mutex (see Mutex)
_tmain crash function, 269

game developers, 3
LoadSaveGame function

future::wait_for method, 274
get_future method, 274
packaged_task, 273

Microsoft Visual Studio Express
Windows Desktop 2012, 3

paradigms (see Programming paradigms)
text adventure

Game class definition, 285
Game::RunGame method, 287
paired_task, 288
std::thread::get_future

method, 288
C style strings

null terminator, 43
strcat, 45
strcmp, 44
strcpy, 45
string literal, 43
strlen, 44

D ■
Dereferencing pointers, 41
Design patterns

factory
advantage, 241
Enemy class, 241–243
Game class, 241

292 Index

C++ guessing game (cont.)

Option class, 242
Option creation, 240
pointer aliases, 243
shared_ptr, 243
updated Game constructor, 243

observers
AddObserver and RemoveObserver

method, 245
decoupling code, 244
Game class constructor

and destructor, 248
Game class QuitObserver, 247
Notifier template class, 244
Notify method, 245
OnQuit method, 248
QuitObserver class, 246
QuitOption, 246

singleton, 239
Visitor

class, 249
EvaluateVisitor class, 250
Game::EvaluateInput method, 251
Option class, 250
Text Adventure class, 249
Visitable class, 249

Division operator, 19

E ■
emplace method, 169
Enemy class, 192
Equality operators, 22
EvaluateInput method, 136

F ■
Files and namespaces

creation, 73
GameLoop.cpp file, 75, 77
GameLoop.h, 75
HelloWorld.cpp, 71
HelloWorld from _tmain, 72
HelloWorld.h file, 72
Player.h, 75
PlayerOptions.h, 77
#pragma once, 72
TextAdventure.cpp file, 74

find_first_of method, 153
Find method, 152, 173

Flow control
continue and break statement, 64
else and else if statements, 58–60
for loop, 60–61
goto statement, 65–66
if statement, 57
switch statement, 62–64
Text Adventure, game loop

chosenOption, 67
compare function, 67
GetPlayerInput function, 67
GivePlayerOptions, 67
main function, 68
PlayerOptions, 67
Player struct and

WelcomePlayer function, 66
RunGame function, 68

while loop, 61–62
Functions

parameters, 50
pointer, 51
PrintHello function, 50
reference, 52
return values, 51
single function, 49
structures, 53–54
Text Adventure game, 54–55

G ■
Game class, 287
Game::OnQuit method, 271
Game RunGame method, 259
Generic programming, 3
GetCounter and IncrementCounter

functions, 107
Global namespace, 73
GNU Compiler Collection (GCC), 2

H ■
HasFinished method, 269–270
HasWeapon method, 192

I, J, K ■
Increment and decrement operators, 33
IncrementCounter method, 101
Inequality operator, 24

293Index

insert method, 169, 171
intArray, 42
Integrated development environment (IDE), 113
iOSEnemy class, 282
Item class, 190

L ■
Left shift (<<) operator, 31
ListNode class, 164

for loop function, 166
OurList function, 165

ListNode second, 166
list::sort method, 167
Lock method, 270
Logical operators

&& operator, 32
|| operator, 32

M ■
Memory management

constructed text, 236
C++ stack memory

function1, 226
program, 226
stack frame, 227
_tmain, 226

heap memory
allocating memory, 228
new and delete operators, 228–229
pLast and pCurrent, 233
STL class, 229
unique_ptr and shared_ptr, 230

MemoryAllocationHeader struct, 232
memory heap, 234
overloaded delete function, 233
overloaded new function, 232
PrintAllocations function, 234
pStart and pNextFree, 233
static memory, 225
unnamed namespace, 232

Microsoft Visual C++ Compiler (MSVC), 2
Microsoft Visual Studio Express 2012, 3
Modulo operator, 19
Multiplication operator, 19
Mutex, 287

