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Preface

Paul Erdős

Paul Erdős liked to talk about The Book, in which God maintains the perfect
proofs for mathematical theorems, following the dictum of G. H. Hardy that
there is no permanent place for ugly mathematics. Erdős also said that you
need not believe in God but, as a mathematician, you should believe in
The Book. A few years ago, we suggested to him to write up a first (and
very modest) approximation to The Book. He was enthusiastic about the
idea and, characteristically, went to work immediately, filling page after
page with his suggestions. Our book was supposed to appear in March
1998 as a present to Erdős’ 85th birthday. With Paul’s unfortunate death
in the summer of 1996, he is not listed as a co-author. Instead this book is
dedicated to his memory.

“The Book”

We have no definition or characterization of what constitutes a proof from
The Book: all we offer here is the examples that we have selected, hop-
ing that our readers will share our enthusiasm about brilliant ideas, clever
insights and wonderful observations. We also hope that our readers will
enjoy this despite the imperfections of our exposition. The selection is to a
great extent influenced by Paul Erdős himself. A large number of the topics
were suggested by him, and many of the proofs trace directly back to him,
or were initiated by his supreme insight in asking the right question or in
making the right conjecture. So to a large extent this book reflects the views
of Paul Erdős as to what should be considered a proof from The Book.

A limiting factor for our selection of topics was that everything in this book
is supposed to be accessible to readers whose backgrounds include only
a modest amount of technique from undergraduate mathematics. A little
linear algebra, some basic analysis and number theory, and a healthy dollop
of elementary concepts and reasonings from discrete mathematics should
be sufficient to understand and enjoy everything in this book.

We are extremely grateful to the many people who helped and supported
us with this project — among them the students of a seminar where we
discussed a preliminary version, to Benno Artmann, Stephan Brandt, Stefan
Felsner, Eli Goodman, Torsten Heldmann, and Hans Mielke. We thank
Margrit Barrett, Christian Bressler, Ewgenij Gawrilow, Michael Joswig,
Elke Pose, and Jörg Rambau for their technical help in composing this
book. We are in great debt to Tom Trotter who read the manuscript from
first to last page, to Karl H. Hofmann for his wonderful drawings, and
most of all to the late great Paul Erdős himself.

Berlin, March 1998 Martin Aigner · Günter M. Ziegler
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Preface to the Fifth Edition

It is now almost twenty years that the idea to this project was born dur-
ing some leisurely discussions at the Mathematisches Forschungsinstitut
in Oberwolfach with the incomparable Paul Erdős. At that time we could
not possibly imagine the wonderful and lasting response our book about
The Book would have, with all the warm letters, interesting comments
and suggestions, new editions, and as of now thirteen translations. It is no
exaggeration to say that it has become a part of our lives.

In addition to numerous improvements and smaller changes, many of them
suggested by our readers, the present fifth edition contains four new chap-
ters, which present an extraordinary proof for the classical spectral theorem
from linear algebra, the impossibility of the Borromean rings as a highlight
from geometry, the finite version of Kakeya’s problem, and an inspired
proof for Minc’s permanent conjecture.

We thank everyone who helped and encouraged us over all these years. For
the second edition this included Stephan Brandt, Christian Elsholtz, Jürgen
Elstrodt, Daniel Grieser, Roger Heath-Brown, Lee L. Keener, Christian
Lebœuf, Hanfried Lenz, Nicolas Puech, John Scholes, Bernulf Weißbach,
and many others. The third edition benefitted especially from input by
David Bevan, Anders Björner, Dietrich Braess, John Cosgrave, Hubert
Kalf, Günter Pickert, Alistair Sinclair, and Herb Wilf. For the fourth edi-
tion, we were particularly indebted to Oliver Deiser, Anton Dochtermann,
Michael Harbeck, Stefan Hougardy, Hendrik W. Lenstra, Günter Rote,
Moritz W. Schmitt, and Carsten Schultz for their contributions. For the
present edition, we gratefully acknowledge ideas and suggestions by Ian
Agol, France Dacar, Christopher Deninger, Michael D. Hirschhorn, Franz
Lemmermeyer, Raimund Seidel, Tord Sjödin, and John M. Sullivan, as well
as help from Marie-Sophie Litz, Miriam Schlöter, and Jan Schneider.

Moreover, we thank Ruth Allewelt at Springer in Heidelberg and Christoph
Eyrich, Torsten Heldmann, and Elke Pose in Berlin for their continuing sup-
port throughout these years. And finally, this book would certainly not look
the same without the original design suggested by Karl-Friedrich Koch, and
the superb new drawings provided for each edition by Karl H. Hofmann.

Berlin, June 2014 Martin Aigner · Günter M. Ziegler
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Six proofs

of the infinity of primes

Chapter 1

It is only natural that we start these notes with probably the oldest Book
Proof, usually attributed to Euclid (Elements IX, 20). It shows that the
sequence of primes does not end.

� Euclid’s Proof. For any finite set {p1, . . . , pr} of primes, consider
the number n = p1p2 · · · pr + 1. This n has a prime divisor p. But p is
not one of the pi: otherwise p would be a divisor of n and of the product
p1p2 · · · pr, and thus also of the difference n − p1p2 · · · pr = 1, which is
impossible. So a finite set {p1, . . . , pr} cannot be the collection of all prime
numbers. �

Before we continue let us fix some notation. N = {1, 2, 3, . . .} is the set
of natural numbers, Z = {. . . ,−2,−1, 0, 1, 2, . . .} the set of integers, and
P = {2, 3, 5, 7, . . .} the set of primes.

In the following, we will exhibit various other proofs (out of a much longer
list) which we hope the reader will like as much as we do. Although they
use different view-points, the following basic idea is common to all of them:
The natural numbers grow beyond all bounds, and every natural number
n ≥ 2 has a prime divisor. These two facts taken together force P to be
infinite. The next proof is due to Christian Goldbach (from a letter to Leon-
hard Euler 1730), the third proof is apparently folklore, the fourth one is
by Euler himself, the fifth proof was proposed by Harry Fürstenberg, while
the last proof is due to Paul Erdős.

� Second Proof. Let us first look at the Fermat numbers Fn = 22
n

+1 for
n = 0, 1, 2, . . .. We will show that any two Fermat numbers are relatively
prime; hence there must be infinitely many primes. To this end, we verify
the recursion n−1∏

k=0

Fk = Fn − 2 (n ≥ 1),

from which our assertion follows immediately. Indeed, if m is a divisor of,

F0 = 3
F1 = 5
F2 = 17
F3 = 257
F4 = 65537
F5 = 641 · 6700417

The first few Fermat numbers

say, Fk and Fn (k < n), then m divides 2, and hence m = 1 or 2. But
m = 2 is impossible since all Fermat numbers are odd.

To prove the recursion we use induction on n. For n = 1 we have F0 = 3
and F1 − 2 = 3. With induction we now conclude

n∏
k=0

Fk =
( n−1∏

k=0

Fk

)
Fn = (Fn − 2)Fn =

= (22
n − 1)(22

n

+ 1) = 22
n+1 − 1 = Fn+1 − 2. �

M. Aigner, G.M. Ziegler, Proofs from THE BOOK, DOI 10.1007/978-3-662-44205-0_1,  
© Springer-Verlag Berlin Heidelberg 2014 



4 Six proofs of the infinity of primes

� Third Proof. SupposeP is finite and p is the largest prime. We consider
the so-called Mersenne number 2p − 1 and show that any prime factor q
of 2p− 1 is bigger than p, which will yield the desired conclusion. Let q be
a prime dividing 2p − 1, so we have 2p ≡ 1 (mod q). Since p is prime, this

Lagrange’s theorem

If G is a finite (multiplicative) group
and U is a subgroup, then |U |
divides |G|.

� Proof. Consider the binary rela-
tion

a ∼ b : ⇐⇒ ba−1 ∈ U.

It follows from the group axioms
that ∼ is an equivalence relation.
The equivalence class containing an
element a is precisely the coset

Ua = {xa : x ∈ U}.

Since clearly |Ua| = |U |, we find
that G decomposes into equivalence
classes, all of size |U |, and hence
that |U | divides |G|. �

In the special case when U is a cyclic
subgroup {a, a2, . . . , am} we find
that m (the smallest positive inte-
ger such that am = 1, called the
order of a) divides the size |G| of
the group. In particular, we have
a|G| = 1.

means that the element 2 has order p in the multiplicative group Zq\{0} of
the field Zq . This group has q − 1 elements. By Lagrange’s theorem (see
the box) we know that the order of every element divides the size of the
group, that is, we have p | q − 1, and hence p < q. �

Now let us look at a proof that uses elementary calculus.

� Fourth Proof. Let π(x) := #{p ≤ x : p ∈ P} be the number of primes
that are less than or equal to the real number x. We number the primes
P = {p1, p2, p3, . . .} in increasing order. Consider the natural logarithm
log x, defined as log x =

∫ x

1
1
t dt.

21

1

n n+1

Steps above the function f(t) = 1
t

Now we compare the area below the graph of f(t) = 1
t with an upper step

function. (See also the appendix on page 12 for this method.) Thus for
n ≤ x < n+ 1 we have

log x ≤ 1 +
1

2
+

1

3
+ · · ·+ 1

n− 1
+

1

n

≤
∑ 1

m
, where the sum extends over all m ∈ N which have

only prime divisors p ≤ x.

Since every such m can be written in a unique way as a product of the form∏
p≤x

pkp , we see that the last sum is equal to

∏
p∈P
p≤x

(∑
k≥0

1

pk

)
.

The inner sum is a geometric series with ratio 1
p , hence

log x ≤
∏
p∈P
p≤x

1

1− 1
p

=
∏
p∈P
p≤x

p

p− 1
=

π(x)∏
k=1

pk
pk − 1

.

Now clearly pk ≥ k + 1, and thus

pk
pk − 1

= 1 +
1

pk − 1
≤ 1 +

1

k
=

k + 1

k
,

and therefore

log x ≤
π(x)∏
k=1

k + 1

k
= π(x) + 1.

Everybody knows that log x is not bounded, so we conclude that π(x) is
unbounded as well, and so there are infinitely many primes. �



Six proofs of the infinity of primes 5

� Fifth Proof. After analysis it’s topology now! Consider the following
curious topology on the set Z of integers. For a, b ∈ Z, b > 0, we set

Na,b = {a+ nb : n ∈ Z}.

Each set Na,b is a two-way infinite arithmetic progression. Now call a set
O ⊆ Z open if either O is empty, or if to every a ∈ O there exists some
b > 0 with Na,b ⊆ O. Clearly, the union of open sets is open again. If
O1, O2 are open, and a ∈ O1 ∩ O2 with Na,b1 ⊆ O1 and Na,b2 ⊆ O2,
then a ∈ Na,b1b2 ⊆ O1 ∩ O2. So we conclude that any finite intersection
of open sets is again open. So, this family of open sets induces a bona fide
topology on Z.

Let us note two facts:

(A) Any nonempty open set is infinite.

(B) Any set Na,b is closed as well.

Indeed, the first fact follows from the definition. For the second we observe

Na,b = Z \
b−1⋃
i=1

Na+i,b,

which proves that Na,b is the complement of an open set and hence closed.

“Pitching flat rocks, infinitely”

So far the primes have not yet entered the picture — but here they come.
Since any number n �= 1,−1 has a prime divisor p, and hence is contained
in N0,p, we conclude

Z \ {1,−1} =
⋃
p∈P

N0,p.

Now if P were finite, then
⋃

p∈P N0,p would be a finite union of closed sets
(by (B)), and hence closed. Consequently, {1,−1} would be an open set,
in violation of (A). �

� Sixth Proof. Our final proof goes a considerable step further and
demonstrates not only that there are infinitely many primes, but also that
the series

∑
p∈P

1
p diverges. The first proof of this important result was

given by Euler (and is interesting in its own right), but our proof, devised
by Erdős, is of compelling beauty.

Let p1, p2, p3, . . . be the sequence of primes in increasing order, and
assume that

∑
p∈P

1
p converges. Then there must be a natural number k

such that
∑

i≥k+1
1
pi

< 1
2 . Let us call p1, . . . , pk the small primes, and

pk+1, pk+2, . . . the big primes. For an arbitrary natural numberN we there-
fore find ∑

i≥k+1

N

pi
<

N

2
. (1)



6 Six proofs of the infinity of primes

Let Nb be the number of positive integers n ≤ N which are divisible by at
least one big prime, and Ns the number of positive integers n ≤ N which
have only small prime divisors. We are going to show that for a suitable N

Nb +Ns < N,

which will be our desired contradiction, since by definition Nb+Ns would
have to be equal to N .

To estimate Nb note that 	Npi

 counts the positive integers n ≤ N which

are multiples of pi. Hence by (1) we obtain

Nb ≤
∑

i≥k+1

⌊N
pi

⌋
<

N

2
. (2)

Let us now look at Ns. We write every n ≤ N which has only small prime
divisors in the form n = anb

2
n, where an is the square-free part. Every an

is thus a product of different small primes, and we conclude that there are
precisely 2k different square-free parts. Furthermore, as bn ≤

√
n ≤
√
N ,

we find that there are at most
√
N different square parts, and so

Ns ≤ 2k
√
N.

Since (2) holds for any N , it remains to find a number N with 2k
√
N ≤ N

2

or 2k+1 ≤
√
N , and for this N = 22k+2 will do. �

Appendix: Infinitely many more proofs

Our collection of proofs for the infinitude of primes contains several other
old and new treasures, but there is one of very recent vintage that is quite
different and deserves special mention. Let us try to identify sequences S
of integers such that the set of primes PS that divide some member of S
is infinite. Every such sequence would then provide its own proof for the
infinity of primes. The Fermat numbers Fn studied in the second proof
form such a sequence, while the powers of 2 don’t. Many more examples

Issai Schur

are provided by a theorem of Issai Schur, who showed in 1912 that for
every nonconstant polynomial p(x) with integer coefficients the set of all
nonzero values {p(n) �= 0 : n ∈ N} is such a sequence. For the polynomial
p(x) = x, Schur’s result gives us Euclid’s theorem. As another example,
for p(x) = x2 + 1 we get that the “squares plus one” contain infinitely
many different prime factors.

The following result due to Christian Elsholtz is a real gem: It generalizes
Schur’s theorem, the proof is just clever counting, and it is in a certain sense
best possible.
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Let S = (s1, s2, s3, . . . ) be a sequence of integers. We say that

• S is almost injective if every value occurs at most c times for some con-
stant c,
• S is of subexponential growth if |sn| ≤ 22

f(n)

for all n, where f :N→ R+

is a function with f(n)
log2n

→ 0.

In place of 2 we could take any
other base larger than 1; for example,

|sn| ≤ ee
f(n)

leads to the same class
of sequences.Theorem. If the sequence S = (s1, s2, s3, . . . ) is almost injective and of

subexponential growth, then the set PS of primes that divide some member
of S is infinite.

� Proof. We may assume that f(n) is monotonely increasing. Otherwise,
replace f(n) by F (n) = maxi≤n f(i); you can easily check that with this
F (n) the sequence S again satisfies the subexponential growth condition.

Let us suppose for a contradiction that PS = {p1, . . . , pk} is finite. For
n ∈ N, let

sn = εnp
α1
1 · · · pαk

k , with εn ∈ {1, 0,−1}, αi ≥ 0,

where the αi = αi(n) depend on n. (For sn = 0 we can put αi = 0 for
all i.) Then

2α1+···+αk ≤ |sn| ≤ 22
f(n)

for sn �= 0,

and thus by taking the binary logarithm

0 ≤ αi ≤ α1 + · · ·+ αk ≤ 2f(n) for 1 ≤ i ≤ k.

Hence there are not more than 2f(n) + 1 different possible values for each
αi = αi(n). Since f is monotone, this gives a first estimate

#{distinct |sn| �= 0 for n ≤ N} ≤ (2f(N) + 1)k ≤ 2(f(N)+1)k.

On the other hand, since S is almost injective only c terms in the sequence
can be equal to 0, and each nonzero absolute value can occur at most 2c
times, so we get the lower estimate

#{distinct |sn| �= 0 for n ≤ N} ≥ N − c

2c
.

Altogether, this gives

N − c

2c
≤ 2k(f(N)+1).

Taking again the logarithm with base 2 on both sides, we obtain

log2(N − c)− log2(2c) ≤ k (f(N) + 1) for all N.

This, however, is plainly false for large N , as k and c are constants, so
log2(N−c)

log2N
goes to 1 for N →∞, while f(N)

log2N
goes to 0. �



8 Six proofs of the infinity of primes

Can one relax the conditions? At least neither of them is superfluous.

That we need the “almost injective” condition can be seen from sequences
S like (2, 2, 2, . . . ) or (1, 2, 2, 4, 4, 4, 4, 8, . . .), which satisfy the growth
condition, while PS = {2} is finite.

As for the subexponential growth condition, let us remark that it cannot
be weakened to a requirement of the form f(n)

log2n
≤ ε for a fixed ε > 0.

To see this, one analyzes the sequence of all numbers of the form pα1
1 · · · pαk

k

arranged in increasing order, where p1, . . . , pk are fixed primes and k is
large. This sequence S grows roughly like 22

f(n)

with f(n)
log2n

≈ 1
k , while PS

is finite by construction.
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Bertrand’s postulate Chapter 2

Joseph Bertrand

We have seen that the sequence of prime numbers 2, 3, 5, 7, . . . is infinite.
To see that the size of its gaps is not bounded, let N := 2 · 3 · 5 · · · p denote
the product of all prime numbers that are smaller than k + 2, and note that
none of the k numbers

N + 2, N + 3, N + 4, . . . , N + k,N + (k + 1)

is prime, since for 2 ≤ i ≤ k + 1 we know that i has a prime factor that is
smaller than k + 2, and this factor also divides N , and hence also N + i.
With this recipe, we find, for example, for k = 10 that none of the ten
numbers

2312, 2313, 2314, . . . , 2321

is prime.

But there are also upper bounds for the gaps in the sequence of prime num-
bers. A famous bound states that “the gap to the next prime cannot be larger
than the number we start our search at.” This is known as Bertrand’s pos-
tulate, since it was conjectured and verified empirically for n < 3 000 000
by Joseph Bertrand. It was first proved for all n by Pafnuty Chebyshev in
1850. A much simpler proof was given by the Indian genius Ramanujan.
Our Book Proof is by Paul Erdős: it is taken from Erdős’ first published
paper, which appeared in 1932, when Erdős was 19.

Bertrand’s postulate

For every n ≥ 1, there is some prime number p with n < p ≤ 2n.

� Proof. We will estimate the size of the binomial coefficient
(
2n
n

)
care-

fully enough to see that if it didn’t have any prime factors in the range
n < p ≤ 2n, then it would be “too small.” Our argument is in five steps.

(1) We first prove Bertrand’s postulate for n ≤ 511. For this one does not
need to check 511 cases: it suffices (this is “Landau’s trick”) to check that

2, 3, 5, 7, 13, 23, 43, 83, 163, 317, 521

is a sequence of prime numbers, where each is smaller than twice the pre-
vious one. Hence every interval {y : n < y ≤ 2n}, with n ≤ 511, contains
one of these 11 primes.

M. Aigner, G.M. Ziegler, Proofs from THE BOOK, DOI 10.1007/978-3-662-44205-0_2,  
© Springer-Verlag Berlin Heidelberg 2014 



10 Bertrand’s postulate

(2) Next we prove that∏
p≤x

p ≤ 4x−1 for all real x ≥ 2, (1)

where our notation — here and in the following — is meant to imply that
the product is taken over all prime numbers p ≤ x. The proof that we
present for this fact uses induction on the number of these primes. It is
not from Erdős’ original paper, but it is also due to Erdős (see the margin),
and it is a true Book Proof. First we note that if q is the largest prime with
q ≤ x, then ∏

p≤x

p =
∏
p≤q

p and 4q−1 ≤ 4x−1.

Thus it suffices to check (1) for the case where x = q is a prime number. For
q = 2 we get “2 ≤ 4,” so we proceed to consider odd primes q = 2m+ 1.
(Here we may assume, by induction, that (1) is valid for all integers x in
the set {2, 3, . . . , 2m}.) For q = 2m+ 1 we split the product and compute∏
p≤2m+1

p =
∏

p≤m+1

p ·
∏

m+1<p≤2m+1

p ≤ 4m
(
2m+ 1

m

)
≤ 4m22m = 42m.

All the pieces of this “one-line computation” are easy to see. In fact,∏
p≤m+1

p ≤ 4m

holds by induction. The inequality∏
m+1<p≤2m+1

p ≤
(
2m+ 1

m

)
follows from the observation that

(
2m+1
m

)
= (2m+1)!

m!(m+1)! is an integer, where
the primes that we consider all are factors of the numerator (2m+ 1)!, but
not of the denominator m!(m+ 1)!. Finally(

2m+ 1

m

)
≤ 22m

holds since (
2m+ 1

m

)
and

(
2m+ 1

m+ 1

)
Legendre’s theorem

The number n! contains the prime
factor p exactly∑

k≥1

⌊ n

pk

⌋

times.

� Proof. Exactly
⌊
n
p

⌋
of the factors

of n! = 1 · 2 · 3 · · ·n are divisible by
p, which accounts for

⌊
n
p

⌋
p-factors.

Next,
⌊

n
p2

⌋
of the factors of n! are

even divisible by p2, which accounts
for the next

⌊
n
p2

⌋
prime factors p

of n!, etc. �

are two (equal!) summands that appear in

2m+1∑
k=0

(
2m+ 1

k

)
= 22m+1.

(3) From Legendre’s theorem (see the box) we get that
(
2n
n

)
= (2n)!

n!n! con-
tains the prime factor p exactly∑

k≥1

(⌊
2n

pk

⌋
− 2

⌊
n

pk

⌋)
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times. Here each summand is at most 1, since it satisfies⌊
2n

pk

⌋
− 2

⌊
n

pk

⌋
<

2n

pk
− 2

(
n

pk
− 1

)
= 2,

and it is an integer. Furthermore the summands vanish whenever pk > 2n.

Thus
(
2n
n

)
contains p exactly∑

k≥1

(⌊
2n

pk

⌋
− 2

⌊
n

pk

⌋)
≤ max{r : pr ≤ 2n}

times. Hence the largest power of p that divides
(
2n
n

)
is not larger than 2n.

In particular, primes p >
√
2n appear at most once in

(
2n
n

)
.

Furthermore — and this, according to Erdős, is the key fact for his proof
— primes p that satisfy 2

3n < p ≤ n do not divide
(
2n
n

)
at all! Indeed,

Examples such as(
26
13

)
= 23 · 52 · 7 · 17 · 19 · 23(

28
14

)
= 23 · 33 · 52 · 17 · 19 · 23(

30
15

)
= 24 · 32 · 5 · 17 · 19 · 23 · 29

illustrate that “very small” prime factors
p <

√
2n can appear as higher powers

in
(
2n
n

)
, “small” primes with

√
2n <

p ≤ 2
3
n appear at most once, while

factors in the gap with 2
3
n < p ≤ n

don’t appear at all.

3p > 2n implies (for n ≥ 3, and hence p ≥ 3) that p and 2p are the only
multiples of p that appear as factors in the numerator of (2n)!

n!n! , while we get
two p-factors in the denominator.

(4) Now we are ready to estimate
(
2n
n

)
, benefitting from a suggestion by

Raimund Seidel, which nicely improves Erdős’ original argument. For
n ≥ 3, using an estimate from page 14 for the lower bound, we get

4n

2n
≤

(
2n

n

)
≤

∏
p≤√2n

2n ·
∏

√
2n<p≤ 2

3n

p ·
∏

n<p≤2n

p.

Now, there are no more than
√
2n primes in the first factor; hence using (1)

for the second factor and letting P (n) denote the number of primes between
n and 2n we get

4n

2n
<

(
(2n)

√
2n

)
·
(
4

2
3n

)
· (2n)P (n),

that is,
4

n
3 < (2n)

√
2n+1+P (n). (2)

(5) Taking the logarithm to base 2, the last inequality is turned into

P (n) >
2n

3 log2(2n)
− (
√
2n+ 1). (3)

It remains to verify that the right-hand side of (3) is positive for n large
enough. We show that this is the case for n = 29 = 512 (actually, it holds
from n = 468 onward). By writing 2n − 1 = (

√
2n − 1)(

√
2n + 1) and

cancelling the (
√
2n+ 1)-factor it suffices to show
√
2n− 1 > 3 log2(2n) for n ≥ 29. (4)

For n = 29, (4) becomes 31 > 30, and comparing the derivatives
(
√
x − 1)′ = 1

2
1√
x

and (3 log2 x)
′ = 3

log 2
1
x we see that

√
x − 1 grows

faster than 3 log2 x for x > ( 6
log 2 )

2 ≈ 75 and thus certainly for x ≥ 210 =
1024. �
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One can extract even more from this type of estimates: Comparing the
derivatives of both sides, one can sharpen (4) to

√
2n− 1 ≥ 21

4
log2(2n) for n ≥ 211,

which with a little arithmetic and (3) implies

P (n) ≥ 2

7

n

log2(2n)
.

This is not that bad an estimate: the “true” number of primes in this range
is roughly n/ logn. This follows from the “prime number theorem,” which
says that the limit

lim
n→∞

#{p ≤ n : p is prime}
n/ logn

exists, and equals 1. This famous result was first proved by Hadamard and
de la Vallée-Poussin in 1896; Selberg and Erdős found an elementary proof
(without complex analysis tools, but still long and involved) in 1948.

On the prime number theorem itself the final word, it seems, is still not in:
for example a proof of the Riemann hypothesis (see page 60), one of the
major unsolved open problems in mathematics, would also give a substan-
tial improvement for the estimates of the prime number theorem. But also
for Bertrand’s postulate, one could expect dramatic improvements. In fact,
the following is a famous unsolved problem:

Is there always a prime between n2 and (n+ 1)2?

For additional information see [3, p. 19] and [4, pp. 248, 257].

Appendix: Some estimates

Estimating via integrals

There is a very simple-but-effective method of estimating sums by integrals
(as already encountered on page 4). For estimating the harmonic numbers

Hn =

n∑
k=1

1

k

we draw the figure in the margin and derive from it

1

1 n2

Hn − 1 =

n∑
k=2

1

k
<

∫ n

1

1

t
dt = logn

by comparing the area below the graph of f(t) = 1
t (1 ≤ t ≤ n) with the

area of the dark shaded rectangles, and

Hn −
1

n
=

n−1∑
k=1

1

k
>

∫ n

1

1

t
dt = logn
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by comparing with the area of the large rectangles (including the lightly
shaded parts). Taken together, this yields

logn+
1

n
< Hn < logn + 1.

In particular, lim
n→∞

Hn → ∞, and the order of growth of Hn is given by

lim
n→∞

Hn

logn = 1. But much better estimates are known (see [2]), such as

Here O
(

1
n6

)
denotes a function f(n)

such that f(n) ≤ c 1
n6 holds for some

constant c.
Hn = logn+ γ +

1

2n
− 1

12n2
+

1

120n4
+O

(
1

n6

)
,

where γ ≈ 0.5772 is “Euler’s constant.”

Estimating factorials — Stirling’s formula

The same method applied to

log(n!) = log 2 + log 3 + · · ·+ logn =

n∑
k=2

log k

yields

log((n− 1)!) <

∫ n

1

log t dt < log(n!),

where the integral is easily computed:∫ n

1

log t dt =
[
t log t− t

]n
1

= n logn− n+ 1.

Thus we get a lower estimate on n!

n! > en logn−n+1 = e
(n
e

)n

and at the same time an upper estimate

n! = n (n− 1)! < nen log n−n+1 = en
(n
e

)n

.

Here a more careful analysis is needed to get the asymptotics of n!, as given
by Stirling’s formula Here f(n) ∼ g(n) means that

lim
n→∞

f(n)

g(n)
= 1.

n! ∼
√
2πn

(n
e

)n

.

And again there are more precise versions available, such as

n! =
√
2πn

(n
e

)n
(
1 +

1

12n
+

1

288n2
− 139

5140n3
+O

(
1

n4

))
.

Estimating binomial coefficients

Just from the definition of the binomial coefficients
(
n
k

)
as the number of

k-subsets of an n-set, we know that the sequence
(
n
0

)
,
(
n
1

)
, . . . ,

(
n
n

)
of

binomial coefficients
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• sums to
n∑

k=0

(
n
k

)
= 2n

• is symmetric:
(
n
k

)
=

(
n

n−k

)
.

From the functional equation
(
n
k

)
= n−k+1

k

(
n

k−1

)
one easily finds that for

every n the binomial coefficients
(
n
k

)
form a sequence that is symmetric

and unimodal: it increases towards the middle, so that the middle binomial
coefficients are the largest ones in the sequence:1

1
1
1
1
1
1
1
1

2
3

4
5

6
7

15
10

6
3
1
1

4
10

20
35

15
5
1
1

6
7
1
121 2135

Pascal’s triangle
1 =

(
n
0

)
<

(
n
1

)
< · · · <

(
n

	n/2

)
=

(
n

�n/2�
)
> · · · >

(
n

n−1

)
>

(
n
n

)
= 1.

Here 	x
 resp. �x� denotes the number x rounded down resp. rounded up
to the nearest integer.

From the asymptotic formulas for the factorials mentioned above one can
obtain very precise estimates for the sizes of binomial coefficients. How-
ever, we will only need very weak and simple estimates in this book, such
as the following:

(
n
k

)
≤ 2n for all k, while for n ≥ 2 we have(

n

	n/2


)
≥ 2n

n
,

with equality only for n = 2. In particular, for n ≥ 1,(
2n

n

)
≥ 4n

2n
.

This holds since
(

n
	n/2


)
, a middle binomial coefficient, is the largest entry

in the sequence
(
n
0

)
+
(
n
n

)
,
(
n
1

)
,
(
n
2

)
, . . . ,

(
n

n−1

)
, whose sum is 2n, and whose

average is thus 2n

n .

On the other hand, we note the upper bound for binomial coefficients(
n

k

)
=

n(n− 1) · · · (n− k + 1)

k!
≤ nk

k!
≤ nk

2k−1
,

which is a reasonably good estimate for the “small” binomial coefficients
at the tails of the sequence, when n is large (compared to k).
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Binomial coefficients

are (almost) never powers

Chapter 3

There is an epilogue to Bertrand’s postulate which leads to a beautiful re-
sult on binomial coefficients. In 1892 Sylvester strengthened Bertrand’s
postulate in the following way:

If n ≥ 2k, then at least one of the numbers n, n− 1, . . . , n− k+1
has a prime divisor p greater than k.

Note that for n = 2k we obtain precisely Bertrand’s postulate. In 1934,
Erdős gave a short and elementary Book Proof of Sylvester’s result, running
along the lines of his proof of Bertrand’s postulate. There is an equivalent
way of stating Sylvester’s theorem:

The binomial coefficient(
n

k

)
=

n(n− 1) · · · (n− k + 1)

k!
(n ≥ 2k)

always has a prime factor p > k.

With this observation in mind, we turn to another one of Erdős’ jewels:

When is
(
n
k

)
equal to a power m�?

The case k = � = 2 leads to a classical topic. Multiplying
(
n
2

)
= m2

by 8 and rearranging terms gives (2n − 1)2 − 2(2m)2 = 1, which is a
special case of Pell’s equation, x2− 2y2 = 1. One learns in number theory
that this equation has infinitely many positive solutions (xk, yk), which are
given by xk + yk

√
2 = (3 + 2

√
2)k for k ≥ 1. The smallest examples are

(x1, y1) = (3, 2), (x2, y2) = (17, 12), and (x3, y3) = (99, 70), yielding(
2
2

)
= 12,

(
9
2

)
= 62, and

(
50
2

)
= 352.

For k = 3 it is known that
(
n
3

)
= m2 has the unique solution n = 50,

m = 140. But now we are at the end of the line. For k ≥ 4 and any � ≥ 2
no solutions exist, and this is what Erdős proved by an ingenious argument.

Theorem. The equation
(
n
k

)
= m� has no integer solutions with

� ≥ 2 and 4 ≤ k ≤ n− 4.
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16 Binomial coefficients are (almost) never powers

� Proof. Note first that we may assume n ≥ 2k because of
(
n
k

)
=

(
n

n−k

)
.

Suppose the theorem is false, and that
(
n
k

)
= m�. The proof, by contra-

diction, proceeds in the following four steps.

(1) By Sylvester’s theorem, there is a prime factor p of
(
n
k

)
greater than k,

hence p� divides n(n− 1) · · · (n− k + 1). Clearly, only one of the factors
n− i can be a multiple of any such p > k, and we conclude p� |n− i, and
therefore

n ≥ p� > k� ≥ k2.

(2) Consider any factor n − j of the numerator and write it in the form
n − j = ajm

�
j , where aj is not divisible by any nontrivial �-th power. We

note by (1) that aj has only prime divisors less than or equal to k. We want
to show next that ai �= aj for i �= j. Assume to the contrary that ai = aj
for some i < j. Then mi ≥ mj + 1 and

k > (n− i)− (n− j) = aj(m
�
i −m�

j) ≥ aj((mj + 1)� −m�
j)

> aj�m
�−1
j ≥ �(ajm

�
j)

1/2 ≥ �(n− k + 1)1/2

≥ �(n2 + 1)1/2 > n1/2,

which contradicts n > k2 from above.

(3) Next we prove that the ai’s are the integers 1, 2, . . . , k in some order.
(According to Erdős, this is the crux of the proof.) Since we already know
that they are all distinct, it suffices to prove that

a0a1 · · · ak−1 divides k!.

Substituting n− j = ajm
�
j into the equation

(
n
k

)
= m�, we obtain

a0a1 · · ·ak−1(m0m1 · · ·mk−1)
� = k!m�.

Cancelling the common factors of m0 · · ·mk−1 and m yields

a0a1 · · · ak−1u
� = k!v�

with gcd(u, v) = 1. It remains to show that v = 1. If not, then v con-
tains a prime divisor p. Since gcd(u, v) = 1, p must be a prime divisor
of a0a1 · · · ak−1 and hence is less than or equal to k. By the theorem of
Legendre (see page 8) we know that k! contains p to the power

∑
i≥1	 k

pi 
.
We now estimate the exponent of p in n(n− 1) · · · (n− k + 1). Let i be a
positive integer, and let b1 < b2 < · · · < bs be the multiples of pi among
n, n− 1, . . . , n− k + 1. Then bs = b1 + (s− 1)pi and hence

(s− 1)pi = bs − b1 ≤ n− (n− k + 1) = k − 1,

which implies

s ≤
⌊k − 1

pi

⌋
+ 1 ≤

⌊ k

pi

⌋
+ 1.
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So for each i the number of multiples of pi among n, . . . , n−k+1, and
hence among the aj’s, is bounded by 	 k

pi 
+ 1. This implies that the expo-
nent of p in a0a1 · · · ak−1 is at most

�−1∑
i=1

(⌊ k

pi

⌋
+ 1

)
with the reasoning that we used for Legendre’s theorem in Chapter 2. The
only difference is that this time the sum stops at i = � − 1, since the aj’s
contain no �-th powers.

Taking both counts together, we find that the exponent of p in v� is at most

�−1∑
i=1

(⌊ k

pi

⌋
+ 1

)
−

∑
i≥1

⌊ k

pi

⌋
≤ �− 1,

and we have our desired contradiction, since v� is an �-th power.

We see that our analysis so far agrees
with

(
50
3

)
= 1402, as

50 = 2 · 52
49 = 1 · 72
48 = 3 · 42

and 5 · 7 · 4 = 140.

This suffices already to settle the case � = 2. Indeed, since k ≥ 4 one of
the ai’s must be equal to 4, but the ai’s contain no squares. So let us now
assume that � ≥ 3.

(4) Since k ≥ 4, we must have ai1 = 1, ai2 = 2, ai3 = 4 for some i1, i2, i3,
that is,

n− i1 = m�
1, n− i2 = 2m�

2, n− i3 = 4m�
3.

We claim that (n − i2)
2 �= (n − i1)(n − i3). If not, put b = n − i2 and

n− i1 = b− x, n− i3 = b+ y, where 0 < |x|, |y| < k. Hence

b2 = (b− x)(b + y) or (y − x)b = xy,

where x = y is plainly impossible. Now we have by part (1)

|xy| = b|y − x| ≥ b > n− k > (k − 1)2 ≥ |xy|,

which is absurd.

So we have m2
2 �= m1m3, where we assume m2

2 > m1m3 (the other case
being analogous), and proceed to our last chains of inequalities. We obtain

2(k − 1)n > n2 − (n− k + 1)2 > (n− i2)
2 − (n− i1)(n− i3)

= 4[m2�
2 − (m1m3)

�] ≥ 4[(m1m3 + 1)� − (m1m3)
�]

≥ 4�m�−1
1 m�−1

3 .

Since � ≥ 3 and n > k� ≥ k3 > 6k, this yields

2(k − 1)nm1m3 > 4�m�
1m

�
3 = �(n− i1)(n− i3)

> �(n− k + 1)2 > 3(n− n

6
)2 > 2n2.
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Now since mi ≤ n1/� ≤ n1/3 we finally obtain

kn2/3 ≥ km1m3 > (k − 1)m1m3 > n,

or k3 > n. With this contradiction, the proof is complete. �
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Representing numbers

as sums of two squares

Chapter 4

Pierre de Fermat

1 = 12 + 02

2 = 12 + 12

3 =

4 = 22 + 02

5 = 22 + 12

6 =

7 =

8 = 22 + 22

9 = 32 +

10 = 32 +

11 =
...

Which numbers can be written as sums of two squares?

This question is as old as number theory, and its solution is a classic in the
field. The “hard” part of the solution is to see that every prime number of
the form 4m + 1 is a sum of two squares. G. H. Hardy writes that this
two square theorem of Fermat “is ranked, very justly, as one of the finest in
arithmetic.” Nevertheless, one of our Book Proofs below is quite recent.

Let’s start with some “warm-ups.” First, we need to distinguish between
the prime p = 2, the primes of the form p = 4m + 1, and the primes of
the form p = 4m+3. Every prime number belongs to exactly one of these
three classes. At this point we may note (using a method “à la Euclid”) that
there are infinitely many primes of the form 4m+ 3. In fact, if there were
only finitely many, then we could take pk to be the largest prime of this
form. Setting

Nk := 22 · 3 · 5 · · · pk − 1

(where p1 = 2, p2 = 3, p3 = 5, . . . denotes the sequence of all primes), we
find that Nk is congruent to 3 (mod 4), so it must have a prime factor of the
form 4m+ 3, and this prime factor is larger than pk — contradiction.

Our first lemma characterizes the primes for which −1 is a square in the
field Zp (which is reviewed in the box on the next page). It will also give
us a quick way to derive that there are infinitely many primes of the form
4m+ 1.

Lemma 1. For primes p = 4m+1 the equation s2 ≡ −1 (modp) has two
solutions s ∈ {1, 2, . . ., p−1}, for p = 2 there is one such solution, while
for primes of the form p = 4m+ 3 there is no solution.

� Proof. For p = 2 take s = 1. For odd p, we construct the equivalence
relation on {1, 2, . . . , p− 1} that is generated by identifying every element
with its additive inverse and with its multiplicative inverse in Zp. Thus the
“general” equivalence classes will contain four elements

{x,−x, x,−x}

since such a 4-element set contains both inverses for all its elements. How-
ever, there are smaller equivalence classes if some of the four numbers are
not distinct:

M. Aigner, G.M. Ziegler, Proofs from THE BOOK, DOI 10.1007/978-3-662-44205-0_4,  
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• x ≡ −x is impossible for odd p.

• x ≡ x is equivalent to x2 ≡ 1. This has two solutions, namely x = 1
and x = p− 1, leading to the equivalence class {1, p− 1} of size 2.

• x ≡ −x is equivalent to x2 ≡ −1. This equation may have no solution
or two distinct solutions x0, p − x0: in this case the equivalence class
is {x0, p− x0}.

For p = 11 the partition is
{1, 10}, {2, 9, 6, 5}, {3, 8, 4, 7};
for p = 13 it is
{1, 12}, {2, 11, 7, 6}, {3, 10, 9, 4},
{5, 8}: the pair {5, 8} yields the two
solutions of s2 ≡ −1 mod 13.

The set {1, 2, . . . , p−1} has p−1 elements, and we have partitioned it into
quadruples (equivalence classes of size 4), plus one or two pairs (equiva-
lence classes of size 2). For p− 1 = 4m+ 2 we find that there is only the
one pair {1, p−1}, the rest is quadruples, and thus s2 ≡ −1 (modp) has no
solution. For p− 1 = 4m there has to be the second pair, and this contains
the two solutions of s2 ≡ −1 that we were looking for. �

Lemma 1 says that every odd prime dividing a number M2 + 1 must be of
the form 4m+ 1. This implies that there are infinitely many primes of this
form: Otherwise, look at (2 · 3 · 5 · · · qk)2 + 1, where qk is the largest such
prime. The same reasoning as above yields a contradiction.

+ 0 1 2 3 4

0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

· 0 1 2 3 4

0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

Addition and multiplication in Z5

Prime fields

If p is a prime, then the set Zp = {0, 1, . . . , p− 1} with addition and
multiplication defined “modulo p” forms a finite field. We will need
the following simple properties:

• For x ∈ Zp, x �= 0, the additive inverse (for which we usually
write −x) is given by p− x ∈ {1, 2, . . . , p− 1}. If p > 2, then x
and −x are different elements of Zp.

• Each x ∈ Zp\{0} has a unique multiplicative inverse x ∈ Zp\{0},
with xx ≡ 1 (modp).
The definition of primes implies that the map Zp → Zp, z �→ xz
is injective for x �= 0. Thus on the finite set Zp\{0} it must be
surjective as well, and hence for each x there is a unique x �= 0
with xx ≡ 1 (modp).

• The squares 02, 12, 22, . . . , h2 define different elements of Zp, for
h = 	p

2
.
This is since x2 ≡ y2, or (x + y)(x − y) ≡ 0, implies that x ≡ y
or that x ≡ −y. The 1 + 	p

2
 elements 02, 12, . . . , h2 are called
the squares in Zp.

At this point, let us note “on the fly” that for all primes there are solutions
for x2 + y2 ≡ −1 (modp). In fact, there are 	p2
 + 1 distinct squares
x2 in Zp, and there are 	p2
 + 1 distinct numbers of the form −(1 + y2).
These two sets of numbers are too large to be disjoint, since Zp has only p
elements, and thus there must exist x and y with x2 ≡ −(1 + y2) (modp).
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Lemma 2. No number n = 4m+ 3 is a sum of two squares.

� Proof. The square of any even number is (2k)2 = 4k2 ≡ 0 (mod 4),
while squares of odd numbers yield (2k+1)2 = 4(k2+k)+1 ≡ 1 (mod 4).
Thus any sum of two squares is congruent to 0, 1 or 2 (mod 4). �

This is enough evidence for us that the primes p = 4m+3 are “bad.” Thus,
we proceed with “good” properties for primes of the form p = 4m+1. On
the way to the main theorem, the following is the key step.

Proposition. Every prime of the form p = 4m+1 is a sum of two squares,
that is, it can be written as p = x2+y2 for some natural numbers x, y ∈ N.

We shall present here two proofs of this result — both of them elegant and
surprising. The first proof features a striking application of the “pigeon-
hole principle” (which we have already used “on the fly” before Lemma 2;
see Chapter 27 for more), as well as a clever move to arguments “modulo p”
and back. The idea is due to the Norwegian number theorist Axel Thue.

� Proof. Consider the pairs (x′, y′) of integers with 0 ≤ x′, y′ ≤ √p, that
is, x′, y′ ∈ {0, 1, . . . , 	√p
}. There are (	√p
+ 1)2 such pairs. Using the
estimate 	x
 + 1 > x for x =

√
p, we see that we have more than p such

pairs of integers. Thus for any s ∈ Z, it is impossible that all the values
x′ − sy′ produced by the pairs (x′, y′) are distinct modulo p. That is, for
every s there are two distinct pairs

(x′, y′), (x′′, y′′) ∈ {0, 1, . . . , 	√p
}2

with x′ − sy′ ≡ x′′ − sy′′ (modp). Now we take differences: We have

For p = 13, 	√p
 = 3 we consider
x′, y′ ∈ {0, 1, 2, 3}. For s = 5, the sum
x′−sy′ (mod 13) assumes the following
values:

�
�x′
y′ 0 1 2 3

0 0 8 3 11

1 1 9 4 12

2 2 10 5 0

3 3 11 6 1

x′ − x′′ ≡ s(y′ − y′′) (mod p). Thus if we define x := |x′ − x′′|, y :=
|y′ − y′′|, then we get

(x, y) ∈ {0, 1, . . . , 	√p
}2 with x ≡ ±sy (mod p).

Also we know that not both x and y can be zero, because the pairs (x′, y′)
and (x′′, y′′) are distinct.

Now let s be a solution of s2 ≡ −1 (modp), which exists by Lemma 1.
Then x2 ≡ s2y2 ≡ −y2 (modp), and so we have produced

(x, y) ∈ Z2 with 0 < x2 + y2 < 2p and x2 + y2 ≡ 0 (modp).

But p is the only number between 0 and 2p that is divisible by p. Thus
x2 + y2 = p: done! �

Our second proof for the proposition — also clearly a Book Proof —
was discovered by Roger Heath-Brown in 1971 and appeared in 1984.
(A condensed “one-sentence version” was given by Don Zagier.) It is so
elementary that we don’t even need to use Lemma 1.

Heath-Brown’s argument features three linear involutions: a quite obvious
one, a hidden one, and a trivial one that gives “the final blow.” The second,
unexpected, involution corresponds to some hidden structure on the set of
integral solutions of the equation 4xy + z2 = p.
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� Proof. We study the set

S := {(x, y, z) ∈ Z3 : 4xy + z2 = p, x > 0, y > 0}.

This set is finite. Indeed, x ≥ 1 and y ≥ 1 implies y ≤ p
4 and x ≤ p

4 . So
there are only finitely many possible values for x and y, and given x and y,
there are at most two values for z.

1. The first linear involution is given by

f : S −→ S, (x, y, z) �−→ (y, x,−z),

that is, “interchange x and y, and negate z.” This clearly maps S to itself,
and it is an involution: Applied twice, it yields the identity. Also, f has
no fixed points, since z = 0 would imply p = 4xy, which is impossible.
Furthermore, f maps the solutions in

f

U

T

T := {(x, y, z) ∈ S : z > 0}

to the solutions in S\T , which satisfy z < 0. Also, f reverses the signs of
x− y and of z, so it maps the solutions in

U := {(x, y, z) ∈ S : (x− y) + z > 0}

to the solutions in S\U . For this we have to see that there is no solution
with (x−y)+z = 0, but there is none since this would give p = 4xy+z2 =
4xy + (x− y)2 = (x+ y)2.

What do we get from the study of f? The main observation is that since
f maps the sets T and U to their complements, it also interchanges the
elements in T \U with these in U\T . That is, there is the same number of
solutions in U that are not in T as there are solutions in T that are not in U
— so T and U have the same cardinality.

2. The second involution that we study is an involution on the set U :

g : U −→ U, (x, y, z) �−→ (x− y + z, y, 2y− z).

First we check that indeed this is a well-defined map: If (x, y, z) ∈ U , then
x − y + z > 0, y > 0 and 4(x − y + z)y + (2y − z)2 = 4xy + z2, so
g(x, y, z) ∈ S. By (x− y+ z)− y+(2y− z) = x > 0 we find that indeed
g(x, y, z) ∈ U .

Also g is an involution: g(x, y, z) = (x− y+ z, y, 2y− z) is mapped by g
to ((x − y + z)− y + (2y − z), y, 2y − (2y − z)) = (x, y, z).

U

g And finally g has exactly one fixed point:

(x, y, z) = g(x, y, z) = (x− y + z, y, 2y− z)

implies that y = z, but then p = 4xy + y2 = (4x+ y)y, which holds only
for y = z = 1 and x = p−1

4 .

But if g is an involution on U that has exactly one fixed point, then the
cardinality of U is odd.
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3. The third, trivial, involution that we study is the involution on T that
interchanges x and y:

h : T −→ T, (x, y, z) �−→ (y, x, z).

This map is clearly well-defined, and an involution. We combine now our
knowledge derived from the other two involutions: The cardinality of T is
equal to the cardinality of U , which is odd. But if h is an involution on

T

h

On a finite set of odd cardinality, every
involution has at least one fixed point.

a finite set of odd cardinality, then it has a fixed point: There is a point
(x, y, z) ∈ T with x = y, that is, a solution of

p = 4x2 + z2 = (2x)2 + z2. �

Note that this proof yields more — the number of representations of p in
the form p = x2+(2y)2 is odd for all primes of the form p = 4m+1. (The
representation is actually unique, see [3].) Also note that both proofs are
not effective: Try to find x and y for a ten digit prime! Efficient ways to find
such representations as sums of two squares are discussed in [1] and [7].

The following theorem completely answers the question which started this
chapter.

Theorem. A natural number n can be represented as a sum of two squares
if and only if every prime factor of the form p = 4m + 3 appears with an
even exponent in the prime decomposition of n.

� Proof. Call a number n representable if it is a sum of two squares, that
is, if n = x2 + y2 for some x, y ∈ N0. The theorem is a consequence of
the following five facts.

(1) 1 = 12 + 02 and 2 = 12 + 12 are representable. Every prime of the
form p = 4m+ 1 is representable.

(2) The product of any two representable numbers n1 = x2
1+ y21 and n2 =

x2
2 + y22 is representable: n1n2 = (x1x2 + y1y2)

2 + (x1y2 − x2y1)
2.

(3) If n is representable, n = x2 + y2, then also nz2 is representable, by
nz2 = (xz)2 + (yz)2.

Facts (1), (2) and (3) together yield the “if” part of the theorem.

(4) If p = 4m + 3 is a prime that divides a representable number n =
x2 + y2, then p divides both x and y, and thus p2 divides n. In fact, if
we had x �≡ 0 (modp), then we could find x such that xx ≡ 1 (modp),
multiply the equation x2 + y2 ≡ 0 by x2, and thus obtain 1 + y2x2 =
1 + (xy)2 ≡ 0 (mod p), which is impossible for p = 4m + 3 by
Lemma 1.

(5) If n is representable, and p = 4m + 3 divides n, then p2 divides n,
and n/p2 is representable. This follows from (4), and completes the
proof. �
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Two remarks close our discussion:

• If a and b are two natural numbers that are relatively prime, then there are
infinitely many primes of the form am+ b (m ∈ N) — this is a famous
(and difficult) theorem of Dirichlet. More precisely, one can show that
the number of primes p ≤ x of the form p = am + b is described very
accurately for large x by the function 1

ϕ(a)
x

log x , where ϕ(a) denotes the
number of b with 1 ≤ b < a that are relatively prime to a. (This is
a substantial refinement of the prime number theorem, which we had
discussed on page 12.)

• This means that the primes for fixed a and varying b appear essentially
at the same rate. Nevertheless, for example for a = 4 one can observe a
rather subtle, but still noticeable and persistent tendency towards “more”
primes of the form 4m+3. The difference between the counts of primes
of the form 4m+3 and those of the form 4m+1 changes sign infinitely
often. Nevertheless, if you look for a large random x, then chances are
that there are more primes p ≤ x of the form p = 4m + 3 than of the
form p = 4m + 1. This effect is known as “Chebyshev’s bias”; see
Riesel [4] and Rubinstein and Sarnak [5].
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The law of quadratic reciprocity Chapter 5

Carl Friedrich Gauss

Which famous mathematical theorem has been proved most often? Pythago-
ras would certainly be a good candidate or the fundamental theorem of al-
gebra, but the champion is without doubt the law of quadratic reciprocity
in number theory. In an admirable monograph Franz Lemmermeyer lists
as of the year 2000 no fewer than 196 proofs. Many of them are of course
only slight variations of others, but the array of different ideas is still im-
pressive, as is the list of contributors. Carl Friedrich Gauss gave the first
complete proof in 1801 and followed up with seven more. A little later
Ferdinand Gotthold Eisenstein added five more — and the ongoing list of
provers reads like a Who is Who of mathematics.

With so many proofs present the question which of them belongs in the
Book can have no easy answer. Is it the shortest, the most unexpected, or
should one look for the proof that had the greatest potential for general-
izations to other and deeper reciprocity laws? We have chosen two proofs
(based on Gauss’ third and sixth proofs), of which the first may be the sim-
plest and most pleasing, while the other is the starting point for fundamental
results in more general structures.

As in the previous chapter we work “modulo p”, where p is an odd prime;
Zp is the field of residues upon division by p, and we usually (but not al-
ways) take these residues as 0, 1, . . . , p− 1. Consider some a �≡ 0 (modp),
that is, p � a. We call a a quadratic residue modulo p if a ≡ b2 (mod p) for
some b, and a quadratic nonresidue otherwise. The quadratic residues are
therefore 12, 22, . . . , (p−1

2 )2, and so there are p−1
2 quadratic residues and

p−1
2 quadratic nonresidues. Indeed, if i2 ≡ j2(mod p) with 1 ≤ i, j ≤ p−1

2 ,
then p |i2 − j2 = (i − j)(i + j). As 2 ≤ i + j ≤ p− 1 we have p |i − j,
that is, i ≡ j (mod p).

For p = 13, the quadratic residues are
12 ≡ 1, 22 ≡ 4, 32 ≡ 9, 42 ≡ 3,
52 ≡ 12, and 62 ≡ 10; the nonresidues
are 2, 5, 6, 7, 8, 11.

At this point it is convenient to introduce the so-called Legendre symbol.
Let a �≡ 0 (mod p), then(a

p

)
:=

{
1 if a is a quadratic residue,
−1 if a is a quadratic nonresidue.

The story begins with Fermat’s “little theorem”: For a �≡ 0 (modp),

Alternatively, this is just a|G| = 1 for
the group G = Z∗p (see the box on
Lagrange’s theorem, p. 4).

ap−1 ≡ 1 (modp). (1)

In fact, since Z∗p = Zp \ {0} is a group with multiplication, the set
{1a, 2a, 3a, . . . , (p− 1)a} runs again through all nonzero residues,

(1a)(2a) · · · ((p− 1)a) ≡ 1 · 2 · · · (p− 1) (modp),

and hence by dividing by (p− 1)!, we get ap−1 ≡ 1 (modp).
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In other words, the polynomial xp−1 − 1 ∈ Zp[x] has as roots all nonzero
residues. Next we note that

xp−1 − 1 = (x
p−1
2 − 1)(x

p−1
2 + 1).

Suppose a ≡ b2 (mod p) is a quadratic residue. Then by Fermat’s little
theorem a

p−1
2 ≡ bp−1 ≡ 1 (modp). Hence the quadratic residues are

precisely the roots of the first factor x
p−1
2 − 1, and the p−1

2 nonresidues

must thus be the roots of the second factor x
p−1
2 +1. Comparing this to the

definition of the Legendre symbol, we obtain the following important tool.

Euler’s criterion. For a �≡ 0 (modp),(a
p

)
≡ a

p−1
2 (mod p).

For example, for p = 17 and a = 3 we
have 38 = (34)2 = 812 ≡ (−4)2 ≡
−1 (mod 17), while for a = 2 we get
28 = (24)2 ≡ (−1)2 ≡ 1 (mod 17).
Hence 2 is a quadratic residue, while 3

is a nonresidue.

This gives us at once the important product rule(ab
p

)
=

(a
p

)( b
p

)
, (2)

since this obviously holds for the right-hand side of Euler’s criterion. The
product rule is extremely helpful when one tries to compute Legendre sym-
bols: Since any integer is a product of ±1 and primes we only have to
compute (−1

p ), ( 2p ), and ( qp ) for odd primes q.

By Euler’s criterion (−1
p ) = 1 if p ≡ 1 (mod 4), and (−1

p ) = −1 if p ≡
3 (mod 4), something we have already seen in the previous chapter. The
case ( 2p ) will follow from the Lemma of Gauss below: ( 2p ) = 1 if p ≡
±1 (mod 8), while ( 2p ) = −1 if p ≡ ±3 (mod 8).

Euler, Legendre, and Gauss did lots of calculations with quadratic residues
and, in particular, studied the relations between q being a quadratic residue
modulo p and p being a quadratic residue modulo q, when p and q are
odd primes. Euler and Legendre thus discovered the following remarkable
theorem, but they managed to prove it only in special cases. However,
Gauss was successful: On April 8, 1796 he was proud to record in his diary
the first full proof.

Law of quadratic reciprocity. Let p and q be different odd primes.
Then

(
q

p
)(
p

q
) = (−1)

p−1
2

q−1
2 .

If p ≡ 1 (mod 4) or q ≡ 1 (mod 4), then p−1
2 (resp. q−1

2 ) is even, and

therefore (−1) p−1
2

q−1
2 = 1; thus ( qp ) = (pq ). When p ≡ q ≡ 3 (mod 4), we

have (pq ) = −( qp ). Thus for odd primes we get (pq ) = ( qp ) unless both p

and q are congruent to 3 (mod 4).
Example: ( 3

17
) = ( 17

3
) = ( 2

3
) = −1,

so 3 is a nonresidue mod 17.



The law of quadratic reciprocity 27

First proof. The key to our first proof (which is Gauss’ third) is a counting
formula that soon came to be called the Lemma of Gauss:

Lemma of Gauss. Suppose a �≡ 0 (modp). Take the numbers
1a, 2a, . . . , p−1

2 a and reduce them modulo p to the residue system

smallest in absolute value, ia ≡ ri (mod p) with − p−1
2 ≤ ri ≤ p−1

2
for all i. Then

(
a

p
) = (−1)s, where s = #{i : ri < 0}.

� Proof. Suppose u1, . . . , us are the residues smaller than 0, and that
v1, . . . , v p−1

2 −s are those greater than 0. Then the numbers −u1, . . . ,−us

are between 1 and p−1
2 , and are all different from the vjs (see the margin);

hence {−u1, . . . ,−us, v1, . . . , v p−1
2 −s} = {1, 2, . . . ,

p−1
2 }. Therefore

If −ui = vj , then ui + vj ≡ 0 (mod p).
Now ui ≡ ka, vj ≡ �a (mod p) implies
p |(k + �)a. As p and a are relatively
prime, p must divide k + � which is im-
possible, since k + � ≤ p− 1.

∏
i

(−ui)
∏
j

vj =
p−1
2 !,

which implies

(−1)s
∏
i

ui

∏
j

vj ≡ p−1
2 ! (modp).

Now remember how we obtained the numbers ui and vj ; they are the
residues of 1a, · · · , p−1

2 a. Hence

p−1
2 ! ≡ (−1)s

∏
i

ui

∏
j

vj ≡ (−1)s p−1
2 ! a

p−1
2 (modp).

Cancelling p−1
2 ! together with Euler’s criterion gives

(
a

p
) ≡ a

p−1
2 ≡ (−1)s (mod p),

and therefore (ap ) = (−1)s, since p is odd. �

With this we can easily compute ( 2p ): Since 1 · 2, 2 · 2, . . . , p−1
2 · 2 are all

between 1 and p− 1, we have

s = #{i : p−1
2 < 2i ≤ p− 1} = p−1

2 −#{i : 2i ≤ p−1
2 } = �p−1

4 �.
Check that s is even precisely for p = 8k ± 1.

The Lemma of Gauss is the basis for many of the published proofs of the
quadratic reciprocity law. The most elegant may be the one suggested
by Ferdinand Gotthold Eisenstein, who had learned number theory from
Gauss’ famous Disquisitiones Arithmeticae and made important contribu-
tions to “higher reciprocity theorems” before his premature death at age 29.
His proof is just counting lattice points!
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Let p and q be odd primes, and consider ( qp ). Suppose iq is a multiple of
q that reduces to a negative residue ri < 0 in the Lemma of Gauss. This
means that there is a unique integer j such that − p

2 < iq − jp < 0. Note
that 0 < j < q

2 since 0 < i < p
2 . In other words, ( qp ) = (−1)s, where s is

the number of lattice points (x, y), that is, pairs of integers x, y satisfying

0 < py − qx <
p

2
, 0 < x <

p

2
, 0 < y <

q

2
. (3)

Similarly, (pq ) = (−1)t where t is the number of lattice points (x, y) with

0 < qx− py <
q

2
, 0 < x <

p

2
, 0 < y <

q

2
. (4)

Now look at the rectangle with side lengths p
2 ,

q
2 , and draw the two lines

parallel to the diagonal py = qx, y = q
px+

1
2 or py− qx = p

2 , respectively,

y = q
p (x−

1
2 ) or qx− py = q

2 .

The figure shows the situation for p = 17, q = 11.

R

S

17
2

11
2

p = 17 q = 11

s = 5 t = 3( q
p

)
= (−1)5 = −1

(p
q

)
= (−1)3 = −1

The proof is now quickly completed by the following three observations:

1. There are no lattice points on the diagonal and the two parallels. This
is so because py = qx would imply p |x, which cannot be. For the
parallels observe that py − qx is an integer while p

2 and q
2 are not.

2. The lattice points observing (3) are precisely the points in the upper
strip 0 < py − qx < p

2 , and those of (4) the points in the lower strip
0 < qx− py < q

2 . Hence the number of lattice points in the two strips
is s+ t.

3. The outer regions R : py − qx > p
2 and S : qx − py > q

2 contain the
same number of points. To see this consider the map ϕ : R→ S which
maps (x, y) to (p+1

2 − x, q+1
2 − y) and check that ϕ is an involution.

Since the total number of lattice points in the rectangle is p−1
2 ·

q−1
2 , we

infer that s+ t and p−1
2 ·

q−1
2 have the same parity, and so(q

p

)(p
q

)
= (−1)s+t = (−1)

p−1
2

q−1
2 . �
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Second proof. Our second choice does not use Gauss’ lemma, instead it
employs so-called “Gauss sums” in finite fields. Gauss invented them in his
study of the equation xp−1 = 0 and the arithmetical properties of the field
Q(ζ) (called cyclotomic field), where ζ is a p-th root of unity. They have
been the starting point for the search for higher reciprocity laws in general
number fields.

Let us first collect a few facts about finite fields.

A. Let p and q be different odd primes, and consider the finite field F with
qp−1 elements. Its prime field is Zq , whence qa = 0 for any a ∈ F . This
implies that (a + b)q = aq + bq, since any binomial coefficient

(
q
i

)
is a

multiple of q for 0 < i < q, and thus 0 in F . Note that Euler’s criterion is
an equation (pq ) = p

q−1
2 in the prime field Zq .

B. The multiplicative group F ∗ = F \ {0} is cyclic of size qp−1 − 1
(see the box on the next page). Since by Fermat’s little theorem p is a
divisor of qp−1 − 1, there exists an element ζ ∈ F of order p, that is,
ζp = 1, and ζ generates the subgroup {ζ, ζ2, . . . , ζp = 1} of F ∗. Note
that any ζi (i �= p) is again a generator. Hence we obtain the polynomial
decomposition xp − 1 = (x− ζ)(x − ζ2) · · · (x− ζp).

Now we can go to work. Consider the Gauss sum

G :=

p−1∑
i=1

( i
p

)
ζi ∈ F,

where ( i
p ) is the Legendre symbol. For the proof we derive two different

expressions for Gq and then set them equal.

First expression. We have

Example: Take p = 3, q = 5. Then
G = ζ−ζ2 and G5 = ζ5−ζ10 = ζ2−ζ

= −(ζ − ζ2) = −G, corresponding to
( 5
3
) = ( 2

3
) = −1.

Gq =

p−1∑
i=1

(
i

p
)qζiq =

p−1∑
i=1

(
i

p
)ζiq = (

q

p
)

p−1∑
i=1

(
iq

p
)ζiq = (

q

p
)G, (5)

where the first equality follows from (a + b)q = aq + bq , the second uses
that ( i

p )
q = ( i

p ) since q is odd, the third one is derived from (2), which

yields ( i
p ) = ( qp )(

iq
p ), and the last one holds since iq runs with i through

all nonzero residues modulo p.

Second expression. Suppose we can prove

G2 = (−1)
p−1
2 p , (6)

then we are quickly done. Indeed,

Gq = G(G2)
q−1
2 = G(−1)

p−1
2

q−1
2 p

q−1
2 = G(

p

q
)(−1)

p−1
2

q−1
2 . (7)

Equating the expressions in (5) and (7) and cancelling G, which is nonzero
by (6), we find ( qp ) = (pq )(−1)

p−1
2

q−1
2 , and thus

(
q

p
)(
p

q
) = (−1)

p−1
2

q−1
2 .
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The multiplicative group of a finite field is cyclic

Let F ∗ be the multiplicative group of the field F , with |F ∗| = n.
Writing ord(a) for the order of an element, that is, the smallest pos-
itive integer k such that ak = 1, we want to find an element a ∈ F ∗

with ord(a) = n. If ord(b) = d, then by Lagrange’s theorem, d
divides n (see the margin on page 4). Classifying the elements ac-
cording to their order, we have

n =
∑
d |n

ψ(d), where ψ(d) = #{b ∈ F ∗ : ord(b) = d}. (8)

If ord(b) = d, then every element bi (i = 1, . . . , d) satisfies (bi)d = 1
and is therefore a root of the polynomial xd − 1. But, since F is a
field, xd−1 has at most d roots, and so the elements b, b2, . . . , bd = 1
are precisely these roots. In particular, every element of order d is of
the form bi.
On the other hand, it is easily checked that ord(bi) = d

(i,d) , where
(i, d) denotes the greatest common divisor of i and d. Hence
ord(bi) = d if and only if (i, d) = 1, that is, if i and d are rela-
tively prime. Denoting Euler’s function by ϕ(d) = #{i : 1 ≤ i ≤
d, (i, d) = 1}, we thus have ψ(d) = ϕ(d) whenever ψ(d) > 0.
Looking at (8) we find

n =
∑
d |n

ψ(d) ≤
∑
d |n

ϕ(d) .

But, as we are going to show that∑
d |n

ϕ(d) = n, (9)

we must have ψ(d) = ϕ(d) for all d. In particular,ψ(n) = ϕ(n) ≥ 1,
and so there is an element of order n.

The following (folklore) proof of (9) belongs in the Book as well.
Consider the n fractions

1
n ,

2
n , . . . ,

k
n , . . . ,

n
n ,

reduce them to lowest terms k
n = i

d with 1 ≤ i ≤ d, (i, d) = 1, d |n,
and check that the denominator d appears precisely ϕ(d) times.

“Even in total chaos

we can hang on

to the cyclic group”

It remains to verify (6), and for this we first make two simple observations:

•
∑p

i=1 ζ
i = 0 and thus

∑p−1
i=1 ζi = −1. Just note that −

∑p
i=1 ζ

i is the
coefficient of xp−1 in xp − 1 =

∏p
i=1(x− ζi), and thus 0.

•
∑p−1

k=1(
k
p ) = 0 and thus

∑p−2
k=1(

k
p ) = −(−1

p ), since there are equally
many quadratic residues and nonresidues.
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We have

G2 =
( p−1∑

i=1

( i
p

)
ζi
)( p−1∑

j=1

( j
p

)
ζj

)
=

∑
i,j

( ij
p

)
ζi+j .

Setting j ≡ ik (modp) we find

G2 =
∑
i,k

(k
p

)
ζi(1+k) =

p−1∑
k=1

(k
p

) p−1∑
i=1

ζ(1+k)i.

For k = p−1 ≡ −1 (modp) this gives (−1
p )(p−1), since ζ1+k = 1. Move

k = p− 1 in front and write

Euler’s criterion: (−1
p
) = (−1)

p−1
2G2 =

(−1
p

)
(p− 1) +

p−2∑
k=1

(k
p

) p−1∑
i=1

ζ(1+k)i.

Since ζ1+k is a generator of the group for k �= p− 1, the inner sum equals∑p−1
i=1 ζi = −1 for all k �= p−1 by our first observation. Hence the second

summand is −
∑p−2

k=1(
k
p ) = (−1

p ) by our second observation. It follows

that G2 = (−1
p )p and thus with Euler’s criterion G2 = (−1) p−1

2 p, which
For p = 3, q = 5, G2 = (ζ − ζ2)2 =

ζ2 − 2ζ3 + ζ4 = ζ2 − 2 + ζ = −3 =

(−1)
3−1
2 3, since 1 + ζ + ζ2 = 0.completes the proof. �
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“What’s up?”

“I’m pushing 196 proofs

for quadratic reciprocity”



Every finite division ring is a field Chapter 6

Ernst Witt

Rings are important structures in modern algebra. If a ring R has a mul-
tiplicative unit element 1 and every nonzero element has a multiplicative
inverse, then R is called a division ring. So, all that is missing in R from
being a field is the commutativity of multiplication. The best-known exam-
ple of a noncommutative division ring is the ring of quaternions discovered
by Hamilton. But, as the chapter title says, every such division ring must of
necessity be infinite. If R is finite, then the axioms force the multiplication
to be commutative.

This result which is now a classic has caught the imagination of many math-
ematicians, because, as Herstein writes: “It is so unexpectedly interrelating
two seemingly unrelated things, the number of elements in a certain alge-
braic system and the multiplication of that system.”

Theorem. Every finite division ring is commutative.

This beautiful theorem which is usually attributed to MacLagan Wedder-
burn has been proved by many people using a variety of different ideas.
Wedderburn himself gave three proofs in 1905, and another proof was given
by Leonard E. Dickson in the same year. More proofs were later given by
Emil Artin, Hans Zassenhaus, Nicolas Bourbaki, and many others. One
proof stands out for its simplicity and elegance. It was found by Ernst Witt
in 1931 and combines two elementary ideas towards a glorious finish.

� Proof. Our first ingredient comes from a blend of linear algebra and
basic group theory. For an arbitrary element s ∈ R, let Cs be the set
{x ∈ R : xs = sx} of elements which commute with s; Cs is called the
centralizer of s. Clearly, Cs contains 0 and 1 and is a sub-division ring
of R. The center Z is the set of elements which commute with all elements
of R, thus Z =

⋂
s∈R Cs. In particular, all elements of Z commute, 0 and 1

are in Z , and so Z is a finite field. Let us set |Z| = q.

We can regard R and Cs as vector spaces over the field Z and deduce that
|R| = qn, where n is the dimension of the vector space R over Z , and
similarly |Cs| = qns for suitable integers ns ≥ 1.

Now let us assume that R is not a field. This means that for some s ∈ R
the centralizer Cs is not all of R, or, what is the same, ns < n.

On the set R∗ := R\{0} we consider the relation

r′ ∼ r :⇐⇒ r′ = x−1rx for some x ∈ R∗.
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© Springer-Verlag Berlin Heidelberg 2014 



34 Every finite division ring is a field

It is easy to check that ∼ is an equivalence relation. Let

As := {x−1sx : x ∈ R∗}

be the equivalence class containing s. We note that |As| = 1 precisely
when s is in the center Z . So by our assumption, there are classes As with
|As| ≥ 2. Consider now for s ∈ R∗ the map fs : x �−→ x−1sx from R∗

onto As. For x, y ∈ R∗ we find

x−1sx = y−1sy ⇐⇒ (yx−1)s = s(yx−1)

⇐⇒ yx−1 ∈ C∗s ⇐⇒ y ∈ C∗sx,

for C∗s := Cs\{0}, where C∗sx = {zx : z ∈ C∗s } has size |C∗s |. Hence any
element x−1sx is the image of precisely |C∗s | = qns − 1 elements in R∗

under the map fs, and we deduce |R∗| = |As| |C∗s |. In particular, we note
that

|R∗|
|C∗s |

=
qn − 1

qns − 1
= |As| is an integer for all s.

We know that the equivalence classes partition R∗. We now group the
central elements Z∗ together and denote by A1, . . . , At the equivalence
classes containing more than one element. By our assumption we know
t ≥ 1. Since |R∗| = |Z∗| +

∑t
k=1 |Ak|, we have proved the so-called

class formula

qn − 1 = q − 1 +

t∑
k=1

qn − 1

qnk − 1
, (1)

where we have 1 < qn−1
qnk−1 ∈ N for all k.

With (1) we have left abstract algebra and are back to the natural numbers.
Next we claim that qnk−1 | qn−1 implies nk |n. Indeed, write n = ank+r
with 0 ≤ r < nk, then qnk − 1 | qank+r − 1 implies

qnk − 1 | (qank+r − 1)− (qnk − 1) = qnk(q(a−1)nk+r − 1),

and thus qnk − 1 | q(a−1)nk+r − 1, since qnk and qnk − 1 are relatively
prime. Continuing in this way we find qnk − 1 | qr − 1 with 0 ≤ r < nk,
which is only possible for r = 0, that is, nk |n. In summary, we note

nk |n for all k. (2)

Now comes the second ingredient: the complex numbers C. Consider the
polynomial xn − 1. Its roots in C are called the n-th roots of unity. Since
λn = 1, all these roots λ have |λ| = 1 and lie therefore on the unit circle of
the complex plane. In fact, they are precisely the numbers λk = e

2kπi
n =

cos(2kπ/n) + i sin(2kπ/n), 0 ≤ k ≤ n − 1 (see the box on the next
page). Some of the roots λ satisfy λd = 1 for d < n; for example, the
root λ = −1 satisfies λ2 = 1. For a root λ, let d be the smallest positive
exponent with λd = 1, that is, d is the order of λ in the group of the roots
of unity. Then d |n, by Lagrange’s theorem (“the order of every element of
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a group divides the order of the group” — see the box in Chapter 1). Note
that there are roots of order n, such as λ1 = e

2πi
n .

Roots of unity

Any complex number z = x+ iy may be written in the “polar” form

z = reiϕ = r(cosϕ+ i sinϕ),

where r = |z| =
√
x2 + y2 is the distance of z to the origin, and ϕ is

the angle measured from the positive x-axis. The n-th roots of unity
are therefore of the form

λk = e
2kπi
n = cos(2kπ/n) + i sin(2kπ/n), 0 ≤ k ≤ n− 1,

since for all k

λn
k = e2kπi = cos(2kπ) + i sin(2kπ) = 1.

We obtain these roots geometrically by inscribing a regular n-gon
into the unit circle. Note that λk = ζk for all k, where ζ = e

2πi
n . Thus

the n-th roots of unity form a cyclic group {ζ, ζ2, . . . , ζn−1, ζn = 1}
of order n.

x = r cosϕ

ϕ

z = reiϕ⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭y = r sinϕ

r = |z|
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

︸ ︷︷ ︸

−1

λ2 λ1 = ζ

1

The roots of unity for n = 6

Now we group all roots of order d together and set

φd(x) :=
∏

λ of order d

(x− λ).

