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Preface

The International Symposium on Parameterized and Exact Computation (IPEC,
formerly IWPEC) is an international symposium series that covers research in all
aspects of parameterized and exact algorithms and complexity. Started in 2004 as a
biennial workshop, it became an annual event in 2008. This volume contains the papers
presented at IPEC 2014: the 9th International Symposium on Parameterized and Exact
Computation held during September 10–12, 2014, in Wrocław, Poland. The sympo-
sium was part of ALGO 2014, which also hosted six other workshops and symposia,
including the Annual European Symposium on Algorithms (ESA 2014). The seven
previous meetings of the IPEC/IWPEC series were held in Bergen, Norway (2004),
Zürich, Switzerland (2006), Victoria, Canada (2008), Copenhagen, Denmark (2009),
Chennai, India (2010), Saarbrücken, Germany (2011), Ljubljana, Slovenia (2012), and
Sophia Antipolis, France (2013).

The invited plenary talk was given by Hans Bodlaender (Utrecht University) on
“Lowerbounds for Kernelization.” The keynote speaker, together with coauthors,
Rodney G. Downey, Michael R. Fellows, Danny Hermelin, Lance Fortnow, and Rahul
Santhanam, were awarded the EATCS-IPEC Nerode Prize 2014 for outstanding papers
in the area of multivariate algorithmics. These proceedings contain an extended abstract
of the invited talk. Additionally, a tutorial on “Backdoors, Satisfiability, and Problems
Beyond NP” was given by Stefan Szeider (Vienna University of Technology). We
thank the speakers for accepting our invitation.

In response to the call for papers, 42 papers were submitted. Each submission was
reviewed by at least three reviewers. The reviewers were either Program Committee
members or invited external reviewers. The Program Committee held electronic
meetings using the EasyChair system, went through extensive discussions, and selected
27 of the submissions for presentation at the symposium and inclusion in this LNCS
volume.

We would like to thank the Program Committee, together with the external
reviewers, for their commitment in the difficult paper selection process. We also thank
all the authors who submitted their work for our consideration. Finally, we are grateful
to the local organizers of ALGO, in particular to Marcin Bieńkowski and Jarek Byrka,
for the effort they put to make chairing IPEC an enjoyable experience.

September 2014 Marek Cygan
Pinar Heggernes
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Lower Bounds for Kernelization

Hans L. Bodlaender(B)

Department of Information and Computing Science,
Utrecht University, P.O. Box 80.089, 3508 TB Utrecht, The Netherlands

h.l.bodlaender@uu.nl

Abstract. Kernelization is the process of transforming the input of a
combinatorial decision problem to an equivalent instance, with a guar-
antee on the size of the resulting instances as a function of a parameter.
Recent techniques from the field of fixed parameter complexity and
tractability allow to give lower bounds for such kernels. In particular, it is
discussed how one can show for parameterized problems that these do not
have polynomial kernels, under the assumption that coNP �⊆ NP/poly.

1 Introduction

In this paper, a number of recent techniques for lower bounds for
kernelization are surveyed. The study of kernelization is motivated in two ways:
first, it allows a precise mathematical analysis what can be achieved with poly-
nomial time preprocessing of combinatorial problems. Second, a kernelization
algorithm for a (decidable) problem also gives that the problem is fixed parame-
ter tractable.

An important driving force behind much algorithm research is the intractabil-
ity of many (combinatorial) problems, coming from practical applications and
from theoretical investigations. One of the approaches when we ask for exact
solutions is to first preprocess the instances before applying an exact solver: the
former is typically fast, and the latter is typically slow (e.g., using integer linear
programming, branch and bound, a SAT-solver). In kernelization, we make the
assumption that the preprocessing takes polynomial time, is safe (in the sense
that the answer for the problem instance is the same as, or can be derived from,
the answer for the reduced instance), and we ask if there is a guaranteed upper
bound of the size of the reduced instance. This upper bound is expressed as
a function of some parameter of the input, possibly the target value, or some
structural parameter of the input.

Parameterization is very useful for the analysis of preprocessing.
The following lemma illustrates the limitations of a setting without parame-
terization.

Lemma 1 (Folklore). Let Q be an NP-hard decision problem. If we have a
polynomial time procedure, that given an input s, either decides if s ∈ Q, or
produces an input s′ with s ∈ Q ⇔ s′ ∈ Q, then P = NP .

c© Springer International Publishing Switzerland 2014
M. Cygan and P. Heggernes (Eds.): IPEC 2014, LNCS 8894, pp. 1–14, 2014.
DOI: 10.1007/978-3-319-13524-3 1



2 H.L. Bodlaender

Proof. Suppose we have such Q. Given an input, repeatedly apply Q on its own
output till we decide. This gives a polynomial time algorithm for an NP-hard
problem. �

The study of fixed parameter tractability is motivated from the
observation that often, when we have a problem that is intractable, actual
instances may be much easier due to the fact that some parameter of these
instances is small. Again, this parameter may be the target value, or some struc-
tural parameter of the input. E.g., a combinatorial problem arising from facility
location problem may be NP-hard, but may be still polynomial time solvable
when we know that the number of facilities to be placed is at most three (e.g.,
by exhaustive search). Another example is that many NP-hard problems become
linear time solvable on graphs of bounded treewidth (see e.g., [6].) A decidable
problem has a kernel, if and only if it is fixed parameter tractable (see Lemma 2).
This strong relationship between the notions of kernelization and FPT is an
important motivation behind the research on kernelization. Kernels of smaller
size lead to faster FPT algorithms, and thus an important question is: what is
the smallest size that we can obtain for a kernel for some given parameterized
problem?

For several parameterized problems, kernels of small size are known: e.g.:
Vertex Cover has a kernel with at most 2k vertices (and O(k2) bits) (see e.g.
[1,34]) Feedback Vertex Set has a kernel with O(k2) vertices (and O(k2)
bits) [36]. There nowadays are many problems for which kernels of polynomial
size are known. But also, for many problems, no such kernels are known. Cur-
rent lower bound techniques explain why: it is shown that the problem has no
polynomial kernel (or no kernel at all) unless a currently widely believed com-
plexity theoretic assumption does not hold. Such lower bounds are useful for the
algorithm designer: like an NP-hardness proofs guides us away from trying to
design a polynomial time algorithm for a problem, here lower bounds can guide
us away from trying to design (polynomial) kernels.

In this survey, we discuss a number of techniques to show such conditional
lower bounds for kernelization.

2 Preliminaries

Throughout the paper, we assume that Σ is some finite alphabet. For a string
s ∈ Σ∗, we denote with |s| its length. A parameterized problem is a subset of
Σ∗ × N.

To a parameterized problem Q ⊆ Σ∗ × N we associate its classic variant
Qc ⊆ (Σ ∪{(, 1, )})∗, which is obtained from Q by writing the second parameter
(k) in unary.

In the literature, small variations on the definition of FPT are used. We use
here the notion of strongly uniform FPT (see [18, Section 2.1]).

Definition 1. FPT (fixed parameter tractable) is the class of parameterized
problems Q such that there is an algorithm A, that decides for a given instance
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(s, k) ∈ Σ∗ × N if (s, k) ∈ Q in O(f(k) · |s|c) time, for a computable function f
and constant c ∈ N.

Many parameterized problems are known to be fixed parameter tractable (in
FPT); the design of efficient parameterized algorithms is a very active field of
study. E.g., see [18,19,21,35].

Definition 2. A kernelization algorithm or in short, a kernel for a parameter-
ized problem Q is an algorithm A, that, given an instance (s, k) ∈ Σ∗ × N,
outputs an instance (s′, k′) ∈ Σ∗ × N, such that there are computable functions
f and g, and a constant c, with

1. A uses O(f(k)|s|c) time;
2. (s, k) ∈ A, if and only if (s′, k′) ∈ A;
3. |s′| ≤ g(k), k′ ≤ g(k).

Thus, a kernelization algorithm is a polynomial time algorithm, that trans-
forms an input for parameterized problem Q to an equivalent input, but with
the size of the latter bounded by a (computable) function in the parameter. The
function g is said to be the size of the kernel.

There are minor variations on the definition of kernelization, and also more
general notions have been studied. Some of these are reviewed in Sect. 6. The
notion of kernelization is tightly bound to the notion of fixed parameter tractabil-
ity, as the following well known result shows.

Lemma 2 (Folklore). Let Q ⊆ Σ∗ × N be a decidable problem. Then Q ∈
FPT , if and only if Q has a kernel.

Proof. Suppose Q ∈ FPT . Let A be an algorithm that decides on Q in f(k)nc

time, for some computable function f and constant c. Suppose we have an
instance (x, k) of size n. Run algorithm A for nc+1 steps. If A terminates
within this time, then output a trivial O(1) size yes- or no-instance. Otherwise,
n ≥ f(k): output (x, k). This fulfils the definition of a kernel.

Suppose we have a kernelization algorithm A. First run A on the input, and
then, as Q is decidable, run any decision algorithm on the remaining reduced
instance. The time of the latter step is bounded by a function of the parameter
k, and the time of the former step is polynomial. The combination of the steps
is an FPT algorithm. �

Lemma 2 is important for two reasons. First, it shows us that we can turn a
kernelization algorithm directly in an FPT algorithm, and the method (first build
a small equivalent instance, and then solve that instance) follows the approach
discussed in the introduction for hard problems. Kernels of smaller size give faster
FPT algorithms, and this thus motivates the search for kernels of small size.
Second, it shows that if we have reason to believe that no FPT algorithm exists
for a problem Q, then we also have reason to believe that there is no kernelization
algorithm for Q. The latter is precisely the case for parameterized problems
that are W [1]-hard. If a W [1]-hard problem belongs to the class FPT, then we
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have that FPT = W [1], and from that it follows that the Exponential Time
Hypothesis (ETH) does not hold [10]. Thus a corollary of Lemma 2 is that no
W [1]-hard problem has a kernel, assuming the ETH.

As discussed above, we are interested in kernels of small size.
An important class of kernels are the polynomial kernels: a kernel is polyno-
mial, if the function g in Definition 2 (i.e., the upper bound for the resulting
instances (s′, k′) on |s′| and of k′) is polynomial, i.e., there is a constant c′ with
g(n) = O(nc′

).
In this survey, we look at a number of techniques to give conditional proofs

that such polynomial kernels do not exist. The results usually depend on the
assumption that NP �⊆ coNP/poly, or, equivalently, that coNP �⊆ NP/poly. If
this assumption would not hold, the polynomial time hierarchy would collapse to
its third level [37]. For many parameterized problem, unconditional proofs that
no polynomial kernel exists cannot reasonably be expected. E.g., if P = NP ,
then the parameterized variants of NP-complete problems (like Long Path,
Treewidth) have kernels of size O(1).

3 Compositions

In this section, we discuss the first technique to show that problems do not have
polynomial kernels: composition. Actually, composition comes in two flavours:
OR-composition, and AND-composition. In several cases, compositionality gives
simple and sometimes even trivial proofs for parameterized problems that they
do not have polynomial kernels, assuming NP �⊆ coNP/poly. In several other
cases, such proofs can be hard and lengthy. We start this section with describing
the intuition behind the ideas. Then we introduce the main notions, stating the
main theorems, and proving the main theorem for the case of OR-composition.
We end the section with showing for some parameterized problems that they are
compositional, and conclude that they have no polynomial kernel, again under
the assumption that NP �⊆ coNP/poly.

3.1 Intuition

To get the intuition behind the approach, we consider the Long Path problem.
A k-path is a simple path with at least k edges. In the Long Path problem, we
are given an undirected graph G, integer k, and must decide if G has a k-path;
k is the parameter.

Let us look at the situation that we would have a kernel of polynomial size
for the Long Path problem, say a polynomial time algorithm A that reduces
an instance of Long Path to one with kc bits to describe it. Now, suppose we
have a graph with kc+1 connected components. G contains a simple path with
k edges, if and only if at least one of its connected components has a simple
path with k edges. But these different connected components can be regarded as
separate instances of Long Path, and thus, we would have a manner of reducing
kc+1 different instances of Long Path to kc bits in total: significantly fewer bits
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than the number of components. Such reduction seems only possible when we
are able to solve the Long Path problem on some of the components; that is
unlikely in polynomial time as the problem in its classic variant is NP-complete.

With this intuition in mind, we now look at the formal notion of compositions,
and see how this can be used to prove conditional lower bounds for kernelization
in Sect. 3.2.

3.2 Compositionality and Lower Bounds

The techniques and results in this section are mostly due to Bodlaender et al. [3]
and Fortnow and Santhanam [22].

The notion of composition comes in two flavours: or-composition and and-
composition. We give the definition of or-composition in full, and explain the
difference with the definition of and-composition.

Definition 3. An or-composition for a parameterized problem Q ⊆ Σ∗ × N is
an algorithm A that gets as input a sequence of instances (s1, k), . . . (sr, k), and
outputs one instance (s′, k′), such that

1. A uses time that is bounded by a polynomial in
∑r

i=1 |si| + k;
2. (s′, k′) ∈ Q, if and only if there exists an i, 1 ≤ i ≤ k with (si, k) ∈ A;
3. k′ is bounded by a polynomial in k.

I.e., the or-composition algorithm transforms a sequence of instances with
the same parameter to one instance, the latter being a yes-instance for Q if and
only if at least one of the former instances is a yes-instance; it uses time that
is polynomial in the total size of the instances in the sequence; and the result-
ing parameter must be polynomially bounded in the parameter in the original
instances. We see examples of compositions in Sect. 3.3.

And-compositions are defined in the same way; we change the second condi-
tion in Definition 3 to

– (s′, k′) ∈ Q, if and only if for all i, 1 ≤ i ≤ k with (si, k) ∈ A.

If a problem has an or-composition, we say it is or-compositional; similarly
for and-compositional. Combining the results of three different papers, we obtain
the following central result, which provides us with a powerful tool to show that
problems are likely not to have a polynomial kernel. In Sect. 3.4 we sketch the
proof for part (a).

Theorem 1. (a) [Bodlaender et al. [3], Fortnow and Santhanam [22]] Let Q be
a parameterized problem that is or-compositional and whose classic variant is
NP-hard. Then Q does not have a polynomial kernel unless coNP ⊆ NP/poly.
(b) [Bodlaender et al. [3], Drucker [20] ] Let Q be a parameterized problem that is
and-compositional and whose classic variant is NP-hard. Then Q does not have
a polynomial kernel unless coNP ⊆ NP/poly.
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3.3 Compositional Problems

As a graph has a k-path, if and only if at least one of its connected components
has a k-path, the Long Path problem is trivially or-compositional: just take
the disjoint union of the graphs of the instances, and do not change parameter k.
Similarly, if we have a graph parameter like Treewidth which is for each graph
the maximum of the parameters value over all connected components, disjoint
union gives a trivial and-composition. A direct corollary of Theorem 1 and the
corresponding NP-hardness results is that Long Path and Treewidth have
no polynomial kernel unless coNP ⊆ NP/poly.

In many other cases, compositions are far from trivial. See for example
[13,17,28,32].
Compositionality of Disjoint Factors. An example of a non-trivial or-com-
position is the following, from Bodlaender et al. [8]. In the Disjoint Factors

problem, we are given a string s ∈ {1, . . . , k}, and ask for a collection of k
substrings s1, . . . , sk of s, that do not overlap, and for each i, si starts and ends
with an i. The size of the alphabet k is the parameter of this problem.

For example, 1231331212 is a positive instance, with substrings 1231, 212
and 33; and 1221 is a negative instance.

An or-composition for Disjoint Factors can be obtained as follows. First,
we notice that the problem is solvable in O(kn ·2k) time with standard dynamic
programming techniques for strings of length n. Suppose we have instances
s1, . . . , sr ∈ {1, 2, . . . , k}. If r > 2k, we can solve all these instances in poly-
nomial time, so assume r ≤ 2k. By possibly adding dummy instances, we can
assume that r = 2k. Now, add k + 1, . . . , 2k to our alphabet. Instead of formally
defining the composition, the following examples will make the scheme hopefully
clear: if k = 2, take 34s14s243s43; if k = 3, take

456s + 16s2656s36s465456s56s6656s76s8654.

The resulting string has a solution, if and only if at least one si has a solution: the
factor with k + 1 ‘disables’ either the first or second half of the strings si; the
next factor disables half of the remaining ones, and once we found factors for
k + 1 till 2k, only one si remains to find the factors for 1, . . . , k. For a more
detailed explanation, see [8] or [33]. Now, as Disjoint Factors is NP-complete
[8], it follows from Theorem 1, that it has no polynomial kernel unless coNP ⊆
NP/poly.

3.4 Proof Sketch For Lower Bounds With Or-Composition

Below, we give a proof for Theorem 1(a). The original proof was via a notion of
distillation; we give here a direct proof without this intermediate step; it follows
the proof method from [22, Theorem3.1]. Druckers proof [20] for the case of and-
composition is much more involved; a new and possibly simpler proof was very
recently given by Dell [14].
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Proof of Theorem 1(a). Suppose we have a parameterized problem Q that is
compositional, whose classic variant is NP-hard, and that has a kernel with
inputs with parameter k mapped to an equivalent input with at most kc bits for
some constant c.

Throughout the following proof, we will switch without notification between
the parameterized and classic variants of the problem, and ignore some simple
but technical details on how instances of the two versions are mapped. We always
assume that the parameter is given in unary.

Denote the complement of the classic variant of Q by not-Q. (E.g., if Q is the
problem, given a graph G and integer parameter k, to decide if G has a simple
cycle of length at least k, then not-Q is the problem, given a pair (G, k) to decide
if all simple cycles in G have length at most k − 1.) As (the classic variant of)
Q is NP-hard, we have that not-Q is coNP-hard. Thus, if we show that not-Q
belongs to NP/poly, we have that coNP ⊆ NP/poly and proved the result.

Hence, what remains to be done is to give a nondeterministic algorithm for
not-Q that can access polynomial advice. I.e., for each input size n, the algorithm
can consult a string advice(n), whose size is bounded by a polynomial in n. In
our case, the advice will consist of O(n2) instances, each of size at most ncc′

,
thus the advice has size O(ncc′+2) bits. Each element of the advice will belong
to not-Q.

The algorithm will have the following form:

– Suppose an instance (x, k) of size n is given. (We have that k ≤ n.)
– Set r = ncc′

.
– Non-deterministically guess a sequence of r instances, each of size n, and with

parameter k.
– If (x, k) is not in the sequence, then reject.
– Compute the composition of the sequence, say (y, k′). By assumption on the

composition, we have that k′ ≤ kc′ ≤ nc′
.

– Compute the kernel (z, k′′) of (y, k′). By assumption on the kernelization
algorithm, we have that the size of this instance is at most k′c ≤ ncc′

= r.
– Check if (z, k′′) is in advice(n). If so, accept; otherwise, reject.

Each element in the advice will be a negative instance of Q (or, equivalently,
a positive instance of not-Q.) If (x, k) ∈ Q, then the properties of or-composition
and kernelization imply that (y, k′) ∈ Q and thus that (z, k′′) ∈ Q. As the advice
only contains elements from not-Q, (z, k′′) �∈ advice(n), and we correctly reject.
What remains now is to show that there is a sufficiently small advice set such
that for each (x, k) ∈ not-Q of size n, there is a guess that gives a kernel in the
advice. Lemma 3 shows that such a set indeed exists.

We say that an instance (x, k) ∈ not-Q of size n is covered by an instance
(y, k), if there is a sequence x = (x1, k), (x2, k), . . . , (xkc,k) such that

1. There is an i, 1 ≤ i ≤ kc with x = xi. (I.e., (x, k) is part of the sequence.
2. The kernelization algorithm, applied to the result of the or-composition algo-

rithm, applied to the sequence x belongs to advice(n).
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Lemma 3. For sufficiently large n, there exists a set advice(n) of O(n2)
instances of size at most ncc′

, such that

– Each instance (y, k′) ∈ advice(n) belongs to not-Q.
– Each instance (x, k) of size n is covered by an element of advice(n).

Proof. We build the advice incrementally, starting with an empty set. Repeat
the following step: add to the advice an instance of size at most ncc′

in not-Q
that covers the largest number of instances from not-Q of size n that are not yet
covered by the advice.

Claim. There is an instance in not-Q of size at most ncc′
that covers a constant

fraction of all uncovered instances of size n in not-S.

Proof. Recall that r = ncc′
. Let A be the set of uncovered instances of size n

in not-S. These form |A|r r-tuples. Each tuple is mapped by composition and
kernelization to an instance of size at most r, of which there less than 2 · 2r.
By pigeon-hole principle, one of the latter is the image of |A|r

2·2r tuples, and thus
covers at least ( |A|r

2·2r )1/r ≥ |A|/4 instances from A. �
As there are at most 2n instances of size n in not-S, the claim shows that

O(log 2n) = O(n) elements are sufficient for the advice. �
Lemma 3 shows that the advice is polynomial, and thus completes the proof

of Theorem 1(a).

4 Transformations

A second technique to show conditional lower bounds for kernels is based upon
using transformations. The technique is quite similar to usual NP-completeness
proofs, with the specific twist here that the transformation should map an
instance with parameter k to a new instance whose parameter is polynomially
bounded in k. The technique was independently observed by several groups of
authors [2,8,17]; the formalization is taken from [8], while the terminology was
proposed by Lokshtanov.

Definition 4. A polynomial parameter transformation (ppt) from a parame-
terized problem Q to a parameterized problem R is an algorithm A, that given
an instance of Q, outputs an instance of R, such that

1. For all instances (x, k), (x, k) ∈ Q ⇔ A(x, k) ∈ R.
2. Given an instance (x, k), A uses time, polynomial in |x| + k.
3. There is a constant c, such that for all instances (x, k), if A(x, k) = (x′, k′),

then k′ ≤ kc.

The following theorem can be easily proven, and gives a direct method to
lift lower bounds for kernels for some problem to similar lower bounds for other
problems. See e.g. [8] or [5] for the proof.
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Theorem 2. If there is a ppt from Q to R and a polynomial time reduction
from the classic variant of R to the classic variant of Q, and R has a polynomial
kernel, then Q has a polynomial kernel.

Corollary 1. Suppose we have parameterized problems Q and R, with the clas-
sic variant of Q NP-hard, and the classic variant of R in NP. If Q has no
polynomial kernel, then R has no polynomial kernel.

As an example, we consider the Disjoint Cycles problem: determine, given
an undirected graph G and integer k (the parameter), whether G has at least
k vertex disjoint cycles. This problem is well known to be NP-complete. A ppt
from Disjoint Cycles to Disjoint Factors is as follows. Given a string
s1s2 · · · sn ∈ {1, 2, . . . , k}n, we build a graph with n + k vertices. We first take a
path with n vertices, each vertex representing a character from the string. For
each symbol in the alphabet i ∈ {1, . . . , k}, we add a vertex vi, and make vi

incident to all path vertices that represent a character with this symbol. See
Fig. 1. It is not hard to observe that the resulting graph has k disjoint cycles,
if and only if the string has the required set of factors. (Each cycle needs to use
one of the vertices not on the path, the remainder of the cycle corresponds to a
factor, and as the cycles must be disjoint, the factors may not overlap.) From the
earlier observed lower bound for kernels for Disjoint Factors, it thus follows
that Disjoint Cycles has no polynomial kernel assuming coNP �⊆ NP/poly,

1 2 1 2 3 3 1

1 2 3

s

Fig. 1. Example of transformation: Disjoint Factors to Disjoint Cycles

5 Cross Composition

Suppose we want to show that parameterized problem Q has no polynomial
kernel under the usual assumption that NP �⊆ coNP/poly. An (and- or or-)
composition as discussed in the previous chapter takes a collection of instances
of Q and ‘merges’ these to one instance of the problem. The notion of cross
composition, introduced by Bodlaender et al. [5], allows to start with a collec-
tion of instances of some (other) problem Q′ (which should be NP-hard), and
transforms this collection to one instance of Q. In this way, the notion of cross
composition gives a more powerful tool to proof the conditional lower bounds
for kernels.

The first ingredient for the notion of cross composition is a polynomial equiv-
alence relation.

Definition 5. A polynomial equivalence relation is an equivalence relation ∼
on Σ∗, such that
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– Given two strings s1 and s2, we can decide if s1 ∼ s2 in time, polynomial in
|s1| + |s2|.

– There is a polynomial p, such that The number of equivalence classes of ∼
that contain strings of length at most r is bounded by p(r).

An example is the following. We consider instances of a graph problem, and
two instances are equivalent if and only if they have the same number of vertices
and the same number of edges.

We now come to the definition of OR cross composition, and then briefly
give the difference with the definition of AND cross composition.

Definition 6. Suppose we have a parameterized problem Q ⊂ Σ∗N, a language
L ⊆ Σ∗ and a polynomial equivalence relation ∼ on Σ∗. An OR cross composi-
tion of L to Q with respect to ∼ is an algorithm A, such that

– The input of A is a sequence instances s1, . . . , sr of L that belong to the same
equivalence class of ∼.

– A uses time, polynomial in
∑r

i=1 |si|.
– A outputs one instance (s′, k′) of Q, with k′ bounded by a polynomial in

max |si| + log k.
– (s′, k′) ∈ Q if and only if there is an i with (si) inL.

The notion of AND cross composition is defined in exactly the same way,
except that the last condition in Definition 6 is replaced as follows.

(s′, k′) ∈ Q if and only if for all an i with (si) inL.

Building upon the techniques and results of Bodlaender et al. [3], Fortnow and
Santhanam [22] and Drucker [20], Bodlaender, Jansen, and Kratsch [5] obtained
the following result, which provides us with a powerful mechanism to show con-
ditional kernel lower bounds.

Theorem 3 (Bodlaender et al. [5]). Let L ⊆ Σ∗ be an NP-hard language,
let ∼ be a polynomial equivalence relation, and Q ⊆ Σ∗ × N be a parameter-
ized language. Suppose there exists an OR cross composition or an AND cross
composition from L to Q with respect to ∼. Then Q does not have a polynomial
kernel, unless NP ⊆ coNP/poly.

For three reasons, this result gives more possibilities to show conditional
kernel lower bounds:

– We can start with a collection of instances of any NP-hard problem, instead
of having to use instances of the problem we want to prove a bound for itself.

– The polynomial equivalence relation allows us to make several additional
assumptions on this collection of instances.

– The bound on k′ helps to bound the number of instances of L we have to
compose.

Cross compositions were used for kernel lower bounds for e.g., Treewidth

and Pathwidth [4], Clique Cover [12], Vertex Cover [28], and Test

Cover [23].
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6 Other Models and Extensions

This survey so far only discussed results that some problems do not have poly-
nomial kernels under the assumption of coNP �⊆ NP/poly. Several extensions
and variants have been studied, that will be briefly mentioned below.

Many if not all of the lower bounds we discussed hold for more general set-
tings: when we compress instances of a compositional language Q into instances
of some other language R, compression in a setting of protocols, etc.

Many of the lower bounds also hold when we compress to a different target
language. Also, lower bounds can be stated for the amount of information sent
in certain types of protocols, for details see e.g. [16]. Drucker also proved his
lower bounds for more general settings, e.g., probabilistic and quantum [20].

Earlier, lower bounds for a different model of compression with applications
in e.g., cryptography were investigated by Harnik and Naor [24].

Non-increasing parameters. In interesting technique for lower bounds for kernels
that do not increase the parameter was introduced by Chen et al. [11]. Combining
composition and branching, one can show for several problems (including Long

Path) that they do not have a polynomial kernel which does not increase the
parameter, assuming that P �= NP . Chen et al. [9] also augment the framework
discussed in Sect. 3.2 to obtain stronger lower bounds.

Co-nondeterminism. Kratsch [29] and Kratsch et al. [31] showed that one can
use co-nondeterministic composition to prove lower bounds, thus extending the
power of the framework to a more general notion of composition. E.g., [29] gives a
lower bound for kernels for the problem to decide whether a given graph contains
a vertex set of size k that is independent or a clique; the problem is in FPT as
direct consequence of Ramsey theory.

6.1 Polynomial Lower Bounds

An important result was obtained by Dell and van Melkebeek [16], who extended
the techniques to obtain sharp polynomial lower bounds for problems with a
polynomial kernel for several well known parameterized problems.

For instance, they showed that if there is a polynomial time algorithm that
gives a kernel for Vertex Cover or Feedback Vertex Set with O(k2−ε)
bits for some ε > 0, then coNP ⊆ NP/poly. Thus we have existing kernels for
these problems (see e.g. [1,36]) are to be expected to be sharp with respect to
the number of edges. The technique has been used by Dell and Marx [15] to
obtain lower bounds for kernels for a number of packing problems. See also [26].

An interesting application of the technique was found by Kratsch et al. [30],
who show that a simple quadratic kernel for the problem to cover a point set in
the plane with k straight lines is essentially tight.

Parametric duality. Chen et al. [9] introduce the technique of parametric duality,
which allows to give linear lower bounds for several problems, e.g., a bound of
2k vertices for Vertex Cover, assuming that P �= NP .
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6.2 Turing Kernelization

A different model for kernelization is Turing kernelization. A Turing kernel is
an algorithm that solves a parameterized problem in polynomial time, but the
algorithm in addition has access to an oracle that decides instances of size f(k)
in one time step. With a proof similar to that of Lemma 2, one sees that a
decidable problem has a Turing kernel iff it is in FPT.

There are several problems that have a polynomial Turing kernel, but (assum-
ing coNP �⊆ NP/poly) polynomial kernel. See e.g., [2,27]. A lower bound theory
for Turing kernelization has been set up by Hermelin et al. [25].

7 Conclusions

This paper gives a compact and incomplete survey on a number of techniques to
show lower bounds (under a complexity theoretic assumption) for kernels were
discussed. An excellent and more extensive survey was made by Misra et al. [33].

The framework helps in the classification of the complexity of parameterized
problems: is the problem in P (regardless of parameter), has it a polynomial
kernel, does it belong to FPT, is it in XP, or is it already NP-hard for some
fixed value of the parameter?

I would like to end the survey with a practical warning: even when we know
that for parameter, the problem at hand has no polynomial kernel, it still can
be very useful to preprocess the problem. An illustrative example is for the
problem of Treewidth. Treewidth parameterized by the target value is and-
compositional, and thus not likely to have a polynomial kernel. However, pre-
processing rules were seen to be very effective for many instances from real-world
applications [7]. In [4,26], (part of) a theoretical explanation is provided: with
different parameterizations, treewidth has kernels of small (polynomial) size.
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Abstract. This paper studies the unification problem with associative,
commutative, and associative-commutative functions. The parameter-
ized complexity is analyzed with respect to the parameter “number
of variables”. It is shown that both the associative and associative-
commutative unification problems are W [1]-hard. For commutative uni-
fication, a polynomial-time algorithm is presented in which the number
of variables is assumed to be a constant. Some related results for the
string and tree edit distance problems with variables are also presented.

1 Introduction

Unification is an important concept in many areas of computer science such
as automated theorem proving, program verification, natural language process-
ing, logic programming, and database query systems [14,17,18]. The unification
problem is, in its fundamental form, to find a substitution for all variables in
two given terms that make the terms identical, where terms are built up from
function symbols, variables, and constants [18]. As an example, the two terms
f(x, y) and f(g(a), f(b, x)) with variables x and y and constants a and b become
identical by substituting x by g(a) and y by f(b, g(a)). When one of the two
input terms contains no variables, the unification problem is called matching.

Unification has a long history beginning with the seminal work of Herbrand
in 1930 (see, e.g., [18]). It is becoming an active research area again because of
math search, an information retrieval (IR) task where the objective is to find
all documents containing a specified mathematical formula and/or all formu-
las similar to a query formula [16,19,20]. Also, math search systems such as
Wolfram Formula Search and Wikipedia Formula Search have been developed.
Since mathematical formulas are typically represented by rooted trees, it seems
natural to measure the similarity between formulas by measuring the structural
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similarity of their trees. However, methods based on approximate tree matching
like the tree edit distance (see, e.g., the survey in [7]) alone are not sufficient
since every label is treated as a constant. For example, the query x2 + x has the
same tree edit distance to each of the formulas y2 + z and y2 +y although y2 +y
is mathematically the same as x2 + x, but y2 + z is not.

An exponential-time algorithm for the unification problem was given in [22]
and a faster, linear-time algorithm [9,21] appeared a few years later. Various
extensions of unification have also been considered in the literature [5,17,18].
Three of them, unification with commutative, associative, and associative-
commutative functions (where a function f is called commutative if f(x, y) =
f(y, x) always holds, associative if f(x, f(y, z)) = f(f(x, y), z) always holds, and
associative-commutative if it is both associative and commutative), are especially
relevant for math search since many functions encountered in practice have one
of these properties. However, when allowing such functions, there are more ways
to match nodes in the two corresponding trees, and as a result, the compu-
tational complexity of unification may increase. Indeed, each of the associative,
commutative, and associative-commutative unification (and matching) problems
is NP-hard [5,10,17], and polynomial-time algorithms are known only for very
restricted cases [2,5,17]; e.g., associative-commutative matching can be done in
polynomial time if every variable occurs exactly once [5]. Due to the practical
importance of these (and other) extensions of unification, heuristic algorithms
have been proposed, sometimes incorporating approximate tree matching tech-
niques [13,14].

This paper studies the parameterized complexity of associative, commutative,
and associative-commutative unification with respect to the parameter “number
of variables appearing in the input”, denoted from here on by k. (We choose this
parameter because the number of variables is often much smaller than the size of
the terms.) In addition, we introduce and study the string and tree edit distance
problems with variables. The following table summarizes our new results:

Matching Unification DO-matching DO-unification

SEDV W [2]-hard O(|Σ|kpoly) – P (Theorem4)

(Theorem1) (Proposition 1)

OTEDV W [1]-hard – – P (Theorem4)

(Theorem3)

Associative W [1]-hard – P [5] P (Theorem6)

(Theorem5)

(NP-complete [5])

Commutative NP-hard [5] XP P [5] P (Proposition 3)

FPTa (Theorem7) (Theorem8)

Associative and W [1]-hard – P [5] P (Proposition 4)

commutative (Theorem9)

(NP-hard [5])
aUnder the assumption that Conjecture 1 holds



Complexity of Associative and Commutative Unification 17

Here, SEDV = the string edit distance problem with variables, OTEDV = the
ordered tree edit distance problem with variables, and DO = distinct occurrences
of all variables. W [1]-hard and FPT mean with respect to the parameter k. For
simplicity, the algorithms described in this paper only determine if two terms
are unifiable, but they may be modified to output the corresponding substi-
tutions (when unifiable) by using standard traceback techniques. We remark
that associative unification is in PSPACE and both commutative unification
and associative-commutative unification are in NP [6]; although it means that
all problems can be solved in single exponential time of the size of the input,
it does not necessarily mean single exponential-time algorithms with respect to
the number of variables.

2 Unification of Strings

Let Σ be an alphabet and Γ a set of variables. A substitution is a mapping from
Γ to Σ. For any string s over Σ ∪ Γ and substitution θ, let sθ denote the string
over Σ obtained by replacing every occurrence of a variable x ∈ Γ in s by the
symbol θ(x). (We write x/a to express that x is substituted by a.) Two strings
s1 and s2 are called unifiable if there exists a substitution θ such that s1θ = s2θ.

Example 1. Suppose Σ = {a, b, c} and Γ = {x, y, z}. Let s1 = abxbx, s2 = ayczc,
and s3 = ayczb. Then s1 and s2 are unifiable since s1θ = s2θ = abcbc holds for
θ = {x/c, y/b, z/b}. On the other hand, s1 and s3 are not unifiable since there
does not exist any θ with s1θ = s3θ. �

We shall use the following notation. For any string s, |s| is the length of s. For any
two strings s and t, the string obtained by concatenating s and t is written as s t.
Furthermore, for any positive integers i, j with 1 ≤ i ≤ j ≤ |s|, s[i] is the ith char-
acter of s and s[i . . . j] is the substring s[i] s[i + 1] · · · s[j]. (Thus, s = s[1..|s|].)
The string edit distance (see, e.g., [15]) between two strings s1, s2 over Σ, denoted
by dS(s1, s2), is the length of a shortest sequence of edit operations that trans-
forms s1 into s2, where an edit operation on a string is one of the following three
operations: a deletion of the character at some specified position, an insertion of
a character at some specified position, or a replacement of the character at some
specified position by a specified character.1 For example, dS(bcdfe, abgde) = 3
because abgde can be obtained from bcdfe by the deletion of f , the replacement
of c by g, and the insertion of an a, and no shorter sequence can accomplish this.
By definition, dS(s1, s2) = mined : ed(s1)=s2 |ed| = mined : ed(s2)=s1 |ed| holds,
where ed is a sequence of edit operations.

We generalize the string edit distance to two strings s1, s2 over Σ ∪ Γ by
defining d̂S(s1, s2) = mined : (∃θ) (ed(s1)θ = s2θ) |ed|. The string edit distance prob-
lem with variables takes as input two strings s1, s2 over Σ ∪ Γ , and asks for
the value of d̂S(s1, s2). (To the authors’ knowledge, this problem has not been

1 In the literature, “replacement” is usually referred to as “substitution”. Here, we use
“replacement” to distinguish it from the “substitution” of variables defined above.
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studied before. Note that it differs from the pattern matching with variables
problem [11], in which one of the two input strings contains no variables and
each variable may be substituted by any string over Σ, but no insertions or dele-
tions are allowed.) Let k be the number of variables appearing in at least one of
s1 and s2. Although dS(s1, s2) is easy to compute in polynomial time (see [15]),
computing d̂S(s1, s2) is W [2]-hard with respect to the parameter k:

Theorem 1. The string edit distance problem with variables is W [2]-hard with
respect to k when the number of occurrences of every variable is unrestricted.

Proof. We present an FPT-reduction [12] from the longest common subsequence
problem (LCS) to a decision problem version of the edit distance problem with
variables. LCS is, given a set of strings R = {r1, r2, . . . , rq} over an alphabet Σ0

and an integer l, to determine whether there exists a string r of length l such
that r is a subsequence of ri for every ri ∈ R, where r is called a subsequence
of r′ if r can be obtained by performing deletion operations on r′. It is known
that LCS is W [2]-hard with respect to the parameter l (problem “LCS-2” in [8]).

Given any instance of LCS, we construct an instance of the string edit dis-
tance problem with variables as follows. Let Σ = Σ0 ∪{#}, where # is a symbol
not appearing in r1, r2, . . . , rq, and Γ = {x1, x2, . . . , xl}. Clearly, R has a com-
mon subsequence of length l if and only if there exists a θ such that x1x2 · · · xlθ
is a common subsequence of R. Now, construct s1 and s2 by setting:

s1 = x1x2 · · · xl#x1x2 · · · xl# · · · #x1x2 · · · xl

s2 = r1#r2# · · · #rq

where the substring x1x2 · · · xl occurs q times in s1. By the construction, there
exists a θ such that x1x2 · · · xlθ is a common subsequence of R if and only if there
exists a θ such that s1θ is a subsequence of s2. The latter statement holds if and
only if d̂S(s1, s2) = (

∑q
i=1 |ri|) − ql. Since k = l, this is an FPT-reduction. �

The above proof can be extended to prove the W [1]-hardness of a restricted
case with a bounded number of occurrences of each variable (omitted in the
conference proceedings version).

Theorem 2. The string edit distance problem with variables is W [1]-hard with
respect to k, even if the total number of occurrences of every variable is 2.

Note that in the special case where every variable in the input occurs exactly
once, the problem is equivalent to approximate string matching with don’t-care
symbols, which can be solved in polynomial time [3].

On the positive side, the number of possible θ is bounded by |Σ|k. This
immediately yields a fixed-parameter algorithm w.r.t. k when Σ is fixed:

Proposition 1. The string edit distance problem with variables can be solved in
O(|Σ|kpoly(m,n)) time, where m and n are the lengths of the two input strings.
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3 Unification of Terms

We now consider the concept of unification for structures known as terms that
are more general than strings [18]. From here on, Σ is a set of function symbols,
where each function symbol has an associated arity, which is an integer describing
how many arguments the function takes. A function symbol with arity 0 is called
a constant. Γ is a set of variables. A term over Σ ∪ Γ is defined recursively as:
(i) A constant is a term; (ii) A variable is a term; (iii) If t1, . . . , td are terms and
f is a function symbol with arity d > 0 then f(t1, . . . , td) is a term.

Every term is identified with a rooted, ordered, node-labeled tree in which
every internal node corresponds to a function symbol and every leaf corresponds
to a constant or a variable. The tree identified with a term t is also denoted
by t. For any term t, N(t) is the set of all nodes in its tree t, r(t) is the root
of t, and γ(t) is the function symbol of r(t). The size of t is defined as |N(t)|.
For any u ∈ N(t), tu denotes the subtree of t rooted at u and hence corresponds
to a subterm of t. Any variable that occurs only once in a term is called a DO-
variable, where “DO” stands for “distinct occurrences”, and a term in which all
variables are DO-variables is called a DO-term [5]. A term that consists entirely
of elements from Σ is called variable-free.

Let T be a set of terms over Σ ∪Γ . A substitution θ is defined as any partial
mapping from Γ to T (where we let x/t indicate that the variable x is mapped to
the term t), under the constraint that if x/t ∈ θ then t is not allowed to contain
the variable x. For any term t ∈ T and substitution θ, tθ is the term obtained
by simultaneously replacing its variables in accordance with θ. For example,
θ = {x/y, y/x} is a valid substitution, and in this case, f(x, y)θ = f(y, x).

Two terms t1, t2 ∈ T are said to be unifiable if there exists a θ such that
t1θ = t2θ, and such a θ is called a unifier. In this paper, the unification problem
is to determine whether two input terms t1 and t2 are unifiable. (Other versions
of the unification problem have also been studied in the literature, but will not
be considered here.) Unless otherwise stated, m and n denote the sizes of the two
input terms t1 and t2. The unification problem can be solved in linear time [9,21].
The important special case of the unification problem where one of the two input
terms is variable-free is called the matching problem.

Example 2. Let Σ = {a, b, f, g}, where a and b are constants, f has arity 2, and g
has arity 3, and let Γ = {w, x, y, z}. Define the terms t1 = f(g(a, b, a), f(x, x)),
t2 = f(g(y, b, y), z), and t3 = f(g(a, b, a), f(w, f(w,w))). Then t1 and t2 are
unifiable since t1θ1 = t2θ1 = f(g(a, b, a), f(x, x)) holds for θ1 = {y/a, z/f(x, x)}.
Similarly, t2 and t3 are unifiable since t2θ2 = t3θ2 = f(g(a, b, a), f(w, f(w,w)))
with θ2 = {y/a, z/f(w, f(w,w))}. However, t1 and t3 are not unifiable because
it is impossible to simultaneously satisfy x = w and x = f(w,w). �

Similar to what was done in Sect. 2, we can combine the tree edit distance
with unification to get what we call the tree edit distance problem with vari-
ables. Let dT (t1, t2) be the tree edit distance between two node-labeled (ordered
or unordered) trees t1 and t2 (see [7] for the definition). We generalize
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dT (t1, t2) to two trees, i.e., two terms, over Σ ∪ Γ by defining d̂T (t1, t2) =
mined : (∃θ) (ed(t1)θ = t2θ) |ed|. The tree edit distance problem with variables takes
as input two (ordered or unordered) trees t1, t2 over Σ ∪ Γ , and asks for the
value of d̂T (t1, t2).

As before, let k be the number of variables appearing in at least one of t1
and t2. By combining the proofs of Theorems 2 and 5 below, we obtain:

Theorem 3. The tree edit distance problem with variables is W [1]-hard with
respect to k, both for ordered and unordered trees, even if the number of occur-
rences of every variable is bounded by 2.

As demonstrated in [5], certain matching problems are easy to solve for
DO-terms. The next theorem, whose proof is omitted in this version, states that
the ordered tree edit distance problem with variables also becomes polynomial-
time solvable for DO-terms. (In contrast, the classic unordered tree edit distance
problem is already NP-hard for variable-free terms; see, e.g., [7].)

Theorem 4. The ordered tree edit distance problem with variables can be solved
in polynomial time when t1 and t2 are DO-terms.

4 Associative Unification

A function f with arity 2 is called associative if f(x, f(y, z)) = f(f(x, y), z)
always holds. Associative unification is a variant of unification in which func-
tions may be associative. This section assumes that all functions are associative
although all results are valid by appropriately modifying the details even if usual
(non-associative) functions are included.

Associative matching was shown to be NP-hard in [5] by a simple reduction
from 3SAT. However, the proof in [5] does not show the parameterized hardness.

Theorem 5. Associative matching is W [1]-hard with respect to the number of
variables even for a fixed Σ.

Proof. As in the proof of Theorem 1, we reduce from LCS.
First consider the case of an unrestricted Σ. Let ({r1, . . . , rq}, l) be any

given instance of LCS. For each i = 1, . . . , q, create a term ui as follows:
ui = f(yi,1, f(x1, f(yi,2, f(x2, · · · f(yi,l, f(xl, f(yi,l+1, g(#,#))) · · · )))), where #
is a character not appearing in r1, . . . , rq. Create a term t1 by replacing the
last occurrence of # in each ui by ui+1 for i = 1, . . . , q − 1, thus concatenating
u1, . . . , uq, as shown in Fig. 1. Next, transform each ri into a string r′

i of length
1 + 2 · |ri| by inserting a special character & in front of each character in ri,
and appending & to the end of ri, where each & is considered to be a distinct
constant (i.e., & does not match any symbol but can match any variable). Repre-
sent each r′

i by a term ti defined by: ti = f(r′
i[1], f(r′

i[2], f(r′
i[3], f(· · · , f(r′

i[1 +
2 · |r′

i|], g(#,#)) · · · )))). Finally, create a term t2 by concatenating t1, . . . , tq.
(Again, see Fig. 1.) Now, t1 and t2 are unifiable if and only if there exists a
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Fig. 1. Illustrating the reduction in Theorem 5. Here, s1 = aab, s2 = aba, and l = 2.

common subsequence of {r1, . . . , rq} of length l. Since the number of variables
in t1 is (l + 1)q + l = lq + l + q, it is an FPT-reduction and thus the problem is
W [1]-hard.

For the case of a fixed Σ, represent each constant by a distinct term using a
special function symbol h and binary encoding (e.g., the 10th symbol among 16
symbols can be represented as h(1, h(0, h(1, 0)))). �

We next consider associative unification for DO-terms, which has some similar-
ities with DO-associative-commutative matching [5]. For any term t, define the
canonical form of t (called the “flattened form” in [5]) as the term obtained by
contracting all edges in t whose two endpoints are labeled by the same func-
tion symbol. For example, both f(f(a, b), f(g(c, f(d, f(e, h)), e)) and f(a, f(b, f
(g(c, f(f(d, e), h)), e))) are transformed into f(a, b, g(c, f(d, e, h)), e). As another
example, the canonical form of f(g(a, b), f(c, d)) is f(g(a, b), c, d). It is known [5]
that the canonical form of t can be computed in linear time.

We begin with the simplest case in which every term is variable-free.

Proposition 2. Associative unification for variable-free terms can be done in
linear time.

Proof. Transform the two terms into their canonical forms in linear time as
above. Then it suffices to test if the canonical forms are isomorphic. The rooted
ordered labeled tree isomorphism problem is trivially solvable in linear time. �

To handle the more general case of two DO-terms t1 and t2, we transform them
into their canonical forms t1 and t2 and apply the following procedure, which
returns ‘true’ if and only if t1 and t2 are unifiable. See Fig. 2 for an illustration.
The procedure considers all u ∈ N(t1), v ∈ N(t2) in bottom-up order, and
assigns D[u, v] = 1 if and only if (t1)u and (t2)v are unifiable.
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Fig. 2. An example of associative unification. The DO-terms t1, t2 are transformed into
their canonical forms and then unified by θ = {y/h(a, d), z/f(g(b, b), a), w/f(x, c)}.

Procedure AssocMatchDO(t1, t2)
for all u ∈ N(t1) do /* in post-order */

for all v ∈ N(t2) do /* in post-order */
if (t1)u or (t2)v is a constant then

if (t1)u and (t2)v are unifiable (#)
then D[u, v] ← 1 else D[u, v] ← 0;

else if (t1)u or (t2)v is a variable then
D[u, v] ← 1;

else /* (t1)u = f1((t1)u1 , . . . , (t
1)up

), (t2)v = f2((t2)v1 , . . . , (t
2)vq

) */
if f1 = f2 and 〈(t1)u1 , . . . , (t

1)up
〉 can match 〈(t2)v1 , . . . , (t

2)vq
〉

then D[u, v] ← 1 else D[u, v] ← 0;
if D[r(t1), r(t2)] = 1 then return true else return false.

Step (#) takes O(1) time because here (t1)u and (t2)v are unifiable if and
only if they are the same constant or one of (t1)u and (t2)v is a variable.

When both u and v are internal nodes, we need to check if 〈(t1)u1 , . . . , (t
1)up

〉
and 〈(t2)v1 , . . . , (t

2)vq
〉 can be matched. This may be done efficiently by regarding

the two sequences as strings and applying string matching with variable-length
don’t-care symbols [4], while setting the difference to 0 and allowing don’t-care
symbols in both strings. Here, (t1)ui

(resp., (t2)vj
) is regarded as a don’t-care

symbol that can match any substring of length at least 1 if it is a variable, oth-
erwise (t1)ui

can match (t2)vj
if and only if D[ui, vj ] = 1 (details are omitted

in this version). It is to be noted that a variable in a term may partially match
two variables in the other term. For example, consider the two terms f(t1, x, t2)
and f(y, z). Here, θ = {x/f(t3, t4), y/f(t1, t3), z/f(t4, t2)} is a unifier. How-
ever, in this case, a simpler unifier is θ′ = {x/t3, y/f(t1, t3), z/t2} because each
variable occurs only once. Therefore, we can use approximate string matching
with variable-length don’t-care symbols, which also shows the correctness of the
algorithm.

The for-loops are iterated O(mn) times and string matching with variable-
length don’t-care symbols takes polynomial time, so we obtain:

Theorem 6. Associative unification for DO-terms takes polynomial time.
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5 Commutative Unification

A function f with arity 2 is called commutative if f(x, y) = f(y, x) always holds.
Commutative unification is a variant of unification in which functions are allowed
to be commutative. Commutative matching was shown to be NP-hard in [5] (by
another reduction from 3SAT than the one referred to above).

First note that commutative unification is easy to solve when both t1 and t2
are variable-free because in this case, it reduces to the rooted unordered labeled
tree isomorphism problem which is solvable in linear time (see, e.g., p. 86 in [1]):

Proposition 3. Commutative unification for variable-free terms can be done in
linear time.

Next, we consider commutative matching. We will show how to construct a 0-1
table D[u, v] for all node pairs (u, v) ∈ N(t1) × N(t2), such that D[u, v] = 1
if and only if (t1)u and (t2)v are unifiable, by applying bottom-up dynamic
programming. It is enough to compute these table entries for pairs of nodes with
the same depth only. We also construct a table Θ[u, v], where each entry holds
a set of possible substitutions θ such that (t1)uθ = (t2)v.

Let θ1 = {xi1/ti1 , . . . , xip/tip} and θ2 = {xj1/tj1 , . . . , xjp/tjq} be substitu-
tions. θ1 is said to be compatible with θ2 if there exists no variable x such that
x = xia = xjb but tia �= tjb . Let Θ1 and Θ2 be sets of substitutions. We define
Θ1 �� Θ2 = {θi ∪ θj : θi ∈ Θ1 is compatible with θj ∈ Θ2}. For any node u,
uL and uR denote the left and right child of u. The algorithm is as follows:

Procedure CommutMatch(t1, t2)
for all pairs (u, v) ∈ N(t1) × N(t2) with the same depth
do /* in bottom-up order */
if (t1)u is a variable then

Θ[u, v] ← {{(t1)u/(t2)v}}; D[u, v] ← 1
else if (t1)u does not contain any variables then

Θ[u, v] ← ∅;
if (t1)u = (t2)v then D[u, v] ← 1 else D[u, v] ← 0

else if γ((t1)u) �= γ((t2)v) then
Θ[u, v] ← ∅; D[u, v] ← 0 /* recall: γ(t) is a function symbol of r(t) */

else
Θ[u, v] ← ∅; D[u, v] ← 0;
for all (u1, u2, v1, v2) ∈ {(uL, uR, vL, vR), (uR, uL, vL, vR)} do (#)
if D[u1, v1] = 1 and D[u2, v2] = 1 and Θ1[u1, v1] �� Θ2[u2, v2] �= ∅
then Θ[u, v] ← Θ[u, v] ∪ (Θ1[u1, v1] �� Θ2[u2, v2]); D[u, v] ← 1;

if D[r(t1), r(t2)] = 1 then return true else return false.

Let Bi denote the maximum size of Θ[u, v] when the number of (distinct)
variables in (t1)u is i. Then, we have the following conjecture.

Conjecture 1. B1 = 1 and Bi+j = 2BiBj hold, from which Bi = 2i−1 follows.
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Theorem 7. If Conjecture 1 holds, commutative matching can be done using
O(2kpoly(m,n)) time, where k is the number of variables in t1.

Proof. The correctness follows from the observation that each variable is sub-
stituted by a term without variables and the property f(x, y) = f(y, x) is taken
into account at step (#). As for the time complexity, first consider the number
of elements in Θ[u, v]. A crucial observation is that if (t1)uL

does not contain a
variable then |Θ[u, v]| ≤ max(|Θ[uR, vL]|, |Θ[uR, vR]|) holds (and analogously for
(t1)uR

). Assuming that Conjecture 1 is true, Θ1[u1, v1] �� Θ2[u2, v2] can be com-
puted in O(2kpoly(m,n)) time by using ‘sorting’ as in usual ‘join’ operations.
Thus, the total running time is also O(2kpoly(m,n)). �

Finally, we consider the case where both t1 and t2 contain variables. As in [21], we
represent two variable-free terms t1 and t2 by a directed acyclic graph (DAG)
G(V,E), where t1 and t2 respectively correspond to r1 and r2 of indegree 0
(r1, r2 ∈ V ). Then, testing whether r1 and r2 represent the same term takes
polynomial time (in the size of G) by using the following procedure, where tu
denotes the term corresponding to a node u in G:

Procedure TestCommutIdent(r1, r2, G(V,E))
for all u ∈ V do /* in post-order */
for all v ∈ V do /* in post-order */

if u = v then D[u, v] ← 1; continue;
if tu or tv is a constant then
if tu = tv then D[u, v] ← 1 else D[u, v] ← 0;

else
Let u = f1(uL, uR) and v = f2(vL, vR);
if f1 = f2 then
if (D[uL, vL] = 1 and D[uR, vR] = 1) or

(D[uL, vR] = 1 and D[uR, vL] = 1)
then D[u, v] ← 1 else D[u, v] ← 0

else D[u, v] ← 0;
if D[r1, r2] = 1 then return true else return false.

To cope with terms involving variables, we need to consider all possible map-
pings from the set of variables to N(t1) ∪ N(t2). For each such mapping, we
replace all appearances of the variables by the corresponding nodes, resulting
in a DAG to which we apply TestCommutIdent(r1, r2, G(V,E)). The following
pseudocode describes the procedure for terms with variables:

Procedure CommutUnify(t1, t2)
for all mappings M from a set of variables to nodes in t1 and t2 do

if there exists a directed cycle (excluding a self-loop) then continue;
Replace each variable having a self-loop with a distinct constant symbol;
Replace each occurrence of a variable node u with node M(u);

/* if M(u) = v and M(v) = w then u is replaced by w */
Let G(V,E) be the resulting DAG;
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Let r1 and r2 be the nodes of G corresponding to t1 and t2;
if TestCommutIdent(r1, r2, G(V,E)) = true then return true;

return false.

In summary, we have the following theorem, which implies that commutative
unification belongs to the class XP [12].

Theorem 8. Commutative unification can be done in O((m + n)k+2) time.

Proof. The correctness of TestCommutIdent(r1, r2, G(V,E)) follows from the
fact that f1(t1, t2) matches f2(t′1, t

′
2) if and only if f1 and f2 are identical function

symbols and either (t1, t2) matches (t′1, t
′
2) or (t1, t2) matches (t′2, t

′
1). It is clear

that this procedure runs in O(mn) time. Therefore, commutative matching of
two variable-free terms can be done in polynomial time.

Next, we consider CommutUnify(t1, t2). For an illustration of how it works,
see Fig. 3. To prove the correctness, it is straightforward to see that if there
exists some mapping M which returns ‘true’, then t1 and t2 are commutatively
unifiable and such a mapping gives a substitution θ satisfying t1θ = t2θ. Con-
versely, suppose that t1 and t2 are commutatively unifiable. Then there exist
unifiable non-commutative terms t′1 and t′2 that are obtained by exchanging
the left and right arguments in some terms in t1 and t2. Let θ be the sub-
stitution satisfying t′1θ = t′2θ. Then, t1θ = t2θ holds. We assign distinct con-
stants to variables appearing in t1θ. We also construct a mapping from the
remaining variables to N(t1) ∪ N(t2) by regarding x/t ∈ θ as a mapping of x
to t. We construct G(V,E) according to this mapping. Then, it is obvious that
TestCommutIdent(r1, r2, G(V,E)) = true holds.

Since the number of possible mappings is bounded by (m+n)k, where k is the
number of variables in t1 and t2, CommutUnify(t1, t2) runs in O((m + n)k+2)
time. �

6 Associative-Commutative Unification

Associative-commutative unification is the variant of unification in which some
functions can be both associative and commutative. The next theorem, whose
proof is omitted in this version, shows that associative-commutative matching
is W [1]-hard even if every function is associative and commutative.

Theorem 9. Matching is W [1]-hard with respect to the number of variables even
if every function symbol is associative and commutative.

On the other hand, associative-commutative matching can be done in polynomial
time if t1 is a DO-term [5]. We can extend this algorithm to the special case
of unification where both terms are DO-terms by adding a condition in the
algorithm that f((t1)u1 , . . . , (t1)up

) and f((t2)v1 , . . . , (t2)vq
) can be unified if

(t1)ui
and (t2)vj

are variables for some i, j. This yields:

Proposition 4. Associative-commutative unification can be done in polynomial
time if both t1 and t2 are DO-terms.
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Fig. 3. Example of a DAG G(V, E) for CommutIdent and for the proof of Theorem 8.

7 Concluding Remarks

This paper has studied the parameterized complexity of unification with asso-
ciative and/or commutative functions with respect to the number of variables.
Determining whether each of commutative unification and the matching version
of Theorem 2 (i.e., where all variables occur in one of the strings and the number
of occurrences of each variable is at most 2), is W [1]-hard or FPT and whether
associative unification is in XP, as well as any nontrivial improvements of the
presented results, are left as open problems.
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Abstract. For a set of graphs H, the H-free Edge Deletion prob-
lem asks to find whether there exist at most k edges in the input graph
whose deletion results in a graph without any induced copy of H ∈ H.
In [3], it is shown that the problem is fixed-parameter tractable if H is of
finite cardinality. However, it is proved in [4] that if H is a singleton set
containing H, for a large class of H, there exists no polynomial kernel
unless coNP ⊆ NP/poly. In this paper, we present a polynomial ker-
nel for this problem for any fixed finite set H of connected graphs and
when the input graphs are of bounded degree. We note that there are
H-free Edge Deletion problems which remain NP-complete even for
the bounded degree input graphs, for example Triangle-free Edge

Deletion [2] and Custer Edge Deletion(P3-free Edge Deletion)

[15]. When H contains K1,s, we obtain a stronger result - a polynomial
kernel for Kt-free input graphs (for any fixed t > 2). We note that for
s > 9, there is an incompressibility result for K1,s-free Edge Dele-

tion for general graphs [5]. Our result provides first polynomial kernels
for Claw-free Edge Deletion and Line Edge Deletion for Kt-free
input graphs which are NP-complete even for K4-free graphs [23] and
were raised as open problems in [4,19].

1 Introduction

For a graph property Π, the Π Edge Deletion problem asks whether there
exist at most k edges such that deleting them from the input graph results in a
graph with property Π. Numerous studies have been done on edge deletion prob-
lems from 1970s onwards dealing with various aspects such as hardness [1,2,7–
9,14,20–23], polynomial-time algorithms [13,21,22], approximability [1,21,22],
fixed-parameter tractability [3,10], polynomial problem kernels [2,10–12] and
incompressibility [4,5,16].

There are not many generalized results on the NP-completeness of edge
deletion problems. This is in contrast with the classical result by Lewis and
Yannakakis [18] on the vertex counterparts which says that Π Vertex Dele-

tion problems are NP-complete if Π is non-trivial and hereditary on induced
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subgraphs. By a result of Cai [3], the Π Edge Deletion problem is fixed-
parameter tractable for any hereditary property Π that is characterized by a
finite set of forbidden induced subgraphs. We observe that polynomial prob-
lem kernels have been found only for a few parameterized Π Edge Deletion

problems.
In this paper, we study a subset of Π Edge Deletion problems known as

H-free Edge Deletion problems where H is a set of graphs. The objective
is to find whether there exist at most k edges in the input graph such that
deleting them results in a graph with no induced copy of H ∈ H. In the natural
parameterization of this problem, the parameter is k. In this paper, we give a
polynomial problem kernel for parameterized version of H-free Edge Dele-

tion where H is any fixed finite set of connected graphs and when the input
graphs are of bounded degree. In this context, we note that Triangle-free

Edge Deletion [2] and Custer Edge Deletion(P3-free Edge Deletion)

[15] are NP-complete even for bounded degree input graphs. We also note that,
under the complexity theoretic assumption coNP �⊆ NP/poly, there exist no
polynomial problem kernels for the H-free Edge Deletion problems when H
is 3-connected but not complete, or when H is a path or cycle of at least 4 edges
[4]. When the input graph has maximum degree at most Δ and if the maximum
diameter of graphs in H is D, then the number of vertices in the kernel we obtain
is at most 2Δ2D+1 · kpD+1 where p = log 2Δ

2Δ−1
Δ. Our kernelization consists of a

single rule which removes vertices of the input graph that are ‘far enough’ from
all induced H ∈ H in G.

When H contains K1,s, we obtain a stronger result - a polynomial kernel for
Kt-free input graphs (for any fixed t > 2). Let s > 1 be the least integer such
that K1,s ∈ H. Then the number of vertices in the kernel we obtain is at most
8d3D+1 · kpD+1 where d = R(s, t − 1) − 1, R(s, t − 1) is the Ramsey number
and p = log 2d

2d−1
d. We note that Claw-free Edge Deletion and Line Edge

Deletion are NP-complete even for K4-free input graphs [23]. As a corollary
of our result, we obtain the first polynomial kernels for these problems when
the input graphs are Kt-free for any fixed t > 2. The existence of a polynomial
kernel for Claw-free Edge Deletion and Line Edge Deletion were raised
as open problems in [4,19]. We note that for s > 9, there is an incompressibility
result for K1,s-free Edge Deletion for general graphs [5].

1.1 Related Work

Here, we give an overview of various results on edge deletion problems.

NP-completeness: It has been proved that Π Edge Deletion problems are
NP-complete if Π is one of the following properties: without cycle of any fixed
length l ≥ 3, without any cycle of length at most l for any fixed l ≥ 4, con-
nected with maximum degree r for every fixed r ≥ 2, outerplanar, line graph,
bipartite, comparability [23], claw-free (implicit in the proof of NP-completeness
of the Line Edge Deletion problem in [23]), Pl-free for any fixed l ≥ 3 [7],
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circular-arc, chordal, chain, perfect, split, AT-free [21], interval [9], threshold [20]
and complete [14].

Fixed-parameter Tractability and Kernelization: Cai proved in [3] that para-
meterized Π Edge Deletion problem is fixed-parameter tractable if Π is a
hereditary property characterized by a finite set of forbidden induced subgraphs.
Hence H-free Edge Deletion is fixed-parameter tractable for any finite set of
graphs H. Polynomial problem kernels are known for chain, split, threshold [12],
triangle-free [2], cograph [11] and cluster [10] edge deletions. It is proved in [4]
that for 3-connected H, H-free Edge Deletion admits no polynomial kernel if
and only if H is not a complete graph, under the assumption coNP �⊆ NP/poly.
Under the same assumption, it is proved in [4] that for H being a path or cycle,
H-free Edge Deletion admits no polynomial kernel if and only if H has at
least 4 edges. Unless NP ⊆ coNP/poly, H-free Edge Deletion admits no
polynomial kernel if H is K1 × (2K1 ∪ 2K2) [16].

2 Preliminaries and Basic Results

We consider only simple graphs. For a set of graphs H, a graph G is H-free if there
is no induced copy of H ∈ H in G. For V ′ ⊆ V (G), G \ V ′ denotes the graph
(V (G) \V ′, E(G) \E′) where E′ ⊆ E(G) is the set of edges incident to vertices in
V ′. Similarly, for E′ ⊆ E(G), G\E′ denotes the graph (V (G), E(G)\E′). For any
edge set E′ ⊆ E(G), VE′ denotes the set of vertices incident to the edges in E′. For
any V ′ ⊆ V (G), the closed neighbourhood of V ′, NG[V ′] = {v : v ∈ V ′ or (u, v) ∈
E(G) for some u ∈ V ′}. In a graph G, distance from a vertex v to a set of vertices
V ′ is the shortest among the distances from v to the vertices in V ′.

A parameterized problem is fixed-parameter tractable(FPT) if there exists
an algorithm to solve it which runs in time O(f(k)nc) where f is a computable
function, n is the input size, c is a constant and k is the parameter. The idea is
to solve the problem efficiently for small parameter values. A related notion is
polynomial kernelization where the parameterized problem instance is reduced
in polynomial (in n + k) time to a polynomial (in k) sized instance of the same
problem called problem kernel such that the original instance is a yes-instance
if and only if the problem kernel is a yes-instance. We refer to [6] for an exhaus-
tive treatment on these topics. A kernelization rule is safe if the answer to the
problem instance does not change after the application of the rule.

In this paper, we consider H-free Edge Deletion
1 which is defined as

given below.

H-free Edge Deletion

Instance: A graph G and a positive integer k.
Problem: Does there exist E′ ⊆ E(G) with |E′| ≤ k such that G \ E′ does
not contain H ∈ H as an induced subgraph.
Parameter: k

1 We leave the prefix ‘parameterized’ henceforth as it is evident from the context.
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We define an H deletion set (HDS) of a graph G as a set M ⊆ E(G) such
that G \ M is H-free. The minimum H deletion set (MHDS) is an HDS with
smallest cardinality. We define a partition of an MHDS M of G as follows.

M1 = {e : e ∈ M and e is part of an induced H ∈ H in G}.

Mj = {e : e ∈ M \ ⋃i=j−1
i=1 Mi and e is part of an induced H ∈ H in G \

⋃i=j−1
i=1 Mi}, for j > 1.

We define the depth of an MHDS M of G, denoted by lM , as the least integer
such that |Mi| > 0 for all 1 ≤ i ≤ lM and |Mi| = 0 for all i > lM . Proposition 1
shows that this notion is well defined.

Proposition 1. 1. {Mj} forms a partition of M .
2. There exists lM ≥ 0 such that |Mi| > 0 for 1 ≤ i ≤ lM and |Mi| = 0 for

i > lM .

Proof. If i �= j and Mi and Mj are nonempty, then Mi ∩ Mj = ∅. For i ≥ 1,
Mi ⊆ M . Assume there is an edge e ∈ M and e /∈ ⋃

Mj . Delete all edges in⋃
Mj from G. What remains is an H-free graph. As M is an MHDS, there can

not exist such an edge e. Now let j be the smallest integer such that Mj is empty.
Then from definition, for all i > j, |Mi| = 0. Therefore lM = j − 1. �

We observe that for an H-free graph, the only MHDS M is ∅ and hence
lM = 0. For an MHDS M of G with a depth lM , we define the following terms.

Sj =
⋃i=lM

i=j Mj for 1 ≤ j ≤ lM + 1.
Tj = M \ Sj+1 for 0 ≤ j ≤ lM .
VH(G) is the set of all vertices part of some induced H ∈ H in G.
We observe that S1 = TlM = M , SlM = MlM , T1 = M1 and SlM+1 = T0 = ∅.

Proposition 2. For a graph G, let E′ ⊆ E(G) such that at least one edge in
every induced H ∈ H in G is in E′. Then, at least one vertex in every induced
H ∈ H in G \ E′ is in VE′ .

Proof. Assume that there exists an induced H ∈ H in G\E′ with the vertex set
V ′. For a contradiction, assume that |V ′ ∩ VE′ | = 0. Then, V ′ induces a copy of
H in G. Hence, E′ must contain some of its edges. �

Lemma 1. Let G be the input graph of an H-free Edge Deletion problem
instance where H is a set of connected graphs with diameter at most D. Let M
be an MHDS of G. Then, every vertex in VM is at a distance at most (lM − 1)D
from VH(G) in G .

Proof. For 2 ≤ j ≤ lM , from definition, at least one edge in every induced
H ∈ H in G \ Tj−2 is in Mj−1. Hence by Proposition 2, at least one vertex in
every induced H ∈ H in G \Tj−1 is in VMj−1 . By definition, every vertex in VMj

is part of some induced H ∈ H in G \ Tj−1. This implies every vertex in VMj
is

at a distance at most D from VMj−1 . Hence every vertex in VMlM
is at a distance

at most (lM − 1)D from VM1 . By definition, VM1 ⊆ VH(G). Hence the proof. �



32 N.R. Aravind et al.

Lemma 2. Let G be a graph with maximum degree at most Δ and M be an
MHDS of G. Then, for 1 ≤ j ≤ lM , (2Δ − 1) · |Mj | ≥ |Sj+1|.
Proof. For 1 ≤ j ≤ lM , from definition, Mj has at least one edge from every
induced H ∈ H in G\Tj−1. Let M ′

j be the set of edges incident to vertices in VMj

in G \ Tj−1. We observe that (G \ Tj−1) \ M ′
j is H-free and hence |Tj−1 ∪ M ′

j |
is an HDS of G. Clearly, |M ′

j | ≤ Δ|VMj
| ≤ 2Δ|Mj |. Since M is an MHDS,

|Tj−1 ∪M ′
j | = |Tj−1|+ |M ′

j | ≥ |M | = |Tj−1|+ |Sj |. Therefore |M ′
j | ≥ |Sj |. Hence,

2Δ|Mj | ≥ |Sj | = |Mj | + |Sj+1|. �
Now we give an upper bound for the depth of an MHDS in terms of its size

and maximum degree of the graph.

Lemma 3. Let M be an MHDS of G. If the maximum degree of G is at most
Δ > 0, then lM ≤ 1 + log 2Δ

2Δ−1
|M |.

Proof. The statement is clearly true when lM ≤ 1. Hence assume that lM ≥ 2.
The result follows from repeated application of Lemma 2.

|M | = |S1| = |M1| + |S2| ≥ |S2|
2Δ − 1

+ |S2|

≥ |SlM |
(

2Δ

2Δ − 1

)lM −1

≥
(

2Δ

2Δ − 1

)lM −1

[ ∵ |SlM | ≥ 1 ] �

Corollary 1. Let (G, k) be a yes-instance of H-free Edge Deletion where
G has maximum degree at most Δ > 0. For any MHDS M of G, lM ≤ 1 +
log 2Δ

2Δ−1
k. �

Lemma 4. Let H be a set of connected graphs with diameter at most D. Let
V ′ ⊇ VH(G) and let c ≥ 0. Let G′ be obtained by removing vertices of G at a
distance more than c + D from V ′. Furthermore, assume that if G′ is a yes-
instance then there exists an MHDS M ′ of G′ such that every vertex in VM ′ is
at a distance at most c from V ′ in G′. Then (G, k) is a yes-instance if and only
if (G′, k) is a yes-instance of H-free Edge Deletion.

Proof. Let G be a yes-instance with an MHDS M . Then M ′ = M ∩ E(G′) is
an HDS of G′ such that |M ′| ≤ k. Conversely, let G′ be a yes-instance. By the
assumption, there exists an MHDS M ′ of G′ such that every vertex in VM ′ is
at a distance at most c from V ′ in G′. We claim that M ′ is an MHDS of G.
For contradiction, assume G \ M ′ has an induced H ∈ H with a vertex set V ′′.
As G and G′ has same set of induced copies of graphs in H, at least one edge
in every induced copy of graphs in H in G is in M ′. Then, by Proposition 2,
at least one vertex in V ′′ is in VM ′ . We observe that for every vertex in G′ the
distance from V ′ is same in G and G′. Hence every vertex in V ′′ is at a distance
at most c + D from V ′ in G. Then, V ′′ induces a copy of H in G′ \ M ′ which is
a contradiction. �
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Lemma 5. Let G be a graph and let d > 1 be a constant. Let V ′ ⊆ V (G) such
that all vertices in G with degree more than d is in V ′. Partition V ′ into V1

and V2 such that V1 contains all the vertices in V ′ with degree at most d and
V2 contains all the vertices with degree more than d. If every vertex in G is at a
distance at most c > 0 from V ′, then |V (G)| ≤ |V1| · dc+1 + |NG(V2)| · dc.

Proof. To enumerate the number of vertices in G, consider the d-ary breadth
first trees rooted at vertices in V1 and in NG[V2].

|V (G′)| ≤ |V1|
(

dc+1 − 1
d − 1

)

+ |NG[V2]|
(

dc − 1
d − 1

)

≤ |V1|dc+1 + |NG[V2]|dc �

3 Polynomial Kernels

In this section, we assume that H is a fixed finite set of connected graphs with
diameter at most D. First we devise an algorithm to obtain polynomial kernel
for H-free Edge Deletion for bounded degree input graphs. Then we prove
a stronger result - a polynomial kernel for Kt-free input graphs (for some fixed
t > 2) when H contains K1,s for some s > 1.

We assume that the input graph G has maximum degree at most Δ > 1 and
G has at least one induced copy of H. We observe that if these conditions are
not met, obtaining polynomial kernel is trivial.

Now we state the kernelization rule which is the single rule in the
kernelization.

Rule 0: Delete all vertices in G at a distance more than (1 + log 2Δ
2Δ−1

k)D from
VH(G).

We note that the rule can be applied efficiently with the help of breadth first
search from vertices in VH(G). Now we prove the safety of the rule.

Lemma 6. Rule 0 is safe.

Proof. Let G′ be obtained from G by applying Rule 0. Let M ′ be an MHDS
of G′. If G′ is a yes-instance, then by Lemma 1 and Corollary 1, every vertex
in VM ′ is at a distance at most D log 2Δ

2Δ−1
k from VH(G′). Hence, we can apply

Lemma 4 with V ′ = VH(G) and c = D log 2Δ
2Δ−1

k. �

Lemma 7. Let (G, k) be a yes-instance of H-free Edge Deletion. Let G′ be
obtained by one application of Rule 0 on G. Then, |V (G′)| ≤ (2Δ2D+1 · kpD+1)
where p = log 2Δ

2Δ−1
Δ.
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Proof. Let M be an MHDS of G such that |M | ≤ k. We observe that every vertex
in VH(G) is at a distance at most D from VM1 in G. Hence, by construction,
every vertex in G′ is at a distance at most (2 + log 2Δ

2Δ−1
k)D from VM1 in G and

in G′. We note that |VM1 | ≤ 2k. To enumerate the number of vertices in G′, we
apply Lemma 5 with V ′ = VM1 , c = (2 + log 2Δ

2Δ−1
k)D and d = Δ.

|V (G′)| ≤ 2kΔ
(2+log 2Δ

2Δ−1
k)D+1

≤ 2Δ2D+1 · kpD+1 �

Now we present the algorithm to obtain a polynomial kernel. The algorithm
applies Rule 0 on the input graph and according to the number of vertices in
the resultant graph it returns the resultant graph or a trivial no-instance.

Kernelization for H-free Edge Deletion

(H is a finite set of connected graphs with maximum diameter D)
Input:(G, k) where G has maximum degree at most Δ.

1. Apply Rule 0 on G to obtain G′.
2. If the number of vertices in G′ is more than 2Δ2D+1 · kpD+1 where

p = log 2Δ
2Δ−1

Δ, then return a trivial no-instance (H, 0) where H is the
graph with minimum number of vertices in H. Else return (G′, k).

Theorem 1. The kernelization for H-free Edge Deletion returns a kernel
with the number of vertices at most 2Δ2D+1 · kpD+1 where p = log 2Δ

2Δ−1
Δ.

Proof. Follows from Lemmas 6 and 7 and the observation that the number of
vertices in the trivial no-instance is at most 2Δ2D+1 · kpD+1. �

3.1 A Stronger Result for a Restricted Case

Here we give a polynomial kernel for H-free Edge Deletion when H is a
fixed finite set of connected graphs and contains a K1,s for some s > 1 and when
the input graphs are Kt-free, for any fixed t > 2.

It is proved in [17] that the maximum degree of a {claw,K4}-free graph is at
most 5. We give a straight forward generalization of this result for {K1,s,Kt}-
free graphs. Let R(s, t) denote the Ramsey number. Remember that the Ramsey
number R(s, t) is the least integer such that every graph on R(s, t) vertices has
either an independent set of order s or a complete subgraph of order t.

Lemma 8. For integers s > 1, t > 1, any {K1,s,Kt}-free graph has maximum
degree at most R(s, t − 1) − 1.
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Proof. Assume G is {K1,s,Kt}-free. For contradiction, assume G has a vertex v
of degree at least R(s, t−1). By the definition of the Ramsey number there exist
at least s mutually non-adjacent vertices or t − 1 mutually adjacent vertices in
the neighborhood of v. Hence there exist either an induced K1,s or an induced
Kt in G. �

We modify the proof technique used for devising polynomial kernelization
for H-free Edge Deletion for bounded degree graphs to obtain polynomial
kernelization for Kt-free input graphs for the case when H contains K1,s for
some s > 1.

Let s > 1 be the least integer such that H contains K1,s. Let t > 2, G be
Kt-free and M be an MHDS of G. Let d = R(s, t−1)−1. Let D be the maximum
diameter of graphs in H. We define the following.

M0 = {e : e ∈ M and e is incident to a vertex with degree at least d + 1}.
VR(G) = {v : v ∈ V (G) and v has degree at least d + 1 in G}.

Lemma 9. G \ M0 has degree at most d and every vertex in G with degree at
least d + 1 is incident to at least one edge in M0.

Proof. As G \ M is {K1,s,Kt}-free and every edge in M which is incident to
at least one vertex of degree at least d + 1 is in M0, the result follows from
Lemma 8. �

Lemma 10. Let M be an MHDS of G. Let M ′ = M \ M0 and G′ = G \ M0.
Then, M ′ is an MHDS of G′ and every vertex in VM is at a distance at most
DlM ′ from VH(G) ∪ VR(G) in G.

Proof. It is straight forward to verify that M ′ is an MHDS of G′. By Lemma 1,
every vertex in VM ′ is at a distance at most (lM ′ − 1)D from VH(G′) in G′.
Every induced H ∈ H in G′ is either an induced H in G or formed by deleting
M0 from G. Therefore, every vertex in VH(G′) is at a distance at most D from
VH(G) ∪ VR(G) in G′. Hence, every vertex in VM ′ is at a distance at most DlM ′

from VH(G) ∪ VR(G) in G′. The result follows from the fact M = M ′ ∪ M0. �

The single rule in the kernelization is:

Rule 1: Delete all vertices in G at a distance more than (2 + log 2d
2d−1

k)D from
VH(G) ∪ VR(G) where d = R(s, t − 1) − 1.

Lemma 11. Rule 1 is safe.

Proof. Let G′ be obtained from G by applying Rule 1. Let M ′ be an MHDS of
G′. If G′ is a yes-instance, then by Lemma 10 and Corollary 1, every vertex in
VM ′ is at a distance at most D(1 + log 2d

2d−1
k) from VH(G′) ∪ VR(G′) in G′. We

note that VH(G) = VH(G′) and VR(G) = VR(G′). Hence, we can apply Lemma 4
with V ′ = VH(G) ∪ VR(G), c = D(1 + log 2d

2d−1
k) and d = R(s, t − 1) − 1. �
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Lemma 12. Let (G, k) be a yes-instance of H-free Edge Deletion where G
is Kt-free. Let G′ be obtained by one application of Rule 1 on G. Then, |V (G′)| ≤
8d3D+1 · kpD+1 where p = log 2d

2d−1
d.

Proof. Let M be an MHDS of G such that |M | ≤ k. We observe that every vertex
in VH(G) is at a distance at most D from VM1 in G. Hence, by construction, every
vertex in G′ is at a distance at most D(3+log 2d

2d−1
k) from VM1 ∪VR(G). Clearly

|VM1 | ≤ 2k. Using Lemma 9 we obtain |N [VR(G)]| ≤ 2k(d + 2). To enumerate
the number of vertices in G′, we apply Lemma 5 with V ′ = VM1 ∪ VR(G),
c = D(3 + log 2d

2d−1
k) and d = R(s, t − 1) − 1.

|V (G′)| ≤ 2kd
D(3+log 2d

2d−1
k)+1

+ 2k(d + 2)d
D(3+log 2d

2d−1
k)

≤ 8d3D+1 · kpD+1

�

Now we present the algorithm.

Kernelization for H-free Edge Deletion

(H contains K1,s for some s > 1)
Input:(G, k) where G is Kt-free for some fixed t > 2.
Let s > 1 be the least integer such that H contains K1,s.

1. Apply Rule 1 on G to obtain G′.
2. If the number of vertices in G′ is more than 8d3D+1 · kpD+1 where

d = R(s, t − 1) − 1 and p = log 2d
2d−1

d, then return a trivial no-instance
(K1,s, 0). Else return (G′, k).

For practical implementation, we can use any specific known upper bound
for R(s, t − 1) or the general upper bound

(
s+t−3
s−1

)
.

Theorem 2. The kernelization for H-free Edge Deletion when K1,s ∈ H
and the input graph is Kt-free returns a kernel with the number of vertices at
most 8d1+3D · k1+pD where d = R(s, t − 1) − 1 and p = log 2d

2d−1
d.

Proof. Follows from Lemmas 11 and 12. �

It is known that line graphs are characterized by a finite set of connected
forbidden induced subgraphs including a claw (K1,3). Both Claw-free Edge

Deletion and Line Edge Deletion are NP-complete even for K4-free graphs
[23].

Corollary 2. Claw-free Edge Deletion and Line Edge Deletion admit
polynomial kernels for Kt-free input graphs for any fixed t > 3. �
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We observe that the kernelization for H-free Edge Deletion when K1,s ∈
H and the input graph is Kt-free works for the case when Kt ∈ H and the input
graph is K1,s-free.

Theorem 3. H-free Edge Deletion admits polynomial kernelization when
H is a finite set of connected graphs, Kt ∈ H for some t > 2 and the input graph
is K1,s-free for some fixed s > 1.

4 Concluding Remarks

Our results may give some insight towards a dichotomy theorem on incompress-
ibility of H-free Edge Deletion raised as an open problem in [4]. We conclude
with an open problem: does H-free Edge Deletion admit polynomial kernel
for planar input graphs?
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Abstract. Given a system of linear equations Ax = b over the binary
field F2 and an integer t ≥ 1, we study the following three algorithmic
problems:

1. Does Ax = b have a solution of weight at most t?
2. Does Ax = b have a solution of weight exactly t?
3. Does Ax = b have a solution of weight at least t?

We investigate the parameterized complexity of these problems with t as
parameter. A special aspect of our study is to show how the maximum
multiplicity k of variable occurrences in Ax = b influences the complexity
of the problem. We show a sharp dichotomy: for each k ≥ 3 the first two
problems are W[1]-hard (which strengthens and simplifies a result of
Downey et al. [SIAM J. Comput. 29, 1999]). For k = 2, the problems
turn out to be intimately connected to well-studied matching problems
and can be efficiently solved using matching algorithms.

1 Introduction

There are well known efficient methods, like Gaussian elimination, to solve sys-
tems of linear equations Ax = b over F2. The problem becomes harder when
we are seeking for a solution u with certain constraints placed on its Hamming
weight wt(u). This problem has been extensively studied in the context of error
correcting codes as it is closely related to the minimum weight codeword prob-
lem: given a linear code defined by Ax = 0, what is the minimum weight of a
non-zero codeword in it? This problem is known to be NP-hard [12], and even
hard to approximate within any constant factor, assuming NP �= RP [5]. There
are three related decision problems of interest for systems of linear equations
Ax = b over F2:

This work was supported by the Alexander von Humboldt Foundation in its research
group linkage program. The third author was supported by DFG grant KO 1053/7-2.

c© Springer International Publishing Switzerland 2014
M. Cygan and P. Heggernes (Eds.): IPEC 2014, LNCS 8894, pp. 39–50, 2014.
DOI: 10.1007/978-3-319-13524-3 4



40 V. Arvind et al.

1. (A, b, t) ∈ LinEq≤ if Ax = b admits a solution u with 1 ≤ wt(u) ≤ t.
2. (A, b, t) ∈ LinEq= if Ax = b admits a solution u with wt(u) = t.
3. (A, b, t) ∈ LinEq≥ if Ax = b admits a solution u with wt(u) ≥ t.

Berlekamp et al. [2] show that both LinEq≤ and LinEq= are NP-complete.
When b is the all zeros vector, LinEq≤ is the minimum weight codeword problem
which is NP-hard [12], as already mentioned. Ntafos et al. [8] show that LinEq≥
is NP-complete (also see [13]). See [7] for a nice discussion of these hardness
results.

When the weight threshold t is considered as parameter, we denote the
resulting parameterized versions of these problems by LinEq≤,t, LinEq=,t and
LinEq≤,t, respectively. Downey et al. [4] studied special cases of LinEq≤,t and
LinEq=,t: when the vector b is either the all zeros vector or b is the all ones
vector. These two special cases are called Even and Odd, respectively, for the
weight at most t version. As argued in Remark 2.1 below, all other cases for
vector b are in fact equivalent to either one of them. Observe that in the Even

case, setting all variables to zero is always a solution; this is why LinEq≤,t and
Even ask for solutions of weight at least 1. For the weight exactly t version,
the problems are called Exact Even and Exact Odd. It turns out via a com-
plicated proof in [4], that Odd, Exact Odd and Exact Even are W[1]-hard.
Whether Even is also W[1]-hard remains open. The problem LinEq≥,t, to our
knowledge, has not been studied in the parameterized setting before. We show
in Sect. 6 that in contrast to the other two, this problem is in FPT.

Our main contribution is the study of LinEq≤,t and LinEq=,t in the light of
some additional parameters: the maximum number k of occurrences of a variable
in the system and the maximum size s of an equation. When k and s are restricted
or used as an additional parameter, we denote this by an additional subscript
to the respective problem. For example, k is treated as an additional parameter
(besides t) in LinEq≤,t,k, and bounded by kmax in LinEq≤,t,k≤kmax .

Concerning parameter k, we show a sharp dichotomy in the complexity of the
problem. We prove that LinEq≤,t,k≤kmax and LinEq=,t,k≤kmax are fpt tractable
for kmax ≤ 2, whereas for each kmax ≥ 3, both problems are W[1]-hard. For
the weight exactly t version, the hardness also holds for b = 0, while this case
remains open for the weight at most t version.

Our hardness proof is a direct reduction from the parameterized clique prob-
lem. It strengthens and is much simpler than the proofs in [3,4] that (for un-
bounded occurrence multiplicity of the variables) go over a series of reductions
running into nearly 10 pages. Furthermore, it gives alternative proofs of hardness
for their results for Exact Even, Odd and Exact Odd.

For kmax = 2, we establish a connection between the equation systems and
graph matching problems. We show that LinEq≤,k≤2 and LinEq≥,k≤2 are solv-
able in polynomial time, while LinEq=,k≤2 is solvable in randomized NC (RNC).
The latter result follows from an interesting connection between LinEq=,k≤2

and Red-Blue Perfect Matching [10] (also known as Exact Matching),
which is known to be solvable in RNC [9] but not known to be in P. We show
in Sect. 4 that both problems are equivalent under logarithmic space reductions.
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Table 1. Summary of results.

Parameter/restriction list α

Problem t t, k ≤ 3 t, k ≤ 2 k ≤ 2 s, t s ≤ 2

LinEq≤,α W[1]-hard W[1]-hard FPT P FPT L-complete

[4] Theorem 3.1 Theorem 4.1 Theorem 4.1 Theorem 5.1 Theorem 5.5

LinEq=,α W[1]-harda W[1]-harda FPT RNC FPT L-complete

[4] Theorem 3.1 Theorem 4.5 Corollary 4.4 Theorem 5.4 Theorem 5.5

LinEq≥,α FPT FPT FPT P FPT L-complete

Theorem 6.1 Theorem 6.1 Theorem 6.1 Theorem 4.2 Theorem 6.1 Theorem 5.5
aRemains W[1]-hard for b = 0.

Hence, proving that LinEq=,k=2 is in P would imply that Red-Blue Perfect

Matching is also in P, solving a long standing open question. Further we show
that LinEq=,t,k≤2 is fixed parameter tractable.

If the maximum equation size s is an additional parameter then, as we show
in Sect. 5, all three problems are fixed parameter tractable. In particular, if
s ≤ 2 then even the parameter-free versions of all three problems are solvable in
logarithmic space. A summary of the results is given in Table 1.

Our fpt algorithms involve standard techniques like color coding (Theo-
rems 4.5 and 5.4), depth-bounded search trees (Theorem 5.1), and reduction
to problem kernels (Theorem 6.1).

For space reasons some proofs are omitted; the full version can be found at
http://eccc.hpi-web.de/report/2014/096/.

2 Basic Transformations

In this section we describe some basic transformations between various linear
equation system problems. First, note that LinEq≤ is polynomial-time reducible
to LinEq= via (A, b, t) �→ {(A, b, t′) : 1 ≤ t′ ≤ t}. We next show that (Exact)

Even fpt reduces to (Exact) Odd, taking the focus away from the “mixed”
case (when b is neither the all zeros nor the all ones vector).

Remark 2.1. A system of linear equations Ax = b over F2 can be easily trans-
formed into an equivalent system A′x′ = 1: Add a new variable x0 and equation
x0 = 1. Convert each 0-equation into an equivalent 1-equation by adding x0 to
it. Then Ax = b has a weight t solution if and only if A′x′ = 1′ has a weight
t + 1 solution.

In the non-parameterized setting, the “mixed” case is also reducible to Even.

Remark 2.2. A system Ax = b over F2 with n variables can be transformed
into a system A′x′ = 0 such that Ax = b has a weight t solution if and only if
A′x′ = 0 has a weight t+n+1 solution: add a new variable x0 and a new equation
x0 = 1. Convert each 1-equation into an equivalent 0-equation by adding x0 to
it. Introduce n new variables y1, . . . , yn and replace the x0 = 1 equation by the
equations x0 + yi = 0 for i = 1, . . . , n.

http://eccc.hpi-web.de/report/2014/096/
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Lemma 2.3. Let Ax = b be a system of linear equations and let k be the max-
imum number of occurrences of any variable in it. Then an equivalent system
A′y = b′ with at most three occurrences of each variable can be constructed in
polynomial time, where equivalent means that a weight t solution for Ax = b
induces a weight kt solution for A′y = b′ and any weight t′ solution for A′y = b′

induces a weight t′/k solution for Ax = b.

The proof idea for the above lemma is to introduce k copies of each variable,
to replace each occurrence with a different copy, and to force the copies to take
equal values using additional equations.

As a consequence of Lemma 2.3 we can reduce all linear equation problems
to the case k ≤ 3. For example, it follows that LinEq≤,t,k is fpt reducible to
LinEq≤,t,k≤3 and that LinEq= is polynomial-time reducible to LinEq=,k≤3.

To facilitate the presentation of some of our proofs, it is convenient to consider
a more general problem in which each variable xi occurring in Ax = b has a
positive integer weight wi (encoded in unary). The weight t of a solution is the
sum of the weights of the variables assigned value 1. The next lemma shows that
the weighted case is polynomial-time reducible to the unweighted case (where
all variables have weight 1).

Lemma 2.4. Let Ax = b be a system of linear equations with variable weights
given in unary. Then an equivalent unweighted system A′y = b′ can be con-
structed in polynomial time, where equivalent means that a weight t solution for
Ax = b induces a weight t solution for A′y = b′ and vice versa. Moreover,

(i) if all variables of Ax = b occur in exactly 2 equations then all variables of
A′y = b′ occur in exactly 2 equations.

(ii) if all variables of Ax = b occur in exactly 3 equations and have odd weight,
then all variables of A′y = b′ occur in exactly 3 equations.

We close this section by giving a useful graph theoretical interpretation of the
linear equation problems.

Remark 2.5. We will consider systems Ax = b with m variables and n equations,
that is, A is an n × m matrix over F2. It will be convenient to interpret A as
the incidence matrix of a hypergraph. With this interpretation each equation
becomes a vertex and each variable becomes a hyperedge that consists of all ver-
tices (equations) in which it occurs. Note that this might give a multi-hypergraph
since different variables might occur in exactly the same equations.

A vertex vj will be called even if bj = 0, and odd if bj = 1. A solution
of weight t is a selection of t hyperedges that covers each even vertex with
an even number of hyperedges and each odd vertex with an odd number of
hyperedges. Observe that in the case that every variable appears exactly twice in
the equation system we get a standard multi-graph in which each edge connects
two vertices.
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3 At Most Three Occurrences of Each Variable

This section is devoted to our main result showing that LinEq≤,t,k≤kmax and
LinEq=,t,k≤kmax are W[1]-hard for each kmax ≥ 3.

Theorem 3.1. LinEq≤,t,k≤3 and LinEq=,t,k≤3 are W[1]-hard. The hardness
even holds for the case that each variable occurs exactly three times.

To prove Theorem 3.1 we make use of the hypergraph interpretation of a linear
system of equations as explained in Remark 2.5. The key step is the design of a
selector gadget, which can be used to select a specified number of vertices from a
given vertex set V = {v1, . . . , vn}. Besides the vertices in V , the gadget contains
a special start vertex a and a set U of internal vertices, i.e., the vertex set is
V ∪ U ∪ {a}. We say that a set S of hyperedges activates a vertex if S covers
it an odd number of times. Further, we call S admissible if it activates the start
vertex a but no internal vertex in U . Using this notation we will construct the
hyperedge set E of the gadget Selak,V in such a way that the minimal admissible
subsets S of E activate besides a exactly the k-element subsets of V .

The construction of Selak,V is illustrated in Fig. 1. The set of internal vertices
is U = {u�,i : 1 < � < k ∧ � ≤ i ≤ n − k + �}. The intended semantics is that if
a minimal admissible subset S covers the vertex u�,i, then vi is the �th smallest
of the activated vertices from V . The hyperedge set of Selak,V is E =

⋃k−1
�=1 Ek,

where the level 1 hyperedges are E1 = {{a, vi, u2,i′} : 1 < i < i′ ≤ n − k + 2},
the level � hyperedges are E� = {{u�,i, vi, u�+1,i′} : � ≤ i < i′ ≤ n − k + � + 1}
for � = 2, . . . , k − 2, and the level k − 1 hyperedges are Ek−1 = {{uk−1,i, vi, vi′} :
n − k ≤ i < i′ ≤ n − 1}. In the weighted version Sela,w

k,V of the gadget, all its
hyperedges have weight w. The following lemma summarizes its properties.

Lemma 3.2. Let V = {v1, . . . , vn} and let k and w be positive integers. For any
subset W ⊆ V of size k, there is an admissible set S ⊆ E of weight (k − 1)w
for the selector gadget Sela,w

k,V that activates exactly a and the vertices in W.
Moreover, any admissible set S ⊆ E of weight less than (k + 1)w for Sela,w

k,V has
weight exactly (k − 1)w and activates exactly k of the vertices in V.

Proof of Theorem 3.1. We reduce from the W[1]-complete clique problem which
asks whether a given graph has a clique of size k, where k is treated as parameter.

a
i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9

� = 2

� = 3

� = 4

v1 v2 v3 v4 v5 v6 v7 v8 v9

Fig. 1. The vertices of the selector gadget Sela5,{v1,...,v9} and the minimal admissible
subset of hyperedges that leads to the activation of {v2, v4, v6, v7, v8}.
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Let G = (V,E) and k be the given instance. We will construct an equation system
Ax = b with exactly one 1-equation where each variable occurs exactly three
times. Continuing with the hypergraph view, we will use several instances of the
selector gadget; each uses its own internal vertices. Besides the internal vertices,
the hypergraph contains one special start vertex a (which is the only odd vertex),
one vertex for each graph vertex in V , and one vertex for each graph edge in E.
Let w = k2 if k is odd, and w = k2 +1 otherwise. Add the selector gadget Sela,w

k,V

to the constructed hypergraph. For each graph vertex v ∈ V , let E(v) denote
the set of edges incident to it, and add the selector gadget Selv,1

k−1,E(v). Its role
is to ensure that if v is selected by Sela,w

k,V , then v must be adjacent to all other
selected vertices. See Fig. 2 for an illustration of this construction. As the selector
gadget has only hyperedges of size 3 and as w is odd, Lemma 2.4 implies that
the weights can be removed while maintaining 3-uniformity.

We show that for t = (k − 1)w + k(k − 2), the graph G has a clique of size k
iff the equation system described by the constructed hypergraph has a solution
of weight at most t. If G contains a k-clique C, choose the admissible hyperedge
subset of Sela,w

k,V that activates exactly the vertices in C. Then, for each clique
vertex v ∈ C, add the admissible hyperedge subset for Selv,1

k−1,E(v) that activates
{e ∈ E(v) : e ⊆ C}. Combining these hyperedge sets yields a solution of weight t.

Now consider any solution to the equation system of weight at most t. As
(k+1)w ≥ k3+k2 > k3−k−1 ≥ t, Lemma 3.2 implies that this solution contains
exactly (k−1) hyperedges from Sela,w

k,V , which activate a set C of exactly k vertices
in V . As these have to be covered an even number of times, each has to be covered
an odd number of times from within its selector gadget. So for each v ∈ C, the
solution must include at least k−2 hyperedges of the selector gadget Selv,1

k−1,E(v).
As this accounts for the remaining weight permitted by t, the solution cannot
include further hyperedges. In particular, all vertices from E that are covered at
all are graph edges that are incident to a vertex in C. As all vertices in E are
even, these edges have to be covered twice by the solution, implying that every
vertex v ∈ C has k − 1 neighbors in C, thus C is a k-clique.

Finally, note that the constructed equation system admits a solution of weight
at most t if and only if it admits one of weight exactly t. �
Using the construction of Remark 2.1, we obtain alternative proofs that Odd and
Exact Odd are W[1]-hard. To generalize it to Exact Even, we can multiply

a

v1 vi vj vn
Sela,wk,V

Selvi,1k−1,E(vi)
Sel

vj ,1

k−1,E(vj)eij

Fig. 2. Hypergraph view of the equation system that has a weight t solution if and
only if the underlying graph G has a k-clique. The gadgets Selvi,1

k−1,E(vi)
and Sel

vj ,1

k−1,E(vj)

share the vertex eij iff the graph edge eij connects the graph vertices vi and vj .
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all weights by 2, add a new hyperedge {a} of weight one, and ask for a solution
of weight 2t + 1.

4 At Most Two Occurrences of Each Variable

We show that the three problems are easier when every variable appears at
most twice in Ax = b. It turns out that these problems can be solved using
standard matching algorithms. LinEq≤,k≤2 and LinEq≥,k≤2 have deterministic
polynomial-time algorithms, whereas LinEq=,k≤2 has a randomized polynomial
time algorithm (in fact a randomized NC algorithm).

Firstly, we note that we can easily transform the instance to the case when
every variable in the system Ax = b appears in exactly two equations without
any change in the parameter t. We include the new equation

∑n
i=1

∑n
j=1 Aijxj =

∑n
i=1 bi (obtained by adding up all equations in Ax = b) to obtain a new system

A′x = b′. Note that Ax = b and A′x = b′ have identical solutions. Furthermore,
the new equation

∑n
i=1

∑n
j=1 Aijxj =

∑n
i=1 bi has on its left-hand side precisely

the sum of all single occurrence variables of the system Ax = b. Hence every
variable in A′x = b′ occurs exactly twice.

We will use the multi-graph interpretation of Remark 2.5 to design the algo-
rithms in this subsection.

Theorem 4.1. LinEq≤,k≤2 ∈ P.

Proof. Given an instance (A, b, t) of LinEq≤,k≤2, we construct the graph G
associated with Ax = b. The set of edges with value 1 in a solution to the
system consists of an edge disjoint set of paths connecting the odd vertices by
pairs and possibly some edge disjoint cycles.

If there are odd vertices we do not need to consider the cycles, since we are
searching for a solution of minimum weight. Such a solution corresponds to a set
of edge disjoint paths of minimum total length pairing the odd vertices. This can
be obtained by computing the minimum distance between all pairs of odd vertices
in the graph. With this we can construct a weighted clique in the following
way: each vertex in the clique represents an odd vertex in the graph. The edge
between two clique vertices is weighted with the minimum distance between
the corresponding odd vertices in the original graph. We claim that a perfect
matching with minimum weight in the clique defines a solution of minimum
weight in the system. To see this, observe that if two edges {a1, a2} and {b1, b2}
in the perfect matching of minimum weight would correspond to paths that share
at least one edge in G, then the total length of the shortest paths between a1

and one of the b-vertices and a2 and the other b-vertex would be smaller than
d(a1, a2)+d(b1, b2) since the new paths would not contain the common edge. This
implies that a perfect matching of minimum weight corresponds to a minimum
weight solution of the system. Since minimum weight perfect matching can be
solved in polynomial time, the result follows.

When all vertices are even, we need to ensure that at least one variable is set
to 1. In this case, a minimum weight non-trivial solution is just a cycle in G with
a minimum number of edges. This also can be computed in polynomial time. �
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Using similar ideas we can show that the weight at least t version of the problem
can also be solved in polynomial time.

Theorem 4.2. LinEq≥,k≤2 ∈ P.

We show next that LinEq=,k=2 is equivalent to Red-Blue Perfect Match-

ing (RBPM), a problem introduced by Papadimitriou et al. [10]. This problem
is defined in the following way: Given a graph G with blue and red edges and
a number t, is there a perfect matching in G with exactly t red edges? RBPM

can be solved in randomized NC [9], but until now, no deterministic polynomial
time algorithm for it is known. In fact, not even the parameterized version of
this problem (with t as parameter) is known to lie in FPT.

Theorem 4.3. LinEq=,k≤2 and RBPM are many-one equivalent under loga-
rithmic space reductions.

Proof (forward direction). Let Ax = b be a system of equations in which every
variable appears exactly twice and let G = (V,E) be its interpretation as a
graph.

