
TECHNOLOGY IN ACTION™

Warren Gay

Raspberry Pi
Hardware Reference

 COMPLETE COVERAGE OF THE
RASPBERRY PI’S HARDWARE

Gay

T he Raspberry Pi is deceptively simple. Plug it in, boot it up,
use it as a personal computer or attach a million gizmos,

modules and invent something amazingly new. Either way, what
it can actually do is not simple, and you should know exactly
what the Raspberry Pi hardware is all about. Raspberry Pi
Hardware Reference, from Mastering the Raspberry Pi, is the
hardware guide you need on your desk or workbench.

Every detail is covered: from power to memory, from the CPU
to working with USB. You’ll find all the details about working
with both wired and wireless Ethernet, SD cards, and the UART
interface. The GPIO chapter is invaluable, covering power
budgeting, access, and even small but important details like
the correct usage of sudo when working with GPIO pins. You’ll
also find details about the 1-Wire driver, the I2C bus, and the
SPI bus. If you need to know anything about your Raspberry
Pi’s hardware, you will find it here, in Raspberry Pi Hardware
Reference.

In this book, you’ll learn:

• How to work with Raspberry Pi power, including adapters
and battery requirements

• Working with header strips and LEDs
• Working with SDRAM and memory mapping
• Understanding the CPU
• Interface details, including USB, UART, and GPIO

This book is for Raspberry Pi hobbyists who need to know all
of the details about Raspberry Pi hardware and what Linux
files and commands control that hardware.

Raspberry Pi Hardware Reference

www.apress.com

Shelve in Computer Hardware/General

User level: Intermediate–Advanced

SOURCE CODE ONLINE

Also available:

9 781484 208007

51999
ISBN 978-1-4842-0800-7

Raspberry Pi Hardw
are Reference

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

v

Contents at a Glance

About the Author �� xix

About the Technical Reviewer �� xxi

Acknowledgments �� xxiii

Introduction ��xxv

Chapter 1: The Raspberry Pi ■ ��� 1

Chapter 2: Power ■ �� 5

Chapter 3: Header Strips, LEDs, and Reset ■ ����������������������������������� 19

Chapter 4: SDRAM ■ �� 27

Chapter 5: CPU ■ �� 45

Chapter 6: USB ■ �� 65

Chapter 7: Ethernet ■ ��� 71

Chapter 8: SD Card Storage ■ �� 81

Chapter 9: UART ■ �� 89

Chapter 10: GPIO ■ �� 121

Chapter 11: 1-Wire Driver ■ ��� 165

Chapter 12: I2C Bus ■ �� 175

Chapter 13: SPI Bus ■ �� 187

■ Contents at a GlanCe

vi

Appendix A: Glossary ■ �� 203

Appendix B: Power Standards ■ �� 209

Appendix C: Electronics Reference ■ ��� 211

Index �� 213

xxv

Introduction

After receiving your first Raspberry Pi, the first question in your mind is probably “What
can this hardware do?” What are its capabilities and limitations? Hardware is the more
urgent question because software is so easily altered or replaced.

The one perplexing problem I immediately ran up against when I started out with the
Pi was that the hardware information seemed to be scattered. The basic information was
accessible and well known, but other important parameters such as GPIO source or sink
current limits required research. After researching these questions, I often discovered that
the answer was “It depends.” It was the answering of these classes of questions that led to
the writing of Mastering the Raspberry Pi.

Content of This Book
This book is focused mainly on the Raspberry Pi’s hardware. The content is extracted from
the complete work, Mastering the Raspberry Pi. As such, it will serve you as an owner’s
manual of sorts, saving time as a ready reference about the hardware you purchased.

While this is a volume focused on hardware, some software coverage must coexist.
For example, it is through the physical memory management that software gains access
to the hardware peripheral registers. Another example is the discussion about the CPU,
where the pthread API is covered for reference purposes. Through the application of this
API, you further utilize that ARM CPU.

This book begins by introducing the Pi in general terms in Chapter 1. Then attention
immediately turns to the important topic of power in Chapter 2. Many people suffer
needless problems because of neglect in this area. The chapter ends with some notes
about running from battery or solar power.

Chapter 3 documents the header strips, LEDs, and Reset inputs. This is information
that should be bookmarked. Next is Chapter 4 on memory, which documents the various
Raspbian Linux measures and controls for memory allocation. The CPU and its API are
described in Chapter 5.

The focus of Chapter 6 is USB. USB-specific power issues and its API are explained.
Wired and wireless Ethernet networking is discussed in Chapter 7. SD card technology
is examined in Chapter 8, describing the interface and the specifics of the Raspberry Pi
interface. The topic of wear leveling is also included.

Serial communication, RS-232 converters, serial consoles, and dedicated serial ports
are covered in Chapter 9. The serial interface, some historical influences, and flow control
are discussed. Included is an organized description of the Linux API for utilizing the serial
interface.

■ IntroduCtIon

xxvi

Chapter 10 covers the important area of the GPIO interface. Every aspect of GPIO
is covered, including its configuration after reset and boot. Logic levels, drive strength,
input pullup resistor control, and output totem pole configuration are explained. Each is
examined from an electronics viewpoint. Additionally, the various ways of applying these
GPIO pins in software are described.

The GPIO coverage also includes guidance about how to budget the +3.3 V supply
current. Configuration of the pins and selection of alternate I/O functions are also
discussed. Finally, a design procedure is provided for a single transistor driver, when
more power is required.

The next three chapters concern themselves with Raspbian Linux–supported
peripheral buses. The one-wire driver is supported through a Linux driver and described
in Chapter 11. The I2C bus is another important peripheral bus, which is documented
with its API in Chapter 12. Finally, the SPI bus is explained with its API in Chapter 13.
With this coverage, you will be fully informed of what is available and how to leverage
Raspbian Linux to drive it.

Assumptions About You
Apart from the C language software API presented in this book, much of the content of
this volume is electronics based. You should therefore have a basic understanding of
digital electronics. This includes a good grasp of DC voltage, current, resistance, power,
and mastery of Ohm’s law (you may also refer to Appendix C). For a full appreciation of
the concepts behind the I2C bus, you should also be familiar with the operation of an
open collector driver.

The transistor driver design procedure provided in Chapter 10 (GPIO) uses a light
engineering approach where formulas are assumed (an engineering text would also
include the derivation of the formulas). The intent here is to simply demonstrate that the
use of design procedure can solve problems that might otherwise cause students to look
for a chip solution when a transistor would suffice. Let’s take the fear out of design.

Learn and Design
The main assumption throughout this book is that you are looking to learn how to design
things for yourself. Through an appreciation of the involved hardware parameters, design
procedure, and the software API, you will be able to build custom solutions using the
Raspberry Pi. To further assist in this, several charts and tables were provided in this
reference. Any real designer takes delight in having the necessary parameters available at
their disposal.

1

Chapter 1

The Raspberry Pi

Before considering the details about each resource within the Raspberry Pi, it is useful
to take a high-level inventory. In this chapter, let’s just list what you get when you
purchase a Pi.

In later chapters, you’ll be looking at each resource from two perspectives:

The hardware itself—what it is and how it works•	

The driving software and API behind it•	

In some cases, the hardware will have one or more kernel modules behind it,
forming the device driver layer. They expose a software API that interfaces between the
application and the hardware device. For example, applications communicate with the
driver by using ioctl(2) calls, while the driver communicates with the I2C devices on the
bus. The /sys/class file system is another way that device drivers expose themselves to
applications. You’ll see this when you examine GPIO in Chapter 10.

There are some cases where drivers don’t currently exist in Raspbian Linux.
An example is the Pi’s PWM peripheral that is covered in Chapter 9 of Experimenting with
Raspberry Pi (Apress, 2014). Here we must map the device’s registers into the application
memory space and drive the peripheral directly from the application. Both direct access
and driver access have their advantages and disadvantages.

So while our summary inventory here simply lists the hardware devices, you’ll be
examining each from a hardware and software point of view in the chapters ahead.

Models
A hardware inventory is directly affected by the model of the unit being examined.
The Raspberry Pi comes in two models:

Model A (introduced later as a hardware-reduced model)•	

Model B (introduced first and is the full hardware model)•	

Figure 1-1 shows the Model B and its interfaces. Table 1-1 indicates the differences
between the two models.

Chapter 1 ■ the raspberry pi

2

As you can see, one of the first differences to note is the amount of RAM available.
The revision 2.0 (Rev 2.0) Model B has 512 MB of RAM instead of 256 MB. The GPU also
shares use of the RAM. So keep that in mind when budgeting RAM.

In addition, the Model A does not include an Ethernet port but can support
networking through a USB network adapter. Keep in mind that only one USB port exists
on the Model A, requiring a hub if other USB devices are needed.

Finally, the power consumption differs considerably between the two models.
The Model A is listed as requiring 300 mA vs. 700 mA for the Model B. Both of these
figures should be considered low because consumption rises considerably when the GPU
is active (when using the desktop through the HDMI display port).

Figure 1-1. Model B interfaces

Table 1-1. Model Differences

Resource Model A Model B

RAM 256 MB 512 MB

USB ports 1 2

Ethernet port None 10/100 Ethernet (RJ45)

Power consumption10 300 mA (1.5 W) 700 mA (3.5 W)

Target price9 $25.00 $35.00

Chapter 1 ■ the raspberry pi

3

The maximum current flow that is permitted through the 5 V micro-USB
connection is about 1.1 A because of the fuse. However, when purchasing a power
supply/adapter, it is recommended that you seek supplies that are rated higher than
1.2 A because they often don’t live up to their specifications. Chapter 2 provides more
details about power supplies.

Hardware in Common
The two Raspberry Pi models share some common features, which are summarized
in Table 1-2.9 The Hardware column lists the broad categories; the Features column
provides additional specifics.

Table 1-2. Common Hardware Features

Hardware Features Comments

System on a chip Broadcom BCM2835 CPU, GPU, DSP, SDRAM, and USB port

CPU model Clock
rate

ARM1176JZF-S core With floating point

700 MHz Overclockable to 800 MHz

GPU Broadcom VideoCore IV

OpenGL ES 2.0 3D

OpenVG 3D

MPEG-2

VC-1 Microsoft, licensed

1080p30 H.264 Blu-ray Disc capable, 40 Mbit/s

MPEG-4 AVC high-profile decoder and encoder

1 Gpixel/s, 1.5 Gtexels/s 24 GFLOPS with DMA

Video output Composite RCA PAL and NTSC

HDMI Rev 1.3 and 1.4

Raw LCD panels Via DSI

Audio output 3.5 mm jack HDMI

(continued)

Chapter 1 ■ the raspberry pi

4

Hardware Features Comments

Storage SD/MMC/SDIO Card slot

Peripherals 8 × GPIO

100 kHz

UART

I2C bus

SPI bus Two chip selects, +3.3 V, +5 V, ground

Power source 5 V via micro-USB

Table 1-2. (continued)

Which Model?
One of the questions that naturally follows a model feature comparison is why the Model
A? Why wouldn’t everyone just buy Model B?

Power consumption is one deciding factor. If your application is battery powered,
perhaps a data-gathering node in a remote location, then power consumption becomes
a critical factor. If the unit is supplemented by solar power, the Model A’s power
requirements are more easily satisfied.

Cost is another advantage. When an Arduino/AVR class of application is being
considered, the added capability of the Pi running Linux, complete with a file system on
SD, makes it irresistible. Especially at the model A price of $25.

Unit cost may be critical to students in developing countries. Networking can be
sacrificed, if it still permits the student to learn on the cheaper Model A. If network capability
is needed later, even temporarily, a USB network adapter can be attached or borrowed.

The main advantage of the Model B is its networking capability. Networking today
is so often taken for granted. Yet it remains a powerful way to integrate a larger system
of components. The project outlined in Chapter 8 of Experimenting with Raspberry Pi
(Apress, 2014) demonstrates how powerful ØMQ (ZeroMQ) can be in bringing separate
nodes together.

5

Chapter 2

Power

One of the most frequently neglected parts of a system tends to be the power supply—at
least when everything is working. Only when things get weird does the power supply
begin to get some scrutiny.

The Raspberry Pi owner needs to give the power supply extra respect. Unlike many
AVR class boards, where the raw input voltage is followed by an onboard 5 V regulator, the
Pi expects its power to be regulated at the input. The Pi does include onboard regulators,
but these regulate to lower voltages (3.3 V and lower).

Figure 2-1 illustrates the rather fragile Micro-USB power input connector. There is a
large round capacitor directly behind the connector that people often grab for leverage.
It is a mistake to grab it, however, as many have reported “popping it off” by accident.

Figure 2-1. Micro-USB power input

Calculating Power
Sometimes power supplies are specified in terms of voltage, and power handling capability
in watts. The Pi’s input voltage of 5 V must support a minimum of 700 mA (Model B). Let’s
compute a power supply figure in watts (this does not include any added peripherals):

P = V × I

 = 5 × 0.7

 = 3.5 W

Chapter 2 ■ power

6

The 3.5 W represents a minimum requirement, so we should overprovision this by an
additional 50%:

P = 3.5 × 1.50

= 5.25 W

The additional 50% yields a power requirement of 5.25 W.

Tip ■ allow 50% extra capacity for your power supply. a power supply gone bad may
cause damage or many other problems. one common power-related problem for the pi is
loss of data on the SD card.

Current Requirement
Since the power supply being sought produces one output voltage (5 V), you’ll likely see
adapters with advertised current ratings instead of power. In this case, you can simply
factor a 50% additional current instead:

I
supply

 = I
Pi

 × 1.50

 = 0.700 × 1.50

 = 1.05 A

To double-check our work, let’s see whether this agrees with the power rating we
computed earlier:

P = V × I

 = 5 × 1.05

 = 5.25 W

The result does agree. You can conclude this section knowing that you minimally
need a 5 V supply that produces one of the following:

5.25 W or more•	

1.05 A or more (ignoring peripherals)•	

Supplies that can meet either requirement, should be sufficient. However, you
should be aware that not all advertised ratings are what they seem. Cheap supplies often
fail to meet their own claims, so an additional margin must always be factored in.

Chapter 2 ■ power

7

Peripheral Power
Each additional circuit that draws power, especially USB peripherals, must be considered
in a power budget. Depending on its type, a given USB peripheral plugged into a USB 2
port can expect up to 500 mA of current, assuming it can obtain it. (Pre Rev 2.0 USB ports
were limited to 140 mA by polyfuses.)

Wireless adapters are known to be power hungry. Don’t forget about the keyboard
and mouse when used, since they also add to the power consumption. If you’ve attached
an RS-232 level shifter circuit (perhaps using MAX232CPE), you should budget for that
small amount also in the 3 V supply budget. This will indirectly add to your +5 V budget,
since the 3 V regulator is powered from it. (The USB ports use the +5 V supply.) Anything
that draws power from your Raspberry Pi should be tallied.

Model B Input Power
The Raspberry Pi’s input voltage is fixed at exactly 5 V (±0.25 V). Looking at the schematic
in Figure 2-2, you can see how the power enters the micro-USB port on the pin marked
VBUS. Notice that the power flows through fuse F3, which is rated at 6 V, 1.1 A. If after
an accidental short, you find that you can’t get the unit to power up, check that fuse with
an ohmmeter.

Figure 2-2. Model B Rev 2.0 input power

If you bring the input +5 V power into the Pi through header P1, P5, or TP1, for
example, you will lose the safety of the fuse F3. So if you bypass the micro-USB port to
bring in power, you may want to include a safety fuse in the supplying circuit.

Figure 2-3 shows the 3.3 V regulator for the Pi. Everything at the 3.3 V level is
supplied by this regulator, and the current is limited by it.

Chapter 2 ■ power

8

Model A Input Power
Like the Model B, the Model A receives its power from the micro-USB port. The Model
A power requirement is 300 mA, which is easily supported by a powered USB hub or
desktop USB 2 port. A USB 2 port is typically able to supply a maximum of 500 mA unless
the power is divided among neighboring ports. You may find in practice, however, that
not all USB ports will deliver 500 mA.

As with the Model B, factor the power required by your USB peripherals. If your total
nears or exceeds 500 mA, you may need to power your Model A from a separate power
source. Don’t try to run a wireless USB adapter from the Model A’s USB port if the Pi is
powered by a USB port itself. The total current needed by the Pi and wireless adapter
will likely exceed 500 mA. Supply the wireless adapter power from a USB hub, or power
the Pi from a 1.2 A or better power source. Also be aware that not all USB hubs function
correctly under Linux, so check compatibility if you’re buying one for that purpose.

3.3 Volt Power
Since the 3.3 V supply appears at P1-01, P1-17, and P5-02, it is useful to examine Figure 2-3
(shown previously) to note its source. This supply is indirectly derived from the input 5 V
supply, passing through regulator RG2. The maximum excess current that can be drawn
from it is 50 mA; the Raspberry Pi uses up the remaining capacity of this regulator.

When planning a design, you need to budget this 3 V supply carefully. Each GPIO
output pin draws from this power source an additional 3 to 16 mA, depending on how it is
used. For more information about this, see Chapter 10.

Powered USB Hubs
If your power budget is stretched by USB peripherals, you may want to consider the use
of a powered USB hub. In this way, the hub rather than your Raspberry Pi provides the
necessary power to the downstream peripherals. The hub is especially attractive for the
Model A because it provides additional ports.

Figure 2-3. 3.3 V power

Chapter 2 ■ power

9

Again, take into account that not all USB hubs work with (Raspbian) Linux. The
kernel needs to cooperate with connected USB hubs, so software support is critical. The
following web page lists known working USB hubs:

http://elinux.org/RPi_Powered_USB_Hubs

Power Adapters
This section pertains mostly to the Model B because the Model A is easily supported by a
USB 2 port. We’ll first look at an unsuitable source of power and consider the factors for
finding suitable units.

An Unsuitable Supply
The example shown in Figure 2-4 was purchased on eBay for $1.18 with free shipping
(see the upcoming warning about fakes). For this reason, it was tempting to use it.

Figure 2-4. Model A1265 Apple adapter

This is an adapter/charger with the following ratings:

•	 Model: A1265

•	 Input: 100–240 VAC

•	 Output: 5 V, 1 A

When plugged in, the Raspberry Pi’s power LED immediately lights up, which is a
good sign for an adapter (vs. a charger). A fast rise time on the power leads to successful
power-on resets. When the voltage was measured, the reading was +4.88 V on the +5 V
supply. While not ideal, it is within the range of acceptable voltages. (The voltage must be
between 4.75 and 5.25 V.)

http://elinux.org/RPi_Powered_USB_Hubs

Chapter 2 ■ power

10

The Apple unit seemed to work fairly well when HDMI graphics were not being
utilized (using serial console, SSH, or VNC). However, I found that when HDMI was
used and the GPU had work to do (move a window across the desktop, for example),
the system would tend to seize up. This clearly indicates that the adapter does not fully
deliver or regulate well enough.

Caution ■ Be very careful of counterfeit apple chargers/adapters. the raspberry pi Foun-
dation has seen returned units damaged by these. For a video and further information, see
www.raspberrypi.org/archives/2151.

E-book Adapters
Some people have reported good success using e-book power adapters. I have also
successfully used a 2 A Kobo charger.

Best Power Source
While it is possible to buy USB power adapters at low prices, it is wiser to spend more on
a high-quality unit. It is not worth trashing your Raspberry Pi or experiencing random
failures for the sake of saving a few dollars.

If you lack an oscilloscope, you won’t be able to check how clean or dirty your supply
current is. A better power adapter is cheaper than an oscilloscope. A shaky/noisy power
supply can lead to all kinds of obscure and intermittent problems.

A good place to start is to simply Google “recommended power supply Raspberry Pi.”
Do your research and include your USB peripherals in the power budget. Remember that
wireless USB adapters consume a lot of current—up to 500 mA.

Note ■ a random Internet survey reveals a range of 330 ma to 480 ma for wireless USB
adapter current consumption.

Voltage Test
If you have a DMM or other suitable voltmeter, it is worthwhile to perform a test after
powering up the Pi. This is probably the very first thing you should do, if you are
experiencing problems.

Follow these steps to perform a voltage test:

1. Plug the Raspberry Pi’s micro-USB port into the power
adapter’s USB port.

2. Plug in the power adapter.

http://www.raspberrypi.org/archives/2151

Chapter 2 ■ power

11

3. Measure the voltage between P1-02 (+5 V) and P1-25
(Ground): expect +4.75 to +5.25 V.

4. Measure the voltage between P1-01 (+3.3 V) and P1-25
(Ground): expect +3.135 to +3.465 V.

Caution ■ Be very careful with your multimeter probes around the pins of p1.
Be especially careful not to short the +5 V to the +3.3 V pin, even for a fraction of a second.
Doing so will zap your pi! If you feel nervous or shaky about this, leave it alone. You may end
up doing more harm than good. as a precaution, put a piece of wire insulation (or spaghetti)
over the +3.3 V pin.

The left side of Figure 2-5 shows the DMM probes testing for +5 V on header strip
P1. Again, be very careful not to touch more than one pin at a time when performing
these measurements. Be particularly careful not to short between 5 V and 3.3 V. To avoid a
short-circuit, use a piece of wire insulation, heat shrink tubing, or even a spaghetti noodle
over the other pin.

Figure 2-5. Measuring voltages

Chapter 2 ■ power

12

The right side of Figure 2-5 shows the positive DMM probe moved to P1-01 to
measure the +3.3 V pin. Appendix B lists the ATX power supply standard voltage levels,
which include +5 ± 0.25 V and +3.3 ± 0.165 V.

Battery Power
Because of the small size of the Raspberry Pi, it may be desirable to run it from battery
power. Doing so requires a regulator and some careful planning. To meet the Raspberry
Pi requirements, you must form a power budget. Once you know your maximum current,
you can flesh out the rest. The following example assumes that 1 A is required.

Requirements
For clarity, let’s list our battery power requirements:

Voltage 5 V, within ± 0.25 V•	

Current 1 A•	

Headroom
The simplest approach is to use the linear LM7805 as the 5 V regulator. But there are some
disadvantages:

There must be some headroom above the input voltage •	
(about 2 V).

Allowing too much headroom increases the power dissipation in •	
the regulator, resulting in wasted battery power.

A lower maximum output current can also result.•	

Your batteries should provide a minimum input of 5+2 V (7 V). Any lower input
voltage to the regulator will result in the regulator “dropping out” and dipping below 5 V.
Clearly, a 6 V battery input will not do.

 LM7805 Regulation
Figure 2-6 shows a very simple battery circuit using the LM7805 linear regulator. Resistor
R

L
 represents the load (the Raspberry Pi).

Chapter 2 ■ power

13

The 8.4 V battery is formed from seven NiCad cells in series, each producing 1.2 V.
The 8.4 V input allows the battery to drop to a low of 7 V before the minimum headroom
of 2 V is violated.

Depending on the exact 7805 regulator part chosen, a typical heat-sinked parameter
set might be as follows:

•	 Input voltage: 7–25 V

•	 Output voltage: 1.5 A (heat-sinked)

•	 Operating temperature: 125°C

Be sure to use a heat sink on the regulator so that it can dissipate heat energy to the
surrounding air. Without one, the regulator can enter a thermal shutdown state, reducing
current flow to prevent its own destruction. When this happens, the output voltage will
drop below +5 V.

Keep in mind that the amount of power dissipated by the battery is more than
that received by the load. If we assume that the Raspberry Pi is consuming 700 mA, a
minimum of 700 mA is also drawn from the battery through the regulator (and it could
be slightly higher). Realize that the regulator is dissipating additional energy because of
its higher input voltage. The total power dissipated by the regulator and the load is as
follows:

P
d
 = P

L
 + P

R

 = 5 V × 0.7 A + (8.4 V − 5 V) × 0.7 A

 = 3.5 W + 2.38 W

 = 5.88 W

The regulator must dissipate the difference between the input and the output
voltages (2.38 W). This additional energy heats up the regulator with the energy being
given away at the heat sink. Because of this, designers avoid using a high input voltage on
linear regulator circuits.

Figure 2-6. Regulated battery supply

Chapter 2 ■ power

14

If the regulator is rated at a maximum of 1.5 A at 7 V (input), the power maximum
for the regulator is about 10.5 W. If we apply an input voltage of 8.4 V instead of 7, we can
derive what our 5 V maximum current will be:

I
P

V
W

V
A

in
max

max

.

.
.

=

=

=

10 5

8 4
1 25

From this, we find that the 8.4 V battery regulator circuit can provide a maximum of
1.25 A at the output, without exceeding the regulator’s power rating. Multiply 8.4 V by 1.25
A to convince yourself that this equals 10.5 W.

DC-DC Buck Converter
If the application is designed for data acquisition, for example, it is desirable to have it run
as long as possible on a given set of batteries or charge cycle. A switching regulator may
be more suitable than the linear regulator.

Figure 2-7 shows a very small PCB that is about 1.5 SD cards in length. This unit
was purchased from eBay for $1.40, with free shipping. At these prices, why would you
build one?

Figure 2-7. DC-DC buck converter

They are also simple to use. You have + and – input connections and + and – output
connections. Feed power in at one voltage and get power out at another voltage. This is so
simple that you’ll forgive me if I omit the diagram for it.

But don’t immediately wire it up to your Raspberry Pi, until you have calibrated the
output voltage. While it might come precalibrated for 5 V, it is best not to count on it. If the
unit produces a higher voltage, you might fry the Pi.

Chapter 2 ■ power

15

The regulated output voltage is easily adjusted by a multiturn trim pot on the PCB.
Adjust the pot while you read your DMM.

The specifications for the unit I purchased are provided in Table 2-1 for your general
amusement. Notice the wide range of input voltages and the fact that it operates at
a temperature as low as –40°C. The wide range of input voltages and current up to 3
A clearly makes this a great device to attach to solar panels that might vary widely in
voltage.

Table 2-1. DC-DC buck converter specifications

Parameter Min Max Units Parameter Min Max Units

Input voltage 4.00 35.0 Volts Output ripple 30.9 mA

Input current 3.0 Amps Load regulation ±0.5 %

Output voltage 1.23 30.0 Volts Voltage
regulation

±2.5 %

Conversion
efficiency

92 % Working
temperature

–40 +85 °C

Switching
frequency

150 kHz PCB size 45×20×12 mm

Net weight 10 g

The specification claims up to a 92% conversion efficiency. Using 15 V on the input,
I performed my own little experiment with measurements. With the unit adjusted to
produce 5.1 V at the output, the readings shown in Table 2-2 were taken.

Table 2-2. Readings taken from experiment

Parameter Input Output Units

Voltage 15.13 5.10 Volts

Current 0.190 0.410 Amps

Power 2.87 2.09 Watts

From the table we expected to see more power used on the input side (2.87 W).
The power used on the output side was 2.09 W. The efficiency then becomes a matter of
division:

2 09

2 87
0 728

.

.
.=

From this we can conclude that the measured conversion efficiency was about 72.8%.

Chapter 2 ■ power

16

How well could we have done if we used the LM7805 regulator? The following is
a best case estimate, since I don’t have an actual current reading for that scenario. But
we do know that at least as much current that flows out of the regulator must flow into it
(likely more). So what is the absolute best that the LM7805 regulator could theoretically
do? Let’s apply the same current draw of 410 mA for the Raspberry Pi at 5.10 V, as shown
in Table 2-3. (This was operating without HDMI output in use.)

Table 2-3. Hypothetical LM7805 power use

Parameter Input Output Units

Voltage 7.1 5.10 Volts

Current 0.410 0.410 Amps

Power 2.91 2.09 Watts

The power efficiency for this best case scenario amounts to this:

2 09

2 91
0 718

.

.
.=

The absolute best case efficiency for the LM7805 regulator is 71.8%. But this is
achieved at its optimal input voltage. Increasing the input voltage to 12 V causes the
power dissipation to rise considerably, resulting in a 42.5% efficiency (this calculation is
left to the reader as an exercise). Attempting to operate the LM7805 regulator at 15.13 V,
as we did with the buck converter, would cause the efficiency to drop to less than 33.7%.
Clearly, the buck converter is much more efficient at converting power from a higher
voltage source.

Signs of Insufficient Power
In the forums, it has been reported that ping sometimes doesn’t work from the desktop
(with HDMI), yet works OK in console mode.42 Additionally, I have seen that desktop
windows can freeze if you move them (HDMI). As you start to move the terminal window,
for example, the motion would freeze part way through, as if the mouse stopped working.

These are signs of the Raspberry Pi being power starved. The GPU consumes more
power when it is active, performing accelerated graphics. Either the desktop freezes (GPU
starvation) or the network interface fails (ping). There may be other symptoms related to
HDMI activity.

Another problem that has been reported is resetting of the Raspberry Pi shortly after
starting to boot. The board starts to consume more power as the kernel boots up, which
can result in the Pi being starved.43

If you lose your Ethernet connection when you plug in a USB device, this too may be
a sign of insufficient power.44

Chapter 2 ■ power

17

While it may seem that a 1 A power supply should be enough to supply a 700 mA
Raspberry Pi, you will be better off using a 2 A supply instead. Many power supplies
simply don’t deliver their full advertised ratings.

The micro-USB cable is something else to suspect. Some are manufactured with thin
conductors that can result in a significant voltage drop. Measuring the voltage as shown
previously in the “Voltage Test” section may help diagnose that. Try a higher-quality cable
to see whether there is an improvement.

No Power
If your Pi appears dead, even though power is present at the input, the input polyfuse
could have blown. If this was a recent event, allow the unit to cool down. The polymer
in the fuse recrystallizes, but this can take several hours. If you think the F3 poly fuse is
permanently destroyed, see the Linux wiki page45 for how to test it.

19

Chapter 3

Header Strips, LEDs,
and Reset

In this chapter, an inventory of the Raspberry Pi header strips, LEDs, and reset button
connections is covered. These are important interfaces from the Pi to the outside world.
You may want to use a bookmark for Table 3-3, which outlines the general purpose input/
output (GPIO) pins on header strip P1.

Status LEDs
The Model A Raspberry Pi has a subset of the Model B LED indicators because it lacks the
Ethernet port. The Model B has three additional LEDs, each showing the network status.
Table 3-1 provides a list of LED statuses.

Table 3-1. Status LEDs

LED Color Model A Model B Comment

ACT Green OK ACT SD card access activity

PWR Red Yes Yes Power supply

FDX Green N/A Yes LAN: Full duplex

LNK Green N/A Yes LAN: Link

100 Yellow N/A 100 Labeled incorrectly on Rev 1.0 as
10M: 10/100 Mbit link

OK or ACT LED
This green LED indicates SD card I/O activity. This active low LED is internally driven by
the kernel on GPIO 16 (see the kernel source file bcm2708.c in arm/mach-bcm2708).

Chapter 3 ■ header StripS, LedS, and reSet

20

PWR LED
This red LED simply indicates that the Raspberry Pi has power. Figure 3-1 shows that the
power LED is supplied from the 3.3 V regulator.14 Consequently, the LED indicates only
that power is arriving through the 3.3 V regulator.

Figure 3-1. Power LED

The power LED indicator is not necessarily an indication that the power is good.
It simply indicates that power is present. The LED can be lit and still not have sufficient
voltage present for the CPU to operate correctly.

If there is any doubt about how good the power supply is, refer to the “Voltage Test”
section in Chapter 2, which has information about how to perform a voltage test.

FDX LED
This green LED indicates that the Ethernet port is operating in full-duplex mode.

LNK LED
This green LED indicates that the Ethernet port has an active link-level status.

10M or 10/100 LED
Model B Rev 1.0 had this LED incorrectly labelled as 10M. The correct label is 100, which
is found on Rev 2.0 boards. This yellow LED indicates that the 100 Mbit link is active
(otherwise, it is a 10 Mbit link).

Header P1
The Raspberry Pi includes a 13x2 pin strip identified as P1, which exposes GPIO pins.
This includes the I2C, SPI, and UART peripherals as well as the +3.3 V, +5.0 V, and ground
connections. Table 3-2 shows the pin assignments for the Model B, Rev 1.0 PCB.

Chapter 3 ■ header StripS, LedS, and reSet

21

Caution ■ the Model a can supply a maximum of 500 ma from the +5 V pins of p1. the
model B has a lower maximum limit of 300 ma. these limits are due to the fusible link F3 on
the pCB (shown previously in Figure 2-2 in Chapter 2). note also for both models, the +3.3 V
pins of p1 and p5 are limited to a maximum of 50 ma. this is the remaining capacity of the
onboard voltage regulator. GpiO currents also draw from this resource. (See Figure 2-3.)

Table 3-3 shows the connections for the Model B revision 2.0. According to the
Raspberry Pi website14, these pin assignments are not expected to change beyond Rev 2.0
in future revisions. The additional Rev 2.0 header P5 is shown in Table 3-4.

Note ■ Chapter 5 provides more information on identifying your raspberry pi. if you have
an early pre rev 2.0 board, be aware that the GpiO pins differ.

Table 3-2. Rev 1.0 GPIO Header Connector P1 (Top View)

Lower Left Upper Left

3.3 V power P1-01 P1-02 5 V power

GPIO 0 (I2C0_SDA)+R1=1.8k P1-03 P1-04 5 V power

GPIO 1 (I2C0_SCL)+R2=1.8k P1-05 P1-06 Ground

GPIO 4 (GPCLK 0/1-Wire) P1-07 P1-08 GPIO 14 (TXD)

Ground P1-09 P1-10 GPIO 15 (RXD)

GPIO 17 P1-11 P1-12 GPIO 18 (PCM_CLK)

GPIO 21 (PCM_DOUT) P1-13 P1-14 Ground

GPIO 22 P1-15 P1-16 GPIO 23

3.3 V power P1-17 P1-18 GPIO 24

GPIO 10 (MOSI) P1-19 P1-20 Ground

GPIO 9 (MISO) P1-21 P1-22 GPIO 25

GPIO 11 (SCKL) P1-23 P1-24 GPIO 8 (CE0)

Ground P1-25 P1-26 GPIO 7 (CE1)

Lower Right Upper Right

Chapter 3 ■ header StripS, LedS, and reSet

22

Safe Mode
If your Raspbian SD image supports it, a safe mode can be activated when needed. The
New Out of Box Software (NOOBS) image still appears to support this feature.

Pin P1-05, GPIO 3 is special to the boot sequence for Rev 2.0 models. (This is GPIO 1 on
the pre Rev 2.0 Model B.) Grounding this pin or jumpering this to P1-06 (ground) causes the
boot sequence to use a safe mode boot procedure. If the pin is used for some other purpose,
you can prevent this with configuration parameter avoid_safe_mode=1. Be very careful that
you don’t accidentally ground a power pin (like P1-01 or P1-02) when you do use it.

Table 3-4. Rev 2.0 P5 Header (Top View)

Lower Left Upper Left

(Square) 5 V P5-01 P5-02 3.3 V, 50 mA

GPIO 28 P5-03 P5-04 GPIO 29

GPIO 30 P5-05 P5-06 GPIO 31

Ground P5-07 P5-08 Ground

Lower Right Upper Right

Table 3-3. Rev 2.0 GPIO Header Connector P1 (Top View)

Lower Left Upper Left

3.3 V power, 50 mA max P1-01 P1-02 5 V power

GPIO 2 (I2C1_SDA1)+R1=1.8k P1-03 P1-04 5 V power

GPIO 3 (I2C1_SCL1)+R2=1.8k P1-05 P1-06 Ground

GPIO 4 (GPCLK 0/1-Wire) P1-07 P1-08 GPIO 14 (TXD0)

Ground P1-09 P1-10 GPIO 15 (RXD0)

GPIO 17 (GEN0) P1-11 P1-12 GPIO 18 (PCM_CLK/GEN1)

GPIO 27 (GEN2) P1-13 P1-14 Ground

GPIO 22 (GEN3) P1-15 P1-16 GPIO 23 (GEN4)

3.3 V power, 50 mA max P1-17 P1-18 GPIO 24 (GEN5)

GPIO 10 (SPI_MOSI) P1-19 P1-20 Ground

GPIO 9 (SPI_MISO) P1-21 P1-22 GPIO 25 (GEN6))

GPIO 11 (SPI_SCKL) P1-23 P1-24 GPIO 8 (CE0_N)

Ground P1-25 P1-26 GPIO 7 (CE1_N)

Lower Right Upper Right

Chapter 3 ■ header StripS, LedS, and reSet

23

If yours fails to respond to safe mode, it may be due to a manufacturing error. See this
message:

www.raspberrypi.org/phpBB3/viewtopic.php?f=29&t=12007

In that thread, it is suggested that you check the following:

$ vcgencmd otp_dump | grep 30:
30:00000002

If you see the value 2, it means that the firmware thinks this is a Rev 1.0 board
(even though it may be a Rev 2.0). When that applies, it will not support the safe mode
sequence. Newer Rev 2.0 Pis do not have this issue.

When safe mode is invoked by the jumper, the config.txt file is ignored except for the
avoid_safe_mode parameter. Additionally, this mode overrides the kernel command line,
and kernel_emergency.img is loaded. If this file is unavailable, kernel.img is used instead.

The intent of this feature is to permit the user to overcome configuration problems
without having to edit the SD card on another machine in order to make a correction. The
booted emergency kernel is a BusyBox image with /boot mounted so that adjustments
can be made. Additionally, the /dev/mmcblk0p2 root file system partition can be fixed up
or mounted if necessary.

Logic Levels
The logic level used for GPIO pins is 3.3 V and is not tolerant of 5 V TTL logic. The
Raspberry Pi PCB is designed to be plugged into PCB extension cards or otherwise
carefully interfaced to 3 V logic. Input voltage parameters V

IL
 and V

IH
 are described in

Chapter 10. This feature of the Pi makes it an interesting case study as we interface it to
the outside world.

GPIO Configuration at Reset
The Raspberry Pi GPIO pins can be configured by software control to be input or output,
to have pull-up or pull-down resistors, or to assume some specialized peripheral
function. After reset, only GPIO 14 and 15 are assigned a special function (UART). After
boot up, however, software can even reconfigure the UART pins as required.

When a GPIO pin is configured for output, there is a limited amount of current
that it can drive (source or sink). By default, each P1 GPIO is configured to use an 8 mA
driver, when the pin is configured as an output. Chapter 10 has more information on the
software control of this.

Note ■ raspbian 1-Wire bus is GpiO 4 (GpCLK0) pin p1-07.

http://www.raspberrypi.org/phpBB3/viewtopic.php?f=29&t=12007

Chapter 3 ■ header StripS, LedS, and reSet

24

1-Wire Driver
The default GPIO pin used for the 1-Wire driver is GPIO 4. This is hard-coded in the
following kernel source file:

arch/arm/mach–bcm2708/bcm2708.c

If you need to change this default, alter the line in bcm2708.c that defines the macro
W1_GPIO:

#define W1_GPIO 4

Then rebuild your kernel.

Header P5
Be careful with the orientation of this Model B Rev 2.0 header strip. See Figure 3-2: while
looking down at P1, with its pin 1 at the lower left, the P5 strip has its pin 1 at the upper
left (note the square pad on either side of the PCB).

Figure 3-2. P5’s pin 1 location on the Rev 2.0 Model B

As a practical matter, I found that the pins for P5 can be soldered into the PCB with
some care (they are not included). However, the proximity of P5 to P1 makes it impossible
to plug in a header connector to P1 and P5 at the same time. With the pins installed, it
is possible to use individual wire plugs on the pins as needed. I ended up plugging in a
dual-wire plug on P5-04 and P5-06, which is one row away from P1. These wires were
then brought out to connectors on a wood strip for easier access.