Note that the definition of φd(x) is independent of n. Since every root has
some order d, we conclude that

xn − 1 =
∏
d |n

φd(x). (3)

Here is the crucial observation: The coefficients of the polynomials φn(x)
are integers (that is, φn(x) ∈ Z[x] for all n), where in addition the constant
coefficient is either 1 or −1.

Let us carefully verify this claim. For n = 1 we have 1 as the only root,
and so φ1(x) = x − 1. Now we proceed by induction, where we assume
φd(x) ∈ Z[x] for all d < n, and that the constant coefficient of φd(x) is 1
or −1. By (3),

xn − 1 = p(x)φn(x) (4)

where p(x) =
�∑

j=0

pjx
j , φn(x) =

n−�∑
k=0

akx
k, with p0 = 1 or p0 = −1.

Since −1 = p0a0, we see a0 ∈ {1,−1}. Suppose we already know that
a0, a1, . . . , ak−1 ∈ Z. Computing the coefficient of xk on both sides of (4)
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we find
k∑

j=0

pjak−j =

k∑
j=1

pjak−j + p0ak ∈ Z.

By assumption, all a0, . . . , ak−1 (and all pj) are in Z. Thus p0ak and hence
ak must also be integers, since p0 is 1 or −1.

We are ready for the coup de grâce. Let nk |n be one of the numbers
appearing in (1). Then

xn − 1 =
∏
d |n

φd(x) = (xnk − 1)φn(x)
∏

d |n, d�nk, d �=n

φd(x).

We conclude that in Z we have the divisibility relations

φn(q) | qn − 1 and φn(q)
∣∣ qn − 1

qnk − 1
. (5)

Since (5) holds for all k, we deduce from the class formula (1)

φn(q) | q − 1,

but this cannot be. Why? We know φn(x) =
∏
(x − λ) where λ runs

through all roots of xn−1 of order n. Let λ̃ = a+ ib be one of those roots.
By n > 1 (because of R �= Z) we have λ̃ �= 1, which implies that the real
part a is smaller than 1. Now |λ̃|2 = a2 + b2 = 1, and hence

|q − λ̃|2 = |q − a− ib|2 = (q − a)2 + b2

= q2 − 2aq + a2 + b2 = q2 − 2aq + 1

> q2 − 2q + 1 (because of a < 1)

= (q − 1)2,

and so |q − λ̃| > q − 1 holds for all roots of order n. This implies

1 q

μ

|q − μ| > |q − 1|

|φn(q)| =
∏
λ

|q − λ| > q − 1,

which means that φn(q) cannot be a divisor of q− 1, contradiction and end
of proof. �
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The spectral theorem and

Hadamard’s determinant problem

Chapter 7

A fundamental theorem of linear algebra asserts that every symmetric real
matrix A can be diagonalized. That is, for every such matrix A there is a
nonsingular real matrix Q such that

Q−1AQ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ1. . .
λ1 O

λ2. . .
λ2 . . .

O λt . . .
λt

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
is in diagonal form. The (real) λi’s are the eigenvalues of A, and the
columns of Q form a basis of eigenvectors. We will make use of this result
in several chapters to come.

What’s more, the matrix Q can be chosen to be an orthogonal matrix, which
means that QT = Q−1, or equivalently that the columns of Q form an
orthonormal basis with respect to the usual inner product.

Theorem 1. For every real symmetric matrix A there is a real
orthogonal matrix Q such that QTAQ is diagonal.

Moving Q and QT to the right-hand side we may equivalently express the
theorem as a representation of A as a linear combination of matrices Pi that
correspond to projections onto the eigenspaces Cλi

,

A = λ1P1 + · · · + λtPt,

In = P1 + · · · + Pt,

with PiPj = δijPi for all i and j. In this form the statement is usually
called the spectral theorem.

The standard proofs of the theorem proceed by induction on the order of A
(with some care in the presence of multiple eigenvalues), construct the basis
of eigenvectors step by step, and use the fact that the characteristic poly-
nomial splits into linear factors over the field C of complex numbers.
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The following proof due to Herb Wilf does it in one stroke and is truly
inspired. It is very different from the usual proofs: It does not even refer to
the eigenvalues, but instead employs an elegant compactness argument in a
surprising way.

� Proof. We start with some preliminary facts. Let O(n) ⊆ Rn×n be the
set of real orthogonal matrices of order n. Since

(PQ)−1 = Q−1P−1 = QTPT = (PQ)T

for P,Q ∈ O(n), we see that the set O(n) is a group. Regarding any matrix
in Rn×n as a vector in Rn2

, we find that O(n) is a compact set. Indeed, as
the columns of an orthogonal matrix Q = (qij) are unit vectors, we have
|qij | ≤ 1 for all i and j, thus O(n) is bounded. Furthermore, the set O(n)

is defined as a subset of Rn2

by the equations

xi1xj1 + xi2xj2 + · · ·+ xinxjn = δij for 1 ≤ i, j ≤ n,

hence it is closed, and thus compact.

The Heine–Borel theorem

Every closed and bounded subset of a

vector space RN is compact.

For any real square matrix A let Od(A) =
∑

i�=j a
2
ij be the sum of the

squares of the off-diagonal entries. Suppose we can prove the following.

Lemma. If A is a real symmetric n×n matrix that is not diagonal, that is,
Od(A) > 0, then there exists U ∈ O(n) such that Od(UTAU) < Od(A).

Given the lemma, the theorem follows in three quick steps. Let A be a real
symmetric n× n matrix.

(A) Consider the map fA : O(n)→ Rn×n with fA(P ) := P TAP . The map
fA is continuous on the compact set O(n), and so the image fA(O(n)) is
compact.

(B) The function Od : fA(O(n)) → R is continuous, hence it assumes a
minimum, say at D = QTAQ ∈ fA(O(n)).

(C) The value Od(D) must be zero, and hence D is a diagonal matrix as
required.

Indeed, if Od(D) > 0, then applying the Lemma we find U ∈ O(n) with
Od(UTDU) < Od(D). But

UTDU = UTQTAQU = (QU)TA(QU)

is in fA(O(n)) (remember O(n) is a group!) with Od-value smaller than
that of D — contradiction, and end of proof.

It remains to prove the lemma, and for this we use a very clever method
attributed to Carl Gustav Jacob Jacobi. Suppose that ars �= 0 for some
r �= s. Then we claim that the matrix U that agrees with the identity matrix
except that urr = uss = cosϑ, urs = sinϑ, usr = − sinϑ does the job,
for some choice of the (real) angle ϑ:
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r s

U =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 . . .
1

cosϑ sinϑ r

1. . .
1

− sinϑ cosϑ s
1 . . .

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Clearly, U is orthogonal for any ϑ.

“Diagonalizing by applying a rotation

and removing off-diagonal elements”

Now let us compute the (k, �)-entry bk� of UTAU . We have

bk� =
∑
i,j

uikaijuj�. (1)

For k, � �∈ {r, s} we get bk� = ak�. Furthermore, we have

bkr =

n∑
i=1

uik

n∑
j=1

aijujr

=

n∑
i=1

uik(air cosϑ− ais sinϑ)

= akr cosϑ− aks sinϑ (for k �= r, s).

Similarly, one computes

bks = akr sinϑ+ aks cosϑ (for k �= r, s).

It follows that

b2kr + b2ks = a2kr cos
2 ϑ− 2akraks cosϑ sinϑ+ a2ks sin

2 ϑ

+ a2kr sin
2 ϑ+ 2akraks sinϑ cosϑ+ a2ks cos

2 ϑ

= a2kr + a2ks,

and by symmetry

b2r� + b2s� = a2r� + a2s� (for � �= r, s).

We conclude that the function Od, which sums the squares of the off-
diagonal values, agrees for A and UTAU except for the entries at (r, s)
and (s, r), for any ϑ. To conclude the proof we now show that ϑ0 can be
chosen suitably as to make brs = 0, which will result in

Od(UTAU) = Od(A)− 2a2rs < Od(A)

as required.
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Using (1) we find

brs = (arr − ass) sinϑ cosϑ+ ars(cos
2 ϑ− sin2 ϑ).

For ϑ = 0 this becomes ars, while for ϑ = π
2 it is −ars. Hence by the

intermediate value theorem there is some ϑ0 between 0 and π
2 such that

brs = 0, and we are through. �

So this was beautiful, and we want to immediately apply the theorem to a
famous (and unsolved) problem.

Jacques Hadamard

The Hadamard determinant problem

How large can detA be on the set of all real n × n matrices
A = (aij) with |aij | ≤ 1 for all i and j?

Since the determinant is a continuous function in the aij (considered as
variables) and the matrices form a compact set in Rn2

, this maximum must
exist. Furthermore, the maximum is attained for some matrix all of whose
entries are +1 or −1, because the function detA is linear in each single
entry aij (if we keep all other entries fixed). Thus we can start with any
matrix A and move one entry after the other to +1 or to −1, in every single
step not decreasing the determinant, until we arrive at a ±1-matrix. In the
search for the largest determinant we may thus assume that all entries of A
are ±1.

Here is the trick: Instead of A we consider the matrix B = ATA = (bij).
That is, if cj = (a1j , a2j , . . . , anj)

T denotes the j-th column vector of A,
then bij = 〈ci, cj〉, the inner product of ci and cj . In particular,

bii = 〈ci, ci〉 = n for all i,

and

traceB =

n∑
i=1

bii = n2, (2)

which will come in handy in a moment.

Now we can go to work. First of all, from B = ATA we get | detA| =√
detB. Since multiplication of a column of A by −1 turns detA into
− detA, we see that the maximum problem for detA is the same as for
detB. Furthermore, we may assume that A is nonsingular, and hence that
B is nonsingular as well.

Since B = ATA is a symmetric matrix the spectral theorem tells us that for
some Q ∈ O(n),

QTBQ = QTATAQ = (AQ)T (AQ) =

⎛⎜⎜⎜⎝
λ1 . . . O

. . .
O

. . .
λn

⎞⎟⎟⎟⎠ , (3)
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where the λi are the eigenvalues of B. Now, if dj denotes the j-th column
vector of AQ (which is nonzero since A is nonsingular), then

λj = 〈dj , dj〉 =
n∑

i=1

d2ij > 0.

Thus λ1, . . . , λn are positive real numbers and

detB = λ1 · · ·λn, traceB =
n∑

i=1

λi.

Whenever such a product and sum of positive numbers turn up, it is always a
good idea to try the arithmetic-geometric mean inequality (see Chapter 20).
In our case this gives with (2)

detB = λ1 · · ·λn ≤
(∑n

i=1 λi

n

)n

=
( traceB

n

)n

= nn, (4)

and out comes Hadamard’s upper bound

| detA| ≤ nn/2. (5)

When do we have equality in (5) or, what is the same, in (4)? Easy enough:
if and only if the geometric mean of the λi’s equals the arithmetic mean, or
equivalently, if and only if λ1 = · · · = λn = λ. But then traceB = nλ =
n2, and so λ1 = · · · = λn = n. Looking at (3) this means QTBQ = nIn,
where In is the n × n identity matrix. Now recall QT = Q−1, multiply
by Q on the left, by Q−1 on the right, to obtain

B = nIn.

Going back to A this means that

| detA| = nn/2 ⇐⇒ 〈ci, cj〉 = 0 for i �= j. (6)

Matrices A with ±1-entries that achieve equality in (5) are aptly called

Statements (5) and (6) form an instance
of Hadamard’s inequality: The absolute
value of the determinant of a matrix is
at most the product of the lengths of its
columns, with equality if and only if the
columns are pairwise orthogonal.

Hadamard matrices. So an n× n matrix A with ±1-entries is a Hadamard
matrix if and only if

ATA = AAT = nIn.

This leads to another unsolved and apparently very difficult problem:

For which n does a Hadamard matrix of size n× n exist?

A short argument shows that if n is greater than 2, then it must be a mul-
tiple of 4. Indeed, suppose that A is an n × n Hadamard matrix, n ≥ 2,
whose rows are the vectors r1, . . . , rn. Clearly, multiplication of any row
or column by −1 gives another Hadamard matrix. So we may assume that
the first row consists of 1’s only. Since 〈r1, ri〉 = 0 for i �= 1, every other
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row must contain n
2 1’s and n

2 −1’s; in particular, n must be even. As-
sume now that n > 2 and consider rows r2 and r3, and denote by a, b, c, d
the numbers of columns that have +1

+1 , +1
−1 , −1

+1 , and −1
−1 in rows 2 and 3,

respectively. Then from 〈r1, r2〉 = 0 and 〈r1, r3〉 = 0 we get

a+ b = c+ d = a+ c = b+ d =
n

2
,

which gives b = c, a = d. But from 〈r2, r3〉 = 0 we also have a+d = b+c,
resulting in 2a = 2b. We conclude that a = b = c = d = n

4 . Thus the order
of the Hadamard matrix is either n = 1 or n = 2, or n = a+b+c+d = 4a,
a multiple of 4.

Does a Hadamard matrix exist for all n = 4a? No one knows. The answer
is yes for n up to the current record n = 664, and for certain infinite series
such as the powers of 2 (see the box). But the general answer seems at
present out of reach.

Hadamard matrices exist for all n = 2
m

Consider an m-set X and index the 2m subsets C ⊆ X in any way
C1, . . . , C2m . The matrix A = (aij) is defined as

aij = (−1)|Ci∩Cj|.

We want to verify 〈ri, rj〉 = 0 for i �= j. From the definition,

〈ri, rj〉 =
∑
k

(−1)|Ci∩Ck|+|Cj∩Ck|. (∗)

Now, as Ci �= Cj there exists an element a ∈ X with a ∈ Ci\Cj

or a ∈ Cj\Ci; suppose a ∈ Ci\Cj . Half the subsets of X contain
a, and half do not. Let C run through all subsets that contain a, then
the pairs {C,C\a} will comprise all subsets of X . But for each such
pair {C,C\a}, |Ci ∩C|+ |Cj ∩C| and |Ci∩ (C\a)|+ |Cj ∩ (C\a)|
have different parity, and so the corresponding terms in (∗) will sum
to 0. But then the whole sum is 0, as required.

For n = 4, with the numbering C1=∅,
C2 = {1}, C3 = {2}, C4 = {1, 2} this
yields the matrix⎛

⎜⎜⎝
1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎞
⎟⎟⎠

For n = 4a we have thus reduced the original problem to the existence of
Hadamard matrices. But how large can detA be when n is not a multiple
of 4? This is again a hard problem, but maybe we can find a good lower
bound for the maximum. Here is a method that often proves successful —
and it does in our case.

(
1 1

−1 1

) ⎛
⎝ 1 1 1

1 −1 1
1 −1 −1

⎞
⎠

⎛
⎜⎜⎝

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎞
⎟⎟⎠

Optimal matrices for n = 2, 3, and 4,
with determinants 2, 4, and 16.

Let us look at all 2n
2

matrices with ±1-entries and consider some averages
of the determinant. The arithmetic mean 1

2n2

∑
A detA is 0 (clear?), so

this is no big help. But if we consider the mean square average instead,

Dn :=

√∑
A(detA)

2

2n2 ,
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then things brighten up. Clearly,

max
A

detA ≥ Dn,

so this will give us a lower bound for the maximum.

The following stunningly simple calculation of D 2
n probably appeared first

in an article by George Szekeres and Paul Turán. We learnt it from a
beautiful paper of Herb Wilf who heard it from Mark Kac. In the words
of Mark Kac: “Just write (detA)2 out twice, interchange summation, and
everything simplifies.” So we want to do just that.

From the definition of the determinant we get

D 2
n =

1

2n2

∑
A

(∑
π

(signπ)a1π(1)a2π(2) · · · anπ(n)
)2

=
1

2n2

∑
A

∑
σ

∑
τ

(sign σ)(sign τ)a1σ(1)a1τ(1) · · · anσ(n)anτ(n),

where σ and τ run independently through all permutations of {1, . . . , n}.
Interchange of summation yields

D 2
n =

1

2n2

∑
σ,τ

(sign σ)(sign τ)
(∑

A

a1σ(1)a1τ(1) · · · anσ(n)anτ(n)
)
.

This doesn’t look too promising, but wait. Look at a fixed pair (σ, τ). The
inner sum

∑
A is really a summation over n2 variables, one for each aij :∑

a11=±1

∑
a12=±1

· · ·
∑

ann=±1

a1σ(1)a1τ(1) · · · anσ(n)anτ(n). (7)

Suppose σ(i) = k �= τ(i). Then every summand contains aik, and there-
fore the whole sum has the factor

∑
aik=±1 aik = 0, and hence is 0 as well.

The only way that the sum fails to be 0 is when σ = τ , and everything sim-
plifies indeed: For σ = τ , the inner product is 1 as is the term (signσ)2.
The sum in (7) is therefore∑

a11=±1

· · ·
∑

ann=±1

1 = 2n
2

,

and wrapping things up we obtain

D 2
n =

1

2n2

∑
σ

2n
2

= n!,

and thus the following result.

Theorem 2. There exists an n × n matrix with entries ±1 whose
determinant is greater than

√
n!.
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It is a characteristic feature of averaging that, while we learn that such a
matrix exists, we have no clue how to construct it efficiently. But, surpris-
ingly, the bound is quite good. Invoking Stirling’s formula from page 13
we have √

n! ∼ (2πn)
1
4

(n
e

)n
2

,

and this is not too bad in comparison to the upper bound nn/2.

Using the biquadratic mean average Szekeres and Turán got the even better
lower bound 1

4

√
n!
√
n, but the correct growth for the maximum as n goes

to infinity is still not known.

References

[1] J. HADAMARD: Résolution d’une question relative aux déterminants, Bulletin
des Sciences Mathématiques 17 (1893), 240-246.

[2] G. SZEKERES & P. TURÁN: An extremal problem in the theory of determi-
nants, in: “Collected Papers of Paul Turán” (P. Erdős, ed.), Akadémiai Kiadó,
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Some irrational numbers Chapter 8

Charles Hermite

“π is irrational”

This was already conjectured by Aristotle, when he claimed that diameter
and circumference of a circle are not commensurable. The first proof of
this fundamental fact was given by Johann Heinrich Lambert in 1766. In
fact, Lambert even showed that tan r is irrational for rational r �= 0; the
irrationality of π follows from this since tan π

4 = 1. Our Book Proof is
due to Ivan Niven, 1947: an extremely elegant one-page proof that needs
only elementary calculus. Its idea is powerful, and quite a bit more can be
derived from it, as was shown by Iwamoto and Koksma, respectively:

• π2 is irrational and

• er is irrational for rational r �= 0.

Niven’s method does, however, have its roots and predecessors: It can be
traced back to the classical paper by Charles Hermite from 1873 which
first established that e is transcendental, that is, that e is not a zero of a
polynomial with rational coefficients.

e := 1 + 1
1
+ 1

2
+ 1

6
+ 1

24
+ · · ·

= 2.718281828...

ex := 1 + x
1
+ x2

2
+ x3

6
+ x4

24
+ · · ·

=
∑
k≥0

xk

k!

Before we treat π we will look at e and its powers, and see that these are
irrational. This is much easier, and we thus also follow the historical order
in the development of the results.

To start with, it is rather easy to see (as did Fourier in 1815) that e =∑
k≥0

1
k! is irrational. Indeed, if we had e = a

b for integers a and b > 0,
then we would get

n!be = n!a

for every n ≥ 0. But this cannot be true, because on the right-hand side we
have an integer, while the left-hand side with

e =
(
1+

1

1!
+

1

2!
+· · ·+ 1

n!

)
+

( 1

(n+ 1)!
+

1

(n+ 2)!
+

1

(n+ 3)!
+ · · ·

)
decomposes into an integral part

bn!
(
1 +

1

1!
+

1

2!
+ · · ·+ 1

n!

)
and a second part

b
( 1

n+ 1
+

1

(n+ 1)(n+ 2)
+

1

(n+ 1)(n+ 2)(n+ 3)
+ · · ·

)
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which is approximately b
n , so that for large n it certainly cannot be integral:

It is larger than b
n+1 and smaller than b

n , as one can see from a comparison
with a geometric series:

1

n+ 1
<

1

n+ 1
+

1

(n+ 1)(n+ 2)
+

1

(n+ 1)(n+ 2)(n+ 3)
+ · · ·

<
1

n+ 1
+

1

(n+ 1)2
+

1

(n+ 1)3
+ · · · =

1

n
.

Geometric series

For the infinite geometric series

Q = 1
q
+ 1

q2
+ 1

q3
+ · · ·

with q > 1 we clearly have

qQ = 1 + 1
q
+ 1

q2
+ · · · = 1 +Q

and thus

Q =
1

q − 1
.

Now one might be led to think that this simple multiply–by–n! trick is not
even sufficient to show that e2 is irrational. This is a stronger statement:√
2 is an example of a number which is irrational, but whose square is not.

From John Cosgrave we have learned that with two nice ideas/observations
(let’s call them “tricks”) one can get two steps further nevertheless: Each of
the tricks is sufficient to show that e2 is irrational, the combination of both
of them even yields the same for e4. The first trick may be found in a one

Liouville’s paper

page paper by J. Liouville from 1840 — and the second one in a two page
“addendum” which Liouville published on the next two journal pages.

Why is e2 irrational? What can we derive from e2 = a
b ? According to

Liouville we should write this as

be = ae−1,

substitute the series

e = 1 +
1

1
+

1

2
+

1

6
+

1

24
+

1

120
+ · · ·

and

e−1 = 1− 1

1
+

1

2
− 1

6
+

1

24
− 1

120
± · · · ,

and then multiply by n!, for a sufficiently large even n. Then we see that
n!be is nearly integral:

n!b
(
1 +

1

1
+

1

2
+

1

6
+ · · ·+ 1

n!

)
is an integer, and the rest

n!b
( 1

(n+ 1)!
+

1

(n+ 2)!
+ · · ·

)
is approximately b

n : It is larger than b
n+1 but smaller than b

n , as we have
seen above.

At the same time n!ae−1 is nearly integral as well: Again we get a large
integral part, and then a rest

(−1)n+1n!a
( 1

(n+ 1)!
− 1

(n+ 2)!
+

1

(n+ 3)!
∓ · · ·

)
,
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and this is approximately (−1)n+1 a
n . More precisely: for even n the rest is

larger than − a
n , but smaller than

−a
( 1

n+ 1
− 1

(n+ 1)2
− 1

(n+ 1)3
− · · ·

)
= − a

n+ 1

(
1− 1

n

)
< 0.

But this cannot be true, since for large even n it would imply that n!ae−1 is
just a bit smaller than an integer, while n!be is a bit larger than an integer,
so n!ae−1 = n!be cannot hold. �

In order to show that e4 is irrational, we now courageously assume that
e4 = a

b were rational, and write this as

be2 = ae−2.

We could now try to multiply this by n! for some large n, and collect the
non-integral summands, but this leads to nothing useful: The sum of the
remaining terms on the left-hand side will be approximately b 2

n+1

n , on the

right side (−1)n+1a 2n+1

n , and both will be very large if n gets large.

So one has to examine the situation a bit more carefully, and make two little
adjustments to the strategy: First we will not take an arbitrary large n, but
a large power of two, n = 2m; and secondly we will not multiply by n!,
but by n!

2n−1 . Then we need a little lemma, a special case of Legendre’s
theorem (see page 10): For any n ≥ 1 the integer n! contains the prime
factor 2 at most n − 1 times — with equality if (and only if) n is a power
of two, n = 2m.

This lemma is not hard to show: 	n2 
 of the factors of n! are even, 	n4 
 of
them are divisible by 4, and so on. So if 2k is the largest power of two
which satisfies 2k ≤ n, then n! contains the prime factor 2 exactly⌊n
2

⌋
+
⌊n
4

⌋
+ · · ·+

⌊ n

2k

⌋
≤ n

2
+
n

4
+ · · ·+ n

2k
= n

(
1− 1

2k

)
≤ n−1

times, with equality in both inequalities exactly if n = 2k.

Let’s get back to be2 = ae−2. We are looking at

b
n!

2n−1
e2 = a

n!

2n−1
e−2 (1)

and substitute the series

e2 = 1 +
2

1
+

4

2
+

8

6
+ · · · + 2r

r!
+ · · ·

and

e−2 = 1− 2

1
+

4

2
− 8

6
± · · · + (−1)r 2

r

r!
+ · · ·

For r ≤ n we get integral summands on both sides, namely

b
n!

2n−1

2r

r!
resp. (−1)ra n!

2n−1

2r

r!
,
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where for r > 0 the denominator r! contains the prime factor 2 at most
r − 1 times, while n! contains it exactly n − 1 times. (So for r > 0 the
summands are even.)

And since n is even (we assume that n = 2m), the series that we get for
r ≥ n+ 1 are

2b
( 2

n+ 1
+

4

(n+ 1)(n+ 2)
+

8

(n+ 1)(n+ 2)(n+ 3)
+ · · ·

)
resp.

2a
(
− 2

n+ 1
+

4

(n+ 1)(n+ 2)
− 8

(n+ 1)(n+ 2)(n+ 3)
± · · ·

)
.

These series will for large n be roughly 4b
n resp. − 4a

n , as one sees again by
comparison with geometric series. For large n = 2m this means that the
left-hand side of (1) is a bit larger than an integer, while the right-hand side
is a bit smaller — contradiction! �

So we know that e4 is irrational; to show that e3, e5 etc. are irrational as
well, we need heavier machinery (that is, a bit of calculus), and a new idea
— which essentially goes back to Charles Hermite, and for which the key
is hidden in the following simple lemma.

Lemma. For some fixed n ≥ 1, let

f(x) =
xn(1− x)n

n!
.

(i) The function f(x) is a polynomial of the form f(x) =
1

n!

2n∑
i=n

cix
i,

where the coefficients ci are integers.

(ii) For 0 < x < 1 we have 0 < f(x) < 1
n! .

(iii) The derivatives f (k)(0) and f (k)(1) are integers for all k ≥ 0.

� Proof. Parts (i) and (ii) are clear.
For (iii) note that by (i) the k-th derivative f (k) vanishes at x = 0 unless
n ≤ k ≤ 2n, and in this range f (k)(0) = k!

n!ck is an integer. From f(x) =

f(1−x) we get f (k)(x) = (−1)kf (k)(1−x) for all x, and hence f (k)(1) =
(−1)kf (k)(0), which is an integer. �

Theorem 1. er is irrational for every r ∈ Q\{0}.

� Proof. It suffices to show that es cannot be rational for a positive integer
s (if e

s
t were rational, then

(
e

s
t

)t
= es would be rational, too). Assume

that es = a
b for integers a, b > 0, and let n be so large that n! > as2n+1.

Put
The estimate n! > e(n

e
)n yields an

explicit n that is “large enough.”

F (x) := s2nf(x)− s2n−1f ′(x) + s2n−2f ′′(x) ∓ · · · + f (2n)(x),

where f(x) is the function of the lemma.
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F (x) may also be written as an infinite sum

F (x) = s2nf(x)− s2n−1f ′(x) + s2n−2f ′′(x)∓ · · · ,

since the higher derivatives f (k)(x), for k > 2n, vanish. From this we see
that the polynomial F (x) satisfies the identity

F ′(x) = −s F (x) + s2n+1f(x).

Thus differentiation yields

d

dx
[esxF (x)] = sesxF (x) + esxF ′(x) = s2n+1esxf(x)

and hence

N := b

∫ 1

0

s2n+1esxf(x)dx = b [esxF (x)]
1
0 = aF (1)− bF (0).

This is an integer, since part (iii) of the lemma implies that F (0) and F (1)
are integers. However, part (ii) of the lemma yields estimates for the size
of N from below and from above,

0 < N = b

∫ 1

0

s2n+1esxf(x)dx < bs2n+1es
1

n!
=

as2n+1

n!
< 1,

which shows that N cannot be an integer: contradiction. �

Now that this trick was so successful, we use it once more.

Theorem 2. π2 is irrational.

� Proof. Assume that π2 = a
b for integers a, b > 0. We now use the

polynomial

F (x) := bn
(
π2nf(x)− π2n−2f (2)(x) + π2n−4f (4)(x)∓ · · ·

)
,

which satisfies F ′′(x) = −π2F (x) + bnπ2n+2f(x).

π is not rational, but it does have “good
approximations” by rationals — some
of these were known since antiquity:

22
7

= 3.142857142857...
355
113

= 3.141592920353...
104348
33215

= 3.141592653921...

π = 3.141592653589...

From part (iii) of the lemma we get that F (0) and F (1) are integers.
Elementary differentiation rules yield

d

dx

[
F ′(x) sin πx− πF (x) cos πx

]
=

(
F ′′(x) + π2F (x)

)
sinπx

= bnπ2n+2f(x) sinπx

= π2anf(x) sinπx,

and thus we obtain

N := π

∫ 1

0

anf(x) sinπxdx =
[ 1
π
F ′(x) sin πx− F (x) cos πx

]1
0

= F (0) + F (1),

which is an integer. Furthermore N is positive since it is defined as the
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integral of a function that is positive (except on the boundary). However,
if we choose n so large that πan

n! < 1, then from part (ii) of the lemma we
obtain

0 < N = π

∫ 1

0

anf(x) sinπxdx <
πan

n!
< 1,

a contradiction. �

Here comes our final irrationality result.

Theorem 3. For every odd integer n ≥ 3, the number

A(n) :=
1

π
arccos

(
1√
n

)
is irrational.

We will need this result for Hilbert’s third problem (see Chapter 10) in the
cases n = 3 and n = 9. For n = 2 and n = 4 we have A(2) = 1

4 and
A(4) = 1

3 , so the restriction to odd integers is essential. These values
are easily derived by appealing to the diagram in the margin, in which the
statement “ 1

π arccos
(

1√
n

)
is irrational” is equivalent to saying that the

polygonal arc constructed from 1√
n

, all of whose chords have the same
length, never closes into itself.

1√
n

0 1

We leave it as an exercise for the reader to show that A(n) is rational only
for n ∈ {1, 2, 4}. For that, distinguish the cases when n = 2r, and when n
is not a power of 2.

� Proof. We use the addition theorem

cosα+ cosβ = 2 cos α+β
2 cos α−β

2

from elementary trigonometry, which for α = (k + 1)ϕ and β = (k − 1)ϕ
yields

cos (k + 1)ϕ = 2 cosϕ cos kϕ − cos (k − 1)ϕ. (2)

For the angle ϕn = arccos
(

1√
n

)
, which is defined by cosϕn = 1√

n
and

0 ≤ ϕn ≤ π, this yields representations of the form

cos kϕn =
Ak
√
n
k
,

where Ak is an integer that is not divisible by n, for all k ≥ 0. In fact,
we have such a representation for k = 0, 1 with A0 = A1 = 1, and by
induction on k using (2) we get for k ≥ 1

cos (k + 1)ϕn = 2
1
√
n

Ak
√
n
k
− Ak−1
√
n
k−1

=
2Ak − nAk−1
√
n
k+1

.

Thus we obtain Ak+1 = 2Ak − nAk−1. If n ≥ 3 is odd, and Ak is not
divisible by n, then we find that Ak+1 cannot be divisible by n, either.
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Now assume that

A(n) =
1

π
ϕn =

k

�

is rational (with integers k, � > 0). Then �ϕn = kπ yields

±1 = cos kπ =
A�
√
n
�
.

Thus
√
n
�
= ±A� is an integer, with � ≥ 2, and hence n |

√
n
�
. With√

n
� |A� we find that n divides A�, a contradiction. �

References

[1] C. HERMITE: Sur la fonction exponentielle, Comptes rendus de l’Académie
des Sciences (Paris) 77 (1873), 18-24; Œuvres de Charles Hermite, Vol. III,
Gauthier-Villars, Paris 1912, pp. 150-181.

[2] Y. IWAMOTO: A proof that π2 is irrational, J. Osaka Institute of Science and
Technology 1 (1949), 147-148.

[3] J. F. KOKSMA: On Niven’s proof that π is irrational, Nieuw Archief voor
Wiskunde (2) 23 (1949), 39.

[4] J. LIOUVILLE: Sur l’irrationalité du nombre e = 2,718..., Journal de Mathé-
matiques Pures et Appl. (1) 5 (1840), 192; Addition, 193-194.

[5] I. NIVEN: A simple proof that π is irrational, Bulletin Amer. Math. Soc. 53

(1947), 509.



Three times π2/6 Chapter 9

We know that the infinite series
∑

n≥1
1
n does not converge. Indeed, in

Chapter 1 we have seen that even the series
∑

p∈P
1
p diverges.

However, the sum of the reciprocals of the squares converges (although
very slowly, as we will also see), and it produces an interesting value.

Euler’s series ∑
n≥1

1

n2
=

π2

6
.

This is a classical, famous and important result by Leonhard Euler from
1734. One of its key interpretations is that it yields the first nontrivial value

1 = 1.000000
1+ 1

4
= 1.250000

1+ 1
4
+ 1

9
= 1.361111

1+ 1
4
+ 1

9
+ 1

16
= 1.423611

1+ 1
4
+ 1

9
+ 1

16
+ 1

25
= 1.463611

1+ 1
4
+ 1

9
+ 1

16
+ 1

25
+ 1

36
= 1.491388

π2/6 = 1.644934.

ζ(2) of Riemann’s zeta function (see the appendix on page 59). This value
is irrational, as we have seen in Chapter 8.

But not only the result has a prominent place in mathematics history, there
are also a number of extremely elegant and clever proofs that have their
history: For some of these the joy of discovery and rediscovery has been
shared by many. In this chapter, we present three such proofs.

� Proof. The first proof appears as an exercise in William J. LeVeque’s
number theory textbook from 1956. But he says: “I haven’t the slightest
idea where that problem came from, but I’m pretty certain that it wasn’t
original with me.”

The proof consists in two different evaluations of the double integral

I :=

1∫
0

1∫
0

1

1− xy
dx dy.

For the first one, we expand 1
1−xy as a geometric series, decompose the

summands as products, and integrate effortlessly:

I =

1∫
0

1∫
0

∑
n≥0

(xy)n dx dy =
∑
n≥0

1∫
0

1∫
0

xnyn dx dy

=
∑
n≥0

( 1∫
0

xndx

)( 1∫
0

yndy

)
=

∑
n≥0

1

n+ 1

1

n+ 1

=
∑
n≥0

1

(n+ 1)2
=

∑
n≥1

1

n2
= ζ(2).
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54 Three times π2/6

This evaluation also shows that the double integral (over a positive function
with a pole at x = y = 1) is finite. Note that the computation is also easy
and straightforward if we read it backwards — thus the evaluation of ζ(2)
leads one to the double integral I .

1

x

u
y

1

v

The second way to evaluate I comes from a change of coordinates: in the
new coordinates given by u := y+x

2 and v := y−x
2 the domain of integration

is a square of side length 1
2

√
2, which we get from the old domain by first

rotating it by 45◦ and then shrinking it by a factor of
√
2. Substitution of

x = u− v and y = u+ v yields

1

1− xy
=

1

1− u2 + v2
.

To transform the integral, we have to replace dx dy by 2 du dv, to com-
pensate for the fact that our coordinate transformation reduces areas by a
constant factor of 2 (which is the Jacobi determinant of the transformation;
see the box on the next page). The new domain of integration, and the
function to be integrated, are symmetric with respect to the u-axis, so wev

I1 u

1

1
2

1
2

I2

just need to compute two times (another factor of 2 arises here!) the inte-
gral over the upper half domain, which we split into two parts in the most
natural way:

I = 4

1/2∫
0

( u∫
0

dv

1− u2 + v2

)
du + 4

1∫
1/2

( 1−u∫
0

dv

1− u2 + v2

)
du.

Using
∫

dx

a2 + x2
=

1

a
arctan

x

a
+ C , this becomes

I = 4

1/2∫
0

1√
1− u2

arctan

(
u√

1− u2

)
du

+ 4

1∫
1/2

1√
1− u2

arctan

(
1− u√
1− u2

)
du.

These integrals can be simplified and finally evaluated by substituting u =
sin θ resp. u = cos θ. But we proceed more directly, by computing that the
derivative of g(u) := arctan

(
u√

1−u2

)
is g′(u) = 1√

1−u2
, while the deriva-

tive of h(u) := arctan
(

1−u√
1−u2

)
= arctan

(√
1−u
1+u

)
is h′(u) = − 1

2
1√

1−u2
.

So we may use
∫ b

a
f ′(x)f(x)dx =

[
1
2f(x)

2
]b
a
= 1

2f(b)
2− 1

2f(a)
2 and get

I = 4

∫ 1/2

0

g′(u)g(u) du + 4

∫ 1

1/2

−2h′(u)h(u) du

= 2
[
g(u)2

]1/2
0
− 4

[
h(u)2

]1
1/2

= 2g(12 )
2 − 2g(0)2 − 4h(1)2 + 4h(12 )

2

= 2
(
π
6

)2 − 0− 0 + 4
(
π
6

)2
= π2

6 . �
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This proof extracted the value of Euler’s series from an integral via a rather
simple coordinate transformation. An ingenious proof of this type — with
an entirely nontrivial coordinate transformation — was later discovered by
Beukers, Calabi and Kolk. The point of departure for that proof is to split
the sum

∑
n≥1

1
n2 into the even terms and the odd terms. Clearly the even

terms 1
22 + 1

42 + 1
62 + · · · =

∑
k≥1

1
(2k)2 sum to 1

4ζ(2), so the odd terms
1
12 + 1

32 + 1
52 + · · · =

∑
k≥0

1
(2k+1)2 make up three quarters of the total

sum ζ(2). Thus Euler’s series is equivalent to

The Substitution Formula

To compute a double integral

I =

∫
S

f(x, y) dx dy.

we may perform a substitution of
variables

x = x(u, v) y = y(u, v),

if the correspondence of (u, v) ∈ T
to (x, y) ∈ S is bijective and contin-
uously differentiable. Then I equals∫
T

f(x(u, v), y(u, v))
∣∣∣d(x, y)
d(u, v)

∣∣∣du dv,

where d(x,y)
d(u,v)

is the Jacobi determi-
nant:

d(x, y)

d(u, v)
= det

(
dx
du

dx
dv

dy
du

dy
dv

)
.

∑
k≥0

1

(2k + 1)2
=

π2

8
.

� Proof. As above, we may express this as a double integral, namely

J =

1∫
0

1∫
0

1

1− x2y2
dx dy =

∑
k≥0

1

(2k + 1)2
.

So we have to compute this integral J . And for this Beukers, Calabi and
Kolk proposed the new coordinates

u := arccos

√
1− x2

1− x2y2
v := arccos

√
1− y2

1− x2y2
.

To compute the double integral, we may ignore the boundary of the domain,
and consider x, y in the range 0 < x < 1 and 0 < y < 1. Then u, v will lie
in the triangle u > 0, v > 0, u + v < π/2. The coordinate transformation
can be inverted explicitly, which leads one to the substitution

x =
sinu

cos v
and y =

sin v

cosu
.

It is easy to check that these formulas define a bijective coordinate transfor-
mation between the interior of the unit square S = {(x, y) : 0 ≤ x, y ≤ 1}
and the interior of the triangle T = {(u, v) : u, v ≥ 0, u+ v ≤ π/2}.
Now we have to compute the Jacobi determinant of the coordinate transfor-
mation, and magically it turns out to be

det

(
cosu
cos v

sin u sin v
cos2 v

sinu sin v
cos2 u

cos v
cosu

)
= 1− sin2 u sin2 v

cos2 u cos2 v
= 1− x2y2.

But this means that the integral that we want to compute is transformed into

1

S

T

y

1

x

π
2

v

π
2

u
J =

π/2∫
0

π/2−u∫
0

1 du dv,

which is just the area 1
2 (

π
2 )

2 = π2

8 of the triangle T . �
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Beautiful — even more so, as the same method of proof extends to the
computation of ζ(2k) in terms of a 2k-dimensional integral, for all k ≥ 1.
We refer to the original paper of Beuker, Calabi and Kolk [2], and to
Chapter 25, where we’ll achieve this on a different path, using the Herglotz
trick and Euler’s original approach.

After these two proofs via coordinate transformation we can’t resist the
temptation to present another, entirely different and completely elementary
proof for

∑
n≥1

1
n2 = π2

6 . It appears in a sequence of exercises in the
problem book by the twin brothers Akiva and Isaak Yaglom, whose Russian
original edition appeared in 1954. Versions of this beautiful proof were
rediscovered and presented by F. Holme (1970), I. Papadimitriou (1973),
and by Ransford (1982) who attributed it to John Scholes.

� Proof. The first step is to establish a remarkable relation between values
of the (squared) cotangent function. Namely, for all m ≥ 1 one has

For m = 1, 2, 3 this yields
cot2 π

3
= 1

3

cot2 π
5
+ cot2 2π

5
= 2

cot2 π
7
+ cot2 2π

7
+ cot2 3π

7
= 5

cot2
(

π
2m+1

)
+ cot2

(
2π

2m+1

)
+ · · ·+ cot2

(
mπ

2m+1

)
= 2m(2m−1)

6 . (1)

To establish this, we start with the relation eix = cosx + i sinx. Taking
the n-th power einx = (eix)n, we get

cosnx+ i sinnx = (cos x+ i sinx)n.

The imaginary part of this is

sinnx =

(
n

1

)
sinx cosn−1 x−

(
n

3

)
sin3 x cosn−3 x± · · · (2)

Now we let n = 2m + 1, while for x we will consider the m different
values x = rπ

2m+1 , for r = 1, 2, . . . ,m. For each of these values we have
nx = rπ, and thus sinnx = 0, while 0 < x < π

2 implies that for sinx we
get m distinct positive values.

In particular, we can divide (2) by sinn x, which yields

0 =

(
n

1

)
cotn−1 x−

(
n

3

)
cotn−3 x± · · · ,

that is,

0 =

(
2m+ 1

1

)
cot2m x−

(
2m+ 1

3

)
cot2m−2 x± · · ·

for each of the m distinct values of x. Thus for the polynomial of degree m

p(t) :=

(
2m+ 1

1

)
tm −

(
2m+ 1

3

)
tm−1 ± · · ·+ (−1)m

(
2m+ 1

2m+ 1

)
we know m distinct roots

ar = cot2
(

rπ
2m+1

)
for r = 1, 2, . . . ,m.

The roots are distinct because cot2 x = cot2 y implies sin2 x = sin2 y and
thus x = y for x, y ∈ { rπ

2m+1 : 1 ≤ r ≤ m}.
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Hence the polynomial coincides with

p(t) =

(
2m+ 1

1

)(
t− cot2

(
π

2m+1

))
· · ·

(
t− cot2

(
mπ

2m+1

))
.

Comparison of the coefficients of tm−1 in p(t) now yields that the sum of
the roots is

a1 + · · ·+ ar =

(
2m+1

3

)(
2m+1

1

) = 2m(2m−1)
6 ,

which proves (1).

Comparison of coefficients:
If p(t) = c(t− a1) · · · (t− am),
then the coefficient of tm−1 is
−c(a1 + · · ·+ am).

We also need a second identity, of the same type,

csc2
(

π
2m+1

)
+ csc2

(
2π

2m+1

)
+ · · ·+ csc2

(
mπ

2m+1

)
= 2m(2m+2)

6 , (3)

for the cosecant function cscx = 1
sin x . But

csc2 x =
1

sin2 x
=

cos2 x+ sin2 x

sin2 x
= cot2 x+ 1,

so we can derive (3) from (1) by adding m to both sides of the equation.

Now the stage is set, and everything falls into place. We use that in the
range 0 < y < π

2 we have

0 < a < b < c

implies

0 < 1
c
< 1

b
< 1

a

0 < sin y < y < tan y,

and thus

0 < cot y < 1
y < csc y,

which implies

cot2 y < 1
y2 < csc2 y.

Now we take this double inequality, apply it to each of the m distinct values
of x, and add the results. Using (1) for the left-hand side, and (3) for the
right-hand side, we obtain

2m(2m−1)
6 <

(
2m+1

π

)2
+

(
2m+1
2π

)2
+ · · ·+

(
2m+1
mπ

)2
< 2m(2m+2)

6 ,

that is,

π2

6
2m

2m+1
2m−1
2m+1 < 1

12 + 1
22 + · · ·+ 1

m2 < π2

6
2m

2m+1
2m+2
2m+1 .

Both the left-hand and the right-hand side converge to π2

6 for m −→ ∞:
end of proof. �

So how fast does
∑

1
n2 converge to π2/6? For this we have to estimate the

difference
π2

6
−

m∑
n=1

1

n2
=

∞∑
n=m+1

1

n2
.
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This is very easy with the technique of “comparing with an integral” that
we have reviewed already in the appendix to Chapter 2 (page 12). It yields

. . .
m+ 1

1
(m+1)2

f(t) = 1
t2

t

∞∑
n=m+1

1

n2
<

∫ ∞

m

1

t2
dt =

1

m

for an upper bound and
∞∑

n=m+1

1

n2
>

∫ ∞

m+1

1

t2
dt =

1

m+ 1

for a lower bound on the “remaining summands” — or even
∞∑

n=m+1

1

n2
>

∫ ∞

m+ 1
2

1

t2
dt =

1

m+ 1
2

if you are willing to do a slightly more careful estimate, using that the
function f(t) = 1

t2 is convex.

This means that our series does not converge too well; if we sum the first
one thousand summands, then we expect an error in the third digit after
the decimal point, while for the sum of the first one million summands,
m = 1000000, we expect to get an error in the sixth decimal digit, and
we do. However, then comes a big surprise: to an accuracy of 45 digits,

π2/6 = 1.644934066848226436472415166646025189218949901,

106∑
n=1

1

n2
= 1.644933066848726436305748499979391855885616544.

So the sixth digit after the decimal point is wrong (too small by 1), but
the next six digits are right! And then one digit is wrong (too large by 5),
then again five are correct. This surprising discovery is quite recent, due to
Roy D. North from Colorado Springs, 1988. (In 1982, Martin R. Powell,
a school teacher from Amersham, Bucks, England, failed to notice the full
effect due to the insufficient computing power available at the time.) It is
too strange to be purely coincidental . . . A look at the error term, which
again to 45 digits reads

∞∑
n=106+1

1

n2
= 0.000000999999500000166666666666633333333333357,

reveals that clearly there is a pattern. You might try to rewrite this last
number as

+ 10−6 − 1
210

−12 + 1
610

−18 − 1
3010

−30 + 1
4210

−42 + · · ·

where the coefficients (1,− 1
2 ,

1
6 , 0,−

1
30 , 0,

1
42 ) of 10−6i form the be-

ginning of the sequence of Bernoulli numbers that we’ll meet again in
Chapter 25. We refer our readers to the article by Borwein, Borwein &
Dilcher [3] for more such surprising “coincidences” — and for proofs.



Three times π2/6 59

Appendix: The Riemann zeta function

The Riemann zeta function ζ(s) is defined for real s > 1 by

ζ(s) :=
∑
n≥1

1

ns
.

Our estimates for Hn (see page 12) imply that the series for ζ(1) diverges,
but for any real s > 1 it does converge. The zeta function has a canonical
continuation to the entire complex plane (with one simple pole at s = 1),
which can be constructed using power series expansions. The resulting
complex function is of utmost importance for the theory of prime numbers.
Let us mention four diverse connections:

(1) The remarkable identity

ζ(s) =
∏
p

1

1− p−s

is due to Euler. It encodes the basic fact that every natural number has a
unique (!) decomposition into prime factors; using this, Euler’s identity is
a simple consequence of the geometric series expansion

1

1− p−s
= 1 +

1

ps
+

1

p2s
+

1

p3s
+ · · ·

The irrationality of ζ(2) = π2

6 together with Euler’s identity implies, again,
that there are infinitely many primes . . .

(2) The following marvelous argument of Don Zagier computes ζ(4)
from ζ(2). Consider the function

f(m,n) =
2

m3n
+

1

m2n2
+

2

mn3

for integers m,n ≥ 1. It is easily verified that for all m and n,

f(m,n)− f(m+ n, n)− f(m,m+ n) =
2

m2n2
.

Let us sum this equation over all m,n ≥ 1. If i �= j, then (i, j) is either of
the form (m+ n, n) or of the form (m,m+ n), for m,n ≥ 1. Thus, in the
sum on the left-hand side all terms f(i, j) with i �= j cancel, and so∑

n≥1

f(n, n) =
∑
n≥1

5

n4
= 5ζ(4)

remains. For the right-hand side one obtains∑
m,n≥1

2

m2n2
= 2

∑
m≥1

1

m2
·
∑
n≥1

1

n2
= 2ζ(2)2,

and out comes the equality

5ζ(4) = 2ζ(2)2.

With ζ(2) = π2

6 we thus get ζ(4) = π4

90 .

Another derivation via Bernoulli numbers appears in Chapter 25.
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(3) It has been known for a long time that ζ(s) is a rational multiple of πs,
and hence irrational, if s is an even integer s ≥ 2; see Chapter 25. In
contrast, the irrationality of ζ(3) was proved by Roger Apéry only in 1979.
Despite considerable effort the picture is rather incomplete about ζ(s) for
the other odd integers, s = 2t + 1 ≥ 5. However, Keith Ball and Tanguy
Rivoal proved that infinitely many of the values ζ(2t + 1) are irrational.
And indeed, although it is not known for any single odd value s ≥ 5 that
ζ(s) is irrational, Wadim Zudilin has proved that at least one of the four
values ζ(5), ζ(7), ζ(9), and ζ(11) is irrational. We refer to the beautiful
survey by Fischler.

(4) The location of the complex zeros of the zeta function is the subject
of the “Riemann hypothesis”: one of the most famous and important un-
resolved conjectures in all of mathematics. It claims that all the nontrivial
zeros s ∈ C of the zeta function satisfy Re(s) = 1

2 . (The zeta function
vanishes at all the negative even integers, which are referred to as the
“trivial zeros.”)

Surprisingly, Jeff Lagarias showed that the Riemann hypothesis is equiva-
lent to the following elementary statement: For all n ≥ 1,∑

d |n
d ≤ Hn + exp(Hn) log(Hn),

with equality only for n = 1, where Hn is again the n-th harmonic number.
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Hilbert’s third problem:

decomposing polyhedra

Chapter 10

David Hilbert

In his legendary address to the International Congress of Mathematicians
at Paris in 1900 David Hilbert asked — as the third of his twenty-three
problems — to specify

“two tetrahedra of equal bases and equal altitudes which can in
no way be split into congruent tetrahedra, and which cannot be
combined with congruent tetrahedra to form two polyhedra which
themselves could be split up into congruent tetrahedra.”

This problem can be traced back to two letters of Carl Friedrich Gauss
from 1844 (published in Gauss’ collected works in 1900). If tetrahedra
of equal volume could be split into congruent pieces, then this would give
one an “elementary” proof of Euclid’s theorem XII.5 that pyramids with
the same base and height have the same volume. It would thus provide
an elementary definition of the volume for polyhedra (that would not de-
pend on continuity arguments). A similar statement is true in plane geome-
try: the Bolyai–Gerwien Theorem [1, Sect. 2.7] states that planar polygons
are both equidecomposable (can be dissected into congruent triangles) and
equicomplementable (can be made equidecomposable by adding congruent
triangles) if and only if they have the same area.

The cross is equicomplementable with a
square of the same area: By adding the
same four triangles we can make them
equidecomposable (indeed: congruent).

In fact, the cross and the square are even
equidecomposable.

M. Aigner, G.M. Ziegler, Proofs from THE BOOK, DOI 10.1007/978-3-662-44205-0_10,  
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64 Hilbert’s third problem: decomposing polyhedra

Hilbert — as we can see from his wording of the problem — did expect that
there is no analogous theorem for dimension three, and he was right. In fact,
the problem was completely solved by Hilbert’s student Max Dehn in two
papers: The first one, exhibiting non-equidecomposable tetrahedra of equal
base and height, appeared already in 1900, the second one, also covering
equicomplementability, appeared in 1902. However, Dehn’s papers are not
easy to understand, and it takes effort to see whether Dehn did not fall into a
subtle trap which ensnared others: a very elegant but unfortunately wrong
proof was found by Raoul Bricard (in 1896!), by Herbert Meschkowski
(1960), and probably by others. However, Dehn’s proof was reworked by
others, clarified and redone, and after combined efforts of several authors
one arrived at the “classical proof”, as presented in Boltianskii’s book on
Hilbert’s third problem and also in earlier editions of this one.

In the following, however, we take advantage of a decisive simplification
that was found by V. F. Kagan from Odessa already in 1903: His integral-
ity argument, which we here present as the “cone lemma”, yields a “pearl
lemma” (given here in a recent version, due to Benko), and from this we
derive a correct and complete proof for “Bricard’s condition” (as claimed
in Bricard’s 1896 paper). Once we apply this to some examples we easily
obtain the solution of Hilbert’s third problem.
The appendix to this chapter provides some basics about polyhedra.

As above we call two polyhedra P and Q equidecomposable if they can
be decomposed into finite sets of polyhedra P1, . . . , Pn and Q1, . . . , Qn

such that Pi and Qi are congruent for all i. Two polyhedra are equicomple-
mentable if there are equidecomposable polyhedra P̃ = P ′′1 ∪ · · · ∪P ′′n and
Q̃ = Q′′1 ∪ · · · ∪ Q′′n that also have decompositions involving P and Q of
the form P̃ = P ∪P ′1 ∪P ′2 ∪ · · · ∪P ′m and Q̃ = Q∪Q′1 ∪Q′2∪ · · · ∪Q′m,
where P ′k is congruent to Q′k for all k. (See the large figure to the right
for an illustration.) A theorem of Gerling from 1844 [1, §12] implies that
for these definitions it does not matter whether we admit reflections when
considering congruences, or not.

For polygons in the plane, equidecomposability and equicomplementability
are defined analogously.

Clearly, equidecomposable objects are equicomplementable (this is the case
m = 0), but the converse is far from clear. We will use “Bricard’s condi-
tion” as our tool to certify — as Hilbert proposed — that certain tetrahedra
of equal volume are not equicomplementable, and in particular not equi-
decomposable.

Before we really start to work with three-dimensional polyhedra, let us
derive the pearl lemma, which is equally interesting also for planar decom-
positions. It refers to the segments in a decomposition: In any decompo-
sition the edges of one piece may be subdivided by vertices or edges of
other pieces; the pieces of this subdivision we call segments. Thus in the
two-dimensional case any endpoint of a segment is given by some vertex.
In the three-dimensional case the end of a segment may also be given by
a crossing of two edges. However, in any case all the interior points of a
segment belong to the same set of edges of pieces.

A

C

D

B

B
A

D

C

This equidecomposition of a square and
an equilateral triangle into four pieces is
due to Henry Dudeney (1902).
The short segment in the middle of the
equilateral triangle is the intersection of
pieces A and C, but it is not an edge of
any one of the pieces.
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P̃ = P ′′1 ∪ · · · ∪ P ′′n Q̃ = Q′′1 ∪ · · · ∪Q′′n

P̃ = P ∪ P ′1 ∪ · · · ∪ P ′m Q̃ = Q ∪Q′1 ∪ · · · ∪Q′m

P ′′3 P ′′4

P ′′2P ′′1

Q′′1 Q′′3

Q′′2 Q′′4

P ′1

P ′2 Q′2

Q′1

QP

For a parallelogram P and a nonconvex
hexagon Q that are equicomplementary,
this figure illustrates the four decompo-
sitions we refer to.

The Pearl Lemma. If P and Q are equidecomposable, then one can place
a positive numbers of pearls (that is, assign positive integers) to all the
segments of the decompositions P = P1∪· · ·∪Pn and Q = Q1∪· · ·∪Qn

in such a way that each edge of a piece Pk receives the same number of
pearls as the corresponding edge of Qk.

� Proof. Assign a variable xi to each segment in the decomposition of P
and a variable yj to each segment in the decomposition of Q. Now we have
to find positive integer values for the variables xi and yj in such a way
that the xi-variables corresponding to the segments of any edge of some
Pk yield the same sum as the yj-variables assigned to the segments of the
corresponding edge of Qk. This yields conditions that require that “some
xi-variables have the same sum as some yj-values”, namely∑

i:si⊆e

xi −
∑

j:s′
j
⊆e′

yj = 0

where the edge e ⊆ Pk decomposes into the segments si, while the corre-
sponding edge e′ ⊆ Qk decomposes into the segments s′j . This is a linear
equation with integer coefficients.

P1

P2

Q1

Q2

P4

P3

Q4

Q3

We note, however, that positive real values satisfying all these requirements
exist, namely the (real) lengths of the segments! Thus we are done, in view
of the following lemma. �

The polygons P and Q considered in the figure above are, indeed, equide-
composable. The figure to the right illustrates this, and shows a possible
placement of pearls.
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The Cone Lemma. If a system of homogeneous linear equations with in-
teger coefficients has a positive real solution, then it also has a positive
integer solution.

� Proof. The name of this lemma stems from the interpretation that the set

C = {x ∈ RN : Ax = 0, x > 0}

given by an integer matrixA ∈ ZM×N describes a (relatively open) rational
cone. We have to show that if this is nonempty, then it also contains integer
points: C ∩NN �= ∅.

If C is nonempty, then so is C̄ := {x ∈ RN : Ax = 0, x ≥ 1}, since for
any positive vector a suitable multiple will have all coordinates equal to or
larger than 1. (Here 1 denotes the vector with all coordinates equal to 1.)
It suffices to verify that C̄ ⊆ C contains a point with rational coordinates,
since then multiplication with a common denominator for all coordinates
will yield an integer point in C̄ ⊆ C.

There are many ways to prove this. We follow a well-trodden path that was
first explored by Fourier and Motzkin [8, Lecture 1]: By “Fourier–Motzkin
elimination” we show that the lexicographically smallest solution to the
system

Ax = 0, x ≥ 1

exists, and that it is rational if the matrix A is integral.

Indeed, any linear equation a
T
x = 0 can be equivalently enforced by two

inequalities aTx ≥ 0, −aTx ≥ 0. (Here a denotes a column vector and
a
T its transpose.) Thus it suffices to prove that any system of the type

Ax ≥ b, x ≥ 1

with integral A and b has a lexicographically smallest solution, which is
rational, provided that the system has any real solution at all.

For this we argue with induction on N . The case N = 1 is clear. For N > 1
look at all the inequalities that involve xN . If x′ = (x1, . . . , xN−1) is fixed,
these inequalities give lower bounds on xN (among them xN ≥ 1) and
possibly also upper bounds. So we form a new system A′x′ ≥ b, x′ ≥ 1

in N − 1 variables, which contains all the inequalities from the system
Ax ≥ b that do not involve xN , as well as all the inequalities obtained
by requiring that all upper bounds on xN (if there are any) are larger or
equal to all the lower bounds on xN (which include xN ≥ 1). This system
in N − 1 variables has a solution, and thus by induction it has a lexico-
graphically minimal solution x′∗, which is rational. And then the smallest
xN compatible with this solution x′∗ is easily found, it is determined by a
linear equation or inequality with integer coefficients, and thus it is rational
as well. �

x1 = 1

x2

x1

x2 = 1

2x1 − 3x2 = 0

Example: Here C̄ is given by
2x1−3x2 = 0, xi ≥ 1. Eliminating x2

yields x1 ≥ 3
2

. The lexicographically
minimal solution to the system is ( 3

2
, 1).
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Now we focus on decompositions of three-dimensional polyhedra. The
dihedral angles, that is, the angles between adjacent facets, play a decisive
role in the following theorem.

In a cube, all dihedral angles are π
2

.

For a prism over an equilateral triangle,
we get the dihedral angles π

3
and π

2
.

Theorem. (“Bricard’s condition”)

If three-dimensional polyhedra P and Q with dihedral angles α1, . . . , αr

resp. β1, . . . , βs are equidecomposable, then there are positive integers mi,
nj and an integer k with

m1α1 + · · ·+mrαr = n1β1 + · · ·+ nsβs + kπ.

The same holds more generally if P and Q are equicomplementable.

� Proof. Let us first assume that P and Q are equidecomposable, with
decompositions P = P1 ∪ · · · ∪ Pn and Q = Q1 ∪ · · · ∪ Qn, where Pi is
congruent to Qi. We assign a positive number of pearls to every segment
in both decompositions, according to the pearl lemma.

Let Σ1 be the sum of all the dihedral angles at all the pearls in the pieces
of the decomposition of P . If an edge of a piece Pi contains several pearls,
then the dihedral angle at this edge will appear several times in the sum Σ1.

If a pearl is contained in several pieces, then several angles are added for
this pearl, but they are all measured in the plane through the pearl that is
orthogonal to the corresponding segment. If the segment is contained in
an edge of P , the addition yields the (interior) dihedral angle αj at the
edge. The addition yields the angle π in the case that the segment lies in
the boundary of P but not on an edge. If the pearl/the segment lies in the
interior of P , then the sum of dihedral angles yields 2π or π. (The latter
case occurs in case the pearl lies in the interior of a face of a piece Pi.)

Thus we get a representation

Σ1 = m1α1 + · · ·+mrαr + k1π

for positive integers mj (1 ≤ j ≤ r) and nonnegative k1. Similarly for the
sum Σ2 of all the angles at the pearls of the decomposition of Q we get

Σ2 = n1β1 + · · ·+ nsβs + k2π

for positive integers nj (1 ≤ j ≤ s) and nonnegative k2.

However, we can also obtain the sums Σ1 and Σ2 by adding all the contribu-
tions in the individual pieces Pi and Qi. Since Pi and Qi are congruent, we
measure the same dihedral angles at the corresponding edges, and the Pearl
Lemma guarantees that we get the same number of pearls from the decom-
positions of P resp. Q at the corresponding edges. Thus we get Σ1 = Σ2,
which yields Bricard’s condition (with k = k2 − k1 ∈ Z) for the case of
equidecomposability.

Now let us assume that P and Q are equicomplementable, that is, that we
have decompositions

P̃ = P ∪ P ′1 ∪ · · · ∪ P ′m and Q̃ = Q ∪Q′1 ∪ · · · ∪Q′m,
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where P ′i and Q′i are congruent, and such that P̃ and Q̃ are equidecompos-
able, as

P̃ = P ′′1 ∪ · · · ∪ P ′′n and Q̃ = Q′′1 ∪ · · · ∪Q′′n,

where P ′′i and Q′′i are congruent (as in the figure on page 65). Again, using
the pearl lemma, we place pearls to all the segments in all four decompo-
sitions, where we impose the extra condition that each edge of P̃ gets the
same total number of pearls in both decompositions, and similarly for Q̃.
(The proof of the pearl lemma via the cone lemma allows for such extra
restrictions!) We also compute the sums of angles at pearls Σ′1 and Σ′2 as
well as Σ′′1 and Σ′′2 .

The angle sums Σ′′1 and Σ′′2 refer to decompositions of different polyhedra,
P̃ and Q̃, into the same set of pieces, hence we get Σ′′1 = Σ′′2 as above.

The angle sums Σ′1 and Σ′′1 refer to different decompositions of the same

polyhedron, P̃ . Since we have put the same number of pearls onto the edges
in both decompositions, the argument above yields Σ′1 = Σ′′1 + �1π for an
integer �1 ∈ Z. The same way we also get Σ′2 = Σ′′2 + �2π for an integer
�2 ∈ Z. Thus we conclude that

Σ′2 = Σ′1 + �π for � = �2 − �1 ∈ Z.

However, Σ′1 and Σ′2 refer to decompositions of P̃ resp. Q̃ into the same
pieces, except that the first one uses P as a piece, while the second uses Q.
Thus subtracting the contributions ofP ′i resp.Q′i from both sides, we obtain
the desired conclusion: the contributions of P and Q to the respective angle
sums,

m1α1 + · · ·+mrαr and n1β1 + · · ·+ nsβs,

where mj counts the pearls on edges with dihedral angle αj in P and nj

counts the pearls on edges with dihedral angle βj in Q, differ by an integer
multiple of π, namely by �π. �

From Bricard’s condition we now get a complete solution for Hilbert’s third
problem: We just have to compute the dihedral angles for some examples.

Example 1. For a regular tetrahedron T0 with edge lengths �, we calculate
the dihedral angle from the sketch. The midpoint M of the base triangle
divides the height AE of the base triangle by 1:2, and since |AE| = |DE|,
we find cosα = 1

3 , and thus

α = arccos 1
3 .

Thus we find that a regular tetrahedron cannot be equidecomposable or

A M

D

C

B

E
α

equicomplementable with a cube. Indeed, all the dihedral angles in a cube
equal π

2 , so Bricard’s condition requires that

m1 arccos
1
3 = n1

π
2 + kπ

for positive integers m1, n1 and an integer k. But this cannot hold, since
we know from Theorem 3 of Chapter 8 that 1

π arccos 1
3 is irrational.
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Example 2. Let T1 be a tetrahedron spanned by three orthogonal edges
AB, AC, AD of length u. This tetrahedron has three dihedral angles that
are right angles, and three more dihedral angles of equal size ϕ, which we
calculate from the sketch as

cosϕ =
|AE|
|DE| =

1
2

√
2u

1
2

√
3
√
2u

=
1√
3
.

It follows that
ϕ = arccos 1√

3
.

u

B

u

E

C

D

u
A

ϕ

√
2u

Thus the only dihedral angles occuring in T1 are π, π
2 , and arccos 1√

3
.

From this Bricard’s condition tells us that this tetrahedron as well is not
equicomplementable with a cube of the same volume, this time using that

1
π arccos 1√

3

is irrational, as we proved in Chapter 8 (take n = 3 in Theorem 3).

Example 3. Finally, let T2 be a tetrahedron with three consecutive edges
AB, BC and CD that are mutually orthogonal (an “orthoscheme”) and of
the same length u.

It is easy to calculate the angles in such a tetrahedron (three of them equal π
2 ,

two of them equal π
4 , and one of them is π

6 ), if we use that the cube of side
length u can be decomposed into six tetrahedra of this type (three congruent

C
B

D

u

u

u

Acopies, and three mirror images). Thus all dihedral angles in T2 are rational
multiples of π, and thus with the same proofs as above (in particular, the
irrationality results that we have quoted from Chapter 8) Bricard’s Condi-
tion implies that T2 is not equidecomposable, and not even equicomple-
mentable, with T0 or T1.

This solves Hilbert’s third problem, since T1 and T2 have congruent bases
and the same height.

Appendix: Polytopes and polyhedra

A convex polytope in Rd is the convex hull of a finite set S = {s1, . . . , sn},
that is, a set of the form

P = conv(S) :=
{ n∑

i=1

λisi : λi ≥ 0,

n∑
i=1

λi = 1
}
.

Polytopes are certainly familiar objects: Prime examples are given by con-
vex polygons (2-dimensional convex polytopes) and by convex polyhedra
(3-dimensional convex polytopes).
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There are several types of polyhedra that generalize to higher dimensions
in a natural way. For example, if the set S is affinely independent of
cardinality d + 1, then conv(S) is a d-dimensional simplex (or d-simplex).
For d = 2 this yields a triangle, for d = 3 we obtain a tetrahedron. Simi-
larly, squares and cubes are special cases of d-cubes, such as the unit d-cube
given by

Cd = [0, 1]d ⊆ Rd.

Familiar polytopes:
tetrahedron and cube

General polytopes are defined as finite unions of convex polytopes. In this
book nonconvex polyhedra will appear in connection with Cauchy’s rigidity
theorem in Chapter 14, and nonconvex polygons in connection with Pick’s
theorem in Chapter 13, and again when we discuss the art gallery theorem
in Chapter 39.

Convex polytopes can, equivalently, be defined as the bounded solution sets
of finite systems of linear inequalities. Thus every convex polytopeP ⊆ Rd

has a representation of the form

P = {x ∈ Rd : Ax ≤ b}

for some matrix A ∈ Rm×d and a vector b ∈ Rm. In other words, P is the
solution set of a system of m linear inequalities

aT
i x ≤ bi,

where aT
i is the i-th row of A. Conversely, every bounded such solution

set is a convex polytope, and can thus be represented as the convex hull of
a finite set of points.

The permutahedron has 24 vertices,
36 edges and 14 facets.

For polygons and polyhedra, we have the familiar concepts of vertices,
edges, and 2-faces. For higher-dimensional convex polytopes, we can de-
fine their faces as follows: a face of P is a subset F ⊆ P of the form

P ∩ {x ∈ Rd : aTx = b},

where aTx ≤ b is a linear inequality that is valid for all points x ∈ P .

All the faces of a polytope are themselves polytopes. The set V of vertices
(0-dimensional faces) of a convex polytope is also the inclusion-minimal set
such that conv(V ) = P . Assuming that P ⊆ Rd is a d-dimensional convex
polytope, the facets (the (d−1)-dimensional faces) determine a minimal set
of hyperplanes and thus of halfspaces that contain P , and whose intersec-
tion is P . In particular, this implies the following fact that we will need
later: Let F be a facet of P , denote by HF the hyperplane it determines,
and by H+

F and H−
F the two closed half-spaces bounded by HF . Then one

of these two halfspaces contains P (and the other one doesn’t).

The graph G(P ) of the convex polytope P is given by the set V of ver-
tices, and by the edge set E of 1-dimensional faces. If P has dimension 3,
then this graph is planar, and gives rise to the famous “Euler polyhedron
formula” (see Chapter 13).
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Two polytopesP, P ′ ⊆ Rd are congruent if there is some length-preserving
affine map that takes P to P ′. Such a map may reverse the orientation
of space, as does the reflection of P in a hyperplane, which takes P to
a mirror image of P . They are combinatorially equivalent if there is a
bijection from the faces of P to the faces of P ′ that preserves dimension
and inclusions between the faces. This notion of combinatorial equivalence
is much weaker than congruence: for example, our figure shows a unit cube
and a “skew” cube that are combinatorially equivalent (and thus we would
call any one of them “a cube”), but they are certainly not congruent.

Combinatorially equivalent polytopes

A polytope (or a more general subset of Rd) is called centrally symmetric
if there is some point x0 ∈ Rd such that

x0 + x ∈ P ⇐⇒ x0 − x ∈ P.

In this situation we call x0 the center of P .
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Lines in the plane

and decompositions of graphs

Chapter 11

Perhaps the best-known problem on configurations of lines was raised by
Sylvester in 1893 in a column of mathematical problems.

Whether Sylvester himself had a proof is in doubt, but a correct proof was
given by Tibor Gallai [Grünwald] some 40 years later. Therefore the fol-
lowing theorem is commonly attributed to Sylvester and Gallai. Subsequent
to Gallai’s proof several others appeared, but the following argument due
to L. M. Kelly may be “simply the best.”

J. J. Sylvester

Theorem 1. In any configuration of n points in the plane, not all on a line,
there is a line which contains exactly two of the points.

� Proof. Let P be the given set of points and consider the set L of all lines
which pass through at least two points of P . Among all pairs (P, �) with P
not on �, choose a pair (P0, �0) such that P0 has the smallest distance to �0,
with Q being the point on �0 closest to P0 (that is, on the line through P0

vertical to �0).

Claim. This line �0 does it!

If not, then �0 contains at least three points of P , and thus two of them, say
P1 and P2, lie on the same side of Q. Let us assume that P1 lies between
Q and P2, where P1 possibly coincides with Q. The figure on the right
shows the configuration. It follows that the distance of P1 to the line �1

P0

�1

P1

�0

Q

P2

determined by P0 and P2 is smaller than the distance of P0 to �0, and this
contradicts our choice for �0 and P0. �

1 2

45
7

3

6

In the proof we have used metric axioms (shortest distance) and order
axioms (P1 lies between Q and P2) of the real plane. Do we really need
these properties beyond the usual incidence axioms of points and lines?
Well, some additional condition is required, as the famous Fano plane de-
picted in the margin demonstrates. Here P = {1, 2, . . . , 7} and L consists
of the 7 three-point lines as indicated in the figure, including the “line”
{4, 5, 6}. Any two points determine a unique line, so the incidence axioms
are satisfied, but there is no 2-point line. The Sylvester–Gallai theorem
therefore shows that the Fano configuration cannot be embedded into the
real plane such that the seven collinear triples lie on real lines: there must
always be a “crooked” line.

M. Aigner, G.M. Ziegler, Proofs from THE BOOK, DOI 10.1007/978-3-662-44205-0_11,  
© Springer-Verlag Berlin Heidelberg 2014 
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However, it was shown by Coxeter that the order axioms will suffice for
a proof of the Sylvester–Gallai theorem. Thus one can devise a proof that
does not use any metric properties — see also the proof that we will give in
Chapter 13, using Euler’s formula.

Armed with Theorem 1, we may ask how many such two-point lines every
n-point configuration in the plane must contain. After many partial results,
the definitive answer was given very recently by Ben Green and Terence
Tao: There is a constant n0 such that every configuration of n ≥ n0 points,
not all on a line, contains at least n/2 two-point lines, and this is best pos-
sible — if n is even. In the case when n is odd, they prove that there are
even at least 3	n/4
 such lines, and again this is best possible.

The Sylvester–Gallai theorem directly implies another famous result on
points and lines in the plane, due to Paul Erdős and Nicolaas G. de Bruijn.
But in this case the result holds more generally for arbitrary point-line
systems, as was observed already by Erdős and de Bruijn. We will discuss
the more general result in a moment.

Theorem 2. Let P be a set of n ≥ 3 points in the plane, not all on a line.
Then the set L of lines passing through at least two points contains at least
n lines.

� Proof. For n = 3 there is nothing to show. Now we proceed by induction
on n. Let |P| = n+ 1. By the previous theorem there exists a line �0 ∈ L
containing exactly two pointsP and Q ofP . Consider the setP ′ = P\{Q}
and the set L′ of lines determined by P ′. If the points of P ′ do not all lie
on a single line, then by induction |L′| ≥ n and hence |L| ≥ n+1 because
of the additional line �0 in L. If, on the other hand, the points in P ′ are all
on a single line, then we have the “pencil” which results in precisely n+ 1
lines. �P P3 P4 . . .

Q

. . .

Pn+1

Now, as promised, here is the general result, which applies to much more
general “incidence geometries.”

Theorem 3. Let X be a set of n ≥ 3 elements, and let A1, . . . , Am be
proper subsets of X , such that every pair of elements of X is contained in
precisely one set Ai. Then m ≥ n holds.

