
Shelve in
Web Development/General

User level:
Beginning–Intermediate

RELATED

BOOKS FOR PROFESSIONALS BY PROFESSIONALS
®

Clem
ents

SOURCE CODE ONLINE

www.apress.com

Ruby Quick Syntax Reference
Ruby Quick Syntax Reference is a condensed code and syntax reference
to the Ruby scripting language. It presents the essential Ruby syntax in a
well-organized format that can be used as a handy reference.

You won’t find any technical jargon, bloated samples, drawn out
history lessons, or witty stories in this book. What you will find is a language
reference that is concise, to the point and highly accessible. The book is
packed with useful information and is a must-have for any Ruby programmer.

In Ruby Quick Syntax Reference, you will find:

• A concise reference to the Ruby language syntax
• Short, simple, and focused code examples
• A well laid out table of contents and a comprehensive index,

allowing easy review

9 781430 265689

51999
ISBN 978-1-4302-6568-9

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

v

Contents at a Glance

About the Author �� xiii

About the Technical Reviewer ��� xv

Acknowledgments ��� xvii

Introduction �� xix

Chapter 1: Introducing Ruby ■ ��� 1

Chapter 2: Operators ■ �� 9

Chapter 3: Strings ■ ��� 15

Chapter 4: Arrays ■ ��� 21

Chapter 5: Hashes ■ �� 31

Chapter 6: Numbers ■ �� 39

Chapter 7: Booleans ■ ��� 47

Chapter 8: Objects ■ �� 53

Chapter 9: Loops and Iterators ■ ��� 63

Chapter 10: Functions and Methods ■ ��� 73

Chapter 11: Classes and Modules ■ �� 83

Chapter 12: Blocks, Procs, and Lambdas ■ ������������������������������������� 93

Chapter 13: Errors and Exceptions ■ ��� 101

■ Contents at a GlanCe

vi

Chapter 14: Input/Output ■ �� 109

Chapter 15: Files and Directories ■ ��� 119

Chapter 16: Metaprogramming ■ �� 129

Index �� 137

xix

Introduction

Welcome to Ruby Quick Syntax Reference and thank you for purchasing and reading
this book. During this book we will investigate and discover the basics of the Ruby
programming language, along with discovering the syntax used, the way that the Ruby
programming language works, and overcoming any pitfalls or caveats with the Ruby
language.

Ruby is a powerful and easily language to discover and learn, if you don’t know
how to program Ruby is a very simple language to pick up and learn; but if you have
programmed previously, such as in PHP, Perl, Pascal or C you will find Ruby an easy
language to grasp.

Ruby is a very pragmatic language, often having multiple ways of doing things; I will
highlight within the book the options available to you as a programmer, along with any
pitfalls to avoid.

We won’t cover any bloated samples, or drawn out history lessons; but instead quick
details as to what we can achieve with the Ruby language, and quick syntax notes as to
how to write Ruby code. This book has been written to learn from scratch, with very little
previous experience programming; or as a quick syntax guide to pick up and remind you
of the syntax and abilities of the Ruby language.

Ruby was designed and developed by Yukihiro “Matz”Matsumoto in the mid-90’s,
but is now used across the world, and often is commonly known when used within
the framework Rails (Ruby on Rails), but can also be used on it’s own, or with other
frameworks. Ruby is used by sites such as Twitter, Shopify, Airbnb and Github.

I hope you enjoy the book, and see you in Chapter 1.

1

Chapter 1

Introducing Ruby

Ruby is a dynamic, object-oriented, programming language with an expressive syntax.
It takes inspiration from several languages such as Smalltalk, Lisp, and Perl, adding
features that make it very pleasant to program with. In recent years, Ruby exploded in
popularity mainly thanks to the success of web development frameworks such as Ruby on
Rails and Sinatra. However, it is also used with success in many other different contexts
such as computer security (Metasploit), voice communications (Adhearsion), and server
configuration (Opscode Chef and Puppet), to name just a few.