By default, GPIO pins 28 through 31 are configured for driving 16 mA. (Chapter 10
has more information about this.)

Chapter 3 ■ header StripS, LedS, and reSet

25

Reset
In the revision 2.0 Raspberry Pi, a reset circuit was implemented, as shown in Figure 3-4.11 To
complete the reset circuit, attach a push button to pins 1 and 2 of P6, as shown in Figure 3-3.14

Figure 3-4. Reset circuit

Figure 3-3. Model B Rev 2.0 P6

To actuate the reset, P6 pin 1 is short-circuited to P6 pin 2. This resets the BCM2835
SoC chip. This is something you will want to avoid using while Raspbian Linux is up and
running. Use reset as a last resort to avoid losing file content.

27

Chapter 4

SDRAM

The Model B Rev 2.0 Raspberry Pi has 512 MB of SDRAM, while the older revisions and
remaining models have 256 MB. Contrast this to the AVR class ATmega168p, which has
1 KB of static RAM. SDRAM is synchronous dynamic random access memory, which
synchronizes with the system bus for improved performance. It uses a form of pipelining
to gain this advantage.

There isn’t much about the memory hardware that concerns the average Pi
developer. However, in this chapter, you’ll examine some useful Raspbian Linux kernel
interfaces that inform us how that memory is utilized. You’ll also examine how to access
the memory-mapped ARM peripherals directly from your Linux application.

/proc/meminfo
The pseudo file /proc/meminfo provides us with information about memory utilization.
This information varies somewhat by architecture and the compile options used for that
kernel. Let’s study an example that is produced by Raspbian Linux, on the Raspberry Pi:

$ cat /proc/meminfo
MemTotal: 448996 kB
MemFree: 340228 kB
Buffers: 14408 kB
Cached: 58532 kB
SwapCached: 0 kB
Active: 45948 kB
Inactive: 51564 kB
Active(anon): 24680 kB
Inactive(anon): 820 kB
Active(file): 21268 kB
Inactive(file): 50744 kB
Unevictable: 0 kB
Mlocked: 0 kB
SwapTotal: 102396 kB
SwapFree: 102396 kB
Dirty: 0 kB
Writeback: 0 kB
AnonPages: 24584 kB

Chapter 4 ■ SDraM

28

Mapped: 20056 kB
Shmem: 932 kB
Slab: 6088 kB
SReclaimable: 2392 kB
SUnreclaim: 3696 kB
KernelStack: 1216 kB
PageTables: 1344 kB
NFS_Unstable: 0 kB
Bounce: 0 kB
WritebackTmp: 0 kB
CommitLimit: 326892 kB
Committed_AS: 215104 kB
VmallocTotal: 188416 kB
VmallocUsed: 744 kB
VmallocChunk: 186852 kB

All of the memory values shown have the units KB to the right of them, indicating
kilo (1,024) bytes.

This next example was taken from a Model A Raspberry Pi, with 256 MB:63

$cat/proc/meminfo
MemTotal: 190836 kB
MemFree: 151352 kB
Buffers: 7008 kB
Cached: 20640 kB
SwapCached: 0 kB
Active: 14336 kB
Inactive: 18648 kB
Active(anon): 5468 kB
Inactive(anon): 0 kB
Active(file): 8868 kB
Inactive(file): 18648 kB
Unevictable: 0 kB
Mlocked: 0 kB
SwapTotal: 0 kB
SwapFree: 0 kB
Dirty: 0 kB
Writeback: 0 kB
AnonPages: 5348 kB
Mapped: 6512 kB
Shmem: 136 kB
Slab: 3712 kB
SReclaimable: 1584 kB
SUnreclaim: 2128 kB
KernelStack: 944 kB
PageTables: 620 kB
NFS_Unstable: 0 kB

Chapter 4 ■ SDraM

29

Bounce: 0 kB
WritebackTmp: 0 kB
CommitLimit: 95416 kB
Committed_AS: 57876 kB
VmallocTotal: 188416 kB
VmallocUsed: 704 kB
VmallocChunk: 186852 kB

Many of these values are noticeably smaller.
In the sections that follow, a Model B to Model A comparison is provided. In some

cases, the comparison isn’t meaningful because the values represent activity that has or
has not occurred. For example, the value for AnonPages is going to depend on the mix of
commands and applications that have run. But values from both models are provided for
completeness. Other values such as MemTotal can be meaningfully compared, however.

MemTotal
The MemTotal line indicates the total amount of memory available, minus a few reserved
binary regions. Note that memory allocated to the GPU is not factored into MemTotal.
Some may choose to allocate the minimum of 16 MB to the GPU to make more memory
available.

Model B Model A

MemTotal 448,996 KB 190,836 KB

If we break this down a bit further, accounting for memory allocated to the GPU
(see Chapter 2 of Raspberry Pi System Software Reference [Apress, 2014] for more
details), we find that there is about 9.5 MB (1.9%) of memory that is unaccounted for, as
shown in Table 4-1.

Table 4-1. GPU and Main Memory Breakdown

Memory Model B Comments

MemTotal 448,996 KB /proc/meminfo

gpu_mem 65,536 KB /boot/config.txt

Total 514,532 KB 502.5 MB

Unaccounted for 9,756 KB 9.5 MB

Chapter 4 ■ SDraM

30

MemFree
MemFree normally represents the sum of LowFree + HighFree memory in kilobytes on the
Intel x86 platform. For ARM, this simply represents the amount of memory available to
user space programs.

Model B Model A

MemFree 340,228 KB 151,352 KB

The Model B has 332.25 MB for application programs, which amounts to about 64.9%
(Rev 2.0). The Model A values indicate about 57.7% of the memory is available.

Buffers
This value represents temporary buffers used within the kernel for raw disk blocks, and so
forth. This value should not get much larger than about 20 MB or so.27

Model B Model A

Buffers 14,408 KB 7,008 KB

Cached
This value represents the read file content that has been cached (page cache). This does
not include the content reported for SwapCached.

Model B Model A

Cached 58,532 KB 20,640 KB

SwapCached
The value shown for SwapCached represents memory that was swapped out and is now
swapped back in. For efficiency, these memory pages are still represented by swap disk
space, should they be needed again.

Model B Model A

SwapCached 0 KB 0 KB

Chapter 4 ■ SDraM

31

The fact that the value is reported as zero is a happy sign that no swapping has
occurred, or is no longer pertinent.

Active
The Active memory value represents recently used memory that is not reclaimed, unless
absolutely necessary.

Model B Model A

Active 45,948 KB 14,336 KB

Inactive
This value represents memory that is not active and is likely to be reclaimed when
memory is needed.

Model B Model A

Inactive 51,564 KB 18,648 KB

Active(anon)
This value represents memory that is not backed up by a file and is active. Active memory
is not reclaimed unless absolutely necessary.

Model B Model A

Active(anon) 24,680 KB 5,468 KB

Inactive(anon)
This value represents memory that is not backed up by a file and is not active. Inactive
memory is eligible to be reclaimed if memory is required.

Model B Model A

Inactive(anon) 820 KB 0 KB

Chapter 4 ■ SDraM

32

Active(file)
This value represents file-backed memory, which is active. Active memory is reclaimed
only if absolutely required.

Model B Model A

Active(file) 21,268 KB 8,868 KB

Inactive(file)
This value represents inactive memory that is backed by a file. Inactive memory is eligible
for reclamation, when memory is required.

Model B Model A

Inactive(file) 50,744 KB 18,648 KB

Unevictable
This amount reflects the total amount of memory that cannot be reclaimed. Memory that
is locked, for example, cannot be reclaimed.

Model B Model A

Unevictable 0 KB 0 KB

Mlocked
This value reports the amount of locked memory.

Model B Model A

Mlocked 0 KB 0 KB

SwapTotal
This value reports the total amount of swap space available in kilobytes.

Model B Model A

SwapTotal 102,396 KB 0 KB

Chapter 4 ■ SDraM

33

SwapFree
This value reports the remaining amount of swap space available in kilobytes.

Model B Model A

SwapFree 102,396 KB 0 KB

Dirty
This value represents the kilobytes of memory that have been modified and are waiting to
be written to disk.

Model B Model A

Dirty 0 KB 0 KB

Writeback
This value reports the amount of memory in kilobytes being written back to disk.

Model B Model A

Writeback 0 KB 0 KB

AnonPages
This represents the non-file-backed pages of memory mapped into user space.

Model B Model A

AnonPages 24,584 KB 5,348 KB

Mapped
This value reports the files that have been mapped into memory. This may include library
code.

Model B Model A

Mapped 20,056 KB 6,512 KB

Chapter 4 ■ SDraM

34

 Shmem
This parameter does not appear to be documented well. However, it represents the
amount of shared memory in kilobytes

Model B Model A

Shmem 932 KB 136 KB

 Slab
This parameter is described as “in-kernel data structures cache.”27

Model B Model A

Slab 6,088 KB 3,712 KB

SReclaimable
This parameter is described as “Part of Slab that might be reclaimed, such as caches.”27

Model B Model A

SReclaimable 2,392 KB 1,584 KB

SUnreclaim
This parameter is described as “Part of Slab that cannot be reclaimed [under] memory
pressure.”27

Model B Model A

SUnreclaim 3,696 KB 2,128 KB

KernelStack
This value reports the memory used by the kernel stack(s).

Model B Model A

KernelStack 1,216 KB 944 KB

Chapter 4 ■ SDraM

35

PageTables
This value reports the amount of memory required by the page tables used in the kernel.
Clearly, with more memory to manage, there is more memory dedicated to page tables.

Model B Model A

PageTables 1,344 KB 620 KB

NFS_Unstable
This value represents “NFS pages sent to the server, but not yet committed to stable
storage.”27 This example data suggests that NFS is not being used.

Model B Model A

NFS_Unstable 0 KB 0 KB

Bounce
This reports the memory used for “block device bounce buffers.”27

Model B Model A

Bounce 0 KB 0 KB

WritebackTmp
This parameter reports the memory used by FUSE for “temporary writeback buffers.”27

Model B Model A

WritebackTmp 0 KB 0 KB

Chapter 4 ■ SDraM

36

CommitLimit
The documentation states:

Based on the overcommit ratio (vm.overcommit_ratio), this is the total
amount of memory currently available to be allocated on the system.
This limit is only adhered to if strict overcommit accounting is enabled
(mode 2 in vm.overcommit_memory). The CommitLimit is calculated with
the following formula:27

CommitLimit = (vm.overcommit_ratio × Physical RAM) + Swap

For example, a system with 1 GB of physical RAM and 7 GB of swap with a
vm.overcommit_ratio of 30 would yield a CommitLimit of 7.3 GB. For more details,
see the memory overcommit documentation in vm/overcommitaccounting.

The formula can be written as follows:

C R r S= ´() + .

The elements of this formula are described here:

•	 C is the overcommit limit.

•	 R is the physical RAM available (MemTotal).

•	 S is the swap space available (SwapTotal).

•	 r is the overcommit ratio percent (expressed as a fraction).

The overcommit ratio, r, is not reported in the /proc/meminfo data. To obtain that
ratio, we consult another pseudo file. This example was taken from a Rev 2.0 Model B, but
it appears to be a value common to all Pis:

$ cat /proc/sys/vm/overcommit_ratio
50

The value 50 is to be interpreted as r = 0.50 (50%).
Using the overcommit formula, the value for S can be computed for the swap space

available:

S C R r

KB

= - ´()
= - ´()
= -
=

326892 448996 0 50
326892 262144
102394

.

Chapter 4 ■ SDraM

37

This fits within 2 KB of the SwapTotal value of 102,396 KB reported by /proc/
meminfo.

The overcommit ratio is configurable by the user, by writing a value into the pseudo
file. This example changes the ratio to 35%:

$ sudo -i
echo 35 >/proc/sys/vm/overcommit_ratio
cat /proc/sys/vm/overcommit_ratio
35

The CommitLimit values reported by our example Raspberry Pi sessions are shown
in Table 4-2 for comparison purposes. A Model B pre Rev 2.0 version is also included here
for comparison.

Table 4-2. Example Model B to Model A Memory Comparisons

Model B Rev 2.0 Model B Pre 2.0 Model A

CommitLimit 326,892 KB 127,868 KB 95,416 KB

MemTotal 448,996 KB 124,672 KB 190,836 KB

SwapTotal 102,396 KB 65,532 KB 0 KB

Commit Ratio 50 50 50

With thanks to Dan Braun for providing the Model B Pre 2.0 data.

The value of the Model A commit ratio was calculated here since it wasn’t available
from the website. But if you calculate the swap space S for it, you arrive at the value of –2 KB,
if you assume 50% for the commit ratio. This agrees with the 2 KB difference you saw earlier.

Committed_AS
This parameter is described as follows:

The amount of memory presently allocated on the system. The committed
memory is a sum of all of the memory which has been allocated by
processes, even if it has not been “used” by them as of yet. A process which
malloc()’s 1 GB of memory, but only touches 300 MB of it will only show
up as using 300 MB of memory even if it has the address space allocated
for the entire 1 GB. This 1 GB is memory which has been “committed”
to by the VM and can be used at any time by the allocating application.
With strict overcommit enabled on the system (mode 2 in vm.overcommit_
memory), allocations which would exceed the CommitLimit (detailed
above) will not be permitted. This is useful if one needs to guarantee that
processes will not fail due to lack of memory once that memory has been
successfully allocated.27

Chapter 4 ■ SDraM

38

Model B Model A

Committed_AS 215,104 KB 57,876 KB

VmallocTotal
This represents the total amount of allocated virtual memory address space.

Model B Model A

VmallocTotal 188,416 KB 188,416 KB

VmallocUsed
This is the amount of virtual memory that is in use, reported in kilobytes.

Model B Model A

VmallocUsed 744 KB 704 KB

VmallocChunk
This value reports the largest size of a vmalloc area, in kilobytes.

Model B Model A

VmallocChunk 186,852 KB 186,852 KB

Physical Memory
Let’s now turn our attention to the Raspberry Pi’s physical memory layout. Normally,
physical memory isn’t a concern to application programmers, because the operating
system and its drivers provide an abstract and often portable way to access them.
However, when this support is absent, direct access to a peripheral like the PWM
controller is necessary.

Figure 4-1 illustrates the physical addressing used on the Raspberry Pi. The SDRAM
starts at physical address zero and works up to the ARM/GPU split point (Chapter 2 of
Raspberry Pi System Software Reference [Apress, 2014] defines the split point). The ARM
peripherals are mapped to physical memory starting at the address of 0x20000000. This
starting address is of keen interest to Pi programmers.

Chapter 4 ■ SDraM

39

In the region labeled Peripherals, the offsets and addresses indicated in Table 4-3 are
of interest to us.

Figure 4-1. Physical memory layout

Table 4-3. Peripheral Offsets for the Raspberry Pi

Peripheral Offset Address Description C Offset Macro

Base 0x00000000 0x20000000 Starting address BCM2708_PERI_BASE

PADS_GPIO 0x00100000 0x20100000 PADS base PADS_GPIO_BASE

GPIO 00..27 0x0010002C 0x2010002C GPIO 00..27 pads PADS_GPIO_00_27

GPIO 28..45 0x00100030 0x20100030 GPIO 28..45 pads PADS_GPIO_28_45

GPIO 46..53 0x00100034 0x20100034 GPIO 46..53 pads PADS_GPIO_46_53

Clock 0x00101000 0x20101000 Clock registers CLK_BASE

GPIO 0x00200000 0x20200000 GPIO registers GPIO_BASE

GPPUD 0x00200025 0x20200025 Pull-up enable

GPPUDCLK0 0x00200026 0x20200026 Pull-up clock 0

GPPUDCLK1 0x00200027 0x20200027 Pull-up clock 1

PWM 0x0020C000 0x2020C000 PWM registers PWM_BASE

Chapter 4 ■ SDraM

40

Throughout this book, you’ll see the macros BCM2708_PERI_BASE and GPIO_BASE, for
example, used in programs that access the peripherals directly.

Memory Mapping
To gain access to physical memory under Linux, we make use of the /dev/mem character
device and the mmap(2) system call. The /dev/mem node is shown here:

$ ls −l /dev/mem
crw−r−−−−T 1 root kmem 1, 1 Dec 31 1969 /dev/mem

From the ownership information shown, it is immediately obvious that you’ll need
root privileges to access it. This is sensible given that a process can cause havoc with
direct access to the physical memory. Clearly, the Pi developer should exercise caution in
what the applications do with it.

The mmap(2) system call API is shown here:

#include <sys/mman.h>

void ∗mmap(
 void ∗addr, /∗ Address to use ∗/
 size_t length, /∗ Number of bytes to access ∗/
 int prot, /∗ Memory protection ∗/
 int flags, /∗ Option flags ∗/
 int fd, /∗ Opened file descriptor ∗/
 off_t offset /∗ Starting off set ∗/
) ;

Rather than look at all the options and flags available to this somewhat complicated
system call, let’s look at the ones that we use in the following code:

static char ∗map = 0;

static void
gpio_init() {
 int fd;
 char ∗map;

 fd = open("/dev/mem",O_RDWR|O_SYNC) ; /∗ Needs root access ∗/
 if (fd < 0) {
 perror("Opening /dev/mem") ;
 exit(1) ;
 }

Chapter 4 ■ SDraM

41

 map = (char ∗) mmap(
 NULL, /∗ Any address ∗/
 BLOCK_SIZE, /∗ # of bytes ∗/
 PROT_READ|PROT_WRITE,
 MAP_SHARED, /∗ Shared ∗/
 fd, /∗ /dev/mem ∗/
 GPIO_BASE /∗ Offset to GPIO ∗/
) ;

 if ((long)map == −1L) {
 perror("mmap(/dev/mem)");
 exit(1) ;
 }

 close(fd);
 ugpio = (volatile unsigned ∗)map;
}

The first thing performed in this code is to open the device driver node /dev/mem.
It is opened for reading and writing (O_RDWR), and the option flag O_SYNC requests that any
write(2) call to this file descriptor result in blocking the execution of the caller until it
has completed.

Address
Next, the mmap(2) call is invoked. The address argument is provided with NULL (zero)
so that the kernel can choose where to map it into the caller’s address space. If the
application were to specify a starting address to use and the kernel was not able use it,
the system call would fail. The starting address is returned and assigned to the character
pointer map in the preceding listing.

Length
Argument 2 is supplied with the macro BLOCK_SIZE in this example. This is the number
of bytes you would like to map into your address space. This was defined earlier in the
program as 4 KB:

#define BLOCK_SIZE (4∗1024)

While the application may not need the full 4 KB of physical memory mapped,
mmap(2) may insist on using a multiple of the page size. This can be verified on the
command line as follows:

$ getconf PAGE_SIZE
4096

Chapter 4 ■ SDraM

42

A program could determine this as well, by using the sysconf(2) system call:

#include <unistd.h>

 ...
 long sz = sysconf(_SC_PAGESIZE);

Protection
The third mmap(2) argument is supplied with the flags PROT_READ and PROT_WRITE.
This indicates that the application wants both read and write access to the memory-
mapped region.

Flags
The flags argument is supplied with the value MAP_SHARED. This permits nonexclusive
access to the underlying mapping.

File Descriptor
This argument supplies the underlying opened file to be mapped into memory. In this
case, we map a region of physical ARM memory into our application by using the opened
device driver node /dev/mem.

Offset
This last argument specifies the location in physical memory where we want to start our
access. For the GPIO registers, it is the address 0x20200000.

Return Value
The return value, when successful, will be an application address that points to the
physical memory region we asked for. The application programmer need not be
concerned with what this address is, except to save and use it for access.

The return value is also used for indicating failure, so this should be checked and
handled:

if ((long) map == –1L) {
 perror("mmap(/dev/mem)");
 exit(1);
}

The returned address (pointer) map is cast to a long integer and compared to -1L.
This is the magic value that indicates that an error occurred. The error code is found in
errno.

Chapter 4 ■ SDraM

43

Volatile
The last section of this initialization code for GPIO assigns the address map to another
variable, ugpio, as follows:

ugpio = (volatile unsigned ∗)map;

The value ugpio was defined earlier in the program:

static volatile unsigned ∗ugpio = 0;

There are two things noteworthy about this:

The data type is an unsigned •	 int (32 bits on the Pi).

The pointed-to data is marked as •	 volatile.

Since the Pis registers are 32 bits in size, it is often more convenient to access them
as 32-bit words. The unsigned data type is perfect for this. But be careful with offsets in
conjunction with this pointer, since they will be word offsets rather than byte offsets.

The volatile keyword tells the compiler not to optimize access to memory through
the pointer variable. Imagine code that reads a peripheral register and reads the same
register again later, to see whether an event has occurred. An optimizing compiler might
say to itself, “I already have this value in CPU register R, so I’ll just use that since it is
faster.” But the effect of this code is that it will never see a bit change in the peripheral’s
register because that data was not fetched back into a CPU register. The volatile
keyword forces the compiler to retrieve the value even though it would be faster to use the
value still found in a register.

Virtual Memory
In the previous section, you looked at how to access physical memory in an application,
provided that you had the rights to do so (root or setuid). The Broadcom Corporation
PDF manual “BCM2835 ARM Peripherals,” page 5, also shows a virtual memory layout
on the right. This should not be confused with the physical memory layout that you
examined earlier. Virtual memory can be accessed through /dev/kmem driver node using
mmap(2), but we won’t be needing that in this book.

Final Thoughts on SDRAM
Some parameters such as Buffers impact the performance of Raspbian Linux on the Pi.
From our comparison, we saw that the Model A seems to use about half of the buffering
available to the Model B Rev 2.0 Pi. This is reasonable when limited memory has to be
divided between operating system and application use.

Another performance area related to memory is how much SDRAM is dedicated
to GPU use. This parameter is examined in Chapter 2 of Raspberry Pi System Software
Reference (Apress, 2014).

Chapter 4 ■ SDraM

44

Probably the most important aspect of memory allocation is how much memory
is available to the developer’s application programs. The value of MemFree is perhaps
the most useful metric for this. When exceeding physical memory limits, the swapping
parameters then become measurements of interest.

Finally, we took a detailed look at how to access the Raspberry Pi peripherals
directly using mmap(2). Until Raspbian Linux gains device drivers for peripherals such as
PWM, the direct access technique will be necessary. Even with driver support, there are
sometimes valid reasons to access the peripheral registers directly.

45

Chapter 5

CPU

The Raspberry Pi includes an ARM 700 MHz CPU. In this chapter, you’ll first look at the
versions of the Pi that have been released into the wild. Then after looking briefly at
overclocking, you’ll examine how the CPU is exploited by the Linux application.

Identification
Several revisions of the Pi have been released and sold. Table 5-1 lists the known revisions
and some of the changes related to them.

Table 5-1. Board Identification40, 41

Code Model Rev. RAM P1-03 P1-05 P1-13 P5 Manuf. Comments

0002 B 1.0 256 MB GPIO0 GPIO1 GPIO21 N Egoman?

0003 B 1.0+ 256 MB GPIO0 GPIO1 GPIO21 N Egoman? Fuse mod and
D14 removed

0004 B 2.0 256 MB GPIO1 GPIO2 GPIO27 Y Sony

0005 B 2.0 256 MB GPIO1 GPIO2 GPIO27 Y Qisda

0006 B 2.0 256 MB GPIO1 GPIO2 GPIO27 Y Egoman

0007 A 2.0 256 MB GPIO1 GPIO2 GPIO27 Y Egoman

0008 A 2.0 256 MB GPIO1 GPIO2 GPIO27 Y Sony

0009 A 2.0 256 MB GPIO1 GPIO2 GPIO27 Y Qisda

000d B 2.0 512 MB GPIO1 GPIO2 GPIO27 Y Egoman

000e B 2.0 512 MB GPIO1 GPIO2 GPIO27 Y Sony

000f B 2.0 512 MB GPIO1 GPIO2 GPIO27 Y Qisda

Chapter 5 ■ CpU

46

Once your Raspberry Pi has booted up in Raspbian Linux, you can check the board’s
identification with the following command:

$ cat /proc/cpuinfo
Processor : ARMv6–compatible processor rev 7 (v6l)
BogoMIPS : 697.95
Features : swp half thumb fastmult vfp edsp java tls
CPU implementer : 0x41
CPU architecture : 7
CPU variant : 0x0
CPU part : 0xb76
CPU revision : 7
Hardware : BCM2708
Revision : 000f
Serial : 00000000f52b69d9

The preceding example reports a revision of 000f, which is a Rev 2.0 Pi.

Overclocking
Raspbian Linux for the Raspberry Pi is conservatively configured for reliability by default.
Those with the need for speed can reconfigure it for increased performance but at the risk
of less-reliable operation.

Raspbian Linux 3.6.11 provides a raspi-config menu of five CPU profiles.
The profile None is the default:

Profile ARM CPU Core SDRAM Overvolt

None 700 MHz 250 MHz 400 MHz 0

Modest 800 MHz 250 MHz 400 MHz 0

Medium 900 MHz 250 MHz 450 MHz 2

High 950 MHz 250 MHz 450 MHz 6

Turbo 1 GHz 500 MHz 600 MHz 6

The raspi-config requires root privileges and is started as follows:

$ sudo raspi-config

The initial menu screen provides an overclock selection with the description
Configure overclocking. Choosing that menu item opens another menu, allowing you
to choose a profile.

Chapter 5 ■ CpU

47

Choosing a profile from this menu changes the following parameters in
/boot/config.txt:

Parameter None Modest Medium High Turbo

arm_freq= 700 800 900 950 1000

core_freq= 250 250 250 250 500

sdram_freq= 400 400 450 450 600

over_voltage= 0 0 2 6 6

When trading reliability for performance, these factors should be considered as it
relates to your application:

How critical is the application for•	

Correctness/accuracy ·

Uptime ·

How does increased performance relate to the results?•	

Improved accuracy (Fourier transforms, real-time ·
processing)

Increased number of measurements/sampling points ·

What is the impact of failure?•	

Will the unit perform reliably in all required temperatures (in an •	
enclosure, outdoors)?

How do these performance profiles affect day-to-day performance? Developers are
often concerned about compile times, so I did a simple compile-time test.

The test procedure used is as follows:

1. With raspi-config, configure the desired overclocking
profile.

2. Reboot.

3. Change to the book’s source code top-level directory.

4. Use the command make clobber.

5. Use the command time make.

Table 5-2 summarizes the results in seconds for compiling all projects for this book,
using the different overclocking profiles. The elapsed times did not always improve
(Real), but they can vary widely because of how I/O to the SD card occurs. The CPU time
otherwise improved, with one small exception between Medium and High “User” CPU
time.

Chapter 5 ■ CpU

48

Everyone has a different appetite for speed. I usually favor reliability over speed,
since failure and intermittent problems can cause “wild goose chases” and otherwise
waste valuable time. Yet in some situations performance can be important enough to
accept the risks. An application performing real-time Fourier transforms on audio might
justify Turbo mode, for example.

Execution
Connected with the idea of the CPU is program execution itself. Before you look at
program execution, you need to take high-level view of the execution context. Figure 5-1
shows the operating environment that an executing program operates within.

Table 5-2. Profile Compile Tests

Profile Real User System

None 56.641 23.730 3.520

Modest 37.475 22.330 3.510

Medium 40.127 20.830 3.360

High 49.318 20.980 3.240

Turbo 32.756 15.380 2.650

Figure 5-1. Program execution context

Chapter 5 ■ CpU

49

At the lowest end of the address space is the “text” region containing the program
code. This region of virtual memory is read-only, containing read-only program constants
in addition to executable code.

The next region (in increasing address) contains blocks of uninitialized arrays,
buffers, static C variables, and extern storage.

At the high end of memory are environment variables for the program, like PATH. You
can easily check this yourself by using getenv("PATH") and printing the returned address
for it. Its address will likely be the highest address in your Raspberry Pi application, except
possibly for another environment variable.

Below that, your main program’s stack begins and grows downward. Each function
call causes a new stack frame to be created below the current one.

If you now add a thread to the program, a new stack has to be allocated for it.
Experiments on the Pi show that the first thread stack gets created approximately 123 MB
below the main stack’s beginning. A second thread has its stack allocated about 8 MB
below the first. Each new thread’s stack (by default) is allocated 8 MB of stack space.

Dynamically allocated memory gets allocated from the heap, which sits between the
static/extern region and the bottom end of the stack.

Threads
Before threads were perfected under Linux, many application developers tended to avoid
them. Now, however, there is little reason to.

Every attempt was made to keep the project programs in this book simple.
This usually meant also avoiding threads. Yet, a few projects would have been more
complicated without them. In the example using ØMQ, threads would have been present
behind the scenes, even if we didn’t see them in our application code.

With that introduction, let’s take a crash course on the pthread API as it applies to
Raspbian Linux.

pthread Headers
All pthread functions require the following header file:

#include <pthread.h>

When linking programs compiled to use pthreads, add the linker option:

-lpthread: Link with the pthread library.

pthread Error Handling
The pthread routines return zero when they succeed and return an error code when they
fail. The value errno is not used for these calls.

Chapter 5 ■ CpU

50

The reason behind this is likely that it was thought that the traditional Unix errno
approach would be phased out in the near future (at the time POSIX threads were being
standardized). The original use of errno was as follows:

extern int errno;

However, this approach didn’t work for threaded programs. Imagine two threads
concurrently opening files with open(2), which sets the errno value upon failure. Both
threads cannot share the same int value for errno.

Rather than change a vast body of code already using errno in this manner, other
approaches were implemented to provide each thread with its own private copy of errno.
This is one reason that programs today using errno must include the header file errno.h.
The header file takes care of defining the thread specific reference to errno.

Because the pthread standard was developing before the errno solution generally
emerged, the pthread library returns the error code directly when there is an error and
returns zero when the call is a success. If Unix were to be rewritten from scratch today, all
system calls would probably work this way.

pthread_create(3)
The function pthread_create(3) is used to create a new thread of execution. The
function call looks more daunting than it really is:

int pthread_create(
 pthread_t ∗thread,
 const pthread_attr_t ∗attr,
 void ∗(∗start_routine)(void ∗),
 void ∗arg
);

The call to pthread_create(3) creates a new stack, sets up registers, and performs
other housekeeping. Let’s describe the arguments:

thread: This first argument is simply a pointer to a pthread_t
variable to receive the created thread’s ID value. The ID value
allows you to query and control the created thread. If the call
succeeds, the thread ID is returned to the calling program.

attr: This is a pointer to a pthread_attr_t attribute object
that supplies various options and parameters. If you can accept
the defaults, simply supply zero or NULL.

start_routine: As shown in the following code, this is simply
the name of a start routine that accepts a void pointer and
returns a void pointer.

Chapter 5 ■ CpU

51

arg: This generic pointer is passed to start_routine. It may
point to anything of interest to the thread function
(start_routine). Often this is a structure containing values,
or in a C++ program, it can be the pointer to an object. If you
don’t need an argument value, supply zero (or NULL).

returns: Zero is returned if the function is successful;
otherwise, an error number is returned (not in errno).

Error Description

EAGAIN Insufficient resources to create another thread, or a system-imposed limit
on the number of threads was encountered.

EINVAL Invalid settings in attr.

EPERM No permission to set the scheduling policy and parameters specified in attr.

The C language syntax of argument 3 is a bit nasty for beginning C programmers.
Let’s just show what the function for argument 3 looks like:

void ∗
start_routine(void ∗arg) {
 ...
 return some_ptr;
}

The following is perhaps the simplest example of thread creation possible:

static void ∗
my_thread(void ∗arg) {
 ... // thread execution
 return 0;
}

int
main(int argc, char ∗∗argv) {
 pthread_t tid; // Thread ID
 int rc;

 rc = pthread_create(&tid,0,my_thread,0);
 assert(!rc);

This example does not use thread attributes (argument 2 is zero). We also don’t care
about the value passed into my_thread(), so argument 4 is provided a zero. Argument 3
simply needs to tell the system call what function to execute. The value of rc will be zero if
the thread is successfully created (tested by the assert(3) macro).

Chapter 5 ■ CpU

52

At this point, the main thread and the function my_thread() execute in parallel.
Since there is only one CPU on the Raspberry Pi, only one executes at any instant of time.
But they both execute concurrently, trading blocks of execution time in a preemptive
manner. Each, of course, runs using its own stack.

Thread my_thread() terminates gracefully, by returning.

pthread_attr_t
There are several thread attributes that can be fetched and set. You’ll look only at perhaps
the most important attribute (stack size) to keep this crash course brief. For the full list of
attributes and functions, you can view the man pages for it:

$ man pthread_attr_init

To initialize a new attribute, or to release a previously initialized pthread attribute,
use this pair of routines:

int pthread_attr_init(pthread_attr_t ∗attr);
int pthread_attr_destroy(pthread_attr_t ∗attr);

attr: Address of the pthread_attr_t variable to initialize/
destroy

returns: Zero upon success, or an error code when it fails
(not in errno)

Error Description

ENOMEM Insufficient resources (memory)

The Linux implementation of pthread_attr_init(3) may never return the ENOMEM
error, but other Unix platforms might.

The following is a simple example of creating and destroying an attribute object:

pthread_attr_t attr;

pthread_attr_init(&attr); // Initialize attr
...
pthread_attr_destroy(&attr); // Destroy attr

Perhaps one of the most important attributes of a thread is the stack size attribute:

int pthread_attr_setstacksize(
 pthread_attr_t *attr,
 size_t stacksize
);

Chapter 5 ■ CpU

53

int pthread_attr_getstacksize(
 pthread_attr_t *attr,
 size_t *stacksize
);

attr: The pointer to the attribute to fetch a value from, or to
establish an attribute in.

stacksize: This is a stack size value when setting the attribute,
and a pointer to the receiving size_t variable when fetching
the stack size.

returns: Returns zero if the call is successful; otherwise,
returns an error number (not in errno).

The following error is possible for pthread_attr_setstacksize(3):

Error Description

EINVAL The stack size is less than PTHREAD_STACK_MIN (16,384) bytes.

The Linux man page further states:

On some systems, pthread_attr_setstacksize() can fail with the error
EINVAL if stack size is not a multiple of the system page size.

The following simple example obtains the system default stack size and increases it
by 8 MB:

pthread_attr_t attr;
size_t stksiz;

pthread_attr_init(&attr); // Initialize attr
pthread_attr_getstacksize (&attr,&stksiz); // Get stack size
stksiz += 8 ∗ 1024 ∗ 1024; // Add 8 MB
pthread_attr_setstacksize(&attr,stksiz); // Set stack size

The system default is provided by the initialization of attr. Then it is a matter of
“getting” a value out of the attr object, and then putting in a new stack size in the call to
pthread_attr_setstacksize().

Note that this set of operations has simply prepared the attributes object attr for use
in a pthread_create() call. The attribute takes effect in the new thread, when the thread
is actually created:

pthread_attr_t attr;

...
rc = pthread_create(&tid,&attr,my_thread,0);

Chapter 5 ■ CpU

54

pthread_join(3)
In the earlier pthread_create() example, the main program creates my_thread() and
starts it executing. At some point, the main program is going to finish and want to exit
(or return). If the main program exits before my_thread() completes, the entire process
and the threads in it are destroyed, even if they have not completed.

To cause the main program to wait until the thread completes, the function pthread_
join(3) is used:

int pthread_join(pthread_t thread, void **retval);

thread: Thread ID of the thread to be joined with.

retval: Pointer to the void * variable to receive the returned
value. If you are uninterested in a return value, this argument
can be supplied with zero (or NULL).

returns: The function returns zero when successful; otherwise,
an error number is returned (not in errno).

The following example has added pthread_join(3), so that the main program does
not exit until my_thread() exits.

int
main(int argc,char ∗∗argv) {
 pthread_t tid; // Thread ID
 void ∗retval = 0; // Returned value pointer
 int rc;

 rc = pthread_create(&tid,0,my_thread,0);
 assert(!rc);
 rc = pthread_join(tid,&retval); // Wait for my_thread()
 assert(!rc);
 return 0;
}

pthread_detach(3)
The function pthread_join(3) causes the caller to wait until the indicated thread returns.
Sometimes, however, a thread is created and never checked again. When that thread
exits, some of its resources are retained to allow for a join operation on it. If there is never
going to be a join, it is better for that thread to be forgotten when it exits and have its
resources immediately released.

The pthread_detach(3) function is used to indicate that no join will be performed
on the named thread. This way, the named thread becomes configured to release itself
automatically, when it exits.

int pthread_detach(pthread_t thread);

Chapter 5 ■ CpU

55

The argument and return values are as follows:

thread: The thread ID of the thread to be altered, so that it
will not wait for a join when it completes. Its resources will be
immediately released upon the named thread’s termination.

returns: Zero if the call was successful; otherwise, an error
code is returned (not in errno).

Error Description

EINVAL Thread is not a joinable thread.

ESRCH No thread with the ID thread could be found.

The pthread_detach function simply requires the thread ID value as its argument:

pthread_t tid; // Thread ID
int rc;

rc = pthread_create(&tid,0,my_thread,0);
assert(!rc);
pthread_detach(tid); // No joining with this thread

pthread_self(3)
Sometimes it is convenient in a piece of code to find out what the current thread ID is. The
pthread_self(3) function is the right tool for the job:

pthread_t pthread_self(void);

An example of its use is shown here:

pthread_t tid;

tid = pthread_self();

pthread_kill(3)
The pthread_kill(3) function allows the caller to send a signal to another thread. The
handling of thread signals is beyond the scope of this text. But there is one very useful
application of this function, which you’ll examine shortly:

#include <signal.h>

int pthread_kill(pthread_t thread, int sig);

Chapter 5 ■ CpU

56

Notice that the header file for signal.h is needed for the function prototype and the
signal definitions.

thread: This is the thread ID that you want to signal (or test).

sig: This is the signal that you wish to send. Alternatively,
supply zero to test whether the thread exists.

returns: Returns zero if the call is successful, or an error code
(not in errno).

Error Description

EINVAL An invalid signal was specified.

ESRCH No thread with the ID thread could be found.

One useful application of the pthread_kill(3) function is to test whether another
thread exists. If the sig argument is supplied with zero, no actual signal is delivered, but
the error checking is still performed. If the function returns zero, you know that the thread
still exists.

But what does it mean when the thread exists? Does it mean that it is still executing?
Or does it mean that it has not been reclaimed as part of a pthread_join(3), or as a
consequence of pthread_detach(3) cleanup?

It turns out that when the thread exists, it means that it is still executing. In other
words, it has not returned from the thread function that was started. If the thread has
returned, it is considered to be incapable of receiving a signal.

Based on this, you know that you will get a zero returned when the thread is still
executing. When error code ESRCH is returned instead, you know that the thread has
completed.

Mutexes
While not strictly a CPU topic, mutexes cannot be separated from a discussion on threads.
A mutex is a locking device that allows the software designer to stop one or more threads
while another is working with a shared resource. In other words, one thread receives
exclusive access. This is necessary to facilitate inter-thread communication. I’m simply going
to describe the mutex API here, rather than the theory behind the application of mutexes.

pthread_mutex_create(3)
A mutex is initialized with the system call to pthread_mutex_init(3):

int pthread_mutex_init(
 pthread_mutex_t ∗mutex,
 const pthread_mutexattr_t ∗attr
);

Chapter 5 ■ CpU

57

mutex: A pointer to a pthread_mutex_t object, to be
initialized.

attr: A pointer to a pthread_mutexattr_t object, describing
mutex options. Supply zero (or NULL), if you can accept the
defaults.

returns: Returns zero if the call is successful; otherwise,
returns an error code (not in errno).