� Proof. The following proof, variously attributed to Motzkin or Conway,
is almost one-line and truly inspired. For x ∈ X let rx be the number of
sets Ai containing x. (Note that 2 ≤ rx < m by the assumptions.) Now if
x �∈ Ai, then rx ≥ |Ai| because the |Ai| sets containing x and an element
of Ai must be distinct. Suppose m < n, then m|Ai| < nrx and thus
m(n− |Ai|) > n(m− rx) for x /∈ Ai, and we find

1 =
∑
x∈X

1
n =

∑
x∈X

∑
Ai:x �∈Ai

1
n(m−rx)

>
∑
Ai

∑
x:x �∈Ai

1
m(n−|Ai|) =

∑
Ai

1
m = 1,

which is absurd. �
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There is another very short proof for this theorem that uses linear algebra.
Let B be the incidence matrix of (X ;A1, . . . , Am), that is, the rows in B
are indexed by the elements of X , the columns by A1, . . . , Am, where

BxA :=

{
1 if x ∈ A
0 if x �∈ A.

Consider the product BBT . For x �= x′ we have (BBT )xx′ = 1, since x
and x′ are contained in precisely one set Ai, hence

BBT =

⎛⎜⎜⎜⎜⎝
rx1−1 0 . . . 0

0 rx2−1
...

...
. . . 0

0 . . . 0 rxn
−1

⎞⎟⎟⎟⎟⎠+

⎛⎜⎜⎜⎜⎝
1 1 . . . 1

1 1
...

...
. . . 1

1 . . . 1 1

⎞⎟⎟⎟⎟⎠
where rx is defined as above. Since the first matrix is positive definite (it has
only positive eigenvalues) and the second matrix is positive semi-definite
(it has the eigenvalues n and 0), we deduce that BBT is positive definite
and thus, in particular, invertible, implying rank(BBT ) = n. It follows that
the rank of the n ×m matrix B is at least n, and we conclude that indeed
n ≤ m, since the rank cannot exceed the number of columns.

Let us go a little beyond and turn to graph theory. (We refer to the review of
basic graph concepts in the appendix to this chapter.) A moment’s thought
shows that the following statement is really the same as Theorem 3:

If we decompose a complete graph Kn into m cliques different
from Kn, such that every edge is in a unique clique, then m ≥ n.

Indeed, let X correspond to the vertex set of Kn and the sets Ai to the
vertex sets of the cliques, then the statements are identical.

Our next task is to decompose Kn into complete bipartite graphs such that
again every edge is in exactly one of these graphs. There is an easy way to
do this. Number the vertices {1, 2, . . . , n}. First take the complete bipartite
graph joining 1 to all other vertices. Thus we obtain the graph K1,n−1

which is called a star. Next join 2 to 3, . . . , n, resulting in a star K1,n−2.
Going on like this, we decomposeKn into stars K1,n−1,K1,n−2, . . . ,K1,1.
This decomposition uses n−1 complete bipartite graphs. Can we do better,

A decomposition of K5 into 4 complete
bipartite subgraphs

that is, use fewer graphs? No, as the following result of Ron Graham and
Henry O. Pollak says:

Theorem 4. If Kn is decomposed into complete bipartite subgraphs
H1, . . . , Hm, then m ≥ n− 1.

The interesting thing is that, in contrast to the Erdős–de Bruijn theorem, no
combinatorial proof for this result is known! All of them use linear algebra
in one way or another. Of the various more or less equivalent ideas let us
look at the proof due to Tverberg, which may be the most transparent.
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� Proof. Let the vertex set of Kn be {1, . . . , n}, and let Lj , Rj be the
defining vertex sets of the complete bipartite graph Hj , j = 1, . . . ,m.
To every vertex i we associate a variable xi. Since H1, . . . , Hm decom-
pose Kn, we find

∑
i<j

xixj =

m∑
k=1

(
∑
a∈Lk

xa ·
∑
b∈Rk

xb). (1)

Now suppose the theorem is false, m < n − 1. Then the system of linear
equations

x1 + · · ·+ xn = 0,∑
a∈Lk

xa = 0 (k = 1, . . . ,m)

has fewer equations than variables, hence there exists a nontrivial solution
c1, . . . , cn. From (1) we infer∑

i<j

cicj = 0.

But this implies

0 = (c1 + · · ·+ cn)
2 =

n∑
i=1

c2i + 2
∑
i<j

cicj =

n∑
i=1

c2i > 0,

a contradiction, and the proof is complete. �

Appendix: Basic graph concepts

Graphs are among the most basic of all mathematical structures. Corre-
spondingly, they have many different versions, representations, and incar-
nations. Abstractly, a graph is a pair G = (V,E), where V is the set of
vertices, E is the set of edges, and each edge e ∈ E “connects” two ver-
tices v, w ∈ V . We consider only finite graphs, where V and E are finite.

G:

A graph G with 7 vertices and 11 edges.
It has one loop, one double edge and one
triple edge.

Usually, we deal with simple graphs: Then we do not admit loops, i. e.,
edges for which both ends coincide, and no multiple edges that have the
same set of endvertices. Vertices of a graph are called adjacent or neighbors
if they are the endvertices of an edge. A vertex and an edge are called
incident if the edge has the vertex as an endvertex.

Here is a little picture gallery of important (simple) graphs:

The complete graphs Kn on n vertices
and

(
n
2

)
edges

K2 K3 K4 K5 . . .
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. . .

K1,1 K1,2
K1,3 K1,4 . . .

K2,4

K2,2 K2,3

. . .K3,3 The complete bipartite graphs Km,n

with m+ n vertices and mn edges

. . .

P2 P3 P4 P5

The paths Pn with n vertices

. . .
C3 C4 C5 C6

The cycles Cn with n vertices

Two graphs G = (V,E) and G′ = (V ′, E′) are considered isomorphic if
there are bijections V → V ′ and E → E′ that preserve the incidences be-
tween edges and their endvertices. (It is a major unsolved problem whether
there is an efficient test to decide whether two given graphs are isomorphic.)
This notion of isomorphism allows us to talk about the complete graph K5

on 5 vertices, etc.

G′ = (V ′, E′) is a subgraph of G = (V,E) if V ′ ⊆ V,E′ ⊆ E, and every
edge e ∈ E′ has the same endvertices in G′ as in G. G′ is an induced

is a subgraph of

subgraph if, additionally, all edges of G that connect vertices of G′ are also
edges of G′.
Many notions about graphs are quite intuitive: for example, a graph G is
connected if every two distinct vertices are connected by a path in G, or
equivalently, if G cannot be split into two nonempty subgraphs whose ver-
tex sets are disjoint. Any graph decomposes into its connected components.

We end this survey of basic graph concepts with a few more pieces of ter-
minology: A clique in G is a complete subgraph. An independent set in G
is an induced subgraph without edges, that is, a subset of the vertex set such
that no two vertices are connected by an edge of G. A graph is a forest if it
does not contain any cycles. A tree is a connected forest. Finally, a graph
G = (V,E) is bipartite if it is isomorphic to a subgraph of a complete bi-
partite graph, that is, if its vertex set can be written as a union V = V1 ∪V2

of two independent sets.
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The slope problem Chapter 12

Try for yourself — before you read much further — to construct configura-
tions of points in the plane that determine “relatively few” slopes. For this
we assume, of course, that the n ≥ 3 points do not all lie on one line. Re-
call from Chapter 11 on “Lines in the plane” the theorem of Erdős and de
Bruijn: the n points will determine at least n different lines. But of course
many of these lines may be parallel, and thus determine the same slope.

n = 3
3 slopes

n = 4
4 slopes

n = 5
4 slopes

n = 6
6 slopes

n = 7
6 slopes

· · ·
· · ·

or

n = 3
3 slopes

n = 4
4 slopes

n = 5
4 slopes

n = 6
6 slopes

n = 7
6 slopes

· · ·
· · ·

A little experimentation for small n will
probably lead you to a sequence such as
the two depicted here.

After some attempts at finding configurations with fewer slopes you might
conjecture — as Scott did in 1970 — the following theorem.

Theorem. If n ≥ 3 points in the plane do not lie on one single line,
then they determine at least n− 1 different slopes, where equality is
possible only if n is odd and n ≥ 5.

Our examples above — the drawings represent the first few configurations
in two infinite sequences of examples — show that the theorem as stated is
best possible: for any odd n ≥ 5 there is a configuration with n points that
determines exactly n− 1 different slopes, and for any other n ≥ 3 we have
a configuration with exactly n slopes.

M. Aigner, G.M. Ziegler, Proofs from THE BOOK, DOI 10.1007/978-3-662-44205-0_12,  
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However, the configurations that we have drawn above are by far not the
only ones. For example, Jamison and Hill described four infinite families
of configurations, each of them consisting of configurations with an odd
number n of points that determine only n − 1 slopes (“slope-critical con-
figurations”). Furthermore, they listed 102 “sporadic” examples that do not
seem to fit into an infinite family, most of them found by extensive com-
puter searches.

Conventional wisdom might say that extremal problems tend to be very
difficult to solve exactly if the extreme configurations are so diverse and
irregular. Indeed, there is a lot that can be said about the structure of slope-
critical configurations (see [2]), but a classification seems completely out
of reach. However, the theorem above has a simple proof, which has two
main ingredients: a reduction to an efficient combinatorial model due to
Eli Goodman and Ricky Pollack, and a beautiful argument in this model by
which Peter Ungar completed the proof in 1982.

Three pretty sporadic examples from the
Jamison–Hill catalogue

� Proof. (1) First we notice that it suffices to show that every “even” set
of n = 2m points in the plane (m ≥ 2) determines at least n slopes. This
is so since the case n = 3 is trivial, and for any set of n = 2m + 1 ≥ 5
points (not all on a line) we can find a subset of n− 1 = 2m points, not all
on a line, which already determines n− 1 slopes.

Thus for the following we consider a configuration of n = 2m points in the
plane that determines t ≥ 2 different slopes.

5 6

2

4

1 3

This configuration of n = 6 points
determines t = 6 different slopes.

(2) The combinatorial model is obtained by constructing a periodic se-
quence of permutations. For this we start with some direction in the plane
that is not one of the configuration’s slopes, and we number the points
1, . . . , n in the order in which they appear in the 1-dimensional projection
in this direction. Thus the permutation π0 = 123...n represents the order
of the points for our starting direction.

1 2 3 4 5 6

4
1 3 5 6

2

Here a vertical starting direction yields
π0 = 123456.

Next let the direction perform a counterclockwise motion, and watch how
the projection and its permutation change. Changes in the order of the
projected points appear exactly when the direction passes over one of the
configuration’s slopes.

But the changes are far from random or arbitrary: By performing a 180◦

rotation of the direction, we obtain a sequence of permutations

π0 → π1 → π2 → · · · → πt−1 → πt

which has the following special properties:

• The sequence starts with π0 = 123...n and ends with πt = n...321.

• The length t of the sequence is the number of slopes of the point con-
figuration.

• In the course of the sequence, every pair i < j is switched exactly
once. This means that on the way from π0 = 123...n to πt = n...321,
only increasing substrings are reversed.
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• Every move consists in the reversal of one or more disjoint increasing
substrings (corresponding to the one or more lines that have the direc-
tion which we pass at this point).

π2 = 213564

π3 = 265314

π4 = 625314

π5 = 652341

π6 = 654321

π1 = 213546

π0 = 123456

1 3

2

5 6

4

By continuing the circular motion around the configuration, one can view
the sequence as a part of a two-way infinite, periodic sequence of permuta-
tions

· · · → π−1 → π0 → · · · → πt → πt+1 → · · · → π2t → · · ·

where πi+t is the reverse of πi for all i, and thus πi+2t = πi for all i ∈ Z.

Getting the sequence of permutations
for our small example

We will show that every sequence with the above properties (and t ≥ 2)
must have length t ≥ n.

(3) The proof’s key is to divide each permutation into a “left half” and a
“right half” of equal size m = n

2 , and to count the letters that cross the
imaginary barrier between the left half and the right half.

Call πi → πi+1 a crossing move if one of the substrings it reverses does
involve letters from both sides of the barrier. The crossing move has order
d if it moves 2d letters across the barrier, that is, if the crossing string has
exactly d letters on one side and at least d letters on the other side. Thus in
our example

213564

265314

2

1 3 5 6

4

A crossing moveπ2 = 213:564 −→ 265:314 = π3

is a crossing move of order d = 2 (it moves 1, 3, 5, 6 across the barrier,
which we mark by “:”),

652:341 −→ 654:321
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is crossing of order d = 1, while for example

625:314 −→ 652:341

is not a crossing move.

In the course of the sequence π0 → π1 → · · · → πt, each of the letters
1, 2, . . . , n has to cross the barrier at least once. This implies that, if the
orders of the c crossing moves are d1, d2, . . . , dc, then we have

c∑
i=1

2di = #{letters that cross the barrier} ≥ n.

This also implies that we have at least two crossing moves, since a crossing
move with 2di = n occurs only if all the points are on one line, i. e. for
t = 1. Geometrically, a crossing move corresponds to the direction of a
line of the configuration that has less than m points on each side.

(4) A touching move is a move that reverses some string that is adjacent to
the central barrier, but does not cross it. For example,625314

652341

1 3 5

2

4

6

A touching move

π4 = 625:314 −→ 652:341 = π5

is a touching move. Geometrically, a touching move corresponds to the
slope of a line of the configuration that has exactly m points on one side,
and hence at most m− 2 points on the other side.

Moves that are neither touching nor crossing will be called ordinary moves.
For this

213546

213564
2

531

4

6

An ordinary move

π1 = 213:546 −→ 213:564 = π2

is an example. So every move is either crossing, or touching, or ordinary,
and we can use the letters T,C,O to denote the types of moves. C(d) will
denote a crossing move of order d. Thus for our small example we get

π0
T−→ π1

O−→ π2
C(2)−→ π3

O−→ π4
T−→ π5

C(1)−→ π6,

or even shorter we can record this sequence as T,O,C(2), O, T, C(1).

(5) To complete the proof, we need the following two facts:

Between any two crossing moves, there is at least one touching
move.

Between any crossing move of order d and the next touching move,
there are at least d− 1 ordinary moves.

In fact, after a crossing move of order d the barrier is contained in a sym-
metric decreasing substring of length 2d, with d letters on each side of the
barrier. For the next crossing move the central barrier must be brought into
an increasing substring of length at least 2. But only touching moves affect
whether the barrier is in an increasing substring. This yields the first fact.
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For the second fact, note that with each ordinary move (reversing some
increasing substrings) the decreasing 2d-string can get shortened by only
one letter on each side. And, as long as the decreasing string has at least 4
letters, a touching move is impossible. This yields the second fact.

If we construct the sequence of permutations starting with the same initial
projection but using a clockwise rotation, then we obtain the reversed se-
quence of permutations. Thus the sequence that we do have recorded must
also satisfy the opposite of our second fact:

Between a touching move and the next crossing move, of order d,
there are at least d− 1 ordinary moves.

(6) The T -O-C-pattern of the infinite sequence of permutations, as derived
in (2), is obtained by repeating over and over again the T -O-C-pattern of
length t of the sequence π0 −→ · · · −→ πt. Thus with the facts of (5) we
see that in the infinite sequence of moves, each crossing move of order d is
embedded into a T -O-C-pattern of the type

T,O,O, . . . , O︸ ︷︷ ︸
≥ d−1

, C(d), O,O, . . . , O︸ ︷︷ ︸
≥ d−1

, (∗)

of length 1 + (d− 1) + 1 + (d− 1) = 2d.

In the infinite sequence, we may consider a finite segment of length t that
starts with a touching move. This segment consists of substrings of the
type (∗), plus possibly extra inserted T ’s. This implies that its length t
satisfies

t ≥
c∑

i=1

2di ≥ n,

which completes the proof. �
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Three applications

of Euler’s formula

Chapter 13

Leonhard Euler

A graph is planar if it can be drawn in the plane R2 without crossing edges
(or, equivalently, on the 2-dimensional sphere S2). We talk of a plane graph
if such a drawing is already given and fixed. Any such drawing decomposes
the plane or sphere into a finite number of connected regions, including
the outer (unbounded) region, which are referred to as faces. Euler’s for-
mula exhibits a beautiful relation between the number of vertices, edges
and faces that is valid for any plane graph. Euler mentioned this result for
the first time in a letter to his friend Goldbach in 1750, but he did not have
a complete proof at the time. Among the many proofs of Euler’s formula,
we present a pretty and “self-dual” one that gets by without induction. It
can be traced back to von Staudt’s book “Geometrie der Lage” from 1847.

A plane graph G: n = 6, e = 10, f = 6

Euler’s formula. If G is a connected plane graph with n vertices,
e edges and f faces, then

n− e+ f = 2.

� Proof. Let T ⊆ E be the edge set of a spanning tree for G, that is, of a
minimal subgraph that connects all the vertices of G. This graph does not
contain a cycle because of the minimality assumption.

Dual spanning trees in G and in G∗

We now need the dual graph G∗ of G: To construct it, put a vertex into the
interior of each face ofG, and connect two such vertices ofG∗ by edges that
correspond to common boundary edges between the corresponding faces. If
there are several common boundary edges, then we draw several connecting
edges in the dual graph. (Thus G∗ may have multiple edges even if the
original graph G is simple.)

Consider the collection T ∗ ⊆ E∗ of edges in the dual graph that corre-
sponds to edges in E\T . The edges in T ∗ connect all the faces, since T
does not have a cycle; but also T ∗ does not contain a cycle, since otherwise
it would separate some vertices of G inside the cycle from vertices outside
(and this cannot be, since T is a spanning subgraph, and the edges of T and
of T ∗ do not intersect). Thus T ∗ is a spanning tree for G∗.
For every tree the number of vertices is one larger than the number of
edges. To see this, choose one vertex as the root, and direct all edges
“away from the root”: this yields a bijection between the non-root ver-
tices and the edges, by matching each edge with the vertex it points at.
Applied to the tree T this yields n = eT + 1, while for the tree T ∗ it yields
f = eT∗ + 1. Adding both equations we get n+f = (eT+1)+(eT∗+1) =
e+ 2. �
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Euler’s formula thus produces a strong numerical conclusion from a geo-
metric-topological situation: the numbers of vertices, edges, and faces of a
finite graph G satisfy n− e+ f = 2 whenever the graph is or can be drawn
in the plane or on a sphere.

Many well-known and classical consequences can be derived from Euler’s
formula. Among them are the classification of the regular convex polyhedra
(the platonic solids), the fact that K5 and K3,3 are not planar (see below),

The five platonic solids

and the five-color theorem that every planar map can be colored with at
most five colors such that no two adjacent countries have the same color.
But for this we have a much better proof, which does not even need Euler’s
formula — see Chapter 38.

This chapter collects three other beautiful proofs that have Euler’s formula
at their core. The first two — a proof of the Sylvester–Gallai theorem, and
a theorem on two-colored point configurations — use Euler’s formula in
clever combination with other arithmetic relationships between basic graph
parameters. Let us first look at these parameters.

The degree of a vertex is the number of edges that end in the vertex, where
loops count double. Let ni denote the number of vertices of degree i in G.

2

4

5

2 2

5

Here the degree is written next to each
vertex. Counting the vertices of given
degree yields n2 = 3, n3 = 0, n4 = 1,
n5 = 2.

Counting the vertices according to their degrees, we obtain

n = n0 + n1 + n2 + n3 + · · · (1)

On the other hand, every edge has two ends, so it contributes 2 to the sum
of all degrees, and we obtain

2e = n1 + 2n2 + 3n3 + 4n4 + · · · (2)

You may interpret this identity as counting in two ways the ends of the
edges, that is, the edge-vertex incidences. The average degree d of the
vertices is therefore

d =
2e

n
.

Next we count the faces of a plane graph according to their number of sides:
a k-face is a face that is bounded by k edges (where an edge that on both
sides borders the same region has to be counted twice!). Let fk be the
number of k-faces. Counting all faces we find

f = f1 + f2 + f3 + f4 + · · · (3)

Counting the edges according to the faces of which they are sides, we get

1

2

9

4

2

2

The number of sides is written into each
region. Counting the faces with a given
number of sides yields f1 = 1, f2 = 3,
f4 = 1, f9 = 1, and fi = 0 otherwise.

2e = f1 + 2f2 + 3f3 + 4f4 + · · · (4)

As before, we can interpret this as double-counting of edge-face incidences.
Note that the average number of sides of faces is given by

f =
2e

f
.
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Let us deduce from this — together with Euler’s formula — quickly that the
complete graph K5 and the complete bipartite graph K3,3 are not planar.
For a hypothetical plane drawing of K5 we calculate n = 5, e =

(
5
2

)
= 10,

thus f = e+ 2− n = 7 and f = 2e
f = 20

7 < 3. But if the average number
of sides is smaller than 3, then the embedding would have a face with at
most two sides, which cannot be.

K5 drawn with one crossing
Similarly for K3,3 we get n = 6, e = 9, and f = e + 2 − n = 5, and thus
f = 2e

f = 18
5 < 4, which cannot be since K3,3 is simple and bipartite, so

all its cycles have length at least 4.

K3,3 drawn with one crossing

It is no coincidence, of course, that the equations (3) and (4) for the fi’s look
so similar to the equations (1) and (2) for the ni’s. They are transformed
into each other by the dual graph construction G→ G∗ explained above.

From the double counting identities, we get the following important “local”
consequences of Euler’s formula.

Proposition. Let G be any simple plane graph with n > 2 vertices. Then

(A) G has at most 3n− 6 edges.

(B) G has a vertex of degree at most 5.

(C) If the edges of G are two-colored, then there is a vertex of G with at
most two color-changes in the cyclic order of the edges around the
vertex.

� Proof. For each of the three statements, we may assume that G is con-
nected.

(A) Every face has at least 3 sides (since G is simple), so (3) and (4) yield

f = f3 + f4 + f5 + · · ·
and

2e = 3f3 + 4f4 + 5f5 + · · ·

and thus 2e− 3f ≥ 0. Euler’s formula now gives

3n− 6 = 3e− 3f ≥ e.

(B) By part (A), the average degree d satisfies

d =
2e

n
≤ 6n− 12

n
< 6.

So there must be a vertex of degree at most 5.
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(C) Let c be the number of corners where color changes occur. Suppose the

Arrows point to the corners with color
changes.

statement is false, then we have c ≥ 4n corners with color changes, since
at every vertex there is an even number of changes. Now every face with
2k or 2k + 1 sides has at most 2k such corners, so we conclude that

4n ≤ c ≤ 2f3 + 4f4 + 4f5 + 6f6 + 6f7 + 8f8 + · · ·
≤ 2f3 + 4f4 + 6f5 + 8f6 + 10f7 + · · ·
= 2(3f3 + 4f4 + 5f5 + 6f6 + 7f7 + · · · )
−4(f3 + f4 + f5 + f6 + f7 + · · · )

= 4e− 4f

using again (3) and (4). So we have e ≥ n+ f , again contradicting Euler’s
formula. �

1. The Sylvester–Gallai theorem, revisited

It was first noted by Norman Steenrod, it seems, that part (B) of the propo-
sition yields a strikingly simple proof of the Sylvester–Gallai theorem (see
Chapter 11).

The Sylvester–Gallai theorem. Given any set of n ≥ 3 points in the
plane, not all on one line, there is always a line that contains exactly two
of the points.

� Proof. (Sylvester–Gallai via Euler)
If we embed the plane R2 in R3 near the unit sphere S2 as indicated in
our figure, then every point in R2 corresponds to a pair of antipodal points
on S2, and the lines in R2 correspond to great circles on S2. Thus the
Sylvester–Gallai theorem amounts to the following:

Given any set of n ≥ 3 pairs of antipodal points on the sphere, not all on
one great circle, there is always a great circle that contains exactly two of
the antipodal pairs.

Now we dualize, replacing each pair of antipodal points by the correspond-
ing great circle on the sphere. That is, instead of points ±v ∈ S2 we
consider the orthogonal circles given by Cv := {x ∈ S2 : 〈x,v〉 = 0}.
(This Cv is the equator if we consider v as the north pole of the sphere.)v

Cv

−v

Then the Sylvester–Gallai problem asks us to prove:

Given any collection of n ≥ 3 great circles on S2, not all of them passing
through one point, there is always a point that is on exactly two of the great
circles.

But the arrangement of great circles yields a simple plane graph on S2,
whose vertices are the intersection points of two of the great circles, which
divide the great circles into edges. All the vertex degrees are even, and they
are at least 4 — by construction. Thus part (B) of the proposition yields the
existence of a vertex of degree 4. That’s it! �
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2. Monochromatic lines

The following proof of a “colorful” relative of the Sylvester–Gallai theorem
is due to Don Chakerian.

Theorem. Given any finite configuration of “black” and “white” points
in the plane, not all on one line, there is always a “monochromatic” line:
a line that contains at least two points of one color and none of the other.

� Proof. As for the Sylvester–Gallai problem, we transfer the problem to
the unit sphere and dualize it there. So we must prove:

Given any finite collection of “black” and “white” great circles on the unit
sphere, not all passing through one point, there is always an intersection
point that lies either only on white great circles, or only on black great
circles.

Now the (positive) answer is clear from part (C) of the proposition, since
in every vertex where great circles of different colors intersect, we always
have at least 4 corners with sign changes. �

3. Pick’s theorem

Pick’s theorem from 1899 is a beautiful and surprising result in itself, but
it is also a “classical” consequence of Euler’s formula. For the following,
call a convex polygon P ⊆ R2 elementary if its vertices are integral (that
is, they lie in the lattice Z2), but if it does not contain any further lattice
points.

Lemma. Every elementary triangle Δ = conv{p0,p1,p2} ⊆ R2 has area
A(Δ) = 1

2 .

� Proof. Both the parallelogram P with corners p0,p1,p2,p1 + p2 − p0

and the lattice Z2 are symmetric with respect to the map

σ : x �−→ p1 + p2 − x,

which is the reflection with respect to the center of the segment from p1

to p2. Thus the parallelogram P = Δ ∪ σ(Δ) is elementary as well, and
its integral translates tile the plane. Hence {p1 − p0,p2 − p0} is a basis
of the lattice Z2, it has determinant±1, P is a parallelogram of area 1, and
Δ has area 1

2 . (For an explanation of these terms see the box on the next
page.) �

p0

p1

p2

p1 + p2 − p0

Theorem. The area of any (not necessarily convex) polygon Q ⊆ R2 with
integral vertices is given by

nint = 11, nbd = 8, so A = 14

A(Q) = nint +
1

2
nbd − 1,

where nint and nbd are the numbers of integral points in the interior
respectively on the boundary of Q.
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Lattice bases

A basis of Z2 is a pair of linearly independent vectors e1, e2 such that

Z2 = {λ1e1 + λ2e2 : λ1, λ2 ∈ Z}.

Let e1 =
(
a
b

)
and e2 =

(
c
d

)
, then the area of the parallelogram

spanned by e1 and e2 is given by A(e1, e2) = | det(e1, e2)| =
| det

(
a c
b d

)
|. If f1 =

(
r
s

)
and f2 =

(
t
u

)
is another basis, then

there exists an invertible Z-matrix Q with
(
r t
s u

)
=

(
a c
b d

)
Q. Since

QQ−1 =
(
1 0
0 1

)
, and the determinants are integers, it follows that

| detQ| = 1, and hence | det(f1,f2)| = | det(e1, e2)|. Therefore
all basis parallelograms have the same area 1, since A

((
1
0

)
,
(
0
1

))
= 1.

� Proof. Every such polygon can be triangulated using all the nint lattice
points in the interior, and all the nbd lattice points on the boundary of Q.
(This is not quite obvious, in particular if Q is not required to be convex, but
the argument given in Chapter 39 on the art gallery problem proves this.)

Now we interpret the triangulation as a plane graph, which subdivides the
plane into one unbounded face plus f − 1 triangles of area 1

2 , so

A(Q) =
1

2
(f − 1).

Every triangle has three sides, where each of the eint interior edges bounds
two triangles, while the ebd boundary edges appear in one single triangle
each. So 3(f−1) = 2eint+ebd and thus f = 2(e−f)−ebd+3. Also, there
is the same number of boundary edges and vertices, ebd = nbd. These two
facts together with Euler’s formula yield

f = 2(e− f)− ebd + 3

= 2(n− 2)− nbd + 3 = 2nint + nbd − 1,

and thus
A(Q) = 1

2 (f − 1) = nint +
1
2nbd − 1. �
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Cauchy’s rigidity theorem Chapter 14

Augustin Cauchy

A famous result that depends on Euler’s formula (specifically, on part (C)
of the proposition in the previous chapter) is Cauchy’s rigidity theorem for
3-dimensional polyhedra.

For the notions of congruence and of combinatorial equivalence that are
used in the following we refer to the appendix on polytopes and polyhedra
in the chapter on Hilbert’s third problem, see page 69.

Theorem. If two 3-dimensional convex polyhedra P and P ′ are
combinatorially equivalent with corresponding facets being congru-
ent, then also the angles between corresponding pairs of adjacent
facets are equal (and thus P is congruent to P ′).

The illustration in the margin shows two 3-dimensional polyhedra that are
combinatorially equivalent, such that the corresponding faces are congru-
ent. But they are not congruent, and only one of them is convex. Thus the
assumption of convexity is essential for Cauchy’s theorem!

� Proof. The following is essentially Cauchy’s original proof. Assume
that two convex polyhedra P and P ′ with congruent faces are given. We
color the edges of P as follows: an edge is black (or “positive”) if the
corresponding interior angle between the two adjacent facets is larger in P ′

than in P ; it is white (or “negative”) if the corresponding angle is smaller
in P ′ than in P .

The black and the white edges of P together form a 2-colored plane graph
on the surface of P , which by radial projection, assuming that the origin
is in the interior of P , we may transfer to the surface of the unit sphere.
If P and P ′ have unequal corresponding facet-angles, then the graph is
nonempty. With part (C) of the proposition in the previous chapter we find
that there is a vertex p that is adjacent to at least one black or white edge,
such that there are at most two changes between black and white edges (in
cyclic order).

Now we intersect P with a small sphere Sε (of radius ε) centered at the
vertex p, and we intersect P ′ with a sphere S′ε of the same radius ε centered
at the corresponding vertex p′. In Sε and S′ε we find convex spherical
polygons Q and Q′ such that corresponding arcs have the same lengths,
because of the congruence of the facets of P and P ′, and since we have
chosen the same radius ε.
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Now we mark by + the angles of Q for which the corresponding angle
in Q′ is larger, and by − the angles whose corresponding angle of Q′ is
smaller. That is, when moving from Q to Q′ the + angles are “opened,”
the − angles are “closed,” while all side lengths and the unmarked angles
stay constant.

From our choice of p we know that some + or − sign occurs, and that in
cyclic order there are at most two +/− changes. If only one type of signs
occurs, then the lemma below directly gives a contradiction, saying that one
edge must change its length. If both types of signs occur, then (since there

− −

+Q:

Q′:
are only two sign changes) there is a “separation line” that connects the
midpoints of two edges and separates all the + signs from all the − signs.
Again we get a contradiction from the lemma below, since the separation
line cannot be both longer and shorter in Q′ than in Q. �

Cauchy’s arm lemma.

If Q and Q′ are convex (planar or spherical) n-gons, labeled as in
the figure,

q1 qn

Q : Q′ :

q′2

q′1
q′n

α′3
q2

qn−1
q′n−1

α3 αn−1
α′n−1

α2
α′2

such that qiqi+1 = q′iq
′
i+1 holds for the lengths of corresponding edges for

1 ≤ i ≤ n− 1, and αi ≤ α′i holds for the sizes of corresponding angles for
2 ≤ i ≤ n− 1, then the “missing” edge length satisfies

q1qn ≤ q′1q′n,

with equality if and only if αi = α′i holds for all i.

It is interesting that Cauchy’s original proof of the lemma was false: a con-
tinuous motion that opens angles and keeps side-lengths fixed may destroy
convexity — see the figure! On the other hand, both the lemma and its
proof given here, from a letter by I. J. Schoenberg to S. K. Zaremba, are
valid both for planar and for spherical polygons.

� Proof. We use induction on n. The case n = 3 is easy: If in a triangle
we increase the angle γ between two sides of fixed lengths a and b, then the
length c of the opposite side also increases. Analytically, this follows from
the cosine theorem

c2 = a2 + b2 − 2ab cosγ

in the planar case, and from the analogous result

cos c = cos a cos b+ sin a sin b cos γ

in spherical trigonometry. Here the lengths a, b, c are measured on the
surface of a sphere of radius 1, and thus have values in the interval [0, π].
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Now let n ≥ 4. If for any i ∈ {2, . . . , n − 1} we have αi = α′i, then the
corresponding vertex can be cut off by introducing the diagonal from qi−1

to qi+1 resp. from q′i−1 to q′i+1, with qi−1qi+1 = q′i−1q
′
i+1, so we are done

by induction. Thus we may assume αi < α′i for 2 ≤ i ≤ n− 1.

qi

αi

Now we produce a new polygon Q∗ from Q by replacing αn−1 by the
largest possible angle α∗n−1 ≤ α′n−1 that keeps Q∗ convex. For this we
replace qn by q∗n, keeping all the other qi, edge lengths, and angles from Q.

If indeed we can choose α∗n−1 = α′n−1 keeping Q∗ convex, then we get
q1qn < q1q

∗
n ≤ q′1q′n, using the case n = 3 for the first step and induction

as above for the second.

q1 qn

q1 q∗n

Q:

α∗n−1

αn−1

Q∗:

Otherwise after a nontrivial move that yields

q1q
∗
n > q1qn (1)

we “get stuck” in a situation where q2, q1 and q∗n are collinear, with

q2q1 + q1q
∗
n = q2q

∗
n. (2)

Now we compare this Q∗ with Q′ and find

q2q
∗
n ≤ q′2q′n (3)

by induction on n (ignoring the vertex q1 resp. q′1). Thus we obtain

q2

Q∗ :

q1 q∗n

α∗n−1

q′1q′n
(∗)
≥ q′2q′n − q′1q

′
2

(3)

≥ q2q
∗
n − q1q2

(2)

= q1q
∗
n

(1)

> q1qn ,

where (∗) is just the triangle inequality, and all other relations have already
been derived. �

We have seen an example which shows that Cauchy’s theorem is not true
for nonconvex polyhedra. The special feature of this example is, of course,
that a noncontinuous “flip” takes one polyhedron to the other, keeping the
facets congruent while the dihedral angles “jump.” One can ask for more:

Could there be, for some nonconvex polyhedron, a continuous
deformation that would keep the facets flat and congruent?

It was conjectured that no triangulated surface, convex or not, admits such
a motion. So, it was quite a surprise when in 1977 — more than 160 years
after Cauchy’s work — Robert Connelly presented counterexamples: closed
triangulated spheres embedded in R3 (without self-intersections) that are
flexible, with a continuous motion that keeps all the edge lengths constant,
and thus keeps the triangular faces congruent.
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A beautiful example of a flexible sur-
face constructed by Klaus Steffen: The
dashed lines represent the nonconvex
edges in this “cut-out” paper model.
Fold the normal lines as “mountains”
and the dashed lines as “valleys.” The
edges in the model have lengths 5, 10,
11, 12 and 17 units.

The rigidity theory of surfaces has even more surprises in store: Idjad
Sabitov managed to prove that when any such flexing surface moves, the
volume it encloses must be constant. His proof is beautiful also in its use
of the algebraic machinery of polynomials and determinants (outside the
scope of this book).
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The Borromean rings don’t exist Chapter 15

The “Borromean rings” — three rings arranged so that no two of them are
linked, but the configuration cannot be taken apart without breaking one
of the rings — form a classic artistic symbol, which appeared in the coat
of arms of the aristocratic Borromeo family since the middle of the 15th
century.

The Borromean rings are also one of the most tantalizing and enigmatic
“impossible figures” of mathematics. They can easily be built as a geomet-
ric object in such a way that two of the rings are perfectly round circles of
the same size; it seems, however, that then the third ring is represented by
an ellipse, at best. Thus it is natural to ask:

Can the Borromean rings be built from three perfect circles?

As mathematical objects, the Borromean rings belong to the theory of knots
and links, which very attractively connects geometry, topology, and com-
binatorics. We all have a geometric picture of what knots (closed curves
in space) and links (arrangements of several such curves) look like, and we
can draw them in the plane. We also have intuitive notions of when two
knots or links are “the same” (equivalent), when a knot or link is “trivial,”
when two circles are linked, etc.: The appendix to this chapter provides a
review of the essential terms and definitions, including the fact that two dia-
grams present the same link or knot if and only if they can be transformed
into each other by a finite sequence of “Reidemeister moves.”

Knot theory as we know it today started in 1867, when the physicist William
Thompson, now known as Lord Kelvin, came up with his “vortex theory,”
according to which atoms could be explained as knots in the “ether” back-
ground of the universe. Kelvin’s theory was immensely popular at the
time and led to considerable efforts in the enumeration and classification
of knots and links. Kelvin’s coauthor and colleague, the Scottish physicist
Peter Guthrie Tait, published the first knot tables in 1876. He displayed and
discussed the following links:

M. Aigner, G.M. Ziegler, Proofs from THE BOOK, DOI 10.1007/978-3-662-44205-0_15,  
© Springer-Verlag Berlin Heidelberg 2014 



96 The Borromean rings don’t exist

In this display, No. 15 shows the Borromean Rings, while No. 18 is an
apparently different link that, however, shares the same characteristics:
It consists of three closed curves that are pairwise not linked, whereas the
whole diagram does not seem to come apart, it represents a nontrivial link.

Tait indeed claimed that the links No. 15 and No. 18 were not equivalent,
apparently based on the assumption that any alternating diagram of a link
(where along any string under- and over-crossings alternate) has a mini-
mal number of crossings among all possible diagrams. This long-standing
“Tait conjecture” was proved more than 100 years later, by Thistlethwaite,
Kauffman, and Murasugi in 1987. (Tait’s examples No. 16 and 17 have
only one component, so they are knots. All four examples fall into a larger
family that has been described and studied as the “Turk’s head links.”)

In 1892, the geometer Hermann Brunn introduced a much more general
family of objects that we now call Brunnian links: k-component links in
which any subcollection of k − 1 of the components is trivial. Tait’s links
No. 15 (the Borromean rings) and No. 18 are examples.

Back to the Borromean rings: Indeed they cannot be built from three perfect
circles. The first proof for this appeared in 1987 in a long differential geo-
metry paper by Michael F. Freedman and Richard Skora. Their beautiful
geometric idea, “getting movies from spherical domes,” is very powerful:
It solves the problem not only for the Borromean rings, but shows that any
Brunnian link built from perfect circles is trivial. It can also be generalized
to links formed by k-spheres in (2k + 1)-dimensional space. Our presen-
tation is based on a short unpublished note “Circle links” by Ian Agol.

Theorem 1. If a link consists of disjoint perfect circles that are
pairwise not linked, then the link is trivial.

� Proof. Moving each of the circles just a little bit, we may assume that
they lie in planes that are distinct, no two of the planes are parallel, and
none of the planes spanned by one of the circles contains the center of a
second circle. (This first preparatory step is not necessary, but it simplifies
some later parts of the proof quite a bit.)

There are several different ways to define what it means that two disjoint
circles in R3 are linked. Let us here use the following: Two circles are
linked if one of them intersects (and not only touches) the disk spanned by
the other one exactly once.

L

Two linked circles Let the circles be C,C′ ⊆ R3, let D,D′ be the flat disks they bound, and
let H,H ′ be the planes they span. If C′ intersects the disk D in one point,
then this point lies both in D ⊆ H as well as on C ′ ⊆ D′ ⊆ H ′, so in
particular it lies in the intersection of the two planes H and H ′, which is a
line, L := H ∩ H ′. As this line lies in the plane H and contains a point
in the interior of the disk D, it intersects C in exactly two points. The
circle C ′ intersects the plane H once in the interior of D, so there has to be
a second intersection point, which lies again on the line L, but outside D.
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We conclude that there are two pairs of intersection points given by C ∩ L
and C ′ ∩ L, and these two pairs alternate on the line L. In particular, we
find in this situation that also C intersects the disk D′ in one point.

L

C

C ′

H ′

H

It turns out that this “alternating property” characterizes linked circles: If
two circles C,C ′ are not linked, then one of them misses (or only touches)
the disk spanned by the other one. In that case we find fewer than four
points of C ∪ C′ on the line L, or the four points do not alternate.

For the proof of the theorem we now take a configuration of n circles
in R3 that are pairwise not linked and erect spherical domes above the disks
spanned by the circles. This entails a bold step into the fourth dimension,
since we add an extra coordinate. Don’t worry about how to visualize this
— in the end we will look at these dome functions defined on lines, so all
arguments can be visualized and verified in planar diagrams.

The spherical domes are constructed as follows: For any circle C ⊆ R3

with center c and radius r there is a 2-dimensional hemisphere S ⊆ R4,
which may be obtained as the graph

{(x, h(x)) ∈ R3×R : x ∈ D}

of the function

h : D → R, h(x) :=
√

r2 − |x− c|2

on the closed disk D spanned by the circle C. The dome S is orthogonal

c x

h(x)

|x− c|2 + |h(x)− 0|2 = r2

above D in the following sense: If we project it to R3 by the orthogonal
projection π : R4 → R3, (x, t) �→ x, that “forgets the last coordinate,” then
the image of the dome will be the disk D.

Claim. If two disjoint circles C,C ′ ⊆ R3 are not linked, then their
spherical domes S, S′ ⊆ R3×R do not intersect.

Proof of the Claim. We prove that if the domes S, S′ above the discs D,D′

spanned by two disjoint circles C,C ′ ⊆ R3 intersect, then the circles are
linked. For this, let (x0, t0) be a point in the intersection S∩S′. As (x0, t0)
lies in S, we get x0 ∈ D. Similarly, as (x0, t0) lies in S′, we get that
x0 ∈ D′. Hence x0 lies in the line L, and it also lies on D∩D′, where both
“lifting functions” h and h′ are defined.
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The lifting functions h, h′ describe spherical domes defined on D resp. D′.
Restricted to the line L, the functions h and h′ define perfect half-circles,
with domain of definition D ∩ L resp. D′ ∩ L. (This is the crucial point
in the proof: Above an ellipse one cannot build a dome that restricts to
half-circle arcs.)

The half-circles above L intersect if and
only if their end points alternate on the
line L.

Since the half-circles above D∩L resp. D′ ∩L intersect, their pairs of end
points S ∩ L and S′ ∩ L alternate on L, as illustrated in the margin. Hence
the circles C and C ′ are linked. This finishes the proof of the claim.

Back to the configuration of disjoint perfect circles in R3 that are pairwise
not linked. Freedman and Skora’s brilliant idea was to use the disjoint
domes guaranteed by the claim in order to construct a “movie” that shows
us how to separate the circles in the link by a continuous motion. For
this, we identify the original space R3, which contains the link, with the
slice R3×{0} of the space R3×R that contains the domes; that is, the extra
coordinate t is interpreted as time, and we start our movie at t = 0 with the
original link. If we now continuously increase the fourth (time) coordinate,
then what we see in time slices R3×{t} is a movie in which each of the
circles shrinks to a point, and then disappears.

C

Ct

R3 × {0} = H0

R3 × {t} = Ht

Here is a key observation: While a circle shrinks in this movie, the center of
the circle and the plane spanned by the circle do not change. Furthermore,
the circles stay disjoint since the domes are disjoint by the claim, and thus
they remain pairwise non-linked.

We can stop the shrinking for each circle at some time when the circle is
so small that it does not any more intersect a plane that is spanned by any
one of the other circles. Moreover, also the disk spanned by this little circle
does not intersect any of the other circle planes — neither at the point of
time where we stop its shrinking, nor at any later time.

Thus the movie will end with all circles shrunk so far that they have disjoint
spanning disks: The circles are completely separate, and thus the link is
trivial. �

In particular, we have just proved that any Brunnian link built from perfect
circles can be taken apart in a motion which maintains perfect circles along
the way. It remains an open problem, however, whether each of the circles
could keep its size in such a motion picture.
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With Theorem 1, we have established that the Borromean rings cannot be
built from perfect circles — assuming that we know that the Borromean
rings form a nontrivial link. Do we know that? It is by no means easy to
prove rigorously for any knot or link that it is nontrivial . . . However, the
eminent knot theorist Ralph Fox has invented a strikingly simple method to
achieve this — reportedly he designed it “in an effort to make the subject
accessible to everyone” while teaching knot theory to undergraduates at
Haverford College in 1956. Its first published trace can be found in an
exercise of a 1963 knot theory textbook by Crowell and Fox. Thirty years
later Ollie Nanyes observed that Fox’s method also solves the problem for
the Borromean rings.

Theorem 2. The Borromean rings are nontrivial, and they are also
not equivalent to Tait’s link No. 18.

� Proof. For every n ≥ 2, a Fox n-labeling of a link diagram labels each
arc of the diagram by an integer modulo n, such that at each crossing the
two integers a and c of the arcs that end at the crossing and the label b of
the arc of the overpass satisfy the crossing relation

c

a b

The crossing relation

a+ c ≡ 2b (modn).

Each link diagram has n trivial n-labelings, which use the same label for
all the arcs of the diagram, so we are interested in nontrivial labelings,
which use at least two different labels. For example, any link that consists
of two disjoint “far away” parts in the plane has at least n2 different Fox
n-labelings. Now we observe a crucial fact:

Claim. If two diagrams represent equivalent links, then they have the same
number of Fox n-labelings.

As explained in the appendix to this chapter, the diagrams for equivalent
links are connected by continuous deformations and a finite sequence of
Reidemeister moves of types I, II, and III; so all we have to check is that
Reidemeister moves don’t change the number of Fox n-labelings. This is
apparent from the following sketches, where in each of the separate draw-
ings all the relations among the labels of different arcs are forced by the
crossing relations:

a

a

I

a b

2a− b

b

a

a

II

a b
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c

x

b

2a− b

2a− c
a

III

c

y

b

2a− b

2b− c a

In particular, for arbitrary labels a, b, and c, the Reidemeister moves of
type III the crossing relations finally force us to put labels

x ≡ 2(2a− b)− (2a− c) ≡ c+ 2a− 2b

before the move and

y ≡ 2a− (2b− c) ≡ c+ 2a− 2b

after the move. This establishes the Claim!

Now we simply have to count the labelings. The interesting observations
will occur for odd n ≥ 3.

For the Borromean rings we claim that all Fox n-labelings are trivial if
n ≥ 3 is odd: If in the standard diagram for the Borromean rings the outer

a

2b−
a

b

2c− b

c

2a
− c

Labels for the Borromean rings

arcs get the labels a, b, and c (as sketched in the margin), then the outer
crossings force the inner arcs to have labels 2b− a, 2c− b, and 2a− c, and
at the inner crossings of the diagram we need that

2(2b−a) ≡ c+(2a−c), 2(2c−b) ≡ a+(2b−a), 2(2a−c) ≡ b+(2c−b),

that is 4a ≡ 4b ≡ 4c, and hence a ≡ b ≡ c (modn), as n is odd. (For every
even n ≥ 2, nontrivial labelings exist.) In particular, the Borromean rings
have only the trivial Fox 3-labelings or 5-labelings.

For Tait’s link No. 18, a very similar calculation, with the labels a, b, c, d, e,
and f assigned to the outer arcs, leads to inner labels 2a− b, 2b− c, 2c− d,

a

b

c

d

e

f
2a
− b

2b− c

2
c−

d

2d
− e

2e− f

2
f
−
a

Labels for Tait’s link No. 18

etc., and then finally to the conditions

a− d ≡ 4(b− c), b− e ≡ 4(c− d), c− f ≡ 4(d− e), . . . (modn).

For n = 3, this yields a − b + c − d ≡ 0, b − c + d − e ≡ 0, etc., and
we quickly derive that a ≡ b ≡ · · · ≡ f , so again there are only the trivial
3-labelings.

However, for n = 5 we find that we have to solve the equations a + b ≡
c + d, b+ c ≡ d + e, etc., and this leads us to the solutions with arbitrary
a ≡ c ≡ e and b ≡ d ≡ f (and no others). Thus there are 52 = 25 Fox
5-labelings for this link.

The trivial three component link clearly has n3 Fox n-labelings, that is, it
has 27 Fox 3-labelings and 125 Fox 5-labelings.

Thus the Borromean rings, Tait’s link No. 18, and the trivial link with three
components have different numbers of Fox 5-labelings (5, 25, and 125,
respectively), so they are nonequivalent links. �
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Appendix: Basic notions on knots and links

Topologists define a knot as the image of a continuous embedding of a
circle in R3; a differential geometer might add that we are not interested
in “wild” knots, but only in “tame” ones that are smooth curves. A link is
obtained from a smooth embedding of a disjoint union of disjoint circles,
known as the components of the link. Knots and links can also be treated
as combinatorial objects, as any projection of a smooth knot or link to the
plane along a sufficiently “generic” direction leads to a representation by a
diagram, that is, a drawing of the knot or link by smooth curves in the plane
with only a finite number of crossings, at which exactly two different parts
of the knot or link cross — and where we indicate an over- or under-pass
by a “trompe l’œil”-like fashion.

When are two knots, or two links, “the same”? Topologically, two links
L and L′ are defined to be equivalent if there is an orientation-preserving
homeomorphism between (R3, L) and (R3, L′), that is, a continuous and
bijective map h : R3 → R3 with a continuous inverse such that h(L) = L′.
Geometrically, we can describe this by a continuous deformation of space
that moves L to L′. Such deformations might be hard to describe and
analyze, but in 1926 Kurt Reidemeister proved a very useful combinato-
rial characterization: Two diagrams drawn in the plane describe equivalent
knots or links if and only if one can be obtained from the other by con-
tinuous deformations and a finite number of local operations that are now
known as the Reidemeister moves of types I, II, and III.

I II III

The “if” part of Reidemeister’s theorem is quite obvious. For the “only if”
direction one studies a smooth deformation of L to L′, where also the direc-
tions and curvatures along the curves are required to change continuously.
If we then maintain a “general position” projection to a plane, this will give
us a continuous deformation of one diagram to the other with only a finite
number of Reidemeister-type moves on the way.

A knot is trivial if it is equivalent to a perfect (geometric) circle in R3, or
equivalently, if it admits a spanning disk whose interior is disjoint from the
knot. More generally, a link with k components is trivial if it is equivalent
to a link formed by k “far apart” circles that have disjoint spanning disks.
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Touching simplices Chapter 16

How many d-dimensional simplices can be positioned in Rd so that
they touch pairwise, that is, so that all their pairwise intersections
are (d− 1)-dimensional?

This is an old and very natural question. We shall call f(d) the answer to
this problem, and record f(1) = 2, which is trivial. For d = 2 the configu-
ration of four triangles in the margin shows f(2) ≥ 4. There is no similar
configuration with five triangles, because from this the dual graph construc-
tion, which for our example with four triangles yields a planar drawing
of K4, would give a planar embedding of K5, which is impossible (see

f(2) ≥ 4page 87). Thus we have
f(2) = 4.

In three dimensions, f(3) ≥ 8 is quite easy to see. For that we use the con-
figuration of eight triangles depicted on the right. The four shaded triangles

f(3) ≥ 8

are joined to some point x below the “plane of drawing,” which yields four
tetrahedra that touch the plane from below. Similarly, the four white trian-
gles are joined to some point y above the plane of drawing. So we obtain a
configuration of eight touching tetrahedra in R3, that is, f(3) ≥ 8.

In 1965, Baston wrote a book proving f(3) ≤ 9, and in 1991 it took Zaks
another book to establish

f(3) = 8.

With f(1) = 2, f(2) = 4 and f(3) = 8, it doesn’t take much inspiration to
arrive at the following conjecture, first posed by Bagemihl in 1956.

Conjecture. The maximal number of pairwise touching d-simplices in a
configuration in Rd is

f(d) = 2d.

The lower bound, f(d) ≥ 2d, is easy to verify “if we do it right.” This
amounts to a heavy use of affine coordinate tranformations, and to an in-
duction on the dimension that establishes the following stronger result, due
to Joseph Zaks [4].

“Touching simplices”

Theorem 1. For every d ≥ 2, there is a family of 2d pairwise touching
d-simplices in Rd together with a transversal line that hits the interior of
every single one of them.
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� Proof. For d = 2 the family of four triangles that we had considered
does have such a transversal line. Now consider any d-dimensional con-

�

figuration of touching simplices that has a transversal line �. Any nearby
parallel line �′ is a transversal line as well. If we choose �′ and � parallel
and close enough, then each of the simplices contains an orthogonal
(shortest) connecting interval between the two lines. Only a bounded part

�
�′

of the lines � and �′ is contained in the simplices of the configuration, and
we may add two connecting segments outside the configuration, such that
the rectangle spanned by the two outside connecting lines (that is, their con-
vex hull) contains all the other connecting segments. Thus, we have placed
a “ladder” such that each of the simplices of the configuration has one of
the ladder’s steps in its interior, while the four ends of the ladder are outside
the configuration.

Now the main step is that we perform an (affine) coordinate transformation
that maps Rd to Rd, and takes the rectangle spanned by the ladder to the
rectangle (half-square) as shown in the figure below, given by

0

(−1,−1)T (0,−1)T

(−1, 1)T

x1

x2

R1 = {(x1, x2, 0, . . . , 0)
T : −1 ≤ x1 ≤ 0;−1 ≤ x2 ≤ 1}.

Thus the configuration of touching simplices Σ1 in Rd which we obtain
has the x1-axis as a transversal line, and it is placed such that each of the
simplices contains a segment

S1(α) = {(α, x2, 0, . . . , 0)
T : −1 ≤ x2 ≤ 1}

in its interior (for some α with −1 < α < 0), while the origin 0 is outside
all simplices.

Now we produce a second copy Σ2 of this configuration by reflecting the
first one in the hyperplane given by x1 = x2. This second configuration
has the x2-axis as a transversal line, and each simplex contains a segment

S2(β) = {(x1, β, 0, . . . , 0)
T : −1 ≤ x1 ≤ 1}

in its interior, with −1 < β < 0. But each segment S1(α) intersects each
segment S2(β), and thus the interior of each simplex of Σ1 intersects each
simplex of Σ2 in its interior. Thus if we add a new (d + 1)-st coordinate
xd+1, and take Σ to be

{conv(Pi ∪ {−ed+1}) : Pi ∈ Σ1} ∪ {conv(Pj ∪ {ed+1}) : Pj ∈ Σ2},

then we get a configuration of touching (d + 1)-simplices in Rd+1. Fur-

x1

x2

A

thermore, the antidiagonal

A = {(x,−x, 0, . . . , 0)T : x ∈ R} ⊆ Rd

intersects all segments S1(α) and S2(β). We can “tilt” it a little, and obtain
a line

Lε = {(x,−x, 0, . . . , 0, εx)T : x ∈ R} ⊆ Rd+1,

which for all small enough ε > 0 intersects all the simplices of Σ. This
completes our induction step. �



Touching simplices 105

In contrast to this exponential lower bound, tight upper bounds are harder
to get. A naive inductive argument (considering all the facet hyperplanes in
a touching configuration separately) yields only

f(d) ≤ 2

3
(d+ 1)!,

and this is quite far from the lower bound of Theorem 1. However, Micha
Perles found the following “magical” proof for a much better bound.

Theorem 2. For all d ≥ 1, we have f(d) < 2d+1.

� Proof. Given a configuration of r touching d-simplices P1, P2, . . . , Pr

in Rd, first enumerate the different hyperplanes H1, H2, . . . , Hs spanned
by facets of the Pi, and for each of them arbitrarily choose a positive
side H+

i , and call the other side H−
i .

For example, for the 2-dimensional configuration of r = 4 triangles depicted

H1

H2
H3

H4

H5

H6
P1

P2

P3

P4

on the right we find s = 6 hyperplanes (which are lines for d = 2).

From these data, we construct the B-matrix, an r× s matrix with entries in
{+1,−1, 0}, as follows:

Bij :=

⎧⎨⎩
+1 if Pi has a facet in Hj , and Pi ⊆ H+

j ,

−1 if Pi has a facet in Hj , and Pi ⊆ H−
j ,

0 if Pi does not have a facet in Hj .

For example, the 2-dimensional configuration in the margin gives rise to
the matrix

B =

⎛⎜⎜⎝
1 0 1 0 1 0
−1 −1 1 0 0 0
−1 1 0 1 0 0
0 −1 −1 0 0 1

⎞⎟⎟⎠.

Three properties of the B-matrix are worth recording. First, since every
d-simplex has d + 1 facets, we find that every row of B has exactly d + 1
nonzero entries, and thus has exactly s− (d+1) zero entries. Secondly, we
are dealing with a configuration of pairwise touching simplices, and thus
for every pair of rows we find one column in which one row has a +1 entry,
while the entry in the other row is −1. That is, the rows are different even
if we disregard their zero entries. Thirdly, the rows of B “represent” the
simplices Pi, via

Pi =
⋂

j:Bij=1

H+
j ∩

⋂
j:Bij=−1

H−
j . (∗)

Now we derive from B a new matrix C, in which every row of B is replaced
by all the row vectors that one can generate from it by replacing all the zeros
by either +1 or −1. Since each row of B has s− d− 1 zeros, and B has r
rows, the matrix C has 2s−d−1r rows.
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For our example, this matrix C is a 32× 6 matrix that starts

C =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1
1 1 1 1 1 −1
1 1 1 −1 1 1
1 1 1 −1 1 −1
1 −1 1 1 1 1
1 −1 1 1 1 −1
1 −1 1 −1 1 1
1 −1 1 −1 1 −1
−1 −1 1 1 1 1
−1 −1 1 1 1 −1

...
...

...
...

...
...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where the first eight rows of C are derived from the first row of B, the
second eight rows come from the second row of B, etc.

The point now is that all the rows of C are different: If two rows are derived
from the same row of B, then they are different since their zeros have been
replaced differently; if they are derived from different rows of B, then they
differ no matter how the zeros have been replaced. But the rows of C are
±1-vectors of length s, and there are only 2s different such vectors. Thus
since the rows of C are distinct, C can have at most 2s rows, that is,

2s−d−1r ≤ 2s.

However, not all possible ±1-vectors appear in C, which yields a strict
inequality 2s−d−1r < 2s, and thus r < 2d+1. To see this, we note that
every row of C represents an intersection of halfspaces — just as for the
rows of B before, via the formula (∗). This intersection is a subset of the

H1

H2
H3

H4

H5

H6

x

The first row of the C-matrix represents
the shaded triangle, while the second
row corresponds to an empty intersec-
tion of the halfspaces. The point x leads
to the vector(

1 −1 1 1 −1 1
)

that does not appear in the C-matrix.

simplex Pi, which was given by the corresponding row of B. Let us take
a point x ∈ Rd that does not lie on any of the hyperplanes Hj , and not in
any of the simplices Pi. From this x we derive a±1-vector that records for
each j whether x ∈ H+

j or x ∈ H−
j . This ±1-vector does not occur in C,

because its halfspace intersection according to (∗) contains x and thus is
not contained in any simplex Pi. �
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Every large point set

has an obtuse angle

Chapter 17

Around 1950 Paul Erdős conjectured that every set of more than 2d points
in Rd determines at least one obtuse angle, that is, an angle that is strictly
greater than π

2 . In other words, any set of points in Rd which only has acute
angles (including right angles) has size at most 2d. This problem was posed
as a “prize question” by the Dutch Mathematical Society — but solutions
were received only for d = 2 and for d = 3.

For d = 2 the problem is easy: The five points may determine a convex
pentagon, which always has an obtuse angle (in fact, at least one angle of
at least 108◦). Otherwise we have one point contained in the convex hull
of three others that form a triangle. But this point “sees” the three edges of
the triangle in three angles that sum to 360◦, so one of the angles is at least
120◦. (The second case also includes situations where we have three points
on a line, and thus a 180◦ angle.)

Unrelated to this, Victor Klee asked a few years later — and Erdős spread
the question — how large a point set in Rd could be and still have the
following “antipodality property”: For any two points in the set there is a
strip (bounded by two parallel hyperplanes) that contains the point set, and
that has the two chosen points on different sides on the boundary.

Then, in 1962, Ludwig Danzer and Branko Grünbaum solved both prob-
lems in one stroke: They sandwiched both maximal sizes into a chain of
inequalities, which starts and ends in 2d. Thus the answer is 2d both for
Erdős’ and for Klee’s problem.

In the following, we consider (finite) sets S ⊆ Rd of points, their convex
hulls conv(S), and general convex polytopes Q ⊆ Rd. (See the appendix
on polytopes on page 69 for the basic concepts.) We assume that these sets
have the full dimension d, that is, they are not contained in a hyperplane.
Two convex sets touch if they have at least one boundary point in common,
while their interiors do not intersect. For any set Q ⊆ Rd and any vector
s ∈ Rd we denote by Q+s the image of Q under the translation that moves
0 to s. Similarly, Q − s is the translate obtained by the map that moves s
to the origin.

Don’t be intimidated: This chapter is an excursion into d-dimensional
geometry, but the arguments in the following do not require any “high-
dimensional intuition,” since they all can be followed, visualized (and thus
understood) in three dimensions, or even in the plane. Hence, our figures
will illustrate the proof for d = 2 (where a “hyperplane” is just a line), and
you could create your own pictures for d = 3 (where a “hyperplane” is
a plane).
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Theorem 1. For every d, one has the following chain of inequalities:

2d
(1)

≤ max
{
#S |S ⊆ Rd, �(si, sj , sk) ≤ π

2 for every {si, sj , sk} ⊆ S
}

(2)

≤ max

⎧⎨⎩#S

∣∣∣∣∣∣
S ⊆ Rd such that for any two points {si, sj} ⊆ S
there is a strip S(i, j) that contains S, with si and sj
lying in the parallel boundary hyperplanes of S(i, j)

⎫⎬⎭
(3)
= max

{
#S

∣∣∣∣∣S ⊆ Rd such that the translates P − si, si ∈ S, of
the convex hull P := conv(S) intersect in a common
point, but they only touch

}
(4)

≤ max

{
#S

∣∣∣∣S ⊆ Rd such that the translates Q + si of some d-
dimensional convex polytope Q ⊆ Rd touch pairwise

}
(5)
= max

⎧⎨⎩#S

∣∣∣∣∣∣
S ⊆ Rd such that the translates Q∗ + si of some
d-dimensional centrally symmetric convex polytope
Q∗ ⊆ Rd touch pairwise

⎫⎬⎭
(6)

≤ 2d.

� Proof. We have six claims (equalities and inequalities) to verify. Let’s
get going.

(1) Take S := {0, 1}d to be the vertex set of the standard unit cube in Rd,
and choose si, sj , sk ∈ S. By symmetry we may assume that sj = 0 is
the zero vector. Hence the angle can be computed from

cos�(si, sj , sk) =
〈si, sk〉
|si||sk|

which is clearly nonnegative. Thus S is a set with |S| = 2d that has no
obtuse angles.

(2) If S contains no obtuse angles, then for any si, sj ∈ S we may define
Hij+si and Hij+sj to be the parallel hyperplanes through si resp. sj that
are orthogonal to the edge [si, sj ]. Here Hij = {x ∈ Rd : 〈x, si−sj〉 = 0}
is the hyperplane through the origin that is orthogonal to the line through
si and sj , and Hij + sj = {x + sj : x ∈ Hij} is the translate of Hij

that passes through sj , etc. Hence the strip between Hij + si and Hij + sj
consists, besides si and sj , exactly of all the points x ∈ Rd such that the
angles �(si, sj ,x) and �(sj , si,x) are nonobtuse. Thus the strip contains
all of S.

si

sj

Hij + si

Hij + sj
(3) P is contained in the halfspace of Hij + sj that contains si if and only
if P −sj is contained in the halfspace of Hij that contains si−sj : A prop-
erty “an object is contained in a halfspace” is not destroyed if we translate
both the object and the halfspace by the same amount (namely by −sj).
Similarly, P is contained in the halfspace of Hij + si that contains sj if
and only if P −si is contained in the halfspace of Hij that contains sj−si.

Putting both statements together, we find that the polytope P is contained
in the strip between Hij +si and Hij +sj if and only if P −si and P −sj
lie in different halfspaces with respect to the hyperplane Hij .
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This correspondence is illustrated by the sketch in the margin.
si

sj

Hij + si

Hij + sj

P

P − sj

si − sj

0

P − si

sj − si

Hij

Furthermore, from si ∈ P = conv(S) we get that the origin 0 is contained
in all the translates P − si (si ∈ S). Thus we see that the sets P − si
all intersect in 0, but they only touch: their interiors are pairwise disjoint,
since they lie on opposite sides of the corresponding hyperplanes Hij .

(4) This we get for free: “the translates must touch pairwise” is a weaker
condition than “they intersect in a common point, but only touch.”
Similarly, we can relax the conditions by letting P be an arbitrary convex
d-polytope in Rd. Furthermore, we may replace S by −S.

(5) Here “≥” is trivial, but that is not the interesting direction for us. We
have to start with a configuration S ⊆ Rd and an arbitrary d-polytope
Q ⊆ Rd such that the translates Q + si (si ∈ S) touch pairwise. The
claim is that in this situation we can use

Q∗ :=
{
1
2 (x− y) ∈ Rd : x,y ∈ Q

}
instead of Q. But this is not hard to see: First, Q∗ is d-dimensional, convex,
and centrally symmetric. One can check that Q∗ is a polytope (its vertices
are of the form 1

2 (qi−qj), for vertices qi, qj of Q), but this is not important
for us.

Now we will show that Q+ si and Q+ sj touch if and only if Q∗+ si and
Q∗ + sj touch. For this we note, in the footsteps of Minkowski, that

(Q∗+si) ∩ (Q∗ + sj) �= ∅

⇐⇒ ∃ q′i, q′′i , q′j , q′′j ∈ Q : 1
2 (q

′
i − q′′i ) + si =

1
2 (q

′
j − q′′j ) + sj

⇐⇒ ∃ q′i, q′′i , q′j , q′′j ∈ Q : 1
2 (q

′
i + q′′j ) + si =

1
2 (q

′
j + q′′i ) + sj

⇐⇒ ∃ qi, qj ∈ Q : qi + si = qj + sj

⇐⇒ (Q + si) ∩ (Q+ sj) �= ∅,

where in the third (and crucial) equivalence “⇐⇒” we use that every q ∈ Q
can be written as q = 1

2 (q + q) to get “⇐”, and that Q is convex and thus
1
2 (q

′
i + q′′j ),

1
2 (q

′
j + q′′i ) ∈ Q to see “⇒”.

Thus the passage from Q to Q∗ (known as Minkowski symmetrization) pre-
serves the property that two translates Q+ si and Q+ sj intersect. That is,
we have shown that for any convex set Q, two translates Q+si and Q+sj
intersect if and only if the translates Q∗ + si and Q∗ + sj intersect.

The following characterization shows that Minkowski symmetrization also
preserves the property that two translates touch:

Q+ si and Q+ sj touch if and only if they intersect, while Q+ si
and Q+ sj + ε(sj − si) do not intersect for any ε > 0.

sj − si ε(sj − si)

(6) Assume that Q∗ + si and Q∗ + sj touch. For every intersection point

x ∈ (Q∗ + si) ∩ (Q∗ + sj)
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we have
x− si ∈ Q∗ and x− sj ∈ Q∗,

thus, since Q∗ is centrally symmetric,

si − x = −(x− si) ∈ Q∗,

and hence, since Q∗ is convex,
1
2 (si − sj) =

1
2 ((x− sj) + (si − x)) ∈ Q∗.

We conclude that 1
2 (si+sj) is contained in Q∗+sj for all i. Consequently,

for P := conv(S) we get

Pj :=
1
2 (P + sj) = conv

{
1
2 (si + sj) : si ∈ S

}
⊆ Q∗ + sj ,

which implies that the sets Pj =
1
2 (P + sj) can only touch.

Scaling factor 1
2

, vol(Pj) =
1
8

vol(P )

Finally, the sets Pj are contained in P , because all the points si, sj and
1
2 (si + sj) are in P , since P is convex. But the Pj are just smaller, scaled,
translates of P , contained in P . The scaling factor is 1

2 , which implies that

vol(Pj) =
1

2d
vol(P ),

since we are dealing with d-dimensional sets. This means that at most 2d

sets Pj fit into P , and hence |S| ≤ 2d.

This completes our proof: the chain of inequalities is closed. �

. . . but that’s not the end of the story. Danzer and Grünbaum asked the
following natural question:

What happens if one requires all angles to be acute rather than
just nonobtuse, that is, if right angles are forbidden?

They constructed configurations of 2d − 1 points in Rd with only acute
angles, conjecturing that this may be best possible. Grünbaum proved that
this is indeed true for d ≤ 3. But twenty-one years later, in 1983, Paul
Erdős and Zoltan Füredi showed that the conjecture is false — quite dra-
matically, if the dimension is high! Their proof is a great example for the
power of probabilistic arguments; see Chapter 44 for an introduction to the
“probabilistic method.” Our version of the proof uses a slight improvement
in the choice of the parameters due to our reader David Bevan.

Theorem 2. For every d ≥ 2, there is a set S ⊆ {0, 1}d of 2	
√
6
9

(
2√
3

)d

points in Rd (vertices of the unit d-cube) that determine only acute angles.

In particular, in dimension d = 34 there is a set of 72 > 2·34 − 1 points
with only acute angles.

� Proof. Set m := 	
√
6
9

(
2√
3

)d
, and pick 3m vectors

x(1),x(2), . . . ,x(3m) ∈ {0, 1}d

by choosing all their coordinates independently and randomly, to be either
0 or 1, with probability 1

2 for each alternative. (You may toss a perfect coin
3md times for this; however, if d is large you may get bored by this soon.)
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We have seen above that all angles determined by 0/1-vectors are nonob-
tuse. Three vectors x(i),x(j),x(k) determine a right angle with apex x(j)
if and only if the scalar product 〈x(i)− x(j),x(k) − x(j)〉 vanishes, that
is, if we have

x(i)� − x(j)� = 0 or x(k)� − x(j)� = 0 for each coordinate �.

We call (i, j, k) a bad triple if this happens. (If x(i) = x(j) or x(j) =
x(k), then the angle is not defined, but also then the triple (i, j, k) is
certainly bad.)

The probability that one specific triple is bad is exactly
(
3
4

)d
: Indeed, it

will be good if and only if, for one of the d coordinates �, we get

either x(i)� = x(k)� = 0, x(j)� = 1,
or x(i)� = x(k)� = 1, x(j)� = 0.

This leaves us with six bad options out of eight equally likely ones, and a
triple will be bad if and only if one of the bad options (with probability 3

4 )
happens for each of the d coordinates.

The number of triples we have to consider is 3
(
3m
3

)
, since there are

(
3m
3

)
sets of three vectors, and for each of them there are three choices for the
apex. Of course the probabilities that the various triples are bad are not
independent: but linearity of expectation (which is what you get by averag-
ing over all possible selections; see the appendix) yields that the expected

number of bad triples is exactly 3
(
3m
3

) (
3
4

)d
. This means — and this is the

point where the probabilistic method shows its power — that there is some

choice of the 3m vectors such that there are at most 3
(
3m
3

) (
3
4

)d
bad triples,

where

3
(
3m
3

) (
3
4

)d
< 3 (3m)3

6

(
3
4

)d
= m3

(
9√
6

)2 ( 3
4

)d ≤ m,

by the choice of m.

But if there are not more than m bad triples, then we can remove m of the
3m vectors x(i) in such a way that the remaining 2m vectors don’t contain
a bad triple, that is, they determine acute angles only. �

The “probabilistic construction” of a large set of 0/1-points without right
angles can be easily implemented, using a random number generator to “flip
the coin.” David Bevan has thus constructed a set of 31 points in dimension
d = 15 that determines only acute angles.

Appendix: Three tools from probability

Here we gather three basic tools from discrete probability theory which
will come up several times: random variables, linearity of expectation and
Markov’s inequality.
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Let (Ω, p) be a finite probability space, that is, Ω is a finite set and p = Prob
is a map from Ω into the interval [0, 1] with

∑
ω∈Ω p(ω) = 1. A random

variable X on Ω is a mapping X : Ω −→ R. We define a probability space
on the image set X(Ω) by setting p(X = x) :=

∑
X(ω)=x p(ω). A simple

example is an unbiased dice (all p(ω) = 1
6 ) with X = “the number on top

when the dice is thrown.”

The expectation EX of X is the average to be expected, that is,

EX =
∑
ω∈Ω

p(ω)X(ω).

Now suppose X and Y are two random variables on Ω, then the sum X+Y
is again a random variable, and we obtain

E(X + Y ) =
∑
ω

p(ω)(X(ω) + Y (ω))

=
∑
ω

p(ω)X(ω) +
∑
ω

p(ω)Y (ω) = EX + EY.

Clearly, this can be extended to any finite linear combination of random
variables — this is what is called the linearity of expectation. Note that it
needs no assumption that the random variables have to be “independent”
in any sense!

Our third tool concerns random variables X which take only nonnegative
values, shortly denoted X ≥ 0. Let

Prob(X ≥ a) =
∑

ω:X(ω)≥a

p(ω)

be the probability that X is at least as large as some a > 0. Then

EX =
∑

ω:X(ω)≥a

p(ω)X(ω) +
∑

ω:X(ω)<a

p(ω)X(ω) ≥ a
∑

ω:X(ω)≥a

p(ω),

and we have proved Markov’s inequality

Prob(X ≥ a) ≤ EX

a
.
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Borsuk’s conjecture Chapter 18

Karol Borsuk

Karol Borsuk’s paper “Three theorems on the n-dimensional euclidean
sphere” from 1933 is famous because it contained an important result
(conjectured by Stanisław Ulam) that is now known as the Borsuk–Ulam
theorem:

Every continuous map f : Sd → Rd maps two antipodal points of
the sphere Sd to the same point in Rd.

We will see the full power of this theorem in a graph theory application in
Chapter 42. The paper is famous also because of a problem posed at its
end, which became known as Borsuk’s Conjecture:

Can every set S ⊆ Rd of bounded diameter diam(S) > 0 be
partitioned into at most d+ 1 sets of smaller diameter?

The bound d + 1 is best possible: If S is a regular d-dimensional simplex,
or just the set of its d + 1 vertices, then no part of a diameter-reducing
partition can contain more than one of the simplex vertices. If f(d) denotes
the smallest number such that every bounded set S ⊆ Rd has a diameter-
reducing partition into f(d) parts, then the example of a regular simplex
establishes

f(d) ≥ d+ 1.