We first assume that b = 0. Let u be a solution of weight t. Since u selects
for each vertex v an even number of all edges incident to v, u corresponds to
a union of edge disjoint cycles in G with exactly t edges. Now consider the
graph G′ = (V ′, E′) that is obtained from G by expanding each vertex v ∈ V
with degree dv into dv new vertices v1, . . . , vdv

and connecting all pairs of these
vertices by red edges. The original edges incident with v in G are each connected
to one of the new vertices and are all colored blue (see Fig. 3). Notice that in G′,
u corresponds to a union of vertex disjoint cycles with exactly 2t edges, where
each cycle consists of alternating red and blue edges. Hence, the t red edges on
these cycles form a matching that can be extended to a perfect matching of G′

by adding all blue edges that are not lying on any cycle of u. Conversely, any
perfect matching of G′ with t red edges yields a solution of weight t by taking its
symmetric difference with the set of all blue edges. This shows that Ax = b has
a solution of weight t if and only if G′ has a perfect matching with t red edges.

If G has r > 0 odd vertices, each solution u corresponds to a union of edge
disjoint cycles and paths with exactly t edges, where exactly the endpoints of
the paths are odd vertices. We construct G′ as before but expand each odd
vertex into a red clique of size dv + 1 by adding a special clique vertex v0 that
is connected via red edges to the other dv clique vertices v1, . . . , vdv

. In this

v v3

v2
v1

v4

Fig. 3. Expansion of a vertex v of degree 4. The dotted edges are red edges.
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graph, each solution u corresponds to a union of edge disjoint cycles and paths
with exactly t blue and t + r/2 red edges, where exactly the endpoints of the
paths are special clique vertices. Similarly to the even case, the t+r/2 red edges
of u form a matching that can be extended to a perfect matching of G′ by
adding all blue edges that are not lying on any cycle or path. Conversely, any
perfect matching M in G′ has to match each special clique vertex via a red edge,
implying that an odd number of the blue edges connected to its clique does not
belong to M . Hence, if M has t+ r/2 red edges, taking the symmetric difference
of M with the set of all blue edges yields again a solution of weight t. �

Interestingly, whereas the forward reduction also works in the parameterized
setting (with t as parameter), this is not true for the converse reduction. Further,
observe that the variants of Red-Blue Perfect Matching in which we ask
for a matching with at most or at least t red edges are known to be in P. This
provides alternative proofs for Theorems 4.1 and 4.2.

As RBPM is in randomized NC [9] we obtain the following corollary.

Corollary 4.4. LinEq=,k≤2 ∈ RNC.

We close this section by showing that in the parameterized setting, a solution of
weight t can be found in fpt time when each variable occurs at most twice.

Theorem 4.5. LinEq=,t,k≤2 ∈ FPT.

Proof. Let (A, b, t) be the input instance and let G = (V,E) be the corresponding
graph. If b = 0, let u0 be the empty solution. Otherwise, using the algorithm
of Theorem 4.1, we compute a solution u0 of minimum weight for Ax = b. If
|u0| ≥ t, we are done. Otherwise, observe that every solution of Ax = b can
be written as a sum (modulo 2) of u0 and some edge-disjoint cycles of G (that
might overlap with u0). To find a suitable set of cycles, we use the color coding
method introduced in [1]. Each edge in u0 receives its own unique color (recall
that |u0| < t). Let Cu0 be the set of colors of the edges in u0. The remaining edges
are colored uniformly at random using t new different colors. In case that there
is a solution of weight exactly t, the probability that all the edges in the solution
have different colors depends only on t and it is at least t!

tt . A color pattern for a
cycle is a sequence of colors to be encountered on the cycle. Now consider each
possible set C of disjoint color patterns (their number only depends on t). For
any set of disjoint cycles that realizes C, the corresponding solution has weight
equal to the number of colors that appear in C or in Cu0 but not in both. If C
leads to solutions of weight t, it remains to check if each color pattern c1, . . . , ck

in C can be realized in G. The latter can be checked dynamically by computing
sets Si(v), with v ∈ V and 0 ≤ i ≤ k, such that u ∈ Si(v) if and only if there is
a path from u to v that realizes c1, . . . , ci. Initially, S0(v) = {v} for each v ∈ V .
For i ∈ {1, . . . , k}, the set Si(v) is the union of all Si−1(u) for which {u, v} is
an edge of color ci. There is a cycle realizing c1, . . . , ck if and only if there is a
vertex v with v ∈ Sk(v).

The probabilistic part in the previous algorithm can be derandomized using
a perfect hash family as explained in [1]. �
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5 Using the Equation Size as an Additional Parameter

In this section we show that the weight at most t and the weight exactly t
versions of the problem become fixed parameter tractable when we treat the
maximum equation size s as an additional parameter. For the weight at least t
version we show in Sect. 6 that even LinEq≥,t is in FPT.

We call a solution u �= 0 of a system Ax = b minimal if for any solution u′ �= 0
with u′

i ≤ ui for all i it holds that u′ = u.

Theorem 5.1. LinEq≤,t,s ∈ FPT. Moreover, for each instance, all minimal
solutions of weight at most t can be found in fpt time.

Proof. The algorithm traverses the following search tree to find all minimal
solutions of weight at most t. If b = 0, the first branch is to select a variable, set
it to 1 and continue with the resulting system over the remaining m−1 variables.
This m-way branching is only needed once to avoid the trivial all zeroes solution.
If b �= 0 and the number of variables set to 1 so far is smaller than t, we pick
the first equation with bj = 1 and branch over all variables that occur in this
equation. In each branch, we set the chosen variable to 1 and continue with the
system over the remaining variables. As soon as all equations are satisfied by
setting the remaining variables to 0 (i.e., b = 0), we reach at a successful leaf
providing a solution of weight at most t. If already t variables have been set to 1
and b �= 0, the current node is declared to be an unsuccessful leaf.

Since for every minimal solution u of weight at most t there is a path that
selects at each node one more variable from u, the tree enumerates any such
solution. Further, the tree can be traversed in fpt time as its depth is bounded
by t and the number of its leaves is bounded by st−1m. �

To solve the weight exactly t case, we will again design a color coding algorithm
similar to that in Theorem 4.5, where minimal solutions take the role of cycles.
The following lemma shows that any solution u �= 0 of a system Ax = 0 is the
sum of disjoint minimal solutions.

Lemma 5.2. Any solution u �= 0 of a homogeneous system Ax = 0 over F2 is
the sum of disjoint minimal solutions.

Next, we observe the following colored variant of Theorem 5.1. When the vari-
ables are colored, we say that a solution u respects a set C of colors if u contains
exactly one variable of each color in C, and no other variables.

Lemma 5.3. Given a system Ax = b over F2, a coloring of its variables and
a set C of colors, all minimal solutions that respect C can be found in fpt time
when |C| and the maximum size s of the equations are treated as parameters.

Now, the following theorem can be proved along the same lines as Theorem 4.5.

Theorem 5.4. LinEq=,t,s ∈ FPT.
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We close this section by considering restrictions on the parameter s. In the case
s ≤ 2 we can assume that all equations contain exactly 2 variables. Let G be the
graph that has one vertex for each literal and an edge between each pair of literals
that are forced to be equivalent by some equation. If the system is satisfiable,
the connected components of G can be grouped into pairs of complementary
equivalence classes. Define the size of an equivalence class as the number of
positive literals in it. By choosing the one of smaller/larger size from each pair of
complementary equivalence classes gives a minimum/maximum weight solution.
Furthermore, the weight exactly t version reduces to Unary Subset Sum: It
suffices to check whether a subset of the size differences of all pairs sums up to t
minus the size of a minimum solution. As both Undirected Connectivity

and Unary Subset Sum can be solved in logarithmic space [6,11], we have the
upper bounds of the following theorem.

Theorem 5.5. LinEq≤,s≤2, LinEq=,s≤2, and LinEq≥,s≤2 are all L-complete.

Complementing this result, the following lemma shows that the general case can
be reduced to the case s ≤ 3, implying that all three problems remain NP-hard
under this restriction.

Lemma 5.6. Given a system of linear equations Ax = b and a number t we can
construct a new system A′y = b′ with equations of size at most 3 and a number t′

so that there is a solution of weight t for the first system if and only if there is
a solution of weight t′ for the second one.

6 The Weight at Least t Version

In this section we give an fpt algorithm finding solutions of weight at least t.

Theorem 6.1. LinEq≥,t ∈ FPT.

Proof. Let Ax = b be the given equation system and let t be the given weight
threshold. Using Gaussian elimination, we can decide whether Ax = b is feasible
and compute the dimension d of the solution space of Ax = 0 in polynomial
time. If d exceeds t log m then there must be a solution of weight at least t, since
there can be only

t−1∑

i=0

(
m

i

)

< 2t log m

solutions of weight less than t. Otherwise, we compute a linearly independent
spanning set {v1, v2, . . . , vd} of at most t log m solutions for Ax = 0, along with
a particular solution u of Ax = b. Any solution to Ax = b is of the form
u +

∑d
i=1 αivi, where αi ∈ F2. If one of the solution vectors u and u + vi for i =

1, . . . , d has support at least t, it witnesses that the input is a positive instance.
Otherwise all but t2 log m coordinates are always zero in any solution vector.
Hence, the number of relevant variables (that can take value 1 in any solution)
is bounded by t2 log m. Discarding the other variables, we now have a system of
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linear equations with at most t2 log m variables. We can now brute-force search
for all solutions of Hamming weight at most t − 1. Note that the number S of
such solutions is bounded by

t−1∑

i=0

(
t2 log m

i

)

< (t2 log m)t.

Keeping in mind the easily checked fact that (log m)O(t) = tO(t)poly(m), this
search takes fpt time. Finally, comparing S with the dimension d, if S = 2d,
then all solutions have weight less than t, otherwise there must be a solution of
weight at least t. �

The previous algorithm may not always construct a solution of weight at least t
if it exists. However, using self-reduction in a standard way, we can also solve
the search problem in fpt time.
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Abstract. We study the parameterized complexity of Geometric Graph
Isomorphism (It is known as Point Set Congruence problem in computa-
tional geometry): given two sets of n points A, B ⊂ Q

k in k-dimensional
euclidean space, with k as the fixed parameter, the problem is to decide
if there is a bijection π : A → B such that for all x, y ∈ A, ‖x − y‖ =
‖π(x) − π(y)‖, where ‖ · ‖ is the euclidean norm. Our main results are
the following:
– We give aO∗(kO(k)) time (TheO∗(·) notation here, as usual, suppresses

polynomial factors) FPT algorithm forGeometric Isomorphism. In fact,
we show the stronger result that canonical forms for finite point sets in
Q

k can also be computed in O∗(kO(k)) time. This is substantially faster

than the previous best time bound of O∗(2O(k4)) for the problem [1].
– We also briefly discuss the isomorphism problem for other lp metrics.

We describe a deterministic polynomial-time algorithm for finite point
sets in Q

2.

1 Introduction

Given two finite n-point sets A and B in a metric space (X, d), we say A and
B are isomorphic if there is a distance-preserving bijection between A and B.
The Geometric Graph Isomorphism problem for this metric space, denoted GGI,
is to decide if A and B are isomorphic. The most well-studied version of this
general problem, which is also the main focus in this paper, is the standard
k-dimensional euclidean space (Rk, l2) equipped with the l2 metric. This problem
is also known as the Point Set Congruence problem in the computational geom-
etry literature [2–4]. It is called “Geometric Graph Isomorphism” by Evdokimov
and Ponomarenko in [1], which we find more suitable as the problem is closely
related to Graph Isomorphism.

When k is constant, there is an easy polynomial-time algorithm for the
problem [4]. When k = n, Papadimitriou and Safra [5] note that the prob-
lem is polynomial-time equivalent to the standard Graph Isomorphism prob-
lem. The interesting case is when the dimension k is much smaller than n. In
the computational geometry literature, a randomized algorithm running in time
O(n

k−1
2 ·log n) was given in [2]. This was improved to an O(n� k

3 � ·log n) algorithm

c© Springer International Publishing Switzerland 2014
M. Cygan and P. Heggernes (Eds.): IPEC 2014, LNCS 8894, pp. 51–62, 2014.
DOI: 10.1007/978-3-319-13524-3 5
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in [3]. We note that both these results are for a random access model of com-
putation, used in computational geometry, which allows for arbitrary precision
real arithmetic.

For point sets A,B ⊂ Q
k, when the dimension k treated as a fixed parameter,

an FPT algorithm for the GGI problem, running in time (2k4
nM)O(1), was

given by Evdokimov and Ponomarenko [1], where M upper bounds the binary
encodings of the rational numbers in the input point sets. Their algorithm uses
concepts from cellular algebras and is technically nontrivial.1

Our Results

As our first result we give a O∗(kO(k)) time FPT algorithm for Geometric Graph
Isomorphism. (Here, the O∗(·) notation hides polynomial factors in the input
size.) Indeed, we actually give a O∗(kO(k)) time algorithm that computes canon-
ical forms for point sets in Q

k. Our main contribution here is an intuitive geo-
metric approach based on integer lattices — surprisingly not used in earlier work
on the problem — to the Geometric Graph Isomorphism problem. Once we for-
mulate the approach, it turns out that well-known algorithmic results for integer
lattices can be applied. Specifically, using a suitable algorithm for computing all
shortest vectors in an integer lattice [6] easily yields a 2O(k2)poly(nM) time FPT
algorithm for GGI, where M upper bounds the binary encodings of the num-
bers in the input. This already improves the O∗(2O(k4)) time algorithm of [1].
Then, using key ideas from the recent lattice isomorphism algorithm of Haviv
and Regev [7], we improve the FPT algorithm to kO(k)poly(nM) running time.

At this point we recall the definition of canonical forms. Computing canonical
forms for structures is a fundamental algorithmic problem. Graph Canonization,
which is the problem computing canonical forms for graphs, is closely connected
to Graph Isomorphism. For a graph class K, a mapping f : K → K is a canon-
izing function if f(X) is isomorphic to X for each graph X in K, and for any
other graph X ′ in the class, f(X) = f(X ′) if and only if X and X ′ are isomor-
phic. We say that f(X) is the canonical form assigned by f to the isomorphism
class containing X. For example, f(X) can be defined as the lex-first graph in
K isomorphic to X. This canonizing function is known to be NP-hard to com-
pute. Whether there is some polynomial-time computable canonizing function
for graphs is open. It is also open whether graph canonization is polynomial-time
equivalent to graph isomorphism. Graph classes with efficient isomorphism tests
are often known to have canonization algorithms [8] of comparable complexity.

Analogously, corresponding to geometric isomorphism, we can define canon-
ical forms and the canonization problem for an n-point sets A ⊂ Q

k. Given
A ⊂ Q

k as input, a canonizing function f : A �→ f(A) outputs an isomorphic
point set f(A) such that f(A) = f(B) if and only if A and B are isomorphic
point sets.
1 To the best of our knowledge, this paper appears to be unknown in the Computa-
tional Geometry literature.
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We actually show that canonical forms for point sets in Q
k can also be

computed in O∗(kO(k)) time, which yields the O∗(kO(k)) time algorithm for
GGI. This result is presented in Sect. 3.

Other metrics. In Sect. 4, we briefly examine GGI for other lp metrics. For the
2-dimensional case Q

2 we show that the problem is in deterministic polynomial
time. This is by a reduction to the problem of isomorphism of colored graphs
with color classes of size 2 (BCGI2), which is known to be solvable in polynomial
time [9]. For higher dimensions we do not have any nontrivial upper bounds
better than general Graph Isomorphism.

2 Preliminaries

Let [k] denote the set {1, . . . , k}. As we consider points with rational coordinates
in the euclidean space R

k, we are effectively working with Q
k. The projection

of a vector v ∈ Q
k on a subspace S ⊂ Q

k is denoted vS . The inner product of
vectors u = (u1, . . . , uk) and v = (v1, . . . , vk) is 〈u, v〉 =

∑

i∈[k]

uivi. The euclidean

norm, ‖u‖, of a vector u, is
√〈u, u〉, and the distance between two points u and

v in R
k is ‖u− v‖. Vectors u, v are orthogonal if 〈u, v〉 = 0. In general, for p ≥ 1,

the p-norm of a vector x = (x1, . . . , xk) is ‖x‖p = (‖x1‖p + · · · + ‖xk‖p)1/p, and
the ∞-norm ‖x‖∞ is max {|x1|, . . . , |xk|}. The euclidean norm is the 2-norm.

For a vector set S = {u1, . . . , un}, the n × n Gram matrix of S is G(S)i,j =
〈ui, uj〉. Two sets S and T have the same Gram matrix if and only if there is
an orthogonal matrix O such that T = OS. Furthermore, a Gram matrix G
is known to be Cholesky decomposable as LLT for a unique lower triangular
matrix L. The Cholesky decomposition is polynomial-time computable.

Given two point sets A and B in Q
k, a bijection π : A → B is a geometric

isomorphism if for every x, y ∈ A, ‖x−y‖ = ‖π(x)−π(y)‖. Given two subspaces
U and V of Q

k, a bijection τ : U → V is an isometry if for every x, y ∈ U ,
‖x − y‖ = ‖π(x) − π(y)‖. If τ is also a linear map then it is a linear isometry.
It is natural to ask whether an isomorphism between point sets can also be
extended to an isometry between the vector spaces which are spanned by these
sets. In Sect. 3, we note that this holds for the euclidean metric in Lemmas 3.1
and 3.2 and use it to obtain our algorithmic results.

We now recall some definitions and properties of integer lattices [10]. A lattice
LB in R

k is the set of all integer linear combinations of a finite basis set of vectors
B = {b1, . . . , bm} ⊂ Q

k. The number k is the dimension of the lattice. We will
assume that the vectors bi have rational entries with standard binary encodings
(bounded by M). Then, we can compute a linearly independent basis of r ≤ k
vectors for the lattice in time polynomial in k,M and m [10]. The number r is
the rank of the lattice LB .

A fundamental quantity for a lattice L is the length λ1(L) of a shortest vector
in it. There are several algorithms for exactly computing shortest vectors and for
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approximating them in the literature [10]. We recall an important result due to
Micciancio and Voulgaris [6] for enumerating all the shortest vectors in a given
lattice.

Theorem 2.1. ([6], Corollary 5.8). There is a deterministic algorithm that
takes as input a basis of some lattice Λ ⊂ Q

k, and a target vector t∈ Q
k, and an

integer p ≥ 2, and in time Õ((4p)k) ·poly(M,n) it outputs all vectors in Λ within
distance pλ1(Λ) from t. (The Õ(·) notation suppresses polylogarithmic factors).

We also recall a well-known bound on the number of short vectors in a lattice
(see [6]).

Lemma 2.2. In a lattice L of rank k, the number of vectors of length at most
pλ1(L) is bounded by (2p + 1)k.

Haviv and Regev, in [7], study the lattice isomorphism problem under orthog-
onal transformations. In the process, they develop a general isolation lemma
which they apply to lattice isomorphism and give a O∗(kO(k)) time algorithm
for checking if two rank-k lattices are isomorphic under orthogonal transforma-
tions. They introduce the notion of a linearly independent chain in a given set
of vectors. We recall the definition as we will require it to describe our canoni-
cal forms algorithm for point sets in Q

k. For a finite set A ⊆ Q
k and a vector

v ∈ Q
k, we say that v uniquely defines a linearly independent chain of length m

in A if there are m vectors x1, . . . , xm ∈ A such that for every 1 ≤ j ≤ m, the
minimum inner product of v with vectors in A\Span(x1, . . . , xj−1) is uniquely
achieved by xj .

Given a lattice L, its dual lattice L∗ is defined as the set of vectors in Span(L)
such that they have an integer inner product with every vector in L. The fol-
lowing theorem of Haviv and Regev [7] shows the existence of a suitably short
vector in the dual lattice which defines a unique linearly independent chain in
the set of shortest vectors of the lattice.

Theorem 2.3. ([7], Theorem 4.2). Let L be a lattice of rank k. Let S be the
set of shortest vectors in L. Suppose the dimension of Span(S) is k. Then, there
exists a vector v ∈ L∗ that uniquely defines a linearly independent chain of length
k in S and satisfies ‖v‖ ≤ 5k17/2 · λ1(L∗).

3 The O∗(kO(k)) Time Algorithm for GGI

We first note that an isomorphism between point sets A and B in Q
k naturally

extends to a linear isometry between the vector spaces spanned by these sets.
For simplicity we assume that the point sets A and B contain the zero vector 0̄.

Lemma 3.1. Suppose π is a geometric isomorphism between A and B such that
π(0̄) = 0̄. Then there is a linear isometry μ : Span(A) → Span(B) such that
μ(x) = π(x) for all x ∈ A.
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The proof of the above lemma is based on the observations in the next lemma.
The proofs involve usual linear algebraic arguments and we omit them in this
extended abstract.

Lemma 3.2. Let π be an isomorphism from A to B such that π(0̄) = 0̄. Let
ui, uj ∈ A.

(a) π preserves inner products: i.e. 〈ui, uj〉 = 〈π(ui), π(uj)〉.
(b) For any linear combination αui +βuj ∈ A, π(αui +βuj) = απ(ui)+βπ(uj).

Similarly, for any linear combination αvi + βvj ∈ B, π−1(αvi + βvj) =
απ−1(vi) + βπ−1(vj).

(c) U ⊆ A is a basis for Span(A) iff π(U) ⊆ B is a basis for Span(B).

We assumed that 0̄ ∈ A,B and 0̄ is fixed by the isometry. We now argue that
it suffices to search for such isometries. Observe that the distance of point ui in
set A from the centroid of the points in A is:

‖ui − 1
n

n∑

j=i

uj‖2 =
1
n2

· ‖
n∑

j=1

(ui − uj)‖2 =
1
n2

·
n∑

j=1

n∑

k=1

〈ui − uj , ui − uk〉

=
1
n2

·
n∑

j=1

n∑

k=1

1
2

· (‖ui − uj‖2 + ‖ui − uk‖2 − ‖uj − uk‖2).

Therefore, if sets A and B are isomorphic via a permutation π, the distance of
any point ui from the centroid cA of set A must be equal to the distance of π(ui)
from the centroid cB of set B. Hence, we can replace A and B by A ∪ {cA} and
B ∪ {cB} respectively, and extend the isomorphism π by mapping the centroid
of A to the centroid of B. Clearly, this is an isomorphism between A ∪ {cA} and
B ∪ {cB}. Next, we translate the two sets A and B such that their respective
centroids are mapped to the zero vector 0̄. Clearly, A and B are isomorphic if
and only if their translations Ã and B̃, obtained above, are isomorphic via a
permutation that maps 0̄ ∈ Ã to 0̄ ∈ B̃. Hence, it suffices to solve the following
polynomial time equivalent problem: Given point sets A,B ⊂ Q

k, both with 0̄
(as centroid), check if there exists an isomorphism mapping A to B that fixes 0̄.

Algorithm Overview

We first give an overview of a simpler version of the isomorphism algorithm.
Consider the integer lattices LA and LB generated by the sets A and B. By
Lemma 3.2, any linear isometry μ that maps A bijectively to B also bijectively
maps LA to LB . In particular, μ will map the set of shortest vectors of LA

to the set of shortest vectors of LB . Also, μ maps the subspace spanned by
the shortest vectors of LA to the subspace spanned by the shortest vectors
of LB . The algorithm does the following: compute the shortest vector sets of
both LA and LB . Fix a maximal linearly independent set of shortest vectors S in
lattice LA. Branch on all possible (injectively mapped) images of S into shortest
vector set of LB . Since any lattice in Q

k has at most 2O(k) many shortest vectors,
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this branching is bounded by 2O(k2). Next, on each branch the algorithm projects
the set A to the orthogonal complement of the subspace spanned by S and B
to the orthogonal complement of the subspace spanned by π(S). Recursively
continue to compute a geometric isomorphism for these projected point sets that
are in subspaces of strictly smaller dimension. If A and B are isomorphic then,
for one path of choices for the image set of S we can recover an isomorphism.
This approach yields a simple O∗(2O(k2)) time algorithm for GGI.

The improvement of the running time to O∗(kO(k)) requires the Haviv-
Regev result (stated in Theorem 2.3). We now give a brief overview of our
O∗(kO(k)) time algorithm for computing the canonical form for a given point
set A ⊂ Q

k. As above, the algorithm first computes the shortest vector set SA

of the lattice LA. For the overview description, we assume for simplicity that
SA spans Span(A). The actual algorithm (Algorithm 1) proceeds by projecting
Span(A) to the orthogonal complement of Span(SA), similar to the O∗(2O(k2))
algorithm sketched above.

We will apply the Haviv-Regev algorithm [7] (Theorem 2.3) to pick the set
shortA = {v ∈ L∗

A | ‖v‖ ≤ 5k17/2 · λ1(L∗
A)} of short vectors in the dual lattice

L∗
A which yield a unique linearly independent chain, of length k, in the set of

shortest vectors SA of LA. As shown in [7] such vectors in the dual lattice exist
and by Theorem 2.1 the set shortA is of size bounded by kO(k) and can be listed
in O∗(kO(k)) time. Corresponding to each v ∈ shortA the linearly independent
chain in SA, of length k, yields a basis for Span(A). There are in total kO(k)

such bases thus obtained. For each such basis B we generate a description of the
set A as follows: We first compute the Gram matrix G(B) for B. Then for each
vector ui ∈ A, we compute the k-tuple Γi of the coordinates of ui in basis B.
The description of A obtained from basis B is the tuple (G(B), Γ1, . . . , Γn). We
now explain how these descriptions can be used to compute a canonical form for
the point set A.

Suppose A1 and A2 are isomorphic point sets in Q
k and μ : Span(A1) →

Span(A2) is the corresponding linear isometry. Then μ is an isometric map
between the lattices LA1 and LA2 as also between the dual lattices L∗

A1
and L∗

A2
.

Furthermore, μ maps shortA1 to shortA2 . More precisely, if v ∈ shortA1 gives rise
to a unique linearly independent chain B in SA1 then μ(v) ∈ shortA2 gives rise
to a unique linearly independent chain in SA2 (which is in fact μ(B)).

Now, crucially, we note that the description for A1 (G(B), Γ1, . . . , Γn) gener-
ated using the chain B is identical to the description for A2 generated for μ(B).
This is because the Gram matrices G(B) and G(μ(B)) are equal.

This suggests that the lexicographically least description is a canonical rep-
resentation for the input point set A, and can be used to generate a canonical
form for it. I.e. for each v ∈ shortA satisfying the condition of Theorem 2.3, com-
pute the description (G(B), Γ1, . . . , Γn) using the corresponding linearly inde-
pendent chain B. Among these descriptions pick the lexicographically least one
(G(B), Γ1, . . . , Γn) from which we will recover a canonical form for A. We now
formally describe the algorithm.
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Input: A set of vectors A ⊂ Q
k s.t. |A| = n and 0̄ ∈ A.

Output: A canonical set of vectors CA.

1. While dim(Span(A)) �= 0
(a) Compute the set SA of shortest vectors in LA using Theorem 2.1.
(b) Define the lattice Λ1 = LA ∩ Span(SA).
(c) Compute the set of vectors W in the dual lattice Λ∗

1 which are of
length at most 5k17/2 · λ1(Λ∗

1) using Theorem 2.1.
(d) For each vector in W , check if it defines a linearly independent chain

in SA. If yes, compute the chain. Otherwise, discard w from W .
(e) Update set A to its component orthogonal to Span(SA). I.e. replace

every u ∈ A by u − uSA
.

2. Let W1, . . . , Wl be the sets computed during the l iterations of Step
1(c)–(d). For every tuple (w1, . . . , wl) ∈ W1 × · · · × Wl,
(a) Define the basis B = C1 ∪ · · · ∪ Cl, where Ci is the unique chain

corresponding to vector wi. Let the set B be {r1, . . . , rk}.
(b) Compute the Gram matrix G(B) for the set B.
(c) For each ui in the input set A, let γ1, . . . , γk be the coefficients such

that ui =
k∑

j=1

γjrj . Let Γi denote the tuple (γ1, . . . , γk), which can

be computed by solving a system of linear equations.
(d) Define the string σ for the tuple (w1, . . . , wl) to be

(G(B), (Γ1, . . . , Γn)).
3. Let Σ be the set of all strings generated in the previous step. Search the

lexicographically least string σ0 in Σ.
4. Given the string σ0 = (G, (Γ1, . . . , Γn)),

(a) Let L be the unique lower triangular matrix such that G = LLT .
(b) Let B0 be the set of rows of L.
(c) Compute the set CA of vectors {u1, . . . , un} where ui is the Γi-linear-

combination of B0.
5. Output CA as the canonical form for the set A.

Algorithm 1

The following two lemmas show that CA is indeed a canonical form for the point
set A. We omit the detailed proofs in this extended abstract.

Lemma 3.3. The point sets A and CA are geometrically isomorphic.

Lemma 3.4. Two point sets A and B in Q
k are geometrically isomorphic if

and only if CA = CB.

We now formally state the result of this section.
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Theorem 3.5. Given a finite point set A ⊂ Q
k of size n as input, there is

a deterministic O∗(kO(k)) time algorithm that computes a canonizing function
f(A). As a consequence, the GGI problem for point sets in Q

k has a determin-
istic O∗(kO(k)) time algorithm.

Proof. It follows from Lemmas 3.3 and 3.4 that Algorithm 1 correctly computes
a canonical form for any input point set A ⊂ Q

k. It remains to prove the the run-
ning time bound. We first bound the time taken in Step 1 which can execute for
at most k iterations. Computing sets SA and W takes time O∗(kO(k)) ·poly(M),
as a consequence of Theorem 2.1. The projection operations are routine poly-
nomial time linear algebraic procedures. The bit-complexity of the entries in
set A after projection can increase by at most a poly(k) factor, by the prop-
erties of Gaussian elimination. Therefore, all the bit-sizes remain bounded by
O(kk)poly(M) during the execution of the algorithm. Overall, the running time
complexity of Step 1 is bounded by O∗(kO(k)).

Next, we bound the time spent in Step 2. By Lemma 2.2, |Wi| is at most
(25k17/2 +1)k = kO(k). The number of tuples examined is at most |W1| · · · · · |Wl|
which is bounded by k

O(k1)
1 · · · · · kO(kl)

l ≤ kO(k). Other operations in Step 2 are
polynomial-time computations. Hence, Step 2 takes O∗(kO(k)) time. Steps 3-5
are polynomial time solvable.

Remark 3.6. An O∗(kO(k)) time FPT algorithm for the isomorphism problem
GGI follows from the above theorem: we compute the canonical forms for the
input point sets A and B, and accept if and only if CA = CB .

4 Geometric Isomorphism in Other lp Metrics

We briefly discuss the GGI problem for other lp metrics. For the 2-dimensional
case we obtain a polynomial-time algorithm. The algorithm works as follows.
Given two point sets A and B of size n, we fix three points in set A and branch
on their possible images in B under an isomorphism. Using these points, we will
construct two colored graphs G and H such that (a) each graph has color class
size at most two and (b) the point sets A and B are isomorphic if and only if
the graphs G and H are isomorphic via a color-preserving isomorphism. This
computation can be performed in polynomial time. The isomorphism problem
for color class size two graphs, denoted by BCGI2 is in polynomial time [9] which
yields the result.

Theorem 4.1. Given subsets A and B of Q2 as input, for any lp metric, there
is a deterministic polynomial-time algorithm for checking if A and B are iso-
morphic in that metric.

Proof. We will describe the algorithm for the l∞ case and then indicate how it
can be adapted for other lp metrics.
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Input: Point sets A and B of size n in Q
2 (the l∞ case).

Output: Accept if A and B are isomorphic, and reject otherwise.

1. Check if sets A and B are collinear by iterating over all triples and
checking whether the three points are collinear.

– If not collinear: pick the first three non-collinear points {a, b, c}.
– If collinear:

• Construct two colored graphs G and H: The graph G is (A, ∅).
The color of vertex ui is the unordered pair {d1, d2} of the dis-
tances of ui from the two extreme points in the set A. Similarly
define H for set B.

• Return accept iff G and H are isomorphic. The isomorphism
can be decided using the algorithm of [9].

2. Otherwise, w.l.o.g we have a, b, c ∈ A (the other case is symmetric).
Branch on all possible images of {a, b, c} in B, denoted by {a′, b′, c′}.

3. First, we compute a coloring of sets A and B. For A, we color a point
u ∈ A by the ordered triple (du,a, du,b, du,c) of its distances from a, b, c.

4. Second, we can refine these colorings and ensure that each color class is
of size two as follows:

– If some subset of vertices form a color class of size more than two,
they will lie on a line segment parallel to x-axis or y-axis (proof of
correctness explains). Each such color class has two extreme points.

– For each vertex u ∈ A,B, check if it lies in a color class of size
more than two. If yes, update the color of u, say C, with the color
(C, {d1, d2}) where d1, d2 are the distances of u from the extreme
points in the color class.

5. Third, we construct weighted colored graphs G′ and H ′ over vertex sets
A and B respectively. The graphs G′ and H ′ are complete graphs, and
have color classes of size at most two. The coloring of the vertices have
been already computed in Step 4. Every edge {u, v} in G′ or H ′ is labeled
with the weight duv, the distance between points u and v.

6. Finally, we can easily modify the weighted graphs G′ and H ′ to obtain
unweighted graphs G and H such that G is isomorphic to H iff G′ is
isomorphic to H ′. For every pair of color classes Ci and Cj , we can
examine the induced graphs G′[Ci ∪ Cj ] and H ′[Ci ∪ Cj ]. By a simple
case analysis, we can either (a) claim the graphs G′ and H ′ to be non-
isomorphic and reject, or (b) replace weighted edges by unweighted
edges.

7. Test whether G is isomorphic to H using the algorithm of [9]. If the
answer is yes accept, else move to the next branch in Step 2. If all
branches are exhausted, return reject.

Algorithm 2
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It is easy to verify that the algorithm works correctly for the case when the
sets are collinear. Therefore, we concentrate on the general case. If the above
algorithm accepts, clearly the sets are isomorphic. Conversely, suppose there is
a isomorphism π from A and B. In Step 2, one of the branches for the image
of {a, b, c} will coincide with (π(a), π(b), π(c)). Furthermore, π must respect the
color classes defined by the algorithm based on the distance triples in Step 3.
It also respects the color refinements in Step 4 due to the following fact which
can be easily verified by induction. A color class of collinear points must map to
another class of collinear points in a manner that preserves the order of vertices
(therefore, in at most two possible ways). Hence, π respects the colors assigned
by the algorithm.

Next, we verify the bound on the color class sizes. The set of points Sr,x at
l∞-distance r from a point x is easily seen to be a square in Q

2 centered at x.
It has sides of length 2r parallel to the coordinate axes. Consider the squares
Sα,a and Sβ,b. Their intersection is one of the following: (a) empty, or (b) at
most two points, or (c) a common edge, or (d) two common incident edges. If
we consider the third square Sγ,c, its intersection with Sα,a ∩ Sβ,b is therefore
one of these cases: (a) empty or (b) at most two points or (c) a common edge.
The last case is ruled our since three squares with non-collinear centres cannot
have more than two edges common. Therefore, every color class is bounded by
two unless the points in the color class lie on a common edge of three squares.
Such a class is refined in Step 4 to have size at most two. Therefore, π must
be an isomorphism between the weighted graphs G′ and H ′ since it preserves
mutual distances. By construction, the graphs G and H must be isomorphic and
therefore, the algorithm accepts in Step 7.

Other lp metrics. We now briefly explain how the above algorithm can be
adapted to solve the 2-dimensional GGI problem for other lp-metrics.

The set Sr,x is a lp-metric circle of radius r centered at the point x. For p = 1,
such circles are squares of side 2r centered at x which have been rotated by π/4.
The intersection of such squares is similar to the l∞ case above. Hence, the above
algorithm adapts to this case. For the case p ∈ (1,∞), it is known that lp balls
are strictly convex sets I.e., for any two distinct points u, v on the boundary of
such a set, any convex combination θu + (1 − θ)v for 0 < θ < 1 is in the interior
of the set. For Q

2, this implies that any two lp circles can intersect in at most
two points ([11], Theorem 1). Therefore, any color class can be of size two and
therefore, a similar algorithm which reduces the problem to BCGI2 works and
we can apply the algorithm of [9].

5 Discussion

In this paper we gave an O∗(kO(k)) time FPT algorithm for Geometric Isomor-
phism in the l2 metric, which is asymptotically faster than previous algorithms
for this problem. A natural open question is to improve the running time. From
the point of view of the general Graph Isomorphism problem it would be very
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interesting to obtain a “geometric” algorithm of running time 2O(k) · poly(nM),
since the well-known algorithms for this problem are group-theoretic.

As observed in the introduction, Graph Isomorphism (for n-vertex graphs) is
polynomial-time reducible to GGI, where, in the reduced instance, the output
point sets are contained in Q

n. We note a similar reduction even for hypergraph
isomorphism.2 More precisely, given a pair of hypergraphs (X1,X2) on n vertices
the reduction outputs a pair of point sets (A,B), where A,B ⊂ Q

5n, such that
X1 and X2 are isomorphic if and only if A and B are isomorphic.

The current best algorithm for Hypergraph Isomorphism [12] crucially uses
a group-theoretic algorithm (for Coset-Intersection of permutation groups) and
has running time O∗(2O(n)) for n-vertex hypergraphs. However, the only known
algorithm for computing canonical forms of hypergraphs is the trivial O∗(n!) time
algorithm which picks the lexicographically least hypergraph isomorphic to the
input hyerpgraph. Obtaining an O∗(2O(k)) algorithm for computing canonical
forms of point sets in Q

k would imply an O∗(2O(n)) time (non-group-theoretic)
canonization algorithm for hypergraphs, which is a long standing open problem.

Finally, we note that the complexity of GGI for point sets in Q
k in other lp

metrics is wide open. We do not know if the problem is FPT with k as parameter.
One approach to solving GGI for a metric space (X, d) is to try and efficiently
embed the given points sets A and B isometrically into a different metric space
(X ′, d′) for which we already know an efficient algorithm. For instance, known
results about embedding metric spaces imply that there is a reduction from lk1 -
GGIto l2

k

∞ -GGIin time 2k · poly(k, n,M), where lkp denotes the lp metric on Q
k.

We do not know of a reduction that avoids the blow-up from k to 2k in dimension.
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Abstract. For some years it was believed that for “connectivity” prob-
lems such as Hamiltonian Cycle, algorithms running in time 2O(tw) ·
nO(1) –called single-exponential– existed only on planar and other sparse
graph classes, where tw stands for the treewidth of the n-vertex input
graph. This was recently disproved by Cygan et al. [FOCS 2011],
Bodlaender et al. [ICALP 2013], and Fomin et al. [SODA 2014], who
provided single-exponential algorithms on general graphs for most con-
nectivity problems that were known to be solvable in single-exponential
time on sparse graphs. In this article we further investigate the role of
planarity in connectivity problems parameterized by treewidth, and con-
vey that several problems can indeed be distinguished according to their
behavior on planar graphs. Known results from the literature imply that
there exist problems, like Cycle Packing, that cannot be solved in
time 2o(tw log tw) ·nO(1) on general graphs but that can be solved in time
2O(tw) · nO(1) when restricted to planar graphs. Our main contribution
is to show that there exist natural problems that can be solved in time
2O(tw log tw) · nO(1) on general graphs but that cannot be solved in time
2o(tw log tw) · nO(1) even when restricted to planar graphs. Furthermore,
we prove that Planar Cycle Packing and Planar Disjoint Paths

cannot be solved in time 2o(tw) · nO(1). The mentioned negative results
hold unless the ETH fails. We feel that our results constitute a first step
in a subject that can be further exploited.

Keywords: Parameterized complexity · Treewidth · Connectivity
problems · Single-exponential algorithms · Planar graphs · Dynamic
programming

1 Introduction

Motivation and previous work. Treewidth is a fundamental graph para-
meter that, loosely speaking, measures the resemblance of a graph to a tree.
It was introduced, among other equivalent definitions given by other authors, by
Robertson and Seymour in the early stages of their monumental Graph Minors
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project [18], and its algorithmic importance was significantly popularized by
Courcelle’s theorem [3], stating that any graph problem that can be expressed
in CMSO logic can be solved in time f(tw) · n on graphs with n vertices and
treewidth tw, where f is some function depending on the problem. Neverthe-
less, the function f(tw) given by Courcelle’s theorem is unavoidably huge [10],
so from an algorithmic point of view it is crucial to identify problems for which
f(tw) grows moderately fast.

Many problems can be solved in time 2O(tw log tw) · nO(1) when the n-vertex
input (general) graph comes equipped with a tree-decomposition of width tw.
Intuitively, this is the case of problems that can be solved via dynamic program-
ming on a tree-decomposition by enumerating all partitions or packings of the
vertices in the bags of the tree-decomposition, which are twO(tw) = 2O(tw log tw)

many. In this article we only consider this type of problems and, more precisely,
we are interested in which of these problems can be solved in time 2O(tw) ·nO(1);
such a running time is called single-exponential. This topic has been object of
extensive study during the last decade. Let us briefly overview the main results
on this line of research.

It is well known that problems that have locally checkable certificates1, like
Vertex Cover or Dominating Set, can be solved in single-exponential time
on general graphs. Intuitively, for this problems it is enough to enumerate subsets
of the bags of a tree-decomposition (rather than partitions or packings), which are
2O(tw) many. A natural class of problems that do not have locally checkable cer-
tificates is the class of so-called connectivity problems, which contains for example
Hamiltonian Cycle, Steiner Tree, or Connected Vertex Cover. These
problems have the property that the solutions should satisfy a connectivity
requirement (see [2,4,19] for more details), and using classical dynamic program-
ming techniques it seems that for solving such a problem it is necessary to enu-
merate partitions or packings of the bags of a tree-decomposition.

A series of articles provided single-exponential algorithms for connectivity
problems when the input graphs are restricted to be sparse, namely planar [9], of
bounded genus [7,19], or excluding a fixed graph as a minor [8,20]. The common
key idea of these works is to use special types of branch-decompositions (which
are objects similar to tree-decompositions) with nice combinatorial properties,
which strongly rely on the fact that the input graphs are sparse.

Until very recently, it was a common belief that all problems solvable in
single-exponential time on general graphs should have locally checkable cer-
tificates, specially after Lokshtanov et al. [16] proved that one connectivity
problem, namely Disjoint Paths, cannot be solved in time 2o(tw log tw) · nO(1)

on general graphs unless the Exponential Time Hypothesis (ETH) fails2. This

1 That is, certificates consisting of a constant number of bits per vertex that can be
checked by a cardinality check and by iteratively looking at the neighborhoods of the
input graph.

2 The ETH states that there exists a positive real number s such that 3-CNF-Sat

with n variables and m clauses cannot be solved in time 2sn · (n + m)O(1). See [15]
for more details.
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credence was disproved by Cygan et al. [4], who provided single-exponential
randomized algorithms on general graphs for several connectivity problems, like
Longest Path, Feedback Vertex Set, or Connected Vertex Cover.
More recently, Bodlaender et al. [2] presented single-exponential deterministic
algorithms for basically the same connectivity problems, and an alternative proof
based on matroids was given by Fomin et al. [11]. These results have been con-
sidered a breakthrough, and in particular they imply that most connectivity
problems that were known to be solvable in single-exponential time on sparse
graph classes [7–9,19,20] are also solvable in single-exponential time on general
graphs [2,4].

Our main results. In view of the above discussion, a natural conclusion is
that sparsity may not be particularly helpful or relevant for obtaining single-
exponential algorithms. However, in this article we convey that sparsity (in
particular, planarity) does play a role in connectivity problems parameterized
by treewidth. To this end, among the problems that can be solved in time
2O(tw log tw) · nO(1) on general graphs, we distinguish the following three disjoint
types:

• Type 1: Problems that can be solved in time 2O(tw) ·nO(1) on general graphs.
• Type 2: Problems that cannot be solved in time 2o(tw log tw) ·nO(1) on general

graphs unless the ETH fails, but that can be solved in time 2O(tw) ·nO(1) when
restricted to planar graphs.

• Type 3: Problems that cannot be solved in time 2o(tw log tw) ·nO(1) even when
restricted to planar graphs, unless the ETH fails.

Problems that have locally checkable certificates are of Type 1 (see also [17]
for a logical characterization of such problems). As discussed in Sect. 2, known
results [4,13] imply that there exist problems of Type 2, such as Cycle Pack-

ing. Our main contribution is to show that there exist (natural) problems of
Type 3, thus demonstrating that some connectivity problems can indeed be dis-
tinguished according to their behavior on planar graphs. More precisely, we prove
the following results:

• In Sect. 2 we provide some examples of problems of Type 2. Furthermore,
we prove that Planar Cycle Packing cannot be solved in time 2o(tw) ·
nO(1) unless the ETH fails, and therefore the running time 2O(tw) · nO(1) is
tight.

• In Sect. 3 we provide an example of problem of Type 3: Monochromatic

Disjoint Paths, which is a variant of the Disjoint Paths problem on a
vertex-colored graph with additional restrictions on the allowed colors for each
path. To the best of our knowledge, problems of this type had not been iden-
tified before.

In order to obtain our results, for the upper bounds we strongly follow the
algorithmic techniques based on Catalan structures used in [7–9,19,20], and for
some of the lower bounds we use the framework introduced in [16], and that has
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been also used in [4]. Due to space limitations, the proofs of the results marked
with ‘[�]’ can be found in the full version of this article [1].

Additional results and further research. We feel that our results about
the role of planarity in connectivity problems parameterized by treewidth are
just a first step in a subject that can be much exploited, and we think that the
following avenues are particularly interesting:

• It is known that Disjoint Paths can be solved in time 2O(tw log tw) · nO(1)

on general graphs [21], and that this bound is asymptotically tight under the
ETH [16]. The fact whether Disjoint Paths belongs to Type 2 or Type 3
(or maybe even to some other type in between) remains an important open
problem that we have been unable to solve (it is worth noting that Catalan
structures do not seem to yield an algorithm in time 2O(tw) · nO(1)). Towards
a possible answer to this question, we prove in [1] that Planar Disjoint

Paths cannot be solved in time 2o(tw) · nO(1) unless the ETH fails.
• Lokshtanov et al. [14] have proved that for a number of problems such as
Dominating Set or q-Coloring, the best known constant c in algorithms
of the form ctw ·nO(1) on general graphs is best possible unless the Strong ETH
fails (similar results have been also given by Cygan et al. [4]). Is it possible to
provide better constants for these problems on planar graphs? The existence
of such algorithms would permit to further refine the problems belonging to
Type 1.

• Are there NP-hard problems solvable in time 2o(tw) · nO(1)?
• Finally, it would be interesting to obtain similar results for problems parame-
terized by pathwidth, and to extend our algorithms to more general classes of
sparse graphs.

Notation and definitions. We use standard graph-theoretic notation, and the
reader is referred to [6] for any undefined term. All the graphs we consider are
undirected and contain neither loops nor multiple edges. We denote by V (G) the
set of vertices of a graph G and by E(G) its set of edges. We use the notation
[k] for the set of integers {1, . . . , k}. In the set [k] × [k], a row is a set {i} × [k]
and a column is a set [k] × {i} for some i ∈ [k]. If P is a problem defined on
graphs, we denote by Planar P the restriction of P to planar input graphs.

A subgraph H = (VH , EH) of a graph G = (V,E) is a graph such that VH ⊆ V
and EH ⊆ E ∩ (

VH

2

)
. The degree of a vertex v in a graph G, denoted by degG(v),

is the number of edges of G containing v. The grid m ∗ k is the graph Grm,k =
({ai,j |i ∈ [m], j ∈ [k]}, {(ai,j , ai+1,j)|i ∈ [m − 1], j ∈ [k]} ∪ {(ai,j , ai,j+1)|i ∈
[m], j ∈ [k − 1]}). When m = k we just speak about the grid of size k. We say
that there is a path s . . . t in a graph G if there exist m ∈ N and x0, . . . , xm in
V (G) such that x0 = s, xm = t, and for all i ∈ [m], (xi−1, xi) ∈ E(G).

A tree-decomposition of width w of a graph G = (V,E) is a pair (T, σ), where
T is a tree and σ = {Bt|Bt ⊆ V, t ∈ V (T )} such that:

• ⋃
t∈V (T ) Bt = V ;

• For every edge {u, v} ∈ E there is a t ∈ V (T ) such that {u, v} ⊆ Bt;
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• Bi ∩ Bk ⊆ Bj for all {i, j, k} ⊆ V (T ) such that j lies on the path between i
and k in T ;

• maxt∈V (T ) |Bt| = w + 1.

The sets Bt are called bags. The treewidth of G, denoted by tw(G), is the
smallest integer w such that there is a tree-decomposition of G of width w.
An optimal tree-decomposition is a tree-decomposition of width tw(G). A path-
decomposition of a graph G = (V,E) is a tree-decomposition (T, σ) such that T
is a path. The pathwidth of G, denoted by pw(G), is the smallest integer w such
that there is a path-decomposition of G of width w. Clearly, for any graph G,
we have tw(G) ≤ pw(G).

Throughout the paper, in order to simplify the notation, when the problem
and the input graph under consideration are clear, we let n denote the number
of vertices of the input graph, tw its treewidth, and pw its pathwidth.

2 Problems of Type 2

In this section we deal with Cycle Packing. Other problems of Type 2 are
discussed in [1].

Cycle Packing

Input: An n-vertex graph G = (V,E) and an integer �0.
Parameter: The treewidth tw of G.
Question: Does G contain �0 pairwise vertex-disjoint cycles?

It is proved in [4] that Cycle Packing cannot be solved in time 2o(tw log tw) ·
nO(1) on general graphs unless the ETH fails. On the other hand, a dynamic
programming algorithm for Planar Cycle Packing running in time 2O(tw) ·
nO(1) can be found in [13]. Therefore, it follows that Cycle Packing is of
Type 2. In Lemma 1 below we provide an alternative algorithm for Planar

Cycle Packing running in time 2O(tw) · nO(1), which is a direct application
of the techniques based on Catalan structures introduced in [9]. We include its
proof for completeness, as it yields slightly better constants than [13].

Lemma 1. [�] Planar Cycle Packing can be solved in time 2O(tw) · nO(1).

It is usually believed that NP-hard problems parameterized by tw cannot be
solved in time 2o(tw) ·nO(1) under some reasonable complexity assumption. This
has been proved in [12] for problems on general graphs such as q-Colorability,

Independent Set, and Vertex Cover, or in [5] for Planar Hamiltonian

Cycle, all these results assuming the ETH. Nevertheless, such a result requires
an ad-hoc proof for each problem. For instance, to the best of our knowledge,
such lower bounds are not known for Cycle Packing when the input graph is
restricted to be planar. We now prove that the running time given by Lemma 1
is asymptotically tight.
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v

u′

v′

u

Fig. 1. The choice gadget.

Theorem 1. Planar Cycle Packing cannot be solved in time 2o(
√
n) · nO(1)

unless the ETH fails. Therefore, Planar Cycle Packing cannot be solved in
time 2o(tw) · nO(1) unless the ETH fails.

Proof. To prove this theorem, we reduce from the Planar Independent Set

problem, which consists in finding a maximum-sized set of vertices in a given
planar graph that are pairwise nonadjacent. It is shown in [15] that Planar

Independent Set cannot be solved in time 2o(
√
n) ·nO(1) unless the ETH fails3,

where n stands for the number of vertices of the input graph.

Let G be a planar graph on which we want to solve Planar Independent Set.
We construct from G a graph H as follows. For each vertex a of G, we add to
H a cycle of length equal to the degree of a. If the degree of a is smaller than 3,
then the added cycle is of size 3. For each edge (a, b) of G, we add the choice
gadget depicted in Fig. 1, by identifying vertex u of the choice gadget with one
of the vertices of the cycle representing a, and identifying vertex u′ of the choice
gadget with one of the vertices of the cycle representing b, in such a way that
all the choice gadgets are vertex-disjoint. That concludes the construction of H.
Note that a planar embedding of H can be obtained in a straightforward way
from a planar embedding of G.

Claim 1. G contains an independent set of size k if and only if H admits a
packing of m + k cycles, where m = |E(G)|.
Proof. Assume first that there is an independent set S of size k in G. Then we
choose in H the k cycles that represent the k elements of S, plus a cycle of size 3
in each of the m choice gadgets. Note that we always can take a cycle of size 3
in the choice gadgets, as two adjacent vertices in G cannot be in S. This gives
m + k cycles in H.

Conversely, assume that H contains a packing P of m + k vertex-disjoint
cycles. We say that a cycle in P hits a choice gadget if it contains vertex v

3 In [15] that Planar Vertex Cover problem is mentioned, which is equivalent
to solving Planar Independent Set, as the complement of a vertex cover is an
independent set.
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or v′, and note that each choice gadget can be hit by at most one cycle, which
is necessarily a triangle. We transform P into a packing P ′ with |P ′| ≥ |P|
and such that every choice gadget is hit by P ′, as follows. Start with P ′ = P.
Then, for each choice gadget in H, corresponding to an edge (a, b) of G, that
is not hit by a cycle in P, we arbitrarily choose one of a or b (say, a), remove
from P ′ the cycle containing a (if any), and add to P ′ the triangle in the choice
gadget containing vertex u. As there are only m choice gadgets in H, and as
|P ′| ≥ |P| ≥ m + k, it follows that at least k cycles in P ′ do not hit any choice
gadget. By construction of H, it clearly means that each of these k cycles is a
cycle corresponding to a vertex of G. Let R be the set of these vertices, so we
have that |R| ≥ k. Finally, note that R is an independent set in G, because for
each edge (a, b) ∈ E(G), the corresponding choice gadget is contained in P ′, so
at most one of a and b can be in R. 	

Thus, if we have an algorithm solving Planar Cycle Packing in time 2o(

√
n) ·

nO(1), then by Claim 1 (and using that m = O(n) because G is planar) we could
solve Planar Independent Set in time 2o(

√
n) · nO(1), which is impossible

unless the ETH fails [15]. 	


3 Problems of Type 3

In this section we prove that the Monochromatic Disjoint Paths problem
is of Type 3. We first need to introduce some definitions. Let G = (V,E) be a
graph, let k be an integer, and let c : V → {0, . . . , k} be a color function. Two
colors c1 and c2 in {0, . . . , k} are compatible, and we denote it by c1 ≡ c2, if
c1 = 0, c2 = 0, or c1 = c2. A path P = x1 . . . xm in G is monochromatic if for all
i, j ∈ [m], i 
= j, c(xi) and c(xj) are two compatible colors. We abuse notation
and also define c(P ) = maxi∈[m](c(xi)). We say that P is colored x if x = c(P ).
Two monochromatic paths P and P ′ are color-compatible if c(P ) ≡ c(P ′).

Monochromatic Disjoint Paths

Input: A graph G = (V,E) of treewidth tw, a color function γ : V →
{0, . . . , tw}, an integer m, and a set N = {Ni = {si, ti}|i ∈ [m], si, ti ∈ V }.
Parameter: The treewidth tw of G.
Question: Does G contain m pairwise vertex-disjoint monochromatic paths
from si to ti, for i ∈ [m]?

The proof of the following lemma is inspired from the algorithm given in [21]
for the Disjoint Paths problem on general graphs.

Lemma 2. [�] Monochromatic Disjoint Paths can be solved in time
2O(tw log tw) · nO(1).

We now proceed to provide a matching lower bound for Planar Monochro-

matic Disjoint Paths. For this, we need to define the k × k-Hitting Set

problem, first introduced in [16].
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k × k-Hitting Set

Input: A family of sets S1, S2, . . . , Sm ⊆ [k]× [k], such that each set contains
at most one element from each row of [k] × [k].
Parameter: k.
Question: Is there a set S containing exactly one element from each row such
that S ∩ Si 
= ∅ for any 1 ≤ i ≤ m?

Theorem 2. (Lokshtanov) et al. [16]. k × k-Hitting Set cannot be solved
in time 2o(k log k) · mO(1) unless the ETH fails.

We state the following theorem in terms of the pathwidth of the input graph,
and as any graph G satisfies tw(G) ≤ pw(G), it implies the same lower bound
in the treewidth.

Theorem 3. Planar Monochromatic Disjoint Paths cannot be solved in
time 2o(pw logpw) · nO(1) unless the ETH fails.

Proof. We reduce from k × k-Hitting Set. Let k be an integer and S1,
S2, . . . , Sm ⊆ [k] × [k] such that each set contains at most one element from
each row of [k] × [k]. We will first present an overview of the reduction with
all the involved gadgets, and then we will provide a formal definition of the
constructed planar graph G.

We construct a gadget for each row {r}×[k], r ∈ [k], which selects the unique
pair p of S in this row. First, for each r ∈ [k], we introduce two new vertices sr
and tr, a request {sr, tr}, m + 1 vertices vr,i, i ∈ {0, . . . , m}, and m + 2 edges
{er,0 = (sr, vr,0)} ∪ {er,i = (vr,i−1, vr,i)|i ∈ [m]} ∪ {er,m+1 = (vr,m, tr)}. That is,
we have a path with m + 2 edges between sr and tr.

Each edge of these paths, except the last one, will be replaced with an appro-
priate gadget. Namely, for each r ∈ [k], we replace the edge er,0 with the gadget
depicted in Fig. 2, which we call color-selection gadget. In this figure, vertex ur,i

is colored i. The color used by the path from sr to tr in the color-selection gadget
will define the pair of the solution of S in the row {r} × [k].

Now that we have described the gadgets that allow to define S, we need to
ensure that S ∩ Si 
= ∅ for any i ∈ [m]. For this, we need the gadget depicted in
Fig. 3, which we call expel gadget. Each time we introduce this gadget, we add to
N the request {s, t}. This new requested path uses either vertex u or vertex v,
so only one of these vertices can be used by other paths. For each i ∈ [m], we
replace all the edges {er,i|r ∈ [k]} with the gadget depicted in Fig. 4, which we
call set gadget. In this figure, ar,i is such that if ({r} × [k]) ∩ Si = {{r, cr,i}}
then ar,i is colored cr,i, and if ({r} × [k]) ∩ Si = ∅ then vertex ar,i is removed
from the gadget.

This completes the construction of the graph G, which is illustrated in Fig. 5.
Note that G is indeed planar.

The color function γ of G is defined such that for each r ∈ [k] and c ∈ [k],
γ(ur,c) = c, and for each i ∈ [m] and (r, c) ∈ Si, γ(ar,i) = c. For any other vertex
v ∈ V (G), we set γ(v) = 0. Finally, the input of Planar Monochromatic
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ur,1

ur,2

ur,3

sr

ur,k

vr,0 sr vr,0

Fig. 2. Color-selection gadget, where ur,i is colored ci for each i ∈ [k].

s

v

t

u u v

Fig. 3. Expel gadget.

Disjoint Paths is the planar graph G, the color function γ, and the k+(k−1)·m
requests N = {{sr, tr}|r ∈ [k]} ∪ {{sr,i, tr,i}|r ∈ [k − 1], i ∈ [m]}, the second set
of requests corresponding to the ones introduced by the expel gadgets.

Note that because of the expel gadgets, the request {sr, tr} forces the exis-
tence of a path between vr,i−1 and vr,i for each r ∈ [k]. Note also that because
of the expel gadgets, at least one of the paths between vr,i−1 and vr,i should
use an ar,i vertex, as otherwise at least two paths would intersect. Conversely,
if one path uses a vertex ar,i, then we can find all the desired paths in the
corresponding set gadgets by using the vertices wr,i,b.

Given a solution of Planar Monochromatic Disjoint Paths in G, we
can construct a solution of k×k-Hitting Set by letting S = {(r, c)|r ∈ [k] such
that the path from sr to tr is colored with color c}. We have that S contains
exactly one element of each row, so we just have to check if S ∩ Si 
= ∅ for each
i ∈ [m]. Because of the property of the set gadgets mentioned above, for each
i ∈ [m], the set gadget labeled i ensures that S ∩ Si 
= ∅.

Conversely, given a solution S of k × k-Hitting Set, for each (r, c) ∈ S
we color the path from sr to tr with color c. We assign an arbitrary coloring
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v1,i−1

a1,i

v1,i

v2,i−1

a2,i

v2,i

v3,i−1

a3,i

v3,i

vk,i−1

ak,i

vk,i

w1,i,2

w2,i,1

w2,i,2

w3,i,1

w3,i,2

wk,i,1

v1,i−1 v1,i

v2,i−1 v2,i

v3,i−1 v3,i

vk,i−1 vk,ik,i

1,i

2,i

3,i

Fig. 4. Set gadgets.

to the other paths. For each i ∈ [m], we take (r, c) ∈ S ∩ Si and in the set
gadget labeled i, we impose that the path from vr,i−1 to vr,i uses vertex ar,i. By
using the vertices wr,i,b for the other paths, we find the desired k + (k − 1) · m
monochromatic paths.

Let us now argue about the pathwidth of G. We define for each r, c ∈ [k] the
bag B0,r,c = {sr′ |r′ ∈ [k]} ∪ {vr′,0|r′ ∈ [k]} ∪ {ur,c}, for each i ∈ [m], the bag
Bi = {vr,i−1|r ∈ [k]} ∪ {vr,i|r ∈ [k]} ∪ {ar,i ∈ V (G)|r ∈ [k]} ∪ {wr,i,b ∈ V (G)|r ∈
[k], b ∈ [2]}∪{sr,i|r ∈ [k − 1]}∪{tr,i|r ∈ [k − 1]}, and the bag Bm+1 = {vr,m|r ∈
[k]} ∪ {tr|r ∈ [k]}. Note that for all i in [m], w1,i,1 and wk,i,2 are not in V (G).
The size of each bag is at most 2 ·(k−1)+5 ·k−2 = O(k). A path decomposition
of G consists of all bags B0,r,c, r, c ∈ [k] and Bi, i ∈ [m+1] and edges {Bi, Bi+1}
for each i ∈ [m], {B0,r,c, B0,r,c+1} for r ∈ [k], c ∈ [k − 1], {B0,r,k, B0,r+1,1} for
r ∈ [k], and {B0,k,k, B1}. Therefore, as we have that pw(G) = O(k), if one could
solve Planar Monochromatic Disjoint Paths in time 2o(pw logpw) · nO(1),
then one could also solve k × k-Hitting Set in time 2o(k log k) · mO(1), which is
impossible by Theorem 2 unless the ETH fails. 	
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s1 v1,0 v1,1 v1,2 v1,m−1 v1,m t1

s2 v2,0 v2,1 v2,2 v2,m−1 v2,m t2

s3 v3,0 v3,1 v3,2 v3,m−1 v3,m t3

sk vk,0 vk,1 vk,2 vk,m−1 vk,m tk

1,1

2,1

3,1

1,2

2,2

3,2

1,m

2,m

3,m

k,1 k,2 k,m

Fig. 5. Final graph G in the reduction of Theorem 3.
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19. Rué, J., Sau, I., Thilikos, D.M.: Dynamic programming for graphs on surfaces. In:
Short Version in the Proceeding of ICALP’10 in ACM Transactions on Algorithms
(TALG). CoRR, abs/1104.2486 (2011)

20. Bhattacharya, B., Kameda, T.: A linear time algorithm for computing minmax
regret 1-median on a tree. In: Gudmundsson, J., Mestre, J., Viglas, T. (eds.)
COCOON 2012. LNCS, vol. 7434, pp. 1–12. Springer, Heidelberg (2012)

21. Scheffler, P.: A practical linear time algorithm for disjoint paths in graphs with
bounded tree-width. Fachbereich 3 Mathematik, Technical Report 396/1994, FU
Berlin (1994)

http://arxiv.org/abs/1304.4626
http://arxiv.org/abs/1104.2486


Parameterized Inapproximability of Degree
Anonymization

Cristina Bazgan1,3 and André Nichterlein2(B)
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Abstract. The Degree Anonymity problem arises in the context of
combinatorial graph anonymization. It asks, given a graph G and two
integers k and s, whether G can be made k-anonymous with at most s
modifications. Here, a graph is k-anonymous if the graph contains for
every vertex at least k−1 other vertices of the same degree. Complement-
ing recent investigations on its computational complexity, we show that
this problem is very hard when studied from the viewpoints of approx-
imation as well as parameterized approximation. In particular, for the
optimization variant where one wants to minimize the number of either
edge or vertex deletions there is no factor-n1−ε approximation running
in polynomial time unless P = NP, for any constant 0 < ε ≤ 1. For
the variant where one wants to maximize k and the number s of either
edge or vertex deletions is given, there is no factor-n1/2−ε approxima-
tion running in time f(s) · nO(1) unless W[1] = FPT, for any constant
0 < ε ≤ 1/2 and any function f . On the positive side, we classify the
general decision version as fixed-parameter tractable with respect to the
combined parameter solution size s and maximum degree.

1 Introduction

Releasing social network data without violating the privacy of the users has
become an important and active field of research [14]. One model aiming for
this goal was introduced by Liu and Terzi [12] who transferred the k-anonymity
concept from tabular data in databases [9] to graphs. Herein, Liu and Terzi [12]
require that a released graph contains for every vertex at least k−1 other vertices
with the same degree. The parameter k controls how many individuals are at
least linked to one particular degree and thus higher values for k give higher
levels of anonymity. We remark that this model has also some weaknesses. Refer
to Wu et al. [14] for more details and further anonymization models.

Here, we study the following variant of the model of Liu and Terzi [12].

Degree Anonymity(Anonym)

Input: An undirected graph G = (V,E) and two positive integers k and s.
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M. Cygan and P. Heggernes (Eds.): IPEC 2014, LNCS 8894, pp. 75–84, 2014.
DOI: 10.1007/978-3-319-13524-3 7



76 C. Bazgan and A. Nichterlein

Question: Can G be transformed with at most s modifications into a k-anonymous
graph G′ = (V ′, E′), that is, for each vertex in G′ there are k −1 other
vertices of the same degree?

We will use the name scheme Anonym-{E/V}-{Ins/Del/Edt} to distinguish the
different graph modification operations edge/vertex insertion/deletion/editing.
Liu and Terzi [12] studied edge insertions (Anonym-E-Ins), but also vertex
deletions (Anonym-V-Del) [3] and vertex insertions (Anonym-V-Ins) [2,5]
have been considered. While the focus of previous work was on experimentally
evaluated heuristics and algorithms [10,12] or computational complexity and
fixed-parameter algorithms [2,3,11], we study the polynomial-time and parame-
terized approximability of these problems. To this end, we mostly concentrate
on natural optimization variants of the two problems where either edge deletions
(Anonym-E-Del) or vertex deletions (Anonym-V-Del) are allowed. Partially
answering an open question of Chester et al. [4], we show strong inapproximable
results, even when allowing the running time to be exponential in s. We remark
that our results do not transfer to the problem variants allowing to edit up to
s edges (Anonym-E-Edt) and the status of the (parameterized) approximabil-
ity of the corresponding optimization problems remains unsolved.

Related Work. The basic degree anonymization model was introduced by Liu
and Terzi [12] (also see Clarkson et al. [6] for an extended version); they also
gave an experimentally evaluated heuristic for Anonym-E-Ins. One of the first
theoretical works on this model was done by Chester et al. [4]. They provided
polynomial-time algorithms for bipartite graphs and showed NP-hardness of
generalizations of Anonym-E-Ins with edge labels. In particular, they asked
for effective approximation algorithms for Anonym-E-Ins and generalizations.
Hartung et al. [11] proved that Anonym-E-Ins is NP-hard and W[1]-hard with
respect to (w.r.t.) the solution size s, even if k = 2. On the positive side, using
the heuristic of Liu and Terzi [12], they showed fixed-parameter tractability of
Anonym-E-Ins w.r.t. the maximum degree in the input graph.

Chester et al. [5] considered a variant of Anonym-V-Ins and gave an approx-
imation algorithm with an additive error of at most k. Bredereck et al. [2] investi-
gated the parameterized complexity of several variants of Anonym-V-Ins which
differ in the rules how the inserted vertices can be made adjacent to existing ver-
tices. The Anonym-V-Del variant studied by Bredereck et al. [3] turned out
to be NP-hard even on very restricted graph classes such as trees, split graphs,
or trivially perfect graphs.

Our Results. We investigate the approximability of natural optimization variants
of Anonym-V-Del and Anonym-E-Del: Either the budget s is given and one
wants to maximize the level k of anonymity, or k is given and the goal is to
minimize the number of modifications s. The optimization problems maximiz-
ing k with a given budget s are denoted by Max Anonym-V-Del and Max

Anonym-E-Del. The variants minimizing s with given k are denoted by Min

Anonym-E-Del and Min Anonym-V-Del.
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We show that one cannot approximate Max Anonym-E-Del(Max

Anonym-V-Del) within a factor of n1−ε (n1/2−ε) in f(s)nO(1) time unless
FPT = W[1], for any function f and any 0 < ε ≤ 1 (0 < ε ≤ 1/2). As the
parameter k has size Θ(n) in all employed gap-reductions, we only manage to
exclude polynomial-time approximations for the minimization versions. More
precisely, both Min Anonym-E-Del and Min Anonym-V-Del cannot be
approximated in polynomial time within a factor of n1−ε unless P = NP.

Complementing the NP-hardness of Anonym-V-Del with k = 2 on trees [3],
we show that Anonym-E-Del remains NP-hard on caterpillars (a tree having
a dominating path), even if k = 2. Extending the fixed-parameter tractabil-
ity of Anonym-V-Del w.r.t. the combined parameter budget and maximum
degree (s,Δ), we classify Anonym (allowing edge and vertex insertion as well
as deletion) as fixed-parameter tractable w.r.t. (s,Δ).

Due to the space constraints, some proofs are deferred to a full version.

2 Preliminaries

Graph terminology. We use standard graph-theoretic notation. All graphs studied
in this paper are undirected and simple, that is, there are no self-loops and no
multi-edges. For a given graph G = (V,E) with vertex set V and edge set E we
set n := |V | and m := |E|. Furthermore, by degG(v) we denote the degree of a
vertex v ∈ V in G, and ΔG denotes the maximum degree of any vertex of G.
For 0 ≤ d ≤ ΔG, let DG(d) := {v ∈ V | degG(v) = d} be the block of degree d,
that is, the set of all vertices with degree d in G. Thus, being k-anonymous is
equivalent to each block being of size either zero or at least k.

The subgraph of G induced by a vertex subset V ′ ⊆ V is denoted by G[V ′].
For an edge subset E′ ⊆ E, V (E′) denotes the set of all endpoints of edges
in E′ and G[E′] := (V (E′), E′). Furthermore, for a vertex subset V ′ ⊆ V we
set G−V ′ := G[V \V ′] and for an edge set E′ ⊆ (

V
2

)
we set G−E′ := (V,E \E′)

and G + E′ = (V,E ∪ E′). A graph G is k-anonymous if for every vertex v ∈ V
there are at least k − 1 other vertices in G having the same degree.

A vertex subset V ′ ⊆ V (an edge subset E′ ⊆ E) is called k-deletion set
if G − V ′ (G − E′, respectively) is k-anonymous. Analogously, for a set E′′ of
edges with endpoints in a graph G such that V +E′′ is k-anonymous, we call E′′

an for G. We omit subscripts if the graph is clear from the context.

Approximation. Let Σ be a finite alphabet. Given an optimization problem Q ⊆
Σ∗ and an instance I of Q, we denote by |I| the size of I, by opt(I) the optimum
value of I and by val(I, S) the value of a feasible solution S of I. The performance
ratio of S (or approximation factor) is r(I, S) = max

{
val(I,S)
opt(I) , opt(I)

val(I,S)

}
. For a

function ρ, an algorithm is a ρ(n)-approximation, if for every instance I of Q,
it returns a solution S such that r(I, S) ≤ ρ(|I|). An optimization problem is
ρ(n)-approximable in polynomial time if there exists a ρ(n)-approximation algo-
rithm running in time |I|O(1) for any instance I. A parameterized optimization
problem Q ⊆ Σ∗ × N is ρ(n)-approximable in fpt-time w.r.t. the parameter k if
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there exists a ρ(n)-approximation algorithm running in time f(k) · |I|O(1) for any
instance (I, k) and f is a computable function [13]. It is worth pointing that in
this case, k is not related to the optimization value.

In this paper we use a gap-reduction between a decision problem and a mini-
mization or maximization problem. A decision problem A is called gap-reducible
to a maximization problem Q with gap ρ ≥ 1 if there exists a polynomial-time
computable function that maps any instance I of A to an instance I ′ of Q, while
satisfying the following properties: (i) if I is a yes-instance, then opt(I ′) ≥ cρ, and
(ii) if I is a no-instance, then opt(I ′) < c, where c and ρ are functions of |I ′|. If
A is NP-hard, then Q is not ρ-approximable in polynomial time, unless P = NP.
In this paper we also use a variant of this notion, called fpt gap-reduction.

Definition 1 (fpt gap-reduction). A parameterized (decision) problem A is
called fpt gap-reducible to a parameterized maximization problem Q with gap ρ ≥
1 if any instance (I, k) of A can be mapped to an instance (I ′, k′) of Q in f(k) ·
|I|O(1) time while satisfying the following properties: (i) k′ ≤ g(k) for some
function g, (ii) if I is a yes-instance, then opt(I ′) ≥ cρ, and (iii) if I is a no-
instance, then opt(I ′) < c, where c and ρ are functions of |I ′| and k.

The interest of the fpt gap-reduction is the following result that immediately
follows from the previous definition:

Lemma 1. If a parameterized problem A is C-hard and fpt gap-reducible to a
parameterized optimization problem Q with gap ρ, then Q is not ρ-approximable
in fpt-time, unless FPT = C, where C is any class of the parameterized complexity
hierarchy.

3 Inapproximability of Vertex Deletion Versions

In this section we consider the optimization problems associated to Anonym-V-

Del, that is Min Anonym-V-Del and Max Anonym-V-Del. We prove that
Min Anonym-V-Del is not n1−ε-approximable in polynomial time, while Max

Anonym-V-Del is not n1/2−ε-approximable in fpt-time w.r.t. parameter s,
even on trees.

Theorem 1. Min Anonym-V-Del is not n1−ε-approximable for any 0 < ε ≤
1, unless P = NP.

Theorem 2. For every 0 < ε ≤ 1/2, Max Anonym-V-Del is not n1/2−ε-
approximable in fpt-time w.r.t. parameter s, even on trees, unless FPT = W[2].

Proof. Let 0 < ε ≤ 1/2 be a constant. We provide an fpt gap-reduction from the
W[2]-hard Set Cover problem [7] parameterized by the solution size h. Set
Cover is defined as follows: given a universe U = {e1, . . . , em}, a collection C =
{S1, . . . , Sn} of sets over U , and h ∈ N the task is to decide whether there is
a set cover C′ ⊆ C of size |C′| ≤ h, that is

⋃
S∈C′ S = U . Let I = (U, C, h) be

an instance of Set Cover. We assume without loss of generality that for each
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element ei ∈ U there exists a set Sj ∈ C with ei ∈ Sj . To reduce the amount
of indices in the construction given below we introduce the function f : U → N

that maps an element ei ∈ U to f(ei) = (h + 4)i. Let t be an integer greater
than or equal to (mn)(1−2ε)/(2ε). (We will aim for making the constructed graph
t-anonymous.)

The instance I ′ of Max Anonym-V-Del is defined by s = h and on a
graph G = (V,E) constructed as follows: For each element ei ∈ U add a
star K1,f(ei) with the center vertex ve

i . Denote with VU = {ve
1, . . . , v

e
m} the

set of all these center vertices. Furthermore, for each element ei ∈ U add t
stars K1,f(ei)+1.

For each set Sj ∈ C add a tree rooted in a vertex vS
j . The root has |Sj |t child

vertices where each element ei ∈ Sj corresponds to exactly t of these children,
denoted by v

ei,Sj

1 , . . . , v
ei,Sj

t . Additionally, for each � ∈ {1, . . . , t} we add to v
ei,Sj

�

exactly f(ei) degree-one neighbors. Hence, the set gadget is a tree of depth two
rooted in vS

j . To ensure that the root vS
j does not violate the t-anonymous

property we add t stars K1,deg(vS
j ). We denote with VC = {vS

1 , . . . , vS
n} the set of

all root vertices. Finally, to end up with one tree instead of a forest, repeatedly
add edges between any degree-one-vertices of different connected components.

We now show that if I is a yes-instance then opt(I ′) ≥ t and if I is a no-
instance then opt(I ′) = 1.

Suppose that I has a set cover of size h. Observe that for each element ei ∈ U
the only vertex of degree f(ei) is ve

i , and there are no other vertices violating
the t-anonymous property.The key point in the construction is that, in order to
get a t-anonymous graph, one has to delete vertices of VC . Indeed, let ei ∈ U be
an element and vS

j a root vertex such that ei ∈ Sj . By construction the child
vertices v

ei,Sj

� of vS
j correspond to ei and therefore have f(ei) child vertices.

Thus, deleting vS
j lowers the degree of all v

ei,Sj

� to f(ei) and, hence, ve
i no longer

violates the t-anonymous property. Hence, given a set cover of size h one can
construct a corresponding t-deletion set for G.

Conversely, we show that if there exists a 2-deletion of size at most h in G,
then (U, C, h) is a yes-instance of Set Cover. Let S ⊆ V be a 2-deletion of
size at most h. First, we show how to construct a 2-deletion S′ ⊆ VC such
that |S′| ≤ |S|. To this end, initialize S′ as S′ = S ∩VC . If S′ is a 2-deletion, then
the construction of S′ is finished. Otherwise, there is a vertex v in G−S′ such that
there is no other vertex with the same degree as v. Observe that since S′ ⊆ VC ,
it follows that v ∈ VU , that is v = ve

i for some 1 ≤ i ≤ m. Furthermore, observe
that is exactly one vertex in G having a degree d between f(ei)−h ≤ d ≤ f(ei),
namely ve

i . As S is a 2-deletion, it follows that S either contains ve
i or a vertex u

that is adjacent to a vertex w with degG(w) > deg(ve
i ).In either case, we add to S′

a vertex vS
j ∈ VC such that ei ∈ Sj . By exhaustively applying this procedure,

we end up with S′ being a 2-deletion. Since the vertices in VC are the only ones
in G that are adjacent to more than one vertex of degree at least three and all
vertices in VU have degree more than three, it follows that |S′| ≤ |S|.
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It remains to show that the set C′ of sets corresponding to the vertices in S′

forms a set cover. To this end, assume by contradiction that C′ is not a set cover,
that is, there is an element ei /∈ ⋃

Sj∈C′ Sj . However, this implies that in G − S′

there is exactly one vertex of degree f(ei), namely ve
i , implying that S′ is not a

2-deletion, a contradiction. As |C′| = |S′| ≤ |S| ≤ h, it follows that if G contains
a 2-deletion of size h, then (U, C, h) is a yes-instance. Hence, if (U, C, h) is a
no-instance, then there exist no 2-deletion of size at most h.

Thus, we obtain a fpt gap-reduction with the gap t = (mn)
1−2ε
2ε =

(t2m2n2)1/2−ε ≥ |V |1/2−ε since |V | < t2m2n2. From Lemma 1 and since
Set Cover is W[2]-hard [7], we have that Max Anonym-V-Del is not
n1/2−ε-approximable in fpt-time w.r.t. parameter s, even on trees, unless
FPT=W[2]. 	


4 Inapproximability of Edge Deletion Versions

In this section, we first show that Anonym-E-Del is NP-hard on caterpillars;
the corresponding proof is an adaption of the reduction provided in the proof
of Theorem 2. A caterpillar is a tree that has a dominating path [1], that is, a
caterpillar is a tree such that deleting all leaves results in a path. Then we pro-
vide polynomial-time inapproximability results for Min Anonym-E-Del and
Max Anonym-E-Del for bounded-degree graphs and parameterized inapprox-
imability results for Max Anonym-E-Del on general graphs.

Theorem 3. Anonym-E-Del is NP-hard on caterpillars, even if k = 2.

Theorem 4. For every 0 < ε ≤ 1, Max Anonym-E-Del is not n1−ε-
approximable even on bounded-degree graphs, unless P = NP.

Theorem 5. For every 0 < ε ≤ 1, Min Anonym-E-Del is not n1−ε-
approximable even on bounded-degree graphs, unless P = NP.

Theorem 6. For every 0 < ε ≤ 1, Max Anonym-E-Del is not n1−ε-
approximable in fpt-time w.r.t. parameter s, unless FPT=W[1].

Proof. We provide an fpt gap-reduction from the W[1]-hard Clique problem [7]
parameterized by the solution size h. Clique is defined as follows: given a
graph G = (V,E) and an integer h ∈ N, the task is to decide whether there
is a subset V ′ ⊆ V of at least h pairwise adjacent vertices. Let I = (G,h) be
an instance of Clique. Assume w.l.o.g. that ΔG + 2h + 1 ≤ n, where n = |V |.
If this is not the case, then one can add isolated vertices to G until the bound
holds.

We construct an instance I ′ = (G′ = (V ′, E′), s) of Max Anonym-E-Del

as follows: First, copy G into G′. Then, add a vertex u and connect it to the n
vertices in G′. Next, for each vertex v ∈ V add to G′ degree-one vertices that are
adjacent only to v such that degG′(v) = n − h. This is always possible, since we
assumed ΔG +2h+1 ≤ n. Observe that in this way at most n(n−h) degree-one
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vertices are added. Now, set x := �(4n)3/ε� and add cliques with two, n−2h+1,
and n−h+1 vertices such that after adding these cliques the number of degree-d
vertices in G′, for each d ∈ {1, n − 2h, n − h}, is between x + h and x + h + n,
that is, x + h ≤ |DG′(d)| ≤ x + h + n. After inserting these cliques, the graph
consists of four blocks: of degree one, n − h, n − 2h, and n, where the first three
blocks are roughly of the same size (between x + h and x + h + n vertices) and
the last block of degree n contains exactly one vertex. To finish the construction,
set s :=

(
h
2

)
+ h.

Now we show that if I is a yes-instance, then opt(I ′) ≥ x and if I is a
no-instance, then opt(I ′) < 2s.

Suppose that I contains a clique C ⊆ V of size h. Then, deleting the
(
h
2

)
edges

within C and the h edges between the vertices in C and u does not exceed the
budget s and results in an x-anonymous graph G′′. Since h edges incident to u
are deleted, it follows that degG′′(u) = n − h. Furthermore, for each clique-
vertex v ∈ C also h incident edges are deleted (h − 1 edges to other clique-
vertices and the edge to u), thus it follows that degG′′(v) = n − 2h. Since the
degree of the remaining vertices remain unchanged, and |DG′(n − h)| ≥ x + h,
it follows that each of the three blocks in G′′ has size at least x. Hence, G′′ is
x-anonymous.

For the reverse direction, suppose that there is a 2s-deletion set S of size
at most s in G′. Since u is the only vertex in G′ with degree n, and all other
vertices in G′ have degree at most n − h, it follows that S contains at least h
edges that are incident to u. Since NG′(u) = V , it follows that the degree of at
least h vertices of the block DG′(n−h) is decreased by one. Denote these vertices
by C. Since |S| ≤ s and h edges incident to u are contained in S, it follows that
at most 2s − h + 1 vertices are incident to an edge in S. Furthermore, since S is
a 2s-deletion set, it follows that the vertices in C are in G′ − S either contained
in the block of degree one or in the block of degree n − 2h. Thus, by deleting
the at most

(
h
2

)
remaining edges in S, the degree of each of the h vertices in C

is decreased by at least h − 1. Hence, these
(
h
2

)
edges in S form a clique on the

vertices in C and thus I is a yes-instance. Therefore, it follows that if I is a no-
instance, then there is no 2s-deletion set of size s in G′ and hence opt(I ′) < 2s.

Thus we obtain a gap-reduction with the gap at least x
2s . Set n′ := |V ′|. By

construction we have 3x ≤ n′ ≤ n2 + 3x + 3h + 3n + 1. By the choice of x it
follows that x > n′/4, since

n′

4
≤ 1

4
(n2 + 3x + 3h + 3n + 1) = x +

1
4
(n2 + 3h + 3n + 1 − x)

︸ ︷︷ ︸
<0

< x.

Hence the gap is

x

2s
>

n′1−ε+ε

4(h2 + h)
≥ n′1−ε n′ε

8h2
> n′1−ε xε

8n2
= n′1−ε (4n)3ε/ε

8n2
> n′1−ε.

	




82 C. Bazgan and A. Nichterlein

5 Fixed-Parameter Tractability

In previous work, it was shown that Anonym-E-Ins and Anonym-V-Del are
both fixed-parameter tractable with respect to the combined parameter budget s
and maximum degree Δ [3,11]. Here we generalize the ideas behind these results
and show fixed-parameter tractability for the general problem variant where one
might insert and delete specified numbers of vertices and edges.

k-Degree Anonymity Editing (Anonym-Edt)

Input: An undirected graph G = (V,E) and five positive integers s1, s2, s3, s4
and k.

Question: Is it possible to obtain a graph G′ = (V ′, E′) from G using at most s1
vertex deletions, s2 vertex insertions, s3 edge deletions, and s4 edge
insertions, such that G′ is k-anonymous?

Observe that here we require that the inserted vertices have degree zero and
we have to “pay” for making the inserted vertices adjacent to the existing ones.
In particular, if s4 = 0, then all inserted vertices are isolated in the target
graph. Note that there are other models where the added vertices can be made
adjacent to an arbitrary number of vertices [2,5]. Our ideas, however, do not
directly transfer to this variant.

For convenience, we set s := s1 + s2 + s3 + s4 to be the number of allowed
graph modifications.

Theorem 7. Anonym-Edt is fixed-parameter tractable w.r.t. (s,Δ).

Proof (sketch). Let I = (G = (V,E), k, s1, s2, s3, s4) be an instance of Anonym-

Edt. In the following we give an algorithm finding a solution if existing. Intu-
itively, the algorithm first guesses a “solution structure” and then checks whether
the graph modifications associated to this solution structure can be performed
in G. A solution structure is a graph S with at most s(Δ + 1) vertices where

1. each vertex is colored with a color from {0, . . . , Δ} indicating the degree of
the vertex in G and

2. each edge and each vertex is marked either as “to be deleted”, “to be inserted”,
or “not to be changed” such that:
(a) all edges incident to a vertex marked as “to be inserted” are also marked

as “to be inserted”,
(b) at most s1 vertices and at most s3 edges are marked as “to be deleted”,

and
(c) at most s2 vertices and at most s4 edges are marked as “to be inserted”.

The intuition about this definition is that a solution structure S contains all
graph modifications in a solution and the vertices that are affected by the mod-
ifications, that is, the vertices whose degree is changed when performing these
modifications. Observe that any solution for I defines such a solution structure
with at most s(Δ + 1) vertices as each graph modification affects at most Δ + 1
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vertices. This bound is tight in the sense that deleting a vertex v affects v and
his up to Δ neighbors. Furthermore, observe that once given such a solution
structure, we can check in polynomial time whether performing the marked
edge/vertex insertions/deletions results in a k-anonymousgraph G′, since the
coloring of the vertex indicates the degrees of the vertices that are affected by
the graph modifications.

Our algorithm works as follows: First it branches into all possibilities for
the solution structure S. In each branch it checks whether performing the graph
modifications indicated by the marks in S indeed result in a k-anonymous graph.
If yes, then the algorithm checks whether the graph modifications associated
to S can be performed in G: To this end, all edges and vertices marked as “to
be inserted” are removed from S and the marks at the remaining vertices and
edges are also removed and the resulting “cleaned” graph is called S′. Finally
the algorithm tries to find S′ as an induced subgraph of G such that the vertex
degrees coincide with the vertex-coloring in S′. This is done by a meta-theorem
for bounded local tree-width graphs [8]. If the algorithm succeeds and finds S′

as an induced subgraph, then the graph modifications encoded in S can be
performed which proves that I is a yes-instance. If the algorithm fails in every
branch, then, due to the exhaustive search over all possibilities for S, it follows
that I is a no-instance. Thus, the algorithm is indeed correct.

6 Conclusion

We have shown strong inapproximability results for the optimization variants
of Anonym-E-Del and Anonym-V-Del. We leave two major open questions
concerning polynomial-time approximability and parameterized approximabil-
ity: In all our gap reductions the value of k is in the order of n. This leads to
the question whether with constant k Min Anonym-E-Del or Min Anonym-

V-Del are constant-factor approximable in polynomial time? Second, we failed
to transfer the inapproximability results to Anonym-E-Edtwhere we require
that the number of edge insertions plus deletions is at most s. Here, handling
the possibility to revert already changed degrees seems to be crucial in order to
obtain any approximation result (positive or negative) for the optimization vari-
ants of Anonym-E-Edt. This leads to the question whether there are “reason-
able” (parameterized) approximation algorithms for the optimization variants of
Anonym-E-Edt?
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Abstract. In this paper, we pioneer a study of parameterized automata
constructions for languages relevant to the design of parameterized algo-
rithms. We focus on the k-Distinct language Lk(Σ) ⊆ Σk, defined as
the set of words of length k whose symbols are all distinct. This language
is implicitly related to several breakthrough techniques, developed during
the last two decades, to design parameterized algorithms for fundamen-
tal problems such as k-Path and r-Dimensional k-Matching. Building
upon the well-known color coding, divide-and-color and narrow sieves
techniques, we obtain the following automata constructions for Lk(Σ).
We develop non-deterministic automata (NFAs) of sizes 4k+o(k)·nO(1) and
(2e)k+o(k) ·nO(1), where the latter satisfies a ‘bounded ambiguity’ prop-
erty relevant to approximate counting, as well as a non-deterministic xor
automaton (NXA) of size 2k·nO(1), where n = |Σ|. We show that our con-
structions lead to a unified approach for the design of both deterministic
and randomized algorithms for parameterized problems, considering also
their approximate counting variants. To demonstrate our approach, we
consider the k-Path, r-Dimensional k-Matching and Module Motif

problems.

1 Introduction

Parameterized algorithms solve NP-hard problems by confining the combina-
torial explosion to a parameter k. More precisely, a problem is fixed-parameter
tractable (FPT) with respect to a parameter k if it can be solved in time O∗(f(k))
for some function f , where O∗ hides factors polynomial in the input size.

In this paper, we pioneer a study of parameterized automata constructions
for languages relevant to the design of parameterized algorithms. We focus on
the k-Distinct language, formally defined as follows.

Definition 1. Let Σ be an alphabet of size n, and k be a positive integer. We
define the k-Distinct language, denoted Lk(Σ) ⊆ Σk, to be the set of words
w1 · · · wk ∈ Σk such that w1, . . . , wk are all distinct.

Given integers k ≤ n, we also use the abbreviated notation Lk(n) to denote
the language Lk([n]), where [n] � {1, . . . , n}.

The research leading to these results has received funding from the European Com-
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The language k-Distinct is a natural candidate for investigating relations
between automata and parameterized problems. Indeed, we show that
k-Distinct is related to several breakthrough techniques, developed during the
last two decades, to design algorithms for classic, fundamental parameterized
problems. More precisely, building upon the well-known color coding [3], divide-
and-color [9] and narrow sieves [5] techniques, we obtain three different parame-
terized automata constructions for k-Distinct.

We show that our constructions lead to a unified approach for the design of
parameterized algorithms, which allows to obtain three types of such algorithms–
deterministic, approximate counting and randomized algorithms–by construct-
ing only one problem-specific automaton. We also argue that our approach
allows obtaining these algorithms in an easy, natural manner. In particular, for
researchers knowledgeable with automata and graphs, our deterministic algo-
rithm for k-Path can be summarized by saying that, essentially, we just “take
the product of the graph with the automaton for Lk(V )” (see, e.g., [30]).

To demonstrate our approach, we consider the following three problems.

Weighted k-Path: Given a directed graph G=(V,E), a weight function w : E →
R and a parameter k∈N, determine if G has a simple k-path (i.e., an acyclic/simple
walk on k vertices), and if so, return such a path of minimal weight.

Weighted r-Dimensional k-Matching: Given disjoint universes U1, . . . , Ur,
think of an element in U1 × . . . × Ur as a set that contains exactly one element
from each universe Ui. Now, given a family S ⊆ U1 × . . .×Ur, a weight function
w : S → R and a parameter k ∈ N, determine if there exists a subfamily of k
pairwise-disjoint sets in S, and if so, return such a subfamily of maximal weight.

Weighted Module Motif: Let G = (V,E) be an undirected graph, and let
k∈N. A k-module is a subset U ⊆V of k vertices that have the same neighbors
outside of U . More formally, for every u1, u2 ∈ U and r ∈ V \ U , (u1, r)∈E iff
(u2, r)∈E. Now, given a set C of colors, a function Col : V →2C specifying the
allowed colors for each vertex, and a weight function w : V →R,1 determine if
there exists a pair of a k-module U in G and a coloring col : U →C such that

– For every v ∈ U , col(v) ∈ Col(v).
– For every c ∈ C, c is the color of at most one vertex in U (according to col).

If such a pair exists, return such a pair that maximizes the weight w(U) of the
module U , defined as w(U) �

∑
v∈U w(v).

We highlight two variants of the above problems, considered in this paper.

1. The unweighted variant, where all elements are assumed to have weight zero.
2. The approximate counting unweighted variant, where, given an accuracy para-

meter δ > 0, the goal is to return a value in the interval [S/δ, δ ·S], where S
is the number of solutions (e.g., the number of simple k-paths).

1 We consider vertex weights, rather than color similarity scores (see [41]), for the sake
of clarity. Our algorithms can be easily modified to handle color similarity scores.
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1.1 Prior Work

The k-Path and r-Dimensional k-Matching problems are two of the most
well-studied problems in the field of parameterized complexity. Indeed, the
k-Path problem has enjoyed a race towards obtaining the fastest parameter-
ized algorithm for it [1,3,5,6,9,15,16,21,24,31,35,39]. Currently, the best known
parameterized algorithm for Weighted k-Path runs in time O∗(2.619k) [16,35].
For (unweighted) k-Path, Williams [39] gave a randomized algorithm running in
time O∗(2k). Restricted to undirected graphs, k-Path can be solved in random-
ized time O∗(1.66k) [5]. We also note that approximately counting the number
of simple k-paths in a graph can be performed in time O∗((2e)k+o(k)) [2].

The classic decision version of the r-Dimensional k-Matching problem
is listed as one of the six fundamental NP-complete problems in Garey and
Johnson [17]. A considerable number of papers presented parameterized algo-
rithms for this problem [5,7–11,13,14,19,23–26,28,37,38]. Currently, the best
known parameterized algorithm for Weighted r-Dimensional k-Matching

runs in time O∗(2.851(r−1)k) [19]. For r-Dimensional k-Matching, Björklund
et al. [5] gave a randomized algorithm running in time O∗(2(r−2)k). We also note
that approximately counting the number of 3-dimensional k-matchings can be
performed in randomized time O∗(5.483k) [27].

The Module Motif problem was recently introduced by Rizzi et al. [32],
primarily motivated from the analysis of complex biological networks. This prob-
lem can be solved in deterministic and randomized times O∗(4.32k) and O∗(2k),
respectively [41].

1.2 Our Contribution

Building upon previous techniques, we obtain automata constructions for
k-Distinct. We also give lower bounds on the size of such automata. Further-
more, we show that automata for k-Distinct can be used to develop algorithms
for the problems described above. While most of our current constructions are
not good enough to obtain improved algorithms,2 we find they provide a uni-
fied and ‘clean’ approach to present and design different types of parameterized
algorithms. As our constructions are essentially ‘an automata-based view’ of well-
known parameterized algorithms, improving our lower bounds will show that a
large class of algorithms ‘cannot do better’ (e.g., improving our lower bound on
NFA-size described below, would imply a statement of the form ‘known color
coding-related techniques cannot achieve faster running times’). We describe
our results in more detail in the next paragraphs. Unless noted otherwise, we
assume that our alphabet is [n] = {1, . . . , n} and use the notation Lk(n) from
Definition 1.

NFAs for Lk(n) and Weighted Problems: We show that the divide-and-color
technique of [9] can be used to construct an NFA for Lk(n) of size O∗(4k+o(k)).

2 We slightly improve the previous randomized algorithm that approximately counts
only 3-dimensional k-matchings, and deterministic algorithm for Module Motif.
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We also show, on the other hand, that any NFA for Lk(n) must have at least
Ω(2k logn) states.3 Roughly speaking, our lower bound shows that some subset of
the states of such an NFA must correspond to elements of an (n, k)-universal set
(cf. Definition 5). It is known that such a set must have size Ω(2k logn) [22,34].

Our NFA construction implies deterministic algorithms for the Weighted

k-Path, Weighted r-Dimensional k-Matching and Weighted Module

Motif problems, whose time complexities are O∗(4k+o(k)), O∗(4(r−1)k+o((r−1)k))
and O∗(4k+o(k)), respectively. More generally, our approach implies that an
NFA for Lk(n) of size O∗(s(k)), that can be constructed in deterministic time
O∗(s(k)), can be used to obtain deterministic algorithms for these problems with
running times O∗(s(k)), O∗(s((r − 1) · k)) and O∗(s(k)), respectively.

Bounded Ambiguity NFAs and Approximate Counting Problems:
Roughly speaking, a bounded ambiguity NFA is one where the number of accept-
ing paths of any word in its language is roughly the same. Using the balanced
hash families construction of [2], we build such an NFA of size O∗((2e)k) for Lk(n).
This NFA allows us to obtain deterministic algorithms for the approximate coun-
ting versions of k-Path, r-Dimensional k-Matching and Module Motif,
running in times O∗((2e)k+o(k)), O∗((2e)(r−1)k+o((r−1)k)) and O∗((2e)k+o(k)), respec-
tively, for any accuracy parameter δ > 1 + 1

poly(k) .

NXAs and Randomized Algorithms for Unweighted Problems: Based
on the narrow sieves technique of [5] and its interpretation by [1], we construct
a randomized non-deterministic xor automaton (NXA) of size O∗(2k) for Lk(n)
(see Definitions 6 and 7). We also show a matching lower bound for such an NXA.

Using our construction, we obtain randomized algorithms for k-Path,
r-Dimensional k-Matching and Module Motif, running in times O∗(2k),
O∗(2(r−1)k) and O∗(2k), respectively. Our lower bound may be viewed as a state-
ment that ‘known techniques for (directed) k-Path based on polynomials over
fields of characteristic two cannot do better than O∗(2k)’.

Organization: Due to lack of space, some of the results are omitted, and will
appear in [4]. Section 2 presents some preliminaries regarding automata. Sec-
tions 3 and 4 present our NFA and NXA constructions for k-Distinct. The
details of our ‘bounded ambguity’ automaton are omitted. Sections 5 and 6
present the relation of these constructions to parameterized algorithms.

2 Preliminaries

In this section we recall basic definitions related to automata theory.

2.1 Non-deterministic Finite Automata (NFA)

An NFA, the simplest automaton relevant to this paper, is defined as follows.
3 We note that determining the minimal NFA size, even for a finite regular language,

is computationally hard [20].
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Definition 2. An NFA M over alphabet Σ is a labeled directed graph M =<
Q,Δ, q0, F >, where

– Q is the set of vertices, called states.
– Δ is the set of edges, called transitions, each labeled by an element of Σ.
– q0 is an element in Q, called the start state.
– F is a subset of states from Q, called accepting states.

We say that M is acyclic if it is acyclic as a directed graph. We define the size
of M as the sum of the number of states and transitions in M , i.e., size(M) �
|Q| + |Δ|. For the sake of clarity, when referring to a transition in Δ, we use the
notation (u → v) rather than (u, v). Moreover, we allow the transitions to be
weighted (i.e., we also have a weight function w : Δ → R).

For a word w = w1 · · · wt ∈ Σt, let M(w) ⊆ Q be the subset of states reached
by w.4 We now give the standard definition of the language of M .

Definition 3. The language of an NFA M , denoted L(M), is defined by

L(M) � {w ∈ Σ∗ | M(w) ∩ F �= ∅}.

2.2 Intersection

To integrate automata for k-Distinct with problem-specific automata, we need
the following definition.

Definition 4. Given NFAs M1 =<Q1,Δ1, q
1
0 , F1> and M2 =<Q2,Δ2, q

2
0 , F2>

over the same alphabet Σ, we define the intersection NFA

M1 ∩ M2 �< Q1 × Q2,Δ,< q10 , q
2
0 >,F1 × F2 >

over Σ, where the set of transitions Δ is defined as follows. For every pair of
transitions (u1→v1) ∈ Δ1 and (u2→v2) ∈ Δ2 that are both labeled by the same
element a ∈ Σ, we have a transition (<u1, u2 >→<v1, v2 >) ∈ Δ labeled by a,
whose weight is the sum of the weights of (u1→v1) and (u2→v2).

Observe that a word is accepted by M1∩M2 iff it is accepted by both M1 and M2.

3 NFA Construction for k-Distinct

We now give an explicit construction of an NFA of size O∗(4k+o(k)) for
k-Distinct, following principles of the divide-and-color technique [9]. To this end,
we need the following standard tool for derandomizing parameterized algorithms.

Definition 5. Let F be a set of functions f : [n] → {0,1}. We say that F
is an (n, t)-universal set if for every subset I ⊆ [n] of size t and a function
f ′ :I →{0,1}, there is a function f ∈F such that for all i∈I, f(i)=f ′(i).
4 If while reading a word we reach a state where we cannot progress by reading the

next symbol, this run is rejected and the state we are at is not added to M(w).
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The next result asserts that small universal sets can be computed efficiently.

Theorem 1 ([29]). There is an algorithm that, given a pair of integers (n,t), co-
mputes an (n,t)-universal set F of size 2t+O(log2t)logn in time O(2t+O(log2t)nlogn).

We now state the main result of this section, followed by a related lower bound.

Theorem 2. An acyclic NFA M of size O∗(4k+o(k)) for Lk(n) can be con-
structed in time O∗(4k+o(k)).

Proof. Given a subset S ⊆ [n], recall that Lk(S) is the set of words w ∈ Sk

whose symbols are all distinct, i.e., Lk(S) � Lk(n) ∩ Sk. For every 1 ≤ � ≤ k
and subset S ⊆ [n], we construct in time O∗(4�+o(�)), by induction on �, an
acyclic NFA M�,S for Lk(S) of size O∗(4�+o(�)). Setting � = k and S = [n], the
correctness of the theorem follows.

Basis: Fix some subset S ⊆ [n]. Given a word w ∈ [n], the NFA M1,S simply
checks if w consists of exactly one symbol, and this symbol belongs to S (i.e.,
|w| = 1 and w ∈ S). Thus, M1,S can be constructed in time O(n).

Step: Again, fix some subset S ⊆ [n]. Next, assume that we have a construction
of an NFA M�′,S′ for every 1 ≤ �′ < � and S′ ⊆ S.