Error Description

EAGAIN The system lacks the necessary resources (other than memory)
to initialize another mutex.

ENOMEM Insufficient memory exists to initialize the mutex.

EPERM The caller does not have the privilege to perform the operation.

EBUSY The implementation has detected an attempt to reinitialize the object
referenced by mutex, a previously initialized, but not yet destroyed,
mutex.

EINVAL The value specified by attr is invalid.

An example of mutex initialization is provided here:

pthread_mutex_t mutex;
int rc;

rc = pthread_mutex_init(&mutex,0);
assert (!rc);

pthread_mutex_destroy(3)
When the application no longer needs a mutex, it should use pthread_mutex_destroy(3)
to release its resources:

pthread_mutex_t mutex ;
int rc;

...
rc = pthread_mutex_destroy(&mutex);
assert(!rc);

mutex: The address of the mutex to release resources for

returns: Returns zero when successful, or an error code when
it fails (not in errno)

Chapter 5 ■ CpU

58

Error Description

EBUSY Mutex is locked or in use in conjunction with a pthread_cond_wait(3) or
pthread_cond_timedwait(3).

EINVAL The value specified by mutex is invalid.

pthread_mutex_lock(3)
When a thread needs exclusive access to a resource, it must lock the resource’s mutex. As
long as the cooperating threads follow the same procedure of locking first, they cannot
both access the shared object at the same time.

int pthread_mutex_lock(pthread_mutex_t ∗mutex);

mutex: A pointer to the mutex to lock.

returns: Returns zero if the mutex was successfully locked;
otherwise, an error code is returned (not in errno).

Error Description

EINVAL The mutex was created with the protocol attribute having the value
PTHREAD_PRIO_PROTECT, and the calling thread’s priority is higher
than the mutex’s current priority ceiling. Or the value specified by the
mutex does not refer to an initialized mutex object.

EAGAIN Maximum number of recursive locks for mutex has been exceeded.

EDEADLK The current thread already owns the mutex.

The following shows the function being called:

pthread_mutex_t mutex;
int rc;

...
rc = pthread_mutex_lock(&mutex);

pthread_mutex_unlock(3)
When exclusive access to a resource is no longer required, the mutex is unlocked:

int pthread_mutex_unlock(pthread_mutex_t ∗mutex);

mutex: A pointer to the mutex to be unlocked.

returns: Returns zero if the mutex was unlocked successfully;
otherwise, an error code is returned (not in errno).

Chapter 5 ■ CpU

59

Error Description

EINVAL The value specified by mutex does not refer to an initialized mutex
object.

EPERM The current thread does not own the mutex.

A simple example of unlocking a mutex is provided here:

pthread_mutex_t mutex;
int rc;

...
rc = pthread_mutex_unlock(&mutex);

Condition Variables
Sometimes mutexes alone are not enough for efficient scheduling of CPU between
different threads. Mutexes and condition variables are often used together to facilitate
inter-thread communication. Some beginners might struggle with this concept, if they are
seeing it for the first time.

Why do we need condition variables when we have mutexes?
Consider what is necessary in building a software queue that can hold a maximum of

eight items. Before we can queue something, we need to first see if the queue is full. But
we cannot test that until we have the queue locked—otherwise, another thread could be
changing things under our own noses.

So we lock the queue but find that it is full. What do we do now? Do we simply
unlock and try again? This works but it wastes CPU resources. Wouldn’t it be better if we
had some way of being alerted when the queue was no longer full?

The condition variable works in concert with a mutex and a “signal” (of sorts). In
pseudo code terms, a program trying to queue an item on a queue would perform the
following steps:

1. Lock the mutex. We cannot examine anything in the queue
until we lock it.

2. Check the queue’s capacity. Can we place a new item in it?
If so:

a. Place the new item in the queue.

b. Unlock and exit.

3. If the queue is full, the following steps are performed:

a. Using a condition variable, “wait” on it, with the
associated mutex.

b. When control returns from the wait, return to step 2.

Chapter 5 ■ CpU

60

How does the condition variable help us? Consider the following steps:

1. The mutex is locked (1).

2. The wait is performed (3a). This causes the kernel to do the
following:

a. Put the calling thread to sleep (put on a wait queue)

b. Unlock the mutex that was locked in step 1

Unlocking of the mutex in step 2b is necessary so that another thread can do
something with the queue (hopefully, take an entry from the queue so that it is no longer
full). If the mutex remained locked, no thread would be able to move.

At some future point in time, another thread will do the following:

1. Lock the mutex

2. Find entries in the queue (it was currently full), and pull one
item out of it

3. Unlock the mutex

4. Signal the condition variable that the “waiter” is using, so that
it can wake up

The waiting thread then awakens:

1. The kernel makes the “waiting” thread ready.

2. The mutex is successfully relocked.

Once that thread awakens with the mutex locked, it can recheck the queue to see
whether there is room to queue an item. Notice that the thread is awakened only when it
has already reacquired the mutex lock. This is why condition variables are paired with a
mutex in their use.

pthread_cond_init(3)
Like any other object, a condition variable needs to be initialized:

int pthread_cond_init(
 pthread_cond_t ∗cond,
 const pthread_condattr_t ∗attr
);

cond: A pointer to the pthread_cond_t structure to be
initialized.

attr: A pointer to a cond variable attribute if one is provided,
or supply zero (or NULL).

returns: Zero is returned if the call is successful; otherwise, an
error code is returned (not in errno).

Chapter 5 ■ CpU

61

Error Description

EAGAIN The system lacked the necessary resources.

ENOMEM Insufficient memory exists to initialize the condition variable.

EBUSY The implementation has detected an attempt to reinitialize the object
referenced by cond, a previously initialized, but not yet destroyed,
condition variable.

EINVAL The value specified by attr is invalid.

pthread_cond_destroy(3)
When a condition (cond) variable is no longer required, its resources should be released
with the following call:

int pthread_cond_destroy(pthread_cond_t ∗cond);

cond: Condition variable to be released.

returns: Zero if the call was successful; otherwise, returns an
error code (not in errno).

Error Description

EBUSY Detected an attempt to destroy the object referenced by cond while it
is referenced by pthread_cond_wait() or pthread_cond_timedwait() in
another thread.

EINVAL The value specified by cond is invalid.

pthread_cond_wait(3)
This function is one-half of the queue solution. The pthread_cond_wait(3) function is
called with the mutex already locked. The kernel will then put the calling thread to sleep
(on the wait queue) to release the CPU, while at the same time unlocking the mutex. The
calling thread remains blocked until the condition variable cond is signaled in some way
(more about that later).

When the thread is awakened by the kernel, the system call returns with the mutex
locked. At this point, the thread can check the application condition (like queue length)
and then proceed if things are favorable, or call pthread_cond_wait(3) again to wait
further.

int pthread_cond_wait(
 pthread_cond_t *cond,
 pthread_mutex_t *mutex
);

Chapter 5 ■ CpU

62

cond: Pointer to the condition variable to be used for the wake-
up call.

mutex: Pointer to the mutex to be associated with the condition
variable.

returns: Returns zero upon success; otherwise, an error code
is returned (not in errno).

Error Description

EINVAL The value specified by cond, mutex is invalid. Or different mutexes were
supplied for concurrent pthread_cond_timedwait() or pthread_cond_
wait() operations on the same condition variable.

EPERM The mutex was not owned by the current thread at the time of the call.

The following code snippet shows how a queuing function would use this.
(Initialization of mutex and cond is assumed.)

pthread_mutex_t mutex;
pthread_cond_t cond;

...
pthread_mutex_lock(&mutex);

while (queue.length >= max_length)
 pthread_cond_wait(&cond,&mutex);

// queue the item
...
pthread_mutex_unlock(&mutex);

The while loop retries the test to see whether the queue is “not full.” The while loop
is necessary when multiple threads are inserting into the queue. Depending on timing,
another thread could beat the current thread to queuing an item, making the queue full
again.

pthread_cond_signal(3)
When an item is taken off the queue, a mechanism needs to wake up the thread
attempting to put one entry into the full queue. One wake-up option is the
pthread_cond_signal(3) system call:

int pthread_cond_signal(pthread_cond_t ∗cond);

Chapter 5 ■ CpU

63

cond: A pointer to the condition variable used to signal one
thread

returns: Returns zero if the function call was successful;
otherwise, an error number is returned (not in errno).

Error Description

EINVAL The value cond does not refer to an initialized condition variable.

It is not an error if no other thread is waiting. This function does, however, wake up
one waiting thread, if one or more are waiting on the specified condition variable.

This call is preferred for performance reasons if signaling one thread will “work.”
When there are special conditions whereby some threads may succeed and others would
not, you need a broadcast call instead. When it can be used, waking one thread saves
CPU cycles.

pthread_cond_broadcast(3)
This is the broadcast variant of pthread_cond_signal(3). If multiple waiters have
different tests, a broadcast should be used to allow all waiters to wake up and consider
the conditions found.

int pthread_cond_broadcast(pthread_cond_t ∗cond);

cond: A pointer to the condition variable to be signaled, waking
all waiting threads.

returns: Zero is returned when the call is successful;
otherwise, an error number is returned (not in errno).

Error Description

EINVAL The value cond does not refer to an initialized condition variable.

It is not an error to broadcast when there are no waiters.

65

Chapter 6

USB

The USB port has become ubiquitous in the digital world, allowing the use of a large
choice of peripherals. The Model B Raspberry Pi supports two USB 2 ports, and the Model
A just one.

This chapter briefly examines some power considerations associated with USB
support and powered hubs. The remainder of this chapter examines the device driver
interface available to the Raspbian Linux developer. Figure 6-1 serves as a chapter
reference schematic of the Raspberry USB interface.

Figure 6-1. USB interface

Chapter 6 ■ USB

66

Power
Early models of the Raspberry Pi limited each USB port to 100 mA because of the polyfuses
included. Revision 2.0 models did away with these, leaving you with more options.

Even with the polyfuses removed, the end user should remember that the USB ports
are powered by the input to the Raspberry Pi PCB. This is supplied through fuse F3
(see Figure 4-3, shown previously in Chapter 2). This limits the maximum USB current to
500 mA for the Model A (which is the limit for one USB port anyway) and 300 mA for the
Model B. Exceeding these limits could cause fuse F3 to blow.

Note ■ Wireless USB adapters consume between 350 ma and 500 ma.

Powered Hubs
Whether you have a Model A or Model B Raspberry Pi, you’ll want to use a powered USB
hub for high-current peripherals. This is particularly true for wireless network adapters,
since they often require up to 500 mA.

A USB hub requires coordination with the Linux kernel and thus requires Raspbian
Linux driver support. A number of hubs have been reported not to work. The following
web page is a good resource listing hubs that are known work with Raspbian Linux:

http://elinux.org/RPi_Powered_USB_Hubs

With the powered USB hub plugged in, you can list the USB devices that have
registered with the kernel by using the lsusb command:

lsusb
Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub
Bus 001 Device 002: ID 0424:9512 Standard Microsystems Corp.
Bus 001 Device 003: ID 0424:ec00 Standard Microsystems Corp.
Bus 001 Device 004: ID 0451:2077 Texas Instruments, Inc. TUSB2077 Hub

The first three listed are the usual suspects from the Pi’s own hardware. The last line
shows that a TUSB2077 Hub has been registered. Figure 6-2 shows my Belkin USB hub on
a busy workbench. If your hub fails to appear in this report, it likely means that there is no
driver support for it.

http://elinux.org/RPi_Powered_USB_Hubs

Chapter 6 ■ USB

67

USB API Support
USB devices are normally supported by device drivers and appear as generic peripherals
like keyboards, mice, or storage. The USB Boarduino is a little different, using the FTDI
chipset, and supported by a driver.

Once the Boarduino is plugged in, the lsusb command lists it, thanks to the FTDI
chipset driver:

$ lsusb
...
Bus 001 Device 008: ID 0403:6001 Future Technology Devices \
 International, Ltd FT232 USB–Serial (UART) IC

The supporting driver makes the Boarduino available as a serial device:

$ ls –l /dev/ttyUSB0
Crw–rw——T 1 root dialout 188, 0 Dec 31 1969 /dev/ttyUSB0

The serial device support allows the AVR device to be programmed by avrdude.
A Raspberry Pi application can also communicate with the AVR device’s application. If
you want to use network-like packets, the SLIP serial protocol, for example, can be used
to communicate over that link. The “Serial API” section of Chapter 9 covers the Linux API
for serial communications.

libusb
Although USB devices are supported by drivers and appear as generic devices, in some
situations a user space program needs to communicate with specialized hardware. While
Raspbian Linux has libusb installed, the developer will want to install the developer
package for it:

apt–get install libusb–dev

Figure 6-2. A powered USB hub

Chapter 6 ■ USB

68

The USB API is fairly large, complex and beyond the scope of this text. But the
curious developer can read more about the libusb API at the website:

http://libusb.sourceforge.net/doc/index.html

In this chapter, you’ll examine just the beginnings of a libusb program, so that you
can get a flavor of how the API works.

Include Files
The main include file for Raspbian libusb support is as follows:

#include <usb.h>

The next few pages show a simple USB program, which enumerates USB buses
and devices. Once a device is located, an attempt is made to “claim” it and then release
it (it will print CLAIMED if successful). However, when all of your USB devices are fully
supported by drivers, none will be claimed. This list can be checked against the lsusb
command output.

The next example program was run on a Raspberry Pi with the following USB devices
reported by lsusb:

$ lsusb
Bus 001 Device 002: ID 0424:9512 Standard Microsystems Corp.
Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub
Bus 001 Device 003: ID 0424:ec00 Standard Microsystems Corp.
Bus 001 Device 004: ID 05ac:1002 Apple, Inc. Extended Keyboard Hub [Mitsumi]
Bus 001 Device 005: ID 0451:2077 Texas Instruments, Inc. TUSB2077 Hub
Bus 001 Device 006: ID 05ac:0204 Apple, Inc.
Bus 001 Device 007: ID 045e:0040 Microsoft Corp. Wheel Mouse Optical

The example program was compiled by the provided make file in the libusb
subdirectory and invoked as follows:

$./tusb
Device: 007 045e:0040 class 0.0 protocol 0 device 768, manuf 1, serial 0
 0.0.0 class 3
Device: 006 05ac:0204 class 0.0 protocol 0 device 290, manuf 1, serial 0
 0.0.0 class 3
 0.1.0 class 3
Device: 005 0451:2077 class 9.0 protocol 0 device 256, manuf 0, serial 0
 0.0.0 class 9
Device: 004 05ac:1002 class 9.0 protocol 0 device 290, manuf 1, serial 0
 0.0.0 class 9
Device: 003 0424:ec00 class 255.0 protocol 1 device 512, manuf 0, serial 0
 0.0.0 class 255

http://libusb.sourceforge.net/doc/index.html

Chapter 6 ■ USB

69

Device: 002 0424:9512 class 9.0 protocol 2 device 512, manuf 0, serial 0
 0.0.0 class 9
 0.0.1 class 9
Device: 001 1d6b:0002 class 9.0 protocol 1 device 774, manuf 3, serial 1
 0.0.0 class 9

These are easily compared by noting the device name, such as 007, which is reported
by lsusb to be the Microsoft mouse.

1 /∗∗∗
2 ∗ tusb.c – Scan list of USB devices and test claim/release.
3 ∗∗∗/
4
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <errno.h>
8 #include <usb.h>
9 #include <assert.h>
10
11 /∗∗∗
12 ∗ See http://libusb.sourceforge.net/doc/index.html for API
13 ∗∗∗/
14
15 int
16 main(int argc, char ∗∗argv) {
17 struct usb_bus ∗busses, ∗bus;
18 struct usb_device ∗dev;
19 struct usb_device_descriptor ∗desc;
20 usb_dev_handle ∗hdev;
21 int cx, ix, ax, rc;
22
23 usb_init();
24 usb_find_busses();
25 usb_find_devices();
26
27 busses = usb_get_busses();
28
29 for (bus=busses; bus; bus = bus–>next) {
30 for (dev=bus–>devices; dev; dev = dev–>next) {
31 desc = &dev–>descriptor;
32
33 printf("Device: %s %04x:%04x ",
34 dev–>filename,
35 desc–>idVendor,
36 desc–>idProduct);
37 printf(" class %u.%d protocol %u",
38 desc–>bDeviceClass,
39 desc–>bDeviceSubClass,

http://libusb.sourceforge.net/doc/index.html

Chapter 6 ■ USB

70

40 desc–>bDeviceProtocol);
41 printf(" device %u, manuf %u, serial %u\n",
42 desc–>bcdDevice,
43 desc–>iManufacturer,
44 desc–>iSerial Number);
45
46 hdev = usb_open(dev);
47 assert(hdev);
48
49 rc = usb_claim_interface(hdev,0);
50 if (!rc) {
51 puts(" CLAIMED..");
52 rc = usb_release_interface(hdev, 0);
53 puts(" RELEASED..");
54 assert(!rc);
55 }
56 usb_close(hdev);
57
58 /∗ Configurations ∗/
59 for (cx=0; cx <dev–>descriptor.bNumConfigurations;

++cx) {
60 /∗ Interfaces ∗/
61 for (ix=0; ix < dev–>config[cx].bNumInterfaces;

++ix) {
62 /∗ Alternates ∗/
63 for (ax=0; ax < dev–>config[cx].interface[ix].

num_altsetting;
 ++ax) {
64 printf(" %d.%d.%d class %u\n",
65 cx,ix,ax,
66 dev->config[cx].interface[ix].
 altsetting[ax].bInterfaceClass);
67 }
68 }
69 }
70 }
71 }
72
73 return 0;
74 }
75
76 /∗ End tusb.c ∗/

71

Chapter 7

Ethernet

Networking has become an important part of everyday life, whether wireless or by wire.
Having a network adapter on your Raspberry Pi allows you to connect to it and do things
on it from the comfort of your desktop or laptop computer. It also allows your application
on the Pi to reach out to the outside world. Even when the Raspberry Pi is deployed as
part of an embedded project, the network interface continues to be important. Remote
logging and control are just two examples.

Wired Ethernet
The standard Raspbian SD card image provides a wired network connection, using
DHCP to automatically assign an IP address to it. If you are using the HDMI output and
keyboard devices to do work on the Pi, the dynamically assigned IP address is not a
bother. But if you would like to eliminate the attached display and keyboard, connecting
over the network is attractive. The only problem is the potentially changing IP address.
(DHCP will not always use a different IP address, since the address is leased for a time).
It is difficult to contact your Raspberry Pi from a laptop until you know its IP address.
As covered in Chapter 1 of Raspberry Pi System Software Reference (Apress, 2014), you can
use the nmap command to scan for it, but this is inconvenient:

$ sudo nmap −sP 192.168.0.1−254

Starting Nmap 6.25 (http://nmap.org) at 2013−04−14 19:12 EDT
. . .
Nmap scan report for mac (192.168.0.129)
Host is up.
Nmap scan report for rasp (192.168.0.132)
Host is up (0.00071s latency).
MAC Address: B8:27:EB:2B:69:E8 (Raspberry Pi Foundation)
Nmap done : 254 IP addresses (6 hosts up) scanned in 6.01 seconds
$

If you use your Pi at school or away from your own premises, using DHCP may still
be the best option for you. If you are plugging it into different networks as you travel,
DHCP sets up your IP address properly and takes care of the name server configuration.
However, if you are using your unit at home, or your school can assign you a valid IP
address to use, a static IP address simplifies access.

http://nmap.org/

Chapter 7 ■ ethernet

72

Note ■ Be sure to get approval and an Ip address assigned to prevent network conflicts.

/etc/network/interfaces
As supplied by the standard Raspbian image, the /etc/network/interfaces file looks
like this:

$ cat /etc/network/interfaces
auto lo

iface lo inet loopback
iface eth0 inet dhcp

allow−hotplug wlan0
iface wlan0 inet manual
wpa−roam/etc/wpa_supplicant/wpa_supplicant.conf
iface default inet dhcp
$

The wired Ethernet interface (Model B) is named eth0. The line starting with
iface eth0 indicates that your network interface eth0 is using DHCP. If this is what
you want, leave it as is.

Changing to Static IP
If you haven’t booted up your Raspberry Pi with the network cable plugged in, now is
a good time to do that. This may save you time later, when we review the name server
settings.

Next, before you start changing it, save a backup of the /etc/network/interfaces
file in case you want to change it back:

$ sudo −i
cd /etc/network
cp interfaces interfaces.bak

Next, edit the line in /etc/network/interfaces that begins with iface eth0 so that
it reads like the following:

iface eth0 inet static
 address 192.168.0.177
 gateway 192.168.0.1
 netmask 255.255.255.0
 network 192.168.0.0
 broadcast 192.168.0.255

Chapter 7 ■ ethernet

73

In this example, we have established a fixed IP address of 192.168.0.177, along with
the appropriate settings for gateway, netmask, network, and broadcast address. If the
network is not your own, get a network administrator to help you with the correct values
to use.

There is one other file that needs to be checked and potentially edited:

$ cat /etc/resolv.conf
domain myfastisp.net
search myfastisp.net
nameserver 192.168.0.1

If you’ve booted up your Raspberry Pi previously while it was using DHCP (with
network cable plugged in), these values may already be suitably configured. Otherwise,
you’ll need to edit them to get the name service to work. In this example, the Internet
Service Provider is myfastisp.net, and name service requests are forwarded through the
firewall router at 192.168.0.1.

Test Static IP Address
Once you have configured things, the simplest thing to do is to reboot your Raspberry
Pi to make the new settings take effect (use sudo /sbin/reboot or sudo /sbin/
shutdown -r now).

Once you’ve rebooted and logged in, check your IP address:

$ ifconfig eth0
eth0 Link encap : Ethernet HWaddr b8:27:eb:2b:69:e9
 inet addr:192.168.0.177 Bcast: 192.168.0.255 Mask: 255.255.255.0
 UP BROADCAST RUNNING MULTICAST MTU: 1500 Metric: 1
 RX packets: 1046 errors: 0 dropped : 3 overruns: 0 frame: 0
 TX packets: 757 errors: 0 dropped: 0 over runs : 0 carrier: 0
 collisions:0 txqueuelen :1000
 RX bytes: 74312 (72.5 KiB) TX bytes: 86127 (84.1 KiB)

In the preceding example, the inet addr matches our configured static IP address.
Let’s now check that the names are resolving. Normally, I would recommend nslookup or
dig for this, but neither comes preinstalled on Raspbian. So let’s just use ping:

$ ping −c1 google.com
PING google.com (74.125.226.4) 56 (84) bytes of data.
64 bytes from yyz06s05−in−f4.1e100.net (74.125.226.4): . . .

−−− google.com ping statistics −−−
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 11.933/11.933/11.933/0.000 ms
$

Chapter 7 ■ ethernet

74

In this example, we see that google.com was looked up and translated to the IP
address 74.125.226.4. From this, we conclude that the name service is working. The -c1
option on the ping command line causes only one ping to be performed. Otherwise, ping
will keep trying, and you may need to ^C to interrupt its execution.

If the name google.com does not resolve, you’ll need to troubleshoot
/etc/resolv.conf. As a last resort, you might switch back to using DHCP (interfaces.bak)
and reboot. If the /etc/resolv.conf file is updated with new parameters,
you might try again.

USB Adapters
If you have a USB Ethernet adapter (non-wireless), you can set up networking for that
also. The following line added to /etc/network/interfaces will cause it to use DHCP:

iface usb0 inet dhcp

For a fixed usb0 IP address, configure as we did earlier (for eth0). For example:

iface usb0 inet static
 address 192.168.0.178
 gateway 192.168.0.1
 netmask 255.255.255.0
 network 192.168.0.0
 broadcast 192.168.0.255

This provides interface usb0 with a fixed address of 192.168.0.178.

/etc/hosts File
If you have a static IP address for your Raspberry Pi, why not update your Linux, OS X,
or Windows hosts file (typically, C:\Windows\system32\drivers\etc\hosts) with a
hostname for it? For example, your hosts file could have the following line added:

$ cat /etc/hosts
. . .
192.168.0.177 rasp raspi rpi pi # My Raspberry Pi

Now you can use a hostname of rasp, raspi, rpi, or pi to access your Raspberry Pi
on the network.

Wireless Ethernet
If you haven’t already done so, review the “Powered Hubs” section of Chapter 6. Wi-Fi
adapters can require 350 mA to 500 mA of current draw.

Chapter 7 ■ ethernet

75

The following web page lists good information about the various brands of Wi-Fi
adapters available and their level of support:

http://elinux.org/RPi_USB_Wi-Fi_Adapters

I have a NetGear WN111(v2) RangeMax Next Wireless adapter available. Apparently,
this adapter uses one of the following chips:

Atheros AR9170•	

Atheros AR9101•	

Since the AR9170 shows up in the supported list for the D-Link DWA-160, there is
a reasonable chance of driver support for it. After plugging it into the powered USB hub
and rebooting, the console log shows that it is being “seen”:

$ dmesg
. . .
[3.867883] usb 1_1.3.2: New USB device found, idVendor=0846, idProduct=9001
[3.893138] usb 1_1.3.2: New USB device strings: Mfr=16, Product=32,
SerialNumber=
[3.923115] usb 1_1.3.2: Product: USB2.0 WLAN
[3.930064] usb 1_1.3.2: Manufacturer : ATHER
[3.963095] usb 1_1.3.2: SerialNumber : 12345
[4.393875] cfg80211: Calling CRDA to update world regulatory domain
[4.663403] usb 1_1.3.2: reset full_speed USB device number 5 using dwc_otg
[4.953470] usbcore: registered new interface driver carl9170
[6.687035] usb 1_1.3.2: firmware not found.
[7.703098] usb 1_1.3.2: kill pending tx urbs.

But there is a troubling error message: “firmware not found.” Also visible in the log,
we see that the driver is named carl9170. Further research reveals that it also requires a
firmware file named carl9170-1.fw. While this file is available from other sources, the
simplest way to install this file is to install it from Raspbian sources:

$ sudo apt–get install firmware–linux

The firmware file being sought and installed is as follows:

$ ls –l /lib/firmware/carl9170−1.fw
−rw−r−−r−−1 root root 13388 Jan 14 17:04 /lib/firmware/carl9170−1.fw

http://elinux.org/RPi_VerifiedPeripherals#USB_Wi-Fi_Adapters

Chapter 7 ■ ethernet

76

Rebooting again, the missing firmware message is gone. The lsusb report also
confirms the device is ready:

lsusb
Bus 001 Device 001: ID 1d6b :0002 Linux Foundation 2.0 root hub
Bus 001 Device 002: ID 0424:9512 Standard Microsystems Corp.
Bus 001 Device 003: ID 0424: ec00 Standard Microsystems Corp.
Bus 001 Device 004: ID 0451:2077 Texas Instruments, Inc. TUSB2077 Hub
Bus 001 Device 005: ID 0846:9001 NetGear, Inc. WN111(v2) RangeMax \
 Next Wireless [Atheros AR9170+AR9101]
#

The hardware driver support is now in place. The device now needs network
configuration.

Configuration
You could edit the configuration files by hand if you knew all the possible keywords
necessary for your particular wireless authentication protocol. The following Linux
raspberrypi 3.2.27+ files are involved:

Pathname Description

/etc/network/interfaces Main configuration file for networks

/etc/wpa_supplicant/wpa_supplicant.conf Authentication information

You’ll find a variety of advice on how to configure these on the Internet. But the
quickest path to success is to just use the wpa_gui dialog box from the Raspberry Pi
desktop. Once you’ve done it this way, directly editing the configuration files can be
performed later if you need to tweak it further.

Figure 7-1 shows how to locate the wpa_gui dialog box from your Pi desktop. Once
wpa_gui is started, click the Manage Networks tab, shown in Figure 7-2. If you’ve made
prior attempts at configuring wlan0, delete them all from this menu. Then click the Scan
button at the bottom right.

Chapter 7 ■ ethernet

77

After clicking Scan, your wireless network should eventually appear in the scan list,
as shown in Figure 7-3.

Figure 7-1. wpa_gui dialog box

Figure 7-2. The Manage Networks tab

Chapter 7 ■ ethernet

78

Double-click the line representing your network. This brings up a new dialog box
that allows you to fill in the remaining authentication parameters:

Parameter Example

Authentication WPA-Personal (PSK)

Encryption CCMP

PSK Pass phrase

Enter settings that apply to your network. After completing the data input, click the
Add button. As you exit the dialog box, be sure to select Save Configuration from the
File menu.

Caution ■ Don’t forget to pull down Save Configuration from the File menu before you
exit the setup application. this is easily forgotten, and no reminder of unsaved changes is
provided.

Figure 7-3. Results of a wireless network scan

Chapter 7 ■ ethernet

79

After saving the new Wi-Fi configuration, reboot. After the Pi comes back up, log in
and check the network interfaces. Look for interface wlan0:

$ ifconfig
. . .
wlan0 Link encap: Ethernet HWaddr 00:22:3f:8d: 78: f9
 inet addr:192.168.0.61 Bcast:192.168.0.255 Mask:255.255.255.0
 UP BROADCAST RUNNING MULTICAST MTU: 1500 Metric: 1
 RX packets: 10514 errors: 0 dropped: 0 overruns: 0 frame : 0
 TX packets: 121 errors: 0 dropped : 0 over runs: 0 carrier: 0
 collisions:0 txqueuelen:1000
 RX bytes: 767287 (749.3 KiB) TX bytes: 9188 (8.9 KiB)

The preceding example shows that the wlan0 is available and has a DHCP-assigned
IP address. You can now ping or ssh to this access point.

81

Chapter 8

SD Card Storage

The file system is central to the Unix system design, from which Linux borrows. The
necessary mass storage requirements have traditionally been fulfilled through hard disk
subsystems. However, as Linux hosts become as small as cell phones, flash memory
technology has replaced the bulky mechanical drive.

SD Card Media
The standard SD card is 32 mm long, 24 mm wide, and 2.1 mm thick. Figure 8-1 illustrates
the connections available on the underside of the SD card. The schematic excerpt shown
later will document how the connections are made to this media.

Figure 8-1. SD card pinout

SD Card Interface
In the Raspberry Pi, the SD card is interfaced to the SoC through GPIO pins 46 through
53, seen in Figure 8-2. The SoC senses the insertion of an SD card through the closing of a
socket switch (pins 10 and 11 of the socket). Thus GPIO 47 is brought to ground potential
when the socket is occupied.

Chapter 8 ■ SD CarD Storage

82

Looking at the wiring in Figure 8-2, it might be assumed that all data transfers are 4
bits wide (GPIO 50 through GPIO 53). However, as the following sections will describe,
this depends on the SD card media used.

SD Card Basics
The SD card includes an internal controller, also known as a Flash Storage Processor
(FSP). In this configuration, the Linux host merely provides a command and waits for the
response. The FSP takes care of all erase, programming, and read operations necessary
to complete the command. In this way, Flash card designs are permitted to increase in
complexity as new performance and storage densities are implemented.

The SD card manages data with a sector size of 512 bytes. This was intentionally
made the same as the IDE magnetic disk drive for compatibility with existing operating
systems. Commands issued by the host include a sector address to allow read/writes of
one or more sectors.

Note ■ operating systems may use a multiple of the 512-byte sector.

Commands and data are protected by CRC codes in the FSP. The FSP also
automatically performs a read after write to verify that the data is written correctly.21 If
the data write is found defective, the FSP automatically corrects it, replacing the physical
sector with another if necessary.

Figure 8-2. SD card circuit

Chapter 8 ■ SD CarD Storage

83

The SD card soft error rate is much lower than a magnetic disk drive. In the rare case
when errors are discovered, the last line of defense is a correcting ECC, which allows for
data recovery. These errors are corrected in the media to prevent future unrecoverable
errors. All of this activity is transparent to the host.

Raspbian Block Size
The block size used by the operating system may be a multiple of the media’s sector size.
To determine the physical block size used under Raspbian, we first discover how the root
file system is mounted (the following listing has been trimmed with ellipses):

$ mount
/dev/root on/type ext4 (rw, noatime, . . .)
. . .
/dev/mmcblk0p1 on/boot type vfat (rw, relatime , . . .)
$

From this we deduce that the device used for the root file system is /dev/root. The
pathname given is a symbolic link, so we need to determine the real device pathname:

$ ls −dl /dev/root
lrwxrwxrwx 1 root root 9 Jan 12 19:33/dev/root −> mmcblk0p2
$

From this, we deduce that the actual device pathname is /dev/mmcblk0p2. The
naming convention used tells us the following:

Component Name Number Type

Prefix /dev/mmcblk MMC block

Device number 0 0

Partition number p2 2

From the earlier mount command output, notice that the /boot file system was
mounted on /dev/mmcblk0p1. (No symbolic link was used in this case.) From this we
understand that the /boot file system is from partition 1 of the same SD card device.

Using the root device information, we consult the /sys pseudo file system to find out
the physical sector size. Here we supply mmcblk0 as the third-level pathname qualifier to
query the device:

$ cat /sys/block/mmcblk0/queue/physical_block_size
 512
$ cat /sys/block/mmcblk0/queue/logical_block_size
 512
$

Chapter 8 ■ SD CarD Storage

84

The result shown informs us that the Raspbian Linux used in this example uses a
block (sector) size of 512 bytes, both physically and logically. This precisely matches the
SD card’s sector size. Since the /boot file system uses the same physical device as root,
this also applies to that partition.

Disk Cache
While we’re examining mounted SD card file systems, let’s also check the type of device
node used:

$ ls −l /dev/mmcblk0p?
brw−rw−−−T 1 root floppy 179, 1 Dec 31 1969 /dev/mmcblk0p1
brw−rw−−−T 1 root floppy 179, 2 Jan 12 19:33 /dev/mmcblk0p2
$

The example output shows a b at the beginning of the brw-rw—T field. This tells
us that the disk device is a block device as opposed to a character device.
(The associated character device would show a c instead.) Block devices are important
for file systems because they provide a disk cache capability to vastly improve the file
system performance. The output shows that both the root (partition 2) and the /boot
(partition 1) file systems are mounted using block devices.

Capacities and Performance
SD cards allow a configurable data bus width within limits of the media. All SD cards start
with one data bit line until the capabilities of the memory card are known:

The SD bus allows dynamic configuration of the number of data lines.
After power-up, by default, the SD card will use only DAT0 for data
transfer. After initialization, the host can change the bus width (number
of active data lines). This feature allows [an] easy trade-off between
hardware cost and system performance.18

After the capabilities of the media are known, the data bus can be expanded under
software control, as supported. Given that SD cards with memory capacities up to 2 GB
operate with a 1-bit data bus, it is highly desirable to use a 4 GB or larger card on the
Raspberry Pi, even if the extra storage is not required. More-advanced cards also offer
greater transfer speeds by use of higher data clock rates.

Table 8-1 summarizes SD card capabilities.19

Chapter 8 ■ SD CarD Storage

85

Transfer Modes
There are three basic data transfer modes used by SD cards:18

SPI Bus mode•	

1-bit SD mode•	

4-bit SD mode•	

SPI Bus Mode
The SPI Bus mode is used mainly by consumer electronics using small microcontrollers
supporting the SPI bus. Examining Table 8-2 reveals that data is transmitted 1 bit at a time
in this mode (pin 2 or 7).

Table 8-1. SD Card Capabilities

Standard Description Greater Than Up To Data Bus

SDSC Standard capacity 0 2 GB 1-bit

SDHC High capacity 2 GB 32 GB 4-bit

SDXC Extended capacity 32 GB 2 TB 4-bit

Table 8-2. SPI Bus Mode

Pin Name I/O Logic Description SPI

1 nCS I PP Card select (negative true) CS

2 DI I PP Data in MOSI

3 VSS S S Ground

4 VDD S S Power

5 CLK I PP Clock SCLK

6 VSS S S Ground

7 DO O PP Data out MISO

8 NC Memory cards

nIRQ O OD Interrupt on SDIO cards

9 NC Not connected

Chapter 8 ■ SD CarD Storage

86

The various SD card connections are used in different ways, as documented by the
Table 8-2 mnemonics in the columns I/O and Logic. Table 8-3 is a legend for these and
also applies to later Tables 10-4 and 10-5.

1-bit SD Mode
Table 8-4 lists the pins and functions of the SD card when it is in 1-bit SD mode. The
data traverses pin 7 (DAT0) while the clock is supplied on pin 5. Pin 2 is used to send
commands and receive responses. This mode uses a proprietary transfer format.

Table 8-3. Legend for I/O and Logic

Notation Meaning Notes

I Input Relative to card

O Output

I/O Input or output

PP Push/pull logic

OD Open drain

S Power supply

NC Not connected Or logic high

Table 8-4. 1-bit SD Mode

Pin Name I/O Logic Description

1 NC No connection

2 CMD I/O PP/OD Command/response

3 VSS S S Ground

4 VDD S S Power

5 CLK I PP Clock

6 VSS S S Ground

7 DAT0 I/O PP Data 0

8 NC NC Memory cards

nIRQ O OD SDIO cards

9 NC No connection

Chapter 8 ■ SD CarD Storage

87

Table 8-5. 4-bit SD Mode

Pin Name I/O Logic Description

1 DAT3 I/O PP Data 3

2 CMD I/O PP/OD Command/response

3 VSS S S Ground

4 VDD S S Power

5 CLK I PP Clock

6 VSS S S Ground

7 DAT0 I/O PP Data 0

8 DAT1 I/O PP Data 1

nIRQ O OD SDIO cards share with interrupt

9 DAT2 I/O PP Data 2

4-bit SD Mode
This is the mode used when the data bus width is more than a single bit and supported by
SDHC and SDXC cards. Higher data clock rates also improve transfer rates. Table 8-5 lists
the pin assignments.

Wear Leveling
Unfortunately, Flash memory is subject to wear for each write operation performed
(as each write requires erasing and programming a block of data). The design of Flash
memory requires that a large block of memory be erased and rewritten, even if a single
sector has changed value. For this reason, wear leveling is used as a technique to extend
the life of the media. Wear leveling extends life by moving data to different physical blocks
while retaining the same logical address.

Note ■ ScanDisk calls the block of Flash memory being erased and rewritten a zone.

Some cards use wear leveling.18 Indeed the SanDisk company indicates that their
products do use wear leveling.20 However, the type of wear leveling supported by SanDisk
is limited to zones within the media. Each SanDisk zone has 3% extra capacity, from
which writes can be wear leveled within. If the zone size is 4 MB and is overprovisioned
by 3%, this leaves about 245 spare sectors within each zone. Thus each 4 MB zone holds
8,192 active sectors at any given instant, rotated among 245 spares.

Chapter 8 ■ SD CarD Storage

88

Note ■ SanDisk indicates that the 4 MB zones may change with future memory
capacities.

Other manufacturers may not implement wear leveling at all or use a lower level
of overprovisioning. Wear leveling is not specified in the SD card standard, so no
manufacturer is compelled to follow SanDisk’s lead.

Note that wear leveling applies to read/write file systems. If the file system is
mounted read-only, no erase and program operations are occurring inside the card.
So no “erase wear” is taking place. But do take into account all of the mounted partitions
on the same media.

If you are using your Raspberry Pi for educational purposes, you can probably ignore
the issue. However, using known brands like SanDisk can provide you with additional
quality assurance. Consider also the advantage of documented overprovisioning and
wear leveling characteristics.