HasFinished method, 269–270
lock method, 270

OnQuit method, 271
RunGame method, 271–272
SetPlayerQuit and

SetPlayerWon methods, 271
_tmain function, 269
try_lock method, 270
unlock method, 270

N ■
Native Development Kit (NDK)., 2
Non-inline method, 108
Notify method, 245
Null terminator, 43

O ■
Object-oriented programming (OOP), 2

default constructor, 86
encapsulation

class vs. struct, 83
Player class, 83–84
public class, 84

operator overloading, 90
overload methods, 88
Player Class constructor, 85
Player constructor, 87
string class constructor, 85
Text Adventure game

Game class, 92
Game.cpp, 93
GameLoop namespace, 92
main function, 95
Player class, 94

OpenChestOptions class, 191
Open method, 190
Operators

arithmetic (see Arithmetic operations)
assignment, 17
bitwise (see Bitwise operators)
logical (see Logical operators)
relational (see Relational operators)
unary (see Unary operators)

P, Q ■
Player copy constructor, 140
Player::HasWeapon method, 194
Player OnLoad method, 262

294 Index

Player OnSave method, 261–262
Pointers

arithmetic, 41
array, 42
dereference operator, 41
low-level programming

language, 39
memory address., 39
output, 40

Polymorphism
definition, 127
dynamic_cast

downcasting, 129
upcasting, 130

pure virtual methods, 130
Text Adventure

EvaluateInput method, 136
Game Class constructor, 135
GivePlayerOptions method, 135
MoveOption class, 132
Option interface, 131
QuitOption class, 134
RunGame method, 136

virtual methods, 127
pop method, 178
PrintHello function, 50
PrintOptions method, 188
PrintSum function, 50
Programming paradigms

functions, 2
generic programming, 3
OOP, 2

Pure virtual methods, 130
push method, 178

R ■
Recursion, 172
Relational operators

equality operators, 22
greater-than operators, 23
less-than operators, 23

Right hift (>>) operator, 32
Room::EvaluateInput method, 188
RunGame method, 136
RunGameThread function, 268

S ■
Saving and loading game progress

Game Class constructor, 260–261
Player OnLoad method, 262
Player OnSave method, 261–262
Room class, 263–264
Room OnSave and Room OnLoad, 264
RunGame method, 259
SerializationManager class

ClearSave method, 257
GetSerializable methods, 255
Load method, 256
RegisterSerializable method, 255
RemoveSerializable method, 255
Save method, 255
Serializable class, 257

Updated main function, 258
WelcomePlayer method, 260

Semantics
move assignment, 143
Player class, 142
rvalue reference, 142

Serializable class, 258
SerializableManager Save method, 255
Serialization, 253–254
SerializationManager class method, 257
SerializationManager

ClearSave method, 257
SerializationManager Load method, 256
Single threaded memory allocator, 231
Stack frames, 226
Standard template library (STL), 147

array and list memory layouts, 163
array template

container, 157
C-style, 157
elements finding array, 158

binary search tree
Find method, 173
head node, 172
if statement, 173
iteration, 173
recursion, 172
TreeNode class, 172–173
visual representation, 171–172

295Index

bitsets
altering bits, 183
constructors, 182
creation, 181
definition, 181
flip method, 184
query, 182
reset method, 184
set method, 184
size method, 182

catching exceptions, 176
handle exceptions, 175
hash map, 173
ListNode class, 164

for loop function, 166
OurList function, 165

list::sort method, 167
list syntax, 166
list vs. vector, 166
map container, 170
pair templates, 170
queue container, 178
set container, 169
sorting arrays and vectors, 160
stack container, 177
Text Adventure game