Fix disjoint subsets S1, S2 ⊆ S. Towards constructing M�,S , we define an
acyclic NFA M�,S1,S2 , which accepts exactly the words w ∈ L�(S) whose first
	�/2
 symbols are in S1, and last ��/2� symbols are in S2 . The construction of
M�,S1,S2 simply consists of a copy of M��/2�,S1 that reads the first 	�/2
 symbols
of w, followed by a copy of M��/2	,S2 that reads the last ��/2� symbols of w.

We construct the acyclic NFA M�,S as follows. Let F be an (n, �)-universal
set, computed using Theorem 1. Given a function f ∈ F , let S[f ] = {a ∈ S :
f(a) = 1}. For every function f ∈ F , we add an ε-transition from the start state
of M�,S to a copy of M�,S[f ],S\S[f ]. Thus, M�,S accepts a word w iff (at least)
one automaton of the form M�,S[f ],S\S[f ] accepts w. Now, using the properties
of a universal set, the correctness of M�,S can be verified (details on this and the
construction time bound are omitted). �

Theorem 3. Any NFA M over alphabet [n] with L(M) = Lk(n) has Ω(2k log n)
states.

Proof. Let M =< Q,Δ, q0, F > be an NFA for Lk(n). Towards showing the
claimed lower bound, we associate two sets, Aq, Bq ⊆ [n], with each state q ∈ Q.
The set Aq contains letters that belong to some path from q0 to q, while the set
Bq contains letters that belong to some path from q to an accepting state. Since
each word in Lk(n) consists of k distinct letters, we get that Aq ∩ Bq = ∅. Now,
for each q ∈ Q, define the function fq : [n] → {0, 1} by fq(i) = 1 iff i ∈ Aq.
Finally, let F � {fq}q∈Q be the set of all the functions fq.

Now, let S and S′ be two disjoint subsets of [n], whose union I = S ∪ S′

contains exactly k elements. Note that there exists a word in k-Distinct whose
first |S| letters belong to S, and whose last |S′| letters belong to S′. Therefore,
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there exists a state q ∈ Q such that S ⊆ Aq and S′ ⊆ Bq. For this q, for i ∈ I,
f(i) = 1 iff i ∈ S. Since we have chosen S and S′ arbitrarily, we conclude that F
is an (n, k)-universal set, which is known to contain Ω(2k log n) functions [22,34];
thus, the NFA M contains Ω(2k log n) states. �

4 Randomized NXA Construction for k-Distinct

A non-deterministic xor automaton (NXA) is simply an NFA where the accep-
tance criteria for a word w is that there is an odd number of accepting paths for
w.5 We formalize this by defining the XOR-language of an NXA.

Definition 6. Let M be an NXA over an alphabet Σ. We define the XOR-
language of M , denoted L⊕(M) ⊆ Σ∗, to be the set of words w that have an odd
number of paths to an accept state in M .

In this section we build upon the algebraic narrow sieves technique [5] (see
also [1,24]), and construct an NXA for the language Lk(n). This NXA, together
with our two previous NFA constructions, form the infrastructure of our unified
approach for the design of parameterized algorithms (see Sects. 5 and 6). We will
actually construct a randomized NXA, a notion which we now formally define.

Definition 7. Fix a language L⊆Σ∗, and any 0<ε<1. An ε-NXA of size s for L
is a randomized algorithm R, which outputs an NXA M with size(M)≤s such that

– L⊕(M) ⊆ L with probability one, i.e., M never accepts a word outside L.
– For any fixed word w ∈ L, w ∈ L⊕(M) with probability at least ε.

It will be convenient to refer to the running time of R as the construction time
of R. By the number of states of R we mean the maximal number of states in
an NXA outputted by R with non-zero probability.

The main purpose of this section is to prove the following theorem.

Theorem 4. Fix any positive integers k ≤ n. There is a 1/4-NXA for Lk(n) of
size s = O(2k ·k ·n), containing O(2k ·k) states, with construction time O(n ·2k).

As an intermediate step, we construct an NXA for languages that are a strict
subset of Lk(n). Informally, these languages correspond to subsets of columns in
a fixed matrix over F2 that are linearly independent (see below).

Definition 8 (The language LA). Fix a k×n matrix A over F2. The language
LA ⊆ Lk(n) consists of all (i1 · · · ik) ∈ Lk(n) such that the columns {i1, . . . , ik}
are linearly independent in A.

In the rest of this section sums are always in F2, i.e., modulo 2. For each non-
empty subset S ⊆ [k], define the function φS : ({0, 1}k)k → {0, 1} by

5 We assume NXAs do not contain directed cycles of only ε-transitions, as their XOR-
language is not properly defined in this case.
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φS(v1, . . . , vk) �
k∏

i=1

∑

j∈S

vi,j

and define φ : ({0, 1}k)k → {0, 1} by

φ(v1, . . . , vk) �
∑

∅�=S⊆[k]

φS(v1, . . . , vk).

From Ryser’s formula for the permanent [33] we know that

Lemma 1. φ(v1, . . . , vk) is equal to the determinant of the k × k matrix over
F2 whose columns are v1, . . . , vk.

Fix a k × n matrix A over F2 with columns v1, . . . , vn ∈ {0, 1}k. For each non-
empty subset S ⊆ [k], we define a function fA,S : [n]k →{0, 1} by fA,S(i1, . . . , ik)�
φS(vi1 , . . . , vik). We define fA : [n]k → {0, 1} by

fA(i1, . . . , ik)�φ(vi1 , . . . , vik)=
∑

∅�=S⊆[k]

φS(vi1 , . . . , vik)=
∑

∅�=S⊆[k]

fA,S(i1, . . . , ik).

Lemma 2. Fix any k × n matrix A over F2 and non-empty S ⊆ [k]. There is
a deterministic automaton MA,S for f−1

A,S(1) with k + 1 states and at most k · n
transitions. MA,S can be constructed in time O(k · n).

Proof. Let v1, . . . , vn be the columns of A. Let T ⊆ [n] be the set of elements
i ∈ [n] such that ∑

j∈S

vi,j = 1.

Observe that fA,S(i1, . . . , ik) = 1 if and only if i1, . . . , ik are all contained in T .
This motivates the following construction: MA,S will contain the start state q0,
and the states q1, . . . , qk, where qk will be the only accept state. For each 0 ≤ j ≤
k − 1, and for every i ∈ T , there will be an edge from qj to qj+1 labeled i. �
Lemma 3. Fix any positive integers k ≤ n and any k × n matrix A over F2.
There is an NXA MA over [n] of size O(2k · k · n), containing O(k · 2k) states,
such that L⊕(MA) = LA. MA can be constructed in time O(2k · k · n).

Proof. For every non-empty S ⊆ [k], MA will contain a copy of the automaton
MA,S as described in Lemma 2. We unite the start state q0 and accept state qk of
all the automata MA,S to one start state q0 and accept state qk of MA. L⊕(MA)
contains exactly the words (i1 · · · ik) that are accepted by an odd number of
the automata MA,S . Since L(MA,S) = f−1

A,S(1), this is exactly f−1
A (1). Now note

that fA(i1, . . . , ik) = 1 if and only if the (multi-)set of vectors {vi1 , . . . , vik} are
linearly independent. In particular, fA(i1, . . . , ik) = 1 only if {i1, . . . , ik} are all
distinct. Therefore, L⊕(MA) = f−1

A (1) = LA. Finally, as MA consists of 2k − 1
automata of the form MA,S that each have size O(k · n) and can be constructed
in time O(k · n), the claim about MA’s size and construction time follows. �
Now, to prove Theorem 4, we choose a random k × n matrix A and output MA

(the details are omitted).
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We next consider the tightness of our randomized NXA construction.

Theorem 5. Fix positive integers k ≤ n.

– Any NXA M over [n] with L⊕(M) = Lk(n) has at least 2k states.
– Any 1

4 -NXA R over [n] with L⊕(M)=Lk(n) must have at least 1
4 ·2k states.

Proof. The Hankel matrix HL of a language L ⊆ [n]k has its rows and columns
indexed6 by the elements of [n]k. The (x, y)-entry of HL is one if x · y ∈ L.
Otherwise the (x, y)-entry of HL is zero.

Vuillemin and Gama [36] show that the rank, r(HL), of HL as a matrix over
F2, is a lower bound on the number of states of any NXA M with L⊕(M)=L. We
first argue that HLk(n) contains as a submatrix a 2k × 2k identity matrix: For
every S = {i1, . . . , id} ⊆ [k], let xS ∈ [n]k be the word xS = i1 · · · id. For every
S ⊆ [k], define yS = xS̄ . It is clear that for every S ⊆ [k], xS ·yS ∈ Lk(n); and for
every S �= T ⊆ [k], xS · yT /∈ Lk(n). Thus, the set of words L′ � {xS · yT |S, T ⊆
[k]} corresponds to a 2k ×2k identity matrix, that is a submatrix of HLk(n). This
implies that r(HLk(n)) ≥ 2k, and thus the first item of the theorem. The second
item follows from the first (the details are omitted). �

5 Problem-Specific Automata

In this section we present problem-specific automata, to be integrated with the
automata constructions for k-Distinct given in Sect. 6. Interestingly, we need
only design one automaton per problem, regardless of the automaton with whom
it will next be integrated. That is, using our approach, one can obtain fast
deterministic, approximate counting and randomized parameterized algorithms
for a given problem, at the price of designing only one automaton.

Intuitively, our problem-specific automata are designed to capture all the
restrictions of the problems associated with them, except for a restriction that
concerns uniqueness of elements.
k-Path: The following definition and straightforward lemma formally convert a
graph into an automaton accepting the paths of the graph.

Definition 9. Let (G,w, k) be an instance of Weighted k-Path. The NFA

M(G,w) �< Q = V ∪ {q0},Δ = E ∪ {(q0, v) : v ∈ V }, q0, F = V >

over alphabet Σ = V is defined with the following labeling and weights of tran-
sitions. Each transition (v → u) is labeled by the target state u and its weight is
w(v, u), where, if v = q0, its weight is 0.

Lemma 4. The language L(M(G,w)) is the set of words w = v1 · · · vm, where
m ∈ N, such that v1 → . . . → vm is a path from v1 to vm in G. Moreover, M is
6 Usually the Hankel matrix is defined as an infinite matrix, and we are defining a sub-

matrix of it; for a finite language L ⊆ [n]k, that the rank of this submatrix is clearly
the same as the rank of the entire matrix, and we are only concerned with its rank.
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an unambiguous (i.e., (1, 1)-ambiguous) NFA, and the weight of a path accepting
a word w is the weight of the corresponding path in G.

r-Dimensional k-Matching: Let I = (U1, . . . , Ur,S, w, k) be an instance of
Weighted r-Dimensional k-Matching. Assume an order < on S, and given
a subfamily S ′ ⊆ S, let S ′[i] be the ith set in S ′ (according to <), for all
1 ≤ i ≤ |S ′|. Given a word w = u1 · · · u(r−1)m, where m ∈ N, denote

I(w) = {S ′ ⊆ S : |(⋃ S ′) ∩ U1| = |S ′| = m,
[∀i ∈ {1, . . . , m}, j ∈ {2, . . . , r} : S ′[i] ∩ Uj = {u(r−1)(i−1)+(j−1)}]}.

Informally, I(w) includes every subfamily of S that contains sets with unique
elements from U1, such that the set of all of their elements together, excluding
those in U1, is the set of symbols in w, under a restriction related to the order <.

We design a simple automaton M(I) in time O∗(1), proving the next result.

Lemma 5. The language L(M(I)) is the set of words w = u1 · · · u(r−1)m, where
m ∈ N, such that I(w) �= ∅. Moreover, a word w accepted by M is accepted by
exactly |I(w)| paths, whose total weight is the total weight of the families in I(w).

The details concerning this automaton, and a similar construction and lemma
related to Weighted Module Motif are omitted.

6 Applications for Parameterized Algorithms

We next show that, by merely intersecting automata obtained using Theorem 2
with problem-specific automata, we obtain problem-specific parameterized algo-
rithms. Assume that the weights of the transitions of an automaton obtained
using Theorem 2 are all 0.

Let (G,w, k) be an instance of Weighted k-Path. Now, let Mk,V be an
acyclic automaton whose language is Lk(V ), obtained using Theorem 2. Defin-
ition 4 and Lemma 4 directly imply that the (acyclic) intersection automaton
Mk,V ∩M(G,w) contains a path of weight W that accepts a word w = v1 · · · vm iff
v1 → . . . → vm is a simple k-path in G of weight W . Thus, by computing a min-
imal weight accepting path in Mk,V ∩M(G,w) in time O(size(Mk,V ∩M(G,w)))
(using, e.g., DFS), we solve Weighted k-Path in time O∗(4k+o(k)).

Given an instance I = (U1, . . . , Ur,S, w, k) of Weighted r-Dimensional

k-Matching, we simply consider the intersection automaton M(r−1)k,U2∪...∪Ur
∩

M(I), rather than Mk,V ∩M(G,w). Similarly, given an instance J = (G,C,Col,
w, k) of Module Motif, we simply consider the intersection automaton Mk,C ∩
M(J ), rather than Mk,V ∩ M(G,w).

We thus obtain the following result.

Theorem 6. The weighted variants of k-Path, r-Dimensional k-Matching

and Module Motif can be solved in times O∗(4k+o(k)), O∗(4(r−1)k+o((r−1)k))
and O∗(4k+o(k)), respectively.

Our approximate counting algorithms can be developed in a similar manner,
while our randomized algorithms also use a fast randomized procedure that
checks the emptiness of an NXA (the details are omitted).
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Abstract. We show a kernel of at most 14k vertices for the Planar

Feedback Vertex Set problem. This improves over the previous ker-
nel of size bounded by 97k. Our algorithm has a few new reduction rules.
However, our main contribution is an application of the region decom-
position technique in the analysis of the kernel size.

1 Introduction

A feedback vertex set in a graph G = (V,E) is a set of vertices S ⊆ V such that
G−S is a forest. In the Feedback Vertex Set problem, given a graph G and
integer k one has to decide whether G has a feedback vertex set of size k. This is
one of the fundamental NP-complete problems, in particular it is among the 21
problems considered by Karp [8]. It has applications e.g. in operating systems
(see [9]), VLSI design, synchronous systems and artificial intelligence (see [6]).

In this paper we study kernelization algorithms, i.e., polynomial-time algo-
rithms which, for an input instance (G, k) either conclude that G has no feedback
vertex set of size k or return an equivalent instance (G′, k′), called kernel. In this
paper, by the size of the kernel we mean the number of vertices of G′. Burrage
et al. [5] showed that Feedback Vertex Set has a kernel of size O(k11), which
was next improved to O(k3) by Bodlaender [3] and to 4k2 by Thomassé [10].

In this paper we study Planar Feedback Vertex Set problem, i.e.,
Feedback Vertex Set restricted to planar graphs. Then one can get a kernel
of size O(k) by general tools based on the bidimensionality theory [7]. However,
in this general algorithm the constants hidden in the O notation are very large.
Bodlaender and Penninkx [4] gave a simple (to implement) algorithm which out-
puts a kernel of size at most 112k. This was improved recently by Abu-Khzam
and Khuzam [1] to 97k. In this paper we improve this bound substantially, to
14k. More precisely, we show the following result.

Theorem 1.1. There is an algorithm that, given an instance (G, k) of Planar
Feedback Vertex Set, either reports that G has no feedback vertex set of
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2013/09/B/ST6/03136 (�LK).

c© Springer International Publishing Switzerland 2014
M. Cygan and P. Heggernes (Eds.): IPEC 2014, LNCS 8894, pp. 97–109, 2014.
DOI: 10.1007/978-3-319-13524-3 9



98 M. Bonamy and �L. Kowalik

size k or produces an equivalent instance with at most 14k − 24 vertices. The
algorithm runs in O(kn) time, where n is the number of vertices of G.

To obtain Theorem 1.1, we extend the algorithms in the previous works [1,4] by a
few new reduction rules. However, our main contribution is an application of the
region decomposition technique in the analysis of the kernel size. Region decom-
position was developed for the Dominating Set problem by Alber et al. [2].
Roughly, in this method the plane instance is decomposed into O(k) regions (i.e.
subsets of the plane) such that every region contains O(1) vertices of the graph.
We apply this approach in a slightly relaxed way: the regions are the faces of a
k-vertex plane graph and the number of vertices in each region is linear in the
length of the corresponding face. In [1,4] kernel size was bounded using different
methods, e.g., using bounds on the number of edges in general and bipartite
planar graphs. In our opinion region decomposition gives tighter bounds. In par-
ticular, we present a tight example, i.e., an example of a family of graphs which
can be returned by our algorithm and have 14k − O(1) vertices.

Organization of the paper. In Sect. 2 we present a kernelization algorithm
which is obtained from the algorithms in [1,4] by generalizing a few reduction
rules, and adding some completely new rules. In Sect. 3 we present an analysis of
the size of the kernel obtained by our algorithm. In the analysis we assume that
in the reduced graph, for every induced path with � internal vertices, the internal
vertices have at least three neighbors outside the path. Based on this, we get the
bound of (2� + 4)k − (4� + 6) for the number of vertices in the kernel. In Sect. 2
we present reduction rules which guarantee that in the kernel � ≤ 6, resulting
in the kernel size bound of 16k − 30. To get the claimed bound of 14k − 24
vertices we use a complex set of reduction rules, which allow us to conclude that
� ≤ 5. Due to space limitations these additional rules are deferred to the journal
version.

Notation. In this paper we deal with multigraphs, though for simplicity we
refer to them as graphs. (Even if the input graph is simple, our algorithm may
introduce multiple edges.) Recall that by the degree of a vertex x in a multi-
graph G, denoted by degG(x), we mean the number of edges incident to x in G.
By NG(x), or shortly N(x), we denote the set of neighbors of x. Note that in
a multigraph |NG(x)| ≤ degG(x), but the equality does not need to hold. The
neighborhood of a set of vertices S is defined as N(S) = (

⋃
v∈S N(v)) \ S. For a

face f in a plane graph, a facial walk of f is the shortest closed walk induced by
all edges incident with f . The length of f , denoted by d(f) is the length of its
facial walk.

2 Our Kernelization Algorithm

In this section we describe our algorithm which outputs a 16k-kernel for Planar
Feedback Vertex Set. The algorithm exhaustively applies reduction rules.
Each reduction rule is a subroutine which finds in polynomial time a certain
structure in the graph and replaces it by another structure, so that the resulting
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Fig. 1. Reduction rules 1–7. Dashed edges are optional. We draw in black the vertices
whose incident edges are all already drawn (as solid or dashed edges), in white the
vertices which might be incident to other edges. Regardless of their color, vertices in
the figures may not coincide.

instance is equivalent to the original one. More precisely, we say that a reduction
rule for parameterized graph problem P is correct when for every instance (G, k)
of P it returns an instance (G′, k′) such that:

(a) (G′, k′) is an instance of P ,
(b) (G, k) is a yes-instance of P iff (G′, k′) is a yes-instance of P , and
(c) k′ ≤ k.

Below we state the rules we use. The rules are applied in the given order,
i.e., in each rule we assume that the earlier rules do not apply. We begin with
some rules used in the previous works [1,4] (Fig. 1).

Rule 1. If there is a loop at a vertex v, remove v and decrease k by one.
Rule 2. Delete vertices of degree at most one.
Rule 3. If a vertex u is of degree two, with incident edges uv and uw, then
delete u and add the edge vw. (Note that if v = w then a loop is added.)
Rule 4. If a vertex u has exactly two neighbors v and w, edge uv is double, and
edge uw is single, then delete v and u and decrease k by one.
Rule 5. If there are at least three edges between a pair of vertices, remove all
but two of the edges.
Rule 6. Assume that there are five vertices a, b, c, v, w such that 1) both v and
w are neighbors of each of a, b, c and 2) each vertex x ∈ {a, b, c} is incident with
at most one edge xy such that y �∈ {v, w}. Then remove all the five vertices and
decrease k by two.

The correctness of the above reduction rules was proven in [1]. (In [1], Rule 6 is
formulated in a slightly less general way which forbids multiplicity of some edges,
but the correctness proof stays the same.) Now we introduce a few new rules.

Rule 7. If a vertex u has exactly three neighbors v, w and x, v is also adjacent
to w and x, and both edges uw and ux are single, then contract uv and add
an edge wx (increasing its multiplicity if it already exists). If edge uv was not
single, add a loop at v.
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Lemma 2.1. Rule 7 is correct.

Proof. Let G′ be the graph obtained from a graph G by a single application
of Rule 7. Let S be a feedback vertex set of size k in G′. We claim S is a
feedback vertex set in G too. Assume for a contradiction that there is a cycle C
in G−S. Then u ∈ V (C), for otherwise C ⊆ G′. If v ∈ S then {wu, ux} ⊆ C and
C − {wu, ux} + {wx} is a cycle in G′, a contradiction. If v �∈ S, then w, x ∈ S
and hence v is the only neighbor of u in G−S, so C is the 2-cycle uvu. But then
G′ − S contains a loop at v, a contradiction.

Let S be a feedback vertex set of size k in G. If |{u, v} ∩ S| = 2, then
S \ {u} ∪ {w} is a feedback vertex set of size k in G′. Assume |{u, v} ∩ S| = 1.
Then we can assume v ∈ S for otherwise we replace S by S \ {u}∪ {v}, which is
also a feedback vertex set in G. If there is a cycle C in G′ − S, then wx ∈ E(C),
for otherwise C ⊆ G − S. But then C − {wx} + {wu, ux} is a cycle in G, a
contradiction. Finally, if |{u, v}∩S| = 0 then both w and x are in S, so S is also
a feedback vertex set in G′. �

Rule 8. Let A ⊆ V (G) and let w1 and w2 be two vertices in G, w1, w2 �∈ A.
If (i) no cycle in G \ {w1, w2} intersects A, and (ii) there is a subgraph Q ⊆
G[A∪{w1, w2}] with |V (Q)| ≥ 2 such that for every vertex x ∈ V (Q)\{w1}, we
have degQ(x) ≤ |E(Q)| − |A| − 1, then remove w1 and decrease k by 1.

Lemma 2.2. Rule 8 is correct.

Proof. Let G′ be the graph obtained from a graph G by a single application of
Rule 8, i.e., G′ = G − w1. Let S be a feedback vertex set of size k − 1 in G′.
Then every cycle in G − S contains w1, so S ∪ {w1} is a feedback vertex set of
size k in G.

Let S be a feedback vertex set of size k in G. If w1 ∈ S, then clearly S \{w1}
is a solution of the instance (G′, k − 1). Hence assume w1 �∈ S. We claim that
|S∩V (Q)| ≥ 2. Assume the contrary, i.e., |S∩V (Q)| ≤ 1. Since Q−S is a forest,

|E(Q−S)| ≤ |V (Q−S)|−1 = |V (Q)|−|S∩V (Q)|−1 ≤ |A|+1−|S∩V (Q)|. (1)

On the other hand, by the degree bound, and because w1 �∈ S and |S∩V (Q)| ≤ 1,

|E(Q − S)| ≥ |E(Q)| − (|E(Q)| − |A| − 1)|S ∩ V (Q)|. (2)

By (1) and (2), |A|+1 ≥ |E(Q)|−(|E(Q)|−|A|−2)|S∩V (Q)|. Since |S∩V (Q)| ≤ 1
this implies |A| + 1 ≥ |E(Q)| − (|E(Q)| − |A| − 2) = |A| + 2, a contradiction. It
follows that |S ∩ V (Q)| ≥ 2. Then S′ = S \ {u, v1, v2, v} ∪ {w1, w2} is of size at
most k. Moreover, S′ is a feedback vertex set in G, since S is a feedback vertex
set and by (i). Again, this implies that S′ \ {w1} is a solution of the instance
(G′, k − 1), as required. �

Rule 8 is not used directly in our algorithm, because it seems impossible to
detect it in O(n) time. However, to get the claimed kernel size we need just a
few special cases of Rule 8, which are stated in Lemmas 2.3, 2.4 and 2.5 below
(Fig. 2).
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Fig. 2. Configurations in Lemmas 2.3, 2.4, and 2.5.

Lemma 2.3. Assume there is an induced path uv1v2v such that for some ver-
tices w1, w2 outside the path we have N(u) = {v1, w1, w2}, N({v1, v2})\{u, v} ⊆
{w1, w2}, and there is at most one edge incident to v and a vertex outside
{w1, w2, v2}. Then Rule 8 applies.

Proof. It is easy to see that condition (i) of Rule 8 is satisfied. We proceed to
condition (ii). By symmetry we can assume |N(w1) ∩ {v, v1, v2}| ≥ |N(w2) ∩
{v, v1, v2}|. Let A = {u, v1, v2, v}. We build E(Q) as follows. First, we put the
five edges uw1, uw2, uv1, v1v2, v2v in Q. Since Rule 3 does not apply, there
are no vertices of degree two in G and all of v, v1 and v2 are adjacent to w1

or w2 (or to both). For every y ∈ {v, v1, v2}, if yw1 ∈ E, then we add edge
yw1 to Q, and otherwise we add yw2 to Q. Thus |E(Q)| = 8. Moreover, since
|N(w1) ∩ {v, v1, v2}| ≥ |N(w2) ∩ {v, v1, v2}|, in this last step at least two edges
added to Q are incident with w1, and at most one to w2. Hence, for every
x ∈ V (Q) \ {w1} we have degQ(x) ≤ 3 = |E(Q)| − |A| − 1. �

Lemma 2.4. Assume there are six vertices v1, v2, u1, u2, w1, w2 such that
N(v1) = {w1, w2, v2}, N(u1) = {w1, w2, u2}, there is at most one edge incident
to v2 and a vertex outside {w1, w2, v1} and at most one edge incident to u2 and
a vertex outside {w1, w2, u1}. Moreover, assume that the edges v1v2 and u1u2

are simple. Then Rule 8 applies.

Proof. It is easy to see that condition (i) of Rule 8 is satisfied. It is easy to
see that condition (i) of Rule 8 is satisfied. We proceed to condition (ii). By
symmetry we can assume |N(w1) ∩ {v2, v3}| ≥ |N(w2) ∩ {v2, v3}|. Let A =
{u, v1, v2, v3}. We build E(Q) as follows. First, we put the six edges v1v2, v1w1,
v1w2, v2v3, uw1, and uw2 in Q. Since Rule 3 does not apply, there are no
vertices of degree two in G and both v2 and v3 are adjacent to w1 or w2

(or to both). For every y ∈ {v2, v3}, if yw1 ∈ E, then we add edge yw1

to Q, and otherwise we add yw2 to Q. Thus |E(Q)| = 8. Moreover, since
|N(w1)∩{v2, v3}| ≥ |N(w2)∩{v2, v3}|, in this last step at least one edge added to
Q is incident with w1, and at most one to w2. Hence, for every x ∈ V (Q) \ {w1}
we have degQ(x) ≤ 3 = |E(Q)| − |A| − 1. �

Lemma 2.5. Assume there are six vertices v1, v2, v3, u, w1, w2 such that
N(v1) = {w1, w2, v2}, {v1, v3} ⊆ N(v2) ⊆ {w1, w2, v1, v3}, there is at most
one edge incident to v3 and a vertex outside {w1, w2, v2} and at most one edge
incident to u and a vertex outside {w1, w2}. Moreover, the edges v1v2 and v2v3
are simple. Then Rule 8 applies.
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Proof. We proceed very similarly as in the proof of Lemma 2.4. �

Rule 9. Assume there is an induced path with endpoints u and v and with
six internal vertices v1, . . . , v6 such that for some vertices w1, w2 outside the
path N({v1, . . . , v6}) \ {u, v} = {w1, w2}. If |N(w1) ∩ {v1, . . . , v6}| ≥ |N(w2) ∩
{v1, . . . , v6}|, then remove w1 and decrease k by one.

The correctness of Rule 9 is shown in [1]. In [1] it was assumed that when Rule 9
described above is applied, G does not contain an induced path v1, . . . , v5 such
that for some vertex w, we have N(v2, v3, v4) \ {v1, v5} = {w}. In our algorithm
this is guaranteed by Rule 7 (slightly more general than their Rule 6).

To complete the analysis we need a final rejecting rule which is applied when
the resulting graph is too big. In Sect. 3 we prove that Rule 10 is correct.

Rule 10. If the graph has more than 16k−30 vertices, return a trivial no-instance
(conclude that there is no feedback vertex set of size k in G).

We are able to extend Rule 9 as follows.

Lemma 2.6. Assume there is an induced path with endpoints u and v and with
five internal vertices v1, . . . , v5 such that for some vertices w1, w2 outside the
path N({v1, . . . , v5}) \ {u, v} = {w1, w2}. Then there is an instance (G′, k′) with
|V (G′)| < |V (G)| such that (G, k) is a yes-instance iff (G′, k′) is a yes-instance
and k′ ≤ k.

The proof of Lemma 2.6 contains many cases and is thus deferred to a journal
version due to space limitations. We stress here that even without Lemma 2.6, in
this paper we give a self-contained kernelization algorithm which returns a kernel
of size at most 16k. If one aims at a 14k-kernel, beside adding the reduction rule
from Lemma 2.6, the bound in Rule 10 should be replaced by 14k − 26.

Running time. It is easy to verify that the whole algorithm works in O(kn)
time (details deferred to the journal version).

3 The Size Bound

In this section we prove the following theorem.

Theorem 3.1. Let G be a planar graph such that rules 1–7 do not apply and
G does not contain the configurations described in Lemmas 2.3, 2.4 and 2.5.
Assume also that for every induced path P with endpoints u and v and with �
internal vertices v1, . . . , v� the internal vertices have at least three neighbors
outside the path, i.e., |N({v1, . . . , v�}) \ {u, v}| ≥ 3. If there is a feedback vertex
set of size k in G, then |V (G)| ≤ (2� + 4)k − (4� + 6).

Let S be a feedback vertex set of size k in G (i.e., a “solution”), and let F be the
forest induced by V (G) \ S. Denote the set of vertices of F by VF = V (G) \ S.
We call the vertices in S solution vertices and the vertices in VF forest vertices.
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A partition of VF . Now we define some subsets of VF . Let I2, I3+ ⊆ VF denote
the vertices whose degree in F is two or at least three, respectively. The leaves
of F are further partitioned into two subsets. Let L2 and L3+ be the leaves of
F that have two or at least three solution neighbors, respectively. By rules 2
and 3 all the vertices in G have degree at least 3. Hence, if a leaf of F has fewer
than two solution neighbors, Rule 4 or 5 applies. It follows that every leaf of F
belongs to L2 ∪ L3+ . This proves claim (i) of Lemma 3.2 below.

Lemma 3.2. Graph G satisfies the following properties.

(i) The sets I2, I3+ , L2, L3+ form a partition of VF .
(ii) For every pair u, v of solution vertices there are at most two vertices x, y ∈

L2 such that N(x) ∩ S = N(y) ∩ S = {u, v}.
(iii) Every vertex of G is of degree at least three.
(iv) Every face of G is of length at least two.

Claim (ii) follows from the fact that Rule 6 does not apply to G. Claim (iii)
follows because rules 2 and 3 do not apply to G and Claim (iv) by Rule 1.

The inner forest. Let FI be the forest on the vertex set I3+ ∪ L3+ such that
uv ∈ E(FI) iff for some integer i ≥ 0, there is a path ux1 · · · xiv in forest F such
that u, v ∈ I3+ ∪ L3+ and for every j = 1, . . . , i, vertex xi belongs to I2.

Three sets of short chains. A path in F consisting of vertices from I2 ∪ L2

will be called a chain. A chain is maximal if it is not contained in a bigger chain.
In what follows we introduce three sets of (not necessarily maximal) chains,
denoted by CL2, C2− and C3+ . We will do it so that each vertex in I2 belongs
to at least one chain from these sets of chains.

For every vertex x ∈ L2, we consider the maximal chain (y1, . . . , yp) of degree
2 vertices in F such that y1 is adjacent to x and no yi has a solution neighbor
outside NG(x) ∩ S. Then the chain (x, y1, . . . , yp) is an element of CL2. Note
that L2 ⊆ V (CL2).

Chains of C2− and C3+ are defined using the following algorithm. We consider
maximal chains in F , one by one (note that all maximal chains are vertex-
disjoint). Let c = (x1, x2, . . . , xp) be a maximal chain. The vertices of c are
ordered so that if {x1, xp} ∩ L2 �= ∅, then xp ∈ L2. Using vertices of c we form
disjoint bounded length chains and put them in the sets C2− and C3+ as follows.
Assume that for some i < p the vertices of a prefix (x1, x2, . . . , xi) have been
already partitioned into such chains (in particular i = 0 if we begin to process c).
There are three cases to consider.

Consider a shortest chain ci = (xi+1, . . . , xj) such that the vertices of ci have
at least three solution neighbors, i.e., |S ∩ N({xi+1, . . . , xj})| ≥ 3. If the chain
ci exists, we put it in C3+ , and we proceed to the next vertices of c. Otherwise
we consider the chain c′

i = (xi+1, . . . , xp). Note that vertices of c′
i have at most

two solution neighbors.
If xp ∈ I2, then we add the chain c′

i to C2− and we finish processing c. Note
that then xp is adjacent to a vertex u ∈ L3+ ∪ I3+ (otherwise c is not maximal,
as we can extend it by a vertex in L2). Moreover, because of the order of the
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vertices in c, we know that x1 �∈ L2. It follows that x1 is also adjacent to a vertex
v ∈ L3+ ∪ I3+ . Hence, uv ∈ E(FI). We assign chain c′

i to edge uv.
If xp ∈ L2, then we do not form a new chain and we finish processing c. Note,

however, that the vertices {xi+1, . . . , xp} ∩ I2 belong to a chain in CL2.
Note also that some vertices of the first chain c0 can belong to two chains,

one in C3+ and one in CL2.
Let us summarize the main properties of the construction.

Lemma 3.3. The following properties hold:

(i) Every vertex from I2 belongs to a chain in CL2, C2− or C3+ .
(ii) Every chain in CL2 ∪ C2− has at most two solution neighbors.
(iii) Every chain in C3+ has at least three solution neighbors.
(iv) Every chain in C2− is assigned to a different edge of inner forest FI .
(v) Every chain in C2− ∪ CL2 has at most � − 1 vertices.
(vi) Every chain in C3+ has at most � vertices.

A solution graph HS . Let us introduce a new plane multigraph HS = (S,ES).
Since the vertices of HS are the solution vertices we call it a solution graph. From
now on, we fix a plane embedding of G. The vertices of HS are embedded in
the plane exactly in the same points as in G. The edge multiset ES is defined as
follows. For every triple (u, x, v) such that u, v ∈ S, x ∈ L2 and there is a path
uxv in G, we put an edge uv in ES . Moreover, the edge uv is embedded in the
plane exactly as one of the corresponding paths uxv (note that there can be up
to four such paths if some edges are double). Note that by Lemma 3.2(ii), every
edge of HS has multiplicity at most two.

The set of faces of HS is denoted by FS . By FS,2 we denote its subset with
the faces of length two, while FS,3+ are the remaining faces. Note that there are
no faces of length 1 in HS .

Lemma 3.4. We have |V (CL2)| ≤ 3(|ES | − |FS,2|).
Proof. By the definition, for every vertex x ∈ L2 there is a corresponding edge
uv ∈ ES , where NG(x) ∩ S = {u, v}. Also, for every chain c in CL2 there is a
corresponding vertex x ∈ L2, and thus a corresponding edge uv ∈ ES . We assign
x, c and the vertices of c to the pair {u, v}.

Consider an arbitrary pair u, v such that uv ∈ ES . Note that there are
exactly |ES | − |FS,2| such pairs. We claim that there are at most three elements
in V (CL2) assigned to the pair {u, v}. Indeed, by Lemma 3.2(ii), there are at
most two vertices in L2 assigned to {u, v}. If there are no such vertices, no chain
in CL2 is assigned to {u, v}, so the claim holds. If there is exactly one vertex
x ∈ L2 assigned, there is exactly one chain c ∈ CL2 assigned. By Lemma 2.3,
chain c has at most three vertices, so the claim holds. Finally, if there are exactly
two vertices x, y ∈ L2 assigned, there are exactly two chains cx and cy assigned.
By Lemmas 2.4 and 2.5 we have |V (cx)| + |V (cy)| ≤ 3. This concludes the
proof. �
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Maximality. In what follows we assume that graph G is maximal, meaning that
one can add neither an edge to E(G) nor a vertex to L2 obtaining a graph G′ such
that S is still a feedback vertex set of G′ and all the claims of Lemmas 3.2, 3.3
and 3.4 hold. Note that the number of L2-vertices which can be added to G
is bounded, since each such vertex corresponds to an edge in HS , and HS has
at most 6|S| edges as a plane multigraph with edge multiplicity at most two.
Similarly, once the set of L2-vertices is maximal, and hence the vertex set of G
is fixed, the number of edges which can be added to G is bounded by 6|V (G)|.
It follows that such a maximal supergraph of G exists. Clearly, it is sufficient to
prove Theorem 3.1 only in the case when G is maximal.

Lemma 3.5. The planar graph HS is connected.

Proof. Assume now for contradiction that there is a partition S = S1 ∪ S2 such
that there is no edge in HS between a vertex of S1 and a vertex of S2.

Every face of G is incident to at least one vertex of S, for otherwise the
boundary of the face does not contain a cycle, a contradiction. Assume that a
face f of G contains a solution vertex u1 in S1 and a solution vertex u2 in S2.
Then we can add a vertex x, two edges xu1 and two edges xu2. Note that
S is still a feedback vertex set in the new graph; in particular now x ∈ L2.
In the new graph there are no more vertices in L2 adjacent to both u1 and u2

because of our assumption that S1 and S2 are not connected by an edge in HS , so
Lemma 3.2(ii) holds. Moreover, |V (CL2)| was increased by one and |ES |−|FS,2|
was also increased by one, so Lemma 3.4 holds. The other claims of Lemmas 3.2
and 3.3 trivially hold, so F is not maximal, a contradiction.

Let F1 and F2 be the collections of faces of G containing a vertex in S1, or
in S2, respectively. We have shown above that F1 ∪ F2 is a partition of the set
of all the faces of G. Let V1 and V2 denote the sets of vertices incident to a face
in F1, or in F2, respectively. Note that V1 ∩ V2 �= ∅, since there must be two
neighboring faces, one in F1 and the other in F2. Let x ∈ V1 ∩ V2. Since faces
of G are of length at least two, x has in G at least two neighbors in V1 ∩ V2. It
follows that G[V1 ∩ V2] has minimum degree two, so G[V1 ∩ V2] contains a cycle.
However, (V1 ∩ V2) ∩ S = ∅, since F1 and F2 are disjoint. Hence V1 ∩ V2 ⊆ F , a
contradiction. �

Bounding the number of forest vertices in a face of HS . For a face f of HS

and a set of vertices A ⊆ V (G) we define Af as the subset of A of vertices which
are embedded in f or belong to the boundary of f . Note that all vertices of every
chain belong to the same face f of HS . When C is a set of chains, by Cf we denote
the subset of chains of C which lie in f , i.e., Cf = {c ∈ C : V (c) ⊆ V (G)f}.

Lemma 3.6. For every face f of HS, it holds that |Lf
3+ | + |If

3+ | + |Cf
3+ | ≤

d(f) − 2.

Proof. First we note that the forest F f is in fact a tree. Indeed, if F f has more
than one component, we can add an edge between two solution vertices on the
boundary of f preserving planarity, what contradicts the assumed maximality.
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Consider a plane subgraph A of G induced by V (G)f , i.e., we take the plane
embedding of G and we remove the vertices outside V (G)f . Then we can define
graph AS , analogously to HS . We treat f as a face of AS . Let u1u2 · · · ud(f)u1

be the facial walk of f .
Consider an arbitrary vertex x of If

3+ . Let T1, . . . , Tr be the r trees obtained
from the tree T in F containing x after removing r from T . Then r ≥ 3
since x has at least three neighbors in T . By planarity, there are 2r indices
b1, e1, b2, e2, . . . , br, er such that for every i = 1, . . . , r

{ubi , uei
} ⊆ N(V (Tt)) ∩ {u1, . . . , ud(f)} ⊆ {ubi , ubi+1, . . . , uei

}.

Then, for every j ∈ {b1, b2, . . . , br} there is an edge xuj , for otherwise we can
add it in the current plane embedding, contradicting the maximality of G. This
means that every vertex in If

3+ has at least three neighbors in {u1, u2, . . . , ud(f)}.
We further define B as the plane graph obtained from A by (1) replacing

every triple (u, x, v) where x ∈ L2, u, v ∈ S and uxv forms a path by a single
edge uv, (2) removing vertices of V (CL2), (3) contracting every chain from C3+

into a single vertex, and (4) contracting every chain from C2− into a single edge.
By (4) we mean that every maximal chain d = x1, . . . , xi of I2 vertices which is
contained in a chain from C2− , is replaced by the edge yz where y and z are the
forest neighbors (in L3+ ∪ I3+) of x1 and xi outside the chain d. Let us call the
vertices of B that are not on the boundary of f as inner vertices.

Note that the set of inner vertices is in a bijection with Lf
3+ ∪ If

3+ ∪ Cf
3+ .

Moreover, I forms a tree, since F f is a tree. Also, each inner vertex has at
least three neighbors in {u1, u2, . . . , ud(f)}. We show that |I| ≤ d(f) − 2 by the
induction on d(f). When d(f) = 2 the claim follows since each inner vertex has
at least three neighbors on the boundary of f . Now assume d(f) > 2. Let x be
leaf in the tree I. Then the edges from x to the boundary of face f split F into
at least three different faces. The subtree I −x lies in one of these faces, say face
bounded by the cycle xuiui+1 · · · ujx. We remove x and vertices uj+1, . . . , ui−1

(there is at least one of them) and we add edge uiuj . The outer face of the
resulting graph is of length at most d(f) − 1, so we can apply induction and the
claim follows. �

Lemma 3.7. For every face f in HS of length at least three,

|V f
F \ V (CLf

2 )| ≤ � · (d(f) − 2) − (� − 1).

Proof. We have

|V f
F \ V (CLf

2 )| ≤ |Lf
3+ | + |If

3+ | + |V (Cf
3+)| + |V (Cf

2−)|.
By Lemma 3.3(v) we get

|V f
F \ V (CLf

2 )| ≤ |Lf
3+ | + |If

3+ | + �|Cf
3+ | + (� − 1)|Cf

2− |. (3)

By Lemma 3.3(iv), |Cf
2− | is bounded by the number of edges of the inner for-

est FI . Hence, |Cf
2− | ≤ |Lf

3+ | + |If
3+ | − 1 when |Lf

3+ | + |If
3+ | > 0 and |Cf

2− | = 0
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otherwise. In the prior case, by (3) we get that

|V f
F \ V (CLf

2 )| ≤ �(|Lf
3+ | + |If

3+ | + |Cf
3+ |) − (� − 1),

and the result then follows from Lemma 3.6. Hence it suffices to prove the claim
when |Lf

3+ | = |If
3+ | = |Cf

2− | = 0. Then the forest F f is a non-empty collection
of paths, each with both endpoints in L2. Let c be such a path on p vertices
x1, . . . , xp. Then x1 ∈ L2 and x1 has exactly two neighbors u, v in S. Let i be
the largest such that N({x1, . . . , xi})∩S = {u, v}. By definition, (x1, . . . , xi) is a
chain in CLf

2 . We infer that if i = p for every such path, then |V f
F \ V (CLf

2 )| = 0
and the claim follows. Hence we can assume that i < p, i.e., xi+1 has a neigh-
bor in S \ {u, v}. Then, by definition, (x1, . . . , xi+1) is a chain in Cf

3+ . Since
(x1, . . . , xi) ∈ CLf

2 , we get |{x1, . . . , xi+1} \ V (CLf
2 )| = 1. Hence,

|V f
F \ V (CLf

2 )| ≤ 1 + �(|Cf
3+ | − 1),

what, by Lemma 3.6, is bounded by 1 + � · (d(f) − 3) = � · (d(f) − 2) − (� − 1),
as required. �

Lemma 3.8. For every face f in HS of length two, V f
F ⊆ V (CLf

2 ).

Proof. Since the boundary of f has only two solution vertices, F f contains no
vertices of Lf

3+ , V (C3+)f or If
3+ . Then by Lemma 3.3(iv), Cf

2− is also empty.
The claim follows. �

Now we proceed to the bound of Theorem 3.1. By Lemmas 3.7 and 3.8 we have

|VF | ≤ |V (CL2)| +
∑

f∈FS,3+

(�(d(f) − 2) − (� − 1))

By Lemma 3.4 we get

|VF | ≤ 3(|ES | − |FS,2|) +
∑

f∈FS,3+

(�(d(f) − 2) − (� − 1))

= 3(|ES | − |FS,2|) +
∑

f∈FS

(�(d(f) − 2) − (� − 1)) + (� − 1)|F2,S |

= (2� + 3)|ES | − (3� − 1)|FS | + (� − 4)|F2,S |
= (2� + 3)|ES | − (2� + 3)|FS | − (� − 4)|FS | + (� − 4)|F2,S |
≤ (2� + 3)(|ES | − |FS |).

By Lemma 3.5 graph HS is connected, so we can apply Euler’s formula |S| −
|ES | + |FS | = 2. Thus,

|V (G)| = |VF | + |S| ≤ (2� + 3)(|S| − 2) + |S|,
= (2� + 4)k − (4� + 6).
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Fig. 3. A tight example. The big black vertices are solution vertices, the small grey
ones are forest vertices. The zigzag edges represent paths of � − 1 forest vertices, each
adjacent to the two available solution vertices. Asymptotically for larger cycles, we
have 2� + 3 forest vertices for each solution vertex.

This concludes the proof of Theorem 3.1. For � = 6, we get |V (G)| ≤ 16k−30.
If we use Lemma 2.6, we can put � = 5, which results in |V (G)| ≤ 14k − 24. In
Fig. 3 we show an example of a graph, where our reduction rules do not apply
and our analysis is tight (up to a constant additive term).

Note. We have learned that very recently Xiao [11] obtained independently a
29k-kernel for Planar Feedback Vertex Set.
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Abstract. In the first part of this work we study the following question:
Given two k-colorings α and β of a graph G on n vertices and an integer
�, can α be modified into β by recoloring vertices one at a time, while
maintaining a k-coloring throughout and using at most � such recoloring
steps? This problem is weakly PSPACE-hard for every constant k ≥ 4.
We show that the problem is also strongly NP-hard for every constant
k ≥ 4 and W[1]-hard (but in XP) when parameterized only by �. On the
positive side, we show that the problem is fixed-parameter tractable when
parameterized by k + �. In fact, we show that the more general problem
of �-length bounded reconfiguration of constraint satisfaction problems
(CSPs) is fixed-parameter tractable parameterized by k + � + r, where
r is the maximum constraint arity and k is the maximum domain size.
We show that for parameter �, the latter problem is W[2]-hard, even for
k = 2. Finally, if p denotes the number of variables with different values
in the two given assignments, we show that the problem is W[2]-hard
when parameterized by � − p, even for k = 2 and r = 3.

1 Introduction

For any graph G and integer k, the k-Color Graph Ck(G) has as vertex set all
(proper) k-colorings of G, where two colorings are adjacent if and only if they
differ on exactly one vertex. Given an integer k and two k-colorings α and β of
G, the Coloring Reachability problem asks if there exists a path in Ck(G) from α
to β. This is a well-studied problem, which is known to be solvable in polynomial
time for k ≤ 3 [7], and PSPACE-complete for every constant k ≥ 4, even for
bipartite graphs [3]. For any k ≥ 4, examples have been explicitly constructed
where any path from α to β has exponential length [3]. On the other hand, for
k ≤ 3, the diameter of components of Ck(G) is known to be polynomial [7].
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Similar questions can be formulated for almost any search problem: After
defining a symmetric adjacency relation between solutions, the reconfiguration
graph for a problem instance has as vertex set all solutions, with undirected
edges defined by the adjacency relation. Such reconfiguration questions have
received considerable attention in recent literature; see e.g. the survey by Van
den Heuvel [13]. The most well-studied questions are related to the complexity
of the reachability problem: Given two solutions α and β, does there exist a path
from α to β in the reconfiguration graph? In most cases, the reachability problem
is PSPACE-hard in general, although polynomial-time solvable restricted cases
can be identified. For PSPACE-hard cases, it is not surprising that shortest
paths between solutions can have exponential length. More surprisingly, for most
known polynomial-time solvable cases, shortest paths between solutions have
been shown to have polynomial length. Results of this kind have for instance been
obtained e.g. for the reachability of independent sets [4,17], vertex covers [19],
shortest paths [1,2,16], or Boolean satisfiability (SAT) assignments [12].

There are various motivations for studying reconfiguration problems [13], and
for studying Coloring Reachability in particular (see [6,13,14]). For example,
reconfiguration problems model dynamic situations in which we seek to trans-
form a solution into a more desirable one, maintaining feasibility during the
process (see [14] for such an application of Coloring Reachability). However, in
many applications of reconfiguration problems, the existence of a path between
two solutions is irrelevant if every such path has exponential length. So the more
important question is in fact: Does there exist a path between two solutions
of length at most �, for some integer �? Results on such length-bounded reach-
ability questions have been obtained in [2,12,16,19,20]. In some cases where
the existence of paths between solutions can be decided efficiently, one can in
fact find shortest paths efficiently [2,12]. On the other hand, NP-hard cases
have also been identified [16,19]. If we wish to obtain a more detailed picture
of the complexity of length-bounded reachability, the framework of parameter-
ized complexity [9,10] is very useful, where we choose � as parameter. We refer
to [9,10] for an introduction to parameterized complexity and fixed parameter
tractable (FPT) algorithms. A systematic study of the parameterized complex-
ity of reachability problems was initiated by Mouawad et al. [20]. However,
in [20], only negative results were obtained for length-bounded reachability: var-
ious problems were identified where the problem was not only NP-hard, but
also W[1]-hard, when parameterized by � (or even when parameterized by k + �,
where k is another problem parameter). In this paper, we give a first example
of a length-bounded reachability problem that is NP-hard, but admits an FPT
algorithm. Another example, namely Length-Bounded Vertex Cover Reachabil-
ity on graphs of bounded degree, was very recently obtained by Mouawad et al.
in [19].

Our Results. We first study the Length-Bounded Coloring Reachability
(LBCR) problem: Given is a graph G on n vertices, nonnegative integers k and
�, and two k-colorings α and β of G. The question is whether Ck(G) contains a
path from α to β of length at most �. We fully explore how the complexity of
the above problem depends on the problem parameters k and � (when viewed
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as input variables or constants/parameters). Using a reduction from Coloring
Reachability [3], LBCR is easily observed to be PSPACE-hard in general, for
any constant k ≥ 4: Since there are at most kn different k-colorings of a graph
on n vertices, a path from α to β exists if and only if there exists one of length
at most kn. Nevertheless, this only establishes weak PSPACE-hardness, since
the chosen value of � = kn is exponential in the instance size. In other words, if
we require that all integers are encoded in unary, then this is not a polynomial
reduction. And indeed, the complexity status of the problem changes under that
requirement; in that case, LBCR is easily observed to be in NP. In Sect. 3, we
show that LBCR is in fact NP-complete when � is encoded in unary, or in other
words, it is strongly NP-hard. On the positive side, in Sect. 4, we show that the
problem can be solved in time O(2k(�+1) · �� · poly(n)). This establishes that
LBCR is fixed parameter tractable (FPT) when parameterized by k + �. (We
remark that this result was also obtained independently by Johnson et al. [15].
The algorithm in [15] is very different however.) One may ask whether the prob-
lem is still FPT when only parameterized by �. In Sect. 3 we show that this
is not the case (unless W[1]=FPT), by showing that LBCR is W[1]-hard when
only parameterized by �. We observe however that a straightforward branching
algorithm can solve the problem in time nO(�), hence in polynomial time for any
constant �. In other words, LBCR is in XP, parameterized by �.

Our algorithmic results hold in fact for a much larger class of problems: In a
constraint satisfaction problem (CSP), we are given a set X of n variables, which
all can take on at most k different values. In addition, a set C of constraints is
given, all of arity at most r. Every constraint consists of a subset T ⊆ X of vari-
ables with |T | ≤ r, and a set of allowed value combinations for these variables. A
k-coloring can be seen as a CSP solution, where the edges correspond to binary
constraints, stating that the two incident vertices/variables cannot have the same
color/value. The Length-Bounded CSP Reachability (LBCSPR) problem asks,
given two satisfying variable assignments α and β for a CSP instance (X, k, C),
whether there exists a path from α to β of length at most �. (Two solutions
are adjacent if they differ in one variable. See Sect. 4 for precise definitions.) In
Sect. 4, we give our main result: an FPT algorithm for LBCSPR, parameterized
by �+k+r. This result has many implications, besides the aforementioned result
for LBCR: For instance, it follows that Length-Bounded Boolean SAT Reachabil-
ity is FPT, parameterized by � + r. In addition, it implies that Length-Bounded
Shortest Path Reachability is FPT, parameterized by �+ k, where k is an upper
bound on the number of vertices in one distance layer (See [12] resp. [1,2,16]
for more details on these problems). This result prompts two further questions:
Firstly, is it possible to also obtain an FPT algorithm for LBCSPR for para-
meter � + k? Secondly, clearly any reconfiguration sequence from α to β has
length at least p, where p = |{x ∈ X | α(x) �= β(x)}. Is it also possible to
obtain an FPT algorithm for LBCSPR for parameter (�−p)+k + r? (This is an
above-guarantee parameterization). In Sect. 5, we give two W[2]-hardness results
that show that the answer to these questions is negative (unless FPT= W[2]).
These W[2]-hardness results hold in fact for the restricted case of Boolean SAT
instances with only Horn clauses. Together, these hardness results show that
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Table 1. Complexity of LBCSPR for different parameterizations

Parameter: Complexity:

k + � + r FPT

k + r para-NP-complete (� unary) / para-PSPACE-complete (� binary)

(already for k = 4, r = 2; Coloring instances)

k + � W[2]-hard (already for k = 2; Horn SAT instances), in XP

r + � W[1]-hard (already for r = 2; Coloring instances), in XP

k + r + � − p W[2]-hard (already for k = 2, r = 3; Horn 3SAT instances)

our FPT result for LBCSPR is tight (assuming FPT �= W [1]): to obtain an
FPT algorithm, all three variables �, k, and r need to be part of the parameter.
See also Table 1, which summarizes our results, and the complexity status of
LBCSPR for all different parameterizations in terms of �, k, r and p. (Omitted
parameter combinations follow directly from the given rows.)

2 Preliminaries

For general graph theoretic definitions, we refer the reader to the book of
Diestel [8]. Let u and v be vertices in a graph G. A pseudowalk from u to
v of length � is a sequence w0, . . . , w� of vertices in G with w0 = u, w� = v,
such that for every i ∈ {0, . . . , � − 1}, either wi = wi+1 or wiwi+1 ∈ E(G).
A k-coloring for a graph G is a function α : V (G) → {1, . . . , k} that assigns
colors to the vertices of G, such that for all uv ∈ E(G), α(u) �= α(v). A graph
that admits a k-coloring is called k-colorable. Pseudowalks in Ck(G) from α to
β are also called k-recoloring sequences from α to β. If there exists an integer k
such that α0, . . . , αm is a k-recoloring sequence, then this is called a recoloring
sequence from α0 to αm.

A k-color list assignment for a graph G is a mapping L that assigns a color list
L(v) ⊆ {1, . . . , k} to each vertex v ∈ V (G). A k-coloring α of G is an L-coloring if
α(v) ∈ L(v) for all v. By C(G,L) we denote the subgraph of Ck(G) induced by all
L-colorings of G, and pseudowalks in C(G,L) are called L-recoloring sequences.
The Length-Bounded L-Coloring Reachability (LB L-CR) problem asks, given
G, L, α, β, and �, where α and β are L-colorings of G, whether there exists an
L-recoloring sequence from α to β of length at most �.

For a positive integer k ≥ 1, we let [k] = {1, . . . , k}. For a function f : D → I
and subset D′ ⊆ D, we denote by f |D′ the restriction of f to the domain D′.
The (unique) trivial function with empty domain is denoted by f∅. Note that
for any function g, g|∅ = f∅. We use poly(x1, . . . , xp) to denote a polynomial
function on variables x1, . . . , xp.

3 Hardness Results for Coloring Reachability

To prove W[1]-hardness for LBCR parameterized by �, we give a reduction from
the t-Independent Set (t-IS) problem. Given a graph G and a positive integer t,
t-IS asks whether G has an independent set of size at least t.
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The t-IS problem is known to be W[1]-hard [9,10] when parameterized by t.
We will also use the following result, which was shown independently by Cere-
ceda [5], Marcotte and Hansen [18] and Jacob [14]: For every pair of k-colorings
α and β of a graph G, there exists a path from α to β in C2k−1(G), and there
are examples where at least 2k − 1 colors are necessary. The graphs constructed
in [5,14,18] to prove the latter result are in fact very similar. We will use these
graphs for our reduction. For any integer k ≥ 1, the graph Bk has vertex set
V (Bk) = {bi

j | i, j ∈ {1, . . . , k}}, and two vertices bi
j and bi′

j′ are adjacent if and
only if i �= i′ and j �= j′. Define two k-colorings αk and βk for Bk by setting
αk(bi

j) = i and βk(bi
j) = j for all vertices bi

j .

Theorem 1 ([5],*)1. Let Bk, αk and βk be as defined above (for k ≥ 1). Then
(i) every recoloring sequence from αk to βk contains a coloring that uses at least
2k − 1 different colors, and (ii) there is a (2k − 1)-recoloring sequence of length
at most 2k2 from αk to βk.

Theorem 2 (*). LBCR is W[1]-hard when parameterized by �.

Proof sketch: For ease of presentation, we give a reduction from the (t − 1)-
IS problem, which remains W[1]-hard. Given an instance (G, t − 1) of (t − 1)-
IS, where G = (V,E) and V = {v1, . . . , vn}, we construct a graph G′ in time
polynomial in |V (G)| as follows. (We will use n + t + 1 colors.)

G′ contains a copy of G and a copy of Bt with all edges between them.
In addition, G′ contains n + t + 1 independent sets C1, . . ., Cn+t+1, each of
size 2t + 2t2 and disjoint from the copies of G and Bt. We say that Ci (for
1 ≤ i ≤ n+ t+1) is a color-guard set, as it will be used to enforce some coloring
constraints; in the colorings we define, and all colorings reachable from them
using at most |Ci| − 1 recolorings, Ci will contain at least one vertex of color i.
We let VG = {g1, . . . , gn}, VB = {bi

j | i, j ∈ {1, . . . , t}}, VC = C1 ∪ . . . ∪ Cn+t+1,
and hence V (G′) = VG ∪VB ∪VC . The total number of vertices in G′ is therefore
n+ t2 +(n+ t+1)(2t+2t2). For every vertex gi ∈ VG, we add all edges between
gi and the vertices in VC \ (Ci ∪ Cn+t+1). Similarly, for every vertex b ∈ VB, we
add all edges between b and the vertices in Cn+t+1. We define α as follows. For
every vertex gi ∈ VG, 1 ≤ i ≤ n, we set α(gi) = i. For every i ∈ {1, . . . , n+ t+1}
and every vertex c ∈ Ci, we set α(c) = i. For every vertex bi

j ∈ VB , we choose
α(bi

j) = n+i. Considering α and the color guard sets, which all have size 2t+2t2,
we conclude that for all recoloring sequences γ0, . . . , γp with p ≤ 2t + 2t2 and
γ0 = α, for every i and j it holds that γj(gi) ∈ {i, n + t + 1}, and for all b ∈ VB

and j it holds that γj(b) �= n+ t+1. Finally, we define the target coloring β. For
every vertex v ∈ VG ∪ VC we set β(v) = α(v). For every vertex bi

j ∈ VB (with
i, j ∈ {1, . . . , t}), we choose β(bi

j) = n + j. So the goal is to change from a ‘row
coloring’ to a ‘column coloring’ for VB , while maintaining the same coloring for
vertices in VG ∪ VC .
1 A star indicates that (additional) proof details will be given in the full version of the

paper.
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It can be shown that Ck(G′) contains a path from α to β of length at most
� = 2t + t2 if and only if G has an independent set S at size at least t − 1: If
there exists such a set S, then these vertices can be recolored to color n + t + 1,
which makes t−1 colors available to recolor VB from a row coloring to a column
coloring. That is, the (2t − 1)-recoloring sequence of length at most 2t2 from
Theorem 1 can be applied. Next, the vertices in G are recolored to their original
color again. This procedure yields β and uses at most 2t + 2t2 recoloring steps
in total. If there exists a recoloring sequence from α to β, then this contains a
coloring γ that assigns at least 2t − 1 different colors to VB (Theorem 1). This
includes at least t − 1 colors that originally appeared in VG, on a vertex set S.
As observed above, these vertices are then all colored with color n + t + 1 in γ,
so they form an independent set with |S| ≥ t − 1. �

Next, we show that the LBCR problem is strongly NP-hard for every fixed
constant k ≥ 4. We give a reduction from the Planar Graph 3-Colorability (P3C)
problem, which is known to be NP-complete [11]. Given a planar graph G, P3C
asks whether G is 3-colorable. In fact we construct an instance of the LB L-CR
problem. It was observed in [3] that an instance (G,L, α, β, �) of the LB L-CR
problem with L(v) ⊆ {1, . . . , 4} for all v is easily transformed to an instance
(G′, α, β, �) of LBCR, for any k ≥ 4, by adding one complete graph on k vertices
xi with i ∈ {1, . . . , k} and α(xi) = β(xi) = i, and edges vxi for every vertex
v ∈ V (G) and i �∈ L(v).

The proof of Lemma 3 makes heavy use of the notion of (a, b)-forbidding
paths and their properties, which were introduced in [3]. Informally, these are
paths that can be added between any pair of vertices u and v (provided that
L(u), L(v) �= {1, . . . , 4}), that function as a special type of edge, which only
excludes the color combination (a, b) for u and v respectively, but allows (recolor-
ing to) any other color combination. For any combination of a, b and L(u), L(v) �=
{1, . . . , 4}, there exists such a path, of length six, with all color lists in {1, . . . , 4}.

Lemma 3 (*). There exists a graph H (on O(1) vertices) with color lists L and
vertices u, v, z ∈ V (H) with L(u) = L(v) = {1, 2, 3} and L(z) = {1, 2, 4}, and
L-coloring α of H with α(u) = α(v) = 1 and α(z) = 4, such that the following
properties hold:

– For every L-coloring γ of H, it holds that γ(z) = 4 or γ(u) �= γ(v).
– For any combination of colors a ∈ L(u), b ∈ L(v) with a �= b, there exists an

L-recoloring sequence from α to an L-coloring γ with γ(u) = a, γ(v) = b and
γ(z) �= 4, of length at most |V (H)|.

Theorem 4. For any constant k ≥ 4, the problem LBCR, with � encoded in
unary, is NP-complete.

Proof: Given an instance G of P3C, we construct an instance (G′, L, �, α, β) of LB
L-CR as follows. Start with the vertex set V (G). All of these vertices u ∈ V (G)
receive color α(u) = 1 and L(u) = {1, 2, 3}. For every edge uv ∈ E(G), add a
copy of the graph H from Lemma 3, where the u-vertex and v-vertex from H
are identified with u and v, respectively. Note that there is no edge between u
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and v in G′. For each uv ∈ E(G), the z-vertex of the corresponding copy of H
is denoted by zuv, and we let Z = {zuv | uv ∈ E(G)}. For these H-subgraphs,
the L-coloring α is as given in Lemma 3. Next, we add a triangle on vertices
a, b, c to G′, with the following colors and lists: α(a) = 1, α(b) = 2, α(c) = 3,
L(a) = {1, 2, 3}, L(b) = {1, 2}, and L(c) = {3, 4}. Add edges from all vertices in
Z to c. This yields the graph G′. Finally, we define the target coloring β. For all
vertices v ∈ V (G′) \ {a, b}, set β(v) = α(v). We set β(a) = 2 and β(b) = 1, so
the goal is to reverse the colors of these two vertices.

We now argue that G is 3-colorable if and only if there exists an L-recoloring
sequence for G′ from α to β of length O(m), where m = |E(G)|. Suppose that
there exists such an L-recoloring sequence. Considering the vertices a, b, and
c, we see that this must contain a coloring γ with γ(c) = 4. This implies that
for every zuv ∈ Z, γ(zuv) ∈ {1, 2}. By Lemma 3, this implies that for every
uv ∈ E(G), γ(u) �= γ(v). Hence γ restricted to V (G) is a 3-coloring of G. On
the other hand, if G is 3-colorable, then we can recolor the vertices of G to such
a 3-coloring, which allows recoloring all vertices zuv to a color different from
4, using O(1) recoloring steps for each H-subgraph, and thus O(m) recoloring
steps in total. This makes it possible to recolor the vertices a, b, and c to their
target color in O(1) steps, and subsequently the other recoloring steps can be
reversed, which gives O(m) steps in total.

Combining this reduction with the fact that we can easily transform the LB
L-CR instance to an LBCR instance, and the NP-hardness of P3C, shows that
LBCR is strongly NP-hard. (This uses the fact that � is polynomial in m.) �

4 An FPT Algorithm for CSP Reachability

We will consider sets of variables B, which all can take on the values D = [k].
The set D is called the domain of the variables. A function f : B → D is called
a value assignment from B to D.2 A set U of value assignments from B to D is
called a VA-set from B to D. Below, we will consider a fixed set X of variables,
and consider VA-sets U for many different subsets B ⊆ X, but always for the
same domain D, so we will omit D from the terminology and simply call U a
VA-set for B, and elements of U value assignments for B.

An instance (X, k, C) of the Constraint Satisfaction Problem (CSP) consists
of a set X of variables, which all have domain D = [k], and a set C of constraints.
Every constraint C ∈ C is a tuple (T,R), where T ⊆ X, and R is a VA-set for
T . The VA-set R is interpreted as the set of all value combinations that are
allowed for the variables in T . A value assignment f : X → D is said to satisfy
constraint C = (T,R) if and only if f |T ∈ R. If f satisfies all constraints in C, f
is called valid (for C). CSP is a decision problem where the question is whether
there exists a valid value assignment.

2 Considering the function f , it is perhaps a little confusing to call D the domain, but
this conforms with the terminology used in the context of CSPs.
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We remark that for many problems that can be formulated as CSPs, the
constraints (T,R) ∈ C are not explicitly given, since R would usually be pro-
hibitively (exponentially) large. Instead, a simple and efficient algorithm is given
that can verify whether the constraint is satisfied. The factor g(C) in our com-
plexity bounds accounts for this.

In order to study reconfiguration questions for CSPs, we define two distinct
value assignments α : X → D and β : X → D to be adjacent if they differ on
exactly one variable v ∈ X (so, expressed differently: if there exists a v ∈ X
such that α|X\{v} = β|X\{v}). For a CSP instance (X, k, C), the solution graph
CSPk(X, C) has as vertex set all value assignments from X to [k] that are valid
for C, with adjacency as defined above. Pseudowalks in CSPk(X, C) are called
CSP sequences for (X, k, C). We consider the following problem.

Length-Bounded CSP Reachability (LBCSPR):
Instance: A CSP instance (X, k, C), two valid value assignments α and β for
X and [k], and an integer �.
Question: Does CSPk(X, C) contain a path from α to β of length at most �?

For every constant �, the LBCSPR problem can be solved in polynomial
time, using the following simple branching algorithm. Denote the given instance
by (X, k, C, α, β, �), with |X| = n. Start with the initial value assignment α. For
every value assignment generated by the algorithm, consider all adjacent value
assignments in CSPk(X, C). Recurse on these choices, up to a recursion depth
of at most �. Return yes if and only if in one of the recursion branches, the
target value assignment β is obtained. Clearly, this algorithm yields the correct
answer. One value assignment has at most kn neighbors, so branching with depth
� shows that at most O((kn)�) value assignments will be considered. This proves
the claim, or in other words: for parameter �, the problem is in XP.

We let S = {x ∈ X | α(x) �= β(x)}. Clearly, when |S| > � we have a no-
instance and when |S| = 0 we have a trivial yes-instance. To obtain an FPT
algorithm, the main challenge that we need to overcome is that the number of
variables that potentially need to be reassigned cannot easily be bounded by a
function of �. However, once we know the set B of variables which will change
at least once, the problem can be solved using a branching algorithm similar
to the one above. Let S = γ0, . . . , γ� be a CSP sequence for a CSP instance
(X, k, C). For a set B ⊆ X, the set of B-variable combinations used by S is
Used(S, B) = {γi|B : i ∈ {0, . . . , �}}. Let U be a VA-set for B. We say that
S follows U if Used(S, B) ⊆ U . A branching algorithm can be given for the
following variant of LBCSPR, which is restricted by choices of B and U .

Lemma 5 (*). Let (X, k, C, α, β, �) be an LBCSPR instance, and let g(C) be the
complexity of deciding whether a given value assignment for X satisfies C. Let
B ⊆ X, and U be a VA-set for B. Let L(x) = {f(x) | f ∈ U} for all x ∈ B, and
p =

∑
x∈B(|L(x)| − 1). Then there exists an algorithm ListCSPreconfig with

complexity O(p� · g(C) · poly(|U |, |X|)), that decides whether there exists a CSP
sequence S for (X, k, C) from α to β of length at most � in which only variables
in B are changed, with Used(S, B) ⊆ U .
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Algorithm 1. CSPReconfig(X, k, C, α, β, �)
Input: A variable set X = {x1, . . . , xn} with domains [k], a set C of constraints
on X, valid value assignments α : X → [k] and β : X → [k], and integer � ≥ 0.
Output: “YES” if and only if there exists a CSP sequence of length at most �
from α to β.

1: S := {x ∈ X | α(x) �= β(x)}
2: if |S| > � then return NO
3: if |S| = 0 then return YES

4: return Recurse(∅, {f∅}, {f∅})

Subroutine Recurse(B, U, L):

5: if
∑

v∈B(|L(v)| − 1) > � then return NO
6: if S ⊆ B and there are no critical constraints for U , B and α then
7: return ListCSPreconfig(X, k, C, α, β, �, B, U).
8: if not S ⊆ B then
9: Let i be the lowest index such that xi ∈ S \ B
10: NewVar := {xi}
11: else
12: choose a critical constraint (T, R) ∈ C for U , B and α.
13: NewVar := T \ B
14: for all x ∈ NewVar:
15: B′ := B ∪ {x}
16: for all VA-sets U ′ for B′ that extend U , with |U ′| ≤ � and {α|B′ , β|B′} ⊆ U ′:
17: L(x) := {f(x) | f ∈ U ′}
18: if |L(x)| ≥ 2 then
19: if Recurse(B′, U ′, L)=YES then return YES
20: return NO

It remains to give a branching algorithm that, if there exists a CSP sequence
S of length at most �, can determine a proper guess for the sets B of variables
that are changed in S, and U = Used(S, B). Clearly, S ⊆ B should hold, so we
start with B = S, and we first consider all possible VA-sets U for this B. We will
say that a constraint C = (T,R) is critical for B, U and α if there exists an f ∈ U
such that the (unique) value assignment g : X → D that satisfies g|B = f and
g|X\B = α|X\B does not satisfy C. Note that in this case, if we assume that the
combination of values f occurs at some point during the reconfiguration, then
for at least one variable in T \B, the value must change before this point, so one
such variable should be added to B, which yields a new set B′. Let B ⊆ B′ ⊆ X,
and let U and U ′ be VA-sets for B and B′, respectively. We say that U ′ extends
U if U = {f |B : f ∈ U ′}. In other words, if U and U ′ are interpreted as
guesses of value combinations that will occur during the reconfiguration, then
these guesses are consistent with each other.

For given B ⊆ X and VA-set U for B, we let L(x) = {f(x) | f ∈ U}
for all x ∈ B. If

∑
x∈B(|L(x)| − 1) > � then the set U cannot correspond to

the set Used(S, B) for a CSP sequence S of length at most �, so this guess
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can be safely ignored. On the other hand, if a guess of B and U is reached
where

∑
x∈B(|L(x)| − 1) ≤ � and there are no critical constraints, then the

aforementioned ListCSPreconfig algorithm can be used to test whether there
exists a corresponding CSP sequence. Using these observations, it can be shown
that Algorithm 1 correctly decides the LBCSPR problem.

It is relatively easy to see that the total number of recursive calls made by this
algorithm is bounded by some function of �, k and r, where r = max(T,R)∈C |T |.
Indeed, Line 18 guarantees that for every recursive call, the quantity

∑
v∈B

(|L(v)| − 1) increases by at least one, so the recursion depth is at most � + 1
(see Line 5). The number of iterations of the for-loops in Lines 14 and 16 is
bounded by r−1, and by some function of � and k, respectively. This shows that
Algorithm 1 is an FPT algorithm for parameter k + � + r. Using a sophisticated
analysis, one can prove the following bound on the complexity.

Theorem 6 (*). Let (X, k, C, α, β, �) be an LBCSPR instance. Then in time
O(

(r − 1)� · k�(�+1) · �� · g(C) · poly(k, �, n)
)
, it can be decided whether there exists

a CSP sequence from α to β of length at most �, where r = max(T,R)∈C |T | and
n = |X|, and where g(C) denotes the time to find a constraint in C that is not
satisfied by a given value assignment, if such a constraint exists.

This result implies e.g. FPT algorithms for LBCR (for parameter k + �), and
Length-Bounded Boolean SAT Reachability (for parameter � + r). In fact, for
CSP problems with binary constraints such as LBCR, the complexity can be
improved, since it suffices to guess only the lists L(x) for each vertex/variable
x, instead of all value combinations U .

Theorem 7 (*). Let G, k, α, β, � be a LBCR instance, with n = |V (G)|. There
is an algorithm with complexity O(2k(�+1) ·�� ·poly(n)) that decides whether there
exists a k-recoloring sequence from α to β for G of length at most �.

5 Hardness Results for CSP Reachability

We give two W[2]-hardness results. These hold in fact for very restricted types
of CSP instances. A CSP instance (X, k, C) is called a Horn-SAT instance if
k = 2, and every constraint in C can be formulated as a Boolean clause that
uses at most one positive literal. (As is customary in Boolean satisfiability, we
assume in this case that the variables can take on the values 0 and 1 instead.)
The Length-Bounded Horn-SAT Reachability problem is the LBCSPR problem
restricted to Horn-SAT instances. The even more restricted problem where all
clauses have three variables is called Length-Bounded Horn-3SAT Reachability.

In both proofs, we will give reductions from the W[2]-hard p-Hitting Set
problem. A p-Hitting Set instance (U ,F , p) consists of a finite universe U , a
family of sets F ⊆ 2U , and a positive integer p. The question is whether there
exists a subset U ⊆ U of size at most p such that for every set F ∈ F we have
F ∩ U �= ∅. We say that such a set U is a hitting set of F . This problem is
W[2]-hard when parameterized by p [9].
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Theorem 8 (*). Length-Bounded Horn-SAT Reachability is W[2]-hard when
parameterized by �.

Proof sketch: Given an instance (U ,F , p) of p-Hitting Set, we create a variable
xu for each element u ∈ U and two additional variables y1 and y2, for a total
of |U| + 2 variables. For each set {u1, u2, . . . ut} ∈ F , we create a Horn clause
(y1 ∨ y2 ∨ xu1 , xu2 , . . . xut

). Finally, we add an additional clause (y2 ∨ y1). These
clauses constitute a Horn formula H with |F| + 1 clauses. Let α be the satis-
fying assignment for H that sets all its variables to 1, and β be the satisfying
assignment for H that sets y1 = y2 = 0 and all other variables to 1.

Observe that before we can set y2 to 0, y1 has to be set to 0. Moreover,
before y1 can be set to 0, some of the x variables (i.e. variables corresponding
to elements of the universe U) have to be set to 0 to satisfy all the clauses
corresponding to the sets. Using the previous two observations, it can be shown
that F has a hitting set of size at most p if and only there is a CSP sequence of
length at most 2p + 2 from α to β. �

Theorem 8 implies in particular that for LBCSPR, there is no FPT algorithm
when parameterized only by k + �, unless FPT=W[2]. Next, we consider the
“above-guarantee” version of LBCSPR. Given two valid value assignments α
and β for X and [k], we let S = {x ∈ X | α(x) �= β(x)}. Clearly, the length
of any CSP sequence from α to β is least |S|. Hence, in the above-guarantee
version of the problem, instead of allowing the running time to depend on the
full length � of a CSP sequence, we let �̄ = � − |S| and allow the running time
to depend on �̄ only. However, the next theorem implies that no FPT algorithm
for LBCSPR exists, when parameterized by �̄ + k + r, unless W [2] = FPT .

Theorem 9 (*). Length-Bounded Horn-3SAT Reachability is W[2]-hard when
parameterized by �̄ = � − |S|, where S = {x ∈ X | α(x) �= β(x)}.

Proof sketch: Starting from a p-Hitting Set instance (U ,F , p), we first create a
variable xu for every u ∈ U . We let F = {F1, F2, . . . Fm} and {u1, u2, . . . ur} be
a set in F . For each such set in F , we create r new variables y1, y2, . . . yr and
the clauses (y1 ∨ xu1 ∨ y2), (y2 ∨ xu2 ∨ y3), . . ., (yr ∨ xur

∨ y1). We let α be the
satisfying assignment for the formula with all variables set to 1, and let β be the
satisfying assignment with all the xu, u ∈ U , variables set to 1 and the rest set
to 0.

Consider the clauses corresponding to a set {u1, u2, . . . ur} in F , with vari-
ables y1, . . . , yr. None of the y variables can be set to 0 before we flip at least
one x variable to 0. Moreover, after flipping any x variable to 0, we can in fact
flip all y variables to 0, provided this is done in the proper order. Combining the
previous observations with the fact that |S| =

∑m
i=1 |Fi|, it can be shown that F

has a hitting set of size at most p if and only there is a CSP sequence of length
at most

∑m
i=1 |Fi| + 2p from α to β. �
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Abstract. We study the computational problem of checking whether
a quantified conjunctive query (a first-order sentence built using only
conjunction as Boolean connective) is true in a finite poset (a reflexive,
antisymmetric, and transitive directed graph). We prove that the prob-
lem is already NP-hard on a certain fixed poset, and investigate struc-
tural properties of posets yielding fixed-parameter tractability when the
problem is parameterized by the query. Our main algorithmic result is
that model checking quantified conjunctive queries on posets of bounded
width is fixed-parameter tractable (the width of a poset is the maximum
size of a subset of pairwise incomparable elements). We complement our
algorithmic result by complexity results with respect to classes of finite
posets in a hierarchy of natural poset invariants, establishing its tightness
in this sense.

Keywords: Quantified conjunctive queries · Posets · Parameterized
complexity

1 Introduction

Motivation. The model checking problem for first-order logic is the problem of
deciding whether a given first-order sentence is true in a given finite structure; it
encompasses a wide range of fundamental combinatorial problems. The problem
is trivially decidable in O(nk) time, where n is the size of the structure and k
is the size of the sentence, but it is not polynomial-time decidable or even fixed-
parameter tractable when parameterized by k (under complexity assumptions in
classical and parameterized complexity, respectively).

Restrictions of the model checking problem to fixed classes of structures or
sentences have been intensively investigated from the perspective of parameter-
ized algorithms and complexity [5,10,11]. In particular, starting from seminal
work by Courcelle [6] and Seese [15], structural properties of graphs sufficient for
fixed-parameter tractability of model checking have been identified. An impor-
tant outcome of this research is the understanding of the interplay between
structural properties of graphs and the expressive power of first-order logic,
most notably the interplay between sparsity and locality, culminating in the
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recent result by Grohe, Kreutzer, and Siebertz that model checking first-order
logic on classes of nowhere dense graphs is fixed-parameter tractable [12,13]. On
graph classes closed under subgraphs the result is known to be tight; at the same
time, there are classes of somewhere dense graphs (not closed under subgraphs)
with fixed parameter tractable first-order (and even monadic second-order) logic
model checking; the prominent examples are graph classes of bounded clique-
width solved by Courcelle et al. [7].

In this paper, we investigate posets (short for partially ordered sets). Posets
form a fundamental class of combinatorial objects [9] and may be viewed as
reflexive, antisymmetric, and transitive directed graphs. Besides their naturality,
our motivation towards posets is that they challenge our current model checking
knowledge; indeed, posets are somewhere dense (but not closed under substruc-
tures) and have unbounded clique-width [1, Proposition 5]. Therefore, not only
are they not covered by the aforementioned results [7,12], but most importantly,
it seems likely that new structural ideas and algorithmic techniques are needed
to understand and conquer first-order logic on posets.

In recent work, we started the investigation of first-order logic model check-
ing on finite posets, and obtained a parameterized complexity classification of
existential and universal logic (first-order sentences in prefix form built using
only existential or only universal quantifiers) with respect to classes of posets
in a hierarchy generated by basic poset invariants, including for instance width
and depth [1].1 In particular, as articulated more precisely in [1], a complete
understanding of the first-order case reduces to understanding the parameter-
ized complexity of model checking first-order logic on bounded width posets (the
width of a poset is the maximum size of a subset of pairwise incomparable ele-
ments); these classes are hindered by the same obstructions as general posets,
since already posets of width 2 have unbounded clique-width [1, Proposition 5].

Contribution. In this paper we push the tractability frontier traced in [1] closer
towards full first-order logic, by proving that model checking (quantified) con-
junctive positive logic (first-order sentences built using only conjunction as
Boolean connective) is tractable on bounded width posets.2 The problem of
model checking conjunctive positive logic on finite structures, also known as
the quantified constraint satisfaction problem, has been previously studied with
various motivations in various settings [3,5]; somehow surprisingly, conjunctive
logic is also capable of expressing rather interesting poset properties (as sampled
in Proposition 2).

More precisely, our contribution is twofold. First, we identify conjunctive
positive logic as a minimal syntactic fragment of first-order logic that allows
for full quantification, and has computationally hard expression complexity on
posets; namely, we prove that there exists a finite poset where model checking
(quantified) conjunctive positive logic is NP-hard (Theorem 1). Next, as our

1 Existential and universal logic are maximal syntactic fragments properly contained
in first-order logic.

2 Conjunctive positive logic and existential (respectively, universal) logic are incom-
parable syntactic fragments of first-order logic.
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main algorithmic result, we establish that model checking conjunctive positive
logic on finite posets, parameterized by the width of the poset and the size of
the sentence, is fixed-parameter tractable with an elementary parameter depen-
dence (Theorem 2). The aforementioned fact that model checking conjunctive
positive logic is already NP-hard on a fixed poset justifies the relaxation to
fixed-parameter tractability by showing that, if we insist on polynomial-time
algorithms, any structural property of posets (captured by the boundedness of
a numeric invariant) is negligible.

Informally, the idea of our algorithm is the following. First, given a poset P
and a sentence φ, we rewrite the sentence in a simplified form (which we call a
reduced form), equisatisfiable on P (Proposition 1). Next, using the properties
of reduced forms, we define a syntactic notion of “depth” of a variable in φ
and a semantic notion of “depth” of a subset of P, and we prove that P |= φ
if and only if P verifies φ upon “relativizing” variables to subsets of matching
depth (Lemmas 1 and 2). The key fact is that the size of the subsets of P used to
relativize the variables of φ is bounded above by the width of P and the size of φ
(Lemma 3), from which the main result follows (Theorem 2). We remark that the
approach outlined above differs significantly from the algebraic approach used in
[1]; moreover, both stages make essential use of the restriction that conjunction
is the only Boolean connective allowed in the sentences.

It follows immediately that model checking conjunctive positive logic on classes
of finite posets of bounded width, parameterized by the size of the sentence, is fixed-
parameter tractable (Corollary 1). On the other hand, there exist classes of finite
posets of bounded depth (the depth of a poset is the maximum size of a subset of
pairwise comparable elements) and classes of finite posets of bounded cover-degree
(the cover-degree of a poset is the degree of its cover relation) where model check-
ing conjunctive positive logic is shown to be coW[2]-hard and hence not fixed para-
meter tractable, unless the exponential time hypothesis [8] fails, see Proposition 3.
Combined with the algorithm by Seese [15], these facts complete the parameter-
ized complexity classification of the investigated poset invariants, as depicted
in Fig. 1.

width

size

degree

cover-degree depth

Fig. 1. On all classes of posets bounded under invariants in the gray region, model
checking conjunctive positive logic is fixed-parameter tractable; on some classes of
posets bounded under the remaining invariants, the problem is not fixed-parameter
tractable unless FPT = coW[2].
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The classification of conjunctive positive logic in this paper matches the
classification of existential logic in [1], and further emphasizes the quest for a
classification of full first-order logic on bounded width posets. We believe that
the work presented in this paper and [1] enlightens the spectrum of phenomena
that a fixed-parameter tractable algorithm for model checking the full first-order
logic on bounded width posets, if it exists, has to capture.

Throughout the paper, we mark with � all statements whose proofs are omitted;
we refer to [2] for a full version.

2 Preliminaries

For all integers k ≥ 1, we let [k] denote the set {1, . . . , k}. We focus on relational
first-order logic. A vocabulary σ is a set of constant symbols and relation symbols;
each relation symbol is associated to a natural number called its arity ; we let
ar(R) denote the arity of R ∈ σ. All vocabularies considered in this paper are
finite.

An atom α (over vocabulary σ) is an equality t = t′ or an application of a
predicate Rt1 . . . tar(R), where t, t′, t1, . . . , tar(R) are variable symbols (in a fixed
countable set) or constant symbols, and R ∈ σ. We let FO denote the class of
first-order sentences.

A structure A (over σ) is specified by a nonempty set A, called the universe
of the structure, an element cA ∈ A for each constant symbol c ∈ σ, and a
relation RA ⊆ Aar(R) for each relation symbol R ∈ σ. Given a structure A
and B ⊆ A such that {cA | c ∈ σ} ⊆ B, we denote by A|B the substructure of
A induced by B, defined as follows: the universe of A|B is B, cA|B = cA for each
c ∈ σ, and RA|B = RA∩Bar(R) for all R ∈ σ. A structure is finite if its universe
is finite and trivial if its universe is a singleton. All structures considered in this
paper are finite and nontrivial.

For a structure A and a sentence φ over the same vocabulary, we write A |= φ
if the sentence φ is true in the structure A. When A is a structure, f is a mapping
from the variables to the universe of A, and ψ(x1, . . . , xn) is a formula over the
vocabulary of A, we write A, f |=ψ or (liberally) A |= ψ(f(x1), . . . , f(xn)) to
indicate that ψ is satisfied in A under f .

We refer the reader to [8] for the standard algorithmic setup of the model
checking problem, and for standard notions in parameterized complexity theory.
As for notation, the model checking problem for a class of σ-structures C and a
class of σ-sentences L ⊆ FO is denoted by MC(C,L); it is the problem of decid-
ing, given (A, φ) ∈ C×L, whether A |= φ. We let ‖(A, φ)‖, ‖A‖, and ‖φ‖ denote,
respectively, the size of the (encoding of the) instance (A, φ), the structure A,
and the sentence φ. The parameterization of an instance (A, φ) returns ‖φ‖.

Conjunctive Positive Logic. In this paper, we study the (quantified) conjunctive
positive fragment of first-order logic, in symbols FO(∀,∃,∧), containing first-
order sentences built using only logical symbols in {∀,∃,∧}.
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A conjunctive positive sentence is in alternating prefix form if it has the form

φ = ∀x1∃y1 . . . ∀xl∃ylC(x1, y1, . . . , xl, yl), (1)

where l ≥ 0 and C(x1, y1, . . . , xl, yl) is a conjunction of atoms whose variables are
contained in {x1, y1, . . . , xl, yl}; it is possible to reduce any conjunctive positive
sentence to a logically equivalent conjunctive positive sentence of form (1) in
polynomial time. For a simpler exposition, every conjunctive positive sentence
considered in this paper is assumed to be given in alternating prefix form (or is
implicitly reduced to that form if required by the context).

Let σ be a relational vocabulary. Let A be a σ-structure and let φ be a
conjunctive positive σ-sentence as in (1). It is well known that the truth of φ
in A can be characterized in terms of the Hintikka (or model checking) game
on A and φ. The game is played by two players, Abelard (male, the universal
player) and Eloise (female, the existential player), as follows. For increasing
values of i from 1 to l, Abelard assigns xi to an element ai ∈ A, and Eloise
assigns yi to an element bi ∈ A; the sequence (a1, b1, . . . , al, bl) is called a play
on A and φ, where (a1, . . . , al) and (b1, . . . , bl) are the plays by Abelard and
Eloise respectively; Eloise wins if and only if A |= C(a1, b1, . . . , al, bl).

A strategy for Eloise (in the Hintikka game on A and φ) is a sequence
(g1, . . . , gl) of functions of the form gi : Ai → A, for all i ∈ [l]; it beats a play
f : {x1, . . . , xl} → A by Abelard if A |= C(f(x1), g1(f(x1)), . . . , f(xi), gi(f(x1),
. . . , f(xi)), . . .), where i ∈ [l]. A strategy for Eloise is winning (in the Hintikka
game on A and φ) if it beats all Abelard plays. It is well known (and easily
verified) that A |= φ if and only if Eloise has a winning strategy (in the Hintikka
game on A and φ).

For X1, Y1, . . . , Xl, Yl ⊆ A, we denote by

φ′ = (∀x1 ∈ X1)(∃y1 ∈ Y1) . . . (∀xl ∈ Xl)(∃yl ∈ Yl)C(x1, y1, . . . , xl, yl), (2)

the relativization in φ of variable xi to Xi and yi to Yi for all i ∈ [l], and liberally
write A |= φ′ meaning that φ′ is satisfied in the intended expansion of A. It is
readily verified that, if φ′ is as in (2), then A |= φ′ if and only if, in the Hintikka
game on A and φ, Eloise has a strategy of the form gi : X1 × · · · × Xi → Yi for
all i ∈ [l], beating all plays f by Abelard such that f(xi) ∈ Xi for all i ∈ [l].

Partially Ordered Sets. We refer the reader to [4] for the few standard notions
in order theory used in the paper but not defined below.

A structure G = (G,EG) with ar(E) = 2 is called a digraph. Two digraphs
G and H are isomorphic if there exists a bijection f : G → H such that for all
g, g′ ∈ G it holds that (g, g′) ∈ EG if and only if (f(g), f(g′)) ∈ EH. The degree
of g ∈ G, in symbols degree(g), is equal to |{(g′, g) ∈ EG | g′ ∈ G} ∪ {(g, g′) ∈
EG | g′ ∈ G}|, and the degree of G, in symbols degree(G), is the maximum
degree attained by the elements of G.

A digraph P = (P,≤P) is a partially ordered set (in short, a poset) if ≤P

is a reflexive, antisymmetric, and transitive relation over P . For all Q ⊆ P , we
let minP(Q) and maxP(Q) denote, respectively, the set of minimal and maximal
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elements in the substructure of P induced by Q; we also write min(P) instead
of minP(P ), and max(P) instead of maxP(P ). For all Q ⊆ P , we let (Q]P,
respectively [Q)P, denote the downset, respectively upset, of P induced by Q.
Let P be a poset and let p, q ∈ P . We write p ≺P q if q covers p in P, and p ‖P q
if p and q are incomparable in P. If P is a class of posets, we let cover(P) =
{cover(P) | P∈ P}, where cover(P) = {(p, q) | p ≺P q}.

We introduce a family of poset invariants. LetP be a poset. The size ofP is |P |.
The depth of P, depth(P), is the maximum size of a chain in P. The width of P,
width(P), is the maximum size of an antichain in P. The degree of P, degree(P),
is the degree of P as a digraph. The cover-degree of P, cover−degree(P), is the
degree of the cover relation of P, that is, degree(cover(P)). We say that a class of
posets P is bounded w.r.t. the poset invariant inv if there exists b ∈ N such that
inv(P) ≤ b for all P ∈ P. The above poset invariants are ordered as in Fig. 1,
where inv ≤ inv′ if and only if: P is bounded w.r.t. inv implies P is bounded w.r.t.
inv′ for every class of posets P [1, Proposition 3].

3 Expression Hardness

In this section we prove that conjunctive positive logic on posets is NP-hard
in expression complexity. Let B = (B,≤B) be the bowtie poset defined by the
universe B = {0, 1, 2, 3} and the covers 0, 2 ≺B 1, 3; see Fig. 2.

Theorem 1. MC({B},FO(∀,∃,∧)) is NP-hard.

Proof. Let τ = {≤} and σ = τ ∪ {c0, c1, c2, c3} be vocabularies where ≤ is a
binary relation symbol and ci is a constant symbol (i ∈ B). Let FOσ(∃,∧) con-
tain first-order sentences built using only logical symbols in {∃,∧} and nonlogical
symbols in σ; FOτ (∀,∃,∧) is described similarly. Let B∗ be the σ-structure such
that B∗ = B, (B∗,≤B∗

) is isomorphic to B under the identity mapping, and
cB

∗
i = i for all i ∈ B.

By [14, Theorem 2, Case n = 2], the problem MC({B∗},FOσ(∃,∧)) is NP-hard.
It is therefore sufficient to give a polynomial-time many-one reduction from
MC({B∗},FOσ(∃,∧)) to MC({B},FOτ (∀,∃,∧)). The idea of the reduction is
to simulate the constants in σ by universal quantification and additional vari-
ables; the details follow.

Let ψ be an instance of MC({B∗},FOσ(∃,∧)), and let {xi, yi, wi | i ∈ B} be
a set of 12 fresh variables (not occurring in ψ). Let ψ′ be the FOτ (∃,∧)-sentence
obtained from ψ by replacing atoms of the form ci ≤ u and u ≤ ci, respectively,
by atoms of the form wi ≤ u and u ≤ wi (where ci is a constant in σ and u,wi

are variables). Let α be the conjunction of atoms defined by (see Fig. 2)

{w0, w2} ≤ {w1, w3} ∧
∧

j∈{0,2}
{xj} ≤ {yj , wj} ∧

∧

j∈{1,3}
{yj , wj} ≤ {xj},

where, for sets of variables S and S′, the notation S ≤ S′ denotes the conjunction
of atoms of the form s ≤ s′ for all (s, s′) ∈ S × S′.
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Fig. 2. The Hasse diagrams of the bowtie poset B (left) and of the representation Mα

of the formula α (right, see Sect. 4 for the interpretation of Mα) used in Theorem 1.
The idea of the reduction is to simulate the constant ci in ψ ∈ FOσ(∃, ∧), interpreted
on the element i ∈ B, by the variable wi in φ ∈ FOτ (∀, ∃, ∧), where i ∈ {0, 1, 2, 3}.

We finally define the FOτ (∀,∃,∧)-sentence φ by putting φ = ∀y0 . . . ∀y3∃x0 . . .
∃x3∃w0 . . . ∃w3(α ∧ ψ′). The reduction is clearly feasible in polynomial time; we
now prove that the reduction is correct, that is, B∗ |=ψ if and only if B |= φ.

An assignment f : {y0, y1, y2, y3} → B is said to be nontrivial if {f(y0),
f(y2)} = {0, 2} and {f(y1), f(y3)} = {1, 3}, and trivial otherwise; in particular,
nontrivial assignments are bijective.

Claim 1. (�) B, f |= ∃x0 . . . x3w0 . . . w3(α ∧ ψ′) for all trivial assignments f .

Claim 2. (�) Let f be a nontrivial assignment. The following are equivalent.

(i) B, f |= ∃x0 . . . x3w0 . . . w3(α ∧ ψ′).
(ii) B∗ |= ψ.

We conclude the proof by showing that B∗ |=ψ if and only if B |= φ. If B �|= φ,
then there exists an assignment f such that B, f �|= ∃x0 . . . ∃x3∃w0 . . . ∃w3(α∧ ψ′);
by Claim 1, f is nontrivial. Then B∗ �|= ψ by Claim 2. Conversely, if B |= φ,
then in particular B, f |= ∃x0 . . . ∃x3∃w0 . . . ∃w3(α∧ ψ′) for all nontrivial assign-
ments f , and hence B∗ |=ψ by Claim 2.

4 Reduced Forms

In this section, we introduce reduced forms for conjunctive positive sentences on
posets and prove that, given a poset P and a sentence φ, a reduced form for φ
is easy to compute and equivalent to φ on P.

In the rest of this section, σ = {≤} is the vocabulary of posets, and φ is a
conjunctive positive σ-sentence as in (1). Since φ will be evaluated on posets,
where the formulas x ≤ y ∧ y ≤ x and x = y are equivalent, we assume that no
atom of the form x = y occurs in φ; otherwise, such an atom can be replaced by
the formula x ≤ y ∧ y ≤ x maintaining logical equivalence.
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We represent φ by the pair (Qφ,Mφ), where Qφ = (Qφ, EQφ) and Mφ =
(Mφ, EMφ) are digraphs encoding the prefix and the matrix of φ respectively,
as follows. The universes are Qφ = Mφ = {x1, y1, . . . , xl, yl}; we let M∀

φ =
{x1, . . . , xl} and M∃

φ = {y1, . . . , yl} denote, respectively, the set of universal
and existential variables in φ. The structure Qφ is a chain with cover relation
x1 ≺Qφ y1 ≺Qφ · · · ≺Qφ xl ≺Qφ yl. The structure Mφ is defined by the edge
relation EMφ = {(x, y)x ≤ y is an atom of φ}. We say that φ is in reduced form if:

(i) Mφ is a poset;
(ii) the substructure of Mφ induced by M∀

φ is an antichain;
(iii) for all distinct x and x′ in M∀

φ , it holds that [x)Mφ ∩ [x′)Mφ = (x]Mφ ∩
(x′]Mφ = ∅;

(iv) for all x ∈ M∀
φ and all y ∈ M∃

φ ∩ ((x]Mφ ∪ [x)Mφ), it holds that x <Qφ y.

Let φ ∈ FO(∀,∃,∧). For all Z ⊆ Mφ, we let φ|Z denote the conjunctive
positive sentence represented by (Qφ|Z ,Mφ|Z). It is readily observed that, for
all Z ⊆ Mφ, it holds that φ |= φ|Z .

Proposition 1. (�) Let P be a class of posets. There exists a polynomial-time
algorithm that, given an instance (P, φ) of MC(P,FO(∀,∃,∧)), either correctly
rejects, or returns a sentence φ′ ∈ FO(∀,∃,∧) in reduced form such that P |= φ′

if and only if P |= φ.

5 Fixed-Parameter Tractability

In this section, we prove that model checking conjunctive positive logic is fixed-
parameter tractable parameterized by the size of the sentence and the width
of the poset; it follows, in particular, that model checking conjunctive positive
logic is fixed-parameter tractable (parameterized by the size of the sentence) on
classes of posets of bounded width. We refer the reader to the introduction for
an informal outline of the proof idea.

In the rest of this section, σ = {≤} is the vocabulary of posets, P is a poset and
φ = (Qφ,Mφ) is a conjunctive positive σ-sentence as in (1) satisfying clauses
(i) and (ii) of the definition of reduced form.

5.1 Depth in the Sentence

Using the fact that φ is in reduced form, we define the following. For all y ∈
M∃

φ : lower-depth(y) = depth(Mφ|(y]Mφ ); upper-depth(y) = depth(Mφ|[y)Mφ ). In
words, lower-depth(y) is the size of the largest chain in the substructure of Mφ

induced by the downset of y in Mφ, and upper-depth(y) is the size of the largest
chain in the substructure of Mφ induced by the upset of y in Mφ.

Next, we define a partition of M∃
φ into two blocks Lφ and Uφ, the lower

and upper variables respectively, as follows. For all y ∈ M∃
φ let y ∈ Lφ if and

only if there either exists x ∈ M∀
φ such that y ≤Mφ x, or y ‖Mφ x for all
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x ∈ M∀
φ and lower-depth(y) ≤ upper-depth(y). Similarly, y ∈ Uφ if and only

if there either exists x ∈ M∀
φ such that y ≥Mφ x, or y ‖Mφ x for all x ∈ M∀

φ

and lower-depth(y) > upper-depth(y). In words, an existential variable y in φ
is lower if and only if it is below a universal variable in the matrix of φ, or is
incomparable to all universal variables in the matrix of φ but “closer” to the
bottom of the matrix of φ in that lower-depth(y) ≤ upper-depth(y); a similar
idea drives the definition of upper variables.

Finally we define, for all y ∈ M∃
φ : depth(y) = lower-depth(y) if y ∈ Lφ, and

depth(y) = upper-depth(y) if y ∈ Uφ; in words, the depth of a lower variable is
its “distance” from the bottom as measured by lower-depth(y), and similarly for
upper variables.

5.2 Depth in the Structure

Relative to the poset P, we define, for all i ≥ 0, the set Pi as follows.

– L0 = min(P), U0 = max(P) \ L0, and P0 = L0 ∪ U0.
– Let i ≥ 1, and let R ⊆ Pi−1 be such that R ∩ Li−1 is downward closed in
P|Li−1 (that is, for all l, l′ ∈ Li−1, if l ∈ R∩Li−1 and l′ ≤P l, then l′ ∈ R) and
R∩Ui−1 is upward closed in P|Ui−1 (that is, for all u, u′ ∈ Ui−1, if u ∈ R∩Ui−1

and u ≤P u′, then u′ ∈ R). Let

Pi−1,R =
{

p ∈ P

∣
∣
∣
∣

for all l ∈ Li−1, l ≤P p if and only if l ∈ R,
for all u ∈ Ui−1, p ≤P u if and only ifu ∈ R

}

;

in words, p ∈ Pi−1,R if and only if the elements in Li−1 below p are exactly
those in R ∩ Li−1 (and the elements in Li−1 \ R are incomparable to p) and
the elements in Ui−1 above p are exactly those in R ∩ Ui−1 (and the elements
in Ui−1 \ R are incomparable to p). We now define Pi = Li ∪ Ui where Li and
Ui are as follows:

Li = Li−1 ∪
⋃

R⊆Pi−1

minP(Pi−1,R), Ui =
(
Ui−1 ∪

⋃

R⊆Pi−1

maxP(Pi−1,R)
) \ Li.

Let p ∈ P . Let i ≥ 0 be minimum such that p ∈ Pi (note that for every p ∈ P
such minimum i exists, and Li ∩Ui = ∅ by construction). If p ∈ Li, then p ∈ LP

and lower-depth(p) = i and if p ∈ Ui, then p ∈ UP and upper-depth(p) = i. Note
that LP and UP partition P into two blocks containing the lower and upper ele-
ments respectively. Finally we define, for all p ∈ P : depth(p) = lower-depth(p),
if p ∈ LP, and depth(p) = upper-depth(p), if p ∈ UP.