Installing Ruby
In this book, we use the latest stable version available, which is, at the time of writing, the
2.0.0-p247. If you are using a Linux distribution or Mac OS X, you’ll find a Ruby interpreter
already installed. However, it might be an outdated version and usually it also has some
limitations caused by the package manager on your operating system (for example, apt
for Debian/Ubuntu linux distributions).

There are several ways to install the latest version of the Ruby interpreter, depending
on the operating system you are using. If you already have this version installed, feel free
to skip the following section.

Installing on Linux or Mac OS X
Even if Linux and Mac OS X are completely different operating systems, they both share
the same UNIX philosophy and tools under the hood, so we have grouped them in the
same section.

It is usually a good idea to install Ruby from source as this gives you more control
over the installed version and, sometimes, lets you customize the installation. However,
instead of manually downloading and compiling the Ruby source code, we are going to to
use a tool called Ruby Version Manager (https://rvm.io) that helps you to easily install,
manage, and work with multiple Ruby environments and interpreters. This means that, in
theory, you can use several versions installed. Before you can install RVM and Ruby you
need to install some dependencies. These can be development tools such as the compiler,
or just external libraries like OpenSSL.

Chapter 1 ■ IntroduCIng ruby

2

Linux Dependencies
On Debian/Ubuntu Linux, you can install these dependencies using the following
command inside a terminal:

sudo apt-get install build-essential openssl libreadline6 libreadline6-
dev curl git-core zlib1g zlib1g-dev libssl-dev libyaml-dev libsqlite3-dev
sqlite3 libxml2-dev libxslt-dev autoconf libc6-dev ncurses-dev automake
libtool bison subversion pkg-config libgdbm-dev libffi-dev libreadline-dev

Some of the preceding packages are already installed because they are pretty
common dependencies. This is not a problem; the apt tool manages this for you
automatically.

If you are using another Linux distribution (Fedora/RedHat/CentOS, Arch Linux,
etc.), don’t worry, they all have a package management system that will help you install
the dependencies.

Mac OS X Dependencies
On Mac OS X there isn’t a default package manager; however, most people use
Homebrew (http://brew.sh) and so do we. To do this, you need to have Xcode installed
along with its command line tools. If you don’t have Xcode installed, we suggest you
install it from the Apple Mac App Store and install the command line tools in Xcode
Preferences (Figure 1-1)

Figure 1-1. Command line tools

Chapter 1 ■ IntroduCIng ruby

3

Once Xcode and its command line tools are installed, you can proceed with the
Homebrew installation. As we mentioned previously, Mac OS X ships with its default
Ruby, we are going to use it to bootstrap Homebrew, which is written in Ruby too. Open
Term.app and run the following command:

ruby -e "$(curl -fsSL https://raw.github.com/mxcl/homebrew/go)"

To check whether all the process went correctly, run:

brew doctor

This checks whether your system has all the tools and settings to run Homebrew
properly. For example, you might be faced with this error:

Error: No such file or directory - /usr/local/Cellar

Don’t worry, it’s just telling you that the default directory used by Homebrew to store
all its stuff is missing. You can fix this with the following commands:

sudo mkdir /usr/local/Cellar
sudo chown -R `whoami` /usr/local

Setting Up RVM
Now that you have the tools for compiling and installing programs from source, you can
finally install RVM. For now it doesn’t matter if you are on Linux or Mac OS X, in both
cases you have all the requirements. Run the following command inside your shell:

curl -L get.rvm.io | bash

This command installs and sets up RVM tools in your user directory, which means
that RVM is available only for your current user and all the files are installed under your
home directory. Once the installation is complete, you need two more steps. Run the
following command to use RVM in the current shell:

source ~/.rvm/scripts/rvm

Add the following line to your ~/.profile to load RVM every time you open your
terminal:

[[-s "$HOME/.rvm/scripts/rvm"]] && source "$HOME/.rvm/scripts/rvm"

As we have already seen for Homebrew, even RVM has a tool to check that all its
requirements are met. Run the following command:

rvm requirements

https://raw.github.com/mxcl/homebrew/go

Chapter 1 ■ IntroduCIng ruby

4

If you have any missing required packages, you will need to install them before
continuing by running brew install <missing package name> or apt-get install
<missing package name>.