Caution ■ Some brands of SD cards have been reported not to work with the raspberry
pi, so the brand/product issue cannot be totally ignored.

89

Chapter 9

UART

The Raspberry Pi has a UART interface to allow it to perform serial data communications.
The data lines used are 3.3 V logic-level signals and should not be connected to TTL logic
(+5 V) (they also are not RS-232 compatible). To communicate with equipment using
RS-232, you will need a converter module.

RS-232 Converter
While an industrious person could build their own RS-232 converter, there is little need to
do so when cheap converters are available.

Figure 9-1 shows a MAX232CSE chip interface that I use. (This unit supports only
the RX and TX lines.) When searching for a unit, be sure that you get one that works with
3 V logic levels. Some units work only with TTL (+5 V) logic, which would be harmful
to the Pi. The MAX232CSE chip will support 3 V operation when its VCC supply pin is
connected to +3 V.

Figure 9-1. MAX232CSE interface

Chapter 9 ■ Uart

90

Note ■ throughout this text, we’ll refer to 3 V, knowing that it is precisely 3.3 V.

Figure 9-2 is a schematic excerpt of the UART section of the Raspberry Pi. The UART
connections are shown as TXD0 and RXD0.

Figure 9-2. UART interface

Also when selecting a converter, consider whether you need only the data lines, or
the data lines and the hardware flow control signals. Some units support only the RX and
TX lines. For hardware flow control, you’ll also want the CTS and DTR signals. A full
RS-232 converter would also include DTR, DSR, and CD signals.

DTE or DCE
When choosing your RS-232 converter, keep in mind that there are two types of serial
connections:

DCE: Data communications equipment (female connector)

DTE: Data terminal equipment (male connector)

Chapter 9 ■ Uart

91

A normal USB serial adapter (for a laptop, for example) will present a DTE (male)
connector. The wiring of this cable is such that it expects to plug into to a DCE (female)
connection. When this holds true for your Raspberry Pi’s adapter, the laptop’s serial
adapter can plug straight into the DCE (female) connector, eliminating the need for a
crossover cable or null modem.

Consequently, for your Pi, choose a RS-232 converter that provides a female (DCE)
connector. Likewise, make sure that you acquire for the laptop/desktop a cable or USB
device that presents a male (DTE) connection. Connecting DTE to DTE or DCE to DCE
requires a crossover cable, and depending on the cable, a “gender mender” as well. It is
best to get things “straight” right from the start.

Assuming that you used a DCE converter for the Pi, connect the RS-232 converter’s 3
V logic TX to the Pi’s TXD0 and the RX to the Pi’s RXD0 data lines.

All this business about DCE and DTR has always been rather confusing. If you also
find this confusing, there is another practical way to look at it. Start with the connectors
and the cable(s) that you plan to use. Make sure they mate at both ends and that the
serial cable is known to be a straight cable (instead of a crossover). Once those physical
problems are taken care of, you can get the wiring correct. Connect the TX to RX, and
RX to TX. In other words, you wire the crossover in your own wiring between the RS-232
adapter and the Raspberry Pi. The important thing to remember is that somewhere the
transmitting side needs to send a signal into the RX (receiving) side, in both directions.

Note ■ a straight serial cable will connect pin 2 to pin 2, and pin 3 to pin 3 on a DB9 or
DB25 cable. a crossover cable will cross these two, among other signal wire changes.

RS-232
RS-232 is the traditional name for a series of standards related to serial communication. It
was first introduced by the Radio Sector of the EIA in 1962.46 The first data terminals were
teletypewriters (DTE) communicating with modems (DCE). Early serial communications
were plagued by incompatibilities until later standards evolved.

A serial link includes two data lines, with data being transmitted from a terminal and
received by the same terminal. In addition to these data lines are several handshaking
signals (such as RTS and CTS). By default, these are not provided for by the Raspberry Pi.

Figure 9-3 shows a serial signal transmission, with time progressing from left to right.
RS-232 equipment expects a signal that varies between –15 V and +15 V.

Chapter 9 ■ Uart

92

The standard states that the signal is considered to be in a mark state, when the
voltage is between –3 and –15 V. The signal is considered in a space state if the voltage is
between +3 and +15 V. The RS-232 data line is in the mark state when the line is idle.

Start Bit
When an asynchronous character of data is to be sent, the line first shifts to a space level
for the duration of 1 bit. This is known as the start bit (0). Data bits immediately follow.

Asynchronous lines do not use a clock signal like synchronous links. The
asynchronous receiver must have a clock matching the same baud rate as the transmitter.
The receiver samples the line 16 times in the bit cell time to determine its value. Sampling
helps to avoid a noise pulse from triggering a false data read.

Data Bits
Data bits immediately follow the start bit, least significant bit first. A space is a 0 data
bit, while mark represents a 1 bit. Early teletype equipment used 5 data bits sending
characters in the 5-bit Baudot code.47 For this reason, serial ports can be configured for 5,
6, 7, or 8 data bits. Before the ASCII character set was extended to 8 bits, it was common
to use 7-bit serial data.

Parity Bit
An optional parity bit can be generated when transmitting or can be detected on the
receiving side. The parity can be odd, even, or stick (mark or space). The most commonly
used setting today is No Parity, which saves 1-bit time for faster communication.
Older equipment often used parity to guard against errors from noisy serial lines. Odd
parity is preferred over even because it forces at least one signal transition in the byte’s
transmission. This helps with the data reliability.

Mark or space parity is unusual and has limited usefulness. Mark parity could be
used along with 2 stop bits to effectively provide 3 stop bits for very slow teletypewriter
equipment. Mark or space parity reduces the effective throughput of data without
providing any benefit, except possibly for diagnostic purposes. Table 9-1 summarizes the
various parity configurations.

Figure 9-3. Serial signal

Chapter 9 ■ Uart

93

Table 9-1. RS-232 Parity Settings

Parity X Notes

None N No parity bit

Even E 1 if even number of data 1-bits

Odd O 1 if odd number of data 1-bits

Mark M Always at mark level (1)

Space S Always at space level (0)

Table 9-2. Stop-Bit Configuration

Stop Bits Description

1 1 stop bit

1.5 1.5 stop bits (†)

2 2 stop bits

†Unsupported by the Raspberry Pi

Stop Bit(s)
Asynchronous communication requires synchronizing the receiver with the transmitter.
For this reason, 1 or more stop bits exist so that the receiver can synchronize with the
leading edge of the next start bit. In effect, each stop bit followed by a start bit provides
built-in synchronization.

Many UARTs support 1, 1.5, or 2 stop bits. The Broadcom SoC supports 1 or 2 stop
bits only. The use of 2 stop bits was common for teletypewriter equipment and probably
rarely used today. Using 1 stop bit increases the overall data throughput. Table 9-2
summarizes the stop-bit configurations.

Baud Rate
The baud rate is calculated from bits per second, which includes the start, data, parity,
and stop bits. A link using 115200 baud, with no parity and 1 stop bit, provides the
following data byte rate:

D
rate

B

s d p S
=

+ + +

=
+ + +

=

115200

1 8 0 1

11 520, bytes/sec

Chapter 9 ■ Uart

94

where

B is the baud rate.

s is the start bit (always 1).

d is the number of data bits (5, 6, 7, or 8).

p is the parity bit (0 or 1).

S is the stop bit (1, 1.5, or 2).

The 115200 baud link allows 11,250 bytes per second. If a parity bit is added, the
throughput is reduced:

Drate =
+ + +

=

115200

1 8 1 1

10 472 7, . bytes/sec

The addition of a parity bit reduces the transmission rate to 10,472.7 bytes per second.
Table 9-3 lists the standard baud rates that a serial link can be configured for on the

Raspberry Pi.

Table 9-3. Standard Baud Rates

Rate Notes

75 Teletypewriters

110 Teletypewriters

300 Low-speed (acoustic) modem

1200

2400

4800

9600

19200

38400

57600

115200 Raspberry Pi console

Chapter 9 ■ Uart

95

Break
With asynchronous communication, it is also possible to send and receive a break signal.
This is done by stretching the start bit beyond the data bits and the stop bit(s), and
eventually returning the line to the mark state. When the receiver sees a space instead of a
mark for the stop bit, it sees a framing error.

Some UARTs distinguish between a framing error and a break by noting how long the
line remains in the space state. A simple framing error can happen as part of noisy serial
line communications (particularly when modems were used) and normally attributed to
a received character error. Without break detection, it is possible to assume that a break
has been received when several framing errors occur in a sequence. Short sequences of
framing errors, however, can also just indicate a mismatch in baud rates between the two
end points.

Flow Control
Any link that transmits from one side to a receiver on the other side has the problem
of flow control. Imagine a factory assembly line where parts to be assembled arrive at
the worker’s station faster than he can assemble them. At some point, the conveyor belt
must be temporarily stopped, or some parts will not get assembled. Alternatively, if the
conveyor belt is reduced in speed, the assembly worker will always be able to keep up, but
perhaps at a slower than optimal pace.

Unless the serial link receiver can process every character of data as fast as it arrives,
it will need flow control. The simplest approach is to simply reduce the baud rate, so that
the receiver can always keep up. But this isn’t always satisfactory and leads to a reduced
overall throughput. A logging application might be able to write the information quickly,
except when writes occur to an SD card, for example.

A better approach is to signal to the transmitter to stop sending when the receiver
is bogged down. Once the receiver catches up, it can then tell the transmitter to resume
transmission. Note that this problem exists for both sides of a serial link:

Data transmitted to the terminal (DTE)•	

Data transmitted to the data communications equipment (DCE)•	

Two forms of flow control are used:

Hardware flow control•	

Software flow control•	

Hardware Flow Control
Hardware flow control uses additional signal lines to regulate the flow of data. The RS-232
standards have quite an elaborate set of signals defined, but the main signals needed for
flow control are shown in Table 9-4. Unlike the data line, these signals are inactive in the
space state and active in the mark state.

Chapter 9 ■ Uart

96

The most important signals are the ones marked with a dagger in Table 9-4. When
CTS is active (mark), for example, the DCE (Pi) is indicating that it is OK to send data.
If the DCE gets overwhelmed by the volume of data, the CTS signal will change to the
inactive (space) state. Upon seeing this, the DTE (laptop) is required to stop sending data.
(Otherwise, loss of data may occur.)

Similarly, the laptop operating as the DTE is receiving data from the DCE (Pi). If the
laptop gets overwhelmed with the volume of incoming data, the RTS signal is changed to
the inactive state (space). The remote end (DCE) is then expected to cease transmitting.
When the laptop has caught up, it will reassert RTS, giving the DCE permission to resume.

The DTR and DSR signals are intended to convey the readiness of the equipment
at each end. If the terminal was deemed not ready (DTR), DSR is not made active by the
DCE. Similarly, the terminal will not assert DTR unless it is ready. In modern serial links,
DTR and DSR are often assumed to be true, leaving only CTS and RTS to handle flow
control.

Where flow control is required, hardware flow control is considered more reliable
than software flow control.

Software Flow Control
To simplify the cabling and the supporting hardware for serial communications, the
hardware flow controls can be omitted/ignored. In its place, a data protocol is used instead.

Initially, each end of the link assumes readiness for reception of data. Data is sent
until an XOFF character is received, indicating that transmission should stop. The receiver
sends the XON character when it is ready to resume reception again. These software flow
control characters are shown in Table 9-5.

Table 9-5. Software Flow Control Characters

Code Meaning ASCII Hex Keyboard

XOFF Pause transmission DC3 13 Control-S

XON Resume transmission DC1 11 Control-Q

Table 9-4. Hardware Flow Controls

DTE Direction DCE Description Active

RTS → RTS Request to send(†) Low

CTS ← CTS Clear to send(†)

DSR ← DSR Data set ready Low

DTR → DTR Data terminal ready

† Primary flow control signals

Chapter 9 ■ Uart

97

In a terminal session, the keyboard commands can be used to control the serial
connection. For example, if information is displaying too fast, the user can type Ctrl-S to
cause the transmission to stop. Pressing Ctrl-Q allows it to resume.

The disadvantages of software flow control include the following:

1. Line noise can prevent the receiver from seeing the XOFF
character and can lead to loss of data (causing data overrun).

2. Line noise can prevent the remote end from seeing the XON
character and can fail to resume transmission (causing a link
“lockup”).

3. Line noise can cause a false XON/XOFF character to be received
(data loss or link lockup).

4. The delay in the remote end seeing a transmitted XOFF
character can cause loss of data if the receiving buffer is full.

5. The XON and XOFF characters cannot be used for data in the
transmission.

Problems 1 to 3 can cause link lockups or data loss to occur. Problem 4 is avoidable
if the buffer notifies the other end early enough to prevent a buffer overflow. Problem 5 is
an issue for binary data transmission.

Raspberry Pi UARTs
The Raspberry Pi supports two UARTs:

UART Driver Node GPIO ALT

UART0 drivers/tty/serial/amba- pl011.c /dev/ttyAMA0 14 & 15 0

UART1 The mini has no driver. 14 & 15 5

Some websites have incorrectly stated that the mini UART is the one being used.
But this does not jibe with the Broadcom documentation, nor the Raspbian Linux device
driver. The Broadcom BCM2835 ARM Peripherals manual states that the mini UART is
UART1. UART1 is available only as alternate function 5 for GPIO 14 and 15. Raspbian
Linux boots up using alternate function 0 for GPIO 14 and 15, providing the UART0
peripheral instead. Finally, the source code for the device driver references PL011 in the
naming throughout.

ARM PL011 UART
By default, UART0 is provided after reset and boot-up, on GPIO 14 (TX) and 15 (RX),
configured as alternate function 0 (Table 9-6). UART0 is the full UART, referred to as the
ARM PL011 UART. Broadcom refers the interested reader to the ARM PrimeCell UART
(PL011) Revision r1p5 Technical Reference Manual for more information.

Chapter 9 ■ Uart

98

Table 9-6. UART0 Pins

Function GPIO P1/P5 ALT Direction Description

TXD 14 P1-08 0 Out DTE transmitted data

RXD 15 P1-10 0 In DTE received data

RTS 17 P1-11 3 Out Request to send

CTS 30 P5-05 3 In Clear to send

RTS/CTS Access
Hardware flow controls CTS and RTS are available on GPIO 30 and 17, respectively, when
configured. By default these are GPIO inputs, but this can be changed. To gain access
to the UART’s CTS and RTS signals, configure GPIO 30 and 17 to alternate function 3.
Table 9-6 summarizes the connections that are used by the UART.

The following short C program shows how to gain access to these signals. The listing
for the included source file gpio_io.c is given in the “Direct Register Access” section of
Chapter 10.

1 /***
2 * rtscts.c Configure GPIO 17 & 30 for RTS & CTS
3 **/
4
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <fcntl.h>
8 #include <unistd.h>
9 #include <errno.h>
10 #include <setjmp.h>
11 #include <sys/mman.h>
12 #include <signal.h>
13
14 #include "gpio_io.c" /* GPIO routines */
15
16 static inline void
17 gpio_setalt(intgpio, unsigned alt) {
18 INP_GPIO(gpio);
19 SET_GPIO_ALT(gpio, alt);
20 }
21
22 int

Chapter 9 ■ Uart

99

23 main(int argc, char **argv) {
24
25 gpio_init(); /* Initialize GPIO access */
26 gpio_setalt(17, 3); /* GPIO 17 ALT = 3 */
27 gpio_setalt(30, 3); /* GPIO 3 0 ALT = 3 */
28 return 0;
29 }
30
31 /* End rtscts.c */

PL011 UART Features
The Broadcom BCM2835 ARM Peripherals manual states that the following features are
unsupported:

•	 No Infrared Data Association (IrDA) support

•	 No Serial InfraRed (SIR) protocol encoder/decoder (endec)

•	 No direct memory access (DMA)

•	 No support for signals DCD, DSR, DTR, and RI

The following features are supported, however:

Separate 16×8 transmit and 16×12 receive FIFO buffers•	

Programmable baud rate generator•	

False start-bit detection•	

Line-break generation and detection•	

Support of control functions CTS and RTS•	

Programmable hardware flow control•	

Fully programmable serial interface characteristics:•	

Data can be 5, 6, 7, or 8 bits.•	

Even, odd, mark, space, or no-parity bit generation and •	
detection.

1 or 2 stop-bit generation.•	

Baud rate generation, DC up to UARTCLK/16.•	

Chapter 9 ■ Uart

100

Broadcom also states that there are some differences between its implementation of
the UART and the 16C650 UART. But these are mostly device driver details:

Receive FIFO trigger levels are 1/8, 1/4, 1/2, 3/4, and 7/8.•	

Transmit FIFO trigger levels are 1/8, 1/4, 1/2, 3/4, and 7/8.•	

The internal register map address space and the bit function of •	
each register differ.

1.5 stop bits is •	 not supported.

•	 No independent receive clock.

The only real concern to the application developer is that the 1.5 stop-bits
configuration option is not available, which is rarely used these days anyway.

If you need the RS-232 DCD, DSR, DTR, and RI signals, these can be implemented
using GPIO input and output pins (along with the appropriate RS-232 line-level shifters).
These are relatively slow-changing signals, which can easily be handled in user space.
The one limitation of this approach, however, is that the hang-up TTY controls provided
by the device driver will be absent. To change that, the device driver source code could be
modified to support these signals using GPIO. The Raspbian Linux module of interest for
this is as follows:

drivers/tty/serial/amba-pl011.c

Exclusive Serial Line Use
As outlined in the “Available Consoles” section in Chapter 5 of Raspberry Pi System
Software Reference (Apress, 2014), the serial device /dev/ttyAMA0 is easily applied as a
serial console device. However, some Raspberry Pi application developers will want to
use that serial interface for application purposes, instead of a console. Without taking
measures for exclusive access, the console will write to your serial peripheral and respond
to its input as well (as root console commands).

Even if you turned off the console, there can still be unwanted interaction from a
login prompt.

Procedure
Use the following steps to configure exclusive serial port access:

1. Eliminate console references to console=ttyAMA0,... in the
files:

a. /boot/cmline.txt

b. /boot/config.txt (check option cmdline="...")

Chapter 9 ■ Uart

101

2. Eliminate the kernel debugging option kgdboc=ttyAMA0,...
as outlined for the console in step 1.

3. Eliminate the login prompt caused by the /etc/inittab entry.
Look for ttyAMA0 and comment the line out. The line will look
something like T0:23:respawn:/sbin/getty -L ttyAMA0
115200 vt100.

With these steps accomplished, reboot. The device /dev/ttyAMA0 should be
available exclusively for your application to use.

Verification
To check that /etc/inittab has not launched a getty process, use the following after
rebooting:

$ ps aux | grep ttyAMA0

No entries should appear.
To check that you have eliminated all kernel console references to the device, you

can use the following:

$ grep ttyAMA0 /proc/cmdline

Serial API
The Linux operating system provides access to serial port functions through a family of
system and library calls. Most of these require that you have an open file descriptor for
the serial device driver being used. For the Raspberry Pi, this will usually be the device
/dev/ttyAMA0. Full information can be had from these man pages:

•	 tcgetattr(3)

•	 tty_ioctl(4)–ioctl(2) equivalents to tcgetattr(3)

The bulk of the developer work for serial ports is configuration of the serial driver:

Physical characteristics: baud rate, data bits, parity, and stop bits•	

Driver processing characteristics: raw or cooked mode, for •	
example

Once the driver is configured, the software developer is able to use the usual
read(2)/readv(2), write(2)/writev(2), select(2), or poll(2) system calls.

For an example program using some of this API, see the “Software” section in
Chapter 6 of Experimenting with Raspberry Pi (Apress, 2014).

Chapter 9 ■ Uart

102

Header Files
Programs involved in altering TTY settings will want to include the following include
files:

#include <termios.h>
#include <unistd.h>

open(2)
Most of the serial operations in this section require an open file descriptor to the TTY
device being used. For the Raspberry Pi UART, you’ll want to specify /dev/ttyAMA0.

int fd;

fd = open("/dev/ttyAMA0",O_RDWR); /* Open for reading and writing */
if (fd < 0) {
 perror("Opening/dev/ttyAMA0");

You may need to take special measures to gain access to the device, since by default
it will be protected. Note the permissions and user/group ownership:

$ ls –l /dev/ttyAMA0
crw–rw---1 root tty 204, 64 Feb 9 13:12 /dev/ttyAMA0

struct termios
Many of the serial port configuration options require the use of the structure termios:

struct termios {
 tcflag_t c_iflag; /* input mode flags */
 tcflag_t c_oflag; /* output mode flags */
 tcflag_t c_cflag; /* control mode flags */
 tcflag_t c_lflag; /* local mode flags */
 cc_t c_line; /* line discipline */
 cc_t c_cc[NCCS]; /* control characters */
 speed_t c_ispeed; /* input speed */
 speed_t c_ospeed; /* output speed */
};

The tables in the following sections describe the C language macros used for the
members of the termios structure:

Table •	 9-7 lists the macros for member c_iflag.

Chapter 9 ■ Uart

103

Table •	 9-8 lists the macros for member c_oflag.

Table 9-7. Input (c_iflag) Flags

Flag Set Description Flag Description

BRKINT T Break causes SIGINT else 0x00 ISTRIP Strip off eighth bit

F Break reads as 0x00 INLCR Translate NL to CR

IXANY Any character will resume IUTF8 Input is UTF8 charset

IXOFF Enable input XON/XOFF ICRNL Translate CR to NL

IXON Enable output XON/XOFF IGNBRK Ignore break

IGNPAR Ignore framing and parity errors IGNCR Ignore CR

IUCLC Translate uppercase to lowercase

INPCK Enable parity checking

PARMRK T Prefix framing/parity error with \377

F Don’t prefix with \377 (byte reads 0)

Table 9-8. Output (c_oflag) Flags

Flag Description Flag Description

CR0 CR delay mask 0 OFDEL Fill character is DEL else NUL

CR1 CR delay mask 1 OFILL Use fill characters instead of
timed delay

CR2 CR delay mask 2 OLCUC Translate lowercase to uppercase

CR3 CR delay mask 3 ONLCR Translate NL to CR-NL

CRDLY CR delay: apply CR0-CR3 ONLRET Don’t output CR

FF0 FF delay mask 0 ONOCR Don’t output CR at column 0

FF1 FF delay mask 1 OPOST Enable output processing

FFDLY FF delay: apply FF0-FF1 TAB0 Tab delay mask 0

NL0 NL delay mask 0 TAB1 Tab delay mask 1

NL1 NL delay mask 1 TAB2 Tab delay mask 1

NLDLY NL delay: apply NL0-NL1 TAB3 Tab delay mask 2

OCRNL Translate CR to NL TABDLY Tab delay: apply TAB0-TAB3

Chapter 9 ■ Uart

104

Table •	 9-9 lists the macros for member c_cflag.

Table 9-9. Control (c_cflag) Flags

Flag Baud Flag Baud Flag Description

B0 Hang-up B115200 115,200 CLOCAL Ignore modem controls

B50 50 B230400 230,400 CMSPAR Stick parity

B75 75 B460800 460,800 CREAD Enable receiver

B110 110 B500000 500,000 CRTSCTS Enable RTS/CTS flow

B134 134 B576000 576,000 CS5 5 data bits

B150 150 B921600 921,600 CS6 6 data bits

B200 200 B1000000 1,000,000 CS7 7 data bits

B300 300 B1152000 1,152,000 CS8 8 data bits

B600 600 B1500000 1,500,000 CSIZE Data bits mask

B1200 1,200 B2000000 2,000,000 CSTOPB 2 stop bits (else 1)

B1800 1,800 B2500000 2,500,000 HUPCL Modem control hang-up

B2400 2,400 B3000000 3,000,000 PARENB Enable parity

B4800 4,800 B3500000 3,500,000 PARODD Odd or stick = 1 parity

B9600 9,600 B4000000 4,000,000 CBAUD Rate mask

B19200 19,200 CBAUDEX Extended mask

B38400 38,400 CIBAUD Input rate mask

B57600 57,600 EXTA External A

EXTB External B

Chapter 9 ■ Uart

105

Table •	 9-10 lists the macros for member c_lflag.

Table 9-10. Local (c_lflag) Flags

Flag Description Flag Description

ECHOCTL Echo controls as ^X ECHO Echo input

IEXTEN Enable input processing ECHOE Erase previous char

PENDIN Reprint upon reading ECHOK Erase line on kill

ECHOKE Erase each char on kill ISIG Generate signals

ECHONL Echo NL even if !ECHO NOFLSH No flush on signal

ECHOPRT Print chars during erase TOSTOP Send SIGTTOU

ICANON Enable canonical mode XCASE Terminal is uppercase

Table •	 9-11 lists the macros for member c_cc.

Table 9-11. Special (c_cc) Characters

Macro Description Macro Description

VEOF End-file (^D) VQUIT Quit (^\)

VEOL End line (NUL) VREPRINT Reprint (^R)

VEOL2 End line 2 VSTART XON (^Q)

VERASE Erase (^H) VSTOP XOFF (^S)

VINTR Interrupt (^C) VSUSP Suspend (^Z)

VKILL Kill (^U) VTIME Time-out decsecs

VLNEXT Literal next (^V) VWERASE Word erase (^W)

VMIN Min chars to read

tcgetattr(3)
Before you make changes to the serial port settings, you will want to retrieve the current
settings in case you later need to restore them. This also greatly simplifies configuration,
allowing you to change only the settings that need changing.

Chapter 9 ■ Uart

106

Use the tcgetattr(3) function to fetch the current serial device settings:

int tcgetattr(int fd, struct termios *termios_p);

where

fd is the open TTY file descriptor.
termios_p is the struct to be filled with current setting information.

struct termios term;
int rc;

rc = tcgetattr(fd,&term);
if (rc < 0) {
 perror("tcgetattr(3)");

tcsetattr(3)
When the termios structure has been defined with the serial parameters you wish to use,
the tcsetattr(3) call is used to set them in the device driver:

int tcsetattr(
 int fd,
 int optional_actions,
 const struct termios *termios_p
);

where

fd is the open TTY file descriptor to change.
optional_actions is one of three actions (listed in the following table).
termios_p is a pointer to the new settings to be applied.
The three choices for optional_actions are as follows:

optional_actions Meaning

TCSANOW The change occurs immediately.

TCSADRAIN Change occurs after all output has been sent.

TCSAFLUSH As TCSADRAIN, but pending input is discarded.

Chapter 9 ■ Uart

107

The following shows an example of use:

struct termios term;
int rc;

...
rc = tcsetattr(fd,TCSADRAIN,&term);
if (rc < 0) {
 perror("tcsetattr(3)");

tcsendbreak(3)
A break signal can be transmitted to the remote end by calling the tcsendbreak(3)
function:

int tcsendbreak(int fd, int duration);

where

fd is the open TTY file descriptor.
duration is the amount of time to use to represent a break.
When the argument duration is zero, it sends a break signal lasting between

0.25 and 0.5 seconds. When the argument is nonzero, the man page states that some
implementation-defined amount of time is used instead.

int rc;

rc = tcsendbreak(fd,0);
if (rc < 0) {
 perror("tcsendbreak(3)");

tcdrain(3)
The function tcdrain(3) can be used to block the execution of the calling program until
all of the output characters have been transmitted out of the UART:

int tcdrain(int fd);

where

fd is the open TTY file descriptor. An example follows:

int rc;

rc = tcdrain(fd);
if (rc < 0) {
 perror("tcdrain(3)");

Chapter 9 ■ Uart

108

tcflush(3)
The tcflush(3) call can be used to flush pending input or output data from the serial
port buffers.

int tcflush(int fd, int queue_selector);

where

fd is the open TTY file descriptor.
queue_selector determines which queue(s) are to be flushed.
The following values are used for the queue_selector argument:

queue_selector Description

TCIFLUSH Flushes unread incoming data

TCOFLUSH Flushes untransmitted output data

TCIOFLUSH Flushes both unread and untransmitted data

The following example flushes pending input data:

int rc;

rc = tcflush(fd,TCIFLUSH);

tcflow(3)
Various flow control operations can be performed by calling the tcflow(3) function:

int tcflow(int fd, int action);

where

fd is the open TTY file descriptor.
action is the flow control action required (as shown in the following table).
The valid choices for action are as follows:

action Description

TCOOFF Suspends output (transmission stops)

TCOON Resumes output

TCIOFF Immediately sends a STOP character to stop the remote device

TCION Transmits a START character to resume the remote device

Chapter 9 ■ Uart

109

The following example shows the program immediately suspending output:

int rc;

rc = tcflow(fd,TCOOFF);
if (rc < 0) {
 perror("tcflow (3)");

cfmakeraw(3)
The cfmakeraw(3) function is a convenience routine to establish raw mode, where
no special data conversions or mappings occur. The caller should first call upon
tcgetattr(3) to define the initial termios structure settings. Then cfmakeraw(3) can be
used to adjust those settings for raw mode:

void cfmakeraw(struct termios *termios_p);

where

termios_p is a pointer to a struct populated with the serial device’s current settings,
to be altered.

Note that no file descriptor is provided since this function doesn’t actually change
anything beyond the data structure that was passed to it. After calling cfmakeraw(3), the
user will need to use cfsetattr(3) to inform the driver of the changes.

struct termios term;
int rc;

rc = cfgetattr(fd,&term); /* Get settings */
cfmakeraw(&term); /* Alter settings for raw mode */
rc = tcsetattr(fd,TCSADRAIN,&term); /* Apply the settings */

Calling cfmakeraw(3) is equivalent to manually applying the following changes:

struct termios term;
...
term.c_iflag &= ~(IGNBRK | BRKINT | PARMRK | ISTRIP
 | INLCR | IGNCR | ICRNL | IXON);
term.c_oflag &= ~OPOST;
term.c_lflag &= ~(ECHO | ECHONL | ICANON | ISIG | IEXTEN);
term.c_cflag &= ~(CSIZE | PARENB);
term.c_cflag |=CS8;

This is a good place to pause and discuss what raw mode is. There are two forms of
serial I/O supported by Linux (and Unix generally):

Cooked mode: The input, output, and echoing functions are modified/performed by
the kernel.

Raw mode: The input/output data is sent to/from the application unchanged by the
kernel.

Chapter 9 ■ Uart

110

The serial port developer, wishing to communicate with a serial device or AVR
class microcontroller, will be very interested in raw mode. Using raw mode, the data you
transmit is sent unmodified to its destination. Likewise, the data received is received as it
was originally transmitted. Cooked mode, which is the norm, is a very different beast.

The original purpose of serial lines for Unix was the handling of user interaction
using terminal I/O (this is still true for the serial port console). Many terminal processing
functions were considered common enough among applications to centralize them in
the kernel. This saved the application from having to deal with these physical aspects and
lead to consistency in their handling. This terminal handling is affectionately known as
cooked mode.

The main areas of cooked mode processing are as follows:

Input processing: The type of kernel processing performed on
serial input data (like backspace processing)

Output processing: The type of kernel processing performed
on serial output data (like converting a sent line feed into a
carriage return and line-feed pair)

Local processing: Involving input and output, processing
features such as echo

Control processing: Other serial controls

We can get a sense of how raw mode differs from cooked mode by looking at what
cfmakeraw(3) changes. Looking at

term.c_iflag &= ~ (IGNBRK | BRKINT | PARMRK | ISTRIP
 | INLCR | IGNCR | ICRNL | IXON);

we see that the following input processing features are disabled:

Flag Description Setting

IGNBRK Ignore break Disabled

BRKINT Break reads as 0x00 Disabled

PARMRK Don’t prefix with \377 (byte reads 0) Disabled

ISTRIP Strip off eighth bit Disabled

INLCR Translate NL to CR Disabled

IGNCR Ignore CR Disabled

ICRNL Translate CR to NL Disabled

IXON Enable output XON/XOFF Disabled

Chapter 9 ■ Uart

111

Disabling ISTRIP prevents the kernel from stripping the high-order bit in the byte.
Disabling INLCR, ICRNL prevents the substitution of NL or CR characters (for input).
Disabling IGNCR prevents the kernel from deleting the CR character from the input stream.
Disabling IXON disables software flow control so that the characters XON and XOFF can be
read by the application program.

Looking at the output processing changes,

term.c_oflag &= ~OPOST;

we see that the following change applies:

Flag Description Setting

OPOST Enable output processing Disabled

This disables all output processing features with one flag.
Local processing includes both input and output. The following local processing

flags are changed:

term.c_lflag &= ~(ECHO | ECHONL | ICANON | ISIG| IEXTEN);

From this, we see that these local processing features are disabled:

Flag Description Setting

ECHO Echo input Disabled

ECHONL Echo NL even if !ECHO Disabled

ICANON Enable canonical mode Disabled

ISIG Generate signals Disabled

IEXTEN Enable input processing Disabled

Disabling ICANON means that all special nonsignal characters defined in c_cc are
disregarded (like VERASE). Disabling ISIG means that there will be no signals sent to your
application for characters like VINTR. Disabling IEXTEN disables other c_cc character
processing like VEOL2, VLNEXT, VREPRINT, VWERASE, and the IUCLC flag. Disabling ECHO and
ECHONL disables two aspects of character echoing.

Finally, the following control aspects are changed:

term.c_cflag &= ~ (CSIZE | PARENB);
term.c_cflag |= CS8;

Chapter 9 ■ Uart

112

meaning that:

Flag Description Setting

CSIZE Data bits mask Masked-out data bits

PARENB Generate/detect parity Disabled

CS8 8 data bits Set to 8-bit data

The CSIZE masking is used to reset the data bits field to zeros. This allows the CS8
bit pattern to be or-ed in later, setting the data bits value to 8 bits. Disabling the PARENB
flag causes parity generation on output to be disabled, and disables parity checking on
input. If your raw link requires parity generation and checking, you’ll need to undo this
particular change in your own code.

You can see from this list that a plethora of special processing is altered to go from
cooked mode to raw mode. It is no wonder that this support routine was made available.

cfgetispeed(3)
The current input baud rate for the line can be queried by the cfgetispeed(3) function:

speed_t cfgetispeed(const struct termios *termios_p);

where

termios_p is the pointer to the structure containing the terminal configuration.
Because the termios structure has been extended and modified over the years, this

function provides a more portable way to extract the input baud rate, including the more
recently added higher baud rates.

struct termios term;
speed_t baud_rate;
baud_rate = cfgetispeed(&term);

cfgetospeed(3)
The current output baud rate can be extracted from the termios structure with

speed_t cfgetospeed(const struct termios *termios_p);

where

termios_p is the pointer to the structure containing the terminal configuration.
Because the termios structure has been extended and modified over the years, this

function provides a portable way to extract the output baud rate, including the more
recently added higher baud rates.

Chapter 9 ■ Uart

113

cfsetispeed(3)
The cfsetispeed(3) function permits a portable way to establish an input baud rate in
the termios structure:

int cfsetispeed(struct termios *termios_p, speed_t speed);

where

termios_p is the pointer to the TTY configuration structure to be modified.
speed is the input baud rate to apply.
Note that this function only updates the termios data structure and has no direct

effect on the device being used.

struct termios term;
int rc;

rc = cfsetispeed(&term,115200);
if (rc < 0) {
 perror("cfsetispeed(3)");

cfsetospeed(3)
The cfsetospeed(3) function sets the output baud rate in the termios structure:

int cfsetospeed(struct termios *termios_p, speed_t speed);

where

termios_p is the pointer to the TTY configuration structure being modified.
speed is the output baud rate to apply.
Note that this function only updates the termios data structure with no direct effect

on the device being used.

struct termios term;
int rc;

rc = cfsetospeed(&term,9600);
if (rc < 0) {
 perror("cfsetospeed(3)");

Chapter 9 ■ Uart

114

cfsetspeed(3)
Most serial communication uses a common baud rate for transmitting and receiving. For
this reason, this is the preferred function to invoke for establishing both the input and
output baud rates:

int cfsetspeed(struct termios *termios_p, speed_t speed);

where

termios_p is the pointer to the TTY configuration structure to be modified.
speed is the input and output baud rate to apply.
Note that this function only updates the termios data structure with no direct effect

on the device being used.

struct termios term;
int rc;

rc = cfsetspeed(&term,9600);
if (rc < 0) {
 perror("cfsetsspeed(3)");

read(2)
The read(2) system call can be used for reading from the serial port, in addition to
normal Linux files and other devices:

#include <unistd.h>

ssize_t read(int fd, void *buf, size_t count);

where

fd is the open file descriptor to read from.
buf is the buffer to read the data into.
count is the maximum number of bytes to read.

returns an int, where

-1 indicates an error, with the error code found in errno.

0 indicates that the serial port has been closed with the end-of-file
character.

>0 indicates the number of bytes read.

Chapter 9 ■ Uart

115

The errors that pertain to blocking calls on a serial port include the following:

Error Description

EBADF fd is not a valid file descriptor.

EFAULT buf is outside your accessible address space.

EINTR The call was interrupted by a signal before any data was read.

More will be said about EINTR near the end of this chapter.
The following example reads up to 256 bytes into the array buf, from the serial port

open on the file unit fd:

int fd; /* Opened serial port */
char buf[256];
int rc;

rc = read(fd,buf,sizeof buf);
if (rc < 0) {
 fprintf(stderr,"%s: reading serial port.\n",strerror(errno));
 ...
} else if (!rc) {
 /* End file */
} else {
 /* Process rc bytes in buf[] */
}

write(2)
To transmit data on a serial link, you can use the write(2) system call:

#include <unistd.h>

ssize_t write(int fd, const void *buf, size_t count);

where

fd is the file unit of the opened serial port.
buf is the buffer containing the bytes to be transmitted.
count is the number of bytes to transmit.

returns an int, where

-1 indicates that an error has occurred, with the error found in
errno.

0 indicates no bytes were transmitted (end-of-file, port was
closed).

>0 indicates the number of bytes transmitted.

Chapter 9 ■ Uart

116

The possible errors related to blocking calls for serial port writes include the
following:

Error Description

EBADF fd is not a valid file descriptor or is not open for writing.

EFAULT buf is outside your accessible address space.

EINTR The call was interrupted by a signal before any data was written.

Normally, only an error (-1) or a value of count is returned. If the serial port was
opened for nonblocking I/O, the returned count can be less than the requested count
(this mode of operation is not discussed here). In blocking mode (which we are assuming
here), the call will return only when the full count requested has been written. Any failure
would otherwise result in an error being returned instead.

The following is an example of its use, as it pertains to a serial port:

int fd;
char buf[256];
int rc, n;

strcpy(buf,"Hello World!\n");
n = strlen(buf);

rc = write(fd,buf,n);
if (rc < 0) {
 fprintf(stderr,"%s: writing serial link.\n",strerror(errno));
 ...
}
assert(rc == n);

readv(2) and writev(2)
An often neglected option for reading and writing are the readv(2) and writev(2)
system calls. These tend to be more useful for programs that work with packets than for
interactive terminal sessions. These are presented because the serial port application
developer may want to use a protocol that has more than one buffer containing headers,
data, and trailer. Using the scatter-gather routines can enhance your code communicating
with an AVR class microcontroller. The use of an I/O vector here is similar in concept to
the I/O vectors used by I2C I/O operations in the ioctl(2,I2C_RDWR) system call (see
Chapter 12).