5.3 Depth Restricted Game

We now establish and formalize the relation between the depth in φ and the
depth in P (see Lemma 1); this is the key combinatorial fact underlying the
model checking algorithm.
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Relative to the Hintikka game on P and φ, we define the following.
A pair (y, p) ∈ M∃

φ × P is depth respecting if (y, p) ∈ (Lφ × LP) ∪ (Uφ × UP)
and depth(p) ≤ depth(y). A strategy (g1, . . . , gl) for Eloise is depth respect-
ing if, for all i ∈ [l] and all plays f : {x1, . . . , xl} → P by Abelard, the pair
(yi, gi(f(x1), . . . , f(xi))) is depth respecting.

Let b ≥ 0 be the maximum depth of a variable in φ. A play f : {x1, . . . , xl} →
P by Abelard is bounded depth if, for all i ∈ [l], it holds that f(xi) ∈ Pb+1.

Lemma 1. The following are equivalent (w.r.t. the Hintikka game on P and φ).

(i) Eloise has a winning strategy.
(ii) Eloise has a depth respecting winning strategy.
(iii) Eloise has a depth respecting strategy beating all bounded depth Abelard

plays.

Proof. (ii) ⇒ (iii) is trivial. We prove (i) ⇒ (ii) and (iii) ⇒ (i).
(i) ⇒ (ii): Let g = (g1, . . . , gl) be a winning strategy for Eloise. Let the

Abelard play f : {x1, . . . , xl} → P and the existential variable yj ∈ M∃
φ be a

minimal witness that the above winning strategy for Eloise is not depth respect-
ing, in the following sense: (yj , gj(f(x1), . . . , f(xj))) is not depth respecting,
but for all f ′ : {x1, . . . , xl} → P and all yj′ ∈ M∃

φ such that either yj , yj′ ∈ Lφ

and lower-depth(yj′) < lower-depth(yj), or yj , yj′ ∈ Uφ and upper-depth(yj′) <
upper-depth(yj), it holds that (yj′ , gj(f ′(x1), . . . , f ′(xj))) is depth respecting.

We define a strategy g′ = (g1, . . . , gj−1, g
′
j , gj+1, . . . , gl) for Eloise such that g′

j

restricted to P j \{(f(x1), . . . , f(xj))} is equal to gj (in other words, g′
j differs from

gj only in the move after f : {x1, . . . , xl} → P ), and (yj , g
′
j(f(x1), . . . , f(xj))) is

depth respecting. There are two cases to consider, depending on whether yj ∈ Lφ

or yj ∈ Uφ. We prove the statement in the former case; the argument is symmetric
in the latter case.

So, assume yj ∈ Lφ. Let gj(f(x1), . . . , f(xj)) = p and i = depth(yj).
Let R ⊆ Pi−1 (with R ∩ Li−1 downward closed in P|Li−1 and R ∩ Ui−1 upward
closed in P|Ui−1) be such that, for all l ∈ Li−1 and u ∈ Ui−1, it holds that
l ≤P p if and only if l ∈ R and p ≤P u if and only if u ∈ R. Hence p ∈ Pi−1,R.
Then there exists m ∈ minP(Pi−1,R) such that m ≤P p. By construction we
have depth(m) = i. Let g′

j : P j → P be exactly as gj with the exception that
g′

j(f(x1), . . . , f(xj)) = m; note that the pair (yj ,m) is depth respecting.

Claim 3. (�) Let f ′ be any play by Abelard. Then g′ = (g1, . . . , g′
j , . . . , gl) beats

f ′ in the Hintikka game on P and φ.

We obtain a depth respecting winning strategy for Eloise by iterating the above
argument thanks to Claim 5.

(iii) ⇒ (i): Let b ≥ 0 be the maximum depth of a variable in φ, and let
g = (g1, . . . , gl) be a depth respecting strategy for Eloise beating all bounded
depth plays by Abelard. We define a strategy g′ = (g′

1, . . . , g
′
l) for Eloise, as

follows.
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Let f : {x1, . . . , xl} → P be a play by Abelard, say f(xi) = pi for all i ∈ [l].
Let i ∈ [l] and let Ri ⊆ Pb (with Ri ∩ Lb−1 downward closed in P|Lb−1 and
Ri ∩ Ub−1 upward closed in P|Ub−1) be such that for all l ∈ Lb, it holds that
l ≤P pi if and only if l ∈ Ri and for all u ∈ Ub, it holds that pi ≤P u if and
only if u ∈ Ri. By construction, there exists ri ∈ Pb+1 such that for all l ∈ Lb,
it holds that l ≤P ri if and only if l ≤P pi and for all u ∈ Ub, it holds that
ri ≤P u if and only if pi ≤P u. Let f ′ : {x1, . . . , xl} → P be the bounded depth
play by Abelard defined by f ′(xi) = ri for all i ∈ [l]. Finally define, for all i ∈ [l],
g′

i(f(x1), . . . , f(xi)) = gi(f ′(x1), . . . , f ′(xi)).

Claim 4. (�) g′ = (g′
1, . . . , g

′
l) is a winning strategy for Eloise.

This concludes the proof of the lemma. �

5.4 Fixed-Parameter Tractability

The following two lemmas allow to establish the correctness (Lemma 2, relying
on Lemma 1) and the tractability (Lemma 3) of the presented model checking
algorithm, respectively.

Lemma 2. (�) Let b ≥ 0 be the maximum depth of a variable in φ. Let D =
Pb+1 and, for all i ∈ [l], let

Di =

{
Ldepth(yi), if yi ∈ Lφ,

Udepth(yi), if yi ∈ Uφ.

Then, P |= φ if and only if P |= (∀x1 ∈ D)(∃y1 ∈ D1) . . . (∀xl ∈ D)(∃yl ∈ Dl)C.

Lemma 3. (�) Let w = width(P) and let k ≥ 0. Then, |Pk| ≤ 2w(3w)k

.

We are now ready to describe the announced algorithm. The underlying idea is
that the characterization in Lemma 2 is checkable in fixed-parameter tractable
time since |Di| ≤ |D| for all i ∈ [l], and |D| is bounded above by a computable
function of width(P) and ‖φ‖.

Theorem 2. (�) There exists an algorithm that, given a poset P and a sentence
φ ∈ FO(∀,∃,∧), decides whether P |= φ in

exp4
w(O(k)) · nO(1)

time, where w = width(P), k = ‖φ‖, and n = ‖(P, φ)‖.

Corollary 1. Let P be a class of posets of bounded width. Then, the problem
MC(P,FO(∀,∃,∧)) is fixed-parameter tractable.
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6 Fixed-Parameter Intractability

In this section, we prove that model checking conjunctive positive logic on classes
of bounded depth and bounded cover-degree posets is coW[2]-hard, and hence
unlikely to be fixed-parameter tractable [8].

We first observe the following. Let φk be the FO(∀,∃,∧)-sentence (k ≥ 1)

∀x1 . . . ∀xk∃y1 . . . ∃yk∃w

⎛

⎝
∧

i∈[k]

yi ≤ xi ∧
∧

i∈[k]

yi ≤ w

⎞

⎠ . (3)

Proposition 2. (�) For every poset P and k ≥ 1, P |= φk iff for every k
elements p1, . . . , pk ∈ min(P), there exists u ∈ P such that p1, . . . , pk ≤P u.

We now describe the reductions. Let H be the class of hypergraphs (a hypergraph
is a σ-structure H such that UH �= ∅ for all U in a unary vocabulary σ). For the
depth invariant, we define a function d from H to a class of posets of depth at
most 2 where d(H) = P such that: min(P) = H; max(P) = σ; h ≺P U for all
h ∈ min(P) and U ∈ max(P) such that h �∈ UH. For the cover-degree invariant,
we similarly define a function c from H to a class of posets with cover graphs of
degree at most 3 (see [2] for details). We then use Proposition 2 to obtain:

Proposition 3. (�) Let r ∈ {c, d}. Then, MC({r(H) | H ∈ H},FO(∀,∃,∧)) is
coW[2]-hard.

7 Conclusion

We provided a parameterized complexity classification of the problem of model
checking quantified conjunctive queries on posets with respect to the invariants
in Fig. 1; in particular, we push the tractability frontier of the model checking
problem on bounded width posets closer towards the full first-order logic. The
question of whether first-order logic is fixed-parameter tractable on bounded
width posets remains open.

Acknowledgments. This research was supported by the European Research Coun-
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Abstract. A commonly studied means of parameterizing graph prob-
lems is the deletion distance from triviality [10], which counts vertices
that need to be deleted from a graph to place it in some class for which
efficient algorithms are known. In the context of graph isomorphism,
we define triviality to mean a graph with maximum degree bounded by
a constant, as such graph classes admit polynomial-time isomorphism
tests. We generalise deletion distance to a measure we call elimination
distance to triviality, based on elimination trees or tree-depth decompo-
sitions. We establish that graph canonisation, and thus graph isomor-
phism, is FPT when parameterized by elimination distance to bounded
degree, generalising results of Bouland et al. [2] on isomorphism parame-
terized by tree-depth.

1 Introduction

The graph isomorphism problem (GI) is the problem of determining, given a
pair of graphs G and H, whether they are isomorphic. This problem has an
unusual status in complexity theory as it is neither known to be in P nor known
to be NP-complete, one of the few natural problems for which this is the case.
Polynomial-time algorithms are known for a variety of special classes of graphs.
Many of these lead to natural parameterizations of GI by means of structural
parameters of the graphs. For instance, it is known that GI is in XP parameterized
by the genus of the graph [7,17], by maximum degree [1,14] and by the size
of the smallest excluded minor [19], or more generally, the smallest excluded
topological minor [9]. For each of these parameters, it remains an open question
whether the problem is FPT. On the other hand, GI has been shown to be FPT
when parameterized by eigenvalue multiplicity [5], tree distance width [22], the
maximum size of a simplicial component [20,21] and minimum feedback vertex
set [11]. Bouland et al. [2] showed that the problem is FPT when parameterized
by the tree depth of a graph and in a recent advance on this, Lokshtanov et al. [13]
have announced that it is also FPT parameterized by tree width.

Our main result extends the results of Bouland et al. and is incomparable with
that of Lokshtanov et al. We show that graph canonisation is FPT parameterized
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by elimination distance to degree d, for any constant d. The structural graph
parameter we introduce is an instance of what Guo et al. [10] call distance to
triviality and it may be of interest in the context of other graph problems.

To put this parameter in context, consider the simplest notion of distance to
triviality for a graph G: the number k of vertices of G that must be deleted to
obtain a graph with no edges. This is, of course, just the size of a minimal vertex
cover in G and is a parameter that has been much studied (see for instance [6]).
Indeed, it is also quite straightforward to see that GI is FPT when parameterized
by vertex cover number. Consider two ways this observation might be strength-
ened. The first is to relax the notion of what we consider to be “trivial”. For
instance, as there is for each d a polynomial time algorithm deciding GI among
graphs with maximum degree d, we may take this as our trivial base case. We
then parameterize G by the number k of vertices that must be deleted to obtain
a subgraph of G with maximum degree d. This yields the parameter deletion
distance to bounded degree, which we consider in Sect. 3 below. Alternatively,
we relax the notion of “distance” so that rather than considering the sequential
deletion of k vertices, we consider the recursive deletion of vertices in a tree-like
fashion. To be precise, say that a graph G has elimination distance k + 1 from
triviality if, in each connected component of G we can delete a vertex so that the
resulting graph has distance k to triviality. If triviality is understood to mean
the empty graph, this just yields a definition of the tree depth of G. In our main
result, we combine these two approaches by parameterizing G by the elimination
distance to triviality, where a graph is trivial if it has maximum degree d. We
show that, for any fixed d, this gives a structural parameter on graphs for which
graph canonisation is FPT. Along the way, we establish a number of characteri-
sations of the parameter that may be interesting in themselves. The key idea in
the proof is the separation of any graph of elimination distance k to degree d into
two subgraphs, one of which has degree bounded by d and the other tree-depth
bounded by a function of k and d, in a canonical way.

A central technique used in the proof is to construct, from a graph G, a term
(or equivalently a labelled, ordered tree) TG that is an isomorphism invariant of
the graph G. It should be noted that this general method is widely deployed in
practical isomorphism tests such as McKay’s graph isomorphism testing program
“nauty” [15,16]. The recent advance by Lokshtanov et al. [13] is also based on
such an approach.

In Sect. 2 we recall some definitions from graph theory and parameterized com-
plexity theory. Section 3 introduces the notion of deletion distance to bounded
degree and presents a kernelisation procedure that allows us to decide isomor-
phism. In Sect. 4 we introduce the main parameter of our paper, elimination dis-
tance to bounded degree, and establish its key properties. The main result on FPT
graph canonisation is established in Sect. 5. Due to limitations of space, proofs of
several key lemmas are deferred to the full version of this paper, which may be
found at arxiv:1406.4718.
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2 Preliminaries

Parameterized complexity theory is a two-dimensional approach to the study of
the complexity of computational problems. A language (or problem) L is a set
of strings L ⊆ Σ∗ over a finite alphabet Σ. A parameterization is a function
κ : Σ∗ → N. We say that L is fixed-parameter tractable with respect to κ if we
can decide whether an input x ∈ Σ∗ is in L in time O(f(κ(x)) · |x|c), where c is
a constant and f is some computable function. For a thorough discussion of the
subject we refer to the books by Downey and Fellows [4], Flum and Grohe [8]
and Niedermeier [18].

A graph G is a set of vertices V (G) and a set of edges E(G) ⊆ V (G)×V (G).
We will usually assume that graphs are loop-free and undirected, i.e. that E is
irreflexive and symmetric. If E is not symmetric, we call G a directed graph. We
mostly follow the notation in Diestel’s book [3].

If v ∈ G and S ⊆ V (G), we write EG(v, S) for the set of edges {vw | w ∈ S}
between v and S.

The neighbourhood of a vertex v is NG(v) := {w ∈ V (G) | vw ∈ E(G)}.
The degree of a vertex v is the size of its neighbourhood degG(v) := |NG(v)|.
For a set of vertices S ⊆ V (G) its neighbourhood is defined to be NG(S) :=⋃

v∈S NG(v). The degree of a graph G is the maximal degree of its vertices
Δ(G) := max{degG(v) | v ∈ V (G)}. If it is clear from the context what the
graph is, we will sometimes omit the subscript.

Let H be a subgraph of G and v, w ∈ V (G). A path through H from w to v
is a path P from w to v in G with all vertices, except possibly the endpoints, in
V (H), i.e. (V (P ) \ {v, w}) ⊆ V (H).

A (k-)colouring of a graph G is a map c : V (G) → {1, . . . , k} for some k ∈ N.
We call a graph together with a colouring a coloured graph. Two coloured graphs
G,G′ with respective colourings c : V (G) → {1, . . . , k}, c′ : V (G′) → {1, . . . , k}
are isomorphic if there is a bijection φ : V (G) → V (G′)

such that:

– for all v, w ∈ V (G) we have that vw ∈ E(G) if and only if φ(v)φ(w) ∈ E(G′);
– for all v ∈ V (G), we have that c(v) = c′(φ(v)).

Note that we require the colour classes to match exactly, and do not allow a
permutation of the colour classes.

Let C be a class of (coloured) graphs closed under isomorphism. A canonical
form for C is a function F : C → C such that

– for all G ∈ C, we have that F (G) ∼= G;
– for all G,H ∈ C, we have that G ∼= H if, and only if, F (G) = F (H).

A partial order is a binary relation ≤ on a set S which is reflexive, antisym-
metric and transitive. If ≤ is a partial order on S, and for each element a ∈ S,
the set {b ∈ S | b ≤ a} is totally ordered by ≤, we say ≤ is a tree order. (Note
that the covering relation of a tree order is not necessarily a tree, but may be a
forest.)
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Definition 2.1. An elimination order ≤ is a tree order on the vertices of a
graph G, such that for each edge uv ∈ E(G) we have either u ≤ v or v ≤ u.

We say that an order has height k if the length of the longest chain in it is k.

Isomorphism on (coloured) bounded degree graphs. Luks [14] proved that isomor-
phism of bounded degree graphs can be decided in polynomial time, and Babai
and Luks [1] give a polynomial-time canonisation algorithm for bounded degree
graphs. These results can be extended to coloured graphs by means of an easy
reduction (which can be found in the full version of this paper). Thus, we have:

Theorem 2.2. Let C be a class of (coloured) bounded degree graphs closed under
isomorphism. Then there is a canonical form F for C that allows us to compute
F (G) in polynomial time.

3 Deletion Distance to Bounded Degree

We first study the notion of deletion distance to bounded degree and establish
in this section that graph isomorphism is FPT with this parameter. Though the
result in this section is subsumed by the more general one in Sect. 5, it provides
a useful warm-up and a tighter, polynomial kernel. In the present warm-up we
only give an algorithm for the graph isomorphism problem, though the result
easily holds for canonisation as well (and this follows from the more general
result in Sect. 5). The notion of deletion distance to bounded degree is a partic-
ular instance of the general notion of distance to triviality introduced by Guo
et al. [10]. In the context of graph isomorphism, we have chosen triviality to
mean graphs of bounded degree.

Definition 3.1. A graph G has deletion distance k to degree d if there are k
vertices v1, . . . , vk ∈ V (G) such that G \ {v1, . . . , vk} has degree d. We call the
set {v1, . . . , vk} a d-deletion set.

Remark 3.2. To say that G has deletion distance 0 from degree d is just to say
that G has maximum degree d. Also note that if d = 0, then the d-deletion set is
just a vertex cover and the minimum deletion distance the vertex cover number
of G.

We show that isomorphism are fixed-parameter tractable on such graphs parame-
terized by k with fixed degree d; in particular we give a procedure that computes
a polynomial kernel in linear time.

Theorem 3.3. For any graph G and integers d, k > 0, we can identify in linear
time a subgraph G′ of G, a set of vertices U ⊆ V (G′) with |U | = O(k(k + d)2)
and a k′ ≤ k such that: G has deletion distance k to degree d if and only if G′

has deletion distance k′ to d and, moreover, if G′ has deletion distance at most
k′, then any minimum size d-deletion set for G′ is contained in U .
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Proof. Let H := {v ∈ V (G) | deg(v) > k + d}. Now, if R is a minimum size
d-deletion set for G and G has deletion distance at most k to degree d, then
|R| ≤ k and the vertices in V (G \R) have degree at most k + d in G. So H ⊆ R.
This means that if |H| > k, then G must have deletion distance greater than k
to degree d and in that case we let G′ := G, k′ := k and U = ∅.

Otherwise let G′ := G \ H and k′ := k − |H|. We have shown that every
d-deletion set of size at most k must contain H. Thus G has deletion distance k
to degree d if and only if G′ has deletion distance k′ to degree d.

Let S := {v ∈ V (G′) | degG′(v) > d} and U := S ∪ NG′(S). Let R′ ⊆ V (G′)
be a minimum size d-deletion set for G′. We show that R′ ⊆ U . Let v 	∈ U . Then
by the definition of U we know that degG′(v) ≤ d and all of the neighbours of v
have degree at most d in G′. So if v ∈ R′, then G \ (R′ \ {v}) also has maximal
degree d, which violates that R′ is of minimum size. Thus v 	∈ R′.

Note that the vertices in G′ \ (R′ ∪ N(R′)) have the same degree in G′

as in G and thus all have degree at most d. So S ⊆ R′ ∪ N(R′) and thus
|U | ≤ k′ + k′(k + d) + k′(k + d)2 = O(k(k + d)2).

Finally, the sets H and U defined as above can be found in linear time, and
G′, k′ can be computed from H in linear time. �

Remark 3.4. Note that if U = ∅ and k′ > 0, then there are no d-deletion sets of
size at most k′.

Next we see how the kernel U can be used to determine whether two graphs
with deletion distance k to degree d are isomorphic by reducing the problem to
isomorphism of coloured graphs of degree at most d.

Suppose we are given two graphs G and H with d-deletion sets S = {v1, . . . , vk}
and T = {w1, . . . , wk} respectively. Further suppose that the map vi 
→ wi is an
isomorphism on the induced subgraphs G[S] and H[T ]. We can then test if this
map can be extended to an isomorphism from G to H using Theorem 2.2. To be
precise, we define the coloured graphs G′ and H ′ which are obtained from G \ S
and H \ T respectively, by colouring vertices. A vertex u ∈ V (G′) gets the colour
{i | vi ∈ NG(u)}, i.e. the set of indices of its neighbours in S. Vertices in H ′ are
similarly coloured by the sets of indices of their neighbours in T . It is clear that G′

and H ′ are isomorphic if, and only if, there is an isomorphism between G and H,
extending the fixed map between S and T . The coloured graphs G′ and H ′ have
degree bounded by d, so Theorem 2.2 gives us a polynomial-time isomorphism test
on these graphs.

Now, given a pair of graphs G and H which have deletion distance k to degree
d, let A and B be the sets of vertices of degree greater than k + d in the two
graphs respectively. Also, let U and V be the two kernels in the graphs obtained
from Theorem 3.3. Thus, any d-deletion set in G contains A and is contained
in A ∪ U and similarly, any d-deletion set for H contains B and is contained in
B ∪ V . Therefore to test G and H for isomorphism, it suffices to consider all
k-element subsets S of A∪U containing A and all k-element subsets T of B ∪V
containing B, and if they are d-deletion sets for G and H, check for all k! maps
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between them whether the map can be extended to an isomorphism from G to

H. As d is constant this takes time O∗
(

(
k3

k

)2 · k!
)

, which is O∗ (
27k log k

)
.

4 Elimination Distance to Bounded Degree

In this section we introduce a new structural parameter for graphs. We generalise
the idea of deletion distance to triviality by recursively allowing deletions from
each component of the graph. This generalises the idea of elimination height
or tree-depth, and is equivalent to it when the notion of triviality is the empty
graph. In the context of graph isomorphism and canonisation we again define
triviality to mean bounded degree, so we look at the elimination distance to
bounded degree.

Definition 4.1. The elimination distance to degree d of a graph G is defined
as follows:

edd(G) :=

⎧
⎪⎨

⎪⎩

0, if Δ(G) ≤ d;

1 + min{edd(G \ v) | v ∈ V (G)}, if Δ(G) > d and G is connected;

max{edd(H) | H a connected component of G}, otherwise.

We first introduce other equivalent characterisations of this parameter. (The
proofs of equivalence are omitted due to lack of space and can be found in the
full version of the paper.) If G is a graph that has elimination distance k to
degree d, then we can associate a certain tree order ≤ with it:

Definition 4.2. A tree order ≤ on V (G) is an elimination order to degree d
for G if for each v ∈ V (G) the set

Sv := {u ∈ V (G) | uv ∈ E(G) and u 	≤ v and v 	≤ u}
satisfies either:

– Sv = ∅; or
– v is ≤-maximal, |Sv| ≤ d, and for all u ∈ Sv, we have {w | w < u} = {w |

w < v}.
Remark 4.3. Note that if Sv = ∅ for all v ∈ V (G), then an elimination order to
degree d is just an elimination order, in the sense of Definition 2.1.

Proposition 4.4. A graph G has edd(G) ≤ k if, and only if, there is an elimi-
nation order ≤ to degree d of height k for G.

We can split a graph with an elimination order to degree d in two parts: one of
low degree, and one with an elimination order defined on it. So if G is a graph
that has elimination distance k to degree d, we can associate an elimination
order ≤ for a subgraph H of G of height k with G, so that each component of
G \ V (H) has degree at most d and is connected to H in a certain way:
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Proposition 4.5. Let G be a graph and ≤ an elimination order to degree d for
G of height k. If A is the set of vertices in V (G) that are not ≤-maximal, then:

1. ≤ restricted to A is an elimination order of height k of G[A]; and
2. G \ A has degree at most d;
3. if C is the vertex set of a component of G\A, and u, v ∈ A are ≤-incomparable,

then either E(u,C) = ∅ or E(v, C) = ∅.
We also have a converse to the above in the following sense.

Proposition 4.6. Suppose G is a graph with A ⊆ V (G) a set of vertices and
≤A an elimination order of G[A] of height k, such that:

1. G \ A has degree at most d;
2. if C is the vertex set of a component of G\A, and u, v ∈ A are incomparable,

then either E(u,C) = ∅ or E(v, C) = ∅.
Then, ≤A can be extended to an elimination order to degree d for G of height
k + 1.

Remark 4.7. In the following, given a graph G and an elimination order to degree
d, ≤, we call the subgraph of G induced by the non-maximal elements of the
order ≤ the non-maximal subgraph of G under ≤.

These alternative characterisations are very useful. In the following series of
lemmas, we use them to construct a canonical elimination order to degree d of
G, based on an elimination order of a graph we call the torso of G, which consists
of the high-degree vertices of G, along with some additional edges. (Due to the
lack of space we again omit proofs. These proofs can be found in the full version
of the paper.)

Lemma 4.8. Let G be a graph with maximal degree Δ(G) ≤ k + d. Let ≤ be an
elimination order to degree d of height k of G with non-maximal subgraph H.

Then H ′ = G[V (H) ∪ {v ∈ V (G) | degG(v) > d}] has an elimination order
� of height at most k(k + d + 1) that can be extended to an elimination order to
degree d of G.

Lemma 4.9. Let G be a graph. Let ≤ be an elimination order to degree d of G
of height k with non-maximal subgraph H, such that H contains all vertices of
degree greater than d.

Then H ′ = G[{v ∈ V (H) | degG(v) > d}] has an elimination order � of
height at most k((k + 1)d)2

k

that can be extended to an elimination order to
degree d of G of height k((k + 1)d)2

k

+ 1.

Next we introduce the notion of d-degree torso and prove that it captures the
properties that we require of an elimination tree to degree d.

Definition 4.10. Let G be a graph, let d > 0 and let H be the induced subgraph
of G containing the vertices of degree larger than d. The d-degree torso of G is
the graph C obtained from H by adding an edge between two vertices u, v ∈ H if
there is a path through G \ V (H) from u to v in G.
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Lemma 4.11. Let G be a graph and let C be the d-degree torso of G. Let H =
G[V (C)] and let ≤ be an elimination order for H. Then ≤ is an elimination
order for C of height h if, and only if, ≤ can be extended to an elimination order
to degree d for G of height h + 1.

Lemma 4.12. Let G be a graph with elimination distance k to degree d and
maximum degree Δ(G) ≤ k + d. Let C be the d-degree torso of G and let ≤ be a
minimum height elimination order for C. Then ≤ has height at most

k(k + d + 1)((k(k + d + 1) + 1)d)2
k(k+d+1)

.

We are ready to prove the main result now:

Theorem 4.13. Let G be a graph that has elimination distance k to degree d.
Let ≤ be a minimum height elimination order of the d-degree torso G. Then ≤
can be extended to an elimination order to degree d of G of height

k((k + 1)(k + d))2
k

+ k(1 + k + d)(k(1 + k + 2d))2
k(1+k+d)

+ 1.

Proof. We show that the d-degree torso of G has an elimination order of height
at most k((k + 1)(k + d))2

k

+ k(1 + k + d)(k(1 + k + 2d))2
k(1+k+d)

. The Theorem
then follows by Lemma 4.11.

Let C be the (k + d)-degree torso of G. We first show that the tree-depth of
C is bounded by k((k+1)(k+d))2

k

. To see this, let � be an elimination order to
degree d of G of minimum height with non-maximal subgraph H. Note that H
contains all vertices of degree greater than k + d, because vertices in G \ V (H)
are adjacent to at most k vertices in H.

Let H ′ = G[{v ∈ V (H) | degG(v) > k+d}]. By Lemma 4.9, the subgraph H ′

has an elimination order � of depth at most h := k((k + 1)(k + d))2
k

that can
be extended to an elimination order to degree k + d of G of height h + 1. Note
that V (H ′) = V (C), so by Lemma 4.11, the order � is an elimination order for
C. Let �′ denote its extension to G.

Let Z be a component of G \ V (H ′) and let CZ be the d-degree torso of
Z. By Lemma 4.12, there is an elimination order �Z for CZ of height at most
k(k + d + 1)((k(k + d + 1) + 1)d)2

k(k+d+1)
. Let vZ be the �-maximal element in

C such that there is a w ∈ CZ with vZ �′ w. Define

≤′:= � ∪
⋃

Z

�Z

∪
⋃

Z

{(v, w) | v �′ vZ , w ∈ CZ}

∪
⋃

Z

{(v, w) | v �′ vZ or v ∈ CZ , w ∈ Ĉ, Ĉ a component of Z \ V (CZ), E(v, Ĉ) �= ∅}.

Observe that C ∪⋃
Z CZ is a subgraph of the d-degree torso of G. Thus ≤′ is an

elimination order for the d-degree torso of G. The height of ≤′ is bounded by

td(C) + max{td(CZ)}Z ≤ k((k + 1)(k + d))2
k

+ k(1 + k + d)(k(1 + k + 2d))2
k(1+k+d)

.

�
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5 Canonisation Parameterized by Elimination Distance
to Bounded Degree

In this section we show that graph canonisation, and thus graph isomorphism, is
FPT parameterized by elimination distance to bounded degree. The main idea is
to construct a labelled directed tree TG from a graph G (of elimination distance
k to degree d) that is an isomorphism invariant for G. From the labelled tree
TG we obtain a canonical labelled tree using the tree canonisation algorithm
from Lindell [12]. In the last step we construct a canonical form of G from the
canonical labelled tree.

The tree TG is obtained from G by taking a tree-depth decomposition of the
d-degree torso of G and labelling the nodes with the isomorphism types of the
low-degree components that attach to them. The tree-depth decomposition of a
graph is just the elimination order in tree form. We formally define it as follows:

Definition 5.1. Given a graph H and an elimination order ≤ on H, the tree-
depth decomposition associated with ≤ is the directed tree with nodes V (H) and
an arc a → b if, and only if, a < b and there is no c such that a < c < b.

Remark 5.2. The tree-depth decomposition corresponding to an elimination
order is what, in the language of partial orders, is known as its covering relation.

Note that, in general, the tree-depth decomposition of a graph that is not con-
nected may be a forest. By results of Bouland et al. [2], we can construct a
canonical tree-depth decomposition of an n-vertex graph of tree-depth k in time
f(k) · nc for some comuptable f and constant c.

Before defining TG formally, we need one piece of terminology.

Definition 5.3. Let G be a graph and let ≤ be a tree order for G. The level of
a vertex v ∈ V (G) is the length of the chain {w ∈ V (G) | w ≤ v}. We denote
the level of v by level≤(v).

Given a graph G of elimination distance k to degree d, let C be the d-degree torso
of G, let T be a canonical tree-depth decomposition of C and ≤ the corresponding
elimination order. Let Z be a component of G\C. We let ZC denote the coloured
graph that is obtained by colouring each vertex v in Z by the colour {i | uv ∈
E(G) for some u ∈ C with level≤(u) = i}. We write F (ZC) for the canonical
form of this coloured graph given by Theorem 2.2. Note that, by the definition
of elimination distance, there is, for each Z and i at most one vertex u ∈ C with
level≤(u) = i which is in NG(Z).

We are now ready to define the labelled tree TG. The nodes of TG are the
nodes of T together with a new node r, and the arcs are the arcs of T along with
new arcs from r to the root of each tree in T . Define, for each node u of TG, Zu

to be the set {Z | Z is a component of G\C with u ≤ -maximal in C ∩NG(Z)}
(if u 	= r) and {Z | Z is a component of G \ C with C ∩ NG(Z) = ∅} (if u = r).
Each node u in T carries a label consisting of two parts:
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– Lw := {level(w) | w < u and uw ∈ E(G)}; and
– the multiset {F (ZC) | Z ∈ Zu}.

Proposition 5.4. For any graphs G and G′, TG and TG′ are isomorphic labelled
trees if, and only if, G ∼= G′.

Proof. If G ∼= G′ then, by construction, their d-degree torsos induce isomorphic
graphs. The canonical tree-depth decomposition of Bouland et al. then produces
isomorphic directed trees and the isomorphism must preserve the labels that
encode the rest of the graphs G and G′ respectively.

For the converse direction, suppose we have an isomorphism φ between the
labelled trees TG and TG′ . Since the label Lu of any node u encodes all ancestors
of u which are neighbours, φ must preserve all edges and non-edges in the d-
degree torso C of G. To extend φ to all of G, for each node u in TG, let βu be a
bijection from Zu to the corresponding set Zφ(u) of components of G′ \ C ′, such
that F (ZC) = F (βu(Z)C′

) (such a bijection exists as u and φ(u) carry the same
label). Thus, in particular, there is an isomorphism between ZC and βu(Z)C′

,
since they have the same canonical form. We define, for each v ∈ V (G) \C, φ(v)
to be the image of v under the isomorphism taking the component Z containing v
to βu(Z). Note that this gives a well-defined function on V (G), because for each
such v, there is exactly one node u of TG such that the component containing v is
in Zu. We claim that φ is now an isomorphism from G to G′. Let vw be an edge
of G. If both v and w are in C, then either v < w or w < v. Assume, without
loss of generality, that it is the former. Then, level(v) ∈ Lw in the label of w in
TG and since ϕ is a label-preserving isomorphism from TG to TG′ , ϕ(v)ϕ(w) is
an edge in G′. If both v and w are in G \ C, then there is some component Z of
G \ C that contains them both. Since ϕ maps Z to an isomorphic component of
G′ \ C ′, ϕ(v)ϕ(w) ∈ E(G′). Finally, suppose v is in C and w in G \ C and let
Z be the component containing w. Then i := level(v) is part of the colour of w
in ZC and hence part of the colour of ϕ(w) in the corresponding component of
G′ \ C ′. Moreover, if u is the ≤-maximal element in C ∩ NG(Z), then we must
have v ≤ u. Thus ϕ(v) is the unique element of level i in C ′ ∩ NG′(βu(Z)) and
we conclude that ϕ(v)ϕ(w) ∈ E(G′). By a symmetric argument, we have that
for any edge vw ∈ E(G′), φ−1(v)φ−1(w) ∈ E(G) and we conclude that φ is an
isomorphism. �

With this, we are able to establish our main result.

Theorem 5.5. Graph Canonisation is FPT parameterized by elimination dis-
tance to bounded degree.

Proof. Suppose we are given a graph G with |V (G)| = n. We first compute
the d-degree torso C of G in O(n4) time. Using the result from Bouland et. al.
[2, Theorem 11], we can find a canonical tree-depth decomposition for C in time
O(h(k)n3log(n)) for some computable function h. To compute the labels of
the nodes in the trees (and hence obtain) TG, we determine, for each u ∈ C,
the set {level(w) | w < u and uw ∈ E(G)}. This can be done in time O(n2).
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Then, we find the components of G \ C, and colour the vertices with the levels
of their neighbours in C. This can be done in O(n2) time. Finally, we compute
for each coloured component ZC the canonical representative F (ZC) which, by
Theorem 2.2 can be done in polynomial time (where the degree of the polynomial
depends on d).

Having obtained TG, we compute the canonical form T ′
G in linear time using

Lindell’s canonisation algorithm [12]. Using the labels of T ′
G one can, in linear

time, construct a graph G′ such that T (G′) = T ′
G. By Proposition 5.4, this is a

canonical form G′ of G. �

Corollary 5.6. Graph Isomorphism is FPT parameterized by elimination dis-
tance to bounded degree.

6 Conclusion

We introduce a new way of parameterizing graphs by their distance to triviality,
i.e. by elimination distance. In the particular case of graph canonisation, and thus
also graph isomorphism, taking triviality to mean graphs of bounded degree, we
show that the problem is FPT.

A natural question that arises is what happens when we take other classes
of graphs for which graph isomorphism is known to be tractable as our “trivial”
classes. For instance, what can we say about GI when parameterized by elimina-
tion distance to planar graphs? Unfortunately techniques such as those deployed
in the present paper are unlikely to work in this case. Our techniques rely on
identifying a canonical subgraph which defines an elimination tree into the triv-
ial class. In the case of planar graphs, consider graphs which are subdivisions
of K5, each of which is deletion distance 1 away from planarity. However the
deletion of any vertex yields a planar graph and it is therefore not possible to
identify a canonical such vertex.

More generally, the notion of elimination distance to triviality seems to offer
promise for defining tractable parameterizations for many graph problems other
than isomorphism. This is a direction that bears further investigation.

It is easy to see that if a class of graphs C is characterised by a finite set of
excluded minors, that the class Ĉ of graphs with bounded elimination distance
to C is characterised by a finite set of excluded minors as well. An interesting
question is whether we can, given the set of excluded minors for C, compute the
excluded minors for Ĉ as well?
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Abstract. The input of the Tropical Connected Set problem is a vertex-
colored graph G = (V, E) and the task is to find a connected subset S ⊆
V of minimum size such that each color of G appears in S. This problem
is known to be NP-complete, even when restricted to trees of height
at most three. We show that Tropical Connected Set on trees has no
subexponential-time algorithm unless the Exponential Time Hypothesis
fails. This motivates the study of exact exponential algorithms to solve
Tropical Connected Set. We present an O∗(1.5359n) time algorithm for
general graphs and an O∗(1.2721n) time algorithm for trees.

1 Introduction

Problems on vertex-colored graphs have been widely studied, notably the Graph
Motif problem which was introduced in 1994 by McMorris et al. [17]. This prob-
lem is motivated by applications in biology and metabolic networks [16,19].
Graph Motif is a decision problem asking whether a given vertex-colored graph
G = (V,E) has a connected subset S of vertices such that there is bijection
between S and a multiset of colors; the latter being part of the input. Equiv-
alently, the question is whether a vertex-colored graph given with a vector of
multiplicities of the colors of G has a connected vertex set S such that each
color appears in S with its required multiplicity. As an immediate consequence,
the size of a solution S is given by the input.

Fellows et al. proved that Graph Motif is NP-complete, even if the multiset of
colors is actually a set and if the graph is a tree of maximum degree three [9]. They
also proved that this problem is NP-complete even if the multiset contains only
two colors and if the graph is bipartite of maximum degree four [9]. Many variants
of the Graph Motif problem have been studied; typical contributions being NP-
hardness proofs and fixed-parameter tractable algorithms [4,9,10,14,16].
To the best of our knowledge, the unique paper to study exact exponential time
algorithms for a variant of Graph Motif is the one by Dondi et al. [8].
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In this paper we study the exact complexity of another variant of the Graph
Motif problem, i.e. the optimization problem Tropical Connected Set. Let G =
(V,E) be a graph and let c be a (not necessarily proper) vertex coloring assigning
to each vertex of G a color, i.e. a positive integer. By C we denote the set of
colors of the vertices of G. Now S ⊆ V is a tropical set of the vertex-colored
graph G if all colors of G appear in S. The problem Tropical Connected Set
takes as input a vertex-colored graph and the task is to find a tropical connected
subset of vertices S of minimum size. The study of tropical connected sets was
initiated by Angles d’Auriac et al. [3]. With a reduction from the well-known
NP-complete problem Dominating Set, Angles d’Auriac et al. have shown that
finding a minimum tropical connected set is NP-complete, even when restricted
to trees of height three [3].

Using their reduction, we first show that Tropical Connected Set on trees
has no subexponential-time algorithm unless the Exponential Time Hypothesis
fails (Sect. 3); thus the existence of such a subexponential-time algorithm is con-
sidered unlikely. This provides the following motivation for studying the exact
complexity of Tropical Connected Set. Many NP-hard graph problems when
restricted to trees are polynomial-time solvable; often they are fixed-parameter
tractable when parameterized by treewidth, based on [6]. Also NP-hard graph
problems on planar graphs and even graphs of bounded genus often can be solved
by subexponential-time parameterized algorithms [7,13]. Thus, if a problem is
not subexponential-time solvable on trees, what kind of fast exponential algo-
rithm on trees, or even general graphs can we expect; a O∗(αn) time algorithm
with α ≥ 1 much smaller than 2, or even α close to 1? Our main contributions
are two fast exact exponential algorithms solving the NP-hard problem Tropical
Connected Set. The algorithm for general graphs has running time O∗(1.5359n)
and uses algorithms for the NP-hard problems Connected red-blue domi-

nating set and Steiner tree as subroutines (Sect. 4). The branching algo-
rithm for trees has running time O∗(1.2721n) and heavily exploits structural
properties of trees (Sect. 5).

Proofs not given in this version will be provided in the full version of this
paper.

2 Preliminaries

Throughout this paper, we denote by G = (V,E) an undirected graph, and by
T = (V,E) an undirected tree with vertex set V and edge set E. We adopt the
convention n = |V | and m = |E|. For a subset X ⊆ V of vertices, we denote
by G[X] the subgraph of G induced by X. For a vertex v ∈ V of G, we denote
by N(v) the set of all neighbors of v; and we let N [v] = N(v) ∪ {v}. For every
X ⊆ V , we denote by N [X] =

⋃
x∈X N [x] the closed neighbourhood of X, and

by N(X) = N [X] \ X the open neighbourhood of X. A vertex set S ⊆ V of G
is connected if the subgraph G[S] is connected. Let G = (V,E) be a graph, and
let c : V → N be a (not necessarily proper) coloring of G. Then we call (G, c) a
vertex-colored graph and C = {c(v) : v ∈ V } the set of colors of G. For a subset
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of vertices S of a vertex-colored graph (G, c), we denote by c(S) = {c(v) : v ∈ S}
the set of colors of S, and we call S tropical if c(S) = C.

We denote by l1(G) the number of colors appearing exactly once in a vertex-
colored graph (G, c), and by l2(G) the number of colors appearing at least twice
in (G, c). A connected component G[B] of a disconnected graph G = (V,E) has
a tropical connected set if and only if all colors of the graph G appear in B ⊆ V .
Hence (G, c) has no tropical connected set if and only if none of its components
contains all colors of G. Thus we may consider only connected graphs.

Throughout our paper all graphs and trees are vertex-colored and often
denoted by G and T instead of (G, c) and (T, c). In this paper, we focus on
the Tropical connected set problem:

Tropical connected set

Input: Graph G = (V,E) with a coloring c : V → N and set of colors C.
Question: Find a minimum size subset S ⊆ V such that G[S] is connected, and
S contains at least one vertex of each color in C.

3 No Subexponential-Time Algorithm for Trees

We show that Tropical connected set on trees of height at most 3 admits no
subexponential-time algorithm unless the Exponential Time Hypothesis (short
ETH) fails. ETH has been defined by Impagliazzo et al. [15]. On one hand it is
considered unlikely that ETH fails, and on the other hand a proof of ETH would
have many important consequences in complexity theory. The non existence
of a subexponential-time algorithm under the assumption of ETH stresses the
significance of designing an exact algorithm running in time O∗(αn) (for some
fixed constant α much smaller than 2). The result is achieved by combining a
reduction from Dominating set to Tropical connected set described in [3],
and a proof that Dominating set admits no subexponential-time algorithm on
graphs with maximum degree 6 given in [12].

Theorem 1. The Tropical connected set problem on trees of height at
most 3 admits no subexponential-time algorithm, unless SNP ⊆ SUBEXP, which
would imply that the Exponential Time Hypothesis fails.

Proof. Angles d’Auriac et al. [3] proved that Tropical connected set is NP-
complete even on trees of height at most 3, by a reduction from Dominating

set. For the sake of completeness, we briefly recall the construction used in their
proof.

Given an input graph G = (V,E), instance for Dominating set, we con-
struct a vertex-colored tree (T, c) as follows. Consider an arbitrary ordering
σ : V → N on the vertices of G. Initially, T contains a unique vertex r colored
R /∈ {0, 1, . . . , |V |}. Now, for every vertex v ∈ V (G), add to T a star whose
center is colored σ(v), with one leaf colored σ(u) for every neighbor u of v in G,
and an extra leaf colored 0 linked to the vertex r of T . See Fig. 1.

Now, let us refer to Fomin et al. [12] who proved that Dominating set

admits no subexponential-time algorithm on graphs with maximum degree 6,
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Fig. 1. The reduction from Dominating set to Tropical connected set [3].

unless SNP ⊆ SUBEXP. Observe that given an input graph G = (V,E) of
maximum degree 6, instance for Dominating set, the reduction from Dom-

inating set to Tropical connected set described above yields a tree T ,
instance for Tropical connected set, of height 3 and containing at most
8n + 1 = O(n) vertices. Thus a subexponential-time algorithm for Tropical

connected set on trees of maximum height 3 would yield a subexponential-
time algorithm for Dominating set on graphs with maximum degree 6, hence
implying that SNP ⊆ SUBEXP; and the latter implies that ETH fails [15]. �

The fact that there is no subexponential-time algorithm for Tropical con-

nected set on trees unless ETH fails, triggered our interest in constructing
fast exponential time algorithms for Tropical connected set on trees as
well as on general graphs.

4 An Exact Exponential Algorithm for General Graphs

This section is devoted to the design and analysis of an exact algorithm for Trop-

ical connected set. A naive brute-force algorithm would solve this problem
in O∗(2n) time. Using reductions to the NP-hard problems Connected red-

blue dominating set and Steiner tree and by balancing the corresponding
algorithms, we design an algorithm computing a minimum tropical connected
set in time O∗(1.5359n).

Let us recall the definition of these two problems:
Steiner tree

Input: Graph G = (V,E), weight function w : E → N, set of terminals K ⊆ V .
Question: Find a connected subtree T = (V ′, E′) of G, with V ′ ⊆ V and E′ ⊆ E,
such that K ⊆ V ′ and

∑
e∈E′ w(e) is minimum.

Connected red-blue dominating set

Input: Graph G = (R∪B,E) where vertices are colored either red (vertices in R)
or blue (vertices in B).
Question: Find the smallest subset S ⊆ R of red vertices such that G[S] is
connected, and every vertex in B has at least one neighbor in S, that is B ⊆
N(S).

The currently best known exact algorithms (for our purposes) solving Steiner
tree and Connected red-blue dominating set are due to Nederlof [18] and
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Abu-Khzam et al. [1] respectively. Their running times are O∗(W ·2|K|) (where K
is the set of terminals and W the maximum weight of the input) and O∗(1.36443n).

Now we define a construction that will be used by our algorithms to reduce
Tropical connected set to Steiner tree and Connected red-blue

dominating set. Let G = (V,E) be a graph, let c be a coloring of G and
C the set of colors of G. First the graph G′ = (R′ ∪ B′, E′) to be used to reduce
Tropical connected set to Steiner tree (see Lemma 1) is defined as fol-
lows: R′ =

{
v′ | v ∈ V

}
, B′ =

{
ri | i ∈ C

}
, E′ =

{
u′v′ | uv ∈ E

} ∪ {
v′ri |

v is of color i in G
}
.

Secondly we construct the graph G” = (R” ∪ B”, E”) to be used to reduce
Tropical connected set to Connected red-blue dominating set (see
Lemma 2). Initially, set R” = R′, B” = B′ and E” = E′. For every vertex v ∈ V
whose color appears exactly once in G, move the corresponding vertex v′ from
R” to B”, and remove the vertex ri from B”, where c(v) = i in G. After this
step, let B1, . . . , Bp be the components of the subgraph induced in G”[B”] by
those vertices that had been moved to B”. For each i = 1, 2, . . . p, contract the
component Bi in G”[B”] so that it remains only one vertex and call this vertex
bi. Note that after all contractions, B” is now an independent set of G”. Finally
for all bi, 1 ≤ i ≤ p, turn the neighborhood NG”(bi) ⊆ R” into a clique by adding
corresponding edges. It is worth mentioning that this construction can be done
in polynomial time.

Now we describe three ways to solve Tropical connected set: by brute-
force, via Steiner tree and via Connected red-blue dominating set.

Brute-force. Let (G, c) be an instance of Tropical connected set. Our
brute-force algorithm first computes the set U of all vertices having a color
appearing only once in G (forced to be in any tropical set). Then for every
A ⊆ V \ U verify in polynomial time whether U ∪ A is a tropical connected set
and compute the minimum size of (such) a tropical connected set. This algorithm
runs in time O∗(2n−l1(G)

)
.

Using Steiner tree. Tropical connected set can easily be reduced to
Steiner tree as follows. Let (G, c) be an instance of Tropical connected

set. We construct an instance (G′, w,K) for Steiner tree, where G′ = (R′ ∪
B′, E′) is the graph constructed above and the terminal set K = B′. Note that
|K| = |B′| = |C|. The weight function is defined as follows: w(e) = n = |V | for
every e ∈ E(G′) incident to a vertex of B′, and w(e) = 1 for every edge e = u′v′

with u′, v′ ∈ R′.

Lemma 1. The vertex-colored graph (G, c) admits a tropical connected set of
size k if and only if (G′, w,B′) admits a Steiner tree of weight k′ = k −1+ |C|n.
Using the exact algorithm of Nederlof [18] to solve Steiner tree in O∗(W2k)
time (with k the number of terminals and maximum weight W = n), this reduc-
tion yields an algorithm solving Tropical connected set in O∗(2|C|) time.

Using Connected red-blue dominating set. Tropical connected set

can be reduced to Connected red-blue dominating set as follows.
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Let (G, c) be an instance of Tropical connected set. We construct an
instance G” = (R”∪B”, E”) of Connected red-blue dominating set where
G” is the graph constructed above, R” set of red and B” set of blue vertices.

Lemma 2. (G, c) admits a tropical connected set of size k if and only if G” =
(R”∪B”, E”) admits a connected red-blue dominating set of size k′ = k − l1(G).

Proof. In the proof we identify a vertex v in G and its copy v′ in G′′.
Let S be a tropical connected set of G of size k. Let U be the (possibly

empty) set of vertices having a color appearing only once in G. Clearly U ⊆ S.
We claim that D = S \ U is a connected red-blue dominating set of G”. By
construction, B1, B2, . . . , Bp are the connected components of G[U ], and for
each i ∈ {1, 2, . . . , p}, the connected set Bi of G is contracted to bi in G”.
Since S is connected in G, (S \ U) ∪ {b1, b2, . . . , bp} is connected in G” since we
contract connected sets in G. Now when removing {b1, b2, . . . , bp} from (S \U)∪
{b1, b2, . . . , bp} we obtain D. Consider the induced subgraphs in G”. Since by
construction of G” for every bi the neighbours of bi form a clique in G”, removal
of a vertex bi cannot make the set D disconnected. Hence D is connected in G”.
Finally by construction, D ⊆ R” and N(D) ∩ B” contains all vertices ri ∈ B”
with a color i appearing at least twice in G. Since S is connected in G and
{b1, b2, . . . , bp} ⊆ B” is an independent set of G”, every vertex of {b1, b2, . . . , bp}
has a neighbour in D. Hence D is red-blue dominating in G”. Summarizing,
D is a connected red-blue dominating set of G” such that |D| = |S| − |U | =
k − l1(G) = k′.

Conversely, let D ⊆ R” be a red-blue dominating set of G” such that |D| =
k′ = k − l1(G). By construction of G” and since D is a red-blue dominating set,
for every i = 1, 2, . . . , p, the set D contains at least one vertex of N(bi) ∩ R” in
G”. Consequently D ∪ ⋃p

i=1 Bi is a connected set in G′, and also in G. To see
this recall that for every i, the vertex bi is obtained by contracting the connected
set Bi. Furthermore D ∪ ⋃p

i=1 Bi is tropical since it contains all vertices of G
with a color appearing once in G, and D dominates B”\⋃p

i=1 Bi, i.e. D contains
a vertex of each color appearing at least twice. Hence D ∪ ∪p

i=1Bi is a tropical
connected set in G of size k′ + l1(G) = k. �

The exact algorithm due to Abu-Khzam et al. [1] solves Connected red-blue

dominating set in time O∗(1.36443n). Hence our reduction yields an algorithm
solving Tropical connected set on (G, c) in O∗(1.36443n+l2(G)

)
time.

Balancing three algorithms. We are now ready to describe our exact algo-
rithm for Tropical connected set on general graphs, by balancing between
Steiner tree, Connected red-blue dominating set, and a brute-force
algorithm depending on the value of l1(G) (see Fig. 2). Let (G, c) be the instance
of Tropical connected set.

– If l1(G) < 0.23814 · n, then reduce to Steiner tree and use the algorithm
of Nederlof [18] on (G′, w,K); this yields an algorithm solving Tropical

connected set in O∗(2|C|) time. Notice that in this case, |C| = l1(G) +
l2(G) < 0.23814 · n + 1−0.23814

2 · n = 0.61907 · n.
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Fig. 2. Representation of the algorithms running time by a dark curve. The x-axis
corresponds to the ratio α = l1(G)

n
, while the y-axis corresponds to the constant c in

the running time O∗(cn). Point a corresponds to α = 0.23814; point b to α = 1
3
; point c

to α = 0.42218. Our algorithms running time O∗(1.5359n) is achieved for a = 0.23814.

– If 0.23814 · n ≤ l1(G) ≤ 0.42218 · n, then reduce to Connected red-

blue dominating set and use the algorithm of Abu-Khzam et al. [1] on
G”; this yields an algorithm solving Tropical connected set in time
O∗(1.36443n+l2(G)

)
. Notice that in this case, n+ l2(G) ≤ n+ 1

2 ·n− 1
2 · l1(G) ≤

1.38093 · n.
– If 0.42218 ·n < l1(G), then use the brute-force algorithm on (G, c); this yields

an algorithm solving Tropical connected set in O∗(2n−l1(G)
)

time. Notice
that n − l1(G) ≤ (1 − 0.42218) · n = 0.57782 · n.

We establish an exact exponential algorithm which needs only polynomial space
since all three algorithms used need only polynomial space. It is worth mention-
ing that Brute-force is not needed to achieve the claimed running time.

Theorem 2. The Tropical connected set problem on general graphs can
be solved in time O∗(1.5359n) and polynomial space.

5 An Exact Exponential Algorithm for Trees

The problem of finding a minimum tropical connected set on trees of height at
most three is NP-hard [3], and has no subexponential-time algorithm unless ETH
fails, as shown in Sect. 3. The main result of this section is a branching algorithm
to compute a minimum tropical connected set on trees in time O∗(1.2721n).
Branching algorithms are a main tool to design exact exponential algorithms. For
an introduction to branching algorithms we refer to [11]. We shortly summarize
the main ideas in the design and analysis of branching algorithms. Firstly, such an
algorithm solves instances of a problem by recursively branching into instances of
subproblems of smaller sizes; thereby using branching and reduction rules. The
execution of a branching algorithm can be illustrated by a search tree. Secondly,
we shortly summarize how time analysis of such algorithms is done.

Time analysis. The running time of a branching algorithm is usually obtained
by upper bounding the maximum number of vertices in a search tree. To do this,



154 M. Chapelle et al.

let T (n) be an upper bound for the running time of the algorithm when applied
to any instance of size n. Consider any branching rule. Assume the sizes of
the subproblems when applying this rule to any instance of size n are at most
n − t1, . . . , n − tb. Then we say that the rule has branching vector (t1, . . . , tb).
The running time T (n) satisfies the recurrence T (n) ≤ ∑b

i=1 T (n − ti). It is
well-known that all basic solutions of the corresponding homogeneous linear
recurrence are of the form λn, where λ is a complex number. For the running
time analysis we need the largest value of λ which is known to be the unique
positive real root of the polynomial λn−∑b

i=1 λn−ti , called branching number of
(t1, . . . , tb); often denoted by τ(t1, . . . , tb). If different branching rules are applied
and different branching vectors are involved at different steps of an algorithm,
then the branching vector with the largest branching number, say λmax, implies
an upper bound of O∗((λmax)n) for the running time of the algorithm. In our
presentation we shall carefully analyze the branching vectors, provide them in
Fig. 3, and give their branching numbers without details on calculations.

Notation. Let T = (V,E) be a tree and (T, c) an instance of Tropical

connected set. In the rest of this section, we consider T as a tree rooted
at a distinguished vertex r ∈ V . For a given vertex v, we denote by T (v) the
subtree of T rooted at v, and by |T (v)| its number of vertices. We denote by
path(v, r) = (x0, x1, . . . , xk) the vertex set of the unique path in the tree T from
the vertex v = x0 to the root r = xk in T . By d(v, w) we denote the length of
the unique and thus shortest path from v to w in T . Let S ⊆ V be a connected
subset of T and v ∈ V , then we denote by d(v, S) the distance from v to S
in T , i.e. d(v, S) = mins∈S d(v, s) the shortest length of a path from v to any
vertex s of S. Observe that d(v, S) = 0 for all v ∈ S, and that d(v, S) = 1 for all
v ∈ N(S). For a vertex v ∈ (V \ {r}), we denote by p(v) the parent of v in the
rooted tree T . A vertex v ∈ V is called a leaf of the rooted tree T if |T (v)| = 1,
otherwise v is called an internal of T . Finally, for an internal v ∈ V , we denote
by s1(v), . . . , sk(v), k ≥ 1, the children of v in T .

Instances and subproblems. As already mentioned branching algorithms
recursively solve subproblems by applying reduction and branching rules. Given
a (rooted) tree T = (V,E) with a coloring c and set of colors C as an input of
Tropical connected set, T , c and C are global for our recursive algorithm.
Now we define an instance of a subproblem as a 3-partition (S, F,D) of V . For
such an instance (S, F,D) the task is to find a tropical connected set S∗ of (T, c)
such that S ⊆ S∗, S∗ ∩ D = ∅ and the size of S∗ is minimum. We call such a
vertex set S∗ a solution of (S, F,D). Finally such an instance (S, F,D) is defined
as follows.

– S is the set of selected vertices, i.e. those vertices that have already been
chosen as being a subset of any solution.

– F is the set of free vertices, i.e. no decision has been made whether they are
in S or D.

– D is the set of discarded vertices, i.e. those vertices that cannot belong to any
solution.



Exact Exponential Algorithms to Find a Tropical Connected Set 155

As will become clear later, the construction of our algorithm implies that an
instance (S, F,D) always satisfies the following properties: (i) the root r of T
belongs to S, (ii) S and S ∪F are connected sets of T , and (iii) for every v ∈ D
all vertices of T (v) also belong to D. Finally for any instance (S, F,D), we denote
by T ′ the subtree induced by S ∪ F and we denote by C ′ ⊆ C the set of those
colors that do not already appear in S: C ′ = C \ c(S).

Description of algorithm. The following two procedures are used in the
reduction and branching rules of our algorithm when applied to any instance
(S, F,D) to obtain new instances and subproblems. Let v ∈ F . Note that select-
ing v implies to also add all free vertices of path(v, r) to S, since otherwise no
superset set of S∪{v} will be connected, and that for the same reason, discarding
v implies that all vertices of T (v) are also moved to D.

ADD(v) adds all free vertices of path(v, r) to S, also removes them from F , and
removes all colors of path(v, r) from C ′.

RMV(v) removes all free vertices of T (v) from F , and adds them to D, while C ′

remains unchanged.

Let X ⊆ F . To ease notation, we write ADD(X) to denote applying ADD(v) for all
v ∈ X (order does not matter). Similarly, we write RMV(X) to denote applying
RMV(v) for all v ∈ X (again order does not matter).

Now we describe our branching algorithm to compute a minimum tropi-
cal connected set on trees which runs in time O∗(1.2721n). Let T = (V,E)
be the input tree, c its vertex coloring and C the set of colors of T . For each
v ∈ V , we consider the tree T rooted at v and we apply the branching algo-
rithm to the instance (S, F,D) = ({v}, V \ {v}, ∅). Note that the root always
belongs to S. Therefore a minimum tropical connected set of (T, c) is a solution of
({v}, V \{v}, ∅) of minimum size, taken over all v ∈ V . To describe our branching
algorithm, let (S, F,D) be any instance: an initial one with F = V \ {v} or one
obtained by a sequence of recursive calls. In Fig. 3 a listing of the reduction and
branching rules of our algorithm is given. Also we assign to each branching rule
its branching vector. The details of the case analysis are given in Theorem 3. As
is common, the rules are listed in the order in which they have to be applied, i.e.
a rule can only be applied to an instance if all previous ones cannot be applied.

Analysis of algorithm. In Lemma 3 and Theorem 3, we prove the correctness
of the reduction and branching rules given in Fig. 3.

Lemma 3. The reduction rules of the branching algorithm TCS-Tree are safe.

Proof. Let (S, F,D) be any instance of a subproblem and C ′ = C \ c(S). We
denote by S∗ a solution of (S, F,D). Hence S∗ is a tropical connected set satis-
fying S ⊆ S∗ and D ∩ S∗ = ∅ and being of minimum size among all such sets, if
there is one.
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Algorithm TCS-Tree(S, F,D)

Reduction rules.

R0.1. If C′ = ∅, then STOP: S is a tropical connected set of T .
R0.2. If F = ∅, then STOP: there is no solution for this instance.
R1. If there is v ∈ F , v a leaf of T ′, such that c(v) /∈ C′, then RMV(v).
R2. If there is v ∈ F such that c(v) ∈ C′ and for every u ∈ F \ {v}, c(v) �= c(u), then

ADD(v).
R3. If there is v ∈ F , v a leaf of T ′, such that there exists u ∈ F \ {v}, such that

c(u) = c(v) and d(u, S) = 1, then RMV(v).
R4. If there is v ∈ F , v a leaf of T ′, such that there exists u ∈ F \{v}, with c(u) = c(v)

such that d(u, path(v, r)) ≤ 1, then RMV(v).
R5. If there is u ∈ F , such that there is a leaf v of T ′, v ∈ S, with c(u) = c(v), then

RMV(u).
R6. If all vertices in F are leaves in T ′, then ADD(v), for any v ∈ F .

Branching rules. Each of the branching rules creates two subproblems. We write
〈O1 || O2〉 to express that the algorithm branches into 2 subinstances, where the set of
operations Oi is applied to instance (S, F,D) to obtain the ith subinstance.

B1. If there is a free vertex v ∈ F , v leaf of T ′ with d(v, S) ≥ 4, then the algorithm
distinguishes three cases.

(a) If there are two internals v′ and v′′ in F satisfying c(v) = c(v′) = c(v′′):
〈{ADD(v), RMV({v′, v′′})} || RMV(v)〉 (7,1)

(b) If there is one leaf v′ ∈ F of T ′ satisfying c(v) = c(v′): 〈{ADD(p(v)), RMV(v′)} ||
RMV(p(v))〉 (4,2)

(c) If there is a unique internal v′ ∈ F of T ′ satisfying c(v) = c(v′): 〈{ADD(v), RMV(v′)} ||
{RMV(v), ADD(v′)}〉 (6,3)

B2. If there is a vertex v ∈ F such that v is a leaf of T ′ and d(v, S) = 3, then the
algorithm distinguishes four cases.

(a) If there are two leaves v′, v′′ ∈ F of T ′ satisfying c(v) = c(v′) = c(v′′):
〈{ADD(p(v)), RMV({v′, v′′})} || RMV(p(v))〉 (4,2)

(b) If there are two internals v′, v′′ ∈ F of T ′ satisfying c(v) = c(v′) = c(v′′):
〈{ADD(v), RMV({v′, v′′})} || RMV(v)〉 (7,1)

(c) If there is a leaf v′ ∈ F and an internal v′′ ∈ F of T ′ satisfying c(v) = c(v′) = c(v′′):
〈{ADD(v′′), RMV({v, v′})} || RMV(v′′)〉 (4,2)

(d) If there is a unique vertex v′ ∈ F of T ′ satisfying c(v) = c(v′): 〈{ADD(v), RMV(v′)} ||
{RMV(v), ADD(v′)}〉 (4,3)

B3. If there is a free vertex v ∈ F , v leaf of T ′ with d(v, S) = 2, then the algorithm
distinguishes two cases.

(a) If there are k ≥ 2 vertices v1, . . . , vk ∈ F of T ′ satisfying c(v) = c(v1) = . . . = c(vk):
〈{ADD(p(v), v), RMV({v1, . . . , vk})} || RMV(p(v))〉 (4,2)

(b) If there is a unique vertex v′ ∈ F of T ′ satisfying c(v) = c(v′):
〈{ADD({p(v), v}), RMV(v′)} || {RMV(p(v)), ADD(v′)}〉 (3,4)

Fig. 3. Reduction rules, branching rules and branching vectors. The largest branching
number is τ(4, 2) ≤ 1.2721.



Exact Exponential Algorithms to Find a Tropical Connected Set 157

R0.1. Let C ′ = ∅. Due to the properties of instances, G[S] is connected, and
as C ′ = ∅, S is tropical. Hence S is a tropical connected set of T and S
is a solution of (S, F,D).

R0.2. Let C ′ 
= ∅ and F = ∅. By the properties of instances, G[S] is a connected
set of T . However, since C ′ 
= ∅, S is not tropical. Since S cannot be
extended, (S, F,D) has no solution.

R1. Let v ∈ F be a leaf of T ′ = T [S ∪ F ] such that c(v) /∈ C ′. Let v′ ∈ S
with c(v) = c(v′). Suppose S∗ is a solution of (S, F,D). Assume that
v ∈ S∗. Since S ⊆ S∗ and v′ ∈ S, we also have v′ ∈ S∗. Clearly S∗ \ {v}
is tropical and a connected set. Hence S∗ is not a solution of (S, F,D),
contradiction. Thus we may safely discard v and apply RMV(v).

R2. Let v ∈ F be the unique vertex in F of color c(v) ∈ C ′. Hence any
solution S∗ of (S, F,D) must contain v to be tropical. Thus we may
safely apply ADD(v).

R3. Let v ∈ F be a leaf of T ′ = T [S∪F ], and let u ∈ F such that c(u) = c(v)
and d(u, S) = 1. Assume that v ∈ S∗ for a solution S∗ of (S, F,D). If
S∗ contains u, then S∗ is not minimum, since S∗ \ {v} is tropical and
connected. If S∗ does not contain u, then (S∗ \{v})∪{u} is tropical and
connected too. Hence, if there is a solution containing v, then there is
also a solution not containing v. Thus it is safe to apply RMV(v).

R4. Let v ∈ F be a leaf of T ′ and let u ∈ F with c(u) = c(v) and d(u, path
(v, r)) ≤ 1. Let S∗ be a solution containing v. If u ∈ path(v, r), then
S∗ \{v} is tropical connected, and so S∗ is not a solution, contradiction.
If u /∈ path(v, r), then there is an x ∈ path(v, r), x 
= v, such that
xu ∈ E. Moreover, since S∗ is connected, v ∈ S∗ implies x ∈ S∗. Thus
(S∗ \ {v}) ∪ {u} is tropical and connected. Hence there is a solution not
containing v and we safely apply RMV(v).

R5. Let u ∈ F and v be a leaf of T ′, and v ∈ S with c(u) = c(v). Let
S∗ be any solution of (S, F,D) containing a vertex x ∈ T ′(u). Observe
that u ∈ path(x, r). Now r, x ∈ S∗ and S∗ is connected implies u ∈ S∗.
Clearly, v ∈ S implies v ∈ S∗ and together with u ∈ S∗ we obtain
S∗ \ {v} is tropical and connected, contradicting v ∈ S. Hence u /∈ S∗

and we may safely apply RMV(u).
R6. When this rule applies, then any subset of leaves of T ′ with pairwise

different colors can be added to S to obtain a solution S∗. Hence adding
any leaf of T ′ to S is safe. �

The correctness of the branching rules and the time analysis including the deter-
mination of the branching vectors will be given in the full version. Combined
with Lemma 3 we obtain

Theorem 3. Our branching algorithm TCS-Tree computes a minimum tropical
connected set of a tree in time O∗(1.2721n).
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Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 340–351.
Springer, Heidelberg (2007)

10. Fellows, M.R., Fertin, G., Hermelin, D., Vialette, S.: Upper and lower bounds for
finding connected motifs in vertex-colored graphs. J. Comput. Syst. Sci. 77(4),
799–811 (2011)

11. Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms. Springer, Heidelberg
(2010)

12. Fomin, F.V., Kratsch, D., Woeginger, G.J.: Exact (Exponential) algorithms for the
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Abstract. Given an edge-weighted directed graph G = (V, E) on n
vertices and a set T = {t1, t2, . . . tp} of p terminals, the objective of the
Strongly Connected Steiner Subgraph (SCSS) problem is to find
an edge set H ⊆ E of minimum weight such that G[H] contains a ti → tj

path for each 1 ≤ i �= j ≤ p. The problem is NP-hard, but Feldman and
Ruhl [FOCS ’99; SICOMP ’06] gave a novel nO(p) algorithm for the p-
SCSS problem.

In this paper, we investigate the computational complexity of a variant
of 2-SCSS where we have demands for the number of paths between
each terminal pair. Formally, the 2-SCSS-(k1, k2) problem is defined as
follows: given an edge-weighted directed graph G = (V, E) with weight
function ω : E → R≥0, two terminal vertices s, t, and integers k1, k2 ; the
objective is to find a set of k1 paths F1, F2, . . . , Fk1 from s � t and k2

paths B1, B2, . . . , Bk2 from t � s such that
∑

e∈E ω(e)·φ(e) is minimized,

where φ(e) = max
{

|{i : i ∈ [k1], e ∈ Fi}| ; |{j : j ∈ [k2], e ∈ Bj}|
}
. For

each k ≥ 1, we show the following:
– The 2-SCSS-(k, 1) problem can be solved in nO(k) time.
– A matching lower bound for our algorithm: the 2-SCSS-(k, 1) problem

does not have an f(k) · no(k) algorithm for any computable function
f , unless the Exponential Time Hypothesis (ETH) fails.

Our algorithm for 2-SCSS-(k, 1) relies on a structural result regarding the
optimal solution followed by using the idea of a “token game” similar to
that of Feldman and Ruhl. We show with an example that the structural
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result does not hold for the 2-SCSS-(k1, k2) problem if min{k1, k2} ≥ 2.
Therefore 2-SCSS-(k, 1) is the most general problem one can attempt
to solve with our techniques. To obtain the lower bound matching the
algorithm, we reduce from a special variant of the Grid Tiling problem
introduced by Marx [FOCS ’07; ICALP ’12].

1 Introduction

The Steiner Tree (ST) problem is one of the earliest and most fundamen-
tal problems in combinatorial optimization: given an undirected edge-weighted
graph G = (V,E) with edge weights c : E → R

+ and a set T ⊆ V of termi-
nals, the objective is to find a tree S of minimum cost c(S) :=

∑
e∈S c(e) which

spans all the terminals. The Steiner Tree problem is believed to have been
first formally defined by Gauss in a letter in 1836. In the directed version of the
ST problem, called Directed Steiner Tree (DST), we are also given a root
vertex r and the objective is to find a minimum size arborescence in the directed
graph which connects the root r to each terminal from T . An easy reduction
from Set Cover shows that the DST problem is also NP-complete.

Steiner-type of problems arise in the design of networks. Since many net-
works are symmetric, the directed versions of Steiner type of problems were
mostly of theoretical interest. However in recent years, it has been observed [13]
that the connection cost in various networks such as satellite or radio networks
are not symmetric. Therefore, directed graphs form the most suitable model for
such networks. In addition, Ramanathan [13] also used the DST problem to find
low-cost multicast trees, which have applications in point-to-multipoint commu-
nication in high bandwidth networks. A generalization of the DST problem is the
Strongly Connected Steiner Subgraph (SCSS) problem. In the p-SCSS
problem, given a directed graph G = (V,E) and a set T = {t1, t2, . . . , tp} of p
terminals the objective is to find a set S ⊆ V such that G[S] contains a ti → tj
path for each 1 ≤ i �= j ≤ p. The best known approximation ratio in polynomial
time for SCSS is pε for any ε > 0 [2]. A result of Halperin and Krauthgamer [8]
implies SCSS has no Ω(log2−ε n)-approximation for any ε > 0, unless NP has
quasi-polynomial Las Vegas algorithms.

The 2-SCSS-(k1, k2) Problem: We define the following generalization of the
2-SCSS problem:

2-SCSS-(k1, k2)
Input : An edge-weighted digraph G = (V,E) with weight function ω : E →
R≥0, two terminal vertices s, t, and integers k1, k2
Question: Find a set of k1 paths F1, F2, . . . , Fk1 from s � t and k2 paths
B1, B2, . . . , Bk2 from t � s such that

∑
e∈E ω(e) · φ(e) is minimized where

φ(e) = max
{

|{i : 1 ≤ i ≤ k1, e ∈ Fi}| ; |{j : 1 ≤ j ≤ k2, e ∈ Bj}|
}

.

Observe that 2-SCSS-(1, 1) is the same as the 2-SCSS problem. The definition
of the 2-SCSS-(k1, k2) problem allows us to potentially choose the same edge
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multiple times, but we have to pay for each time we use it in a path between
a given terminal pair. This can be thought of as “buying disjointness” by
adding parallel edges. In large real-world networks, it might be more feasible to
modify the network by adding some parallel edges to create disjoint paths than
finding disjoint paths in the existing network. Teixira et al. [14,15] model path
diversity in Interner Service Provider (ISP) networks and the Sprint network
by disjoint paths between two hosts. There have been several patents [7,12]
attempting to design multiple paths between the components of Google Data
Centers.

The 2-SCSS-(k1, k2) problem is a special case of the Directed Survivable

Network Design (Dir-Cap-SNDP) problem [6] in which we are given an
directed multigraph with costs and capacities on the edges, and the question is
to find a minimum cost subset of edges that satisfies all pairwise minimum-cut
requirements. In the 2-SCSS-(k1, k2) problem, we do not require disjoint paths.
As observed in Chakrabarty et al. [1] and Goemans et al. [6], the Dir-Cap-

SNDP problem becomes much easier to approximate if we allow taking multiple
copies of each edge.

1.1 Our Results and Techniques

In this paper, we consider the 2-SCSS-(k, 1) problem parameterized by k, which
is the sum of all the demands. To the best of our knowledge, we are unaware of
any non-trivial exact algorithms for a version of the SCSS problem with demands
between the terminal pairs. Our main algorithmic result is the following:

Theorem 1. The 2-SCSS-(k, 1) problem can be solved in nO(k) time.

Our algorithm proceeds as follows: In Sect. 2.1 we first show that there is an
optimal solution for the 2-SCSS-(k, 1) problem which satisfies a structural prop-
erty which we call as reverse-compatibility. Then in Sect. 2.2 we introduce a
“Token Game” (similar to that of Feldman and Ruhl [5], and show that it can
be solved in nO(k). Finally in Sect. 2.3, using the existence of an optimal solu-
tion satisfying reverse-compatibility, we give a reduction from the 2-SCSS-(k, 1)
problem to the Token Game which gives an nO(k) algorithm for the 2-SCSS-(k, 1)
problem. This algorithm also generalizes the result of Feldman and Ruhl [5] for
2-SCSS, since 2-SCSS is equivalent to 2-SCSS-(1, 1). In Sect. 2.4, we show with
an example (see Fig. 3) that the structural result does not hold for the 2-SCSS-
(k1, k2) problem if min{k1, k2} ≥ 2. Therefore, 2-SCSS-(k, 1) is the most general
problem one can attempt to solve with our technique.

Theorem 1 does not rule out the possibility that the 2-SCSS-(k, 1) problem
is actually solvable in polynomial time. Our main hardness result rules out this
possibility by showing that our algorithm is tight in the sense that the exponent
of O(k) is best possible.

Theorem 2. The 2-SCSS-(k, 1) problem is W[1]-hard parameterized by k.
Moroever, under the ETH, the 2-SCSS-(k, 1) problem cannot be solved in f(k) ·
no(k) time for any function f where n is the number of vertices in the graph.
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We reduce from the Grid Tiling problem formulated in the pioneering work of
Marx [9]:

k × k Grid Tiling
Input : Integers k, n, and k2 non-empty sets Si,j ⊆ [n] × [n] where i, j ∈ [k]
Question: For each 1 ≤ i, j ≤ k does there exist a value si,j ∈ Si,j such that

– If si,j = (x, y) and si,j+1 = (x′, y′) then x = x′.
– If si,j = (x, y) and si+1,j = (x′, y′) then y = y′.

The Grid Tiling problem has turned to be a convenient starting point for
parameterized reductions for planar problems, and has been used recently in
various W[1]-hardness proofs on planar graphs [4,10,11]. Under the ETH, Chen
et al. [3] showed that k-Clique

1 does not admit an algorithm running in time
f(k) · no(k) for any function f . Marx [9] gave a reduction from k-Clique to
k × k Grid Tiling. In Sect. 3, we give a reduction from k × k Grid Tiling to
2-SCSS-(k, 1). Since the parameter blowup is linear, the f(k) ·no(k) lower bound
for Grid Tiling from [9] transfers to 2-SCSS-(k, 1). In fact, the reduction in [9]
from k-Clique to k × k Grid Tiling actually shows the hardness of a special
case of the Grid Tiling problem where the sets are constructed as follows:
given a graph G = (V,E) for the k-Clique problem with V = {v1, v2, . . . , vn}
we set Si,i = {(j, j) : 1 ≤ j ≤ [n]} for each i ∈ [k] and Si,f = {(j, �) : 1 ≤ j �=
� ≤ n, (vj , v�) ∈ E} for each 1 ≤ i �= f ≤ k. We call this as the Grid Tiling*
problem and actually give a reduction from this problem to 2-SCSS-(k, 1). To
the best of our knowledge, this is the first use of the special structure of Grid

Tiling* in a W[1]-hardness proof.
In the full version of the paper, we show that the edge-weighted and the

vertex-weighted variants of 2-SCSS-(k1, k2) are computationally equivalent.
Therefore, henceforth we consider only the edge-weighted version of 2-SCSS-
(k1, k2).

2 An nO(k) Algorithm for 2-SCSS-(k, 1)

In this section we describe an algorithm for the 2-SCSS-(k, 1) problem running
in nO(k) time where n is the number of vertices in the graph. First in Sect. 2.1
we present a structural property called as reverse compatibility for one optimal
solution of this problem. Next we define a Token Game in Sect. 2.2 and provide
an nO(k) algorithm to solve the game. Finally, in Subsect. 2.3 we present an
algorithm that finds the optimum solution of 2-SCSS-(k, 1) in time nO(k) via a
reduction to the Token Game problem.

2.1 Structural Lemma for 2-SCSS-(k, 1)

For simplicity, we replace each edge e of the input graph G with k copies
e1, e2, . . . , ek, each having the same cost as that of e. Let the new graph con-
structed in this way be G′. In G, different s � t paths must pay each time they
1 The k-Clique problem asks whether there is a clique of size ≥ k?
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s tzv ywu

Fig. 1. Let F be a s � t path given by s → u → v → w → y → z → t and B be a
t � s path given by t → y → z → u → v → s. The two paths P1 and P2 shown in blue
are the maximal common sub-paths between F and B. From Definition 1, it follows
that F and B are path-reverse-compatible since B first sees P2 and then P1 (colour
figure online).

use different copies of the same edge. We can alternately view this as the s � t
paths in G′ being edge-disjoint.

Definition 1 (path-reverse-compatible). Let F be a s � t path and B be
a t � s path. Let {P1, P2, . . . , Pd} be the set of maximal sub-paths that F and
B share and for all j ∈ [d], Pj is the j-th sub-path as seen while traversing F .
We say the pair (F,B) is path-reverse-compatible if for all j ∈ [d], Pj is the
(d−j+1)-th sub-path that is seen while traversing B, i.e., Pj is the j-th sub-path
that is seen while traversing B backward.

See Fig. 1 for an illustration of path-reverse-compatibility.

Definition 2 (reverse-compatible). Let F = {F1, F2, . . . , Fd} be a set of s �
t paths and b be a t � s path. We say (F, B) is reverse-compatible, if for all
1 ≤ i ≤ d the pair (Fi, B) is path-reverse-compatible.

The next lemma shows that there exists an optimum solution for 2-SCSS-(k, 1)
which is reverse-compatible.

Lemma 1 (structurallemma). There exists an optimum solution for 2-SCSS-
(k, 1) which is reverse-compatible.

Proof In order to prove this lemma, we first introduce the notion of rank of a
solution for 2-SCSS-(k, 1). Later, we show that an optimum solution of 2-SCSS-
(k, 1) with the minimum rank is reverse-compatible.

Definition 3. Let F = {F1, F2, . . . , Fk} be a set of paths form s � t, and B be
a path from t � s. For each i ∈ [k], let di be the number of maximal sub-paths
that B and Fi share. The rank of (F, B) is given by

R(F, B) =
k∑

i=1

di

Let (F, B) be an optimum solution of 2-SCSS-(k, 1) with the minimum rank.
Assume for the sake of contradiction that (F, B) is not reverse-compatible, i.e.,
there exists some Fi ∈ F such that (Fi, B) is not path-reverse-compatible. From
Definition 1, this means that Fi and B share two maximal sub-paths u → v
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u v x y

B rq

zw

Fig. 2. Let the u � y sub-path of Fi be a u � v � w � z � x � y and the u � y
sub-path of B be u � v � q � r � x � y. From Definition 1, it follows that Fi and
B are not path-reverse-compatible since they both first see u � v and then see x � y.

and x → y, and at the same time Fi and B both contain u → y sub-paths (see
Fig. 2).

We replace the u → y sub-path of B by the u → y sub-path of Fi. On one
hand, B shares all of the u → y sub-path with Fi. Thus, this change does not
increase the cost of the network, therefore it remains an optimum solution. On
the other hand, by this change, the sub-paths u → v and x → y join. Hence, di

decreases by 1. Also, since the forward paths are edge-disjoint, after the change
all other dj ’s remain same (for i �= j) since B shares the whole u → y sub-path
with only Fi. Therefore, this change strictly decreases the rank of the solution.
Existence of an optimum solution with a smaller rank contradicts the selection
of (F, B) and completes the proof. �

2.2 The Token Game

In the token game, we are given a graph G, a set of tokens T , vertices s and t, a
set of moves M, and a cost function Ĉ : M → R. Each move m ∈ M consists of
a set of triples (ti, ui, vi) where ti ∈ T is a token, and ui and vi are vertices of the
graph. In order to apply a move m = {(t1, u1, v1), (t2, u2, v2), . . . , (td, ud, vd)} to
a state of the game, each token ti should be on vertex ui for all 1 ≤ i ≤ d and after
applying this move, for every triple (ti, ui, vi) ∈ m token ti will be transported
to the vertex vi. For each m ∈ M, Ĉ(m) specifies the cost of applying m to the
game. Initially, all of the tokens are placed on vertex s. In each step, we apply
a move m ∈ M to the game with cost Ĉ(m) and the goal is to transport all of
the tokens to the vertex t with minimum cost.

In the following, we present an algorithm to solve an instance 〈G, s, t, T ,M, Ĉ〉
of the Token game in time O(n|T | · |M| · log(n|T |)), where n is the number of the
vertices of G.

Lemma 2 [�] 2 (algorithm for Token Game). There exists an algorithm
which solves the Token game in time O(n|T ||M| log(n|T |)).

2 The proofs of the results labeled with � are available in the full version on arXiv.
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2.3 Reduction to the Token Game

Here, we provide a reduction from the 2-SCSS-(k, 1) problem to the Token game.
As a consequence, we show that one can use the presented algorithm in Sub-
sect. 2.2 to solve 2-SCSS-(k, 1) in time O(nO(k)).

Let I = 〈G, s, t〉 be an instance of the 2-SCSS-(k, 1). We reduce I to an
instance Cor(I) = 〈G′, s′, t′, T ,M, Ĉ〉 of the Token Game problem where G =
G′, s = s′, t = t′ and T is a set of k+1 tokens {F1,F2, . . . ,Fk,B}. Furthermore,
M and Ĉ are constructed in the following way:

– For every edge (u, v) ∈ E(G), we add k moves {(Fi, u, v)} to M for all 1 ≤
i ≤ k. Cost of each move is equal to the length of its corresponding edge in
G.

– For every edge (u, v) ∈ E(G) with weight w, we add a move {(B, v, u)} to M
with cost w.

– For every pair of vertices u and v in G, we add k moves {(Fi, u, v), (B, v, u)}
to M for all 1 ≤ i ≤ k. Cost of each move is equal to the distance of vertex v
from vertex u in G.

Next we show that OPT(I) = OPT(Cor(I)), where OPT(I) and OPT(Cor(I))
stand for the optimum solutions of I and Cor(I) respectively. We do this by the
following two lemmas:

Lemma 3. [�] For a given instance I of the 2-SCSS-(k, 1) we have OPT(I) ≥
OPT(Cor(I)).

Lemma 4. [�] For a given instance I of the 2-SCSS-(k, 1) we have OPT(I) ≤
OPT(Cor(I)).

Theorem 3. [�] There exists an algorithm that solves the 2-SCSS-(k, 1) in time
O(nO(k)).

2.4 Structural Lemma Fails for 2-SCSS-(k1, k2) if min{k1, k2} ≥ 2

In the 2-SCSS-(k1, k2) problem we want k1 paths from s � t and k2 paths
from t � s. So, we define a natural generalization of Definition 1 to reverse-
compatibility of a set of forward paths and a set of backward paths as follows.

Definition 4. Let F = {F1, F2, . . . , Fk1} be a set of s � t paths and B =
{B1, B2, . . . , Bk2} be a set of t � s paths. We say (F,B) is reverse-compatible,
if for all 1 ≤ i ≤ k2, (F, Bi) is reverse-compatible.

Figure 3 gives an instance of 2-SCSS-(2, 2) where no optimum solution is reverse-
compatible. The following lemma shows that Lemma 1 does not hold for the
2-SCSS-(k1, k2) problem when min{k1, k2} ≥ 2, i.e., Lemma 1 is in its most
general form.

Lemma 5. The instance of 2-SCSS-(2, 2) shown in Fig. 3 has no reverse-
compatible optimum solution.
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s t

Fig. 3. Each black edge has weight 1 and each red edge has weight 0. Let the u � y
sub-path of Fi be a u � v � w � z � x � y and the u � y sub-path of B be
u � v � q � r � x � y. From Definition 1, it follows that Fi and B are not path-
reverse-compatible since they both first see u � v and then see x � y (colour figure
online).

Proof. In Fig. 3, each black has weight 1 and each red edge has weight 0. Note
that the length of each shortest path from s to t is 7, and there are exactly
two such paths viz. P1 := s → v1 → v2 → v3 → v4 → v5 → v6 → t and
P2 := s → u1 → u2 → u3 → u4 → u5 → u6 → t. Thus, any optimum solution
to 2-SCSS-(2, 2) has cost at least 14. In addition, if we select both P1 and P2

then we can select two paths Q1 := t → u3 → u4 → s and Q2 = t → u1 →
u2 → v1 → v2 → v3 → v4 → v5 → v6 → u5 → u6 → s from t to s without any
cost. Therefore, ({P1, P2}, {Q1, Q2}) is an optimum solution to 2-SCSS-(2, 2)
with cost 14.

If we select paths P1 and P2 as forward paths, (Q1, Q2) is the only pair
of backward paths which is free. On the other hand, if we select one of P1

or P2 twice, then it is easy to see that there is no free backward path. Thus,
({P1, P2}, {Q1, Q2}) is the unique optimum solution to 2-SCSS-(2, 2). However,
one can see that paths P2 and Q2 are not reverse-compatible since they see the
common maximal sub-paths u1 → u2 and u5 → u6 in the same order.

3 f(k) · no(k) Hardness for 2-SCSS-(k, 1)

In this section we prove Theorem 2. We reduce from the Grid Tiling problem
(see Sect. 1.1 for definition). Chen et al. [3] showed that for any function f an
f(k) · no(k) algorithm for Clique implies ETH fails. Marx [9] gave the following
reduction which transforms the problem of finding a k-Clique into an instance of
k ×k Grid Tiling as follows: For a graph G = (V,E) with V = {v1, v2, . . . , vn}
we build an instance IG of Grid Tiling

– For each 1 ≤ i ≤ k, we have (j, �) ∈ Si,i if and only if j = �.
– For any 1 ≤ i �= j ≤ k, we have (�, r) ∈ Si,j if and only if {v�, vr} ∈ E.

It is easy to show that G has a clique of size k if and only if the instance IG

of Grid Tiling has a solution. Therefore, assuming ETH, the following special
case of k × k Grid Tiling also cannot be solved in time f(k) · no(k) for any
computable function f .
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Fig. 4. The instance of 2-SCSS-(k, 1) created from an instance of Grid Tiling*.

k × k Grid Tiling*
Input : Integers k, n, and k2 non-empty sets Si,j ⊆ [n] × [n] where 1 ≤ i, j ≤ k
such that for each 1 ≤ i ≤ k, we have (j, �) ∈ Si,i if and only if j = �
Question: For each 1 ≤ i, j ≤ k does there exist a value γi,j ∈ Si,j such that

– If γi,j = (x, y) and γi,j+1 = (x′, y′) then x = x′.
– If γi,j = (x, y) and γi+1,j = (x′, y′) then y = y′.

Consider an instance of Grid Tiling*. We now build an instance of edge-
weighted 2-SCSS-(2k − 1, 1) as shown in Fig. 4. We consider 4k special vertices:
(ai, bi, ci, di) for each i ∈ [k]. We introduce k2 red gadgets where each gadget is
an n × n grid. Let weight of each black edge be 4.

Definition 5. For each 1 ≤ i ≤ k, an ai � bi canonical path is a path from ai

to bi which starts with a blue edge coming out of ai, then follows a horizontal
path of black edges and finally ends with a blue edge going into bi. Similarly an
cj � dj canonical path is a path from cj to dj which starts with a blue edge
coming out of cj, then follows a vertically downward path of black edges and
finally ends with a blue edge going into dj.
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For each 1 ≤ i ≤ k, there are n edge-disjoint ai � bi canonical paths: let us
call them P 1

i , P 2
i , . . . , Pn

i as viewed from top to bottom. They are named using
magenta color in Fig. 4. Similarly we call the canonical paths from cj to dj as
Q1

j , Q
2
j , . . . , Q

n
j when viewed from left to right. For each i ∈ [k] and � ∈ [n] we

assign a weight of Δ(nk − ni + n + 1 − �),Δ(ni − n + �) to the first, last edges
of P �

i (which are colored blue) respectively. Similarly for each j ∈ [k] and � ∈ [n]
we assign a weight of Δ(nk − nj + n + 1 − �),Δ(nj − n + �) to the first, last
edges of Q�

j (which are colored blue) respectively. Thus the total weight of first
and last blue edges on any canonical path is exactly Δ(nk + 1). The idea is to
choose Δ large enough such that in any optimum solution the paths between
the terminals will be exactly the canonical paths. We will see that Δ = 7n6 will
suffice for our reduction. Any canonical path uses two blue edges (which sum up
to Δ(nk +1)), (k +1) black edges not inside the gadgets and (n−1) black edges
inside each gadget. Since the number of gadgets each canonical path visits is k
and the weight of each black edge is 4, we have the total weight of any canonical
path is α = Δ(nk + 1) + 4(k + 1) + 4k(n − 1).

Intuitively the k2 gadgets correspond to the k2 sets in the Grid Tiling*
instance. Let us denote the gadget which is the intersection of the ai � bi paths
and cj � dj paths by Gi,j . If i = j, then we call Gi,j as a symmetric gadget;
else we call it as a asymmetric gadget. We perform the following modifications
on the edges inside the gadget: (see Fig. 4)

– Symmetric Gadgets: For each i ∈ [k], if (x, y) ∈ Si,i then we color green
the vertex in the gadget Gi,i which is the unique intersection of the canonical
paths P x

i and Qy
i . Then we add a shortcut as shown in Fig. 5. The idea is if

both the ai � bi path and ci � di path pass through the green vertex then
the ai � bi path can save a weight of 2 by using the green edge and a vertical

2

4

2

2

u r

q

p

3

4

2

2

u r

q

p

Fig. 5. Let u, r be two consecutive vertices on the canonical path say P �
i . Let r be

on the canonical path Q�′
j and let p be the vertex preceding it on this path. If r is a

green (respectively orange) vertex then we subdivide the edge (p, r) by introducing a
new vertex q and adding two edges (p, q) and (q, r) of weight 2. We also add an edge
(u, q) of weight 2 (respectively 3). The idea is if both the edges (p, r) and (u, r) were
being used initially then now we can save a weight of 2 (respectively 1) by making the
horizontal path choose (u, q) and then we get (q, r) for free, as it is already being used
by the vertical canonical path (colour figure online).
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downward edge ((which is already being used by cj � dj canonical path)) to
reach the green vertex, instead of paying a weight of 4 to use the horizontal
edge reaching the green vertex.

– Aymmetric Gadgets: For each i �= j ∈ [k], if (x, y) ∈ Si,j then we color
orange the vertex in the gadget Gi,i which is the unique intersection of the
canonical paths P x

i and Qy
i . Then we add a shortcut as shown in Fig. 5. The

idea is if both the ai � bi path and cj � dj path pass through the green
vertex then the ai � bi path can save a weight of 1 by using the orange edge
of weight 3 followed by a vertical downward edge (which is already being used
by cj � dj canonical path) to reach the orange vertex, instead of paying a
weight of 4 to use the horizontal edge reaching the green vertex.

From Fig. 4, it is easy to see that each canonical path has weight equal to α.

3.1 Vertices and Edges Not Shown in Fig. 4

The following vertices and edges are not shown in Fig. 4 for sake of presentation:

– Add two vertices s and t.
– For each 1 ≤ i ≤ k, add an edge (s, ci) of weight 0.
– For each 1 ≤ i ≤ k, add an edge (di, t) of weight 0.
– Add edges (t, ak) and (b1, s) of weight 0.
– For each 2 ≤ i ≤ k, introduce two new vertices ei and fi. We call these 2k − 2

vertices as bridge vertices.
– For each 2 ≤ i ≤ k, add a path bi → ei → fi → ai−1. Set the weights of

(bi, ei) and (fi, ai−1) to be zero.
– For each 2 ≤ i ≤ k, set the weight of the edge (ei, fi) to be W . We call these

edges as connector edges. The idea is that we will choose W large enough
so that each connector edge is used exactly once in an optimum solution for
2-SCSS-(k, 1). We will see later that W = 53n9 suffices for our reduction.

We need a small technical modification: add one dummy row and column
to the Grid Tiling* instance. Essentially, we now have a dummy index 1. So
neither the first row nor the first column of any Si,j has any elements in the
Grid Tiling* instance. That is, no green vertex or orange vertex can be in
the first row or first column of any gadget. We now state two theorems which
together give a reduction from Grid Tiling* to 2-SCSS-(k, 1). Let

β = 2k · α + W (k − 1) − (k2 + k) (1)

Theorem 4. [�] Grid Tiling* has a solution if and only if OPT for 2-SCSS-
(k, 1) is at most β.

3.2 Proof of Theorem 2

Proof. Theorem 4 implies the W[1]-hardness by giving a reduction which trans-
forms the problem of k × k Grid Tiling* into an instance of 2-SCSS-(k, 1)
where we want to find k paths from s � t and one path from t � s.
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Chen et al. [3] showed for any function f an f(k)no(k) algorithm for Clique

implies ETH fails. Composing the reduction of [9] from Clique to Grid Tiling*,
along with our reduction from Grid Tiling* to 2-SCSS-(k, 1), we obtain under
ETH there is no f(k)no(k) algorithm for 2-SCSS-(k, 1) for any function f . This
shows that the nO(k) algorithm for 2-SCSS-(k, 1) given in Sect. 2 is optimal. �

4 Conclusions

In this paper, we studied the 2-SCSS-(k, 1) problem and presented an algorithm
which finds an optimum solution in time nO(k), and that is asymptotically opti-
mal under the ETH. This algorithm was based on the fact that there always
exists an optimal solution for 2-SCSS-(k, 1) that has the reverse-compatibility
property. However, we show in Sect. 2.4 that the 2-SCSS-(k1, k2) problem need
not always have a solution which satisfies the reverse-compatibility property.
Therefore, it remains an important challenging problem to find a similar struc-
ture and generalize our method to solve the 2-SCSS-(k1, k2) problem.
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Abstract. We consider the complexity of the firefighter problem where
a budget of b ≥ 1 firefighters are available at each time step. This prob-
lem is proved to be NP-complete even on trees of degree at most three
and b = 1 [10] and on trees of bounded degree b+3 for any fixed b ≥ 2 [3].
In this paper, we provide further insight into the complexity landscape
of the problem by showing a complexity dichotomy result with respect to
the parameters pathwidth and maximum degree of the input graph. More
precisely, we first prove that the problem is NP-complete even on trees
of pathwidth at most three for any b ≥ 1. Then we show that the prob-
lem turns out to be fixed parameter-tractable with respect to the com-
bined parameter “pathwidth” and “maximum degree” of the input graph.
Finally, we show that the problem remains NP-complete on very dense
graphs, namely co-bipartite graphs, but is fixed-parameter tractable with
respect to the parameter “cluster vertex deletion”.

1 Introduction

The firefighter problem was introduced by Hartnell [13] and received considerable
attention in a series of papers [1,5,7,8,10,14–16,18,19]. In its original version,
a fire breaks out at some vertex of a given graph. At each time step, one vertex
can be protected by a firefighter and then the fire spreads to all unprotected
neighbors of the vertices on fire. The process ends when the fire can no longer
spread. At the end all vertices that are not on fire are considered as saved. The
objective is at each time step to choose a vertex which will be protected by a
firefighter such that a maximum number of vertices in the graph is saved at
the end of the process. In this paper, we consider a more general version which
allows us to protect b ≥ 1 vertices at each step (the value b is called budget).

The original firefighter problem was proved to be NP-hard for bipartite
graphs [18], cubic graphs [16] and unit disk graphs [11]. Finbow et al. [10] showed
that the problem is NP-hard even on trees. More precisely, they proved the fol-
lowing dichotomy theorem: the problem is NP-hard even for trees of maximum
degree three and it is solvable in polynomial-time for graphs with maximum
degree three, provided that the fire breaks out at a vertex of degree at most two.
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Furthermore, the problem is polynomial-time solvable for caterpillars and so-
called P-trees [18]. Later, Bazgan et al. [3] extended the previous results by
showing that the general firefighter problem is NP-hard even for trees of max-
imum degree b + 3 for any fixed budget b ≥ 2 and polynomial-time solvable
on k-caterpillars. From the approximation point of view, the problem is e

e−1 -
approximable on trees ( e

e−1 ≈ 1.5819) [5] and it is not n1−ε-approximable on
general graphs for any ε > 0 unless P = NP [1]. Moreover for trees in which
each non-leaf vertex has at most three children, the firefighter problem is 1.3997-
approximable [15]. Very recently, Costa et al. [7] extended the e

e−1 -approximation
algorithm on trees to the case where the fire breaks out at f > 1 vertices and
b > 1 firefighters are available at each step. From a parameterized perspective,
the problem is W[1]-hard with respect to the natural parameters “number of
saved vertices” and “number of burned vertices” [2]. Furthermore, it admits an
O(2τkτ)-size kernel where τ is the minimum vertex cover of the input graph
and k the number of burned vertices [2]. Cai et al. [5] gave first fixed-parameter
tractable algorithms and polynomial-size kernels for trees for each of the follow-
ing parameters: “number of saved vertices”, “number of saved leaves”, “number
of burned vertices”, and “number of protected vertices”.

In this paper, we provide a complexity dichotomy result of the problem with
respect to the parameters maximum degree and pathwidth of the input graph.
In Sect. 2, we first provide the formal definition of the problem as well as some
preliminaries. In Sect. 3, we complete the hardness picture of the problem on trees
by proving that it is also NP-complete on trees of pathwidth three. We note that
the given proof is also a simpler proof of the NP-completeness of the problem
on trees. In Sect. 4, we devise a parameterized algorithm with respect to the
combined parameter “pathwidth” and “maximum degree” of the input graph. In
Sect. 5, we show that the problem is also NP-hard on co-bipartite graphs which
are very dense graphs but fixed-parameter tractable with respect parameter
“cluster vertex deletion” (cvd). This last result strengthen the previous O(2τkτ)-
size kernel as it suppresses the dependence with k and the cvd number is smaller
than the vertex cover number. The conclusion is given in Sect. 6. Due to space
limitation, some proofs are deferred to a full version.

2 Preliminaries

Graph terminology. Let G = (V,E) be an undirected graph of order n. For a
subset S ⊆ V , G[S] is the induced subgraph of G. The neighborhood of a vertex
v ∈ V , denoted by N(v), is the set of all neighbors of v. We denote by Nk(v)
the set of vertices which are at distance at most k from v. The degree of a vertex
v is denoted by degG(v) and the maximum degree of the graph G is denoted
by Δ(G).

A linear layout of G is a bijection π : V → {1, . . . , n}. For convenience, we
express π by the list L = (v1, . . . , vn) where π(vi) = i. Given a linear layout L,
we denote the distance between two vertices in L by dL(vi, vj) = j − i.
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Vertex Cover Cutwidth (Th. 4)

Pathwidth
(Th. 1)

Cluster vertex
deletion (Th. 6)

Treewidth [10,3]

Cliquewidth

Maximum
degree [10,3]

Fig. 1. The parameterized complexity of the Firefighter problem with respect to
some structural graph parameters. An arc from a parameter k2 to a parameter k1

means that there exists some function h such that k1 ≤ h(k2). For any fixed budget,
a dotted rectangle means fixed-parameter tractability for this parameter and a thick
rectangle means NP-hardness even for constant values of this parameter.

The cutwidth cw(G) of G is the minimum k ∈ N such that the vertices of
G can be arranged in a linear layout L = (v1, . . . , vn) in such a way that, for
every i ∈ {1, . . . , n − 1}, there are at most k edges between {v1, . . . , vi} and
{vi+1, . . . , vn}.

The bandwidth bw(G) of G is the minimum k ∈ N such that the vertices of
G can be arranged in a linear layout L = (v1, . . . , vn) so that |dL(vi, vj)| ≤ k for
every edge vivj of G.

A path decomposition P of G is a pair (P,H) where P is a path with node
set X and H = {Hx : x ∈ X} is a family of subsets of V such that the following
conditions are met

1.
⋃

x∈X Hx = V.
2. For each uv ∈ E there is an x ∈ X with u, v ∈ Hx.
3. For each v ∈ V , the set of nodes {x : x ∈ Xandv ∈ Hx} induces a subpath

of P .

The width of a path decomposition P is maxx∈X |Hx|−1. The pathwidth pw(G)
of a graph G is the minimum width over all possible path decompositions of G.

We may skip the argument of pw(G), cw(G), bw(G) and Δ(G) if the graph G
is clear from the context.

A star is a tree consisting of one vertex, called the center of the star, adjacent
to all the other vertices.

Problem definition. We start with an informal explanation of the propagation
process for the firefighter problem. Let G = (V,E) be a graph of order n with a
vertex s ∈ V , let b ∈ N be a budget. At step t = 0, a fire breaks out at vertex s
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and s starts burning. At any subsequent step t > 0 the following two phases are
performed in sequence:

1. Protection phase: The firefighter protects at most b vertices not yet on fire.
2. Spreading phase: Every unprotected vertex which is adjacent to a burned

vertex starts burning.