(see Text Adventure game)
throwing exceptions, 175
unordered_map, 174–175
unordered_set, 174
vector class

insert and erase methods, 159
loops, 160
specialization, 159

static_assert method, 204
STL string class

basic_string aliases, 147
basic_string capacity methods, 149
basic_string modifiers, 149
constructors, 148
find_first_of method, 153
find method, 152
iterators

auto with for loop, 152
constant iterators, 151

decrement string, 150
range-based for loop, 151–152

setprecision modifier, 154
stringstream modifiers, 154

strcat string, 45
strcmp string, 44
strcpy string, 45
String literal, 43
strlen string, 44
Subtraction operator, 18
Sword class, 190

T ■
Template programming

assert vs. static_assert, 204
compile vs. runtime

time compilation, 201
const vs. constexpr, 203
EventManager class

AttachEvent method, 212, 214
destructor, 213
DetachEvent method, 212, 214
Event class, 208
EventHandler interface, 208
friend function, 213
member variables and methods, 210
RegisterEvent method, 211, 214
SendEvent and SendEventToHandler

method, 212
SendEventToHandler function, 214
static_assert code, 215

QuitEvent
evaluate method, 218
game class updation, 218
HandleEvent method, 220
RunGame method, 219

SDBM hash algorithm, 216
Singleton class

creation, 205
EventManager class, 206, 208
m_instance variable, 206

Text adventure game, 46
AddItem, 192
AttackEnemyOption class, 193
AttackEnemyOption::Evaluate method, 194

296 Index

Standard template library (STL) (cont.)

Chest class, 189
dynamic and

static options, 187
Enemy class, 193
EvaluateInput method, 136
Game Class constructor, 135
Game constructor, 195
GivePlayerOptions method, 135
HasWeapon method, 192
Item class, 190
JoiningRooms array, 186
map, 187
MoveOption class, 132
OpenChestOption::Evaluate nethod, 191
OpenChestOptions class, 191
Option interface, 131
Option storage, 186
Player class, 192
QuitOption class, 134
Room::EvaluateInput method, 188
STL array code, 185
Sword class, 190
updated Game class, 194
vector, 186

Thread creation, 268
_tmain function, 55
Try_lock method, 270
Turing complete, 202

U ■
Unary operators

arithmetic
increment and decrement, 33
negative operator, 33
plus operator, 33

Logical Not, 34
~ operator, 35

unique_ptr, 231
Unlock method, 270

V ■
vector class, 164
vector::push_back method, 188
Virtual methods, 127
Visitable class, 249
Visitor objects, 249
Visual Studio IDE, 100

W ■
WelcomePlayer method, 55, 260
WindowsEnemy class, 282

X, Y, Z ■
Xcode, 58

297Index

Learn C++
for Game Development

Bruce Sutherland

Learn C++ for Game Development

Copyright © 2014 by Bruce Sutherland

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material
supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the
purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the
Copyright Law of the Publisher's location, in its current version, and permission for use must always be obtained from
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are
liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4302-6457-6

ISBN-13 (electronic): 978-1-4302-6458-3

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Publisher: Heinz Weinheimer
Lead Editor: Steve Anglin
Development Editor: Matthew Moodie
Technical Reviewer: Michael Thomas
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Louise Corrigan,

James T. DeWolf, Jonathan Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman,
James Markham, Matthew Moodie, Jeff Olson, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke,
Dominic Shakeshaft, Gwenan Spearing, Matt Wade, Steve Weiss

Coordinating Editor: Anamika Panchoo, Kevin Shea
Copy Editor: Teresa Horton
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit
www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science +
Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales–eBook
Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available to readers
at www.apress.com. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code/.