#include <sys/uio.h>

ssize_t readv(int fd, const struct iovec *iov, int iovcnt);
ssize_t writev(int fd, const struct iovec *iov, int iovcnt);

Chapter 9 ■ Uart

117

where
fd is the open serial port file descriptor for reading/writing.
iov is the I/O vector directing the reading/writing.
iovcnt is the I/O vector count.

returns an int, where

-1 indicates an error, leaving the error code in errno, see
read(2) or write(2).

0 indicates that an end-of-file condition occurred.

>n indicates the actual number of bytes read/written.

The I/O vector is shown here:

struct iovec {
 void *iov _base; /* Starting address */
 size_t iov_len; /* Number of bytes to transfer */
};

In the following example, a simple terminal writev(2) system call is used to piece
together three pieces of information, to be transmitted to the terminal:

The text •	 Hello

The person’s name provided in the argument •	 name

The text •	 !\n\r at the end

One of the advantages of the writev(2) call is its ability to take separate buffers of
data and transmit them as a whole in one I/O operation:

void
fun(int serport, const char *name) {
 struct iovec iov[3];
 int rc;

 iov[0].iov_base = "Hello";
 iov[0].iov_len = 6;
 iov[1].iov_base = (void *)name;
 iov[1].iov_len = strlen(name);
 iov[2].iov_base = "!\n\r";
 iov[2].iov_len = 3;

 rc = writev(serport,iov,3);
 if (rc < 0) {
 fprintf(stderr,"%s: writev(2)\n",strerror(errno));
 abort();
 }
}

Chapter 9 ■ Uart

118

Each segment to be transmitted is described by one iov[x] member, each consisting
of a buffer pointer and the number of bytes. The writev(2) system call is told how many
iov[] entries to use in its third calling argument.

Error EINTR
One error code that afflicts many device I/O system calls is the EINTR error, “Interrupted
system call.” This error code applies to read(2), readv(2), write(2), and writev(2) on
devices that may “block” execution until the required data has been fully read/written.
(This also applies to ioctl(2) when I2C I/O is performed.) The EINTR error is not
returned for I/O to disk because these I/O calls don’t block for a long time (the I/O is to/
from a file system disk memory buffer). The application developer should otherwise plan
on handling this error.

The EINTR error is the Unix way of working with signals. Consider what happens
when your application is waiting for a single keystroke from the user at a terminal (or
reading a packet from an AVR class device):

rc = read(fd,buf,n); /* Block until n bytes read */

Until that read is satisfied (or the file descriptor is closed), execution will stop there.
In the meantime, another process or thread may signal your application to do something,
perhaps to shut down and exit. A signal handler like the following is invoked when the
signal is handled:

static void
sigint_handler(int signo) {
 is_signaled = 1; /* Please exit this program */
}

At this point, your application is in the middle of a system call, waiting to read
from the serial port. The system call’s registers are saved on the stack frame, and your
application has entered into the kernel. The handling of the signal means that the kernel
calls your signal handler, placing another stack frame on your current stack.

Because a signal can arrive at any time, there are many things you can’t do from within
a signal handler. For example, you must not invoke malloc(3) or other non-reentrant
functions. Otherwise, you risk doing another malloc(3) inside an interrupted malloc(3),
which leads to disaster. The important point here is that a very limited number of safe
things can be performed from inside a signal handler.

One thing that is safe to do in a signal handler is to set a global variable of some kind,
like the is_signaled variable in the example. One problem remains: how does the code
blocked in the read(2) call respond to this notification? When the signal handler returns,
the application will continue to block trying to read from the serial port.

Chapter 9 ■ Uart

119

The Unix solution to this problem is to have the kernel return an error code EINTR
after a signal handler receives a signal. In this manner, the read(2) call returns an error,
allowing the application program to test whether it received a signal. The following code
shows how the simple read(2) call is replaced with a loop that checks whether the signal
handler was called:

do {
 rc = read(fd, buf, n); /* Block until n bytes read */
 if (is_signaled)
 longjmp(shutdown,1); /* Shutdown this server */
} while (rc == –1 && errno == EINTR);

if (rc == –1) { /* Check for non EINTR errors */
 fprintf(stderr,"%s: read(2)\n",strerror(errno));
 abort();
}

In this code snippet, we see that the read(2) call is performed as part of a loop.
As long as an error is returned and the errno value is EINTR, we check for any interesting
events (like is_signaled) and repeat the call. If any other type of error occurs or we
succeed, we drop out of the loop.

This is the basic template that should be used for any call that might receive EINTR,
even if you don’t plan to handle signals in your application. Otherwise, you may find that
your Pi application may run for weeks and then one day when you least expect it, fail
because of a received EINTR error.

121

Chapter 10

GPIO

General-purpose I/O is a topic near to the hearts of Raspberry Pi owners, because this is
the interface to the outside world. The BCM2835 is flexibly designed to allow I/O pins to
be reconfigured under software control. GPIO 14 can be an input, an output, or operate as
a serial port TX data line, for example. This makes the Raspberry Pi very adaptable.

One of the challenges related to the Pi’s GPIO interface is that it uses a weak CMOS
3 V interface. The GPIO pins are susceptible to static electricity damage, and the I/O pins
are weak drivers (2 to 16 mA). Additionally, GPIO power must be budgeted from the total
spare current capacity of 50 mA. Using adapter boards overcomes these problems but
adds considerably to the cost. This then provides a fertile area for coming up with cheap
and effective roll-your-own solutions.

Pins and Designations
Figures 12-1 and 12-2 show the schematic GPIO connections for the Raspberry Pi. You
will notice that the GPIO pins are also designated with the GENx designation. (Gen 7 to
10 was not available prior to version 2.) This may have been an early attempt to follow the
Arduino lead of naming their pins digital0 or analog4, for example, in a generic way. It
appears, however, that this naming convention has not really caught on among Pi users.
Despite this, these names are cross-referenced in Table 10-1. These are probably the
preferred first choices when shopping for GPIO pins to use, since they are less likely to be
required for special (alternate) functions like UART or SPI.

Table 10-1. Rev 2.0 GEN and GPIO Designations

GENx GPIOy Header GENx GPIOy Header

GEN0 GPIO 17 P1-11 GEN6 GPIO 25 P1-22

GEN1 GPIO 18 P1-12 GEN7 GPIO 28 P5-03

GEN2 GPIO 27 P1-13 GEN8 GPIO 29 P5-04

GEN3 GPIO 22 P1-15 GEN9 GPIO 30 P5-05

GEN4 GPIO 23 P1-16 GEN10 GPIO 31 P5-06

GEN5 GPIO 24 P1-18

Chapter 10 ■ GpIO

122

A couple of GPIO pins have pull-up resistors. Figure 10-1 shows that GPIO pins 2
(SDA1) on P1-03, and GPIO 3 (SCL1) on P1-05, have an 1.8 kΩ pull-up resistor. This
should be taken into account if you use these for something other than I2C.

Figure 10-1. GPIO P1 header

The layouts of headers P1 and P5, where the GPIO pins are made accessible, are
documented in Chapter 3.

Note ■ p5 was not present prior to version 2, but both Models a and B now include it
(without header pins).

Configuration After Reset
Upon reset, most GPIO pins are configured as general-purpose inputs with the exceptions
noted in Table 10-2. (Figure 10-2 applies to version 2, Models A and B.) The Pull-up
column indicates how the internal pull-up resistor is initially configured. The pull-up
resistors apply when the GPIO is configured as an input pin.

Chapter 10 ■ GpIO

123

Table 10-2. Rev 2.0 Configuration After Reset

GPIO Pull-up Config ALT GPIO Pull-up Config ALT

0 High Input 17 Low Input

1 High Input 18 Low Input

2 High SDA1 0 21 Low Input

3 High SCL1 0 22 Low Input

4 High Input 23 Low Input

5 High GPCLK1 0 24 Low Input

6 High Output 25 Low Input

7 High Input 27 Low Output

8 High Input 28 - Input

9 Low Input 29 - Input

10 Low Input 30 Low Input

11 Low Input 31 Low Input

14 Low TXD0 0 40 Low PWM0 0

15 Low RXD0 0 45 - PWM1 0

16 Low Output

Figure 10-2. GPIO P5 header

Chapter 10 ■ GpIO

124

Pull-up Resistors
As noted earlier, GPIO pins 2 and 3 have an external resistor tied to the +3.3 V rail. The
remaining GPIO pins are pulled high or low by an internal 50 kΩ resistor in the SoC.56, 48
The internal pull-up resistor is rather weak, and effective at only giving an unconnected
GPIO input a defined state. A CMOS input should not be allowed to float midway
between its logic, high or low. When pull-up resistance is needed for an external circuit,
it is probably best to provide an external pull-up resistor, rather than rely on the weak
internal one.

Configuring Pull-up Resistors
The pull-up configuration of a GPIO pin can be configured using the SoC registers GPPUP
and GPPUDCLK0/1. (The “Physical Memory” section of Chapter 4 has the physical
addresses for these registers.)

The GPPUP register is laid out as follows:

GPPUP Register

Bits Field Description Type Reset

31-2 - Unused

GPIO pin pull-up/down

R 0

1-0 PUD 00 Off—disable pull-up/down

01 Pull-down enable

10 Pull-up enable

11 Reserved

R/W 0

The GPPUDCLK0 register is laid out as follows:

GPPUDCLK0 Register

Bits Field Description Type Reset

31-0 PUDCLKn n = 0..31 R/W 0

0 No effect

1 Assert clock

Chapter 10 ■ GpIO

125

Finally, the GPPUDCLK1 register is formatted this way:

GPPUDCLK1 Register

Bits Field Description Type Reset

31-22 - Reserved R 0

21-0 PUDCLKn n = 32..53 R/W 0

0 No effect

1 Assert clock

According to the Broadcom documentation, the general procedure for programming
the pull-up resistor is this:

1. Write the pull-up configuration desired in the rightmost 2 bits
of the 32-bit GPPUP register. The configuration choices are as
follows:

a. 00: Disable pull-up control.

b. 01: Enable pull-down control.

c. 10: Enable pull-up control.

2. Wait 150 cycles to allow the preceding write to be registered.

3. Write a 1-bit to every GPIO position, in the group of 32 GPIO
pins being configured. GPIOs 0–31 are configured by register
GPPUDCLK0.

4. Wait another 150 cycles to allow step 3 to register.

5. Write 00 to GPPUP to remove the control signal.

6. Wait another 150 cycles to allow step 5 to register.

7. Finally, write to GPPUDCLK0/1 to remove the clock.

The Broadcom procedure may seem confusing because of the word clock. Writing
to GPPUP and GPPUDCLK0/1 registers by using the preceding procedure is designed
to provide a pulse to the internal pull-up resistor flip-flops (their data clock input). First
a state is established in step 1, and then the configured 1 bits are clocked high in step 3
(for selected GPIO pins). Step 5 establishes a zero state, which is then sent to the flip-flop
clock inputs in step 7.

The documentation also states that the current settings for the pull-up drivers cannot
be read. This makes sense when you consider that the state is held by these internal
flip-flops that were changed by the procedure. (There is no register access available to
read these flip-flops.) Fortunately, when configuring the state of a particular GPIO pin,
you change only the pins you select by the GPPUDCLK0/1 register. The others remain
unchanged.

Chapter 10 ■ GpIO

126

The program pullup.c, shown next, provides a simple utility to change the pull-up
resistor settings. The program listing for gpio_io.c is provided in the “Direct Register
Access” section. The source for timed_wait.c is found in the “Source Code” section in
Chapter 1 of Experimenting with Raspberry Pi (Apress, 2014).

After compiling, the following example changes the GPIO 7 pull-up to high and GPIO
8 to low:

 $./pullup 7=low 8=high

1 /∗∗∗
2 ∗ pullup.c : Change the pull−up resistor setting for GPIO pin
3 ∗∗∗/
4
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <fcntl.h>
8 #include <unistd.h>
9 #include <errno.h>
10 #include <setjmp.h>
11 #include <sys/mman.h>
12 #include <signal.h>
13
14 #include "gpio_io.c" /∗ GPIO routines ∗/
15 #include "timed_wait.c" /∗ Delay ∗/
16
17 /∗∗∗
18 ∗ 0x7E200094 GPPUD GPIO Pin Pull−up/down Enable
19 ∗ 0x7E200098 GPPUDCLK0 GPIO Pin Pull−up/down Enable Clock 0
20 ∗∗∗/
21
22 #define GPIO_GPPUD ∗(ugpio+37)
23 #define GPIO_GPPUDCLK0 ∗(ugpio+38)
24
25 static inline void
26 gpio_setpullup(int gpio, int pull) {
27 unsigned mask = 1 << gpio; /∗ GPIOs 0 to 31 only ∗/
28 unsigned pmask = pull >= 0 ? (1 << !! pull) : 0;
29
30 GPIO_GPPUD = pmask; /∗ Select pull−up setting ∗/
31 timed_wait (0, 500, 0);
32 GPIO_GPPUDCLK0 = mask; /∗ Set the GPIO of interest ∗/
33 timed_wait (0, 500, 0);
34 GPIO_GPPUD = 0; /∗ Reset pmask ∗/
35 timed_wait (0, 500, 0);
36 GPIO_GPPUDCLK0 = 0; /∗ Set the GPIO of interest ∗/
37 timed_wait (0, 500, 0);
38 }
39

Chapter 10 ■ GpIO

127

40 /∗∗∗
41 ∗ Command line arguments are of the form <gpio>={low,high or none},
42 ∗ for example : ./pull−up 7=high 8=low
43 ∗
44 ∗ Only the first character of the argument after '=' is checked.
45 ∗∗∗/
46 int
47 main(int argc, char ∗∗argv) {
48 int x, gpio, p;
49 char arg [64];
50
51 gpio_init();
52
53 for (x=1; x<argc; ++x) {
54 if (sscanf(argv[x],"%d=%s",&gpio,arg)!=2)
55 goto errxit;
56 if (∗arg == 'n')
57 p = −1;
58 else if (∗arg == ' l ' || ∗arg == 'h ')
59 p = ∗arg == 'h ' ? 1 : 0;
60 else goto errxit;
61 if (gpio < 0 || gpio > 31) {
62 fprintf(stderr,"%s : GPIO must be <= 31\n",
63 argv[x]) ;
64 return 1;
65 }
66 gpio_setpullup(gpio, p);
67 }
68 return 0;
69
70 errxit: fprintf(stderr,
 "Argument '%s' must be in the form\n"
71 " <gpio>=<arg> where arg is h, l or n.\ n",
72 argv [x]) ;
73 return 1;
74 }
75
76 /∗ End pullup.c ∗/

The default drive strengths after booting are listed next, along with the GPIO
addresses for the corresponding GPIO pads:

Address GPIO Pads Reset Drive Strength

0x2010002C GPIO 0 to 27 8 mA

0x20100030 GPIO 28 to 45 16 mA

0x20100034 GPIO 46 to 53 8 mA

Chapter 10 ■ GpIO

128

Table 10-3 summarizes the GPIO Pads Control register. Note that to be successful
setting values in this register, the field labeled PASSWRD must receive the value 0x5A.
This is a simple measure to avoid having the values trashed by an accidental write to
this location.

Table 10-3. GPIO Pads Control

Bits Field Description I/O Reset

31:24 PASSWRD 0x5A Must be 0x5A when writing W 0x00

23:05 Reserved 0x00 Write as zero, read as don’t
care

R/W

04:04 SLEW Slew rate

0 Slew rate limited R/W 1

1 Slew rate not limited

03:03 HYST Enable input hysterisis

0 Disabled R/W 1

1 Enabled

02:00 DRIVE Drive strength R/W 3

0 2 mA

1 4 mA

2 6 mA

3 8 mA (default except 28 to 45)

4 10 mA

5 12 mA

6 14 mA

7 16 mA (GPIO 28 to 45)

Testing Pull-up State
If you want to test the state of the pull-up resistors, the following procedure can be used:

1. Make sure no connection is attached so that the input can
float.

2. Configure the GPIO pin as an input.

3. Configure the GPIO as active high (that is, not active low).

Chapter 10 ■ GpIO

129

4. Read the input value.

a. A reading of 1 means that the input was pulled high.

b. A reading of 0 means that the input was pulled low.

Note that GPIO pins 2 and 3 are pulled up by external resistors, while others may be
connected to other circuits (GPIO 6). This will affect your readings for those pins. Note
also that pins configured for alternate functions may be outputs and will be driven.

When the input GPIO is configured with no pull-up, you might see random values,
but this is unreliable. An input voltage can float above or below a threshold and remain
there for a time.

The script presented in the “GPIO Input Test” section can be used to test a GPIO
input (^C to exit the script).

Logic Levels
GPIO pins use 3 V logic levels. The precise BCM2835 SoC logic-level specifications are as
follows:

Parameter Volts Description

V
IL

£ 0.8 Voltage, input low

V
IH

³ 1.3 Voltage, input high

As we work through several projects in this book, we’ll be making frequent
references to these parameters. You might want to commit these voltage levels to memory
or mark the page with a tab. The voltage levels between V

IL
 and V

IH
 are considered to be

ambiguous or undefined, and must be avoided.

Drive Strength
How much drive can a GPIO pin provide in terms of current drive? The design of the
SoC is such that each GPIO pin can safely sink or source up to 16 mA without causing
it harm.28 The drive strength is also software configurable from 2 mA up to 16 mA.29
The boot-up default is to use the drive strength of 8 mA.28 However, as our test program
pads.c will show, the GPIO outputs 28 to 45 were found configured for 16 mA (GPIO 28 to
31 are available on header P5).

Table 10-3 shows the SoC registers for reading and configuring the drive strength
of the GPIO pins. There are three registers, affecting GPIO pins in three groups of 28
(two groups affect user-accessible GPIOs). The slew rate, hysteresis, and drive strength
settings all apply at the group level. The drive strength is configured through a 3-bit value
from 2 mA to 16 mA, in increments of 2 mA. When writing to these registers, the field
PASSWRD must contain the hexadecimal value 0x5A, as a guard against accidental changes.

Chapter 10 ■ GpIO

130

To visualize how the Raspberry Pi controls drive strength, examine Figure 10-3. The
control lines Drive0 through Drive2 are enabled by bits in the DRIVE register. With these
three control lines disabled (zero), only the bottom 2 mA amplifier is active (this amplifier
is always enabled for outputs). This represents the weakest drive-strength setting.

Figure 10-3. Drive-strength control

With Drive0 set to a 1, the top amplifier is enabled, adding another 2 mA of drive,
for a total of 4 mA. Enabling Drive1 adds a further 4 mA of drive, totaling 8 mA. Enabling
Drive2 brings the total drive capability to 16 mA.

It should be mentioned that these drive capabilities are not current limiters in
any way. What they do is apply more amplifier drive in order to meet the logic-level
requirements (next section). If the GPIO output is wired up to a light load like a CMOS
chip or MOSFET transistor where little current is drawn, then the minimum drive of 2 mA
suffices. The single GPIO 2 mA buffer can effortlessly establish a logic high in its proper
voltage range as well as bring the voltage to a logic low when required.

When the GPIO output is loaded with a higher current load, the single 2 mA buffer
may not be enough to keep the logic level within spec. By applying more amplifier drive,
the output voltage levels are coerced into the correct operating range.

Chapter 10 ■ GpIO

131

Input Pins
A GPIO input pin should experience voltages only between 0 and the 3.3 V maximum.
Always exercise caution when interfacing to other circuits that use higher voltages like
TTL logic, where 5 V is used. The SoC is not tolerant of overvoltages and can be damaged.

While there exist protection diodes for protecting against negative input swings,
these are weak and intended only to bleed away negative static charges. Be sure to design
your input circuits so that the GPIO input never sees a negative input potential.

Output Pins
As an output GPIO pin, the user bears full responsibility for current limiting. There is no
current limiting provided. When the output pin is in the high state, as a voltage source, it
tries to supply 3.3 V (within the limits of the transistor).

If this output is shorted to ground (worst case), then as much current as can be
supplied will flow. This will lead to permanent damage.

The outputs also work to the specifications listed earlier, but the attached load can
skew the operating voltage range. An output pin can source or sink current. The amount of
current required and the amount of output drive configured alters the operating voltage
profile. As long as you keep within the current limits for the configured drive capability,
the voltage specifications should be met.

Figure 10-4 illustrates how a GPIO port sources current into its load (R
load

). Current
flows from the +3.3 V supply, through transistor M

1
, out the GPIO pin, and into R

load
 to

ground. Because of this, it takes a high (logic 1) to send current into the load. This makes
the circuit an “active high” configuration.

Figure 10-4. GPIO output high

Figure 10-5 shows how the GPIO output sinks current instead. Because R
load

 is
connected to the +3.3 V supply, current flows through R

load
, into the GPIO output pin,

and through the bottom transistor M
2
 to ground. To send current through the load, a low

(logic 0) is written to the output port. This is the active low configuration.

Chapter 10 ■ GpIO

132

Figure 10-6 shows the active high configuration’s R
load

 circuit element substituted
with an LED and limiting resistor R. Since there is no current limiting provided by the
GPIO port, resistor R must be provided to do this.

Figure 10-5. GPIO output low

Figure 10-6. GPIO driving an LED

Driving LEDs
When an LED is hooked up to the GPIO output port, R

load
 becomes the LED and the

limiting resistor (in series). The math is complicated slightly by the fact that the LED is
a diode. As a diode, it has a voltage drop, which should be subtracted from the supply
voltage. For red LEDs, the voltage drop is usually between 1.63 and 2.03 V.

30

Chapter 10 ■ GpIO

133

Knowing the current draw you want for the LED, the resistor R can be calculated
from the following:

R
V V

I
CC LED

LED

=
-

where
V

CC
 is the supply voltage (+3.3 V).

V
LED

 is the voltage drop for the LED.
I

LED
 is the required current draw for the LED.

For V
LED

 it is best to assume the worst case and assume the lower voltage drop of 1.63 V.
Assuming we need 8 mA to get reasonable brightness from the LED, we can calculate the
resistance of the limiting resistor:

R =
-

=

3 3 1 63

0 008
208 75

. .

.
. W

Since resistors come in standard values, we round up to a standard 10% component
of 220 Ω.

Note ■ rounding resistance down would lead to higher current. It is better to err on the
side of less current.

The LED and the 220 Ω limiting resistor can be wired according to Figure 10-4 (and
shown in Figure 10-6). When wired this way, a high is written to the GPIO output port to
make current flow through the LED.

The sense of the GPIO port can be altered by the sysfs file active_low (see
Table 10-5 later in this chapter). Putting the GPIO pin 7 into active low mode reverses the
logic sense, as follows:

echo 1 >/sys/class/gpio/gpio7/active_low

With this mode in effect, writing a 1 to GPIO pin 7 causes the pin to go “low” on the
output and causes the LED to go off:

echo 1 >/sys/class/gpio/gpio7/value

If the LED was wired according to Figure 10-5, it would turn on instead.

Chapter 10 ■ GpIO

134

Driving Logic Interfaces
For LEDs, the requirements of the interface are rather simple. The interface is a success
if the LED is lit when the output port is in one state, and the LED is dark in the other. The
precise voltage appearing at the GPIO output pin in these two states is of little concern, as
long as the maximum current limits are respected.

When interfacing to logic, the output voltage is critical. For the receiving logic, the
output level must be at least V

IH
 to reliably register a 1 bit (for the BCM2835, this is 1.3 V).

Likewise, the output should present less than V
IL

 to reliably register a 0 in the receiver (for
the BCM2835, this is 0.8V). Any voltage level between these limits is ambiguous and can
cause the receiver to randomly see a 0 or a 1.

There are a fairly large number of approaches to interfacing between different logic
families. A good source of information is provided by the document “Microchip 3V Tips ’n
Tricks.”31

Another document titled “Interfacing 3V and 5V Applications, AN240” describes the
issues and challenges of interfacing between systems.32 It describes, for example, how a
5 V system can end up raising the 3 V supply voltage if precautions are not taken.

Approaches to interfacing include direct connections (when safe), voltage-dividing
resistors, diode resistor networks, and the more-complex op-amp comparators.

When choosing an approach, remember to consider the necessary switching speed
of the interface required.

Driving Bi-color LEDs
This is a good point to inject a note about driving bi-color LEDs. Some of these are
configured so that one LED is forward biased while the other is reversed biased. This has
the advantage of needing only the usual two LED leads. To change colors, you simply
change the polarity of the power going into the pair.

To drive these and choose a color, you need a way to reverse the current. This is
normally done using the H-Bridge driver, which is explored in Chapter 7 of Experimenting
with Raspberry Pi (Apress, 2014). There a bipolar stepper motor is driven by the H-Bridge
driver. The LED, however, requires considerably less current, and so this is an easy
assignment. If you choose a bi-color LED requiring 10 mA or less, you can drive it directly
from a pair of GPIO outputs.

Figure 10-7 illustrates the bi-color LED driving arrangement. Compare this
configuration with the H-Bridge in Figure 7-1 in Chapter 7 of Experimenting with
Raspberry Pi (Apress, 2014). Do you see the similarity?

Chapter 10 ■ GpIO

135

The pair of GPIO outputs form an H-Bridge because each of the outputs themselves
are a pair of CMOS driving transistors—an upper and lower half. It is this pairing that
makes them capable of both sourcing and sinking a current. By using two GPIO outputs,
you form an H-Bridge driver.

To light the bi-color LED in one color, make one GPIO high (source), while the other
is made low (sink). Then the current will flow through the LED from the first GPIO output
into the second. To reverse the current and see the other color, make the first GPIO low
and the other high. Now the current flows from the second GPIO output into the first.

Testing Drive Strength
There’s nothing like finding out for yourself the configured parameters of your Raspberry
Pi. The program pads.c (next) dumps out the GPIO Pads Control registers so that you can
verify the actual parameters in effect.

Each GPIO pin defaults to setting 3 (for 8 mA).28 Running the pads.c program on my
Rev 2.0 Raspberry Pi showed that the GPIO group from 28 to 45 was configured for 16 mA.
GPIO pins 28 to 31 are available on header P5.

The following example session shows the output for my Raspberry Pi:

$ sudo ./pads
07E1002C : 0000001B 1 1 3
07E10030 : 0000001F 1 1 7
07E10034 : 0000001B 1 1 3

The last four fields on each output line are as follows:

1. The word value in hexadecimal

2. The configured slew rate setting

3. The configured hysteresis setting

4. The drive-level code

Figure 10-7. Driving a bi-colored LED

Chapter 10 ■ GpIO

136

What this suggests is that GPIO 28 through 31 could be used, if you have higher
current driving requirements.

If you have a requirement to change these settings from within a C program, the
program pads.c can be easily modified. Use the macro GETPAD32 (line 16) for inspiration.

1 /∗∗∗
2 ∗ pads . c : Examine GPIO Pads Control
3 ∗∗∗/
4 #include <stdio.h>
5 #include <stdlib.h>
6 #include <fcntl.h>
7 #include <sys/mman.h>
8 #include <unistd.h>
9
10 #define BCM2708_PERI_BASE 0x20000000
11 #define PADS_GPIO_BASE (BCM2708_PERI_BASE+0x100000)
12 #define PADS_GPIO_00_27 0x002C
13 #define PADS_GPIO_28_45 0x0030
14 #define PADS_GPIO_46_53 0x0034
15
16 #define GETPAD32(offset) \
 (∗(unsigned ∗) ((char ∗) (pads)+offset))
17
18 #define BLOCK_SIZE (4∗1024)
19
20 volatile unsigned ∗pads ;
21
22 void
23 initialize(void) {
24 int mem_fd = open("/dev/mem",O_RDWR|O_SYNC);
25 char ∗pads_map;
26
27 if (mem_fd <= 0) {
28 perror("Opening/dev/mem");
29 exit(1);
30 }
31
32 pads_map = (char ∗)mmap(
33 NULL, /∗ Any address ∗/
34 BLOCK_SIZE, /∗ Map length ∗/
35 PROT_READ|PROT_WRITE,
36 MAP_SHARED,
37 mem_fd, /∗ File to map ∗/
38 PADS_GPIO_BASE /∗ Offset to registers ∗/
39);
40
41 if ((long)pads_map == −1L) {
42 perror("mmap failed.");

Chapter 10 ■ GpIO

137

43 exit(1);
44 }
45
46 close(mem_fd);
47 pads = (volatile unsigned ∗)pads_map;
48 }
49
50 int
51 main(int argc,char ∗∗argv) {
52 int x;
53 union {
54 struct {
55 unsigned drive : 3;
56 unsigned hyst : 1;
57 unsigned slew : 1;
58 unsigned reserved : 13;
59 unsigned passwrd : 8;
60 } s;
61 unsigned w;
62 } word;
63
64 initialize();
65
66 for (x=PADS_GPIO_00_27; x<=PADS_GPIO_46_53; x += 4) {
67 word.w = GETPAD32(x) ;
68 printf("%08X : %08X %x %x %x\n" ,
69 x+0x7E10000, word.w,
70 word.s.slew, word.s. hyst, word.s.drive) ;
71 }
72
73 return 0;
74 }
75
76 /∗ End ∗/

GPIO Current Budget
Gert van Loo states that “the Raspberry-Pi 3V3 supply was designed with a maximum
current of ~3 mA per GPIO pin.”29 He correctly concludes that if “you load each pin with
16 mA, the total current is 272 mA.”

From this, we can calculate the designed current budget for GPIO pins:

1. Gert is referring to 17 GPIO pins (272

16
17

mA

mA
=)

2. The Pi is designed for 17 × 3 mA = 51mA

This is consistent with the 50 mA capacity figure we arrived at in Chapter 2. This is
the remaining current capacity available from pins P1-01, P1-17, and P5-02.

Chapter 10 ■ GpIO

138

Consequently, when budgeting your 3.3 V supply current, factor in the following:

GPIO: Current used for each GPIO output pin assigned (2 mA
to 16 mA)

+3.3 V: All current going to circuits powered from P1-01, P1-17,
and P5-02.

MAX232CSE: If you attached a RS-232 adapter, allow for about
15 mA.

To save on your power budget, configure unused GPIO pins as inputs.

Configuration
Each GPIO pin is affected by several configuration choices:

General-purpose input, output, or alternate function•	

Input event detection method•	

Input pull-up/pull-down resistors•	

Output drive level•	

Alternate Function Select
When a GPIO pin is configured, you must choose whether it is an input, an output, or an
alternate function (like the UART). The complete list of choices is shown in Table 10-4.
The exact nature of what alternate function x means depends on the pin being configured.

Table 10-4. Alternate Function Selection

Code Function Selected ALT

000 GPIO pin is an input.

001 GPIO pin is an output.

100 GPIO pin is alternate function 0. 0

101 GPIO pin is alternate function 1. 1

110 GPIO pin is alternate function 2. 2

111 GPIO pin is alternate function 3. 3

011 GPIO pin is alternate function 4. 4

010 GPIO pin is alternate function 5. 5

Chapter 10 ■ GpIO

139

The values shown in the table’s Code column are used in the configuration register
itself. The alternate function numbers are listed in the ALT column. Keeping these two
straight can be confusing when programming. Once the function has been selected, the
configuration is then fine-tuned according to its peripheral type.

Output Pins
When a pin is configured for output, the remaining elements of configuration consist of
the following:

Logic sense•	

Output state•	

The output state of the GPIO pins can either be set by the kernel as a 32-bit word
(affects 32 GPIOs at a time) or individually set or cleared. Having individual set/clear
operations allows the host to change individual bits without disturbing the state of others
(or having to know their state).

Input Pins
Input pins are more complex because of the additional hardware functionality offered.
This requires that the input GPIO pin be configured for the following:

Detect rising input signals (synchronous/asynchronous)•	

Detect falling input signals (synchronous/asynchronous)•	

Detect high-level signals•	

Detect low-level signals•	

Logic sense•	

Interrupt handling (handled by driver)•	

Choose no pull-up; use a pull-up or pull-down resistor•	

Once these choices have been made, it is possible to receive data related to input
signal changes, or simply query the pin’s current state.

Alternate Function
When an alternate function such as the UART is chosen, many aspects of the pin’s
configuration are predetermined. Despite this, each pin used by the peripheral should
be preconfigured for input or output according to its function. These details are normally
provided by the supporting driver.

Chapter 10 ■ GpIO

140

Sysfs GPIO Access
In this section, we’re going to access the GPIO pins through the /sys pseudo file system.
This is the GPIO driver interface. Because it provides file system objects, it is possible to
control GPIO pins from the command line (or shell).

The C/C++ programmer might be quick to dismiss this approach, because it might
seem too slow. However, for input pins, the driver provides the advantage of providing a
reasonable edge-level detection that is not possible when accessing the GPIO registers
directly. The driver is able to receive interrupts when a GPIO state changes. This information
can in turn be passed onto the application program using poll(2) or select(2).

Everything that you need for GPIO access is rooted in the top-level directory:

/sys/class/gpio

At this directory level, two main control pseudo files are maintained by the driver.
These are write-only:

export: Requests the kernel to export control of the requested
GPIO pin by writing its number to the file

unexport: Relinquishes control of the GPIO pin by writing its
number to the file

Note ■ even root gets the permission denied if you try to read these files.

Normally, the kernel manages the GPIO pins, especially if they are used for resources
that need them (like the UART). In order for an application to manipulate a GPIO pin,
it must first request that the kernel relinquish control of the requested pin. From a
userspace perspective, the operation is like opening a file. The script or program should
be prepared for failure in the event that a GPIO pin is busy.

COrreCt USe OF SUDO

It is tempting to perform some operations from a nonroot account, using sudo like this:

$ sudo echo 17 >/sys/class/gpio/export
-bash: /sys/class/gpio/export: Permission denied

this does not work because the I/O redirection is performed by the shell before the
sudo command begins. Change to interactive mode first and then the operation will
succeed:

$ sudo -i
echo 17 >/sys/class/gpio/export

Chapter 10 ■ GpIO

141

export
The export pseudo file allows you to request a GPIO pin from the kernel. For example,
if you want to manipulate GPIO pin 17, you request it from the kernel by writing its pin
number to the pseudo file:

$ sudo –i
echo 17 >/sys/class/gpio/export

After a successful run, list the directory /sys/class/gpio:

ls
export gpio17 gpiochip0 unexport
#

A new subdirectory (a symlink to a directory, actually) named gpio17 appears. This
tells you that the kernel has given up control of GPIO 17 and has provided you this file
system object to manipulate. At this point, you can consider the GPIO 17 as available.

unexport
Some applications may require a GPIO pin for only a short time. When the application is
finished with the pin, the application can release the pin back to the kernel. This is done
by writing to the unexport pseudo file:

$ sudo -i
echo 17 >/sys/class/gpio/unexport

After this command completes, the pseudo object gpio17 disappears from the /sys/
class/gpio directory. This confirms that the GPIO is now being managed by the driver
and makes it impossible for userspace programs to mess with it (except for direct register
access).

gpioX
Once you have a file system object like /sys/class/gpio/gpio17 to work with, you can
configure it and perform I/O. The main objects that you’ll see are outlined in Table 10-5.
The ones normally used by shell programs are simply as follows:

direction: To set the I/O direction

value: To read or write the I/O bit

active_low: To alter the sense of logic

Chapter 10 ■ GpIO

142

The values used for direction are worth expanding on:

Value Description

in GPIO becomes an input port.

out GPIO becomes an output port (with some prior state).

high GPIO becomes output, but in a 1 state (high).

low GPIO becomes output, but in a 0 state (low).

The high and low options look like convenience frills, but they’re not. Consider
configuring an output and setting it to 1:

echo out >/sys/class/gpio/gpio7/direction
echo 1 >/sys/class/gpio/gpio7/value

Some time will pass before the execution of the second command takes place to
establish the correct output level. If the GPIO output state was previously left in a zero
state, the GPIO 7 pin will reflect a 0 (low) until the second command completes. For
electronic devices operating in nanosecond time frames, this can be a problem.

Table 10-5. /sys/class/gpio/gpioX Objects

Object Type R/W Values Description

direction File R/W in Input pin

out Output pin

high Output & high

low Output & low

value File R/W 0 or 1 Read or write

edge File R/W None No edge

Rising Rising edge

Falling Falling edge

Both Rising or falling

active_low File R/W 0 Normal sense

1 Active low

uevent File

subsystem Symlink Symlink to self

power Directory R

Chapter 10 ■ GpIO

143

To provide glitch-free configuration, the following can be done instead:

echo high >/sys/class/gpio/gpio7/direction

This way, the driver takes the necessary steps to establish the correct output level
prior to making the pin an output.

The settings of the file named edge affect how a C program (for example) would
process poll(2) on the file named value (reading). A poll(2) system call could block the
execution of the program until the required event occurred (like a rising edge).

Active Low
Sometimes it is desirable to have the logic inverted for the GPIO pin being used. For
example, when driving an LED in the circuit configuration of Figure 10-5, a logic low is
required to light the LED.

Value Description

0 Noninverted logic

1 Inverted logic

Inverting the logic allows you to light the LED with a logic 1:

echo 1 >/sys/class/gpio/gpio7/active_low
echo 1 >/sys/class/gpio/gpio7/value

Conversely, if you don’t want inverted logic, you should be certain to establish that
by writing a 0:

echo 0 >/sys/class/gpio/gpio7/active_low

Chip Level
You will also notice the presence of a subdirectory named gpiochipN in /sys/class/
gpio, where N is a numeric digit. The following main pseudo files exist within that
directory:

base: The value read should be the same value N, which is the
first GPIO managed by this chip.

label: The label (for example, bcm2708_gpio) of the chip,
which is not necessarily unique. Used for diagnostic purposes.

ngpio: The value read indicates how many GPIOs this chip
manages, starting with the value read from base.

Chapter 10 ■ GpIO

144

GPIO Tester
If you decided to build yourself a prototype board with the Raspberry Pi mounted
on it, you may find this simple shell script useful for checking the wiring of the GPIO
breakout clips. Or perhaps you just want to verify that the connection brought out to
the breadboard is the correct one. Simply supply the GPIO pin number that you want to
blink, on the command line:

$ cat ./gp
#!/bin/bash

GPIO="$1"
SYS=/sys/class/gpio
DEV=/sys/class/gpio/gpio$GPIO

if [! −d $DEV] ; then
 # Make pin visible
 echo $GPIO >$SYS/export
fi

Set pin to output
echo out >$DEV/direction

function put() {
 # Set value of pin (1 or 0)
 echo $1 >$DEV/value
}

while true ; do
 put 1
 echo "GPIO $GPIO: on"
 sleep 1
 put 0
 echo "GPIO $GPIO: off $(date)"
 sleep 1
done

End

To exercise GPIO 25 (GEN6), use this command (project file scripts/gp):

./gp 25

When testing with an LED and alligator clip lead, ground yourself to the ground pin
first (or better still, a good ground like a water tap). Static electricity can be especially bad
in the winter months. It not only can cause your Pi to reset but also can inflict internal
damage. After discharging yourself to the ground pin, apply the lead and allow time
enough for 1-second-on and 1-second-off events.

Chapter 10 ■ GpIO

145

Note ■ Cats are especially bad for static electricity.

GPIO Input Test
To test out the GPIO input capability, a simple script is presented next (and is available
in the scripts subdirectory as a file named input). By default, it assumes 0 for the active
low setting, meaning that normal logic applies to the input values. If, on the other hand,
a 1 is used, inverted logic will be applied. Using the script named input, apply one of the
following commands to start it (^C to end it):

./input 0 # Normal "active high" logic
. . .
./input 1 # Use active low logic

The script, of course, can be modified, but as listed, it reads an input on GPIO 25
(GEN6) and presents what it has read to GPIO 24 (GEN5). It additionally reports what has
been read to standard output. If the output (GPIO 24) is wired to an LED, the input status
will be visible in the LED (use Figure 10-6 as a guide for wiring).