Burned and protected vertices remain burned and protected until the propaga-
tion process stops, respectively. The propagation process stops when in a next
step no new vertex can be burned. We call a vertex saved if it is either protected
or if all paths from any burned vertex to it contain at least one protected vertex.
Notice that, until the propagation process stops, there is at least one new burned
vertex at each step. This leads to the following obvious lemma.

Lemma 1. The number of steps before the propagation process stops is less or
equal to the total number of burned vertices.

A protection strategy (or simply strategy) Φ indicates which vertices to protect
at each step until the propagation process stops. Since there can be at most n
burned vertices, it follows from Lemma1 that the propagation unfolds in at most
n steps. We are now in position to give the formal definition of the investigated
problem.

The Firefighter problem:
Input:A graph G = (V,E), a vertex s ∈ V , and positive integers b and k.
Question: Is there a strategy for an instance (G, s, b, k) with respect to
budget b such that at most k vertices are burned if a fire breaks out at s?

When dealing with trees, we use the following observation which is a straight-
forward adaptation of the one by MacGillivray and Wang for the case b > 1
[18, Sect. 4.1].

Lemma 2. Among the strategies that maximize the number of saved vertices
(or equivalently minimize the number of burned vertices) for a tree, there exists
one that protects vertices adjacent to a burned vertex at each time step.

Throughout the paper, we assume all graphs to be connected since otherwise we
can simply consider the component where the initial burned vertex s belongs to.

3 Firefighting on Path-Like Graphs

Finbow et al. [10] showed that the problem is NP-complete even on trees of degree
at most three. However, the constructed tree in the proof has an unbounded path-
width. In this section, we show that the Firefighter problem is NP-complete
even on trees of pathwidth three. For that purpose we use the following problem.
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The Cubic Monotone 1-In-3-Sat problem:
Input:A CNF formula with no negative literals in which every clause con-
tains exactly three variables and every variable appears in exactly three
clauses.
Question: Is there a 1-perfect satisfying assignment (a truth assignment
such that each clause has exactly one true literal) for the formula?

The NP-completeness of the above problem is due to its equivalence with the
NP-complete Exact Cover by 3-Sets problem [12].

Theorem 1. For any budget b ≥ 1, the Firefighter problem is NP-complete
even on trees of pathwidth three.

Proof. Clearly, Firefighter belongs to NP. Now we provide a polynomial-
time reduction from Cubic Monotone 1-In-3-Sat. We start with the case
where b = 1 and later explain how to extend the proof for larger values of b.

In the proof, a guard-vertex is a star with k leaves where the center is adjacent
to a vertex of a graph. It is clear that if at most k vertices can be burned, then
the guard-vertex has to be saved.

Let φ be a formula of Cubic Monotone 1-In-3-Sat with n variables
{x1, . . . , xn} and m initial clauses {c1, . . . , cm}. Notice that we have n = m
since there is a total of 3n = 3m literals in φ. First, we extend φ into a new
formula φ′ by adding m new clauses as follows. For each clause cj we add the
clause c̄j by taking negation of each variable of cj . A perfect satisfying assign-
ment for φ′ is then a truth assignment such that each clause cj has exactly one
true literal (1-perfect) and each clause c̄j has exactly two true literals (2-perfect).
Clearly, we have that φ has a 1-perfect satisfying assignment if and only if φ′ has
a perfect one. To see this, observe that a clause cj has exactly one true literal if
and only if c̄j has two true literals.

Now we construct an instance I ′ = (T, s, 1, k) of Firefighter from φ′ as
follows (see Fig. 2). We start with the construction of the tree T , the value of k
will be specified later.

– Start with a vertex set {s = u1, u2, . . . , up} and edges of {su2, u2u3, . . . ,
up−1up} where p = 2n−1 and add two degree-one vertices vxi

and vx̄i
adjacent

to u2i−1 for every i ∈ {1, . . . , n}.
Then for each i ∈ {1, . . . , n} in two steps:

– Add a guard-vertex gi (resp. ḡi) adjacent to vxi
(resp. vx̄i

).
– At each vertex vxi

(resp. vx̄i
) root a path of length 2 · (n− i) at vxi

(resp. vx̄i
)

in which the endpoint is adjacent to three degree-one vertices (called literal-
vertices) denoted by �xi

1 , �xi
2 , and �xi

3 (resp. �x̄i
1 , �x̄i

2 , and �x̄i
3 ). Each literal-vertex

corresponds to an occurence of the variable xi in an initial clause of φ. Anal-
ogously, the literal-vertices �x̄i

1 , �x̄i
2 , and �x̄i

3 represent the negative literal x̄i

that appears in the new clauses of φ′.
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vx1 vx̄1

g1 ḡ1

s = u1

u2

u11

u10

vx̄6vx6

g6 ḡ6

Fig. 2. An example of part of a tree constructed from the formula φ = (x1 ∨x3 ∨x6)∧
(x1 ∨ x2 ∨ x3) ∧ (x3 ∨ x4 ∨ x5) ∧ (x2 ∨ x4 ∨ x5) ∧ (x1 ∨ x4 ∨ x6) ∧ (x2 ∨ x6 ∨ x5). Guard
vertices are represented by a dot within a circle.

Notice that each literal-vertex is at distance exactly p + 1 from s.

– For each variable xi (resp. x̄i), i ∈ {1, . . . , n}, there are exactly three clauses
containing xi (resp. x̄i). Let cj (resp. c̄j), j ∈ {1, . . . , m}, be the first one of
them. Then root a path Qxi

j (resp. Qx̄i
j ) of length 3·(j−1) at �xi

1 (resp. �x̄i
1 ), and

add a guard-vertex gxi
j adjacent to the endpoint of Qxi

j . To the endpoint of Qx̄i
j

(i) add a degree-one vertex dx̄i (a dummy-vertex) and (ii) root a path Dx̄i
j of

length 3 where the last vertex of the path is a guard vertex gx̄i
j . Repeat the

same for the two other clauses with xi (resp. x̄i) and �xi
2 , �xi

3 (resp. �x̄i
2 , �x̄i

3 ).

To finish the construction, set k = p + n
2 (11n + 7).

In what follows, we use Lemma 2 and thus we only consider strategies that
protect a vertex adjacent to a burned vertex at each time step. Recall that the
budget is set to one in the instance I ′. Now we show that there is a perfect
satisfying assignment for φ′ if and only if there exists a strategy for I ′ such that
at most k vertices in T are burned.
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“⇒” : Suppose that there is a perfect satisfying assignment τ for φ′. We define
the following strategy Φτ from τ . At each step t from 1 to p+1, if t is odd then
protect vx̄�t/2� if x�t/2� is true, otherwise protect vx�t/2� . If t is even, then protect
the guard-vertex g�t/2� if vx̄�t/2� has been protected, otherwise protect ḡ�t/2�. At
the end of time step p+1, the number of burned vertices is exactly p+

∑n
i=1(3+

2(n − i) + 1) = p + 3n + n2. Moreover, the literal-vertices that are burned
in T correspond to the true literals in φ′. Thus, by construction and since τ
statisfies φ′, the vertices adjacent to a burning vertex are exactly one guard-
vertex gxa

1 , two dummy vertices dx̄b , dx̄c and 3n−1 other vertices where xa∨xb∨xc

is the first clause, a, b, c ∈ {1, . . . , n}. At step p + 2, we must protect the guard
vertex gxa

1 . During the steps p + 3 and p + 4, the strategy must protect one
vertex lying on the path Dx̄b

1 and Dx̄c
1 , respectively. Thus 3(3n− 3)+5 = 9n− 4

more vertices are burned at the end of step p+4. More generally, from time step
p + 3(j − 1) + 2 to p + 3(j − 1) + 4, for some j ∈ {1, . . . , m}, the strategy Φτ

must protect a guard-vertex gxa
j and one vertex of each path Dx̄b

j and Dx̄c
j ,

where xa, xb, xc appear in the clause cj , a, b, c ∈ {1, . . . , n}. Thus 9(n−(j−1))−4
vertices get burned. It follows that the number of burned vertices from step p+2
to p+3m+1 is

∑m
j=1[9(n−(j −1))−4] = 9

2m(m+1)−4m. Putting all together,
we arrive at a total of p + 3n + n2 + 9

2m(m + 1) − 4m = p + n
2 (11n + 7) = k

burned vertices.
“⇐”: Conversely, assume that there is no perfect satisfying assignment for φ′.

Observe first that any strategy Φ for I ′ protects either vxi
or vx̄i

for each i ∈
{1, . . . , n}. As a contradiction, suppose that there exists i ∈ {1, . . . , n} such
that Φ does not protect vxi

and vx̄i
. Then in some time step both vxi

and vx̄i

get burned. Hence, it is not possible to protect both gi and ḡi, and at least
one will burn implying that more than k vertices would burn, a contradiction.
Furthermore, vxi

and vx̄i
cannot be both protected, otherwise we would have

protected a vertex not adjacent to a burned vertex at some step. Now consider
the situation at the end of step p + 1. By the previous observation, the literal-
vertices that are burned in T can be interpreted as being the literals in φ′ set to
true. As previously, the number of burned vertices so far is exactly p+

∑n
i=1(3+

2(n − i) + 1) = p+ 3n+ n2. Let ng and nd be the number of guard-vertices and
dummy-vertices adjacent to a burned vertex, respectively. As it follows from the
previous construction, we know that ng = 3−nd with 0 ≤ ng ≤ 3 and 0 ≤ nd ≤ 3.
We have the following possible cases:

(1) ng > 1. In this case, a guard-vertex gets burned, and hence more than k
vertices would burn.

(2) ng = 1. Let gxa
1 be that guard-vertex and let dx̄b , dx̄c be the nd = 3−ng = 2

dummy-vertices where xa, xb, xc are variables of the first clause. At time
step p + 2, we must protect gxa

1 . Furthermore, during the step p + 3 (resp.
p+4), any strategy must protect a vertex lying on the path Dx̄b

1 (resp. Dx̄c
1 ).

Indeed, if a strategy does otherwise, then at least one guard-vertex gx̄b
1 or

gx̄c
1 gets burned. Thus 2 dummy-vertices are burned.

(3) ng = 0. Hence we have exactly nd = 3−ng = 3 dummy-vertices dx̄a , dx̄b , dx̄c

adjacent to burned vertices. Using a similar argument as before, we know
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that during the step p + 2 (resp. p + 3, p + 4), a strategy must protect a
vertex lying on the path Dx̄a

1 (resp. Dx̄b
1 , Dx̄c

1 ). Thus 3 dummy-vertices are
burned.

Notice that at step p + 5, we end up with a similar situation as in step p + 2.
Now consider an assignment for φ′. Since φ′ is not perfect satisfiable, therefore φ
is not 1-perfect satisfiable as well. There are two possibilities:

– There exists a clause cj in φ with more than one true literal. Thus, we end up
with case (1), and there is no strategy for I ′ such that at most k vertices are
burned.

– There is a clause cj in φ with only false literals. This corresponds to case
(3), and the number of burned vertices would be at least 1 + p + n

2 (11n + 7)
(at least one extra dummy-vertex gets burned) giving us a total of at least k+1
burned vertices. Hence there is no strategy for I ′ where at most k vertices are
burned.

It remains to prove that the pathwidth of T is at most three. To see this,
observe that any subtree rooted at vxi

or vx̄i
has pathwidth two. Let Pxi

and Px̄i

be the paths of the path-decompositions of these subtrees, respectively. We con-
struct the path-decomposition for T as follows. For every i ∈ {1, . . . , n − 1},
define the node Bi = {u2i−1, u2i, u2i+1}. Extend all nodes of the paths Pxi

and Px̄i
to P ′

xi
and P ′

x̄i
by adding the vertex u2i−1 inside it. Finally, connect

the paths P ′
x1
, P ′

x̄1
and the node B1 to form a path and continue in this way

with P ′
x2
, P ′

x̄2
, B2, P ′

x3
, P ′

x̄3
, B3, . . . , Bn−1, P ′

xn
, P ′

x̄n
.

Finally, we consider the case where b > 1. We start from the above reduction
and alter the tree T as follows. Let w1 be the vertex s (corresponding also
to u1). Add a path {w1w2, w2w3, . . . , w5nw5n+1} to T together with b−1 guard-
vertices added to each wi. First, one can easily check that the pathwidth remains
unchanged, since the added component has pathwidth two and is only connected
to the root s. Second, it can be seen that at each time step, only one firefighter
can be placed “freely”, as the other b − 1 firefighters must protect b − 1 guard-
vertices. It follows that we end up with a similar proof as above. This completes
the proof. �

As a side result, we also obtain the following.

Proposition 1. For any budget b ≥ 1, the Firefighter problem is NP-complete
even on line graphs.

4 Path-Like Graphs of Bounded Degree

As previously shown, for any fixed budget b ≥ 1, the Firefighter problem is
NP-complete on trees of bounded degree b + 3 [3,10] and on trees of bounded
pathwidth three (Theorem1). It is thus natural to ask for the complexity of
the problem when both the degree and the pathwidth of the input graph are
bounded. In what follows, we answer this question positively. A first step toward
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this goal is to use the following combinatorial characterization of the number of
burned vertices in a graph.

Theorem 2. Consider a graph of pathwidth pw and maximum degree Δ. If the
number of initially burned vertices is bounded by f1(pw,Δ) for some function f1,
then there exists a protection strategy such that at most f2(pw,Δ) ≥ f1(pw,Δ)
vertices are burned for some function f2.

Proof. First we prove the following claim: Consider a graph of cutwidth cw. If the
number of initially burned vertices is bounded by g1(cw) for some function g1,
then there exists a protection strategy such that at most g2(cw) ≥ g1(cw) vertices
are burned for some function g2. We will prove this by induction on cw.

The claim is obviously true when the cutwidth is 0, since the graph cannot
contain any edge. Suppose now that the claim is true for any graph of cutwidth
at most k, k > 0. We show that it also holds for a graph of cutwidth k + 1.
Let H = (V,E) be such a graph and F ⊆ V be the set of initially burned vertices
with |F | ≤ g1(cw(H)). Consider a linear layout L = (v1, . . . , vn) of H such that
for every i = 1, . . . , n − 1, there are at most k + 1 edges between {v1, . . . , vi}
and {vi+1, . . . , vn}. For every s ∈ F and i ≥ 0, we define inductively the
following sets, where R0(s) = L0(s) = {s}

Ri(s) =
{{s = vk, vk+1, . . . , vk′} if ∃vk′ ∈ N i(s):vk′ = argmaxv∈Ni(s) dL(s, v)

Ri−1(s) otherwise
(1)

Li(s) =
{{s = vk, vk−1, . . . , vk′} if ∃vk′ ∈ N i(s):vk′ = argminv∈Ni(s) dL(s, v)

Li−1(s) otherwise
(2)

We are now in position to define the set Bi(s), called a bubble, by Bi(s) =
Li(s) ∪ Ri(s) for all i ≥ 0. Informally speaking, the bubble Bi(s) corresponds
to the effect zone of s after i steps of propagation, i.e., every vertex that gets
burned after i steps (starting at s) must be inside the bubble Bi(s). The idea of
the proof is to show that every bubble can be “isolated” from the rest of the graph
in a bounded number of steps by surrounding it with firefighters (see Fig. 3). We
then show that the inductive hypothesis can be applied on each bubble, which
will prove the claim. Let s1, s2 ∈ F . We say that two bubbles Bi(s1) and Bi(s2)
for some i ≥ 0 overlap if Bi(s1) ∩ Bi(s2) �= ∅.

Let us consider an initially burned vertex s ∈ F and its bubble B2·cw(H)(s).
Let B′

2·cw(H)(s) be the union of B2·cw(H)(s) with every other bubble B2·cw(H)(s′),
s′ ∈ F , that overlap with B2·cw(H)(s). By definition, we know that the number
of edges with an endpoint in B′

2·cw(H)(s) and the other one in V \ B′
2·cw(H)(s) is

less or equal to 2 · cw(H). Thus, we define the strategy that consists in pro-
tecting one vertex v ∈ V \ B′

2·cw(H)(s) adjacent to a vertex in B′
2·cw(H)(s)

at each step t = 1, . . . , 2 · cw(H). Let F ′ be the set of vertices burned at
step 2 · cw(H). Since Δ(H) ≤ 2 · cw(H), we deduce that |F ′| is less or equal
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s
B2(s)B3(s) B1(s)

Fig. 3. A linear layout of a graph of cutwidth two. Dashed ellipses represent the bubbles
associated to an initially burned vertex s.

to |F | · Δ(H)2·cw(H) ≤ g1(cw(H)) · (2 · cw(H))2·cw(H) hence bounded by a func-
tion of cw(H). Let us consider the subgraph H ′ = H[B′

2·cw(H)(s)]. Observe that
we can safely remove every edge uv from H ′ for which u, v ∈ F ′. Indeed, such
edge cannot have any influence during the subsequent steps of propagation. By
the definition of a bubble and the overlapping of bubbles, this implies that the
cutwidth of H ′ is decreased by one and thus is now at most k. Therefore, we
can apply our inductive hypothesis to H ′ which tells us that there is a strategy
for H ′ such that at most g′

2(cw(H
′)) vertices are burned for some function g′

2. By
Lemma1, this strategy uses at most g′

2(cw(H
′)) steps to be applied. It follows

that the number of burned vertices in H after applying this strategy is at most
the number of burned vertices from step 1 to the step 2 · cw(H) + g′

2(cw(H
′))

which is |F | · Δ(H)2·cw(H)+g′
2(cw(H′)) ≤ g1(cw(H)) · (2 · cw(H))2·cw(H)+g′

2(cw(H′))

which is bounded by a function of cw(H). From now on, one can see that the
previous argument can be applied iteratively to each bubble. Since the number
of bubbles is bounded by g1(cw(H)) (there is at most one bubble for each vertex
initially on fire), we deduce that the total number of burned vertices is bounded
by g2(cw(H)) some function g2. This concludes the proof of the claim.

We are now in position to prove the theorem. Let G be a graph. Suppose that
the number of initially burned vertices in G is at most f1(pw(G),Δ(G)) for some
function f1. We know that pw(G) ≤ cw(G) and Δ(G) ≤ 2 · cw(G) [17]. Thus the
number of burned vertices is at most f ′

1(cw(G)) for some function f ′
1. From the

above claim we deduce that there exists a strategy such that at most f ′
2(cw(G))

vertices get burned. Since cw(G) ≤ pw(G) · Δ(G) [6], it follows that the number
of burned vertices is bounded by f2(pw(G),Δ(G)) for some function f2.This
completes the proof. �

Remark 1. Notice that Theorem2 is still valid even if the number of firefighters
available at each step is not the same (for example if there are b1 firefighters at
time step one, b2 firefighters during the second time step, etc.).

We are now in position to give the main result of this section.

Theorem 3. The Firefighter problem is fixed-parameter tractable with respect
to the combined parameter “pathwidth” and “maximum degree” of the input
graph.

From the proof of Theorem2 and the fact that cw(G) ≤ bw(G)(bw(G)+1)
2 [4] for

any graph G, we easily deduce the following theorem.
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Theorem 4. The Firefighter problem is fixed-parameter tractable with respect
to the parameter “cutwidth” and to the parameter “bandwidth”.

5 Firefighting on Dense Graphs

As trees are the less dense graphs, it seems natural to ask for the tractability of
the problem when the graph is essentially made up of cliques. In the following
we show that even if the graph can be partitioned into two cliques (also known
as a co-bipartite graph), the problem turns out to be NP-complete. Notice that
the problem is trivial for cliques.

Theorem 5. The Firefighter problem is NP-complete and W[1]-hard for the
parameter k even on co-bipartite graphs.

We note that if the budget b is fixed, then one can solve the problem in polyno-
mial time on co-bipartite graphs. To see this, observe that there are at most 3
propagation steps in such a graph. Hence the total number of protected vertices
is bounded by a constant, which implies that the problem is polynomial-time
solvable [2].

As a final result, we show that the problem is fixed-parameter tractable with
respect to the parameter cluster vertex deletion number, that is the minimum
number of vertices that have to be deleted to get a disjoint union of complete
graphs. We first discuss the motivation for this parameter. Whenever a problem
is hard on graphs of bounded treewidth/pathwidth, it is a common research
direction to ask for the parameterized complexity of the problem with respect to
the larger parameter vertex cover. However, the class of graphs of small vertex
cover is rather limited and, hence, looking for the complexity of the problem for
parameters that generalize it tends to be a more relevant approach. Among them
the cluster vertex deletion number appears to be an interesting intermediate
parameterization between vertex cover and cliquewidth [9].

Theorem 6. For any fixed b > 0, the Firefighter problem is fixed-parameter
tractable with respect to the parameter “cluster vertex deletion”.

6 Conclusion

The main result of this paper is that the Firefighter problem is NP-complete
even on trees of pathwidth three but fixed-parameter tractable with respect
to the combined parameter “pathwidth” and “maximum degree” of the input
graph. The combination of these two results with the NP-completeness of the
problem on trees of bounded degree [10] indicates that the complexity of the
problem depends heavily on the degree and the pathwidth of the graph. We left
as an open question whether the problem is polynomial-time solvable on graphs
of pathwidth two.



The Firefighter Problem: A Structural Analysis 183

References

1. Anshelevich, E., Chakrabarty, D., Hate, A., Swamy, C.: Approximability of the
firefighter problem. Algorithmica 62(1–2), 520–536 (2012)

2. Bazgan, C., Chopin, M., Cygan, M., Fellows, M.R., Fomin, F.V., van Leeuwen,
E.J.: Parameterized complexity of firefighting. J. Comput. Syst. Sci. 80(7), 1285–
1297 (2014)

3. Bazgan, C., Chopin, M., Ries, B.: The firefighter problem with more than one
firefighter on trees. Discrete Appl. Math. 161(7–8), 899–908 (2013)

4. Bodlaender, H.L.: Classes of graphs with bounded tree-width. Bull. EATCS 36,
116–128 (1988)

5. Cai, L., Verbin, E., Yang, L.: Firefighting on trees: (1 − 1/e)–approximation,
fixed parameter tractability and a subexponential algorithm. In: Hong, S.-H., Nag-
amochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 258–269.
Springer, Heidelberg (2008)

6. Chung, F.R., Seymour, P.D.: Graphs with small bandwidth and cutwidth. In:
Graph Theory and combinatorics 1988 Proceedings of the Cambridge Combinato-
rial Conference in Honour of Paul Erdös, Annals of Discrete Mathematics, vol. 43,
pp. 113–119 (1989)

7. Costa, V., Dantas, S., Dourado, M.C., Penso, L., Rautenbach, D.: More fires and
more fighters. Discrete Appl. Math. 161(16–17), 2410–2419 (2013)

8. Develin, M., Hartke, S.G.: Fire containment in grids of dimension three and higher.
Discrete Appl. Math. 155(17), 2257–2268 (2007)

9. Doucha, M., Kratochv́ıl, J.: Cluster vertex deletion: a parameterization between
vertex cover and clique-width. In: Rovan, B., Sassone, V., Widmayer, P. (eds.)
MFCS 2012. LNCS, vol. 7464, pp. 348–359. Springer, Heidelberg (2012)

10. Finbow, S., King, A., MacGillivray, G., Rizzi, R.: The firefighter problem for graphs
of maximum degree three. Discrete Math. 307(16), 2094–2105 (2007)

11. Fomin, F.V., Heggernes, P., van Leeuwen, E.J.: Making Life Easier for Firefighters.
In: Kranakis, E., Krizanc, D., Luccio, F. (eds.) FUN 2012. LNCS, vol. 7288, pp.
177–188. Springer, Heidelberg (2012)

12. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H Freeman and Company, New York (1979)

13. Hartnell, B.: Firefighter! an application of domination, Presentation. In: 10th Con-
ference on Numerical Mathematics and Computing, University of Manitoba in
Winnipeg, Canada (1995)

14. Hartnell, B., Li, Q.: Firefighting on trees: how bad is the greedy algorithm? Con-
gressus Numerantium 145, 187–192 (2000)

15. Iwaikawa, Y., Kamiyama, N., Matsui, T.: Improved approximation algorithms for
firefighter problem on trees. IEICE Trans. Inf. Syst. E94.D(2), 196–199 (2011)

16. King, A., MacGillivray, G.: The firefighter problem for cubic graphs. Discrete Math.
310(3), 614–621 (2010)

17. Korach, E., Solel, N.: Tree-width, path-width, and cutwidth. Discrete Appl. Math.
43(1), 97–101 (1993)

18. MacGillivray, G., Wang, P.: On the firefighter problem. J. Comb. Math. Comb.
Comput. 47, 83–96 (2003)

19. Ng, K.L., Raff, P.: A generalization of the firefighter problem on ZxZ. Discrete
Appl. Math. 156(5), 730–745 (2008)



AND-compression of NP-complete Problems:
Streamlined Proof and Minor Observations

Holger Dell(B)

Cluster of Excellence, MMCI, Saarland University, Saarbrucken, Germany
hdell@mmci.uni-saarland.de

Abstract. Drucker [8] proved the following result: Unless the unlikely
complexity-theoretic collapse coNP ⊆ NP/poly occurs, there is no
AND-compression for SAT. The result has implications for the compress-
ibility and kernelizability of a whole range of NP-complete parameterized
problems. We present a streamlined proof of Drucker’s theorem.

An AND-compression is a deterministic polynomial-time algorithm
that maps a set of SAT-instances x1, . . . , xt to a single SAT-instance y
of size poly(maxi |xi|) such that y is satisfiable if and only if all xi are
satisfiable. The “AND” in the name stems from the fact that the pred-
icate “y is satisfiable” can be written as the AND of all predicates “xi

is satisfiable”. Drucker’s theorem complements the result by Bodlaender
et al. [3] and Fortnow and Santhanam [10], who proved the analogous
statement for OR-compressions, and Drucker’s proof not only subsumes
their result but also extends it to randomized compression algorithms
that are allowed to have a certain probability of failure.

Drucker [8] presented two proofs: The first uses information theory
and the minimax theorem from game theory, and the second is an ele-
mentary, iterative proof that is not as general. In our proof, we realize the
iterative structure as a generalization of the arguments of Ko [12] for P-
selective sets, which use the fact that tournaments have dominating sets
of logarithmic size. We generalize this fact to hypergraph tournaments.
Our proof achieves the full generality of Drucker’s theorem, avoids the
minimax theorem, and restricts the use of information theory to a single,
intuitive lemma about the average noise sensitivity of compressive maps.
To prove this lemma, we use the same information-theoretic inequalities
as Drucker.

1 Introduction

The influential “OR-conjecture” by Bodlaender et al. [3] asserts that t instances
x1, . . . , xt of SAT cannot be mapped in polynomial time to an instance y of
size poly(maxi |xi|) so that y is a yes-instance if and only if at least one xi

is a yes-instance. Conditioned on the OR-conjecture, the “composition frame-
work” of Bodlaender et al. [3] has been used to show that many different prob-
lems in parameterized complexity do not have polynomial kernels. Fortnow
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and Santhanam [10] were able to prove that the OR-conjecture holds unless
coNP ⊆ NP/poly, thereby connecting the OR-conjecture with a standard hypoth-
esis in complexity theory.

The results of [3,10] can be used not only to rule out deterministic kerneliza-
tion algorithms, but also to rule out randomized kernelization algorithms with
one-sided error, as long as the success probability is bigger than zero; this is the
same as allowing the kernelization algorithm to be a coNP-algorithm. Left open
was the question whether the complexity-theoretic hypothesis coNP �⊆ NP/poly
(or some other hypothesis believed by complexity theorists) suffices to rule
out kernelization algorithms that are randomized and have two-sided error.
Drucker [8] resolves this question affirmatively; his results can rule out ker-
nelization algorithms that have a constant gap in their error probabilities. This
result indicates that randomness does not help to decrease the size of kernels
significantly.

With the same proof, Drucker [8] resolves a second important question:
whether the “AND-conjecture”, which has also been formulated by Bodlaen-
der et al. [3] analogous to the OR-conjecture, can be derived from existing
complexity-theoretic assumptions. This is an intriguing question in itself, and
it is also relevant for parameterized complexity as, for some parameterized prob-
lems, we can rule out polynomial kernels under the AND-conjecture, but we do
not know how to do so under the OR-conjecture. Drucker [8] proves that the
AND-conjecture is true if coNP �⊆ NP/poly holds.

The purpose of this paper is to discuss Drucker’s theorem and its proof. To
this end, we attempt to present a simpler proof of his theorem. Our proof in
Sect. 3 gains in simplicity with a small loss in generality: the bound that we
get is worse than Drucker’s bound by a factor of two. Using the slightly more
complicated approach deferred to the full version of this paper, it is possible to
get the same bounds as Drucker. These differences, however, do not matter for
the basic version of the main theorem, which we state in Sect. 1.1 and further
discuss in Sect. 1.2. For completeness, we briefly discuss a formulation of the
composition framework in Sect. 1.3.

1.1 Main Theorem: Ruling Out OR- and AND-compressions

An AND-compression A for a language L ⊆ {0, 1}∗ is a polynomial-time reduc-
tion that maps a set {x1, . . . , xt} to some instance y

.= A
({x1, . . . , xt}

)
of a

language L′ ⊆ {0, 1}∗ such that y ∈ L′ holds if and only if x1 ∈ L and x2 ∈ L
and . . . and xt ∈ L. By De Morgan’s law, the same A is an OR-compression
for L

.= {0, 1}∗ \ L because y ∈ L′ holds if and only if x1 ∈ L or x2 ∈ L or
. . . or xt ∈ L. Drucker [8] proved that an OR-compression for L implies that
L ∈ NP/poly ∩ coNP/poly, which is a complexity consequence that is closed
under complementation, that is, it is equivalent to L ∈ NP/poly ∩ coNP/poly.
For this reason, and as opposed to earlier work [3,7,10], it is without loss of
generality that we restrict our attention to OR-compressions for the remainder
of this paper. We now formally state Drucker’s theorem.
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Theorem 1 (Drucker’s theorem). Let L,L′ ⊆ {0, 1}∗ be languages, let es,
ec ∈ [0, 1] be error probabilities with es + ec < 1, and let ε > 0. Assume that
there exists a randomized polynomial-time algorithm A that maps any set x =
{x1, . . . , xt} ⊆ {0, 1}n for some n and t to y = A(x) such that:

• (Soundness) If all xi’s are no-instances of L, then y is a no-instance of L′

with probability ≥ 1 − es.
• (Completeness) If exactly one xi is a yes-instance of L, then y is a yes-instance

of L′ with probability ≥ 1 − ec.
• (Size bound) The size of y is bounded by t1−ε · poly(n).

Then L ∈ NP/poly ∩ coNP/poly.

The procedure A above does not need to be a “full” OR-compression, which
makes the theorem more general. In particular, A is relaxed in two ways: it
only needs to work, or be analyzed, in the case that all input instances have
the same length; this is useful in hardness of kernelization proofs as it allows
similar instances to be grouped together. Furthermore, A only needs to work, or
be analyzed, in the case that at most one of the input instances is a yes-instance
of L; we believe that this property will be useful in future work on hardness of
kernelization.

The fact that “relaxed” OR-compressions suffice in Theorem 1 is implicit
in the proof of Drucker [8], but not stated explicitly. Before Drucker’s work,
Fortnow and Santhanam [10] proved the special case of Theorem 1 in which
ec = 0, but they only obtain the weaker consequence L ∈ coNP/poly, which
prevents their result from applying to AND-compressions in a non-trivial way.
Moreover, their proof uses the full completeness requirement and does not seem
to work for relaxed OR-compressions.

1.2 Comparison and Overview of the Proof

The simplification of our proof stems from two main sources: 1. The “scaffold-
ing” of our proof, its overall structure, is more modular and more similar to
arguments used previously by Ko [12], Fortnow and Santhanam [10], and Dell
and Van Melkebeek [7] for compression-type procedures and Dell et al. [5] for iso-
lation procedures. 2. While the information-theoretic part of our proof uses the
same set of information-theoretic inequalities as Drucker’s, the simple version in
Sect. 3 applies these inequalities to distributions that have a simpler structure.
Moreover, our calculations have a somewhat more mechanical nature.

Both Drucker’s proof and ours use the relaxed OR-compression A to design
a P/poly-reduction from L to the statistical distance problem, which is known to
be in the intersection of NP/poly and coNP/poly by previous work (cf. Xiao [15]).
Drucker [8] uses the minimax theorem and a game-theoretic sparsification argu-
ment to construct the polynomial advice of the reduction. He also presents an
alternative proof [9, Sect. 3] in which the advice is constructed without these
arguments and also without any explicit invocation of information theory; how-
ever, the alternative proof does not achieve the full generality of his theorem,
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and we feel that avoiding information theory entirely leads to a less intuitive
proof structure. In contrast, our proof achieves full generality up to a factor of
two in the simplest proof, it avoids game theoretic arguments, and it limits infor-
mation theory to a single, intuitive lemma about the average noise sensitivity of
compressive maps.

Using this information-theoretic lemma as a black box, we design the P/poly-
reduction in a purely combinatorial way: We generalize the fact that tourna-
ments have dominating sets of logarithmic size to hypergraph tournaments; these
are complete t-uniform hypergraphs with the additional property that, for each
hyperedge, one of its elements gets “selected”. In particular, for each set e ⊆ L
of t no-instances, we select one element of e based on the fact that A’s behavior
on e somehow proves that the selected instance is a no-instance of L. The advice
of the reduction is going to be a small dominating set of this hypergraph tourna-
ment on the set of no-instances of L. The crux is that we can efficiently test, with
the help of the statistical distance problem oracle, whether an instance is dom-
inated or not. Since any instance is dominated if and only if it is a no-instance
of L, this suffices to solve L.

In the information-theoretic lemma, we generalize the notion of average noise
sensitivity of Boolean functions (which can attain two values) to compressive
maps (which can attain only relatively few values compared to the input length).
We show that compressive maps have small average noise sensitivity. Drucker’s
“distributional stability” is a closely related notion, which we make implicit use
of in our proof. Using the latter notion as the anchor of the overall reduction,
however, leads to some additional technicalities in Drucker’s proof, which we also
run into in the full version of this paper where we obtain the same bounds as
Drucker’s theorem. In Sect. 3 we instead use the average noise sensitivity as the
anchor of the reduction, which avoids these technicalities at the cost of losing a
factor of two in the bounds.

1.3 Application: The Composition Framework

We briefly describe a modern variant of the composition framework that is suf-
ficient to rule out kernels of size O(kd−ε) using Theorem 1. It is almost identical
to Lemma 1 of [6,7] and the notion defined by Hermelin and Wu [11, Defini-
tion 2.2]. By applying the framework for unbounded d, we can also use it to rule
out polynomial kernels.

Definition 2. Let L be a language, and let Π with parameter k be a para-
meterized problem. A d-partite composition of L into Π is a polynomial-time
algorithm A that maps any set x = {x1, . . . , xt} ⊆ {0, 1}n for some n and t to
y = A(x) such that:

(1) If all xi’s are no-instances of L, then y is a no-instance of Π.
(2) If exactly one xi is a yes-instance of L, then y is a yes-instance of Π.
(3) The parameter k of y is bounded by t1/d+o(1) · poly(n).
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This notion of composition has one crucial advantage over previous notions of
OR-composition: The algorithm A does not need to work, or be analyzed, in the
case that two or more of the xi’s are yes-instances.

Definition 3. Let Π be a parameterized problem. We call Π d-compositional if
there exists an NP-hard or coNP-hard problem L that has a d-partite composition
algorithm into Π.

The above definition encompasses both AND-compositions and OR-composi-
tions because an AND-composition of L into Π is the same as an OR-composition
of L into Π. We have the following corollary of Drucker’s theorem.

Corollary 4. If coNP �⊆ NP/poly, then no d-compositional problem has ker-
nels of size O(kd−ε). Moreover, this even holds when the kernelization algorithm
is allowed to be a randomized algorithm with at least a constant gap in error
probability.

Proof. Let L be an NP-hard or coNP-hard problem that has a d-partite compo-
sition A′ into Π. Assume for the sake of contradiction that Π has a kernelization
algorithm with soundness error at most es and completeness error at most ec so
that es + ec is bounded by a constant smaller than one. The concatenation of A′

with the assumed O(kd−ε′
)-kernelization gives rise to an algorithm A that satis-

fies the conditions of Theorem 1, for example with ε = ε′/(2d). Therefore, we get
L ∈ (coNP/poly ∩ NP/poly) and thus coNP ⊆ NP/poly, a contradiction. �
Several variants of the framework provided by this corollary are possible:

1. n order to rule out poly(k)-kernels for a parameterized problem Π, we just
need to prove that Π is d-compositional for all d ∈ N; let’s call Π composi-
tional in this case. One way to show that Π is compositional is to construct
a single composition from a hard problem L into Π; this is an algorithm as
in Definition 2, except that we replace (3) with the bound k ≤ to(1) poly(n).

2. ince all xi’s in Definition 2 are promised to have the same length, we can
consider a padded version L̃ of the language L in order to filter the input
instances of length n of the original L into a polynomial number of equivalence
classes. Each input length of L̃ in some interval [p1(n), p2(n)] corresponds to
one equivalence class of length-n instances of L. So long as L̃ remains NP-
hard or coNP-hard, it is sufficient to consider a composition from L̃ into Π.
Bodlaender, Jansen, and Kratsch [4, Definition 4] formalize this approach.

3. The composition algorithm can also use randomness, as long as the overall
probability gap of the concatenation of composition and kernelization is not
negligible.

4. In the case that L is NP-hard, Fortnow and Santhanam [10] and Dell and
Van Melkebeek [7] prove that the composition algorithm can also be a coNP-
algorithm or even a coNP oracle communication game in order to get the
collapse. Interestingly, this does not seem to follow from Drucker’s proof nor
from the proof presented here, and it seems to require the full complete-
ness condition for the OR-composition. Kratsch [13] and Kratsch, Philip, and
Ray [14] exploit these variants of the composition framework to prove kernel
lower bounds.
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2 Preliminaries

For any set R ⊆ {0, 1}∗ and any � ∈ N, we write R�
.= R ∩ {0, 1}� for the set

of all length-� strings inside of R. For any t ∈ N, we write [t] .= {1, . . . , t}. For
a set V , we write

(
V
≤t

)
for the set of all subsets x ⊆ V that have size at most t.

We will work over a finite alphabet, usually Σ = {0, 1}. For a vector a ∈ Σt, a
number j ∈ [t], and a value y ∈ Σ, we write a|j←y for the string that coincides
with a except in position j, where it has value y. For background in complexity
theory, we defer to the book by Arora and Barak [2]. We assume some familiarity
with the complexity classes NP and coNP as well as their non-uniform versions
NP/poly and coNP/poly.

2.1 Distributions and Randomized Mappings

A distribution on a finite ground set Ω is a function D : Ω → [0, 1] with∑
ω∈Ω D(ω) = 1. The support of D is the set supp D = {ω ∈ Ω | D(ω) > 0 }.

The uniform distribution UΩ on Ω is the distribution with UΩ(ω) = 1
|Ω| for all

ω ∈ Ω. We often view distributions as random variables, that is, we may write
f(D) to denote the distribution D′ that first produces a sample ω ∼ D and
then outputs f(ω), where f : Ω → Ω′. We use any of the following notations:
D′(ω′) = Pr(f(D) = ω′) = Prω∼D(f(ω) = ω′) =

∑
ω∈Ω D(ω) · Pr(f(ω) = ω′) .

The last term Pr(f(ω) = ω′) in this equation is either 0 or 1 if f is a deter-
ministic function, but we will also allow f to be a randomized mapping, that
is, f has access to some “internal” randomness. This is modeled as a function
f : Ω × {0, 1}r → Ω′ for some r ∈ N, and we write f(D) as a short-hand for
f(D,U{0,1}r ). That is, the internal randomness consists of a sequence of inde-
pendent and fair coin flips.

2.2 Statistical Distance

The statistical distance d(X,Y ) between two distributions X and Y on Ω is

d(X,Y ) = max
T⊆Ω

∣
∣ Pr(X ∈ T ) − Pr(Y ∈ T )

∣
∣ . (1)

The statistical distance between X and Y is a number in [0, 1], with d(X,Y ) = 0
if and only if X = Y and d(X,Y ) = 1 if and only if the support of X is disjoint
from the support of Y . It is an exercise to show the standard equivalence between
the statistical distance and the 1-norm:

d(X,Y ) =
1
2

· ∥
∥X − Y

∥
∥

1
=

1
2

∑

ω∈Ω

∣
∣ Pr(X = ω) − Pr(Y = ω)

∣
∣ .

2.3 The Statistical Distance Problem

For U = U{0,1}n and 0 ≤ δ < Δ ≤ 1, let SD≥Δ
≤δ be the following promise problem:

yes-instances: Circuits C,C ′ : {0, 1}n → {0, 1}∗ with d(C(U), C ′(U)) ≥ Δ.
no-instances: Circuits C,C ′ : {0, 1}n → {0, 1}∗ with d(C(U), C ′(U)) ≤ δ.
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The statistical distance problem is not known to be polynomial-time com-
putable, and in fact it is not believed to be. On the other hand, the problem is
also not believed to be NP-hard because the problem is computationally easy in
the following sense.

Theorem 5 (Xiao [15] + Adleman [1]). If δ < Δ are constants, we have
SD≥Δ

≤δ ∈
(
NP/poly ∩ coNP/poly

)
.

Moreover, the same holds when δ = δ(n) and Δ = Δ(n) are functions of the
input length that satisfy Δ − δ ≥ 1

poly(n) .

This is the only fact about the SD-problem that we will use in this paper. Slightly
stronger versions of this theorem are known, but we do not list them here due
to the 12-page limit imposed by the publisher.

3 Ruling Out OR-compressions

In this section we prove Theorem 1: Any language L that has a relaxed OR-
compression is in coNP/poly∩NP/poly. We rephrase the theorem in a form that
reveals the precise inequality between the error probabilities and the compression
ratio needed to get the complexity consequence.

Theorem 6 (εt-compressive version of Drucker’s theorem). Let L,L′ ⊆
{0, 1}∗ be languages and es, ec ∈ [0, 1] be some constants denoting the error
probabilities. Let t = t(n) > 0 be a polynomial and ε > 0. Let

A :
({0, 1}n

≤ t

)

→ {0, 1}εt (2)

be a randomized P/poly-algorithm such that, for all x ∈ ({0,1}n

≤t

)
,

• if |x ∩ L| = 0, then A(x) ∈ L′ holds with probability ≥ 1 − es, and
• if |x ∩ L| = 1, then A(x) ∈ L′ holds with probability ≥ 1 − ec.

If es + ec < 1 − √
(2 ln 2)ε, then L ∈ NP/poly ∩ coNP/poly.

This is Theorem 7.1 in Drucker [9]. However, there are two noteworthy differ-
ences:

1. Drucker obtains complexity consequences even when es + ec < 1−√
(ln 2/2)ε

holds, which makes his theorem more general. The difference stems from the
fact that we optimized the proof in this section for simplicity and not for
the optimality of the bound. He also obtains complexity consequences under
the (incomparable) bound es + ec < 2−ε−3. Using the slightly more compli-
cated setup deferred to the full version of this paper, we would be able to
achieve both of these bounds.
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2. To get a meaningful result for OR-compression of NP-complete problems, we
need the complexity consequence L ∈ NP/poly ∩ coNP/poly rather than just
L ∈ NP/poly. To get the stronger consequence, Drucker relies on the fact that
the statistical distance problem SD≥Δ

≤δ has statistical zero knowledge proofs.
This is only known to be true when Δ2 > δ holds, which translates to the
more restrictive assumption (es + ec)2 < 1 − √

(ln 2/2)ε in his theorem. We
instead use Theorem 5, which does not go through statistical zero knowledge
and proves more directly that SD≥Δ

≤δ is in NP/poly ∩ coNP/poly whenever
Δ > δ holds. Doing so in Drucker’s paper immediately improves all of his
L ∈ NP/poly consequences to L ∈ NP/poly ∩ coNP/poly.

To obtain Theorem 1, the basic version of Drucker’s theorem, as a corollary of
Theorem 6, none of these differences matter. This is because we could choose
ε > 0 to be sufficiently smaller in the proof of Theorem 1, which we provide now
before we turn to the proof of Theorem 6.

Proof (of Theorem 1). Let A be the algorithm assumed in Theorem 1, and let
C ≥ 2 be large enough so that the output size of A is bounded by t1−1/C ·C ·nC .
We transform A into an algorithm as required for Theorem 6. Let ε > 0 be a
small enough constant so that es + ec < 1 − √

(2 ln 2)ε. Moreover, let t(n) be
a large enough polynomial so that (t(n))1−1/C · C · nC < εt(n) holds. Then we
restrict A to a family of functions An :

({0,1}n

≤t(n)

) → {0, 1}<εt(n). Now a minor
observation is needed to get an algorithm of the form (2): The set {0, 1}<εt can
be efficiently encoded in {0, 1}εt (which changes the output language from L′ to
some L′′). Thus we constructed a family An as required by Theorem 6, which
proves the claim. �

3.1 ORs are Sensitive to Yes-instances

The semantic property of relaxed OR-compressions is that they are “L-sensitive”:
They show a dramatically different behavior for all-no input sets vs. input sets
that contain a single yes-instance of L. The following simple fact is the only place
in the overall proof where we use the soundness and completeness properties of A.

Lemma 7. For all distributions X on
(

L
<t

)
and all v ∈ L, we have

d
(
A(X) , A(X ∪ {v})

)
≥ Δ .= 1 − (es + ec) . (3)

Proof. The probability that A(X) outputs an element of L′ is at most es, and
similarly, the probability that A(X ∪ {v}) outputs an element of L′ is at least
1−ec. By (1) with T = L′, the statistical distance between the two distributions
is at least Δ. �

Despite the fact that relaxed OR-compressions are sensitive to the presence or
absence of a yes-instance, we argue next that their behavior within the set of
no-instances is actually quite predictable.
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3.2 The Average Noise Sensitivity of Compressive Maps is Small

Relaxed OR-compressions are in particular compressive maps. The following
lemma says that the average noise sensitivity of any compressive map is low.
Here, “average noise sensitivity” refers to the difference in the behavior of a
function when the input is subject to random noise; in our case, we change the
input in a single random location and notice that the behavior of a compressive
map does not change much.

Lemma 8. Let t ∈ N, let X be the uniform distribution on {0, 1}t, and let ε > 0.
Then, for all randomized mappings f : {0, 1}t → {0, 1}εt, we have

E
j∼U[t]

d
(
f
(
X|j←0

)
, f

(
X|j←1

)) ≤ δ
.=

√
2 ln 2 · ε . (4)

We defer the purely information-theoretic and mechanical calculation that yields
Lemma 8 to the full version of this paper. We remark that, in the special case
where f : {0, 1}t → {0, 1} is a Boolean function, the left-hand side of (4) coincides
with the usual definition of the average noise sensitivity.

We translate Lemma 8 to our relaxed OR-compression A as follows.

Lemma 9. Let A :
({0,1}n

≤t

) → {0, 1}εt. For all e ∈ ({0,1}n

t

)
, there is v ∈ e with

d
(
A

(U2e \ {v}) , A
(U2e ∪ {v})

)
≤ δ . (5)

Here U2e samples a subset of e uniformly at random. Note that we replaced the
expectation over j from (4) with the mere existence of an element v in (5) since
this is all we need; the stronger property also holds.

Proof. To prove the claim, let v1, . . . , vt be the elements of e in lexicographic
order. For b ∈ {0, 1}t, let g(b) ⊆ e be such that vi ∈ g holds if and only if bi = 1.
We define the randomized mapping f : {0, 1}t → {0, 1}εt as follows:

f(b1, . . . , bt)
.= A

(
g(b)

)
.

Then f(X|j←0) = A(U2e \ {vj}) and f(X|j←1) = A(U2e ∪ {vj}). The claim
follows from Lemma 8 with v

.= vj for some j that minimizes the statistical
distance in (4). �

This lemma suggest the following tournament idea. We let V = Ln be the set of
no-instances, and we let them compete in matches consisting of t players each.
That is, a match corresponds to a hyperedge e ∈ (

V
t

)
of size t and every such

hyperedge is present, so we are looking at a complete t-uniform hypergraph. We
say that a player v ∈ e is “selected” in the hyperedge e if the behavior of A
on U2e \ {v} is not very different from the behavior of A on U2e ∪ {v}, that
is, if (5) holds. The point of this construction is that v being selected proves
that v must be a no-instance because (3) does not hold. We obtain a “selector”
function S :

(
V
t

) → V that, given e, selects an element v = S(e) ∈ e. We call S
a hypergraph tournament on V .
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3.3 Hypergraph Tournaments have Small Dominating Sets

Tournaments are complete directed graphs, and it is well-known that they have
dominating sets of logarithmic size. A straightforward generalization applies to
hypergraph tournaments S :

(
V
t

) → V . We say that a set g ∈ (
V

t−1

)
dominates a

vertex v if v ∈ g or S(g ∪ {v}) = v holds. A set D ⊆ (
V

t−1

)
is a dominating set of

S if all vertices v ∈ V are dominated by at least one element in D.

Lemma 10. Let V be a finite set, and let S :
(
V
t

) → V be a hypergraph tourna-
ment. Then S has a dominating set D ⊆ (

V
t−1

)
of size at most t log |V |.

Proof. We construct the set D inductively. Initially, it has k = 0 elements. After
the k-th step of the construction, we will preserve the invariant that D is of size
exactly k and that |R| ≤ (1−1/t)k · |V | holds, where R is the set of vertices that
are not yet dominated, that is,

R =
{
v ∈ V

∣
∣ �∈ g and S(g ∪ {v}) �= v holds for all g ∈ D}

.

If 0 < |R| < t, we can add an arbitrary edge g∗ ∈ (
V

t−1

)
with R ⊆ g∗ to D to

finish the construction. Otherwise, the following averaging argument, shows that
there is an element g∗ ∈ (

R
t−1

)
that dominates at least a 1/t-fraction of elements

v ∈ R:

1
t

= E
e∈(Rt )

Pr
v∈e

(
S(e) = v

)
= E

g∈( R
t−1)

Pr
v∈R−g

(
S(g ∪ {v}) = v

)
.

Thus, the number of elements of R left undominated by g∗ is at most (1−1/t)·|R|,
so the inductive invariant holds. Since (1 − 1/t)k · |V | ≤ exp(−k/t) · |V | < 1 for
k = t log |V |, we have R = ∅ after k ≤ t log |V | steps of the construction, and in
particular, D has at most t log |V | elements. �

3.4 Proof of the Main Theorem: Reduction to Statistical Distance

Proof (of Theorem 6). We describe a deterministic P/poly reduction from L to
the statistical distance problem SD≥Δ

≤δ with Δ = 1−(es +ec) and δ =
√

(2 ln 2)ε.
The reduction outputs the conjunction of polynomially many instances of SD≥Δ

≤δ .
Since SD≥Δ

≤δ is contained in the intersection of NP/poly and coNP/poly by Theo-
rem 5, and since this intersection is closed under taking polynomial conjunctions,
we obtain L ∈ NP/poly ∩ coNP/poly. Thus it remains to find such a reduction.
To simplify the discussion, we describe the reduction in terms of an algorithm
that solves L and uses SD≥Δ

≤δ as an oracle. However, the algorithm only makes
non-adaptive queries at the end of the computation and accepts if and only if
all oracle queries accept; this corresponds to a reduction that maps an instance
of L to a conjunction of instances of SD≥Δ

≤δ as required.
To construct the advice at input length n, we use Lemma 9 with t = t(n)

to obtain a hypergraph tournament S on V = Ln, which in turn gives rise to a
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small dominating set D ⊆ (
V

t−1

)
by Lemma 10. We remark the triviality that if

|V | ≤ t = poly(n), then we can use V , the set of all no-instances of L at this
input length, as the advice. Otherwise, we define the hypergraph tournament S
for all e ∈ (

V
t

)
as follows:

S(e) .= min
{
v ∈ e

∣
∣ d(A

(U2e \ {v}) , A(U2e ∪ {v})) ≤ δ
}

.

By Lemma 9, the set over which the minimum is taken is non-empty, and thus S
is well-defined. Furthermore, the hypergraph tournament has a dominating set D
of size at most tn by Lemma 10. As advice for input length n, we choose this
set D. Now we have v ∈ L if and only if v is dominated by D. The idea of the
reduction is to efficiently check the latter property.

The algorithm works as follows: Let v ∈ {0, 1}n be an instance of L given
as input. If v ∈ g holds for some g ∈ D, the algorithm rejects v and halts.
Otherwise, it queries the SD-oracle on the instance (A(U2g ), A(U2g ∪ {v})) for
each g ∈ D. If the oracle claims that all queries are yes-instances, our algorithm
accepts, and otherwise, it rejects.

First note that distributions of the form A
(U2g

)
and A

(U2g ∪{v}) can be be
sampled by using polynomial-size circuits, and so they form syntactically correct
instances of the SD-problem: The information about A, g, and v is hard-wired
into these circuits, the input bits of the circuits are used to produce a sample
from U2g , and they serve as internal randomness of A in case A is a randomized
algorithm.

It remains to prove the correctness of the reduction. If v ∈ L, we have for all
g ∈ D ⊆ L that v �∈ g and that the statistical distance of the query corresponding
to g is at least Δ = 1−(es +ec) by Lemma 7. Thus all queries that the reduction
makes satisfy the promise of the SD-problem and the oracle answers the queries
correctly, leading our reduction to accept. On the other hand, if v �∈ L, then, since
D is a dominating set of L with respect to the hypergraph tournament S, there
is at least one g ∈ D so that v ∈ g or S(g∪{v}) = v holds. If v ∈ g, the reduction
rejects. The other case implies that the statistical distance between A(U2g ) and
A(U2g ∪{v}) is at most δ. The query corresponding to this particular g therefore
satisfies the promise of the SD-problem, which means that the oracle answers
correctly on this query and our reduction rejects. �
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Abstract. We consider the Editing to a Graph of Given Degrees

problem that for a graph G, non-negative integers d, k and a function
δ : V (G) → {1, . . . , d}, asks whether it is possible to obtain a graph G′

from G such that the degree of v is δ(v) for any vertex v by at most
k vertex or edge deletions or edge additions. We construct an FPT-
algorithm for Editing to a Graph of Given Degrees parameterized
by d + k. We complement this result by showing that the problem has
no polynomial kernel unless NP ⊆ coNP/poly.

1 Introduction

The aim of graph editing or modification problems is to change a given graph by
applying a bounded number of specified operations in order to satisfy a certain
property. Many basic problems like Clique, Independent Set or Feedback

(Edge or Vertex) Set can be seen as graph editing problems. It is common
to allow combinations of vertex deletions, edge deletions and edge additions, but
other operations, like edge contractions, are considered as well.

The systematic study of the vertex deletion problems was initiated by Lewis
and Yannakakis [16]. They considered hereditary non-trivial properties. A prop-
erty is hereditary if it holds for any induced subgraph of a graph that satisfy
the property, and a property is non-trivial if it is true for infinitely many graphs
and false for infinitely many graphs. Lewis and Yannakakis [16] proved that for
any non-trivial hereditary property, the corresponding vertex deletion problem is
NP-hard, and for trivial properties the problem can be solved in polynomial time.
The edge deletion problems were considered by Yannakakis [23], Alon et al. [1].
The case when edge additions and deletions are allowed and the property is the
inclusion in some hereditary graph class was considered by Natanzon et al. [20]
and Burzyn et al. [5].

As typically graph editing problems are NP-hard, it is natural to use the
parameterized complexity framework to analyze them. Cai [6] proved that for
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any property defined by a finite set of forbidden induced subgraphs, the editing
problem is FPT when parameterized by the bound on the number of vertex
deletions, edge deletions and edge additions. Building up on this result, Khot and
Raman [15] gave a complete characterization of the parameterized complexity
for hereditary properties.

As it could be seen from the aforementioned results, the editing problems
are well investigated for hereditary properties. For properties of other types,
a great deal less is known, and the graph editing problems where the aim is to
obtain a graph that satisfies degree constraints belong to this class. Investigation
of the parameterized complexity of such problems were initiated by Moser and
Thilikos in [18], Cai and Yang [8] and Mathieson and Szeider [17] (see also [9,13]
for related results).

In particular, Mathieson and Szeider [17] considered different variants of the
following problem:

Editing to a Graph of Given Degrees

Instance: A graph G, non-negative integers d, k and a function
δ : V (G) → {1, . . . , d}.

Parameter 1: d.
Parameter 2: k.

Question: Is it possible to obtain a graph G′ from G such that
dG′(v) = δ(v) for each v ∈ V (G′) by at most k operations
from the set S?

They classified the parameterized complexity of the problem for

S ⊆ {vertex deletion, edge deletion, edge addition}.

They showed that Editing to a Graph of Given Degrees is W[1]-hard
when parameterized by k and the unparameterized version is NP-complete if
vertex deletion is in S. If S ⊆ {edge deletion, edge addition}, then the problem
can be solved in polynomial time. For {vertex deletion} ⊆ S ⊆ {vertex deletion,
edge deletion, edge addition}, they proved that Editing to a Graph of Given

Degrees is Fixed Parameter Tractable (FPT) when parameterized by d + k.
Moreover, the FPT result holds for a more general version of the problem where
vertices and edges have costs and the degree constraints are relaxed: for each
v ∈ V (G′), dG′(v) should be in a given set δ(v) ⊆ {1, . . . , d}. The proof given by
Mathieson and Szeider [17] uses a logic-based approach that does not provide
practically feasible algorithms. They used the observation that Editing to a

Graph of Given Degrees can be reduced to the instances with graphs whose
degrees are bounded by a function of k and d. By a result of Seese [22], the
problem of deciding any property that can be expressed in first-order logic is
FPT for graphs of bounded degree when parameterized by the length of the sen-
tence defining the property. In particular, to obtain their FPT-result, Mathieson
and Szeider constructed a non-trivial first-order logic formula that expresses the
property that a graph with vertices of given degrees can be obtained by at most
k editing operations. For the case S ⊆ {vertex deletion, edge deletion}, they
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improved the aforementioned result by showing that Editing to a Graph of

Given Degrees has a polynomial kernel when parameterized by d + k.
In Sect. 3 we construct an FPT-algorithm for Editing to a Graph of

Given Degrees parameterized by k + d for the case when S includes ver-
tex deletion and edge addition that runs in time 2O(kd2+k log k) · poly(n) for
n-vertex graphs, i.e., we give the first feasible algorithm for the problem. Our
algorithm is based on the random separation techniques introduced by Cai
et al. [7]. We complement this result by showing in Sect. 4 that Editing to

a Graph of Given Degrees parameterized by k + d has no polynomial
kernel unless NP ⊆ coNP/poly if {vertex deletion, edge addition} ⊆ S. This
resolves an open problem by Mathieson and Szeider [17]. The proof uses the
cross-composition framework introduced by Bodlaender et al. [3,4]. Due to space
restrictions, some proofs and technical details are omitted or just sketched in this
extended abstract. The full version of the paper is available at [14].

2 Basic Definitions and Preliminaries

Graphs. We consider only finite undirected graphs without loops or multiple
edges. The vertex set of a graph G is denoted by V (G) and the edge set is
denoted by E(G).

For a set of vertices U ⊆ V (G), G[U ] denotes the subgraph of G induced by
U , and by G−U we denote the graph obtained form G by the removal of all the
vertices of U , i.e., the subgraph of G induced by V (G) \ U . If U = {u}, we write
G − u instead of G − {u}. Respectively, for a set of edges L ⊆ E(G), G[L] is a
subgraph of G induced by L, i.e., the vertex set of G[L] is the set of vetices of
G incident to the edges of L, and L is the set of edges of G[L]. For a non-empty
set U ,

(
U
2

)
is the set of unordered pairs of elements of U . For a set of edges L,

by G − L we denote the graph obtained from G by the removal of all the edges
of L. Respectively, for L ⊆ (

V (G)
2

)
, G + L is the graph obtained from G by the

addition of the edges that are elements of L. If L = {a}, then for simplicity, we
write G − a or G + a.

For a vertex v, we denote by NG(v) its (open) neighborhood, that is, the
set of vertices which are adjacent to v, and for a set U ⊆ V (G), NG(U) =
(∪v∈UNG(v)) \ U . The closed neighborhood NG[v] = NG(v) ∪ {v}, and for a
positive integer r, Nr

G[v] is the set of vertices at distance at most r from v. For
a set U ⊆ V (G) and a positive integer r, Nr

G[U ] = ∪v∈UNr
G[v]. The degree of a

vertex v is denoted by dG(v) = |NG(v)|.
A walk in G is a sequence P = v0, e1, v1, e2, . . . , es, vs of vertices and edges

of G such that v0, . . . , vs ∈ V (G), e1, . . . , es ∈ E(G), and for i ∈ {1, . . . , s},
ei = vi−1vi; v0, vs are the end-vertices of the trail, and v1, . . . , vs−1 are the
internal vertices. A walk is closed if v0 = vs. Sometimes we write P = v0, . . . , vs
to denote a trail P = v0, e1, . . . , es, vs omitting edges. A walk is a trail if ea, . . . , es
are pairwise distinct, and a trail is a path if v0, . . . , vs are pairwise distinct except
maybe v0, vs.
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Parameterized Complexity. Parameterized complexity is a two dimensional
framework for studying the computational complexity of a problem. One dimen-
sion is the input size n and another one is a parameter k. It is said that a problem
is fixed parameter tractable (or FPT), if it can be solved in time f(k) · nO(1) for
some function f . A kernelization for a parameterized problem is a polynomial
algorithm that maps each instance (x, k) with the input x and the parameter k
to an instance (x′, k′) such that (i) (x, k) is a YES-instance if and only if (x′, k′)
is a YES-instance of the problem, and (ii) the size of x′ is bounded by f(k) for
a computable function f . The output (x′, k′) is called a kernel. The function
f is said to be a size of a kernel. Respectively, a kernel is polynomial if f is
polynomial. We refer to the books of Flum and Grohe [10], and Niedermeier [21]
for detailed introductions to parameterized complexity.

Solutions of Editing to a Graph of Given Degrees. Let (G, δ, d, k) be
an instance of Editing to a Graph of Given Degrees. Let U ⊂ V (G),
D ⊆ E(G − U) and A ⊆ (

V (G)\U
2

)
. If the vertex deletion, edge deletion or edge

addition is not in S, then it is assumed that U = ∅, D = ∅ or A = ∅ respectively.
We say that (U,D,A) is a solution for (G, δ, d, k), if |U | + |D| + |A| ≤ k, and for
the graph G′ = G − U − D + A, dG′(v) = δ(v) for v ∈ V (G′). We also say that
G′ is obtained by editing with respect to (U,D,A).

3 FPT-Algorithm

Throughout this section we assume that S = {vertex deletion, edge deletion,
edge addition}, i.e., the all three editing operations are allowed, unless we explic-
itly specify the set of allowed operations. We prove the following theorem.

Theorem 1. Editing to a Graph of Given Degrees can be solved in time
2O(kd2+k log k) · poly(n) for n-vertex graphs.

Due to space restriction, we only sketch the proof here. The complete description
of the algorithm is given in [14].

Proof. We construct an FPT-algorithm for Editing to a Graph of Given

Degrees parameterized by k + d. The algorithm is based on the random sepa-
ration techniques introduced by Cai et al. [7] (see also [2]).

Let (G, δ, d, k) be an instance of Editing to a Graph of Given Degrees,
and let n = |V (G)|.
Preprocessing. At this stage of the algorithm our main goal is to reduce the
original instance of the problem to a bounded number of instances with the
property that for any vertex v, the degree of v is at most δ(v).

We apply the following rule.

Vertex Deletion Rule. If G has a vertex v with dG(v) > δ(v) + k, then delete
v and set k = k − 1. If k < 0, then stop and return a NO-answer.

We exhaustively apply the rule until we either stop and return a NO-answer
or obtain an instance of the problem such that the degree of any vertex v is
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at most δ(v) + k. In the last case it is sufficient to solve the problem for the
obtained instance, and if it has a solution (U,D,A), then the solution for the
initial instance can be obtained by adding the deleted vertices to U . From now
we assume that we do not stop while applying the rule, and to simplify notations,
assume that (G, δ, d, k) is the obtained instance. Notice that for any v ∈ V (G),
dG(v) ≤ δ(v) + k ≤ d + k. Suppose that v ∈ V (G) and dG(v) > δ(v). Then if
the considered instance has a solution, either v or at least one of its neighbors
should be deleted or at least one of incident to v edges have to be deleted. It
implies that we can branch as follows.

Branching Rule. If G has a vertex v with dG(v) > δ(v), then stop and return
a NO-answer if k = 0, otherwise branch as follows.

– For each u ∈ NG[v], solve the problem for (G − u, δ, d, k − 1), and if there is a
solution (U,D,A), then stop and return (U ∪ {u},D,A).

– For each u ∈ NG(v), solve the problem for (G − uv, δ, d, k − 1), and if there is
a solution (U,D,A), then stop and return (U,D ∪ {uv}, A).

If none of the instances have a solution, then return a NO-answer.

It is straightforward to observe that by the exhaustive application of the rule we
either solve the problem or obtain at most (2(k+d)+1)k instances of the problem
such that the original instance has a solution if and only if one of the new
instances has a solution, and for each of the obtained instances, the degree of
any vertex v is upper bounded by δ(v). Now it is sufficient to explain how to
solve Editing to a Graph of Given Degrees for such instances.

To simplify notations, from now we assume that for (G, δ, d, k), dG(v) ≤ δ(v)
for v ∈ V (G). Let Z = {v ∈ V (G)|dG(v) < δ(v)}.

We apply the following rule.

Stopping Rule. If |Z| > 2k, then stop and return a NO-answer. If Z = ∅, then
stop and return the trivial solution (∅, ∅, ∅). If Z 	= ∅ and k = 0, then stop and
return a NO-answer.

Then we exhaustively apply the following rule.

Isolates Removing Rule. If G has a vertex v with dG(v) = δ(v) = 0, then
delete v.

Finally on this stage, we solve small instances.

Small Instance Rule. If G has at most 3kd2 − 1 edges, then solve Editing

to a Graph of Given Degrees.

From now we assume that we do not stop at this stage of the algorithm and, as
before, denote by (G, δ, d, k) the obtained instance and assume that n = |V (G)|.
We have that G has at least 3kd2 edges, |Z| ≤ 2k, Z 	= ∅, k ≥ 1, and for any
isolated vertex v, δ(v) 	= 0, i.e., v ∈ Z. Notice that since Z 	= ∅, d ≥ 1.

Random Separation. Now we apply the random separation technique. We
start with constructing a randomized algorithm and then explain how it can be
derandomized.
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We color the vertices of G independently and uniformly at random by two
colors. In other words, we partition V (G) into two sets R and B. We say that
the vertices of R are red, and the vertices of B are blue.

Let P = v0, . . . , vs be a walk in G. We say that P is an R-connecting walk
if either s ≤ 1 or for any i ∈ {0, . . . , s − 2}, {vi, vi+1, vi+2} ∩ R 	= ∅, i.e., for any
three consecutive vertices of P , at least one of them is red. We also say that two
vertices x, y are R-equivalent if there is an R-connecting walk that joins them.
Clearly, R-equivalence is an equivalence relation on R. Therefore, it defines the
corresponding partition of R into equivalence classes. Denote by R0 the set of
red vertices that can be joined with some vertex of Z by an R-connecting walk.
Notice that R0 is a union of some equivalence classes. Denote by R1, . . . , Rt the
remaining classes, i.e., it is a partition of R \ R0 such that any two vertices x, y
are in the same set if and only if x and y are R-connected; notice that it can
happen that t = 0. Observe that for any distinct i, j ∈ {0, . . . , t}, N3

G[Ri]∩Rj = ∅
because any two vertices of R at distance at most 3 in G are R-equivalent. For
i ∈ {0, . . . , t}, let ri = |Ri|.

Our aim is to find a solution (U,D,A) for (G, δ, d, k) such that

– U ∩ B = ∅,
– R0 ⊆ U ,
– for any i ∈ {1, . . . , t}, either Ri ⊆ U or Ri ∩ U = ∅,
– the edges of D are not incident to the vertices of NG(U);

i.e., U is a union of equivalence classes of R that contains the vertices of R0. We
call such a solution colorful.

Let B0 = (Z ∩ B) ∪ NG(R0), and for i ∈ {1, . . . , t}, let Bi = NG(Ri). Notice
that each Bi ⊆ B, and for distinct i, j ∈ {0, . . . , t}, the distance between any
u ∈ Bi and v ∈ Bj is at least two, i.e., u 	= v and uv /∈ E(G). For a vertex
v ∈ V (G) \ R, denote by def(v) = δ(v) − dG−R(v). Recall that dG(v) ≤ δ(v).
Therefore, def(v) ≥ 0. Notice also that def(v) could be positive only for vertices
of the sets B0, . . . , Bt. For each i ∈ {0, . . . , t}, if v ∈ Bi, then either v ∈ Z or v
is adjacent to a vertex of Ri. Hence, def(v) > 0 for the vertices of B0, . . . , Bt.
For a set A ⊆ (

V (G)
2

) \ E(G), denote by dG,A(v) the number of elements of A
incident to v for v ∈ V (G).

We construct a dynamic programming algorithm that consecutively con-
structs tables Ti for i = 0, . . . , t such that Ti is either empty, or contains the
unique zero element, or contains lists of all the sequences (d1, . . . , dp) of positive
integers, d1 ≤ . . . ≤ dp, such that

(i) there is a set U ⊆ R0 ∪ . . . ∪ Ri, R0 ⊆ U , and for any j ∈ {1, . . . , i}, either
Rj ⊆ U or Rj ∩ U = ∅,

(ii) there is a set A ⊆ (
V (G)

2

) \ E(G) of pairs of vertices of B0 ∪ . . . ∪ Bi,
(iii) d1 + . . . + dp + |U | + |A| ≤ k,

and the graph G′ = G − U + A has the following properties:

(iv) dG′(v) ≤ δ(v) for v ∈ V (G′), and dG′(v) < δ(v) for exactly p vertices
v = v1, . . . , vp,
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(v) δ(vj) − dG′(vj) = di for j ∈ {1, . . . , p}.

For each sequence (d1, . . . , dp), the algorithm also keeps the sets U,A for which
(i)–(v) are fulfilled and |U |+ |A| is minimum. The table contains the unique zero
element if

(vi) there is a set U ⊆ R0 ∪ . . .∪Ri, R0 ⊆ Ui, and for any j ∈ {1, . . . , i}, either
Rj ⊆ U or Rj ∩ U = ∅,

(vii) there is a set A ⊆ (
V (G)

2

) \ E(G) of pairs of vertices of B0 ∪ . . . ∪ Bi,
(viii) |U | + |A| ≤ k, and
(ix) for the graph G′ = G − U + A, dG′(v) = δ(v) for v ∈ V (G′).

For the zero element, the table stores the corresponding sets U and A for which
(vi)–(ix) are fulfilled.

Now we explain how we construct the tables for i ∈ {0, . . . , t}.

Construction of T0. Initially we set T0 = ∅. If
∑

v∈B0
def(v) > 2(k−|R0|), then

we stop, i.e., T0 = ∅. Otherwise, we consider the auxiliary graph H0 = G[B0]. For
all sets A ⊆ (

V (H0)
2

) \ E(H0) such that for any v ∈ V (H0), dH0,A(v) ≤ def(v),
and

∑
v∈B0

def(v)−|A|+|R0| ≤ k, we construct the collection of positive integers
Q = {def(v) − dH0,A(v)|v ∈ B0 and def(v) − dH0,A(v) > 0} (notice that some
elements of Q could be the same). If Q 	= ∅, then we arrange the elements of Q in
increasing order and put the obtained sequence (d1, . . . , dp) of positive integers
together with U = R0 and A in T0. If there is A such that Q = ∅, then we put
the zero element in T0 together with U = R0 and A, delete all other elements of
T0 and then stop, i.e., T0 contains the unique zero element in this case.

Construction of Ti for i ≥ 1. We assume that Ti−1 is already constructed.
Initially we set Ti = Ti−1. If Ti = ∅ or Ti contains the unique zero element,
then we stop. Otherwise, we consecutively consider all sequences (d1, . . . , dp)
from Ti−1 with the corresponding sets U,A. If

∑
v∈Bi

def(v) +
∑p

j=1 di > 2(k −
|Ri| − |U | − |A|), then we stop considering (d1, . . . , dp). Otherwise, let G′ =
G − U + A, and let u1, . . . , up be the vertices of G′ with dj = δ(uj) − dG′(uj)
for j ∈ {1, . . . , p}. We consider an auxiliary graph Hi obtained from G[Bi] by
the addition of p pairwise adjacent vertices u1, . . . , up. We set def(uj) = dj
for j ∈ {1, . . . , p}. For all sets A′ ⊆ (

V (Hi)
2

) \ E(Hi) such that for any v ∈
V (Hi), dHi,A′(v) ≤ def(v), and

∑
v∈V (Hi)

def(v) − |A′| + |Ri| + |A| + |U | ≤ k,
we construct the collection of positive integers Q = {def(v) − dHi,A′(v)|v ∈
V (Hi) and def(v) − dHi,A′(v) > 0}. If Q 	= ∅, then we arrange the elements of
Q in increasing order and obtain the sequence (d′

1, . . . , d
′
q) of positive integers

together with U ′′ = U ∪ Ri and A′′ = A ∪ A′. If (d′
1, . . . , d

′
q) is not in Ti, then

we add it in Ti together with U ′′, A′′. If (d′
1, . . . , d

′
q) is already in Ti together

with some sets U ′′′, A′′′, we replace U ′′′ and A′′′ by U ′′ and A′′ respectively if
|U ′′| + |A′′| < |U ′′′| + |A′′′|. If there is A′ such that Q = ∅, then we put the
zero element in Ti together with U ′′ = U ∪ Ui and A′′ = A ∪ A′, delete all other
elements of Ti and then stop, i.e., Ti contains the unique zero element in this
case.



Editing to a Graph of Given Degrees 203

We use the final table Tt to find a colorful solution for (G, δ, d, k) if it exists.

– If Tr contains the zero element with U,A, then (U, ∅, A) is a colorful solution.
– If Tr contains a sequence (d1, . . . , dp) with U,A such that 3(d1 + . . .+ dp)/2+

|U | + |A| ≤ k and r = d1 + . . . + dp is even, then let G′ = G − U + A and find
the vertices u1, . . . , up of G′ such that δ(ui) − dG′(ui) = di for i ∈ {1, . . . , p}.
Then greedily find a matching D in G′ with h = r/2 edges x1y1, . . . , xhyh such
that x1, . . . , xh and y1, . . . , yh are distinct from the vertices of {u1, . . . , up} ∪
NG(U) and not adjacent to u1, . . . , up. Then we construct the set A′ as follows.
Initially A′ = ∅. Then for each i ∈ {1, . . . , r}, we consecutively select next di
vertices w1, . . . , wdi

∈ {x1, . . . , xh, y1, . . . , yh} in such a way that each vertex
is selected exactly once and add in A′ the pairs u1w1, . . . , uiwdi

. Then we
output the solution (U,D,A ∪ A′).

– In all other cases we have a NO-answer.

The described algorithm finds a colorful solution if it exists. To find a solution,
we run the randomized algorithm N times. If we find a solution after some run,
we return it and stop. If we do not obtain a solution after N runs, we return
a NO-answer. We show that it is sufficient to run the algorithm N = 2O(dk2)

times.
The algorithm can be derandomized by standard techniques (see [2,7]).

We replace random colorings by the colorings induced by universal sets. Let n
and r be positive integers, r ≤ n. An (n, r)-universal set is a collection of binary
vectors of length n such that for each index subset of size r, each of the 2r possible
combinations of values appears in some vector of the set. It is known that an
(n, r)-universal set can be constructed in FPT-time with the parameter r. The
best construction is due to Naor et al. [19]. They obtained an (n, r)-universal set
of size 2r · rO(log r) log n, and proved that the elements of the sets can be listed
in time that is linear in the size of the set.

To apply this technique in our case, we construct an (n, r)-universal set U
for r = min{4kd2, n}. Then we let V (G) = {v1, . . . , vn} and for each element of
U , i.e., a binary vector x = (x1, . . . , xn), we consider the coloring of G induced
by x; a vertex vi is colored red if xi = 1, and vi is blue otherwise. Then if
(G, δ, d, k) has a solution (U,D,A), then for one of these colorings, the vertices
of N2

G[Z] ∪ N3
G[U ] are colored correctly with respect to the solution, i.e., the

vertices of U are red and all other vertices of the set are blue. In this case the
instance has a colorful solution, and our algorithm finds it. �
We conclude the section by the observation that a simplified variant of our algo-
rithm solves Editing to a Graph of Given Degrees for S = {vertex deletion,
edge addition}. We have to modify the branching rule to exclude edge deletions.
Also on the preprocessing stage we do not need the small instance rule. On the
random separation stage, we simplify the algorithm by the observation that we
have a colorful solution if and only if the table Tt has the zero element. It gives
us the following corollary.

Corollary 1. Editing to a Graph of Given Degrees can be solved in time
2O(kd2+k log k)·poly(n) forn-vertex graphs forS = {vertex deletion, edge addition}.
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4 Kernelization Lower Bound

In this section we show that it is unlikely that Editing to a Graph of Given

Degrees parameterized by k + d has a polynomial kernel if {vertex deletion,
edge addition} ⊆ S. The proof uses the cross-composition technique introduced
by Bodlaender et al. [3,4]. We need the following definitions (see [3,4]).

Let Σ be a finite alphabet. An equivalence relation R on the set of strings Σ∗

is called a polynomial equivalence relation if the following two conditions hold:

(i) there is an algorithm that given two strings x, y ∈ Σ∗ decides whether x and
y belong to the same equivalence class in time polynomial in |x| + |y|,

(ii) for any finite set S ⊆ Σ∗, the equivalence relation R partitions the elements
of S into a number of classes that is polynomially bounded in the size of the
largest element of S.

Let L ⊆ Σ∗ be a language, let R be a polynomial equivalence relation on Σ∗,
and let Q ⊆ Σ∗ ×N be a parameterized problem. An OR-cross-composition of L
into Q (with respect to R) is an algorithm that, given t instances x1, x2, . . . , xt ∈
Σ∗ of L belonging to the same equivalence class of R, takes time polynomial in∑t

i=1 |xi| and outputs an instance (y, k) ∈ Σ∗ × N such that:

(i) the parameter value k is polynomially bounded in max{|x1|, . . . , |xt|}+log t,
(ii) the instance (y, k) is a YES-instance for Q if and only if at least one instance

xi is a YES-instance for L for i ∈ {1, . . . , t}.

It is said that L OR-cross-composes into Q if a cross-composition algorithm
exists for a suitable relation R.

In particular, Bodlaender et al. [3,4] proved the following theorem.

Theorem 2. ([3,4]) If an NP-hard language L OR-cross-composes into the
parameterized problem Q, then Q does not admit a polynomial kernelization
unless NP ⊆ coNP/poly.

It is well-known that the Clique problem is NP-complete for regular
graphs [12]. We need a special variant of Clique for regular graphs where a
required clique is small with respect to the degree.

Small Clique in a Regular Graph

Instance: Positive integers d and k, k ≥ 2, k2 < d, and a d-regular
graph G.

Question: Is there a clique with k vertices in G?

Lemma 1. Small Clique in a Regular Graph is NP-complete.

Now we are ready to prove the main result of the section.

Theorem 3. Editing to a Graph of Given Degrees parameterized by k+d
has no polynomial kernel unless NP ⊆ coNP/poly if vertex deletions and edge
additions are allowed.
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Proof. First, we consider the case when the all three editing operations are
allowed, i.e., S = {vertex deletion, edge deletion, edge addition}.

We show that Small Clique in a Regular Graph OR-cross-composes
into Editing to a Graph of Given Degrees.

We say that that two instances (G1, d1, k1) and (G2, d2, k2) of Small Clique

in a Regular Graph are equivalent if |V (G1)| = |V (G2)|, d1 = d2 and k1 = k2.
Notice that this is a polynomial equivalence relation.

Let (G1, d, k), . . . , (Gt, d, k) be equivalent instances of Small Clique in a

Regular Graph, n = |V (Gi)| for i ∈ {1, . . . , t}. We construct the instance
(G′, δ, d′, k′) of Editing to a Graph of Given Degrees as follows.

– Construct copies of G1, . . . , Gt.
– Construct p = k(d − k + 1) pairwise adjacent vertices u1, . . . , up.
– Construct k + 1 pairwise adjacent vertices w0, . . . , wk and join each wj with

each uh by an edge.
– Set δ(v) = d for v ∈ V (G1) ∪ . . . ∪ V (Gt), δ(ui) = p + k + 1 for i ∈ {1, . . . , p},

and δ(wj) = p + k for j ∈ {0, . . . , k}.
– Set d′ = p + k + 1 and k′ = k(d − k + 2).

Denote the obtained graph G′.
Clearly, k′ + d′ = O(n2), i.e., the parameter value is polynomially bounded

in n. We show that (G′, δ, d′, k′) is a YES-instance of Editing to a Graph of

Given Degrees if and only if (Gi, k, d) is a YES-instance of Small Clique

in a Regular Graph for some i ∈ {1, . . . , t}.
Suppose that (Gi, k, d) is a YES-instance of Small Clique in a Regu-

lar Graph for some i ∈ {1, . . . , t}. Then Gi has a clique K of size k. Let
{v1, . . . , vq} = NGi

(K). For j ∈ {1, . . . , q}, let dj = |NGi
(vj) ∩ K|. Because Gi

is a d-regular graph, d1 + . . . + dq = k(d − k + 1) = p. We construct the solution
(U,D,A) for (G′, δ, d′, k′) as follows. We set U = K in the copy of Gi, and let
D = ∅. Observe that to satisfy the degree conditions, we have to add dj edges
incident to each vj in the copy of Gi and add one edge incident to each uh.
To construct A, we consecutively consider the vertices vj in the copy of Gi for
j = 1, . . . , q. For each vj , we greedily select dj vertices x1, . . . , xdj

in {u1, . . . , up}
that were not selected before and add vjx1, . . . , vjxdj

to A. It is straightforward
to verify that (U,D,A) is a solution and |U | + |D| + |A| = k + p = k′.

Assume now that (U,D,A) is a solution for (G′, δ, d′, k′).
We show that U ∩ ({u1, . . . , up} ∪ {w0, . . . , wk}) = ∅. To obtain a contra-

diction, assume that |U ∩ ({u1, . . . , up} ∪ {w0, . . . , wk})| = h > 0. Let X =
({u1, . . . , up}∪{w0, . . . , wk})\U . Because {u1, . . . , up}∪{w0, . . . , wk} has k(d−
k + 1) + k + 1 = k′ + 1 vertices, X has k′ + 1 − h > 0 vertices. Let G′′ =
G′ − U . Observe that for v ∈ X, δ(v) − dG′′(v) ≥ h. Because the vertices of
X are pairwise adjacent, the set A has at least |X|h = (k′ + 1 − h)h elements.
But |A| ≤ k′ − |U | ≤ k′ − h. Because (k′ − h + 1)h > k′ − h, we obtain a
contradiction.

Next, we claim that |U | = k and D = ∅. Because U ∩ ({u1, . . . , up} ∪
{w0, . . . , wk}) = ∅,

∑p
j=1(δ(uj) − dG′(uj)) = p and the vertices u1, . . . , up are

pairwise adjacent, A contains at least p elements. Moreover, A has at least p edges
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with one end-vertex in {u1, . . . , up} and another in V (G1) ∪ . . . ∪ V (Gt) for the
copies of G1, . . . , Gt in (G′, δ, d′, k′). Hence, |U | + |D| ≤ k′ − |A| ≤ k′ − p = k.
Suppose that |U | = s < k and |D| = h. Let also D′ = D ∩ (E(G1)∪ . . . ∪E(Gt))
and h′ = |D′|. Let G′′ = G′ − U − D′. Because G1, . . . , Gt are d-regular,∑

v∈V (G′′)(δ(v) − dG′′(v)) ≤ sd + 2h′ ≤ sd + 2h ≤ sd + 2(k − s). Therefore, A

contains at most sd+2(k −s) edges with one end-vertex in V (G1)∪ . . .∪V (Gt).
Notice that sd+2(k−s) ≤ (k−1)d+2 because d > k2 ≥ 4. But p−(k−1)d−2 =
k(d − k + 1) − (k − 1)d − 2 = d − k2 + k − 2 > 0 as d > k2, and we have no p
edges with one end-vertex in {u1, . . . , up} and another in V (G1) ∪ . . . ∪ V (Gt);
a contradiction. Hence, |U | = k and D = ∅.

Now we show that U is a clique. Suppose that U has at least two non-adjacent
vertices. Let G′′ = G′ − U . Because G1, . . . , Gt are d-regular,

∑
v∈V (G′′)(δ(v) −

dG′′(v)) ≥ k(d − k + 1) + 2 = p + 2. Recall that A has at least p edges with
one end-vertex in {u1, . . . , up} and another in V (G1) ∪ . . . ∪ V (Gt). Because
|U | = k and k′ = p+k, A consists of p edges with one end-vertex in {u1, . . . , up}
and another in V (G1)∪ . . .∪V (Gt). But to satisfy the degree restrictions for the
vertices of V (G1)∪ . . .∪V (Gt), we need at least p+2 such edges; a contradiction.

We have that U ⊆ V (G1) ∪ . . . ∪ V (Gt) is a clique of size k. Because the
copies of G1, . . . , Gt in (G′, δ, d′, k′) are disjoint, U is a clique in some Gi.

It remains to apply Theorem 2. Because Small Clique in a Regular

Graph is NP-complete by Lemma 1, Editing to a Graph of Given Degrees

parameterized by k + d has no polynomial kernel unless NP ⊆ coNP/poly.
To prove the theorem for S = {vertex deletion, edge addition}, it is suffi-

cient to observe that for the constructed instance (G′, δ, d′, k′) of Editing to

a Graph of Given Degrees, any solution (U,D,A) has D = ∅, i.e., edge
deletions are not used. Hence, the same arguments prove the claim. �

5 Conclusion

We proved that Editing to a Graph of Given Degrees is FPT when para-
meterized by k + d for {vertex deletion, edge addition} ⊆ S ⊆ {vertex deletion,
edge deletion, edge addition}, but does not admit a polynomial kernel. Our algo-
rithm runs in time 2O(kd2+k log k) ·poly(n) for n-vertex graph. Hence, it is natural
to ask whether this running time could be improved. Another open question is
whether the same random separation approach could be applied for more gen-
eral variants of the problem. Recall that Mathieson and Szeider [17] proved that
the problem is FPT for the case when vertices and edges have costs and the
degree constraints are relaxed: for each v ∈ V (G′), dG′(v) should be in a given
set δ(v) ⊆ {1, . . . , d}. It would be interesting to construct a feasible algorithm
for this case. Some interesting results in this direction were recently obtained by
Froese et al. [11].
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Abstract. The workflow satisfiability problem (WSP) is a problem of
practical interest that arises whenever tasks need to be performed by
authorized users, subject to constraints defined by business rules. We
are required to decide whether there exists a plan – an assignment of
tasks to authorized users – such that all constraints are satisfied.

The WSP is, in fact, the conservative Constraint Satisfaction Problem
(i.e., for each variable, here called task, we have a unary authorization
constraint) and is, thus, NP-complete. It was observed by Wang and Li
(2010) that the number k of tasks is often quite small and so can be used
as a parameter, and several subsequent works have studied the parame-
terized complexity of WSP regarding parameter k.

We take a more detailed look at the kernelization complexity of WSP(Γ )
when Γ denotes a finite or infinite set of allowed constraints. Our main
result is a dichotomy for the case that all constraints in Γ are regular:
(1) We are able to reduce the number n of users to n′ ≤ k. This entails a
kernelization to size poly(k) for finite Γ , and, under mild technical con-
ditions, to size poly(k+m) for infinite Γ , where m denotes the number of
constraints. (2) Already WSP(R) for some R ∈ Γ allows no polynomial
kernelization in k + m unless the polynomial hierarchy collapses.

1 Introduction

A business process is a collection of interrelated tasks that are performed by
users in order to achieve some objective. In many situations, a task can be
performed only by certain authorized users. Additionally, either because of the
particular requirements of the business logic or security requirements, we may
require that certain sets of tasks cannot be performed by some sets of users [7].
Such constraints include separation-of-duty, which may be used to prevent sensi-
tive combinations of tasks being performed by a single user, and binding-of-duty,
which requires that a particular combination of tasks is performed by the same
user. The use of constraints in workflow management systems to enforce security
policies has been studied extensively in the last fifteen years; see, e.g., [3,7,17].

It is possible that the combination of constraints and authorization lists is
“unsatisfiable”, in the sense that there does not exist an assignment of users to

c© Springer International Publishing Switzerland 2014
M. Cygan and P. Heggernes (Eds.): IPEC 2014, LNCS 8894, pp. 208–220, 2014.
DOI: 10.1007/978-3-319-13524-3 18
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tasks (called a plan) such that all constraints are satisfied and every task is per-
formed by an authorized user. A plan that satisfies all constraints and allocates
an authorized user to each task is called valid. The workflow satisfiability prob-
lem (WSP) takes a workflow specification as input and returns a valid plan if one
exists and no otherwise. It is important to determine whether a business process
is satisfiable or not, since an unsatisfiable one can never be completed without
violating the security policy encoded by the constraints and authorization lists.

Wang and Li [17] were the first to observe that the number k of tasks is often
quite small and so can be considered as a parameter. As a result, WSP can be
studied as a parameterized problem. Wang and Li [17] proved that, in general,
WSP is W[1]-hard, but WSP is fixed-parameter tractable1 (FPT) if we consider
some special types of practical constraints which include separation-of-duty and
binding-of-duty constraints. Crampton et al. [9] found a faster fixed-parameter
algorithm to solve the special cases of WSP studied in [17] and showed that the
algorithm can be used for a wide family of constraints called regular (in fact,
regular constraints include all constraints studied in [17]). Subsequent research
has demonstrated the existence of fixed-parameter algorithms for WSP in the
presence of other constraint types [5,8]. In particular, Cohen et al. [5] showed
that WSP with only so-called user-independent constraints is FPT. Crampton
et al. [9] also launched the study of polynomial and partially polynomial kernels
(in the latter only the number of users is required to be bounded by a polynomial
in k), but obtained results only for concrete families of constraints.

In this work, we explore the kernelization properties of WSP in more detail.
We study both the possibility of polynomial kernels and of simplifying WSP
instances by reducing the set of users;2 reductions of the latter type have been
called partial kernels previously. Our goal is to determine for which types of
constraints such user-limiting reductions are possible, i.e., for which sets Γ does
the problem WSP(Γ ) of WSP restricted to using constraint types (i.e., relations)
from Γ admit a reduction to poly(k) users? We study this question for both
finite and infinite sets Γ of regular constraints, and show a strong separation:
Essentially, either every instance with k tasks can be reduced to at most k users,
or there is no polynomial-time reduction to poly(k) users unless the polynomial
hierarchy collapses. (However, some technical issues arise for the infinite case.)

Our results. Our main result is a dichotomy for the WSP(Γ ) problem when Γ
contains only regular relations. We show two results. On the one hand, if every
relation R ∈ Γ is intersection-closed (see Sect. 4), then we give a polynomial-
time reduction which reduces the number of users in an instance to n′ ≤ k,
without increasing the number of tasks k or constraints m. This applies even
if Γ is infinite, given a natural assumption on computable properties of the
relations. On the other hand, we show that given even a single relation R which
is regular but not intersection-closed, the problem WSP(R) restricted to using
only the relation R admits no polynomial kernel, and hence no reduction to
1 For an introduction to fixed-parameter algorithms and complexity, see, e.g., [12].
2 Such reductions are of interest by themselves as some practical WSP algorithms

iterate over users in search for a valid plan [6].
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poly(k) users, unless the polynomial hierarchy collapses. For finite sets Γ , this
gives a dichotomy in a straight-forward manner: For every finite set Γ of regular
relations, WSP(Γ ) admits a polynomial kernel if every R ∈ Γ is intersection-
closed, and otherwise not unless the polynomial hierarchy collapses.

However, for infinite sets Γ things get slightly more technical, for two reasons:
(1) An instance with k tasks and few users could still be exponentially large
due to the number of constraints, analogously to the result that Hitting Set

admits no polynomial kernel parameterized by the size of the ground set [11]
(cf. [13]). (2) More degenerately, without any restriction on Γ , an instance could
be exponentially large simply due to the encoding size of a single constraint (e.g.,
one could interpret a complete WSP instance on k tasks as a single constraint
on these k tasks). Both these points represent circumstances that are unlikely
to be relevant for practical WSP instances. We make two restrictions to cope
with this: (1) We allow the number m of constraints as an extra parameter,
since it could be argued that m ≤ poly(k) in practice. (2) We require that each
constraint of arity r ≤ k can be expressed by poly(r) bits. E.g., this allows
unbounded arity forms of all standard constraints. Using this, we obtain a more
general dichotomy: For any (possibly infinite) set Γ of regular relations, WSP(Γ )
admits a kernel of size poly(k+m) if every R ∈ Γ is intersection-closed, otherwise
not, unless the polynomial hierarchy collapses.

Note that prior to our work there was no conjecture on how a polynomial
kernel dichotomy for all regular constraints may look like (we cannot offer such
a conjecture for the more general case of user-independent constraints). The
positive part follows by generalizing ideas of Crampton et al. [9]; the negative
part is more challenging, and requires more involved arguments, especially to
show the completeness of the dichotomy (see Sect. 4.2).

Organization. We define WSP formally and introduce a number of different
constraint types, including regular constraints, in Sect. 2. In Sect. 3 we give sev-
eral lower bounds for the kernelization of WSP(Γ ). In Sect. 4 we prove our main
result, namely the dichotomy for regular constraints. We conclude in Sect. 5. Full
proofs of all nontrivial assertions are deferred to the full version.

2 Preliminaries

We define a workflow schema to be a tuple (S,U,A,C), where S is the set of
tasks in the workflow, U is the set of users, A : S → 2U assigns each task s ∈ S an
authorization list A(s) ⊆ U , and C is a set of workflow constraints. A workflow
constraint is a pair c = (L,Θ), where L ⊆ S is the scope of the constraint and
Θ is a set of functions from L to U that specifies those assignments of elements
of U to elements of L that satisfy the constraint c. Given T ⊆ S and X ⊆ U ,
a plan is a function π : T → X; a plan π : S → U is called a complete plan.
Given a workflow constraint (L,Θ), T ⊆ S, and X ⊆ U , a plan π : T → X
satisfies (L,Θ) if either L \T �= ∅, or π restricted to L is contained in Θ. A plan
π : T → X is eligible if π satisfies every constraint in C. A plan π : T → X is
authorized if π(s) ∈ A(s) for all s ∈ T . A plan is valid if it is both authorized
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and eligible. For an algorithm that runs on an instance (S,U,A,C) of WSP, we
will measure the running time in terms of n = |U |, k = |S|, and m = |C|.

2.1 WSP Constraints and Further Notation

Let us first recall some concrete constraints that are of interest for this work:

(=, T, T ′), (�=, T, T ′): These generalize the binary binding-of-duty and separation-
of-duty constraints and were previously studied in [9,17]. They demand that
there exist s ∈ T and s′ ∈ T ′ which are assigned to the same (resp. different)
users. We shorthand (s = s′) and (s �= s′) if T = {s} and T ′ = {s′}.

(t�, tr, T ): A plan π satisfies (t�, tr, T ), also called a tasks-per-user counting con-
straint, if a user performs either no tasks in T or between t� and tr tasks.
Tasks-per-user counting constraints generalize the cardinality constraints
which have been widely adopted by the WSP community [1,2,14,16].

(≤ t, T ), (≥ t, T ): These demand that the tasks inT are assigned to atmost t (resp.
at least t) different users. They generalize binding-of-duty and separation-of-
duty, respectively, and enforce security and diversity [6].

All these constraints share the property that satisfying them depends only on
the partition of tasks that is induced by the plan. Formally, a constraint (L,Θ)
is user-independent if for any θ ∈ Θ and permutation ψ : U → U , ψ ◦ θ ∈ Θ.
Regular and user-independent constraints. For T ⊆ S and u ∈ U let
π : T → u denote the plan that assigns every task of T to u. We call a con-
straint c = (L,Θ) regular if it satisfies the following condition: For any partition
L1, . . . , Lp of L such that for every i ∈ [p] = {1, . . . , p} there exists an eligible
plan π : L → U and user u such that π−1(u) = Li, then the plan

⋃p
i=1(Li → ui),

where all ui’s are distinct, is eligible. Regular constraints are a special class of
user-independent constraints, but not every user-independent constraint is reg-
ular. Crampton et al. [9] show that constraints of the type (�=, T, T ′); (=, T, T ′),
where at least one of the sets T, T ′ is a singleton, and tasks-per-user counting
constraints of the form (t�, tr, T ), where t� = 1, are regular. In general, (=, T, T ′)
is not regular [9].

Since regular constraints are of central importance to this paper, we introduce
some further notation and terminology. Below, we generally follow Crampton
et al. [9]. Let W = (S,U,A,C) be a workflow schema, and π an eligible (com-
plete) plan for W . Then ∼π is the equivalence relation on S defined by π, where
s ∼π s′ if and only if π(s) = π(s′). We let S/π be the set of equivalence classes
of ∼π, and for a task s ∈ S we let [s]π denote the equivalence class containing s.

For a constraint c = (L,Θ), a set T ⊆ L of tasks is c-eligible if there is a plan
π : L → U that satisfies c, such that T ∈ L/π. It is evident from the definition
that c is regular if and only if the following holds: For every plan π : L → U ,
π satisfies c if and only if every equivalence class T ∈ L/π is c-eligible. In this
sense, a regular constraint c is entirely defined by the set of c-eligible sets of
tasks. It is clear that regular constraints are closed under conjunction, i.e., if
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every constraint c ∈ C is regular, then the constraint defined by the conjunction
of the constraints in C is regular.

In a similar sense, if c = (L,Θ) is user-independent but not necessarily regu-
lar, then c can be characterized on the level of partitions of L: Let π, π′ : L → U
be two plans such that L/π = L/π′. Then either both π and π′ are eligible for c,
or neither is. Overloading the above terminology, if c is a user-independent con-
straint, then we say that a partition L/π is c-eligible if a plan π generating the
partition would satisfy the constraint. We may thus refer to the partition L/π
itself as either eligible or ineligible. As with regular constraints, user-independent
constraints are closed under conjunction.
Describing constraints via relations. We will frequently describe constraint
types in terms of relations. In the following, we restrict ourselves to user-
independent constraints. Let R ⊆ N

r be an r-ary relation, and (s1, . . . , sr) ∈ Sr

a tuple of tasks, with repetitions allowed (i.e., we may have si = sj for some
i �= j, i, j ∈ [r]). An application R(s1, . . . , sr) (of R) is a constraint (L,Θ) where
L = {si : i ∈ [r]} and Θ = {π : L → N | (π(s1), . . . , π(sr)) ∈ R}. Here, we
identify users U = {u1, . . . , un} with integers [n] = {1, . . . , n}. We say that R
is user-independent (regular) if every constraint R(s1, . . . , sn) resulting from an
application of R is user-independent (regular). In particular, a user-independent
relation R can be defined on the level of partitions, in terms of whether each
partition L/π of its arguments is eligible or not, and a regular relation can be
defined in terms of eligible sets, as above.

Given a (possibly infinite) set Γ of relations as above, a workflow schema
over Γ is one where every constraint is an application of a relation R ∈ Γ , and
WSP(Γ ) denotes the WSP problem restricted to workflow schemata over Γ . To
cover cases of constraints of unbounded arity, we allow Γ to be infinite.
Well-behaved constraint sets. To avoid several degenerate cases associated
with infinite sets Γ we make some standard assumptions on our constraints. We
say that a set Γ of user-independent relations is well-behaved if the following
hold: (1) Every relation R ∈ Γ can be encoded using poly(r) bits, where r is the
arity of R; note that this does not include the space needed to specify the scope
of an application of R. (2) For every application c = (L,Θ) of a relation R ∈ Γ ,
we can test in polynomial time whether a partition of L is c-eligible; we can also
test in polynomial time whether a set S ⊆ L is c-eligible, and if not, then we can
(if possible) find a c-eligible set S′ with S ⊂ S′ ⊆ L. All relations corresponding
to the concrete constraints mentioned above, are well-behaved.

2.2 Kernelization

A parameterized problem Q is a subset of Σ∗ × N for some finite alphabet Σ.
A kernelization of Q is a polynomial-time computable function K : (x, k) �→
(x′, k′) such that (x, k) ∈ Q if and only if (x′, k′) ∈ Q, and such that |x′|, k′ ≤
h(k) for some h(k). Here, (x, k) is an instance of Q, and h(k) is the size of the
kernel. We say that K is a polynomial kernelization if h(k) = kO(1).
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Our main tool for studying existence of polynomial kernels is kernelization-
preserving reductions. Given two parameterized problems Q1 and Q2, a poly-
nomial parametric transformation (PPT) from Q1 to Q2 is a polynomial time
computable function Ψ : (x, k) �→ (x′, k′) such that for every input (x, k) of Q1

we have (x′, k′) ∈ Q2 if and only if (x, k) ∈ Q1, and such that k′ ≤ p(k) for
some p(k) = kO(1). Note that if Q2 has a polynomial kernel and if there is a
PPT from Q1 to Q2, then Q1 has a polynomial compression, i.e., a kernel-like
reduction to an instance of a different problem with total output size kO(1). Fur-
thermore, for many natural problems (including all considered in this paper),
we are able to complete these reductions using NP-completeness to produce a
polynomial kernel for Q1. Conversely, by giving PPTs from problems that are
already known not to admit polynomial compressions (under some assumption)
we rule out polynomial kernels for the target problems. For more background on
kernelization we refer the reader to the recent survey by Lokshtanov et al. [15].

2.3 Implementations and Implications

Let W = (S,U,A,C) be a workflow schema and T ⊆ S a set of tasks. The
projection of W onto T is a constraint c = (T,Θ) where π : T → U is contained
in Θ if and only if there is a valid and complete plan π′ for W that extends π.
Further, let R ⊆ N

r be a user-independent relation, Q = {q1, . . . , qr} a set of r
distinct tasks, and Γ a set of relations. We say that Γ implements R if, for any
r-tuple A = (A(q1), . . . , A(qr)) of authorization lists, there is a workflow schema
W = (S,U,A,C) over Γ that can be computed in polynomial time, such that the
projection of W onto T for some T ⊆ S is equivalent to R(q1, . . . , qr) for every
plan π : {q1, . . . , qr} → U authorized with respect to A, where furthermore |S|+
|C| does not depend on A and U equals

⋃
i∈[r] A(qi) plus a constant number

of local users, i.e., new users who will not be authorized to perform any task
outside of S \ T .