orders-ny@springer-sbm.com
www.springeronline.com
rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/

v

Contents

About the Author �� xv

About the Technical Reviewer �� xvii

Acknowledgments ��� xix

Introduction ��� xxi

Chapter 1: Beginning C++ ■ ���1

Compilers ��2

Programming Paradigms ���2

Procedural Programming ��� 2

Object-Oriented Programming ��� 2

Generic Programming �� 3

C++ Game Programming ��3

Our First C++ Program ��3

Summary ���4

Part 1: Procedural Programming ■ �� 5

Chapter 2 ■ : Writing a Guessing Game with C++ Types ���7

Dynamic Versus Static Typed Languages ��7

vi Contents

Declaring Variables �� 7

Defining Variables �� 8

Integers ���8

Unsigned Integers �� 9

Two’s Complement ��9

Floating Point Numbers ���10

Boolean Values ��11

Enums ���11

Switching from One Type to Another ���13

static_cast ��� 13

A Simple Guessing Game ��14

Summary ���16

Chapter 3: Creating Calculators with Operators ■ ��17

The Assignment Operator ��17

Arithmetic Operators ���18

The Addition Operator �� 18

The Subtraction Operator �� 18

The Multiplication and Division Operators ��� 19

The Modulo Operator ��� 19

A Simple Arithmetic Calculator ��20

Relational Operators ��22

Equality Operators ��� 22

Greater-Than Operators ��� 23

Less-Than Operators ��� 23

Simple Comparison Calculators ��23

Bitwise Operators ��27

Hexadecimal Number Representation ��� 27

The Binary & (AND) Operator ��� 28

The Binary | (OR) Operator ��� 30

The Binary ^ (Exclusive OR) Operator ��� 30

viiContents

The Left Shift (<<) Operator �� 31

The Right Shift (>>) Operator �� 32

Logical Operators ��32

The && Operator �� 32

The || Operator ��� 32

Unary Operators ��33

Arithmetic Unary Operators ��� 33

The Logical Not Unary Operator ��� 34

The One’s Complement Operator ��� 34

Summary ���35

Chapter 4: Beginning C++ Game Development with Arrays ■ ��37

The C++ Array ���37

Pointers ���39

Pointer Arithmetic �� 41

Dereferencing Pointers �� 41

Pointers and Arrays ��� 41

C Style Strings in Arrays ��42

Working with C Style Strings ��� 44

Text Adventure Game ��46

Summary ���47

Chapter 5: Functions, the Building Blocks of C++ ■ ���49

Writing Our First Function ���49

Passing Parameters to Functions ��50

Return Values ��51

Passing by Pointer ���51

Passing by Reference ��52

Structures ��53

Adding Functions to Text Adventure ��54

Summary ���55

viii Contents

Chapter 6: Making Decisions with Flow Control ■ ��57

The if Statement ��57

The else and else if Statements ��58

The for Loop ��60

The while Loop ��61

The switch Statement ���62

The break and continue Keywords ��64

The goto Statement ���65

Adding a Game Loop to Text Adventure ���66

Summary ���69

Chapter 7 ■ : Organizing Projects Using Files and Namespaces ���71

Source and Header Files ���71

Creating Namespaces ���73

Updating Text Adventure with Source Files, Header Files, and Namespaces ������������������������������74