The script has its limitations, one of which is that the sleep(1) command is used.
This causes it to have a somewhat sluggish response. If you don’t like that, you can
comment out the else and sleep commands. As a consequence, it will hog the CPU,
however, but be more responsive.

#!/bin/bash

ALO="${1:−0}" # 1=active low, else 0
INP=25 # Read from GPIO 25 (GEN6)
OUT=24 # Write t o GPIO 24 (GEN5)

set −eu
trap "close_all" 0

function close_all() {
 close $INP
 close $OUT
}
function open() { # pin direction
 dev=$SYS/gpio$1
 if [! −d $dev] ; then
 echo $1 >$SYS/export
 fi
 echo $2 >$dev/direction
 echo none >$dev/edge
 echo $ALO >$dev/active_low
}

Chapter 10 ■ GpIO

146

function close() { # pin
 echo $1 >$SYS/unexport
}
function put() { # pin value
 echo $2 >$SYS/gpio$1/value
}
function get() { # pin
 read BIT <$SYS/gpio$1/value
 echo $BIT
}
count=0
SYS=/sys/class/gpio

open $INP in
open $OUT out
put $OUT 1
LBIT=2

while true ; do
 RBIT=$(get $INP)
 if [$RBIT −ne $LBIT] ; then
 put $OUT $RBIT
 printf "%04d Status : %d\n" $count $RBIT
 LBIT=$RBIT
 let count=count+1
 else
 sleep 1
 fi
done

End

The following is an example session:

./input
0000 Status : 0
0001 Status : 1
0002 Status : 0
0003 Status : 1
^C
#

When GPIO 25 is grounded, 0 should be read, as reported in line 0000 of the
example. If you then apply a high (for example, from the +3.3 V supply), a 1 should be
reported.

Chapter 10 ■ GpIO

147

Floating Potentials
The beginning student may be puzzled about “glitches” seen by some GPIO inputs (28 or
29). When a GPIO input without a pull-up resistor is unattached, the line can “float,” or
change over time, due to static electrical buildup. Unless a pull-up or pull-down resistor
is attached (or configured), the pin can assume intermediate voltages. A voltage in the
range of V

IL
 = 0.8 V to V

IH
 = 1.3 V is ambiguous to the Pi. Input voltages in this range may

read randomly as 1s or 0s.

Caution ■ If you are using a loose wire or alligator clip to apply high or low signals
to an input GpIO pin, be very careful to avoid static electricity, which can cause damage.
Use a ground strap or hold onto the pi’s ground to bleed any static away, while changing
connections. Static electricity may also cause your raspberry pi to reset. a real ground,
like a water tap, is best for bleeding off static.

When using a button or switch, for example, use a pull-up resistor to +3.3 V (or
configure the SoC to use one). In this manner, high is immediately seen by the input
when the switch or button is temporarily unconnected.

Note ■ a switch is temporarily disconnected while changing its poles.

Reading Events
One of the shortcomings of the input script is that it must poll the input pin’s value
continuously, to see if the value has changed. In a multiprocessing environment like
Linux, it is rude to burn the CPU like this (hence the compromise with the sleep
command). A better design would have the program wait for a change on the input pin,
allowing other processes to use the CPU while it waits.

The GPIO driver within the kernel is, in fact, able to do that, though not usable by
shell commands. The C program evinput.c is an example program that takes advantage
of this capability and is presented next. It uses the poll(2) system call to accomplish this.
The basic procedure used is this:

1. The GPIO pin X is configured for input.

2. The value of /sys/class/gpio/gpioX/edge has been
configured for the edge(s) to be reported (see Table 10-5).

3. When querying the input pin, the open file descriptor for /
sys/class/gpio/gpioX/value is provided to the poll(2) call
(line 111).

Chapter 10 ■ GpIO

148

4. The time-out is specified as –1 in argument 3, so poll(2) will
wait forever, if necessary.

5. When there is new data for the GPIO input, poll(2) returns
and rc will be greater than zero, breaking out of the loop.

6. The program must rewind to the beginning of the pseudo file
with lseek(2) (line 118).

7. Finally, the text is read from the value file in line 119.

Step 6 can be omitted if you only need notification. However, to read the correct data,
a rewind to the start of the pseudo file is required.

The program shown also checks whether the signal handler was called. If it sees that
variable is_signaled has been set, the routine gpio_poll() returns –1 to indicate to the
caller that a program exit is needed (lines 112 to 113).

Test Run
A test was performed using a GPIO output pin (27) wired to the input pin (17). In one
session, GPIO output pin 27 was changed from 0 to 1 and back. The events were captured
in the other session, running ./evinput.

Note ■ If the reader compiles the programs using the included makefile for each
program, the programs are automatically built to use setuid root. Doing this allows them
to run with root privileges, without needing to use the sudo command.

The following is a session output obtained from the ./evinput run. The output
pauses after reporting the first line (line 4). Following that, new lines appear whenever
the input pins change state.

1 $./evinput 17
2 Monitoring for GPIO input changes:
3
4 GPIO 17 changed: 0
5 GPIO 17 changed: 1
6 GPIO 17 changed: 0
7 GPIO 17 changed: 1
8 ^C
9 $

Chapter 10 ■ GpIO

149

Input GPIO pin 17 was changed from this separate session, using output GPIO 27
(recall that it is wired to GPIO 17 for this test):

1 # cd /sys/class/gpio
2 # echo 27 >export
3 # ls
4 export gpio27 gpiochip0 unexport
5 # cd gpio27
6 # ls
7 active_low direction edge power subsystem uevent value
8 # echo out >direction
9 # echo 0 >value
10 # # s t a r t e d . / evinput 17 he r e . . .
11 # echo 1 >value
12 # echo 0 >value
13 # echo 1 >value

From the sessions shown, GPIO 17 was set low in the preceding line 9. After that,
the ./evinput program was started and the first line is reported (line 4 in the evinput
session). As the input pin changed state in lines 11+ (in the preceding code), the input
events were being reported in lines 5+ (evinput session).

Checking the system with the top command, you’ll see that ./evinput does not
consume CPU. Yet the program is indeed responsive to the input change events. This
leaves the CPU for all of your other processes that you may need to run.

1 / ∗∗
2 ∗ evinput.c : Event driven GPIO input
3 ∗
4 ∗ ./evinput gpio#
5 ∗∗∗/
6
7 #include <stdio.h>
8 #include <stdlib.h>
9 #include <fcntl.h>
10 #include <unistd.h>
11 #include <string.h>
12 #include <errno.h>
13 #include <signal.h>
14 #include <assert.h>
15 #include <sys/poll.h>
16
17 static int gpio_inpin = –1; /∗ GPIO input pin ∗/
18 static int is_signaled = 0; /∗ Exit program if signaled ∗/
19
20 typedef enum {
21 gp_export=0, /∗ /sys/class/gpio/export ∗/
22 gp_unexport, /∗ /sys/class/gpio/unexport ∗/
23 gp_direction, /∗ /sys/class/gpio%d/direction ∗/

Chapter 10 ■ GpIO

150

24 gp_edge, /∗ /sys/class/gpio%d/edge ∗/
25 gp_value /∗ /sys/class/gpio%d/value ∗/
26 } gpio_path_t;
27
28 /∗
29 ∗ Internal : Create a pathname for type in buf.
30 ∗ /
31 static const char ∗
32 gpio_setpath(int pin, gpio_path_t type, char ∗buf,
 unsigned bufsiz) {
33 static const char ∗ paths[] = {
34 "export", "unexport", "gpio%d/direction",
35 "gpio%d/edge", "gpio%d/value"};
36 int slen;
37
38 strncpy (buf, "/sys/class/gpio/", bufsiz);
39 bufsiz –= (slen = strlen(buf));
40 snprintf(buf+slen, bufsiz, paths[type], pin);
41 return buf;
42 }
43
44 /∗
45 ∗ Open /sys/class/gpio%d/value for edge detection :
46 ∗/
47 static int
48 gpio_open_edge(int pin, const char ∗ edge) {
49 char buf [128];
50 FILE ∗f;
51 int fd;
52
53 /∗ Export pin : /sys/class/gpio/export ∗/
54 gpio_setpath(pin, gp_export, buf, size of buf);
55 f = fopen(buf, "w");
56 assert(f);
57 fprintf(f,"%d\n", pin);
58 fclose(f);
59
60 /∗ Direction : /sys/class/gpio%d/direction ∗/
61 gpio_setpath(pin, gp_direction, buf, size of buf);
62 f = fopen(buf, "w");
63 assert(f);
64 fprintf(f,"in\n");
65 fclose(f);
66
67 /∗ Edge : /sys/class/gpio%d/edge ∗/
68 gpio_setpath(pin, gp_edge, buf, size of buf);
69 f = fopen (buf, "w");

Chapter 10 ■ GpIO

151

70 assert(f);
71 fprintf(f,"% s\n", edge);
72 fclose(f);
73
74 /∗ Value : /sys/class/gpio%d/value ∗/
75 gpio_setpath(pin, gp_value, buf, size of buf);
76 fd = open(buf,O_RDWR);
77 return fd;
78 }
79
80 /∗
81 ∗ Close (unexport) GPIO pin :
82 ∗ /
83 static void
84 gpio_close(int pin) {
85 char buf[128];
86 FILE ∗f;
87
88 / ∗ Unexport : /sys/class/gpio/unexport ∗/
89 gpio_setpath(pin, gp_unexport, buf, size of buf);
90 f = fopen(buf, "w");
91 assert(f);
92 fprintf(f,"%d\n", pin);
93 fclose(f);
94 }
95
96 /∗
97 ∗ This routine will block until the open GPIO pin has changed
98 ∗ value. This pin should be connected to the MCP23017 /INTA
99 ∗ pin.
100 ∗/
101 static int
102 gpio_poll(int fd) {
103 struct pollfd polls;
104 char buf [32];
105 int rc, n;
106
107 polls.fd = fd; /∗ /sys/class/gpio17/value ∗/
108 polls.events = POLLPRI; /∗ Exceptions ∗/
109
110 do {
111 rc = poll(&polls, 1, –1); /∗ Block ∗/
112 if (is_signaled)
113 return –1; /∗ Exit if ^C received ∗/
114 } while (rc < 0 && errno == EINTR);
115
116 assert (rc > 0);
117

Chapter 10 ■ GpIO

152

118 lseek(fd, 0, SEEK_SET);
119 n = read(fd, buf, size of buf); /∗ Read value ∗/
120 assert(n > 0);
121 buf[n] = 0;
122
123 rc = sscanf(buf,"% d",&n);
124 assert(rc==1);
125 return n; /∗ Return value ∗/
126 }
127
128 /∗
129 ∗ Signal handler to quit the program :
130 ∗ /
131 static void
132 sigint_handler(int signo) {
133 is_signaled = 1; /∗ Signal to exit program ∗/
134 }
135
136 /∗
137 ∗ Main program :
138 ∗/
139 int
140 main(int argc, char ∗∗ argv) {
141 int fd, v;
142
143 /∗
144 ∗ Get GPIO input pin to use :
145 ∗/
146 if (argc != 2) {
147 usage: fprintf(stderr,"Usage: %s <gpio_in_pin>\n",
 argv[0]);
148 return 1;
149 }
150 if (sscanf(argv[1], "%d",&gpio_inpin) != 1)
151 goto usage;
152 if (gpio_inpin < 0 || gpio_inpin >= 32)
153 goto usage;
154
155 signal(SIGINT,sigint_handler); /∗ Trap on SIGINT ∗/
156 fd = gpio_open_edge(gpio_inpin,"both");
157
158 puts("Monitoring for GPIO input changes: \n");
159
160 while ((v=gpio_poll(fd)) >= 0) {
 /∗ Block until input changes ∗/
161 printf("GPIO %d changed: %d\n",gpio_inpin,
 v);
162 } while (!is_signaled); /∗ Quit if ^C’ d ∗/
163

Chapter 10 ■ GpIO

153

164 putchar(’\n’);
165 close(fd); /∗ Close gpio%d/value ∗/
166 gpio_close(gpio_inpin); /∗ Unexport gpio ∗/
167 return 0;
168 }
169
170 /∗ End event.c ∗/

Direct Register Access
It is possible to access the GPIO registers directly. The module gpio_io.c shows the
code that can be used for this. It requires the program to invoke gpio_init() upon
startup, which then makes the registers available. The code as presented is intended to
be #included into the module using it. (Normally, it would be compiled as a separate
module.) The API made available is outlined in the following subsections.

These routines are used in several examples and projects within this book, including
the following:

pullup: Change the pull-up register setting.

bipolar: Drive a bipolar stepper motor (Chapter 7 of
Experimenting with Raspberry Pi [Apress, 2014]).

rtscts: Change the ALT function (Chapter 9).

valt: View ALT function settings (subdir valt in source code).

unipolar: Drive a unipolar stepper motor (Chapter 6 of
Experimenting with Raspberry Pi [Apress, 2014]).

dht11: Humidity and temperature sensor (Chapter 1 of
Experimenting with Raspberry Pi [Apress, 2014]).

pwm: Pulse width modulation (Chapter 9 of Experimenting with
Raspberry Pi [Apress, 2014]).

gpio_init()
This function call opens access to the GPIO registers. This will require root privileges, which
is why many programs in this book were compiled with setuid root. The operation of this
routine is to gain access to the physical memory space, so that the GPIO registers can be
accessed. This procedure is covered in the “Memory Mapping” section of Chapter 4.

void gpio_init(void);

Chapter 10 ■ GpIO

154

gpio_config()
This function call allows the caller to configure a pin as input or output:

typedef enum {
 Input = 0, /∗ GPIO is an Input ∗/
 Output /∗ GPIO is an Output ∗/
} direction_t;

void gpio_config(int gpio,direction_t output);

The arguments are as follows:

gpio: The GPIO pin to be configured

output: The value Input or Output

gpio_write()
This function permits the caller to set the output GPIO pin to a 1 or a 0.

void gpio_write(int gpio,int bit);

The arguments are as follows:

gpio: The GPIO pin to write to

bit: The value of the output bit (1 or 0)

Only the least significant bit of argument bit is used.

gpio_read()
This function reads the requested GPIO pin and returns the bit (0 or 1).

int gpio_read(int gpio);

The single argument gpio is used to specify the GPIO pin to be read.

Chapter 10 ■ GpIO

155

gpio_io.c
The following pages show the program listing for gpio_io.c:

1 /∗∗∗
2 ∗ gpio_io.c : GPIO Access Code
3 ∗∗∗/
4
5 #define BCM2708_PERI_BASE 0x20000000
6 #define GPIO_BASE (BCM2708_PERI_BASE + 0x200000)
7 #define BLOCK_SIZE (4∗1024)
8
9 /∗ GPIO setup macros. Always use INP_GPIO (x) before using OUT_GPIO(x)
10 or SET_GPIO_ALT(x, y) ∗/
11 #define INP_GPIO(g) \
 ∗(ugpio + ((g)/10)) &= ~(7 <<(((g) % 10)∗3))
12 #define OUT_GPIO(g)
 ∗(ugpio + ((g)/10)) |= (1 <<(((g) % 10)∗3))
13 #define SET_GPIO_ALT(g,a) \
14 ∗(ugpio + (((g)/10))) |= (((a) <=3?(a) + 4 : \
 (a)==4?3:2)<<(((g)%10)∗3))
15
16 #define GPIO_SET ∗(ugpio+7) /∗ sets bits ∗/
17 #define GPIO_CLR ∗(ugpio+10) /∗ clears bits ∗/
18 #define GPIO_GET ∗(ugpio+13) /∗ gets all GPIO input levels ∗/
19
20 typedef enum {
21 Input = 0, /∗ GPIO is an Input∗/
22 Output /∗ GPIO is an Output∗/
23 } direction_t;
24
25 static volatile unsigned ∗ugpio;
26
27 /∗∗∗
28 ∗ Perform initialization to access GPIO registers:
29 ∗ Sets up pointer ugpio.
30 ∗∗∗/
31 static void
32 gpio_init() {
33 int fd;
34 char ∗map;
35 /∗ Needs root access ∗/
36 fd = open("/dev/mem",O_RDWR|O_SYNC);
37 if (fd < 0) {
38 perror("Opening/dev/mem");
39 exit(1);
40 }
41

Chapter 10 ■ GpIO

156

42 map = (char ∗) mmap(
43 NULL, /∗ Any address ∗/
44 BLOCK_SIZE, /∗ # of bytes ∗/
45 PROT_READ| PROT_WRITE,
46 MAP_SHARED, /∗ Shared ∗/
47 fd, /∗ /dev/mem ∗/
48 GPIO_BASE /∗ Offset to GPIO ∗/
49);
50
51 if ((long)map == 1L) {
52 perror("mmap(/dev/mem)");
53 exit(1);
54 }
55
56 close(fd);
57 ugpio = (volatile unsigned ∗)map;
58 }
59
60 /∗∗∗
61 ∗ Configure GPIO as Input or Output
62 ∗∗∗/
63 static inline void
64 gpio_config (int gpio, direction_t output) {
65 INP_GPIO (gpio);
66 if (output) {
67 OUT_GPIO(gpio);
68 }
69 }
70
71 /∗∗∗
72 ∗ Write a bit to the GPIO pin
73 ∗∗∗/
74 static inline void
75 gpio_write(int gpio, int bit) {
76 unsigned sel = 1 << gpio;
77
78 if (bit) {
79 GPIO_SET = sel;
80 } else {
81 GPIO_CLR = sel;
82 }
83 }
84
85 /∗∗∗
86 ∗ Read a bit from a GPIO pin
87 ∗∗∗/
88 static inline int

Chapter 10 ■ GpIO

157

89 gpio_read(int gpio) {
90 unsigned sel = 1 << gpio;
91
92 return (GPIO_GET) & sel ? 1 : 0 ;
93 }
94
95 /∗ End gpio_io.c ∗/

GPIO Transistor Driver
The GPIO pins on the Pi are often going to be pressed into driving something in the
outside world. GPIO pins 28 to 31 can drive up to 16 mA, maximum. The remaining
GPIO pins are configured to drive up to 8 mA. These are fairly weak interfaces to the
outside world.

Sometimes all that is needed is a simple one-transistor buffer. The 2N2222A
transistor is cheap and drives a fair amount of current. Figure 10-8 shows a simple driver
circuit attached to a GPIO output pin.

Figure 10-8. 2N2222A driver

The GPIO output driver sees only a diode-like path to ground through the base of
transistor Q

1
. Resistor R

1
 is chosen to limit that current.

The resistor shown as Rc in the figure represents the load, like a high-current LED in
series with a current-limiting resistor. Alternatively, it may be a resistor chosen so that the
Vout represents a stiffer output voltage.

In the diagram, the resistor R
c
 is connected to the +5 V power supply. This is safe

because current cannot flow from the collector into the base of Q
1
. This prevents 5 V

from flowing into the GPIO pin (that junction is reversed biased). Thus Q
1
 allows you to

Chapter 10 ■ GpIO

158

convert the 3.3 V GPIO output into a 5 V TTL signal, for example. The 2N2222A transistor
has an absolute maximum V

CE
 of 30 V. This allows you to drive even higher voltage loads,

provided that you stay within the transistor’s current and power ratings.

Driver Design
The transistor driver circuit is limited by the power-handling capability of Q

1
 and the

maximum collector current. Looking at the datasheet, the maximum power listed for Q
1

is 0.5 W at 25°C. When the transistor is turned on (saturated), the voltage across Q
1
 (V

CE
)

is between 0.3 V and 1 V (see V
CE(sat)

 in the datasheet). The remainder of the voltage is
developed across the load. If we assume the worst case of 1 V for V

CE
 (leaving 4 V across

the load), we can compute the maximum current for I
C
:

I
P

V

A

C
Q

CE

=

=

=

1

1

0 3
3 3

.
.

Clearly, this calculated current exceeds the listed absolute maximum current I
C
 of

600 mA. So we use the maximum current for I
C
 = 600 mA instead. For safety, we use the

minimum of these maximum ratings. While this transistor is clearly capable of driving up
to 600 mA of current, let’s design our driver for a modest current flow of 100 mA.

The next thing to check is the H
FE

 of the part. The parameter value required is the
lowest H

FE
 value for the amount of collector current flowing (H

FE
 drops with increasing

I
C

current). A STMicroelectronics datasheet shows its 2N2222A part as having an H
FE

 = 40,
I

C
 = 500 mA, with V

CE
 = 10 V . They also have a more favorable H

FE
 value of 100, for 150 mA,

but it is best to err on the side of safety. We can probably assume a safe compromise of
H

FE
 = 50.

The H
FE

 parameter is important because it affects how much current is required to
drive Q

1
’s base. The input base current is calculated as follows:

I
I

H
mA

mA

B
C

FE

=

=

=

100

50
2

This value tells us that the GPIO pin will need to supply up to 2 mA of drive into Q
1
’s

base. With 2 mA of drive, Q
1
 will be able to conduct up to 100 mA in the collector circuit.

A current of 2 mA is easily accommodated by any GPIO pin. Note that if you were to
design closer to the design limits of this transistor (500 mA in this example), you should
probably allow an additional 10% of base current “overdrive” to make certain that the
transistor goes into saturation.

Chapter 10 ■ GpIO

159

Current flow into the base of Q
1
 creates a voltage drop of V

BE
 = 0.7 V, from the input

base lead to ground. So to calculate the resistor value R
1
 we take the V

R1
 divided by the

current. The highest voltage coming from GPIO is going to be slightly less than the 3.3 V
power supply rail. It is safe to assume that GPIO

HIGH
 = 3 V. The voltage appearing across R

1

is thus GPIO
HIGH

–V
BE

.

R
GPIO V

I
HIGH BE

B
1

3 0 7

0 002
1 150

=
-

=
-

=

.

.
, W

The nearest 10% standard resistor value is R
1
 = 1.2 kΩ. Using this resistor value as a

check, let’s compute backward what our actual drive capability is from Q
1
. First we need

to recompute I
B
 now that we know R

1
 :

I
GPIO V

R

mA

B
HIGH BE=

-

=
-

=

1

3 0 7

1200
1 9

.

.

This tells us that the GPIO output pin will not have to source more than 1.9 mA of
current, using R

1
 = 1.2 kΩ. Now let’s calculate the maximum drive we can reliably expect

in the collector circuit of Q
1
:

I I H

mA

C B FE=
=
=

´
0 0019 50
95

. .

Note ■ this discussion glibly avoids the effects of components being within ±10%
tolerance.

This computes that the designed 2N2222A driver circuit is capable of driving up
to 95 mA.

Chapter 10 ■ GpIO

160

To obtain even more performance out of that driver (if you need it), you could
choose a resistor closer to the actual value desired (1150 Ω). It turns out that a 1% resistor
can be had at exactly 1.15 kΩ:

I I H

mA

C B FE=
=
=

´
0 002 50
100

. .

Be careful that your design does not stress the transistor beyond its maximum ratings
(power and current). You might be willing to risk the cheap transistor, but keep in mind
that the poor little thing might be holding back a higher voltage (like a river dam). If the
transistor is destroyed, the high voltage may come crashing into the base circuit and
cause damage to the Pi’s GPIO pin. So be nice to Q1!

Substitution
You don’t have to use my choice of the 2N2222A transistor for driving a load. Substitute
what you have or what you plan to order. Today’s DMMs can measure the transistor H

FE
,

so that makes planning easier when using junk box parts.
Another critical factor in selecting a part is the power capability of the transistor.

You should probably know exactly what that limit is, unless you are driving an extremely
light load. Finally, it is important to know what the maximum voltage ratings are for the
selected transistor, if you plan to drive voltages higher than 3 V. You need to be able to
count on it holding back those higher voltages in the collector circuit to prevent damage
to the Pi.

Inductive Loads
Inductive loads like relays and motors present a special problem. They generate a high
reverse voltage when current is switched off or interrupted. When the relay coil is turned
off, the magnetic field collapses around the coil of wire. This induces a high voltage,
which can damage the Pi (and can also provide a mild electric shock).

Electric motors exhibit a similar problem. As the DC current sparks and stutters
at the commutator inside the motor, high reverse voltage spikes are sent back into the
driving circuit. This is due to the magnetic field collapsing around the motor windings.

Consequently, inductive loads need a reverse-biased diode across the load to short
out any induced currents. The diode conducts only when the back electromotive force
(EMF) is generated by the inductive load.

Figure 10-9 shows diode D
1
 reverse biased across the relay coil winding L

1
 (or motor).

The diode bleeds away any reverse current that might be generated. Use a diode with
sufficient current-carrying capability (matching at least the current in Q

1
).

Chapter 10 ■ GpIO

161

Since there is no current-limiting resistor used in series with L
1
 , whether motor

or relay, make sure that no more current than I
Cmax

 will flow. For relays, you need a coil
resistance greater than or equal to 50 Ω, when driven from approximately 5 V. Otherwise,
you risk burning out driver Q

1
 (assuming the 2N2222A with its power limit of 0.5 watts

at 5 V). You can drive lower resistance coils, if you designed your driver to handle the
additional current. For example, a 500 mA driver can handle coil resistances as low as 10
ohms (at 5 V).

The 2N2222A transistor is probably suitable for only the smallest of electric motors.
Depending on how it is used, a motor can stall and thus greatly increase its current
demands. Motors also have high startup currents. If the motor is started and stopped
frequently, the driving transistor may be overworked.

Driver Summary
This section on the transistor driver should not be thought of as your only choice in
driver solutions. It was presented because it is simple and cheap and can fill the need for
many small loads, like high-current LEDs or panel lightbulbs. Simple and cheap may be
essential for robot building when many drivers are required.

While students may use the Gertboard for labs, we still need to provide a substitute
when the Raspberry Pi is integrated into something that was built (like a robot). It might
be wise to stock up on a few good transistor types for this purpose.

Figure 10-9. Driver for inductive load

Chapter 10 ■ GpIO

162

Utility gpio
For this book, I have avoided using instances of “magic package X.” However, the
wiringPi project is popular enough that no chapter on GPIO would be complete without
mentioning it. The wiringPi project provides a handy utility for displaying and changing
GPIO functionality. The package can be downloaded from here:

https://projects.drogon.net/raspberry-pi/wiringpi/download-and-install

This page lists instructions for obtaining, compiling, and installing the package.
Once installed, the gpio command is available:

$ gpio −h
gpio : Usage : gpio −v
 gpio −h
 gpio [−g] <read/write /wb/pwm/ clock/mode> ...
 gpio [−p] <read/write /wb> ...
 gpio readall
 gpio unexportall/exports ...
 gpio export/edge/unexport ...
 gpio drive <group> <value>
 gpio pwm−bal/pwm−ms
 gpio pwmr <range>
 gpio pwmc <divider>
 gpio load spi / i2c
 gpio gbr <channel>
 gpio gbw <channel> <value>

There are many options and functions within this utility. I’ll just demonstrate some
quick examples of the most useful ones. Once installed, the full details of the utility can be
found by this command:

$ man 1 gpio

https://projects.drogon.net/raspberry-pi/wiringpi/download-and-install

Chapter 10 ■ GpIO

163

Displaying GPIO Settings
The following command can be used to display your GPIO settings:

$ gpio readall
+----------+--------+---------+-------+-------+
| wiringPi | GPIO | Name | Mode | Value|
+----------+--------+---------+-------+-------+
0	17	GPIO 0	IN	High
1	18	GPIO 1	IN	Low
2	27	GPIO 2	OUT	Low
3	22	GPIO 3	IN	Low
4	23	GPIO 4	IN	Low
5	24	GPIO 5	IN	Low
6	25	GPIO 6	IN	Low
7	4	GPIO 7	IN	Low
8	2	SDA	ALT0	High
9	3	SCL	ALT0	High
10	8	CE0	IN	Low
11	7	CE1	IN	Low
12	10	MOSI	IN	Low
13	9	MISO	IN	Low
14	11	SCLK	IN	Low
15	14	TxD	ALT0	High
16	15	RxD	ALT0	High
17	28	GPIO8	IN	Low
18	29	GPIO9	IN	Low
19	30	GPIO10	IN	Low
20	31	GPIO11	IN	Low
+----------+--------+---------+-------+-------+

Reading GPIO
As a convenience, the gpio command allows you to read values from the command line:

$ gpio export 27 in
$ gpio −g read 27
0
$ gpio unexportall

Use the -g option to specify that the pin number is a GPIO pin number. (I found the
need for the -g option irksome.)

Chapter 10 ■ GpIO

164

Writing GPIO
Like the read function, the gpio command can write values:
$ gpio export 27 out
$ gpio −g write 27 1
$ gpio −g read 27
1
$ gpio −g write 27 0
$ gpio −g read 27
0
$ gpio unexportall

Use the -g option to specify GPIO pin numbers for the read/write commands.

Modify Drive Levels
The gpio command also enables you to alter the drive levels of the three available pads.
The following changes pad 1 to drive level 6 (from 7):

$ gpio drive 1 6

Use the pads program shown earlier in this chapter to verify the current settings:

$ gpio drive 1 6
$./pads
07E1002C : 0000001B 1 1 3
07E10030 : 0000001E 1 1 6
07E10034 : 0000001B 1 1 3

This kind of change should not be made lightly. If you don’t have a sound reason to
change these drive levels, it is recommended that you don’t.

165

Chapter 11

1-Wire Driver

The 1-Wire protocol was developed by Dallas Semiconductor Corp. initially for the
iButton.37 This communication protocol was attractive enough to be applied to other
devices and soon adopted by other manufacturers. This chapter provides an overview of
the 1-Wire protocol and how it is supported in the Raspberry Pi.

1-Wire Line and Power
The 1-Wire protocol actually uses two wires:

•	 Data: The single wire used for data communication

•	 Ground: The ground or “return” wire

The 1-Wire protocol was designed for communication with low–data content devices
like temperature sensors. It provides for low-cost remote sensing by supplying power
over the same wire used for data communications. Each sensor can accept power from
the data line while the data line is in the high state (which is also the line’s idle state). The
small amount of power that is siphoned off charges the chip’s internal capacitor (usually
about 800 pF).37

When the data line is active (going low), the sensor chips continue to run off of their
internal capacitors (in parasitic mode). Data communications cause the data line to
fluctuate between low and high. So whenever the line level returns high again, even for an
instant, the capacitor recharges.

The device also provides an optional V
DD

 pin, allowing power to be supplied to it
directly. This is sometimes used when parasitic mode doesn’t work well enough. This, of
course, requires an added wire, which adds to the cost of the circuit. We’ll be focusing on
the parasitic mode in this chapter. In parasitic mode, V

DD
 is connected to the ground.

Line Driving
The data line is driven by open collector transistors in the master and slave devices.
The line is held high by a pull-up resistor when the driver transistors are all in the Off
state. To initiate a signal, one transistor turns on and thus pulls the line down to
ground potential.

Chapter 11 ■ 1-Wire Driver

166

Figure 11-1 shows a simplified schematic of the master attached to the bus. Some
voltage V (typically, +5 V) is applied to the 1-Wire bus through the pull-up resistor R

pullup
.

When the transistor M
2
 is in the Off state, the voltage on the bus remains high because of

the pull-up resistor. However, when the master device activates transistor M
2
, current is

caused to flow from the bus to the ground, acting like a signal short-circuit. Slave devices
attached to the bus will see a voltage near zero.

Figure 11-1. 1-Wire driver circuit

Note ■ the raspbian Linux 1-Wire bus uses GpiO 4 (GpCLK0) pin p1-07.

Likewise, when a slave is signaled to respond, the master listens to the bus while
the slave activates its driving transistor. Whenever all driving transistors are off, the bus
returns to the high idle state.

The master can request that all slave devices reset. After the master has made this
request known, it relinquishes the bus and allows it to return to the high state. All slave
devices that are connected to the bus respond by bringing the line low after a short
pause. Multiple slaves will bring the line low at the same time, but this is permitted. This
informs the master that at least one slave device is attached to the bus. Additionally, this
procedure puts all slaves into a known reset state.

Master and Slave
The master device is always in control of the 1-Wire bus. Slaves speak only to the master,
and only when requested. There is never slave-to-slave device communication.

If the master finds that communication becomes difficult for some reason, it may
force a bus reset. This corrects for an errant slave device that might be jabbering on the
line.

Chapter 11 ■ 1-Wire Driver

167

Protocol
This section presents a simplistic introduction to the 1-Wire communication protocol.
Knowing something about how the signaling works is not only interesting, but may be
helpful for troubleshooting. More information is available on the Internet.38

Reset
Figure 11-2 provides a simplified timing diagram of the reset procedure for the 1-Wire
protocol. When the master driver begins, it must reset the 1-Wire bus to put all the slave
devices into a known state.

Figure 11-2. 1-Wire reset protocol

For reset, the bus is brought low and held there for approximately 480 msec. Then
the bus is released, and the pull-up resistor brings it high again. After a short time, slave
devices connected to the bus start responding by bringing the line low and holding it for
a time. Several slaves can participate in this at the same time. The master samples the bus
at around 70 msec after it releases the bus. If it finds the line low, it knows that there is at
least one slave connected and responding.

Soon after the master sampling point, all slaves release the bus again and go into a
listening state. They do not respond again until the master specifically addresses a slave
device. For simplicity, we’ll omit the discovery protocol used.

Note ■ each slave has a guaranteed unique address.

Data I/O
The data protocol is shown in Figure 11-3. Whether writing a 0 or 1 bit, the sending device
brings the bus line low. This announces the start of a data bit.

Chapter 11 ■ 1-Wire Driver

168

When a 0 is being transmitted, the line is held low for approximately 60 msec. Then
the bus is released and allowed to return high. When a 1 bit is being transmitted, the line
is held low for only about 6 msec before releasing the bus. Another data bit is not begun
until 70 msec after the start of the previous bit. This leaves a guard time of 10 msec between
bits. The receiver then has ample time to process the bit and gains some signal noise
immunity.

The receiver notices a data bit is coming when the line drops low. It then starts a
timer and samples the bus at approximately 15 msec. If the bus is still in the low state, a 0
data bit is registered. Otherwise, the data bit is interpreted as a 1. Having registered a data
bit, the receiver then waits further until the line returns high (in the case of a 0 bit). The
receiver remains idle until it notices the line going low again, announcing the start of the
next bit.

The sender can be either the master or the slave, but the master always has control.
Slaves do not write data to the bus unless the master has specifically requested it.

Slave Support
Table 11-1 lists the slave devices that are supported by Raspbian Linux. The module
names listed are found in the kernel source directory arch/arm/machbcm2708/slave.

Figure 11-3. 1-Wire read/write of 1 data bit

Chapter 11 ■ 1-Wire Driver

169

Reading Temperature
The support for the usual temperature sensors is found in the kernel module w1_therm.
When you first boot your Raspbian Linux, that module may not be loaded. You can check
for it with the lsmod command:

$ lsmod
Module Size Used by
snd_bcm2835 12808 1
snd_pcm 74834 1 snd_bcm2835
snd_seq 52536 0
snd_timer 19698 2 snd_seq, snd_pcm
snd_seq_device 6300 1 snd_seq
snd 52489 7 snd_seq_device , snd_timer ,
 snd_seq , snd_pcm, snd_bcm2835
snd_page_alloc 4951 1 snd_pcm

The module w1_therm is not loaded according to the example. This module also
depends on the driver module wire. Another thing you can check is the pseudo file
system:

$ ls –l /sys/bus/w1
ls: cannot access /sys/bus/w1 : No such file or directory

Table 11-1. 1-Wire Slave Driver Support

Device Module Description

DS18S20 w1_therm.c Precision digital thermometer

DS18B20 Programmable resolution thermometer

DS1822 Econo digital thermometer

DS28EA00 9- to 12-bit digital thermometer with PIO

bq27000 w1_bq27000.c Highly accurate battery monitor

DS2408 w1_ds2408.c Eight-channel addressable switch

DS2423 w1_ds2423.c 4 KB RAM with counter

DS2431 w1_ds2431.c 1 KB EEPROM

DS2433 w1_ds2433.c 4 KB EEPROM

DS2760 w1_ds2760.c Precision Li+ battery monitor

DS2780 w1_ds2780.c Stand-alone fuel gauge

Chapter 11 ■ 1-Wire Driver

170

Having not found the pathname /sys/bus/w1, we have confirmation that the device
driver is not loaded.

Loading module w1_therm will bring in most of its module dependents:

$ sudo modprobe w1_therm
$ lsmod
Module Size Used by
w1_therm 2705 0
wire 23530 1 w1_therm
cn 4649 1 wire
snd_bcm2835 12808 1
snd_pcm 74834 1 snd_bcm2835
...

After the wire module is loaded, you’ll see the /sys/bus/w1/devices directory. One
more module is needed:

$ sudo modprobe w1_gpio
$ lsmod
Module Size Used by
w1_gpio 1283 0
w1_therm 2705 0
wire 23530 2 w1_therm,w1_gpio
cn 4649 1 wire
snd_bcm2835 12808 1
...
$ cd /sys/bus/w1/devices
$ ls
w1_bus_master1

Once module w1_gpio is loaded, there is a bus master driver for GPIO pin 4 (the
default GPIO for the 1-Wire bus) at the ready. The bus master makes its presence
known by creating directory w1_bus_master1. Change to that directory and list it to see
the associated pseudo files within it. Table 11-2 lists the initial set of pseudo files and
symlinks found there.

Chapter 11 ■ 1-Wire Driver

171

Bus Master
The bus master driver scans for new slave devices every 10 seconds (according to
w1_master_timeout). File w1_master_attempts indicates how many scans have been
performed to date. File w1_master_slave_count shows how many slaves have been
detected out of a maximum of w1_master_max_slave_count. Reading w1_master_slaves
provides a list of slaves found or not found.

The following is an example output session produced while two DS18B20
temperature sensors were connected to the bus:

$ cd /sys/bus/w1/devices/w1_bus_master1
$ cat w1_master_slaves
28−00000478d75e
28−0000047931b5
$

Table 11-2. w1_bus_masterX Files

File Type Read Content

driver Symlink

power Directory

subsystem Symlink

uevent File DRIVER=w1_master_driver

w1_master_add File Write device ID xx-xxxxxxxxxxxx
to add slave

w1_master_attempts File 88

w1_master_max_slave_count File 10

_master_name File w1_bus_master1

w1_master_pointer File 0xd7032148

w1_master_pullup File 1

w1_master_remove File Write device ID xx-xxxxxxxxxxxx to
remove slave

w1_master_search File –1

w1_master_slave_count File 0

w1_master_slaves File Not found

w1_master_timeout File 10

Chapter 11 ■ 1-Wire Driver

172

Slave Devices
Figure 11-4 shows the pinout of the Dallas DS18B20 slave device. This temperature sensor
is typical of many 1-wire slave devices.

Figure 11-4. DS18B20 pin-out

Slave devices are identified by a pair of digits representing the product family,
followed by a hyphen and serial number in hexadecimal. The ID 28-00000478d75e
is an example. You might also want to try different devices, like the similar DS18S20.
Figure 11-5 illustrates the DS18B20 attached to the Raspberry Pi.