Lemma 1. Let Γ and Γ ′ be finite workflow constraint languages such that Γ ′

implements R for every R ∈ Γ . Then there is a PPT from WSP(Γ ) to WSP(Γ ′),
both with respect to parameter k and k + m.

3 Lower Bounds for Kernelization

In this section we begin our investigation of the preprocessing properties of
the Workflow Satisfiability Problem. We establish lower bounds against
polynomial kernels for WSP for several widely-used constraint types. Like for
many other problems, e.g., Hitting Set(n) or CNF SAT(n), there is little
hope to get polynomial kernels for WSP when we allow an unbounded number
of constraints of arbitrary arity, cf. [10,11,13]. As an example, we give Lemma 2,
whose proof uses a PPT from CNF SAT(n) to WSP(≥ 2) with only two users.
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Lemma 2. Let WSP(≥ 2) be the WSP problem with constraints (≥ 2, L) for
task sets L of arbitrary arity. Then WSP(≥ 2) admits no polynomial kernel-
ization with respect to the number k of tasks unless the polynomial hierarchy
collapses, even if the number of users is restricted to n = 2.

In our further considerations we will avoid such cases, by either taking m as
an additional parameter or by restricting Γ to be finite, which implies bounded
arity (namely the maximum arity over the finitely many R ∈ Γ ). We also assume
that all constraints are well-behaved (cf. Sect. 2.1). We then have the following,
showing that bounding the number of users implies a polynomial kernel.

Proposition 1. Let Γ be a set of relations. If Γ is finite, then WSP(Γ ) has a
polynomial kernel under parameter (k+n); if Γ is infinite but Γ is well-behaved,
then WSP(Γ ) has a polynomial kernel under parameter (k + m + n).

The following lemma addresses a special case of ternary constraint R(a, b, c)
and proves that WSP(R) already admits no polynomial kernelization in terms
of k + m. This lemma will be a cornerstone of the dichotomy in the following
section. We also get immediate corollaries for constraints (=, S, S′) and (≤ t, S)
since (=, {a}, {b, c}) and (≤ 2, {a, b, c}) fulfill the requirement of the lemma.

Lemma 3. Let R(a, b, c) be a ternary user-independent constraint which is sat-
isfied by plans with induced partition {{a, b}, {c}} or {{a, c}, b}, but not by plans
with partition {{a}, {b}, {c}}. Then WSP(R) does not admit a polynomial kernel
with respect to parameter k + m unless the polynomial hierarchy collapses.

Corollary 1. WSP((=, S, S′)) and WSP((≤ t, S)) do not admit a kernelization
to size polynomial in k + m unless the polynomial hierarchy collapses.

4 A Dichotomy for Regular Constraints

In this section, we present a dichotomy for the kernelization properties of WSP(Γ )
when Γ is a well-behaved set of regular relations.

Let us describe the dichotomy condition. Let c = (L,Θ) be a regular con-
straint, and ER ⊆ 2L the set of c-eligible subsets of L; for ease of notation, we
let ∅ ∈ ER. Note that by regularity, ER defines c. We say that c is intersection-
closed if for any T1, T2 ∈ ER it holds that T1 ∩ T2 ∈ ER. Similarly, we say that
a regular relation R ∈ Γ is intersection-closed if every application R(s1, . . . , sr)
of R is. Note (1) that this holds if and only if an application R(s1, . . . , sr) of
R with r distinct tasks si is intersection-closed, and (2) that the conjunction
of intersection-closed constraints again defines an intersection-closed constraint.
Finally, a set Γ of relations is intersection-closed if every relation R ∈ Γ is. Our
dichotomy results will essentially say that WSP(Γ ) admits a polynomial kernel
if and only if Γ is intersection-closed; see Theorem 1 below.

The rest of the section is laid out as follows. In Sect. 4.1 we show that if Γ is
regular, intersection-closed, and well-behaved, then WSP(Γ ) admits a reduction
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to n′ ≤ k users; by Proposition 1, this implies a polynomial kernel under para-
meter (k + m), and under parameter (k) if Γ is finite. In Sect. 4.2 we show that
for any single relation R that is not intersection-closed, the problem WSP(R)
admits no polynomial kernel, by application of Lemma 3. In Sect. 4.3 we consider
the implications of these results for the existence of efficient user-reductions.

In summary, we will show the following result for kernelization. Again, a
discussion of the consequences for user-reductions is deferred until Sect. 4.3.

Theorem 1. Let Γ be a possibly infinite set of well-behaved regular relations.
If every relation in Γ is intersection-closed, then WSP(Γ ) admits a polynomial-
time many-one reduction down to n′ ≤ k users, implying a polynomial kernel
under parameter k+m (and a polynomial kernel under parameter k if Γ is finite).
Otherwise, WSP(Γ ) admits no kernel of size poly(k + m) unless the polynomial
hierarchy collapses (even if Γ consists of a single such relation R).

4.1 A User Reduction for Intersection-Closed Constraints

We now give a procedure that reduces a WSP instance W = (S,U,A,C) with n
users, k tasks and m constraints to one with k′ ≤ k tasks, n′ ≤ k′ users and m′ ≤
m constraints, under the assumption that every constraint c ∈ C occurring in the
instance is intersection-closed and that our language is well-behaved. (This has
been called a partial kernel in other work [4].) The approach is as in Crampton
et al. [9], e.g., Theorem 6.5 of [9], but becomes more involved due to having to
work in full generality; we also use a more refined marking step that allows us to
decrease the number of users from k2 to k, a significant improvement. As noted
(Proposition 1), under the appropriate further assumption on the constraints,
this gives a polynomial kernel under parameter k + m or k.

We begin by noting a consequence of sets closed under intersection.

Lemma 4. Let c = (L,Θ) be an intersection-closed constraint, and let T ⊆ L
be c-ineligible. If there is a superset T ′ of T which is c-eligible, then there is a
task s ∈ L \ T such that every c-eligible superset T ′ of T contains s.

We refer to the task s guaranteed by the lemma as a required addition to T by c.
Note that assuming well-behavedness, we can make this lemma constructive,
i.e., in polynomial time we can test whether a set T is eligible for a constraint,
whether it has an eligible superset, and find all required additions if it does. This
can be done by first asking for an eligible superset T ′ of T , then greedily finding
a minimal set T ⊂ T ′′ ⊆ T ′. Then every s ∈ T ′′ \ T is a required addition.

Our reduction proceeds in three phases. First, we detect all binary equalities
implied by the constraints i.e., all explicit or implicit constraints (s = s′), and
handle them separately by merging tasks, intersecting their authorization lists.
The output of this phase is an instance where any plan which assigns to every
task a unique user is eligible (though such a plan may not be authorized); in
particular, since our constraints are regular, we have that all singleton sets of
tasks are c-eligible for every constraint c of the instance.
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The second phase of the kernel is a user-marking process, similar to the ker-
nels in [9] but with a stronger bound on the number of users. This procedure
is based around attempting to produce a system of distinct representatives for
{A(s) : s ∈ S}, i.e., to find a plan π : S → U such that π is authorized and
π(s) �= π(s′) for every s �= s′. Via Hall’s theorem, this procedure either suc-
ceeds, or produces a set T of tasks such that fewer than |T | users are authorized
to perform any task in T . In the latter case, we mark all these users, discard
the tasks T , and repeat the procedure. Eventually, we end up with a (possibly
empty) set of tasks S′ which allows for a set of distinct representatives, and
mark these representatives as well. Refer to a task s as easy if it was appointed
a representative in this procedure, and hard if it was not (i.e., if it was a member
of a set T of discarded tasks). We discard every non-marked user, resulting in a
partially polynomial kernel with k′ ≤ k tasks and n′ ≤ k′ ≤ k users.

Finally, to establish the correctness of the kernelization, we give a procedure
that, given a partial plan for the set of hard tasks, either extends the plan to a
valid complete plan or derives that no such extended plan exists.

Lemma 5. Let (S,U,A,C) be a workflow schema with k tasks, n users, and m
constraints, with at least one equality constraint (s = s′), s �= s′. In polynomial
time, we can produce an equivalent instance (S′, U ′, A′, C ′) with at most k − 1
tasks, n users, and m constraints. Furthermore, if the constraints in C were
given as applications R(. . .) of some relations R, R ∈ Γ , then the constraints in
C ′ can be given the same way.

We now show the detection of equalities.

Lemma 6. Let (S,U,A,C) be a workflow schema where every constraint is reg-
ular and intersection-closed. Then we can in polynomial time reduce the instance
to the case where every singleton {s}, s ∈ S, is eligible.

Next, we describe the user-marking procedure in detail. We assume that Lemma 6
has been applied, i.e., that all singleton sets are eligible.

1. Let M = ∅, let S be the set of all tasks, and U the set of all users.
2. While {A(s)∩U : s ∈ S} does not admit a system of distinct representatives:

Let T ⊆ S such that |⋃s∈T A(s)| < |T |. Let UT =
⋃

s∈T A(s). Add UT to M ,
remove UT from U , and remove from S every task s such that A(s) ⊆ M .

3. Add to M the distinct representatives of the remaining tasks S, if any.
4. Discard all users not occurring in M from the instance.

We refer to the set M of users produced above as the marked users, and let
Shard ⊆ [k] be the set of hard tasks, i.e., the set of tasks removed in Step 2 of
the procedure. Finally, we show the correctness of the above procedure.

Lemma 7. Let (S,U,A,C) be a workflow schema where all constraints are reg-
ular and intersection-closed, and where all singleton sets are eligible. There is a
valid complete plan for the instance if and only if there is a valid complete plan
only using marked users.

Putting the above pieces together yields the following theorem.
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Theorem 2. The WSP, restricted to well-behaved constraint languages where
every constraint is regular and intersection-closed admits a kernel with m′ ≤ m
constraints, k′ ≤ k tasks, and n′ ≤ k′ users.

4.2 Kernel Lower Bounds for Non-intersection-closed Constraints

We now give the other side of the dichotomy by showing that within the setting
of regular constraints, even a single relation R which is not intersection-closed
can be used to construct a kernelization lower bound, following one of the con-
structions in Sect. 3. First, we need an auxiliary lemma.

Lemma 8. Let R be a (satisfiable) regular relation R which is not intersection-
closed, let = be the binary equality relation, and let Γ = {R,=}. Then either Γ
implements a relation matching that of Lemma 3, or Γ implements the binary
disequality relation �=.

Proof (sketch). Let c = (L,Θ) be an application of R. We first attempt to find
an eligible plan π with two sets T, T ′ ∈ L/π such that T ∪ T ′ is not c-eligible;
in this case, we can use T and T ′ to implement binary disequality. Otherwise,
for any eligible partition L/π of L, merging sets in L/π yields a new eligible
partition; in particular, eligible sets are closed under complementation. We now
have two remaining cases: either there are two (possibly overlapping) c-eligible
sets T , T ′ such that T ∪ T ′ is ineligible, or the c-eligible sets are closed under
union. In the former case, we can use T , T ′, and T ∪ T ′ (through some case
analysis) to construct a relation compatible with Lemma 3; in the latter case,
the c-eligible sets are closed under both union and complementation, implying
that they are closed under intersection, contrary to our assumptions. �

Using �=, we can more easily construct a relation R(a, b, c) as in Lemma 3.

Lemma 9. Let R be a regular relation which is not intersection-closed, and let =
and �= denote the binary equality and disequality relations. Then Γ = {R,=, �=}
implements a relation R′(a, b, c) as in Lemma 3.

Proof (sketch). Let c = (L,Θ) be an application of R. We say that a pair of
sets P,Q ⊂ L is a counterexample witness if P and Q are both c-eligible while
P ∩ Q is not. We consider a counterexample that is minimal under the follow-
ing priorities: (1) Merging tasks, by adding a constraint (s = s′); (2) Picking
minimal-cardinality sets P,Q as a counterexample witness; (3) Adding as many
disequality constraints (s �= s′) as possible. It can be verified that if W is a mini-
mal workflow schema under these conditions which admits some counterexample
witness P,Q, then projecting down to tasks a ∈ P ∩ Q, b ∈ P − a, c ∈ Q − a
must define a relation R′(a, b, c) compatible with the conditions of Lemma 3. �

Theorem 3. Let R be a regular relation which is not intersection-closed. Then
WSP(R) admits no kernel of size poly(k + m) unless PH collapses.

This finishes the proof of Theorem 1.
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Table 1. Overview of results for typical user-independent constraints. We recall that
the WSP problem is FPT with respect to k when all constraints are user-independent.

Regular ∩-cl. poly(k) Bounded arity Well-behaved

user reduction resp. nite Γ innite Γ

( �=, T, T ′) Yes Yes Yes [9] PK(k) [9] PK(k + m) Corollary 2

(≥ 2, T )

(1, tu, T ) Yes Yes Yes [9] PK(k) [9] PK(k + m) Corollary 2

(tl, tu, T ) No No Corollary 3 No PK(k + m) Theorem 1 No PK(k + m)

(=, s, T ′) Yes No No Corollary 3 No PK(k + m) Theorem 2 No PK(k + m) Corollary 2

(=, T, T ′) No N.A

(≥ t, T ) No N.A. Yes [9] PK (k) [9] PK (k + m) Proposition 1

(≤ t, T ) No N.A No Corollary 3 No PK(k + m) Corollary 1 No PK(k + m) Corollary 1

reg.+∩-cl. Yes Yes Yes Theorem 2 PK(k) Theorem 1 PK(k + m) Corollary 2

Regular Yes No No Corollary 3 No PK(k + m) Theorem 1 No PK(k + m) Corollary 2

Corollary 2. Let Γ be a set of regular relations. If Γ is well-behaved, then
WSP(Γ ) admits a polynomial kernel in parameter k + m if Γ is intersection-
closed, otherwise not, unless the polynomial hierarchy collapses. If Γ is finite,
then the same dichotomy holds for parameter k instead of k + m.

4.3 On User Bounds for WSP

In this section we return to the question of preprocessing WSP down to a number
of users that is polynomial in the number k of tasks. As seen above, the positive
side of our kernel dichotomy relies directly on a procedure that reduces the
number of users in an instance, while the lower bounds refer entirely to the total
size of the instance. Could there be a loophole here, allowing the number of users
to be bounded without directly resulting in a polynomial kernel? Alas, it seems
that while such a result cannot be excluded, it might not be very useful.

Corollary 3. Let Γ be a set of user-independent relations containing at least
one relation which is regular but not intersection-closed. Unless the polynomial
hierarchy collapses, any polynomial-time procedure that reduces the number of
users in an instance down to poly(k) must in some cases increase either the
number k of tasks, the number m of constraints, or the coding length of individual
constraints superpolynomially in k + m.

5 Conclusion

In this paper, we have considered kernelization properties of the workflow sat-
isfiability problem WSP(Γ ) restricted to use only certain types R ∈ Γ of con-
straints. We have focused on the case that all relations R ∈ Γ are regular. For
this case, we showed that WSP(Γ ) admits a reduction down to n′ ≤ k users if
every R ∈ Γ is intersection-closed (and obeys some natural assumptions on effi-
ciently computable properties), otherwise (under natural restrictions) no such
reduction is possible unless the polynomial hierarchy collapses. In particular,
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this implies a dichotomy on the kernelizability of WSP under the parameters k
for finite Γ , and k + m for infinite languages Γ (subject to the aforementioned
computability assumptions). This extends kernelization results of Crampton
et al. [9], and represents the first kernelization lower bounds for regular lan-
guages. Some results are summarized in Table 1.

An interesting open problem is to extend this result beyond regular con-
straints, e.g., to general user-independent constraints.
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Abstract. The k-colouring reconfiguration problem asks whether, for
a given graph G, two proper k-colourings α and β of G, and a positive
integer �, there exists a sequence of at most � proper k-colourings of G
which starts with α and ends with β and where successive colourings
in the sequence differ on exactly one vertex of G. We give a complete
picture of the parameterized complexity of the k-colouring reconfigura-
tion problem for each fixed k when parameterized by �. First we show
that the k-colouring reconfiguration problem is polynomial-time solvable
for k = 3, settling an open problem of Cereceda, van den Heuvel and
Johnson. Then, for all k ≥ 4, we show that the k-colouring reconfigu-
ration problem, when parameterized by �, is fixed-parameter tractable
(addressing a question of Mouawad, Nishimura, Raman, Simjour and
Suzuki) but that it has no polynomial kernel unless the polynomial
hierarchy collapses.

1 Introduction

Graph colouring has its origin in a nineteenth century map colouring problem
and has now been an active area of research for more than 150 years, finding many
applications within and beyond Computer Science and Mathematics. Given a
graph G = (V,E) and a positive integer k, a k-colouring of G is a map c : V →
{1, . . . , k}; it is proper if c(u) �= c(v) for all u, v with uv ∈ E. The problem of
deciding whether a graph has a proper k-colouring for fixed k ≥ 3 was an early
example of an NP-complete problem. If, however, one knows that a graph has a
proper k-colouring, or several of them, one may wish to know more about them
such as how many there are or what structural properties they have.
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One way to study these questions is to consider the k-colouring reconfigura-
tion graph: given a graph G, the k-colouring reconfiguration graph Rk(G) of G
is a graph whose vertices are the proper k-colourings of G and where an edge
is present between two k-colourings if and only if the two k-colourings differ on
only a single vertex of G.

There are several algorithmic questions one can ask about the graph Rk(G)
such as whether Rk(G) is connected, whether there exists a path between two
given vertices of Rk(G), or how long is the shortest path between two given
vertices of Rk(G). (Note that in general Rk(G) has size exponential in the size
of G, making these questions highly non-trivial.) It is the latter question, stated
formally below, that we address in this paper.

k-Colouring Reconfiguration

Instance : An n-vertex graph G = (V,E), two proper k-colourings α and β and
a positive integer �.

Question : Is there a path in the reconfiguration graph of G between α and β of
length at most �?

General Motivation. Reconfiguration graphs can be defined for any search
problem: the vertices correspond to all solutions to the problem and the edges
are defined by a symmetric adjacency relation normally chosen to represent a
smallest possible change between solutions. They arise naturally when one wishes
to understand the solution space for a search problem.

There has been much research over the last 10 years on the structure and
algorithmic aspects of reconfiguration graphs, not only for k-Colouring [1,2,
5,8–10] but also for many other problems, such as Satisfiability [11], Inde-
pendent Set [7,17], List Edge Colouring [13,15], L(2, 1)-Labeling [14],
Shortest Path [3,4,18], and Subset Sum [16]. From these studies, the follow-
ing subtle phenomenon has been observed, which one would like to better under-
stand: it is often (but not always) the case that NP-complete search problems
give rise to PSPACE-complete reconfiguration problems, whereas polynomial-
time solvable search problems often give rise to polynomial-time solvable recon-
figuration problems. For further background we refer the reader to the recent
survey of van den Heuvel [12].

Reconfiguration graphs are also important for constructing and analyzing
algorithms that sample or count solutions to a search problem. Indeed, under-
standing connectivity properties of the k-colouring reconfiguration graph is fun-
damental in analyzing certain randomized algorithms for sampling and counting
k-colourings of a graph and in analyzing certain cases of the Glauber dynamics
in statistical physics (see Sect. 5 of [12]).

Our Results. Ourfirst result,whichweprove inSect. 2, shows thatk-Colouring

Reconfiguration can be solved in polynomial time when k = 3, which settles a
problem raised by Cereceda et al. [10]. Note that the cases k = 1, 2 are easily seen
to be polynomial-time solvable.

In [10], Cereceda et al. were mainly concerned with determining whether,
given a graph G and two proper 3-colourings α and β, there exists any path



Finding Shortest Paths Between Graph Colourings 223

between α and β in Rk(G). They found a polynomial-time algorithm to solve
this problem and further showed that, for certain instances, their algorithm in
fact finds a shortest path between α and β (a precise statement is given in
Sect. 2). Here we complete their result by giving an algorithm for all instances.

Theorem 1. 3-Colouring Reconfiguration can be solved in time O(n2).

For k ≥ 4, we cannot expect a polynomial-time algorithm for k-Colouring

Reconfiguration: Bonsma and Cereceda [5] showed that, for each k ≥ 4,
the problem of determining if there is any path between two given proper k-
colourings of a given graph is PSPACE-complete. On the other hand, our second
result (proven in Sect. 3) is that for each k ≥ 4, k-Colouring Reconfigura-

tion is fixed-parameter tractable when parameterized by the path length �.
Recall that, informally, a parameterized problem is a decision problem (in

our case k-Colouring Reconfiguration) in which every problem instance I
has an associated integer parameter p (in our case the path length �). A para-
meterized problem is fixed-parameter tractable (FPT) if every instance I can be
solved in time f(p)|I|c where f is a computable function that only depends on p
and c is a constant independent of p.

Theorem 2. For each fixed k ≥ 4, k-Colouring Reconfiguration can be
solved in time O((k ·�)�2+� ·�n2). In particular, for each fixed k ≥ 4, k-Colouring

Reconfiguration is FPT when parameterized by �.

Once a problem is shown to be FPT (and it is unlikely that the problem is
polynomial-time solvable), one can go further and ask whether it has a polyno-
mial kernel. It is well known that a problem is FPT with respect to a parame-
ter p if and only if it can be kernelized, i.e., if and only if, for any instance (I, p)
of the given parameterized problem, it is possible to compute in polynomial
time an equivalent instance (I ′, p′) such that |I ′|, p′ ≤ g(p) for some computable
function g (two problem instances are equivalent if and only if they are both
yes-instances or both no-instances). If g(p) is a polynomial, then the given para-
meterized problem is said to have a polynomial kernel. We prove the following
theorem in Sect. 4.

Theorem 3. For each fixed k ≥ 4, k-Colouring Reconfiguration parame-
terized by � does not admit a polynomial kernel unless NP ⊆ coNP/poly.

In fact Theorem 3 holds even when we restrict attention to inputs where the two
proper k-colourings of the input graph differ in only two vertices (note that the
problem becomes trivial if the two given k-colourings differ in only one vertex).

Our three results give a complete picture of the parameterized complexity of
k-Colouring Reconfiguration for each fixed k when parameterized by �.

Related work. Fixed-parameter tractability of k-Colouring Reconfigura-

tion was proved independently in recent work of Bonsma and Mouawad [6]. They
also prove various hardness results for other parameterizations of k-Colouring

Reconfiguration. In particular, they proved that if k is part of the input then
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k-Colouring Reconfiguration is W[1]-hard when parameterized only by �
(note that the problem, when parameterized only by k, is para-PSPACE-complete
due to the aforementioned result of Bonsma and Cereceda [5]).

Mouawad et al. [20] were the first to consider reconfiguration problems in the
context of parameterized complexity. For various NP-complete search problems,
they showed that determining whether there exists a path of length at most �
in the reconfiguration graph between two given vertices is W[1]-hard (when �
is the parameter); they asked if there exists an NP-complete problem for which
the corresponding reconfiguration problem, parameterized by �, is FPT. Theo-
rem 2 and [6] give the second positive answer to this question, the first being an
FPT algorithm for a reconfiguration problem related to Vertex Cover [19].
However, perhaps surprisingly, Theorem 1 shows that there even exists an NP-
complete problem for which the corresponding shortest path problem in the
reconfiguration graph is polynomial-time solvable, and thus trivially FPT when
parameterized by �.

As mentioned earlier, deciding whether there exists any path in Rk(G) between
two k-colourings α and β of an input graph G is polynomial-time solvable for k ≤ 3
[10] and PSPACE-complete for k ≥ 4 [5]. The problem remains PSPACE-complete
for bipartite graphs when k ≥ 4, for planar graphs when 4 ≤ k ≤ 6 and for planar
bipartite graphs for k = 4 [5].

The algorithmic question of whether Rk(G) is connected for a given G is
addressed in [8,9], where it is shown that the problem is coNP-complete for
k = 3 and bipartite G, but polynomial-time solvable for planar bipartite G.

Finally, the study of the diameter of Rk(G) raises interesting questions. In [10]
it is shown that every component of R3(G) has diameter polynomial (in fact
quadratic) in the size of G. On the other hand, for k ≥ 4, explicit construc-
tions [5] are given of graphs G for which Rk(G) has at least one component
with diameter exponential in the size of G. It is known that if G is a (k − 2)-
degenerate graph then Rk(G) is connected and it is conjectured that in this case
Rk(G) has diameter polynomial in the size of G [8]; for graphs of treewidth k−2
the conjecture has been proved in the affirmative [1].

2 A Polynomial-Time Algorithm for k = 3

In this section we consider 3-Colouring Reconfiguration and prove Theo-
rem 1. Some proofs are omitted for reasons of space.

First some definitions needed throughout the paper. Let G = (V,E) be a
graph on n vertices, and let α and β be two proper k-colourings of G. For any
two colourings c and d, we say that c and d agree on a vertex u if c(u) = d(u) and
that otherwise they disagree on u. An (α →β)-recolouring R of length � = |R|
is a sequence of proper colourings c0, . . . , c� where c0 = α and c� = β, and, for
1 ≤ q ≤ �, cq and cq−1 disagree on at most one vertex. So possibly cq = cq−1

though in this case cq could be deleted and the sequence that remained would
also be an (α→β)-recolouring. The set {cq−1cq : cq−1 �= cq} is a set of edges in
the reconfiguration graph corresponding to a walk from α to β.
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In this section, α and β are 3-colourings. The three colours are 1, 2 and 3,
and we think of them cyclically: so when, for example, we refer to a colour one
greater than a we mean a + 1 mod 3. A cycle in G is fixed with respect to a
3-colouring if the two neighbours of each vertex on the cycle are not coloured
alike (one can see that this implies that the cycle is coloured in this way in every
other colouring in the same component of R3(G) since one cannot change the
colour of just one vertex and obtain another proper 3-colouring).

Cereceda et al. [10] provided a partial solution to 3-Colouring Reconfig-

uration. They were interested in recognizing whether or not α and β belong to
the same component of the reconfiguration graph. They introduced a polynomial-
time algorithm that we will call FindPath(G,α, β) that

– correctly determines when α and β belong to different components of R3(G);
– finds an (α →β)-recolouring of G, of length O(n2), when α and β belong to

the same component of R3(G);
– moreover, if G contains a fixed cycle with respect to α, the (α→β)-recolouring

found is the shortest possible.

We also note that it is possible to recognize in time O(n2) whether or not there
is a fixed cycle (this is described in [10], but is an easy exercise). We need to
show how to find a shortest possible (α→β)-recolouring of G in the case where
α and β are known to belong to the same component of G, and G contains no
fixed cycle with respect to α. We assume now that these conditions hold.

We require a further notion related to colourings called a height function
(that extends a concept introduced in [10]). Let S = c0, c1, . . . be a sequence of
colourings where ci and ci−1 disagree on exactly one vertex and c0 = α. The
height function is denoted hS and has domain S × V and its range is the set of
integers. For each v ∈ V , hS(c0, v) = 0. For i > 0, for each v ∈ V :

hS(ci, v) =

⎧
⎨

⎩

hS(ci−1, v), if ci(v) = ci−1(v);
hS(ci−1, v) + 2, if ci(v) ≡ ci−1(v) + 1 mod 3;
hS(ci−1, v) − 2, if ci(v) ≡ ci−1(v) − 1 mod 3.

So each vertex has height 0 initially and is raised or lowered by 2 when its colour
is increased or decreased as we move along the sequence of colourings. For any
(α→β)-recolouring R, let the total height of R be H(R) =

∑
v∈V |hR(β, v)|.

Lemma 1. Let R be a (α→β)-recolouring of length �. Then � ≥ 1
2H(R).

Proof. For each colouring in R, the height of only one vertex differs from the pre-
vious colouring in R and the height difference is 2. Thus, for each vertex v, at least
|hR(β, v)|/2 distinct colourings in R are needed and the lemma follows. �

Lemma 2. For any colouring c, for any sequence of colourings S from α to c,
for each vertex v in V ,

2(c(v) − α(v)) ≡ hS(c, v) mod 6 (1)
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Proof. We use induction on the length of S. If S contains only one colouring,
then this is α, and both sides of (1) are zero with c = α.

Suppose that S is longer and that c′ is its penultimate colouring. We must
show that if (1) is true for c′, then it is also true for c. If c and c′ agree on v,
then we are done. If c and c′ disagree on v, then we need only to notice that

2(c(v) − c′(v)) ≡ hS(c, v) − hS(c′, v) mod 6

and each side of (1) changes by the same amount if we replace c′ by c. �

Some more terminology. If an edge is oriented, then we can define its weight with
respect to a colouring c. The weight of an edge oriented from u to v is a value
w(c,−→uv) ∈ {−1, 1} such that w(c,−→uv) ≡ c(v)− c(u) mod 3. To orient a path is to
orient each edge so that a directed path is obtained. The weight of an oriented
path w(c,

−→
P ) is the sum of the weight of its edges.

Lemma 3. For any colouring c, for any sequence of colourings S from α to c,
for each pair of vertices u, v in V , for each oriented path

−→
P from u to v,

hS(c, u) = hS(c, v) + w(c,
−→
P ) − w(α,

−→
P ). (2)

Proof. We use induction on the length of S. If S contains only one colouring,
then this is α, and both sides of (2) are zero with c = α.

Suppose that S is longer and that c′ is the penultimate colouring in the
sequence. We must show that if (2) is true for c′, then it is also true for c. Let x
be the vertex on which c′ and c disagree.

Suppose that x /∈ {u, v}. If
−→
P does not contain x, then clearly the weight of

the path is the same for c′ and c. If
−→
P does contain x, then let −→yx and −→xz be the

edges of
−→
P that x belongs to. As c and c′ are proper and c(x) �= c′(x), we must

have c(y) = c′(y) = c′(z) = c(z). Thus

w(c,−→yx) + w(c,−→xz) = c(x) − c(y) + c(z) − c(x) = 0,
w(c′,−→yx) + w(c′,−→xz) = c′(x) − c′(y) + c′(z) − c′(x) = 0.

So w(c,
−→
P ) = w(c′,

−→
P ) and both sides of (2) are unchanged when c′ replaces c.

Suppose that x = u. Let y be the vertex adjacent to x on
−→
P . Suppose that

hS(c, x) = hS(c′, x) + 2; that is, the colour of x is increased (as c replaces c′).
Then c(x) ≡ c′(x)+1 mod 3 and so c(y) ≡ c′(x)−1 mod 3. Thus w(c′,−→xy) = −1,
and, as c(y) ≡ c(x) + 1 mod 3, w(c,−→xy) = 1, which gives w(c,

−→
P ) = w(c′,

−→
P ) + 2

and (2) remains satisfied. If the height of x is instead lowered, a similar argument
can be used. The case x = v can also be proved in this way. �

If β is obtained from α by an (α →β)-recolouring, then the vertices can be
ordered by their heights. Lemma 3 tells us that this ordering is the same for
all (α →β)-recolourings and can be found by considering only α, β and paths
in G. Let y be the vertex that is a median vertex in this ordering (if |V | is even,
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arbitrarily choose one of the two vertices in the middle of the ordering). Let g
be a function defined on V such that for all v ∈ V

g(v) = w(β,
−→
Pvy) − w(α,

−→
Pvy).

Considering Lemma 3, we see that g(v) is the height of v relative to y with
respect to β, and that ordering the vertices by g is equivalent to ordering them
by height so y is also a median of this ordering.

For any integer k congruent to 2(β(y) − α(y)) mod 6, let

J(k) =
∑

v∈V

|k + g(v)|.

We observe that if k is the height of y, then J(k) is the sum of the vertices’
heights. Let (k1, k2) be the unique pair in the set {(0, 0), (2,−4), (4,−2)} such
that k1 ≡ k2 ≡ 2(β(y) − α(y)) mod 6. (Notice that, by Lemma 2, k1 and k2
are two possible values for the height of y when β is obtained by a recolouring
sequence.)

Lemma 4. Let k ≡ 2(β(y) − α(y)) mod 6 be an integer. Then J(k) is at least
min{J(k1), J(k2)}, and for any (α→β)-recolouringR, |R| ≥ 1

2 min{J(k1), J(k2)}.
Lemma 5. Let k ≡ 2(β(y) − α(y)) mod 6 be an integer. If S is a recolouring
sequence from α to c such that, for all v ∈ V , hS(c, v) = k + g(v), then c = β.

Lemma 6. Let k ≡ 2(β(y) − α(y)) mod 6 be an integer. Then there exists an
(α→β)-recolouring R of length � such that � = 1

2J(k).

Proof. We will define R by describing how to recolour from α to a colouring c
such that hR(c, v) = k + g(v). By Lemma 5, c = β. Let h(v) denote k + g(v).

As we go from one colouring to the next we change the height of one vertex v
by 2. If this change is always such that the difference between the current height
of v and k + g(v) is reduced by 2, then we will have � = 1

2J(k).
More definitions: for a vertex u in G and colouring c, a maximal rising path

from u is a path on vertices u = v0, v1, . . . vt such that, for 1 ≤ i ≤ t, c(vi) ≡
c(vi−1)+1 mod 3, and vt has no neighbours coloured c(vt)+1 mod 3. A maximal
rising path can easily be found: we just repeatedly look for the next vertex along
and if none with the required colour can be found we are done; we never return
to a vertex that we have already met as this would mean we had found a fixed
cycle. A maximal falling path from u is the same except that the colours decrease
rather than increase moving along the path from u, and one can be found in
an analogous way. (That is, the colours along a rising path are, for example,
231231231231 · · · , and along a falling path are, for example, 321321321321 · · · )

We need to describe how, at each step, to choose a vertex v to recolour and
say what its “new” colour should be. Let c denote the current colouring and S
the sequence of colourings found so far (so hS(c, x) is the current height of a
vertex x).
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1. Find a vertex x for which |h(x) − hS(c, x)| is maximum.
2. If h(x)−hS(c, x) > 0, find a maximal rising path from x. Else find a maximal

falling path from x. In either case, let v be the end-vertex of the path.
3. Change the colour of v so that |h(v) − hS(c, v)| is reduced by 2.

We must show that h(v) �= hS(c, v) and that the new colouring is proper. We
will treat the case that h(x) − hS(c, x) > 0 (the other case is identical in form).

Let p be the number of edges in the maximal rising path P from x to v.
Let

−→
P be the orientation from x to v. Applying Lemma 3 twice to x and v and

then subtracting, we find that

hS(c, x) = hS(c, v) + w(c,
−→
P ) − w(α,

−→
P ),

h(x) = h(v) + w(β,
−→
P ) − w(α,

−→
P )

h(x) − hS(c, x) = h(v) − hS(c, v) + w(β,
−→
P ) − w(c,

−→
P ).

Note that w(c,
−→
P ) = p and that w(β,

−→
P ) ≤ p since the weight of a path cannot

be more than the number of edges. Thus 0 < h(x) − hS(c, x) ≤ h(v) − hS(c, v)
and so h(v) > hS(c, v). As reducing |h(v) − hS(c, v)| requires increasing the
colour at v by 1, and it is at the end of a maximal rising path, the new colouring
is proper. �
Proof of Theorem 1. The algorithm FindPath(G,α, β) can be used to determine
whether there is a path from α to β of length at most � except when α and β are in
the same component of R3(G) and G contains no fixed cycles with respect to α. In
this case, a path of length � can be found if and only if � ≤ 1

2 min{J(k1), J(k2)}.
This follows from Lemmas 4 and 6.

Though the running time of FindPath is not analyzed in detail in [10], it is
easy to prove that it is O(n2). We omit the details, but it is also straightforward
to show that J(k1) and J(k2) can be found in time O(n2). Moreover, if one
wishes to find the path from α to β this can be done by using the algorithm in
the proof of Lemma 6 which can also be adapted to run in time O(n2). �

3 An FPT Algorithm for k-Colouring Reconfiguration

In this section we will present our FPT algorithm for k-Colouring Reconfig-

uration when parameterized by �. Let G = (V,E) be a graph on n vertices, and
let α, β be two proper k-colourings of G. First we prove three lemmas concern-
ing the vertices that might be recoloured if a path between α and β of length
at most � does exist. That is, we assume that (G,α, β, �) is a yes-instance of
k-Colouring Reconfiguration. This means that there exists an (α →β)-
recolouring R = c0, . . . , c�. We assume that R has minimum length.

We say that R recolours a vertex u if cq(u) �= α(u) for some q. Notice that
if for each recoloured vertex u we find the least q such that cq(u) �= α(u), these
values must be distinct (else cq and cq−1 disagree on more than one vertex).
Thus the number of distinct vertices recoloured by R is at most �. We will prove
something stronger. For 0 ≤ q ≤ �, let Wq be the set of vertices on which c0
and cq disagree, that is, Wq = {u ∈ V : c0(u) �= cq(u)}.
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Lemma 7. For all q with 1 ≤ q ≤ �, the set Wq has size |Wq| ≤ q.

Proof. Suppose this is false and let r be the smallest value such that |Wr| > r. So
|Wr−1| ≤ r−1 (clearly r−1 ≥ 0 as W0 is the empty set). Then there are (at least)
two vertices v1, v2 in Wr \Wr−1, and so, for i ∈ {1, 2}, cr−1(vi) = c0(vi) �= cr(vi),
and cr and cr−1 disagree on more than one vertex; a contradiction. �

For any u ∈ V , let N(u) be the set of neighbours of u. For any v ∈ N(u), let
N(u, v) = {w ∈ N(u) : α(w) = α(v)}; that is, the set of neighbours of u with the
same colour as v in α. Let A0 = {v ∈ V : α(v) �= β(v)} be the set of vertices on
which α and β disagree. For i ≥ 1, let Ai =

⋃
u∈Ai−1

{v ∈ N(u) : |N(u, v)| ≤ �}.
That is, to find Ai consider each vertex u in Ai−1 and partition N(u) into colour
classes (according to the colouring α). Vertices in N(u) that belong to colour
classes of size at most � belong to Ai. Note that two sets Ah and Ai need not be
disjoint. Our first goal is to show that each vertex recoloured by R must be in
A∗ =

⋃�−1
h=0 Ah. We will then show that the size of A∗ is bounded by a function

of k + �. This will then enable us to use brute-force to find R or some other
(α→β)-recolouring of G (if it exists).

Lemma 8. Each vertex recoloured by R belongs to A∗.

Proof. For i ≥ 0, let Li = Ai \ (
⋃

h<i Aj) be the set of vertices that are in Ai

but not in any Ah with h < i. Let z be the greatest value such that R recolours
a vertex in Lz; denote this vertex by vz. By definition, every vertex in A0 is
recoloured by R. Let v0 ∈ A0. We claim that also for 1 ≤ i ≤ z − 1, there is a
vertex vi ∈ Li that is recoloured by R. Then, as v0, . . . , vz are distinct vertices
and R has length �, we have z ≤ � − 1 proving the lemma. For contradiction,
assume there is a set Li (1 ≤ i ≤ z −1) that contains no vertex recoloured by R.

From R we construct a new recolouring sequence R′ by ignoring every recolour-
ing step done to a vertex in V \ ⋃

h<i Lh. For 0 ≤ q ≤ �, let dq be a colouring of G
such that

– if u ∈ ⋃
h<i Lh, dq(u) = cq(u);

– if u /∈ ⋃
h<i Lh, dq(u) = α(u).

Let R′ be the sequence d0, . . . , d�. Note that d0 = α, as d0(u) is either c0(u) or
α(u), and c0 = α. Moreover, if u ∈ ⋃

h<i Lh =
⋃

h<i Ai then d�(u) = c�(u) =
β(u), and if u /∈ ⋃

h<i Lh then d�(u) = α(u) = β(u) (since α and β only disagree
on vertices in A0); thus d� = β. This means that if we can show that d1, . . . , d�−1

are proper colourings, then R′ is an (α→β)-recolouring. We will prove this first.
Assume to the contrary that R′ contains a colouring dq that is not proper.

Then there is an edge uv with dq(u) = dq(v). If u and v both belong to
⋃

h<i Lh

then cq(u) = cq(v), and if neither belong to
⋃

h<i Lh then α(u) = α(v). Both
cases are not possible, as cq and α are proper colourings. Hence we may assume,
without loss of generality, that u ∈ ⋃

h<i Lh and v /∈ ⋃
h<i Lh. Then cq(u) =

dq(u) = dq(v) = α(v) by the definition of dq.
As v ∈ N(u), the set N(u, v) exists. First suppose |N(u, v)| ≤ �. Then v ∈ Ai

by the definition of Ai. Hence v ∈ Lh for some h ≤ i. As v /∈ ⋃
h<i Lh, we obtain
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v ∈ Li. By assumption, no vertex of Li is recoloured by R. Hence cq(v) = α(v)
and thus cq(u) = cq(v) contradicting the fact that cq is a proper k-colouring.

Now suppose |N(u, v)| > �. Because cq(u) = α(v) and cq is proper, we find
that cq(w) �= cq(u) = α(v) = α(w) for all w ∈ N(u, v). Thus Wq ⊇ N(u, v) and
so |Wq| ≥ |N(u, v)| > � ≥ q contradicting the fact that |W (q)| ≤ q by Lemma 7.
So, dq must be proper. We conclude that R′ is an (α→β)-recolouring of length �.

We now proceed as follows. Recall that vz ∈ Lz. Then there is a pair of colour-
ings cq and cq+1 that differ only on vz. Because vz ∈ Lz, vz /∈ ⋃

h<i Lh. Hence,
dq and dq+1 are identical colourings. We remove dq from R′ to obtain another
(α →β)-recolouring, which has length shorter than �, contradicting that R has
minimum length. This completes the proof. �

Lemma 9 gives a bound on |A∗| depending only on k and � (proof omitted).

Lemma 9. The set A∗ has size |A∗| ≤ � · (k�)�.

We are now ready to present our FPT algorithm and prove Theorem 2.

Proof of Theorem 2. Let k ≥ 1, and let (G,α, β, �) be an instance of k-Colouring

Reconfiguration, where G is a graph on n vertices, and α, β are two proper
k-colourings of G. Our algorithm does as follows. First compute the set A∗ in
O(n2) time. By Lemma 9, we find that |A∗| ≤ � · (k�)�. By Lemma 8, we only
have to search for a path of length at most � in Rk(G) among the vertices of A∗.
By allowing consecutive recolourings to be equal we may restrict our search to
(α→β)-recolourings of length exactly �. Use brute force to enumerate all possible
sequences of pairs (vi, ci), such that for all 0 ≤ i ≤ � − 1, vi is a vertex in A∗

and ci is a colour in {1, . . . , k}. For each such sequence do as follows. Starting
from α, recolour vi with colour ci for i = 0, . . . , � − 1. As soon as this results
in a k-colouring that is not proper, stop considering the sequence. If not, check
whether the resulting colouring is equal to β. If this happens, then there is a path
of length � in Rk(G). Hence, return yes. Otherwise, that is, if no sequence has
this property, return no. Processing one sequence takes time O(�n2). By using
Lemma 9, the number of sequences is at most (|A∗| · k)� ≤ ((� · (k · �)�) · k)� ≤
(k·�)�2+�, leading to a total running time of O((k·�)�2+� ·�n2). This completes the
proof. �

4 A Lower Bound for Kernelization for k ≥ 4

In this section we sketch the proof of Theorem 3, which states that k-Colouring

Reconfiguration parameterized by the maximum path length � does not
admit a polynomial kernelization for k ≥ 4 unless NP ⊆ coNP/poly. Theorem 3 is
proved by a polynomial parameter transformation from the Hitting Set prob-
lem parameterized by the number m of sets in the input. It is known that this
rules out polynomial kernels for the target problem, unless NP ⊆ coNP/poly.

The main idea for the reduction is to create a 4-coloured tree that serves
as a selection gadget for each set, which requires a recolouring at its root. This
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in turn requires a chain of earlier recolourings starting in one of the leaves; the
selection of possible leaves encodes the elements of the set. Finally, recolouring
any leaf requires a recolouring in a set of vertices corresponding to the ground
set; this encodes the selection of a hitting set. Crucially, the height of the tree
construction, which factors into the number � of needed recolourings, can be
bounded polynomially in the input parameter m.

The selection trees are composed of claws on four vertices a, b, c, d each,
where c is the center vertex. For each of these vertices, α and β colour are the
same, but we may (through adjacent gadgets) require a recolouring of d. The
latter will be only possible by first recolouring a or b. To ensure this, several
colours will be forbidden for a, b, c, d by adjacency to a global k-clique:

1. For a we have α(a) = β(a) = 2, and, using adjacency to the k-clique, only
colours 2 and 4 allow proper k-colourings.

2. For b we have α(b) = β(b) = 3, and only colours 3 and 4 are possible.
3. For c we have α(c) = β(c) = 1, and only colours 1, 2, and 3 are possible.
4. For d we have α(d) = β(d) = 4, and only colours 1 and 4 are possible.

If we need to recolour d then it can only change to colour 1. This requires to
first recolour c to either 2 or 3. This in turn, depending on choice of colour 2
or 3, necessitates a recolouring of a to 4 or b to 4. Thus, locally, we make a
choice out of two options using constant number of recolourings. By building a
tree structure from such claws, always making d-vertices of new claws adjacent
to the a- or b-vertex of the current claw, we can make a one out of n choice at
cost of O(log n) recolourings.

By standard arguments when reducing from a Hitting Set instance with m
sets (recall that m is the parameter) we have a ground set size of n ≤ 2m. Thus,
the choice of element to hit in each set costs only O(log n) = O(m) recolourings
per set. To relate the different choices we make a set of n vertices that are
adjacent to the corresponding leaves in each selection gadget. If we end up with
a recolouring in a leaf of a selection gadget then this requires a recolouring of
the corresponding one among these n vertices. By correct choice of number of
recolourings and detailed analysis, we can enforce that at most p out of n vertices
can be recoloured. Note that this involves also recolouring almost all vertices back
to their initial colour since α and β will agree on almost all vertices (which is
necessary to make the graph exponentially large in the parameter value). The
whole recolouring from α to β is then possible within the chosen number of steps
if and only if the given set family has a hitting set of size at most p.

5 Conclusions

We showed that k-Colouring Reconfiguration is fixed-parameter tractable
for any fixed k ≥ 1, when parameterized by the number of recolourings �. It is
a natural question to ask whether a single-exponential FPT algorithm can be
achieved for this problem. We also proved that the k-Colouring Reconfig-

uration problem is polynomial-time solvable for k = 3, which solves the open
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problem of Cereceda et al. [10], and that it has no polynomial kernel for all k ≥ 4,
when parameterized by � (up to the standard assumption that NP � coNP/poly).

Acknowledgements. We are grateful to several reviewers for insightful comments
that greatly improved our presentation.
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Abstract. We introduce the following notion: a digraph D = (V,A)
with arc weights c : A → R is called nearly conservative if every negative
cycle consists of two arcs. Computing shortest paths in nearly conserva-
tive digraphs is NP-hard, and even deciding whether a digraph is nearly
conservative is coNP-complete.
We show that the “All Pairs Shortest Path” problem is fixed parameter

tractable with various parameters for nearly conservative digraphs. The
results also apply for the special case of conservative mixed graphs.

Keywords: Conservative weights · All Pairs Shortest Paths · FPT algo-
rithm · Mixed graph

1 Introduction

We are given a digraph D = (V,A), a weight (or a length) function c : A → R

is called conservative (on D) if no directed cycle with negative total weight
(“negative cycle” for short) exists, and c is called λ-nearly conservative if
every negative cycle consists of at most λ arcs.

The APSP (All Pairs Shortest Paths) problem we are going to solve has two
parts, first we must decide whether c is λ-nearly conservative, next, if the answer
for the previous question is Yes, then for all (ordered) pairs s �= t of vertices the
task is to determine the length of the shortest (directed and simple) path from
s to t.

In this paper we concentrate on the case λ = 2, a 2-nearly conservative
weight function c is simply called nearly conservative in this paper. A mixed
graph G = (V,E,A) on vertex set V has the set E of undirected edges and the
set A of directed edges (i.e., arcs). A weight function c : E ∪ A → R is called
conservative if no cycle with negative total weight exists. For a mixed graph we
can associate a digraph by replacing each undirected edge e having endvertices
u and v by two arcs uv and vu with weights c(uv) = c(vu) = c(e). It is an easy
observation that the resulting c is nearly conservative on the resulting digraph if
and only if the original weight function was conservative on the original mixed
graph, and in this case the solution of the APSP problem remains the same.
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Arkin and Papadimitriou proved in [1] that the problems of detecting neg-
ative cycles and finding the shortest path in the absence of negative cycles are
both NP-hard in mixed graphs. Consequently, checking whether c is nearly con-
servative on D is coNP-complete, and solving the APSP problem in the case c
is nearly conservative on D is NP-hard. In this paper we give FPT algorithms
for this problem related to various parameters.

Though it was a surprise to the author, he could not find any algorithm
for dealing with these problems (despite the fact that many paper are writ-
ten about the Chinese Postman problem on mixed graphs). We only found two
more papers that are somehow related to this topic. In [4] for the special case of
skew-symmetric graphs shortest “regular” paths are found in polynomial time
if no negative “regular” cycle exist. In [2] for the similar special case of bidi-
rected graphs minimum mean edge-simple cycles are found in polynomial time,
this is essentially the same as finding minimum mean “regular” cycles in skew-
symmetric graphs. The class of nearly conservative graphs seems to be not stud-
ied (and defined) in the literature, as well as we could not find any FPT result
about APSP.

For defining the parameters we are going to use, we first define the notion of
negative trees. Given D and c, we associate an undirected graph F = (V,E) as
follows. Edge-set E consists of pairs u �= v of vertices for which both uv and vu
are arcs in A, and c(uv) + c(vu) < 0. We can construct F in time O(|A|), and
can also check whether it is a forest. We claim that if F is not a forest, then c
is not nearly conservative on D, so our algorithm can stop with this decision. If
F contains a cycle, then it corresponds to two oppositely directed cycles of D,
and the sum of the total weights of these two cycles are negative, proving that
c is not nearly conservative.

From now on we will suppose that F is a forest, and we call its nontrivial
components (that have at least one edge) the negative trees.

Our first parameter k0 is the number of negative trees, and we give an
O(2k0 · n4) algorithm for the APSP problem (where n = |V |). Later we refine
this algorithm for parameter k1, which is the maximum number of negative trees
in any strongly connected component of D, and finally for parameter k2, which is
the maximum number of negative trees in any weakly 2-connected block of any
strongly connected component of D (for the definitions see the next section). Our
final algorithm also runs in time O(2k2 ·n4). Consequently, if there is a constant γ
such that every weakly 2-connected block of any strongly connected component
of D has at most γ negative trees, then we have a polynomial algorithm.

The preliminary version of this paper appeared in [6] for the special case of
mixed graphs. In that paper we also gave a strongly polynomial algorithm for
finding shortest exact walk (a walk with given number of edges) in any non-
conservative mixed graph.

2 Definitions

For our input digraph D we may assume it is simple. An arc from u to v is
called a loose arc if there is another arc from u to v with a smaller weight. In a
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shortest path between s and t (if s �= t) neither loops nor loose arcs can appear.
Consequently, as a preprocessing, we can safely delete these (and also keep only
one copy from multiple arcs having the same weight).

However for our purposes multiple arcs will be useful, so we will use them
for describing the algorithm. We use the convention that the notation uv always
refers to the shortest arc from u to v.

We call an arc uv of D special if vu is also an arc, and moreover c(uv) +
c(vu) < 0. Other arcs are called ordinary. For a special arc uv the special arc
vu is called its opposite. As a part of the preprocessing, we add some loose
arcs to D. For every special arc uv we add an arc a from v to u with weight
c(a) = −c(uv). By the definition of special arcs, these are really loose arcs, as
−c(uv) > c(vu). We call these arcs added ordinary arcs, or shortly loose arcs.
We call the improved digraph also D, and its arc set is called A. Arc set A is
decomposed into A = As ∪ Ao, where As is the set of special arcs, and Ao is the
set of ordinary (original or added) arcs. (The main purpose of this procedure is
the following. We will sometimes work in the ordinary subdigraph Do = (V,Ao),
and we need to maintain the same reachability: if there is a path from s to t in
D, then there is also a path from s to t in Do.) Our main property remained
true: if c is nearly conservative on D, then every negative cycle consists of two
oppositely directed special arcs. Remark: special arcs may have positive length,
so loose arcs may have negative length. We call a path ordinary if all its arcs
are ordinary. Note that by the assumptions |A| ≤ 2n2, where n = |V |.

Given D and c, we associate an undirected graph F = (V,E) as follows.
Edge-set E consists of unordered pairs u �= v of vertices for which uv is a special
arc in As. As we detailed in the Introduction, if F is not a forest, then c is
not nearly conservative on D. We consider this process as the last phase of the
preprocessing: we determine F , and if it is not a forest, then we stop with the
answer “Not Nearly Conservative”.

From now on we suppose that F is a forest, and we call its nontrivial com-
ponents (that have at least one edge) the negative trees. If T is a negative
tree, then V(T) denotes its vertex set, and A(T) denotes the set of special arcs
that correspond to its edges. If s, t ∈ V (T ) are two vertices of T , then dT(s, t)
denotes the length of unique path from s to t in A(T ).

A walk from v0 to v� (or a v0v�-walk) is a sequence

W = v0, a1, v1, a2, v2, . . . , v�−1, a�, v�

where vi ∈ V for all i, and aj is an arc from vj−1 to vj for all j. A walk is
closed if v0 = v�. A closed walk is also called here a v0v0-walk. A number � of
arcs used by a walk W is denoted by |W |. The length (or weight) c(W ) of a
walk W is defined as

∑�
j=1 c(aj). If W1 is a s1v-walk and W2 is a vt2-walk, then

their concatenation is denoted by W1 + W2. For a walk W we use the notation
W [vi, vj ] for the corresponding part vi, ai+1, . . . , aj , vj if i < j.

A walk W is special-simple if no special arc is contained twice in it, more-
over, if W contains special arc uv, then it does not contain its opposite vu.
A walk is a path if all the vertices v0, . . . , v� are distinct. A closed walk is a
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cycle if all the vertices v0, . . . , v� are distinct, with the exception of v0 = v�.
If |W | = � = 0, then we call the walk also an empty path (its length is 0), and in
this paper unconventionally the empty path will also be considered as an empty
cycle. The distance dD(s, t) = d(s, t) of t from s is the length of the shortest
path from s to t (where s, t ∈ V ).

The relation: there is a path in D from s to t and also from t to s, is obviously
an equivalence relation, its classes are called the strongly connected components
of D. (Notice that a negative tree always resides in one strongly connected
component.) A weakly 2-connected block of a digraph is a 2-connected block
of the underlying undirected graph (where arcs are replaced with undirected
edges).

An algorithm is FPT for a problem with input size n and parameter k if
there is an absolute constant γ, and a function f such that the running time is
f(k) · O(nγ). (Originally FPT stands for “fixed parameter tractable”, and it is
an attribute of the problem, however in the literature usually the corresponding
algorithms are also called FPT.) In this paper we give FPT algorithms for the
APSP problem for nearly conservative digraphs.

In the simplest version we assume that there is just one negative tree and it
is spanning V . Next we give an algorithm for the case where we still have only
one negative tree, but it is not spanning V . These algorithms are polynomial
and simple.

Then we use various parameters: k0 is the number of negative trees in D, k1
is the maximum number of negative trees in any strongly connected component
of D, and k2 is the maximum number of negative trees in any weakly 2-connected
block of any strongly connected component of D. (Clearly k0 ≥ k1 ≥ k2.) The
main goal of this paper to give an O(2k2 · n4) algorithm for the APSP problem
for the case λ = 2, i.e., for deciding whether c is nearly conservative on D, and if
it is, then for calculating the distances dD(s, t) for each (ordered) pair of vertices
s, t ∈ V .

In the next section we show some lemmas. In Sect. 4 we give some polynomial
algorithms for the case of one negative tree. In Sect. 5 we give an FPT algorithm
where the parameter k0 is the total number of negative trees in D. Next, in
Sect. 6 we extend it to the case where k2 only bounds the number of negative
trees in any weakly 2-connected block of any strongly connected component.

Our main goal is only giving the length of the shortest paths, in Sect. 7 we
detail how the actual shortest paths themselves can be found.

Finally in Sect. 8 we conclude the results, show their consequences to mixed
graphs, and pose some open problems.

3 Lemmas

In this section we formulate some lemmas. Though each of them can be easily
proved using the newly introduced notions and the statements of the preced-
ing lemmas, we could not find these statements in the literature (neither in an
implicit form).
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We premise some unusual aspects of nearly conservative weight functions.
Usually shortest path algorithms use the following two facts about conservative
weight functions. If P is a shortest sx-path and Q is a shortest xt-path, then
P +Q contains an st-path not longer than c(P )+c(Q). If P is a shortest st-path
containing vertices u and v (in this order), then P [u, v] is a shortest uv-path.
These two statements are NOT true for nearly conservative weight functions.

Remember that D = (V,As ∪ Ao) is the improved digraph with loose arcs,
and the associated graph F is a forest.

Lemma 1. Weight function c is nearly conservative on D if and only if there
is no negative special-simple closed walk.

Proof. If C is a negative cycle consisting of at least three arcs, then it is also
a negative special-simple closed walk. On the other hand, suppose that C is a
negative special-simple closed walk with a minimum number of arcs, and assume
that C is not a cycle, that is there are 0 < i < j ≤ � such that vi = vj . Now C
decomposes into two special-simple closed walks with less arcs, clearly at least
one of them has negative length, a contradiction. �

Lemma 2. If c is nearly conservative on D, and s, t ∈ V , and Q is a special-
simple st-walk, then we also have an st-path P with c(P ) ≤ c(Q), and P contains
only arcs of Q.

Proof. Let Q be a shortest special-simple st-walk (which exists by the previous
lemma and as c is nearly conservative) having the minimum number of arcs.

By the previous lemma, if s = t, then the empty path serves well as P . So we
may assume that s �= t and Q is not a path, i.e., there are 0 ≤ i < j ≤ � such that
vi = vj . Now Q decomposes to a special-simple svi-walk Q1, a special-simple
closed walk C through vi and an special-simple vjt-walk Q2. By the previous
lemma C is nonnegative, so c(Q1 + Q2) ≤ c(Q), consequently Q1 + Q2 is a not
longer special-simple st-walk with less number of arcs, a contradiction. �

Suppose T is a negative tree, u, v ∈ V (T ), and P is a uv-path in D′ =
D − A(T ). If c(P ) < −dT (v, u), then c is not nearly conservative on D because
otherwise P + PT

vu would be a negative special-simple closed walk, where PT
vu is

the vu-path in A(T ). Otherwise, if c(P ) ≥ −dT (v, u), then we have a uv-path P ′

in D′ consisting of loose arcs such that c(P ′) ≤ c(P ). Using this train of thought
we get the following lemmas that play the central role in our algorithms.

Lemma 3. Let T be a negative tree, and assume that c is nearly conservative
on D. If P is a shortest st-path using some vertex of V (T ), then let u be the first
vertex of P in V (T ), and let v be the last vertex of P in V (T ). Then P [u, v] uses
only special arcs from A(T ). Consequently, if s, t ∈ V (T ), then d(s, t) = dT (s, t).

Proof. Remember that a uv-path in A(T ) may have positive length. Fortunately,
by the definition of u and v, there are no vertices of P preceding u or following
v inside V (T ), and this fact can be used successfully.
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Suppose P is a shortest st-path. By the observation made before the lemma,
for any u′, v′ ∈ V (T ), any subpath of form P [u′, v′] that uses no arcs from A(T )
can be replaced by loose arcs without increasing the length. After we made
all these replacements, we replaced P [u, v] by a special-simple uv-walk Q′ such
that Q′ contains only arcs in A(T ) and loose arcs, and c(Q′) ≤ c(P [u, v]). By
Lemma 2, Q′ contains a uv-path P ′ with c(P ′) ≤ c(Q′). We got P ′ by eliminating
cycles, if any cycle had positive length, then we get c(P ′) < c(Q′). Suppose now
that all eliminated cycles had zero length, meaning that each one had the form
x, a, y, yx, x, where a is the loose arc from x to y and yx is the special arc from
y to x. If after deleting all these cycles P ′ still has a loose arc a from x to
y then it can be replaced safely with the special arc xy yielding again a path
strictly shorter than Q′. Thus the only possibility where we can only get a P ′

with the same length (as Q′) is that the special-simple uv-walk Q′ consisted of
the uv-path PT

uv inside A(T ) and additionally some zero length cycle described
above, and moreover P ′ = PT

uv. Now we claim that in this case the path P [u, v]
used only arcs from A(T ), i.e., it was also PT

uv. Otherwise there are vertices
x, y ∈ V (T ) such that x is on PT

uv, y is not on it, and Q′ contains one loose arc
and one special arc between x and y. However in this case vertex x had to be
included twice in path P , a contradiction.

To finish the proof observe that P [s, u] + P ′ + P [v, t] is an st-path, and in
the case P [u, v] �= PT

uv it would be shorter than the shortest path P . �

Lemma 4. Let T be a negative tree, and assume that c is nearly conservative
on digraph D′ = D − A(T ) defining distance function d′. Then c is nearly con-
servative on D if and only if for any pair of vertices u, v ∈ V (T ) we have
d′(u, v) ≥ −dT (v, u).

Proof. We showed that the condition is necessary. Suppose that C is a negative
cycle in D having at least three arcs. If it has at most one vertex in V (T ), then
it is also a negative cycle in D′. We claim that we can construct a special-simple
negative closed walk C ′ which uses only loose arcs and arcs in A(T ). To achieve
this goal, repeatedly take any subpath C[u, v], where u, v ∈ V (T ), but inner
vertices of C[u, v] are in V − V (T ). By the condition c(C[u, v]) ≥ −dT (v, u),
which means that changing C[u, v] to the uv-path consisting of loose arcs does
not increase the length of C. We arrived at a contradiction, as the special-simple
closed walk C ′ contains a negative cycle which is impossible by the definition of
loose arcs. �

4 Polynomial Algorithms for the Case k0 = 1

First we give an O(n2) algorithm for the very restricted case, where we have
only one negative tree T , and moreover it spans V . We claim first that c is
nearly conservative on D if and only if for each ordinary arc uv we have c(uv) ≥
−dT (v, u). If c(uv) < −dT (v, u), then we have a negative special-simple closed
walk, so c is not nearly conservative by Lemma 1. Suppose now that c(uv) ≥
−dT (v, u) holds for each ordinary arc uv, and C is a negative cycle in D with at
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least three arcs. As in the proof of Lemma 4, replace each ordinary arc uv of C
by a uv-path consisting of loose arcs, this does not increase the length. We arrive
at special-simple closed walk using only special and loose arcs that is negative.
However this contradicts to the definition of loose arcs. We also got that in this
case for any pair s, t ∈ V the length of the shortest path is dT (s, t) by Lemma 3.
Consequently it is enough to give an O(n2) algorithm for calculating distances
dT (s, t). We suppose that V = {1, . . . , n} and initialize a length-n all-zero array
Du for each vertex u. Then we fill up these arrays in a top-down fashion starting
from the root vertex 1. Let P denote the subset of vertices already processed,
initially it is {1}. If a parent u of an unprocessed vertex v is already processed,
we process v: for each processed vertex x we set Dv(x) = c(vu)+Du(x), and set
Dx(v) = Dx(u) + c(uv), and put v into P.

Next we give an O(n4) algorithm for the case where we have only one negative
tree T , but we do not assume it to span V .

In digraph D′ = D − A(T ) = Do = (V,Ao) using the Floyd-Warshall algo-
rithm (see in any lecture notes, e.g., in [3]), it is easy to check whether c is
conservative on D′ in time O(n3). If it is not conservative, then we return with
output “Not Nearly Conservative” (as in this case c clearly cannot be nearly
conservative on D), and if it is conservative, then this algorithm also calculates
the length d′(s, t) of all shortest paths in D′ (for s, t ∈ V ). If vertex t is not
reachable from vertex s, then it gives d′(s, t) = +∞ (remember that reachability
is the same in D′ as in D).

Then we calculate the distances dT (u, v) in time O(n2) as in the previous
section. By Lemma 4, c is nearly conservative on D if and only if for all pairs
u, v ∈ VT we have d′(u, v) ≥ −dT (u, v), this can be checked in time O(n2). It
remains to calculate the pairwise distances. If P is a shortest st-path, then it is
either a ordinary path (having length d′(s, t)), or it has a first arc uu′ ∈ A(T )
and a last arc v′v ∈ A(T ). The part P [u, v] must reside inside A(T ) by Lemma 3.

Lemma 5. If c is nearly conservative on D, and T is the only negative tree,
then the distance d(s, t) is

d(s, t) = min
(
d′(s, t), min

u,v∈VT

[d′(s, u) + dT (u, v) + d′(v, t)]
)
.

Proof. This is a consequence of Lemma 3. The trick used here is that a shortest
su-path and a shortest vt-path in D′ need not be arc-disjoint, this is the main
purpose for which we introduced the notion of special-simple, so for the relation
LHS ≤RHS we have to use Lemma 2. �

These values can be easily calculated for all pairs in total time O(n4), so we
are done.

5 FPT Algorithm for Parameter k0

In this section we suppose that there are at most k0 negative trees in D. Let
T1, . . . , Tk0 be the negative trees, remember that we defined A(Ti) as the set of
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special arcs that correspond to the edges of Ti. We denote by VT the vertex set⋃
i V (Ti).

First we compute distances dTi for all 1 ≤ i ≤ k0 in total time
∑

O(|V (Ti|2) =
O(n2). Next we compute distances d′ in digraph D′ = D−⋃

i A(Ti) = Do in time
O(n3), or stop if c is not nearly conservative on D′.

We use dynamic programming for the calculation remained. For all J ⊆
{1, . . . , k0} we define the J-subproblem as follows. Solve the APSP problem in
digraph DJ = D − ⋃

i∈{1,...,k0}−J

A(Ti), and let dJ denote the corresponding dis-

tance function if c is nearly conservative on DJ (otherwise, if c is not nearly
conservative on DJ for any J , we stop). We already solved the ∅-subproblem,
d∅ ≡ d′.

Lemma 6. Suppose we solved the (J − i)-subproblem for every i ∈ J and found
that c is nearly conservative on DJ−i. By Lemma 4, we can check whether c is
conservative on DJ using only distance functions dTi and dJ−i for one element
i ∈ J . If yes, then we have

dJ(s, t) = min
(
d∅(s, t),min

i∈J
[ min
u,v∈V (Ti)

(d∅(s, u) + dTi(u, v) + dJ−i(v, t)]
)

Proof. First we show that LHS ≥RHS. Let P be a shortest path in DJ . Either
P is disjoint from

⋃
j∈J V (Tj), in this case its length is d∅(s, t) in graph DJ . The

other possibility is that P has some first vertex u in
⋃

j∈J V (Tj), say u ∈ V (Ti).
Let v denote the last vertex of P in V (Ti). That is, P [s, u] goes inside D∅ and
P [v, t] goes inside DJ−i, and, by Lemma3, P [u, v] goes inside A(Ti).

To show that LHS ≤RHS we only need to observe that if P1 is an su-path
in D∅, P2 is a uv-path in A(Ti), and P3 is a vt-path in DJ−i, then P1 + P2 + P3

is a special-simple st-walk.

Remember that, ’solving the APSP problem’ is defined in this paper as first
checking nearly conservativeness, and if c is nearly conservative, then calculate
all shortest paths. As solving one subproblem needs O(n4) steps, we proved the
following.

Theorem 1. If D has k0 negative trees, then the dynamic programming algo-
rithm given in this section correctly solves the APSP problem in time O(2k0 ·n4).

The weak blocks of a digraph refer to the 2-connected blocks of the underlying
undirected graph. It is well known that the block-tree of an undirected graph
can be determined in time O(n2) by DFS. If we have this decomposition and we
also calculated APSP inside every weak block, then we can also calculate APSP
for the whole digraph in additional time O(n3). Consequently we have

Corollary 1. If every weak block of D contains at most k′
0 negative trees, then

we can solve the APSP problem in time O(2k′
0 · n4).
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6 General FPT Algorithm for Parameters k1 and k2

Suppose every strongly connected component of D contains at most k1 nega-
tive trees. By the previous section we can solve the APSP problem inside each
strongly connected component in total time O(2k1 · n4). If for any of them we
found that c is not nearly conservative, then we stop and report the fact that
c is not nearly conservative on D. Henceforth in this section we assume that
for every strongly connected component K of D, c is nearly conservative on K.
(In this situation clearly c is nearly conservative on D.) The distance function
restricted to component K is denoted by dK . If s, t ∈ V (K), then every st-path
goes inside K, thus d(s, t) = dK(s, t). It remains to calculate APSP in D for
pairs s, t, that are in different strongly connected components.

We construct a new acyclic digraph D∗ by first substituting every strongly
connected component K by acyclic digraph D∗

K as follows. Suppose V (K) =
{xK

1 , xK
2 , . . . , xK

r }, the vertex set of D∗
K will consist of 2r vertices, {aK

1 ,
aK
2 , . . . , aK

r , bK
1 , bK

2 , . . . , bK
r }. For each 1 ≤ i, j ≤ r the digraph D∗

K contains
arc aK

i bK
j with length dK(xK

i , xK
j ).

In order to finish the construction of D∗, for every arc xK
i xL

j of D connecting
two different strongly connected components K �= L, digraph D∗ contains the
arc bK

i aL
j with length c(xK

i xL
j ). It is easy to see that D∗ is truly acyclic and

has 2n vertices. As D∗ is a simple digraph, paths can be given by only listing
the sequence of its vertices. We can calculate APSP in D∗ in time O(n3) by the
method of Morávek [7] (see also in [3]) if we run this famous algorithm from all
possible sources s. It gives distance function dD∗ (where if t is not reachable from
s, then we write dD∗(s, t) = +∞). The total running time is still O(2k1 · n4).
We remark that if every strongly connected component has a spanning negative
tree, then the running time is O(n3).

Theorem 2. Suppose s = xK0
i0

∈ V (K0) and t = xKr
jr

∈ V (Kr) where K0 �= Kr

are different strongly connected components of D. Then the shortest st-path in
D has length exactly dD∗(aK0

i0
, bKr

jr
).

Proof. Vertex t is not reachable from s in D if and only if bKr
jr

is not reachable
from aK0

i0
in D∗. Otherwise, suppose that aK0

i0
, bK0

j0
, aK1

i1
, bK1

j1
, . . . , aKr

ir
, bKr

jr
is a

shortest path P in D∗. For 0 ≤ � ≤ r let path P� be a shortest path in D from
xK�

i�
to xK�

j�
, this path obviously goes inside K�. We can construct an st-path Q

in D with the same length as P has in D∗: Q = P0 + xK0
j0

xK1
i1

+ P1 + xK1
j1

xK2
i2

+
P2 + · · · + Pr−1 + x

Kr−1
jr−1

xKr
ir

+ Pr.
For the other direction, suppose that there are strongly connected compo-

nents K0,K1, . . . , Kr, such that the shortest st-path Q in D meets these com-
ponents in this order, and for all � the path Q arrives into K� at vertex xK�

i�
and

leaves K� at vertex xK�
j�

. As Q is a shortest path it clearly contains a path of
length dK�

(xi�
K� , xK�

j�
) inside K� for each �, consequently the following path has

the same length in D∗: P = aK0
i0

, bK0
j0

, aK1
i1

, bK1
j1

, . . . , aKr
ir

, bKr
jr

. �
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Using Corollary 1 we easily get the following more general statements.

Corollary 2. If every weak block of any strongly connected component of D
contains at most k2 negative trees, then we can solve the APSP problem in time
O(2k2 · n4).

Corollary 3. If there is an absolute constant γ, such that in any weak block of
any strongly connected component of D there are at most γ negative trees, then
there is a polynomial time algorithm for the APSP problem that runs in time
Oγ(n4).

7 Finding the Paths

In this section we assume that c is nearly conservative on D.
We usually are not only interested in the lengths of the shortest paths, but

also some (implicit) representation of the paths themselves. The requirement for
this representation is that for any given s and t, one shortest st-path P must be
computable from it in time O(�) if � is the number of arcs in P .

It is well known (see e.g., in [3]) that both the algorithm of Floyd and
Warshall and the algorithm of Morávek can compute predecessor matrices Π
(by increasing the running time by a constant factor only), with the property
that for each s �= t the entry Π(s, t) points to the last-but-one vertex of a short-
est st-path. This representation clearly satisfies the requirement described in the
previous paragraph.

For a digraph H let ΠH denote the predecessor matrix of this type, and sup-
pose that for each strongly connected component K we computed ΠK , and we
also computed ΠD∗ . Then ΠD is easily computable as follows. Suppose that
s = xK0

i0
and t = xKr

jr
, and ΠD∗(aK0

i0
, bKr

jr
) = aKr

ir
. If ir �= jr, then define

ΠD(s, t) = ΠKr
(xKr

ir
, xKr

jr
), otherwise let b

Kr−1
jr−1

= ΠD∗(aK0
i0

, aKr
ir

) and define

ΠD(s, t) = x
Kr−1
jr−1

.
It remained to compute the predecessor matrices ΠK in the case where K is

a strongly connected component of D. In accordance with Sect. 5 from now on
we call K as D (and forget the other vertices of the digraph), and the matrix
we are going to determine is simply Π.

If s and t are vertices of the same negative tree Ti, then the method given
in the first paragraph of Sect. 4 easily calculates Π(s, t) = ΠA(Ti)(s, t). Next we
call the Floyd-Warshall algorithm on D′, and it can give ΠD′ , then during the
dynamic programming algorithm we determine matrices ΠDJ

for all J .
Given s and t, by Lemma 6 if the minimum is d∅(s, t), then ΠDJ

(s, t) =
ΠD∅(s, t), otherwise we find i, u, v giving the minimum value. If v �= t, then
ΠDJ

(s, t) = ΠDJ−i
(s, t), otherwise if v = t but u �= v, then ΠDJ

(s, t) =
ΠA(Ti)(s, t), and finally if v = t = u �= s then ΠDJ

(s, t) = ΠD∅(s, t).
Extending this setup for weak blocks is obvious.
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8 Conclusion and Open Problems

We gave FPT algorithms for the NP-hard APSP problem in nearly conservative
graphs regarding with various parameters.

For mixed graphs we have the following consequence. As nonnegative undi-
rected edges can be replaced by two opposite arcs, we may assume that every
undirected edge has negative length. Here the negative trees are the nontriv-
ial components made up by undirected edges, and APSP problem is to check
whether c is conservative on a mixed graph G, and if Yes, then calculate the
pairwise distances.

Remember, that for mixed graphs the APSP problem contains checking con-
servativeness, and if c is conservative on the mixed graph, then all shortest paths
should be calculated.

Corollary 4. If every weak block of any strongly connected component of a
mixed graph contains at most k2 negative trees, then we can solve the APSP
problem in time O(2k2 · n4).

Finally we pose three open problems. A weight function is even-nearly con-
servative if every negative cycle consist of an even number of arcs.

Question 1. Is there an FPT algorithm for shortest paths if c is 3-nearly conser-
vative? (The parameter should not contain the number of negative triangles.)

Question 2. Is there a polynomial or FPT algorithm for recognizing even-nearly
conservative weights? This would be interesting even if we restrict the digraph
to be symmetric (i.e., every arc has its opposite).

Question 3. Is there an FPT algorithm for shortest paths if c is λ-nearly conser-
vative, using some parameter k of “inconvenient components” (should be defined
accordingly) and also λ?

Acknowledgment. The author is thankful to András Frank who asked a special case
of this problem, and also to Dániel Marx who proposed the generalization to nearly
conservative digraphs.
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Abstract. A vertex-subset graph problem Q defines which subsets of
the vertices of an input graph are feasible solutions. The reconfigura-
tion version of a vertex-subset problem Q asks whether it is possible to
transform one feasible solution for Q into another in at most � steps,
where each step is a vertex addition or deletion, and each intermediate
set is also a feasible solution for Q of size bounded by k. Motivated by
recent results establishing W[1]-hardness of the reconfiguration versions
of most vertex-subset problems parameterized by �, we investigate the
complexity of such problems restricted to graphs of bounded treewidth.
We show that the reconfiguration versions of most vertex-subset prob-
lems remain PSPACE-complete on graphs of treewidth at most t but
are fixed-parameter tractable parameterized by �+ t for all vertex-subset
problems definable in monadic second-order logic (MSOL). To prove the
latter result, we introduce a technique which allows us to circumvent
cardinality constraints and define reconfiguration problems in MSOL.

1 Introduction

Reconfiguration problems allow the study of structural and algorithmic questions
related to the solution space of computational problems, represented as a recon-
figuration graph where feasible solutions are represented by nodes and adjacency
by edges [6,16,18]; a path is equivalent to the step-by-step transformation of one
solution into another as a reconfiguration sequence of reconfiguration steps.

Reconfiguration problems have so far been studied mainly under classical
complexity assumptions, with most work devoted to deciding whether it is pos-
sible to find a path between two solutions. For several problems, this question has
been shown to be PSPACE-complete [4,18,19], using reductions that construct
examples where the length � of reconfiguration sequences can be exponential
in the size of the input graph. It is therefore natural to ask whether we can
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achieve tractability if we allow the running time to depend on � or on other
properties of the problem, such as a bound k on the size of feasible solutions.
These results motivated Mouawad et al. [22] to study reconfiguration under the
parameterized complexity framework [12], showing the W[1]-hardness of Vertex

Cover Reconfiguration (VC-R), Feedback Vertex Set Reconfigura-

tion (FVS-R), and Odd Cycle Transversal Reconfiguration (OCT-

R) parameterized by �, and of Independent Set Reconfiguration (IS-R),
Induced Forest Reconfiguration (IF-R), and Induced Bipartite Sub-

graph Reconfiguration (IBS-R) parameterized by k + � [22].
Here we focus on reconfiguration problems restricted to Ct, the class of graphs

of treewidth at most t. In Sect. 3, we show that a large number of reconfiguration
problems, including the six aforementioned problems, remain PSPACE-complete
on Ct, answering a question left open by Bonsma [5]. The result is in fact stronger
in that it applies to graphs of bounded bandwidth and even to the question of
finding a reconfiguration sequence of any length.

In Sect. 4, using an adaptation of Courcelle’s cornerstone result [8], we present
a meta-theorem proving that the reconfiguration versions of all vertex-subset
problems definable in monadic second-order logic become tractable on Ct when
parameterized by �+t. Since the running times implied by our meta-theorem are
far from practical, we consider the reconfiguration versions of problems defined
in terms of hereditary graph properties in Sect. 5. In particular, we first introduce
signatures to succinctly represent reconfiguration sequences and define “generic”
procedures on signatures which can be used to exploit the structure of nice
tree decompositions. We use these procedures in Sect. 5.2 to design algorithms
solving VC-R and IS-R in O�(4�(t + 1)�) time (the O� notation suppresses
factors polynomial in n, �, and t). In Sect. 5.4, we extend the algorithms to solve
OCT-R and IBS-R in O�(2�t4�(t + 1)�) time, as well as FVS-R and IF-R in
O�(t�t4�(t+1)�) time. We further demonstrate in Sect. 5.3 that VC-R and IS-R

parameterized by � can be solved in O�(4�(3� + 1)�) time on planar graphs by
an adaptation of Baker’s shifting technique [1].

2 Preliminaries

For general graph theoretic definitions, we refer the reader to the book of Dies-
tel [11]. We assume that each input graph G is a simple undirected graph with
vertex set V (G) and edge set E(G), where |V (G)| = n and |E(G)| = m. The open
neighborhood of a vertex v is denoted by NG(v) = {u | uv ∈ E(G)} and the closed
neighborhood by NG[v] = NG(v)∪{v}. For a set of vertices S ⊆ V (G), we define
NG(S) = {v �∈ S | uv ∈ E(G), u ∈ S} and NG[S] = NG(S)∪S. We drop the sub-
script G when clear from context. The subgraph of G induced by S is denoted
by G[S], where G[S] has vertex set S and edge set {uv ∈ E(G) | u, v ∈ S}.
Given two sets S1, S2 ⊆ V (G), we let S1ΔS2 = {S1 \ S2} ∪ {S2 \ S1} denote the
symmetric difference of S1 and S2.

We say a graph problem Q is a vertex-subset problem whenever feasible solu-
tions for Q on input G correspond to subsets of V (G). Q is a vertex-subset
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minimization (maximization) problem whenever feasible solutions for Q corre-
spond to subsets of V (G) of size at most (at least) k, for some integer k. The
reconfiguration graph of a vertex-subset minimization (maximization) problem
Q, Rmin(G, k) (Rmax(G, k)), has a node for each S ⊆ V (G) such that |S| ≤ k
(|S| ≥ k) and S is a feasible solution for Q. We say k is the maximum (minimum)
allowed capacity for Rmin(G, k) (Rmax(G, k)). Nodes in a reconfiguration graph
are adjacent if they differ by the addition or deletion of a single vertex.

Definition 1. For any vertex-subset problem Q, graph G, positive integers k
and �, Ss ⊆ V (G), and St ⊆ V (G), we define four decision problems:

– Q-Min(G, k): Is there S ⊆ V (G) such that |S| ≤ k and S is a feasible solution
for Q?

– Q-Max(G, k): Is there S ⊆ V (G) such that |S| ≥ k and S is a feasible solution
for Q?

– Q-Min-R(G,Ss, St, k, �): For Ss, St ∈ V (Rmin(G, k)), is there a path of length
at most � between the nodes for Ss and St in Rmin(G, k)?

– Q-Max-R(G,Ss, St, k, �): For Ss, St ∈ V (Rmax(G, k)), is there a path of length
at most � between the nodes for Ss and St in Rmax(G, k)?

For ease of description, we present our positive results for paths of length
exactly �, as all our algorithmic techniques can be generalized to shorter paths.
Throughout, we implicitly consider reconfiguration problems as parameterized
problems with � as the parameter. The reader is referred to the books of Downey
and Fellows [12], Flum and Grohe [15], and Niedermeier [23] for more on para-
meterized complexity.

In Sect. 5, we consider problems that can be defined using graph properties,
where a graph property Π is a collection of graphs closed under isomorphism, and
is non-trivial if it is non-empty and does not contain all graphs. A graph property
is polynomially decidable if for any graph G, it can be decided in polynomial time
whether G is in Π. The property Π is hereditary if for any G ∈ Π, any induced
subgraph of G is also in Π. For a graph property Π, Rmax(G, k) has a node for
each S ⊆ V (G) such that |S| ≥ k and G[S] has property Π, and Rmin(G, k) has a
node for each S ⊆ V (G) such that |S| ≤ k and G[V (G) \S] has property Π. We
use Π-Min-R and Π-Max-R instead of Q-Min-R and Q-Max-R, respectively,
to denote reconfiguration problems for Π; examples include VC-R, FVS-R, and
OCT-R for the former and IS-R, IF-R, and IBS-R for the latter, for Π defined
as the collection of all edgeless graphs, forests, and bipartite graphs, respectively.

Due to space limitations, most proofs have been omitted from the current
version of the paper. The affected propositions, lemmas, and theorems have been
marked with a star.

Proposition 1. Given Π and a collection of graphs C , if Π-Min-R parame-
terized by � is fixed-parameter tractable on C then so is Π-Max-R.

Proof. Given an instance (G,Ss, St, k, �) of Π-Max-R, where G ∈ C , we solve
the Π-Min-R instance (G,V (G)\Ss, V (G)\St, n−k, �). Note that the parameter
� remains unchanged.
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It is not hard to see that there exists a path between the nodes correspond-
ing to Ss and St in Rmax(G, k) if and only if there exists a path of the same
length between the nodes corresponding to V (G) \ Ss and V (G) \ St in Rmin

(G,n − k). �

We obtain our results by solving Π-Min-R, which by Proposition 1 implies
results for Π-Max-R. We always assume Π to be non-trivial, polynomially
decidable, and hereditary.

Our algorithms rely on dynamic programming over graphs of bounded tree-
width. A tree decomposition of a graph G is a pair T = (T, χ), where T is a
tree and χ is a mapping that assigns to each node i ∈ V (T ) a vertex subset Xi

(called a bag) such that: (1)
⋃

i∈V (T ) Xi = V (G), (2) for every edge uv ∈ E(G),
there exists a node i ∈ V (T ) such that the bag χ(i) = Xi contains both u and
v, and (3) for every v ∈ V (G), the set {i ∈ V (T ) | v ∈ Xi} forms a connected
subgraph (subtree) of T . The width of any tree decomposition T is equal to
maxi∈V (T ) |Xi| − 1. The treewidth of a graph G, tw(G), is the minimum width
of a tree decomposition of G.

For any graph of treewidth t, we can compute a tree decomposition of width
t and transform it into a nice tree decomposition of the same width in linear
time [21], where a rooted tree decomposition T = (T, χ) with root root of a
graph G is a nice tree decomposition if each of its nodes is either (1) a leaf node
(a node i with |Xi| = 1 and no children), (2) an introduce node (a node i with
exactly one child j such that Xi = Xj ∪ {v} for some vertex v �∈ Xj ; v is said
to be introduced in i), (3) a forget node (a node i with exactly one child j such
that Xi = Xj \ {v} for some vertex v ∈ Xj ; v is said to be forgotten in i), or
(4) a join node (a node i with two children p and q such that Xi = Xp = Xq).
For node i ∈ V (T ), we use Ti to denote the subtree of T rooted at i and Vi to
denote the set of vertices of G contained in the bags of Ti. Thus G[Vroot] = G.

3 PSPACE-Completeness

We define a simple intermediary problem that highlights the essential elements of
a PSPACE-hard reconfiguration problem. Given a pair H = (Σ,E), where Σ is
an alphabet and E ⊆ Σ2 a binary relation between symbols, we say that a word
over Σ is an H-word if every two consecutive symbols are in the relation. If one
looks at H as a digraph (possibly with loops), a word is an H-word if and only
if it is a walk in H. The H-Word Reconfiguration problem asks whether
two given H-words of equal length can be transformed into one another (in any
number of steps) by changing one symbol at a time so that all intermediary steps
are also H-words.

A Thue system is a pair (Σ,R), where Σ is a finite alphabet and R ⊆ Σ∗×Σ∗

is a set of rules. A rule can be applied to a word by replacing one subword by
the other, that is, for two words s, t ∈ Σ∗, we write s ↔R t if there is a rule
{α, β} ∈ R and words u, v ∈ Σ∗ such that s = uαv and t = uβv. The reflexive
transitive closure of this relation defines an equivalence relation ↔∗

R, where words
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s, t are equivalent if and only if one can be reached from the other by repeated
application of rules. The word problem of R is the problem of deciding, given
two words s, t ∈ Σ∗, whether s ↔∗

R t. A Thue system is called c-balanced if for
each {α, β} ∈ R we have |α| = |β| = c. The following fact is a folklore variant [2]
of the classic proof of undecidability for general Thue systems [24].

Lemma 1 (*). There exists a 2-balanced Thue system whose word problem is
PSPACE-complete.

A simple but technical reduction from Lemma 1 allows us to show the PSPACE-
completeness of H-Word Reconfiguration. The simplicity of the problem
statement allows for easy reductions to various reconfiguration problems, as
exemplified in Theorem 1. Similar reductions apply to the reconfiguration ver-
sions of, e.g., k-Coloring [7] and Shortest Path [20] – a comprehensive
discussion is available in an online manuscript by the fourth author [25].

Lemma 2 (*). There exists a digraph H for which H-Word Reconfigura-

tion is PSPACE-complete.

Theorem 1. There exists an integer b such that VC-R, FVS-R, OCT-R, IS-
R, IF-R, and IBS-R are PSPACE-complete even when restricted to graphs of
treewidth at most b.

Proof. Let H = (Σ,R) be the digraph obtained from Lemma 2. We show a
reduction from H-Word Reconfiguration to VC-R.

For an integer n, we define Gn as follows. The vertex set contains vertices va
i

for all i ∈ {1, . . . , n} and a ∈ Σ. Let Vi = {va
i | a ∈ Σ} for i ∈ {1, . . . , n}. The

edge set of Gn contains an edge between every two vertices of Vi for i ∈ {1, . . . , n}
and an edge va

i vb
i+1 for all (a, b) �∈ R and i ∈ {1, . . . , n − 1}. The sets Vi ∪ Vi+1

give a tree decomposition of width b = 2|Σ|.
Let k = n · (|Σ| − 1) and consider a vertex cover S of Gn of size k. For all i,

since Gn[Vi] is a clique, S contains all vertices of Vi except at most one. Since
|S| =

∑
i(|Vi|−1), S contains all vertices except exactly one from each set Vi, say

vsi
i for some si ∈ Σ. Now s1 . . . sn is an H-word (sisi+1 ∈ R, as otherwise vsi

i v
si+1
i+1

would be an uncovered edge) and any H-word can be obtained in a similar
way, giving a bijection between vertex covers of Gn of size k and H-words of
length n.

Consider an instance s, t ∈ Σ∗ of H-Word Reconfiguration. We con-
struct the instance (Gn, Ss, St, k + 1, �) of VC-R, where n = |s| = |t|, � = 2n|Σ|

(that is, we ask for a reconfiguration sequence of any length) and Ss and St are
the vertex covers of size k that correspond to s and t, respectively. Any recon-
figuration sequence between such vertex covers starts by adding a vertex (since
Gn has no vertex cover of size k − 1) and then removing another (since vertex
covers larger than k + 1 are not allowed), which corresponds to changing one
symbol of an H-word. This gives a one-to-one correspondence between recon-
figuration sequences of H-words and reconfiguration sequences (of exactly twice
the length) between vertex covers of size k. The instances are thus equivalent.
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This proof can be adapted to FVS-R and OCT-R by replacing edges with
cycles, e.g. triangles [22]. For IS-R, IF-R, and IBS-R, we simply need to consider
set complements of solutions for VC-R, FVS-R, and OCT-R, respectively. �

4 A Meta-Theorem

In contrast to Theorem 1, in this section we show that a host of reconfigura-
tion problems definable in monadic second-order logic (MSOL) become fixed-
parameter tractable when parameterized by � + t. First, we briefly review the
syntax and semantics of MSOL over graphs. The reader is referred to the excel-
lent survey by Martin Grohe [17] for more details.

We have an infinite set of individual variables, denoted by lowercase letters
x, y, and z, and an infinite set of set variables, denoted by uppercase letters
X, Y , and Z. A monadic second-order formula (MSOL-formula) φ over a graph
G is constructed from atomic formulas E(x, y), x ∈ X, and x = y using the
usual Boolean connectives as well as existential and universal quantification over
individual and set variables. We write φ(x1, . . . , xr,X1, . . . , Xs) to indicate that
φ is a formula with free variables x1, . . . , xr and X1, . . . , Xs, where free variables
are variables not bound by quantifiers.

For a formula φ(x1, . . . , xr,X1, . . . , Xs), a graph G, vertices v1, . . . , vr, and
sets V1, . . . , Vr, we write G |= φ(v1, . . . , vr, V1, . . . , Vr) if φ is satisfied in G when E
is interpreted by the adjacency relation E(G), the variables xi are interpreted by
vi, and variables Xi are interpreted by Vi. We say that a vertex-subset problem
Q is definable in monadic second-order logic if there exists an MSOL-formula
φ(X) with one free set variable such that S ⊆ V (G) is a feasible solution of
problem Q for instance G if and only if G |= φ(S). For example, an independent
set is definable by the formula φis(X) = ∀x∀y(x ∈ X ∧ y ∈ X) → ¬E(x, y).

Theorem 2 (Courcelle [8]). There is an algorithm that given a MSOL-
formula φ(x1, . . . , xr,X1, . . . , Xs), a graph G, vertices v1, . . . , vr ∈ V (G),
and sets V1, . . . , Vs ⊆ V (G) decides whether G |= φ(v1, . . . , vr, V1, . . . , Vs) in
O(f(tw(G), |φ|) · n) time, for some computable function f .

Theorem 3. If a vertex-subset problem Q is definable in monadic second-order
logic by a formula φ(X), then Q-Min-R and Q-Max-R parameterized by � +
tw(G) + |φ| are fixed-parameter tractable.

Proof. We provide a proof for Q-Min-R as the proof for Q-Max-R is analo-
gous. Given an instance (G,Ss, St, k, �) of Q-Min-R, we build an MSOL-formula
ω(X0,X�) such that G |= ω(Ss, St) if and only if the corresponding instance is
a yes-instance. Since the size of ω will be bounded by a function of � + |φ|, the
statement will follow from Theorem 2.

As MSOL does not allow cardinality constraints, we overcome this limitation
using the following technique. We let L ⊆ {−1,+1}� be the set of all sequences
of length � over {−1,+1} which do not violate the maximum allowed capacity.
In other words, given Ss and k, a sequence σ is in L if and only if for all �′ ≤ �



252 A.E. Mouawad et al.

it satisfies |Ss| +
∑�′

i=1 σ[i] ≤ k, where σ[i] is the ith element in sequence σ.
We let ω =

∨
σ∈L ωσ and

ωσ(X0,X�) = ∃X1,...,X�−1

∧

0≤i≤�

φ(Xi) ∧
∧

1≤i≤�

ψσ[i](Xi−1,Xi)

where ψ−1(Xi−1,Xi) means Xi is obtained from Xi−1 by removing one element
and ψ+1(Xi−1,Xi) means it is obtained by adding one element. Formally, we
have:

ψ−1(Xi−1,Xi) = ∃x x ∈ Xi−1 ∧ x �∈ Xi ∧ ∀y (y ∈ Xi ↔ (y ∈ Xi−1 ∧ y �= x))

ψ+1(Xi−1,Xi) = ∃x x �∈ Xi−1 ∧ x ∈ Xi ∧ ∀y (y ∈ Xi ↔ (y ∈ Xi−1 ∨ y = x))

It is easy to see that G |= ωσ(Ss, St) if and only if there is a reconfiguration
sequence from Ss to St (corresponding to X0,X1, . . . , X�) such that the ith step
removes a vertex if σ[i] = −1 and adds a vertex if σ[i] = +1. Since |L| ≤ 2�,
the size of the MSOL-formula ω is bounded by an (exponential) function of
� + |φ|. �

5 Dynamic Programming Algorithms

Throughout this section we will consider one fixed instance (G,Ss, St, k, �) of
Π-Min-R and a nice tree decomposition T = (T, χ) of G. Moreover, similarly
to the previous section, we will ask, for a fixed sequence σ ∈ {−1,+1}�, whether
G |= ωσ(Ss, St) holds. That is, we ask whether there is a reconfiguration sequence
which at the ith step removes a vertex when σ[i] = −1 and adds a vertex when
σ[i] = +1. The final algorithm then asks such a question for every sequence σ

which does not violate the maximum allowed capacity: |Ss| +
∑�′

i=1 σ[i] ≤ k for
all �′ ≤ �. This will add a factor of at most 2� to the running time.

5.1 Signatures as Equivalence Classes

A reconfiguration sequence can be described as a sequence of steps, each step
specifying which vertex is being removed or added. To obtain a more succinct
representation, we observe that in order to propagate information up from the
leaves to the root of a nice tree decomposition, we can ignore vertices outside
of the currently considered bag (Xi) and only indicate whether a step has been
used by a vertex in any previously processed bags, i.e. a vertex in Vi \ Xi.

Definition 2. A signature τ over a set X ⊆ V (G) is a sequence of steps
τ [1], . . . , τ [�] ∈ X ∪ {used, unused}. Steps from X are called vertex steps.

The total number of signatures over a bag X of at most t vertices is (t + 2)�.
Our dynamic programming algorithms start by considering a signature with only
unused steps in each leaf node, specify when a vertex may be added/removed
in introduce nodes by replacing unused steps with vertex steps (τ [i] = unused
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becomes τ [i] = v for the introduced vertex v), merge signatures in join nodes,
and replace vertex steps with used steps in forget nodes.

For a set S ⊆ V (G) and a bag X, we let τ(i, S) ⊆ S ∪ X denote the set of
vertices obtained after executing the first i steps of τ : the ith step adds τ [i] if
τ [i] ∈ X and σ[i] = +1, removes it if τ [i] ∈ X and σ[i] = −1, and does nothing
if τ [i] ∈ {used, unused}.

A valid signature must ensure that no step deletes a vertex that is absent or
adds a vertex that is already present, and that the set of vertices obtained after
applying reconfiguration steps to Ss ∩X is the set St ∩X. Additionally, because
Π is hereditary, we can check whether this property is at least locally satisfied
(in G[X]) after each step of the sequence. More formally, we have the following
definition.

Definition 3. A signature τ over X is valid if

(1) τ [i] ∈ τ(i − 1, Ss ∩ X) whenever τ [i] ∈ X and σ[i] = −1,
(2) τ [i] �∈ τ(i − 1, Ss ∩ X) whenever τ [i] ∈ X and σ[i] = +1,
(3) τ(�, Ss ∩ X) = St ∩ X, and
(4) G[X \ τ(i, Ss ∩ X)] ∈ Π for all i ≤ �.

It is not hard to see that a signature τ over X is valid if and only if τ(0, Ss ∩
X), . . . , τ(�, Ss ∩ X) is a well-defined path between Ss ∩ X and St ∩ X in
Rmin(G[X], n). We will consider only valid signatures. The dynamic program-
ming algorithms will enumerate exactly the signatures that can be extended to
valid signatures over Vi in the following sense:

Definition 4. A signature π over Vi extends a signature π over Xi if it is
obtained by replacing some used steps with vertex steps from Vi \ Xi

However, for many problems, the fact that S is a solution for G[X] for each bag
X does not imply that S is a solution for G, and checking this ‘local’ notion
of validity will not be enough – the algorithm will have to maintain additional
information. One such example is the OCT-R problem, which we discuss in
Sect. 5.4.

5.2 An Algorithm for VC-R

To process nodes of the tree decomposition, we now define ways of generating
signatures from other signatures. The introduce operation determines all ways
that an introduced vertex can be represented in a signature, replacing unused
steps in the signature of its child.

Definition 5. Given a signature τ over X and a vertex v �∈ X, the introduce
operation, introduce(τ, v) returns the following set of signatures over X ∪ {v}:
for every subset I of indices i for which τ [i] = unused, consider a copy τ ′ of τ
where for all i ∈ I we set τ ′[i] = v, check if it is valid, and if so, add it to the
set.
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In particular τ ∈ introduce(τ, v) and |introduce(τ, v)| ≤ 2�. All signatures
obtained through the introduce operation are valid, because of the explicit check.

Definition 6. Given a signature τ over X and a vertex v ∈ X, the forget
operation, returns a new signature τ ′ = forget(τ, v) over X \ {v} such that for
all i ≤ �, we have τ ′[i] = used if τ [i] = v and τ ′[i] = τ [i] otherwise.

Since τ ′(i, Ss ∩ X \ {v}) = τ(i, Ss ∩ X) \ {v}, it is easy to check that the forget
operation preserves validity.

Definition 7. Given two signatures τ1 and τ2 over X ⊆ V (G), we say τ1 and
τ2 are compatible if for all i ≤ �:

(1) τ1[i] = τ2[i] = unused,
(2) τ1[i] = τ2[i] = v for some v ∈ X, or
(3) either τ1[i] or τ2[i] is equal to used and the other is equal to unused.

For two compatible signatures τ1 and τ2, the join operation returns a new sig-
nature τ ′ = join(τ1, τ2) over X such that for all i ≤ � we have, respectively:

(1) τ ′[i] = unused,
(2) τ ′[i] = v, and
(3) τ ′[i] = used.

Since τ ′ = join(τ1, τ2) is a signature over the same set as τ1 and differs from
τ1 only by replacing some unused steps with used steps, the join operation
preserves validity, that is, if two compatible signatures τ1 and τ2 are valid then
so is τ ′ = join(τ1, τ2).

Let us now describe the algorithm. For each i ∈ V (T ) we assign an initially
empty table Ai. All tables corresponding to internal nodes of T will be updated
by simple applications of the introduce, forget, and join operations.
Leaf nodes. Let i be a leaf node, that is Xi = {v} for some vertex v. We let
Ai = introduce(τ, v), where τ is the signature with only unused steps.
Introduce nodes. Let j be the child of an introduce node i, that is Xi = Xj ∪{v}
for some v �∈ Xj . We let Ai =

⋃
τ∈Aj

introduce(τ, v).

Forget nodes. Let j be the child of a forget node i, that is Xi = Xj \ {v} for
some v ∈ Xj . We let Ai = {forget(τ, v) | τ ∈ Aj}.
Join nodes. Let j and h be the children of a join node i, that is Xi = Xj = Xh.
We let Ai = {join(τj , τh) | τj ∈ Aj , τh ∈ Ah, and τj is compatible with τh}.

The operations were defined so that the following lemma holds by induction.
The theorem then follows by making the algorithm accept when Aroot contains
a signature τ such that no step of τ is unused.

Lemma 3. For i ∈ V (T ) and a signature τ over Xi, τ ∈ Ai if and only if τ can
be extended to a signature over Vi that is valid.

Theorem 4 (*). VC-R and IS-R can be solved in O�(4�(t+1)�) time on graphs
of treewidth t.
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5.3 VC-R in Planar Graphs

Using an adaptation of Baker’s approach for decomposing planar graphs [1], also
known as the shifting technique [3,10,13], we show a similar result for VC-R and
IS-R on planar graphs. The idea is that at most � elements of a solution will be
changed, and thus if we divide the graph into � + 1 parts, one of these parts will
be unchanged throughout the reconfiguration sequence. The shifting technique
allows the definition of the �+1 parts so that removing one (and replacing it with
simple gadgets to preserve all needed information) yields a graph of treewidth
at most 3� − 1.

Theorem 5 (*). VC-R and IS-R are fixed-parameter tractable on planar
graphs when parameterized by �. Moreover, there exists an algorithm which solves
both problems in O�(4�(3� + 1)�) time.

We note that, by a simple application of the result of Demaine et al. [9], Theo-
rem 5 generalizes to H-minor-free graphs and only the constants of the overall
running time of the algorithm are affected.

5.4 An Algorithm for OCT-R

In this section we show how known dynamic programming algorithms for prob-
lems on graphs of bounded treewidth can be adapted to reconfiguration. The
general idea is to maintain a view of the reconfiguration sequence just as we did
for VC-R and in addition check if every reconfiguration step gives a solution,
which can be accomplished by maintaining (independently for each step) any
information that the original algorithm would maintain. We present the details
for OCT-R (where Π is the collection of all bipartite graphs) as an example.