Borsuk’s conjecture was proved for the case when S is a sphere (by Borsuk
himself), for smooth bodies S (using the Borsuk–Ulam theorem), for d ≤
3, . . . but the general conjecture remained open. The best available upper
bound for f(d) was established by Oded Schramm, who showed that

Any d-simplex can be split into d + 1

pieces, each of smaller diameter.

f(d) ≤ (1.23)d

for all large enough d. This bound looks quite weak compared with the
conjecture “f(d) = d + 1,” but it suddenly seemed reasonable when Jeff
Kahn and Gil Kalai dramatically disproved Borsuk’s conjecture in 1993.
Sixty years after Borsuk’s paper, Kahn and Kalai proved that

f(d) ≥ (1.2)
√
d

holds for large enough d, making judicious use of a combinatorial-geometric
method of Peter Frankl and Richard Wilson.
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A Book version of the Kahn–Kalai proof was provided by A. Nilli: Brief
and self-contained, it yields an explicit counterexample to Borsuk’s conjec-
ture in dimension d = 946. We present here a modification of this proof,
due to Andrei M. Raigorodskii and to Bernulf Weißbach, which reduces
the dimension to d = 561, and even to d = 560. The current “record” is
d = 65, achieved by Andriy V. Bondarenko in 2014, using a novel method
involving special graphs. In fact, he showed that f(d) > d + 1 holds for
every d ≥ 65. His method, however, does not yield an exponential lower
bound in d.

A. Nilli

Theorem. Let q = pm be a prime power, n := 4q − 2, and d :=
(
n
2

)
=

(2q− 1)(4q− 3). Then there is a set S ⊆ {+1,−1}d of 2n−2 points in Rd

such that every partition of S, whose parts have smaller diameter than S,
has at least

2n−2

q−2∑
i=0

(
n−1
i

)
parts. For q = 9 this implies that the Borsuk conjecture is false in dimen-

sion d = 561. Furthermore, f(d) > (1.2)
√
d holds for all large enough d.

x =

⎛
⎜⎜⎜⎜⎝

1
−1
−1
1

−1

⎞
⎟⎟⎟⎟⎠ =⇒

x
T =

(
1 −1 −1 1 −1

)

xx
T =

⎛
⎜⎜⎜⎜⎝

1 −1 −1 1 −1
−1 1 1 −1 1
−1 1 1 −1 1
1 −1 −1 1 −1

−1 1 1 −1 1

⎞
⎟⎟⎟⎟⎠

� Proof. The construction of the set S proceeds in four steps.

(1) Let q be a prime power, set n = 4q − 2, and let

Q :=
{
x ∈ {+1,−1}n : x1 = 1, #{i : xi = −1} is even

}
.

This Q is a set of 2n−2 vectors in Rn. We will see that 〈x,y〉 ≡ 2 (mod 4)
holds for all vectors x,y ∈ Q. We will call x,y nearly-orthogonal if
|〈x,y〉| = 2. We will prove that any subset Q′ ⊆ Q which contains no
nearly-orthogonal vectors must be “small”: |Q′| ≤

∑q−2
i=0

(
n−1
i

)
.

Vectors, matrices, and scalar products

In our notation all vectorsx,y, . . . are column vectors; the transposed
vectors xT ,yT , . . . are thus row vectors. The matrix product xxT is
a matrix of rank 1, with (xxT )ij = xixj .
If x,y are column vectors, then their scalar product is

〈x,y〉 =
∑
i

xiyi = xTy.

We will also need scalar products for matrices X,Y ∈ Rn×n which
can be interpreted as vectors of length n2, and thus their scalar
product is

〈X,Y 〉 :=
∑
i,j

xijyij .
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(2) From Q, we construct the set

R := {xxT : x ∈ Q}

of 2n−2 symmetric n× n matrices of rank 1. We interpret them as vectors
with n2 components, R ⊆ Rn2

. We will show that there are only acute
angles between these vectors: they have positive scalar products, which are
at least 4. Furthermore, if R′ ⊆ R contains no two vectors with minimal
scalar product 4, then |R′| is “small”: |R′| ≤

∑q−2
i=0

(
n−1
i

)
.

(3) From R, we obtain the set of points in R(
n

2) whose coordinates are the
subdiagonal entries of the corresponding matrices:

S := {(xxT )i>j : xx
T ∈ R}.

Again, S consists of 2n−2 points. The maximal distance between these
points is precisely obtained for the nearly-orthogonal vectors x,y ∈ Q.
We conclude that a subset S′ ⊆ S of smaller diameter than S must be
“small”: |S′| ≤

∑q−2
i=0

(
n−1
i

)
.

(4) Estimates: From (3) we see that one needs at least

g(q) :=
24q−4

q−2∑
i=0

(
4q−3

i

)
parts in every diameter-reducing partition of S. Thus

f(d) ≥ max{g(q), d+ 1} for d = (2q − 1)(4q − 3).

Therefore, whenever we have g(q) > (2q− 1)(4q− 3)+ 1, then we have a
counterexample to Borsuk’s conjecture in dimension d = (2q−1)(4q−3).

We will calculate below that g(9) > 562, which yields the counterexample
in dimension d = 561, and that

g(q) >
e

64 q2

(
27

16

)q

,

which yields the asymptotic bound f(d) > (1.2)
√
d for d large enough.

Details for (1): We start with some harmless divisibility considerations.

Lemma. The function P (z) :=
(
z−2
q−2

)
is a polynomial of degree q − 2. It

yields integer values for all integers z. The integer P (z) is divisible by p if
and only if z is not congruent to 0 or 1 modulo q.

� Proof. For this we write the binomial coefficient as

P (z) =

(
z − 2

q − 2

)
=

(z − 2)(z − 3) · · · (z − q + 1)

(q − 2)(q − 3) · · · · · · 2 · 1 (∗)

and compare the number of p-factors in the denominator and in the
numerator. The denominator has the same number of p-factors as (q − 2)!,
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or as (q − 1)!, since q − 1 is not divisible by p. Indeed, by the claim in the
margin we get an integer with the same number of p-factors if we take any
product of q − 1 integers, one from each nonzero residue class modulo q.

Now if z is congruent to 0 or 1 (mod q), then the numerator is also of this
type: All factors in the product are from different residue classes, and the
only classes that do not occur are the zero class (the multiples of q), and the
class either of −1 or of +1, but neither +1 nor −1 is divisible by p. Thus
denominator and numerator have the same number of p-factors, and hence
the quotient is not divisible by p.

Claim. If a ≡ b �≡ 0 (mod q), then
a and b have the same number of p-
factors.

� Proof. We have a = b+ spm, where
b is not divisible by pm = q. So every
power pk that divides b satisfies k < m,
and thus it also divides a. The statement
is symmetric in a and b. �

On the other hand, if z �≡ 0, 1 (mod q), then the numerator of (∗) contains
one factor that is divisible by q = pm. At the same time, the product has no
factors from two adjacent nonzero residue classes: one of them represents
numbers that have no p-factors at all, the other one has fewer p-factors
than q = pm. Hence there are more p-factors in the numerator than in the
denominator, and the quotient is divisible by p. �

Now we consider an arbitrary subset Q′ ⊆ Q that does not contain any
nearly-orthogonal vectors. We want to establish that Q′ must be “small.”

Claim 1. If x,y are distinct vectors from Q, then 1
4 (〈x,y〉 + 2)

is an integer in the range

−(q − 2) ≤ 1
4 (〈x,y〉+ 2) ≤ q − 1.

Both x and y have an even number of (−1)-components, so the number of
components in which x and y differ is even, too. Thus

〈x,y〉 = (4q − 2) − 2#{i : xi �= yi} ≡ −2 (mod 4)

for all x,y ∈ Q, that is, 1
4 (〈x,y〉+ 2) is an integer.

From x,y ∈ {+1,−1}4q−2 we see that −(4q − 2) ≤ 〈x,y〉 ≤ 4q − 2,
that is, −(q − 1) ≤ 1

4 (〈x,y〉+ 2) ≤ q. The lower bound never holds with
equality, since x1 = y1 = 1 implies that x �= −y. The upper bound holds
with equality only if x = y.

Claim 2. For any y ∈ Q′, the polynomial in n variablesx1, . . . , xn

of degree q − 2 given by

Fy(x) := P
(
1
4 (〈x,y〉+ 2)

)
=

( 1
4 (〈x,y〉+ 2)− 2

q − 2

)
satisfies that Fy(x) is divisible by p for every x ∈ Q′\{y}, but
not for x = y.

The representation by a binomial coefficient shows that Fy(x) is an integer-
valued polynomial. For x = y, we get Fy(y) = 1. For x �= y, the
Lemma yields that Fy(x) is not divisible by p if and only if 1

4 (〈x,y〉+2) is
congruent to 0 or 1 (mod q). By Claim 1, this happens only if 1

4 (〈x,y〉+2)
is either 0 or 1, that is, if 〈x,y〉 ∈ {−2,+2}. So x and y must be nearly-
orthogonal for this, which contradicts the definition of Q′.
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Claim 3. The same is true for the polynomials Fy(x) in the n−1
variables x2, . . . , xn that are obtained as follows: Expand Fy(x)
into monomials and remove the variable x1, and reduce all higher
powers of other variables, by substituting x1 = 1, and x2

i = 1 for
i > 1. The polynomials Fy(x) have degree at most q − 2.

The vectors x ∈ Q ⊆ {+1,−1}n all satisfy x1 = 1 and x2
i = 1. Thus

the substitutions do not change the values of the polynomials on the set Q.
They also do not increase the degree, so Fy(x) has degree at most q − 2.

Claim 4. There is no linear relation (with rational coefficients)
between the polynomials Fy(x), that is, the polynomials Fy(x),
y ∈ Q′, are linearly independent over Q. In particular, they are
distinct.

Assume that there is a relation of the form
∑

y∈Q′ αyFy(x) = 0 such that
not all coefficients αy are zero. After multiplication with a suitable scalar
we may assume that all the coefficients are integers, but not all of them are
divisible by p. But then for every y ∈ Q′ the evaluation at x := y yields
that αyFy(y) is divisible by p, and hence so is αy , since Fy(y) is not.

Claim 5. |Q′| is bounded by the number of squarefree monomials

of degree at most q − 2 in n− 1 variables, which is
∑q−2

i=0

(
n−1
i

)
.

By construction the polynomials Fy are squarefree: none of their mono-
mials contains a variable with higher degree than 1. Thus each Fy(x) is a
linear combination of the squarefree monomials of degree at most q − 2 in
the n − 1 variables x2, . . . , xn. Since the polynomials Fy(x) are linearly
independent, their number (which is |Q′|) cannot be larger than the number
of monomials in question.

Details for (2): The first column of xxT is x. Thus for distinct x ∈ Q
we obtain distinct matrices M(x) := xxT . We interpret these matrices as
vectors of length n2 with components xixj . A simple computation

〈
M(x),M(y)

〉
=

n∑
i=1

n∑
j=1

(xixj)(yiyj)

=
( n∑

i=1

xiyi

)( n∑
j=1

xjyj

)
= 〈x,y〉2 ≥ 4

shows that the scalar product of M(x) and M(y) is minimized if and only
if x,y ∈ Q are nearly-orthogonal.

M(x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .

U(x)

U(x)

1
1

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠Details for (3): Let U(x) ∈ {+1,−1}d denote the vector of all sub-

diagonal entries of M(x). Since M(x) = xxT is symmetric with diagonal
values +1, we see that M(x) �= M(y) implies U(x) �= U(y).
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Furthermore,

4 ≤ 〈M(x),M(y)〉 = 2〈U(x), U(y)〉+ n,

that is,
〈U(x), U(y)〉 ≥ −n

2
+ 2,

with equality if and only if x and y are nearly-orthogonal. Since all the
vectors U(x) ∈ S have the same length

√
〈U(x), U(x)〉 =

√(
n

2

)
,

this means that the maximal distance between points U(x), U(y) ∈ S is
achieved exactly when x and y are nearly-orthogonal.

Details for (4): For q = 9 we have g(9) ≈ 758.31, which is greater than
d+ 1 =

(
34
2

)
+ 1 = 562.

To obtain a general bound for large d, we use monotonicity and unimodality
of the binomial coefficients and the estimates n! > e(ne )

n and n! < en(ne )
n

(see the appendix to Chapter 2) and derive

q−2∑
i=0

(
4q − 3

i

)
< q

(
4q

q

)
= q

(4q)!

q!(3q)!
< q

e 4q
(
4q
e

)4q
e
(
q
e

)q
e
(
3q
e

)3q =
4q2

e

(256
27

)q

.

Thus we conclude

f(d) ≥ g(q) =
24q−4

q−2∑
i=0

(
4q−3

i

) >
e

64q2

(27
16

)q

.

From this, with

d = (2q − 1)(4q − 3) = 5q2 + (q − 3)(3q − 1) ≥ 5q2 for q ≥ 3,

q = 5
8 +

√
d
8 + 1

64 >
√

d
8 , and

(
27
16

)√ 1
8 > 1.2032,

we get

f(d) >
e

13d
(1.2032)

√
d > (1.2)

√
d for all large enough d. �

A counterexample of dimension 560 is obtained by noting that for q = 9 the
quotient g(q) ≈ 758 is much larger than the dimension d(q) = 561. Thus
one gets a counterexample for d = 560 by taking only the “three fourths”
of the points in S that satisfy x21 + x31 + x32 = −1.

Borsuk’s conjecture is known to be true for d ≤ 3, but it has not been
verified for any larger dimension. In contrast to this, it is true up to d = 8
if we restrict ourselves to subsets S ⊆ {1,−1}d, as constructed above
(see [9]). In either case it is quite possible that counterexamples can be
found in quite small dimensions.
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“Hilbert’s seaside resort hotel”



Sets, functions,

and the continuum hypothesis

Chapter 19

Georg Cantor

Set theory, founded by Georg Cantor in the second half of the 19th cen-
tury, has profoundly transformed mathematics. Modern day mathematics
is unthinkable without the concept of a set, or as David Hilbert put it:
“Nobody will drive us from the paradise (of set theory) that Cantor has
created for us.”

One of Cantor’s basic concepts is the notion of the size or cardinality of a
set M , denoted by |M |. For finite sets, this presents no difficulties: we just
count the number of elements and say that M is an n-set or has size n, if
M contains precisely n elements. Thus two finite sets M and N have equal
size, |M | = |N |, if they contain the same number of elements.

To carry this notion of equal size over to infinite sets, we use the following
suggestive thought experiment for finite sets. Suppose a number of people
board a bus. When will we say that the number of people is the same as the
number of available seats? Simple enough, we let all people sit down. If
everyone finds a seat, and no seat remains empty, then and only then do the
two sets (of the people and of the seats) agree in number. In other words,
the two sizes are the same if there is a bijection of one set onto the other.

This is then our definition: Two arbitrary sets M and N (finite or infinite)
are said to be of equal size or cardinality, if and only if there exists a bi-
jection from M onto N . Clearly, this notion of equal size is an equivalence
relation, and we can thus associate a number, called cardinal number, to
every class of equal-sized sets. For example, we obtain for finite sets the
cardinal numbers 0, 1, 2, . . . , n, . . . where n stands for the class of n-sets,
and, in particular, 0 for the empty set ∅. We further observe the obvious fact
that a proper subset of a finite set M invariably has smaller size than M .

The theory becomes very interesting (and highly non-intuitive) when we
turn to infinite sets. Consider the set N = {1, 2, 3, . . .} of natural numbers.
We call a set M countable if it can be put in one-to-one correspondence
with N. In other words, M is countable if we can list the elements of M as
m1,m2,m3, . . .. But now a strange phenomenon occurs. Suppose we add
to N a new element x. Then N∪{x} is still countable, and hence has equal
size with N!

This fact is delightfully illustrated by “Hilbert’s hotel.” Suppose a hotel
has countably many rooms, numbered 1, 2, 3, . . . with guest gi occupying
room i; so the hotel is fully booked. Now a new guest x arrives asking

. . .
g1 g2 g3for a room, whereupon the hotel manager tells him: Sorry, all rooms are

taken. No problem, says the new arrival, just move guest g1 to room 2,
g2 to room 3, g3 to room 4, and so on, and I will then take room 1. To the

M. Aigner, G.M. Ziegler, Proofs from THE BOOK, DOI 10.1007/978-3-662-44205-0_19,  
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manager’s surprise (he is not a mathematician) this works; he can still put
up all guests plus the new arrival x!

. . .
x g1 g2

Now it is clear that he can also put up another guest y, and another one z,
and so on. In particular, we note that, in contrast to finite sets, it may well
happen that a proper subset of an infinite set M has the same size as M . In
fact, as we will see, this is a characterization of infinity: A set is infinite if
and only if it has the same size as some proper subset.

Let us leave Hilbert’s hotel and look at our familiar number sets. The set
Z of integers is again countable, since we may enumerate Z in the form
Z = {0, 1,−1, 2,−2, 3,−3, . . .}. It may come more as a surprise that the
rationals can be enumerated in a similar way.

Theorem 1. The set Q of rational numbers is countable.

� Proof. By listing the set Q+ of positive rationals as suggested in the
figure in the margin, but leaving out numbers already encountered, we see
that Q+ is countable, and hence so is Q by listing 0 at the beginning and
− p

q right after p
q . With this listing

6
1

4
1

3
1

1
1

2
3

1
3

3
3

4
3

1
6

1
5

1
2

2
1

2
2

3
2

4
2

5
2

1
4

3
4

2
5

2
4

5
1

Q = {0, 1,−1, 2,−2, 12 ,−
1
2 ,

1
3 ,−

1
3 , 3,−3, 4,−4,

3
2 ,−

3
2 , . . . }. �

Another way to interpret the figure is the following statement:

The union of countably many countable sets Mn is again countable.

Indeed, set Mn = {an1, an2, an3, . . .} and list

∞⋃
n=1

Mn = {a11, a21, a12, a13, a22, a31, a41, a32, a23, a14, . . . }

precisely as before.

Let us contemplate Cantor’s enumeration of the positive rationals a bit
more. Looking at the figure we obtained the sequence

1
1 ,

2
1 ,

1
2 ,

1
3 ,

2
2 ,

3
1 ,

4
1 ,

3
2 ,

2
3 ,

1
4 ,

1
5 ,

2
4 ,

3
3 ,

4
2 ,

5
1 , . . .

and then had to strike out the duplicates such as 2
2 = 1

1 or 2
4 = 1

2 .

But there is a listing that is even more elegant and systematic, and which
contains no duplicates — found only quite recently by Neil Calkin and
Herbert Wilf. Their new list starts as follows:

1
1 ,

1
2 ,

2
1 ,

1
3 ,

3
2 ,

2
3 ,

3
1 ,

1
4 ,

4
3 ,

3
5 ,

5
2 ,

2
5 ,

5
3 ,

3
4 ,

4
1 , . . . .

Here the denominator of the n-th rational number equals the numerator of
the (n + 1)-st number. In other words, the n-th fraction is b(n)/b(n+ 1),
where

(
b(n)

)
n≥0

is a sequence that starts with

(1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4, 1, 5, . . .).

This sequence has first been studied by a German mathematician, Moritz
Abraham Stern, in a paper from 1858, and is has become known as “Stern’s
diatomic series.”
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How do we obtain this sequence, and hence the Calkin–Wilf listing of the
positive fractions? Consider the infinite binary tree in the margin. We

1
4

4
3

3
4

3
5

5
2

2
5

5
3

4
1

1
5

1
3

3
2

2
3

3
1

1
1

2
1

1
2

. . .

immediately note its recursive rule:

• 1
1 is on top of the tree, and

• every node i
j has two sons: the left son is i

i+j and the right son is i+j
j .

We can easily check the following four properties:

(1) All fractions in the tree are reduced, that is, if r
s appears in the tree,

then r and s are relatively prime.

This holds for the top 1
1 , and then we use induction downward. If r and s

are relatively prime, then so are r and r + s, as well as s and r + s.

(2) Every reduced fraction r
s > 0 appears in the tree.

We use induction on the sum r + s. The smallest value is r + s = 2, that
is r

s = 1
1 , and this appears at the top. If r > s, then r−s

s appears in the tree
by induction, and so we get r

s as its right son. Similarly, if r < s, then r
s−r

appears, which has r
s as its left son.

(3) Every reduced fraction appears exactly once.

The argument is similar. If r
s appears more than once, then r �= s, since

any node in the tree except the top is of the form i
i+j < 1 or i+j

j > 1. But
if r > s or r < s, then we argue by induction as before.

Every positive rational appears therefore exactly once in our tree, and we
may write them down listing the numbers level-by-level from left to right.
This yields precisely the initial segment shown above.

(4) The denominator of the n-th fraction in our list equals the numerator
of the (n+ 1)-st.

This is certainly true for n = 0, or when the n-th fraction is a left son.
Suppose the n-th number r

s is a right son. If r
s is at the right boundary,

then s = 1, and the successor lies at the left boundary and has numerator 1.
Finally, if r

s is in the interior, and r′

s′ is the next fraction in our sequence,

then r
s is the right son of r−s

s , r′

s′ is the left son of r′

s′−r′ , and by induction

the denominator of r−s
s is the numerator of r′

s′−r′ , so we get s = r′.

r−s
s

r′

s′−r′

r
s

r′

s′

Well, this is nice, but there is even more to come. There are two natural
questions:

– Does the sequence
(
b(n)

)
n≥0

have a “meaning”? That is, does b(n)

count anything simple?

– Given r
s , is there an easy way to determine the successor in the listing?
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To answer the first question, we work out that the node b(n)/b(n+ 1) has
the two sons b(2n+1)/b(2n+2) and b(2n+2)/b(2n+3). By the set-up
of the tree we obtain the recursions

b(2n+ 1) = b(n) and b(2n+ 2) = b(n) + b(n+ 1). (1)

With b(0) = 1 the sequence (b(n))n≥0 is completely determined by (1).

So, is there a “nice” “known” sequence which obeys the same recursion?
Yes, there is. We know that any number n can be uniquely written as a sum
of distinct powers of 2 — this is the usual binary representation of n. A
hyper-binary representation of n is a representation of n a sum of powers
of 2, where every power 2k appears at most twice. Let h(n) be the number
of such representations for n. You are invited to check that the sequence
h(n) obeys the recursion (1), and this gives b(n) = h(n) for all n.

Incidentally, we have proved a surprising fact: Let r
s be a reduced fraction,

there exists precisely one integer n with r = h(n) and s = h(n+ 1).

For example, h(6) = 3, with the hyper-
binary representations
6 = 4 + 2

6 = 4 + 1 + 1

6 = 2 + 2 + 1 + 1.

Let us look at the second question. We have in our tree

r
r+s

r
s

r+s
s

x
1+x

that is, with x := r
s ,

x

x+ 1

We now use this to generate an even larger infinite binary tree (without a
root) as follows:

0
1

0
1

0
1

1
4

4
3

3
4

3
5

5
2

2
5

5
3

4
1

1
5

1
3

3
2

2
3

3
1

1
1

2
1

1
2

1
4

4
3

3
4

3
5

5
2

2
5

5
3

4
1

1
5

1
3

3
2

2
3

3
1

1
1

2
1

1
2

1
4

4
3

3
4

3
5

5
2

2
5

5
3

4
1

1
5

1
3

3
2

2
3

3
1

1
1

2
1

1
2

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

In this tree all rows are equal, and they all display the Calkin–Wilf listing
of the positive rationals (starting with an additional 0

1 ).
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So how does one get from one rational to the next? To answer this, we first
record that for every rational x its right son is x+ 1, the right grand-son is
x + 2, so the k-fold right son is x + k. Similarly, the left son of x is x

1+x ,
whose left son is x

1+2x , and so on: The k-fold left son of x is x
1+kx .

Now to find how to get from r
s = x to the “next” rational f(x) in the

listing, we have to analyze the situation depicted in the margin. In fact, if
we consider any nonnegative rational number x in our infinite binary tree,
then it is the k-fold right son of the left son of some rational y ≥ 0 (for
some k ≥ 0), while f(x) is given as the k-fold left son of the right son of
the same y. Thus with the formulas for k-fold left sons and k-fold right
sons, we get

x =
y

1 + y
+ k,

as claimed in the figure in the margin. Here k = 	x
 is the integral part
of x, while y

1+y = {x} is the fractional part. And from this we obtain

f(x) =
y + 1

1 + k(y + 1)
=

1
1

y+1 + k
=

1

k + 1− y
y+1

=
1

	x
+ 1− {x} .

Thus we have obtained a beautiful formula for the successor f(x) of x, first

y

y
1+y

y + 1

y
1+y

+ k y+1
1+k(y+1)

found by Moshe Newman:

The function

x �−→ f(x) =
1

	x
+ 1− {x}

generates the Calkin–Wilf sequence

1
1 �→

1
2 �→

2
1 �→

1
3 �→

3
2 �→

2
3 �→

3
1 �→

1
4 �→

4
3 �→ · · ·

which contains every positive rational number exactly once.

The Calkin–Wilf–Newman way to enumerate the positive rationals has a
number of additional remarkable properties. For example, one may ask for
a fast way to determine the n-th fraction in the sequence, say for n = 106.
Here it is:

To find the n-th fraction in the Calkin–Wilf sequence, express n as a
binary number n = (bkbk−1...b1b0)2, and then follow the path in the
Calkin–Wilf tree that is determined by its digits, starting at s

t = 0
1 .

Here bi = 1 means “take the right son,” that is, “add the denominator
to the numerator,” while bi = 0 means “take the left son,” that is, “add
the numerator to the denominator.”

The figure in the margin shows the resulting path for n = 25 = (11001)2:
So the 25th number in the Calkin–Wilf sequence is 7

5 . The reader could
easily work out a similar scheme that computes for a given fraction s

t (the
binary representation of) its position n in the Calkin–Wilf sequence.

1
4

4
3

3
4

3
5

5
2

2
5

5
3

4
1

1
5

1
3

3
2

2
3

3
1

1
1

2
1

1
2

. . . 7

5

1

0
1

1

1

0

0
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Let us move on to the real numbers R. Are they still countable? No, they
are not, and the means by which this is shown — Cantor’s diagonalization
method — is not only of fundamental importance for all of set theory, but
certainly belongs into The Book as a rare stroke of genius.

Theorem 2. The set R of real numbers is not countable.

� Proof. Any subset N of a countable set M = {m1,m2,m3, . . .} is at
most countable (that is, finite or countable). In fact, just list the elements
of N as they appear in M . Accordingly, if we can find a subset of R which
is not countable, then a fortiori R cannot be countable. The subset M
of R we want to look at is the interval (0, 1] of all positive real numbers r
with 0 < r ≤ 1. Suppose, to the contrary, that M is countable, and let
M = {r1, r2, r3, . . .} be a listing of M . We write rn as its unique infinite
decimal expansion without an infinite sequence of zeros at the end:

rn = 0.an1an2an3...

where ani ∈ {0, 1, . . . , 9} for all n and i. For example, 0.7 = 0.6999...
Consider now the doubly infinite array

r1 = 0.a11a12a13...

r2 = 0.a21a22a23...
...

rn = 0.an1an2an3...
...

For every n, let bn be the least element of {1, 2} that is different from ann.
Then b = 0.b1b2b3...bn... is a real number in our set M and hence must
have an index, say b = rk . But this cannot be, since bk is different from akk .
And this is the whole proof! �

10

A bijective f : (0, 1] −→ (0, 1)

Let us stay with the real numbers for a moment. We note that all four
types of intervals (0, 1), (0, 1], [0, 1) and [0, 1] have the same size. As an
example, we verify that (0, 1] and (0, 1) have equal cardinality. The map
f : (0, 1] −→ (0, 1), x �−→ y defined by

y :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
3
2 − x for 1

2 < x ≤ 1,
3
4 − x for 1

4 < x ≤ 1
2 ,

3
8 − x for 1

8 < x ≤ 1
4 ,

...

does the job. Indeed, the map is bijective, since the range of y in the first line
is 1

2 ≤ y < 1, in the second line 1
4 ≤ y < 1

2 , in the third line 1
8 ≤ y < 1

4 ,
and so on.
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Next we find that any two intervals (of finite length > 0) have equal size
by considering the central projection as in the figure. Even more is true:
Every interval (of length > 0) has the same size as the whole real line R.
To see this, look at the bent open interval (0, 1) and project it onto R from
the center S.

S

R

So, in conclusion, any open, half-open, closed (finite or infinite) interval of
length > 0 has the same size, and we denote this size by c, where c stands
for continuum (a name sometimes used for the interval [0,1]).

That finite and infinite intervals have the same size may come expected on
second thought, but here is a fact that is downright counter-intuitive.

Theorem 3. The set R2 of all ordered pairs of real numbers (that is, the
real plane) has the same size as R.

The theorem is due to Cantor 1878, as is the idea to merge the decimal
expansions of two reals into one. The variant of Cantor’s method that we
are going to present is again from The Book. Abraham Fraenkel attributes
the trick, which directly yields a bijection, to Julius König.

� Proof. It suffices to prove that the set of all pairs (x, y), 0 < x, y ≤ 1,
can be mapped bijectively onto (0, 1]. Consider the pair (x, y) and write
x, y in their unique non-terminating decimal expansion as in the following
example:

x = 0.3 01 2 007 08 . . .
y = 0.009 2 05 1 0008 . . .

Note that we have separated the digits of x and y into groups by always
going to the next nonzero digit, inclusive. Now we associate to (x, y) the
number z ∈ (0, 1] by writing down the first x-group, after that the first
y-group, then the second x-group, and so on. Thus, in our example, we
obtain

z = 0.3 009 01 2 2 05 007 1 08 0008 . . .

Since neither x nor y exhibits only zeros from a certain point on, we find
that the expression for z is again a non-terminating decimal expansion.
Conversely, from the expansion of z we can immediately read off the
preimage (x, y), and the map is bijective — end of proof. �

As (x, y) �−→ x + iy is a bijection from R2 onto the complex numbers C,
we conclude that |C| = |R| = c. Why is the result |R2| = |R| so unex-
pected? Because it goes against our intuition of dimension. It says that the
2-dimensional plane R2 (and, in general, by induction, the n-dimensional
space Rn) can be mapped bijectively onto the 1-dimensional line R. Thus
dimension is not generally preserved by bijective maps. If, however, we
require the map and its inverse to be continuous, then the dimension is pre-
served, as was first shown by Luitzen Brouwer.
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Let us go a little further. So far, we have the notion of equal size. When
will we say that M is at most as large as N? Mappings provide again the
key. We say that the cardinal number m is less than or equal to n, if for
sets M and N with |M | = m , |N | = n, there exists an injection from M
into N . Clearly, the relation m ≤ n is independent of the representative
sets M and N chosen. For finite sets this corresponds again to our intuitive
notion: An m-set is at most as large as an n-set if and only if m ≤ n.

Now we are faced with a basic problem. We would certainly like to have
that the usual laws concerning inequalities also hold for cardinal numbers.
But is this true for infinite cardinals? In particular, is it true that m ≤ n,
n ≤ m imply m = n?

The affirmative answer to this question is provided by the famous Cantor–
Bernstein theorem, which Cantor announced in 1883. The first complete
proof was presented by Felix Bernstein in Cantor’s seminar in 1897. Fur-
ther proofs were given by Richard Dedekind, Ernst Zermelo, and others.
Our proof is due to Julius König (1906).

“Cantor and Bernstein painting”

Theorem 4. If each of two sets M and N can be mapped injectively into
the other, then there is a bijection from M to N , that is, |M | = |N |.

� Proof. We may certainly assume that M and N are disjoint — if not,
then we just replace N by a new copy.

Now f and g map back and forth between the elements of M and those
of N . One way to bring this potentially confusing situation into perfect
clarity and order is to align M ∪N into chains of elements: Take an arbi-
trary element m0 ∈ M , say, and from this generate a chain of elements by
applying f , then g, then f again, then g, and so on. The chain may close up
(this is Case 1) if we reach m0 again in this process, or it may continue with
distinct elements indefinitely. (The first “duplicate” in the chain cannot be
an element different from m0, by injectivity.)

M
N

f

g
m0

. . .
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If the chain continues indefinitely, then we try to follow it backwards:
From m0 to g−1(m0) if m0 is in the image of g, then to f−1(g−1(m0))
if g−1(m0) is in the image of f , and so on. Three more cases may arise
here: The process of following the chain backwards may go on indefinitely
(Case 2), it may stop in an element of M that does not lie in the image of g
(Case 3), or it may stop in an element of N that does not lie in the image
of f (Case 4).

Thus M ∪ N splits perfectly into four types of chains, whose elements
we may label in such a way that a bijection is simply given by putting
F : mi �−→ ni. We verify this in the four cases separately:

Case 1. Finite cycles on 2k + 2 distinct elements (k ≥ 0)

m1

f g f
m0 n0 · · ·

f
mk nk

g

Case 2. Two-way infinite chains of distinct elements

m1 n1 m2 · · ·
f g f g f

m0 n0· · ·

Case 3. The one-way infinite chains of distinct elements that start at the
elements m0 ∈M\g(N)

m1 n1 m2 · · ·
f g f g f

m0 n0

Case 4. The one-way infinite chains of distinct elements that start at the
elements n0 ∈ N\f(M)

n1 · · ·
g f g f

n0 m0 m1
�

What about the other relations governing inequalities? As usual, we set
m < n if m ≤ n, but m �= n. We have just seen that for any two cardinals
m and n at most one of the three possibilities

m < n, m = n, m > n

holds, and it follows from the theory of cardinal numbers that, in fact, pre-
cisely one relation is true. (See the appendix to this chapter, Proposition 2.)

Furthermore, the Cantor–Bernstein Theorem tells us that the relation < is
transitive, that is, m < n and n < p imply m < p. Thus the cardinalities
are arranged in linear order starting with the finite cardinals 0, 1, 2, 3, . . ..
Invoking the usual Zermelo–Fraenkel axiom system, we easily find that any
infinite set M contains a countable subset. In fact, M contains an element,
say m1. The set M \ {m1} is not empty (since it is infinite) and hence
contains an element m2. Considering M \{m1,m2} we infer the existence
of m3, and so on. So, the size of a countable set is the smallest infinite
cardinal, usually denoted by ℵ0 (pronounced “aleph zero”). “The smallest infinite cardinal”
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As a corollary to ℵ0 ≤ m for any infinite cardinal m, we can immediately
prove “Hilbert’s hotel” for any infinite cardinal number m, that is, we have
|M ∪ {x}| = |M | for any infinite set M . Indeed, M contains a subset
N = {m1,m2,m3, . . .}. Now map x onto m1, m1 onto m2, and so on,
keeping the elements of M\N fixed. This gives the desired bijection.

With this we have also proved a result announced earlier: Every infinite set
has the same size as some proper subset.

As another consequence of the Cantor–Bernstein theorem we may prove
that the set P(N) of all subsets of N has cardinality c. As noted above, it
suffices to show that |P(N)\{∅}| = |(0, 1]|. An example of an injective
map is

f : P(N) \ {∅} −→ (0, 1],

A �−→
∑
i∈A

10−i,

while
g : (0, 1] −→ P(N) \ {∅},

0.b1b2b3... �−→ {bi10i : i ∈ N}

defines an injection in the other direction.

Up to now we know the cardinal numbers 0, 1, 2, . . . ,ℵ0, and further that
the cardinality c of R is bigger than ℵ0. The passage from Q with |Q| = ℵ0
to R with |R| = c immediately suggests the next question:

Is c = |R| the next infinite cardinal number after ℵ0?

Now, of course, we have the problem whether there is a next larger cardinal
number, or in other words, whether ℵ1 has a meaning at all. It does — the
proof for this is outlined in the appendix to this chapter.

The statement c = ℵ1 became known as the continuum hypothesis. The
question whether the continuum hypothesis is true presented for many
decades one of the supreme challenges in all of mathematics. The answer,
finally given by Kurt Gödel and Paul Cohen, takes us to the limit of
logical thought. They showed that the statement c = ℵ1 is independent
of the Zermelo–Fraenkel axiom system, in the same way as the parallel
axiom is independent of the other axioms of Euclidian geometry. There are
models where c = ℵ1 holds, and there are other models of set theory where
c �= ℵ1 holds.

In the light of this fact it is quite interesting to ask whether there are other
conditions (from analysis, say) which are equivalent to the continuum
hypothesis. Indeed, it is natural to ask for an analysis example, since his-
torically the first substantial applications of Cantor’s set theory occurred in
analysis, specifically in complex function theory. In the following we want
to present one such instance and its extremely elegant and simple solution
by Paul Erdős. In 1962 John E. Wetzel, a young instructor at the University
of Illinois, asked the following question:
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Let {fα} be a family of pairwise distinct analytic functions on the
complex numbers such that for each z ∈ C the set of values {fα(z)}
is at most countable (that is, it is either finite or countable); let us
call this property (P0).
Does it then follow that the family itself is at most countable?

Very shortly afterwards Erdős showed that, surprisingly, the answer de-
pends on the continuum hypothesis.

Theorem 5. If c > ℵ1, then every family {fα} satisfying (P0) is countable.
If, on the other hand, c = ℵ1, then there exists some family {fα} with
property (P0) which has size c.

For the proof we need some basic facts on cardinal and ordinal numbers.
For readers who are unfamiliar with these concepts, this chapter has an
appendix where all the necessary results are collected.

� Proof. Assume first c > ℵ1. We shall show that for any family {fα}
of size ℵ1 of analytic functions there exists a complex number z0 such that
all ℵ1 values fα(z0) are distinct. Consequently, if a family of functions
satisfies (P0), then it must be countable.

To see this, we make use of our knowledge of ordinal numbers. First, we
well-order the family {fα} according to the initial ordinal numberω1 of ℵ1.
This means by Proposition 1 of the appendix that the index set runs through
all ordinal numbers α which are smaller than ω1. Next we show that the
set of pairs (α, β), α < β < ω1, has size ℵ1. Since any β < ω1 is a
countable ordinal, the set of pairs (α, β), α < β , is countable for every
fixed β. Taking the union over all ℵ1-many β, we find from Proposition 6
of the appendix that the set of all pairs (α, β), α < β, has size ℵ1.

Consider now for any pair α < β the set

S(α, β) = {z ∈ C : fα(z) = fβ(z)}.

We claim that each set S(α, β) is countable. To verify this, consider the
disks Ck of radius k = 1, 2, 3, . . . around the origin in the complex plane.
If fα and fβ agree on infinitely many points in some Ck, then fα and fβ
are identical by a well-known result on analytic functions. Hence fα and
fβ agree only in finitely many points in each Ck, and hence in at most
countably many points altogether. Now we set

S :=
⋃
α<β

S(α, β).

Again by Proposition 6, we find that S has size ℵ1, as each set S(α, β) is
countable. And here is the punch line: Because, as we know, C has size
c, and c is larger than ℵ1 by assumption, there exists a complex number z0
not in S, and for this z0 all ℵ1 values fα(z0) are distinct.
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Next we assume c = ℵ1. Consider the set D ⊆ C of complex numbers
p + iq with rational real and imaginary part. Since for each p the set
{p+ iq : q ∈ Q} is countable, we find that D is countable. Furthermore,
D is a dense set in C: Every open disk in the complex plane contains some
point of D. Let {zα : 0 ≤ α < ω1} be a well-ordering of C. We shall
now construct a family {fβ : 0 ≤ β < ω1} of ℵ1-many distinct analytic
functions such that

fβ(zα) ∈ D whenever α < β. (1)

Any such family satisfies the condition (P0). Indeed, each point z ∈ C has
some index, say z = zα. Now, for all β > α, the values {fβ(zα)} lie in
the countable set D. Since α is a countable ordinal number, the functions
fβ with β ≤ α will contribute at most countably further values fβ(zα), so
that the set of all values {fβ(zα)} is likewise at most countable. Hence, if
we can construct a family {fβ} satisfying (1), then the second part of the
theorem is proved.

The construction of {fβ} is by transfinite induction. For f0 we may take
any analytic function, for example f0 = constant. Suppose fβ has already
been constructed for all β < γ. Since γ is a countable ordinal, we may
reorder {fβ : 0 ≤ β < γ} into a sequence g1, g2, g3, . . .. The same re-
ordering of {zα : 0 ≤ α < γ} yields a sequence w1, w2, w3, . . .. We shall
now construct a function fγ satisfying for each n the conditions

fγ(wn) ∈ D and fγ(wn) �= gn(wn). (2)

The second condition will ensure that all functions fγ (0 ≤ γ < ω1) are
distinct, and the first condition is just (1), implying (P0) by our previous
argument. Notice that the condition fγ(wn) �= gn(wn) is once more a
diagonalization argument.

To construct fγ , we write

fγ(z) := ε0 + ε1(z − w1) + ε2(z − w1)(z − w2)

+ ε3(z − w1)(z − w2)(z − w3) + · · · .

If γ is a finite ordinal, then fγ is a polynomial and hence analytic, and we
can certainly choose numbers εi such that (2) is satisfied. Now suppose γ
is a countable ordinal, then

fγ(z) =

∞∑
n=0

εn(z − w1) · · · (z − wn). (3)

Note that the values of εm (m ≥ n) have no influence on the value fγ(wn),
hence we may choose the εn step by step. If the sequence (εn) converges
to 0 sufficiently fast, then (3) defines an analytic function. Finally, since
D is a dense set, we may choose this sequence (εn) so that fγ meets the
requirements of (2), and the proof is complete. �
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Appendix: On cardinal and ordinal numbers

Let us first discuss the question whether to each cardinal number there ex-
ists a next larger one. As a start we show that to every cardinal number m
there always is a cardinal number n larger than m. To do this we employ
again a version of Cantor’s diagonalization method.

“A legend talks about St. Augustin who,

walking along the seashore and contem-

plating infinity, saw a child trying to

empty the ocean with a small shell . . .”

Let M be a set, then we claim that the set P(M) of all subsets of M has
larger size than M . By letting m ∈ M correspond to {m} ∈ P(M),
we see that M can be mapped bijectively onto a subset of P(M), which
implies |M | ≤ |P(M)| by definition. It remains to show that P(M) can
not be mapped bijectively onto a subset of M . Suppose, on the contrary,
ϕ : N −→ P(M) is a bijection of N ⊆ M onto P(M). Consider the
subset U ⊆ N of all elements of N which are not contained in their image
under ϕ, that is, U = {m ∈ N : m �∈ ϕ(m)}. Since ϕ is a bijection, there
exists u ∈ N with ϕ(u) = U . Now, either u ∈ U or u �∈ U , but both
alternatives are impossible! Indeed, if u ∈ U , then u �∈ ϕ(u) = U by the
definition of U , and if u �∈ U = ϕ(u), then u ∈ U , contradiction.

Most likely, the reader has seen this argument before. It is the old barber
riddle: “A barber is the man who shaves all men who do not shave them-
selves. Does the barber shave himself?”

To get further in the theory we introduce another great concept of Cantor’s,
ordered sets and ordinal numbers. A set M is ordered by < if the relation
< is transitive, and if for any two distinct elements a and b of M we either
have a < b or b < a. For example, we can order N in the usual way accord-
ing to magnitude, N = {1, 2, 3, 4, . . .}, but, of course, we can also order N
the other way round, N = {. . . , 4, 3, 2, 1}, or N = {1, 3, 5, . . . , 2, 4, 6, . . .}
by listing first the odd numbers and then the even numbers.

Here is the seminal concept. An ordered set M is called well-ordered if
every nonempty subset of M has a first element. Thus the first and third
orderings of N above are well-orderings, but not the second ordering. The
fundamental well-ordering theorem, implied by the axioms (including the
axiom of choice), now states that every set M admits a well-ordering. From
now on, we only consider sets endowed with a well-ordering.

Let us say that two well-ordered sets M and N are similar (or of the same
order-type) if there exists a bijection ϕ from M on N which respects the
ordering, that is, m <M n implies ϕ(m) <N ϕ(n). Note that any ordered

The well-ordered sets N = {1, 2, 3, . . .}
and N = {1, 3, 5, . . . , 2, 4, 6, . . .} are
not similar: the first ordering has only
one element without an immediate pre-
decessor, while the second one has two.

set which is similar to a well-ordered set is itself well-ordered.

Similarity is obviously an equivalence relation, and we can thus speak of
an ordinal number α belonging to a class of similar sets. For finite sets,
any two orderings are similar well-orderings, and we use again the ordinal
number n for the class of n-sets. Note that, by definition, two similar sets
have the same cardinality. Hence it makes sense to speak of the cardinality
|α| of an ordinal number α. Note further that any subset of a well-ordered
set is also well-ordered under the induced ordering.

As we did for cardinal numbers, we now compare ordinal numbers. Let M
be a well-ordered set, m ∈M , then Mm = {x ∈M : x < m} is called the
(initial) segment of M determined by m; N is a segment of M if N = Mm
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for some m. Thus, in particular, Mm is the empty set when m is the first
element of M . Now let μ and ν be the ordinal numbers of the well-ordered
sets M and N . We say that μ is smaller than ν, μ < ν, if M is similar
to a segment of N . Again, we have the transitive law that μ < ν, ν < π
implies μ < π, since under a similarity mapping a segment is mapped onto
a segment.

The ordinal number of {1, 2, 3, . . .}
is smaller than the ordinal number of
{1, 3, 5, . . . , 2, 4, 6, . . .}.

Clearly, for finite sets, m < n corresponds to the usual meaning. Let
us denote by ω the ordinal number of N = {1, 2, 3, 4, . . .} ordered ac-
cording to magnitude. By considering the segment Nn+1 we find n < ω
for any finite n. Next we see that ω ≤ α holds for any infinite ordinal
number α. Indeed, if the infinite well-ordered set M has ordinal num-
ber α, then M contains a first element m1, the set M\{m1} contains a
first element m2, M\{m1,m2} contains a first element m3. Continuing
in this way, we produce the sequence m1 < m2 < m3 < · · · in M . If
M = {m1,m2,m3, . . .}, then M is similar to N, and hence α = ω. If,
on the other hand, M\{m1,m2, . . .} is nonempty, then it contains a first
element m, and we conclude that N is similar to the segment Mm, that is,
ω < α by definition.

We now state (without the proofs, which are not difficult) three basic re-
sults on ordinal numbers. The first says that any ordinal number μ has a
“standard” representative well-ordered set Wμ.

Proposition 1. Let μ be an ordinal number and denote by Wμ the set of
ordinal numbers smaller than μ. Then the following holds:
(i) The elements of Wμ are pairwise comparable.

(ii) If we order Wμ according to magnitude, then Wμ is well-ordered and
has ordinal number μ.

Proposition 2. Any two ordinal numbers μ and ν satisfy precisely one of
the relations μ < ν, μ = ν, or μ > ν.

Proposition 3. Every set of ordinal numbers (ordered according to
magnitude) is well-ordered.

After this excursion to ordinal numbers we come back to cardinal num-
bers. Let m be a cardinal number, and denote by Om the set of all ordinal
numbers μ with |μ| = m. By Proposition 3 there is a smallest ordinal
number ωm in Om, which we call the initial ordinal number of m. As an
example, ω is the initial ordinal number of ℵ0.

With these preparations we can now prove a basic result for this chapter.

Proposition 4. For every cardinal number m there is a definite next larger
cardinal number.

� Proof. We already know that there is some larger cardinal number n.
Consider now the set K of all cardinal numbers larger than m and at most
as large as n. We associate to each p ∈ K its initial ordinal number ωp.
Among these initial numbers there is a smallest (Proposition 3), and the
corresponding cardinal number is then the smallest in K, and thus is the
desired next larger cardinal number to m. �
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Proposition 5. Let the infinite set M have cardinality m, and let M be
well-ordered according to the initial ordinal number ωm. Then M has no
last element.

� Proof. Indeed, if M had a last element m, then the segment Mm would
have an ordinal number μ < ωm with |μ| = m, contradicting the definition
of ωm. �

What we finally need is a considerable strenghthening of the result that the
union of countably many countable sets is again countable. In the following
result we consider arbitrary families of countable sets.

Proposition 6. Suppose {Aα} is a family of size m of countable sets Aα,
where m is an infinite cardinal. Then the union

⋃
α
Aα has size at most m.

� Proof. We may assume that the sets Aα are pairwise disjoint, since this
can only increase the size of the union. Let M with |M | = m be the index
set, and well-order it according to the initial ordinal number ωm. We now
replace each α ∈ M by a countable set Bα = {bα1 = α, bα2, bα3, . . .},
ordered according to ω, and call the new set M̃ . Then M̃ is again well-
ordered by setting bαi < bβj for α < β and bαi < bαj for i < j. Let μ̃ be

the ordinal number of M̃ . Since M is a subset of M̃ , we have μ ≤ μ̃ by an
earlier argument. If μ = μ̃, then M is similar to M̃ , and if μ < μ̃, then M

is similar to a segment of M̃ . Now, since the ordering ωm of M has no last
element (Proposition 5), we see that M is in both cases similar to the union
of countable sets Bβ , and hence of the same cardinality.

The rest is easy. Let ϕ :
⋃
Bβ −→ M be a bijection, and suppose that

ϕ(Bβ) = {α1, α2, α3, . . .}. Replace each αi by Aαi
and consider the

union
⋃
Aαi

. Since
⋃
Aαi

is the union of countably many countable sets
(and hence countable), we see that Bβ has the same size as

⋃
Aαi

. In
other words, there is a bijection from Bβ to

⋃
Aαi

for all β, and hence
a bijection ψ from

⋃
Bβ to

⋃
Aα. But now ψϕ−1 gives the desired

bijection from M to
⋃
Aα, and thus |

⋃
Aα| = m. �
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“Infinitely many more cardinals”



In praise of inequalities Chapter 20

Analysis abounds with inequalities, as witnessed for example by the famous
book “Inequalities” by Hardy, Littlewood and Pólya. Let us single out two
of the most basic inequalities with two applications each, and let us listen
in to George Pólya, who was himself a champion of the Book Proof, about
what he considers the most appropriate proofs.

Our first inequality is variously attributed to Cauchy, Schwarz and/or to
Buniakowski:

Theorem I (Cauchy–Schwarz inequality)

Let 〈a, b〉 be an inner product on a real vector space V (with the norm
|a|2 := 〈a,a〉). Then

〈a, b〉2 ≤ |a|2|b|2

holds for all vectors a, b ∈ V , with equality if and only if a and b are
linearly dependent.

� Proof. The following (folklore) proof is probably the shortest. Consider
the quadratic function

|xa+ b|2 = x2|a|2 + 2x〈a, b〉+ |b|2

in the variable x. We may assume a �= 0. If b = λa, then clearly
〈a, b〉2 = |a|2|b|2. If, on the other hand, a and b are linearly independent,
then |xa+ b|2 > 0 for all x, and thus the discriminant 〈a, b〉2− |a|2|b|2 is
less than 0. �

Our second example is the inequality of the harmonic, geometric and
arithmetic mean:

Theorem II (Harmonic, geometric and arithmetic mean)

Let a1, . . . , an be positive real numbers, then

n
1
a1

+ · · ·+ 1
an

≤ n
√
a1a2 · · · an ≤

a1 + · · ·+ an
n

with equality in both cases if and only if all ai’s are equal.

� Proof. The following beautiful nonstandard induction proof is attributed
to Cauchy (see [7]). Let P (n) be the statement of the second inequality,
written in the form

a1a2 · · · an ≤
(a1 + · · ·+ an

n

)n

.

M. Aigner, G.M. Ziegler, Proofs from THE BOOK, DOI 10.1007/978-3-662-44205-0_20,  
© Springer-Verlag Berlin Heidelberg 2014 
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For n = 2, we have a1a2 ≤ (a1+a2

2 )2 ⇐⇒ (a1 − a2)
2 ≥ 0, which is true.

Now we proceed in the following two steps:

(A) P (n) =⇒ P (n− 1)

(B) P (n) and P (2) =⇒ P (2n)

which will clearly imply the full result.

To prove (A), set A :=
n−1∑
k=1

ak

n−1 , then

( n−1∏
k=1

ak

)
A

P (n)

≤
(n−1∑

k=1

ak + A

n

)n

=
((n− 1)A+A

n

)n

= An

and hence
n−1∏
k=1

ak ≤ An−1 =

(n−1∑
k=1

ak

n− 1

)n−1

.

For (B), we see

2n∏
k=1

ak =
( n∏

k=1

ak

)( 2n∏
k=n+1

ak

) P (n)

≤
( n∑

k=1

ak
n

)n( 2n∑
k=n+1

ak
n

)n

P (2)

≤
( 2n∑

k=1

ak
n

2

)2n

=

( 2n∑
k=1

ak

2n

)2n

.

The condition for equality is derived just as easily.

The left-hand inequality, between the harmonic and the geometric mean,
follows now by considering 1

a1
, . . . , 1

an
. �

� Another Proof. Of the many other proofs of the arithmetic-geometric
mean inequality (the monograph [2] lists more than 50), let us single out
a particularly striking one by Horst Alzer. As a matter of fact, this proof
yields the stronger inequality

ap1

1 ap2

2 · · · apn
n ≤ p1a1 + p2a2 + · · ·+ pnan

for any positive numbers a1, . . . , an, p1, . . . , pn with
∑n

i=1 pi = 1. Let us
denote the expression on the left side by G, and on the right side by A. We
may assume a1 ≤ · · · ≤ an. Clearly a1 ≤ G ≤ an, so there must exist
some k with ak ≤ G ≤ ak+1. It follows that

k∑
i=1

pi

G∫
ai

(1
t
− 1

G

)
dt +

n∑
i=k+1

pi

ai∫
G

( 1

G
− 1

t

)
dt ≥ 0 (1)

since all integrands are ≥ 0.
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Rewriting (1) we obtain

n∑
i=1

pi

ai∫
G

1

G
dt ≥

n∑
i=1

pi

ai∫
G

1

t
dt

where the left-hand side equals

n∑
i=1

pi
ai −G

G
=

A

G
− 1,

while the right-hand side is

n∑
i=1

pi(log ai − logG) = log

n∏
i=1

api

i − logG = 0.

We conclude A
G − 1 ≥ 0, which is A ≥ G. In the case of equality, all

integrals in (1) must be 0, which implies a1 = · · · = an = G. �

� Still another Proof. There is another nice proof communicated to us
by Michael D. Hirschhorn. It uses Bernoulli’s inequality, which says

(1 + t)n+1 ≥ 1 + (n+ 1)t for real t ≥ −1.

Suppose a1, a2, . . . , an+1 > 0 and set

t =

a1 + · · ·+ an+1

n+ 1
a1 + · · ·+ an

n

− 1.

By Bernoulli,⎛⎜⎝
a1 + · · ·+ an+1

n+ 1
a1 + · · ·+ an

n

⎞⎟⎠
n+1

≥ 1 + (n+ 1)

⎛⎜⎝
a1 + · · ·+ an+1

n+ 1
a1 + · · ·+ an

n

− 1

⎞⎟⎠
= 1 + n

a1 + · · ·+ an+1

a1 + · · ·+ an
− (n+ 1)

=
n an+1

a1 + · · ·+ an
,

which translates into(a1 + · · ·+ an+1

n+ 1

)n+1

≥ an+1

(a1 + · · ·+ an
n

)n

,

and the arithmetic-geometric mean inequality follows by induction. �
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Our first application is a beautiful result of Laguerre (see [7]) concerning
the location of roots of polynomials.

Theorem 1. Suppose all roots of the polynomial xn+an−1x
n−1+ · · ·+a0

are real. Then the roots are contained in the interval with the endpoints

−an−1

n
± n− 1

n

√
a2n−1 −

2n

n− 1
an−2 .

� Proof. Let y be one of the roots and y1, . . . , yn−1 the others. Then
the polynomial is (x − y)(x − y1) · · · (x − yn−1). Thus by comparing
coefficients

−an−1 = y + y1 + · · ·+ yn−1,

an−2 = y(y1 + · · ·+ yn−1) +
∑
i<j

yiyj,

and so

a2n−1 − 2an−2 − y2 =

n−1∑
i=1

y2i .

By Cauchy’s inequality applied to (y1, . . . , yn−1) and (1, . . . , 1),

(an−1 + y)2 = (y1 + y2 + · · ·+ yn−1)
2

≤ (n− 1)

n−1∑
i=1

y2i

= (n− 1)(a2n−1 − 2an−2 − y2),

or

y2 +
2an−1

n
y +

2(n− 1)

n
an−2 −

n− 2

n
a2n−1 ≤ 0.

Thus y (and hence all yi) lie between the two roots of the quadratic function,
and these roots are our bounds. �

For our second application we start from a well-known elementary property
of a parabola. Consider the parabola described by f(x) = 1− x2 between
x = −1 and x = 1. We associate to f(x) the tangential triangle and the
tangential rectangle as in the figure.

(0, 2)

(0, 1)

(−1, 0) 0 (1, 0)

We find that the shaded area

A =

∫ 1

−1

(1− x2)dx

is equal to 4
3 , and the areas T and R of the triangle and rectangle are both

equal to 2. Thus T
A = 3

2 and R
A = 3

2 .

In a beautiful paper, Paul Erdős and Tibor Gallai asked what happens
when f(x) is an arbitrary n-th degree real polynomial with f(x) > 0 for
−1 < x < 1, and f(−1) = f(1) = 0. The area A is then

∫ 1

−1 f(x)dx.



In praise of inequalities 143

Suppose that f(x) assumes in (−1, 1) its maximum value at b, then R =
2f(b). Computing the tangents at −1 and at 1, it is readily seen (see the
box below) that

T =
2f ′(1)f ′(−1)
f ′(1)− f ′(−1) , (2)

respectively T = 0 for f ′(1) = f ′(−1) = 0.

The tangential triangle

The area T of the tangential triangle is precisely y0, where (x0, y0)
is the point of intersection of the two tangents. The equation of these
tangents are y = f ′(−1)(x+ 1) and y = f ′(1)(x− 1), hence

x0 =
f ′(1) + f ′(−1)
f ′(1)− f ′(−1) ,

and thus

y0 = f ′(1)
(f ′(1) + f ′(−1)
f ′(1)− f ′(−1) − 1

)
= 2

f ′(1)f ′(−1)
f ′(1)− f ′(−1) .

−1 ︸ ︷︷ ︸
2

1

(x0, y0)

In general, there are no nontrivial bounds for T
A and R

A . To see this, take
f(x) = 1 − x2n. Then T = 2n, A = 4n

2n+1 , and thus T
A > n. Similarly,

R = 2 and R
A = 2n+1

2n , which approaches 1 with n to infinity.

But, as Erdős and Gallai showed, for polynomials which have only real
roots such bounds do indeed exist.

Theorem 2. Let f(x) be a real polynomial of degree n ≥ 2 with only real
roots, such that f(x) > 0 for −1 < x < 1 and f(−1) = f(1) = 0. Then

2

3
T ≤ A ≤ 2

3
R,

and equality holds in both cases only for n = 2.

Erdős and Gallai established this result with an intricate induction proof.
In the review of their paper, which appeared on the first page of the first
issue of the Mathematical Reviews in 1940, George Pólya explained how
the first inequality can also be proved by the inequality of the arithmetic
and geometric mean — a beautiful example of a conscientious review and
a Book Proof at the same time.
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� Proof of 2

3
T ≤A. Since f(x) has only real roots, and none of them in

the open interval (−1, 1), it can be written — apart from a constant positive
factor which cancels out in the end — in the form

f(x) = (1− x2)
∏
i

(αi − x)
∏
j

(βj + x) (3)

with αi ≥ 1, βj ≥ 1. Hence

A =

1∫
−1

(1− x2)
∏
i

(αi − x)
∏
j

(βj + x)dx.

By making the substitution x �−→ −x, we find that also

A =

1∫
−1

(1− x2)
∏
i

(αi + x)
∏
j

(βj − x)dx,

and hence by the inequality of the arithmetic and the geometric mean (note
that all factors are ≥ 0)

A =

1∫
−1

1

2

[
(1− x2)

∏
i

(αi − x)
∏
j

(βj + x) +

(1− x2)
∏
i

(αi + x)
∏
j

(βj − x)
]
dx

≥
1∫

−1

(1− x2)
(∏

i

(α2
i − x2)

∏
j

(β2
j − x2)

)1/2

dx

≥
1∫

−1

(1− x2)
(∏

i

(α2
i − 1)

∏
j

(β2
j − 1)

)1/2

dx

=
4

3

(∏
i

(α2
i − 1)

∏
j

(β2
j − 1)

)1/2

.

Let us compute f ′(1) and f ′(−1). (We may assume f ′(−1), f ′(1) �= 0,
since otherwise T = 0 and the inequality 2

3T ≤ A becomes trivial.) By (3)
we see

f ′(1) = −2
∏
i

(αi − 1)
∏
j

(βj + 1) ,

and similarly

f ′(−1) = 2
∏
i

(αi + 1)
∏
j

(βj − 1) .

Hence we conclude

A ≥ 2

3
(−f ′(1)f ′(−1))1/2.
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Applying now the inequality of the harmonic and the geometric mean
to −f ′(1) and f ′(1), we arrive by (2) at the conclusion

A ≥ 2

3

2
1

−f ′(1) +
1

f ′(−1)

=
4

3

f ′(1)f ′(−1)
f ′(1)− f ′(−1) =

2

3
T,

which is what we wanted to show. By analyzing the case of equality in
all our inequalities the reader can easily supply the last statement of the
theorem. �

The reader is invited to search for an equally inspired proof of the second
inequality in Theorem 2.

Well, analysis is inequalities after all, but here is an example from graph
theory where the use of inequalities comes in quite unexpected. In Chap-
ter 40 we will discuss Turán’s theorem. In the simplest case it takes on the
following form.

Theorem 3. Suppose G is a graph on n vertices without triangles. Then G

has at most n2

4 edges, and equality holds only when n is even and G is the
complete bipartite graph Kn/2,n/2.

� First proof. This proof, using Cauchy’s inequality, is due to Mantel. Let
V = {1, . . . , n} be the vertex set and E the edge set of G. By di we denote
the degree of i, hence

∑
i∈V di = 2|E| (see page 185 in the chapter on

double counting). Suppose ij is an edge. Since G has no triangles, we find
di + dj ≤ n since no vertex is a neighbor of both i and j.

i

. . . . . .

j
It follows that ∑

ij∈E
(di + dj) ≤ n|E|.

Note that di appears exactly di times in the sum, so we get

n|E| ≥
∑
ij∈E

(di + dj) =
∑
i∈V

d2i ,

and hence with Cauchy’s inequality applied to the vectors (d1, . . . , dn) and
(1, . . . , 1),

n|E| ≥
∑
i∈V

d2i ≥
(
∑

di)
2

n
=

4|E|2
n

,

and the result follows. In the case of equality we find di = dj for all
i, j, and further di = n

2 (since di + dj = n). Since G is triangle-free,
G = Kn/2,n/2 is immediately seen from this. �
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� Second proof. The following proof of Theorem 3, using the inequality
of the arithmetic and the geometric mean, is a folklore Book Proof. Let α
be the size of a largest independent set A, and set β = n − α. Since G is
triangle-free, the neighbors of a vertex i form an independent set, and we
infer di ≤ α for all i.

i

. . .︸ ︷︷ ︸
di

The set B = V \A of size β meets every edge of G. Counting the edges
of G according to their endvertices in B, we obtain |E| ≤

∑
i∈B di. The

inequality of the arithmetic and geometric mean now yields

|E| ≤
∑
i∈B

di ≤ αβ ≤
(α+ β

2

)2

=
n2

4
,

and again the case of equality is easily dealt with. �
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The fundamental theorem

of algebra

Chapter 21

Every nonconstant polynomial with complex coefficients has at least
one root in the field of complex numbers.

It has been commented upon that the
“Fundamental theorem of algebra” is
not really fundamental, that it is not
necessarily a theorem since sometimes
it serves as a definition, and that in its
classical form it is not a result from
algebra, but rather from analysis.

Gauss called this theorem, for which he gave four different proofs, the
“fundamental theorem of algebraic equations.” It is without doubt one of
the milestones in the history of mathematics. As Reinhold Remmert writes
in his pertinent survey: “It was the possibility of proving this theorem in the
complex domain that, more than anything else, paved the way for a general
recognition of complex numbers.”

Some of the greatest names have contributed to the subject, from Gauss
and Cauchy to Liouville and Laplace. An article of Netto and Le Vavasseur
lists nearly a hundred proofs. The proof that we present is one of the most
elegant and certainly the shortest. It follows an argument of d’Alembert
and Argand and uses only some elementary properties of polynomials and
complex numbers. We are indebted to France Dacar and to Tord Sjödin for
a polished version of the proof. Essentially the same argument appears also
in the papers of Fefferman [3] and Redheffer [5], and doubtlessly in some
others.

Jean Le Rond d’Alembert

We need three facts that one learns in a first-year calculus course.

(A) Polynomial functions are continuous.

(B) Any complex number of absolute value 1 has an m-th root for any
m ≥ 1.

(C) Cauchy’s minimum principle: A continuous real-valued function f on
a compact set S assumes a minimum in S.

Now let p(z) =
∑n

k=0 ckz
k be a complex polynomial of degree n ≥ 1. As

the first and decisive step we prove what is variously called d’Alembert’s
lemma or Argand’s inequality.

Lemma. If p(a) �= 0, then every disk D around a contains an interior
point b with |p(b)| < |p(a)|.

� Proof. We first claim that without loss of generality we may assume
that a = 0 and p(a) = 1. Indeed, if this is not the case, then we define
another polynomial q(z) := p(z+a)

p(a) , which satisfies q(0) = 1. Now assume
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148 The fundamental theorem of algebra

that every disk D of radius R around the origin contains a point b with
|q(b)| < 1. Then the disk Da of radius R around the point a contains the
point a+ b such that |p(a+ b)| < |p(a)| as claimed.

We may thus assume that p(z) = 1 + c1z + c2z
2 + · · ·+ cnz

n, and letting
m ≥ 1 be the smallest index with cm �= 0 we may write p(z) in the form

p(z) = 1+ cmzm+ zm+1(cm+1 + · · ·+ cnz
n−m−1) = 1+ cmzm+ r(z).

In the first step we find 0 < ρ < 1 such that

|r(z)| < |cmzm| < 1 for all 0 < |z| ≤ ρ. (1)

To get the first inequality we note that for |z| < 1

|r(z)| ≤ |z|m+1(|cm+1|+ · · ·+ |cn|) < |cm||zm| = |cmzm|,

provided that

0 < |z| < |cm|
|cm+1|+ · · ·+ |cn|

=: ρ1.

The second inequality holds if |z| < |cm|−
1
m =: ρ2; hence we conclude

that (1) is valid for every ρ with 0 < ρ < min{ρ1, ρ2, 1}.
We come to our second ingredient, m-th roots of unity. Fix a constant ρ as
in (1) with ρ < R, where R is the radius of the disk D around a = 0. Let ζ
be an m-th root of −c̄m

|cm| , where c̄m is the complex conjugate of cm, and set
b := ρζ. We claim that b is a desired point in D with |p(b)| < 1. First of
all, b is in D since |b| = ρ < R, and further by |cm|2 = cmc̄m we have

cmbm = −cmρm
c̄m
|cm|

= −|cm|ρm.

Looking at (1) we have |r(b)| < |cmbm| = |cm|ρm < 1, and hence

|p(b)| ≤ |1 + cmbm|+ |r(b)| = 1− |cm|ρm + |r(b)| < 1,

and we are done. �

The rest is easy. Clearly, p(z)z−n approaches the leading coefficient cn
of p(z) as |z| goes to infinity. Hence |p(z)| goes to infinity as well with
|z| → ∞. Consequently, there exists R1 > 0 such that |p(z)| > |p(0)| for
all points z on the circle {z : |z| = R1}. Furthermore, our third fact (C)
tells us that in the compact set D1 = {z : |z| ≤ R1} the continuous real-
valued function |p(z)| attains the minimum value at some point z0. Because
of |p(z)| > |p(0)| for z on the boundary of D1, z0 must lie in the interior.
But by d’Alembert’s lemma this minimum value |p(z0)| must be 0 — and
this is the whole proof.

z0
R1

0
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“What’s up this time?”

“Well, I’m shlepping “Proofs from the Book:
100 proofs for the one for the Fundamental Theorem,
Fundamental Theorem of Algebra” one for Quadratic Reciprocity!”



One square

and an odd number of triangles

Chapter 22

Suppose we want to dissect a square into n triangles of equal area. When
n is even, this is easily accomplished. For example, you could divide the
horizontal sides into n

2 segments of equal length and draw a diagonal in
each of the n

2 rectangles:

. . .

But now assume n is odd. Already for n = 3 this causes problems, and
after some experimentation you will probably come to think that it might
not be possible. So let us pose the general problem:

Is it possible to dissect a square into an odd number n of triangles
of equal area?

There are dissections of squares into an
odd number of triangles whose areas are
nearly equal.

Now, this looks like a classical question of Euclidean geometry, and one
could have guessed that surely the answer must have been known for a long
time (if not to the Greeks). But when Fred Richman and John Thomas
popularized the problem in the 1960s they found to their surprise that no
one knew the answer or a reference where this would be discussed.

Well, the answer is “no” not only for n = 3, but for any odd n. But how
should one prove a result like this? By scaling we may, of course, restrict
ourselves to the unit square with vertices (0, 0), (1, 0), (0, 1), (1, 1). Any
argument must therefore somehow make use of the fact that the area of the
triangles in a dissection is 1

n , where n is odd. The following proof due
to Paul Monsky, with initial work of John Thomas, is a stroke of genius
and totally unexpected: It uses an algebraic tool, valuations, to construct
a striking coloring of the plane, and combines this with some elegant and
stunningly simple combinatorial reasonings. And what’s more: at present
no other proof is known!

Before we state the theorem let us prepare the ground by a quick study of
valuations. Everybody is familiar with the absolute value function |x| on
the rationals Q (or the reals R). It maps Q to the nonnegative reals such
that for all x and y,
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152 One square and an odd number of triangles

(i) |x| = 0 if and only if x = 0,

(ii) |xy| = |x||y|, and

(iii) |x+ y| ≤ |x|+ |y| (the triangle inequality).

The triangle inequality makes R into a metric space and gives rise to the
familiar notions of convergence. It was a great discovery around 1900 that
besides the absolute value there are other natural “value functions” on Q
that satisfy the conditions (i) to (iii).

Example: | 3
4
|2 = 4,

| 6
7
|2 = |2|2 = 1

2
, and

| 3
4
+ 6

7
|2 = | 45

28
|2 = | 1

4
· 45

7
|2

= 4 = max{| 3
4
|2, | 67 |2}.

Let p be a prime number. Any rational number r �= 0 can be written
uniquely in the form

r = pk
a

b
, k ∈ Z, (1)

where a and b > 0 are relatively prime to p. Define the p-adic value

|r|p := p−k, |0|p = 0. (2)

Conditions (i) and (ii) are obviously satisfied, and for (iii) we obtain the
even stronger inequality

(iii′) |x+ y|p ≤ max{|x|p, |y|p} (the non-Archimedean property).

Indeed, let r = pk a
b and s = p� c

d , where we may assume that k ≥ �, that
is, |r|p = p−k ≤ p−� = |s|p. Then we get

|r + s|p =
∣∣∣pk a

b
+ p�

c

d

∣∣∣
p
=

∣∣∣p�(pk−� a

b
+

c

d
)
∣∣∣
p

= p−�
∣∣∣pk−�ad+ bc

bd

∣∣∣
p
≤ p−� = max{|r|p, |s|p},

since the denominator bd is relatively prime to p. We also see from this
that

(iv) |x+ y|p = max{|x|p, |y|p} whenever |x|p �= |y|p,

but we will prove below that this property is quite generally implied by (iii′).
Any function v : K → R≥0 on a field K that satisfies

(i) v(x) = 0 if and only if x = 0,

(ii) v(xy) = v(x)v(y), and

(iii′) v(x+ y) ≤ max{v(x), v(y)} (non-Archimedean property)

for all x, y ∈ K is called a non-Archimedean real valuation of K .

For every such valuation v we have v(1) = v(1)v(1), hence v(1) = 1; and
1 = v(1) = v((−1)(−1)) = [v(−1)]2, so v(−1) = 1. Thus from (ii) we
get v(−x) = v(x) for all x and v(x−1) = v(x)−1 for x �= 0.

Every field has the trivial valuation that maps every nonzero element onto 1,
and if v is a real non-Archimedean valuation, then so is vt for any positive
real number t. So for Q we have the p-adic valuations and their powers,
and a famous theorem of Ostrowski states that any nontrivial real non-
Archimedean valuation of Q is of this form.
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As announced, let us verify that the important property

(iv) v(x + y) = max{v(x), v(y)} if v(x) �= v(y)

holds for any non-Archimedean valuation. Indeed, suppose that we have
v(x) < v(y). Then

v(y) = v((x + y)− x) ≤ max{v(x+ y), v(x)} = v(x + y)

≤ max{v(x), v(y)} = v(y)

where (iii′) yields the inequalities, the first equality is clear, and the other
two follow from v(x) < v(y). Thus v(x+ y) = v(y) = max{v(x), v(y)}.

The property (iv) together with
v(−x) = v(x) also implies that
v(a± b1 ± b2 ± · · · ± b�) = v(a)

if v(a) > v(bi) for all i.

Monsky’s beautiful approach to the square dissection problem used an ex-
tension of the 2-adic valuation |x|2 to a valuation v of R, where “exten-
sion” means that we require v(x) = |x|2 whenever x is in Q. Such a non-
Archimedean real extension exists, but this is not standard algebra fare. In
the following, we present Monsky’s argument in a version due to Hendrik
Lenstra that requires much less; it only needs a valuation v that takes val-
ues in an arbitrary “ordered group”, not necessarily in (R>0, · , <), such
that v(1

2 ) > 1. The definition and the existence of such a valuation will be
provided in the appendix to this chapter.

Here we just note that any valuation with v(1
2 ) > 1 satisfies v( 1

n ) = 1 for
odd integers n. Indeed, v(1

2 ) > 1 means that v(2) < 1, and thus v(2k) < 1
by (iii′) and induction on k. From this we get v(2k+1) = 1 from (iv), and
thus again v( 1

2k+1 ) = 1 from (ii).

Monsky’s Theorem. It is not possible to dissect a square into an
odd number of triangles of equal area.

� Proof. In the following we construct a specific three-coloring of the
plane with amazing properties. One of them is that the area of any trian-
gle whose vertices have three different colors — which in the following is
called a rainbow triangle — has a v-value larger than 1, so the area cannot
be 1

n for odd n. And then we verify that any dissection of the unit square
must contain such a rainbow triangle, and the proof will be complete.