Chapter 11 ■ 1-Wire Driver

173

When things are working correctly, the bus master detects slave devices
automatically as part of its periodic scan. If the device you’ve attached is not showing
up within 10 seconds or so, you may want to try forcing it. You can force adding a slave
device entry as follows:

cd /sys/bus/w1/devices/w1_bus_master1
echo 28−0000028f6667 >w1_master_add

Upon doing this, subdirectory 28-0000028f6667 will appear, at least until the
driver gives up trying to communicate with it (the following line with the ellipsis is
abbreviated):

ls –ltr ./28–0000028f6667
total 0
–rw–r––r–– 1 root root 4096 Jan 30 18:56 uevent
lrwxrwxrwx 1 root root 0 Jan 30 18:56 subsystem –> ../../../

bus/w1
–r––r––r–– 1 root root 4096 Jan 30 18:56 w1_slave
Drwxr–xr–x 2 root root 0 Jan 30 18:56 powerr
–r––r––r–– 1 root root 4096 Jan 30 18:56 name
–r––r––r–– 1 root root 4096 Jan 30 18:56 id
lrwxrwxrwx 1 root root 0 Jan 30 18:56 driver –> .../w1_

slave_driver

If you want to remove a slave device, you can use the w1_master_remove file. The
device will reappear in 10 seconds or so (due to a scanning period), if the device is still
physically connected to the bus.

echo 28–0000028f6667 >w1_master_remove

Figure 11-5. 1-Wire with DS18B20 slave circuit

Chapter 11 ■ 1-Wire Driver

174

The following example shows how two DS18B20 temperature sensors show up on
the 1-Wire bus:

$ cd /sys/bus/w1/devices
$ ls
28−00000478d75e 28−0000047931b5 w1_bus_master1
$

Reading the Temperature
The slave device’s temperature can be read by reading its w1_slave pseudo file. In this
example, we read two DS18B20 temperature sensors that are supposed to be accurate
to ±0.5 °C. Reading these two sensors together should show fairly good agreement (they
were in close proximity of each other):

$ cat 28−00000478d75e/w1_slave 28−0000047931b5/w1_slave
14 01 4b 46 7f ff 0c 10 b4 : crc=b4 YES
14 01 4b 46 7f ff 0c 10 b4 t=17250
14 01 4b 46 7f ff 0c 10 b4 : crc=b4 YES
14 01 4b 46 7f ff 0c 10 b4 t=17250
$

Each sensor brings back two lines of data from the device driver. We see that both
sensors agree exactly—that the temperature is 17.250°C. This speaks well for their
accuracy. The DS18B20 device also supports a wide temperature range (–55°C to +125°C),
which make them good as outdoor sensors.

If the read hangs at this point, it may be that the sensor hasn’t fully registered yet.
This can happen if you forced adding it, but the driver was unable to communicate with it.

1-Wire GPIO Pin
Raspbian Linux has its driver support for the 1-Wire bus on GPIO 4 (P1-07). This pin
is hard-coded in the kernel driver. If you want to change this, look for the definition of
W1_GPIO in the source file:

arch/arm/mach-bcm2708/bcm2708.c

Change the definition of W1_GPIO to the pin you require (found near line 73):

// use GPIO 4 for the one–wire GPIO pin, if enabled
#define W1_GPIO 4

Then, of course, you’ll need to rebuild and install the new kernel.

175

Chapter 12

I2C Bus

The I2C bus, also known as the two-wire interface (TWI), was developed by Philips circa
1982 to allow communication with lower-speed peripherals.49 It was also economical
because it required only two wires (excluding ground and power connections). Since
then, other standards have been devised, building upon this framework, such as the
SMBus. However, the original I2C bus remains popular as a simple, cost-effective way to
connect peripherals.

I2C Overview
Figure 12-1 shows the I2C bus in the Raspberry Pi context. The Raspberry Pi provides
the I2C bus using the BCM2835 as the bus master. Notice that the Pi also provides the
external pull-up resistors R

1
 and R

2
, shown inside the dotted lines.

Figure 12-1. The I2C bus

Chapter 12 ■ I2C Bus

176

The two I2C bus lines are provided on the header strip P1:

P1

Rev 1.0 Rev 2.0 +

GPIO I2C Bus GPIO I2C Bus

P1-03 0 SDA0 I2C-0 2 SDA1 I2C-1

P1-05 1 SCL0 3 SCL1

Note that the original Raspberry Pi provided I2C bus 0, but switched to using bus 1
with Rev 2.0 and later units.

The design of the I2C bus is such that multiple peripherals are attached to the SDA
and the SCL lines. Each slave (peripheral) has its own unique 7-bit address. For example,
the MCP23017 GPIO extender peripheral might be configured with the address of 0x20.
Each peripheral is called upon by the master by using this address. All nonaddressed
peripherals are expected to remain quiet so that communication can proceed with the
selected slave device.

SDA and SCL
The two bus lines used for I2C are as follows:

Line P1 Idle Description

SDA P1-03 High Serial data line

SCL P1-05 High Serial clock line

Both masters and slaves take turns at “grabbing the bus” at various times. Master and
slave use open-drain transistors to drive the bus. It is because all participants are using
open-drain drivers that pull-up resistors must be used (provided by the Pi). Otherwise,
the data and clock lines would float between handoffs.

The open-drain driver design allows all participants to drive the bus lines—just not at
the same time. Slaves, for example, turn off their line drivers, allowing the master to drive
the signal lines. The slaves just listen, until the master calls them by address. When the
slave is required to answer, the slave will then assert its driver, thus grabbing the line. It is
assumed by the slave that the master has already released the bus at this point. When the
slave completes its own transmission, it releases the bus, allowing the master to resume.

The idle state for both lines is high. The high state for the Raspberry Pi is +3.3 V.
Other systems may use +5 V signaling. When shopping for I2C peripherals, you’ll want to
choose ones that will operate at the 3 V level. Otherwise, 5 V peripherals can sometimes
be used with careful planning or with use of signal adapters. The DS1307 Real-Time clock
project is one such a case that is covered in Chapter 4 of Experimenting with Raspberry Pi
(Apress, 2014).

Chapter 12 ■ I2C Bus

177

Multimaster and Arbitration
The I2C protocol does support the idea of multiple masters. This complicates things,
because two masters may grab the bus and transmit at the same time. When this
happens, a process of arbitration is used to resolve the clash.

Each transmitting master simultaneously monitors what it sees on the bus that it
is driving. If a discrepancy is seen between what it is transmitting and what it is sensing
on the bus line, it knows that it must release the bus and cease. The first node to notice
conflict is required to release the bus. The other that has not noticed any discrepancy is
free to continue its transmission, since its message has not been affected. If it too sees a
problem, it will also cease and retry later.

Not all devices support this arbitration. Ones that do are usually advertised as having
multimaster support. Multimaster arbitration is not covered in this book, since this is an
advanced I2C topic.

Bus Signaling
The start and stop bits are special in the I2C protocol. The start bit is illustrated in
Figure 12-2. Notice the SDA line transition from high to low, while the clock remains in
the high (idle) state. The clock will follow by going low after 1/2 bit time following the
SDA transition. This special signal combination informs all connected devices to “listen
up,” since the next piece of information transmitted will be the device address.

Figure 12-2. I2C start/stop signaling

The stop bit is also special in that it allows slave devices to know whether more
information is coming. When the SDA line transitions from low to high midway through a
bit cell, it is interpreted as a stop bit. The stop bit signals the end of the message.

There is also the concept of a repeated start, often labeled in diagrams as SR. This
signal is electrically identical to the start bit, except that it occurs within a message in
place of a stop bit. This signals to the peripheral that more data is being sent or required
as part of another message.

Chapter 12 ■ I2C Bus

178

Data Bits
Data bit timings are approximately as shown in Figure 12-3. The SDA line is expected to
stabilize high or low according to the data bit being sent, prior to the SCL line going high.
The receiver clocks in the data on the falling edge of SCL, and the process repeats for the
next data bit. Note that most significant bits are transmitted first.

Figure 12-3. I2C Data bit transmission

Figure 12-4. Example I2C messages

Message Formats
Figure 12-4 displays two example I2C messages that can be used with the MCP23017 chip
(covered in Chapter 2 of Experimenting with Raspberry Pi [Apress, 2014]). The simplest
message is the write register request.

Chapter 12 ■ I2C Bus

179

The diagram shows each message starting with the S (start) bit and ending with
a P (stop) bit. After the start bit, each message begins with a byte containing the 7-bit
peripheral address and a read/write bit. Every peripheral must read this byte in order to
determine whether the message is addressed to it.

The addressed peripheral is expected to return an ACK/NAK bit after the address
is sent. If the peripheral fails to respond for any reason, the line will go high due to the
pull-up resistor, indicating a NAK. The master, upon seeing a NAK, will send a stop bit and
terminate the transmission.

When the peripheral ACKs the address byte, the master then continues to write when
the request is a write. The first example shows the MCP23017 8-bit register number being
written next. This indicates which of the peripheral’s registers is to be written to. The
peripheral will then ACK the register number, allowing the master to follow with the data
byte to be written into the selected register. This too must be ACKed. If the master has no
more data to send, the P (stop) bit is sent to end the transmission. Otherwise, more data
bytes could follow with the sequence ending with the stop bit.

The second example in Figure 12-4 shows how a message may be composed of both
write and read messages. The initial sequence looks like the write, but this only writes
a register number into the peripheral. Once the register number is ACKed, the master
then sends an SR (start, repeated) bit. This tells the peripheral that no more write data is
coming and to expect a peripheral address next. Since the address transmitted specifies
the same peripheral, the same peripheral responds with an ACK. This request is a read,
so the peripheral continues to respond with 8 bits of the requested read data, with the
master ACKing the data received. The master terminates the message with a P (stop) to
indicate that no more data is to be read.

Many peripherals will support an auto-increment register mode. This is a feature
of the peripheral, however, and not all devices support this. Once a peripheral’s register
has been established by a write, successive reads or writes can occur in auto-increment
mode, with the register being incremented with each byte transferred. This results in
more-efficient transfers.

Which I2C Bus?
Before we look at the I2C software API provided by Raspbian Linux, you should first
determine which I2C bus you’ll be working with. Early Raspberry Pi revisions provided
I2C bus 0 on header strip P1, while later units changed this to bus 1. This will matter to
both commands and programs communicating with I2C peripherals.

The “Identification” section of Chapter 5 discusses how to identify your Pi by
displaying the firmware code from /proc/cpuinfo. What is displayed as a Revision is
actually more of a firmware code. The following is a quick check example:

$ grep Revision /proc/cpuinfo
Revision : 000f

Chapter 12 ■ I2C Bus

180

From this information, use the firmware code (revision) number to determine which
I2C bus to use:

Revision I2C Bus

SDA SCL

P1-03 P1-05

0002 0 GPIO-0 GPIO-1

0003 0

0004+ 1 GPIO-2 GPIO-3

I2C Bus Speed
Unlike the SPI bus, the I2C bus operates at a fixed speed within Raspbian Linux. The SoC
document claims I2C operation up to 400 kHz, but the reported clock rate during the
Raspbian Linux boot is 100 kHz:

$ dmesg | grep –i i2c
[1005.08] i2c /dev entries driver
[1026.43] bcm2708_i2c bcm2708_i2c.0: BSC0 Controller at. . . (baudrate 100k)
[1026.43] bcm2708_i2c bcm2708_i2c.1: BSC1 Controller at. . . (baudrate 100k)

Don’t be alarmed if the preceding grep command doesn’t provide any output. Later
versions of Raspbian didn’t load bcm2708_i2c at boot time. You should see the same
messages in the /var/log/syslog after you manually load the module as shown here:

$ sudo modprobe i2c_bcm2708
$ tail /var/log/syslog
. . .
Mar 12 20:16:55 raspberrypi kernel: [168.845802] bcm2708_i2c bcm2708_i2c.0: \
 BSC0 Controller at 0x20205000 (irq 79) (baudrate 100k)
Mar 12 20:16:55 raspberrypi kernel: [168.846423] bcm2708_i2c bcm2708_i2c.1: \
 BSC1 Controller at 0 x20804000 (irq 79) (baudrate 100k)

Tools
Working with I2C peripherals is made easier with the use of utilities. These I2C utilities
are easily installed using the following command:

$ sudo apt−get install i2c−tools

Chapter 12 ■ I2C Bus

181

The i2c-tools package includes the following utilities:

i2cdetect: Detects peripherals on the I2C line

i2cdump: Dumps values from an I2C peripheral

i2cset: Sets I2C registers and values

i2cget: Gets I2C registers and values

Each of these utilities has a man page available for additional information. We’ll be
using some of these commands in this chapter and in later parts of this book.

I2C API
In this section, we’ll look at the bare-metal C language API for the I2C bus transactions.
An application using this API is provided in Chapter 2 of Experimenting with Raspberry Pi
(Apress, 2014).

Kernel Module Support
Access to the I2C bus is provided through the use of kernel modules. If lsmod indicates
that the drivers are not loaded, you can load them at the command line:

$ sudo modprobe i2c–dev
$ sudo modprobe i2c–bcm2708

Once these modules are loaded, i2cdetect should be able to see bus-level support.
On Revision 2.0 and later Raspberry Pis, the i2c-0 bus is for internal use. The user bus is
shown as i2c-1. On early Pis this is reversed.

$ i2cdetect –l
i2c–0 unknown bcm2708_i2c.0 N/A
i2c–1 unknown bcm2708_i2c.1 N/A

After the driver support is available, the device nodes should appear under /dev:

$ ls –l /dev/i2c∗
crw−rw−−−T 1 root root 89, 0 Feb 18 23:53 /dev/i2c−0
crw−rw−−−T 1 root root 89, 1 Feb 18 23:53 /dev/i2c−1

Chapter 12 ■ I2C Bus

182

Header Files
The following header files should be included in an I2C program:

#include <sys/ioctl.h>
#include <linux/i2c−dev.h>

open(2)
Working with I2C devices is much like working with files. You’ll open a file descriptor, do
some I/O operations with it, and then close it. The one difference is that you’ll want to use
ioctl(2) calls instead of the usual read(2)/write(2) calls.

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

int open(const char ∗pathname, int flags, mode_t mode);

where

pathname is the name of the file/directory/driver that you need
to open/create.

flags is the list of optional flags (use O_RDWR for reading and
writing).

mode is the permission bits to create a file (omit argument, or
supply zero when not creating).

returns -1 (error code in errno) or open file descriptor >= 0 .

Error Description

EACCES Access to the file is not allowed.

EFAULT The pathname points outside your accessible address space.

EMFILE The process already has the maximum number of files open.

ENFILE The system limit on the total number of open files has been reached.

ENOMEM Insufficient kernel memory was available.

Chapter 12 ■ I2C Bus

183

To work with an I2C bus controller, your application must open the driver, made
available at the device node:

int fd;

fd = open("/dev/i2c−1",O_RDWR);
if (fd < 0) {
 perror("Opening /dev/i2c−1");

Note that the device node (/dev/i2c-1) is owned by root, so you’ll need elevated
privileges to open it or have your program use setuid(2).

ioctl(2,I2C_FUNC)
In I2C code, a check is normally performed to make sure that the driver has the right
support. The I2C_FUNC ioctl(2) call allows the calling program to query the I2C
capabilities. The capability flags returned are documented in Table 12-1.

long funcs;
int rc;

rc = ioctl(fd,I2C_FUNCS,&funcs);
if (rc < 0) {
 perror("ioctl(2,I2C_FUNCS)");
 abort();
}

/∗ Check that we have plain I2C support ∗/
assert(funcs & I2C_FUNC_I2C);

Table 12-1. I2C_FUNC bits

Bit Mask Description

I2C_FUNC_I2C Plain I2C is supported (non SMBus)

I2C_FUNC_10BIT_ADDR Supports 10-bit addresses

I2C_FUNC_PROTOCOL_MANGLING Supports:

I2C_M_IGNORE_NAK

I2C_M_REV_DIR_ADDR

I2C_M_NOSTART

I2C_M_NO_RD_ACK

The assert() macro used here checks that at least plain I2C support exists.
Otherwise, the program aborts.

Chapter 12 ■ I2C Bus

184

ioctl(2,I2C_RDWR)
While it is possible to use ioctl(2,I2C_SLAVE) and then use read(2) and write(2) calls,
this tends not to be practical. Consequently, the use of the ioctl(2,I2C_RDWR) system
call will be promoted here instead. This system call allows considerable flexibility in
carrying out complex I2C I/O transactions.

The general API for any ioctl(2) call is as follows:

#include <sys/ioctl.h>

int ioctl(int fd, int request, argp);

where

fd is the open file descriptor.

request is the I/O command to perform.

argp is an argument related to the command (type varies
according to request).

returns -1 (error code in errno), number of msgs completed
(when request = I2C_RDWR).

Error Description

EBADF fd is not a valid descriptor.

EFAULT argp references an inaccessible memory area.

EINVAL request or argp is not valid.

When the request argument is provided as I2C_RDWR, the argp argument is a pointer
to struct i2c_rdwr_ioctl_data. This structure points to a list of messages and indicates
how many of them are involved.

struct i2c_rdwr_ioctl_data {
 struct i2c_msg ∗msgs; /∗ ptr to array of simple messages ∗/
 int nmsgs; /∗ number of messages to exchange ∗/
};

The individual I/O messages referenced by the preceding structure are described by
struct i2c_msg:

struct i2c_msg {
 __u16 addr; /∗ 7/10 bit slave address ∗/
 __u16 flags; /∗ Read/Write & options ∗/
 __u16 len; /∗ No. of bytes in buf ∗/
 __u8 ∗buf; /∗ Data buffer ∗/
};

Chapter 12 ■ I2C Bus

185

The members of this structure are as follows:

addr: Normally this is the 7-bit slave address, unless flag
I2C_M_TEN and function I2C_FUNC_10BIT_ADDR are used. Must
be provided for each message.

flags: Valid flags are listed in Table 12-2. Flag I2C_M_RD
indicates the operation is a read. Otherwise, a write operation
is assumed when this flag is absent.

buf: The I/O buffer to use for reading/writing this message
component.

len: The number of bytes to read/write in this message
component.

Table 12-2. I2C Capability Flags

Flag Description

I2C_M_TEN 10-bit slave address used

I2C_M_RD Read into buffer

I2C_M_NOSTART Suppress (Re)Start bit

I2C_M_REV_DIR_ADDR Invert R/W bit

I2C_M_IGNORE_NAK Treat NAK as ACK

I2C_M_NO_RD_ACK Read will not have ACK

I2C_M_RECV_LEN Buffer can hold 32 additional bytes

An actual ioctl(2,I2C_RDWR) call would be coded something like the following.
In this example, a MCP23017 register address of 0x15 is being written out to peripheral
address 0x20, followed by a read of 1 byte:

int fd;
struct i2c_rdwr_ioctl_data msgset;
struct i2c_msg iomsgs[2];
static unsigned char reg_addr[] = {0x15};
unsigned char rbuf[1];
int rc;

iomsgs[0].addr = 0x20; /∗ MCP23017−A ∗/
iomsgs[0].flags = 0; /∗ Write operation. ∗/
iomsgs[0].buf = reg_addr;
iomsgs[0].len = 1;

Chapter 12 ■ I2C Bus

186

iomsgs[1].addr = iomsgs[0].addr; /* Same MCP23017-A */
iomsgs[1].flags = I2C_M_RD; /∗ Read operation ∗/
iomsgs[1].buf = rbuf;
iomsgs[1].len = 1;

msgset.msgs = iomsgs;
msgset.nmsgs = 2;

rc = ioctl(fd,I2C_RDWR,&msgset);
if (rc < 0) {
 perror("ioctl (2, I2C_RDWR)");

The example shown defines iomsgs[0] as a write of 1 byte, containing a register
number. The entry iomsgs[1] describes a read of 1 byte from the peripheral. These two
messages are performed in one ioctl(2) transaction. The flags member of iomsgs[x]
determines whether the operation is a read (I2C_M_RD) or a write (0).

Note ■ Don’t confuse the peripheral’s internal register with the peripheral’s I2C address.

Each of the iomsgs[x].addr members must contain a valid I2C peripheral address.
Each message can potentially address a different peripheral, though there are no
examples of this in this book. The ioctl(2) will return an error with the first message
failure. For this reason, you may not always want to combine multiple messages in one
ioctl(2) call, especially when different devices are involved.

The returned value, when successful, is the number of struct i2c_msg messages
successfully performed.

187

Chapter 13

SPI Bus

The Serial Peripheral Interface bus, known affectionately as spy, is a synchronous serial
interface that was named by Motorola.39 The SPI protocol operates in full-duplex mode,
allowing it to send and receive data simultaneously. Generally speaking, SPI has a speed
advantage over the I2C protocol but requires more connections.

SPI Basics
Devices on the SPI bus communicate on a master/slave basis. Multiple slaves coexist
on a given SPI bus, with each slave being selected for communication by a slave select
signal (also known as chip select). Figure 13-1 shows the Raspberry Pi as the master
communicating with a slave. Additional slaves would be connected as shown with the
exception that a different slave select signal would be used.

Figure 13-1. SPI interface

Data is transmitted from the master to the slave by using the MOSI line (master
out, slave in). As each bit is being sent out by the master, the slave sends data bits on
the MISO line (master in, slave out). Bits are shifted out of the master and into the slave.
Simultaneously, bits are shifted out of the slave and into the master. Both transfers occur
to the beat of the system clock (CLK).

Chapter 13 ■ SpI BuS

188

Many SPI devices support only 8-bit transfers, while others are more flexible. The SPI
bus is a de facto standard, meaning that there is no standard for data transfer width and
SPI mode.39 The SPI controller can also be configured to transmit the most significant or
the least significant bit first. All of this flexibility can result in confusion.

SPI Mode
SPI operates in one of four possible clock signaling modes, based on two parameters:

Parameter Description

CPOL Clock polarity

CPHA Clock phase

Each parameter has two possibilities, resulting in four possible SPI modes of
operation. Table 13-1 lists all four modes available. Note that a given mode is often
referred to by using a pair of numbers like 1,0 or simply as mode 2 (for the same mode, as
shown in the table). Both types of references are shown in the Mode column.

Table 13-1. SPI Modes

CPOL CPHA Mode Description

0 0 0,0 0 Noninverted clock, sampled on rising edge

0 1 0,1 1 Noninverted clock, sampled on falling edge

1 0 1,0 2 Inverted clock, sampled on rising edge

1 1 1,1 3 Inverted clock, sampled on falling edge

Clock Sense Description

Noninverted Signal is idle low, active high

Inverted Signal is idle high, active low

Peripheral manufacturers did not define a standard signaling convention in the
beginning, so SPI controllers allow configuration to accommodate any of the four modes.
However, once a mode has been chosen, all slaves on the same bus must agree.

Chapter 13 ■ SpI BuS

189

Signaling
The clock polarity determines the idle clock level, while the phase determines whether
the data line is sampled on the rising or falling clock signal. Figure 13-2 shows mode
0,0, which is perhaps the preferred form of SPI signaling. In Figure 13-2, the slave is
selected first, by bringing the SS (slave select) active. Only one slave can be selected at
a time, since there must be only one slave driving the MISO line. Shortly after the slave is
selected, the master drives the MOSI line, and the slave simultaneously drives the MISO
line with the first data bit. This can be the most or least significant bit, depending on how
the controller is configured. The diagram shows the least significant bit first.

Figure 13-2. SPI signaling, modes 0 and 2

In mode 0,0 the first bit is clocked into the master and slave when the clock line
falls from high to low. This clock transition is positioned midway in the data bit cell. The
remaining bits are successively clocked into master and slave simultaneously as the clock
transitions from high to low. The transmission ends when the master deactivates the slave
select line. When the clock polarity is reversed (CPOL = 1, CPHA = 0), the clock signal
shown in Figure 13-2 is simply inverted. The data is clocked at the same time in the data
cell, but on the rising edge of the clock instead.

Figure 13-3 shows the clock signals with the phase set to 1 (CPHA = 1). When the clock
is noninverted (CPOL = 0), the data is clocked on the rising edge. Note that the clock must
transition to its nonidle state one-half clock cycle earlier than when the phase is 0 (CPHA = 0).
When the SPI mode is 1,1, the data is clocked in on the falling edge of the clock.

Chapter 13 ■ SpI BuS

190

While the four different modes can be confusing, it is important to realize that the
data is sampled at the same times within the data bit cells. The data bit is always sampled
at the midpoint of the data cell. When the clock phase is 0 (CPHA = 0), the data is sampled
on the trailing edge of the clock, whether falling or rising according to CPOL. When the
clock phase is 1 (CPHA = 1), the data is sampled on the leading edge of the clock, whether
rising or falling according to CPOL.

Slave Selection
While some protocols address their slaves by using transmitted data, the SPI bus simply
uses a dedicated line for each slave. The Raspberry Pi dedicates the GPIO pins listed in
Table 13-2 as slave select lines (also known as chip enable lines).

Figure 13-3. SPI signaling modes 1 and 3

Table 13-2. Raspberry Pi Built-in Chip Enable Pins

GPIO Chip Enable P1

8 CE0 P1-24

7 CE1 P1-26

The Raspbian Linux kernel driver supports the use of only these two chip enable
lines. However, the driver is designed such that you don’t have to use them, or only these.
It is possible, for example, to add a third GPIO pin as a slave select. The application
simply takes responsibility for activating the slave select GPIO line prior to the data I/O
and deactivates it after. When the driver is controlling the two slave selects, this is done
automatically.

Chapter 13 ■ SpI BuS

191

Driver Support
Raspbian Linux supports SPI through the spi_bcm2708 kernel module. As a loadable
kernel module, it may not be loaded by default. Check for it by using the lsmod command:

$ lsmod
Module Size Used by
spidev 5136 0
spi_bcm2708 4401 0
...

If you would like the module loaded by default after a reboot, edit the /etc/
modprobe.d file raspi-blacklist.conf. In the file, look for the line

blacklist spi-bcm2708

and change that to a comment line, by putting a # character in front, as follows:

blacklist spi-bcm2708

With that module un-blacklisted, the module will automatically be loaded with each
new reboot.

The kernel module can be manually loaded by using modprobe command:

$ sudo modprobe spi_bcm2708

This loads the module and its dependents. Once the kernel module support is
present, the device driver nodes should appear:

$ ls /dev/spi∗
/dev/spidev0.0 /dev/spidev0.1
$

These two device nodes are named according to which slave select should be
activated, as shown in Table 13-3.

Table 13-3. SPI Device Nodes

Pathname Bus Device GPIO SS

/dev/spidev0.0 0 0 8 CE0

/dev/spidev0.1 0 1 7 CE1

If you open either of these device nodes by applying the option SPI_NO_CS, the
node chosen makes no difference. Macro SPI_NO_CS indicates that slave select will be
performed by the application instead of the driver, if any select is used at all. (When only
one slave device is attached, the peripheral can be permanently selected.)

Chapter 13 ■ SpI BuS

192

SPI API
The bare-metal API for SPI involves calls to ioctl(2) to configure the interface and
further calls to ioctl(2) for simultaneous read and write. The usual read(2) and
write(2) system calls can be used, when a one-sided transfer is being performed.

Header Files
The header files needed for SPI programming are as follows:

#include <fcntl.h>
#include <unistd.h>
#include <stdint.h>
#include <sys/ioctl.h>
#include <linux/types.h>
#include <linux/spi/spidev.h>

The spidev.h include file defines several macros and the struct spi_ioc_transfer.
Table 13-4 lists the main macros that are declared. The macros SPI_CPOL and SPI_CPHA are
used in the definitions of the values SPI_MODE_x. If you prefer, it is possible to use SPI_CPOL
and SPI_CPHA in place of the mode macros.

Table 13-4. SPI Macro Definitions

Macro Supported Description

SPI_CPOL Yes Clock polarity inverted (CPOL = 1)

SPI_CPHA Yes Clock phase is 1 (CPHA = 1)

SPI_MODE_0 Yes SPI Mode 0,0 (CPOL = 0, CPHA = 0)

SPI_MODE_1 Yes SPI Mode 0,1 (CPOL = 0, CPHA = 1)

SPI_MODE_2 Yes SPI Mode 1,0 (CPOL = 1, CPHA = 0)

SPI_MODE_3 Yes SPI Mode 1,1 (CPOL = 1, CPHA = 1)

SPI_CS_HIGH Yes Chip select is active high

SPI_LSB_FIRST No LSB is transmitted first

SPI_3WIRE No Use 3-Wire data I/O mode

SPI_LOOP No Loop the MOSI/MISO data line

SPI_NO_CS Yes Do not apply Chip Select

SPI_READY No Enable extra Ready signal

Chapter 13 ■ SpI BuS

193

Communicating with an SPI device consists of the following system calls:

open(2): Opens the SPI device driver node

read(2): Reads with 0 bytes being transmitted

write(2): Writes data while discarding received data

ioctl(2): For configuration and bidirectional I/O

close(2): Closes the SPI device driver node

In SPI communication, the use of read(2) and write(2) is unusual. Normally,
ioctl(2) is used to facilitate simultaneous read and write transfers.

Open Device
In order to perform SPI communication through the kernel driver, you need to open one
of the device nodes by using open(2). The general format of the device pathname is

/dev/spidev<bus>.<device>

as we saw earlier. The following is a code snippet opening bus 0, device 0.

int fd;

fd = open("/dev/spidev0.0",O_RDWR);
if (fd < 0) {
 perror("Unable to open SPI driver");
 exit(1);
}

SPI communication involves both reading and writing, so the driver is opened for
read and write (O_RDWR).

SPI Mode Macros
Before SPI communications can be performed, the mode of communication needs to be
configured. Table 13-5 lists the C language macros that can be used to configure the SPI
mode to be used.

Table 13-5. SPI Mode Macros

Macro Effect Comments

SPI_CPOL CPOL = 1 Or use SPI_MODE_x

SPI_CPHA CPHA = 1 Or use SPI_MODE_x

SPI_CS_HIGH SS is active high Unusual

SPI_NO_CS Don’t assert select Not used/application controlled

Chapter 13 ■ SpI BuS

194

These bit values are simply or-ed together to specify the options that are required.
The use of SPI_CPOL implies CPOL = 1. Its absence implies CPOL = 0. Similarly, the use
of SPI_CPHA implies CPHA = 1 (otherwise, CPHA = 0). The options SPI_MODE_x use the
SPI_CPOL and SPI_CPHA macros to define them. You don’t need to use them both in your
code. The mode definitions are shown here:

#define SPI_MODE_0 (0|0)
#define SPI_MODE_1 (0|SPI_CPHA)
#define SPI_MODE_2 (SPI_CPOL|0)
#define SPI_MODE_3 (SPI_CPOL|SPI_CPHA)

The unsupported options are not shown, though one or more of these could be
supported in the future.

Note ■ the mode values SPI_LOOP, SPI_LSB_FIRST, SPI_3WIRE, and SPI_READY are not
currently supported in the wheezy release of raspbian Linux.

The following is an example that defines SPI_MODE_0:

uint8_t mode = SPI_MODE_0;
int rc;

rc = ioctl(fd,SPI_IOC_WR_MODE,&mode);
if (rc < 0) {
 perror("Can’t set SPI write mode.");

If you’d like to find out how the SPI driver is currently configured, you can read the
SPI mode with ioctl(2) as follows:

uint8_t mode;
int rc;

rc = ioctl(fd,SPI_IOC_RD_MODE,&mode);
if (rc < 0) {
 perror("Can’t get SPI read mode.");

Chapter 13 ■ SpI BuS

195

Bits per Word
The SPI driver also needs to know how many bits per I/O word are to be transmitted.
While the driver will likely default to 8 bits, it is best not to depend on that. This can be
configured with the following ioctl(2) call:

uint8_t bits = 8;
int rc;

rc = ioctl(fd, SPI_IOC_WR_BITS_PER_WORD,&bits);
if (rc < 0) {
 perror ("Can't set bits per SPI word.");

Note ■ the SpI driver in the raspbian wheezy release supports only 8-bit transfers.

The currently configured value can be fetched with ioctl(2) as follows:

uint8_t bits;
int rc;

rc = ioctl(fd,SPI_IOC_RD_BITS_PER_WORD,&bits);
if (rc == −1) {
 perror("Can’t get bits per SPI word.");

When the number of bits is not an even multiple of eight, the bits are assumed to be
right-justified. For example, if the word length is set to 4 bits, the least significant 4 bits are
transmitted. The higher-order bits are ignored.

Likewise, when receiving data, the least significant bits contain the data. All of this is
academic on the Pi, however, since the driver supports only byte-wide transfers.

Clock Rate
To configure the data transmission rate, you can set the clock rate with ioctl(2) as follows:

uint32_t speed = 500000; /∗ Hz ∗/
int rc;

rc = ioctl(fd,SPI_IOC_WR_MAX_SPEED_HZ,&speed);
if (rc < 0) {
 perror("Can’t configure SPI clock rate.");

Chapter 13 ■ SpI BuS

196

The current configured clock rate can be fetched by using the following ioctl(2) call:

uint32_t speed; /∗ Hz ∗/
int rc;

rc = ioctl(fd,SPI_IOC_RD_MAX_SPEED_HZ,&speed);
if (rc < 0) {
 perror("Can’t get SPI clock rate.");

Data I/O
SPI communication involves transmitting data while simultaneously receiving data.
For this reason, the read(2) and write(2) system calls are usually inappropriate. The
ioctl(2) call can, however, perform a simultaneous read and write.

The SPI_IOC_MESSAGE(n) form of the ioctl(2) call uses the following structure as its
argument:

struct spi_ioc_transfer {
 __u64 tx_buf; /∗ Ptr to tx buffer ∗/
 __u64 rx_buf; /∗ Ptr to rx buffer ∗/
 __u32 len; /∗ # of bytes ∗/
 __u32 speed_hz; /∗ Clock rate in Hz ∗/
 __u16 delay_usecs; /∗ Delay in microseconds ∗/
 __u8 bits_per_word; /∗ Bits per "word" ∗/
 __u8 cs_change; /∗ Apply chip select ∗/
 __u32 pad; /∗ Reserved ∗/
};

The tx_buf and rx_buf structure members are defined as a 64-bit unsigned
integers (__u64). For this reason, you must cast your buffer pointers when making
assignments to them:

uint8_t tx[32], rx[32];
struct spi_ioc_transfer tr;

tr.tx_buf = (unsigned long) tx;
tr.rx_buf = (unsigned long) rx;

On the Raspberry Pi, you will see example code that simply casts the pointers to
unsigned long. The compiler automatically promotes these 32-bit values to a 64-bit
value. This is safe on the Pi because the pointer value is a 32-bit value.

Chapter 13 ■ SpI BuS

197

If you do not wish to receive data (maybe because it is “don’t care” data), you can
null out the receive buffer:

uint8_t tx[32];
struct spi_ioc_transfer tr;

tr.tx_buf = (unsigned long) tx;
tr.rx_buf = 0; /* ignore received data */

Note that to receive data, the master must always transmit data to shift data out of
the slave peripheral. If any byte transmitted will do, you can omit the transmit buffer.
Zero bytes will then be automatically transmitted by the driver to shift the slave data out
onto the MISO line.

It is also permissible to transmit from the buffer you’re receiving into:

uint8_t io[32];
struct spi_ioc_transfer tr;

tr.tx_buf = (unsigned long) io; /∗ Transmit buffer ∗/
tr.rx_buf = (unsigned long) io; /∗ is also recv buffer ∗/

The len structure member indicates the number of bytes for the I/O transfer. Receive
and transmit buffers (when both used) are expected to transfer the same number of bytes.

The member speed_hz defines the clock rate that you wish to use for this I/O, in Hz.
This overrides any value configured in the mode setup, for the duration of the I/O. The
value will be automatically rounded down to a supported clock rate when necessary.

When the value speed_hz is 0, the previously configured clock rate is used
(SPI_IOC_WR_MAX_SPEED_HZ).

When the delay_usecs member is nonzero, it specifies the number of microseconds
to delay between transfers. It is applied at the end of a transfer, rather than at the start.
When there are multiple I/O transfers in a single ioctl(2) request, this allows time in
between so that the peripheral can process the data.

The bits_per_word member defines how many bits there are in a “word” unit. Often
the unit is 1 byte (8 bits), but it need not be (but note that the Raspbian Linux driver
supports only 8 bits).

An application might use 9 bits to transmit the 8-bit byte and a parity bit, for
example. The bits communicated on the SPI bus are taken from the least significant bits
of the buffer bytes. This is true even when transmitting the most significant bit first.

When the bits_per_word value is 0, the previously configured value from
SPI_IOC_WR_BITS_PER_WORD is used. (See drivers/spi/spi-bcm2708.c in the function
bcm2708_process_transfer()).

Note ■ the raspbian wheezy driver requires that bits_per_word is the value 8 or 0.

Chapter 13 ■ SpI BuS

198

The cs_change member is treated as a Boolean value. When 0, no chip select is
performed by the driver. The application is expected to do what is necessary to notify
the peripheral that it is selected (usually a GPIO pin is brought low). Once the I/O has
completed, the application then must normally unselect the slave peripheral.

When the cs_change member is true (non-zero), the slave selected will depend on
the device pathname that was opened. The bus and the slave address are embedded in the
device name:

/dev/spidev<bus>.<device>

When cs_change is true, the driver asserts GPIO8 for spidev0.0 and asserts GPIO7
for spidev0.1 prior to I/O and then deactivates the same upon completion. Of course,
using these two nodes requires two different open(2) calls.

The SPI_IOC_MESSAGE(n) macro is used in the ioctl(2) call to perform one or
more SPI I/O operations. The macro is unusual because it requires an argument n.
(Perhaps someone will take it upon themselves someday to clean this interface up to
work like I2C.) This specifies how many I/O transfers you would like to perform.
An array of spi_ioc_transfer structures is declared and configured for each transfer
required, as shown in the next example:

struct spi_ioc_transfer io[3]; /∗ Define 3 transfers ∗/
int rc;

io[0].tx_buf = . . . ; /∗ Configure I/O ∗/
...
io[2].bits_per_word = 8;

rc = ioctl(fd,SPI_IOC_MESSAGE(3),& io[0]);

The preceding example will perform three I/O transfers. Since the application
never gets to perform any GPIO manipulation between these I/Os, this applies to
communicating with one particular slave device.

The following example code brings all of the concepts together, to demonstrate one
I/O. The spi_ioc_transfer structure is initialized so that 32 bytes are transmitted and
simultaneously 32 are received.

uint8_t tx[32], rx[32];
struct spi_ioc_transfer tr;
int rc;

tr.tx_buf = (unsigned long) tx;
tr.rx_buf = (unsigned long) rx;
tr.len = 32;
tr.delay_usecs = delay;
tr.speed_hz = speed;
tr.bits_per_word = bits;

Chapter 13 ■ SpI BuS

199

rc = ioctl(fd,SPI_IOC_MESSAGE(1),&tr);
if (rc < 1) {
 perror("Can't send spi message");

Here a single I/O transmission occurs, with data being sent from array tx and
received into array rx.

The return value from the ioctl(2) call returns the number of bytes transferred
(32 in the example). Otherwise, -1 is returned to indicate that an error has occurred.

Close
Like all Unix I/O operations, the device is closed when the open file descriptor is no
longer required:

close(fd);

Write
The write(2) system call can be used, if the received data is unimportant. Note, however,
that no delay is applied with this call.

Read
The read(2) system call is actually inappropriate for SPI since the master must transmit
data on MOSI in order for the slave to send bits back on the MISO line. However, when
read(2) is used, the driver will automatically send out 0 bits as necessary to accomplish
the read. (Be careful that your peripheral will accept 0 bytes without unintended
consequences.) Like the write(2) call, no delay is provided.