Installing Ruby 2.0.0
As stated before, RVM lets you install and use different Ruby versions on your system with
ease. However, for our purposes, we are going to install only the latest stable available
release. In your terminal, run the following command:

rvm install 2.0.0-p247

Now RVM downloads, compiles, and installs the specified version. Once it finishes,
you need to set it as default Ruby interpreter and check that it works:

rvm use 2.0.0-p247 --default
ruby –v

The output may vary depending on the operating system you are using; however it
should look something like this:

ruby 2.0.0p247 (2013-06-27 revision 41674) [x86_64-darwin12.4.0]

Installing on Windows
On Windows things are bit different. Download the official installer on
http://rubyinstaller.org/downloads/ , then run it and you’re done.

A Quick Tour
Now we are ready for a quick tour of Ruby—just to get your feet wet. Don’t worry
if something is not clear at first glance, the code snippets shown here are just for
demonstration, each detail will be explained in later chapters of this book.

http://rubyinstaller.org/downloads/

Chapter 1 ■ IntroduCIng ruby

5

irb: The Interactive Ruby Shell
Before starting with examples, we’ll introduce irb (short for interactive Ruby), a Ruby
shell. In other words, you type a Ruby expression at the irb prompt, and the expression
will be evaluated and displayed. In this way, you can quickly try out small snippets
without the need to edit a file and the run it. Open a terminal and run irb:

irb(main):001:0> 1 + 1
=> 2
irb(main):002:0> 'hello ' * 3
=> 'hello hello hello'

Type exit to close irb.

Object-Oriented
If you are not new to programming, you might have already heard of object-oriented
languages such as Java or C#. However, Ruby is a bit different: it is completely object-
oriented. In Ruby every value is an object, even numbers and booleans. In the following
examples, you can see how a method is called on basic objects such as a numeric literal
and a string. The # character indicates a comment (anything after it is not executed)
and => is a commonly used convention to indicate the value returned by the
commented code.

1.odd? # => true
1.even? # => false
'hello'.reverse # => 'olleh'
'hello'.length # => 5

Also note how parentheses are omitted—they are optional and make the code more
readable. We’ll see several, more focused examples in the next chapters.

Blocks and Iterators
There are methods called iterators that act as loops. They take a piece of code called a
block to serve as the body of the loop and to be executed at each iteration. Here are some
simple examples:

1.upto(5) {|n| puts n } # Prints '12345'
a = [1, 2, 3] # Create an array literal
a.each do |n| # Multiline block call
 print n * 2 # Prints '246'
end
a.map {|n| n * 2} # => [2, 4, 6]

Chapter 1 ■ IntroduCIng ruby

6

Although blocks are mainly used for loop-like constructs, it is also possible for
methods that invoke the block only once:

File.open('example.txt') do |f| # Open the file and pass the stream to block
 print f.readline # Read from the file
end # Close the stream when the block ends

Modules
Modules define a namespace, a sandbox that groups together methods, classes, and
constants and can be included in classes to extend their behavior. For example:

module Greeter # Define a module called Greeter
 def greet # Define a method called 'greet'
 puts "Hello!"
 end
end

class Person # Define a class called Person
 include Greeter # Include the Greeter module
end

alice = Person.new # Instantiate a new Person
alice.greet # Call the method 'greet' from the instance

Again, this is just a simple introduction; we’ll discuss this more in the chapters
that follow.

Duck Typing
Unlike other object-oriented languages, the type of an object is defined more by its
methods and attributes rather than from its class. This is called duck typing because of
the motto:

If it walks like a duck and talks like a duck, then I treat it like a duck

There is no need to define an object as a certain type as in most other object-oriented
languages. This makes the syntax easy for new developers using Ruby for the first time.