The coloring of the points (x, y) of the real plane will be constructed by
looking at the entries of the triple (x, y, 1) that have the maximal value
under the valuation v. This maximum may occur once or twice or even
three times. The color (blue, or green, or red) will record the coordinate of
(x, y, 1) in which the maximal v-value occurs first:

(x, y) is colored

⎧⎪⎨⎪⎩
blue if v(x) ≥ v(y), v(x) ≥ v(1),

green if v(x) < v(y), v(y) ≥ v(1),

red if v(x) < v(1), v(y) < v(1).
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This assigns a unique color to each point in the plane. The figure in the
margin shows the color for each point in the unit square whose coordinates
are fractions of the form k

20 .

The following statement is the first step to the proof.

Lemma 1. For any blue point pb = (xb, yb), green point pg = (xg, yg),
and red point pr = (xr , yr), the v-value of the determinant

det

⎛⎝ xb yb 1
xg yg 1
xr yr 1

⎞⎠
is at least 1.

� Proof. The determinant is a sum of six terms. One of them is the product
of the entries of the main diagonal, xbyg1. By construction of the coloring
each of the diagonal entries compared to the other entries in the row has a
maximal v-value, so comparing with the last entry in each row (which is 1)
we get

v(xbyg1) = v(xb)v(yg)v(1) ≥ v(1)v(1)v(1) = 1.

Any of the other five summands of the determinant is a product of three
matrix entries, one from each row (with a sign that as we know is irrelevant
for the v-value). It picks at least one matrix entry below the main diagonal,
whose v-value is strictly smaller than that of the diagonal entry in the same
row, and at least one matrix entry above the main diagonal, whose v-value
is not larger than that of the diagonal entry in the same row. Thus all of
the five other summands of the determinant have a v-value that is strictly
smaller than the summand corresponding to the main diagonal. Thus by
property (iv) of non-Archimedean valuations, we find that the v-value of the
determinant is given by the summand corresponding to the main diagonal,

v
(
det

⎛⎝ xb yb 1
xg yg 1
xr yr 1

⎞⎠)
= v(xbyg1) ≥ 1.

�

Corollary. Any line of the plane receives at most two different colors.
The area of a rainbow triangle cannot be 0, and it cannot be 1

n for odd n.

� Proof. The area of the triangle with vertices at a blue point pb, a green
point pg , and a red point pr is the absolute value of

1
2 ((xb − xr)(yg − yr)− (xg − xr)(yb − yr)),

which up to the sign is half the determinant of Lemma 1.

The three points cannot lie on a line since the determinant cannot be 0, as
v(0) = 0. The area of the triangle cannot be 1

n , since in this case we would
get ± 2

n for the determinant, thus

v(± 2
n ) = v(12 )

−1v( 1n ) < 1

because of v(12 ) > 1 and v( 1n ) = 1, contradicting Lemma 1. �

(0, 0) ( 1
2
, 0)

(0, 1
2
)

(1, 0)

(1, 1)(0, 1)
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And why did we construct this coloring? Because we are now going to
show that in any dissection of the unit square S = [0, 1]2 into triangles
(equal-sized or not!) there must always be a rainbow triangle, which ac-
cording to the corollary cannot have area 1

n for odd n. Thus the following
lemma will complete the proof of Monsky’s theorem.

Lemma 2. Every dissection of the unit square S = [0, 1]2 into finitely
many triangles contains an odd number of rainbow triangles, and thus at
least one.

� Proof. The following counting argument is truly inspired. The idea is
due to Emanuel Sperner, and will reappear with “Sperner’s Lemma” in
Chapter 27.

Consider the segments between neighboring vertices in a given dissection.
A segment is called a red-blue segment if one endpoint is red and the other
is blue. For the example in the figure, the red-blue segments are drawn in
purple.

We make two observations, repeatedly using the fact from the corollary that
on any line there can be points of at most two colors.

(A) The bottom line of the square contains an odd number of red-blue seg-
ments, since (0, 0) is red and (1, 0) is blue, and all vertices in between are
red or blue. So on the walk from the red end to the blue end of the bottom
line, there must be an odd number of changes between red and blue. The
other boundary lines of the square contain no red-blue segments.

(B) If a triangle T has at most two colors at its vertices, then it contains
an even number of red-blue segments on its boundary. However, every
rainbow triangle has an odd number of red-blue segments on its boundary.

Indeed, there is an odd number of red-blue segments between a red vertex
and a blue vertex of a triangle, but an even number (if any) between any
vertices with a different color combination. Thus a rainbow triangle has an
odd number of red-blue segments in its boundary, while any other triangle
has an even number (two or zero) of vertex pairs with the color combination
red and blue.

Now let us count the boundary red-blue segments summed over all trian-
gles in the dissection. Since every red-blue segment in the interior of the
square is counted twice, and there is an odd number on the boundary of S,
this count is odd. Hence we conclude from (B) that there must be an odd
number of rainbow triangles. �
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Appendix: Extending valuations

It is not at all obvious that an extension of a non-Archimedean real valuation
from one field to a larger one is always possible. But it can be done, not only
from Q to R, but generally from any field K to a field L that contains K .
(This is known as “Chevalley’s theorem”; see for example the book by
Jacobson [1].)

In the following, we establish much less — but enough for our application
to odd dissections. Indeed, in our proof for Monsky’s theorem we have not
used the addition for values of v : R → R≥0; we have used only the mul-
tiplication and the order on R≥0. Hence for our argument it is sufficient if
the nonzero values of v lie in a (multiplicatively written) ordered abelian
group (G, · , <). That is, the elements of G are linearly ordered, and a < b
in G implies ac < bc for any a, b, c ∈ G. As we assume that the group
is written multiplicatively, the neutral element of G is denoted by 1. For
the definition of a valuation, we adjoin a special element 0 with the under-
standing that 0 /∈ G, 0a = 0, and 0 < a hold for all a ∈ G. Of course, the
prime example of an ordered abelian group is (R>0, · , <) with the usual
linear order, and the prime example for {0} ∪G is (R≥0, ·).
Definition. Let K be a field. A non-Archimedean valuation v with values
in an ordered abelian group G is a map v : K → {0} ∪G with

(i) v(x) = 0⇐⇒ x = 0,

(ii) v(xy) = v(x)v(y),

(iii′) v(x+ y) ≤ max{v(x), v(y)}, and

(iv) v(x+ y) = max{v(x), v(y)} whenever v(x) �= v(y)

for all x, y ∈ K .

The fourth condition in this description is again implied by the first three.
And among the simple consequences we record that if v(x) < 1, x �= 0,
then v(x−1) = v(x)−1 > 1.

So here is what we will establish:

Theorem. The field of real numbers R has a non-Archimedean valuation
to an ordered abelian group

v : R→ {0} ∪G

such that v(12 ) > 1.

� Proof. We first relate any valuation on a field to a subring of the field.
(All the subrings that we consider contain 1.) Suppose v : K → {0} ∪ G
is a valuation; let

R := {x ∈ K : v(x) ≤ 1}, U := {x ∈ K : v(x) = 1}.

It is immediate that R is a subring of K , called the valuation ring corre-
sponding to v. Furthermore, v(xx−1) = v(1) = 1 implies that v(x) = 1
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if and only if v(x−1) = 1. Thus U is the set of units (invertible elements)
of R. In particular, U is a subgroup of K×, where we write K× := K \{0}
for the multiplicative group of K . Finally, with R−1 := {x−1 : x �= 0}
we have K = R ∪ R−1. Indeed, if x �∈ R then v(x) > 1 and therefore
v(x−1) < 1, thus x−1 ∈ R. The property K = R ∪ R−1 already charac-
terizes all possible valuation rings in a given field.

Lemma. A proper subring R ⊆ K is a valuation ring with respect to some
valuation v into some ordered group G if and only if K = R ∪R−1.

� Proof. We have seen one direction. Suppose now K = R ∪ R−1. How
should we construct the group G? If v : K → {0} ∪ G is a valuation
corresponding to R, then v(x) < v(y) holds if and only if v(xy−1) < 1,
that is, if and only if xy−1 ∈ R \ U . Also, v(x) = v(y) if and only if
xy−1 ∈ U , or xU = yU as cosets in the factor group K×/U .

Hence the natural way to proceed goes as follows. Take the quotient group
G := K×/U , and define an order relation on G by setting

xU < yU :⇐⇒ xy−1 ∈ R \ U.

It is a nice exercise to check that this indeed makes G into an ordered group.
The map v : K → {0} ∪G is then defined in the most natural way:

v(0) := 0, and v(x) := xU for x �= 0.

It is easy to verify conditions (i) to (iii′) for v, and that R is the valuation
ring corresponding to v. �

In order to establish the theorem, it thus suffices to find a valuation ring
B ⊆ R such that 1

2 /∈ B.

Claim. Any inclusion-maximal subring B ⊆ R with the property 1
2 /∈ B

is a valuation ring.

Z ⊆ R is such a subring with 1
2
/∈ Z,

but it is not maximal.

First we should perhaps note that a maximal subring B ⊆ R with the prop-
erty 1

2 /∈ B exists. This is not quite trivial — but it does follow with a
routine application of Zorn’s lemma, which is reviewed in the box. Indeed,
if we have an ascending chain of subrings Bi ⊆ R that don’t contain 1

2 ,
then this chain has an upper bound, given by the union of all the subrings
Bi, which again is a subring and does not contain 1

2 .

Zorn’s Lemma

The Lemma of Zorn is of fundamental importance in algebra and
other parts of mathematics when one wants to construct maximal
structures. It also plays a decisive role in the logical foundations of
mathematics.

Lemma. Suppose P≤ is a nonempty partially ordered set with the
property that every ascending chain (ai)≤ has an upper bound b,
such that ai ≤ b for all i. Then P≤ contains a maximal element M ,
meaning that there is no c ∈ P with M < c.
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To prove the Claim, let us assume that B ⊆ R is a maximal subring not
containing 1

2 . If B is not a valuation ring, then there is some element α ∈
R\(B ∪ B−1). We denote by B[α] the subring generated by B ∪ α, that
is, the set of all real numbers that can be written as polynomials in α with
coefficients in B. Let 2B ⊆ B be the subset of all elements of the form 2b,
for b ∈ B. Now 2B is a subset of B, so we have 2B[α] ⊆ B[α] and
2B[α−1] ⊆ B[α−1]. If we had 2B[α] �= B[α] or 2B[α−1] �= B[α−1],
then due to 1 ∈ B this would imply that 1

2 /∈ B[α] resp. 1
2 /∈ B[α−1],

contradicting the maximality of B ⊆ R as a subring that does not contain 1
2 .

Thus we get that 2B[α] = B[α] and 2B[α−1] = B[α−1]. This implies that
1 ∈ B can be written in the form

1 = 2u0 + 2u1α+ · · ·+ 2umαm with ui ∈ B, (1)

and similarly as

1 = 2v0 + 2v1α
−1 + · · ·+ 2vnα

−n with vi ∈ B, (2)

which after multiplication by αn and subtraction of 2v0αn from both sides
yields

(1 − 2v0)α
n = 2v1α

n−1 + · · ·+ 2vn−1α+ 2vn. (3)

Let us assume that these representations are chosen such that m and n are as
small as possible. We may also assume that m ≥ n, otherwise we exchange
α with α−1, and (1) with (2).

Now multiply (1) by 1 − 2v0 and add 2v0 on both sides of the equation, to
get

1 = 2(u0(1 − 2v0) + v0) + 2u1(1− 2v0)α+ · · ·+ 2um(1− 2v0)α
m.

But if in this equation we substitute for the term (1−2v0)αm the expression
given by equation (3) multiplied by αm−n, then this results in an equation
that expresses 1 ∈ B as a polynomial in 2B[α] of degree at most m − 1.
This contradiction to the minimality of m establishes the Claim. �
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A theorem of Pólya on polynomials Chapter 23

George Pólya

Among the many contributions of George Pólya to analysis, the following
has always been Erdős’ favorite, both for the surprising result and for the
beauty of its proof. Suppose that

f(z) = zn + bn−1z
n−1 + · · ·+ b0

is a complex polynomial of degree n ≥ 1 with leading coefficient 1. Asso-
ciate with f(z) the set

C := {z ∈ C : |f(z)| ≤ 2},

that is, C is the set of points which are mapped under f into the circle of
radius 2 around the origin in the complex plane. So for n = 1 the domain C
is just a circular disk of diameter 4.

By an astoundingly simple argument, Pólya revealed the following beauti-
ful property of this set C:

Take any line L in the complex plane and consider the orthogonal
projection CL of the set C onto L. Then the total length of any such
projection never exceeds 4.

What do we mean by the total length of the projection CL being at most 4?
We will see that CL is a finite union of disjoint intervals I1, . . . , It, and the
condition means that �(I1)+· · ·+�(It) ≤ 4, where �(Ij) is the usual length
of an interval.

C

C

C

I1

I2

. . .
It

. . .

L

By rotating the plane we see that it suffices to consider the case when L is
the real axis of the complex plane. With these comments in mind, let us
state Pólya’s result.

Theorem 1. Let f(z) be a complex polynomial of degree at least 1 and
leading coefficient 1. Set C = {z ∈ C : |f(z)| ≤ 2} and let R be the
orthogonal projection of C onto the real axis. Then there are intervals
I1, . . . , It on the real line which together coverR and satisfy

�(I1) + · · ·+ �(It) ≤ 4.

Clearly the bound of 4 in the theorem is attained for n = 1. To get more
of a feeling for the problem let us look at the polynomial f(z) = z2 − 2,
which also attains the bound of 4. If z = x+ iy is a complex number, then
x is its orthogonal projection onto the real line. Hence

R = {x ∈ R : x+ iy ∈ C for some y}.
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The reader can easily prove that for f(z) = z2 − 2 we have x + iy ∈ C if
and only if

(x2 + y2)2 ≤ 4(x2 − y2).

It follows that x4 ≤ (x2 + y2)2 ≤ 4x2, and thus x2 ≤ 4, that is, |x| ≤ 2.
On the other hand, any z = x ∈ R with |x| ≤ 2 satisfies |z2 − 2| ≤ 2, and
we find thatR is precisely the interval [−2, 2] of length 4.

C

R

y

x

f(z) = z2 − 2

As a first step towards the proof write f(z) = (z−c1) · · · (z−cn) with ck =
ak + ibk, and consider the real polynomial p(x) = (x − a1) · · · (x − an).
Let z = x+ iy ∈ C, then by the theorem of Pythagoras

|x− ak|2 + |y − bk|2 = |z − ck|2

and hence |x− ak| ≤ |z − ck| for all k, that is,

z = x+ iy
y

bk

x ak

ck = ak + ibk

|p(x)| = |x− a1| · · · |x− an| ≤ |z − c1| · · · |z − cn| = |f(z)| ≤ 2.

Thus we find that R is contained in the set P = {x ∈ R : |p(x)| ≤ 2},
and if we can show that this latter set is covered by intervals of total length
at most 4, then we are done. Accordingly, our main Theorem 1 will be a
consequence of the following result.

Theorem 2. Let p(x) be a real polynomial of degree n ≥ 1 with leading
coefficient 1, and all roots real. Then the set P = {x ∈ R : |p(x)| ≤ 2}
can be covered by intervals of total length at most 4.

As Pólya shows in his paper [2], Theorem 2 is, in turn, a consequence
of the following famous result due to Chebyshev. To make this chapter
self-contained, we have included a proof in the appendix (following the
beautiful exposition by Pólya and Szegő).

Pavnuty Chebyshev on a Soviet stamp
from 1946

Chebyshev’s Theorem.

Let p(x) be a real polynomial of degree n ≥ 1 with leading coefficient 1.
Then

max
−1≤x≤1

|p(x)| ≥ 1

2n−1
.

Let us first note the following immediate consequence.

Corollary. Let p(x) be a real polynomial of degree n ≥ 1 with leading
coefficient 1, and suppose that |p(x)| ≤ 2 for all x in the interval [a, b].
Then b− a ≤ 4.

� Proof. Consider the substitution y = 2
b−a (x − a) − 1. This maps the

x-interval [a, b] onto the y-interval [−1, 1]. The corresponding polynomial

q(y) = p( b−a
2 (y + 1) + a)

has leading coefficient ( b−a
2 )n and satisfies

max
−1≤y≤1

|q(y)| = max
a≤x≤b

|p(x)|.
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By Chebyshev’s theorem we deduce

2 ≥ max
a≤x≤b

|p(x)| ≥ ( b−a
2 )n 1

2n−1 = 2( b−a
4 )n,

and thus b− a ≤ 4, as desired. �

This corollary brings us already very close to the statement of Theorem 2.
If the set P = {x : |p(x)| ≤ 2} is an interval, then the length of P is
at most 4. The set P may, however, not be an interval, as in the example
depicted here, where P consists of two intervals.

1+
√
31−

√
3 1 ≈3.20

For the polynomial p(x) = x2(x − 3)

we get P = [1−
√
3, 1]∪[1+

√
3,≈ 3.2]

What can we say about P? Since p(x) is a continuous function, we know
at any rate that P is the union of disjoint closed intervals I1, I2, . . ., and
that p(x) assumes the value 2 or−2 at each endpoint of an interval Ij . This
implies that there are only finitely many intervals I1, . . . , It, since p(x) can
assume any value only finitely often.

Pólya’s wonderful idea was to construct another polynomial p̃(x) of degree
n, again with leading coefficient 1, such that P̃ = {x : |p̃(x)| ≤ 2} is an
interval of length at least �(I1) + · · · + �(It). The corollary then proves
�(I1) + · · ·+ �(It) ≤ �(P̃) ≤ 4, and we are done.

� Proof of Theorem 2. Consider p(x) = (x − a1) · · · (x − an) with
P = {x ∈ R : |p(x)| ≤ 2} = I1 ∪ · · · ∪ It, where we arrange the intervals
Ij such that I1 is the leftmost and It the rightmost interval. First we claim
that any interval Ij contains a root of p(x). We know that p(x) assumes the
values 2 or −2 at the endpoints of Ij . If one value is 2 and the other −2,
then there is certainly a root in Ij . So assume p(x) = 2 at both endpoints
(the case −2 being analogous). Suppose b ∈ Ij is a point where p(x)
assumes its minimum in Ij . Then p′(b) = 0 and p′′(b) ≥ 0. If p′′(b) = 0,
then b is a multiple root of p′(x), and hence a root of p(x) by Fact 1 from
the box on the next page. If, on the other hand, p′′(b) > 0, then we deduce
p(b) ≤ 0 from Fact 2 from the same box. Hence either p(b) = 0, and we
have our root, or p(b) < 0, and we obtain a root in the interval from b to
either endpoint of Ij .

Here is the final idea of the proof. Let I1, . . . , It be the intervals as before,
and suppose the rightmost interval It contains m roots of p(x), counted
with their multiplicities. If m = n, then It is the only interval (by what
we just proved), and we are finished. So assume m < n, and let d be
the distance between It−1 and It as in the figure. Let b1, . . . , bm be the

I1

d︷ ︸︸ ︷
I2 It−1 It

. . .

. . .roots of p(x) which lie in It and c1, . . . cn−m the remaining roots. We now
write p(x) = q(x)r(x) where q(x) = (x − b1) · · · (x − bm) and r(x) =
(x − c1) · · · (x − cn−m), and set p1(x) = q(x + d)r(x). The polynomial
p1(x) is again of degree n with leading coefficient 1. For x ∈ I1∪· · ·∪It−1

we have |x+ d− bi| < |x− bi| for all i, and hence |q(x+ d)| < |q(x)|. It
follows that

|p1(x)| ≤ |p(x)| ≤ 2 for x ∈ I1 ∪ · · · ∪ It−1.

If, on the other hand, x ∈ It, then we find |r(x − d)| ≤ |r(x)| and thus

|p1(x− d)| = |q(x)||r(x − d)| ≤ |p(x)| ≤ 2,
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which means that It − d ⊆ P1 = {x : |p1(x)| ≤ 2}.
In summary, we see thatP1 contains I1∪· · ·∪It−1∪(It−d) and hence has
total length at least as large as P . Notice now that with the passage from
p(x) to p1(x) the intervals It−1 and It − d merge into a single interval.
We conclude that the intervals J1, . . . , Js of p1(x) making up P1 have total
length at least �(I1) + · · · + �(It), and that the rightmost interval Js con-
tains more than m roots of p1(x). Repeating this procedure at most t − 1

times, we finally arrive at a polynomial p̃(x) with P̃ = {x : |p̃(x)| ≤ 2}
being an interval of length �(P̃) ≥ �(I1) + · · · + �(It), and the proof is
complete. �

Two facts about polynomials with real roots

Let p(x) be a nonconstant polynomial with only real roots.

Fact 1. If b is a multiple root of p′(x), then b is also a root of p(x).

� Proof. Let b1 < · · · < br be the roots of p(x) with multiplicities
s1, . . . , sr,

∑r
j=1 sj = n. From p(x) = (x − bj)

sjh(x) we infer
that bj is a root of p′(x) if sj ≥ 2, and the multiplicity of bj in p′(x)
is sj − 1. Furthermore, there is a root of p′(x) between b1 and b2,
another root between b2 and b3, . . . , and one between br−1 and br,
and all these roots must be single roots, since

∑r
j=1(sj−1)+(r−1)

counts already up to the degree n − 1 of p′(x). Consequently, the
multiple roots of p′(x) can only occur among the roots of p(x). �

Fact 2. We have p′(x)2 ≥ p(x)p′′(x) for all x ∈ R.

� Proof. If x = ai is a root of p(x), then there is nothing to show.
Assume then x is not a root. The product rule of differentiation yields

p′(x) =
n∑

k=1

p(x)

x− ak
, that is,

p′(x)
p(x)

=
n∑

k=1

1

x− ak
.

Differentiating this again we have

p′′(x)p(x) − p′(x)2

p(x)2
= −

n∑
k=1

1

(x− ak)2
< 0. �
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Appendix: Chebyshev’s theorem

Theorem. Let p(x) be a real polynomial of degree n ≥ 1 with leading
coefficient 1. Then

max
−1≤x≤1

|p(x)| ≥ 1

2n−1
.

Before we start, let us look at some examples where we have equality. The 111

1
4

1
2

1

The polynomials p1(x) = x, p2(x) =

x2 − 1
2

and p3(x) = x3 − 3
4
x achieve

equality in Chebyshev’s theorem.

margin depicts the graphs of polynomials of degrees 1, 2 and 3, where we
have equality in each case. Indeed, we will see that for every degree there
is precisely one polynomial with equality in Chebyshev’s theorem.

� Proof. Consider a real polynomial p(x) = xn + an−1x
n−1 + · · · + a0

with leading coefficient 1. Since we are interested in the range−1 ≤ x ≤ 1,
we set x = cosϑ and denote by g(ϑ) := p(cosϑ) the resulting polynomial
in cosϑ,

g(ϑ) = (cosϑ)n + an−1(cosϑ)
n−1 + · · ·+ a0. (1)

The proof proceeds now in the following two steps which are both classical
results and interesting in their own right.

(A) We express g(ϑ) as a so-called cosine polynomial, that is, a polynomial
of the form

g(ϑ) = bn cosnϑ+ bn−1 cos(n− 1)ϑ+ · · ·+ b1 cosϑ+ b0 (2)

with bk ∈ R, and show that its leading coefficient is bn = 1
2n−1 .

(B) Given any cosine polynomial h(ϑ) of order n (meaning that λn is the
highest nonvanishing coefficient)

h(ϑ) = λn cosnϑ+ λn−1 cos(n− 1)ϑ+ · · ·+ λ0, (3)

we show |λn| ≤ max |h(ϑ)|, which when applied to g(ϑ) will then prove
the theorem.

Proof of (A). To pass from (1) to the representation (2), we have to ex-
press all powers (cosϑ)k as cosine polynomials. For example, the addition
theorem for the cosine gives

cos 2ϑ = cos2 ϑ− sin2 ϑ = 2 cos2 ϑ− 1,

so that cos2 ϑ = 1
2 cos 2ϑ + 1

2 . To do this for an arbitrary power (cosϑ)k

we go into the complex numbers, via the relation eix = cosx + i sinx.
The eix are the complex numbers of absolute value 1 (see the box on com-
plex unit roots on page 35). In particular, this yields

einϑ = cosnϑ+ i sinnϑ. (4)

On the other hand,

einϑ = (eiϑ)n = (cosϑ+ i sinϑ)n. (5)
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Equating the real parts in (4) and (5) we obtain by i4�+2 = −1, i4� = 1 and
sin2 θ = 1− cos2 θ

cosnϑ =
∑
�≥0

(
n

4�

)
(cosϑ)n−4�(1− cos2 ϑ)2�

−
∑
�≥0

(
n

4�+ 2

)
(cosϑ)n−4�−2(1− cos2 ϑ)2�+1.

(6)

We conclude that cosnϑ is a polynomial in cosϑ,

cosnϑ = cn(cosϑ)
n + cn−1(cosϑ)

n−1 + · · ·+ c0. (7)

From (6) we obtain for the highest coefficient∑
k≥0

(
n
2k

)
= 2n−1 holds for n > 0:

Every subset of {1, 2, . . . , n−1} yields
an even sized subset of {1, 2, . . . , n} if
we add the element n “if needed.”

cn =
∑
�≥0

(
n

4�

)
+

∑
�≥0

(
n

4�+ 2

)
= 2n−1.

Now we turn our argument around. Assuming by induction that for k < n,
(cosϑ)k can be expressed as a cosine polynomial of order k, we infer from
(7) that (cosϑ)n can be written as a cosine polynomial of order n with
leading coefficient bn = 1

2n−1 .

Proof of (B). Let h(ϑ) be a cosine polynomial of order n as in (3), and
assume without loss of generality λn > 0. Now we set m(ϑ) := λn cosnϑ
and find

m( knπ) = (−1)kλn for k = 0, 1, . . . , n.

Suppose, for a proof by contradiction, that max |h(ϑ)| < λn. Then

m( knπ)− h( knπ) = (−1)kλn − h( knπ)

is positive for even k and negative for odd k in the range 0 ≤ k ≤ n. We
conclude that m(ϑ) − h(ϑ) has at least n roots in the interval [0, π]. But
this cannot be since m(ϑ) − h(ϑ) is a cosine polynomial of order n − 1,
and thus has at most n− 1 roots.

The proof of (B) and thus of Chebyshev’s theorem is complete. �

The energetic reader is now invited to complete the analysis, showing that
gn(ϑ) :=

1
2n−1 cosnϑ is the only cosine polynomial of order n with leading

coefficient 1 that achieves the equality max |g(ϑ)| = 1
2n−1 .

The polynomials Tn(x) = cosnϑ, x = cosϑ, are called the Chebyshev
polynomials (of the first kind); thus 1

2n−1Tn(x) is the unique monic poly-
nomial of degree n where equality holds in Chebyshev’s theorem.
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On a lemma

of Littlewood and Offord

Chapter 24

John E. Littlewood

In their work on the distribution of roots of algebraic equations, Littlewood
and Offord proved in 1943 the following result:

Let a1, a2, . . . , an be complex numbers with |ai| ≥ 1 for all i, and
consider the 2n linear combinations

∑n
i=1 εiai with εi ∈ {1,−1}.

Then the number of sums
∑n

i=1 εiai which lie in the interior of any
circle of radius 1 is not greater than

c
2n√
n

logn for some constant c > 0.

A few years later Paul Erdős improved this bound by removing the logn
term, but what is more interesting, he showed that this is, in fact, a simple
consequence of the theorem of Sperner (see page 199).

Sperner’s theorem. Any antichain of

subsets of an n-set has size at most(
n

�n/2�

)
.

To get a feeling for his argument, let us look at the case when all ai are
real. We may assume that all ai are positive (by changing ai to −ai and εi
to −εi whenever ai < 0). Now suppose that a set of combinations

∑
εiai

lies in the interior of an interval of length 2. Let N = {1, 2, . . . , n} be the
index set. For every

∑
εiai we set I := {i ∈ N : εi = 1}. Now if I � I ′

for two such sets, then we conclude that∑
ε′iai −

∑
εiai = 2

∑
i∈I′\I

ai ≥ 2,

which is a contradiction. Hence the sets I form an antichain, and we
conclude from the theorem of Sperner that there are at most

(
n

	n/2

)

such
combinations. By Stirling’s formula (see page 13) we have(

n

	n/2


)
≤ c

2n√
n

for some c > 0.

For n even and all ai = 1 we obtain
(

n
n/2

)
combinations

∑n
i=1 εiai that

sum to 0. Looking at the interval (−1, 1) we thus find that the binomial
number gives the exact bound.

In the same paper Erdős conjectured that
(

n
	n/2


)
was the right bound for

complex numbers as well (he could only prove c 2nn−1/2 for some c) and
indeed that the same bound is valid for vectors a1, . . . ,an with |ai| ≥ 1 in
a real Hilbert space, when the circle of radius 1 is replaced by an open ball
of radius 1.
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Erdős was right, but it took twenty years until Gyula Katona and Daniel
Kleitman independently came up with a proof for the complex numbers
(or, what is the same, for the plane R2). Their proofs used explicitly the
2-dimensionality of the plane, and it was not at all clear how they could be
extended to cover finite dimensional real vector spaces.

But then in 1970 Kleitman proved the full conjecture on Hilbert spaces
with an argument of stunning simplicity. In fact, he proved even more. His
argument is a prime example of what you can do when you find the right
induction hypothesis.

A word of comfort for all readers who are not familiar with the notion of
a Hilbert space: We do not really need general Hilbert spaces. Since we
only deal with finitely many vectors ai, it is enough to consider the real
space Rd with the usual scalar product. Here is Kleitman’s result.

Theorem. Let a1, . . . ,an be vectors in Rd, each of length
at least 1, and let R1, . . . , Rk be k open regions of Rd, where
|x− y| < 2 for any x,y that lie in the same region Ri.
Then the number of linear combinations

∑n
i=1 εiai, εi ∈ {1,−1},

that can lie in the union
⋃

i Ri of the regions is at most the sum of
the k largest binomial coefficients

(
n
j

)
.

In particular, we get the bound
(

n
	n/2


)
for k = 1.

Before turning to the proof note that the bound is exact for

a1 = · · · = an = a = (1, 0, . . . , 0)T .

Indeed, for even n we obtain
(

n
n/2

)
sums equal to 0,

(
n

n/2−1

)
sums equal to

(−2)a,
(

n
n/2+1

)
sums equal to 2a, and so on. Choosing balls of radius 1

around

−2�k−1
2 �a, . . . (−2)a, 0, 2a, . . . 2	k−1

2 
a,

we obtain(
n

	n−k+1
2 


)
+ · · ·+

(
n

n−2
2

)
+

(
n
n
2

)
+

(
n

n+2
2

)
+ · · ·+

(
n

	n+k−1
2 


)
sums lying in these k balls, and this is our promised expression, since the
largest binomial coefficients are centered around the middle (see page 14).
A similar reasoning works when n is odd.

� Proof. We may assume, without loss of generality, that the regions Ri

are disjoint, and will do so from now on. The key to the proof is the recur-
sion of the binomial coefficients, which tells us how the largest binomial
coefficients of n and n − 1 are related. Set r = 	n−k+1

2 
, s = 	n+k−1
2 
,

then
(
n
r

)
,
(

n
r+1

)
, . . . ,

(
n
s

)
are the k largest binomial coefficients for n. The

recursion
(
n
i

)
=

(
n−1
i

)
+

(
n−1
i−1

)
implies
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s∑
i=r

(
n

i

)
=

s∑
i=r

(
n− 1

i

)
+

s∑
i=r

(
n− 1

i− 1

)

=

s∑
i=r

(
n− 1

i

)
+

s−1∑
i=r−1

(
n− 1

i

)
(1)

=

s∑
i=r−1

(
n− 1

i

)
+

s−1∑
i=r

(
n− 1

i

)
,

and an easy calculation shows that the first sum adds the k + 1 largest
binomial coefficients

(
n−1
i

)
, and the second sum the largest k − 1.

Kleitman’s proof proceeds by induction on n, the case n = 1 being trivial.
In the light of (1) we need only show for the induction step that the linear
combinations of a1, . . . ,an that lie in k disjoint regions can be mapped
bijectively onto combinations of a1, . . . ,an−1 that lie in k + 1 or k − 1
regions.

Claim. At least one of the translated regions Rj − an is disjoint
from all the translated regions R1 + an, . . . , Rk + an.

To prove this, consider the hyperplane H = {x : 〈an,x〉 = c} orthogonal
to an, which contains all translates Ri + an on the side that is given by
〈an,x〉 ≥ c, and which touches the closure of some region, say Rj + an.
Such a hyperplane exists since the regions are bounded. Now |x− y| < 2
holds for any x ∈ Rj and y in the closure of Rj , since Rj is open. We want
to show that Rj −an lies on the other side of H . Suppose, on the contrary,
that 〈an,x− an〉 ≥ c for some x ∈ Rj , that is, 〈an,x〉 ≥ |an|2 + c.

Rk + an

H

y + an
Rj + an

Rj − an

R2 + an

R1 + an

an

Let y + an be a point where H touches Rj + an, then y is in the closure
of Rj , and 〈an,y + an〉 = c, that is, 〈an,−y〉 = |an|2 − c. Hence

〈an,x− y〉 ≥ 2|an|2,

and we infer from the Cauchy–Schwarz inequality

2|an|2 ≤ 〈an,x− y〉 ≤ |an||x− y|,

and thus (with |an| ≥ 1) we get 2 ≤ 2|an| ≤ |x− y|, a contradiction.

The rest is easy. We classify the combinations
∑

εiai which come to lie in
R1 ∪ · · · ∪Rk as follows. Into Class 1 we put all

∑n
i=1 εiai with εn = −1

and all
∑n

i=1 εiai with εn = 1 lying in Rj , and into Class 2 we throw
in the remaining combinations

∑n
i=1 εiai with εn = 1, not in Rj . It

follows that the combinations
∑n−1

i=1 εiai corresponding to Class 1 lie in
the k + 1 disjoint regions R1 + an, . . . , Rk + an and Rj − an, and the
combinations

∑n−1
i=1 εiai corresponding to Class 2 lie in the k − 1 disjoint

regions R1−an, . . . , Rk−an without Rj−an. By induction, Class 1 con-
tains at most

∑s
i=r−1

(
n−1
i

)
combinations, while Class 2 contains at most∑s−1

i=r

(
n−1
i

)
combinations — and by (1) this is the whole proof, straight

from The Book. �
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Cotangent and the Herglotz trick Chapter 25

Gustav Herglotz

What is the most interesting formula involving elementary functions? In
his beautiful article [2], whose exposition we closely follow, Jürgen Elstrodt
nominates as a first candidate the partial fraction expansion of the cotangent
function:

π cotπx =
1

x
+

∞∑
n=1

( 1

x+ n
+

1

x− n

)
(x ∈ R\Z).

This elegant formula was proved by Euler in §178 of his Introductio in
Analysin Infinitorum from 1748 and it certainly counts among his finest
achievements. We can also write it even more elegantly as

π cotπx = lim
N→∞

N∑
n=−N

1

x+ n
(1)

but one has to note that the evaluation of the sum
∑

n∈Z
1

x+n is a bit
dangerous, since the sum is only conditionally convergent, so its value
depends on the “right” order of summation.

We shall derive (1) by an argument of stunning simplicity which is
attributed to Gustav Herglotz — the “Herglotz trick.” To get started, set

f(x) := π cotπx, g(x) := lim
N→∞

N∑
n=−N

1

x+ n
,

and let us try to derive enough common properties of these functions to see
in the end that they must coincide . . .

(A) The functions f and g are defined for all non-integral values and are
continuous there.

For the cotangent function f(x) = π cotπx = π cosπx
sinπx , this is clear (see

the figure). For g(x), we first use the identity 1
x+n + 1

x−n = − 2x
n2−x2 to

f(x)

π

1 x1
4

The function f(x) = π cot πx

rewrite Euler’s formula as

π cotπx =
1

x
−

∞∑
n=1

2x

n2 − x2
. (2)

Thus for (A) we have to prove that for every x /∈ Z the series
∞∑
n=1

1

n2 − x2

converges uniformly in a neighborhood of x.

M. Aigner, G.M. Ziegler, Proofs from THE BOOK, DOI 10.1007/978-3-662-44205-0_25,  
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For this, we don’t get any problem with the first term, for n = 1, or with
the terms with 2n−1 ≤ x2, since there is only a finite number of them. On
the other hand, for n ≥ 2 and 2n−1 > x2, that is n2−x2 > (n−1)2 > 0,
the summands are bounded by

0 <
1

n2 − x2
<

1

(n− 1)2
,

and this bound is not only true for x itself, but also for values in a neighbor-
hood of x. Finally the fact that

∑
1

(n−1)2 converges (to π2

6 , see page 53)
provides the uniform convergence needed for the proof of (A).

(B) Both f and g are periodic of period 1, that is, f(x + 1) = f(x) and
g(x+ 1) = g(x) hold for all x ∈ R\Z.

Since the cotangent has period π, we find that f has period 1 (see again the
figure above). For g we argue as follows. Let

g
N
(x) :=

N∑
n=−N

1

x+ n
,

then

g
N
(x+ 1) =

N∑
n=−N

1

x+ 1 + n
=

N+1∑
n=−N+1

1

x+ n

= g
N−1

(x) +
1

x+N
+

1

x+N + 1
.

Hence g(x+ 1) = lim
N→∞

g
N
(x+ 1) = lim

N→∞
g
N−1

(x) = g(x).

(C) Both f and g are odd functions, that is, we have f(−x) = −f(x) and
g(−x) = −g(x) for all x ∈ R\Z.

The function f obviously has this property, and for g we just have to
observe that g

N
(−x) = −g

N
(x).

The final two facts constitute the Herglotz trick: First we show that f and g
satisfy the same functional equation, and secondly that h := f − g can be
continuously extended to all of R.

(D) The two functions f and g satisfy the same functional equation:
f(x2 ) + f(x+1

2 ) = 2f(x) and g(x2 ) + g(x+1
2 ) = 2g(x).

For f(x) this results from the addition theorems for the sine and cosine
functions:

Addition theorems:
sin(x+ y) = sin x cos y + cos x sin y

cos(x+ y) = cosx cos y − sin x sin y

=⇒ sin(x+ π
2
) = cos x

cos(x+ π
2
) = − sin x

sin x = 2 sin x
2
cos x

2

cosx = cos2 x
2
− sin2 x

2
.

f(x2 ) + f(x+1
2 ) = π

[
cos πx

2

sin πx
2

−
sin πx

2

cos πx
2

]
= 2π

cos(πx2 + πx
2 )

sin(πx2 + πx
2 )

= 2 f(x).
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The functional equation for g follows from

g
N
(x2 ) + g

N
(x+1

2 ) = 2 g
2N

(x) +
2

x+ 2N + 1
.

which in turn follows from

1
x
2 + n

+
1

x+1
2 + n

= 2
( 1

x+ 2n
+

1

x+ 2n+ 1

)
.

Now let us look at

h(x) = f(x) − g(x) = π cotπx−
( 1

x
−

∞∑
n=1

2x

n2 − x2

)
. (3)

We know by now that h is a continuous function on R\Z that satisfies the
properties (B), (C), (D). What happens at the integral values? From the sine

cos x = 1− x2

2!
+ x4

4!
− x6

6!
± · · ·

sin x = x− x3

3!
+ x5

5!
− x7

7!
± · · ·

and cosine series expansions, or by applying de l’Hospital’s rule twice, we
find

lim
x→0

(
cotx− 1

x

)
= lim

x→0

x cosx− sinx

x sinx
= 0,

and hence also

lim
x→0

(
π cotπx− 1

x

)
= 0.

But since the last sum
∑∞

n=1
2x

n2−x2 in (3) converges to 0 with x −→ 0, we
have in fact lim

x→0
h(x) = 0, and thus by periodicity

lim
x→n

h(x) = 0 for all n ∈ Z.

In summary, we have shown the following:

(E) By setting h(x) := 0 for x ∈ Z, h becomes a continuous function
on all of R that shares the properties given in (B), (C) and (D).

We are ready for the coup de grâce. Since h is a periodic continuous func-
tion, it possesses a maximumm. Let x0 be a point in [0, 1] with h(x0) = m.
It follows from (D) that

h(x0

2 ) + h(x0+1
2 ) = 2m,

and hence that h(x0

2 ) = m. Iteration gives h( x0

2n ) = m for all n, and hence
h(0) = m by continuity. But h(0) = 0, and so m = 0, that is, h(x) ≤ 0
for all x ∈ R. As h(x) is an odd function, h(x) < 0 is impossible, hence
h(x) = 0 for all x ∈ R, and Euler’s theorem is proved. �

A great many corollaries can be derived from (1), the most famous of which
concerns the values of Riemann’s zeta function at even positive integers
(see the appendix to Chapter 9),

ζ(2k) =
∞∑

n=1

1

n2k
(k ∈ N). (4)
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So to finish our story let us see how Euler — a few years later, in 1755 —
treated the series (4). We start with formula (2). Multiplying (2) by x and
setting y = πx we find for |y| < π:

y cot y = 1− 2

∞∑
n=1

y2

π2n2 − y2

= 1− 2

∞∑
n=1

y2

π2n2

1

1−
(

y
πn

)2 .
The last factor is the sum of a geometric series, hence

y cot y = 1− 2

∞∑
n=1

∞∑
k=1

( y

πn

)2k

= 1− 2

∞∑
k=1

( 1

π2k

∞∑
n=1

1

n2k

)
y2k,

and we have proved the remarkable result:

For all k ∈ N, the coefficient of y2k in the power series expansion of y cot y
equals [

y2k
]
y cot y = − 2

π2k

∞∑
n=1

1

n2k
= − 2

π2k
ζ(2k). (5)

There is another, perhaps much more “canonical,” way to obtain a series
expansion of y cot y. We know from analysis that eiy = cos y+ i siny, and
thus

cos y =
eiy + e−iy

2
, sin y =

eiy − e−iy

2i
,

which yields

y cot y = iy
eiy + e−iy

eiy − e−iy
= iy

e2iy + 1

e2iy − 1
.

We now substitute z = 2iy, and get

y cot y =
z

2

ez + 1

ez − 1
=

z

2
+

z

ez − 1
. (6)

Thus all we need is a power series expansion of the function z
ez−1 ; note

that this function is defined and continuous on all of R (for z = 0 use the
power series of the exponential function, or alternatively de l’Hospital’s
rule, which yields the value 1). We write

z

ez − 1
=:

∑
n≥0

Bn
zn

n!
. (7)

The coefficients Bn are known as the Bernoulli numbers. The left-hand
side of (6) is an even function (that is, f(z) = f(−z)), and thus we see that
Bn = 0 for odd n ≥ 3, while B1 = − 1

2 corresponds to the term of z
2 in (6).
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From (∑
n≥0

Bn
zn

n!

)(
ez − 1

)
=

(∑
n≥0

Bn
zn

n!

)(∑
n≥1

zn

n!

)
= z

we obtain by comparing coefficients for zn:

n−1∑
k=0

Bk

k!(n− k)!
=

{
1 for n = 1,
0 for n �= 1.

(8)

We may compute the Bernoulli numbers recursively from (8). The value n 0 1 2 3 4 5 6 7 8

Bn 1 − 1
2

1
6 0 − 1

30 0 1
42 0 − 1

30

The first few Bernoulli numbers

n = 1 gives B0 = 1, n = 2 yields B0

2 + B1 = 0, that is B1 = − 1
2 , and

so on.

Now we are almost done: The combination of (6) and (7) yields

y cot y =

∞∑
k=0

B2k
(2iy)2k

(2k)!
=

∞∑
k=0

(−1)k22kB2k

(2k)!
y2k,

and out comes, with (5), Euler’s formula for ζ(2k):

∞∑
n=1

1

n2k
=

(−1)k−122k−1B2k

(2k)!
π2k (k ∈ N). (9)

Looking at our table of the Bernoulli numbers, we thus obtain once again

Page 131 of Euler’s 1748 “Introductio in
Analysin Infinitorum”

the sum
∑ 1

n2 = π2

6 from Chapter 9, and further

∞∑
n=1

1

n4
=

π4

90
,

∞∑
n=1

1

n6
=

π6

945
,

∞∑
n=1

1

n8
=

π8

9450
,

∞∑
n=1

1

n10
=

π10

93555
,

∞∑
n=1

1

n12
=

691 π12

638512875
, . . .

The Bernoulli numberB10 = 5
66 that gets us ζ(10) looks innocuous enough,

but the next value B12 = − 691
2730 , needed for ζ(12), contains the large prime

factor 691 in the numerator. Euler had first computed some values ζ(2k)
without noticing the connection to the Bernoulli numbers. Only the appear-
ance of the strange prime 691 put him on the right track.

Incidentally, since ζ(2k) converges to 1 for k −→ ∞, equation (9) tells us
that the numbers |B2k| grow very fast — something that is not clear from
the first few values.

In contrast to all this, one knows very little about the values of the Riemann
zeta function at the odd integers k ≥ 3; see page 60.
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Buffon’s needle problem Chapter 26

A French nobleman, Georges Louis Leclerc, Comte de Buffon, posed the
following problem in 1777:

Suppose that you drop a short needle on ruled paper — what is then
the probability that the needle comes to lie in a position where it
crosses one of the lines?

Le Comte de Buffon

The probability depends on the distance d between the lines of the ruled
paper, and it depends on the length � of the needle that we drop — or
rather it depends only on the ratio �

d . A short needle for our purpose is one
of length � ≤ d. In other words, a short needle is one that cannot cross
two lines at the same time (and will come to touch two lines only with
probability zero). The answer to Buffon’s problem may come as a surprise:
It involves the number π.

Theorem (“Buffon’s needle problem”)

If a short needle, of length �, is dropped on paper that is ruled with equally
spaced lines of distance d ≥ �, then the probability that the needle comes
to lie in a position where it crosses one of the lines is exactly

p =
2

π

�

d
.

�

d

The result means that from an experiment one can get approximate val-
ues for π: If you drop a needle N times, and get a positive answer (an
intersection) in P cases, then P

N should be approximately 2
π

�
d , that is, π

should be approximated by 2�N
dP . The most extensive (and exhaustive)

test was perhaps done by Lazzarini in 1901, who allegedly even built a
machine in order to drop a stick 3408 times (with �

d = 5
6 ). He found

that it came to cross a line 1808 times, which yields the approximation
π ≈ 2 · 5

6
3408
1808 = 3.1415929...., which is correct to six digits of π, and

much too good to be true! (The values that Lazzarini chose lead directly
to the well-known approximation π ≈ 355

113 ; see page 49. This explains the
more than suspicious choices of 3408 and 5

6 , where 5
6 3408 is a multiple

of 355. See [5] for a discussion of Lazzarini’s hoax.)

The needle problem can be solved by evaluating an integral. We will do that
below, and by this method we will also solve the problem for a long needle.
But the Book Proof, presented by E. Barbier in 1860, needs no integrals.
It just drops a different needle . . .

M. Aigner, G.M. Ziegler, Proofs from THE BOOK, DOI 10.1007/978-3-662-44205-0_26,  
© Springer-Verlag Berlin Heidelberg 2014 



176 Buffon’s needle problem

If you drop any needle, short or long, then the expected number of crossings
will be

E = p1 + 2p2 + 3p3 + · · · ,

where p1 is the probability that the needle will come to lie with exactly one
crossing, p2 is the probability that we get exactly two crossings, p3 is the
probability for three crossings, etc. The probability that we get at least one
crossing, which Buffon’s problem asks for, is thus

p = p1 + p2 + p3 + · · ·

(Events where the needle comes to lie exactly on a line, or with an end-
point on one of the lines, have probability zero — so they can be ignored
throughout our discussion.)

On the other hand, if the needle is short then the probability of more than
one crossing is zero, p2 = p3 = · · · = 0, and thus we get E = p: The
probability that we are looking for is just the expected number of crossings.
This reformulation is extremely useful, because now we can use linearity
of expectation (cf. page 112). Indeed, let us write E(�) for the expected
number of crossings that will be produced by dropping a straight needle of
length �. If this length is � = x + y, and we consider the “front part” of
length x and the “back part” of length y of the needle separately, then we
get

x

y

E(x+ y) = E(x) + E(y),

since the crossings produced are always just those produced by the front
part, plus those of the back part.

By induction on n this “functional equation” implies that E(nx) = nE(x)
for all n ∈ N, and then that mE( n

mx) = E(m n
mx) = E(nx) = nE(x),

so that E(rx) = rE(x) holds for all rational r ∈ Q. Furthermore, E(x)
is clearly monotone in x ≥ 0, from which we get that E(x) = cx for all
x ≥ 0, where c = E(1) is some constant.

But what is the constant?

For that we use needles of different shape. Indeed, let’s drop a “polygonal”
needle of total length �, which consists of straight pieces. Then the number
of crossings it produces is (with probability 1) the sum of the numbers of
crossings produced by its straight pieces. Hence, the expected number of
crossings is again

E = c �,

by linearity of expectation. (For that it is not even important whether the
straight pieces are joined together in a rigid or in a flexible way!)

The key to Barbier’s solution of Buffon’s needle problem is to consider a
needle that is a perfect circle C of diameter d, which has length x = dπ.
Such a needle, if dropped onto ruled paper, produces exactly two inter-
sections, always!
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The circle can be approximated by polygons. Just imagine that together
with the circular needle C we are dropping an inscribed polygon Pn, as
well as a circumscribed polygon Pn. Every line that intersects Pn will also
intersect C, and if a line intersects C then it also hits Pn. Thus the expected

Pn

Pn

numbers of intersections satisfy

E(Pn) ≤ E(C) ≤ E(Pn).

Now both Pn and Pn are polygons, so the number of crossings that we may
expect is “c times length” for both of them, while for C it is 2, whence

c �(Pn) ≤ 2 ≤ c �(Pn). (1)

Both Pn and Pn approximate C for n −→∞. In particular,

lim
n→∞ �(Pn) = dπ = lim

n→∞ �(Pn),

and thus for n −→∞ we infer from (1) that

c dπ ≤ 2 ≤ c dπ,

which gives c = 2
π

1
d . �

But we could also have done it by calculus! The trick to obtain an “easy”
integral is to first consider the slope of the needle; let’s say it drops to lie
with an angle of α away from horizontal, where α will be in the range
0 ≤ α ≤ π

2 . (We will ignore the case where the needle comes to lie with
negative slope, since that case is symmetric to the case of positive slope, and
produces the same probability.) A needle that lies with angle α has height
� sinα, and the probability that such a needle crosses one of the horizontal
lines of distance d is � sinα

d . Thus we get the probability by averaging over
the possible angles α, as

p =
2

π

π/2∫
0

� sinα

d
dα =

2

π

�

d

[
− cosα

]π/2
0

=
2

π

�

d
.

For a long needle, we get the same probability � sinα
d as long as � sinα ≤ d,

α

that is, in the range 0 ≤ α ≤ arcsin d
� . However, for larger angles α the

needle must cross a line, so the probability is 1. Hence we compute

p =
2

π

(∫ arcsin(d/�)

0

� sinα

d
dα +

π/2∫
arcsin(d/�)

1 dα
)

=
2

π

( �

d

[
− cosα

]arcsin(d/�)
0

+
(π
2
− arcsin

d

�

))
= 1 +

2

π

( �

d

(
1−

√
1− d2

�2

)
− arcsin

d

�

)
for � ≥ d.

So the answer isn’t that pretty for a longer needle, but it provides us with a
nice exercise: Show (“just for safety”) that the formula yields 2

π for � = d,
that it is strictly increasing in �, and that it tends to 1 for � −→∞.



178 Buffon’s needle problem

References

[1] E. BARBIER: Note sur le problème de l’aiguille et le jeu du joint couvert, J.
Mathématiques Pures et Appliquées (2) 5 (1860), 273-286.

[2] L. BERGGREN, J. BORWEIN & P. BORWEIN, EDS.: Pi: A Source Book,
Springer-Verlag, New York 1997.

[3] G. L. LECLERC, COMTE DE BUFFON: Essai d’arithmétique morale, Ap-
pendix to “Histoire naturelle générale et particulière,” Vol. 4, 1777.

[4] D. A. KLAIN & G.-C. ROTA: Introduction to Geometric Probability, “Lezioni
Lincee,” Cambridge University Press 1997.

[5] T. H. O’BEIRNE: Puzzles and Paradoxes, Oxford University Press, London
1965.

“Got a problem?”



Combinatorics

27
Pigeon-hole and
double counting 181

28
Tiling rectangles 193

29
Three famous theorems
on finite sets 199

30
Shuffling cards 205

31
Lattice paths and determinants 215

32
Cayley’s formula
for the number of trees 221

33
Identities versus bijections 227

34
The finite Kakeya problem 233

35
Completing Latin squares 239

“A melancholic Latin square”



Pigeon-hole and double counting Chapter 27

Some mathematical principles, such as the two in the title of this chapter,
are so obvious that you might think they would only produce equally
obvious results. To convince you that “It ain’t necessarily so” we
illustrate them with examples that were suggested by Paul Erdős to be
included in The Book. We will encounter instances of them also in later
chapters.

Pigeon-hole principle

If n objects are placed in r boxes, where r < n, then at least one of
the boxes contains more than one object.

“The pigeon-holes from a bird’s

perspective”

Well, this is indeed obvious, there is nothing to prove. In the language of
mappings our principle reads as follows: Let N and R be two finite sets
with

|N | = n > r = |R|,

and let f : N −→ R be a mapping. Then there exists some a ∈ R with
|f−1(a)| ≥ 2. We may even state a stronger inequality: There exists some
a ∈ R with

|f−1(a)| ≥
⌈n
r

⌉
. (1)

In fact, otherwise we would have |f−1(a)| < n
r for all a, and hence

n =
∑
a∈R
|f−1(a)| < r n

r = n, which cannot be.

1. Numbers

Claim. Consider the numbers 1, 2, 3, . . . , 2n, and take any n + 1
of them. Then there are two among these n+1 numbers which are
relatively prime.

This is again obvious. There must be two numbers which are only 1 apart,
and hence relatively prime.

But let us now turn the condition around.

Claim. Suppose again A ⊆ {1, 2, . . . , 2n}with |A| = n+1. Then
there are always two numbers in A such that one divides the other.
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182 Pigeon-hole and double counting

This is not so clear. As Erdős told us, he put this question to young Lajos
Pósa during dinner, and when the meal was over, Lajos had the answer. It
has remained one of Erdős’ favorite “initiation” questions to mathematics.
The (affirmative) solution is provided by the pigeon-hole principle. Write
every number a ∈ A in the form a = 2km, where m is an odd number
between 1 and 2n − 1. Since there are n + 1 numbers in A, but only n
different odd parts, there must be two numbers in A with the same odd
part. Hence one is a multiple of the other. �

Both results are no longer true if one
replaces n+1 by n: For this consider
the sets {2, 4, 6, . . . , 2n}, respectively
{n+1, n+2, . . . , 2n}.

2. Sequences

Here is another one of Erdős’ favorites, contained in a paper of Erdős and
Szekeres on Ramsey problems.

Claim. In any sequence a1, a2, . . . , amn+1 of mn+1 distinct real
numbers, there exists an increasing subsequence

ai1 < ai2 < · · · < aim+1 (i1 < i2 < · · · < im+1)

of length m+ 1, or a decreasing subsequence

aj1 > aj2 > · · · > ajn+1 (j1 < j2 < · · · < jn+1)

of length n+ 1, or both.

This time the application of the pigeon-hole principle is not immediate.
Associate to each ai the number ti which is the length of a longest increas-
ing subsequence starting at ai. If ti ≥ m + 1 for some i, then we have
an increasing subsequence of length m + 1. Suppose then that ti ≤ m for
all i. The function f : ai �−→ ti mapping {a1, . . . , amn+1} to {1, . . . ,m}
tells us by (1) that there is some s ∈ {1, . . . ,m} such that f(ai) = s for
mn
m + 1 = n + 1 numbers ai. Let aj1 , aj2 , . . . , ajn+1 (j1 < · · · < jn+1)

be these numbers. Now look at two consecutive numbers aji , aji+1 . If
aji < aji+1 , then we would obtain an increasing subsequence of length
s starting at aji+1 , and consequently an increasing subsequence of length
s + 1 starting at aji , which cannot be since f(aji) = s. We thus obtain a
decreasing subsequence aj1 > aj2 > · · · > ajn+1 of length n+ 1. �

The reader may have fun in proving that
for mn numbers the statement remains
no longer true in general.

This simple-sounding result on monotone subsequences has a highly nonob-
vious consequence on the dimension of graphs. We don’t need here the
notion of dimension for general graphs, but only for complete graphs Kn.
It can be phrased in the following way. Let N = {1, . . . , n}, n ≥ 3, and
consider m permutations π1, . . . , πm of N . We say that the permutations
πi represent Kn if to every three distinct numbers i, j, k there exists a per-
mutation π in which k comes after both i and j. The dimension of Kn is
then the smallest m for which a representation π1, . . . , πm exists.

As an example we have dim(K3) = 3 since any one of the three numbers
must come last, as in π1 = (1, 2, 3), π2 = (2, 3, 1), π3 = (3, 1, 2). What
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about K4? Note first dim(Kn) ≤ dim(Kn+1): just delete n + 1 in a
representation of Kn+1. So, dim(K4) ≥ 3, and, in fact, dim(K4) = 3, by
taking

π1 = (1, 2, 3, 4), π2 = (2, 4, 3, 1), π3 = (1, 4, 3, 2).

It is not quite so easy to prove dim(K5) = 4, but then, surprisingly, the
dimension stays at 4 up to n = 12, while dim(K13) = 5. So dim(Kn)

π1: 1 2 3 5 6 7 8 9 10 11 12 4

π2: 2 3 4 8 7 6 5 12 11 10 9 1

π3: 3 4 1 11 12 9 10 6 5 8 7 2

π4: 4 1 2 10 9 12 11 7 8 5 6 3

These four permutations represent K12

seems to be a pretty wild function. Well, it is not! With n going to infinity,
dim(Kn) is, in fact, a very well-behaved function — and the key for finding
a lower bound is the pigeon-hole principle. We claim

dim(Kn) ≥ log2 log2 n. (2)

Since, as we have seen, dim(Kn) is a monotone function in n, it suffices to
verify (2) for n = 22

p

+ 1, that is, we have to show that

dim(Kn) ≥ p+ 1 for n = 22
p

+ 1.

Suppose, on the contrary, dim(Kn) ≤ p, and let π1, . . . , πp be representing
permutations of N = {1, 2, . . . , 22p +1}. Now we use our result on mono-
tone subsequences p times. In π1 there exists a monotone subsequence A1

of length 22
p−1

+ 1 (it does not matter whether increasing or decreasing).
Look at this set A1 in π2. Using our result again, we find a monotone sub-
sequence A2 of A1 in π2 of length 22

p−2

+ 1, and A2 is, of course, also
monotone in π1. Continuing, we eventually find a subsequence Ap of size
22

0

+ 1 = 3 which is monotone in all permutations πi. Let Ap = (a, b, c),
then either a < b < c or a > b > c in all πi. But this cannot be, since there
must be a permutation where b comes after a and c. �

The right asymptotic growth was provided by Joel Spencer (upper bound)
and by Füredi, Hajnal, Rödl and Trotter (lower bound):

dim(Kn) = log2 log2 n+ (
1

2
+ o(1)) log2 log2 log2 n.

But this is not the whole story: In 1999, Morris and Hoşten found a method
which, in principle, establishes the precise value of dim(Kn). Using their
result and a computer one can obtain the values given in the margin. This

dim(Kn) ≤ 4 ⇐⇒ n ≤ 12

dim(Kn) ≤ 5 ⇐⇒ n ≤ 81

dim(Kn) ≤ 6 ⇐⇒ n ≤ 2646

dim(Kn) ≤ 7 ⇐⇒ n ≤ 1422564

is truly astounding! Just consider how many permutations of size 1422564
there are. How does one decide whether 7 or 8 of them are required to
represent K1422564?

3. Sums

Paul Erdős attributes the following nice application of the pigeon-hole
principle to Andrew Vázsonyi and Marta Sved:

Claim. Suppose we are given n integers a1, . . . , an, which need
not be distinct. Then there is always a set of consecutive numbers
ak+1, ak+2, . . . , a� whose sum

∑�
i=k+1 ai is a multiple of n.
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For the proof we set N = {0, 1, . . . , n} and R = {0, 1, . . . , n − 1}. Con-
sider the map f : N → R, where f(m) is the remainder of a1 + · · ·+ am
upon division by n. Since |N | = n+1 > n = |R|, it follows that there are
two sums a1 + · · · + ak, a1 + · · · + a� (k < �) with the same remainder,
where the first sum may be the empty sum denoted by 0. It follows that

�∑
i=k+1

ai =

�∑
i=1

ai −
k∑

i=1

ai

has remainder 0 — end of proof. �

Let us turn to the second principle: counting in two ways. By this we mean
the following.

Double counting

Suppose that we are given two finite sets R and C and a subset
S ⊆ R×C. Whenever (p, q) ∈ S, then we say p and q are incident.
If rp denotes the number of elements that are incident to p ∈ R,
and cq denotes the number of elements that are incident to q ∈ C,
then ∑

p∈R
rp = |S| =

∑
q∈C

cq. (3)

Again, there is nothing to prove. The first sum classifies the pairs in S
according to the first entry, while the second sum classifies the same pairs
according to the second entry.

There is a useful way to picture the set S. Consider the matrix A = (apq),
the incidence matrix of S, where the rows and columns of A are indexed
by the elements of R and C, respectively, with

apq =

{
1 if (p, q) ∈ S

0 if (p, q) /∈ S.

With this set-up, rp is the sum of the p-th row of A and cq is the sum of the
q-th column. Hence the first sum in (3) adds the entries of A (that is, counts
the elements in S) by rows, and the second sum by columns.

The following example should make this correspondence clear. Let R =
C = {1, 2, . . . , 8}, and set S = {(i, j) : i divides j}. We then obtain the
matrix in the margin, which only displays the 1’s.

�
�R
C 1 2 3 4 5 6 7 8

1 1 1 1 1 1 1 1 1
2 1 1 1 1
3 1 1
4 1 1
5 1
6 1
7 1
8 1

4. Numbers again

Look at the table on the left. The number of 1’s in column j is precisely the
number of divisors of j; let us denote this number by t(j). Let us ask how
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large this number t(j) is on the average when j ranges from 1 to n. Thus,
we ask for the quantity

t̄(n) =
1

n

n∑
j=1

t(j).

n 1 2 3 4 5 6 7 8

t̄(n) 1 3
2

5
3 2 2 7

3
16
7

5
2

The first few values of t̄(n)

How large is t̄(n) for arbitrary n? At first glance, this seems hopeless. For
prime numbers p we have t(p) = 2, while for 2k we obtain a large number
t(2k) = k + 1. So, t(n) is a wildly jumping function, and we surmise that
the same is true for t̄(n). Wrong guess, the opposite is true! Counting in
two ways provides an unexpected and simple answer.

Consider the matrix A (as above) for the integers 1 up to n. Counting by
columns we get

∑n
j=1 t(j). How many 1’s are in row i? Easy enough, the

1’s correspond to the multiples of i: 1i, 2i, . . ., and the last multiple not
exceeding n is 	n

i 
i. Hence we obtain

t̄(n) =
1

n

n∑
j=1

t(j) =
1

n

n∑
i=1

⌊n
i

⌋
≤ 1

n

n∑
i=1

n

i
=

n∑
i=1

1

i
,

where the error in each summand, when passing from 	n
i 
 to n

i , is less
than 1. Now the last sum is the n-th harmonic number Hn, so we obtain
Hn − 1 < t̄(n) ≤ Hn, and together with the estimates of Hn on page 13
this gives

logn− 1 < Hn − 1− 1

n
< t̄(n) ≤ Hn < logn+ 1.

Thus we have proved the remarkable result that, while t(n) is totally erratic,
the average t̄(n) behaves beautifully: It differs from logn by less than 1.

5. Graphs

Let G be a finite simple graph with vertex set V and edge set E. We have
defined in Chapter 13 the degree d(v) of a vertex v as the number of edges
which have v as an end-vertex. In the example of the figure, the vertices
1, 2, . . . , 7 have degrees 3, 2, 4, 3, 3, 2, 3, respectively.

4 5

6

2

3 7

1

Almost every book in graph theory starts with the following result (that we
have already encountered in Chapters 13 and 20):∑

v∈V
d(v) = 2|E|. (4)

For the proof consider S ⊆ V × E, where S is the set of pairs (v, e) such
that v ∈ V is an end-vertex of e ∈ E. Counting S in two ways gives on the
one hand

∑
v∈V d(v), since every vertex contributes d(v) to the count, and

on the other hand 2|E|, since every edge has two ends. �

As simple as the result (4) appears, it has many important consequences,
some of which will be discussed as we go along. We want to single out in
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this section the following beautiful application to an extremal problem on
graphs. Here is the problem:

Suppose G = (V,E) has n vertices and contains no cycle of
length 4 (denoted by C4), that is, no subgraph . How many

edges can G have at most?

As an example, the graph in the margin on 5 vertices contains no 4-cycle
and has 6 edges. The reader may easily show that on 5 vertices the maximal
number of edges is 6, and that this graph is indeed the only graph on 5
vertices with 6 edges that has no 4-cycle.

Let us tackle the general problem. Let G be a graph on n vertices without
a 4-cycle. As above we denote by d(u) the degree of u. Now we count
the following set S in two ways: S is the set of pairs (u, {v, w}) where
u is adjacent to v and to w, with v �= w. In other words, we count all
occurrences of u

v w

Summing over u, we find |S| =
∑

u∈V
(
d(u)
2

)
. On the other hand,

every pair {v, w} has at most one common neighbor (by the C4-condition).
Hence |S| ≤

(
n
2

)
, and we conclude∑

u∈V

(
d(u)

2

)
≤

(
n

2

)
or ∑

u∈V
d(u)2 ≤ n(n− 1) +

∑
u∈V

d(u). (5)

Next (and this is quite typical for this sort of extremal problems) we
apply the Cauchy–Schwarz inequality to the vectors (d(u1), . . . , d(un))
and (1, 1, . . . , 1), obtaining( ∑

u∈V
d(u)

)2

≤ n
∑
u∈V

d(u)2,

and hence by (5)( ∑
u∈V

d(u)
)2

≤ n2(n− 1) + n
∑
u∈V

d(u).

Invoking (4) we find

4 |E|2 ≤ n2(n− 1) + 2n |E|

or

|E|2 − n

2
|E| − n2(n− 1)

4
≤ 0.

Solving the corresponding quadratic equation we thus obtain the following
result of Istvan Reiman.
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Theorem. If the graph G on n vertices contains no 4-cycles, then

|E| ≤
⌊n
4

(
1 +
√
4n− 3

)⌋
. (6)

For n = 5 this gives |E| ≤ 6, and the graph above shows that equality
can hold.

Counting in two ways has thus produced in an easy way an upper bound
on the number of edges. But how good is the bound (6) in general? The
following beautiful example [2] [3] [6] shows that it is almost sharp. As is
often the case in such problems, finite geometry leads the way.

In presenting the example we assume that the reader is familiar with the
finite field Zp of integers modulo a prime p (see page 20). Consider the
3-dimensional vector space X over Zp. We construct from X the fol-
lowing graph Gp. The vertices of Gp are the one-dimensional subspaces
[v] := spanZp

{v}, 0 �= v ∈ X , and we connect two such subspaces
[v] �= [w] by an edge if

〈v,w〉 = v1w1 + v2w2 + v3w3 = 0.

Note that it does not matter which vector �= 0 we take from the subspace.
In the language of geometry, the vertices are the points of the projective
plane over Zp, and [w] is adjacent to [v] if w lies on the polar line of v.

As an example, the graph G2 has no 4-cycle and contains 9 edges, which
almost reaches the bound 10 given by (6). We want to show that this is true
for any prime p.

(1, 1, 1)

(1, 1, 0)

(0, 1, 1)(1, 0, 1)

(0, 0, 1)

(0, 1, 0)(1, 0, 0)

The graph G2: its vertices are all seven
nonzero triples (x, y, z).

Let us first prove that Gp satisfies the C4-condition. If [u] is a common
neighbor of [v] and [w], then u is a solution of the linear equations

v1x + v2y + v3z = 0

w1x + w2y + w3z = 0.

Since v and w are linearly independent, we infer that the solution space
has dimension 1, and hence that the common neighbor [u] is unique.

Next, we ask how many vertices Gp has. It’s double counting again. The
space X contains p3 − 1 vectors �= 0. Since every one-dimensional sub-

space contains p− 1 vectors �= 0, we infer that X has p3−1
p−1 = p2 + p+ 1

one-dimensional subspaces, that is, Gp has n = p2 + p+ 1 vertices. Simi-
larly, any two-dimensional subspace contains p2−1 vectors �= 0, and hence
p2−1
p−1 = p+ 1 one-dimensional subspaces.

It remains to determine the number of edges in Gp, or, what is the same by
(4), the degrees. By the construction of Gp, the vertices adjacent to [u] are
the solutions of the equation

u1x + u2y + u3z = 0. (7)

The solution space of (7) is a two-dimensional subspace, and hence there
are p + 1 vertices adjacent to [u]. But beware, it may happen that u itself
is a solution of (7). In this case there are only p vertices adjacent to [u].
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In summary, we obtain the following result: If u lies on the conic given by
x2 + y2 + z2 = 0, then d([u]) = p, and, if not, then d([u]) = p+ 1. So it
remains to find the number of one-dimensional subspaces on the conic

x2 + y2 + z2 = 0.

Let us anticipate the result which we shall prove in a moment.

Claim. There are precisely p2 solutions (x, y, z) of the equation
x2+y2+z2 = 0, and hence (excepting the zero solution) precisely
p2−1
p−1 = p+ 1 vertices in Gp of degree p.

With this, we complete our analysis of Gp. There are p + 1 vertices of
degree p, hence (p2 + p + 1) − (p + 1) = p2 vertices of degree p + 1.
Using (4), we obtain

|E| =
(p+ 1)p

2
+

p2(p+ 1)

2
=

(p+ 1)2p

2

=
(p+ 1)p

4
(1 + (2p+ 1)) =

p2 + p

4
(1 +

√
4p2 + 4p+ 1).

Setting n = p2 + p+ 1, the last equation reads

|E| = n− 1

4
(1 +

√
4n− 3),

and we see that this almost agrees with (6).

Now to the proof of the claim. The following argument is a beautiful appli-
cation of linear algebra involving symmetric matrices and their eigenvalues.
We will encounter the same method in Chapter 43, which is no coincidence:
both proofs are from the same paper by Erdős, Rényi and Sós.

We represent the one-dimensional subspaces of X as before by vectors
v1,v2, . . . , vp2+p+1, any two of which are linearly independent. Similarly,
we may represent the two-dimensional subspaces by the same set of vec-
tors, where the subspace corresponding to u = (u1, u2, u3) is the set of so-
lutions of the equation u1x+u2y+u3z = 0 as in (7). (Of course, this is just
the duality principle of linear algebra.) Hence, by (7), a one-dimensional
subspace, represented by vi, is contained in the two-dimensional subspace,
represented by vj , if and only if 〈vi,vj〉 = 0.

Consider now the matrixA = (aij) of size (p2+p+1)×(p2+p+1), defined
as follows: The rows and columns of A correspond to v1, . . . ,vp2+p+1 (we
use the same numbering for rows and columns) with

aij :=

{
1 if 〈vi,vj〉 = 0,
0 otherwise.

A is thus a real symmetric matrix, and we have aii = 1 if 〈vi,vi〉 = 0, that

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 1 0 0 0
1 0 1 0 1 0 0
1 1 0 0 0 1 0
1 0 0 1 0 0 1
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

The matrix for G2

is, precisely when vi lies on the conic x2 + y2 + z2 = 0. Thus, all that
remains to show is that

trace A = p+ 1.
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From linear algebra we know that the trace equals the sum of the eigenval-
ues. And here comes the trick: While A looks complicated, the matrix A2

is easy to analyze. We note two facts:

• Any row of A contains precisely p+1 1’s. This implies that p+1 is an
eigenvalue of A, since A1 = (p+1)1, where 1 is the vector consisting
of 1’s.

• For any two distinct rows vi,vj there is exactly one column with a 1 in
both rows (the column corresponding to the unique subspace spanned
by vi,vj).

Using these facts we find

A2 =

⎛⎜⎜⎜⎜⎝
p+ 1 1 · · · 1

1 p+ 1
...

...
. . .

1 · · · p+ 1

⎞⎟⎟⎟⎟⎠ = p I + J,

where I is the identity matrix and J is the all-ones-matrix. Now, J has
the eigenvalue p2 + p+ 1 (of multiplicity 1) and 0 (of multiplicity p2 + p).
Hence A2 has the eigenvalues p2+2p+1 = (p+1)2 of multiplicity 1 and p
of multiplicity p2+p. Since A is real and symmetric, hence diagonalizable,
we find that A has the eigenvalue p+1 or−(p+1) and p2 + p eigenvalues
±√p. From Fact 1 above, the first eigenvalue must be p + 1. Suppose
that
√
p has multiplicity r, and −√p multiplicity s, then

trace A = (p+ 1) + r
√
p− s

√
p.

But now we are home: Since the trace is an integer, we must have r = s,
so trace A = p+ 1. �

6. Sperner’s Lemma

In 1912, Luitzen Brouwer published his famous fixed point theorem:

Every continuous function f :Bn −→ Bn of an n-dimensional ball
to itself has a fixed point (a point x ∈ Bn with f(x) = x).

For dimension 1, that is for an interval, this follows easily from the inter-
mediate value theorem, but for higher dimensions Brouwer’s proof needed
some sophisticated machinery. It was therefore quite a surprise when in
1928 young Emanuel Sperner (he was 23 at the time) produced a simple
combinatorial result from which both Brouwer’s fixed point theorem and
the invariance of the dimension under continuous bijective maps could be
deduced. And what’s more, Sperner’s ingenious lemma is matched by an
equally beautiful proof — it is just double counting.
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We discuss Sperner’s lemma, and Brouwer’s theorem as a consequence, for
the first interesting case, that of dimension n = 2. The energetic reader
should find it not too difficult to extend the proofs to higher dimensions
(by induction on the dimension).

Sperner’s Lemma.

Suppose that some “big” triangle with vertices V1, V2, V3 is triangulated
(that is, decomposed into a finite number of “small” triangles that fit to-
gether edge-by-edge).
Assume that the vertices in the triangulation get “colors” from the set
{1, 2, 3} such that Vi receives the color i (for each i), and only the col-
ors i and j are used for vertices along the edge from Vi to Vj (for i �= j),
while the interior vertices are colored arbitrarily with 1, 2 or 3.