In a dynamic programming algorithm for VC on graphs of bounded treewidth,
it is enough to maintain information about what the solution’s intersection with
the bag can be. This is not the case for OCT. One algorithm for OCT works
in time O�(3t) by additionally maintaining a bipartition of the bag (with the
solution deleted) [14,15]. That is, at every bag Xi, we would maintain a list
of assignments X → {used, left, right} with the property that there exists
a subset S of Vi and a bipartition L,R of G[Vi \ S] such that Xi ∩ S,Xi ∩ L,
and Xi ∩R are the used, left, and right vertices, respectively. A signature for
OCT-R will hence additionally store a bipartition for each step (except for the
first and last sets Ss and St, as we already assume them to be solutions).

Definition 8. An OCT-signature τ over a set X ⊆ V (G) is a sequence of steps
τ [1], . . . , τ [�] ∈ X∪{used, unused} together with an entry τ [i, v] ∈ {left, right}
for every 1 ≤ i ≤ � − 1 and v ∈ X \ τ(i, Ss ∩ X).

There are at most (t + 2)�2t(�−1) different OCT-signatures. In the definition of
validity, we replace the last condition with the following, stronger one:

(4) For all 1 ≤ i ≤ � − 1, the sets {v | τ [i, v] = left} and {v | τ [i, v] = right}
give a bipartition of G[X \ τ(p, Ss ∩ X)].
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In the definition of the join operation, we additionally require two signatures
to have equal τ [i, v] entries (whenever defined) to be considered compatible;
the operation copies them to the new signature. In the definition of the forget
operation, we delete any τ [i, v] entries, where v is the vertex being forgotten.
In the introduce operation, we consider (and check the validity of) a differ-
ent copy for each way of replacing unused steps with v steps and each way of
assigning {left, right} values to new τ [i, v] entries, where v is the vertex being
introduced. As before, to each node we assign an initially empty table of OCT-
signatures and fill them bottom-up using these operations. Lemma 3, with the
new definitions, can then be proved again by induction.

Theorem 6 (*). OCT-R and IBS-R can be solved in O�(2t�4�(t + 1)�) time
on graphs of treewidth t.

Similarly, using the classical O�(2O(t log t)) algorithm for FVS and IF (which
maintains what partition of Xi the connected components of Vi can produce),
we get the following running times for reconfiguration variants of these problems.

Theorem 7 (*). FVS-R and IF-R can be solved in O�(t�t4�(t + 1)�) time on
graphs of treewidth t.

6 Conclusion

We have seen in Sect. 5.4 that, with only minor modifications, known dynamic
programming algorithms for problems on graphs of bounded treewidth can be
adapted to reconfiguration. It is therefore natural to ask whether the obtained
running times can be improved via more sophisticated algorithms which exploit
properties of the underlying problem or whether these running times are optimal
under some complexity assumptions. Moreover, it would be interesting to inves-
tigate whether the techniques presented for planar graphs can be extended to
other problems or more general classes of sparse graphs. In particular, the para-
meterized complexity of “non-local” reconfiguration problems such as FVS-R

and OCT-R remains open even for planar graphs.
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Abstract. We show that the optimization versions of the Pathwidth

and Treewidth problems have a property called finite integer index
when the inputs are restricted to graphs of bounded pathwidth and
bounded treewidth, respectively. They do not have this property in gen-
eral graph classes. This has interesting consequences for kernelization of
both these (optimization) problems on certain sparse graph classes. In
the process we uncover an interesting property of path and tree decom-
positions, which might be of independent interest.

1 Introduction

One way of efficiently solving decision and optimization problems on graphs are
so-called reduction algorithms. Each such algorithm is characterized by a set
of reduction rules (which locally modify a graph) and a finite set of graphs.
The problem is then solved by repeatedly applying the reduction rules (until
none can be applied) and checking whether the resulting graph is in the given
finite set. If so, then the answer is true, otherwise it is false. This approach has
been successfully applied to many different problems. An often cited example
is the result of Arnborg et al. [1]. They show that for all “finite state” decision
problems (which include all MSO definable problems) on graphs of bounded
treewidth there is a well-defined set of reduction rules such that the resulting
algorithm works in linear time.

The results of [1] have been later restated by Bodlaender and de Fluiter [4]
in a different, more direct way, which avoided the original algebraic setting.
(We give only a sketch here—see [4] and Sect. 2 for formal definitions). Let a
t-boundaried graph be a graph where t vertices (the terminals) are identified,
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and for two t-boundaried graphs G and H let G ⊕ H be the graph obtained by
“gluing” the corresponding terminals of G and H. Let P be a decision problem
(graph property) and let us define a relation ∼P,t as:

G1 ∼P,t G2 ≡ for all t − boundaried graphs H : P (G1 ⊕ H) iff P (G2 ⊕ H)

Then we say the property P has finite index if and only if for all t ≥ 0 the
relation ∼P,t has finitely many equivalence classes. As one can see, if a property
has finite index, we can use a reduction rule which replaces each t-boundaried
subgraph by the smallest graph in its equivalence class. Since by Courcelle [5]
all MSO-definable properties have finite index, the result of [1] follows.

More importantly, in [4] Bodlaender and de Fluiter also generalize these ideas
further to obtain reduction systems to optimization problems, by defining a prop-
erty called finite integer index (FII ) (see Definition 4.5 in [4] and Sect. 2.3). This
property is similar to finite index, but it additionally incorporates the solution
size, making it applicable to optimization problems. Both finite index and finite
integer index extend the notion of finite state introduced by Langston and Fel-
lows in [7].

Recently there has been a flurry of work on algorithmic meta-theorems that
rely crucially on finite integer index [2,8–10]. Together the main results behind
these meta-theorems can be summarized as follows: Graph problems that have
finite integer index admit linear kernels under certain conditions on a sparse
graph class.

However, proving that a problem has finite integer index is generally not
easy. Bodlaender and de Fluiter showed that the optimization versions of sev-
eral well-known problems are of finite integer index (see Theorems 4.3 and 4.4
in [4]). These include Max Induced d-Degree Subgraph, Max Indepen-

dent Set, Min Vertex Cover, Min p-Dominating Set for all p ≥ 1. They
also showed that problems such as Max Cut, Longest Path, and Longest

Cycle do not have finite integer index. Bodlaender et al. [2] in their influential
(Meta) Kernelization paper give a sufficiency condition, which they call strong
monotonicity, for a problem to have FII. We also refer to their work for an
extensive compendium of problems that have finite integer index.

Our contribution. We show that the problems Pathwidth and Treewidth

have finite integer index, if we restrict the general equivalence relation to graphs
classes of bounded pathwidth and bounded treewidth, respectively. It is rather
easy to give counterexamples that show that both these problems in general do
not have FII, and we provide such examples later in Theorem 3.

Interestingly, having FII even in this restricted setting still allows us to apply
the meta kernelization framework of [9,10] to Pathwidth and Treewidth.
This is because the framework does not require FII in its full generality; the
reduction rule used there, only replaces subgraphs that have constant treewidth
to begin with. Our result therefore has the following consequences with respect to
kernelization with structural parameters as introduced in [9,10]. (For definitions
of the graph classes mentioned below see e.g. [11].)
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1. With the size of a modulator to bounded treedepth1 as parameter, the
optimization versions of Pathwidth and Treewidth admit
(a) a linear kernel on hereditary graph classes of bounded expansion;
(b) a quadratic vertex kernel on hereditary graph classes of locally bounded

expansion;
(c) a polynomial kernel on nowhere-dense graphs.

2. When parameterized by the size of a modulator to constant pathwidth
(respectively, treewidth), the optimization version of Pathwidth (respec-
tively, Treewidth) has a linear kernel on graph classes excluding a fixed
graph as a topological minor.

Along the way, we prove Corollaries 1 and 2, which provide some nice insight
into path and tree decompositions.

The rest of the paper is organized as follows. We introduce notation and
important definitions in Sect. 2. We then prove our results for pathwidth in
Sect. 3 and extend it to treewidth in Sect. 4. In Sect. 5 we show that neither
treewidth nor pathwidth have FII on arbitrary graphs. After stating the conse-
quences of our results for kernelization in Sect. 6, we conclude in Sect. 7.

2 Preliminaries

We use standard notation from graph theory as can be found, e.g., in [6].
All graphs considered in this paper are finite, undirected and simple. Let G be a
graph. We denote the vertex set of G by V (G) and the edge set of G by E(G). Let
X ⊆ V (G) be a set of vertices of G. The subgraph of G induced by X, denoted
G[X], is the graph with vertex set X and edges E(G) ∩ { {u, v} : u, v ∈ X }. By
G \ X we denote the subgraph of G induced by V (G) \ X.

Let G be a graph and A and B two sets of vertices of G. A set S of vertices
of G is called an (A,B)-separator (or a separator between A and B) if the graph
G \ S contains no path between a vertex in A and a vertex in B. We say S is a
minimal (A,B)-separator if there is no set S′ ⊆ V (G) with |S′| < |S| such that
S′ is an (A,B)-separator.

2.1 Boundaried Graphs

A t-boundaried graph G̃ is a pair (G, ∂(G)), where G = (V,E) is a graph
and ∂(G) ⊆ V is a set of t vertices with distinct labels from the set {1, . . . , t}.
The graph G is called the underlying unlabeled graph and ∂(G) is called the
boundary. In the sequel we use G̃, H̃ etc. to denote t-boundaried graphs.

For t-boundaried graphs G̃1 = (G1, ∂(G1)) and G̃2 = (G2, ∂(G2)), we let
G̃1 ⊕ G̃2 denote the graph obtained by taking the disjoint union of G1 and G2

and identifying each vertex in ∂(G1) with the vertex in ∂(G2) with the same
1 A modulator to treedepth d of graph G is a set X ⊆ V (G) s.t. the treedepth of
G−X is at most d−1. Modulators to bounded treewidth and pathwidth are defined
similarly.
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label, and then making the graph simple, if necessary. Note that the operation
⊕ “destroys” the boundaries of two t-boundaried graphs and creates an ordinary
graph.

2.2 Treewidth and Pathwidth

A tree decomposition T of an (undirected) graph G = (V,E) is a pair (T, χ),
where T is a tree and χ is a function that assigns each tree node t a set χ(t) ⊆ V
of vertices such that the following conditions hold:

(P1) For every vertex u ∈ V , there is a tree node t such that u ∈ χ(t).
(P2) For every edge {u, v} ∈ E(G) there is a tree node t such that u, v ∈ χ(t).
(P3) For every vertex v ∈ V (G), the set of tree nodes t with v ∈ χ(t) forms a

subtree of T .

The sets χ(t) are called bags of the decomposition T and χ(t) is the bag associ-
ated with the tree node t. The width of a tree decomposition (T, χ) is the size of
a largest bag minus 1. A tree decomposition of minimum width is called optimal.
The treewidth of a graph G, denoted by tw(G), is the width of an optimal tree
decomposition of G. For a subtree T ′ of T we denote by G[T ′] the subgraph of
G induced by

⋃
t∈V (T ′) χ(t).

Let T = (T, χ) be a tree decomposition of a graph G and let G′ be an induced
subgraph of G. The projection of T onto G′, denoted by T |G′, is the pair (T, χ′)
where χ′(t) = χ(t) ∩ V (G′) for every t ∈ V (T ). It is well-known that T |G′ is a
tree decomposition of G′.

A path decomposition of a graph G is a tree decomposition (T, χ) such that T
is a path instead of a tree. All notions and definitions introduced for tree decom-
positions above apply in the same way for path decompositions. The pathwidth
of G, denoted by pw(G), is the width of an optimal path decomposition of G.

We consider the following problems:

Treewidth (tw)
Input: Graph G and integer k.
Question: Is tw(G) ≤ k?

Pathwidth (pw)
Input: Graph G and integer k.
Question: Is pw(G) ≤ k?

It is well-known that every bag of a path or tree decomposition is a separator in
the underlying graph. We will use the following formulation of this fact.

Proposition 1. Let T = (T, χ) be a tree decomposition (path decomposition) of
a graph G, t ∈ V (T ), and let T1 and T2 be two sets of nodes of T \ {t} such that
{t} separates T1 from T2 in T . Then, χ(t) separates G[T1] from G[T2] in G.
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2.3 Finite Integer Index

A graph problem Π is a set of pairs (G, ξ), where G is a graph and ξ ∈ N0,
such that for all graphs G1, G2 and all ξ ∈ N0, if G1 is isomorphic to G2, then
(G1, ξ) ∈ Π if and only if (G2, ξ) ∈ Π. For instance, the Pathwidth and the
Treewidth problem defined in the previous subsection are graph problems.

Let Π be a graph problem and let G̃1 = (G1, ∂(G1)), G̃2 = (G2, ∂(G2)) be
two t-boundaried graphs. We say that G̃1 ≡Π,t G̃2 if there exists an integer
constant ΔΠ,t(G̃1, G̃2) such that for all t-boundaried graphs H̃ = (H, ∂(H)) and
for all ξ ∈ N: (G̃1 ⊕ H̃, ξ) ∈ Π iff (G̃2 ⊕ H̃, ξ + ΔΠ,t(G̃1, G̃2)) ∈ Π. We say
that Π has finite integer index in the class of graphs F if, for every t ∈ N, the
number of equivalence classes of ≡Π,t which have a non-empty intersection with
F is finite.

In this paper we focus on two concrete equivalence relations: ≡pw,t and ≡tw,t.
Two t-boundaried graphs G̃1, G̃2 are equivalent G̃1 ≡pw,t G̃2 if there exists an
integer constant Δpw,t(G̃1, G̃2) such that for all t-boundaried graphs H̃ and for
all ξ ∈ N it holds that pw(G̃1 ⊕ H̃) ≤ ξ iff pw(G̃2 ⊕ H̃) ≤ ξ + Δpw,t(G̃1, G̃2).
The relation ≡tw,t is defined analogously for treewidth.

2.4 Characteristics of Path and Tree Decompositions

One of the tools needed in the following are characteristics of path decomposi-
tions and tree decompositions, which have been introduced in [3]. Because the
definition of these characteristics is quite technical and the properties we require
have already been shown in [3], we will not provide a formal definition. Instead,
we will only state the required properties and refer the reader to [3] for details
and proofs.

The concept of a characteristic of a partial path decomposition of a graph—or
equivalently the characteristic of a path decomposition of a boundaried graph—
was introduced by Bodlaender and Kloks in [3, Definition 4.4]. Informally, the
characteristic of a path decomposition P of G̃ compactly represents all the infor-
mation required to compute, for any H̃, the ways P can be extended into a path
decomposition of the graph G̃⊕H̃. This information can then be used to compute
the pathwidth of the graph G̃⊕ H̃. Importantly, the number of characteristics of
path decompositions of width at most w of any t-boundaried graph only depends
on t and w, but not on the the graph itself.

Proposition 2 ([3, Lemma 4.1]). Let G̃ be a t-boundaried graph and w an
integer. Then the number of characteristics of path decompositions of width at
most w of G̃ is bounded by a function of t and w.

For integer w, the full set of (path decomposition) characteristics of G̃ of width
at most w (as defined in [3, Definition 4.6]), denoted by FSCPw(G̃), is the set of
all characteristics of path decompositions of G̃ of width at most w. We denote
by FSCP(G̃) the (possible infinite) set

⋃
w∈N FSCPw(G̃).
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Proposition 3 ([3, Sect. 4.3]). Let H̃, G̃1 and G̃2 be t-boundaried graphs, and
let P be a path decomposition of G̃1 ⊕ H̃. If the (unique) characteristic of P|G1

is in FSCP(G̃2), then there is a path decomposition of G̃2 ⊕ H̃ that has the same
width as P.

Proof (Sketch). For i ∈ {1, 2}, let Pi be any path decomposition of G̃i such that
the content of the last bag of Pi is ∂(Gi) and let P3 be any path decomposition
of H̃ such that the content of the first bag of P3 is ∂(H). Furthermore, for
i ∈ {1, 2}, let Pi,3 be the path decomposition of G̃i ⊕ H̃ obtained from Pi and
P3 by appending the first bag of P3 to the last bag of Pi, let pi,3 be the bag of
Pi,3 that corresponds to the last bag of Pi, and let li,3 be the last bag of Pi,3.

Now assume that we run the algorithm described in [3, Sect. 4.3] on the path
decomposition Pi,3 and let F (pi,3) and F (li,3) be the full set of characteristics
of partial path decompositions computed at the node pi,3 and the node li,3,
respectively, of width at most the width of P. Then, by the definition of a full
set of characteristics, we obtain that F (p1,3) contains the characteristic of P|G1

and that F (l1,3) contains the characteristic of P. Moreover, the characteristic
of P in F (l1,3) is generated by the algorithm from the characteristic of P|G1 in
F (p1,3). By the assumptions of the Proposition, we have that the characteristic
of P|G1 is contained in FSCP(G̃2) and hence also in F (p2,3). Hence, because
the path decompositions P1,3 and P2,3 are identical with respect to everything
behind the nodes p1,3 and p2,3, respectively, we obtain that the characteristic of
P is also contained in F (l2,3), witnessing that G̃2 ⊕ H̃ has a path decomposition
with the same width as P.

The above Proposition illuminates the usefulness of characteristics to show
FII for the Pathwidth problem. In particular, it follows that if FSCP(G̃1) =
FSCP(G̃2), then G̃1 ≡pw,t G̃2, for all t-boundaried graphs G̃1 and G̃2. Hence,
the full set of characteristics of a boundaried graph fully describes its equiva-
lence class with respect to ≡pw,t. However, as mentioned above the full set of
characteristics of a boundaried graph can be infinite. We will show in the next
section that if we consider FII with respect to a class C of graphs of bounded
pathwidth, then it is sufficient to consider the set FSCP(pw(G̃)+t)(G̃) instead of

FSCP(G̃) for every t-boundary graph G̃ = (G, ∂(G)) with G ∈ C. Because pw(G̃)
is bounded by a constant the set FSCP(pw(G̃)+t) is finite due to Proposition 2.

In the following we introduce characteristics for tree decompositions of bound-
aried graphs. All the explanations for characteristics of path decompositions
transfer to characteristics of tree decompositions and we will not repeat them
here. In [3, Definition 5.9] the authors define the characteristic of a tree decom-
position of a boundaried graph. They show the following:

Proposition 4 ([3, Remark below Lemma 5.3]). Let G̃ be a t-boundaried graph
and w an integer. Then the number of characteristics of tree decompositions of
width at most w of G̃ is bounded a function of t and w.
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For an integer w, the full set of (tree decomposition) characteristics of G̃ of
width at most w (as defined in [3, Definition 5.11]), denoted by FSCTw(G̃), is
the set of all characteristics of tree decompositions of G̃ of width at most w. We
denote by FSCT(G̃) the (possible infinite) set

⋃
w∈N FSCTw(G̃).

Proposition 5 ([3, Sect. 5.3]). Let H̃, G̃1 and G̃2 be t-boundaried graphs, and
let T be a tree decomposition of G̃1 ⊕ H̃. If the (unique) characteristic of P|G1

is in FSCT(G̃2), then there is a tree decomposition of G̃2 ⊕ H̃ that has the same
width as T .

3 Pathwidth has FII on Graphs of Small Pathwidth

As stated in the previous section, we will make use of characteristics of path
decompositions of boundaried graphs to show FII for the Pathwidth problem
in a class of graphs of bounded pathwidth. In particular, we will show that the
equivalence relation ≡ defined by G̃1 ≡ G̃2 if and only FSCP(pw(G1)+t)(G̃1) =
FSCP(pw(G2)+t)(G̃2) is a refinement of the equivalence relation ≡pw,t. Central to
our proof is the following lemma, which we believe to be interesting in its own
right.

Lemma 1. Let G̃1, G̃2 be two t-boundaried graphs, G = G̃1⊕G̃2, and P = (P, χ)
be a path decomposition of G. Then there is a path decomposition P ′ = (P ′, χ′)
of G of the same width as P such that P ′|G1 has width at most pw(G1) + t.

Proof. If P|G1 has width at most pw(G1) + t, then P ′ := P is the required
path decomposition of G. Otherwise, there is a bag p ∈ V (P ) such that |χ(p) ∩
V (G1)| > pw(G1) + t + 1. Call such a bag p a bad bag of P. The next claim
shows that we can eliminate the bad bags of P one by one without introducing
new bad bags. Hence, we obtain the desired path decomposition P ′ from P by
a repeated application of the following claim:

Claim 1. There is a path decomposition P ′′ = (P ′′, χ′′) of G of the same width
as P such that the set of bad bags of P ′′ is a proper subset of the set of bad bags
of P. Moreover, the bag p is no longer a bad bag of P ′′.

Let χG1(p) be the set of vertices χ(p) ∩ V (G1) and let S be a minimal separator
between χG1(p) and ∂(G1) in the graph G. Since ∂(G1) separates χG1(p) from
∂(G1) and is of cardinality at most t, we obtain that |S| ≤ t. Let W be the set
of all vertices reachable from χG1(p) in G \ S, and let PW = (PW , χW ) be an
optimal path decomposition of G[W ]. Then, because W ⊆ V (G1), it follows that
the width PW is at most the pathwidth of G1.

To obtain the desired path decomposition P ′′, where p is not a bad bag
anymore, we delete all vertices of W from the bags of P and, instead, insert
the path decomposition PW between p and an arbitrary neighbor of p in P . To
ensure Property P3 of a path decomposition for the vertices in χ(p) \V (G1), we
add χ(p) \ V (G1) to every bag of PW in P ′′. Furthermore, to cover the edges
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between S and W in G we also need to add S to p and every bag of PW . Because
χ(p) does not necessarily contain all vertices of S, this could potentially violate
the Property P3 of a path decomposition. To get around this we will add a vertex
s ∈ S to every bag p′ ∈ V (P ) in between p and any bag containing s, i.e., we
complete P ′′ into a valid path decomposition in a minimal way. This completes
the construction of P ′′ and it remains to argue that adding these vertices from
S does not increase the width of any bag in P. Suppose it does, and let p2 be
a bag where we add more vertices than we remove. It follows that there is a
bag p1 ∈ V (P ) such that p2 lies on the path from p1 to p in P and |R| < |S′|,
where R = χ(p2) ∩ W and S′ = (χ(p1) \ χ(p2)) ∩ S. Note that in P|G[W ∪ S′]
we have χG1[W∪S′](p2) = R. Because of Proposition 1 applied to P|G1[W ∪ S′],
R separates χG1[W∪S′](p) from S′ in G1[W ∪ S′].

We claim that S′′ = (S \ S′) ∪ R is a separator between χG1(p) and ∂(G1).
Since |S′′| < |S|, this would contradict the minimality of S. Let Π be a path
between χG1(p) and ∂(G1). Since χG1(p) ⊆ W ∪S, Π has to intersect S in order
to reach ∂(G1). Let s be the first vertex of Π which intersects S (note that the
subpath from χG1(p) to s of Π lies entirely in W ). Either s ∈ S\S′ and therefore
s ∈ S′′, or s ∈ S′ and the subpath from χG1(p) to s of Π lies entirely in W ∪ S′,
and therefore Π has to intersect R ⊆ S′′ in order to reach s. It follows that S′′

is indeed a separator between χG1(p) and ∂(G1), completing the proof. �
We note here that the bound for the pathwidth given in the above lemma is
essentially tight. To see this consider the complete bipartite graph G that has t
vertices on one side (side A) and t+1 vertices on the other side (side B). Let G̃1

be the graph G[A] with boundary A, let G̃2 be the graph G with boundary A, and
let P be an optimal path decomposition of G̃1 ⊕ G̃2 = G. Then, because G is a
complete bipartite graph, whose smaller side is A, it holds that P contains a bag
that contains A. Consequently, pw(P ′|G1) = t−1 (for every path decomposition
P ′ of G that has the same width as P), however, pw(G1) = 0.

Corollary 1. Let G̃1 and G̃2 be two t-boundaried graphs and G = G̃1 ⊕ G̃2.
Then there is an optimal path decomposition P of G such that P|G1 has width
at most pw(G1) + t.

The following lemma shows that ≡ is a refinement of ≡pw,t.

Lemma 2. Let G̃1 and G̃2 be two t-boundaried graphs. If FSCP(pw(G1)+t)(G̃1) =
FSCP(pw(G2)+t)(G̃2), then G̃1 ≡pw,t G̃2.

Proof. Let G̃1 and G̃2 be two t-boundaried graphs such that FSCP(pw(G1)+t)

(G̃1) = FSCP(pw(G2)+t)(G̃2). We show that pw(G̃1 ⊕ H̃) ≤ ξ if and only if
pw(G̃2 ⊕ H̃) ≤ ξ for any t-boundaried graph H̃ and any ξ ∈ N. This implies
G̃1 ≡pw,t G̃2 with Δpw,t(G̃1, G̃2) = 0.

Let H̃ and ξ be such that pw(G̃1 ⊕ H̃) ≤ ξ. It follows from Corollary 1
that there is a path decomposition P = (P, χ) of G̃1 ⊕ H̃ of width at most ξ
such that P|G1 is a path decomposition of G1 of width at most pw(G1) + t.
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Hence, there is a characteristic in FSCP(pw(G1)+t)(G̃1) corresponding to P|G1.
Because FSCP(pw(G1)+t)(G̃1) = FSCP(pw(G2)+t)(G̃2), we have that G̃2 has the
same characteristic. It now follows from Proposition 3 that there is a path decom-
position of G̃2 ⊕ H̃ that has the same width as P and hence pw(G̃2 ⊕ H̃) ≤ ξ, as
required. Because the reverse direction is analogous, this concludes the proof of
the lemma. �

We are now ready to show the main result of this section, i.e., that the Path-

width problem has FII on graphs of bounded pathwidth.

Theorem 1. For w ∈ N, let Gw be a class of graphs that have pathwidth at
most w. Then, the problem Pathwidth has FII in Gw.

Proof. We say that two t-boundaried graphs G̃1 and G̃2 with G1, G2 ∈ Gw are
equivalent, denoted by ≡FSCP whenever FSCP(pw(G1)+t)(G̃1) = FSCP(pw(G2)+t)

(G̃2). Because pw(G1) ≤ w and pw(G2) ≤ w, it follows from Proposition 2 that
the number of equivalence classes of ≡FSCP is finite for every t ∈ N. Furthermore,
because of Lemma 2 it holds that ≡FSCP is a refinement of ≡pw,t, which concludes
the proof of the theorem. �

4 Treewidth has FII on Graphs of Small Treewidth

As the main ideas of the proof for treewidth are the same as for pathwidth
(see the previous section) we will not repeat them here but instead only present
the steps of the proof that differ significantly.

Lemma 3. Let G̃1 and G̃2 be two t-boundaried graphs, G = G̃1 ⊕ G̃2, and
T = (T, χ) be a tree decomposition of G. Then there is a tree decomposition
T ′ = (T ′, χ′) of G with the same width as T such that T ′|G1 has width at most
tw(G1) + t.

Proof. If T |G1 has width at most tw(G1) + t, then T ′ := T is the required tree
decomposition of G. Hence, there is a bag p ∈ V (T ) such that |χ(p) ∩ V (G1)| >
tw(G1) + t + 1. We call such a bag p a bad bag of T . The next claim shows that
we can eliminate the bad bags of T one by one without introducing new bad
bags. Hence, we obtain the desired tree decomposition T ′ from T by a repeated
application of the following claim.

Claim 2. There is a tree decomposition T ′′ = (T ′′, χ′′) of G of the same width
as T such that the set of bad bags of T ′′ is a proper subset of the set of bad bags
of T . Moreover, the bag p is no longer a bad bag of T ′′.

Let χG1(p) be the set of vertices in χ(p) ∩ V (G1) and let S be a minimal separa-
tor between χG1(p) and ∂(G1) in the graph G. Then, because ∂(G1) is a separa-
tor between χG1(p) and ∂(G1) of cardinality at most t, we obtain that |S| ≤ t.
Let W be the set of all vertices reachable from χG1(p) in G \ S, and let TW =
(TW , χW ) be an optimal tree decomposition of G[W ]. Then, because W ⊆ V (G1),
it follows that the width TW is at most the treewidth of G1.



Finite Integer Index of Pathwidth and Treewidth 267

To obtain the desired tree decomposition T ′′, where p is not a bad bag
anymore, we delete all vertices of W from the bags of T and, instead, insert the
tree decomposition TW by connecting any node of TW via an edge to p in T .
However, to cover the edges between S and W in G we also need to add S to p
and every bag of TW . Because χ(p) does not necessarily contain all vertices of
S, this could potentially violate the property P3 of a tree decomposition. To get
around this we will add a vertex s ∈ S to every bag p′ ∈ V (T ) that is on a path
between p and any bag containing s in T , i.e., we complete T ′′ into a valid tree
decomposition in a minimal way. This completes the construction of T ′′ and it
remains to argue that adding these vertices from S does not increase the width
of any bag in T . Suppose it does, and let p2 be a bag where we add more vertices
than we remove. Let S′ ⊆ S be the set of added vertices and R = χ(p2) ∩ W
the set of removed vertices. It follows that |R| < |S′| and the bag p2 separates
in T the set of bags containing a vertex from S′ from the bag p. Note that in
T |G[W ∪ S′] we have χG1[W∪S′](p2) = R. Because of Proposition 1 applied to
T |G1[W ∪ S′], R separates χG1[W∪S′](p) from S′ in G1[W ∪ S′].

We claim that S′′ = (S \ S′) ∪ R is a separator between χG1(p) and ∂(G1).
Since |S′′| < |S|, this would contradict the minimality of S. Let Π be a path
between χG1(p) and ∂(G1). Since χG1(p) ⊆ W ∪S, Π has to intersect S in order
to reach ∂(G1). Let s be the first vertex of Π which intersects S (note that the
subpath from χG1(p) to s of Π lies entirely in W ). Either s ∈ S\S′ and therefore
s ∈ S′′, or s ∈ S′ and the subpath from χG1(p) to s of Π lies entirely in W ∪ S′,
and therefore Π has to intersect R ⊆ S′′ in order to reach s. It follows that S′′

is indeed a separator between χG1(p) and ∂(G1), completing the proof. �

Corollary 2. Let G̃1 and G̃2 be two t-boundaried graphs and G = G̃1 ⊕ G̃2.
Then there is an optimal tree decomposition T of G such that T |G1 has width
at most tw(G1) + t.

Employing a technical lemma similar to Lemma 2, we obtain our main result of
this section.

Theorem 2. For w ∈ N, let Gw be a class of graphs that have treewidth at
most w. Then, the problem Treewidth has FII in Gw.

Proof. The proof is analogous to the proof of Theorem 1. �

5 FII of Pathwidth and Treewidth on Arbitrary Graphs

In the previous section we have seen that Pathwidth and Treewidth have FII
on the class of graphs of bounded pathwidth or treewidth, respectively. It is hence
natural to ask whether the same holds true for Pathwidth and Treewidth

on the class of all graphs. The following theorem establishes that this is not
the case.

Theorem 3. The problems Pathwidth and Treewidth do not have FII.
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Proof. For w, t ∈ N, let G̃w = (Gw, ∂(Gw)) be the t-boundaried complete graph
with w + t vertices. We claim that Gw �≡pw,t Gw+1 and Gw �≡tw,t Gw+1 for
every w ∈ N with w > t. This shows that neither ≡pw,t nor ≡tw,t is finite and
concludes the proof of the theorem.

Let H̃1 = G̃w and H̃2 = G̃w+1. Then, pw(G̃w ⊕ H̃1) = tw(G̃w ⊕ H̃1) = t + w

and pw(G̃w+1 ⊕ H̃1) = tw(G̃w+1 ⊕ H̃1) = t+w+1 but pw(G̃w ⊕ H̃2) = tw(G̃w ⊕
H̃2) = t + w + 1 and pw(G̃w+1 ⊕ H̃2) = tw(G̃w+1 ⊕ H̃2) = t + w + 1, as
required. �

6 Application to Kernelization in Sparse Graph Classes

Using the results presented in [9], we immediately obtain the following:

Corollary 3. Let G be a hereditary graph class, t a constant, G ∈ G, and let k
be the size of a treedepth-t-modulator of G. Then Treewidth and Pathwidth

admit

1. a linear kernel if G has bounded expansion;
2. a quadratic vertex kernel if G has locally bounded expansion;
3. a polynomial kernel if G is nowhere-dense

when parameterized by k.

Using the result presented in [10], we obtain the following:

Corollary 4. Let H be a graph, t a constant and let G be a graph excluding H
as a topological minor. Then Treewidth admits a linear kernel when parame-
terized by the size of a treewidth-t-modulator of G and Pathwidth admits a
linear kernel when parameterized by the size of a pathwidth-t-modulator of G.

Furthermore, both kernelization algorithms only take time linear in |V (G)|.

7 Conclusion

We have shown that the problems Treewidth and Pathwidth have finite
integer index if restricted to (boundaried) graphs of constant treewidth or path-
width, respectively. This result directly implies that certain kernelization for
these two problems exist in sparse graph classes, if parameterized by suitable
structural parameters. We see this as an encouragement to revisit problems that
might not have FII in general, but do so if restricted to graphs with small width
measures.

In particular, it would be useful to develop sufficient conditions akin to the
ones presented in [2] to quickly check whether a problem has FII in that restricted
setting and thus is amenable to the reduction rule.

Acknowledgement. We thank Hans L. Bodlaender for valuable discussions about
the properties of characteristics of path and tree decompositions.
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Abstract. The generalized function matching (GFM) problem has been
intensively studied starting with [7]. Given a pattern p and a text t, the
goal is to find a mapping from the letters of p to non-empty substrings
of t, such that applying the mapping to p results in t. Very recently, the
problem has been investigated within the framework of parameterized
complexity [9].

In this paper we study the parameterized complexity of the optimiza-
tion variant of GFM (called Max-GFM), which has been introduced in
[1]. Here, one is allowed to replace some of the pattern letters with
some special symbols “?”, termed wildcards or don’t cares, which can
be mapped to an arbitrary substring of the text. The goal is to minimize
the number of wildcards used.

We give a complete classification of the parameterized complexity of
Max-GFM and its variants under a wide range of parameterizations, such
as, the number of occurrences of a letter in the text, the size of the text
alphabet, the number of occurrences of a letter in the pattern, the size
of the pattern alphabet, the maximum length of a string matched to any
pattern letter, the number of wildcards and the maximum size of a string
that a wildcard can be mapped to.

1 Introduction

In the generalized function matching problem one is given a text t and a pattern
p and the goal is to decide whether there is a match between p and t, where
a single letter of the pattern is allowed to match multiple letters of the text
(we say that p GF-matches t). For example, if the text is t = xyyx and the
pattern is p = aba, then a generalized function match (on short, GF-match)
is a → x, b → yy, but if t = xyyz and p = aba, then there is no GF-match.
If, moreover, the matching is required to be injective, then we term the prob-
lem generalized parameterzied matching (GPM). In [1], Amir and Nor describe
applications of GFM in various areas such as software engineering, image search-
ing, DNA analysis, poetry and music analysis, or author validation. GFM is also
related to areas such as (un-)avoidable patterns [12], word equations [13] and
the ambiguity of morphisms [11].
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GFM has a long history starting from 1979. Ehrenfeucht and Rozenberg [7]
show that GFM is NP-complete. Independently, Angluin [2,3] studies a more
general variant of GFM where the pattern may contain also letters of the text
alphabet. Angluin’s paper received a lot of attention, especially in the learning
theory community [17,18,20] (see [14] for a survey) but also in many other areas.

Recently, a systematic study of the classical complexity of a number of vari-
ants of GFM and GPM under various restrictions has been carried out [8,19]. It
was shown that GFM and GPM remain NP-complete for many natural restric-
tions. Moreover, the study of GFM and its variants within the framework of
parameterized complexity has recently been initiated [9].

In this paper we study the parameterized complexity of the optimization
variant of GFM (called Max-GFM) and its variants, where one is allowed to
replace some of the pattern letters with some special symbols “?”, termed wild-
cards or don’t cares, which can be mapped to an arbitrary substring of the text.
The goal is to minimize the number of wildcards used. The problem was first
introduced to the pattern matching community by Amir and Nor [1]. They show
that if the pattern alphabet has constant size, then a polynomial algorithm can
be found, but that the problem is NP-complete otherwise. Then, in [4], it is
shown the NP-hardness of the GFM (without wildcards) and the NP-hardness
of the GFM when the function f is required to be an injection (named GPM).
More specifically, GFM is NP-hard even if the text alphabet is binary and each
letter of the pattern is allowed to map to at most two letters of the text [4]. In the
same paper it is given a

√
OPT approximation algorithm for the optimization

variant of GFM where the goal is to search for a pattern p′ that GF-matches t
and has the smallest Hamming distance to p. In [5] the optimization versions of
GFM and GPM are proved to be APX-hard.

Our results. Before we discuss our results, we give formal definitions of the
problems. In the following let t be a text over an alphabet Σt and let p = p1 . . . pm

be a pattern over an alphabet Σp. We say that p GF-matches t if there is a
function f : Σp → Σ+

t such that f(p1) . . . f(pm) = t. To improve the presentation
we will sometimes abuse notation by writing f(p) instead of f(p1) . . . f(pm). Let
k be a natural number. We say that a pattern p k-GF-matches t if there is a
text p′ over alphabet Σp ∪ {?1, . . . , ?k} of Hamming distance at most k from p
such that p′ GF-matches t.

Problem 1. (Maximum Generalized Function Matching). Given a text t,
a pattern p, and an integer k, decide whether p k-GF-matches t.

The Max-GFM can be seen as the optimization variant of GFM in which we
want to replace some of the pattern letters with special wildcard symbols, i.e.,
the symbols ?1, . . . , ?k, which can be mapped to any non-empty substring of the
text.

We also study the Max-GPM problem. The only difference between Max-
GPM and Max-GFM is that for Max-GPM the function f is required to be
injective. The notions of GP-matching and k-GP-matching are defined in the
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natural way, e.g., we say a pattern p GP-matches a text t if p GF-matches t
using an injective function.

In this paper we study the parameterized complexity of the two problems
using a wide range of parameters: maximum number of occurrences of a letter in
the text #Σt, maximum number of occurrences of a letter in the pattern #Σp,
size of the text alphabet |Σt|, size of the pattern alphabet |Σp|, the maximum
length of a substring of the text that a letter of the pattern alphabet can be
mapped to (i.e., maxi |f(pi)|), the number of wildcard letters #?, and the maxi-
mum length of a substring of the text that a wildcard can be mapped to, denoted
by max |f(?)|.

Our results are summarized in Table 1. We verified the completeness of our
results using a simple computer program. In particular, the program checks
for every of the 128 possible combinations of parameters C that the table con-
tains either: (i) a superset of C under which Max-GFM/GPM is hard (and thus,
Max-GFM/GPM is hard if parameterized by C); or (ii) a subset of C for which
Max-GFM/GPM is fpt (and then we have an fpt result for the set of parameters
C). Since some of our results do not hold for both Max-GFM and Max-GPM,
we carried out two separate checks, one for Max-GFM and one for Max-GPM.

Table 1. Parameterized Complexity of Max-GFM and Max-GPM.

#Σt |Σt| #Σp |Σp| maxi |f(pi)| #? max |f(?)| Complexity

par par – – – – – FPT (Cor. 3)

– par – par par – – FPT (Th. 1)

– par – – par – – FPT only GPM (Cor. 1)

– – par par par – par FPT (Cor. 2)

– – – par par par par FPT (Th. 2)

par – par par par par – W[1]-h (Th. 4)

par – par par – par par W[1]-h (Th. 7)

par – par – par par par W[1]-h (Th. 5)

– par par par – par par W[1]- h ([9, Th.2.])

– – par par par par – W[1]- h (Th. 6)

– – – par par – par W[1]- h (Th. 3)

– par par – par par par para-NP-h ([1, Cor.1]),

– par par – par – – para-NP-h only GFM [8]

– – par – par – – para-NP-h only GPM [8]

The paper is organized as follows. In Sect. 2 we give preliminaries, in Sect. 3
we present our fixed-parameter algorithms and in Sect. 4 we show our hardness
results.
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2 Preliminaries

We define the basic notions of Parameterized Complexity and refer to other
sources [6,10] for an in-depth treatment. A parameterized problem is a set of
pairs 〈I, k〉, the instances, where I is the main part and k the parameter. The
parameter is usually a non-negative integer. A parameterized problem is fixed-
parameter tractable (fpt) if there exists an algorithm that solves any instance
〈I, k〉 of size n in time f(k)nc where f is an arbitrary computable function and c
is a constant independent of both n and k. FPT is the class of all fixed-parameter
tractable decision problems. Because we focus on fixed-parameter tractability of
a problem we will sometimes use the notation O∗ to suppress exact polynomial
dependencies, i.e., a problem with input size n and parameter k can be solved
in time O∗(f(k)) if it can be solved in time O(f(k)nc) for some constant c.

Parameterized complexity offers a completeness theory, similar to the theory
of NP-completeness, that allows the accumulation of strong theoretical evidence
that some parameterized problems are not fixed-parameter tractable. This theory
is based on a hierarchy of complexity classes FPT ⊆ W[1] ⊆ W[2] ⊆ W[3] ⊆ · · ·
where all inclusions are believed to be strict. An fpt-reduction from a parame-
terized problem P to a parameterized problem Q is a mapping R from instances
of P to instances of Q such that (i) 〈I, k〉 is a Yes-instance of P if and only if
〈I′, k′〉 = R(I, k) is a Yes-instance of Q, (ii) there is a computable function g
such that k′ ≤ g(k), and (iii) there is a computable function f and a constant c
such that R can be computed in time O(f(k) · nc), where n denotes the size of
〈I, k〉.

For our hardness results we will often reduce from the following problem,
which is well-known to be W[1]-complete [16].

Multicolored Clique

Instance: A k-partite graph G = 〈V,E〉 with a partition V1, . . . , Vk of V .
Parameter: The integer k.
Question: Are there nodes v1, . . . , vk such that vi ∈ Vi and {vi, vj} ∈ E
for all i and j with 1 ≤ i < j ≤ k (i.e. the subgraph of G induced by
{v1, . . . , vk} is a clique of size k)?

For our hardness proofs we will often make the additional assumptions that
(1) |Vi| = |Vj | for every i and j with 1 ≤ i < j ≤ k and (2) |Ei,j | = |Er,s|
for every i, j, r, and s with 1 ≤ i < j ≤ k and 1 ≤ r < s ≤ k, where
Ei,j = { {u, v} ∈ E | u ∈ Vi and v ∈ Vj } for every i and j as before. To see that
Multicolored Clique remains W[1]-hard under these additional restrictions
we can reduce from Multicolored Clique to its more restricted version using
a simple padding construction as follows. Given an instance 〈G, k〉 of Multi-

colored Clique we construct an instance of its more restricted version by
adding edges (whose endpoints are new vertices) between parts (i.e. V1, . . . , Vk)
that do not already have the maximum number of edges between them and then
adding isolated vertices to parts that do not already have the maximum number
of vertices.
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Even stronger evidence that a parameterized problem is not fixed-parameter
tractable can be obtained by showing that the problem remainsNP-complete even
if the parameter is a constant. The class of these problems is called para-NP.

A square is a string consisting of two copies of the same (non-empty) string.
We say that a string is square-free if it does not contain a square as a substring.

3 Fixed-Parameter Tractable Variants

In this section we show our fixed-parameter tractability results for Max-GFM
and Max-GPM. In particular, we show that Max-GFM and Max-GPM are
fixed-parameter tractable parameterized by |Σt|, |Σp|, and maxi |f(pi)|, and
also parameterized by #?, max |f(?)|, |Σp|, and maxi |f(pi)|. We start by show-
ing fixed-parameter tractability for the parameters |Σt|, |Σp|, and maxi |f(pi)|.
We need the following lemma.

Lemma 1. Given a pattern p = p1 . . . pm over an alphabet Σp, a text t =
t1 . . . tn over an alphabet Σt, a natural number q, and a function f : Σp → Σ+

t ,
then there is a polynomial time algorithm deciding whether p q-GF/GP-matches
t using the function f .

Proof. If we are asked whether p q-GP-matches t and f is not injective, then we
obviously provide a negative answer. Otherwise, we use a dynamic programming
algorithm that is similar in spirit to an algorithm in [4]. Let Σp = {a1, . . . ak}.
For every 0 ≤ i ≤ j ≤ n, we define the function g(i, j) to be the Hamming
GFM/GPM-similarity (i.e., m minus the minimum number of wildcards needed)
between t1t2 . . . tj and p1p2 . . . pi. Then, we obtain the Hamming GFM/GPM-
similarity between p and t as g(m,n). Consequently, if m − g(m,n) > q, we
return No, otherwise we return Yes.

We now show how to recursively compute g(i, j). If i = 0, we set g(i, j) = 0
and if i ≤ j, we set:

g(i, j) = max
1≤k≤j

{g(i − 1, j − k) + I(tj−k+1 . . . tj , f(pi)}

where I(s1, s2) is 1 if the strings s1, and s2 are the same, and 0 otherwise.
We must first show that the dynamic programming procedure computes the

right function and then that it runs in polynomial time. We can see immediately
that g(0, i) = 0 for all i because in this case the pattern is empty. The recursion
step of g(i, j) has two cases: If tj−|f(pi)|+1 . . . tj = f(pi), then it is possible to
map pi to f(pi), and we can increase the number of mapped letters by one.
Otherwise, we cannot increase the Hamming GFM/GPM-similarity. However,
we know that pi has to be set to a wildcard and therefore we find the maximum
of the previous results for different length substrings that the wildcard maps to.

It is straightforward to check that g(i, j) can be computed in cubic time. �

Theorem 1. Max-GFM and Max-GPM parameterized by |Σt|, |Σp|, and
maxi |f(pi)| are fixed-parameter tractable.
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Proof. Let p, t, and q be an instance of Max-GFM or Max-GPM, respectively.
The pattern p q-GF/GP-matches t if and only if there is a function f : Σp →
Σ+

t such that p q-GF/GP-matches t using f . Hence, to solve Max-GFM/Max-
GPM, it is sufficient to apply the algorithm from Lemma 1 to every function
f : Σp → Σ+

t that could possible constitute to a q-GF/GP-matching from p to t.

Because there are at most (|Σt|)maxi |f(pi)||Σp|
such functions f and the algorithm

from Lemma 1 runs in polynomial time, the running time of this algorithm is
O∗((|Σt|)maxi |f(pi)||Σp|

), and hence fixed-parameter tractable in |Σt|, |Σp|, and
maxi |f(pi)|. �

Because in the case of Max-GPM it holds that if |Σt| and maxi |f(pi)| is bounded
then also Σp is bounded by |Σt|maxi |f(pi)|, we obtain the following corollary.

Corollary 1. Max-GPM parameterized by |Σt| and maxi |f(pi)| is fixed-
parameter tractable.

We continue by showing our second tractability result for the parameters |Σp|,
maxi |f(pi)|, #?, and max |f(?)|.
Theorem 2. Max-GFM and Max-GPM parameterized by |Σp|, maxi |f(pi)|,
#?, max |f(?)|, are fixed-parameter tractable.

Proof. Let p, t, and q be an instance of Max-GFM or Max-GPM, respectively.
Observe that if we could go over all possible functions f : Σp → Σ+

t that
could possible constitute to a q-GF/GP-matching from p to t, then we could
again apply Lemma 1 as we did in the proof of Theorem 1. Unfortunately, because
|Σt| is not a parameter, the number of these functions cannot be bounded as
easily any more. However, as we will show next it is still possible to bound the
number of possible functions solely in terms of the parameters. In particular,
we will show that the number of possible substrings of t that any letter of the
pattern alphabet can be mapped to is bounded by a function of the parameters.
Because also |Σp| is a parameter this immediately implies a bound (only in terms
of the given parameters) on the total number of these functions.

Let c ∈ Σp and consider any q-GF/GP-matching from p to t, i.e., a text
p′ = p′

1 . . . p′
m of Hamming distance at most q to p and a function f : Σp ∪

{?1, . . . , ?q} → Σ+
t such that f(p′

1) . . . f(p′
m) = t. Then either c does not occur

in p′ or c occurs in p′. In the first case we can assign to c any non-empty substring
over the alphabet Σt (in the case of Max-GPM one additionally has to ensure
that the non-empty substrings over Σt that one chooses for distinct letters in
Σp are distinct). In the second case let p′

i for some i with 1 ≤ i ≤ m be the first
occurrence of c in p′, let p′

i−1 = p′
1 . . . p′

i−1, and let pi−1 = p1 . . . pi−1. Further-
more, for every b ∈ Σp ∪{?1, . . . , ?q} and w ∈ (Σp ∪{?1, . . . , ?q})∗, we denote by
#(b, w) the number of times b occurs in w. Then f(c) = tcs+1 . . . tcs+|f(c)| where
cs =

∑i−1
j=1 |f(p′

j)|, which implies that the value of f(c) is fully determined by cs

and |f(c)|. Because the number of possible values for |f(c)| is trivially bounded
by the parameters (it is bounded by maxi |f(pi)|), it remains to show that also
cs is bounded by the given parameters.
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Because cs =
∑i−1

j=1 |f(p′
j)| = (

∑
b∈Σp∪{?1,...,?q} #(b, p′

i−1)|f(b)|), we obtain
that the value of cs is fully determined by the values of #(b, p′

i−1) and |f(b)| for
every b ∈ Σp∪{?1, . . . , ?q}. For every ? ∈ {?1, . . . , ?q} there are at most 2 possible
values for #(?, p′

i−1) (namely 0 and 1) and there are at most max |f(?)| pos-
sible values for |f(?)|. Similarly, for every b ∈ Σp there are at most q+1 possible
values for #(b, p′

i−1) (the values #(b, pi−1) − q, . . . ,#(b, pi−1)) and there are at
most maxi |f(pi)| possible values for |f(b)|. Hence, the number of possible values
for cs is bounded in terms of the parameters, as required. �

Since |Σp| and #Σp together bound #?, we obtain the following corollary.

Corollary 2. Max-GFM and Max-GPM parameterized by #Σp, |Σp|,
maxi |f(pi)|, and max |f(?)| are fixed-parameter tractable.

Furthermore, because all considered parameters can be bounded in terms of the
parameters #Σt and |Σt|, we obtain the following corollary as a consequence of
any of our above fpt-results.

Corollary 3. Max-GFM and Max-GPM parameterized by #Σt and |Σt| are
fixed-parameter tractable.

4 Hardness Results

In this subsection we give our hardness results for Max-GFM and Max-GPM.
The proofs of the theorems marked with an asterisk (∗) can be found in the full
version of this paper, which is available on arxiv [15].

Theorem 3. (∗) Max-GFM and Max-GPM are W[1]-hard parameterized by
|Σp|, maxi |f(pi)|, and max |f(?)| (even if maxi |f(pi)| = 1 and max |f(?)| = 2).

Theorem 4. (∗) Max-GFM and Max-GPM are W[1]-hard parameterized by
#Σt, #Σp, |Σp|, maxi |f(pi)|, and #?.

Theorem 5. (∗) (Max-)GFM and (Max-)GPM are W[1]-hard parameterized
by #Σt, #Σp, maxi |f(pi)|, #?, and max |f(?)|.
Theorem 6. Max-GFM and Max-GPM are W[1]-hard parameterized by #Σp,
|Σp|, maxi |f(pi)|, and #? (even if maxi |f(pi)| = 1).

We will show the above theorem by a parameterized reduction from Multicol-

ored Clique. Let G = (V,E) be a k-partite graph with partition V1, . . . , Vk

of V . Let Ei,j = { {u, v} ∈ E | u ∈ Vi and v ∈ Vj } for every i and j with
1 ≤ i < j ≤ k. As we stated in the preliminaries we can assume that |Vi| = n
and |Ei,j | = m for every i and j with 1 ≤ i < j ≤ k.

Let Vi = {vi
1, . . . , v

i
n}, Ei,j = {ei,j

1 , . . . , ei,j
m }, and k′ = 2

(
k
2

)
. We construct

a text t over alphabet Σt and a pattern p over alphabet Σp from G and k in
polynomial time such that:
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(C1) the parameters #Σp, |Σp|, and #? can be bounded as a function of k.
(C2) p k′-GF/GP-matches t using a function f with maxp∈Σp

|f(p)| = 1 if and
only if G has a k-clique.

We set Σt = {; ,−,#,+} ∪ { li,j , ri,j | 1 ≤ i < j ≤ k } ∪ { vj
i | 1 ≤ i ≤ n and1 ≤

j ≤ k } and Σp = {; ,−,#,D} ∪ {Vi | 1 ≤ i ≤ k }.
For an edge e ∈ E between vi

l and vj
s where 1 ≤ i < j ≤ k and 1 ≤ l, s ≤ n,

we write vt(e) to denote the text vi
l − vj

s. For l ∈ Σp ∪ Σt and i ∈ N we write
rp(l, i) to denote the text consisting of repeating the letter l exactly i times. We
first define a preliminary text t′ as follows.

#l1,2;vt(e
1,2
1 ); · · · ;vt(e1,2

m ); r1,2# · · · #l1,k;vt(e1,k
1 ); · · · ;vt(e1,k

m ); r1,k

#l2,3;vt(e
2,3
1 ); · · · ;vt(e2,3

m ); r2,3# · · · #l2,k;vt(e2,k
1 ); · · · ;vt(e2,k

m ); r2,k

· · ·
#lk−1,k;vt(ek−1,k

1 ); · · · ;vt(ek−1,k
m ); rk−1,k#

We also define a preliminary pattern p′ as follows.

#D;V1 − V2;D# . . . #D;V1 − Vk;D
#D;V2 − V3;D# . . . #D;V2 − Vk;D

· · ·
#D;Vk−1 − Vk;D#

Let r = 2(k′ + 1). Then t is obtained by preceding t′ with the text t′′ defined as
follows.

#;−rp(+, r)

Similarly, p is obtained by preceding p′ with the text p′′ defined as follows.

#;−rp(D, r)

This completes the construction of t and p. Clearly, t and p can be constructed
from G and k in fpt-time (even polynomial time). Furthermore, because #Σp =
r + k′ = 2(k′ + 1) + k′ = 3k′ + 1, |Σp| = k + 4, and #? = k′, condition (C1)
above is satisfied. To show the remaining condition (C2), we need the following
intermediate lemmas.

Lemma 2. If G has a k-clique, then p k′-GF/GP-matches to t using a function
f with maxp∈Σp

|f(p)| = 1.

Proof. Let {v1
h1

, . . . , vk
hk

} be the vertices and { ei,j
hi,j

| 1 ≤ i < j ≤ k } be the
edges of a k-clique of G with 1 ≤ hj ≤ n and 1 ≤ hi,j ≤ m for every i and j
with 1 ≤ i < j ≤ k.

We put k′ wildcards on the last k′ occurrences of D in p. Informally, these
wildcards are mapped in such a way that for every 1 ≤ i < j ≤ k the substring
;Vi − Vj ; of the pattern p is mapped to the substring ;vt(ei,j

hi,j
); of the text t.

More formally, for i and j with 1 ≤ i < j ≤ k let q = (
∑o<i

o=1(k−o))+j. We map
the wildcard on the 2(q − 1)-th occurrence of the letter D in p′ with the text



278 S. Ordyniak and A. Popa

li,j ;vt(e
i,j
1 ); · · · ;vt(ei,j

hi,j−1) and similarly we map the wildcard on the (2(q−1)+

1)-th occurrence of the letter D in p′ with the text vt(ei,j
hi,j+1); · · · ;vt(ei,j

m ); ri,j .
Note that in this way every wildcard is mapped to a non-empty substring of t
and no two wildcards are mapped to the same substring of t, as required.

We then define the k′-GF/GP-matching function f as follows: f(; ) =;,
f(−) = −, f(#) = #, f(Vi) = vi

hi
, f(D) = +, for every i and hi with 1 ≤ i ≤ k

and 1 ≤ hi ≤ n. It is straightforward to check that f together with the mapping
for the wildcards maps the pattern p to the text t. �

Lemma 3. Let f be a function that k′-GF/GP-matches p to t with
maxp∈Σp

|f(p)| = 1, then: f(; ) =;, f(−) = −, f(#) = #, and f(D) = +.
Moreover, all wildcards have to be placed on all the k′ occurrences of D in p′.

Proof. We first show that f(D) = +. Observe that the string t′ is square-free
(recall the definition of square-free from Sect. 2). It follows that every two con-
secutive occurrences of pattern letters in p′′ have to be mapped to a substring of
t′′. Because there are 2(k′ +1) occurrences of D in p′′ it follows that at least two
consecutive occurrences of D in p′′ are not replaced with wildcards and hence
D has to be mapped to a substring of t′′. Furthermore, since all occurrences of
D are at the end of p′′, we obtain that D has to be mapped to +, as required.
Because all occurrences of D in p′ have to be mapped to substrings of t′ and t′

does not contain the letter +, it follows that all the k′ occurrences of D in p′

have to be replaced by wildcards. Since we are only allowed to use at most k′

wildcards, this shows the second statement of the lemma. Since no wildcards are
used to replace letters in p′′ it now easily follows that f(; ) =;, f(−) = − and
f(#) = #. �

Lemma 4. If p k′-GF/GP-matches to t using a function f with
maxp∈Σp

|f(p)| = 1, then G has a k-clique.

Proof. Let f be a function that k′-GF/GP-matches p to t such that
maxp∈Σp

|f(p)| = 1. We claim that the set { f(Vi) | 1 ≤ i ≤ k } is a k-clique of G.
Because of Lemma 3, we know that f(#) = # and that no occurrence of # in p
is replaced by a wildcard. Since the number of occurrences of # in t is equal to
the number of occurrences of # in p, we obtain that the i-th occurrence of # in p
is mapped to the i-th occurrence of # in t. Consequently, for every i and j with
1 ≤ i < j ≤ k, we obtain that the substring ;Vi −Vj ; is mapped to a substring of
the string li,j ;vt(e

i,j
1 ); · · · ;vt(ei,j

m ); ri,j in t. Again, using Lemma 3 and the fact
that maxp∈Σp

|f(p)| = 1, we obtain that both Vi and Vj are mapped to some
letter vi

l and vj
s for some l and s with 1 ≤ l, s ≤ n such that {vi

l , v
j
s} ∈ E. Hence,

{ f(Vi) | 1 ≤ i ≤ k } is a k-clique of G. �

Because Condition (C2) is implied by Lemmas 2 and 4, this concludes the proof
of Theorem 6.

Theorem 7. (Max-)GFM and (Max-)GPM are W[1]-hard parameterized by
#Σt, #Σp, |Σp|, #?, and max |f(?)|.
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We will show the theorem by a parameterized reduction from Multicolored

Clique. Let G = (V,E) be a k-partite graph with partition V1, . . . , Vk of V .
Let Ei,j = { {u, v} ∈ E | u ∈ Vi and v ∈ Vj } for every i and j with 1 ≤ i <
j ≤ k. Again, as we stated in the preliminaries we can assume that |Vi| = n and
|Ei,j | = m for every i and j with 1 ≤ i < j ≤ k.

Let Vi = {vi
1, . . . , v

i
n} and Ei,j = {ei,j

1 , . . . , ei,j
m }. We construct a text t and

a pattern p from G and k such that p GF/GP-matches t if and only if G has a
k-clique. The alphabet Σt consists of:

– the letter # (used as a separator);
– one letter ae for every e ∈ E (representing the edges of G);
– one letter #i for every i with 1 ≤ i ≤ n (used as special separators that group

edges from the same vertex);
– the letters li,j , ri,j , li, ri for every i and j with 1 ≤ i < j ≤ k (used as dummy

letters to ensure injectivity for GPM);
– the letter dv

e and dv for every e ∈ E and v ∈ V (G) with v ∈ e (used as dummy
letters to ensure injectivity for GPM).

We set Σp = {#} ∪ {Ei,j , Li,j , Ri,j , Li, Ri, Ai | 1 ≤ i < j ≤ k } ∪ {Di,j | 1 ≤ i ≤
k and 1 ≤ j ≤ k + 1 }.

For a vertex v ∈ V and j with 1 ≤ j ≤ k we denote by Ej(v) the set of edges
of G that are incident to v and whose other endpoint is in Vj . Furthermore, for a
vertex v ∈ V (G), we write e(v) to denote the text el(v,E1(v)) · · · el(v,Ek(v))dv,
where el(v,E′), for vertex v and a set E′ of edges with E′ = {e1, . . . , el}, is the
text dv

e1
ae1d

v
e2

ae2 · · · dv
el

ael
.

We first define the following preliminary text and pattern strings. Let t1 be
the text:

#l1,2ae1,2
1

· · · ae1,2
m

r1,2# · · · #l1,kae1,k
1

· · · ae1,k
m

r1,k

#l2,3ae2,3
1

· · · ae2,3
m

r2,3# · · · #l2,kae2,k
1

· · · ae2,k
m

r2,k

· · ·
#lk−1,kaek−1,k

1
· · · aek−1,k

m
rk−1,k

Let t2 be the text:

#l1#1e(v1
1)#1 · · · #ne(v1

n)#nr1
· · ·

#lk#1e(vk
1 )#1 · · · #ne(vk

n)#nrk#

Let p1 be the pattern:

#L1,2E1,2R1,2# . . . #L1,kE1,kR1,k

#L2,3E2,3R2,3# . . . #L2,kE2,kR2,k

· · ·
#Lk−1,kEk−1,kRk−1,k

For i, j with 1 ≤ i, j ≤ k, let I(i, j) be the letter Ei,j if i < j, the letter Ej,i

if i > j and the empty string if i = j. We define p(1) to be the pattern:

A1D1,2I(1, 2)D1,3I(1, 3) · · · · · · D1,kI(1, k)D1,k+1A1
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we define p(k) to be the pattern:

AkDk,1I(k, 1)Dk,2I(k, 2) · · · · · · Dk,k−1I(k, k − 1)Dk,k+1Ak

and for every i with 1 < i < k, we define p(i) to be the pattern:

AiDi,1I(i, 1)Di,2I(i, 2) · · · Di,i−1I(i, i − 1)
Di,i+1I(i, i + 1) · · · Di,kI(i, k)Di,k+1Ai

Then p2 is the pattern:

#L1p(1)R1# · · · #Lkp(k)Rk#

We also define t0 to be the text ## and p0 to be the pattern ##. Then, t is
the concatenation of t0, t1 and t2 and p is a concatenation of p0, p1 and p2.

This completes the construction of t and p. Clearly, t and p can be constructed
from G and k in fpt-time (even polynomial time). Furthermore, #Σt =

(
k
2

)
+k+3,

#Σp =
(
k
2

)
+ k + 3, |Σp| = k(k + 1) + 3

(
k
2

)
+ 3k + 1 and hence bounded by k,

as required. It remains to show that G has a k-clique if and only if p GF/GP-
matches t. The proof of this statement can be found in the full version of this
paper [15].
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Abstract. Very recently, Thomassé, Trotignon and Vušković [WG 2014]
have given an FPT algorithm for Weighted Independent Set in bull-
free graphs parameterized by the weight of the solution, running in time

2O(k5) ·n9. In this article we improve this running time to 2O(k2) ·n7. As a
byproduct, we also improve the previous Turing-kernel for this problem
from O(k5) to O(k2). Furthermore, for the subclass of bull-free graphs
without holes of length at most 2p−1 for p ≥ 3, we speed up the running

time to 2O(k·k
1

p−1 ) · n7. As p grows, this running time is asymptotically
tight in terms of k, since we prove that for each integer p ≥ 3, Weighted
Independent Set cannot be solved in time 2o(k) · nO(1) in the class of
{bull, C4, . . . , C2p−1}-free graphs unless the ETH fails.

Keywords: Parameterized complexity · FPT algorithm · Bull-free
graphs · Independent set · Turing-kernel

1 Introduction

Motivation. Parameterized complexity deals with problems whose instances I
come equipped with an additional integer parameter k, and the objective is to
obtain algorithms whose running time is of the form f(k) · poly(|I|), where f is
some computable function (see [7,9,17] for an introduction to the field). Such
algorithms are called Fixed-Parameter Tractable (FPT). A fundamental notion
in parameterized complexity is that of kernelization, which asks for the existence
of polynomial-time preprocessing algorithms that produce equivalent instances
whose size depends exclusively (preferably polynomially) on k. We will be only
concerned with problems defined on graphs.

In order to obtain efficient FPT algorithms, a usual strategy is to focus on
a graph class whose members have a well-defined structure, which can then be
exploited to design algorithms. This paradigm has been exhaustively used in the
last decades to obtain efficient FPT algorithms for graphs that exclude a fixed
graph as a minor, relying on the structural characterization of this graph class
given by Robertson and Seymour in their seminal work [20]. Nevertheless, the
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situation is quite different in graphs that exclude a fixed graph as an induced sub-
graph, for which the design of FPT algorithms is still in an incipient stage. Quite
recently, the structural description of claw-free graphs given by Chudnovsky
and Seymour [3] has triggered the design of FPT algorithms in this graph
class [4,11,12]. Even more recently, a structural characterization of bull-free
graphs has been given by Chudnovsky [1,2]. In this article we focus on this
latter graph class.

The bull is the graph defined by the set of vertices {x1, x2, x3, y, z} and the set
of edges {x1x2, x2x3, x3x1, x1y, x2z} (see Fig. 1 for an illustration). For a graph
F , a graph G is said to be F -free if G does not contain an induced subgraph
isomorphic to F . Note that the class of bull-free graphs contains the classes of
P4-free and triangle-free graphs, so in particular it contains all bipartite graphs.

y

x1 x2

z

x3

Fig. 1. The bull.

An independent set in a graph is a set of pairwise non-adjacent vertices. In a
vertex-weighted graph, the weight of an independent set is the sum of the weights
of its vertices. We are interested in the following parameterized problem.

Weighted Independent Set
Input: An graph G = (V,E) with |V | = n, a weight function w : V → N,
and a positive integer k.
Parameter: The integer k.
Question: Does G contain an independent set of weight at least k?

The above problem is well-known to be W [1]-hard in general graphs [7],
and therefore an FPT algorithm is unlikely to exist (see [7,9,17] for the miss-
ing definitions). Thus, it is relevant to find graph classes for which the problem
admits an FPT algorithm, and for which the non-parameterized version still
remains NP-hard. In this direction, Dabrowski et al. [5] gave an FPT algo-
rithm for Weighted Independent Set in {bull, P5}-free graphs, where P5 is
the complement of a path on 5 vertices. Note that the problem is NP-hard in
{bull, P5}-free graphs, as it is NP-hard in the subclass of triangle-free graphs [19].
Recently, Thomassé et al. [21] generalized this result by giving an FPT algorithm
for Weighted Independent Set in the class of bull-free graphs, by exploiting
the structural results of Chudnovsky [1,2]. This article is the starting point of
our work, and its main result is the following.

Theorem 1. (Thomassé et al. [21]). Weighted Independent Set in the
class of bull-free graphs can be solved in time 2O(k5) · n9.



284 H.P. du Cray and I. Sau

Our results. Our main contribution is to improve the running time of the FPT
algorithm of Thomassé et al. [21] stated in Theorem 1, specially in terms of the
parameter k.

Theorem 2. Weighted Independent Set in the class of bull-free graphs can
be solved in time 2O(k2) · n7.

We would like to point out that we strongly follow the algorithm of [21], and
that our faster algorithm is obtained by improving locally some of the procedures
and analyses given in [21]. In particular, one of our main improvements relies on
a closer look at the structure of the so-called basic bull-free graphs as described
by Chudnovsky in her series of papers [1,2].

It is shown in [21, Theorem 7.2] that the FPT algorithm of Theorem 1 actu-
ally provides a Turing-kernel1 of size O(k5) for Weighted Independent Set
in bull-free graphs, and that a polynomial kernel is not possible under reason-
able complexity hypothesis. Therefore, as our algorithm follows closely that of
Theorem 1, from Theorem 2 we immediately obtain the following corollary.

Corollary 1. There exists a Turing-kernel of size O(k2) for Weighted Inde-
pendent Set in the class of bull-free graphs.

It is natural to ask whether the algorithm of Theorem 2 can be improved for
subclasses of bull-free graphs. We prove that it is the case when, in addition to
the bull, we exclude the holes2 of length at most 2p − 1 for some integer p ≥ 3
as induced subgraphs. Note that for each p ≥ 3, the Weighted Independent
Set problem is NP-hard in the class of {bull, C4, . . . , C2p−1}-free graphs, as for
each integer g ≥ 3, its unweighted version is NP-hard in the class of graphs
of girth greater than g [16], that is in {C3, C4, . . . , Cg}-free graphs, which is a
subclass of {bull, C4, . . . , Cg}-free graphs for g ≥ 4. More precisely, we prove the
following theorem.

Theorem 3. For each integer p ≥ 3, Weighted Independent Set in the

class of {bull, C4, . . . , C2p−1}-free graphs can be solved in time 2O(k·k
1

p−1 ) · n7.

In the same way as Corollary 1 follows from Theorem 2, from Theorem 3 we
obtain the following corollary. It is worth noting that the multipartite construc-
tion given in [21, Theorem 7.1] for ruling out the existence of polynomial kernels
actually preserves the property of being {bull, C4, . . . , C2p−1}-free for p ≥ 3.

Corollary 2. For each integer p ≥ 3, there exists a Turing-kernel of size O(k ·
k

1
p−1 ) for Weighted Independent Set in the class of {bull, C4, . . . , C2p−1}-

free graphs.
1 For a function g : N → N, a parameterized problem Π is said to have a Turing-kernel
of size g(k) if there is an algorithm which, given an input (I, k) together with an
oracle for Π that decides whether (I, k) ∈ Π in constant time whenever |I| ≤ g(k),
decides whether (I, k) ∈ Π in time polynomial in |I| and k.

2 A hole in a graph is an induced cycle of length at least 4.
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Finally, we provide lower bounds on the running time on any FPT algorithm
that solves Weighted Independent Set in the class of {bull, C4, . . . , C2p−1}-
free graphs, for p ≥ 3. These lower bounds rely on the Exponential Time
Hypothesis (ETH), which states that there exists a positive real number s
such that 3-CNF-Sat with n variables and m clauses cannot be solved in time
2sn · (n + m)O(1) (see [15] for more details).

Theorem 4. For each integer p ≥ 3, Weighted Independent Set cannot be
solved in time 2o(k) ·nO(1) in the class of {bull, C4, . . . , C2p−1}-free graphs unless
the ETH fails.

Note that as p grows, the running time of the algorithm of Theorem 3 tends
to 2O(k) ·n7. As the lower bound given by Theorem 4 holds for any fixed integer
p ≥ 3, it follows that, as p grows, the running time of the algorithm of Theorem 3
is asymptotically tight with respect to the parameter k.

Organization of the paper. In Sect. 2 we state some definitions and results
from [21] that we need in the remaining sections. Section 3 is devoted to the
proofs of our main results. Finally, we conclude with some directions for further
research in Sect. 4. Due to space limitations, the proofs of the results marked
with ‘[�]’ can be found in the full version of this article [18].

2 Preliminaries

All the definitions in this section are taken from [21]. We use standard graph-
theoretic notation (see [6] for any undefined terminology).

Trigraphs. We need to work with trigraphs (see [2]), which are a generalization
of graphs in which some edges are left “undecided”. Formally, a trigraph consists
of a finite set V (T ) of vertices and an adjacency function θ :

(
V (T )

2

) → {−1, 0, 1}.
Two vertices u, v ∈ V (T ) are strongly adjacent (resp. strongly antiadjacent, resp.
semiadjacent) if θ(uv) = 1 (resp. θ(uv) = −1, θ(uv) = 0), and in that case u
and v constitute a strong edge (resp. strong antiedge, switchable pair). Two
vertices u, v ∈ V (T ) are adjacent (resp. antiadjacent) if θ(uv) ∈ {0, 1} (resp.
θ(uv) ∈ {−1, 0}), and in that case we say that there is an edge (resp. antiedge)
between u and v. Let η(T ) (resp. ν(T ), σ(T )) be the set of strongly adjacent
(resp. strongly antiadjacent, semiadjacent) pairs of T . That is, a trigraph T is a
graph if and only if σ(T ) = ∅. For a vertex v ∈ V (T ), N(v) (resp. η(T ), ν(T ),
σ(T )) denotes the set of vertices in V (T ) \ {v} that are adjacent (resp. strongly
adjacent, strongly antiadjacent, semiadjacent) to v. The complement T of a
trigraph T is the trigraph with V (T ) = V (T ) and θ(T ) = −θ(T ). A trigraph
is monogamous if every vertex belongs to at most one switchable pair. Most
trigraphs considered in this paper will be monogamous.

For two disjoint non-empty subsets of vertices A,B of V (T ), we say that A
is strongly complete (resp. strongly anticomplete) to B if every vertex in A is
strongly adjacent (resp. strongly antiadjacent) to every vertex in B. A clique
(resp. strong clique, independent set, strong independent set) in T is a set of
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Fig. 2. A homogeneous set X and a homogeneous pair (A,B).

vertices that are pairwise adjacent (resp. strongly adjacent, antiadjacent, strongly
antiadjacent). When we speak about the Weighted Independent Set prob-
lem in a trigraph T , we are interested in finding an independent set in T . We
denote by α(T ) the maximum weight of an independent set in T (see [21] for the
precise restrictions of the weight functions defined in trigraphs).

A realization of a trigraph T is any trigraph T ′ such that η(T ) ⊆ η(T ′),
ν(T ) ⊆ ν(T ′), and σ(T ′) = ∅ (hence T ′ is a graph). Seen as a trigraph, the
bull is defined as in Fig. 1, where the corresponding vertices are adjacent or
antiadjacent (that is, switchable pairs are allowed). A trigraph is bull-free if no
induced subtrigraph of it is a bull.

Decomposition of bull-free trigraphs. The algorithm of [21], hence ours
as well, is based on a decomposition theorem of bull-free trigraphs that is a
simplified version of the one given by Chudnovsky [1,2], and that we proceed to
state. We first need two more definitions that will play a fundamental role.

A set X ⊆ V (T ) is a homogeneous set if 1 < |X| < |V (T )| and every vertex
in V (T ) \ X is either strongly complete or strongly anticomplete to X. Thus,
V (T ) \ X can be partitioned into two (possibly empty) sets Y and Z such that
X is strongly complete to Y and strongly anticomplete to Z; see Fig. 2 for an
illustration, where a solid line means that there are all edges, no line means that
there are no edges, and a dashed line means that there is no restriction.

A homogeneous pair in T is a pair (A,B) of disjoint non-empty subsets of
V (T ) such that there exist disjoint (possibly empty) subsets C,D,E, F of V (T )
such that the following hold:

• {A,B,C,D,E, F} is a partition of V (T );
• |A ∪ B| ≥ 3;
• |C ∪ D ∪ E ∪ F | ≥ 3;
• A is strongly complete to C ∪ E and strongly anticomplete to D ∪ F ;
• B is strongly complete to D ∪ E and strongly anticomplete to C ∪ F ; and
• A is not strongly complete nor strongly anticomplete to B.

See again Fig. 2 for an illustration. A homogeneous pair is small if |A ∪ B| ≤
6, and it is proper if C 	= ∅ and D 	= ∅.
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We now define some classes of so-called basic trigraphs which will also play an
important role in the algorithms. Let T0 be the class of monogamous trigraphs on
at most 8 vertices. Let T1 be the class of monogamous trigraphs T whose vertex
set can be partitioned into (possibly empty) sets X,K1, . . . , Kt such that G[X]
is triangle free, and K1, . . . , Kt are strong cliques that are pairwise anticomplete.
According to Chudnovsky’s work [1,2], the trigraphs in T1 satisfy some additional
conditions that we will detail in Sect. 3. This closer look at the class T1 allows
us to significantly improve the dependency on k of the algorithm. Finally, let
T 1 = {T : T ∈ T1}. A trigraph is basic if it belongs to T0 ∪ T1 ∪ T 1. We are
ready to state the decomposition theorem.

Theorem 5. (Chudnovsky [1,2]). If T is a bull-free monogamous trigraph,
then one of the following holds:

• T is basic;
• T has a homogeneous set;
• T has a small homogeneous pair; or
• T has a proper homogeneous pair.

We say that (X,Y ) is a decomposition of a trigraph T if (X,Y ) is a partition
of V (T ) and either X is a homogeneous cut of T or X = A ∪ B where (A,B) is
a small or proper homogeneous pair of T . A decomposition (X,Y ) defines two
blocks TX and TY , whose definition is omitted here, and can be found in [21].
A decomposition (X,Y ) is a homogeneous cut if X is a homogeneous set or
X = A ∪ B where (A,B) is a proper homogeneous pair. A homogeneous cut
(X,Y ) is minimally-sided if there is no homogeneous cut (X ′, Y ′) with X ′

� X.

3 Improved FPT Algorithms in Bull-Free Graphs

In this section we give a proof of Theorem 2. We start by providing a high-level
description of the FPT algorithm of [21] in Algorithm 1 below (without giving
all the details), which will help us to point out the steps for which we provide
an improvement.

As the size of the trigraph TY strictly decreases in each recursive step, the
overall complexity of Algorithm 1 is easily seen to be upper-bounded by 2O(k5) ·
n9. (In fact, the algorithm of [21] starts by trying to find a decomposition of T ,
and if it fails we know by Theorem 5 that T is basic. We reversed the steps in
this sketch for the sake of presentation.) Our improvements are the following:

(i) Improvement in terms of the graph size. We show that in Step 2, an
extreme decomposition (X,Y ) of T can be found in time O(n6).

(ii) Improvement in terms of the parameter. We show that in Step 1, the
problem can be solved in basic trigraphs in time O(n4m) + 2O(k2).

The two improvements above yield the running time given in Theorem 2. We
now proceed to explain these improvements in detail.
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Input: A bull-free trigraph T with |V (T )| = n and the parameter k.
Output: ‘Yes’ if α(T ) ≥ k, and an independent set of weight α(T ) otherwise.

1. If T is basic, then the problem can be solved in time O(n4m) + 2O(k5),
where m is the number of strong edges in T .

2. Otherwise, by Theorem 5, T admits a decomposition. Furthermore, it is
shown that T admits a so-called extreme decomposition, which is a
decomposition (X, Y ) such that the block TX is basic and both TX and TY

are bull-free trigraphs. This extreme decomposition can be found in time
O(n8).
2.1. First, Step 1 is run on the basic bull-free trigraph TX . If α(TX) ≥ k, we

answer ‘Yes’ and we stop the algorithm. Otherwise, we use the
performed computations to build the weighted trigraph TY .

2.2. The whole algorithm is run recursively on the bull-free trigraph TY .

Algorithm 1. Sketch of the FPT algorithm of [21].

Improvement in terms of the graph size. Our first ingredient is the following
polynomial-time algorithm running in time O(n6), which should be compared
to the algorithm given by [21, Theorem 4.3] that runs in time O(n8).

Theorem 6. There is an algorithm running in time O(n6) whose input is a tri-
graph T . The output is a small homogeneous pair of T if some exists. Otherwise,
if G has a homogeneous cut, then the output is a minimally-sided homogeneous
cut. Otherwise, the output is: “T has no small homogeneous pair, no proper
homogenous pair, and no homogenous set”.

The proof of [21, Theorem 4.3] starts by enumerating all sets of vertices of
size at most 6 and then it checks whether they define a small homogeneous pair.
This procedure takes time O(n8). Our first improvement is a simple algorithm
that finds small homogeneous pairs (A,B) in time O(n6), if there exists one.
Without loss of generality, we can assume that |A| ≥ |B|. The main idea is to fix
the vertices of A and then try to find a suitable B verifying |A ∪ B| ≤ 6. While
we have not found a small homogeneous pair, we execute Algorithm 2 below for
all possible pairs of positive integers (i, j) such that 3 ≤ i+j ≤ 6 and j ≤ i (note
that there are at most 8 such pairs), in lexicographic order for i ∈ {2, . . . , 5} and
j ∈ {1, . . . ,min{1, 6 − i}}.

Lemma 1. Algorithm 2 is correct and runs in time O(n6). That is, a small
homogeneous pair in a trigraph T can be found in time O(n6), if it exists.

Proof. Suppose that T contains a small homogeneous pair (A,B) such that
|A| = i and |B| = j, and that T does not contain a small homogeneous pair
(A′, B′) with |A′| = i and |B′| < j (such a pair would have been found in pre-
vious iterations). We claim that there exists a vertex v ∈ R that is neither
strongly complete nor strongly anticomplete to A, or neither strongly com-
plete nor strongly anticomplete to B. Indeed, otherwise (A,B \ {v}) would
be a small homogeneous pair, contradicting the conditions of the algorithm.
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Let B′ = B \ {v}. At some point, the algorithm will consider the pair (A,B′),
and then it will find the corresponding v and check that the found pair is indeed
homogeneous. Since |A| + |B| ≤ 6, these two operations can be done in linear
time. Since i + j − 1 vertices are guessed, the complexity of the algorithm is
O(ni+j) = O(n6), as i + j ≤ 6. �

Input: A trigraph T on n vertices, two positive integers i and j such that
3 ≤ i + j ≤ 6 and i ≥ j, and such that T does not contain a small
homogeneous pair (A′, B′) with |A′| = i and |B′| < j.

Output: A small homogeneous pair (A, B) with |A| = i and |B| = j, if it exists.
begin

forall the subsets A ⊆ V of size i do
forall the subsets B′ ⊆ V \A of size j − 1 do

B = B′, R = V \(A ∪ B′).
while |B| �= j and R �= ∅ do

pick a new vertex v ∈ R and remove it from R.
if v is neither strongly complete nor strongly anticomplete to A,
or neither strongly complete nor strongly anticomplete to B then

add v to B.

if |B| = j and all vertices of V \(A ∪ B) are either strongly complete
or strongly anticomplete to A and either strongly complete or
strongly anticomplete to B then

return (A, B).

Algorithm 2. Algorithm for finding a small homogeneous pair of size i + j.

The second bottleneck in the proof of [21, Theorem 4.3] is a subroutine that
finds a minimally-sided proper homogeneous pair, if it exists, in time O(n7). We
prove the following lemma.

Lemma 2. [�] There exists an algorithm running in time O(n6) that finds a
minimally-sided homogeneous cut in a trigraph T , provided that T has some
homogeneous cut.

Lemmas 1 and 2 together clearly imply Theorem 6.

Improvement in terms of the parameter. We now focus on the improvement
in Step 1 of Algorithm 1. It is shown in the proof [21, Lemma 6.1] that Weighted
Independent Set restricted to the class T1 admits a kernel of size O(k5), and
this is what gives the function 2O(k5) in the algorithm of Theorem 1, as well as
the Turing-Kernel of Corollary 1. In the following we will show that the kernel in
the class T1 can be improved to f(k) = O(k2), concluding the proof of Theorem 2
and of Corollary 1. This improvement is detailed in the following lemma, which
should be compared to [21, Lemma 6.1]. More precisely, in [21, Lemma 6.1]
the function f is defined as f(x) = g(x) + (x − 1)(

(
g(x)
2

)
+ 2g(x) + 1), where
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g(x) =
(
x+1
2

) − 1. We redefine f as f(x) = 5g(x), yielding the desired upper
bound.

Lemma 3. There is an O(n4m)-time algorithm with the following specifications.

Input: A weighted monogamous basic trigraph T on n vertices and m strong
edges, in which all vertices have weight at least 1 and all switchable pairs have
weight at least 2, with no homogeneous set, and a positive integer k.
Output: One of the following true statements:
1. n ≤ f(k);
2. the number of maximal independent sets in T is at most n3; or
3. α(T ) ≥ k.

Proof. The proof follows closely that of [21, Lemma 6.1]. Let G be the real-
ization of T where all switchable pairs are set to “strong antiedge”. We first
check whether n ≤ f(k) in constant time. If this is not the case, we apply [21,
Theorem 5.4] to G, and check whether Output 2 is true. If not, it just remains
to prove that Output 3 is a true statement. The running time of the algorithm
is O(n4m).

Since T is basic, there are three cases to consider. Assume first that T ∈ T0.
If k ≥ 2, then f(k) > 8 ≥ n, so the algorithm should have given Output 1,
a contradiction. Thus, k ≤ 1, and Output 3 is true. If T ∈ T 1, then by [21,
Lemma 5.9] T has at most n3 maximal independent sets, so the algorithm should
have given Output 2, a contradiction.

Thus, necessarily T ∈ T1. Suppose for contradiction that α(T ) < k. We con-
sider the decomposition of T into a triangle-free trigraph X and a disjoint union
of t strong cliques K1, . . . , Kt. In contrast to the proof of [21, Lemma 6.1], we will
use the following two properties of the class T1, as described by Chudnovsky [1,2]:

(i) Each vertex of X has neighbors in at most two distinct cliques.
(ii) For each clique K ∈ {K1, . . . , Kt}, with K = {v1, . . . , vr}, the neighborhood

of K in T is a bipartite trigraph, with bipartition (A,B), such that for all
i ∈ {1, . . . , r}, Ai+1 ⊆ Ai and Bi ⊆ Bi+1, where Ai = A ∩ N(vi) and
Bi = B ∩ N(vi) (see Fig. 3).

We can suppose that |X| ≤ g(k), otherwise as T [X] is triangle-free, by Ram-
sey Theorem it follows that α(G) ≥ k, so we would have that α(T ) ≥ α(G) ≥ k.

For 1 ≤ i ≤ t, let us denote by N(Ki) the subset of vertices of X that are
adjacent to at least one vertex of Ki. By Property (i) above, it holds that

t∑

i=1

|N(Ki)| ≤ 2|X|. (1)

Claim 1. For each clique K ∈ {K1, . . . , Kt}, it holds that |K| ≤ 2|N(K)|.
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Fig. 3. Adjacency between a clique K and the set X in the proof of Lemma 3.

Proof. Consider an arbitrary K ∈ {K1, . . . , Kt}, and let K = {v1, . . . , vr}.
Consider the set N(K) as described by Property (ii) above. Let us consider
K ′ = {vi1 , . . . , vir′ }, for 1 ≤ i1 < i2 < · · · < ir′ ≤ r, the set of vertices in K
that do not belong to any switchable pair. Since T is monogamous, we have that
r − r′ ≤ |N(K)|.

Let us note Vj = Aij ∪Bij , where Ai = A∩N(vi). Note that any two vertices
in K ′ must have a distinct neighborhood, otherwise they form a homogeneous
set, a contradiction. Together with Property (ii), this implies that for all j ∈
{1, . . . , r′ − 1}, Vj � Vj+1.

Since Bi 	= ∅ for all i ∈ {1, . . . , r}, we have that |Vr′ | ≥ r′. And since
Vr′ ⊆ N(K ′), we have that |N(K ′)| ≥ |Vr′ | ≥ r′ = |K ′|.

Therefore, |K| = r = (r − r′) + r′ ≤ |N(K)| + |N(K ′)| ≤ 2|N(K)|, and the
claim follows. �

Equation (1) and Claim 1 imply that
t∑

i=1

|Ki| ≤ 4|X|, and therefore

|V (T )| = |X| +
t∑

i=1

|Ki| ≤ |X| + 4|X| = 5|X|, (2)

that is, n ≤ 5|X|, and since |X| ≤ g(k), the algorithm should have given Output
1, a contradiction. �

3.1 Independent Set in Bull-Free Graphs Without Small Holes

In this subsection we deal with bull-free graphs without small holes. Namely, we
discuss below the main ideas of the faster FPT algorithm of Theorem 3. The
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proof of the lower bound given by Theorem 4 can be found in [18]. The reduction
is from the Sparse-3-Sat problem, which cannot be solved in time 2o(n) unless
the ETH fails (see for instance [13]). Our reduction consists of a modification of
the classical reduction to show the NP-hardness of Independent Set [10].

In order to prove Theorem 3, we use the same algorithm described above for
general bull-free graphs, and the improvement in the time bound for {bull, C4, . . . ,
C2p−1}-free graphs consists in a more careful analysis of the kernel size for the
basic class T1. More precisely, we will prove that the function g such that |X| ≤
g(k) can be redefined as gp(x) = x(x

1
p−1 + 2). Plugging this function in Equa-

tion (2) yields a kernel of size O(k · k
1

p−1 ) for the class T1. Indeed, in the proof
of Lemma 3, if T is a {bull, C4, . . . , C2p−1}-free trigraph that belongs to the basic
class T1, the following lemma implies that in this case it holds that |X| ≤ gp(k),
hence proving Theorem 3. The proof is inspired from classical arguments in Ram-
sey theory [6] (see also [14] for recent results on the independence number of
triangle-free graphs in terms of several parameters).

Lemma 4. [�] Let p, k ≥ 2 be two integers and let G be a graph of girth g(G) ≥
2p. If |V (G)| ≥ k(k

1
p−1 + 2), then α(G) ≥ k.

4 Conclusions and Further Research

We showed in Theorem 2 that Weighted Independent Set in bull-free graphs
can be solved in time 2O(k2) · n7, and the lower bound of Theorem 4 states that
the problem cannot be solved in time 2o(k) · nO(1) in bull-free graphs unless the
ETH fails. Closing this complexity gap (in terms of k) is an interesting avenue
for further research.

It is tempting to try to apply similar techniques for obtaining FPT algorithms
for other (NP-hard) problems in bull-free graphs. The Independent Feedback
Vertex Set problem may be a natural candidate.

Feghali, Abu-Khzam and Müller [8] have recently shown that the problem of
deciding whether the vertices of a graph can be partitioned into a triangle-free
subgraph and a disjoint union of cliques is NP-complete in planar and perfect
graphs. Note that this problem is closely related to deciding whether a given
graph belongs to the class T1 of basic bull-free graphs. Is this problem NP-
complete when restricted to bull-free graphs? The recognition of the class T1 has
also been left as an open question in [21].
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Abstract. In the Partial Information Network Query (PINQ)

problem, we are given a host graph H, and a pattern P whose topology
is partially known. We seek a subgraph of H that resembles P. PINQ

is a generalization of Subgraph Isomorphism, where the topology of
P is known, and Graph Motif, where the topology of P is unknown.
This generalization has important applications to bioinformatics, since
it addresses the major challenge of analyzing biological networks in the
absence of certain topological data. In this paper, we use a non-standard
part-algebraic/part-combinatorial hybridization strategy to develop an
exact parameterized algorithm as well as an FPT-approximation scheme
for PINQ, allowing near resemblance between H and P. We thus unify
and significantly improve previous results related to network queries.

1 Introduction

With the increasing amount of data on biological networks available, the
discovery of conserved patterns has become of major importance. Such pat-
terns can be identified through the use of network queries, which compare the
graph modeling the network with a given pattern. Indeed, the Alignment Net-

work Query (ANQ) and Graph Motif (GM) problems play a pivotal role in
the analysis of biological networks [16,31]. Due to their general nature, they can
also be used in analyzing other types of networks, such as social and technical
networks [15].

Given a pattern P and a graph H, GM and ANQ seek a subgraph of H that
resembles P. GM requires only the connectivity of the solution, while ANQ, a
variant of the classic Subgraph Isomorphism (SI) problem, requires resem-
blance between the topology of P and the solution. The Partial Information

Network Query (PINQ) problem, introduced in [27], fits for the common
scenario where we have only partial information on the topology of P.

Since network query problems are often NP-hard, there is a growing body of
literature studying their parameterized complexity. A problem is fixed-parameter
tractable (FPT) with respect to a parameter k if it can be solved in time
O∗(f(k)) for some function f .1 In this paper, we introduce a non-standard part-
algebraic/part-combinatorial hybridization strategy, which we use to develop an

1 The notation O∗ hides factors polynomial in the input size.
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Fig. 1. An example of a homeomorphism h from G to G′.

exact as well as approximation FPT algorithms for a variant of PINQ that
allows insertions and deletions (indels) of nodes.

1.1 Problem Statement

Given a graph H and a set of graphs P, in PINQI we seek a disjoint collection
of subgraphs of H, each resembling a different graph in P, whose union is a
connected graph. Each of these subgraphs is mapped to the graph it resembles
in P, by using a variant of isomorphism allowing to delete degree-2 nodes, called
homeomorphism (defined below). For biological motivation, see, e.g., [26].

Homeomorphism: Given a graph G = (V,E) and a set U of degree-2 nodes in V,
generate the multigraph G\U as follows (see Fig. 1). Delete from G the nodes in
U and their incident edges. For every pair v, u ∈ V \U and simple path connect-
ing them, in which all other nodes belong to U , add an edge {v, u}. For every
v ∈ V \ U and simple cycle in G consisting only of v and nodes in U, add a
self-loop to v.

A homeomorphism from G = (V,E) to G′ = (V ′, E′) is defined as an iso-
morphism from G \ U to G′ \ U ′, where U and U ′ are subsets of degree-2 nodes
in V and V ′, respectively. To simplify the presentation, we use the term home-
omorphism also when referring to a function whose domain is empty.

Definition of PINQI: The input for PINQI consists of a set of graphs P =
{P1, ..., Pt}, where Pi = (Vi, Ei), and a graph H = (V,E) having real numbers
as edge-weights, along with a similarity score table Δ. The table Δ contains an
entry Δ(p, h) ∈ R∪{−∞} for any pair of nodes p, h, where p ∈ Vi, 1 ≤ i ≤ t and
h ∈ V (an entry Δ(p, h) = −∞ indicates that p and h cannot be matched). The
input contains also the nonnegative integers IF , IA and D. Let k =

∑t
i=1 |Vi|

denote the total number of nodes in P (see Fig. 2(A)).
We now give the definition of a solution for PINQI (see Fig. 2(B)). Let S =

(S, V 1
S , ..., V t+1

S , h1, ..., ht), where S = (VS , ES) is a connected subgraph of H,
{V 1

S , ..., V t+1
S } is a partition of VS , and hi is a homeomorphism from Pi to the

subgraph of S induced by V i
S , for all 1 ≤ i ≤ t. Let dom(f) and ima(f) denote

the domain and image of a function f , respectively; denote by w(e) the weight
of an edge e. The number of indels and score of S are defined as follows.
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Fig. 2. (A) An input for PINQI, where k = 8. (B) A solution for the input.

– The number of free insertions is |V t+1
S |. Informally, this is the number of nodes

connecting the subgraphs of S that are mapped to graphs in P.
– The number of alignment insertions is the number of unmapped nodes in⋃t

i=1 V i
S , i.e.,

∑t
i=1 |V i

S \ ima(hi)|. Informally, this is the number of nodes that
are not mapped to nodes of graphs in P, and yet belong to the subgraphs of
S that are mapped to P.

– The number of deletions is the number of unmapped nodes in P, i.e.,
∑t

i=1 |Vi\
dom(hi)|.

– The score is the sum of the similarity scores between the matched nodes, and
the weights of the edges in ES , i.e.,

∑t
i=1

∑
p∈dom(hi)

Δ(p, hi(p))+
∑

e∈ES
w(e).

We say that S is a solution if it includes exactly IF free insertions, IA alignment
insertions and D deletions, and any cycle in S is completely contained in the
subgraph induced by V i

S , for some 1 ≤ i ≤ t. The cycle requirement allows us
to avoid generalizing the Clique problem, which is W[1]-hard [14].2 Assuming
that there is no solution having less than IF free insertions,3 the objective of
PINQI is to find the maximum score OPT of a solution.

Relation of PINQI to Known Network Queries: Clearly, PINQ is the
special case where IF = IA = D = 0. Also, ANQ with Indels (ANQI) [13] is
the special case where t = 1. Finally, GM with Indels (GMI) [10] is the special
case where t = k, and Δ(p, h) ∈ {−∞, 0} for any p ∈ Vi, 1 ≤ i ≤ t and h ∈ V.

1.2 Related Work and Our Contribution

ANQ is NP-hard even if the single graph in P is a path, since this case generalizes
the Hamiltonian path problem [18]. GM is NP-hard even if H is a tree [24].
2 Indeed, without the cycle requirement, Clique is the special case where t = k,

IF = IA = D = 0, Δ(p, h) = 0 for all p ∈ Vi, 1 ≤ i ≤ t and h ∈ V , and w(e) = 1 for
all e ∈ E.

3 If such solution exists, we can simply reject the input.
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Table 1. Parameterized algorithms for PINQI.

Reference Weights Indels The topology of each Pi Time complexity

Pinter et al. [27] R No Tree O∗(6.75k+O(log2 k)3t)

This paper Z Yes Bounded treewidth O∗(3.7k−D+IAW)

This paper$ N0 Yes Bounded treewidth O∗(3.7k−D+IA�1
ε
�)

Table 2. Parameterized algorithms for ANQI.

Reference Weights Indels The topology of P1 Time complexity

Blin et al. [7] R Yes Bounded feedback vertex set O∗(8.2k+IA)

Dost et al. [13] R Yes Bounded treewidth O∗(8.2k+IA)

Shlomi et al. [30] R Yes Simple path O∗(5.44k+IA)

Hüffner et al. [20] R Yes Simple path O∗(4.32k+IA)

Pinter et al. [27] R No Tree O∗(6.75k)

Pinter et al. [27] R No Simple path O∗(4k)

This paper Z Yes Bounded treewidth O∗(2k−D+IAW)

This paper$ N0 Yes Bounded treewidth O∗(2k−D+IA�1
ε
�)

Tables 1, 2 and 3 present known FPT algorithms for PINQI, ANQI and
GMI, where tw is the maximum treewidth [8] of a graph in P. The Weights
columns refer to the possible values for edge-weights and scores in Δ, excluding
−∞, and W denotes the maximum absolute value of any weight. Typically, in
our applications W is polynomial in the input size [24]. Entries marked by ’$’
indicate instances for which we present an FPT-approximation scheme (FPT-
AS), that returns a value in [(1 − ε)OPT,OPT ], for any fixed ε > 0.

Our main result is Exact, a randomized O∗(3.7k−D+IAW ) time exact algo-
rithm for PINQI, which handles a wide class of inputs (see Theorem 1). We then
complement Exact by developing an FPT-AS for PINQI (see Theorem 2).

Algorithm Exact improves and unifies the previous results as follows.

– We extend the PINQ algorithm presented i n [27], by considering indels and
bounded treewidth graphs (see Table 1). Note that a graph with a bounded
feedback vertex set has a bounded treewidth [9]. Thus, our results hold also
for graphs with bounded feedback vertex sets.

– For inputs with polynomially bounded integral weights, we significantly
improve the O∗ running times of the best known algorithms for PINQ (due
to [27]) and ANQI (due to [13] and [20]). For example, using the real data
presented in [24], the weights in the table Δ can take integral values in
{−∞, 0, . . . , 4}. Applying the best known algorithm (of [13]) for ANQI, where
P1 has a bounded treewidth, we get a running time of O∗(8.2k+IA), whereas
Exact solves ANQI on such inputs in time O∗(2k−D+IA). We note that both
algorithms have the same dependency on the treewidth of P1.
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Table 3. Parameterized algorithms for GMI.

Reference Weights Indels Time complexity

Bruckner et al. [10] R Yes O∗(k!3k)

Dondi et al. [12] {0} Yes O∗(2O(k−D))

Fellows et al. [15] {0} No O∗(87k)

Pinter et al. [27] R No O∗(20.25k+O(log2 k))

Betzler et al. [2] {0} Yes O∗(29.6k−D)

Betzler et al. [2] {0} No O∗(10.88k)

Betzler et al. [3] {0} No O∗(4.32k)

Guillemot et al. [19] N
0 Yes O∗(4k−DW 2)

Koutis [22] {0} Yes O∗(2.54k−D)

Pinter et al. [28] N
0 Yes O∗(2kW )

Björklund et al. [6] {0} Yes O∗(2k−D)

This paper Z Yes O∗(2k−DW)

This paper$ N0 Yes O∗(2k−D�1
ε
�)

– We extend the algorithm for GMI presented in [6] to handle integral weights.
– Exact has the same O∗ running time as the best known FPT algorithms for SI,

in which the subgraph is a tree [23], or has a bounded treewidth [17]. The same
holds for Group Steiner Tree [25], and Min Connected Components

[28]. Indeed, all of these problems are special cases of PINQI.

Due to lack of space, some proofs are omitted. The detailed results will be
given in the full version of this paper.

Notation: Let V (P) =
⋃t

i=1 Vi and E(P) =
⋃t

i=1 Ei be the sets of nodes and
edges in P, respectively. Also let P∗ be the set of single-node graphs in P,
V (P∗) =

⋃
Pi∈P∗ Vi and k∗ = |P∗|. Let V (G) and E(G) be the node-set and

edge-set of a graph G, respectively.

2 Main Technique

In developing algorithm Exact, we combine the algebraic narrow sieves technique
[5] (see also [21]) with the divide-and-color technique [11], which are often used
as two separate tools in solving parameterized problems. Our approach contains
a novel application of narrow sieves that consists of two monomial-associating
procedures, rather than one such procedure, as detailed below. It may be useful
in obtaining fast FPT algorithms for other problems that include as special cases
“color coding-related” problems (indeed, PINQI encompasses GM and SI). We
note that the sophisticated algebraic algorithm for the Hamiltonicity problem
by Björklund [4] (see also [5]) also applies (as preprocessing) a combinatorial
partitioning phase.
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In the narrow sieves technique, we express a parameterized problem by
associating monomials with potential solutions. Each monomial either repre-
sents a unique correct solution, or an even number of incorrect solutions. Having
a polynomial that is the sum of such monomials, we need to determine whether
it has a monomial whose coefficient is odd. On the other hand, divide-and-color
is a combinatorial technique where, in each step, we have a set Sn of n elements,
and we seek a certain subset Sk of k elements in Sn. We randomly partition Sn

into two sets: S1
n and S2

n. Thus, we get the problem of finding a subset S ⊆ Sk

in S1
n, and another problem of finding the subset Sk \ S in S2

n.
In solving PINQI, we first observe that if the nodes in V can be mapped

only to nodes in V (P∗), PINQI can be efficiently solved by a narrow sieves
procedure, PA, that is a straightforward extension of the algorithm for GM

given in [6]. On the other hand, if |P| = 1, PINQI can be efficiently solved by a
different procedure, PB , using a standard application of narrow sieves.

Now, suppose that we have a partition of V into a set A of nodes that can be
mapped only to nodes in V (P∗), and a set B of nodes that can be mapped only
to nodes in V (P) \ V (P∗). For such a scenario, we develop a non-trivial narrow
sieves procedure, ManySingles, handling nodes in A in an efficient manner similar
to PA, and nodes in B in a manner similar to PB. To handle only such scenarios,
before each call to ManySingles, we use divide-and-color to partition V into the
sets A and B.4 Indeed, since we build on the results of [6], the correctness of
ManySingles crucially relies on the fact that A does not contain nodes that can
be mapped to nodes in V (P) \ V (P∗).

The combined application of divide-and-color and ManySingles is efficient only
for solutions containing many graphs from P∗.5 However, solutions containing
few graphs from P∗ cannot contain too many graphs from P (since each solution
contains exactly k nodes from V (P)). For such solutions, we develop a procedure,
FewSingles, handling all the nodes in V in a manner similar to PB .