Let’s use a simple example to show how it works:

define a simple method that accepts any object with a 'each' method
def duck_printer(object)
 if object.respond_to? :each # check if object has a method called 'each'
 object.each {|n| print n } # iterates over the contents and print them
 else # otherwise raise an error
 raise "passed argument doesn't provide #each method."
 end
end

Chapter 1 ■ IntroduCIng ruby

7

define some variables with different classes
hash = {a: 1, b: 2, c: 3}
array = [1, 2, 3]
string = 'hello'

with an Hash
duck_printer hash # Prints '[:a, 1][:b, 2][:c, 3]'

with an Array
duck_printer array # Prints '123'

with a String
duck_printer string # Raises a RuntimeError with our error message

Where to Find Ruby Documentation
There are a lot of resources to dive in to the Ruby documentation, both on Internet and on
your own computer as well.

RDoc and ri
Like many other languages, Ruby has adopted an internal documentation system called
RDoc. This documentation can be extracted from its source and exported to HTML or
ri formats. The ri tool is a local documentation viewer that can be invoked from your
terminal. For example, if you want to find documentation for the Hash class, just type:

ri Hash

To exit, type q. You can also get information on a particular method by passing its
name as a parameter:

ri Hash.merge
ri Hash#each

If the method you pass to ri occurs in more than one class or module, then it
shows all the implementations on the same page. Finally, you can search and read
documentation online at http://ruby-doc.org, just be sure to choose the correct Ruby
documentation for your installed version.

http://ruby-doc.org/

9

Chapter 2

Operators

Expressions
Unlike other programming languages, in Ruby there isn’t a distinction between
statements and expressions: everything is evaluated as an expression that produces a
return value. The simplest expressions are:

•	 literals: values such as numbers, strings, arrays, hashes, etc…

•	 variable and constant references: A variable (or a constant) is
referenced by citing its name. For example:

x = 1 # assignment expression
x # variable reference expression
MY_CONST # constant reference

•	 method invocations: the (return) value of a method invocation is the
value of the last evaluated expression in the body of the method.

Operators
Expressions can be combined through operators. An operator represents an operation
(such as addition, multiplication or even a comparison) that is performed on one or
more values, called operands, to build another, bigger, expression. For example, we can
take two numeric literals such as 2 and 3, then use the + operator to combine them and
produce the value 5. There are three characteristics you need to know about operators to
use them in proper way: arity, precedence and associativity.

The arity of an operator is the number of operands it operates on. For example
binary operators expect two operands, while the unary operators expect only one.

The precedence of an operator affects the order of evaluation of an expression.
For example:

1 + 2 * 2 # => 5

Chapter 2 ■ OperatOrs

10

As you can see, the addition operator has a lower precedence than the multiplication
operator, that’s why the above expression evaluates to 5 and not 6. However, you are free
to change the default order of precedence by grouping specific sub expressions inside
parentheses. Here is how we can obtain a different result by modifying the above example:

(1 + 2) * 2 # => 6

We have grouped the two addition operands so that the expression inside the
parentheses would be evaluated as a whole value before it becomes another operand for
the multiplication.

The associativity of an operator specifies the order of evaluation when the same
operator (or operators with the same precedence) appears sequentially in an expression.
Each operator has a different order to evaluate an expression: left to right, right to left
and the case where an operator is not associative, so that you need to use parentheses to
determine the desired evaluation order.

As you may already know, most arithmetic operators are left-associative, which
means that 2 + 2 - 3 is evaluated as (2 + 2) - 3 rather than 2 + (2 - 3). On the
other end, exponentiation is right-associative, so 2**3**4 is evaluated as 2**(3**4).

Several Ruby operators are implemented as methods, allowing classes (or even
single objects) to define new meanings for those operators. For example, the String class
implements the + operator to concatenate two strings. Table 2-1 at the end of the chapter,
shows a list of the main Ruby operators, ordered by higher to lower precedence.

At the end of this chapter, you’ll find a table to summarize all the operators,
meanwhile, we’ll explain some of them in the next pages.

Arithmetic: + - * / %
The arithmetic operators perform on all Numeric classes, this is a very common behavior
in other programming languages. Other classes, might use some of these operators
to perform other operations. For example, the String class uses the + operator to
concatenate two strings and the * operator is used to repeat it, while Array uses + and -
operator to respectively perform array concatenation and array subtraction.