1 2

3

1

1

3 3

1

2

1

1

2 1

2

2

1

3

2

3

The tricolored triangles are shaded.
Then in the triangulation there must be a small “tricolored” triangle, which
has all three different vertex colors.

� Proof. We will prove a stronger statement: The number of tricolored
triangles is not only nonzero, it is always odd.

Consider the dual graph to the triangulation, but don’t take all its edges
— only those which cross an edge that has endvertices with the (different)
colors 1 and 2. Thus we get a “partial dual graph” which has degree 1 at all
vertices that correspond to tricolored triangles, degree 2 for all triangles in
which the two colors 1 and 2 appear, and degree 0 for triangles that do not
have both colors 1 and 2. Thus only the tricolored triangles correspond to
vertices of odd degree (of degree 1).

However, the vertex of the dual graph which corresponds to the outside of
the triangulation has odd degree: in fact, along the big edge from V1 to V2,
there is an odd number of changes between 1 and 2. Thus an odd number
of edges of the partial dual graph crosses this big edge, while the other big
edges cannot have both 1 and 2 occurring as colors.

1 2

3

1

1

3 3

1

2
1

1

2 1

2

2

1

3

2

3
Now since the number of odd-degree vertices in any finite graph is even (by
equation (4)), we find that the number of small triangles with three different
colors (corresponding to odd inside vertices of our dual graph) is odd. �

With this lemma, it is easy to derive Brouwer’s theorem.

� Proof of Brouwer’s fixed point theorem (for n= 2). Let Δ be the tri-
angle in R3 with vertices e1 = (1, 0, 0), e2 = (0, 1, 0), and e3 = (0, 0, 1).
It suffices to prove that every continuous map f : Δ −→ Δ has a fixed point,
since Δ is homeomorphic to the two-dimensional ball B2.

We use δ(T ) to denote the maximal length of an edge in a triangulation T .
One can easily construct an infinite sequence of triangulations T1, T2, . . .
of Δ such that the sequence of maximal diameters δ(Tk) converges to 0.
Such a sequence can be obtained by explicit construction, or inductively,
for example by taking Tk+1 to be the barycentric subdivision of Tk.

For each of these triangulations, we define a 3-coloring of their vertices v
by setting λ(v) := min{i : f(v)i < vi}, that is, λ(v) is the smallest index i
such that the i-th coordinate of f(v)−v is negative. If this smallest index i
does not exist, then we have found a fixed point and are done: To see this,
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note that every v ∈ Δ lies in the plane x1+x2+x3 = 1, hence
∑

i vi = 1.
So if f(v) �= v, then at least one of the coordinates of f(v) − v must be
negative (and at least one must be positive).

Let us check that this coloring satisfies the assumptions of Sperner’s lemma.
First, the vertex ei must receive color i, since the only possible negative
component of f(ei)− ei is the i-th component. Moreover, if v lies on the
edge opposite to ei, then vi = 0, so the i-th component of f(v)− v cannot
be negative, and hence v does not get the color i.

Sperner’s lemma now tells us that in each triangulation Tk there is a tri-
colored triangle {vk:1,vk:2,vk:3} with λ(vk:i) = i. The sequence of
points (vk:1)k≥1 need not converge, but since the simplex Δ is compact
some subsequence has a limit point. After replacing the sequence of tri-
angulations Tk by the corresponding subsequence (which for simplicity
we also denote by Tk) we can assume that (vk:1)k converges to a point
v ∈ Δ. Now the distance of vk:2 and vk:3 from vk:1 is at most the mesh
length δ(Tk), which converges to 0. Thus the sequences (vk:2) and (vk:3)
converge to the same point v.

But where is f(v)? We know that the first coordinate f(vk:1) is smaller
than that of vk:1 for all k. Now since f is continuous, we derive that the
first coordinate of f(v) is smaller or equal to that of v. The same reasoning
works for the second and third coordinates. Thus none of the coordinates
of f(v) − v is positive — and we have already seen that this contradicts
the assumption f(v) �= v. �
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Tiling rectangles Chapter 28

Some mathematical theorems exhibit a special feature: The statement of
the theorem is elementary and easy, but to prove it can turn out to be a tan-
talizing task — unless you open some magic door and everything becomes
clear and simple.

One such example is the following result due to Nicolaas de Bruijn:

Theorem. Whenever a rectangle is tiled by rectangles all of which
have at least one side of integer length, then the tiled rectangle has
at least one side of integer length.

By a tiling we mean a covering of the big rectangle R with rectangles
T1, . . . , Tm that have pairwise disjoint interior, as in the picture to the right.

The big rectangle has side lengths 11

and 8.5.

Actually, de Bruijn proved the following result about packing copies of an
a× b rectangle into a c× d rectangle: If a, b, c, d are integers, then each of
a and b must divide one of c or d. This is implied by two applications of
the more general theorem above to the given figure, scaled down first by a
factor of 1

a , and then scaled down by a factor of 1
b . Each small rectangle

has then one side equal to 1, and so c
a or d

a must be an integer.

Almost everybody’s first attempt is to try induction on the number of small
rectangles. Induction can be made to work, but it has to be performed
very carefully, and it is not the most elegant option one can come up with.
Indeed, in a delightful paper Stan Wagon surveys no less than fourteen
different proofs out of which we have selected three; none of them needs
induction. The first proof, essentially due to de Bruijn himself, makes use
of a very clever calculus trick. The second proof by Richard Rochberg
and Sherman Stein is a discrete version of the first proof, which makes it
simpler still. But the champion may be the third proof suggested by Mike
Paterson. It is just counting in two ways and almost one-line.

In the following we assume that the big rectangle R is placed parallel to the
x, y-axes with (0, 0) as the lower left-hand corner. The small rectangles Ti

have then sides parallel to the axes as well.

� First Proof. Let T be any rectangle in the plane, where T extends from
a to b along the x-axis and from c to d along the y-axis. Here is de Bruijn’s
trick. Consider the double integral over T ,∫ d

c

∫ b

a

e2πi(x+y)dx dy. (1)
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194 Tiling rectangles

Since ∫ d

c

∫ b

a

e2πi(x+y)dx dy =

∫ b

a

e2πixdx ·
∫ d

c

e2πiydy,

it follows that the integral (1) is 0 if and only if at least one of
∫ b

a
e2πixdx

or
∫ d

c e2πiydy is equal to 0.

We are going to show that∫ b

a

e2πixdx = 0 ⇐⇒ b− a is an integer. (2)

But then we will be done! Indeed, by the assumption on the tiling, each∫∫
Ti

is equal to 0, and so by additivity of the integral,
∫∫

R = 0 as well,
whence R has an integer side.

∫∫
R

f(x, y) =
∑
i

∫∫
Ti

f(x, y)

Additivity of the integral It remains to verify (2). From∫ b

a

e2πixdx =
1

2πi
e2πix

∣∣∣b
a
=

1

2πi
(e2πib − e2πia)

=
e2πia

2πi
(e2πi(b−a) − 1) ,

we conclude that∫ b

a

e2πixdx = 0 ⇐⇒ e2πi(b−a) = 1.

From e2πix = cos 2πx + i sin 2πx we see that the last equation is, in turn,
equivalent to

cos 2π(b− a) = 1 and sin 2π(b− a) = 0.

Since cosx = 1 holds if and only if x is an integer multiple of 2π, we must
have b− a ∈ Z, and this also implies sin 2π(b− a) = 0. �

� Second Proof. Color the plane in a checkerboard fashion with black/
white squares of size 1

2 ×
1
2 , starting with a black square at (0, 0).

By the assumption on the tiling every small rectangle Ti must receive an
equal amount of black and white, and therefore the big rectangle R too
contains the same amount of black and white.

But this implies that R must have an integer side, since otherwise it can
be split into four pieces, three of which have equal amounts of black and
white, while the piece in the upper right-hand corner does not. Indeed, if
x = a− 	a
, y = b− 	b
, so that 0 < x, y < 1, then the amount of black
is always greater than that of white.

x

y

The amount of black in the corner
rectangle is min(x, 1

2
) · min(y, 1

2
) +

max(x− 1
2
, 0) ·max(y− 1

2
, 0), and this

is always greater than 1
2
xy. This is illustrated in the figure in the margin. �
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� Third proof. Let C be the set of corners in the tiling for which both
coordinates are integral (so, for example, (0, 0) ∈ C), and let T be the
set of tiles. Form a bipartite graph G on the vertex set C ∪ T by joining
each corner c ∈ C to all the tiles of which it is a corner. The hypothesis
implies that each tile is joined to 0, 2, or 4 corners in C, since if one corner
is in C, then so is also the other end of any integer side. Now look at C.
Any c ∈ C which is not a corner of R is joined to an even number of tiles,
but the vertex (0, 0) is joined to only one tile. As the number of odd-degree
vertices in any finite graph is even (as we have just observed on page 190),
there must be another c ∈ C of odd degree, and c can only be one of the
other vertices of R — end of proof. �

Here the bipartite graph G is drawn with
vertices in C white, vertices in T black,
and dashed edges.All three proofs can quite easily be adapted to also yield an n-dimensional

version of de Bruijn’s result: Whenever an n-dimensional box R is tiled by
boxes all of which have at least one integer side, then R has an integer side.

However, we want to keep our discussion in the plane (for this chapter),
and look at a “companion result” to de Bruijn’s, due to Max Dehn (many
years earlier), which sounds quite similar, but asks for different ideas.

Theorem. A rectangle can be tiled with squares if and only if the
ratio of its side lengths is a rational number.

One half of the theorem is immediate. Suppose the rectangle R has side
lengths α and β with α

β ∈ Q, that is, α
β = p

q with p, q ∈ N. Setting

s := α
p = β

q , we can easily tile R with copies of the s× s square as shown
in the margin.

s
s

p squares

q squaresβ

α

For the proof of the converse Max Dehn used an elegant argument that he
had already successfully employed in his solution of Hilbert’s third problem
(see Chapter 10). In fact, the two papers appeared in successive years in the
Mathematische Annalen.

� Proof. Suppose R is tiled by squares of possibly different sizes. By
scaling we may assume that R is an a× 1 rectangle. Let us assume a �∈ Q
and derive a contradiction from this. The first step is to extend the sides of
the squares to the full width resp. height of R as in the figure.

R is now decomposed into a number of small rectangles; let a1, a2, . . . , aM
be their side lengths (in any order), and consider the set

A := {1, a, a1, . . . , aM} ⊆ R.
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Next comes a linear algebra part. We define V (A) as the vector space of
all linear combinations of the numbers in A with rational coefficients. Note
that V (A) contains all side lengths of the squares in the original tiling,
since any such side length is the sum of some ai’s. As the number a is not
rational, we may extend {1, a} to a basis B of V (A),

B = {b1 = 1, b2 = a, b3, . . . , bm}.

Define the function f : B → R by

f(1) := 1, f(a) := −1, and f(bi) := 0 for i ≥ 3,

and extend it linearly to V (A).Linear extension:

f(q1b1 + · · ·+ qmbm) :=

q1f(b1) + · · ·+ qmf(bm)

for q1, . . . , qm ∈ Q.

The following definition of “area” of rectangles finishes the proof in three
quick steps: For c, d ∈ V (A) the area of the c× d rectangle is defined as

area( d
c

) = f(c)f(d).

(1) area ( d
c1 c2

) = area( d
c1

) + area(
c2

d).

This follows immediately from the linearity of f . The analogous result
holds, of course, for vertical strips.

(2) area(R) =
∑

squares
area( ), where the sum runs through the squares in

the tiling.

Just note that by (1) area(R) equals the sum of the areas of all small
rectangles in the extended tiling. Since any such rectangle is in exactly
one square of the original tiling, we see (again by (1)) that this sum is
also equal to the right-hand side of (2).

(3) We have
area(R) = f(a)f(1) = −1,

whereas for a square of side length t, area(
t

) = f(t)2 ≥ 0, and so∑
squares

area( ) ≥ 0,

and this is our desired contradiction. �

For those who want to go for further excursions into the world of tilings the
beautiful survey paper [1] by Federico Ardila and Richard Stanley is highly
recommended.
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“The new hopscotch:

Don’t hit the integers!”



Three famous theorems

on finite sets

Chapter 29

Emanuel Sperner

In this chapter we are concerned with a basic theme of combinatorics:
properties and sizes of special families F of subsets of a finite set N =
{1, 2, . . . , n}. We start with two results which are classics in the field: the
theorems of Sperner and of Erdős–Ko–Rado. These two results have in
common that they were reproved many times and that each of them initi-
ated a new field of combinatorial set theory. For both theorems, induction
seems to be the natural method, but the arguments we are going to discuss
are quite different and truly inspired.

In 1928 Emanuel Sperner asked and answered the following question: Sup-
pose we are given the set N = {1, 2, . . . , n}. Call a family F of subsets of
N an antichain if no set of F contains another set of the family F . What is
the size of a largest antichain? Clearly, the family Fk of all k-sets satisfies
the antichain property with |Fk| =

(
n
k

)
. Looking at the maximum of the

binomial coefficients (see page 14) we conclude that there is an antichain
of size

(
n

	n/2

)
= maxk

(
n
k

)
. Sperner’s theorem now asserts that there are

no larger ones.

Theorem 1. The size of a largest antichain of an n-set is
(

n
	n/2


)
.

� Proof. Of the many proofs the following one, due to David Lubell, is
probably the shortest and most elegant. Let F be an arbitrary antichain.
Then we have to show |F| ≤

(
n

	n/2

)
. The key to the proof is that we

consider chains of subsets ∅ = C0 ⊆ C1 ⊆ C2 ⊆ · · · ⊂ Cn = N , where
|Ci| = i for i = 0, . . . , n. How many chains are there? Clearly, we obtain
a chain by adding one by one the elements of N , so there are just as many
chains as there are permutations of N , namely n!. Next, for a set A ∈ F
we ask how many of these chains contain A. Again this is easy. To get
from ∅ to A we have to add the elements of A one by one, and then to pass
from A to N we have to add the remaining elements. Thus if A contains k
elements, then by considering all these pairs of chains linked together we
see that there are precisely k!(n − k)! such chains. Note that no chain can
pass through two different sets A and B of F , since F is an antichain.

To complete the proof, let mk be the number of k-sets in F . Thus |F| =∑n
k=0 mk. Then it follows from our discussion that the number of chains

passing through some member of F is

n∑
k=0

mk k! (n− k)!,

and this expression cannot exceed the number n! of all chains. Hence
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200 Three famous theorems on finite sets

we conclude

n∑
k=0

mk
k!(n− k)!

n!
≤ 1, or

n∑
k=0

mk(
n
k

) ≤ 1.

Replacing the denominators by the largest binomial coefficient, we there-
fore obtain

1(
n

	n/2

) n∑

k=0

mk ≤ 1, that is, |F| =

n∑
k=0

mk ≤
(

n

	n/2


)
,

and the proof is complete. �

Check that the family of all n
2

-sets for
even n respectively the two families of
all n−1

2
-sets and of all n+1

2
-sets, when

n is odd, are indeed the only antichains
that achieve the maximum size!

Our second result is of an entirely different nature. Again we consider the
set N = {1, . . . , n}. Call a familyF of subsets an intersecting family if any
two sets in F have at least one element in common. It is almost immediate
that the size of a largest intersecting family is 2n−1. If A ∈ F , then the
complement Ac = N\A has empty intersection with A and accordingly
cannot be in F . Hence we conclude that an intersecting family contains at
most half the number 2n of all subsets, that is, |F| ≤ 2n−1. On the other
hand, if we consider the family of all sets containing a fixed element, say
the family F1 of all sets containing 1, then clearly |F1| = 2n−1, and the
problem is settled.

But now let us ask the following question: How large can an intersecting
familyF be if all sets inF have the same size, say k ? Let us call such fami-
lies intersecting k-families. To avoid trivialities, we assume n ≥ 2k since
otherwise any two k-sets intersect, and there is nothing to prove. Taking
up the above idea, we certainly obtain such a family F1 by considering all
k-sets containing a fixed element, say 1. Clearly, we obtain all sets in F1

by adding to 1 all (k − 1)-subsets of {2, 3, . . . , n}, hence |F1| =
(
n−1
k−1

)
.

Can we do better? No — and this is the theorem of Erdős–Ko–Rado.

Theorem 2. The largest size of an intersecting k-family in an n-set is
(
n−1
k−1

)
when n ≥ 2k.

Paul Erdős, Chao Ko and Richard Rado found this result in 1938, but it
was not published until 23 years later. Since then multitudes of proofs and
variants have been given, but the following argument due to Gyula Katona
is particularly elegant.

� Proof. The key to the proof is the following simple lemma, which at
first sight seems to be totally unrelated to our problem. Consider a circle C
divided by n points into n edges. Let an arc of length k consist of k + 1

point edge

A circle C for n = 6. The bold edges
depict an arc of length 3.

consecutive points and the k edges between them.

Lemma. Let n ≥ 2k, and suppose we are given t distinct arcs A1, . . . , At

of length k, such that any two arcs have an edge in common. Then t ≤ k.

To prove the lemma, note first that any point of C is the endpoint of at most
one arc. Indeed, if Ai, Aj had a common endpoint v, then they would have



Three famous theorems on finite sets 201

to start in different direction (since they are distinct). But then they cannot
have an edge in common as n ≥ 2k. Let us fix A1. Since any Ai (i ≥ 2)
has an edge in common with A1, one of the endpoints of Ai is an inner
point of A1. Since these endpoints must be distinct as we have just seen,
and since A1 contains k − 1 inner points, we conclude that there can be at
most k − 1 further arcs, and thus at most k arcs altogether. �

Now we proceed with the proof of the Erdős–Ko–Rado theorem. Let F be
an intersecting k-family. Consider a circle C with n points and n edges as
above. We take any cyclic permutation π = (a1, a2, . . . , an) and write the
numbers ai clockwise next to the edges of C. Let us count the number of
sets A ∈ F which appear as k consecutive numbers on C. Since F is an
intersecting family we see by our lemma that we get at most k such sets.
Since this holds for any cyclic permutation, and since there are (n − 1)!
cyclic permutations, we produce in this way at most

k(n− 1)!

sets ofF which appear as consecutive elements of some cyclic permutation.
How often do we count a fixed set A ∈ F? Easy enough: A appears in π
if the k elements of A appear consecutively in some order. Hence we have
k! possibilities to write A consecutively, and (n − k)! ways to order the
remaining elements. So we conclude that a fixed set A appears in precisely
k!(n− k)! cyclic permutations, and hence that

|F| ≤ k(n− 1)!

k!(n− k)!
=

(n− 1)!

(k − 1)!(n− 1− (k − 1))!
=

(
n− 1

k − 1

)
. �

Again we may ask whether the families containing a fixed element are the
only intersecting k-families of maximal size. This is certainly not true for
n = 2k. For example, for n = 4 and k = 2 the family {1, 2}, {1, 3}, {2, 3}
also has size

(
3
1

)
= 3. More generally, for n = 2k we get the largest

3

2 4

1

An intersecting family for n = 4, k = 2

intersecting k-families, of size 1
2

(
n
k

)
=

(
n−1
k−1

)
, by arbitrarily including one

out of every pair of sets formed by a k-set A and its complement N\A. But
for n > 2k the special families containing a fixed element are indeed the
only ones. The reader is invited to try his hand at the proof.

Finally, we turn to the third result which is arguably the most important
basic theorem in finite set theory, the “marriage theorem” of Philip Hall
proved in 1935. It opened the door to what is today called matching theory,
with a wide variety of applications, some of which we shall see as we
go along.

Consider a finite set X and a collection A1, . . . , An of subsets of X (which
need not be distinct). Let us call a sequence x1, . . . , xn a system of distinct
representatives of {A1, . . . , An} if the xi are distinct elements of X , and
if xi ∈ Ai for all i. Of course, such a system, abbreviated SDR, need not
exist, for example when one of the sets Ai is empty. The content of the
theorem of Hall is the precise condition under which an SDR exists.
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Before giving the result let us state the human interpretation which gave it
the folklore name marriage theorem: Consider a set {1, . . . , n} of girls and
a set X of boys. Whenever x ∈ Ai, then girl i and boy x are inclined to
get married, thus Ai is just the set of possible matches of girl i. An SDR
represents then a mass-wedding where every girl marries a boy she likes.

Back to sets, here is the statement of the result.

“A mass wedding”

Theorem 3. Let A1, . . . , An be a collection of subsets of a finite set X .
Then there exists a system of distinct representatives if and only if the union
of any m sets Ai contains at least m elements, for 1 ≤ m ≤ n.

The condition is clearly necessary: If m sets Ai contain between them
fewer than m elements, then these m sets can certainly not be represented
by distinct elements. The surprising fact (resulting in the universal ap-
plicability) is that this obvious condition is also sufficient. Hall’s original
proof was rather complicated, and subsequently many different proofs were
given, of which the following one (due to Easterfield and rediscovered by
Halmos and Vaughan) may be the most natural.

� Proof. We use induction on n. For n = 1 there is nothing to prove. Let
n > 1, and suppose {A1, . . . , An} satisfies the condition of the theorem
which we abbreviate by (H). Call a collection of � sets Ai with 1 ≤ � < n a
critical family if its union has cardinality �. Now we distinguish two cases.

Case 1: There is no critical family.

Choose any element x ∈ An. Delete x from X and consider the collection
A′1, . . . , A

′
n−1 with A′i = Ai\{x}. Since there is no critical family, we find

that the union of any m sets A′i contains at least m elements. Hence by
induction on n there exists an SDR x1, . . . , xn−1 of {A′1, . . . , A′n−1}, and
together with xn = x, this gives an SDR for the original collection.

Case 2: There exists a critical family.

After renumbering the sets we may assume that {A1, . . . , A�} is a critical
family. Then

⋃�
i=1 Ai = X̃ with |X̃ | = �. Since � < n, we infer the exis-

tence of an SDR for A1, . . . , A� by induction, that is, there is a numbering
x1, . . . , x� of X̃ such that xi ∈ Ai for all i ≤ �.

AB

D

E

C

{B,C,D} is a critical family Consider now the remaining collection A�+1, . . . , An, and take any m of
these sets. Since the union of A1, . . . , A� and these m sets contains at least
� +m elements by condition (H), we infer that the m sets contain at least
m elements outside X̃ . In other words, condition (H) is satisfied for the
family

A�+1\X̃, . . . , An\X̃.

Induction now gives an SDR for A�+1, . . . , An that avoids X̃. Combin-
ing it with x1, . . . , x� we obtain an SDR for all sets Ai. This completes
the proof. �
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As we mentioned, Hall’s theorem was the beginning of the now vast field
of matching theory [6]. Of the many variants and ramifications let us state
one particularly appealing result which the reader is invited to prove for
himself:

Suppose the sets A1, . . . , An all have size k ≥ 1 and suppose
further that no element is contained in more than k sets. Then
there exist k SDR’s such that for any i the k representatives of Ai

are distinct and thus together form the set Ai.

A beautiful result which should open new horizons on marriage possi-
bilities.
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Shuffling cards Chapter 30

How often does one have to shuffle a deck of cards until it is random?

The analysis of random processes is a familiar duty in life (“How long does
it take to get to the airport during rush-hour?”) as well as in mathematics.
Of course, getting meaningful answers to such problems heavily depends
on formulating meaningful questions. For the card shuffling problem, this
means that we have

• to specify the size of the deck (n = 52 cards, say),

• to say how we shuffle (we’ll analyze top-in-at-random shuffles first,
and then the more realistic and effective riffle shuffles), and finally

• to explain what we mean by “is random” or “is close to random.”

So our goal in this chapter is an analysis of the riffle shuffle, due to Edgar
N. Gilbert and Claude Shannon (1955, unpublished) and Jim Reeds (1981,
unpublished), following the statistician David Aldous and the former ma-
gician turned mathematician Persi Diaconis according to [1]. We will not

Persi Diaconis’ business card as a magi-
cian. In a later interview he said: “If you
say that you are a professor at Stanford
people treat you respectfully. If you say
that you invent magic tricks, they don’t
want to introduce you to their daughter.”

reach the final precise result that 7 riffle shuffles are sufficient to get a deck
of n = 52 cards very close to random, while 6 riffle shuffles do not suf-
fice — but we will obtain an upper bound of 12, and we will see some
extremely beautiful ideas on the way: the concepts of stopping rules and
of “strong uniform time,” the lemma that strong uniform time bounds the
variation distance, Reeds’ inversion lemma, and thus the interpretation of
shuffling as “reversed sorting.” In the end, everything will be reduced to
two very classical combinatorial problems, namely the coupon collector
and the birthday paradox. So let’s start with these!

The birthday paradox

Take n random people — the participants of a class or seminar, say. What
is the probability that they all have different birthdays? With the usual
simplifying assumptions (365 days a year, no seasonal effects, no twins
present) the probability is

p(n) =

n−1∏
i=1

(
1− i

365

)
,
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which is smaller than 1
2 for n = 23 (this is the “birthday paradox”!), less

than 9 percent for n = 42, and exactly 0 for n > 365 (the “pigeon-hole
principle,” see Chapter 27). The formula is easy to see — if we take the
persons in some fixed order: If the first i persons have distinct birthdays,
then the probability that the (i + 1)-st person doesn’t spoil the series is
1− i

365 , since there are 365− i birthdays left.

Similarly, if n balls are placed independently and randomly into K boxes,
then the probability that no box gets more than one ball is

p(n,K) =

n−1∏
i=1

(
1− i

K

)
.

The coupon collector

Children buy photos of pop stars (or soccer stars) for their albums, but
they buy them in little nontransparent envelopes, so they don’t know which
photo they will get. If there are n different photos, what is the expected
number of pictures a kid has to buy until he or she gets every motif at
least once?

Equivalently, if you randomly take balls from a bowl that contains n dis-
tinguishable balls, and if you put your ball back each time, and then again
mix well, how often do you have to draw on average until you have drawn
each ball at least once?

If you already have drawn k distinct balls, then the probability not to get
a new one in the next drawing is k

n . So the probability to need exactly s

drawings for the next new ball is ( kn )
s−1(1 − k

n ). And thus the expected
number of drawings for the next new ball is∑

s≥1

(k
n

)s−1(
1− k

n

)
s =

1

1− k
n

,

as we get from the series in the margin. So the expected number of drawings

∑
s≥1

xs−1(1− x)s =

=
∑
s≥1

xs−1s −
∑
s≥1

xss

=
∑
s≥0

xs(s+ 1) −
∑
s≥0

xss

=
∑
s≥0

xs =
1

1− x
,

where at the end we sum a geometric
series (see page 46).

until we have drawn each of the n different balls at least once is

n−1∑
k=0

1

1− k
n

=
n

n
+

n

n− 1
+ · · ·+ n

2
+

n

1
= nHn ≈ n logn,

with the bounds on the size of harmonic numbers that we had obtained on
page 13. So the answer to the coupon collector’s problem is that we have
to expect that roughly n logn drawings are necessary.

The estimate that we need in the following is for the probability that you
need significantly more than n logn trials. If Vn denotes the number of
drawings needed (this is the random variable whose expected value is
E[Vn] ≈ n logn), then for n ≥ 1 and c ≥ 0, the probability that we
need more than m := �n logn+ cn� drawings is

Prob
[
Vn > m

]
≤ e−c.
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Indeed, if Ai denotes the event that the ball i is not drawn in the first m
drawings, then

Prob
[
Vn > m

]
= Prob

[⋃
i

Ai

]
≤

∑
i

Prob
[
Ai

]
= n

(
1− 1

n

)m

< ne−m/n ≤ e−c.

Now let’s grab a deck of n cards. We number them 1 up to n in the or-

A little calculus shows that
(
1− 1

n

)n
is

an increasing function in n, which con-
verges to 1/e. So

(
1− 1

n

)n
< 1

e
holds

for all n ≥ 1.

der in which they come — so the card numbered “1” is at the top of the
deck, while “n” is at the bottom. Let us denote from now on by Sn the
set of all permutations of 1, . . . , n. Shuffling the deck amounts to the ap-
plication of certain random permutations to the order of the cards. Ide-
ally, this might mean that we apply an arbitrary permutation π ∈ Sn to
our starting order (1, 2, . . . , n), each of them with the same probability 1

n! .
Thus, after doing this just once, we would have our deck of cards in order
π = (π(1), π(2), . . . , π(n)), and this would be a perfect random order. But
that’s not what happens in real life. Rather, when shuffling only “certain”
permutations occur, perhaps not all of them with the same probability, and
this is repeated a “certain” number of times. After that, we expect or hope
the deck to be at least “close to random.”

Top-in-at-random shuffles

“Top-in-at-random”

These are performed as follows: you take the top card from the deck, and
insert it into the deck at one of the n distinct possible places, each of them
with probability 1

n . Thus one of the permutations

τi =
(
2, 3, . . . , i,

i
↓
1, i+1, . . . , n

)
is applied, 1 ≤ i ≤ n. After one such shuffle the deck doesn’t look random,
and indeed we expect to need lots of such shuffles until we reach that goal.

A typical run of top-in-at-random shuffles may look as follows (for n = 5):

1

2

3

4

5

2

3

3

1

5

4

2

1

4

5 3

2

1

4

5

2

3

1

4

5 3

1

4

5

2

. . .

How should we measure “being close to random”? Probabilists have cooked
up the “variation distance” as a rather unforgiving measure of randomness:
We look at the probability distribution on the n! different orderings of our
deck, or equivalently, on the n! different permutations σ ∈ Sn that yield
the orderings.



208 Shuffling cards

Two examples are our starting distribution E, which is given by

E(id) = 1,
E(π) = 0 otherwise,

and the uniform distribution U given by

U(π) = 1
n! for all π ∈Sn.

The variation distance between two probability distributions Q1 and Q2 is
now defined as

‖Q1 − Q2‖ := 1
2

∑
π∈Sn

|Q1(π)− Q2(π)|.

By setting S := {π ∈ Sn : Q1(π) > Q2(π)} and using
∑

π Q1(π) =∑
π Q2(π) = 1 we can rewrite this as

‖Q1 − Q2‖ = max
S⊆Sn

|Q1(S)− Q2(S)|,

with Qi(S) :=
∑

π∈S Qi(π). Clearly we have 0 ≤ ‖Q1 − Q2‖ ≤ 1.
In the following, “being close to random” will be interpreted as “having
small variation distance from the uniform distribution.” Here the distance
between the starting distribution and the uniform distribution is very close
to 1:

‖E− U‖ = 1− 1
n! .

After one top-in-at-random shuffle, this will not be much better:

‖Top− U‖ = 1− 1
(n−1)! .

The probability distribution on Sn that we obtain by applying the top-in-at-
random shuffle k times will be denoted byTop∗k. So how does ‖Top∗k−U‖
behave if k gets larger, that is, if we repeat the shuffling? And similarly for
other types of shuffling? General theory (in particular, Markov chains on
finite groups; see e. g. Behrends [3]) implies that for large k the variation
distance d(k) := ‖Top∗k − U‖ goes to zero exponentially fast, but it does
not yield the “cut-off” phenomenon that one observes in practice: After a
certain number k0 of shuffles “suddenly” d(k) goes to zero rather fast. Our
margin displays a schematic sketch of the situation.

For card players, the question is not

“exactly how close to uniform is the

deck after a million riffle shuffles?”, but

“is 7 shuffles enough?”

(Aldous & Diaconis [1])

k0

1

d(k)

Strong uniform stopping rules

The amazing idea of strong uniform stopping rules by Aldous and Diaconis
captures the essential features. Imagine that the casino manager closely
watches the shuffling process, analyzes the specific permutations that are
applied to the deck in each step, and after a number of steps that depends on
the permutations that he has seen calls “STOP!”. So he has a stopping rule
that ends the shuffling process. It depends only on the (random) shuffles
that have already been applied. The stopping rule is strong uniform if the
following condition holds for all k ≥ 0:

If the process is stopped after exactly k steps, then the resulting
permutations of the deck have uniform distribution (exactly!).
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Let T be the number of steps that are performed until the stopping rule
tells the manager to cry “STOP!”; so this is a random variable. Similarly,
the ordering of the deck after k shuffles is given by a random variable Xk

(with values in Sn). With this, the stopping rule is strong uniform if for all
feasible values of k,

Prob
[
Xk = π | T = k

]
=

1

n!
for all π ∈Sn.

Conditional probabilities

The conditional probability

Prob[A |B]

denotes the probability of the event
A under the condition that B hap-
pens. This is just the probability that
both events happen, divided by the
probability that B is true, that is,

Prob[A |B] =
Prob[A ∧B]

Prob[B]
.

Three aspects make this interesting, useful, and remarkable:

1. Strong uniform stopping rules exist: For many examples they are quite
simple.

2. Moreover, these can be analyzed: Trying to determine Prob[T > k]
leads often to simple combinatorial problems.

3. This yields effective upper bounds on the variation distances such as
d(k) = ‖Top∗k − U‖.

For example, for the top-in-at-random shuffles a strong uniform stopping
rule is

“STOP after the original bottom card (labelled n) is first inserted
back into the deck.”

Indeed, if we trace the card n during these shuffles,

. . .

T1 T2

1

2

3

4

5

2

3

3

1

5

4

2

1

4

5 3

2

1

4

5

2

3

1

4

5 3

1

4

5

2

we see that during the whole process the ordering of the cards below this
card is completely uniform. So, after the card n rises to the top and then is
inserted at random, the deck is uniformly distributed; we just don’t know
when precisely this happens (but the manager does).

Now let Ti be the random variable which counts the number of shuffles that
are performed until for the first time i cards lie below card n. So we have
to determine the distribution of

T = T1 + (T2 − T1) + · · ·+ (Tn−1 − Tn−2) + (T − Tn−1).

But each summand in this corresponds to a coupon collector’s problem:
Ti − Ti−1 is the time until the top card is inserted at one of the i possible
places below the card n. So it is also the time that the coupon collector
takes from the (n − i)-th coupon to the (n − i + 1)-st coupon. Let Vi be
the number of pictures bought until he has i different pictures. Then

Vn = V1 + (V2 − V1) + · · ·+ (Vn−1 − Vn−2) + (Vn − Vn−1),
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and we have seen that Prob[Ti − Ti−1 = j] = Prob[Vn−i+1 − Vn−i = j]
for all i and j. Hence the coupon collector and the top-in-at-random shuffler
perform equivalent sequences of independent random processes, just in the
opposite order (for the coupon collector, it’s hard at the end). Thus we know
that the strong uniform stopping rule for the top-in-at-random shuffles takes
more than k = �n logn+ cn� steps with low probability:

Prob
[
T > k

]
≤ e−c.

And this in turn means that after k = �n logn + cn� top-in-at-random
shuffles, our deck is “close to random,” with

d(k) = ‖Top∗k − U‖ ≤ e−c,

due to the following simple but crucial lemma.

Lemma. Let Q : Sn −→ R be any probability distribution that defines a
shuffling process Q∗k with a strong uniform stopping rule whose stopping
time is T . Then for all k ≥ 0,

‖Q∗k − U‖ ≤ Prob
[
T > k

]
.

� Proof. If X is a random variable with values in Sn, with probability
distribution Q, then we write Q(S) for the probability that X takes a value
in S ⊆ Sn. Thus Q(S) = Prob[X ∈ S], and in the case of the uniform
distribution Q = U we get

U(S) = Prob
[
X ∈ S

]
=
|S|
n!

.

For every subset S ⊆Sn, we get the probability that after k steps our deck
is ordered according to a permutation in S as

Q∗k(S) = Prob[Xk ∈ S]

=
∑
j≤k

Prob[Xk ∈ S ∧ T = j] + Prob[Xk ∈ S ∧ T > k]

=
∑
j≤k

U(S)Prob[T = j] + Prob[Xk ∈ S |T > k] · Prob[T > k]

= U(S) (1− Prob[T > k]) + Prob[Xk ∈ S |T > k] · Prob[T > k]

= U(S) +
(
Prob[Xk ∈ S |T > k]− U(S)

)
· Prob[T > k].

This yields
|Q∗k(S)− U(S)| ≤ Prob[T > k]

since
Prob[Xk ∈ S |T > k] − U(S)

is a difference of two probabilities, so it has absolute value at most 1. �

This is the point where we have completed our analysis of the top-in-at-
random shuffle: We have proved the following upper bound for the number
of shuffles needed to get “close to random.”
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Theorem 1. Let c ≥ 0 and k := �n logn+ cn�. Then after performing k
top-in-at-random shuffles on a deck of n cards, the variation distance from
the uniform distribution satisfies

d(k) := ‖Top∗k − U‖ ≤ e−c.

One can also verify that the variation distance d(k) stays large if we do
significantly fewer than n logn top-in-at-random shuffles. The reason is
that a smaller number of shuffles will not suffice to destroy the relative
ordering on the lowest few cards in the deck.

Of course, top-in-at-random shuffles are extremely ineffective — with the
bounds of our theorem, we need more than n logn ≈ 205 top-in-at random
shuffles until a deck of n = 52 cards is mixed up well. Thus we now switch
our attention to a much more interesting and realistic model of shuffling.

Riffle shuffles

This is what dealers do at the casino: They take the deck, split it into two
parts, and these are then interleaved, for example by dropping cards from
the bottoms of the two half-decks in some irregular pattern.

“A riffle shuffle”

Again a riffle shuffle performs a certain permutation on the cards in the
deck, which we initially assume to be labelled from 1 to n, where 1 is the
top card. The riffle shuffles correspond exactly to the permutations π ∈Sn

such that the sequence

(π(1), π(2), . . . , π(n))

consists of two interlaced increasing sequences (only for the identity per-
mutation it is one increasing sequence), and that there are exactly 2n − n
distinct riffle shuffles on a deck of n cards.

1

2

0

0

3

4

5

1

1

1

0 1

0 2

1

1 4

1 5

3

0 1

1 3

1 4

0 2

1 5

In fact, if the pack is split such that the top t cards are taken into the right
hand (0 ≤ t ≤ n) and the other n− t cards into the left hand, then there are(
n
t

)
ways to interleave the two hands, all of which generate distinct permu-

tations — except that for each t there is one possibility to obtain the identity
permutation.

Now it’s not clear which probability distribution one should put on the riffle
shuffles — there is no unique answer since amateurs and professional deal-
ers would shuffle differently. However, the following model, developed
first by Edgar N. Gilbert and Claude Shannon in 1955 (at the legendary
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Bell Labs “Mathematics of Communication” department at the time), has
several virtues:

• it is elegant, simple, and seems natural,
• it models quite well the way an amateur would perform riffle shuffles,
• and we have a chance to analyze it.

Here are three descriptions — all of them describe the same probability
distribution Rif on Sn:

1. Rif : Sn −→ R is defined by

Rif(π) :=

⎧⎪⎨⎪⎩
n+1
2n if π = id,
1
2n if π consists of two increasing sequences,

0 otherwise.

2. Cut off t cards from the deck with probability 1
2n

(
n
t

)
, take them into

your right hand, and take the rest of the deck into your left hand. Now
when you have r cards in the right hand and � in the left, “drop” the
bottom card from your right hand with probability r

r+� , and from your

left hand with probability �
r+� . Repeat!

3. An inverse shuffle would take a subset of the cards in the deck, remove
them from the deck, and place them on top of the remaining cards of
the deck — while maintaining the relative order in both parts of the
deck. Such a move is determined by the subset of the cards: Take all
subsets with equal probability.

The inverse riffle shuffles correspond to
the permutations π = (π(1), . . . , π(n))

that are increasing except for at most
one “descent.” (Only the identity per-
mutation has no descent.)

Equivalently, assign a label “0” or “1” to each card, randomly and in-
dependently with probabilities 1

2 , and move the cards labelled “0” to
the top.

It is easy so see that these descriptions yield the same probability distri-
butions. For (1)⇐⇒ (3) just observe that we get the identity permutation
whenever all the 0-cards are on top of all the cards that are assigned a 1.

This defines the model. So how can we analyze it? How many riffle shuffles
are needed to get close to random? We won’t get the precise best-possible
answer, but quite a good one, by combining three components:

(1) We analyze inverse riffle shuffles instead,

(2) we describe a strong uniform stopping rule for these,

(3) and show that the key to its analysis is given by the birthday paradox!

Theorem 2. After performing k riffle shuffles on a deck of n cards, the
variation distance from a uniform distribution satisfies

‖Rif∗k − U‖ ≤ 1−
n−1∏
i=1

(
1− i

2k

)
.
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� Proof. (1) We may indeed analyze inverse riffle shuffles and try to see
how fast they get us from the starting distribution to (close to) uniform.
These inverse shuffles correspond to the probability distribution that is given
by Rif(π) := Rif(π−1).

Now the fact that every permutation has its unique inverse, and the fact that
U(π) = U(π−1), yield

‖Rif∗k − U‖ = ‖Rif∗k − U‖.

(This is Reeds’ inversion lemma!)

(2) In every inverse riffle shuffle, each card gets associated a digit 0 or 1:

5

1

2

3

41

1

1 5

0 1

0

2

3

4
0

0

1

1

1

1

5

4

2

3

If we remember these digits — say we just write them onto the cards —
then after k inverse riffle shuffles, each card has gotten an ordered string of
k digits. Our stopping rule is:

“STOP as soon as all cards have distinct strings.”

When this happens, the cards in the deck are sorted according to the binary
numbers bkbk−1 . . . b2b1, where bi is the bit that the card has picked up
in the i-th inverse riffle shuffle. Since these bits are perfectly random and
independent, this stopping rule is strong uniform!

In the following example, for n = 5 cards, we need T = 3 inverse shuffles
until we stop:

0

0

1

1

1

1

5

4

2

3

00 4

01 2

501

110

311

4

2

1

5

3111

101

010

001

000

5

1

2

3

4

(3) The time T taken by this stopping rule is distributed according to the
birthday paradox, for K = 2k: We put two cards into the same box if they
have the same label bkbk−1 . . . b2b1 ∈ {0, 1}k. So there are K = 2k boxes,
and the probability that some box gets more than one card ist

Prob[T > k] = 1−
n−1∏
i=1

(
1− i

2k

)
,

and as we have seen this bounds the variation distance ‖Rif∗k − U‖ =

‖Rif∗k − U‖. �
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So how often do we have to shuffle? For large n we will need roughly
k = 2 log2(n) shuffles. Indeed, setting k := 2 log2(cn) for some c ≥ 1 we

find (with a bit of calculus) that P [T > k] ≈ 1− e−
1

2c2 ≈ 1
2c2 .

Explicitly, for n = 52 cards the upper bound of Theorem 2 reads d(10) ≤
0.73, d(12) ≤ 0.28, d(14) ≤ 0.08 — so k = 12 should be “random
enough” for all practical purposes. But we don’t do 12 shuffles “in practice”
— and they are not really necessary, as a more detailed analysis shows
(with the results given in the margin). The analysis of riffle shuffles is part
of a lively ongoing discussion about the right measure of what is “random
enough.” Diaconis [4] is a guide to recent developments.

k d(k)
1 1.000
2 1.000
3 1.000
4 1.000
5 0.952
6 0.614
7 0.334
8 0.167
9 0.085

10 0.043

The variation distance after k riffle shuf-
fles, according to [2]

1 7 10

d(k)

1

Indeed, does it matter? Yes, it does: Even after three good riffle shuffles a
sorted deck of 52 cards looks quite random . . . but it isn’t. Martin Gardner
[5, Chapter 7] describes a number of striking card tricks that are based on
the hidden order in such a deck!
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“Random enough?”



Lattice paths and determinants Chapter 31

The essence of mathematics is proving theorems — and so, that is what
mathematicians do: They prove theorems. But to tell the truth, what they
really want to prove, once in their lifetime, is a Lemma, like the one by
Fatou in analysis, the Lemma of Gauss in number theory, or the Burnside–
Frobenius Lemma in combinatorics.

Now what makes a mathematical statement a true Lemma? First, it should
be applicable to a wide variety of instances, even seemingly unrelated prob-
lems. Secondly, the statement should, once you have seen it, be completely
obvious. The reaction of the reader might well be one of faint envy: Why
haven’t I noticed this before? And thirdly, on an esthetic level, the Lemma
— including its proof — should be beautiful!

In this chapter we look at one such marvelous piece of mathematical rea-
soning, a counting lemma that first appeared in a paper by Bernt Lindström
in 1972. Largely overlooked at the time, the result became an instant classic
in 1985, when Ira Gessel and Gerard Viennot rediscovered it and demon-
strated in a wonderful paper how the lemma could be successfully applied
to a diversity of difficult combinatorial enumeration problems.

The starting point is the usual permutation representation of the determinant
of a matrix. Let M = (mij) be a real n× n matrix. Then

detM =
∑
σ

signσ m1σ(1) m2σ(2) · · ·mnσ(n), (1)

where σ runs through all permutations of {1, 2, . . . , n}, and the sign of σ
is 1 or −1, depending on whether σ is the product of an even or an odd
number of transpositions.

Now we pass to graphs, more precisely to weighted directed bipartite graphs.
Let the vertices A1, . . . , An stand for the rows of M , and B1, . . . , Bn for
the columns. For each pair of i and j draw an arrow from Ai to Bj and give
it the weight mij , as in the figure.

A1 AnAi

B1 BnBj

mnj

. . . . . .

. . .. . .

mij

mnn

m11

mi1In terms of this graph, the formula (1) has the following interpretation:

• The left-hand side is the determinant of the path matrix M , whose
(i, j)-entry is the weight of the (unique) directed path from Ai to Bj .

• The right-hand side is the weighted (signed) sum over all vertex-disjoint
path systems from A = {A1, . . . , An} to B = {B1, . . . , Bn}. Such a
system Pσ is given by paths

A1 → Bσ(1), . . . , An → Bσ(n),

M. Aigner, G.M. Ziegler, Proofs from THE BOOK, DOI 10.1007/978-3-662-44205-0_31,  
© Springer-Verlag Berlin Heidelberg 2014 
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and the weight of the path system Pσ is the product of the weights of
the individual paths:

w(Pσ) = w(A1 → Bσ(1)) · · · w(An → Bσ(n)).

In this interpretation formula (1) reads

detM =
∑
σ

signσ w(Pσ).

And what is the result of Gessel and Viennot? It is the natural generalization
of (1) from bipartite to arbitrary graphs. It is precisely this step which
makes the Lemma so widely applicable — and what’s more, the proof is
stupendously simple and elegant.

Let us first collect the necessary concepts. We are given a finite acyclic

An acyclic directed graph

directed graph G = (V,E), where acyclic means that there are no directed
cycles in G. In particular, there are only finitely many directed paths
between any two vertices A and B, where we include all trivial paths
A → A of length 0. Every edge e carries a weight w(e). If P is a
directed path from A to B, written shortly P : A → B, then we define
the weight of P as

w(P ) :=
∏
e∈P

w(e),

which is defined to be w(P ) = 1 if P is a path of length 0.

Now let A = {A1, . . . , An} and B = {B1, . . . , Bn} be two sets of n
vertices, whereA and B need not be disjoint. To A and B we associate the
path matrix M = (mij) with

mij :=
∑

P :Ai→Bj

w(P ).

A path system P from A to B consists of a permutation σ together with n
paths Pi : Ai → Bσ(i), for i = 1, . . . , n; we write sign P = signσ . The
weight of P is the product of the path weights

w(P) =

n∏
i=1

w(Pi), (2)

which is the product of the weights of all the edges of the path system.

Finally, we say that the path system P = (P1, . . . , Pn) is vertex-disjoint if
the paths of P are pairwise vertex-disjoint.

Lemma. Let G = (V,E) be a finite weighted acyclic directed graph,
A = {A1, . . . , An} and B = {B1, . . . , Bn} two n-sets of vertices, and M
the path matrix from A to B. Then

detM =
∑

P vertex-disjoint
path system

signP w(P). (3)
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� Proof. A typical summand of det(M) is signσ m1σ(1) · · ·mnσ(n),
which can be written as

signσ
( ∑
P1:A1→Bσ(1)

w(P1)
)
· · ·

( ∑
Pn:An→Bσ(n)

w(Pn)
)
.

Summing over σ we immediately find from (2) that

detM =
∑
P

signP w(P),

whereP runs through all path systems fromA to B (vertex-disjoint or not).
Hence to arrive at (3), all we have to show is∑

P∈N
signP w(P) = 0 , (4)

where N is the set of all path systems that are not vertex-disjoint. And this
is accomplished by an argument of singular beauty. Namely, we exhibit an
involution π : N → N (without fixed points) such that for P and πP

w(πP) = w(P) and sign πP = −signP .

Clearly, this will imply (4) and thus the formula (3) of the Lemma.

Ai0 Aj0

X

Bσ(j0)
Bσ(i0)

The involution π is defined in the most natural way. Let P ∈ N with paths
Pi : Ai → Bσ(i). By definition, some pair of paths will intersect:

• Let i0 be the minimal index such that Pi0 shares some vertex with
another path.

• Let X be the first such common vertex on the path Pi0 .

• Let j0 be the minimal index (j0 > i0) such that Pj0 has the vertex X
in common with Pi0 .

Now we construct the new system πP = (P ′1, . . . , P
′
n) as follows:

• Set P ′k = Pk for all k �= i0, j0.

• The new path P ′i0 goes from Ai0 to X along Pi0 , and then continues
to Bσ(j0) along Pj0 . Similarly, P ′j0 goes from Aj0 to X along Pj0 and
continues to Bσ(i0) along Pi0 .

Clearly π(πP) = P , since the index i0, the vertex X , and the index j0 are
the same as before. In other words, applying π twice we switch back to
the old paths Pi. Next, since πP and P use precisely the same edges, we
certainly have w(πP) = w(P). And finally, since the new permutation σ′

is obtained by multiplying σ with the transposition (i0, j0), we find that
signπP = −signP , and that’s it. �

The Gessel–Viennot Lemma can be used to derive all basic properties of
determinants, just by looking at appropriate graphs. Let us consider one
particularly striking example, the formula of Binet–Cauchy, which gives a
very useful generalization of the product rule for determinants.
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Theorem. If P is an r × s matrix and Q an s× r matrix, r ≤ s, then

det(PQ) =
∑
Z

(detPZ)(detQZ),

where PZ is the r× r submatrix of P with column-setZ , and QZ the r× r
submatrix of Q with the corresponding rows Z .

AiA1 Ar

B1

pi1

Bs

. . .

. . .. . .

. . .

. . .

pik

qkjq1j

Bk

C1 Cj Cr

� Proof. Let the bipartite graph onA and B correspond to P as before, and
similarly the bipartite graph on B and C to Q. Consider now the concate-
nated graph as indicated in the figure on the left, and observe that the (i, j)-
entry mij of the path matrix M fromA to C is precisely mij =

∑
k pikqkj ,

thus M = PQ.

Since the vertex-disjoint path systems from A to C in the concatenated
graph correspond to pairs of systems from A to Z resp. from Z to C, the
result follows immediately from the Lemma, by noting that sign (στ) =
(sign σ) (sign τ). �

The Lemma of Gessel–Viennot is also the source of a great number of re-
sults that relate determinants to enumerative properties. The recipe is al-
ways the same: Interpret the matrix M as a path matrix, and try to compute
the right-hand side of (3). As an illustration we will consider the original
problem studied by Gessel and Viennot, which led them to their Lemma:

Suppose that a1 < a2 < · · · < an and b1 < b2 < · · · < bn are two
sets of natural numbers. We wish to compute the determinant of the
matrix M = (mij), where mij is the binomial coefficient

(
ai

bj

)
.

In other words, Gessel and Viennot were looking at the determinants of
arbitrary square matrices of Pascal’s triangle, such as the matrix

det

⎛⎜⎜⎝
(
3
1

) (
3
3

) (
3
4

)(
4
1

) (
4
3

) (
4
4

)(
6
1

) (
6
3

) (
6
4

)
⎞⎟⎟⎠ = det

⎛⎝ 3 1 0
4 4 1
6 20 15

⎞⎠
given by the bold entries of Pascal’s triangle, as displayed in the margin.

1 7 35 7 121 2135

1
1
1

1
1

1
2

5 10
6

10 5 1
6 1

1
1 3 13

4 14

151 6 20 15

As a preliminary step to the solution of the problem we recall a well-known
result which connects binomial coefficients to lattice paths. Consider an
a × b-lattice as in the margin. Then the number of paths from the lower

b = 4

a = 3

left-hand corner to the upper right-hand corner, where the only steps that
are allowed for the paths are up (North) and to the right (East), is

(
a+b
a

)
.

The proof of this is easy: each path consists of an arbitrary sequence of b
“east” and a “north” steps, and thus it can be encoded by a sequence of the
form NENEEEN, consisting of a+b letters, a N’s and b E’s. The number of
such strings is the number of ways to choose a positions of letters N from
a total of a+ b positions, which is

(
a+b
a

)
=

(
a+b
b

)
.
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Now look at the figure to the right, where Ai is placed at the point (0,−ai)
and Bj at (bj ,−bj).

...
Bj

B1

Bn

...

An

Ai

A1

The number of paths from Ai to Bj in this grid that use only steps to the
north and east is, by what we just proved,

(
bj+(ai−bj)

bj

)
=

(
ai

bj

)
. In other

words, the matrix of binomials M is precisely the path matrix from A to B
in the directed lattice graph for which all edges have weight 1, and all edges
are directed to go north or east. Hence to compute detM we may apply
the Gessel–Viennot Lemma. A moment’s thought shows that every vertex-
disjoint path system P fromA to B must consist of paths Pi : Ai → Bi for
all i. Thus the only possible permutation is the identity, which has sign = 1,
and we obtain the beautiful result

det
((

ai

bj

))
= # vertex-disjoint path systems fromA to B.

In particular, this implies the far from obvious fact that detM is always
nonnegative, since the right-hand side of the equality counts something.
More precisely, one gets from the Gessel–Viennot Lemma that detM = 0
if and only if ai < bi for some i.

In our previous small example,

det

⎛⎜⎜⎝
(
3
1

) (
3
3

) (
3
4

)(
4
1

) (
4
3

) (
4
4

)(
6
1

) (
6
3

) (
6
4

)
⎞⎟⎟⎠ = #

vertex-disjoint
path systems in

1

3

4

3

4

6

“Lattice paths”
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Cayley’s formula

for the number of trees

Chapter 32

Arthur Cayley

One of the most beautiful formulas in enumerative combinatorics concerns
the number of labeled trees. Consider the set N = {1, 2, . . . , n}. How
many different trees can we form on this vertex set? Let us denote this
number by Tn. Enumeration “by hand” yields T1 = 1, T2 = 1, T3 = 3,
T4 = 16, with the trees shown in the following table:

4 3 4 3 43 43 4 3 4 3 4 3 4

3 4 3 4 3 43 43 4 3 4 3 4 3 4

1 1 1 2 1 21 22

1 2 1 2 1 21 21

3

2 2 1 2 1 2

1 2 1 2 1 21 21 2 1 2 1 2 1 2

1

3 33

Note that we consider labeled trees, that is, although there is only one tree
of order 3 in the sense of graph isomorphism, there are 3 different labeled
trees obtained by marking the inner vertex 1, 2 or 3. For n = 5 there are
three nonisomorphic trees:

605 60

For the first tree there are clearly 5 different labelings, and for the second
and third there are 5!

2 = 60 labelings, so we obtain T5 = 125. This should
be enough to conjecture Tn = nn−2, and that is precisely Cayley’s result.

Theorem. There are nn−2 different labeled trees on n vertices.

This beautiful formula yields to equally beautiful proofs, drawing on a
variety of combinatorial and algebraic techniques. We will outline three
of them before presenting the proof which is to date the most beautiful of
them all.

M. Aigner, G.M. Ziegler, Proofs from THE BOOK, DOI 10.1007/978-3-662-44205-0_32,  
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222 Cayley’s formula for the number of trees

� First proof (Bijection). The classical and most direct method is to find
a bijection from the set of all trees on n vertices onto another set whose
cardinality is known to be nn−2. Naturally, the set of all ordered sequences
(a1, . . . , an−2) with 1 ≤ ai ≤ n comes into mind. Thus we want to
uniquely encode every tree T by a sequence (a1, . . . , an−2). Such a code
was found by Prüfer and is contained in most books on graph theory.

Here we want to discuss another bijection proof, due to Joyal, which is
less known but of equal elegance and simplicity. For this, we consider not
just trees t on N = {1, . . . , n} but trees together with two distinguished

vertices, the left end and the right end , which may coincide. Let
Tn = {(t; , )} be this new set; then, clearly, |Tn| = n2Tn.

1 1 1 1

22 2 2

The four trees of T2

Our goal is thus to prove |Tn| = nn. Now there is a set whose size is
known to be nn, namely the set NN of all mappings from N into N . Thus
our formula is proved if we can find a bijection from NN onto Tn.

Let f : N −→ N be any map. We represent f as a directed graph �Gf by
drawing arrows from i to f(i).

For example, the map

f =

(
1 2 3 4 5 6 7 8 9 10
7 5 5 9 1 2 5 8 4 7

)
is represented by the directed graph in the margin.

8

1
97

5 3

6

10

�Gf

4

2

Look at a component of �Gf . Since there is precisely one edge emanating
from each vertex, the component contains equally many vertices and edges,
and hence precisely one directed cycle. Let M ⊆ N be the union of the
vertex sets of these cycles. A moment’s thought shows that M is the unique
maximal subset ofN such that the restriction of f ontoM acts as a bijection

on M . Write f |M =

(
a b . . . z

f(a) f(b) . . . f(z)

)
such that the numbers

a, b, . . . , z in the first row appear in natural order. This gives us an ordering
f(a), f(b), . . . , f(z) of M according to the second row. Now f(a) is our
left end and f(z) is our right end.

The tree t corresponding to the map f is now constructed as follows: Draw
f(a), . . . , f(z) in this order as a path from f(a) to f(z), and fill in the
remaining vertices as in �Gf (deleting the arrows).

In our example above we obtain M = {1, 4, 5, 7, 8, 9}

f |M =

(
1 4 5 7 8 9
7 9 1 5 8 4

)
and thus the tree t depicted in the margin.

5 89 1
7

6

2

4

10
3

It is immediate how to reverse this correspondence: Given a tree t, we look
at the unique path P from the left end to the right end. This gives us the
set M and the mapping f |M . The remaining correspondences i→ f(i) are
then filled in according to the unique paths from i to P . �
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� Second proof (Linear Algebra). We can think of Tn as the number of
spanning trees in the complete graph Kn. Now let us look at an arbitrary
connected simple graph G on V = {1, 2, . . . , n}, denoting by t(G) the
number of spanning trees; thus Tn = t(Kn). The following celebrated
result is Kirchhoff’s matrix-tree theorem (see [1]). Consider the incidence
matrix B = (bie) of G, whose rows are labeled by V , the columns by E,
where we write bie = 1 or 0 depending on whether i ∈ e or i �∈ e. Note
that |E| ≥ n − 1 since G is connected. In every column we replace one
of the two 1’s by −1 in an arbitrary manner (this amounts to an orientation
of G), and call the new matrix C. M = CCT is then a symmetric n × n
matrix with the degrees d1, . . . , dn in the main diagonal.

Proposition. We have t(G) = detMii for all i = 1, . . . , n, where Mii

results from M by deleting the i-th row and the i-th column.

� Proof. The key to the proof is the Binet–Cauchy theorem proved in the
previous chapter: When P is an r× s matrix and Q an s× r matrix, r ≤ s,
then det(PQ) equals the sum of the products of determinants of corre-
sponding r× r submatrices, where “corresponding” means that we take the
same indices for the r columns of P and the r rows of Q.

For Mii this means that

detMii =
∑

N
detN · detNT =

∑
N
(detN)2,

where N runs through all (n−1)× (n−1) submatrices of C\{row i}. The
n− 1 columns of N correspond to a subgraph of G with n− 1 edges on n
vertices, and it remains to show that

detN =

{
±1 if these edges span a tree
0 otherwise.

Suppose the n− 1 edges do not span a tree. Then there exists a component
which does not contain i. Since the corresponding rows of this component
add to 0, we infer that they are linearly dependent, and hence detN = 0.

“A nonstandard method of counting

trees: Put a cat into each tree, walk your

dog, and count how often he barks.”

Assume now that the columns of N span a tree. Then there is a ver-
tex j1 �= i of degree 1; let e1 be the incident edge. Deleting j1, e1 we
obtain a tree with n − 2 edges. Again there is a vertex j2 �= i of de-
gree 1 with incident edge e2. Continue in this way until j1, j2, . . . , jn−1

and e1, e2, . . . , en−1 with ji ∈ ei are determined. Now permute the rows
and columns to bring jk into the k-th row and ek into the k-th column.
Since by construction jk /∈ e� for k < �, we see that the new matrix N ′ is
lower triangular with all elements on the main diagonal equal to ±1. Thus
det N = ±det N ′ = ±1, and we are done.

For the special case G = Kn we clearly obtain

Mii =

⎛⎜⎜⎝
n− 1 −1 . . . −1
−1 n− 1 −1

...
. . .

...
−1 −1 . . . n− 1

⎞⎟⎟⎠
and an easy computation shows detMii = nn−2. �
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� Third proof (Recursion). Another classical method in enumerative
combinatorics is to establish a recurrence relation and to solve it by
induction. The following idea is essentially due to Riordan and Rényi.
To find the proper recursion, we consider a more general problem (which
already appears in Cayley’s paper). Let A be an arbitrary k-set of the
vertices. By Tn,k we denote the number of (labeled) forests on {1, . . . , n}
consisting of k trees where the vertices of A appear in different trees.
Clearly, the set A does not matter, only the size k. Note that Tn,1 = Tn.

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4
For example, T4,2 = 8 for A = {1, 2}

Consider such a forest F with A = {1, 2, . . . , k}, and suppose 1 is adja-
cent to i vertices, as indicated in the margin. Deleting 1, the i neighbors
together with 2, . . . , k yield one vertex each in the components of a forest
that consists of k − 1 + i trees. As we can (re)construct F by first fixing i,
then choosing the i neighbors of 1 and then the forest F\1, this yields

1

︸ ︷︷ ︸
i

2 3
. . .

k

Tn,k =

n−k∑
i=0

(
n− k

i

)
Tn−1,k−1+i (1)

for all n ≥ k ≥ 1, where we set T0,0 = 1, Tn,0 = 0 for n > 0. Note that
T0,0 = 1 is necessary to ensure Tn,n = 1.

Proposition. We have
Tn,k = k nn−k−1 (2)

and thus, in particular,

Tn,1 = Tn = nn−2.

� Proof. By (1), and using induction, we find

Tn,k =

n−k∑
i=0

(
n− k

i

)
(k − 1 + i)(n− 1)n−1−k−i (i→ n− k − i)

=

n−k∑
i=0

(
n− k

i

)
(n− 1− i)(n− 1)i−1

=

n−k∑
i=0

(
n− k

i

)
(n− 1)i −

n−k∑
i=1

(
n− k

i

)
i(n− 1)i−1

= nn−k − (n− k)

n−k∑
i=1

(
n− 1− k

i− 1

)
(n− 1)i−1

= nn−k − (n− k)

n−1−k∑
i=0

(
n− 1− k

i

)
(n− 1)i

= nn−k − (n− k)nn−1−k = k nn−1−k. �
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� Fourth proof (Double Counting). The following marvelous idea due
to Jim Pitman gives Cayley’s formula and its generalization (2) without
induction or bijection — it is just clever counting in two ways.

A rooted forest on {1, . . . , n} is a forest together with a choice of a root in
each component tree. Let Fn,k be the set of all rooted forests that consist
of k rooted trees. Thus Fn,1 is the set of all rooted trees.

Note that |Fn,1| = nTn, since in every tree there are n choices for the root.
We now regard Fn,k ∈ Fn,k as a directed graph with all edges directed
away from the roots. Say that a forest F contains another forest F ′ if F
contains F ′ as directed graph. Clearly, if F properly contains F ′, then F
has fewer components than F ′. The figure shows two such forests with the
roots on top. 10

48F2

1

3

7

9

5
2

6

F2 contains F3

5

48

F3

7

12

3

10

9

6

Here is the crucial idea. Call a sequence F1, . . . , Fk of forests a refining
sequence if Fi ∈ Fn,i and Fi contains Fi+1, for all i.

Now let Fk be a fixed forest in Fn,k and denote

• by N(Fk) the number of rooted trees containing Fk, and

• by N∗(Fk) the number of refining sequences ending in Fk.

We count N∗(Fk) in two ways, first by starting at a tree and secondly by
starting at Fk. Suppose F1 ∈ Fn,1 contains Fk. Since we may delete
the k − 1 edges of F1\Fk in any possible order to get a refining sequence
from F1 to Fk, we find

N∗(Fk) = N(Fk) (k − 1)!. (3)

Let us now start at the other end. To produce from Fk an Fk−1 we have to
add a directed edge, from any vertex a, to any of the k−1 roots of the trees
that do not contain a (see the figure on the right, where we pass from F3

to F2 by adding the edge 3 7). Thus we have n(k − 1) choices.
3

5

48 7

1
9

10

2

6
F3 −→ F2

Similarly, for Fk−1 we may produce a directed edge from any vertex b to
any of the k−2 roots of the trees not containing b. For this we have n(k−2)
choices. Continuing this way, we arrive at

N∗(Fk) = nk−1(k − 1)!, (4)

and out comes, with (3), the unexpectedly simple relation

N(Fk) = nk−1 for any Fk ∈ Fn,k.

For k = n, Fn consists just of n isolated vertices. Hence N(Fn) counts the
number of all rooted trees, and we obtain |Fn,1| = nn−1, and thus Cayley’s
formula. �

But we get even more out of this proof. Formula (4) yields for k = n:

#
{

refining sequences (F1, F2, . . . , Fn)
}

= nn−1(n− 1)!. (5)

For Fk∈Fn,k, let N∗∗(Fk) denote the number of those refining sequences
F1, . . . , Fn whose k-th term is Fk. Clearly this is N∗(Fk) times the number
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of ways to choose (Fk+1, . . . , Fn). But this latter number is (n− k)! since
we may delete the n− k edges of Fk in any possible way, and so

N∗∗(Fk) = N∗(Fk)(n− k)! = nk−1(k − 1)!(n− k)!. (6)

Since this number does not depend on the choice of Fk, dividing (5) by (6)
yields the number of rooted forests with k trees:

|Fn,k| =
nn−1(n− 1)!

nk−1(k − 1)!(n− k)!
=

(
n

k

)
k nn−1−k.

As we may choose the k roots in
(
n
k

)
possible ways, we have reproved the

formula Tn,k = knn−k−1 without recourse to induction.

Let us end with a historical note. Cayley’s paper from 1889 was anticipated
by Carl W. Borchardt (1860), and this fact was acknowledged by Cayley
himself. An equivalent result appeared even earlier in a paper of James J.
Sylvester (1857), see [2, Chapter 3]. The novelty in Cayley’s paper was
the use of graph theory terms, and the theorem has been associated with his
name ever since.
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Identities versus bijections Chapter 33

Consider the infinite product (1 + x)(1 + x2)(1 + x3)(1 + x4) · · · and
expand it in the usual way into a series

∑
n≥0 anx

n by grouping together
those products that yield the same power xn. By inspection we find for the
first terms∏
k≥1

(1 + xk) = 1 + x+ x2 + 2x3 + 2x4 + 3x5 + 4x6 + 5x7 + · · · . (1)

So we have e. g. a6 = 4, a7 = 5, and we (rightfully) suspect that an goes
to infinity with n −→∞.

Looking at the equally simple product (1−x)(1−x2)(1−x3)(1−x4) · · ·
something unexpected happens. Expanding this product we obtain∏
k≥1

(1−xk) = 1−x−x2+x5+x7−x12−x15+x22+x26− · · · . (2)

It seems that all coefficients are equal to 1, −1 or 0. But is this true? And
if so, what is the pattern?

Infinite sums and products and their convergence have played a central role
in analysis since the invention of the calculus, and contributions to the
subject have been made by some of the greatest names in the field, from
Leonhard Euler to Srinivasa Ramanujan.

In explaining identities such as (1) and (2), however, we disregard conver-
gence questions — we simply manipulate the coefficients. In the language
of the trade we deal with “formal” power series and products. In this frame-
work we are going to show how combinatorial arguments lead to elegant
proofs of seemingly difficult identities.

Our basic notion is that of a partition of a natural number. We call any sum

λ : n = λ1 + λ2 + · · ·+ λt with λ1 ≥ λ2 ≥ · · · ≥ λt ≥ 1

a partition of n. P (n) shall be the set of all partitions of n, with p(n) :=
|P (n)|, where we set p(0) = 1.

5 = 5

5 = 4 + 1

5 = 3 + 2

5 = 3 + 1 + 1

5 = 2 + 2 + 1

5 = 2 + 1 + 1 + 1

5 = 1 + 1 + 1 + 1 + 1.

The partitions counted by p(5) = 7

What have partitions got to do with our problem? Well, consider the
following product of infinitely many series:

(1+x+x2+x3+· · · )(1+x2+x4+x6+· · · )(1+x3+x6+x9+· · · ) · · · (3)

where the k-th factor is (1+xk +x2k +x3k+ · · · ). What is the coefficient
of xn when we expand this product into a series

∑
n≥0 anx

n ? A moment’s
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thought should convince you that this is just the number of ways to write n
as a sum

n = n1 · 1 + n2 · 2 + n3 · 3 + · · ·

= 1 + · · ·+ 1︸ ︷︷ ︸
n1

+ 2 + · · ·+ 2︸ ︷︷ ︸
n2

+ 3 + · · ·+ 3︸ ︷︷ ︸
n3

+ · · · .

So the coefficient is nothing else but the number p(n) of partitions of n.
Since the geometric series 1+xk+x2k+ · · · equals 1

1−xk , we have proved
our first identity: ∏

k≥1

1

1− xk
=

∑
n≥0

p(n)xn . (4)

What’s more, we see from our analysis that the factor 1
1−xk accounts for

the contribution of k to a partition of n. Thus, if we leave out 1
1−xk from

the product on the left side of (4), then k does not appear in any partition
on the right side. As an example we immediately obtain∏

i≥1

1

1− x2i−1
=

∑
n≥0

po(n)x
n, (5)

where po(n) is the number of partitions of n all of whose summands are
odd, and the analogous statement holds when all summands are even.

6 = 5 + 1

6 = 3 + 3

6 = 3 + 1 + 1 + 1

6 = 1 + 1 + 1 + 1 + 1 + 1

Partitions of 6 into odd parts: po(6) = 4

By now it should be clear what the n-th coefficient in the infinite product∏
k≥1(1 + xk) will be. Since we take from any factor in (3) either 1 or xk ,

this means that we consider only those partitions where any summand k
appears at most once. In other words, our original product (1) is expanded
into ∏

k≥1

(1 + xk) =
∑
n≥0

pd(n)x
n , (6)

where pd(n) is the number of partitions of n into distinct summands.

Now the method of formal series displays its full power. Since 1 − x2 =
(1− x)(1 + x) we may write

∏
k≥1

(1 + xk) =
∏
k≥1

1− x2k

1− xk
=

∏
k≥1

1

1− x2k−1

since all factors 1 − x2i with even exponent cancel out. So, the infinite
products in (5) and (6) are the same, and hence also the series, and we
obtain the beautiful result

po(n) = pd(n) for all n ≥ 0. (7)

7 = 7

7 = 5 + 1 + 1

7 = 3 + 3 + 1

7 = 3 + 1 + 1 + 1 + 1

7 = 1 + 1 + 1 + 1 + 1 + 1 + 1

7 = 7

7 = 6 + 1

7 = 5 + 2

7 = 4 + 3

7 = 4 + 2 + 1.

The partitions of 7 into odd resp. distinct
parts: po(7) = pd(7) = 5.

Such a striking equality demands a simple proof by bijection — at least that
is the point of view of any combinatorialist.
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Problem. Let Po(n) and Pd(n) be the partitions of n into odd and into
distinct summands, respectively: Find a bijection from Po(n) onto Pd(n)!

Several bijections are known, but the following one due to J. W. L. Glaisher
(1907) is perhaps the neatest. Let λ be a partition of n into odd parts. We
collect equal summands and have

n = λ1 + · · ·+ λ1︸ ︷︷ ︸
n1

+ λ2 + · · ·+ λ2︸ ︷︷ ︸
n2

+ · · · + λt + · · ·+ λt︸ ︷︷ ︸
nt

= n1 · λ1 + n2 · λ2 + · · ·+ nt · λt.

Now we write n1 = 2m1 + 2m2 + · · · + 2mr in its binary representation
and similarly for the other ni. The new partition λ′ of n is then

λ′ : n = 2m1λ1 + 2m2λ1 + · · ·+ 2mrλ1 + 2k1λ2 + · · · .

We have to check that λ′ is in Pd(n), and that φ : λ �−→ λ′ is indeed a

For example,
λ : 25 = 5+5+5+3+3+1+1+1+1

is mapped by φ to

λ′ : 25= (2+1)5 + (2)3 + (4)1
= 10 + 5 + 6 + 4
=10 + 6 + 5 + 4 .

bijection. Both claims are easy to verify: If 2aλi = 2bλj then 2a = 2b

since λi and λj are odd, and so λi = λj . Hence λ′ is in Pd(n). Conversely,
when n = μ1 + μ2 + · · · + μs is a partition into distinct summands, then
we reverse the bijection by collecting all μi with the same highest power
of 2, and write down the odd parts with the proper multiplicity. The margin
displays an example.

We write
λ′ : 30 = 12 + 6 + 5 + 4 + 3
as 30=4(3+1) + 2(3) + 1(5+3)

= (1)5 + (4+2+1)3 + (4)1

and obtain as φ−1(λ′) the partition
λ : 30 = 5+ 3+ 3+ 3+ 3+ 3+ 3+

3 + 1 + 1 + 1 + 1

into odd summands.Manipulating formal products has thus led to the equality po(n) = pd(n)
for partitions which we then verified via a bijection. Now we turn this
around, give a bijection proof for partitions and deduce an identity. This
time our goal is to identify the pattern in the expansion (2).

Look at

1− x− x2 + x5 + x7 − x12 − x15 + x22 + x26 − x35 − x40 + · · · .

The exponents (apart from 0) seem to come in pairs, and taking the expo-
nents of the first power in each pair gives the sequence

1 5 12 22 35 51 70 . . .

well-known to Euler. These are the pentagonal numbers f(j), whose name
is suggested by the figure in the margin.

j = 1

2

3

4

Pentagonal numbers

We easily compute f(j) = 3j2−j
2 and f̄(j) = 3j2+j

2 for the other num-
ber of each pair. In summary, we conjecture, as Euler has done, that the
following formula should hold.