SPI Testing
When developing your SPI communication software, you can perform a simple loopback
test to test your framework. Once the framework checks out, you can then turn your
attention to communicating with the actual device.

While the Raspbian Linux driver does not support the SPI_LOOP mode bit (in the
wheezy release), you can still physically loop your SPI bus by connecting a wire from the
MOSI output back to the MISO input pin (connect GPIO 10 to GPIO 9).

A simple program, shown next, demonstrates this type of loopback test. It will write
out 4 bytes (0x12, 0x23, 0x45, and 0x67) to the SPI driver. Because you have wired the
MOSI pin to the MISO input, anything transmitted will also be received.

When the program executes, it will report the number of bytes received and four
hexadecimal values:

$ sudo ./spiloop
rc=4 12 23 45 67
$

Chapter 13 ■ SpI BuS

200

If you remove the wire between MOSI and MISO, and connect the MISO to a high
(+3.3 V), you should be able to read 0xFF for all of the received bytes. If you then connect
MISO to ground, 0x00 will be received for each byte instead. (Be certain to apply to the
correct pin, since applying high or low to an output can damage it, and do not apply +5 V.)

1 /∗∗∗
2 ∗ spiloop.c − Example loop test
3 ∗ Connect MOSI (GPIO 10) to MISO (GPIO 9)
4 ∗∗∗/
5 #include <stdio.h>
6 #include <errno.h>
7 #include <stdlib.h>
8 #include <stdint.h>
9 #include <fcntl.h>
10 #include <unistd.h>
11 #include <sys/ioctl.h>
12 #include <linux/types.h>
13 #include <linux/spi/spidev.h>
14
15 static int fd = −1;
16
17 static void
18 errxit(const char ∗msg) {
19 perror(msg);
20 exit(1);
21 }
22
23 int
24 main(int argc, char ∗∗ argv) {
25 static uint8_t tx[] = {0x12, 0x23, 0x45, 0x67};
26 static uint8_t rx[] = {0xFF, 0xFF, 0xFF, 0xFF};
27 struct spi_ioc_transfer ioc = {
28 .tx_buf = (unsigned long) tx,
29 .rx_buf = (unsigned long) rx,
30 .len = 4,
31 .speed_hz = 100000,
32 .delay_usecs = 10,
33 .bits_per_word = 8,
34 .cs_change = 1
35 } ;
36 uint8_t mode = SPI_MODE_0;
37 int rc;
38
39 fd = open("/dev/spidev0.0",O_RDWR);
40 if (fd < 0)
41 errxit("Opening SPI device.");
42

Chapter 13 ■ SpI BuS

201

43 rc = ioctl(fd,SPI_IOC_WR_MODE,&mode);
44 if (rc < 0)
45 errxit("ioctl (2) setting SPI mode.");
46
47 rc = ioctl(fd,
 SPI_IOC_WR_BITS_PER_WORD,
 &ioc.bits_per_word);
48 if (rc < 0)
49 errxit("ioctl (2) setting SPI bits perword.");
50
51 rc = ioctl(fd,SPI_IOC_MESSAGE(1),&ioc);
52 if (rc < 0)
53 errxit("ioctl (2) for SPI I/O");
54 close(fd);
55
56 printf("rc=%d %02X %02X %02X %02X\n",
57 rc, rx[0], rx[1], rx[2], rx[3]);
58 return 0;
59 }

203

Appendix A

Glossary

AC
Alternating current

Amps
Amperes

ATAG
ARM tags, though now used by boot loaders for other architectures

AVC
Advanced Video Coding (MPEG-4)

AVR
 Wikipedia states that “it is commonly accepted that AVR stands for Alf (Egil Bogen)
and Vegard (Wollan)’s RISC processor.”

BCD
Binary-coded decimal

Brick
To accidently render a device unusable by making changes to it

CEA
Consumer Electronics Association

cond
Condition variable

CPU
Central processing unit

CRC
Cyclic redundancy check, a type of hash for error detection

CVT
Coordinated Video Timings standard (replaces GTF)

daemon
A Unix process that services requests in the background

DC
Direct current

Appendix A ■ GlossAry

204

DCD
RS-232 data carrier detect

DCE
RS-232 data communications equipment

Distro
A specific distribution of Linux software

DLNA
 Digital Living Network Alliance, whose purpose is to enable sharing of digital media
between multimedia devices

DMM
Digital multimeter

DMT
Display Monitor Timing standard

DPI
Display Pixel Interface (a parallel display interface)

DPVL
Digital Packet Video Link

DSI
Display Serial Interface

DSR
RS-232 data set ready

DTE
RS-232 data terminal equipment

DTR
RS-232 data terminal ready

ECC
Error-correcting code

EDID
Extended display identification data

EEPROM
Electrically erasable programmable read-only memory

EMMC
External mass media controller

Flash
 Similar to EEPROM, except that large blocks must be entirely rewritten in an update
operation

FFS
Flash file system

Appendix A ■ GlossAry

205

FIFO
First in, first out

FSP
Flash storage processor

FTL
Flash translation layer

FUSE
Filesystem in Userspace (File system in USErspace)

GNU
GNU is not Unix

GPIO
General-purpose input/output

GPU
Graphics processing unit

GTF
Generalized Timing Formula

H.264
MPEG-4 Advanced Video Coding (AVC)

H-Bridge
An electronic circuit configuration that allows voltage to be reversed across the load

HDMI
High-Definition Multimedia Interface

HID
Human interface device

I2C
Two-wire interface invented by Philips

IC
Integrated circuit

IDE
Integrated development environment

IR
Infrared

ISP
Image Sensor Pipeline

JFFS2
Journalling Flash File System 2

LCD
Liquid-crystal display

Appendix A ■ GlossAry

206

LED
Light-emitting diode

mA
Milliamperes, a measure of current flow

MCU
Microcontroller unit

MMC
MultiMedia Card

MISO
Master in, slave out

MOSI
Master out, slave in

MTD
Memory technology device

mutex
Mutually exclusive

NTSC
National Television System Committee (analog TV signal standard)

PAL
Phase Alternating Line (analog TV signal standard)

PC
Personal computer

PCB
Printed circuit board

PLL
Phase-locked loop

PoE
Power over Ethernet (supplying power over an Ethernet cable)

POSIX
Portable Operating System Interface (for Unix)

pthreads
POSIX threads

PWM
Pulse-width modulation

Pxe
Preboot execution environment, usually referencing booting by network

RAM
Random-access memory

Appendix A ■ GlossAry

207

RI
RS-232 ring indicator

RISC
Reduced instruction set computer

RH
Relative humidity

ROM
Read-only memory

RPi
Raspberry Pi

RS-232
Recommended standard 232 (serial communications)

RTC
Real-time clock

SBC
Single-board computer

SD
Secure Digital Association memory card

SDIO
SD card input/output interface

SDRAM
Synchronous dynamic random-access memory

SoC
System on a chip

SMPS
Switched-mode power supply

SPI
Serial Peripheral Interface (bus)

Stick parity
Mark or space parity, where the bit is constant

TWI
Two-wire interface

UART
Universal asynchronous receiver/transmitter

USB
Universal Serial Bus

V3D
Video for 3D

Appendix A ■ GlossAry

208

VAC
Volts AC

VESA
Video Electronics Standards Association

VFS
Virtual file system

VNC
Virtual Network Computing

VSB

ATX standby voltage

YAFFS
Yet Another Flash File System

209

Appendix B

Power Standards

The following table references the standard ATX power supply voltages, regulation
(tolerance), and voltage ranges.15

The values listed here for the +5 V and +3.3 V supplies were referenced in Chapter 2
as a basis for acceptable power supply ranges. When the BroadCom power specifications
become known, they should be used instead.

Supply
(Volts)

Tolerance Minimum Maximum Ripple
(Peak to Peak)

+5 V ±5% ± 0.25 V +4.75 V +5.25 V 50 mV

-5 V ±10% ±0.50 V –4.50 V –5.50 V 50 mV

+12 V ±5% ±0.60 V +11.40 V +12.60 V 120 mV

-12 V ±10% ±1.2 V –10.8 V –13.2 V 120 mV

+3.3 V ±5% ±0.165 V +3.135 V +3.465 V 50 mV

+5 VSB ±5% ±0.25 V +4.75 V +5.25 V 50 mV

211

Appendix C

Electronics Reference

The experienced electronic hobbyist or engineer will already know these formulas
and units well. This reference material is provided as a convenience for the student or
beginning hobbiest.

Ohm’s Law
Using the following triangle, cover the unknown property to determine the formula
needed. For example, if current (I) is unknown, cover the I, and the formula V

R
 remains.

V

I R

Power
Power can be computed from these formulas:

P I V
P I R

P
V

R

= ´
= ´

=

2

2

Appendix C ■ eleCtroniCs referenCe

212

Units
The following chart summarizes the main metric prefixes used in electronics.

Name Prefix Factor

Multiples mega M 106

kilo k 103

Fraction milli m 10-3

micro m 10-6

nano n 10-9

pico p 10-12

A���������
A1265 Apple adapter, 9
Adapters

e-book, 10
power source, 10
unsuitable supply, 9
voltage test, 10–11

API. See Application programming
interface (API)

API support
Boarduino, 67
include files, 68, 70
libusb, 67
serial device, 67

Application programming interface (API)
bits per word, 195
cfgetispeed(3) function, 112
cfgetospeed(3), 112
cfmakeraw(3) function, 109–112
cfsetispeed(3) function, 113
cfsetospeed(3) function, 113
cfsetspeed(3), 114
clock rate, 195–196
close, 199
data I/O, 196–199
error EINTR, 97, 118–119
header files, 182, 192–193
ioctl(2,I2C_FUNC), 183
ioctl(2,I2C_RDWR), 184–186
kernel module support, 181
Linux operating system, 101
open(2), 102, 182–183
open device, 193
read, 199
read(2) system, 114–115
readv(2) and writev(2), 116–118
SPI mode macros, 193–194

struct termios, 102–105
tcdrain(3), 107
tcflow(3) function, 108–109
tcflush(3), 108
tcgetattr(3) function, 106
tcsendbreak(3), 107
tcsetattr(3), 106–107
write, 199
write(2) system, 115–116

B���������
Battery power

DC-DC buck converter, 14–16
headroom, 12
LM7805 regulation, 12–14
requirements, 12

BCM2835, 121

C���������
Central processing unit (CPU)

board identification, 45–46
condition variables, 59–63
executing program, 48–49
mutexes, 56–58
overclocking, 46–48
Raspberry Pi, 45
Raspbian Linux, 46
threads (see Threads, CPU)

CommitLimit, SDRAM
proc/meminfo, 36–37
values, 37
vm.overcommit_memory, 36

Condition variables, CPU
and mutexes, 59
pthread_cond_broadcast(3), 63

Index

213

pthread_cond_destroy(3), 61
pthread_cond_init(3), 60–61
pthread_cond_signal(3), 62–63
pthread_cond_wait(3), 61–62
queue, 59
thread, 60
use, 60

CPU. See Central processing unit (CPU)

D���������
Data communications

equipment (DCE), 90–91
Data terminal equipment (DTE), 90–91
DC-DC buck converter

data acquisition, 14
input and output connections, 14
LM7805 regulator, 16
measured conversion efficiency, 15
output voltage, 15
solar panels, 15
specifications, 15

DCE. See Data communications
equipment (DCE)

Direct register access
code, 153
gpio_config(), 154
gpio_init(), 153
gpio_io.c, 155, 157
gpio_read(), 154
gpio_write(), 154

Drive strength
bi-color LEDs, 134–135
control, 130
current load, 130
input pin, 131
LED, 132–133
logic interfaces, 134
output pins, 131–132
software configurable, 129
testing, 135–137

DTE. See Data terminal equipment (DTE)

E���������
Electronics reference

Ohm’s law, 211
power, 211
units, 212

Ethernet
description, 71
wired, 71–74
wireless, 74–79

F���������
Flash Storage Processor (FSP), 82
FSP. See Flash Storage Processor (FSP)

G���������
General-purpose input/output (GPIO)

configuration
alternate function, 138–139
input pins, 139
output pins, 139

C program evinput.c, 147
current budget, 137
designations, 121
drive levels, 164
drive strength (see Drive strength)
evinput program, 149–153
floating potentials, 147
GPIO command, 162
header connector, 21–22
input test, 145, 147
kernel, 147
logic levels, 129
P1 header, 122
P5 header, 123
pins, 121
pull-up resistors, 124–128
Raspberry Pi, 23, 121
reading and

writing, 163–164
registers, 153–154, 156–157
Rev 2.0 configuration, 123
Rev 2.0 models, 22
running ./evinput, 148–149
settings, 163
sysfs (see Sysfs)
tester, 144–145
transistor driver (see Transistor

driver, GPIO)
1-Wire driver, 24
wiringPi project, 162

GPIO. See General purpose
input/output (GPIO)

GPIO input test, 145–146

214

Condition variables (cont.)

■ index

H���������
Hardware flow control, 95–96
Header

GPIO, 21–23
kernel source file, 24
logic level, 23
macro W1_GPIO, 24
Rev 2.0 model, 22, 24
safe mode, 22–23

I, J, K���������
I2C bus

API (see Application programming
interface (API))

data bit transmission, 178
description, 175
design, 176
firmware code, 179
message formats, 178–179
multimaster and

arbitration, 177
Raspberry Pi context, 175
SDA and SCL, 176
speed, 180
start and stop signaling, 177
tools, 180–181

Insufficient power, 16–17

L���������
LED. See Light emitting diodes (LED)
LEDs

100 Mbit link, 20
full-duplex mode, 20
GPIO, 19
link-level status, 20
power, 20
Raspberry Pi, 19

Light emitting diodes (LED), 132–133
Logic levels, GPIO, 129

M���������
Mutexes, CPU

API, 56
pthread_mutex_create(3), 56–57
pthread_mutex_destroy(3), 57
pthread_mutex_lock(3), 58
pthread_mutex_unlock(3), 58–59

N���������
New Out of Box Software

(NOOBS) image, 22
NOOBS. New Out of Box Software (NOOBS)

O���������
Ohm’s law, 211

P, Q���������
P1 header, 122
P5 header, 123
Physical memory, SDRAM

ARM, 38
layout, 39
peripheral offsets, 39
Raspberry Pi’s, 38

Power, 211
adapters (see Adapters)
battery power, 12–16
calculation, 5
insufficient, 16
micro-USB power input, 5
model A input power, 8
model B input power, 7
peripheral, 7
Raspberry Pi, 5
requirement, 6
USB hubs, 9
3.3 volt power, 8
vs. no power, 17

Powered USB Hubs, 8
Power standards, 209
Pull-up resistors

configuring
broadcom procedure, 125
GPIO pads control, 128
GPPUDCLK0/1, 124–125
program pullup.c, 126–127
registers GPPUP, 124

external and internal, 124
testing, 128–129

R���������
Raspberry Pi

hardware, 1, 3–4
input voltage, 7
models, 1–2

215

■ index

networking capability, 4
power consumption, 4
power supply, 5
Raspbian Linux, 1
resetting, 16
software API, 1
unit cost, 4

Reset circuit, 25
RS-232

baud rate, 93–94
break signal, 95
data bits, 92
description, 91
flow control

description, 95
hardware, 95–96
software, 96–97

parity bit, 92
serial signal transmission, 91–92
start bit, 92
stop-bit(s), 93

RS-232 converter
DTE/DCE, 90–91
MAX232CSE chip interface, 89
TXD0 and RXD0, 90

S���������
SD card storage

block size, 83
/boot file system, 83
capacities and performance, 84
character device, 84
circuit, 82
device pathname, 83
FSP, 82
media, 81
Raspbian Linux, 84
storage requirements, 81
/sys pseudo file system, 83
transfer modes

1-bit SD mode, 86
4-bit SD mode, 87
SPI Bus mode, 85–86

wear leveling, 87–88
SDRAM. See Synchronous dynamic random

access memory (SDRAM)
Serial line use

procedure, 100
verification, 101

Serial peripheral interface (SPI) bus
API (see Application programming

interface (API))
communication, 187
data transfer, 188
description, 187
driver support, 191
signaling modes, 188–190
slave selection, 190
test, 199–201

Slave device
communication, 166
support, 169
temperature sensor, 172–174

Software flow control, 96–97
Synchronous dynamic random access

memory (SDRAM)
active memory, 31
AnonPages, 33
block device bounce, 35
buffers, 30
CommitLimit, 36–37
Committed_AS, 37
dirty and writeback, 33
file-backed memory, 32
inactive memory, 31
KernelStack, 34
mapped value, 33
MemFree, 30
memory allocation, 44
memory mapping

BLOCK_SIZE, 41
character pointer map, 41
code, 40–41
dev/mem, 40
file descriptor, 42
MAP_SHARED, 42
mmap(2) system, 40
offset, 42
PROT_READ and

PROT_WRITE, 42
return value, 42
sysconf(2) system, 42
volatile, 43

MemTotal, 29
Mlocked, 32
NFS_Unstable, 35
page tables, 35
physical memory, 38–40
Pi developer, 27
proc/meminfo, 27–29

216

Raspberry Pi (cont.)

■ index

Raspbian Linux, 27, 44
shmem, 34
slab, 34
SReclaimable, 34
SUnreclaim, 34
SwapCached, 30
SwapFree, 33
SwapTotal, 32
temporary writeback

buffers, 35
virtual memory, 43
VmallocChunk, 38
VmallocTotal, 38
VmallocUsed, 38

Sysfs
C/C++ programmer, 140
chip level, 143
export, 141
GPIO pins, 140
gpioX, 141–143
inverted logic, 143
noninverted logic, 143
pseudo files, 140
unexport, 141

T���������
Threads, CPU

errno, 49–50
Linux, 49
pthread_attr_t, 52–54
pthread_create(3)

arguments, 50–51
C language syntax, 51
function, 50
my_thread(), 51
start_routine, 51

pthread_detach(3), 54–55
pthread Headers, 49
pthread_kill(3), 55–56
pthread_self(3), 55

Transistor driver, GPIO
2N2222A driver, 157
2N2222A transistor, 157
design, 158–160
high-current LEDs/panel

lightbulbs, 161
inductive loads, 160–161
output driver, 157
substitution, 160

U���������
UART. See Universal asynchronous

receiver/transmitter (UART)
Universal asynchronous

receiver/transmitter (UART)
API (see Application programming

interface (API))
ARM PL011 UART

features, 99–100
RTS/CTS access, 98–99

description, 89
Raspberry Pi supports, 97
RS-232 (see RS-232)
RS-232 converter (see RS-232 converter)
serial line use, 100–101

USB
API support, 67–68, 70
power, 66
powered hubs, 66–67
Raspberry USB interface, 65

USB adapters, 74

V���������
3.3 Volt Power, 8

W, X, Y, Z���������
Wear leveling

flash memory, 87
Raspberry Pi, 88
read/write file systems, 88
SanDisk’s, 88

Wired ethernet
changing to static IP, 72–73
description, 71
DHCP, 71
/etc/hosts file, 74
/etc/network/interfaces, 72
nmap command, 71
test static

IP address, 73–74
USB adapters, 74

1-Wire driver
description, 165
GPIO pin, 174
line and power

data communication, 165
ground/“return” wire, 165

217

■ index

master device, 166
protocol

data I/O, 167–168
reset, 167

pull-up resistor, 166
slave devices, 166, 168–169
temperature sensors

bus master driver, 171
DS18B20 temperature

sensors, 174
kernel module, 169
loading module, 170

lsmod command, 169
pseudo files and symlinks, 170–171
slave device, 172–173

wire driver circuit, 166
Wireless adapters, 7–8
Wireless ethernet

adapter, 75
Atheros AR9101, 75
Atheros AR9170, 75
configuration, 76–79
console log, 75
firmware file, 75
rebooting, 76

218

1-Wire driver (cont.)

■ index

Raspberry Pi
Hardware Reference

Warren W. Gay

Raspberry Pi Hardware Reference

Copyright © 2014 by Warren W. Gay

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are
brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the
purpose of being entered and executed on a computer system, for exclusive use by the purchaser of
the work. Duplication of this publication or parts thereof is permitted only under the provisions of the
Copyright Law of the Publisher’s location, in its current version, and permission for use must always
be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright
Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-0800-7

ISBN-13 (electronic): 978-1-4842-0799-4

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and
images only in an editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility
for any errors or omissions that may be made. The publisher makes no warranty, express or implied,
with respect to the material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Michelle Lowman
Development Editor: Douglas Pundick
Technical Reviewer: Stewart Watkiss
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Louise Corrigan,

Jim DeWolf, Jonathan Gennick, Robert Hutchinson, Michelle Lowman, James Markham,
Matthew Moodie, Jeff Olson, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke,
Dominic Shakeshaft, Gwenan Spearing, Matt Wade, Steve Weiss

Coordinating Editor: Kevin Walter
Copy Editors: Sharon Wilkey and Kim Wimpsett
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our
Special Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to
readers at www.apress.com. For detailed information about how to locate your book’s source code,
go to www.apress.com/source-code/.

http:\\orders-ny@springer-sbm.com
www.springeronline.com
http:\\rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/

This book is dedicated to the memory of my father, Charles Wallace Gay,
who passed away this year. He didn’t remember it when we discussed it last,
but he was responsible for sparking my interest in electronics at an early age.
He had brought home from his used-car business two D cells, a piece of blue
automotive wire, and a flashlight bulb. After showing me how to hold them

together to complete the circuit and light the bulb, I was hooked for life.

I am also indebted to my family for their patience, particularly my wife
Jacqueline, who tries to understand why I need to do the things I do with wires,
solder, and parts arriving in the mail. I am glad for even grudging acceptance
because I’m not sure that I could give up the thrill of moving electrons in some

new way. Sometimes hobby electronics projects have no real justification
beyond “because we can!”

vii

Contents

About the Author �� xix

About the Technical Reviewer �� xxi

Acknowledgments �� xxiii

Introduction ��xxv

Chapter 1: The Raspberry Pi ■ ��� 1

Models ��� 1

Hardware in Common �� 3

Which Model? �� 4

Chapter 2: Power ■ �� 5

Calculating Power ��� 5

Current Requirement ��� 6

Peripheral Power ��� 7

Model B Input Power ��� 7

Model A Input Power ��� 8

3�3 Volt Power ��� 8

Powered USB Hubs�� 8

Power Adapters ��� 9

An Unsuitable Supply �� 9

E-book Adapters ��� 10

Best Power Source ��� 10

Voltage Test �� 10

■ Contents

viii

Battery Power �� 12

Requirements ��� 12

Headroom ��� 12

LM7805 Regulation ��� 12

DC-DC Buck Converter �� 14

Signs of Insufficient Power ��� 16

No Power ��� 17

Chapter 3: Header Strips, LEDs, and Reset ■ ����������������������������������� 19

Status LEDs ��� 19

OK or ACT LED ��� 19

PWR LED ��� 20

FDX LED �� 20

LNK LED �� 20

10M or 10/100 LED ��� 20

Header P1 �� 20

Safe Mode �� 22

Logic Levels �� 23

GPIO Configuration at Reset ��� 23

1-Wire Driver �� 24

Header P5 �� 24

Reset ��� 25

Chapter 4: SDRAM ■ �� 27

/proc/meminfo ��� 27

MemTotal �� 29

MemFree �� 30

Buffers �� 30

Cached �� 30

SwapCached ��� 30

■ Contents

ix

Active �� 31

Inactive ��� 31

Active(anon) �� 31

Inactive(anon) ��� 31

Active(file) ��� 32

Inactive(file) �� 32

Unevictable ��� 32

Mlocked �� 32

SwapTotal ��� 32

SwapFree �� 33

Dirty �� 33

Writeback ��� 33

AnonPages �� 33

Mapped ��� 33

 Shmem �� 34

 Slab�� 34

SReclaimable �� 34

SUnreclaim ��� 34

KernelStack �� 34

PageTables ��� 35

NFS_Unstable ��� 35

Bounce �� 35

WritebackTmp �� 35

CommitLimit ��� 36

Committed_AS �� 37

VmallocTotal ��� 38

VmallocUsed ��� 38

VmallocChunk ��� 38

■ Contents

x

Physical Memory ��� 38

Memory Mapping �� 40

Address ��� 41

Length ��� 41

Protection ��� 42

Flags ��� 42

File Descriptor �� 42

Offset �� 42

Return Value ��� 42

Volatile �� 43

Virtual Memory �� 43

Final Thoughts on SDRAM ��� 43

Chapter 5: CPU ■ �� 45

Identification ��� 45

Overclocking �� 46

Execution ��� 48

Threads ��� 49

pthread Headers ��� 49

pthread Error Handling ��� 49

pthread_create(3) ��� 50

pthread_attr_t �� 52

pthread_join(3) ��� 54

pthread_detach(3) �� 54

pthread_self(3) ��� 55

pthread_kill(3) �� 55

Mutexes ��� 56

pthread_mutex_create(3) ��� 56

pthread_mutex_destroy(3) ��� 57

■ Contents

xi

pthread_mutex_lock(3) �� 58

pthread_mutex_unlock(3) �� 58

Condition Variables �� 59

pthread_cond_init(3) �� 60

pthread_cond_destroy(3) ��� 61

pthread_cond_wait(3) �� 61

pthread_cond_signal(3) �� 62

pthread_cond_broadcast(3) ��� 63

Chapter 6: USB ■ �� 65

Power �� 66

Powered Hubs ��� 66

USB API Support �� 67

libusb �� 67

Include Files ��� 68

Chapter 7: Ethernet ■ ��� 71

Wired Ethernet �� 71

/etc/network/interfaces �� 72

Changing to Static IP �� 72

Test Static IP Address ��� 73

USB Adapters �� 74

/etc/hosts File ��� 74

Wireless Ethernet �� 74

Configuration �� 76

Chapter 8: SD Card Storage ■ �� 81

SD Card Media ��� 81

SD Card Interface �� 81

SD Card Basics �� 82

■ Contents

xii

Raspbian Block Size �� 83

Disk Cache �� 84

Capacities and Performance ��� 84

Transfer Modes �� 85

SPI Bus Mode ��� 85

1-bit SD Mode ��� 86

4-bit SD Mode ��� 87

Wear Leveling �� 87

Chapter 9: UART ■ �� 89

RS-232 Converter �� 89

DTE or DCE �� 90

RS-232 �� 91

Start Bit �� 92

Data Bits ��� 92

Parity Bit ��� 92

Stop Bit(s) ��� 93

Baud Rate ��� 93

Break �� 95

Flow Control�� 95

Raspberry Pi UARTs ��� 97

ARM PL011 UART �� 97

RTS/CTS Access �� 98

PL011 UART Features ��� 99

Exclusive Serial Line Use �� 100

Procedure ��� 100

Verification �� 101

■ Contents

xiii

Serial API ��� 101

Header Files �� 102

open(2)�� 102

struct termios ��� 102

tcgetattr(3) �� 105

tcsetattr(3) �� 106

tcsendbreak(3) �� 107

tcdrain(3) �� 107

tcflush(3)��� 108

tcflow(3)�� 108

cfmakeraw(3) ��� 109

cfgetispeed(3) ��� 112

cfgetospeed(3) �� 112

cfsetispeed(3) ��� 113

cfsetospeed(3) �� 113

cfsetspeed(3) �� 114

read(2) �� 114

write(2) ��� 115

readv(2) and writev(2) �� 116

Error EINTR ��� 118

Chapter 10: GPIO ■ �� 121

Pins and Designations ��� 121

Configuration After Reset �� 122

Pull-up Resistors ��� 124

Configuring Pull-up Resistors ��� 124

Testing Pull-up State �� 128

■ Contents

xiv

Logic Levels �� 129

Drive Strength ��� 129

Input Pins �� 131

Output Pins ��� 131

Driving Bi-color LEDs �� 134

Testing Drive Strength �� 135

GPIO Current Budget ��� 137

Configuration ��� 138

Alternate Function Select ��� 138

Output Pins ��� 139

Input Pins �� 139

Alternate Function �� 139

Sysfs GPIO Access ��� 140

export ��� 141

unexport ��� 141

gpioX ��� 141

Chip Level ��� 143

GPIO Tester �� 144

GPIO Input Test �� 145

Floating Potentials ��� 147

Reading Events �� 147

Test Run �� 148

Direct Register Access �� 153

gpio_init() ��� 153

gpio_config() ��� 154

gpio_write() �� 154

gpio_read() ��� 154

gpio_io�c ��� 155

■ Contents

xv

GPIO Transistor Driver �� 157

Driver Design �� 158

Substitution �� 160

Inductive Loads �� 160

Driver Summary �� 161

Utility gpio ��� 162

Displaying GPIO Settings �� 163

Reading GPIO �� 163

Writing GPIO �� 164

Modify Drive Levels �� 164

Chapter 11: 1-Wire Driver ■ ��� 165

1-Wire Line and Power �� 165

Line Driving ��� 165

Master and Slave �� 166

Protocol ��� 167

Reset��� 167

Data I/O ��� 167

Slave Support �� 168

Reading Temperature �� 169

Bus Master ��� 171

Slave Devices ��� 172

Reading the Temperature ��� 174

1-Wire GPIO Pin ��� 174

Chapter 12: I2C Bus ■ �� 175

I2C Overview ��� 175

SDA and SCL ��� 176

Multimaster and Arbitration �� 177

■ Contents

xvi

Bus Signaling �� 177

Data Bits �� 178

Message Formats �� 178

Which I2C Bus? ��� 179

I2C Bus Speed ��� 180

Tools �� 180

I2C API ��� 181

Kernel Module Support ��� 181

Header Files �� 182

open(2)�� 182

ioctl(2,I2C_FUNC) �� 183

ioctl(2,I2C_RDWR) ��� 184

Chapter 13: SPI Bus ■ �� 187

SPI Basics �� 187

SPI Mode ��� 188

Signaling ��� 189

Slave Selection �� 190

Driver Support ��� 191

SPI API ��� 192

Header Files �� 192

Open Device �� 193

SPI Mode Macros �� 193

Bits per Word �� 195

Clock Rate��� 195

Data I/O ��� 196

■ Contents

xvii

Close ��� 199

Write ��� 199

Read ��� 199

SPI Testing ��� 199

Appendix A: Glossary ■ �� 203

Appendix B: Power Standards ■ �� 209

Appendix C: Electronics Reference ■ ��� 211

Ohm’s Law ��� 211

Power �� 211

Units �� 212

Index �� 213

xix

About the Author

Warren W. Gay started out in electronics at an
early age, dragging discarded TVs and radios home
from public school. In high school he developed a
fascination for programming the IBM 1130 computer,
which resulted in a career plan change to software
development. After attending Ryerson Polytechnical
Institute, he has enjoyed a software developer career
for more than 30 years, programming mainly in C/C++.
Warren has been programming Linux since 1994 as an
open source contributor and professionally on various
Unix platforms since 1987.

Before attending Ryerson, Warren built an Intel
8008 system from scratch before there were CP/M
systems and before computers got personal. In later
years, Warren earned an advanced amateur radio
license (call sign VE3WWG) and worked the amateur

radio satellites. A high point of his ham radio hobby was making digital contact with the
Mir space station (U2MIR) in 1991.

Warren works at Datablocks.net, an enterprise-class ad-serving software services
company. There he programs C++ server solutions on Linux back-end systems.

xxi

About the Technical
Reviewer

Stewart Watkiss graduated from the University of Hull,
United Kingdom, with a master’s degree in electronic
engineering. He has been a fan of Linux since first
installing it on a home computer during the late 1990s.
While working as a Linux system administrator, he was
awarded Advanced Linux Certification (LPIC 2) in 2006
and created the Penguin Tutor website to help others
learning Linux and working toward Linux certification
(www.penguintutor.com).

Stewart is a big fan of the Raspberry Pi. He owns
several Raspberry Pi computers that he uses to help to

protect his home (Internet filter), provide entertainment (XBMC), and teach programming
to his two children. He also volunteers as a STEM ambassador, going into local schools to
help support teachers and teach programming to teachers and children.

http://www.penguintutor.com

xxiii

Acknowledgments

In the making of a book, there are so many people involved. I first want to thank Michelle
Lowman, acquisitions editor, for her enthusiasm for the initial manuscript and pulling
this project together. Enthusiasm goes a long way in an undertaking like this.

I’d also like to thank Kevin Walter, coordinating editor, for handling all my email
questions and correspondence and coordinating things. I greatly appreciated the
technical review performed by Stewart Watkiss, checking the facts presented, the
formulas, the circuits, and the software. Independent review produces a much better
end product.

Thanks also to Sharon Wilkey for patiently wading through the copy edit for me.
Judging from the amount of editing, I left her plenty to do. Thanks to Douglas Pundick,
development editor, for his oversight and believing in this book. Finally, my thanks to all
the other unseen people at Apress who worked behind the scenes to bring this text to print.

I would be remiss if I didn’t thank my friends for helping me with the initial
manuscript. My guitar teacher, Mark Steiger, and my brother-in-law’s brother, Erwin
Bendiks, both volunteered their time to help me with the first manuscript. Mark has no
programming or electronics background and probably deserves an award for reading
through “all that stuff.” I am indebted also to my daughter, Laura, and her husband,
Michael Burton, for taking the time to take my photograph while planning their wedding
at that time.

There are so many others I could list who helped me along the way. To all of you,
please accept my humble thanks, and may God bless.

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: The Raspberry Pi
	Models
	Hardware in Common
	Which Model?

	Chapter 2: Power
	Calculating Power
	Current Requirement
	Peripheral Power
	Model B Input Power
	Model A Input Power
	3.3 Volt Power
	Powered USB Hubs
	Power Adapters
	An Unsuitable Supply
	E-book Adapters
	Best Power Source
	Voltage Test

	Battery Power
	Requirements
	Headroom
	LM7805 Regulation
	DC-DC Buck Converter

	Signs of Insufficient Power
	No Power

	Chapter 3: Header Strips, LEDs, and Reset
	Status LEDs
	OK or ACT LED
	PWR LED
	FDX LED
	LNK LED
	10M or 10/100 LED

	Header P1
	Safe Mode
	Logic Levels
	GPIO Configuration at Reset
	1-Wire Driver

	Header P5
	Reset

	Chapter 4: SDRAM
	/proc/meminfo
	MemTotal
	MemFree
	Buffers
	Cached
	SwapCached
	Active
	Inactive
	Active(anon)
	Inactive(anon)
	Active(file)
	Inactive(file)
	Unevictable
	Mlocked
	SwapTotal
	SwapFree
	Dirty
	Writeback
	AnonPages
	Mapped
	Shmem
	Slab
	SReclaimable
	SUnreclaim
	KernelStack
	PageTables
	NFS_Unstable
	Bounce
	WritebackTmp
	CommitLimit
	Committed_AS
	VmallocTotal
	VmallocUsed
	VmallocChunk

	Physical Memory
	Memory Mapping
	Address
	Length
	Protection
	Flags
	File Descriptor
	Offset
	Return Value
	Volatile

	Virtual Memory
	Final Thoughts on SDRAM

	Chapter 5: CPU
	Identification
	Overclocking
	Execution
	Threads
	pthread Headers
	pthread Error Handling
	pthread_create(3)
	pthread_attr_t
	pthread_join(3)
	pthread_detach(3)
	pthread_self(3)
	pthread_kill(3)

	Mutexes
	pthread_mutex_create(3)
	pthread_mutex_destroy(3)
	pthread_mutex_lock(3)
	pthread_mutex_unlock(3)

	Condition Variables
	pthread_cond_init(3)
	pthread_cond_destroy(3)
	pthread_cond_wait(3)
	pthread_cond_signal(3)
	pthread_cond_broadcast(3)

	Chapter 6: USB
	Power
	Powered Hubs
	USB API Support
	libusb
	Include Files

	Chapter 7: Ethernet
	Wired Ethernet
	/etc/network/interfaces
	Changing to Static IP
	Test Static IP Address
	USB Adapters
	/etc/hosts File

	Wireless Ethernet
	Configuration

	Chapter 8: SD Card Storage
	SD Card Media
	SD Card Interface
	SD Card Basics
	Raspbian Block Size
	Disk Cache

	Capacities and Performance
	Transfer Modes
	SPI Bus Mode
	1-bit SD Mode
	4-bit SD Mode

	Wear Leveling

	Chapter 9: UART
	RS-232 Converter
	DTE or DCE

	RS-232
	Start Bit
	Data Bits
	Parity Bit
	Stop Bit(s)
	Baud Rate
	Break
	Flow Control
	Hardware Flow Control
	Software Flow Control

	Raspberry Pi UARTs
	ARM PL011 UART
	RTS/CTS Access
	PL011 UART Features

	Exclusive Serial Line Use
	Procedure
	Verification

	Serial API
	Header Files
	open(2)
	struct termios
	tcgetattr(3)
	tcsetattr(3)
	tcsendbreak(3)
	tcdrain(3)
	tcflush(3)
	tcflow(3)
	cfmakeraw(3)
	cfgetispeed(3)
	cfgetospeed(3)
	cfsetispeed(3)
	cfsetospeed(3)
	cfsetspeed(3)
	read(2)
	write(2)
	readv(2) and writev(2)
	Error EINTR

	Chapter 10: GPIO
	Pins and Designations
	Configuration After Reset
	Pull-up Resistors
	Configuring Pull-up Resistors
	Testing Pull-up State

	Logic Levels
	Drive Strength
	Input Pins
	Output Pins
	Driving LEDs
	Driving Logic Interfaces

	Driving Bi-color LEDs
	Testing Drive Strength

	GPIO Current Budget
	Configuration
	Alternate Function Select
	Output Pins
	Input Pins
	Alternate Function

	Sysfs GPIO Access
	export
	unexport
	gpioX
	Active Low

	Chip Level

	GPIO Tester
	GPIO Input Test
	Floating Potentials
	Reading Events
	Test Run

	Direct Register Access
	gpio_init()
	gpio_config()
	gpio_write()
	gpio_read()
	gpio_io.c

	GPIO Transistor Driver
	Driver Design
	Substitution
	Inductive Loads
	Driver Summary

	Utility gpio
	Displaying GPIO Settings
	Reading GPIO
	Writing GPIO
	Modify Drive Levels

	Chapter 11: 1-Wire Driver
	1-Wire Line and Power
	Line Driving
	Master and Slave
	Protocol
	Reset
	Data I/O

	Slave Support
	Reading Temperature
	Bus Master
	Slave Devices
	Reading the Temperature

	1-Wire GPIO Pin

	Chapter 12: I2C Bus
	I2C Overview
	SDA and SCL
	Multimaster and Arbitration
	Bus Signaling
	Data Bits
	Message Formats
	Which I2C Bus?
	I2C Bus Speed
	Tools
	I2C API
	Kernel Module Support
	Header Files
	open(2)
	ioctl(2,I2C_FUNC)
	ioctl(2,I2C_RDWR)

	Chapter 13: SPI Bus
	SPI Basics
	SPI Mode
	Signaling
	Slave Selection
	Driver Support
	SPI API
	Open Device
	SPI Mode Macros
	Bits per Word
	Clock Rate
	Data I/O
	Close
	Write
	Read

	SPI Testing

	Appendix A: Glossary
	Appendix B: Power Standards
	Appendix C: Electronics Reference
	Ohm’s Law
	Power
	Units

	Index