1 + 1 # => 2
5 / 2 # => 2
5 % 2 # => 1
"hello" + "world" # => "hello world"
"hello" * 3 # => "hello hello hello"
2 / 0 # => ZeroDivisionError
2.0 / 0 # => NaN
[1, 2] + [3, 4] # => [1, 2, 3, 4]
[1, 2] - [1] # => [2]

Chapter 2 ■ OperatOrs

11

Shift or Append: << >>
As we have already seen with arithmetic operators, the << and >> operators can behave
differently, depending by the classes they are operating on. The Fixnum and Bignum
classes, define the << and >> operators to shift the bits of the left-hand respectively to the
left and to the right.

10 << 1 # => 20
10 >> 1 # => 5

On the other hand, the << operator is used by String, Array, IO and many other
classes as an append operator:

"hello" << "world" # => "hello world"
"hello" << "appended " << "world" # => "hello appended world"
[] << 1 # => [1]
[] << 1 << 2 # => [1, 2]
STDOUT << "hello" # prints "hello" to standard output stream

Comparison: < <= > >= <=>
The comparison operators are used to make assertions about the relative order of two
values. Usually, some classes are ordered by their values: numbers are ordered by
magnitude, strings are ordered alphabetically and dates are ordered chronologically.

2 > 1 # => true

"hello" > "a" #=> true
"hello" > "z" #=> false

now = Time.now
sleep 5
later = Time.now
now > later # => false

However, classes may define their own comparison operators individually or, more
commonly, by defining the <=> operator which is a general purpose comparison operator
that returns the relative order of two values: it is -1 if the left-hand value is less than the
right-hand operand, +1 if the left-hand is greater than the right-hand, and 0 if they are
equal. The operator <=> alone, doesn’t come too much in handy, but when you define it
and include the Comparable module inside a class, then you’ll get the other comparison
operators such as > <, ==, and >= <=. Here is a simple example:

class Person
 include Comparable
 attr_reader :name

 def initialize(name)
 @name = name
 end

Chapter 2 ■ OperatOrs

12

 # define the comparison operator by using the 'name' attribute
 def <=> other
 self.name <=> other.name
 end
end

mario = Person.new 'Mario'
luigi = Person.new 'Luigi'

mario > luigi # => true

As you can see, in this case the comparison is based on the Person’s name attribute
(a String value), however, we can change its behavior by considering another field or
attribute, such as age (Numeric) or birthday (Time, Date or similar).

Booleans: && || ! and or not
Boolean operators are built into the Ruby language and are not based on methods like
we’ve seen with comparison operators. This means, for example, that classes cannot define
this kind of operator. Unlike many other programming languages, Ruby doesn’t have
boolean types, however it defines true or false special values. As a rule of thumb, the
false and nil are considered false, true in all other cases. Let’s see some basic example:

x = 5
x > 0 && x < 10 # => true AND true => true
x < 0 || x == 5 # false OR true => true
!(x > 0) # => !true => false

In this case, there are two comparisons which return a boolean value. However,
because the non-null values of the elements are considered true, the return value of a
boolean expression is either the value of the elements:

y = 6
z = false
x && y # => 5 AND 6 => 6
z && x # => false AND 5 => false
z || x # => false OR 5 => 5
result = !z && (x || y) # => true && (5 || 6) => 5

As you can see, the returned value depends by the result of the boolean expression.
For example, the && operator first evaluates the left-hand operand and returns that
value if the expression is nil or false, otherwise it returns the value of the right-hand
expression. A side advantage of this is the opportunity to execute expressions in a very
succinct and declarative way. Consider the following simple example:

def max(x, y)
 # the righthand expression would be skipped if x is not greater than y
 x > y && return x
 return y
end

Chapter 2 ■ OperatOrs

13

Beside the fact that the above method might be written in several different ways, the
point here is to show how the boolean operator might skip the righthand operator in case
the first expression is false.