Theorem.∏
k≥1

(1− xk) = 1 +
∑
j≥1

(−1)j
(
x

3j2−j
2 + x

3j2+j
2

)
. (8)



230 Identities versus bijections

Euler proved this remarkable theorem by calculations with formal series,
but we give a bijection proof from The Book. First of all, we notice by (4)
that the product

∏
k≥1(1−xk) is precisely the inverse of our partition series∑

n≥0 p(n)x
n. Hence setting

∏
k≥1(1− xk) =:

∑
n≥0 c(n)x

n, we find(∑
n≥0

c(n)xn
)
·
(∑
n≥0

p(n)xn
)

= 1.

Comparing coefficients this means that c(n) is the unique sequence with
c(0) = 1 and

n∑
k=0

c(k)p(n− k) = 0 for all n ≥ 1. (9)

Writing the right-hand of (8) as
∞∑

j=−∞
(−1)jx 3j2+j

2 , we have to show that

c(k) =

⎧⎪⎪⎨⎪⎪⎩
1 for k = 3j2+j

2 ,when j ∈ Z is even,

−1 for k = 3j2+j
2 ,when j ∈ Z is odd,

0 otherwise

gives this unique sequence. Setting b(j) = 3j2+j
2 for j ∈ Z and substituting

these values into (9), our conjecture takes on the simple form∑
j even

p(n− b(j)) =
∑
j odd

p(n− b(j)) for all n,

where of course we only consider j with b(j) ≤ n. So the stage is set: We
have to find a bijection

φ :
⋃

j even

P (n− b(j)) −→
⋃
j odd

P (n− b(j)).

Again several bijections have been suggested, but the following construc-
tion by David Bressoud and Doron Zeilberger is astonishingly simple. We
just give the definition of φ (which is, in fact, an involution), and invite the
reader to verify the easy details.

For λ : λ1 + · · ·+ λt ∈ P (n− b(j)) set

φ(λ) :=

⎧⎪⎨⎪⎩
(t+ 3j − 1) + (λ1 − 1) + · · ·+ (λt − 1) if t+ 3j ≥ λ1,

(λ2 + 1) + · · ·+ (λt + 1) + 1 + · · ·+ 1︸ ︷︷ ︸
λ1−t−3j−1

if t+ 3j < λ1,

where we leave out possible 0’s. One finds that in the first case φ(λ) is in
P (n− b(j − 1)), and in the second case in P (n− b(j + 1)).

As an example consider n = 15, j = 2,
so b(2) = 7. The partition 3+2+2+1

in P (15 − b(2)) = P (8) is mapped to
9+2+1+1, which is in P (15−b(1)) =

P (13).

This was beautiful, and we can get even more out of it. We already know
that ∏

k≥1

(1 + xk) =
∑
n≥0

pd(n)x
n.
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As experienced formal series manipulators we notice that the introduction
of the new variable y yields∏

k≥1

(1 + yxk) =
∑

n,m≥0

pd,m(n)xnym,

where pd,m(n) counts the partitions of n into precisely m distinct sum-
mands. With y = −1 this yields∏

k≥1

(1− xk) =
∑
n≥0

(Ed(n)−Od(n))x
n, (10)

whereEd(n) is the number of partitions of n into an even number of distinct
parts, and Od(n) is the number of partitions into an odd number. And here
is the punchline. Comparing (10) to Euler’s expansion in (8) we infer the
beautiful result

Ed(n)−Od(n) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 for n = 3j2±j

2 when j ≥ 0 is even,

−1 for n = 3j2±j
2 when j ≥ 1 is odd,

0 otherwise.

An example for n = 10:
10 = 9 + 1

10 = 8 + 2

10 = 7 + 3

10 = 6 + 4

10 = 4 + 3 + 2 + 1

and
10 = 10

10 = 7 + 2 + 1

10 = 6 + 3 + 1

10 = 5 + 4 + 1

10 = 5 + 3 + 2,
so Ed(10) = Od(10) = 5.

This is, of course, just the beginning of a longer and still ongoing story. The
theory of infinite products is replete with unexpected indentities, and with
their bijective counterparts. The most famous examples are the so-called
Rogers–Ramanujan identities, named after Leonard Rogers and Srinivasa
Ramanujan, in which the number 5 plays a mysterious role:

Srinivasa Ramanujan

∏
k≥1

1

(1− x5k−4)(1− x5k−1)
=

∑
n≥0

xn2

(1 − x)(1 − x2) · · · (1− xn)
,

∏
k≥1

1

(1− x5k−3)(1− x5k−2)
=

∑
n≥0

xn2+n

(1 − x)(1 − x2) · · · (1− xn)
.

The reader is invited to translate them into the following partition identities
first noted by Percy MacMahon:

• Let f(n) be the number of partitions of n all of whose summands are
of the form 5k+1 or 5k+ 4, and g(n) the number of partitions whose
summands differ by at least 2. Then f(n) = g(n).

• Let r(n) be the number of partitions of n all of whose summands are
of the form 5k+ 2 or 5k+3, and s(n) the number of partitions whose
parts differ by at least 2 and which do not contain 1. Then r(n) = s(n).

All known formal series proofs of the Rogers–Ramanujan identities are
quite involved, and for a long time bijection proofs of f(n) = g(n) and
of r(n) = s(n) seemed elusive. Such proofs were eventually given 1981
by Adriano Garsia and Stephen Milne. Their bijections are, however, very
complicated — Book proofs are not yet in sight.
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The finite Kakeya problem Chapter 34

“How small can a set in the plane be in which you can turn a needle
of length 1 completely around?”

This beautiful question was posed by the Japanese mathematician Sōichi
Kakeya in 1917. It gained immediate prominence and, together with its
higher-dimensional analogs, helped initiate a whole new field, today called
geometric measure theory. To be precise, by “turning around” Kakeya had
a continuous motion in mind that returns the needle to the original position
with its ends reversed, like a Samurai whirling his pole. Any such motion
takes place in a compact subset of the plane.

Obviously, a disk of diameter 1 is such a Kakeya needle set (of area π
4 ≈

0.785), as is the equilateral triangle of height 1 that has area 1√
3
≈ 0.577.

For convex regions Julius Pal showed that this is the minimum, but in gen-
eral we can do better: The three-pointed deltoid in the margin is also a
Kakeya needle set, as seen by moving the inner point around the small
circle. The area of the deltoid is π

8 ≈ 0.393, and Kakeya seems to have
thought that this is the minimum for connected sets.

1

1

1

So it was a big surprise when a few years after the question was posed
Abram Samoilovitch Besicovitch produced needle sets of arbitrarily small
area. His examples were rather complicated with many holes and large
diameter, but in a remarkable paper Frederick Cunningham Jr. showed that
one can even find simply connected needle sets of arbitrarily small area
inside the circle of diameter 2.

As a matter of fact, Besicovitch was initially interested in a closely related
problem, which he then applied to solve the needle problem. Call a compact
set K ⊆ Rn a Kakeya set (or, more aptly, a Besicovitch set) if it contains
a unit line segment in every direction. Besicovitch proved the spectacular
result that for every dimension there are Kakeya sets of measure 0. But how
can this be? Our intuition tells us that these sets need to be somehow spread
out, since they contain segments in every direction! (In contrast, one can
show that all Kakeya needle sets, which not only contain a needle in every
direction, but in which the needle can turn, have positive measure.)

Now these were the years when the notion of (topological) dimension came
into being at the hands of Lebesgue, Menger, Hausdorff and others, which
precisely captured this “spreading out” by various covering conditions; here
we use the Hausdorff dimension hd(K). We don’t need the details of the

M. Aigner, G.M. Ziegler, Proofs from THE BOOK, DOI 10.1007/978-3-662-44205-0_34,  
© Springer-Verlag Berlin Heidelberg 2014 



234 The finite Kakeya problem

definition: Let us just note that the Euclidean space Rn has Hausdorff
dimension n, and that hd is a monotone function, so every K ⊆ Rn

satisfies hd(K) ≤ n.

The Kakeya conjecture. Every Kakeya set in Rn has Hausdorff
dimension n.

The conjecture is true for n = 1 and 2, but it is open for all n ≥ 3,
and it appears to get more difficult as the dimension increases. Today it
is considered to be one of the major open problems in geometric measure
theory.

In an inspiring paper from 1999 Thomas Wolff gave the problem a com-
pletely new twist by suggesting to look at finite fields F . Consider the
vector space Fn. Let us call K ⊆ Fn a (finite) Kakeya set if K contains a
line in every direction, meaning that to every nonzero vector v ∈ Fn there
exists some w ∈ Fn such that the line L = {w + tv : t ∈ F} is in K .
Wolff posed the following finite version of the Euclidean Kakeya problem:

The finite Kakeya problem. Is there a constant c = c(n), only
depending on n but not on |F |, such that every Kakeya set K ⊆ Fn

satisfies
|K| ≥ c |F |n?

Clearly, this is true for n = 1, the only Kakeya set being all of F , and
it is not hard to prove for n = 2, but for higher dimensions progress was
again slow, until Zeev Dvir provided in his 2008 dissertation a beautiful and
stunningly simple proof: All we need are two results about polynomials in
n variables!

Let us fix some notation. F [x1, . . . , xn] denotes the ring of polynomials
p(x1, . . . , xn) over the finite field F . A monomial xs1

1 · · ·xsn
n is some-

times written shortly as xs, where
∑n

i=1 si is the degree of xs. The degree
deg p of p(x) =

∑
asx

s is the maximum degree of the monomials xs with
nonzero coefficient as. The zero polynomial has all as = 0 and is said to
have degree −1. The polynomial p(x) vanishes on E ⊆ Fn if p(a) = 0
holds for all a ∈ E.

The two ingredients of the proof generalize the following well-known facts
about polynomials in one variable:

(1) Every polynomial of degree d ≥ 0 in one variable has at most d roots.

(2) For every set E ⊆ F of size |E| ≤ d there is a nonzero polynomial
p(x) of degree at most d that vanishes on E.

Just take pE(x) :=
∏

a∈E(x− a).
In particular, a nonzero polynomial can
vanish on all of F .

In the following q = |F | shall denote the size of F .
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Lemma 1. Every nonzero polynomial p(x) ∈ F [x1, . . . , xn] of degree d
has at most dqn−1 roots in Fn.

� Proof. We use induction on n, with fact (1) above as the starting case
n = 1. Let us split p(x) into summands according to the powers of xn,

p(x) = g0 + g1xn + g2x
2
n + · · ·+ g�x

�
n,

where gi ∈ F [x1, . . . , xn−1] for 0 ≤ i ≤ � ≤ d, and g� is nonzero.
We write every v ∈ Fn in the form v = (a, b) with a ∈ Fn−1, b ∈ F , and
estimate the number of roots p(a, b) = 0.

Case 1. Roots (a, b) with g�(a) = 0.
Since g� �= 0 and deg g� ≤ d − �, by induction the polynomial g� has at
most (d−�)qn−2 roots in Fn−1, and for each a there are at most q different
choices for b, which gives at most (d− �)qn−1 such roots for p(x) in Fn.

Case 2. Roots (a, b) with g�(a) �= 0.
Here p(a, xn) ∈ F [xn] is not the zero polynomial in the single variable xn,
it has degree �, and hence for each a by (1) there are at most � elements b
with p(a, b) = 0. Since the number of a’s is at most qn−1 we get at most
�qn−1 roots for p(x) in this way.

Summing the two cases gives at most

(d− �)qn−1 + �qn−1 = dqn−1

roots for p(x), as asserted. �

Lemma 2. For every set E ⊆ Fn of size |E| <
(
n+d
d

)
there is a nonzero

polynomial p(x) ∈ F [x1, . . . , xn] of degree at most d that vanishes on E.

� Proof. Consider the vector space Vd of all polynomials in F [x1, . . . , xn]
of degree at most d. A basis for Vd is provided by the monomialsxs1

1 · · ·xsn
n

For n = 2 and d = 3 we get a basis of
size

(
2+3
3

)
= 10: {1, x1, x2, x2

1, x1x2,
x2
2, x

3
1, x2

1x2, x1x
2
2, x3

2}

with
∑

si ≤ d:

1, x1, . . . , xn, x
2
1, x1x2, . . . , x

3
1, . . . , x

d
n.

The following pleasing argument shows that the number of monomials
xs1
1 · · ·xsn

n of degree at most d equals the binomial coefficient
(
n+d
d

)
. What

we want to count is the number of n-tuples (s1, . . . , sn) of nonnegative in-
tegers with s1+· · ·+sn ≤ d. To do this, we map everyn-tuple (s1, . . . , sn)
to the increasing sequence

s1 + 1 < s1 + s2 + 2 < · · · < s1 + · · ·+ sn + n,

which determines an n-subset of {1, 2, . . . , d + n}. The map is bijective,
so the number of monomials is

(
d+n
n

)
=

(
n+d
d

)
.

Next look at the vector space FE of all functions f : E → F ; it has
dimension |E|, which by assumption is less than

(
n+d
d

)
= dimVd. The

evaluation map p(x) �→ (p(a))a∈E from Vd to FE is a linear map of vector
spaces. We conclude that it has a nonzero kernel, containing as desired a
nonzero polynomial that vanishes on E. �
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Now we have all things needed to give Dvir’s elegant solution of the finite
Kakeya problem.

Theorem. Let K ⊆ Fn be a Kakeya set. Then

|K| ≥
(
|F |+ n− 1

n

)
≥ |F |

n

n!
.

� Proof. The second inequality is clear from the definition of binomial
coefficients. For the first, set again q = |F | and suppose for a contradiction
that

|K| <
(
q + n− 1

n

)
=

(
n+ q − 1

q − 1

)
.

By Lemma 2 there exists a nonzero polynomial p(x) ∈ F [x1, . . . , xn] of
degree d ≤ q − 1 that vanishes on K . Let us write

p(x) = p0(x) + p1(x) + · · ·+ pd(x), (1)

where pi(x) is the sum of the monomials of degree i; in particular, pd(x) is
nonzero. Since p(x) vanishes on the nonempty set K , we have d > 0. Take
any v ∈ Fn \ {0}. By the Kakeya property for this v there exists a w ∈ Fn

such that
p(w + tv) = 0 for all t ∈ F.

Here comes the trick: Consider p(w + tv) as a polynomial in the single
variable t. It has degree at most d ≤ q−1 but vanishes on all q points of F ,
whence p(w + tv) is the zero polynomial in t. Looking at (1) above we
see that the coefficient of td in p(w + tv) is precisely pd(v), which must
therefore be 0. But v ∈ Fn \ {0} was arbitrary and pd(0) = 0 since d > 0,
and we conclude that pd(x) vanishes on all of Fn. Since

dqn−1 ≤ (q − 1)qn−1 < qn,

Lemma 1, however, tells us that pd(x) must then be the zero polynomial —
contradiction and end of the proof. �

As often happens in mathematics, once a breakthrough is achieved im-
provements follow quickly. So it was in this case. The lower bound 1

n!
for the constant c(n) has been improved to 1

2n , and this is within a factor
of 2 from the best possible bound. That is, there exist Kakeya sets of size
roughly 1

2n−1 |F |n.

For recent developments the blog by Terence Tao at terrytao.wordpress.com/
tag/kakeya-conjecture/ is an up-to-date source.
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2

4

3 4

3

1

2 3

4

1

2 1

2

3

41

A Latin square of order 4

Some of the oldest combinatorial objects, whose study apparently goes
back to ancient times, are the Latin squares. To obtain a Latin square,
one has to fill the n2 cells of an (n × n)-square array with the numbers
1, 2, . . . , n so that that every number appears exactly once in every row and
in every column. In other words, the rows and columns each represent per-
mutations of the set {1, . . . , n}. Let us call n the order of the Latin square.

Here is the problem we want to discuss. Suppose someone started filling
the cells with the numbers {1, 2, . . . , n}. At some point he stops and asks
us to fill in the remaining cells so that we get a Latin square. When is this
possible? In order to have a chance at all we must, of course, assume that
at the start of our task any element appears at most once in every row and
in every column. Let us give this situation a name. We speak of a partial
Latin square of order n if some cells of an (n × n)-array are filled with
numbers from the set {1, . . . , n} such that every number appears at most
once in every row and column. So the problem is:

When can a partial Latin square be completed to a Latin square of
the same order?

Let us look at a few examples. Suppose the first n − 1 rows are filled and
the last row is empty. Then we can easily fill in the last row. Just note that
every element appears n − 1 times in the partial Latin square and hence is
missing from exactly one column. Hence by writing each element below
the column where it is missing we have completed the square correctly.

Going to the other end, suppose only the first row is filled. Then it is again
easy to complete the square by cyclically rotating the elements one step in
each of the following rows.

So, while in our first example the completion is forced, we have lots of
possibilities in the second example. In general, the fewer cells are pre-
filled, the more freedom we should have in completing the square.

1

4

2

5

3

4

4

4
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5

5

5

3

3

3

3

2

2

1

1

1

1

2

2

A cyclic Latin square

However, the margin displays an example of a partial square with only n
cells filled which clearly cannot be completed, since there is no way to fill
the upper right-hand corner without violating the row or column condition.

2 . . . n-11

n

A partial Latin square that cannot be
completed

If fewer than n cells are filled in an (n × n)-array, can one then
always complete it to obtain a Latin square?
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240 Completing Latin squares

This question was raised by Trevor Evans in 1960, and the assertion that
a completion is always possible quickly became known as the Evans con-
jecture. Of course, one would try induction, and this is what finally led
to success. But Bohdan Smetaniuk’s proof from 1981, which answered
the question, is a beautiful example of just how subtle an induction proof
may be needed in order to do such a job. And, what’s more, the proof is
constructive, it allows us to complete the Latin square explicitly from any
initial partial configuration.

Before proceeding to the proof let us take a closer look at Latin squares
in general. We can alternatively view a Latin square as a (3 × n2)-array,
called the line array of the Latin square. The figure to the left shows a Latin
square of order 3 and its associated line array, where R,C and E stand for
rows, columns and elements.

1

2

3

3

3

2

2

1

1

R: 1 1 1 2 2 2 3 3 3
C: 1 2 3 1 2 3 1 2 3
E: 1 3 2 2 1 3 3 2 1

The condition on the Latin square is equivalent to saying that in any two
lines of the line array all n2 ordered pairs appear (and therefore each pair
appears exactly once). Clearly, we may permute the symbols in each line
arbitrarily (corresponding to permutations of rows, columns or elements)
and still obtain a Latin square. But the condition on the (3×n2)-array tells
us more: There is no special role for the elements. We may also permute
the lines of the array (as a whole) and still preserve the conditions on the
line array and hence obtain a Latin square.If we permute the lines of the above

example cyclically,
R −→ C −→ E −→ R, then we
obtain the following line array and
Latin square:

1

1

1

3

3

32

2

2

R: 1 3 2 2 1 3 3 2 1
C: 1 1 1 2 2 2 3 3 3
E: 1 2 3 1 2 3 1 2 3

Latin squares that are connected by any such permutation are called con-
jugates. Here is the observation which will make the proof transparent:
A partial Latin square obviously corresponds to a partial line array (every
pair appears at most once in any two lines), and any conjugate of a partial
Latin square is again a partial Latin square. In particular, a partial Latin
square can be completed if and only if any conjugate can be completed (just
complete the conjugate and then reverse the permutation of the three lines).

We will need two results, due to Herbert J. Ryser and to Charles C. Lindner,
that were known prior to Smetaniuk’s theorem. If a partial Latin square is
of the form that the first r rows are completely filled and the remaining cells
are empty, then we speak of an (r × n)-Latin rectangle.

Lemma 1. Any (r × n)-Latin rectangle, r < n, can be extended to an
((r+1)×n)-Latin rectangle and hence can be completed to a Latin square.

� Proof. We apply Hall’s theorem (see Chapter 29). Let Aj be the set
of numbers that do not appear in column j. An admissible (r + 1)-st row
corresponds then precisely to a system of distinct representatives for the
collection A1, . . . , An. To prove the lemma we therefore have to verify
Hall’s condition (H). Every set Aj has size n − r, and every element is in
precisely n − r sets Aj (since it appears r times in the rectangle). Any m
of the sets Aj contain together m(n− r) elements and therefore at least m
different ones, which is just condition (H). �

Lemma 2. Let P be a partial Latin square of order n with at most n − 1
cells filled and at most n

2 distinct elements, then P can be completed to a
Latin square of order n.



Completing Latin squares 241

� Proof. We first transform the problem into a more convenient form.
By the conjugacy principle discussed above, we may replace the condi-
tion “at most n

2 distinct elements” by the condition that the entries appear
in at most n

2 rows, and we may further assume that these rows are the top
rows. So let the rows with filled cells be the rows 1, 2, . . . , r, with fi filled
cells in row i, where r ≤ n

2 and
∑r

i=1 fi ≤ n− 1. By permuting the rows,
we may assume that f1 ≥ f2 ≥ · · · ≥ fr. Now we complete the rows
1, . . . , r step by step until we reach an (r× n)-rectangle which can then be
extended to a Latin square by Lemma 1.

Suppose we have already filled rows 1, 2, . . . , � − 1. In row � there are f�
filled cells which we may assume to be at the end. The current situation is
depicted in the figure, where the shaded part indicates the filled cells.

A situation for n = 8, with � = 3, f1 =

f2 = f3 = 2, f4 = 1. The dark squares
represent the pre-filled cells, the lighter
ones show the cells that have been filled
in the completion process.

The completion of row � is performed by another application of Hall’s
theorem, but this time it is quite subtle. Let X be the set of elements that
do not appear in row �, thus |X | = n − f�, and for j = 1, . . . , n − f�
let Aj denote the set of those elements in X which do not appear in
column j (neither above nor below row �). Hence in order to complete
row � we must verify condition (H) for the collection A1, . . . , An−f� .

First we claim

n− f� − �+ 1 > �− 1 + f�+1 + · · ·+ fr. (1)

The case � = 1 is clear. Otherwise
∑r

i=1 fi < n, f1 ≥ · · · ≥ fr and
1 < � ≤ r together imply

n >

r∑
i=1

fi ≥ (�− 1)f�−1 + f� + · · ·+ fr.

Now either f�−1 ≥ 2 (in which case (1) holds) or f�−1 = 1. In the latter
case, (1) reduces to n > 2(� − 1) + r − � + 1 = r + � − 1, which is true
because of � ≤ r ≤ n

2 .

Let us now take m sets Aj , 1 ≤ m ≤ n − f�, and let B be their union.
We must show |B| ≥ m. Consider the number c of cells in the m columns
corresponding to the Aj’s which contain elements of X . There are at most
(�− 1)m such cells above row � and at most f�+1 + · · ·+ fr below row �,
and thus

c ≤ (�− 1)m+ f�+1 + · · ·+ fr.

On the other hand, each element x ∈ X\B appears in each of the m
columns, hence c ≥ m(|X | − |B|), and therefore (with |X | = n− f�)

|B| ≥ |X | − 1
mc ≥ n− f� − (�− 1)− 1

m (f�+1 + · · ·+ fr).

It follows that |B| ≥ m if

n− f� − (�− 1)− 1
m (f�+1 + · · ·+ fr) > m− 1,

that is, if

m(n− f� − �+ 2−m) > f�+1 + · · ·+ fr. (2)
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Inequality (2) is true for m = 1 and for m = n−f�−�+1 by (1), and hence
for all values m between 1 and n − f� − � + 1, since the left-hand side is
a quadratic function in m with leading coefficient −1. The remaining case
is m > n− f� − � + 1. Since any element x of X is contained in at most
� − 1 + f�+1 + · · · + fr rows, it can also appear in at most that many
columns. Invoking (1) once more, we find that x is in one of the sets Aj , so
in this case B = X , |B| = n− f� ≥ m, and the proof is complete. �

Let us finally prove Smetaniuk’s theorem.

Theorem. Any partial Latin square of order n with at most n − 1 filled
cells can be completed to a Latin square of the same order.

� Proof. We use induction on n, the cases n ≤ 2 being trivial. Thus we
now study a partial Latin square of order n ≥ 3 with at most n − 1 filled
cells. With the notation used above these cells lie in r ≤ n − 1 different
rows numbered s1, . . . , sr, which contain f1, . . . , fr > 0 filled cells, with∑r

i=1 fi ≤ n − 1. By Lemma 2 we may assume that there are more than
n
2 different elements; thus there is an element that appears only once: after
renumbering and permutation of rows (if necessary) we may assume that
the element n occurs only once, and this is in row s1.

In the next step we want to permute the rows and columns of the partial
Latin square such that after the permutations all the filled cells lie below
the diagonal — except for the cell filled with n, which will end up on the
diagonal. (The diagonal consists of the cells (k, k) with 1 ≤ k ≤ n.) We
achieve this as follows: First we permute row s1 into the position f1. By
permutation of columns we move all the filled cells to the left, so that n
occurs as the last element in its row, on the diagonal. Next we move row
s2 into position 1 + f1 + f2, and again the filled cells as far to the left
as possible. In general, for 1 < i ≤ r we move the row si into position
1+ f1+ f2+ · · ·+ fi and the filled cells as far left as possible. This clearly
gives the desired set-up. The drawing to the left shows an example, with
n = 7: the rows s1 = 2, s2 = 3, s3 = 5 and s4 = 7 with f1 = f2 = 2
and f3 = f4 = 1 are moved into the rows numbered 2, 5, 6 and 7, and the
columns are permuted “to the left” so that in the end all entries except for
the single 7 come to lie below the diagonal, which is marked by •s.

2 7

4

5

5 4

2 7

5

4 5

4

s1

s2

s3

s4

In order to be able to apply induction we now remove the entry n from
the diagonal and ignore the first row and the last column (which do not
not contain any filled cells): thus we are looking at a partial Latin square
of order n − 1 with at most n − 2 filled cells, which by induction can be
completed to a Latin square of order n − 1. The margin shows one (of
many) completions of the partial Latin square that arises in our example.
In the figure, the original entries are printed bold. They are already final,
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6
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5

5

54

5

54
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as are all the elements in shaded cells; some of the other entries will be
changed in the following, in order to complete the Latin square of order n.

In the next step we want to move the diagonal elements of the square to
the last column and put entries n onto the diagonal in their place. How-
ever, in general we cannot do this, since the diagonal elements need not
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be distinct. Thus we proceed more carefully and perform successively, for
k = 2, 3, . . . , n− 1 (in this order), the following operation:

Put the value n into the cell (k, n). This yields a correct partial Latin
square. Now exchange the value xk in the diagonal cell (k, k) with the
value n in the cell (k, n) in the last column.

If the value xk did not already occur in the last column, then our job for the
current k is completed. After this, the current elements in the k-th column
will not be changed any more.

In our example this works without problems for k = 2, 3 and 4, and the
corresponding diagonal elements 3, 1 and 6 move to the last column. The
following three figures show the corresponding operations.
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6
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2

2

2

2
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1 7

5

6
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Now we have to treat the case in which there is already an element xk in
the last column. In this case we proceed as follows:

If there is already an element xk in a cell (j, n) with 2 ≤ j < k, then we
exchange in row j the element xk in the n-th column with the element x′k
in the k-th column. If the element x′k also occurs in a cell (j′, n), then we
also exchange the elements in the j′-th row that occur in the n-th and in the
k-th columns, and so on.

If we proceed like this there will never be two equal entries in a row. Our
exchange process ensures that there also will never be two equal elements in
a column. So we only have to verify that the exchange process between the
k-th and the n-th column does not lead to an infinite loop. This can be seen
from the following bipartite graph Gk: Its vertices correspond to the cells
(i, k) and (j, n) with 2 ≤ i, j ≤ k whose elements might be exchanged.
There is an edge between (i, k) and (j, n) if these two cells lie in the same
row (that is, for i = j), or if the cells before the exchange process contain
the same element (which implies i �= j). In our sketch the edges for i = j
are dotted, the others are not. All vertices in Gk have degree 1 or 2. The

nk

knxk

xkx′k

x′′k

j

x′k j′

Gk:

cell (k, n) corresponds to a vertex of degree 1; this vertex is the beginning
of a path which leads to column k on a horizontal edge, then possibly on a
sloped edge back to column n, then horizontally back to column k and so
on. It ends in column k at a value that does not occur in column n. Thus the
exchange operations will end at some point with a step where we move a
new element into the last column. Then the work on column k is completed,
and the elements in the cells (i, k) for i ≥ 2 are fixed for good.
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In our example the “exchange case” happens for k = 5: the element x5 = 3
does already occur in the last column, so that entry has to be moved back
to column k = 5. But the exchange element x′5 = 6 is not new either, it is
exchanged by x′′5 = 5, and this one is new.
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Finally, the exchange for k = 6 = n − 1 poses no problem, and after that
the completion of the Latin square is unique:
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. . . and the same occurs in general: We put an element n into the cell (n, n),
and after that the first row can be completed by the missing elements of the
respective columns (see Lemma 1), and this completes the proof. In order
to get explicitly a completion of the original partial Latin square of order n,
we only have to reverse the element, row and column permutations of the
first two steps of the proof. �
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The Dinitz problem Chapter 36

The four-color problem was a main driving force for the development of
graph theory as we know it today, and coloring is still a topic that many
graph theorists like best. Here is a simple-sounding coloring problem,
raised by Jeff Dinitz in 1978, which defied all attacks until its astonishingly
simple solution by Fred Galvin fifteen years later.

Consider n2 cells arranged in an (n × n)-square, and let (i, j) de-
note the cell in row i and column j. Suppose that for every cell (i, j)
we are given a set C(i, j) of n colors.
Is it then always possible to color the whole array by picking for
each cell (i, j) a color from its set C(i, j) such that the colors in
each row and each column are distinct?

← i

j

↓
C(i, j)

As a start consider the case when all color sets C(i, j) are the same, say
{1, 2, . . . , n}. Then the Dinitz problem reduces to the following task: Fill
the (n × n)-square with the numbers 1, 2, . . . , n in such a way that the
numbers in any row and column are distinct. In other words, any such
coloring corresponds to a Latin square, as discussed in the previous chapter.
So, in this case, the answer to our question is “yes.”

Since this is so easy, why should it be so much harder in the general case
when the set C :=

⋃
i,j C(i, j) contains even more than n colors? The

difficulty derives from the fact that not every color of C is available at each
cell. For example, whereas in the Latin square case we can clearly choose
an arbitrary permutation of the colors for the first row, this is not so anymore
in the general problem. Already the case n = 2 illustrates this difficulty.

Suppose we are given the color sets that are indicated in the figure. If we
choose the colors 1 and 2 for the first row, then we are in trouble since we
would then have to pick color 3 for both cells in the second row.

{2, 3}

{2, 3}

{1, 2}

{1, 3}

Before we tackle the Dinitz problem, let us rephrase the situation in the
language of graph theory. As usual we only consider graphs G = (V,E)
without loops and multiple edges. Let χ(G) denote the chromatic number
of the graph, that is, the smallest number of colors that one can assign to
the vertices such that adjacent vertices receive different colors.

In other words, a coloring calls for a partition of V into classes (colored
with the same color) such that there are no edges within a class. Calling
a set A ⊆ V independent if there are no edges within A, we infer that
the chromatic number is the smallest number of independent sets which
partition the vertex set V.

M. Aigner, G.M. Ziegler, Proofs from THE BOOK, DOI 10.1007/978-3-662-44205-0_36,  
© Springer-Verlag Berlin Heidelberg 2014 
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In 1976 Vizing, and three years later Erdős, Rubin, and Taylor, studied the
following coloring variant which leads us straight to the Dinitz problem.
Suppose in the graph G = (V,E) we are given a set C(v) of colors for
each vertex v. A list coloring is a coloring c : V −→

⋃
v∈V C(v) where

c(v) ∈ C(v) for each v ∈ V . The definition of the list chromatic number
χ
�
(G) should now be clear: It is the smallest number k such for any list

of color sets C(v) with |C(v)| = k for all v ∈ V there always exists a list
coloring. Of course, we have χ

�
(G) ≤ |V | (we never run out of colors).

Since ordinary coloring is just the special case of list coloring when all sets
C(v) are equal, we obtain for any graph G

χ(G) ≤ χ
�
(G).

To get back to the Dinitz problem, consider the graph Sn which has as
vertex set the n2 cells of our (n × n)-array with two cells adjacent if and
only if they are in the same row or column.

The graph S3 Since any n cells in a row are pairwise adjacent we need at least n colors.
Furthermore, any coloring with n colors corresponds to a Latin square,
with the cells occupied by the same number forming a color class. Since
Latin squares, as we have seen, exist, we infer χ(Sn) = n, and the Dinitz
problem can now be succinctly stated as

χ
�
(Sn) = n?

One might think that perhaps χ(G) = χ
�
(G) holds for any graph G, but

this is a long shot from the truth. Consider the graph G = K2,4. The
chromatic number is 2 since we may use one color for the two left vertices
and the second color for the vertices on the right. But now suppose that we
are given the color sets indicated in the figure.

To color the left vertices we have the four possibilities 1|3, 1|4, 2|3 and 2|4,
but any one of these pairs appears as a color set on the right-hand side, so
a list coloring is not possible. Hence χ

�
(G) ≥ 3, and the reader may find

it fun to prove χ
�
(G) = 3 (there is no need to try out all possibilities!).

Generalizing this example, it is not hard to find graphs G where χ(G) = 2,
but χ

�
(G) is arbitrarily large! So the list coloring problem is not as easy as

{1, 2}

{3, 4}

{1, 3}

{1, 4}

{2, 3}

{2, 4}

it looks at first glance.

Back to the Dinitz problem. A significant step towards the solution was
made by Jeanette Janssen in 1992 when she proved χ

�
(Sn) ≤ n + 1, and

the coup de grâce was delivered by Fred Galvin by ingeniously combining
two results, both of which had long been known. We are going to discuss
these two results and show then how they imply χ

�
(Sn) = n.

First we fix some notation. Suppose v is a vertex of the graph G, then we
denote as before by d(v) the degree of v. In our square graph Sn every
vertex has degree 2n − 2, accounting for the n − 1 other vertices in the
same row and in the same column. For a subset A ⊆ V we denote by GA

the subgraph which has A as vertex set and which contains all edges of G
between vertices of A. We call GA the subgraph induced by A, and say
that H is an induced subgraph of G if H = GA for some A.
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To state our first result we need directed graphs �G = (V,E), that is, graphs
where every edge e has an orientation. The notation e = (u, v) means that
there is an arc e, also denoted by u−→v, whose initial vertex is u and whose
terminal vertex is v. It then makes sense to speak of the outdegree d+(v)
resp. the indegree d−(v), where d+(v) counts the number of edges with v as
initial vertex, and similarly for d−(v); furthermore, d+(v)+d−(v) = d(v).
When we write G, we mean the graph �G without the orientations.

The following concept originated in the analysis of games and will play a
crucial role in our discussion.

Definition 1. Let �G = (V,E) be a directed graph. A kernel K ⊆ V is a
subset of the vertices such that

(i) K is independent in G, and

(ii) for every u �∈ K there exists a vertex v ∈ K with an edge u −→ v.

Let us look at the example in the figure. The set {b, c, f} constitutes a

d

ec

b f

a

kernel, but the subgraph induced by {a, c, e} does not have a kernel since
the three edges cycle through the vertices.

With all these preparations we are ready to state the first result.

Lemma 1. Let �G = (V,E) be a directed graph, and suppose that for each
vertex v ∈ V we have a color set C(v) that is larger than the outdegree,

|C(v)| ≥ d+(v) + 1. If every induced subgraph of �G possesses a kernel,
then there exists a list coloring of G with a color from C(v) for each v.

� Proof. We proceed by induction on |V |. For |V | = 1 there is nothing to
prove. Choose a color c ∈ C =

⋃
v∈V C(v) and set

A(c) := {v ∈ V : c ∈ C(v)}.

By hypothesis, the induced subgraph GA(c) possesses a kernel K(c). Now
we color all v ∈ K(c) with the color c (this is possible since K(c) is
independent), and delete K(c) from G and c from C. Let G′ be the induced
subgraph of G on V \K(c) with C ′(v) = C(v)\c as the new list of color
sets. Notice that for each v ∈ A(c)\K(c), the outdegree d+(v) is decreased
by at least 1 (due to condition (ii) of a kernel). So d+(v)+1 ≤ |C ′(v)| still
holds in �G′. The same condition also holds for the vertices outside A(c),
since in this case the color sets C(v) remain unchanged. The new graph G′

contains fewer vertices than G, and we are done by induction. �

The method of attack for the Dinitz problem is now obvious: We have to
find an orientation of the graph Sn with outdegrees d+(v) ≤ n− 1 for all v
and which ensures the existence of a kernel for all induced subgraphs. This
is accomplished by our second result.

Again we need a few preparations. Recall (from Chapter 11) that a bipartite
graph G = (X ∪ Y,E) is a graph with the following property: The vertex
set V is split into two parts X and Y such that every edge has one endvertex
in X and the other in Y . In other words, the bipartite graphs are precisely
those which can be colored with two colors (one for X and one for Y ).
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Now we come to an important concept, “stable matchings,” with a down-
to-earth interpretation. A matching M in a bipartite graph G = (X ∪Y,E)
is a set of edges such that no two edges in M have a common endvertex. In
the displayed graph the edges drawn in bold lines constitute a matching.YX

A bipartite graph with a matching

Consider X to be a set of men and Y a set of women and interpret uv ∈ E
to mean that u and v might marry. A matching is then a mass-wedding with
no person committing bigamy. For our purposes we need a more refined
(and more realistic?) version of a matching, suggested by David Gale and
Lloyd S. Shapley. Clearly, in real life every person has preferences, and
this is what we add to the set-up. In G = (X ∪ Y,E) we assume that for
every v ∈ X ∪ Y there is a ranking of the set N(v) of vertices adjacent
to v, N(v) = {z1 > z2 > · · · > zd(v)}. Thus z1 is the top choice for v,
followed by z2, and so on.

Definition 2. A matching M of G = (X ∪ Y,E) is called stable if the
following condition holds: Whenever uv ∈ E\M , u ∈ X , v ∈ Y , then
either uy ∈ M with y > v in N(u) or xv ∈ M with x > u in N(v),
or both.

In our real life interpretation a set of marriages is stable if it never happens
that u and v are not married but u prefers v to his partner (if he has one at
all) and v prefers u to her mate (if she has one at all), which would clearly
be an unstable situation.

Before proving our second result let us take a look at the following example:

A {c > d > a}

B {b}

C {a > b}

D {c > b}

{A > C} a

{C > D > B} b

{A > D} c

{A} d

The bold edges constitute a stable
matching. In each priority list, the
choice leading to a stable matching is
printed bold.

Notice that in this example there is a unique largest matching M with four
edges, M = {aC, bB, cD, dA}, but M is not stable (consider cA).

Lemma 2. A stable matching always exists.

� Proof. Consider the following algorithm. In the first stage all men
u ∈ X propose to their top choice. If a girl receives more than one pro-
posal she picks the one she likes best and keeps him on a string, and if she
receives just one proposal she keeps that one on a string. The remaining
men are rejected and form the reservoir R. In the second stage all men in R
propose to their next choice. The women compare the proposals (together
with the one on the string, if there is one), pick their favorite and put him
on the string. The rest is rejected and forms the new set R. Now the men
in R propose to their next choice, and so on. A man who has proposed to
his last choice and is again rejected drops out from further consideration
(as well as from the reservoir). Clearly, after some time the reservoir R is
empty, and at this point the algorithm stops.
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Claim. When the algorithm stops, then the men on the strings
together with the corresponding girls form a stable matching.

Notice first that the men on the string of a particular girl move there in
increasing preference (of the girl) since at each stage the girl compares
the new proposals with the present mate and then picks the new favorite.
Hence if uv ∈ E but uv �∈ M , then either u never proposed to v in
which case he found a better mate before he even got around to v, im-
plying uy ∈M with y > v in N(u), or u proposed to v but was rejected,
implying xv ∈M with x > u in N(v). But this is exactly the condition of
a stable matching. �

Putting Lemmas 1 and 2 together, we now get Galvin’s solution of the
Dinitz problem.

Theorem. We have χ
�
(Sn) = n for all n.

� Proof. As before we denote the vertices of Sn by (i, j), 1 ≤ i, j ≤ n.

3

1 2 3

21

2 3 1

Thus (i, j) and (r, s) are adjacent if and only if i = r or j = s. Take
any Latin square L with letters from {1, 2, . . . , n} and denote by L(i, j)

the entry in cell (i, j). Next make Sn into a directed graph �Sn by orienting
the horizontal edges (i, j) −→ (i, j′) if L(i, j) < L(i, j′) and the vertical
edges (i, j) −→ (i′, j) if L(i, j) > L(i′, j). Thus, horizontally we orient
from the smaller to the larger element, and vertically the other way around.
(In the margin we have an example for n = 3.)

Notice that we obtain d+(i, j) = n− 1 for all (i, j). In fact, if L(i, j) = k,
then n − k cells in row i contain an entry larger than k, and k − 1 cells in
column j have an entry smaller than k.

By Lemma 1 it remains to show that every induced subgraph of �Sn pos-
sesses a kernel. Consider a subset A ⊆ V , and let X be the set of rows
of L, and Y the set of its columns. Associate to A the bipartite graph
G = (X ∪Y,A), where every (i, j) ∈ A is represented by the edge ij with
i ∈ X, j ∈ Y . In the example in the margin the cells of A are shaded. 1

2

3

4

1

2

3

4

4321

The orientation on Sn naturally induces a ranking on the neighborhoods in
G = (X ∪Y,A) by setting j′ > j in N(i) if (i, j) −→ (i, j′) in �Sn respec-
tively i′ > i in N(j) if (i, j) −→ (i′, j). By Lemma 2, G = (X ∪ Y,A)
possesses a stable matching M . This M , viewed as a subset of A, is our
desired kernel! To see why, note first that M is independent in A since as
edges in G = (X ∪ Y,A) they do not share an endvertex i or j. Secondly,
if (i, j) ∈ A\M , then by the definition of a stable matching there either
exists (i, j′) ∈ M with j′ > j or (i′, j) ∈ M with i′ > i, which for �Sn

means (i, j) −→ (i, j′) ∈ M or (i, j) −→ (i′, j) ∈ M , and the proof
is complete. �

To end the story let us go a little beyond. The reader may have noticed that
the graph Sn arises from a bipartite graph by a simple construction. Take
the complete bipartite graph, denoted by Kn,n, with |X | = |Y | = n, and
all edges between X and Y . If we consider the edges of Kn,n as vertices



252 The Dinitz problem

of a new graph, joining two such vertices if and only if as edges in Kn,n

they have a common endvertex, then we clearly obtain the square graph Sn.
Let us say that Sn is the line graph of Kn,n. Now this same construction
can be performed on any graph G with the resulting graph called the line
graph L(G) of G.

a

c

b

G :

d

L(G) : a

c

b d

Construction of a line graph

In general, call H a line graph if H = L(G) for some graph G. Of course,
not every graph is a line graph, an example being the graph K2,4 that we
considered earlier, and for this graph we have seen χ(K2,4) < χ

�
(K2,4).

But what if H is a line graph? By adapting the proof of our theorem it can
easily be shown that χ(H) = χ

�
(H) holds whenever H is the line graph of

a bipartite graph, and the method may well go some way in verifying the
supreme conjecture in this field:

Does χ(H) = χ
�
(H) hold for every line graph H?

Very little is known about this conjecture, and things look hard — but after
all, so did the Dinitz problem twenty years ago.
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Permanents

and the power of entropy

Chapter 37

Suppose M = (mij) is a real n × n matrix. If in the usual representation
of the determinant we forget about the signs of the permutations we get the
permanent perM ,

perM =
∑
σ

m1σ(1)m2σ(2) · · ·mnσ(n),

where σ runs through all permutations of {1, 2, . . . , n}.
The combinatorial significance of the permanent comes from the following
correspondence. Suppose that G = (U ∪ V,E) is a simple bipartite graph
whose vertices are given by U = {u1, . . . , un} and V = {v1, . . . , vn}.
We may conveniently represent G by the matrix MG = (mij), where

mij =

{
1 if uivj ∈ E,

0 if uivj /∈ E.

MG is thus an n × n matrix with 0/1-entries. Conversely, any square
0/1-matrix M gives rise to a bipartite graph G with M = MG. Now look
at a term m1σ(1)m2σ(2) · · ·mnσ(n). Its value is 0 or 1, and it equals 1 if and
only if the set of edges {u1vσ(1), . . . , unvσ(n)} is a perfect matching of G
containing all vertices exactly once. Hence the number m(G) of perfect

u1

u2

u3

u4

v1

v2

v3

v4

m13m21m32m44 = 1

matchings is just the permanent of MG, that is, m(G) = perMG.

The complete bipartite graph Kn,n cor-
responds to the all 1’s matrix

Jn =

⎛
⎝ 1 · · · 1

. . .
1 · · · 1

⎞
⎠

with m(Kn,n) = per Jn = n!.

The correspondence G ←→ MG stimulated a lot of the early research on
permanents. One of the first difficult problems was a conjecture posed by
Henryk Minc in 1967: Suppose the 0/1-matrix M has row sums d1, . . . , dn
(or equivalently the vertices u1, . . . , un have degrees d1, . . . , dn), then

perM ≤
n∏

i=1

(
di!

)1/di
.

Observe that we can have equality, as seen from the example in the margin. If k divides n, the block diagonal matrix

M =

⎛
⎝ Jk . . .

Jk

⎞
⎠

with n
k

blocks has d1 = · · · = dn = k

and perM = (k!)n/k.

Minc’s conjecture was proved by Lev M. Brégman in 1973. A few years
later Alexander Schrijver gave a short and sweet proof, with a randomized
version appearing in the book of Alon and Spencer. But in our view the
right proof straight from the BOOK is due to Jaikumar Radhakrishnan. It is
not much different, but it uses just the right tool — entropy from informa-
tion theory. Before we come to this, let us state Brégman’s theorem again.

M. Aigner, G.M. Ziegler, Proofs from THE BOOK, DOI 10.1007/978-3-662-44205-0_37,  
© Springer-Verlag Berlin Heidelberg 2014 
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Theorem. Let M = (mij) be an n×n matrix with entries in {0, 1},
and let d1, . . . , dn be the row sums of M , that is, di =

∑n
j=1 mij .

Then

perM ≤
n∏

i=1

(di!)
1/di .

It does not happen often that a single paper gives birth to a whole field.
Claude Shannon’s A Mathematical Theory of Communication from 1948
was such a singular achievement: It laid the foundations of information
theory and coding, and thereby initiated one of the great mathematical
success stories of the twentieth century.

Suppose X is a random variable taking values in {a1, . . . , an} with prob-
abilities Prob(X = ai) = pi. It helps to think of X as an experiment
with possible outcomes ai, like throwing a die with outcomes 1, 2, . . . , 6.
How much information do we receive (on the average) from performing the
experiment? Shannon’s ingenious idea was the “equation”

information after = uncertainty before.

For example, when a coin is rigged and heads comes up most of the time,
then there is little information to be gained from throwing it, certainly less
than when the coin is fair, in which case the uncertainty (and information)
is largest.

By postulating certain natural conditions that an uncertainty measure for X
should satisfy, Shannon arrived at his famous definition of entropy, which
he denoted by H(X):

H(X) = H(Xp1,...,pn
) := −

n∑
i=1

pi log2 pi.

For example, if X is a throw of a biased coin with Prob(X = heads) = p,
then the Shannon formula yields the function H(Xp,1−p) = −p log2 p
−(1− p) log2(1− p) graphed in the margin.

It is said that Shannon, following the
advice of John von Neumann, used the
name “entropy” because nobody knew
exactly what this meant anyway . . .

In the following we always use the binary logarithm log2 p with the con-
vention p log2 p = 0 for p = 0. The support of the random variable X is
suppX := {a : Prob(X = a) > 0}.p

H(Xp,1−p)

1
2

1

1

Later in his paper Shannon gave an alternative interpretation of H(X) as
the expected length of an optimal question strategy for the outcome of X .
The appendix to this chapter contains a sketch of this approach.

SupposeX and Y are two random variables with value ranges {a1, . . . , am}
and {b1, . . . , bn}. A key ingredient for Radhakrishnan’s proof is the con-
cept of conditional entropy of Y under knowledge of X . To shorten the
writing, let us set p(ai) := Prob(X = ai), p(bj) := Prob(Y = bj), and
similarly p(ai, bj) := Prob(X = ai ∧ Y = bj) for the joint distribution
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of the pair (X,Y ), which may be viewed as a single random variable, and
p(bj |ai) := Prob(Y = bj |X = ai) for the conditional probabilities. Let

H(Y |ai) := −
n∑

j=1

p(bj |ai) log2 p(bj |ai)

be the entropy (uncertainty) of Y if we know that the outcome of X is ai.
Now we take the expected value of this quantity over all possible outcomes
of X and thus arrive at

H(Y |X) :=

m∑
i=1

p(ai)H(Y |ai)

as the conditional entropy of Y under knowledge of X .

In particular, H(Y |X) = 0 if and
only if the outcome of Y is determined
once the result of X is known.

All we need for the proof of Brégman’s theorem are three facts about
entropy, whose (easy) proofs are given in the appendix; the rest is clever
and beautiful probabilistic reasoning. Here are the facts:

(A) H(X) ≤ log2(|suppX |), with equality if and only if X is uniformly
distributed on the support of X , that is, Prob(X = a) = 1

n for
a ∈ suppX , where n = |suppX |.

(B) H(X,Y ) = H(X)+H(Y |X), and more generallyH(X1, . . . , Xn) =
H(X1) +H(X2 |X1) + · · ·+H(Xn |X1, . . . , Xn−1).

(C) If suppX is partitioned into the d sets E1, . . . , Ed, where Ej :=
{a ∈ suppX : |supp (Y |a)| = j}, then

H(Y |X) ≤
d∑

j=1

Prob(X ∈ Ej) log2 j.

� Proof of the theorem. Let G = (U ∪ V,E) be the bipartite graph
associated with M , where di is the degree of the vertex ui, and denote
by S the set of perfect matchings of G. As perM = m(G) = |S|, we will
prove the upper bound of the theorem for the number of perfect matchings
of G. We may assume S �= ∅ because otherwise there is nothing to show.
We view each σ ∈ S as the corresponding permutation σ(1)σ(2) . . . σ(n)
of the indices. Hence the vertex ui ∈ U is matched to vσ(i) ∈ V under σ.

The first idea is to pick σ ∈ S uniformly at random and to consider the
vector of random variables X = (X1, . . . , Xn) = (σ(1), . . . , σ(n)).
By (A),

H(σ(1), . . . , σ(n)) = log2(|S|);

hence it suffices to show that

H(σ(1), . . . , σ(n)) ≤ log2

( n∏
i=1

(di!)
1/di

)
=

n∑
i=1

1

di
log2(di!). (1)
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Next we use (B) to get

H(σ(1), . . . , σ(n)) =

n∑
i=1

H(σ(i) |σ(1), . . . , σ(i− 1)). (2)

Let’s find out what the conditional entropy H(σ(i) |σ(1), . . . , σ(i − 1))
means. It measures the uncertainty about the matching mate of ui after
the mates of u1, . . . , ui−1 have been revealed. In particular, the support
of the random variable σ(i) under knowledge of (σ(1), . . . , σ(i − 1)) is
contained in the set of indices of the neighbors of ui that have not already
been matched to one of u1, . . . , ui−1.

For example, let us check the formula in (B) for the graph in the margin,
which has |S| = 4. Since all permutations in S are equally likely, we have
H(σ(1), . . . , σ(4)) = log2 4 = 2. Now, H(σ(1)) = − 1

4 log2
1
4 −

1
4 log2

1
4

− 1
2 log2

1
2 = 3

2 . Let us compute the conditional entropy H(σ(2) |σ(1)):
For σ(1) = 1 we get H(σ(2) |1) = 0 since σ(2) = 2 is then determined;
similarly H(σ(2) |2) = 0, but for σ(1) = 4 we have H(σ(2) |4) = 1, since
there are two equally likely outcomes σ(2) = 1, σ(2) = 2. For the expected
value we thus compute H(σ(2) |σ(1)) = 1

2 · 1 = 1
2 . The next conditional

entropies H(σ(3) |σ(1), σ(2)) and H(σ(4) |σ(1), σ(2), σ(3)) are both 0,
since the values are determined. So summing up we again get H(σ(1)) +
H(σ(2) |σ(1))+H(σ(3) |σ(1), σ(2))+H(σ(4) |σ(1), σ(2), σ(3)) = 3

2 +
1
2 + 0+ 0 = 2, in accordance with (B).

u1

u2

u3

u4

v1

v2

v3

v4

S = {1243, 2143, 4132, 4231}

Radhakrishnan’s wonderful idea was to examine the vertices u1, . . . , un in
a random order τ, where all τ are equally likely with probability 1

n! , and
then to take the average over the entropies. In other words, we reveal the
matching mates in the order σ(τ(1)), σ(τ(2)), . . . , σ(τ(n)). Let us look at
a fixed τ . If ki = τ−1(i), that is, if in the ordering τ the vertex ui appears
in kith place, then equation (2) becomes

H(σ(1), . . . , σ(n)) =
n∑

i=1

H
(
σ(i)

∣∣ σ(τ(1)), . . . , σ(τ(ki − 1))
)
.

As this holds for all τ , taking the average we get

H(σ(1), . . . , σ(n)) =
1

n!

∑
τ

( n∑
i=1

H
(
σ(i)

∣∣ σ(τ(1)), . . . , σ(τ(ki−1)))).
Let us fix τ and look at a summand

H
(
σ(i)

∣∣ σ(τ(1)), . . . , σ(τ(ki − 1))
)
. (3)

To upper bound (3) we use fact (C) from above, applied to the random vari-
ables X =

(
σ(τ(1)), . . . , σ(τ(ki − 1))

)
and Y = σ(i). For each σ let

Ni(σ, τ) be the set of indices of the neighbors of ui that are not among
{σ(τ(1)), . . . , σ(τ(ki − 1))}. Since ui has di neighbors and σ is a perfect
matching we have 1 ≤ |Ni(σ, τ)| ≤ di for all σ. Now partition suppX

into the sets E
(τ)
i,j , where

(
σ(τ(1)), . . . , σ(τ(ki − 1))

)
lies in E

(τ)
i,j if and
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only if |Ni(σ, τ)| = j, for 1 ≤ j ≤ di. Considering |Ni(σ, τ)| as a random
variable on S, we thus have

Prob
(
X ∈ E

(τ)
i,j

)
= Prob

(
|Ni(σ, τ)| = j

)
,

and fact (C) tells us that for fixed τ

H
(
σ(i)

∣∣σ(τ(1)), . . . , σ(τ(ki−1))
)
≤

di∑
j=1

Prob
(
|Ni(σ, τ)| = j

)
log2 j.

Hence we get altogether

H
(
σ(1), . . . , σ(n)

)
≤ 1

n!

n∑
i=1

di∑
j=1

log2 j
∑
τ

Prob
(
|Ni(σ, τ)| = j

)
. (4)

This seems to get more complicated as we go along — but wait! Looking
at (1) it suffices to show that the innermost sum in (4) equals n! 1

di
for all j,

because then the right-hand side simplifies to
∑n

i=1
1
di

log2(di!).

And this assertion about the inner sum is easy! Fix σ, and let �1, . . . , �di
be

the indices of the neighbors of ui, Dσ = {σ−1(�1), . . . , σ
−1(�di

)} is the
set of indices of the U -vertices that are matched onto the neighbors of ui,
including of course i itself, and they appear according to the ordering of Dσ

under τ . If i comes first in Dσ, then no neighbors had been taken so far,
whence |Ni(σ, τ)| = di. If i is second, then one neighbor is gone, thus
|Ni(σ, τ)| = di − 1, and so on.

Now the power of averaging comes into play. With τ running through
all n! permutations, all possible orderings of the list Dσ occur with equal
frequency, which means that i appears in all di places of Dσ with the same
frequency n!

di
. But this, in turn, implies that |Ni(σ, τ)| = j occurs with

frequency n!
di

for all j, and this holds for all σ, whence∑
τ

Prob
(
|Ni(σ, τ)| = j

)
=

n!

di
,

for all j, and we are done. �

We cannot end this chapter without remarking that there is an even more
famous conjecture (and theorem), which concerns a lower bound for per-
manents. A matrix is called doubly stochastic if its entries are nonnegative
reals, and each row and column sum equals 1. In 1926, Bartel L. van der
Waerden asked whether perM ≥ n!

nn holds for every doubly stochastic
n× n matrix M , the minimum being attained only by the matrix 1

nJn, all
of whose entries are 1

n . This “van der Waerden conjecture” remained un-
solved for over fifty years until it was proved (more or less simultaneously)
by D. I. Falikman and G. P. Egorychev in 1981. Their arguments were
rather involved (the book of van Lint and Wilson [5] gives a very read-
able account), but there is now a much shorter and more direct proof due
to Leonid Gurvits that was beautifully exposited by Monique Laurent and
Alexander Schrijver [4].
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Appendix: More about entropy

What was Shannon’s alternative approach to entropy?

As before, let X be a random variable with value set {a1, . . . , an} and
pi = Prob(X = ai). We employ a certain strategy S of yes/no questions
until we know the value of X for sure. If our strategy leads us to ask �i
questions in the case of the outcome X = ai, then L(S) :=

∑n
i=1 pi�i is

the expected number of questions. Of course, a good strategy will want to
ask few questions for very likely outcomes ai (when pi is large), so as to
minimize the average number.

As an example, suppose that the probabilities for throwing a loaded die are
p1 = 1

3 , p2 = p3 = 1
8 , p4 = 1

6 , and p5 = p6 = 1
8 . A strategy might be

the following. First question: “Is the outcome≤ 3?” If yes, which happens
with probability 7

12 , ask the second question: “Is it 1?” If yes again, we are
done, otherwise we need one more question to decide whether the throw
shows 2 or 3. Proceeding in analogous fashion if the first answer was no,
we get �1 = 2, �2 = �3 = 3, �4 = 2, �5 = �6 = 3, thus

L(S) = 2(13 + 1
6 ) + 3(18 + 1

8 + 1
8 + 1

8 ) =
5
2 .

Shannon now proved that the entropy H(X) = −
∑n

i=1 pi log2 pi is a
lower bound for the expected number of questions L(S) =

∑n
i=1 pi�i

for every conceivable strategy S. Let us check this! First we have that∑n
i=1 2

−�i = 1 (why?), and the inequality log2 x ≤ x − 1 for x > 0
together with

∑n
i=1 pi = 1 yields

n∑
i=1

pi log2
2−�i

pi
≤

n∑
i=1

pi

(2−�i

pi
− 1

)
=

n∑
i=1

2−�i −
n∑

i=1

pi = 0.

But this means that −
∑n

i=1 pi�i ≤
∑n

i=1 pi log2 pi, or L(S) ≥ H(X).

Conversely, it is easy to find a strategy S0 with L(S0) < H(X) + 1, hence

H(X) ≤ L(X) = min
S

L(S) < H(X) + 1.

Looking at n-fold repetitions Xn of the experiment X, Shannon went on to

The actual minimum L(X) can e. g. be
computed by Huffman’s algorithm, a
classic in computer science.

show that the expected number of questions per experiment 1
nL(X

n) used
by optimal strategies for Xn converges to H(X) for n → ∞. (Shannon
called this the “Fundamental theorem for a noiseless channel.”)

Now to the three facts that we used in the proof above.

(A) H(X) ≤ log2(|suppX |).

� Proof. Assume without loss of generality that pi > 0 for all i. Consider
the general form of the AM-GM inequality ap1

1 · · ·apn
n ≤ p1a1+· · ·+pnan

on page 140. Set ai = 1
pi

and take the logarithm to obtain

Remember 0 · log2 0 = 0.

n∑
i=1

pi log2
1

pi
≤ log2

( n∑
i=1

pi
1

pi

)
= log2 n.
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Equality holds if and only if p1 = · · · = pn = 1
n , that is, if we have uniform

distribution. �

(B) H(X,Y ) = H(X) +H(Y |X).

� Proof. We use the same notation as before and compute

H(X,Y ) = −
∑
i,j

p(ai, bj) log2 p(ai, bj)

= −
∑
i,j

p(ai, bj) log2
(
p(ai)p(bj |ai)

)
= −

∑
i,j

p(ai, bj) log2 p(ai)−
∑
i,j

p(ai)p(bj |ai) log2 p(bj |ai)

= −
m∑
i=1

p(ai) log2 p(ai) +H(Y |X) = H(X) +H(Y |X).

The general formula follows by induction. �

(C) H(Y |X) ≤
d∑

j=1

Prob(X ∈ Ej) log2 j.

� Proof. We have H(Y |X) =
∑m

i=1 p(ai)H(Y |ai). Partitioning the set
{a1, . . . , am} into the subsets Ej given by the assumption and using (A)

we get

H(Y |X) =

d∑
j=1

∑
a∈Ej

p(a)H(Y |a)

≤
d∑

j=1

∑
a∈Ej

p(a) log2 j =
d∑

j=1

Prob(X ∈ Ej) log2 j. �
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“Do you get any news?”

“Sure! −
∑

i pi log2 pi of them!”



Five-coloring plane graphs Chapter 38

Plane graphs and their colorings have been the subject of intensive research
since the beginnings of graph theory because of their connection to the four-
color problem. As stated originally the four-color problem asked whether it
is always possible to color the regions of a plane map with four colors such
that regions which share a common boundary (and not just a point) receive
different colors. The figure on the right shows that coloring the regions of a
map is really the same task as coloring the vertices of a plane graph. As in
Chapter 13 (page 85) place a vertex in the interior of each region (including
the outer region) and connect two such vertices belonging to neighboring
regions by an edge through the common boundary.

The dual graph of a map

The resulting graph G, the dual graph of the map M , is then a plane graph,
and coloring the vertices of G in the usual sense is the same as coloring
the regions of M . So we may as well concentrate on vertex-coloring plane
graphs and will do so from now on. Note that we may assume that G has
no loops or multiple edges, since these are irrelevant for coloring.

In the long and arduous history of attacks to prove the four-color theorem
many attempts came close, but what finally succeeded in the Appel–Haken
proof of 1976 and also in the more recent proof of Robertson, Sanders,
Seymour and Thomas 1997 was a combination of very old ideas (dating
back to the 19th century) and the very new calculating powers of modern-
day computers. Twenty-five years after the original proof, the situation
is still basically the same, there is even a computer-generated computer-
checkable proof due to Gonthier, but no proof from The Book is in sight.

So let us be more modest and ask whether there is a neat proof that every
plane graph can be 5-colored. A proof of this five-color theorem had al-
ready been given by Heawood at the turn of the century. The basic tool for
his proof (and indeed also for the four-color theorem) was Euler’s formula
(see Chapter 13). Clearly, when coloring a graph G we may assume that G
is connected since we may color the connected pieces separately. A plane
graph divides the plane into a set R of regions (including the exterior re-
gion). Euler’s formula states that for plane connected graphs G = (V,E)
we always have

This plane graph has 8 vertices,
13 edges and 7 regions.

|V | − |E|+ |R| = 2.

As a warm-up, let us see how Euler’s formula may be applied to prove
that every plane graph G is 6-colorable. We proceed by induction on the
number n of vertices. For small values of n (in particular, for n ≤ 6) this
is obvious.

M. Aigner, G.M. Ziegler, Proofs from THE BOOK, DOI 10.1007/978-3-662-44205-0_38,  
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From part (A) of the proposition on page 87 we know that G has a vertex v
of degree at most 5. Delete v and all edges incident with v. The resulting
graph G′ = G\v is a plane graph on n− 1 vertices. By induction, it can be
6-colored. Since v has at most 5 neighbors in G, at most 5 colors are used
for these neighbors in the coloring of G′. So we can extend any 6-coloring
of G′ to a 6-coloring of G by assigning a color to v which is not used for
any of its neighbors in the coloring of G′. Thus G is indeed 6-colorable.

Now let us look at the list chromatic number of plane graphs, which we
have discussed in the chapter on the Dinitz problem. Clearly, our 6-coloring
method works for lists of colors as well (again we never run out of colors),
so χ

�
(G) ≤ 6 holds for any plane graph G. Erdős, Rubin and Taylor

conjectured in 1979 that every plane graph has list chromatic number at
most 5, and further that there are plane graphs G with χ

�
(G) > 4. They

were right on both counts. Margit Voigt was the first to construct an ex-
ample of a plane graph G with χ

�
(G) = 5 (her example had 238 vertices)

and around the same time Carsten Thomassen gave a truly stunning proof
of the 5-list coloring conjecture. His proof is a telling example of what you
can do when you find the right induction hypothesis. It does not use Euler’s
formula at all!

Theorem. All planar graphs G can be 5-list colored:

χ
�
(G) ≤ 5.

� Proof. First note that adding edges can only increase the chromatic num-
ber. In other words, when H is a subgraph of G, then χ

�
(H) ≤ χ

�
(G)

certainly holds. Hence we may assume that G is connected and that all
the bounded faces of an embedding have triangles as boundaries. Let us
call such a graph near-triangulated. The validity of the theorem for near-

A near-triangulated plane graph

triangulated graphs will establish the statement for all plane graphs.

The trick of the proof is to show the following stronger statement (which
allows us to use induction):

Let G = (V,E) be a near-triangulated graph, and let B be the
cycle bounding the outer region. We make the following assump-
tions on the color sets C(v), v ∈ V :

(1) Two adjacent vertices x, y of B are already colored with
(different) colors α and β.

(2) |C(v)| ≥ 3 for all other vertices v of B.

(3) |C(v)| ≥ 5 for all vertices v in the interior.

Then the coloring of x, y can be extended to a proper coloring of G
by choosing colors from the lists. In particular, χ

�
(G) ≤ 5.
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For |V | = 3 this is obvious, since for the only uncolored vertex v we have
|C(v)| ≥ 3, so there is a color available. Now we proceed by induction.

Case 1: Suppose B has a chord, that is, an edge not in B that joins two
vertices u, v ∈ B. The subgraph G1 which is bounded by B1 ∪ {uv}
and contains x, y, u and v is near-triangulated and therefore has a 5-list
coloring by induction. Suppose in this coloring the vertices u and v receive
the colors γ and δ. Now we look at the bottom part G2 bounded by B2 and
uv. Regarding u, v as pre-colored, we see that the induction hypotheses
are also satisfied for G2. Hence G2 can be 5-list colored with the available
colors, and thus the same is true for G.

Case 2: Suppose B has no chord. Let v0 be the vertex on the other side of
the α-colored vertex x on B, and let x, v1, . . . , vt, w be the neighbors of v0.
Since G is near-triangulated we have the situation shown in the figure.

x

G1

G2

v

y

B2

u

B1

Construct the near-triangulated graph G′ = G\v0 by deleting from G the
vertex v0 and all edges emanating from v0. This G′ has as outer boundary
B′ = (B\v0) ∪ {v1, . . . , vt}. Since |C(v0)| ≥ 3 by assumption (2) there
exist two colors γ, δ in C(v0) different from α. Now we replace every
color set C(vi) byC(vi)\{γ, δ}, keeping the original color sets for all other
vertices in G′. Then G′ clearly satisfies all assumptions and is thus 5-list
colorable by induction. Choosing γ or δ for v0, different from the color
of w, we can extend the list coloring of G′ to all of G. �

x(α)

y(β)

v1v2

B

w

vt . . .

v0

So, the 5-list color theorem is proved, but the story is not quite over. A
stronger conjecture claimed that the list-chromatic number of a plane graph
G is at most 1 more than the ordinary chromatic number:

Is χ
�
(G) ≤ χ(G) + 1 for every plane graph G ?

Since χ(G) ≤ 4 by the four-color theorem, we have three cases:

Case I: χ(G) = 2 =⇒ χ
�
(G) ≤ 3

Case II: χ(G) = 3 =⇒ χ
�
(G) ≤ 4

Case III: χ(G) = 4 =⇒ χ
�
(G) ≤ 5.

Thomassen’s result settles Case III, and Case I was proved by an ingenious
(and much more sophisticated) argument by Alon and Tarsi. Furthermore,
there are plane graphs G with χ(G) = 2 and χ

�
(G) = 3, for example the

graph K2,4 that we considered in the chapter on the Dinitz problem.

But what about Case II? Here the conjecture fails: This was first shown
by Margit Voigt for a graph that was earlier constructed by Shai Gutner.
His graph on 130 vertices can be obtained as follows. First we look at

β

{1, 2, 3, 4}
{1, 2, 3, 4}

{α, 2, 3, 4}{α, 1, 3, 4}

{α, β, 1, 2} {α, β, 1, 2}

{β, 2, 3, 4} {β, 1, 3, 4}

α

the “double octahedron” (see the figure), which is clearly 3-colorable. Let
α ∈ {5, 6, 7, 8} and β ∈ {9, 10, 11, 12}, and consider the lists that are given
in the figure. You are invited to check that with these lists a coloring is not
possible. Now take 16 copies of this graph, and identify all top vertices and
all bottom vertices. This yields a graph on 16 · 8 + 2 = 130 vertices which
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is still plane and 3-colorable. We assign {5, 6, 7, 8} to the top vertex and
{9, 10, 11, 12} to the bottom vertex, with the inner lists corresponding to
the 16 pairs (α, β), α ∈ {5, 6, 7, 8}, β ∈ {9, 10, 11, 12}. For every choice
of α and β we thus obtain a subgraph as in the figure, and so a list coloring
of the big graph is not possible.

By modifying another one of Gutner’s examples, Voigt and Wirth came up
with an even smaller plane graph with 75 vertices andχ = 3, χ

�
= 5, which

in addition uses only the minimal number of 5 colors in the combined lists.
The current record is 63 vertices.

To close let us remark that Victor Campos and Frédéric Havet have recently
extended Thomassen’s theorem by showing that every graph that can be
drawn in the plane with at most two crossings is still 5-list colorable.
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How to guard a museum Chapter 39

Here is an appealing problem which was raised by Victor Klee in 1973.
Suppose the manager of a museum wants to make sure that at all times
every point of the museum is watched by a guard. The guards are stationed
at fixed posts, but they are able to turn around. How many guards are
needed?

We picture the walls of the museum as a polygon consisting of n sides.
Of course, if the polygon is convex, then one guard is enough. In fact, the
guard may be stationed at any point of the museum. But, in general, the

A convex exhibition hallwalls of the museum may have the shape of any closed polygon.

Consider a comb-shaped museum with n = 3m walls, as depicted on the
right. It is easy to see that this requires at least m = n

3 guards. In fact,

. . .

2 3 . . . m1

there are n walls. Now notice that the point 1 can only be observed by a
guard stationed in the shaded triangle containing 1, and similarly for the
other points 2, 3, . . . ,m. Since all these triangles are disjoint we conclude
that at least m guards are needed. But m guards are also enough, since they
can be placed at the top lines of the triangles. By cutting off one or two
walls at the end, we conclude that for any n there is an n-walled museum
which requires 	n3 
 guards.

A real life art gallery. . .
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266 How to guard a museum

The following result states that this is the worst case.

Theorem. For any museum with n walls, 	n3 
 guards suffice.

This “art gallery theorem” was first proved by Vašek Chvátal by a clever
argument, but here is a proof due to Steve Fisk that is truly beautiful.

A museum with n = 12 walls
� Proof. First of all, let us draw n − 3 noncrossing diagonals between
corners of the walls until the interior is triangulated. For example, we can
draw 9 diagonals in the museum depicted in the margin to produce a trian-
gulation. It does not matter which triangulation we choose, any one will do.

A triangulation of the museum

Now think of the new figure as a plane graph with the corners as vertices
and the walls and diagonals as edges.

Claim. This graph is 3-colorable.

For n = 3 there is nothing to prove. Now for n > 3 pick any two vertices
u and v which are connected by a diagonal. This diagonal will split the
graph into two smaller triangulated graphs both containing the edge uv. By
induction we may color each part with 3 colors where we may choose color
1 for u and color 2 for v in each coloring. Pasting the colorings together
yields a 3-coloring of the whole graph.

The rest is easy. Since there are n vertices, at least one of the color classes,
say the vertices colored 1, contains at most 	n

3 
 vertices, and this is where
we place the guards. Since every triangle contains a vertex of color 1 we in-
fer that every triangle is guarded, and hence so is the whole museum. �

The astute reader may have noticed a subtle point in our reasoning. Does
a triangulation always exist? Probably everybody’s first reaction is: Obvi-
ously, yes! Well, it does exist, but this is not completely obvious, and,
in fact, the natural generalization to three dimensions (partitioning into
tetrahedra) is false! This may be seen from Schönhardt’s polyhedron, de-
picted on the left. It is obtained from a triangular prism by rotating the
top triangle, so that each of the quadrilateral faces breaks into two triangles
with a nonconvex edge. Try to triangulate this polyhedron! You will notice
that any tetrahedron that contains the bottom triangle must contain one of
the three top vertices: but the resulting tetrahedron will not be contained in
Schönhardt’s polyhedron. So there is no triangulation without an additional
vertex.

A′

C

A

C′

B′

B

Schönhardt’s polyhedron: The interior
dihedral angles at the edges AB′, BC′

and CA′ are greater than 180◦.
To prove that a triangulation exists in the case of a planar nonconvex
polygon, we proceed by induction on the number n of vertices. For n = 3
the polygon is a triangle, and there is nothing to prove. Let n ≥ 4. To
use induction, all we have to produce is one diagonal which will split the
polygon P into two smaller parts, such that a triangulation of the polygon
can be pasted together from triangulations of the parts.

Call a vertex A convex if the interior angle at the vertex is less than 180◦.
Since the sum of the interior angles of P is (n − 2)180◦, there must be a
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convex vertex A. In fact, there must be at least three of them: In essence

B

A

C

Z

this is an application of the pigeonhole principle! Or you may consider the
convex hull of the polygon, and note that all its vertices are convex also for
the original polygon.

Now look at the two neighboring vertices B and C of A. If the segment
BC lies entirely in P , then this is our diagonal. If not, the triangle ABC
contains other vertices. Slide BC towards A until it hits the last vertex Z
in ABC. Now AZ is within P , and we have a diagonal.

There are many variants to the art gallery theorem. For example, we may
only want to guard the walls (which is, after all, where the paintings hang),
or the guards are all stationed at vertices. A particularly nice (unsolved)
variant goes as follows:

Suppose each guard may patrol one wall of the museum, so he
walks along his wall and sees anything that can be seen from any
point along this wall.
How many “wall guards” do we then need to keep control?