Summary ���77

Part 2: Object-Oriented Programming ■ �� 79

Chapter 8: Object-Oriented Programming with Classes ■ ��81

Object-Oriented Programming ��81

Encapsulation ��82

Constructors and Destructors ���85

Method Overloading ��88

Operator Overloading ��90

Updating Text Adventure to Use Classes ���92

Summary ���95

Chapter 9: Controlling Data with Access Modifiers ■ ���97

The static Keyword ��97

Creating static Local Variables �� 98

Using static class Member Variables ��� 98

ixContents

Using static Member Methods ��� 101

Using static to Alter Global Scope �� 102

The const Keyword ��103

Constant Variables ��� 104

Constant Pointers �� 105

Constant Parameters ��� 105

Constant Member Methods ��� 105

Two More Keywords ��107

The inline Keyword �� 107

The friend Keyword ��� 108

Summary ���109

Chapter 10: Building Games with Inheritance ■ ���111

Inheriting from a Base Class ���111

Constructors and Destructors in Derived Classes ���114

Method Overriding ���117

Updating Text Adventure ��117

Creating an Entity Class ��� 117

Adding Inheritance to the Player Class �� 118

Adding Rooms ��� 118

Moving Through Rooms ��� 123

Summary ���126

Chapter 11: Designing Game Code with Polymorphism ■ ��127

Virtual Methods ���127

Downcasting and Upcasting with dynamic_cast ��129

Creating Interfaces with Pure Virtual Methods ��130

Using Polymorphism in Text Adventure ���131

Summary ���137

x Contents

Chapter 12: Copying and Assigning Data to Objects ■ ���139

Copy Constructors ���139

Assignment Operators ���141

Move Semantics ��142

Summary ���143

Part 3: The STL ■ �� 145

Chapter 13: The STL String Class ■ ��147

Standard string and basic_string ��147

Constructing Strings ��148

Working with Strings ���149

Accessing String Data Through Iterators ���150

Searching Within Strings ���152

Formatting Data with stringstream ���153

Summary ���155

Chapter 14: STL Array and Vector ■ ���157

The STL Array Template ���157

The STL Vector Class ���159

Sorting Arrays and Vectors ��160

Summary ���161

Chapter 15: STL List ■ ���163

Understanding Array and List Memory Layouts ��163

Building a List Class ���164

The STL List Template ���166

Summary ���167

xiContents

Chapter 16: STL’s Associative Containers ■ ��169

The STL set Container ���169

The STL map Container ��170

Binary Search Trees ��171

Fast Data Access Using a Hash Map ���173

STL unordered_set and unordered_map ���174

Summary ���176

Chapter 17: STL’s Stack and Queue ■ ���177

The STL stack Container ��177

The STL queue Container ��178

Summary ���179

Chapter 18: STL’s bitset ■ ���181

Creating bitset Objects ��181

Working with bitsets ��182

Summary ���184

Chapter 19: Using the STL in Text Adventure ■ ���185

Using STL array to Store Room Pointers ���185

Using a vector and a map to Store Options ���186

Adding Gameplay to Text Adventure ��189

Summary ���198

Part 4: Generic Programming ■ ��� 199

Chapter 20: Template Programming ■ ��201

Compile Versus Runtime Time Compilation ���201

const Versus constexpr ��203

assert Versus static_assert ��204

Summary ���204

xii Contents

Chapter 21: Practical Template Programming ■ ��205

Creating Singleton Classes with Templates ���205

Implementing the EventManager Class ���208

The EventHandler Interface ���208

The Event Class ���208

The EventManager Implementation ��� 210

Calculating SDBM Hash Values Using a Template Metaprogram ��216

Using an Event to Quit the Game ���218

Summary ���221

Part 5: ■ C++ Game Programming �� 223

Chapter 22: Managing Memory for Game Developers ■ ���225

Static Memory ���225

The C++ Stack Memory Model ���226

Working with Heap Memory ��228

Writing a Basic Single Threaded Memory Allocator ��231

Summary ���238

Chapter 23: Useful Design Patterns for Game Development ■ ��239

Using the Factory Pattern in Games ��239

Decoupling with the Observer Pattern ��244

Easily Adding New Functionality with the Visitor Pattern ��249

Summary ���251

Chapter 24: Using File IO to Save and Load Games ■ ���253

What Is Serialization? ��253

The Serialization Manager���254

Saving and Loading Text Adventure ��258

Summary ���265

xiiiContents

Chapter 25: Speeding Up Games with Concurrent Programming ■ ����������������������������������267

Running Text Adventure in Its Own Thread ��267

Sharing Data Between Threads Using Mutexes ��269

Using Futures and Promises ���272

Summary ���274

Chapter 26: Supporting Multiple Platforms in C++ ■ ���277

Ensuring Types Are the Same Size on Multiple Platforms ���277

Using the Preprocessor to Determine Target Platform ��279

Summary ���283

Chapter 27: Wrapping Up ■ ���285

An Overview of Text Adventure ��285

Summary ���289

Index ���291

xv

About the Author

Bruce Sutherland is a video game developer working at Firemonkey Studios in Melbourne,
Australia. He is currently working on iOS and Android titles written in C++ for both platforms.
Bruce has worked on Real Racing 3, the Dead Space series, and The Elder Scrolls: Oblivion
among others in his nine-year video game development career.