Until now we have used the high precedence versions of the boolean operators, but
there are also the low precedence ones: and, or and not, respectively referred to &&, ||and !.
The following example shows how this precedence gap can influence the results of two
apparently similar constructs:

x || y && nil # => x
x or y and nil # => nil

Ranges: .. …
Ranges are a very common occurrence in programming, for example when referring to
time intervals (eg: from Monday to Sunday). Ruby uses ranges to implement sequences,
conditions and intervals.

Sequences are the most common usage of ranges in Ruby. They have a start, an end
point and a way to produce successive values. To do this, you need to use the range ..
operators and The first form creates an inclusive range, while the three-dot form
creates a range that excludes the last value:

1..10 # from 1 to 10
1...10 # from 1 to 9
'a'..'Z' # all characters from 'a' to 'Z'

Ranges can be converted to Array or Enumerator using to_a or to_enum.

(1..10).to_a # => [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
alphabet = ('a'..'z').to_enum
alphabet.next # => 'a'
alphabet.next # => 'b'

Ranges as conditions are a bit less common in everyday Ruby programming, however
it has its benefits for certain constructs. Here’s a brief example that prints a set of lines
from standard input where the first line in each set contains the word start and the last
line contains end.

while line = gets
 puts line if line =~ /start/.. line =~ /end/
end

Ranges as intervals are more common than the use as conditions. It is possible to
check if some value falls within the interval represented by a range using the === operator:

(1..10) === 5 # => true
(1..10) === 'a' # => false
('a'..'z') === 'A' # => false

Chapter 2 ■ OperatOrs

14

Table 2-1. Operators precedence, high to low precedence

Operator Assoc. Method Operation

! ~ Right • Boolean NOT, bitwise complement

** Right • Exponentiation

+ - Right • Unary plus and minus

* / % Left • Multiplication, division, modulo

+ - Left • Plus and minus

<< >> Left • Bitwise shift-left and shift-right

& Left • Bitwise AND

| ^ Left • Bitwise OR and XOR

< <= >= > Left • Comparison

== === != =~ !~ !~ <=> • • Equality and pattern matching

&& and || Left • Boolean AND and OR

.. ... • • Range creation

?: Left • Conditional (ternary operator)

rescue Right • Exception handling modifier

= **= *= %= += -= <<=
>>= &&= ||= |= ^=

Right • Assignment

not and or Left • Boolean NOT, AND and OR

if unless while until • • Expression modifiers

begin/end • • Block expression

15

Chapter 3

Strings

String Literals
A string within Ruby is a sequence of one of more bytes, typically a set of characters.
These can be created, manipulated, and output when required. Strings are generally
wrapped in single or double quotation marks:

2.1.0 :001 > puts "Hello World"
Hello World

2.1.0 :001 > puts 'Hello World'
Hello World

However if the string contains another double/single quote, these will need to be
escaped in order for the string to be complete, and the code to compile:

2.1.0 :001'> puts 'Welcome to John's website'
SyntaxError: (irb):5: syntax error, unexpected tIDENTIFIER, expecting
end-of-input
puts 'Welcome to John's website' #
 ^
from /Users/matt/.rvm/rubies/ruby-2.1.0/bin/irb:1:in `<main>'
2.1.0 :001 > puts 'Welcome to John\'s website'
Welcome to John's website

Because John's contains a single quote mark, and the string is contained in single
quotes, a backslash is required before the quote mark within the string for the code to
compile and run.

There is one minor difference between using single and double quotes within Ruby,
in regards to the supported escape characters that are permitted.