Godfried Toussaint constructed the example of a museum displayed here
which shows that 	n4 
 guards may be necessary.

This polygon has 28 sides (and, in general, 4m sides), and the reader is in-
vited to check that m wall-guards are needed. It is conjectured that, except
for some small values of n, this number is also sufficient, but a proof, let
alone a Book Proof, is still missing.
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“Museum guards”

(A 3-dimensional art-gallery problem)



Turán’s graph theorem Chapter 40

Paul Turán

One of the fundamental results in graph theory is the theorem of Turán
from 1941, which initiated extremal graph theory. Turán’s theorem was
rediscovered many times with various different proofs. We will discuss five
of them and let the reader decide which one belongs in The Book.

Let us fix some notation. We consider simple graphs G on the vertex set
V = {v1, . . . , vn} and edge set E. If vi and vj are neighbors, then we
write vivj ∈ E. A p-clique in G is a complete subgraph of G on p vertices,
denoted by Kp. Paul Turán posed the following question:

Suppose G is a simple graph that does not contain a p-clique.
What is the largest number of edges that G can have?

We readily obtain examples of such graphs by dividingV into p−1 pairwise
disjoint subsets V = V1 ∪ · · · ∪ Vp−1, |Vi| = ni, n = n1 + · · · + np−1,
joining two vertices if and only if they lie in distinct sets Vi, Vj . We denote
the resulting graph by Kn1,...,np−1 ; it has

∑
i<j ninj edges. We obtain a

The graph K2,2,3

maximal number of edges among such graphs with given n if we divide
the numbers ni as evenly as possible, that is, if |ni − nj | ≤ 1 for all i, j.
Indeed, suppose n1 ≥ n2 + 2. By shifting one vertex from V1 to V2, we
obtain Kn1−1,n2+1,...,np−1 which contains (n1 − 1)(n2 + 1) − n1n2 =
n1 − n2 − 1 ≥ 1 more edges than Kn1,n2,...,np−1. Let us call the graphs
Kn1,...,np−1 with |ni − nj | ≤ 1 the Turán graphs. In particular, if p − 1
divides n, then we may choose ni =

n
p−1 for all i, obtaining(

p− 1

2

)( n

p− 1

)2

=
(
1− 1

p− 1

)n2

2

edges. Turán’s theorem now states that this number is an upper bound for
the edge-number of any graph on n vertices without a p-clique.

Theorem. If a graph G = (V,E) on n vertices has no p-clique, p ≥ 2,
then

|E| ≤
(
1− 1

p− 1

)n2

2
. (1)

For p = 2 this is trivial. In the first interesting case p = 3 the theorem states
that a triangle-free graph on n vertices contains at most n2

4 edges. Proofs
of this special case were known prior to Turán’s result. Two elegant proofs
using inequalities are contained in Chapter 20.
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270 Turán’s graph theorem

Let us turn to the general case. The first two proofs use induction and are
due to Turán and to Erdős, respectively.

� First proof. We use induction on n. One easily computes that (1) is true
for n < p. Let G be a graph on V = {v1, . . . , vn} without p-cliques with
a maximal number of edges, where n ≥ p. G certainly contains (p − 1)-
cliques, since otherwise we could add edges. Let A be a (p−1)-clique, and
set B := V \A.

B

A

eA,B
A contains

(
p−1
2

)
edges, and we now estimate the edge-number eB in B

and the edge-number eA,B between A and B. By induction, we have eB ≤
1
2 (1−

1
p−1 )(n−p+1)2. Since G has no p-clique, every vj ∈ B is adjacent

to at most p− 2 vertices in A, and we obtain eA,B ≤ (p− 2)(n − p+ 1).
Altogether, this yields

|E| ≤
(
p− 1

2

)
+

1

2

(
1− 1

p− 1

)
(n− p+ 1)2 + (p− 2)(n− p+ 1) ,

which is precisely (1 − 1
p−1 )

n2

2 . �

� Second proof. This proof makes use of the structure of the Turán
graphs. Let vm ∈ V be a vertex of maximal degree dm = max1≤j≤n dj .
Denote by S the set of neighbors of vm, |S| = dm, and set T := V \S. As
G contains no p-clique, and vm is adjacent to all vertices of S, we note that
S contains no (p− 1)-clique.

We now construct the following graph H on V (see the figure). H corre-
sponds to G on S and contains all edges between S and T , but no edges
within T . In other words, T is an independent set in H , and we con-

vm

vm

S

T

S

T

H

G

clude that H has again no p-cliques. Let d′j be the degree of vj in H .
If vj ∈ S, then we certainly have d′j ≥ dj by the construction of H , and
for vj ∈ T , we see d′j = |S| = dm ≥ dj by the choice of vm. We in-
fer |E(H)| ≥ |E|, and find that among all graphs with a maximal number
of edges, there must be one of the form of H . By induction, the graph
induced by S has at most as many edges as a suitable graph Kn1,...,np−2

on S. So |E| ≤ |E(H)| ≤ E(Kn1,...,np−1) with np−1 = |T |, which im-
plies (1). �

The next two proofs are of a totally different nature, using a maximizing
argument and ideas from probability theory. They are due to Motzkin and
Straus and to Alon and Spencer, respectively.

� Third proof. Consider a probability distribution w = (w1, . . . , wn)
on the vertices, that is, an assignment of values wi ≥ 0 to the vertices with∑n

i=1 wi = 1. Our goal is to maximize the function

f(w) =
∑

vivj∈E
wiwj .

Suppose w is any distribution, and let vi and vj be a pair of nonadjacent
vertices with positive weights wi, wj . Let si be the sum of the weights of
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all vertices adjacent to vi, and define sj similarly for vj , where we may
assume that si ≥ sj . Now we move the weight from vj to vi, that is, the
new weight of vi is wi+wj , while the weight of vj drops to 0. For the new
new distribution w′ we find

f(w′) = f(w) + wjsi − wjsj ≥ f(w).

We repeat this (reducing the number of vertices with a positive weight by

“Moving weights”

one in each step) until there are no nonadjacent vertices of positive weight
anymore. Thus we conclude that there is an optimal distribution whose
nonzero weights are concentrated on a clique, say on a k-clique. Now if,
say, w1 > w2 > 0, then choose ε with 0 < ε < w1 − w2 and change w1

to w1 − ε and w2 to w2 + ε. The new distribution w′ satisfies f(w′) =
f(w) + ε(w1 − w2)− ε2 > f(w), and we infer that the maximal value of
f(w) is attained for wi =

1
k on a k-clique and wi = 0 otherwise. Since a

k-clique contains k(k−1)
2 edges, we obtain

f(w) =
k(k − 1)

2

1

k2
=

1

2

(
1− 1

k

)
.

Since this expression is increasing in k, the best we can do is to set k = p−1
(since G has no p-cliques). So we conclude

f(w) ≤ 1

2

(
1− 1

p− 1

)
for any distribution w. In particular, this inequality holds for the uniform
distribution given by wi =

1
n for all i. Thus we find

|E|
n2

= f
(
wi =

1

n

)
≤ 1

2

(
1− 1

p− 1

)
,

which is precisely (1). �

� Fourth proof. This time we use some concepts from probability theory.
Let G be an arbitrary graph on the vertex set V = {v1, . . . , vn}. Denote the
degree of vi by di, and write ω(G) for the number of vertices in a largest
clique, called the clique number of G.

Claim. We have ω(G) ≥
n∑

i=1

1

n− di
.

We choose a random permutation π = v1v2 . . . vn of the vertex set V ,
where each permutation is supposed to appear with the same probability
1
n! , and then consider the following set Cπ . We put vi into Cπ if and only
if vi is adjacent to all vj (j < i) preceding vi. By definition, Cπ is a
clique in G. Let X = |Cπ| be the corresponding random variable. We have
X =

∑n
i=1 Xi, where Xi is the indicator random variable of the vertex vi,

that is, Xi = 1 or Xi = 0 depending on whether vi ∈ Cπ or vi �∈ Cπ . Note
that vi belongs to Cπ with respect to the permutation v1v2 . . . vn if and only
if vi appears before all n− 1 − di vertices which are not adjacent to vi, or
in other words, if vi is the first among vi and its n− 1− di non-neighbors.
The probability that this happens is 1

n−di
, hence EXi =

1
n−di

.
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Thus by linearity of expectation (see page 112) we obtain

E(|Cπ |) = EX =

n∑
i=1

EXi =

n∑
i=1

1

n− di
.

Consequently, there must be a clique of at least that size, and this was our
claim. To deduce Turán’s theorem from the claim we use the Cauchy–
Schwarz inequality from Chapter 20,

( n∑
i=1

aibi

)2

≤
( n∑

i=1

a2i

)( n∑
n=1

b2i

)
.

Set ai =
√
n− di, bi = 1√

n−di
, then aibi = 1, and so

n2 ≤ (

n∑
i=1

(n− di))(

n∑
i=1

1

n− di
) ≤ ω(G)

n∑
i=1

(n− di). (2)

At this point we apply the hypothesis ω(G) ≤ p − 1 of Turán’s theorem.
Using also

∑n
i=1 di = 2|E| from the chapter on double counting, inequal-

ity (2) leads to
n2 ≤ (p− 1)(n2 − 2|E|),

and this is equivalent to Turán’s inequality. �

Now we are ready for the last proof, which may be the most beautiful of
them all. Its origin is not clear; we got it from Stephan Brandt, who heard
it in Oberwolfach. It may be “folklore” graph theory. It yields in one stroke
that the Turán graph is in fact the unique example with a maximal number
of edges. It may be noted that both proofs 1 and 2 also imply this stronger
result.

� Fifth proof. Let G be a graph on n vertices without a p-clique and with
a maximal number of edges.

u

w

v

Claim. G does not contain three vertices u, v, w such that vw ∈
E, but uv �∈ E, uw �∈ E.

Suppose otherwise, and consider the following cases.

Case 1: d(u) < d(v) or d(u) < d(w).
We may suppose that d(u) < d(v). Then we duplicate v, that is, we create
a new vertex v′ which has exactly the same neighbors as v (but vv′ is not
an edge), delete u, and keep the rest unchanged.

u

w

v
v′

The new graph G′ has again no p-clique, and for the number of edges we
find

|E(G′)| = |E(G)|+ d(v) − d(u) > |E(G)|,

a contradiction.
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Case 2: d(u) ≥ d(v) and d(u) ≥ d(w).
Duplicate u twice and delete v and w (as illustrated in the margin). Again,

u′′u′u

w

vthe new graph G′ has no p-clique, and we compute (the−1 results from the
edge vw):

|E(G′)| = |E(G)| + 2d(u)− (d(v) + d(w) − 1) > |E(G)|.

So we have a contradiction once more.

A moment’s thought shows that the claim we have proved is equivalent to
the statement that

u ∼ v :⇐⇒ uv �∈ E(G)

defines an equivalence relation. Thus G is a complete multipartite graph,
G = Kn1,...,np−1 , and we are finished. �
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Claude Shannon

In 1956, Claude Shannon, the founder of information theory, posed the
following very interesting question:

Suppose we want to transmit messages across a channel (where
some symbols may be distorted) to a receiver. What is the maximum
rate of transmission such that the receiver may recover the original
message without errors?

Let us see what Shannon meant by “channel” and “rate of transmission.”
We are given a set V of symbols, and a message is just a string of symbols
from V. We model the channel as a graph G = (V,E), where V is the set
of symbols, and E the set of edges between unreliable pairs of symbols,
that is, symbols which may be confused during transmission. For example,
communicating over a phone in everyday language, we connnect the sym-
bols B and P by an edge since the receiver may not be able to distinguish
them. Let us call G the confusion graph.

The 5-cycle C5 will play a prominent role in our discussion. In this exam-
1

5

4 3

2

ple, 1 and 2 may be confused, but not 1 and 3, etc. Ideally we would like
to use all 5 symbols for transmission, but since we want to communicate
error-free we can — if we only send single symbols — use only one let-
ter from each pair that might be confused. Thus for the 5-cycle we can use
only two different letters (any two that are not connected by an edge). In the
language of information theory, this means that for the 5-cycle we achieve
an information rate of log2 2 = 1 (instead of the maximal log2 5 ≈ 2.32).
It is clear that in this model, for an arbitrary graph G = (V,E), the best
we can do is to transmit symbols from a largest independent set. Thus the
information rate, when sending single symbols, is log2 α(G), where α(G)
is the independence number of G.

Let us see whether we can increase the information rate by using larger
strings in place of single symbols. Suppose we want to transmit strings of
length 2. The strings u1u2 and v1v2 can only be confused if one of the
following three cases holds:

• u1 = v1 and u2 can be confused with v2,

• u2 = v2 and u1 can be confused with v1, or

• u1 �= v1 can be confused and u2 �= v2 can be confused.

In graph-theoretic terms this amounts to considering the product G1 × G2

of two graphs G1 = (V1, E1) and G2 = (V2, E2). G1 ×G2 has the vertex

M. Aigner, G.M. Ziegler, Proofs from THE BOOK, DOI 10.1007/978-3-662-44205-0_41,  
© Springer-Verlag Berlin Heidelberg 2014 



276 Communicating without errors

set V1 × V2 = {(u1, u2) : u1 ∈ V1, u2 ∈ V2}, with (u1, u2) �= (v1, v2)
connected by an edge if and only if ui = vi or uivi ∈ Ei for i = 1, 2. The
confusion graph for strings of length 2 is thus G2 = G×G, the product of
the confusion graph G for single symbols with itself. The information rate
of strings of length 2 per symbol is then given by

log2 α(G
2)

2
= log2

√
α(G2).

Now, of course, we may use strings of any length n. The n-th confusion
graph Gn = G×G×· · ·×G has vertex set V n = {(u1, . . . , un) : ui ∈ V }
with (u1, . . . , un) �= (v1, . . . vn) being connected by an edge if ui = vi or
uivi ∈ E for all i. The rate of information per symbol determined by
strings of length n is

log2 α(G
n)

n
= log2

n
√
α(Gn).

What can we say about α(Gn)? Here is a first observation. Let U ⊆ V
be a largest independent set in G, |U | = α. The αn vertices in Gn of the
form (u1, . . . , un), ui ∈ U for all i, clearly form an independent set in Gn.
Hence

α(Gn) ≥ α(G)n

and therefore

n
√
α(Gn) ≥ α(G),

meaning that we never decrease the information rate by using longer strings
instead of single symbols. This, by the way, is a basic idea of coding theory:
By encoding symbols into longer strings we can make error-free communi-
cation more efficient.

Disregarding the logarithm we thus arrive at Shannon’s fundamental
definition: The zero-error capacity of a graph G is given by

Θ(G) := sup
n≥1

n
√
α(Gn),

and Shannon’s problem was to compute Θ(G), and in particular Θ(C5).

Let us look at C5. So far we know α(C5) = 2 ≤ Θ(C5). Looking at the
5-cycle as depicted earlier, or at the product C5 × C5 as drawn on the left,
we see that the set {(1, 1), (2, 3), (3, 5), (4, 2), (5, 4)} is independent in C2

5 .
Thus we have α(C2

5 ) ≥ 5. Since an independent set can contain only two
vertices from any two consecutive rows we see that α(C2

5 ) = 5. Hence, by
using strings of length 2 we have increased the lower bound for the capacity
to Θ(C5) ≥

√
5.

The graph C5 × C5

So far we have no upper bounds for the capacity. To obtain such bounds
we again follow Shannon’s original ideas. First we need the dual definition
of an independent set. We recall that a subset C ⊆ V is a clique if any
two vertices of C are joined by an edge. Thus the vertices form trivial



Communicating without errors 277

cliques of size 1, the edges are the cliques of size 2, the triangles are cliques
of size 3, and so on. Let C be the set of cliques in G. Consider an arbitrary
probability distribution x = (xv : v ∈ V ) on the set of vertices, that
is, xv ≥ 0 and

∑
v∈V xv = 1. To every distribution x we associate the

“maximal value of a clique”

λ(x) = max
C∈C

∑
v∈C

xv,

and finally we set

λ(G) = min
x

λ(x) = min
x

max
C∈C

∑
v∈C

xv.

To be precise we should use inf instead of min, but the minimum exists
because λ(x) is continuous on the compact set of all distributions.

Consider now an independent set U ⊆ V of maximal size α(G) = α.
Associated to U we define the distribution xU = (xv : v ∈ V ) by setting
xv = 1

α if v ∈ U and xv = 0 otherwise. Since any clique contains at most
one vertex from U , we infer λ(xU ) =

1
α , and thus by the definition of λ(G)

λ(G) ≤ 1

α(G)
or α(G) ≤ λ(G)−1.

What Shannon observed is that λ(G)−1 is, in fact, an upper bound for all
n
√
α(Gn), and hence also for Θ(G). In order to prove this it suffices to

show that for graphs G,H

λ(G×H) = λ(G)λ(H) (1)

holds, since this will imply λ(Gn) = λ(G)n and hence

α(Gn) ≤ λ(Gn)−1 = λ(G)−n

n
√
α(Gn) ≤ λ(G)−1.

To prove (1) we make use of the duality theorem of linear programming
(see [1]) and get

λ(G) = min
x

max
C∈C

∑
v∈C

xv = max
y

min
v∈V

∑
C�v

yC , (2)

where the right-hand side runs through all probability distributions y =
(yC : C ∈ C) on C.

Consider G × H , and let x and x′ be distributions which achieve the
minima, λ(x) = λ(G), λ(x′) = λ(H). In the vertex set of G × H we
assign the value z(u,v) = xux

′
v to the vertex (u, v). Since

∑
(u,v) z(u,v) =∑

u xu

∑
v x
′
v = 1, we obtain a distribution. Next we observe that the max-

imal cliques in G×H are of the form C ×D = {(u, v) : u ∈ C, v ∈ D}
where C and D are cliques in G and H , respectively. Hence we obtain

λ(G×H) ≤ λ(z) = max
C×D

∑
(u,v)∈C×D

z(u,v)

= max
C×D

∑
u∈C

xu

∑
v∈D

x′v = λ(G)λ(H)
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by the definition of λ(G × H). In the same way the converse inequality
λ(G × H) ≥ λ(G)λ(H) is shown by using the dual expression for λ(G)
in (2). In summary we can state:

Θ(G) ≤ λ(G)−1,

for any graph G.

Let us apply our findings to the 5-cycle and, more generally, to the
m-cycle Cm. By using the uniform distribution ( 1

m , . . . , 1
m ) on the

vertices, we obtain λ(Cm) ≤ 2
m , since any clique contains at most two

vertices. Similarly, choosing 1
m for the edges and 0 for the vertices, we have

λ(Cm) ≥ 2
m by the dual expression in (2). We conclude that λ(Cm) = 2

m
and therefore

Θ(Cm) ≤ m

2

for all m. Now, if m is even, then clearly α(Cm) = m
2 and thus also

Θ(Cm) = m
2 . For odd m, however, we have α(Cm) = m−1

2 . For m = 3,
C3 is a clique, and so is every product Cn

3 , implying α(C3) = Θ(C3) = 1.
So, the first interesting case is the 5-cycle, where we know up to now

√
5 ≤ Θ(C5) ≤

5

2
. (3)

Using his linear programming approach (and some other ideas) Shannon
was able to compute the capacity of many graphs and, in particular, of all
graphs with five or fewer vertices — with the single exception of C5, where
he could not go beyond the bounds in (3). This is where things stood for
more than 20 years until László Lovász showed by an astonishingly simple
argument that indeed Θ(C5) =

√
5. A seemingly very difficult combina-

torial problem was provided with an unexpected and elegant solution.

0

S
⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

h

The Lovász umbrella

Lovász’ main new idea was to represent the vertices v of the graph by
real vectors of length 1 such that any two vectors which belong to non-
adjacent vertices in G are orthogonal. Let us call such a set of vectors
an orthonormal representation of G. Clearly, such a representation always
exists: just take the unit vectors (1, 0, . . . , 0)T , (0, 1, 0, . . . , 0)T , . . . ,
(0, 0, . . . , 1)T of dimension m = |V |.

For the graph C5 we may obtain an orthonormal representation in R3 by
considering an “umbrella” with five ribs v1, . . . ,v5 of unit length. Now
open the umbrella (with tip at the origin) to the point where the angles
between alternate ribs are 90◦.
Lovász then went on to show that the height h of the umbrella, that is, the
distance between 0 and S, provides the bound

Θ(C5) ≤
1

h2
. (4)

A simple calculation yields h2 = 1√
5

; see the box on the next page. From

this Θ(C5) ≤
√
5 follows, and therefore Θ(C5) =

√
5.
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Let us see how Lovász proceeded to prove the inequality (4). (His results
were, in fact, much more general.) Consider the usual inner product

〈x,y〉 = x1y1 + · · ·+ xsys

of two vectors x = (x1, . . . , xs), y = (y1, . . . , ys) in Rs. Then |x|2 =
〈x,x〉 = x2

1 + · · ·+ x2
s is the square of the length |x| of x, and the angle γ

between x and y is given by

cos γ =
〈x,y〉
|x||y| .

Thus 〈x,y〉 = 0 if and only if x and y are orthogonal.

a

b

b− a

S

E

DC

A

MB

Pentagons and the golden section

Tradition has it that a rectangle was considered aesthetically pleasing
if, after cutting off a square of length a, the remaining rectangle had
the same shape as the original one. The side lengths a, b of such a
rectangle must satisfy b

a = a
b−a . Setting τ := b

a for the ratio, we
obtain τ = 1

τ−1 or τ2 − τ − 1 = 0. Solving the quadratic equation

yields the golden section τ = 1+
√
5

2 ≈ 1.6180.
Consider now a regular pentagon of side length a, and let d be the
length of its diagonals. It was already known to Euclid (Book XIII,8)
that d

a = τ , and that the intersection point of two diagonals divides
the diagonals in the golden section.
Here is Euclid’s Book Proof. Since the total angle sum of the pen-
tagon is 3π, the angle at any vertex equals 3π

5 . It follows that
�ABE = π

5 , since ABE is an isosceles triangle. This, in turn,
implies �AMB = 3π

5 , and we conclude that the triangles ABC and
AMB are similar. The quadrilateral CMED is a rhombus since op-
posing sides are parallel (look at the angles), and so |MC| = a and
thus |AM | = d − a. By the similarity of ABC and AMB we con-
clude

d

a
=
|AC|
|AB| =

|AB|
|AM | =

a

d− a
=
|MC|
|MA| = τ.

There is more to come. For the distance s of a vertex to the center of
the pentagon S, the reader is invited to prove the relation s2 = d2

τ+2
(note that BS cuts the diagonal AC at a right angle and halves it).
To finish our excursion into geometry, consider now the umbrella
with the regular pentagon on top. Since alternate ribs (of length 1)
form a right angle, the theorem of Pythagoras gives us d =

√
2, and

hence s2 = 2
τ+2 = 4√

5+5
. So, with Pythagoras again, we find for the

height h = |OS| our promised result

h2 = 1− s2 =
1 +
√
5√

5 + 5
=

1√
5
.
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Now we head for an upper bound for the Shannon capacity of any graph G
that has an especially “nice” orthonormal representation. For this let T =
{v(1), . . . ,v(m)} be an orthonormal representation of G in Rs, where v(i)

corresponds to the vertex vi. We assume in addition that all the vectors v(i)

have the same angle (�= 90◦) with the vector u := 1
m (v(1) + · · ·+ v(m)),

or equivalently that the inner product

〈v(i),u〉 = σ
T

has the same value σ
T
�= 0 for all i. Let us call this value σ

T
the constant

of the representation T . For the Lovász umbrella that represents C5 the
condition 〈v(i),u〉 = σ

T
certainly holds, for u = �OS.

Now we proceed in the following three steps.

(A) Consider a probability distribution x = (x1, . . . , xm) on V and set

μ(x) := |x1v
(1) + · · ·+ xmv(m)|2,

and
μ
T
(G) := inf

x

μ(x).

Let U be a largest independent set in G with |U | = α, and define xU =
(x1, . . . , xm) with xi = 1

α if vi ∈ U and xi = 0 otherwise. Since all
vectors v(i) have unit length and 〈v(i),v(j)〉 = 0 for any two nonadjacent
vertices, we infer

μ
T
(G) ≤ μ(xU ) =

∣∣∣ m∑
i=1

xiv
(i)

∣∣∣2 =
m∑
i=1

x2
i = α

1

α2
=

1

α
.

Thus we have μ
T
(G) ≤ α−1, and therefore

α(G) ≤ 1

μ
T
(G)

.

(B) Next we compute μ
T
(G). We need the Cauchy–Schwarz inequality

〈a, b〉2 ≤ |a|2 |b|2

for vectors a, b ∈ Rs. Applied to a = x1v
(1) + · · ·+ xmv(m) and b = u,

the inequality yields

〈x1v
(1) + · · ·+ xmv(m),u〉2 ≤ μ(x) |u|2. (5)

By our assumption that 〈v(i),u〉 = σ
T

for all i, we have

〈x1v
(1) + · · ·+ xmv(m),u〉 = (x1 + · · ·+ xm)σ

T
= σ

T

for any distribution x. Thus, in particular, this has to hold for the uniform
distribution ( 1

m , . . . , 1
m), which implies |u|2 = σ

T
. Hence (5) reduces to

σ2

T
≤ μ(x)σ

T
or μ

T
(G) ≥ σ

T
.
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On the other hand, for x = ( 1
m , . . . , 1

m ) we obtain

μ
T
(G) ≤ μ(x) = | 1m (v(1) + · · ·+ v(m))|2 = |u|2 = σ

T
,

and so we have proved
μ
T
(G) = σ

T
. (6)

In summary, we have established the inequality

α(G) ≤ 1

σ
T

(7)

for any orthonormal respresentation T with constant σ
T

.

(C) To extend this inequality to Θ(G), we proceed as before. Consider
again the product G × H of two graphs. Let G and H have orthonormal
representations R and S in Rr and Rs, respectively, with constants σ

R
and σ

S
. Let v = (v1, . . . , vr) be a vector in R and w = (w1, . . . , ws) be

a vector in S. To the vertex in G×H corresponding to the pair (v,w) we
associate the vector

vwT := (v1w1, . . . , v1ws, v2w1, . . . , v2ws, . . . , vrw1, . . . , vrws) ∈ Rrs.

It is immediately checked that R × S := {vwT : v ∈ R,w ∈ S} is an
orthonormal representation of G × H with constant σ

R
σ
S

. Hence by (6)
we obtain

μ
R×S

(G×H) = μ
R
(G)μ

S
(H).

For Gn = G × · · · × G and the representation T with constant σ
T

this
means

μ
Tn (G

n) = μ
T
(G)n = σn

T

and by (7) we obtain

α(Gn) ≤ σ−n

T
, n

√
α(Gn) ≤ σ−1

T
.

Taking all things together we have thus completed Lovász’ argument:

“Umbrellas with five ribs”

Theorem. Whenever T = {v(1), . . . ,v(m)} is an orthonormal
representation of G with constant σ

T
, then

Θ(G) ≤ 1

σ
T

. (8)

Looking at the Lovász umbrella, we have u = (0, 0, h= 1
4√5

)T and hence

σ = 〈v(i),u〉 = h2 = 1√
5

, which yields Θ(C5) ≤
√
5. Thus Shannon’s

problem is solved.



282 Communicating without errors

Let us carry our discussion a little further. We see from (8) that the larger σ
T

is for a representation of G, the better a bound for Θ(G) we will get. Here
is a method that gives us an orthonormal representation for any graph G.
To G = (V,E) we associate the adjacency matrix A = (aij), which is
defined as follows: Let V = {v1, . . . , vm}, then we set

aij :=

{
1 if vivj ∈ E
0 otherwise.

A is a real symmetric matrix with 0’s in the main diagonal.

Now we need two facts from linear algebra. First, as a symmetric matrix,
A has m real eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λm (some of which may
be equal), and the sum of the eigenvalues equals the sum of the diagonal
entries of A, that is, 0. Hence the smallest eigenvalue must be negative
(except in the trivial case when G has no edges). Let p = |λm| = −λm be

A =

⎛⎜⎜⎜⎜⎝
0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0

⎞⎟⎟⎟⎟⎠
The adjacency matrix for the 5-cycle C5

the absolute value of the smallest eigenvalue, and consider the matrix

M := I +
1

p
A,

where I denotes the (m×m)-identity matrix. This M has the eigenvalues
1+ λ1

p ≥ 1+ λ2

p ≥ · · · ≥ 1+ λm

p = 0. Now we quote the second result (the
principal axis theorem of linear algebra): If M = (mij) is a real symmetric
matrix with all eigenvalues≥ 0, then there are vectors v(1), . . . ,v(m) ∈ Rs

for s = rank(M), such that

mij = 〈v(i),v(j)〉 (1 ≤ i, j ≤ m).

In particular, for M = I + 1
pA we obtain

〈v(i),v(i)〉 = mii = 1 for all i

and
〈v(i),v(j)〉 =

1

p
aij for i �= j.

Since aij = 0 whenever vivj �∈ E, we see that the vectors v(1), . . . ,v(m)

form indeed an orthonormal representation of G.

Let us, finally, apply this construction to the m-cycles Cm for odd m ≥ 5.
Here one easily computes p = |λmin| = 2 cos π

m (see the box). Every
row of the adjacency matrix contains two 1’s, implying that every row of
the matrix M sums to 1 + 2

p . For the representation {v(1), . . . ,v(m)} this
means

〈v(i),v(1) + · · ·+ v(m)〉 = 1 +
2

p
= 1 +

1

cos π
m

and hence

〈v(i),u〉 =
1

m
(1 + (cos π

m )−1) = σ

for all i. We can therefore apply our main result (8) and conclude

Θ(Cm) ≤ m

1 + (cos π
m )−1

(for m ≥ 5 odd). (9)
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Notice that because of cos π
m < 1 the bound (9) is better than the bound

Θ(Cm) ≤ m
2 we found before. Note further cos π

5 = τ
2 , where τ =

√
5+1
2

is the golden section. Hence for m = 5 we again obtain

Θ(C5) ≤
5

1 + 4√
5+1

=
5(
√
5 + 1)

5 +
√
5

=
√
5.

The orthonormal representation given by this construction is, of course,
precisely the “Lovász umbrella.”

For example, for m = 7 all we know is

4
√
108 ≤ Θ(C7) ≤

7

1 + (cos π
7
)−1

,

which is 3.2237 ≤ Θ(C7) ≤ 3.3177.

And what about C7, C9, and the other odd cycles? By considering α(C2
m),

α(C3
m) and other small powers the lower bound m−1

2 ≤ Θ(Cm) can cer-
tainly be increased, but for no odd m ≥ 7 do the best known lower bounds
agree with the upper bound given in (8). So, twenty years after Lovász’
marvelous proof of Θ(C5) =

√
5, these problems remain open and are

considered very difficult — but after all we had this situation before.

The eigenvalues of Cmmm

Look at the adjacency matrix A of the cycle Cm. To find the eigen-
values (and eigenvectors) we use the m-th roots of unity. These are
given by 1, ζ, ζ2, . . . , ζm−1 for ζ = e

2πi
m — see the box on page 35.

Let λ = ζk be any of these roots, then we claim that
(1, λ, λ2, . . . , λm−1)T is an eigenvector of A to the eigenvalue λ +
λ−1. In fact, by the set-up of A we find

A

⎛⎜⎜⎜⎜⎜⎝
1
λ
λ2

...
λm−1

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
λ + λm−1

λ2 + 1
λ3 + λ

...
1 + λm−2

⎞⎟⎟⎟⎟⎟⎠ = (λ+ λ−1)

⎛⎜⎜⎜⎜⎜⎝
1
λ
λ2

...
λm−1

⎞⎟⎟⎟⎟⎟⎠ .

Since the vectors (1, λ, . . . , λm−1) are independent (they form a so-
called Vandermonde matrix) we conclude that for odd m

ζk + ζ−k = [(cos(2kπ/m) + i sin(2kπ/m)]

+ [cos(2kπ/m)− i sin(2kπ/m)]

= 2 cos(2kπ/m) (0 ≤ k ≤ m−1
2 )

are all the eigenvalues of A. Now the cosine is a decreasing function,
and so

2 cos
( (m− 1)π

m

)
= −2 cos π

m

is the smallest eigenvalue of A.
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The chromatic number

of Kneser graphs

Chapter 42

In 1955 the number theorist Martin Kneser posed a seemingly innocuous
problem that became one of the great challenges in graph theory until a bril-
liant and totally unexpected solution, using the “Borsuk–Ulam theorem”
from topology, was found by László Lovász twenty-three years later.

It happens often in mathematics that once a proof for a long-standing prob-
lem is found, a shorter one quickly follows, and so it was in this case.
Within weeks Imre Bárány showed how to combine the Borsuk–Ulam
theorem with another known result to elegantly settle Kneser’s conjecture.
Then in 2002 Joshua Greene, an undergraduate student, simplified Bárány’s
argument even further, and it is his version of the proof that we present here.

But let us start at the beginning. Consider the following graph K(n, k),
now called Kneser graph, for integers n ≥ k ≥ 1. The vertex-set V (n, k)
is the family of k-subsets of {1, . . . , n}, thus |V (n, k)| =

(
n
k

)
. Two such

k-sets A and B are adjacent if they are disjoint, A ∩B = ∅.

{1, 2}

{3, 5}

{2, 4}{1, 4}

{2, 3} {1, 5}

{2, 5}{1, 3}

{3, 4}{4, 5}

The Kneser graph K(5, 2) is the famous
Petersen graph.If n < 2k, then any two k-sets intersect, resulting in the uninteresting case

where K(n, k) has no edges. So we assume from now on that n ≥ 2k.

Kneser graphs provide an interesting link between graph theory and finite
sets. Consider, e.g., the independence number α(K(n, k)), that is, we ask
how large a family of pairwise intersecting k-sets can be. The answer
is given by the Erdős–Ko–Rado theorem of Chapter 29: α(K(n, k)) =(
n−1
k−1

)
.

This implies that

χ(K(n, k)) ≥ |V |
α

=
(nk)
(n−1
k−1)

= n
k

.
We can similarly study other interesting parameters of this graph family,
and Kneser picked out the most challenging one: the chromatic number
χ(K(n, k)). We recall from previous chapters that a (vertex) coloring of
a graph G is a mapping c : V → {1, . . . ,m} such that adjacent vertices
are colored differently. The chromatic number χ(G) is then the minimum
number of colors that is sufficient for a coloring of V . In other words, we
want to present the vertex set V as a disjoint union of as few color classes
as possible, V = V1 ∪̇ · · · ∪̇ Vχ(G), such that each set Vi is edgeless.

For the graphs K(n, k) this asks for a partition V (n, k) = V1 ∪̇ · · · ∪̇ Vχ,
where every Vi is an intersecting family of k-sets. Since we assume that
n ≥ 2k, we write from now on n = 2k + d, k ≥ 1, d ≥ 0.

2 1

21

1

1

3

2

33

The 3-coloring of the Petersen graph.

Here is a simple coloring of K(n, k) that uses d + 2 colors: For i = 1,
2, . . . , d+1, let Vi consist of all k-sets that have i as smallest element. The
remaining k-sets are contained in the set {d+2, d+3, . . . , 2k+ d}, which
has only 2k − 1 elements. Hence they all intersect, and we can use color
d+ 2 for all of them.
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286 The chromatic number of Kneser graphs

So we have χ(K(2k+ d, k)) ≤ d+2, and Kneser’s challenge was to show
that this is the right number.

For d = 0, K(2k, k) consists of disjoint
edges, one for every pair of complemen-
tary k-sets. Hence χ(K(2k, k)) = 2, in
accordance with the conjecture.

Kneser’s conjecture. We have

χ(K(2k + d, k)) = d+ 2.

Probably anybody’s first crack at the proof would be to try induction on
k and d. Indeed, the starting cases k = 1 and d = 0, 1 are easy, but the
induction step from k to k+1 (or d to d+1) does not seem to work. So let
us instead reformulate the conjecture as an existence problem:

If the family of k-sets of {1, 2, . . . , 2k+d} is partitioned into d+1 classes,
V (n, k) = V1 ∪̇ · · · ∪̇ Vd+1, then for some i, Vi contains a pair A,B of
disjoint k-sets.

Lovász’ brilliant insight was that at the (topological) heart of the problem
lies a famous theorem about the d-dimensional unit sphere Sd in Rd+1,
Sd = {x ∈ Rd+1 : |x| = 1}.

The Borsuk–Ulam theorem

For every continuous map f : Sd → Rd from d-sphere to d-space,
there are antipodal points x∗,−x∗ that are mapped to the same
point f(x∗) = f(−x∗).

This result is one of the cornerstones of topology; it first appeared in Bor-
suk’s famous 1933 paper. We sketch a proof in the appendix; for the full
proof we refer to Section 2.2 in Matoušek’s wonderful book “Using the
Borsuk–Ulam theorem”, whose very title demonstrates the power and range
of the result. Indeed, there are many equivalent formulations, which under-
line the central position of the theorem. We will employ a version that
can be traced back to a book by Lyusternik–Shnirel’man from 1930, which
even predates Borsuk.

Theorem. If the d-sphere Sd is covered by d+ 1 sets,

Sd = U1 ∪ · · · ∪ Ud ∪ Ud+1,

such that each of the first d sets U1, . . . , Ud is either open or closed, then
one of the d+ 1 sets contains a pair of antipodal points x∗,−x∗.
The case when all d+1 sets are closed is due to Lyusternik and Shnirel’man.
The case when all d+1 sets are open is equally common, and also called the
Lyusternik–Shnirel’man theorem. Greene’s insight was that the theorem is
also true if each of the d+ 1 sets is either open or closed. As you will see,
we don’t even need that: No such assumption is needed for Ud+1. For the
proof of Kneser’s conjecture, we only need the case when U1, . . . , Ud are
open.
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� Proof of the Lyusternik–Shnirel’man theorem using Borsuk–Ulam.

Let a covering Sd = U1 ∪ · · · ∪ Ud ∪ Ud+1 be given as specified, and
assume that there are no antipodal points in any of the sets Ui. We define a
map f : Sd → Rd by

f(x) :=
(
δ(x, U1), δ(x, U2), . . . , δ(x, Ud)

)
.

Here δ(x, Ui) denotes the distance of x from Ui. Since this is a continuous
function in x, the map f is continuous. Thus the Borsuk–Ulam theorem
tells us that there are antipodal points x∗,−x∗ with f(x∗) = f(−x∗).
Since Ud+1 does not contain antipodes, we get that at least one of x∗ and
−x∗ must be contained in one of the sets Ui, say in Uk (k ≤ d). After
exchanging x∗ with −x∗ if necessary, we may assume that x∗ ∈ Uk. In
particular this yields δ(x∗, Uk) = 0, and from f(x∗) = f(−x∗) we get that
δ(−x∗, Uk) = 0 as well.

If Uk is closed, then δ(−x∗, Uk) = 0 implies that−x∗ ∈ Uk, and we arrive
at the contradiction that Uk contains a pair of antipodal points.

If Uk is open, then δ(−x∗, Uk) = 0 implies that−x∗ lies in Uk, the closure
of Uk. The set Uk, in turn, is contained in Sd\(−Uk), since this is a closed The closure of Uk is the smallest closed

set that contains Uk (that is, the intersec-
tion of all closed sets containing Uk).

subset of Sd that contains Uk. But this means that −x∗ lies in Sd\(−Uk),
so it cannot lie in −Uk, and x∗ cannot lie in Uk, a contradiction. �

As the second ingredient for his proof, Imre Bárány used another existence
result about the sphere Sd.

Gale’s Theorem. There is an arrangement of 2k + d points on Sd such
that every open hemisphere contains at least k of these points.

David Gale discovered his theorem in 1956 in the context of polytopes with
many faces. He presented a complicated induction proof, but today, with
hindsight, we can quite easily exhibit such a set and verify its properties.

Armed with these results it is just a short step to settle Kneser’s problem,
but as Greene showed we can do even better: We don’t even need Gale’s
result. It suffices to take any arrangement of 2k + d points on Sd+1 in
general position, meaning that no d + 2 of the points lie on a hyperplane
through the center of the sphere. Clearly, for d ≥ 0 this can be done.

� Proof of the Kneser conjecture. For our ground set let us take 2k + d
points in general position on the sphere Sd+1. Suppose the set V (n, k)
of all k-subsets of this set is partitioned into d + 1 classes, V (n, k) =
V1 ∪̇ · · · ∪̇ Vd+1. We have to find a pair of disjoint k-sets A and B that
belong to the same class Vi.

For i = 1, . . . , d+ 1 we set

Oi = {x ∈ Sd+1 : the open hemisphere Hx

with pole x contains a k-set from Vi} .

Clearly, each Oi is an open set. Together, the open sets Oi and the closed

Hx

x

An open hemisphere in S2

set C = Sd+1 \ (O1 ∪ · · · ∪ Od+1) cover Sd+1. Invoking Lyusternik–
Shnirel’man we know that one of these sets contains antipodal points x∗
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and −x∗. This set cannot be C! Indeed, if x∗,−x∗ are in C, then by
the definition of the Oi’s, the hemispheres Hx∗ and H−x∗ would contain
fewer than k points. This means that at least d + 2 points would be on
the equator Hx∗ ∩ H−x∗ with respect to the north pole x∗, that is, on a
hyperplane through the origin. But this cannot be since the points are in
general position. Hence some Oi contains a pair x∗,−x∗, so there exist
k-sets A and B both in class Vi, with A ⊆ Hx∗ and B ⊆ H−x∗ .

A −→

B −→

x∗

−x∗

Hx∗

H−x∗

But since we are talking about open hemispheres, Hx∗ and H−x∗ are dis-
joint, hence A and B are disjoint, and this is the whole proof. �

The reader may wonder whether sophisticated results such as the theorem
of Borsuk–Ulam are really necessary to prove a statement about finite sets.
Indeed, a beautiful combinatorial argument has later been found by Jiří
Matoušek — but on closer inspection it has a distinct, albeit discrete, topo-
logical flavor.

Appendix:

A proof sketch for the Borsuk–Ulam theorem

For any generic map (also known as general position map) from a compact
d-dimensional space to a d-dimensional space, any point in the image has
only a finite number of pre-images. For a generic map from a (d + 1)-
dimensional space to a d-dimensional space, we expect every point in the
image to have a 1-dimensional pre-image, that is, a collection of curves.
Both in the case of smooth maps, and in the setting of piecewise-linear
maps, one quite easily proves one can deform any map to a nearby generic
map.

For the Borsuk–Ulam theorem, the idea is to show that every generic map
Sd → Rd identifies an odd (in particular, finite and nonzero) number of
antipodal pairs. If f did not identify any antipodal pair, then it would be
arbitrarily close to a generic map f̃ without any such identification.

Now consider the projection π : Sd → Rd that just deletes the last coor-
dinate; this map identifies the “north pole” ed+1 of the d-sphere with the
“south pole” −ed+1. For any given map f : Sd → Rd we construct a con-
tinuous deformation from π to f , that is, we interpolate between these two
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maps (linearly, for example), to obtain a continuous map

F : Sd × [0, 1] −→ Rd,

with F (x, 0) = π(x) and F (x, 1) = f(x) for all x ∈ Sd. (Such a map is
known as a homotopy.)

Rd

f

π

F

Sd

Sd

Sd × [0, 1]

t = 0

t = 1

Now we perturbF carefully into a generic map F̃ : Sd×[0, 1]→ Rd, which
again we may assume to be smooth, or piecewise-linear on a fine triangu-
lation of Sd × [0, 1]. If this perturbation is “small enough” and performed
carefully, then the perturbed version of the projection π̃(x) := F̃ (x, 0)

should still identify the two antipodal points ±ed+1 and no others. If F̃ is
sufficiently generic, then the points in Sd × [0, 1] given by

M :=
{
(x, t) ∈ Sd × [0, 1] : F̃ (−x, t) = F̃ (x, t)

}
according to the implicit function theorem (smooth or piecewise-linear ver-
sion) form a collection of paths and of closed curves. Clearly this collection
is symmetric, that is, (−x, t) ∈M if and only if (x, t) ∈M .

The paths in M can have endpoints only at the boundary of Sd × [0, 1],
that is, at t = 0 and at t = 1. The only ends at t = 0, however, are at
(±ed+1, 0), and the two paths that start at these two points are symmetric
copies of each other, so they are disjoint, and they can end only at t = 1.
This proves that there are solutions for F̃ (−x, t) = F̃ (x, t) at t = 1, and
hence for f(−x) = f(x). �

Rd

f

π

F

(ed+1, 0)

(−ed+1, 0)
(Sd, 0)

(Sd, 1)

t = 0

t = 1
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Of friends and politicians Chapter 43

“A politician’s smile”

It is not known who first raised the following problem or who gave it its
human touch. Here it is:

Suppose in a group of people we have the situation that any pair of
persons have precisely one common friend. Then there is always a
person (the “politician”) who is everybody’s friend.

In the mathematical jargon this is called the friendship theorem.

Before tackling the proof let us rephrase the problem in graph-theoretic
terms. We interpret the people as the set of vertices V and join two vertices
by an edge if the corresponding people are friends. We tacitly assume that
friendship is always two-ways, that is, if u is a friend of v, then v is also
a friend of u, and further that nobody is his or her own friend. Thus the
theorem takes on the following form:

Theorem. Suppose that G is a finite graph in which any two vertices have
precisely one common neighbor. Then there is a vertex which is adjacent to
all other vertices.

Note that there are finite graphs with this property; see the figure, where u
is the politician. However, these “windmill graphs” also turn out to be the
only graphs with the desired property. Indeed, it is not hard to verify that in

... u

A windmill graph

the presence of a politician only the windmill graphs are possible.

Surprisingly, the friendship theorem does not hold for infinite graphs!
Indeed, for an inductive construction of a counterexample one may start for
example with a 5-cycle, and repeatedly add common neighbors for all pairs
of vertices in the graph that don’t have one, yet. This leads to a (countably)
infinite friendship graph without a politician.

Several proofs of the friendship theorem exist, but the first proof, given by
Paul Erdős, Alfred Rényi and Vera Sós, is still the most accomplished.

� Proof. Suppose the assertion is false, and G is a counterexample, that is,
no vertex of G is adjacent to all other vertices. To derive a contradiction we
proceed in two steps. The first part is combinatorics, and the second part is
linear algebra.

(1) We claim that G is a regular graph, that is, d(u) = d(v) for any u, v ∈ V.
Note first that the condition of the theorem implies that there are no cycles
of length 4 in G. Let us call this the C4-condition. v

u
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292 Of friends and politicians

We first prove that any two nonadjacent vertices u and v have equal degree
d(u) = d(v). Suppose d(u) = k, where w1, . . . , wk are the neighbors of u.
Exactly one of the wi, say w2, is adjacent to v, and w2 adjacent to exactly
one of the other wi’s, say w1, so that we have the situation of the figure to
the left. The vertex v has with w1 the common neighbor w2, and with wi

(i ≥ 2) a common neighbor zi (i ≥ 2). By the C4-condition, all these zi
must be distinct. We conclude d(v) ≥ k = d(u), and thus d(u) = d(v) = k
by symmetry.

To finish the proof of (1), observe that any vertex different from w2 is not
adjacent to either u or v, and hence has degree k, by what we already
proved. But since w2 also has a non-neighbor, it has degree k as well,
and thus G is k-regular.

z3

u

wk

. . .

. . .

. . .

z2

v

w1 w3w2

zk

Summing over the degrees of the k neighbors of u we get k2. Since
every vertex (except u) has exactly one common neighbor with u, we have
counted every vertex once, except for u, which was counted k times. So
the total number of vertices of G is

n = k2 − k + 1. (1)

(2) The rest of the proof is a beautiful application of some standard results
of linear algebra. Note first that k must be greater than 2, since for k ≤ 2
only G = K1 and G = K3 are possible by (1), both of which are trivial
windmill graphs. Consider the adjacency matrix A = (aij), as defined on
page 282. By part (1), any row has exactly k 1’s, and by the condition of
the theorem, for any two rows there is exactly one column where they both
have a 1. Note further that the main diagonal consists of 0’s. Hence we
have

A2 =

⎛⎜⎜⎜⎝
k 1 . . . 1
1 k 1
...

. . .
...

1 . . . 1 k

⎞⎟⎟⎟⎠ = (k − 1) I + J ,

where I is the identity matrix, and J the matrix of all 1’s. It is immediately
checked that J has the eigenvalues n (of multiplicity 1) and 0 (of multi-
plicity n − 1). It follows that A2 has the eigenvalues k − 1 + n = k2

(of multiplicity 1) and k − 1 (of multiplicity n− 1).

Since A is symmetric and hence diagonalizable, we conclude that A has
the eigenvalues k (of multiplicity 1) and ±

√
k − 1. Suppose r of the

eigenvalues are equal to
√
k − 1 and s of them are equal to −

√
k − 1, with

r+ s = n− 1. Now we are almost home. Since the sum of the eigenvalues
of A equals the trace (which is 0), we find

k + r
√
k − 1− s

√
k − 1 = 0,

and, in particular, r �= s, and

√
k − 1 =

k

s− r
.
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Now if the square root
√
m of a natural number m is rational, then it is an

integer! An elegant proof for this was presented by Dedekind in 1858: Let
n0 be the smallest natural number with n0

√
m ∈ N. If

√
m �∈ N, then there

exists � ∈ N with 0 <
√
m − � < 1. Setting n1 := n0(

√
m − �), we find

n1 ∈ N and n1
√
m = n0(

√
m − �)

√
m = n0m − �(n0

√
m) ∈ N. With

n1 < n0 this yields a contradiction to the choice of n0.

Returning to our equation, let us set h =
√
k − 1 ∈ N, then

h(s− r) = k = h2 + 1.

Since h divides h2 + 1 and h2, we find that h must be equal to 1, and
thus k = 2, which we have already excluded. So we have arrived at a
contradiction, and the proof is complete. �

However, the story is not quite over. Let us rephrase our theorem in the
following way: Suppose G is a graph with the property that between any
two vertices there is exactly one path of length 2. Clearly, this is an equiv-
alent formulation of the friendship condition. Our theorem then says that
the only such graphs are the windmill graphs. But what if we consider
paths of length more than 2? A conjecture of Anton Kotzig asserts that the
analogous situation is impossible.

Kotzig’s Conjecture. Let � > 2. Then there are no finite graphs with the
property that between any two vertices there is precisely one path of
length �.

Kotzig himself verified his conjecture for � ≤ 8. In [3] his conjecture is
proved up to � = 20, and Alexandr Kostochka has told us that it is now
verified for all � ≤ 33. A general proof, however, seems to be out of
reach . . .
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Probability makes counting

(sometimes) easy

Chapter 44

Just as we started this book with the first papers of Paul Erdős in num-
ber theory, we close it by discussing what will possibly be considered his
most lasting legacy — the introduction, together with Alfred Rényi, of the
probabilistic method. Stated in the simplest way it says:

If, in a given set of objects, the probability that an object does not
have a certain property is less than 1, then there must exist an object
with this property.

Thus we have an existence result. It may be (and often is) very difficult to
find this object, but we know that it exists. We present here three examples
(of increasing sophistication) of this probabilistic method due to Erdős, and
end with a particularly elegant, quite recent application.

As a warm-up, consider a family F of subsets Ai, all of size d ≥ 2, of a
finite ground-set X . We say that F is 2-colorable if there exists a coloring
of X with two colors such that in every set Ai both colors appear. It is
immediate that not every family can be colored in this way. As an example,
take all subsets of size d of a (2d − 1)-set X . Then no matter how we
2-color X , there must be d elements which are colored alike. On the other
hand, it is equally clear that every subfamily of a 2-colorable family of
d-sets is itself 2-colorable. Hence we are interested in the smallest number
m = m(d) for which a family with m sets exists which is not 2-colorable.
Phrased differently, m(d) is the largest number which guarantees that
every family with less than m(d) sets is 2-colorable. A 2-colored family of 3-sets

Theorem 1. Every family of at most 2d−1 d-sets is 2-colorable, that is,
m(d) > 2d−1.

� Proof. Suppose F is a family of d-sets with at most 2d−1 sets. Color X
randomly with two colors, all colorings being equally likely. For each set
A ∈ F let EA be the event that all elements of A are colored alike. Since
there are precisely two such colorings, we have

Prob(EA) = (12 )
d−1

,

and hence with m = |F| ≤ 2d−1 (note that the events EA are not disjoint)

Prob(
⋃
A∈F

EA) <
∑
A∈F

Prob(EA) = m (12 )
d−1 ≤ 1.
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296 Probability makes counting (sometimes) easy

We conclude that there exists some 2-coloring of X without a unicolored
d-set from F , and this is just our condition of 2-colorability. �

An upper bound for m(d), roughly equal to d22d, was also established by
Erdős, again using the probabilistic method, this time taking random sets
and a fixed coloring. Using a very clever argument, Jaikumar Radhakrish-
nan and Aravind Srinivasan have established the best lower bound to date,

which is approximately equal to
√

d
log d 2

d. As for exact values, only the

first two m(2) = 3, m(3) = 7 are known. Of course, m(2) = 3 is realized
by the graph K3, while the Fano configuration yields m(3) ≤ 7. Here F

1

45
7

2

3

6

consists of the seven 3-sets of the figure (including the circle set {4, 5, 6}).
The reader may find it fun to show that F cannot be 2-colored. To prove
that all families of six 3-sets are 2-colorable, and hence m(3) = 7, requires
a little more care.

Our next example is the classic in the field — Ramsey numbers. Consider
the complete graphKN on N vertices. We say that KN has property (m,n)
if, no matter how we color the edges of KN red and blue, there is always a
complete subgraph on m vertices with all edges colored red or a complete
subgraph on n vertices with all edges colored blue. It is clear that if KN

has property (m,n), then so does every Ks with s ≥ N . So, as in the first
example, we ask for the smallest number N (if it exists) with this property
— and this is the Ramsey number R(m,n).

As a start, we certainly have R(m, 2) = m because either all of the edges
of Km are red or there is a blue edge, resulting in a blue K2. By symmetry,
we have R(2, n) = n. Now, suppose R(m− 1, n) and R(m,n− 1) exist.
We then prove that R(m,n) exists and that

R(m,n) ≤ R(m− 1, n) + R(m,n− 1). (1)

Suppose N = R(m− 1, n) + R(m,n− 1), and consider an arbitrary red-
blue coloring of KN . For a vertex v, let A be the set of vertices joined to v
by a red edge, and B the vertices joined by a blue edge.

v

A

B

red
edges

blue
edges

Since |A| + |B| = N − 1, we find that either |A| ≥ R(m − 1, n) or
|B| ≥ R(m,n − 1). Suppose |A| ≥ R(m − 1, n), the other case being
analogous. Then by the definition of R(m−1, n), there either exists in A a
subset A

R
of size m− 1 all of whose edges are colored red which together

with v yields a red Km, or there is a subset A
B

of size n with all edges
colored blue. We infer that KN satisfies the (m,n)-property and Claim (1)
follows.

Combining (1) with the starting values R(m, 2) = m and R(2, n) = n, we
obtain from the familiar recursion for binomial coefficients

R(m,n) ≤
(
m+ n− 2

m− 1

)
, (2)

and, in particular,

R(k, k) ≤
(
2k − 2

k − 1

)
=

(
2k − 3

k − 1

)
+

(
2k − 3

k − 2

)
≤ 22k−3.
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Now what we are really interested in is a lower bound for R(k, k). This
amounts to proving for an as-large-as-possible N < R(k, k) that there
exists a coloring of the edges such that no red or blue Kk results. And this
is where the probabilistic method comes into play.

Theorem 2. For all k ≥ 2, the following lower bound holds for the Ramsey
numbers:

R(k, k) ≥ 2
k
2 .

� Proof. We have R(2, 2) = 2. From (2) we know R(3, 3) ≤ 6, and the
pentagon colored as in the figure shows R(3, 3) = 6.

blue

red

Now let us assume k ≥ 4. Suppose N < 2
k
2 , and consider all red-blue

colorings, where we color each edge independently red or blue with proba-

bility 1
2 . Thus all colorings are equally likely with probability 2−(

N

2 ). Let A
be a set of vertices of size k. The probability of the event A

R
that the edges

in A are all colored red is then 2−(
k

2). Hence it follows that the probability
p
R

for some k-set to be colored all red is bounded by

p
R

= Prob
( ⋃
|A|=k

A
R

)
≤

∑
|A|=k

Prob(A
R
) =

(
N

k

)
2−(

k
2).

Now with N < 2
k
2 and k ≥ 4, using

(
N
k

)
≤ Nk

2k−1 for k ≥ 2 (see page 14),
we have(

N

k

)
2−(

k

2) ≤ Nk

2k−1
2−(

k

2) < 2
k2

2 −(k2)−k+1 = 2−
k
2+1 ≤ 1

2
.

Hence p
R

< 1
2 , and by symmetry p

B
< 1

2 for the probability of some
k vertices with all edges between them colored blue. We conclude that
p
R
+ p

B
< 1 for N < 2

k
2 , so there must be a coloring with no red or

blue Kk, which means that KN does not have property (k, k). �

Of course, there is quite a gap between the lower and the upper bound for
R(k, k). Still, as simple as this Book Proof is, no lower bound with a better
exponent has been found for general k in the more than sixty years since
Erdős’ result. In fact, no one has been able to prove a lower bound of the
formR(k, k) > 2(

1
2+ε)k nor an upper bound of the form R(k, k) < 2(2−ε)k

for a fixed ε > 0. The most spectacular advance in recent years is due to
David Conlon, who proved an upper bound of the form 4k

kω(k) , where ω(k)
tends to infinity (albeit very slowly) with k.

Our third result is another beautiful illustration of the probabilistic method.
Consider a graph G on n vertices and its chromatic number χ(G). If χ(G)
is high, that is, if we need many colors, then we might suspect that G
contains a large complete subgraph. However, this is far from the truth.
Already in the fourties Blanche Descartes constructed graphs with arbitrar-
ily high chromatic number and no triangles, that is, with every cycle having
length at least 4, and so did several others (see the box on the next page).
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However, in these examples there were many cycles of length 4. Can we do
even better? Can we stipulate that there are no cycles of small length and
still have arbitrarily high chromatic number? Yes we can! To make matters
precise, let us call the length of a shortest cycle in G the girth γ(G) of G;
then we have the following theorem, first proved by Paul Erdős.

Triangle-free graphs with high chromatic number

Here is a sequence of triangle-free graphs G3, G4, . . . with

χ(Gn) = n.

Start with G3 = C5, the 5-cycle; thus χ(G3) = 3. Suppose we have
already constructed Gn on the vertex set V . The new graphGn+1 has
the vertex set V ∪ V ′ ∪ {z}, where the vertices v′ ∈ V ′ correspond
bijectively to v ∈ V , and z is a single other vertex. The edges of
Gn+1 fall into 3 classes: First, we take all edges of Gn; secondly
every vertex v′ is joined to precisely the neighbors of v in Gn; thirdly
z is joined to all v′ ∈ V ′. Hence from G3 = C5 we obtain as G4 the
so-called Mycielski graph.

Clearly, Gn+1 is again triangle-free. To prove χ(Gn+1) = n+ 1 we
use induction on n. Take any n-coloring of Gn and consider a color
class C. There must exist a vertex v ∈ C which is adjacent to at
least one vertex of every other color class; otherwise we could dis-
tribute the vertices of C onto the n− 1 other color classes, resulting
in χ(Gn) ≤ n − 1. But now it is clear that v′ (the vertex in V ′ cor-
responding to v) must receive the same color as v in this n-coloring.
So, all n colors appear in V ′, and we need a new color for z.

Theorem 3. For every k ≥ 2, there exists a graph G with chromatic
number χ(G) > k and girth γ(G) > k.

The strategy is similar to that of the previous proofs: We consider a cer-
tain probability space on graphs and go on to show that the probability for
χ(G) ≤ k is smaller than 1

2 , and similarly the probability for γ(G) ≤ k
is smaller than 1

2 . Consequently, there must exist a graph with the desired
properties.

G3:

G4:

Constructing the Mycielski graph

� Proof. Let V = {v1, v2, . . . , vn} be the vertex set, and p a fixed num-
ber between 0 and 1, to be carefully chosen later. Our probability space
G(n, p) consists of all graphs on V where the individual edges appear with
probability p, independently of each other. In other words, we are talking
about a Bernoulli experiment where we throw in each edge with proba-
bility p. As an example, the probability Prob(Kn) for the complete graph

is Prob(Kn) = p(
n
2). In general, we have Prob(H) = pm(1 − p)(

n
2)−m if

the graph H on V has precisely m edges.
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Let us first look at the chromatic number χ(G). By α = α(G) we denote
the independence number, that is, the size of a largest independent set in G.
Since in a coloring with χ = χ(G) colors all color classes are independent
(and hence of size ≤ α), we infer χα ≥ n. Therefore if α is small as
compared to n, then χ must be large, which is what we want.

Suppose 2 ≤ r ≤ n. The probability that a fixed r-set in V is independent

is (1− p)(
r

2), and we conclude by the same argument as in Theorem 2

Prob(α ≥ r) ≤
(
n

r

)
(1− p)(

r
2)

≤ nr(1− p)(
r
2) = (n(1− p)

r−1
2 )r ≤ (ne−p(r−1)/2)r,

since 1− p ≤ e−p for all p.

Given any fixed k > 0 we now choose p := n−
k

k+1 , and proceed to show
that for n large enough,

Prob
(
α ≥ n

2k

)
<

1

2
. (3)

Indeed, since n
1

k+1 grows faster than logn, we have n
1

k+1 ≥ 6k logn
for large enough n, and thus p ≥ 6k logn

n . For r := � n
2k � this gives

pr ≥ 3 logn, and thus

ne−p(r−1)/2 = ne−
pr
2 e

p
2 ≤ ne−

3
2 logne

1
2 = n−

1
2 e

1
2 = ( e

n )
1
2 ,

which converges to 0 as n goes to infinity. Hence (3) holds for all n ≥ n1.

Now we look at the second parameter, γ(G). For the given k we want to
show that there are not too many cycles of length ≤ k. Let i be between 3
and k, and A ⊆ V a fixed i-set. The number of possible i-cycles on A is
clearly the number of cyclic permutations of A divided by 2 (since we may
traverse the cycle in either direction), and thus equal to (i−1)!

2 . The total

number of possible i-cycles is therefore
(
n
i

) (i−1)!
2 , and every such cycle C

appears with probability pi. Let X be the random variable which counts the
number of cycles of length ≤ k. In order to estimate X we use two simple
but beautiful tools. The first is linearity of expectation, and the second is
Markov’s inequality for nonnegative random variables, which says

Prob(X ≥ a) ≤ EX

a
,

where EX is the expected value of X . See the appendix to Chapter 17 for
both tools.

Let XC be the indicator random variable of the cycle C of, say, length i.
That is, we set XC = 1 or 0 depending on whether C appears in the graph
or not; hence EXC = pi. Since X counts the number of all cycles of
length ≤ k we have X =

∑
XC , and hence by linearity

EX =

k∑
i=3

(
n

i

)
(i− 1)!

2
pi ≤ 1

2

k∑
i=3

nipi ≤ 1

2
(k − 2)nkpk,
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where the last inequality holds because of np = n
1

k+1 ≥ 1. Applying now
Markov’s inequality with a = n

2 , we obtain

Prob(X ≥ n
2 ) ≤

EX

n/2
≤ (k − 2)

(np)k

n
= (k − 2)n−

1
k+1 .

Since the right-hand side goes to 0 with n going to infinity, we infer that
p(X ≥ n

2 ) <
1
2 for n ≥ n2.

Now we are almost home. Our analysis tells us that for n ≥ max(n1, n2)
there exists a graph H on n vertices with α(H) < n

2k and fewer than n
2

cycles of length ≤ k. Delete one vertex from each of these cycles, and
let G be the resulting graph. Then γ(G) > k holds at any rate. Since G
contains more than n

2 vertices and satisfies α(G) ≤ α(H) < n
2k , we find

χ(G) ≥ n/2

α(G)
≥ n

2α(H)
>

n

n/k
= k,

and the proof is finished. �

Explicit constructions of graphs with high girth and chromatic number (of
huge size) are known. (In contrast, one does not know how to construct
red/blue colorings with no large monochromatic cliques, whose existence
is given by Theorem 2.) What remains striking about the Erdős proof is
that it proves the existence of relatively small graphs with high chromatic
number and girth.

To end our excursion into the probabilistic world let us discuss an important
result in geometric graph theory (which again goes back to Paul Erdős) —
with a stunning Book Proof.

Consider a simple graph G = G(V,E) with n vertices and m edges. We
want to embed G into the plane just as we did for planar graphs. Now, we
know from Chapter 13 — as a consequence of Euler’s formula — that a
simple planar graph G has at most 3n − 6 edges. Hence if m is greater
than 3n− 6, there must be crossings of edges. The crossing number cr(G)
is then naturally defined: It is the smallest number of crossings among all
drawings of G, where crossings of more than two edges in one point are
not allowed. Thus cr(G) = 0 if and only if G is planar.

In such a minimal drawing the following three situations are ruled out:

• No edge can cross itself.

• Edges with a common endvertex cannot cross.

• No two edges cross twice.

This is because in either of these cases, we can construct a different drawing
of the same graph with fewer crossings, using the operations that are indi-
cated in our figure. So, from now on we assume that any drawing observes
these rules.
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Suppose that G is drawn in the plane with cr(G) crossings. We can im-
mediately derive a lower bound on the number of crossings. Consider the
following graph H : The vertices of H are those of G together with all
crossing points, and the edges are all pieces of the original edges as we go
along from crossing point to crossing point.

The new graph H is now plane and simple (this follows from our three
assumptions!). The number of vertices in H is n + cr(G) and the number
of edges is m+ 2cr(G), since every new vertex has degree 4. Invoking the
bound on the number of edges for plane graphs we thus find

m+ 2 cr(G) ≤ 3(n+ cr(G))− 6,

that is,
cr(G) ≥ m− 3n+ 6. (4)

As an example, for the complete graph K6 we compute

cr(K6) ≥ 15− 18 + 6 = 3

and, in fact, there is an drawing with just 3 crossings.

The bound (4) is good enough when m is linear in n, but when m is larger
compared to n, then the picture changes, and this is our theorem.

Theorem 4. Let G be a simple graph with n vertices and m edges, where
m ≥ 4n. Then

cr(G) ≥ 1

64

m3

n2
.

The history of this result, called the crossing lemma, is quite interesting.
It was conjectured by Erdős and Guy in 1973 (with 1

64 replaced by some
constant c). The first proofs were given by Leighton in 1982 (with 1

100 in-
stead of 1

64 ) and independently by Ajtai, Chvátal, Newborn and Szemerédi.
The crossing lemma was hardly known (in fact, many people thought of it
as a conjecture long after the original proofs), until László Székely demon-
strated its usefulness in a beautiful paper, applying it to a variety of hitherto
hard geometric extremal problems. The proof which we now present arose
from e-mail conversations between Bernard Chazelle, Micha Sharir and
Emo Welzl, and it belongs without doubt in The Book.

� Proof. Consider a minimal drawing of G, and let p be a number between
0 and 1 (to be chosen later). Now we generate a subgraph of G, by selecting
the vertices of G to lie in the subgraph with probability p, independently
from each other. The induced subgraph that we obtain that way will be
called Gp.

Let np, mp, Xp be the random variables counting the number of vertices,
of edges, and of crossings in Gp. Since cr(G)−m+ 3n ≥ 0 holds by (4)
for any graph, we certainly have

E(Xp −mp + 3np) ≥ 0.
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Now we proceed to compute the individual expectationsE(np), E(mp) and
E(Xp). Clearly, E(np) = pn and E(mp) = p2m, since an edge appears
in Gp if and only if both its endvertices do. And finally, E(Xp) = p4cr(G),
since a crossing is present in Gp if and only if all four (distinct!) vertices
involved are there.

By linearity of expectation we thus find

0 ≤ E(Xp) − E(mp) + 3E(np) = p4cr(G)− p2m+ 3pn,

which is

cr(G) ≥ p2m− 3pn

p4
=

m

p2
− 3n

p3
. (5)

Here comes the punch line: Set p := 4n
m (which is at most 1 by our assump-

tion), then (5) becomes

cr(G) ≥ 1

64

[
4m

(n/m)2
− 3n

(n/m)3

]
=

1

64

m3

n2
,

and this is it. �

Paul Erdős would have loved to see this proof.
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art gallery theorem, 266
average degree, 86
average number of divisors, 184

Bernoulli numbers, 58, 172
Bertrand’s postulate, 9
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birthday paradox, 205
Bolyai–Gerwien Theorem, 63
Borromean rings, 95
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Cantor–Bernstein theorem, 130
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Cauchy’s minimum principle, 147
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Cauchy–Schwarz inequality, 139

Cayley’s formula, 221
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centrally symmetric, 71
chain, 199
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Chebyshev polynomials, 164
Chebyshev’s theorem, 160
chromatic number, 247, 285
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class formula, 34
clique, 77, 269, 276
clique number, 271
2-colorable set system, 295
combinatorially equivalent, 71
comparison of coefficients, 57
complete bipartite graph, 77
complete graph, 76
complex polynomial, 159
components of a graph, 77
conditional entropy, 254
cone lemma, 66
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continuum, 129
continuum hypothesis, 132
convex polytope, 69
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cosine polynomial, 163
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crossing lemma, 301
crossing number, 300
crossing relation, 99
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C4-free graph, 186

degree, 86
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dual graph, 85, 261

edge of a graph, 76
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Euler’s series, 53
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Fermat number, 3
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finite set system, 199
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friendship theorem, 291

fundamental theorem of algebra, 147

Gale’s theorem, 287
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Gessel–Viennot lemma, 215
girth, 298
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Hadamard determinant problem, 40
Hadamard matrix, 41
Hadamard’s inequality, 41
harmonic mean, 139
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Heine–Borel theorem, 38
Herglotz trick, 169
Hilbert’s third problem, 63
hyper-binary representation, 126

incidence matrix, 75, 184
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indegree, 249
independence number, 275, 285, 299
independent set, 77, 247
induced subgraph, 77, 248
inequalities, 139
infinite products, 227
initial ordinal number, 136
intersecting family, 200, 285
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irrational numbers, 45
isomorphic graphs, 77

Jacobi determinants, 55

Kakeya conjecture, 234
Kakeya needle set, 233
Kakeya set, 233
kernel, 249
Kneser graph, 285
Kneser’s conjecture, 286
knot, 101
knot theory, 95
knots and links, 95
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labeled tree, 221
Lagrange’s theorem, 4
Latin rectangle, 240
Latin square, 239, 247
lattice, 89
lattice basis, 90
lattice paths, 215
lattice points, 28
law of quadratic reciprocity, 26
Legendre symbol, 25
Legendre’s theorem, 10
lexicographically smallest solution, 66
line graph, 252
linear extension, 196
linearity of expectation, 112, 176
link, 101
linked circles, 96
list chromatic number, 248
list coloring, 248, 262
Littlewood–Offord problem, 165
loop, 76
Lovász’ theorem, 281
Lovász umbrella, 278
Lyusternik–Shnirel’man theorem, 286

Markov’s inequality, 112
marriage theorem, 202
matching, 250
matrix of rank 1, 115
matrix-tree theorem, 223
mean square average, 42
Mersenne number, 4
Minc’s conjecture, 253
Minkowski symmetrization, 109
mirror image, 71
monomial, 234
monotone subsequences, 182
Monsky’s Theorem, 153
multiple edges, 76
museum guards, 265
Mycielski graph, 298

near-triangulated plane graph, 262
nearly-orthogonal vectors, 114
needles, 175
neighbors, 76
Newman’s function, 127
non-Archimedean real valuation, 152

non-Archimedean valuation, 156

obtuse angle, 107
odd function, 170
order of a group element, 4
ordered abelian group, 156
ordered set, 135
ordinal number, 135
orthonormal representation, 278
orthogonal matrix, 37
outdegree, 249

p-adic value, 152
partial Latin square, 239
partition, 227
partition identities, 227
path, 77
path matrix, 215
pearl lemma, 65
Pell’s equation, 15
pentagonal numbers, 229
perfect matching, 253
periodic function, 170
permanent, 253
Petersen graph, 285
Pick’s theorem, 89
pigeon-hole principle, 181
planar graph, 85
plane graph, 85, 262
point configuration, 79
polygon, 69
polyhedron, 63, 69
polynomial with real roots, 142, 162
polytope, 107
prime field, 20
prime number, 3, 9
prime number theorem, 12
probabilistic method, 295
probability distribution, 270
probability space, 112
product of graphs, 275
projective plane, 187

quadratic nonresidue, 25
quadratic reciprocity, 26
quadratic residue, 25

rainbow triangle, 153
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Ramsey number, 296
random variable, 112, 254
rate of transmission, 275
red-blue segment, 155
refining sequence, 225
Reidemeister moves, 95, 101
Riemann zeta function, 59
riffle shuffles, 211
Rogers–Ramanujan identities, 231
rooted forest, 225
roots of unity, 35

scalar product, 114
Schönhardt’s polyhedron, 266
segment, 64
Shannon capacity, 276
shuffling cards, 205
simple graph, 76
simplex, 70
size of a set, 123
slope problem, 79
spectral theorem, 37
speed of convergence, 57
Sperner’s lemma, 189
Sperner’s theorem, 199
spherical dome, 97
squares, 20
stable matching, 250
star, 75
Stern’s diatomic series, 124
Stirling’s formula, 13
stopping rules, 208
subgraph, 77
sums of two squares, 19

support of a random variable, 254
Sylvester–Gallai theorem, 73, 88
Sylvester’s theorem, 15
system of distinct representatives, 201

tangential rectangle, 142
tangential triangle, 142
top-in-at-random shuffles, 207
touching simplices, 103
tree, 77
triangle-free graph, 298
trivial knot, 101
trivial link, 101
Turán graph, 269
Turán’s graph theorem, 269
two square theorem, 19

umbrella, 278
unimodal, 14
unit d-cube, 70

valuation ring, 156
valuations, 151, 156
vertex, 70, 76
vertex degree, 86, 185, 248
vertex-disjoint path system, 215
volume, 94

weighted directed graph, 215
well-ordered, 135
well-ordering theorem, 135
windmill graph, 291

zero-error capacity, 276
Zorn’s lemma, 157
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