xvii

About the Technical
Reviewer

Michael Thomas has worked in software development for more than
20 years as an individual contributor, team lead, program manager,
and Vice President of Engineering. Michael has more than 10 years
of experience working with mobile devices. His current focus is in the
medical sector, using mobile devices to accelerate information transfer
between patients and health care providers.

xix

Acknowledgments

I would like to thank my wife for the support and encouragement she provides while trying to write
books and ship video games at the same time. Both of these are time-consuming and demanding
pursuits and Claire’s support is greatly appreciated.

I’d also like to thank the team at Apress for the endless support, encouragement, and advice they
provided while I was writing this book. Converting programmer speak into plain English is a task they
carry out effortlessly.

	Contents at a Glance
	Contents
	About the Author
	About the TechnicalReviewer
	Acknowledgments
	Introduction
	Chapter 1: Beginning C++
	Compilers
	Programming Paradigms
	Procedural Programming
	Object-Oriented Programming
	Generic Programming

	C++ Game Programming
	Our First C++ Program
	Summary

	Part 1: Procedural Programming
	Chapter 2: Writing a Guessing Game with C++ Types
	Dynamic Versus Static Typed Languages
	Declaring Variables
	Defining Variables

	Integers
	Unsigned Integers

	Two’s Complement
	Floating Point Numbers
	Boolean Values
	Enums
	Switching from One Type to Another
	static_cast

	A Simple Guessing Game
	Summary

	Chapter 3: Creating Calculators with Operators
	The Assignment Operator
	Arithmetic Operators
	The Addition Operator
	The Subtraction Operator
	The Multiplication and Division Operators
	The Modulo Operator

	A Simple Arithmetic Calculator
	Relational Operators
	Equality Operators
	Greater-Than Operators
	Less-Than Operators

	Simple Comparison Calculators
	Bitwise Operators
	Hexadecimal Number Representation
	The Binary & (AND) Operator
	The Binary | (OR) Operator
	The Binary ^ (Exclusive OR) Operator
	The Left Shift (<<) Operator
	The Right Shift (>>) Operator

	Logical Operators
	The && Operator
	The || Operator

	Unary Operators
	Arithmetic Unary Operators
	Unary Negative Operator
	Unary Plus Operator
	The Increment and Decrement Operators

	The Logical Not Unary Operator
	The One’s Complement Operator

	Summary

	Chapter 4: Beginning C++ Game Development with Arrays
	The C++ Array
	Pointers
	Pointer Arithmetic
	Dereferencing Pointers
	Pointers and Arrays

	C Style Strings in Arrays
	Working with C Style Strings
	strlen
	strcmp
	strcpy
	strcat

	Text Adventure Game
	Summary

	Chapter 5: Functions, the Building Blocks of C++
	Writing Our First Function
	Passing Parameters to Functions
	Return Values
	Passing by Pointer
	Passing by Reference
	Structures
	Adding Functions to Text Adventure
	Summary

	Chapter 6: Making Decisions with Flow Control
	The if Statement
	The else and else if Statements
	The for Loop
	The while Loop
	The switch Statement
	The break and continue Keywords
	The goto Statement
	Adding a Game Loop to Text Adventure
	Summary

	Chapter 7: Organizing Projects Using Files and Namespaces
	Source and Header Files
	Creating Namespaces
	Updating Text Adventure with Source Files, Header Files, and Namespaces
	Summary

	Part 2: Object-Oriented Programming
	Chapter 8: Object-Oriented Programming with Classes
	Object-Oriented Programming
	Encapsulation
	Constructors and Destructors
	Method Overloading
	Operator Overloading
	Updating Text Adventure to Use Classes
	Summary