Thus, our algorithm proceeds in the following main steps:

1. Examine all choices for the number nP∗ of graphs from P∗ in the solution.
2. If nP∗ is “large”:

(a) Apply divide-and-color to partition V as described above.
(b) Call ManySingles.

3. Else: Call FewSingles.

3 The Procedures FewSingles and ManySingles

Assume that P is a set of bounded treewidth graphs, and the weights are
nonnegative integers (recall that the weights are the possible values for edge-
weights and scores in Δ, excluding −∞). Algorithm Exact (see Sect. 4) only
needs the procedures to be correct under these assumptions. For the sake of
clarity, we first present a simple version of FewSingles that cannot handle indels.
4 This can be also viewed as applying the color coding technique [1] using only two

colors.
5 For such solutions, the time gained by handling A in a manner similar to PA prevails

the time required for the preceding selection step.
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3.1 SimpleFewSingles: A Narrow Sieves Procedure

Assuming that IF = IA = D = 0, we present a narrow sieves procedure
that efficiently finds solutions containing few graphs in P∗. We first define the
structure of a potential solution. We then describe the potential solutions, and
associate them with monomials. We show how to evaluate some sums of such
monomials, and finally, we present the procedure, which heavily relies on such
evaluations.

3.1.1 The Structure of a Potential Solution

Recall that any cycle in a solution S is contained in a subgraph induced by V i
S ,

for some 1 ≤ i ≤ t. Thus, by contracting each of the subgraphs into a single
node, and choosing a node as a root, any solution for PINQI can be represented
by a rooted tree. We study the mappings of such trees (into graphs in P) below.

A quad (T, fgra, fnod, fcon) refers to a rooted tree T = (VT , ET ) on t nodes,
fgra : VT → P, fnod : X → V and fcon : X → 2X , where X = {(v, p) :
v ∈ VT , p ∈ V (fgra(v))}. Informally, such a quad describes a structure for a
solution as follows. T and fgra specify which graphs to choose from P and how
to connect them; fnod indicates how to map the nodes of graphs chosen from P
to nodes in V ; and fcon refines our information about how the chosen graphs are
connected. Next, we define the quads corresponding to structures of potential
solutions for PINQI.

Definition 1. Given r ∈ V , we say that a quad (T, fgra, fnod, fcon) is r-good if:

1. |{(v, p) ∈ dom(fnod) : fnod(v, p) = r}| =
|{p ∈ V (fgra(root(T ))) : fnod(root(T ), p) = r}| = 1.

2. ∀v ∈ VT , {p, p′} ∈ E(fgra(v)) : {fnod(v, p), fnod(v, p′)} ∈ E.
3. ∀(v, p) ∈ dom(fnod) : Δ(p, fnod(v, p)) 	= −∞.
4. ∀(v, p) ∈ dom(fcon), (u, p′) ∈ fcon(v, p) :

(a) v is the father of u in T , and {fnod(v, p), fnod(u, p′)} ∈ E.
(b) ∀(u′, p′′) ∈ fcon(v, p) \ {(u, p′)} : fnod(u, p′) 	= fnod(u′, p′′).

5. ∀u ∈ VT \ {root(T )} : |{(v, p, p′) : (u, p′) ∈ fcon(v, p)}| = 1.

Condition 1 states that we map only one node in V (P) to r, and this node
belongs to the graph mapped to the root of T . Condition 2 requires that the
mapping of the graphs in P to subgraphs of H is correct (i.e., we map edges
of graphs in P to edges in E). By Condition 3, we do not match a node in
V (P) with a node in V that cannot be matched according to Δ. Condition 4a
states that fcon does not contradict the information provided by T on the edges
connecting the graphs in P. More precisely, a node v being a father of a node u
in T implies that fgra(v) and fgra(u) are connected by an edge. Only then fcon

may provide information on the connecting edge, where (u, p′) ∈ fcon(v, p), for
some p ∈ V (fgra(v)) and p′ ∈ V (fgra(u)), implies that p and p′ are connected
by an edge (which, by this condition, is mapped to an edge in E). Condition 4c
avoids some quads in which several nodes in V (P) are mapped to the same node
in V . Finally, Condition 5 states that for each pair of a node u and its father v in
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T , fcon provides information on exactly one pair (p, p′), for some p ∈ V (fgra(v))
and p′ ∈ V (fgra(u)), indicating that p and p′ are connected by an edge.

We now define the score of an r-good quad by the mapping of the edges in
E(P), the pairs of matched nodes, and the edges connecting the graphs in P.

Definition 2. The score of an r-good quad (T, fgra, fnod, fcon) is

∑

v∈VT ,{p,p′}∈E(fgra(v))

w({fnod(v, p), fnod(v, p′)})

+
∑

(v,p)∈dom(fnod)

[Δ(p, fnod(v, p)) +
∑

(u,p′)∈fcon(v,p)

w({fnod(v, p), fnod(u, p′)})].

3.1.2 Potential Solutions

Let L = {1, ..., k + t} be the set of indices used in labeling r-good quads (recall
that t = |P| and k =

∑t
i=1 |Vi|), defining potential solutions of the same

score as follows.

Definition 3. Given an r-good quad (T, fgra, fnod, fcon) and � : VT ∪dom(fnod)
→ L satisfying |dom(�)| = k + t, we say that (T, fgra, fnod, fcon, �) is an r-
solution.

We now define two sets: Sol(r, s) contains all r-solutions (T, fgra, fnod, fcon, �) of
score s where � is bijective; and Cor(r, s) = {(T, fgra, fnod, fcon, �) ∈ Sol(r, s) :
fgra and fnod are injective}. The next lemma implies that each set Cor(r, s)
includes enough r-solutions from Sol(r, s), and all these r-solutions are correct.

Lemma 1. The input has a solution of score s iff
⋃

r∈V Cor(r, s) 	= ∅.
Note that (T, fgra, fnod, fcon, �), (T ′, f ′

gra, f ′
nod, f

′
con, �′) ∈ Sol(r, s) are equal iff

there is an isomorphism iso between the rooted trees T and T ′, such that

1. ∀v ∈ VT : fgra(v) = f ′
gra(iso(v)), and �(v) = �′(iso(v)).

2. ∀(v, p) ∈ dom(fnod) : fnod(v, p) = f ′
nod(iso(v), p), �(v, p) = �′(iso(v), p), and

[∀(u, p′) : (u, p′) ∈ fcon(v, p) iff (iso(u), p′) ∈ f ′
con(iso(v), p)].

3.1.3 Associating Monomials with Potential Solutions

Recall that, in the narrow sieves technique, a parameterized problem is solved via
associating monomials with potential solutions. Towards defining these mono-
mials, we introduce the variables x, ye,h for all e ∈ V (P) ∪ V and h ∈ V , and
ze,l for all e ∈ P ∪ V and l ∈ L. Let ind denote the number of these variables,
i.e., ind = 1 + (k + |V |)|V | + (t + |V |)|L|.

We next define the monomials associated with potential solutions. In defining
a monomial for an r-solution sol ∈ Sol(r, s), we store information about sol that
allows reconstructing sol iff it is a correct solution (i.e., sol ∈ Cor(r, s)).
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Definition 4. m(T, fgra, fnod, fcon, �) = xs
∏

v∈VT
zfgra(v),�(v)

∏

(v,p)∈dom(fnod)

[yp,fnod(v,p)zfnod(v,p),�(v,p)

∏

(u,p′)∈fcon(v,p)

yfnod(v,p),fnod(u,p′)].

Given an r-solution, x tracks its score (as in [4]);
∏

v∈VT

zfgra(v),�(v) marks which

graphs to choose from P and how to label them;
∏

(v,p)∈dom(fnod)

yp,fnod(v,p)

zfnod(v,p),�(v,p) specifies how to map nodes in V (P) to nodes in V and how to
label nodes in V ; and

∏

(v,p)∈dom(fnod),(u,p′)∈fcon(v,p)

yfnod(v,p),fnod(u,p′) notes how to

connect the graphs chosen from P.
We now claim that correct solutions are associated with unique monomials,

and a monomial of an incorrect solution represents an even number of solutions.

Lemma 2. Pairs {sol, sol′} of different solutions in Cor(r, s) satisfy m(sol) 	=
m(sol′), while Sol(r, s) \ Cor(r, s) can be partitioned into pairs {sol, sol′} s.t.
m(sol) = m(sol′).

3.1.4 Evaluating the Sum of the Monomials

For each r ∈ V, let P (r) =
∑

s∈{0,...,(|V |+|E|)W},sol∈Sol(r,s) m(sol). We will
evaluate these polynomials over Fq, the finite field of order q, where
q = 2�log2(10(2(k+t)+t))�.

By Lemmas 1 and 2, the input has a solution of score s iff there exists a
node r ∈ V such that P (r) has a monomial with an odd coefficient in which the
degree of x is s. Since Fq has characteristic 2, we have the following result.

Lemma 3. The input has a solution of score s iff there is a node r ∈ V such
that P (r) has a monomial in which the degree of x is s.

Given A ⊆ L, let PA(r) =
∑

sol is an r−solution in which ima(�)⊆A m(sol). Using
inclusion-exclusion, and since Fq has characteristic 2, we have that P (r) =∑

A⊆L PA(r). Thus, we can evaluate P (r) by using the following lemma.

Lemma 4. Let A ⊆ L and a1, ..., aind−1 ∈ Fq. For all r ∈ V, we can eval-
uate PA(r)(x, a1, ..., aind−1) (assign values to all variables except x) in time
O(W log W |V |tw+O(1)kO(1)) and space O(W |V |tw+O(1)kO(1)) (using dynamic
programming).

3.1.5 Concluding Procedure SimpleFewSingles

SimpleFewSingles first chooses values from Fq (see below), to be assigned to all the
variables, excluding x, of polynomials of the form PA(r). It evaluates these poly-
nomials, and thus evaluates polynomials of the form P (r). Finally, it determines
the maximum score s of a solution by verifying that at least one evaluation of a
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Procedure. SimpleFewSingles(P,H,Δ)

1: forall r ∈ V do Sum[r] ⇐ 0. end for

2: select a1, . . . , aind−1 ∈ Fq independently and uniformly at random.

3: forall A ⊆ L, r ∈ V do Sum[r] ⇐ Sum[r] + PA(r)(x, a1, . . . , aind−1). end for

4: return the maximum value s such that (there exists r ∈ V for which Sum[r] is

a nonzero polynomial of degree s), where if no such s exists – reject.

polynomial P (r) resulted in a polynomial (whose only variable is x) of degree s.
Lemma 4 implies the time and space complexities of SimpleFewSingles, while
correctness follows from Lemma 3 and the Schwartz–Zippel lemma [29,32].

Lemma 5. If there is a solution, then SimpleFewSingles returns OPT with prob-
ability ≥ 9

10 , and does not return a higher score otherwise; else, it rejects. It uses
O(2k+tW log W |V |tw+O(1)kO(1)) time and O(W |V |tw+O(1)kO(1)) space.

3.2 Procedures FewSingles and ManySingles

FewSingles extends SimpleFewSingles to handle indels. The input is of the form
(nE , nP ,P,H,Δ, IF , IA,D), where nE and nP indicate that we seek solutions of
exactly nE edges from E, such that nP graphs in P are not entirely deleted.

Lemma 6. If there is a solution s.t. |ES | = nE, where {V 1
S , . . . , V t

S} includes
exactly nP nonempty sets, then FewSingles returns the maximum score of such a
solution with probability ≥ 9

10 , and not a higher score otherwise; else, it rejects.
It uses O(2k−D+IA+nP W log W |V |tw+O(1)kO(1)) time and O(W |V |tw+O(1)kO(1))
space.

ManySingles, extending [6], efficiently finds solutions of many graphs from P∗. Its
input is of the form (nE , nP∗ , nP ,P,H,Δ, IF , IA,D), where nP∗ indicates that
we seek solutions of exactly nP∗ graphs from P∗. ManySingles assumes that there
is a set U ⊆ V satisfying [∀h ∈ U : If p ∈ V (P) \ V (P∗) then Δ(p, h) = −∞]
and [∀h ∈ V \ U : If p ∈ V (P∗) then Δ(p, h) = −∞].

Lemma 7. If there is a solution without alignment insertions from U , satisfying
|ES | = nE, in which {V 1

S , ..., V t
S} includes exactly nP nonempty sets and nP∗

one-node sets, then ManySingles returns the maximum score of such a solution
with probability ≥ 9

10 , and not a higher score otherwise; else, it rejects. It uses
O(2k−D+IA+nP−nP∗ W log W |V |tw+O(1)kO(1)) time and O(W |V |tw+O(1)kO(1))
space.

4 An Exact Algorithm

We now describe our main algorithm (see below). Exact first manipulates the
weights to be nonnegative (Step 1). The variable s, initialized to −∞, holds the
highest score found so far, corresponding to the original weights. Exact iterates
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over all choices for nE , nP∗ and nP , specifying the number of edges, graphs
from P∗ and graphs from P, respectively, in the currently searched solution
(Step 2).

For each choice, Exact uses a calculation which determines whether nP∗ is
“small” or “large” (Step 3), indicating whether it is now preferable (in terms
of running time) to call FewSingle or ManySingles. If nP∗ is “small”, Exact calls
FewSingles to compute the maximum score of a solution complying with nE , nP∗

and nP (Step 4). In this step, the term v(nE +k−D) is used to correctly compare
between the score returned by FewSingles and s, since only s corresponds to the
original weights. Now, suppose that nP∗ is “large”. Before calling ManySingles
(Step 11), Exact uses divide-and-color (Steps 6–10) to examine several choices
of nodes in V for mapping graphs in P∗, and those used for mapping graphs
in P \ P∗. In particular, the number of iterations of Step 6 ensures that, with
high probability, Exact examines such a choice that complies with a solution of
maximum score. Finally, Exact returns the score s, unless no solution was found,
in which case it rejects (Step 15).

Algorithm 2. Exact(P,H,Δ, IF , IA,D)
1: subtract v =min(weights) from every weight, and initialize s ⇐ −∞.
2: for nE = 0, . . . , |E|, nP∗ = max{0, k∗ − D}, . . . , min{k∗, k − D},

nP = nP∗ , . . . , min{t, nP∗ + (k − D + IA − nP∗)/2} do

3: if 2nP∗ ≤ (k − D + IA)k−D+IA

n
nP∗
P∗ (k − D + IA − nP∗)k−D+IA−nP∗ then

4: if FewSingles(nE , nP , P, H, Δ, IF , IA, D) returns s′ > s − v(nE + k − D)
then s ⇐ s′ + v(nE + k − D). end if

5: else

6: for
10(k − D + IA)k−D+IA

nP∗ nP∗ (k − D + IA − nP∗)k−D+IA−nP∗ times do

7: initialize U ⇐ ∅ and λ ⇐ Δ.
8: forall h ∈ V , with probability

nP∗
(k−D+IA)

do add h to U . end for

9: forall p ∈ V (P) \ V (P∗), h ∈ U do λ(p, h) ⇐ −∞. end for
10: forall p ∈ V (P∗), h ∈ V \ U do λ(p, h) ⇐ −∞. end for
11: if ManySingles(nE , nP∗ , nP , P, H, λ, IF , IA, D) returns

s′ > s − v(nE + k − D) then s ⇐ s′ + v(nE + k − D). end if
12: end for
13: end if
14: end for
15: if s 	= −∞ then return s. else reject. end if

Theorem 1. Exact solves PINQI in O(3.698k−D+IAW log W |V |tw+O(1)kO(1))
time and O(W |V |tw+O(1)kO(1)) space, handling instances with integer weights,
where P is a set of bounded treewidth graphs. Its running time for ANQI is
O∗(2k+IA−DW ), and for GMI, O∗(2k−DW ).
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Using scaling and rounding, we obtain the next result.

Theorem 2. There is an FPT-AS for PINQI, handling instances with
nonnegative integer weights, where P is a set of bounded treewidth graphs. It uses
O(3.698k−D+IA� 1

ε 
 log(� 1
ε 
)|V |tw+O(1)kO(1)) time and O(� 1

ε 
|V |tw+O(1)kO(1))
space. Its running time for ANQI is O∗(2k+IA−DW ), and for GMI, O∗(2k−DW ).
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Abstract. This work continues the study of preprocessing for integer
linear programs (ILPs) via the notion of kernelization from parameter-
ized complexity. Previous work, amongst others, studied covering and
packing ILPs under different parameterizations and restrictions on the
sparseness of the constraint matrix. Several fairly restricted cases, e.g.,
if every variable appears only in a bounded number of constraints, were
shown not to admit polynomial kernels, and in fact are even W[1]-hard,
due to generalizing the Small Subset Sum(k) problem; this hardness
relies on using coefficients of value exponential in the input size. We study
these cases more carefully by taking into account also the coefficient size
of the ILPs and obtain a finer classification into cases with polynomial
kernels and cases that are fixed-parameter tractable (but without poly-
nomial kernel) in addition to the previously established W[1]-hardness
for unrestricted coefficients.

1 Introduction

Integer Linear Programs (ILPs) are a powerful language for formulating and
solving (NP-)hard combinatorial problems. An important part of successful ILP
solvers (like CPLEX) are efficient preprocessing routines that simplify the input
ILP before applying branch-and-bound or cutting-plane methods for solving it
since the latter are worst-case exponential-time. From a theoretical perspec-
tive, this makes it interesting to study the possibility of proving upper and lower
bounds for the possible impact of preprocessing. Following previous work [12,13]
we study this question using the notion of polynomial kernelization to formal-
ize preprocessing (see Sect. 2 for definitions). Concretely, we are interested in
the case of covering and packing ILPs as these capture and generalize various
parameterized problems known to admit polynomial kernelizations. Formally, by
covering and packing ILPs we mean the following normal forms

min cT x max cT x

s.t. Ax ≥ b s.t Ax ≤ b

x ≥ 0 x ≥ 0

Supported by the Emmy Noether-program of the German Research Foundation
(DFG), KR 4286/1.

c© Springer International Publishing Switzerland 2014
M. Cygan and P. Heggernes (Eds.): IPEC 2014, LNCS 8894, pp. 307–318, 2014.
DOI: 10.1007/978-3-319-13524-3 26



308 S. Kratsch and V.A. Quyen

where A ∈ N
m×n, b ∈ N

m, and c ∈ N
n (here N denotes the non-negative integers)

and all variables are required to be integers; allowing negative coefficients would
make the restriction to, e.g., Ax ≤ b meaningless. Generalizing well-studied para-
meterized covering and packing problems, like Hitting Set or Independent

Set, we consider the decision problems of determining whether there exist fea-
sible solutions with cT x ≤ k, respectively cT x ≥ k, parameterized by k. We call
these problems Covering ILP(k) and Packing ILP(k), respectively.

Previous work [12] studied Covering ILP(k) and Packing ILP(k) under
restrictions on the row- and column-sparseness of the constraint matrix A, i.e.,
when A has at most r nonzero entries per row and/or at most q nonzero entries
per column. These restrictions are equivalent to requiring that there are at most r
variables with nonzero coefficients in each constraint and that each variable
occurs in at most q constraints with nonzero coefficient. By considering both r
and q as either constant, additional parameter, or unbounded this gives rise to
covering and packing ILP problems that generalize various covering and packing
problems on graphs, hypergraphs, and set families. In this regard, note that for
hypergraph problems the edge size corresponds to r and the vertex degree to q
(and analogously for problems on set families).

It should not come as a surprise that several of these variants inherit W[1]- or
W[2]-hardness, or lower bounds against polynomial kernels, from Independent

Set and (variants of) Hitting Set. Since these problems can be expressed in
an easy way using only small coefficients, this is clearly not an artifact of the
generality of allowing large coefficients.1 If q is bounded, however, then one would
hope to reproduce/generalize polynomial kernelizations from bounded-degree
graph problems, which in some cases are very easy to obtain. Regrettably, there
is a second hardness source for covering and packing ILPs, namely the Subset

Sum problem or, more accurately, the Small Subset Sum(k) problem where
one seeks a set of at most k numbers to match a specified target number. Small
Subset Sum(k) is known to be W[1]-hard [8,9] and can be expressed using only
a constant number of constraints (thereby trivially bounding also the variable
occurrences). Thus, if row-sparseness is unbounded then due to the possibility
of having huge coefficients even constant column-sparseness q is not helpful to
avoid even W[1]-hardness, let alone obtaining polynomial kernels. Note that we
study here only the cases with unbounded row-sparseness r since the cases of
bounded r and additional parameter r already have either positive results or
negative results already for 0/1-coefficients [12].

Our work. In this work, our goal is to analyze more carefully the influence of
increasingly large coefficients on the (in-)tractability of Covering ILP(k) and
Packing ILP(k). We denote by C the largest coefficient in (A, b) and study
all cases obtained by the following choices: (1) Letting the column sparseness q
be either constant or an additional parameter. (2) Letting C be bounded, or
adding parameter C or log C. The former choice corresponds exactly to the two
cases for which we only know W[1]-hardness from Small Subset Sum(k) (when
1 Intuitively, when domains of variables and coefficients are bounded then Covering

ILP and Packing ILP often behave similar to related hypergraph and set problems.
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Table 1. “PK” stands for polynomial kernelization, “No PK” stands for no polynomial
kernelization unless NP ⊆ coNP/poly. All normal-font entries are implied by boldface
entries. All cases are FPT except those in the last column (unrestricted C).

Parameterized Complexity of Packing/Covering ILP(k)

Constant C Parameter C Parameter log C Unrestricted C

Constant q PK PK No PK W[1]-hard from

(Theorems 1 and 2) (Theorem 3) Subset Sum(k) [12]

Parameter q No PK No PK No PK W[1]-hard from

(Theorem 4) Subset Sum(k) [12]

row-sparseness is unbounded). Parameters C or log C mean that a polynomial
kernelization may depend polynomially on the largest coefficient or on the max-
imum encoding size (in binary) of coefficients. We obtain the following results,
which completely settle these questions; see Table 1. Since the further results for
Packing ILP and Covering ILP in [12] are effectively independent of the coef-
ficient size (e.g., hardness holds already for 0/1-coefficients in several cases), this
settles the effect of using bounded C, parameters log C or C, or unbounded C
for all parameterizations of Packing ILP and Covering ILP studied in [12].

Theorem 1. q-Packing ILP(k + C) admits a polynomial kernelization of size
O(k2q · C2q2 · log C) with O(kq · Cq2

) variables, O(kq · Cq2
) constraints.

Theorem 2. q-Covering ILP(k+C) admits a polynomial kernelization of size
O(kq+1 · Cq · log C) with O(kq · Cq) variables, O(k) constraints.

Note that the above results also show the fixed-parameter tractability of Pack-
ing ILP and Covering ILP in the cases that q and C or log C are considered
as constants or parameters since they constitute (not necessarily polynomial)
kernelizations for all these cases.

Theorem 3. For all q ≥ 2, q-Packing ILP(k + log C) and q-Covering ILP

(k + log C) admit no polynomial kernelization unless NP ⊆ coNP/poly and the
polynomial hierarchy collapses to its third level. If q = 1, then q-Packing ILP

(k + log C) and q-Covering ILP(k + log C) admit polynomial kernelizations.

Theorem 4. C-Packing ILP(k + q) and C-Covering ILP(k + q) admit no
polynomial kernelization unless NP ⊆ coNP/poly and the polynomial hierarchy
collapses to its third level.

Related work. We have already mentioned the previous work [12,13] on ker-
nelization properties of parameterized ILP problems. Apart from Packing ILP

and Covering ILP this work addressed also existence of polynomial kernels for
the ILP Feasibility problem of, given A ∈ Z

m×n and b ∈ Z
m, determining

whether a feasible solution x ∈ Z
n exists for Ax ≤ b. (Note that there the con-

straints are more general and not necessarily of covering or packing type since A
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and b may have negative entries.) We reuse a few of the basic reduction rules for
Covering ILP and Packing ILP that were observed in [12].

For W[1]/W[2]-completeness of standard problems such as Independent

Set(k), Hitting Set(k), and Set Packing(k) we refer to standard textbooks
on parameterized complexity [8,11]. Some restricted variants of these problems
are known to be fixed-parameter tractable and to admit polynomial kernels:
Bounded degree Independent Set(k) [folklore], d-Hitting Set(k) [2,11],
d-Set Packing(k) [1]. For the latter two, lower bounds ruling out kernels of
size O(kd−ε), for all ε > 0, unless NP ⊆ coNP/poly were proved in [5,6].

W[1]-hardness of Small Subset Sum(k) was proved by Downey and Fellows
[8,9]. Dom et al. [7] proved, amongst others, that Small Subset Sum(k + d)
has no polynomial kernel in k+d, where d bounds the encoding size of the input
numbers (i.e., all numbers are less than 2d). Dom et al. [7] also proved that Red-

Blue Dominating Set(|T | + k) and Bounded Rank Disjoint Set(d + k)
(i.e., Set Packing(d + k)) do not have polynomial kernels; we use these as
source problems for the lower bounds of Theorems 3 and 4.

Organization. In Sect. 2 we recall definitions and basic concepts of parameter-
ized complexity. Section 3 provides the proofs for Theorems 1 and 2. Section 4
gives the proofs for Theorems 3 and 4. We conclude in Sect. 5. Due to space
constraints proofs for statements marked with � are deferred to the full version.

2 Preliminaries

Parameterized complexity and kernelization. A parameterized problem
over some finite alphabet Σ is a language P ⊆ Σ∗ × N. The problem P is
fixed-parameter tractable if (x, k) ∈ P can be decided in time f(k) · (|x|+k)O(1),
where f is an arbitrary computable function. A polynomial-time algorithm K
is a kernelization for P if, given input (x, k), it computes an equivalent instance
(x′, k′) with |x′| + k′ ≤ h(k) where h is some computable function; K is a poly-
nomial kernelization if h is polynomial bounded (in k). Here equivalence means
that (x, k) ∈ P if and only if (x′, k′) ∈ P. By relaxing the restriction that the
created instance (x′, k′) must be of the same problem and allow the output to
be an instance of any language we get the notion of (polynomial) compression.

Let P and Q be parameterized problems. We say that P has a polynomial
parameter transformation to Q ([4]), denoted by P ≤ppt Q, if there exists a
polynomial time computable function f : Σ∗ × N → Σ∗ × N and a polynomial
p such that for all (x, k) ∈ Σ∗ × N we have (x, k) ∈ P if and only if (x′, k′) =
f(x, k) ∈ Q and k′ ≤ p(k).

Proposition 1 ([3,4]). Let P and Q be parameterized problems such that
P ≤ppt Q. If Q admits a polynomial compression or polynomial kernelization
then P admits a polynomial compression. If, possibly under some complexity-
theoretic assumption, P admits no polynomial compression then Q admits no
polynomial compression or polynomial kernelization under the same assumption.



On Kernels for Covering and Packing ILPs with Small Coefficients 311

3 Kernelizations for ILPs with Fixed Column Sparseness

3.1 Packing ILP Parameterized by the Largest Coefficient

In this subsection, we prove Theorem 1, i.e., that q-Packing ILP(k+C) admits
a polynomial kernelization. We recall that this refers to Packing ILP with
constant column sparseness q and with parameter k+C. Before giving the proof,
we will define some reduction rules. A reduction rule is safe if after applying it we
get a new instance which is equivalent to the original instance. Additionally, we
use the following simple lemma that summarizes some elementary reduction
steps (a similar statement is used in [12] but we include a proof in the appendix
for completeness).

Lemma 1 (�). Given an instance (A, b, c, k) for Packing ILP. We can in
polynomial time reduce to an equivalent instance (A′, b′, c′, k) such that:

1. Each variable appears in at least one constraint.
2. For every variable xj and row i of matrix A′ we have A′

ij ≤ b′
i.

3. For every variable xi we have 1 ≤ ci ≤ k.

We call the reductions in the lemma basic rules. Without loss of generality,
from now on all instances for Packing ILP are assumed to satisfy the three
conditions of the lemma.

Rule 1. If two variables xu, xv, with cu ≤ cv, have the property that they always
appear together and their corresponding coefficients in each constraint are always
the same, i.e., aiu = aiv for every row i of matrix A, then we can delete xu from
our problem.

Rule 2. If there exist k variables which have the property that no pair of them
appear together in any constraint then our instance is a YES instance.

Safeness of these two rules is an easy consequence of Lemma 1. Before continuing
with the next reduction we recall the definition of a sunflower and (a simple
variation of) the well-known sunflower lemma of Erdős and Rado [10].

Definition 1. A sunflower of cardinality r with core C is a family of r sets
S1, . . . , Sr such that Si ∩ Sj = C for all i �= j and the pairwise disjoint sets
S1 \ C, . . . , Sr \ C, which are called petals, are required to be non-empty.

Lemma 2. Let r, d, n ∈ N and F = {S1, . . . , Sn} be a family of sets each of size
at most d. If n > d · d! · rd we can find a sunflower of cardinality r + 1 in F in
time polynomial in n + d. (The extra factor of d allows set size at most d.)

Definition 2. Let (A, b, c, k) be an instance of Packing ILP. For each variable
xj we define a set Pj by Pj = {i : Aij ≥ 1} i.e., Pj is the set of all constraints
in which xj appears.

Then xi1 , . . . , xir are called sunflower variables if Pi1 , . . . , Pir form a sun-
flower of cardinality r, i.e., each constraint involves either all of xi1 , . . . , xir

(with nonzero coefficients) or at most one of them. We then call the constraints
that involve exactly one sunflower variable petal constraints and the constraints
that involve all sunflower variables core constraints.



312 S. Kratsch and V.A. Quyen

Rule 3. Let s = kq + k. If xi1 , . . . , xis are sunflower variables with ci1 ≤ · · · ≤
cis and their corresponding coefficients are always the same when they appear
together, then we can delete xi1 from our problem.

Lemma 3. Rule 3 is safe.

Proof. Rule 3 is equivalent to enforcing xi1 = 0. Clearly, this additional con-
straint cannot increase the optimum target function value. Thus, it suffices to
show that if our instance has an integer feasible solution x such that cT x ≥ k
then there exists another such solution, say x′, with x′

i1
= 0. If xi1 = 0 then

we have nothing to do. If xi1 > k then we can reduce xi1 to k which preserves
feasibility and the cost function is still not smaller than k. Thus, we can restrict
to the case that 1 ≤ xi1 = h ≤ k.

Let S = {i : xi ≥ 1}, i.e., S is the set of variables with nonzero value, and we
have i1 ∈ S. If |S| ≥ k + 1 then we simply set xi1 = 0. This of course preserves
feasibility and since there remain at least k variables with nonzero values, the
cost function is still at least k. So, we again restrict ourselves to the case |S| ≤ k.

Let P =
⋃

j∈S

Pj , then |P | ≤ ∑

j∈S

|Pj | ≤ |S| · q ≤ kq since each variable

occurs in at most q constraints. On the other hand, each sunflower variable
corresponds to one non-empty petal. Consider s = kq + k petals corresponding
to xi1 , . . . , xis . There are at least k petals disjoint from P , i.e., k sunflower
variables corresponding to them do not appear in the same petal constraint
with any variable in S. Since h ≤ k we can pick h sunflower variables from
them, say xj1 , . . . , xjh . By definitions of S and P we have xj1 = · · · = xjh = 0.

Now, we construct a new solution x′ from x by decreasing xi1 from h to zero
and increasing xj1 , . . . , xjh from zero to one. Formally, x′ is defined as follows:

⎧
⎪⎨

⎪⎩

x′
i1

= 0
x′

j1
= · · · = x′

jh
= 1

x′
j = xj otherwise.

We just need to check the feasibility of x′ with constraints that involve sunflower
variables, i.e., core constraints and petal constraints. Let us consider a core
constraint. Let a be the coefficient value that all of xi1 , xj1 , . . . , xjh have in this
constraint. Then the left hand size will decrease by a · h when xi1 reduces from
h to zero and increase by a · h when h variables xj1 , . . . , xjh move up from zero
to one. Thus, all core constraints are still satisfied. We have nothing to check
with the petal constraints that involve xi1 . Now we consider a petal constraint
that involves xjt for some t ∈ {1, . . . , h}. By the way we choose xj1 , . . . , xjh ,
there is no variable in S that appears in this constraint, i.e., all variables in this
constraint get value zero. Note that we are now in the case that all conditions
in Lemma 1 are satisfied, so increasing one variable in this constraint from zero
to one cannot break feasibility. Hence, all petal constraints are also satisfied.
We finished checking the feasibility of x′ and now only have to check the cost
function value:

cT x′ − cT x = cj1 · 1 + · · · + cjh · 1 − ci1 · h ≥ 0
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since cjt ≥ ci1 for all t = 1, . . . , h. �

Now we are ready to prove Theorem 1.

Proof (Theorem 1). We consider an arbitrary instance (A, b, c, k) of q-Packing
ILP(k+C). Let m and n denote the number of constraints and variables respec-
tively and let r = (kq + k − 1) ·Cq−1. We will show that if n > Cq · q · q! · rq then
at least one of Rule 1–3 can be applied.

Assume that n > Cq · q · q! · rq. We define Pj as in Definition 2 and let
F = {S | S = Pi for some i = 1, · · · , n} the family of sets that appear in the
sequence P1, . . . , Pn. For each S ∈ F we define n(S) = |{i | Pi = S}|. By
scanning all sets Pj , which can be done in time polynomial in n, we can check
if there exists S ∈ F such that n(S) > Cq. If the answer is yes then there exist
Cq +1 variables that always appear together. For each of them, we define its ID
by the (nonzero) coefficients in the constraints in which it appears. Since each
variable appears in at most q constraints, the length of each ID is at most q.
On the other hand, each entry of an ID can get one of C possible values from
{1, . . . , C}. Hence, there are at most Cq possible IDs. So, by the pigeon-hole-
principle, we can find two of them which share the same ID and therefore can
apply Rule 1.

In the case that n(S) ≤ Cq for all S ∈ F we have:

Cq · q · q! · rq < n =
∑

S∈F
n(S) ≤ |F| · Cq

Thus, |F| > q · q! · rq and by the Sunflower Lemma, we can find a sunflower of
cardinality r + 1 in F , say Pj1 , . . . , Pjr+1 , in time polynomial in |F| ≤ n, i.e., we
can find r + 1 sunflower variables. If the set of core constraints is empty, i.e., if
the sunflower variables never appear together, then we can apply Rule 2 since
r + 1 ≥ k.

Now we consider the case that the set of core constraints is non-empty. Since
each sunflower variable appears in at most q constraints and at least one petal
constraint, the number of core constraints is at most (q−1). We define the ID of a
sunflower variable by its coefficients in the core constraints. Each entry of an ID
can get one of C possible values from {1, . . . , C}. The length of each ID is equal to
the number of core constraints and therefore at most (q −1). Hence, there are at
most Cq−1 possible IDs. On the other hand, we have r+1 = (kq+k−1)·Cq−1+1
sunflower variables. Thus, we can find at least s = kq + k sunflower variables
that share the same ID, i.e., we can apply Rule 3.

Thus, whenever n > Cq ·q ·q! ·rq we can determine in polynomial time which
one in Rule 1–3 can be applied to reduce the number of variables. Since each
iteration reduces the number of variables at least one, in polynomial time we
must obtain an equivalent instance with at most Cq · q · q! · rq variables, i.e.,
n ∈ O(kq · Cq2

). Note that each variable appears in at most q constraints so we
have m ≤ n · q and, therefore, we have at most O(kq · Cq2

) constraints. Since all
constraint coefficients are bounded by C and all cost coefficients are bounded by
k, the size of this instance is at most O(k2q · C2q2 · log C). �
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3.2 Covering ILP Parameterized by the Largest Coefficient

In this subsection, we prove Theorem 2, i.e., that q-Covering ILP(k + C)
admits a polynomial kernelization. For each instance, we also use m,n to denote
the number of constraints and variables respectively. We start with a lemma
which was mentioned in [12] (Lemma 8 in the full version) and allows us to
bound the number of constraints and the cost value of each variable.

Lemma 4 ([12]). Let (A, b, c, k) be an instance of Covering ILP(k) and let
q denote the column-sparseness of A. In polynomial time we can compute an
equivalent instance (A′, b′, c′, k) such that:

1. A′ has at most kq rows (i.e., there are at most kq constraints).
2. The cost value c′

i of each variable xi belongs to {1, . . . , k}.
Now it is easy to prove Theorem 2.

Proof (Theorem 2). By Lemma 4, we can restrict ourselves to the case that
m ≤ kq. The only thing we need to do is reducing the number of variables.
For each variable we define its ID by its coefficients in all constraints (for the
constraints in which it does not appear we let the corresponding coefficients
be zero). Thus, each ID has length m and contains at most q nonzero entries.
Hence, the number of possible IDs is not greater than

(
m
q

) · (C + 1)q (there
are

(
m

m−q

)
=

(
m
q

)
ways to choose entries which get value zero and (C + 1)q

ways to assign value in {0, . . . , C} for each of the q remaining entries). Thus, if
n >

(
m
q

) · (C + 1)q, we can find two variables with the same ID, say xu and xv

with cu ≤ cv, then we can delete xv from our problem. Safeness of this reduction
rule can be proved similarly to safeness of Rule 1 (note that we delete xv instead
of xu because we have a minimization problem). We apply this process until
n ≤ (

m
q

) · (C + 1)q ≤ (
kq
q

) · (C + 1)q (and we already have m ≤ k · q). So we
have in hand an instance with at most O(kq ·Cq) variables and O(k) constraints.
Since all constraint coefficients are bounded by C and all cost coefficients are
bounded by k, the size of this instance is at most O(kq+1 · Cq · log C). �

4 Lower Bounds

In this section we discuss the kernelization lower bounds of Theorems 3 and 4.
The first case is that we use log C, the maximum encoding size of a coefficient,
as a parameter instead of the largest coefficient C. The second case is that we
consider C as a constant, i.e., all coefficients are bounded by a constant.

4.1 ILPs Parameterized by the Encoding Size of Coefficients

In this subsection, we prove Theorem 3 by describing a polynomial parameter
transformation from Colored Red-Blue Dominating Set. (The straight-
forward kernelizations for q = 1 are given in the full version.) Recall that in
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Colored Red-Blue Dominating Set we are given an integer k and a bipar-
tite graph G = (T ∪ N,E) where the vertices of N are colored by function
col : N → {1, . . . , k}. The problem asks whether there exists a vertex set N ′ ⊆ N
that contains exactly one vertex of each color and such that every vertex in T
has at least one neighbor in N ′. It was proven in [7] that Colored Red-Blue

Dominating Set parameterized by |T | + k does not admit a polynomial com-
pression.2 Hence, Theorem 3 is a direct corollary of following lemma.

Lemma 5. There are polynomial parameter transformations from Colored

Red-Blue Dominating Set(|T | + k) to 2-Packing ILP(k + log C) and to
2-Covering ILP(k + log C).

Proof. Let G = (T ∪N,E) be an instance of Colored Red-Blue Dominating

Set and assume that T = {t1, . . . , td}. Let Ci denote the set of all vertices in N
with color i. Set b = (k + d)2 and from now we work in the number system with
base b, i.e., a string of numbers is also considered as a number written in the
number system with base b. To produce transformations to Packing ILP and
Covering ILP, we will first consecutively construct coefficients and variable
sets of our desired instances.

For each vertex v ∈ N we define a string S(v) of length k + 2d as follows:

S(v) = 0 1 1 · · · 1 0 1
︸ ︷︷ ︸
neighbor-part

0 · · · 1 · · · 0
︸ ︷︷ ︸

color-part

The string contains two parts: color-part with k + d digits and neighbor-part
with d digits. As the name suggests, the color-part is for encoding the color of v,
i.e., the i-th digit in the color-part gets value one if and only if v ∈ Ci. Similarly,
the j-th digit in the neighbor-part gets value one if and only if tj is a neighbor
of v. If v has the color i then we also say that S(v) has color i. Note that up to
now we have only k colors while the color-part has k + d digits, it means that
the last d digits of S(v) are all zeros.

Now we will construct new strings with new colors. For each i ∈ {1, . . . , d}
and j ∈ {0, . . . , k − 1} we define a string aij as follows:

aij = 0 0 · · · j · · · 0 0
︸ ︷︷ ︸

d digits

0 0 · · · 1 · · · 0 0
︸ ︷︷ ︸

k+d digits

All digits of aij are zeros except two positions: the i-th digit gets value j and
the (k +d+ i)-th digit gets value one. In this case we say that aij has color k + i
(since the (k + i)-th digit in its color-part gets value one). At last, we construct
a number t as follows:

t = k · · · k
︸ ︷︷ ︸
d digits

1 · · · 1
︸ ︷︷ ︸

k+d digits

.

2 The paper [7] mentions only polynomial kernelizations but applies to polynomial
compressions as well (cf. [3]).
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For each vertex v ∈ N , we introduce a variable xv and for each i ∈ {1, . . . , d}
and j ∈ {0, . . . , k−1} we introduce a variable xij . To simplify, we use

∑

ij

instead

of
d∑

i=1

k−1∑

j=0

. Let us first consider the following system with two linear equations:

(∗)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑

v∈N

xv +
∑

ij

xij = k + d (1)
∑

v∈N

S(v) · xv +
∑

ij

aij · xij = t (2)

xv ≥ 0 ∀v ∈ N and xij ≥ 0 ∀i ∈ {1, . . . , d}, j ∈ {0, . . . , k − 1}

We will show that (∗) has an integer solution if and only if the original instance
of Colored Red-Blue Dominating Set is YES.

Assume that x is a solution of (∗). Compare the two sides in constraint

(2) at the last digit: We have
k−1∑

j=0

xdj = 1 modulo b. Since 0 ≤
k−1∑

j=0

xdj ≤ ∑

ij

xij ≤
∑

v∈N

xv +
∑

ij

xij
(1)
= k + d < b + 1, we must have

k−1∑

j=0

xdj = 1, i.e., there is exactly

one index j such that xdj = 1. Moreover, there is no carry over into the next

digit, i.e., we have
k−1∑

j=0

x(d−1)j = 1 modulo b. Repeating this argument for the

remaining digits in the color-part implies that, for each i = 1, . . . , d there is
exactly one index j in {0, . . . , k − 1}, say j(i), such that xij(i) = 1 and for
each color i = 1, . . . k there is exactly one vertex with color i, say vi, such that
xvi

= 1. By (1), all other variables get value zero and we can discard strings
corresponding to them. Denote N ′ = {v1, . . . , vk} then (2) becomes

∑

v∈N ′
S(v) +

d∑

i=1

aij(i) = t.

Consider the left hand side as a sum of k + d numbers in base b, since each digit
is at most k − 1 and (k + d) · (k − 1) < (k + d)2 = b there are no carry overs
when computing the sum. Thus identity must hold for each position, i.e.,

|N ′ ∩ N(ti)| + j(i) = k ∀i = 1, . . . , d.

Since j(i) ≤ k − 1 we have |N ′ ∩ N(ti)| ≥ 1 for all i = 1, . . . , d and therefore N ′

is a solution of the original Colored Red-Blue Dominating Set instance.
Now assume that N ′ ⊆ N is a solution of the original Colored Red-Blue

Dominating Set instance. By the problem definition, for each i ∈ {1, . . . , d}
we have 1 ≤ |N ′ ∩ N(ti)| ≤ |N ′| = k and therefore we can find uniquely j(i) ∈
{0, . . . , k − 1} such that |N ′ ∩ N(ti)| + j(i) = k. Then we set xij(i) = 1 for all
i and xv = 1 for all v ∈ N ′ while letting all other variables get value zero. It is
easy to check that with this assignment x is a solution of (∗).
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We finish the proof by constructing formulations of (∗) in packing and
covering form. Let us first consider two following instances of 2-Packing ILP

and 2-Covering ILP with k′ = k + d:

max
∑

v∈N

xv +
∑

ij

xij

s.t.
∑

v∈N

S(v) · xv +
∑

ij

aij · xij ≤ t (3)

∑

v∈N

(t − S(v)) · xv +
∑

ij

(t − aij) · xij ≤ t · (k + d − 1) (4)

xv ≥ 0 ∀v ∈ N

xij ≥ 0 ∀i ∈ {1, . . . , d}, j ∈ {0, . . . , k − 1}

min
∑

v∈N

xv +
∑

ij

xij

s.t.
∑

v∈N

S(v) · xv +
∑

ij

aij · xij ≥ t

∑

v∈N

(t − S(v)) · xv +
∑

ij

(t − aij) · xij ≥ t · (k + d − 1)

xv ≥ 0 ∀v ∈ N

xij ≥ 0 ∀i ∈ {1, . . . , d}, j ∈ {0, . . . , k − 1}

Equivalence of these ILPs with (∗) is easy to prove; a detailed argument is
provided in the full version. Therefore they are equivalent to the original instance
of Colored Red-Blue Dominating Set. Note that the number of variables
is |N | + k · d which is polynomially bounded in the size of the original instance.
This means that the transformations can be done in polynomial time. Finally,
every coefficient in the ILP is bounded by bk+2d = (k + d)2(k+2d) thus log C =
2(k + 2d) · log(k + d) ∈ O((k + d) log(k + d)). This completes the proof. �

4.2 ILPs with Bounded Coefficients

In this subsection we consider the case that C is considered as a constant and
the column-sparseness q is an additional parameter. We prove Theorem 4 by
constructing reductions from Bounded Rank Disjoint Set(d + k) and Red-

Blue Dominating Set(|T | + k) which were shown by Dom et al. [7] to admit
no polynomial compressions unless NP ⊆ coNP/poly.

Lemma 6 (�). There is a polynomial parameter transformation from Bounded

Rank Disjoint Set(d + k) to C-Packing ILP(k + q).

Lemma 7 (�). There is a polynomial parameter transformation from Red-

Blue Dominating Set(|T | + k) to C-Covering ILP(k + q).
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5 Conclusion

We have studied the influence of the column-sparseness q and the maximum
coefficient size C on the existence of polynomial kernels for Packing ILP(k)
and Covering ILP(k). We identified several new cases (see Table 1) as admit-
ting a polynomial kernelization or being fixed-parameter tractable but admitting
no polynomial kernelization (unless NP ⊆ coNP/poly). This has shed more light
on cases that (with unbounded coefficients) were proved W[1]-hard by reduc-
tion from Small Subset Sum(k) in previous work [12]. Since all further results
for Packing ILP and Covering ILP in [12] are either lower bounds with
0/1-coefficients or reductions to a polynomial number of variables and con-
straints, this fully settles cases with C bounded or with parameters log C or C.
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Abstract. In this paper, given a parameter k, we demonstrate an infi-
nite class of cnfs of treewidth at most k of their primal graphs such that
equivalent nondeterministic read-once branching programs (nrobps) are
of size at least nck for some universal constant c. Thus we rule out the
possibility of fixed-parameter tractable space complexity of nrobps para-
meterized by the smallest treewidth of equivalent cnfs.

1 Introduction

Read-once Branching Programs (robps) is a well known representation of
Boolean functions. Oblivious robps, better known as Ordered Binary Decision
Diagrams (obdds), is a subclass of robps, very well known because of its applica-
tions in the area of verification [2]. An important procedure in these applications
is transformation of a cnf into an equivalent obdd. The resulting obdd can be
exponentially larger than the initial cnf, however a space efficient transforma-
tion is possible for special classes of functions. For example, it has been shown
in [3] that a cnf of treewidth k of its primal graph can be transformed into
an obdd of size O(nk). A natural question is if the upper bound can be made
fixed-parameter tractable i.e. of the form f(k)nc for some constant c. In [8] we
showed that it is impossible by demonstrating that for each sufficiently large k
there is an infinite class of cnfs of treewidth at most k whose smallest obdd is
of size at least nk/5.

In this paper we report a follow up result showing that essentially the same
lower bound holds for Non-deterministic robps (nrobps). In particular we show
that there is a constant 0 < c < 1 such that for each sufficiently large k there is
an infinite class of cnfs of treewidth at most k (of their primal graphs) for which
the space complexity of equivalent nrobps is at least nck. Note that nrobps are
strictly more powerful than robps in the sense that there is an infinite class of
functions having a poly-size nrobp representation and exponential robp space
complexity [4]. In the same sense, robps are strictly more powerful than obdds,
hence the result proposed in this paper is a significant enhancement of the result
of [8].

c© Springer International Publishing Switzerland 2014
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We believe this result is interesting from the parameterized complexity theory
perspective because it contributes to the understanding of parameterized space
complexity of various representations of Boolean functions. In particular, the
proposed result implies that robps are inherently incapable to efficiently repre-
sent functions that are representable by cnfs of bounded treewidth. A natural
question for further research is the space complexity of read c-times branching
programs [1] (for an arbitrary constant c independent on k) w.r.t. the same class
of functions.

To prove the proposed result, we use monotone 2-cnfs (their clauses are
of form (x1 ∨ x2) where x1 and x2 are 2 distinct variables). These cnfs are
in one-to-one correspondence with graphs having no isolated vertices: variables
correspond to vertices and two variables occur in the same clause if and only
if the corresponding vertices are adjacent. This correspondence allows us to use
these cnfs and graphs interchangeably. We introduce the notion of Matching
Width (mw) of a graph G and prove two theorems. One of them states that a
monotone 2-cnf, whose corresponding graph G has mw at least t, cannot be
computed by a nrobp of size smaller than 2t/a, where a is a constant dependent
on the max-degree of G. The second theorem states that for each sufficiently
large k there is an infinite family of graphs of treewidth k and max-degree 5
whose mw is at least b∗ logn∗k for some constant b independent of k. The main
theorem immediately follows from replacement of t in the former lower bound
by the latter one.

The strategy outlined above is similar to that we used in [8]. However, there
are two essential differences. First, due to a much more ‘elusive’ nature of norbps
compared to that of obdds, the counting argument is more sophisticated and
more restrictive: it applies only to cnfs whose graphs are of constant degree.
Due to this latter aspect, the target set of cnf instances requires a more delicate
construction and reasoning.

Due to the space constraints, some proofs are either omitted or replaced by
sketches.

2 Preliminaries

In this paper by a set of literals we mean one that does not contain both an
occurrence of a variable and its negation. For a set S of literals we denote by
V ar(S) the set of variables whose literals occur in S. If F is a Boolean function
or its representation by a specified structure, we denote by V ar(F ) the set of
variables of F . A truth assignment to V ar(F ) on which F is true is called a
satisfying assignment of F . A set S of literals represents the truth assignment
to V ar(S) where variables occurring positively in S (i.e. whose literals in S
are positive) are assigned with true and the variables occurring negatively are
assigned with false. For example, the assignment {x1 ← true, x2 ← true, x3 ←
false} to variables x1, x2, x3 is represented as {x1, x2,¬x3}.

We define a Non-deterministic Read Once Branching Program (nrobp) as a
connected acyclic read-once switching-and-rectifier network [4]. That is, a nrobp
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Y implementing (realizing) a function F is a directed acyclic graph (with possible
multiple edges) with one leaf, one root, and with some edges labelled by literals
of the variables of F in a way that there is no directed path having two edges
labelled with literals of the same variable. We denote by A(P ) the set of literals
labelling edges of a directed path P of Y .

The connection between Y and F is defined as follows. Let P be a path from
the root to the leaf of Y . Then any extension of A(P ) to the truth assignment
of all the variables of F is a satisfying assignment of F . Conversely, let A be a
satisfying assignment of F . Then there is a path P from the root to the leaf of
Y such that A(P ) ⊆ A.

Remark. It is not hard to see that the traditional definition of nrobp as a
deterministic robp with guessing nodes [5] can be thought of as a special case
of our definition (for any function that is not constant false): remove from the
former all the nodes from which the true leaf is not reachable and relabel each
edge with the appropriate literal of the variable labelling its tail (if the original
label on the edge is 1 then the literal is positive, otherwise, if the original label
is 0, the literal is negative).

We say that a nrobp Y is uniform if the following is true. Let a be a node
of Y and let P1 and P2 be 2 paths from the root of Y to a. Then V ar(A(P1)) =
V ar((A(P2))). That is, these paths are labelled by literals of the same set of
variables. Also, if P is a path from the root to the leaf of Y then V ar(A(P )) =
V ar(F ). Thus there is a one-to-one correspondence between the sets of literals
labelling paths from the root to the leaf of Y and the satisfying assignments of F .

All the nrobps considered in Sections 3–5 of this paper are uniform.
This assumption does not affect our main result because, using the construction
described in the proof sketch of Proposition 2.1 of [6], an arbitrary nrobp can
be transformed into a uniform one at the price of O(n) times increase of the
number of edges. For the technical details, see the appendix of [7].

Given a graph G, its tree decomposition is a pair (T,B) where T is a tree
and B is a set of bags B(t) corresponding to the vertices t of T . Each B(t) is a
subset of V (G) and the bags obey the rules of union (that is,

⋃
t∈V (T ) B(t) =

V (G)), containment (that is, for each {u, v} ∈ E(G) there is t ∈ V (t) such that
{u, v} ⊆ B(t)), and connectedness (that is for each u ∈ V (G), the set of all t
such that u ∈ B(t) induces a subtree of T ). The width of (T,B) is the size of
the largest bag minus one. The treewidth of G is the smallest width of a tree
decomposition of G.

Given a cnf φ, its primal graph has the set of vertices corresponding to the
variables of φ. Two vertices are adjacent if and only if there is a clause of φ
where the corresponding variables both occur.

3 The Main Result

A monotone 2-cnfs has clauses of the form (x∨y) where x and y are two distinct
variables. Such cnfs can be put in one-to-one correspondence with graphs that
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V1 ~V1

V4 ~V4

V2 ~V2

V3

V1

V4

V2 V3

~V3

(V1 v V2)(V1 v V3)(V2 v V4)(V3 v V4)

V4
~V4

V3

V2

Fig. 1. A graph, the corresponding cnf and a nrobp of the cnf

do not have isolated vertices. In particular, let G be such a graph. Then G
corresponds to a 2cnf φ(G) whose variables are the vertices of G and the set of
clauses is {(u∨v)|{u, v} ∈ E(G)}. These notions, connected to the corresponding
nrobp, are illustrated on Fig. 1.1 It is not hard to see that G is the primal graph
of φ(G), hence we can refer to the treewidth of G as the primal graph treewidth
of φ(G).

The following theorem is the main result of this paper.

Theorem 1. There is a constant c such that for each k ≥ 50 there is an infinite
class G of graphs each of treewidth of at most k such that for each G ∈ G, the
smallest nrobp equivalent to φ(G) is of size at least nk/c, where n is the number
of variables of φ(G).

In order to prove Theorem 1, we introduce the notion of matching width (mw)
of a graph and state two theorems proved in the subsequent two sections. One
claims that if the max-degree of G is bounded then the size of a nrobp realizing
φ(G) is exponential in the mw of G. The other theorem claims that for each
sufficiently large k there is an infinite class of graphs of bounded degree and of
treewidth at most k whose mw is at least b∗logn∗k for some universal constant b.
Theorem 1 will follow as an immediate corollary of these two theorems.

Definition 1 Matching width. Let SV be a permutation of V (G) and let S1

be a prefix of SV (i.e. all vertices of SV \S1 are ordered after S1). The matching
width of S1 is the size of the largest matching consisting of the edges between
S1 and V (G) \ S1.2 The matching width of SV is the largest matching width

1 Notice that on the nrobp in Figure 1, there is a path where v2 occurs before v3
and a path where v3 occurs before v2. Thus this nrobp, although uniform, is not
oblivious.

2 We sometimes treat sequences as sets, the correct use will be always clear from the
context.
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of a prefix of SV . The matching width of G, denoted by mw(G), is the smallest
matching width of a permutation of V (G).

Remark. The above definition of matching width is a special case of the notion
of maximum matching width as defined in [9].

To illustrate the above notions recall that Cn and Kn respectively denote
a cycle and a complete graph of n vertices. Then, for a sufficiently large n,
mw(Cn) = 2. On the other hand mw(Kn) = �n/2	.
Theorem 2. For each integer i there is a constant ai such that for any graph G
the size of nrobp realizing φ(G) is at least 2mw(G)/ax where x is the max-degree
of G.

Theorem 3. There is a constant b such that for each k ≥ 50 there is an infinite
class G of graphs of degree at most 5 such that the treewidth of all the graphs of
G is at most k and for each G ∈ G the matching width is at least (logn ∗ k)/b
where n = |V (G)|.
Now we are ready to prove Theorem 1.

Proof of Theorem 1. Let G be the class whose existence is claimed by Theorem
3. By Theorem 2, for each G ∈ G the size of a nrobp realizing φ(G) is of
size at least 2mw(G)/a5 . Further on, by Theorem 3, wm(G) ≥ (logn ∗ k)/b, for
some constant b. Substituting the inequality for mw(G) into the lower bound
2mw(G)/a5 supplied by Theorem 2, we get that the size of a nrobp is at least
2logn∗k/c where c = a5 ∗ b. Replacing 2logn by n gives us the desired lower
bound. �

From now on, the proof is split into two independent parts: Sect. 4 proves
Theorem 2 and Sect. 5 proves Theorem 3.

4 Proof of Theorem 2

Recall that the vertices of graph G serve as variables in φ(G). That is, in the
truth assignments to V ar(φ(G)), the vertices are treated as literals and may
occur positively or negatively. Similarly for a path P of a nrobp Z implementing
φ(G), we say that a vertex v ∈ V (G) occurs on P if either v and ¬v labels an
edge of P . In the former case this is a positive occurrence, in the latter case a
negative one.

Recall that a Vertex Cover (vc) of G is V ′ ⊆ V (G) incident to all the edges
of E(G).

Observation 1. S is a satisfying assignment of φ(G) if and only if the vertices
of G occurring positively in S form a vc of G. Equivalently, V ′ ⊆ V (G) is the
set of all vertices of G occurring positively on a root-leaf path of Z if and only
if V ′ is a vc of G.
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In light of Observation 1, we denote the set of all vertices occurring positively
on a root-leaf path P of Z by V C(P ).

The proof of Theorem 2 requires two intermediate statements. For the first
statement, let a be a node of a nrobp Z. For an integer t > 0, we call a a
t-node if there is a set S(a) of size at least t such that for each root-leaf path P ,
meeting a, S(a) ⊆ V C(P ).

Lemma 1. Suppose that the matching width of G is at least t. Then t-nodes of
Z form a root-leaf cut.

Proof. We need to show that each root-leaf path P passes through a t-node.
Due to the uniformity of Z, (the vertices of G corresponding to) the labels of P
being explored from the root to the leaf form a permutation SV of V (G). Let
SV ′ be a prefix of the permutation witnessing the matching width at least t. In
other words, there is a matching M = {{u1, v1}, . . . , {ut, vt}} of G such that all
of u1, . . . , ut belong to SV ′, while all of v1, . . . , vt belog to SV \ SV ′. Let u be
the last vertex of SV ′ and let a be the head of the edge of P whose label is a
literal of u. We claim that a is a t-node with a witnessing set S(a) = {x1, . . . , xt}
such that xi ∈ {ui, vi} for each xi.

Indeed, observe that for each {ui, vi} there is xi ∈ {ui, vi} such that xi ∈
V C(P ) for each root-leaf path P passing through a. Clearly for any root-leaf
path Q of Z, either ui ∈ V C(Q) or vi ∈ V C(Q) for otherwise V C(Q) is not a
VC of G in contradiction to Observation 1. Thus if such xi does not exist then
there are two paths Q1 and Q2 meeting a such that V C(Q1) ∩ {ui, vi} = {ui}
and V C(Q2) ∩ {ui, vi} = {vi}.

For a root-leaf path Q passing through a denote by Qa the prefix of Q ending
with a and by ¬Qa the suffix of Q beginning with a. Observe that ui occurs both
in Q1

a and Q2
a. Indeed, assume w.l.o.g. that ui does not occur in Q1

a. Then, by
uniformity of Z, ui occurs in ¬Q1

a. Then Pa + ¬Q1
a (we denote this way the

concatenation of two paths) is a root-leaf path with a double occurrence of ui, a
contradiction to Z being read-once. Similarly we establish that vi occurs in both
¬Q1

a and ¬Q2
a. It remains to observe that, by definition, ui occurs negatively in

Q2
a and vi occurs negatively in ¬Q1

a. Hence Q∗ = Q2
a +¬Q1

a is a root-leaf path of
Z such that V C(Q∗) is disjoint with {ui, vi}, a contradiction to Observation 1,
confirming the existence of the desired xi.

Suppose that there is a root-leaf path P ′ of Z passing through a such that
S(a) � V C(P ′). This means that there is xi /∈ V C(P ′) contradicting the previ-
ous two paragraphs. Thus being a a t-node has been established and the lemma
follows. �

For the second statement, let A and B be two families of subsets of a universe
U. We say that A covers B if for each S ∈ B there is S′ ∈ A such that S′ ⊆ S.
If each element of A is of size at least t then we say that A is a t-cover of B.
Denote by VC(G) the set of all VCs of G.

Theorem 4. There is a function f such that the following is true. Let H be a
graph. Let A be a t-cover of VC(H). The |A| ≥ 2t/f(x) where x is the max-degree
of H.
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The proof of Theorem 4 is provided in Subsection 4.1. Now we are ready to
prove Theorem 2.

Proof of Theorem 2. Let N be the set of all t-nodes of Z. For each a ∈ N ,
specify one S(a) of size at least t such that for all paths P of Z passing through
a, S(a) ⊆ V C(P ). Let S = {S1, . . . , Sq} be the set of all such S(a). Then we can
specify distinct a1, . . . , aq such that Si = S(ai) for all i ∈ {1, . . . , q}.

Observe that S is covers VC(G). Indeed, let V ′ ∈ VC(G). By Observation 1,
there is a root-leaf path P with V ′ = V C(P ). By Lemma 1, P passes through
some a ∈ N and hence S(a) ⊆ V C(P ). By definition, S(a) = Si for i ∈ {1, . . . , q}
and hence Si ⊆ V ′. Thus S is a t-cover of VC(G).

It follows from Theorem 4 that q = |S| ≥ 2t/f(x) where x is a max-degree of
G and f is a universal function independent on G or t. It follows that Z contains
at least 2t/f(x) distinct nodes namely a1, . . . , aq. �

4.1 Proof of Theorem 4

We are going to define a probability distribution of VC(G) and to show that for
a graph G of constant degree the probability of an element of VC(G) to be a
superset of a specific subset of size at least t is exponentially small in t. We then
conclude that the number of such subsets covering all the elements of VC(G)
must be exponentially large in t. In the technical details that follow, we do not
use the probabilites explicitly but rather present the proof in terms of weighted
counting.

Let us define a graph G with fixed vertices as (V,E, F ) where V and E bear
their usual meaning and F ⊆ V is the set of fixed vertices. We can also use
V (G), E(G), F (G) to denote V , E, F , respectively. A set S ⊆ V (G) is a vc of
G if S is a vc of (V,E) and in addition, F ⊆ S. Then VC(G) is the set of all
vcs of (V,E) that contain F as a subset. We define G \ v as (V ′, E′, F ′) with
(V ′, E′) = (V,E) \ v (the usual operation of vertex removal from a graph) and
F ′ = F \ {v}. We define G/v as (V ′, E′, F ′′), where (V ′, E′) are as above and
F ′′ = F ∪ NG(v), where NG(v) is the set of neighbours of v in (V,E).

Let SV be a permutation of V . Now we are going to define a decision tree
of VC(G) w.r.t. SV , denoting it by T = TG,SV . It is a rooted binary tree with
edges directed from the parent to a child. If a node a of T has two children,
we distinguish the left child lchT (a) and the right child rchT (a) (the subscript
can be omitted if clear from the context). If a is a unary node, its only child is
considered the left one and the right child is not defined. We denote by Ta the
subtree of T rooted by a. With this notation in mind we define T recursively as
follows.

If G is an empty graph then TG,SV consists of a single node. Otherwise, let
vf be the first vertex of SV , SV ′ = SV \ vf (the suffix of SV ′ resulting from
the removal of vf), and rt be the root of TG,SV . If vf ∈ F (G) then rt is a unary
node, otherwise rt is a binary node. The edge (rt, lch(rt)) is labelled with vf
and Tlch(rt) is TG\vf,SV ′ . If rt is a binary node (the right child of rt is defined)
then (rt, lch(rt)) is labelled with ¬vf and Trch(rt) = TG/vf,SV ′ .
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V1

V2 ~V2

V3 ~V3 V3 ~V3

V4 V4 V4 V4
~V4

V1

V2 V3

V4

Fixed vertex

Fig. 2. A tree TC,SV C where C is the graph on the left with F (C) = {v1} and SV C =
(v1, v2, v3, v4). All the edges of TS,SV C are directed to the bottom, hence the arrows
on the edges are not shown.

An example of a decision tree as defined above is provided in Fig. 2.
For a root-leaf path P of T , denote by V C(P ) the set of vertices occurring

positively as labels of the edges of P and let PT be the set of all root-leaf paths
of T .

Observation 2. The set {V C(P )|P ∈ P}T is precisely VC(G).

Let S ⊆ V . Denote by PT,S the set if all root-leaf paths P of T such that
S ⊆ V C(P ). Let (a, b) be an edge of T and let P be a set of paths of P, all
starting from b. Then (a, b) + P = {(a, b) + P |P ∈ P} ((a, b) + P denotes the
concatenation of a single edge path (a, b) and P ).

We say that S is a distant independent set (dis) of G if the distance between
any two elements of S in G is at least 3 (the vertices of S are not adjacent and
do not have joint neighbours).

Lemma 2. Suppose that G is not empty and let vf be the first vertex of SV .
Assume that S is a dis disjoint with F (G). Then the following statements are
true regarding PT,S.

1. If vf ∈ S then PT,S = (rt, lch(rt)) + PTlch(rt),S\{vf}.
2. If rt is a binary node and vf is a neighbour of S then [PT,S = (rt, lch(rt)) +

PTlch(rt),S ] ∪ [(rt, rch(rt)) + PTrch(rt),S\{vn}] where vn is the only neighbour
of vf in S (due to S being a dis).

3. In all other cases PT,S = (rt, lch(rt))+PTlch(rt),S wherever rt is a unary node
and PT,S = [(rt, lch(rt)) + PTlch(rt),S ] ∪ [(rt, rch(rt)) + PTrch(rt),S ] wherever
rt has two children.

Proof. Assume that vf ∈ S and let P ∈ PT,S . By our assumption about vf , it
can occur only as a label on the first edge. Since vf ∈ S, this occurrence must
be positive. Consequently, the first edge is (rt, lch(rt)). Furthermore, the rest
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of the labels must be supplied by the suffix of P starting at lch(rt). Hence we
conclude that this suffix belongs to PTlch(rt),S\{vf} and hence P ∈ (rt, lch(rt))+
PTlch(rt),S\{vf}. Conversely, let P ∈ (rt, lch(rt))+PTlch(rt),S\{vf}. Then vf occurs
positively on the first edge and the rest of vertices of S occur positively in the
subsequent suffix. Thus S ⊆ V C(P ) and hence P ∈ PT,S .

It is straightforward to observe that if vf /∈ S then the third statement
holds simply owing to the fact the the occurrences of the vertices of S are not
contributed by the first edges of paths of PT . However, if vf is a neighbour of
vn ∈ S, it can be noticed that PTrch(rt),S = PTrch(rt)S\{vn} thus confirming the
second statement. Indeed, since S ⊆ V C(P ) implies S \ {vn} ∈ V C(P ) for any
P ∈ PT , PTrch(rt),S ⊆ PTrch(rt),S\{vn}. For the opposite direction, recall that
Trch(rt) = TG/vf,SV ′ and vn ∈ F (G/vf). This means that vn ∈ V C(P ) for any
path P ∈ PTrch(rt) . Consequently, S \ {vn} ⊆ V C(P ) implies that S ⊆ V C(P )
and hence PTrch(rt),S\{vn} ⊆ PTrch(rt),S . �

Let as assign weights to the edges of TG,SV as follows. For a binary node
assign weight 0.5 to both its outgoing edges. For a unary node assign weight
1 to its only out-going edge. Denote the weight of an edge e by w(e). For a
path P , the weight w(P ) of P is a product of weights of its edges, considering
the weight of a single vertex path to be 1, and for a set P of paths, its weight
w(P) =

∑
P∈P w(P ).

Observation 3. Let a be a node of TG,SV . Then the following statements hold.

– w(PTa
) = 1.

– Let (a, b) be an edge of TG,SV and let P be a set of paths of TG,SV all starting
from b. Then w((a, b) + P) = w((a, b)) ∗ w(P).

For v ∈ V (G), denote 1 − 2−(dG(v)+1) by pG(v). The following are simple
facts regarding pG(v).

Observation 4. The following statements hold regarding pG(v).

– Let u ∈ V (G) \ {v}. Then pG\u(v) ≤ pG(v).
– 0.5 ≤ pG(v).
– Let c be the max-degree of G. Then pG(v) ≤ 1 − 2−(c+1).

The following is the central statement towards the proof of Theorem 4.

Lemma 3. Let S be a DIS of G such that S ∩F (G) = ∅, let SV be an arbitrary
permutation of V (G) and let T = TG,SV . Then w(PT,S) ≤ ∏

v∈S pG(v). (We
assume the right-hand part of the inequality to equal 1 if S = ∅).
Proof. By induction on |V (G)|. If |S| = 0 then the theorem clearly holds because
w(PT,S) ≤ w(PT ) = 1 by Observation 3. So, assume that |S| > 0 and hence
|V (G)| > 0. Let rt be the root of T and let vf be the first vertex of SV .

Suppose rt is a unary node (this means that vf ∈ F (G) and hence vf /∈ S). It
follows from Lemma 2 and Observation 4 that w(PT,S) = w(PTlch(rt),S). Recall
that Tlch(rt) = TG\vf,SV \vf and that S is disjoint with F (G \ vf). Hence, the
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induction assumption stands. Combining it with the first item of Observation 4,
we get w(PTlch(rt),S) ≤ ∏

v∈S pG\vf (v) ≤ ∏
v∈S pG(v) as required.

In the rest of the proof we assume that rt is a binary node. Assume first that
vf /∈ S∪N(S). Then S remains non-fixed in both G\vf and G/vf and hence the
induction assumption stands for both w(PTlch(rt),S) and w(PTrch(rt),S). Applying
the same line of argumentation as in the previous paragraph, we observe that
w(PTlch(rt),S) ≤ ∏

v∈S pG(v) and w(PTrch(rt),S) ≤ ∏
v∈S pG(v). By Lemma 2

together with Observation 3, we obtain w(PT,S) ≤ 0.5 ∗ w(PTlch(rt),S) + 0.5 ∗
w(PTrch(rt),S). Substituting w(PTlch(rt),S) and w(PTrch(rt),S) with

∏
v∈S pG(v),

we obtain w(PT,S) ≤ 0.5 ∗ ∏
v∈S pG(v) + 0.5 ∗ ∏

v∈S pG(v) =
∏

v∈S pG(v) as
required.

Assume now that vf ∈ S. Observe that S \{vf} is not fixed in G\vf . Hence,
arguing as is the previous two paragraphs, we conclude that w(PTlch(rt),S\{vf}) ≤∏

v∈S\{vf} pG(v). Lemma 2 together with Observation 3 yield w(PT,S) ≤ 0.5 ∗
w(PTlch(rt),S). Substituting w(PTlch(rt),S\{vf}), we obtain w(PT,S) ≤ 0.5 ∗∏

v∈S\{vf} pG(v). By the second item of Observation 4, 0.5 can be replaced by
pG(vf) in the last inequality. That is w(PT,S) ≤ pG(vf) ∗ ∏

v∈S\{vf} pG(v) =
∏

v∈S pG(v) as required.
Finally, suppose that vf is a neighbour of S. That is vf is a neighbour

of exactly one vertex vn ∈ S. Observe that S is not fixed in G \ vf and
S \ {vn} is not fixed in G/vf . Hence, arguing as above, we conclude that
w(PTlch(rt),S) ≤ pG\vf (vn) ∗ ∏

v∈S\{vn} pG(v) and that w(PTrch(rt),S\{vn}) ≤
∏

v∈S\{vn} pG(v) (notice that we have not replaced pG\vf (vn) by pG(vn) as
retaining the former is essential for the forthcoming reasoning). By Lemma 2 and
Observation 3, w(PT,S) ≤ 0.5∗w(PTlch(rt),S)+0.5w(PTrch(rt),S\{vn}). Substitut-
ing w(PTlch(rt),S) and w(PTrch(rt),S\{vn}) and moving

∏
v∈S\{vn} pG(v) outside

the brackets, we obtain w(PT,S) ≤ 0.5(pG\vf (vn)+1)∗∏
v∈S\{vn} pG(v). The last

step of our reasoning is the observation that 0.5(pG\vf (vn)+1) = pG(vn). Indeed,
pG(vn) = (1 − 2−(dG(vn)+1)) = 0.5(2 − 2−dG(v)) = 0.5(1 − 2−(dG\vf (vn)+1) + 1) =
0.5(pG\vf (vn) + 1). Thus w(PT,S) ≤ pG(vn) ∗ ∏

v∈S\{vn} pG(v) =
∏

v∈S pG(v)
as required. �
Proof of Theorem 4. To consider H in the theorem statement as a graph with
fixed vertices, we represent it as (V,E, ∅). Let SV be an arbitrary permutation
of V (H) and let T = TH,SV .

For the given integer x > 0, let ax be the constant such that 2−1/ax =
(1 − 2−(x+1)). Let c be the max-degree of H. Then, by the last statement of
Observation 4, for any v ∈ V (H), pH(v) ≤ 2−1/ac .

Let S be a dis of H. Then, combining the previous paragraph with Lemma 3,
we observe that w(PT,S) ≤ 2−|S|/ac .

Let S∗ be an arbitrary subset of V (H). Observe that there is a dis S ⊆ S∗ of
size at least |S∗|/(c2 + 1). Indeed, let S ⊆ S∗ be a largest dis which a subset of
S. Then each element of S∗ \S is at distance at most 2 from an element of S. For
each u ∈ S, there are at most c + c(c − 1) = c2 elements of H lying at distance
at most 2 from S. Thus |S∗ \ S| ≤ |S| ∗ c2, that is |S∗| ≤ |S| ∗ (c2 + 1) and hence
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|S| ≥ |S∗|/(c2 + 1). Since PT,S∗ ⊆ PT,S , w(PT,S∗) ≤ w(PT,S) ≤ 2−|S|/bc , where
bc = ac ∗ (c2 + 1).

Let S1, . . . , Sq be a t-cover of VC(H). This means that for each P ∈ PT

there is Si whose vertices occur as positive labels on P . In other words, PT =⋃q
i=1 w(PT,Si

) Hence 1 = w(PT ) ≤ ∑q
i=1 w(PT,Si

) ≤ q ∗ 2−t/bc , where the first
equality follows from Observation 3. Consequently, q ≥ 2t/bc as claimed. �

5 Proof of Theorem 3

Denote by Tr a complete binary tree of height (root-leaf distance) r. Let T be a
tree and H be an arbitrary graph. Then T (H) is a graph having disjoint copies
of H in one-to-one correspondence with the vertices of T . For each pair t1, t2 of
adjacent vertices of T , the corresponding copies are connected by making adja-
cent the pairs of same vertices of these copies. Put differently, we can consider
H as a labelled graph where all vertices are associated with distinct labels. Then
for each edge {t1, t2} of T , edges are introduced between the vertices of the
corresponding copies having the same label. An example of this construction is
shown on Fig. 3.

Fig. 3. Graphs from the left to the right: T3, P3, T3(P3). The dotted ovals surround the
copies of P3 in T3(P3).

The following lemma is the critical component of the proof of Theorem 3.

Lemma 4. Let p be an arbitrary integer and let H be an arbitrary connected
graph of 2p vertices. Then for any r ≥ �logp�, mw(Tr(H)) ≥ (r+1−�logp�)p/2.

Before proving Lemma 4, let us show how Theorem 3 follows from it.

Sketch proof of Theorem 3. First of all, let us identify the class G. Recall
that Px a path of x vertices. Let 0 ≤ y ≤ 3 be such that k − y + 1 is a multiple
of 4. The considered class G consists of all G = Tr(P k−y+1

2
) for r ≥ 5�logk�. It

can be observed that the max-degree of the graphs of G is 5 and their treewidth
is at most k.

Taking into account that starting from a sufficiently large r compared to k,
r = Ω(log(n/k)) can be seen as r = Ω(logn), the lower bound of Lemma 4 can
be stated as mw(G) = Ω(logn ∗ k). �

The following lemma is an auxiliary statement for Lemma 4.
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Lemma 5. Let T be a tree consisting of at least p vertices. Let H be a connected
graph of at least 2p vertices. Let V1, V2 be a partition of V (T (H)) such that both
partition classes contain at least p2 vertices. Then T (H) has a matching of size
p with the ends of each edge belong to distinct partition classes.

Proof of Lemma 4. The proof is by induction on r. The first considered value
of r is �logp�. After that r will increment in 2. In particular, for all values
of r of the form �logp� + 2x, we will prove that mw(Tr(H)) ≥ (x + 1)p and,
moreover, for each permutation SV of V (Tr(H)), the required matching can
be witnessed by a partition of SV into a suffix and a prefix of size at least p2

each. Let us verify that the lower bound mw(Tr(H)) ≥ (x + 1)p implies the
lemma. Suppose that r = �logp� + 2x for some non-negative integer x. Then
mw(G) ≥ (x + 1)p = ((r − �logp�)/2 + 1)p > (r − �logp� + 1)p/2. Suppose
r = �logp� + 2x + 1. Then mw(G) = mw(Tr(H)) ≥ mw(Tr−1(H)) ≥ (x + 1)p =
((r − �logp� − 1)/2 + 1)p = (r − �logp� + 1)p/2.

Assume that r = �logp� and let us show the lower bound of p on the matching
width. Tr contains at least 2�logp�+1 − 1 ≥ 2logp+1 − 1 = 2p − 1 ≥ p vertices. By
construction, H contains at least 2p vertices. Consequently, for each ordering of
vertices of Tr we can specify a prefix and a suffix of size at least p2 (just choose
a prefix of size p2). Let V1 be the set of vertices that got to the prefix and let V2

be the set of vertices that got to the suffix. By Lemma 5 there is a matching of
size at least p consisting of edges between V1 and V2 confirming the lemma for
the considered case.

Let us now prove the lemma for r = �logp� + 2x for x ≥ 1. Specify the
centre of Tr as the root and let T 1, . . . , T 4 be the subtrees of Tr rooted by
the grandchildren of the root. Clearly, all of T 1, . . . , T 4 are copies of Tr−2. Let
SV be a sequence of vertices of V (Tr(H)). Let SV 1, . . . , SV 4 be the respective
sequences of V (T 1(H)), . . . , V (T 4(H)) ‘induced’ by SV (that is their order is
as in SV ). By the induction assumption, for each of them we can specify a
partition SV i

1 , SV i
2 into a prefix and a suffix of size at least p2 each witnessing

the conditions of the lemma for r−2. Let u1, . . . , u4 be the last respective vertices
of SV 1

1 , . . . , SV 4
1 . Assume w.l.o.g. that these vertices occur in SV in the order

they are listed. Let SV ′, SV ′′ be a partition of SV into a prefix and a suffix such
that the last vertex of SV ′ is u2. By the induction assumption we know that the
edges between SV 2

1 ⊆ SV ′ and SV 2
2 ⊆ SV ′′ form a matching M of size at least

xp. In the rest of the proof, we are going to show that the edges between SV ′

and SV ′′ whose ends do not belong to any of SV 2
1 , SV 2

2 can be used to form a
matching M ′ of size p. The edges of M and M ′ do not have joint ends, hence
this will imply existence of a matching of size xp + p = (x + 1)p, as required.

The sets SV ′ \ SV 2
1 and SV ′′ \ SV 2

2 partition V (Tr(H)) \ (SV 2
1 ∪ SV 2

2 ) =
V (Tr(H))\V (T 2(H)) = V ([Tr \T 2](H)). Clearly, Tr \T2 is a tree. Furthermore,
it contains at least p vertices. Indeed, T 2 (isomorphic to Tr−2) has p vertices
just because we are at the induction step and Tr contains at least 4 times more
vertices than T 2. So, in fact, Tr \ T 2 contains at least 3p vertices. Furthermore,
since u1 precedes u2, the whole SV 1

1 is in SV ′. By definition, SV 1
1 is disjoint

with SV 2
1 and hence it is a subset of SV ′ \ SV 2

1 . Furthermore, by definition,
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|SV 1
1 | ≥ p2 and hence |SV ′ \ SV 2

1 | ≥ p2 as well. Symmetrically, since u3 ∈ SV ′′,
we conclude that SV 3

2 ⊆ SV ′′ \ SV 2
2 and due to this |SV ′′ \ SV 2

2 | ≥ p2.
Thus SV ′ \ SV 2

1 and SV ′′ \ SV 2
2 partition V ([Tr \ T 2](H)) into classes of

size at least p2 each and the size of Tr \ T 2 is at least 3p. Thus, according to
Lemma 5, there is a matching M ′ of size at least p created by edges between
SV ′ \ SV 2

1 and SV ′′ \ SV 2
2 , confirming the lemma, as specified above. �
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The Relative Exponential Time Complexity
of Approximate Counting Satisfying

Assignments

Patrick Traxler(B)

Software Competence Center Hagenberg, Hagenberg, Austria
patrick.traxler@scch.at

Abstract. We study the exponential time complexity of approximate
counting satisfying assignments of CNFs. We reduce the problem to
deciding satisfiability of a CNF. Our reduction preserves the number
of variables of the input formula and thus also preserves the exponen-
tial complexity of approximate counting. Our algorithm is also similar
to an algorithm which works particularly well in practice and for which
no approximation guarantee is known.

1 Introduction

We analyze the approximation ratio of an algorithm for approximately counting
solutions of a CNF. The idea of our algorithm goes back to Stockmeyer. Stock-
meyer [19] shows that approximately counting witnesses of any NP-relation is
possible in randomized polynomial time given access to a Σ2P-oracle. It is known
that we only need an NP-oracle if we apply the Left-Over Hashing Lemma of
Impagliazzo et al. [13] which we discuss below. The use of an NP-oracle is nec-
essary, unless P = NP. Stockmeyer’s result and its improvement provides us
with a first relation between deciding satisfiability and approximately counting
solutions, a seemingly harder problem.

The motivation of our results comes from exponential time complexity.
Impagliazzio et al. [15] develop a structural approach to classify NP-complete
problems according to their exact time complexity. They formulate and prove
the Sparsification Lemma for k-CNFs. This lemma allows us to use almost all
known polynomial time reductions from the theory of NP-completeness to obtain
exponential hardness results. There are however problems for which the spar-
sification lemma and standard NP-reductions do not yield meaningful results.
Relating the exact complexity of approximately counting CNF solutions and the
complexity of SAT is such a problem. We show:

Theorem 1. Let c > 0 and assume there is an algorithm for SAT with running
time Õ(2cn) where n is the number of variables. For any δ > 0, there is an
algorithm which outputs with high probability in time Õ(2(c+δ)n) the approxima-
tion s̃ for the number of solutions s of an input CNF such that

c© Springer International Publishing Switzerland 2014
M. Cygan and P. Heggernes (Eds.): IPEC 2014, LNCS 8894, pp. 332–341, 2014.
DOI: 10.1007/978-3-319-13524-3 28
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(1 − 2−αn) s ≤ s̃ ≤ (1 + 2−αn) s

with α = Ω( δ2

log( 1
δ )

).

It is not clear if this approximation problem is in BPPNP because of the
super-polynomially small approximation error. An improvement of the approxi-
mation error would yield a similar reduction from #SAT to SAT.

Our result also holds for k-SAT. Here, the approximation guarantee depends
on the clause width k. We make a case distinction between constant clause
width k, i.e. k is independent of the number of variables n, and non-constant
k. The algorithm acount-constant and acount are defined in Sect. 4. Both
algorithms use an algorithm for deciding satisfiability of k-CNFs. Their running
time is O(n · log(n) · (n2 + 2k · k · n + size(F ))) times the running time of some
algorithm for k-SAT. We note that F is not necessarily a k-CNF.

Theorem 2. (a) Let k ≥ 5 be constant and let s be the number of solutions
of the input CNF F . The probability that algorithm acount-constant outputs
the approximation s̃ such that

1
4

2−n+
log(n)

k n1−4/k

s ≤ s̃ ≤ 4 s

is at least 1/4.
(b) Let k be such that 4 log(16n) ≤ k + 1 ≤ n and let κ be such that k + 1 =

κ log(512κ) 4 log(16n). Let s be the number of solutions of the input CNF F .
The probability that algorithm acount outputs the approximation s̃ such that

1
4

2−n/κ s ≤ s̃ ≤ 4 s

is at least 1/4.

An application of our algorithms is to sample a solution approximately uniformly
from the set of all solutions [16]. The reduction in [16] preserves the number
of variables. We can get also a result similar to Stockmeyer’s result. For any
problem in parameterized SNP [15] – an appropriate refinement and subset of
NP – we can define its counting version. Every such problem reduces by our
result and the sparsification lemma to SAT (or k-SAT) at the expense of an
increase of n to O(n) variables. Here, n may be the number of vertices in the
graph coloring problem or a similar parameter [15]. We just have to observe that
the sparsification lemma preserves the number of solutions.

We also remark that our results allow us to relax the hypothesis that SAT
(or k-SAT) is exponential hard to the hypothesis that its approximate counting
variant is exponential hard.
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1.1 A Practical Algorithm

Stockmeyer’s idea was implemented in [12]. Gomes et al. [12] provide an
implementation of a reduction which uses a SAT-solver to answer oracle queries.
The algorithm of Gomes et al. [12] is almost the same as our algorithm. It pre-
serves the number of variables and the maximum clause width is small. These
properties seem to be crucial for a fast implementation, in particular, for the
SAT-solver to work fast.

Gomes et al. [12] compare empirically the running time of their algorithm
to the running time of exact counting algorithms. Their algorithm performs
well on the tested hard instances and actually outperforms exact counting algo-
rithms. The output values seem to be good approximations. A bound on the
approximation ratio is not known.

Because there are only small differences between our algorithms and the
algorithm of Gomes et al. [12], our bound on the approximation guarantee may
be considered as a theoretical justification for the quality of the algorithm of
Gomes et al. [12]. One difference is that we need a probability amplification to
obtain our result, Theorem 2, and that it only holds for clause width k ≥ 5 at the
moment. Additionally, we consider hash functions with a different probability
distribution than in [12].

Algorithms for the k-CNF case with theoretical bounds were proposed by
Thurely [20] (approximate counting) and a randomized algorithm by Impagliazzo
et al. [14] (exact counting). Thurely achieves an approximation within a factor eε

of the number of satisfying assignments in time Õ(ε−2cn
k ), where e.g. c3 = 1.5366

for 3-SAT.

1.2 Comparison to the Left-Over Hashing Lemma

A possible reduction from approximate counting to satisfiability testing works
roughly as follows. We assume to have a procedure which takes as input a CNF
F with n variables and a parameter m. It outputs a CNF F ∧ Gm such that
the number of solutions of F ∧ Gm times 2m is approximately the number of
solutions of F . We apply this procedure for m = 1, ..., n and stop as soon as
F ∧Gm is unsatisfiable. Using the information when the algorithm stops we can
get a good approximation.

The construction of Gm reduces to the following randomness extraction
problem. We have given a random point x ∈ {0, 1}n and want a function
h : {0, 1}n → {0, 1}m such that h(x) is almost uniform. We think of h as m
functions (h1, ..., hm) and additionally require that each hi depends only on few
variables. We use the latter property to efficiently encode h as a CNF in such
a way that the encoding and the input CNF F have the same set of variables.
Stockmeyer’s result and its improvement can not be adapted in an obvious to get
such an efficient encoding. The crucial difference of our approach to the original
approach are the bounds on the locality of the hash function. Our analysis is
Fourier-analytic whereas the proof of Left-Over Hashing Lemma [13] uses prob-
abilistic techniques.
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Impagliazzo et al. [13] show that any pairwise independent1 family Hind

of functions of the form {0, 1}n → {0, 1}m satisfies the following extraction
property:

Lemma 1. Fix a distribution f over the cube {0, 1}n with min-entropy2 at least
m + Ω(log(1/ε)) and y ∈ {0, 1}m. Then,

Pr
h∼Hind

(| Pr
x∼f

(h(x) = y) − 2−m| ≤ ε · 10 · 2−m) ≥ 0.1.

This result, in a slightly more general form [13], is called the Left-Over Hash-
ing Lemma. We want for our applications that h, seen as a random function,
has besides the extraction property a couple of additional properties. The most
important being that hi is a Boolean function depending on at most k variables.
This is what we call a local hash function. These hash functions are however
not necessarily pairwise independent. This leads to a substantial problem. The
proof of the Left-Over Hashing Lemma relies on pairwise independence since
it requires an application of Chebyshev’s Inequality. In its proof we define the
random variable X = X(h) := Prx∼f (h(x) = y). Its expected value is 2−m. This
still holds in our situation. Its variance can be however too large for an applica-
tion of Chebyshev’s Inequality. To circumvent the use of Chebyshev’s Inequality
we formulate the problem in terms of Fourier analysis of Boolean functions.
We make use of a close connection between linear hash functions attaining the
extraction property and the Fourier spectrum of probability distributions over
the cube {0, 1}n.

1.3 Further Related Work

Calabro et al. [3] give a probabilistic construction of a “local hash function”
without the extraction property. They obtain a similar reduction as the Valiant-
Vazirani reduction [21]. The extraction property is not necessary for this pur-
pose. Gavinsky et al. [11] obtain a local hash function via the Hypercontractive
Inequality. However only for |A| ≥ 2n−O(

√
n) where A ⊆ {0, 1}n is the set to

be hashed. We remark that the motivations and applications in [11] are differ-
ent from ours. The (Bonami-Beckner) Hypercontractive Inequality, credited to
Bonami [2] and Beckner [1], found several diverse applications. See [8,18] for
further references.

Other practical algorithms using hashing similar to [12] is discrete integra-
tion, a special case of weighted optimization [9,10]. Results which relate different
problems to SAT are for example [3–5,22].

1 Pairwise independence means that Prh∼Hind(h(x1) = y1, h(x2) = y2) = 2−2m for
any x1, x2 ∈ {0, 1}n, x1 �= x2, and y1, y2 ∈ {0, 1}m. A Bernoulli matrix with bias 1

2

induces a pairwise independent family.
2 See Sect. 2.
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2 Preliminaries

We make the following conventions. We use a special O(·) notation for estimating
the running time of algorithms. We suppress a polynomial factor depending on
the input size by writing Õ(·). As an example, SAT can be solved in time Õ(2n).
We assume uniform sampling if we sample from a set without specifying the
distribution.

A κ-junta is a Boolean function which depends on at most κ out of n
variables. We extend this notion to functions h : {0, 1}n → {0, 1}m, h =
(h1, ..., hm), by requiring that hi : {0, 1}n → {0, 1} is a κ-junta for every i ∈ [m].
A Boolean function f : {0, 1}n → R is a distribution iff all values of f are
non-negative and sum up to 1. It has min-entropy t iff t is the largest r with
f(x) ≤ 2−r for all x ∈ {0, 1}n. The relative min-entropy t̃ is defined as t̃ := t/n.
A distribution f is t-flat iff f(x) = 2−t or f(x) = 0 for all x ∈ {0, 1}n.

Definition 1. Let 0 < p1, p2 ≤ 1. Let D be a distribution over functions of the
form {0, 1}n → {0, 1}m. A random function h is called κ-local with probability
p1 iff

Pr
h∼D

(h isκ-local) ≥ p1.

It is called a (t0, ε)-hash function ( for flat distributions) with probability p2 iff

Pr
h∼D

(| Pr
x∼f

(h(x) = y) − 2−m| ≤ ε 2−m) ≥ p2

for every y ∈ {0, 1}m and every (flat) distribution f of min-entropy t with t0 ≤
t ≤ n.

3 Local Hash Functions: Construction and Analysis

We start with the definition/construction of the two hash functions h and hc.
After this we discuss a basic connection between Fourier coefficients of distribu-
tions and the special case of linear hash functions with a one-dimensional range.
We generalize this finally to functions with the high-dimensional range {0, 1}m.

Construction of h with parameter 0 < p ≤ 1
2 : For i = 1, ...,m: Choose a set

Si ∼ μp. Define hi(x) :=
⊕

j∈Si
xj . The hash function is h := (h1, ..., hm).

Here, Si ∼ μp means that we choose every element in Si with probability p and
do not choose it with probability 1 − p. This distribution is called the Bernoulli
distribution.

Construction of hc with parameter k ≥ 1: For i = 1, ...,m: Choose a set
Si uniformly at random from {S : S ⊆ [n], |S| = k}. Define hc

i (x) :=
⊕

j∈Si
xj .

The hash function is hc := (hc
1, ..., h

c
m).



The Relative Exponential Time Complexity 337

3.1 Hashing, Randomness Extraction, and the Discrete
Fourier Transform

We start with recalling basics from Fourier analysis of Boolean functions.
The Fourier transform of Boolean functions is a functional which maps f :
{0, 1}n → R to f̂ : 2[n] → R and which we define by f̂(S) := Ex∼{0,1}n(f(x)
(−1)

⊕
i∈S xi), S ⊆ [n]. We will study the following normalized Fourier transform

given by f̃(S) := 2n−1 f̂(S). We call the values of f̂ Fourier coefficients and the
collection of Fourier coefficients the Fourier spectrum of f .

We can rewrite normalized Fourier coefficients to see the connection to hash-
ing and randomness extraction. We define

⊕
i∈{} xi := 0.

Lemma 2. Let f : {0, 1}n → R be a distribution. For any S ⊆ [n],

f̃(S) = Pr
x∼f

(
⊕

i∈S

xi = 0) − 1
2

=
1
2

− Pr
x∼f

(
⊕

i∈S

xi = 1).

We may think of
⊕

i∈S xi as a single bit which we extract from f . We
are interested in how close to a uniformly distributed bit it is. There is also
a combinatorial interpretation of randomness extraction which we are going
to use subsequently. We define for non-empty A ⊆ {0, 1}n the flat distribu-
tion fA(x) := 1

|A| if x ∈ A and 0 otherwise. We want a random hash function
h : {0, 1}n → {0, 1} such that for every not too small A ⊆ {0, 1}n and b ∈ {0, 1},
Prh

(∣
∣Prx∼fA

(h(x) = b) − 1
2

∣
∣ is small

)
is large. This is the same as saying that

the probability of the event |A ∩ {x ∈ A : h(x) = b}| ≈ |A|
2 should be large. In

words, the hyperplane in F
n
2 induced by h separates A in roughly equal sized

parts.

3.2 Analysis of Local Hash Function

In this section we describe our technical tools for analyzing linear local hash
functions. We show how to apply them on the example of the two random func-
tions h and hc. We apply the Hypercontractive Inequality for the analysis of hc,
Lemma 5, and a new inequality, Lemma 3, for the analysis of h, Lemma 4. We
start with Lemma 3.

The support of a function g : {0, 1}n → R is the set of all points with a
non-zero value and denoted by Supp(g).

Lemma 3. Let f, g : {0, 1}n → {−1, 0, 1}, 0 < p ≤ 1
2 , and 0 < α ≤ 1

9 . Let
Ã(α, p) be such that max((1 + 2−1/α+8)αp, (1 − p) 4αp) ≤ Ã(α, p). Then,

ES∼μp
(f̂(S) ĝ(S)) ≤ 4−n Ã(α, p)n (|Supp(f)| · |Supp(g)|)1−αp.

Lemma 3 is one of the main contributions of our work. It is shown by
induction over n. In its proof we work explicitly with the Bernoulli distribu-
tion S is chosen from. The purpose is to decompose in the induction step the
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n-dimensional functions f and g into (n − 1)-dimensional functions with the
same range {−1, 0, 1}.

Lemma 4 is a straight forward application of the previous result, Lemma 3,
together with a result of Chor and Goldreich [6].

Lemma 4. Let f : {0, 1}n → R be a distribution of relative min-entropy t̃,
2t̃n ∈ {1, ..., 2n}, and 0 < p ≤ 1

2 . Then,

ES∼μp
(|f̃(S)|) ≤ 1

2

√
2

−p·n·t̃/ log(512/t̃)
.

Applying the Hypercontractive Inequality in a straight forward way we get
the following result.

Lemma 5. Let f : {0, 1}n → R be a distribution of min-entropy t with 2t ∈
{1, ..., 2n}, k be a positive integer, and 0 < ζ < 1. Then,

E
S∼([n]

k )(|f̃(S)|) ≤ 1
2

n−(1−ζ)k/2 2(n−t) k n−ζ

.

The intuition of Lemmas 4 and 5 is given by Lemma 2. Lemmas 4 and 5
say that the normalized Fourier coefficient is small in case of high min-entropy.
Lemma 2 then says that

⊕
i∈S xi, S as in Lemmas 4 and 5, is good for hashing.

It remains to show how to apply Lemmas 4 and 5 to finally analyze h and hc.

Lemma 6. (Main Lemma)
Hash Function h. Let 0 < ε < 1. Let 0 < p ≤ 1

2 be as in the definition of h.
Define

P (t̃) :=
m

ε

√
2

−pnt̃/ log(512/t̃)
.

If there exists t̃0 such that P = P (t̃0) < 1 and t̃0n + m + 1 ≤ n, then h is
a (t̃0n + m + 1, ε)-hash function for flat distributions with probability at least
(1 − P )m > 0.

Hash Function hc. Let 0 < ε < 1 and 0 < ζ < 1. Let k be as in the definition
of hc. Define

Q(t) :=
m

ε
n−(1−ζ)k/2 2(n−t) k n−ζ

.

If there exists t0 such that Q = Q(t0) < 1 and t0 + m + 1 ≤ n, then hc is
a (t0 + m + 1, ε)-hash function for flat distributions with probability at least
(1 − Q)m > 0.

We note that hc is a k-local hash function with probability 1 and that h is for
example a (2pn)-local hash function with high probability if p = Ω( log(n)n ).

Our proof works as follows. Assume f has min-entropy t. Conditioning on an
event E ⊆ {0, 1}n yields a new distribution f ′ with min-entropy t′. We can not
say much about the relation of t and t′ in general. If E is however a hyperplane
(in the vector space F

n
2 ) induced by

⊕
i∈S xi then our inequalities from above,
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Lemmas 4 and 5, tell us that t′ ≈ t − 1 in the expectation. Iterating this step
and keeping control of the entropy decay we get our result. This process works
as long as we reach some threshold t0. The proof is an induction over m and the
induction step an application of Lemmas 4 and 5.

3.3 Limitations

In this section we discuss that we can only expect small improvements of the
Main Lemma.

Rank of Bernoulli Matrices. We will argue that the restriction p = Ω( log(n)n )
in the construction h is necessary. We recall the combinatorial idea behind hash-
ing. Let M be a Bernoulli matrix with bias p and let y ∈ {0, 1}m. The preimage
of M , y intersects any large enough subset A ⊆ {0, 1}n in approximately |A|·2−m

points. Let us assume m = n. If especially A = {0, 1}n we expect that the linear
system Mx = y has one solution in F

n
2 . This is is the case iff M has full rank. The

threshold for this property is around Θ( log(n)n ) [7]. In particular, the probability
that M has full rank can get very small and in which case M fails to have the
extraction property with high probability. With respect to this consideration it
is not surprising that our probabilistic construction of h becomes efficient only
if p = Ω( log(n)n ).

The Isolation Problem. We will argue that the trade-off between the size
of A, i.e. the min-entropy of the corresponding flat distribution, and p is close
to optimal. We can restrict A to be the solution set of a k-CNF. The following
result is due to Calabro et al. [3]: For any distribution D of k-CNFs over n
variables, there is a satisfiable k-CNF F such that PrF ′∼D(|sol(F ) ∩ sol(F ′)| =
1) ≤ 2−Ω(n/k), where sol(F ) (sol(F ′)) refers to the set of solutions of F (F ′).
The corresponding problem of computing F ′ is the Isolation Problem for k-
CNFs [3]. We show how the Main Lemma relates to a solution of this problem.
Let G be a k-CNF and let p = k

n , k = Θ(κ log(κ) log(n)). The Main Lemma
guarantees just that |sol(G) ∩ sol(G′)|, G′ the CNF-encoding of h, is with high
probability within a small interval around v = 2O(n/κ). We need to define an
appropriate distribution D0 to apply the mentioned result. Chernoff’s Inequality
guarantees that h is encodable as a k-CNF G′′ with high probability. We extend
G′′ by constraints (literals) which encode xi = 0 or xi = 1 as follows. Uniformly
at random select a set of log(v) variables. Uniformly at random set the value
of these variables. This defines our distribution D0. With probability at least
2−O(n·log(κ)/κ) we get a O(k)-CNF G′ such that |sol(G) ∩ sol(G′)| = 1. The
reason for this is the following simple to prove fact (Exercise 12.2, p. 152 in
[17]): Let B ⊆ {0, 1}n be non-empty. There exists a set of variables I ⊆ [n] and
b ∈ {0, 1}I such that |I| ≤ log(|B|) and |{x ∈ B : xi = bi ∀i ∈ I}| = 1. Note
that the construction of D0 depends only on the parameters n, k, and m, but
not on the input k-CNF G. We can thus apply the result of Calabro et al. [3].
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Comparing the lower and and upper bound we see that we are off by a factor
O(log(k)2 log(n)) in the exponent.

4 Algorithms and Main Results

The algorithm acount-constant is depicted in Fig. 1. It is similar to the
algorithm of Gomes et al. [12]. One difference is the output. We output an
approximation for the number of solutions. The algorithm of Gomes et al. [12]
outputs a lower and an upper bound. Besides the experimental results, Gomes
et al. [12] can show that with high probability the output lower bound is indeed
smaller than the number of solutions. They give however no estimation for the
quality of the output bounds which would be necessary for bounding the approx-
imation ratio.

Input: CNF F over n variables and a parameter k.

1. If F is unsatisfiable then output 0 and stop.
2. For l = 1, ..., n + 1:
3. Repeat 8�log(n)� times:
4. Construct hc. Select b ∼ {0, 1}l.
5. Let G be the k-CNF encoding of h(x) = b.
6. Record if F ∧ G is satisfiable.
7. If unsatisfiability was recorded more than 4�log(n)� times
8. then output 2l−1 and stop.

Fig. 1. Algorithm acount-constant with access to a SAT-oracle

We define algorithm acount similar to acount but with the only difference
that it constructs h. In the construction of h we have to check if h can be encoded
by a CNF with small enough clause width. This happens with high probability
due to an application of the Chernoff bound.

We stress the fact that our algorithms are easy to implement and that we can
amplify the success probability further by repeating the inner loop appropriately.

Finally, Theorem 2 states the analysis of these algorithms. Its proof uses the
Main Lemma. Theorem 1 follows from the analysis of acount together with
some simple extra ideas.
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