	Chapter 9: Controlling Data with Access Modifiers
	The static Keyword
	Creating static Local Variables
	Using static class Member Variables
	Using static Member Methods
	Using static to Alter Global Scope

	The const Keyword
	Constant Variables
	Constant Pointers
	Constant Parameters
	Constant Member Methods

	Two More Keywords
	The inline Keyword
	The friend Keyword

	Summary

	Chapter 10: Building Games with Inheritance
	Inheriting from a Base Class
	Constructors and Destructors in Derived Classes
	Method Overriding
	Updating Text Adventure
	Creating an Entity Class
	Adding Inheritance to the Player Class
	Adding Rooms
	Moving Through Rooms

	Summary

	Chapter 11: Designing Game Code with Polymorphism
	Virtual Methods
	Downcasting and Upcasting with dynamic_cast
	Creating Interfaces with Pure Virtual Methods
	Using Polymorphism in Text Adventure
	Summary

	Chapter 12: Copying and Assigning Data to Objects
	Copy Constructors
	Assignment Operators
	Move Semantics
	Summary

	Part 3: The STL
	Chapter 13: The STL String Class
	Standard string and basic_string
	Constructing Strings
	Working with Strings
	Accessing String Data Through Iterators
	Searching Within Strings
	Formatting Data with stringstream
	Summary

	Chapter 14: STL Array and Vector
	The STL Array Template
	The STL Vector Class
	Sorting Arrays and Vectors
	Summary

	Chapter 15: STL List
	Understanding Array and List Memory Layouts
	Building a List Class
	The STL List Template
	Summary

	Chapter 16: STL’s Associative Containers
	The STL set Container
	The STL map Container
	Binary Search Trees
	Fast Data Access Using a Hash Map
	STL unordered_set and unordered_map
	Summary

	Chapter 17: STL’s Stack and Queue
	The STL stack Container
	The STL queue Container
	Summary

	Chapter 18: STL’s bitset
	Creating bitset Objects
	Working with bitsets
	Summary

	Chapter 19: Using the STL in Text Adventure
	Using STL array to Store Room Pointers
	Using a vector and a map to Store Options
	Adding Gameplay to Text Adventure
	Summary

	Part 4: Generic Programming
	Chapter 20: Template Programming
	Compile Versus Runtime Time Compilation
	const Versus constexpr
	assert Versus static_assert
	Summary

	Chapter 21: Practical Template Programming
	Creating Singleton Classes with Templates
	Implementing the EventManager Class
	The EventHandler Interface
	The Event Class
	The EventManager Implementation

	Calculating SDBM Hash Values Using a Template Metaprogram
	Using an Event to Quit the Game
	Summary

	Part 5:C++ Game Programming
	Chapter 22: Managing Memory for Game Developers
	Static Memory
	The C++ Stack Memory Model
	Working with Heap Memory
	Writing a Basic Single Threaded Memory Allocator
	Summary

	Chapter 23: Useful Design Patterns for Game Development
	Using the Factory Pattern in Games
	Decoupling with the Observer Pattern
	Easily Adding New Functionality with the Visitor Pattern
	Summary

	Chapter 24: Using File IO to Save and Load Games
	What Is Serialization?
	The Serialization Manager
	Saving and Loading Text Adventure
	Summary

	Chapter 25: Speeding Up Games with Concurrent Programming
	Running Text Adventure in Its Own Thread
	Sharing Data Between Threads Using Mutexes
	Using Futures and Promises
	Summary

	Chapter 26: Supporting Multiple Platforms in C++
	Ensuring Types Are the Same Size on Multiple Platforms
	Using the Preprocessor to Determine Target Platform
	Summary

	Chapter 27: Wrapping Up
	An Overview of Text Adventure
	Summary

	Index