Single quotes support:

\' = Escaping a single quote using a backslash
\\ = Escaping a backslash with another backslash

Chapter 3 ■ StringS

16

Double quotes support a much broader range of escape characters as well as
embedding Ruby variables and code within the string literals. The embedding of Ruby
variables/code within a string literal is known as interpolation:

\" = Escaping a double quote using a backslash
\\ = Escaping a backslash with another backslash
\a = Bell/Alert
\b = Backspace
\r = Carriage Return
\n = New Line
\s = Space
\t = Tab

puts "Welcome to John's Website\nWhich page would you like to visit"
page = gets.chomp
puts "Welcome to John's #{page}!" #=> "Welcome to John's Blog!"

puts "2 + 2 = #{2+2}" #=> 2 + 2 = 4

puts "Seconds/day: #{24*60*60}" #=> Seconds/day: 86400

There are also three other alternatives to the single/double quotes used previously.
We can use a here document, which is ideal for long passages of text as follows:

puts text = <<END
Lorem ipsum dolor sit amet, consectetur adipiscing elit
Donec at neque sapien. Donec eu libero quis erat
volutpat venenatis. Vivamus suscipit elit eu odio facilisis
END

#=> Lorem ipsum dolor sit amet, consectetur adipiscing elit
Donec at neque sapien. Donec eu libero quis erat
volutpat venenatis. Vivamus suscipit elit eu odio facilisis

We can also use %q and %Q start delimited strings, which allow you to specify the start
delimiter and will continue until the next occurrence of the delimiter is reached.

%q{Hello World, Welcome to John's Website!}
%q/Hello World, Welcome to John's Website/
%q*Hello World, Welcome to John's Website*
#=> Hello World, Welcome to John's Website

In the previous code samples we have used the function puts, which outputs the
following string, followed by a new line by default. We can also instead use the function
print, which does not output a new line by default.

Chapter 3 ■ StringS

17

2.1.0 :001 > print "Hello", "World", "Welcome", "to", "my", "Website"
HelloWorldWelcometomyWebsite

2.1.0 :002 > puts "Hello", "World", "Welcome", "to", "my", "Website"
Hello
World
Welcome
to
my
Website

String Methods
A number of string manipulation methods are made available within Ruby to easily
manipulate the string. Some of the most common manipulation methods are

"Hello John".downcase #=> "hello john"
"Hello John".upcase #=> "HELLO JOHN"
"hello john".capitalize #=> "Hello john"
"Hello John".swapcase #=> "hELLO jOHN"
"Hello John".reverse #=> "nhoJ olleH"

These string manipulation methods can also be used inline to manipulate a variable
by appending an exclamation mark to the method:

hello = "Hello John"
hello.downcase!
puts hello #=> "hello john"

Further string methods are available within Ruby to interpret a string in a
number of ways:

"Hello John".length #=> 10
"Hello John".empty? #=> false
"1000".to_s #=> "1000" #Cast & Output to String
"1000".to_i #=> 1000 #Cast & Output to Integer
"1000".to_f #=> 1000.0 #Cast & Output to Float

Concatenating Strings
Within Ruby there are a number of ways to concatenate strings together. These all have
minor differences to their functionality, but more-so come down to personal preference.

puts "Hello " << "world" #=> "Hello world"
puts "Hello " + "world" #=> "Hello world"

Chapter 3 ■ StringS

18

text = "world"
puts "Hello #{text}" #=> "Hello world"

The main difference between the + and << concatenations are that << changes the
variable on the left, where as the + does not.

msg = "Hello"

puts msg + "World" #this doesn't change the variable
puts msg #=> Hello

puts msg << "World" #this changes the variable
puts msg #=> World

Repeating Strings
We can use arithmetic to repeat strings when required. This is written by providing a
String, followed by the arithmetic symbol for times *, then the number of times that the
string should be repeated.

puts "Hello"*3 #=> "HelloHelloHello"

Extracting Strings
Within Ruby we have two methods to extract subsets of strings. These are substring and
character extraction.

Character extraction extracts a single character from a string by providing the
characters location as an integer. Note that the first position is notated as position 0:

puts "Hello"[1] #=> "e"

We can also use negative positions to output a character by position from right to left
(note that the last character is notated as -1):

puts "Hello"[-1] #=> "o"

Alternatively we can output a number of characters from within a string, by using
substring, rather than character extraction. We use the same notation of character
positions (0 = First Character), however we supply a second parameter to show the length
of the substring. This means that [0,3] would detail starting at the first character (0), and
outputting 3 characters (3).

puts "Hello"[0,3] #=> "Hel"

Chapter 3 ■ StringS

19

Utilizing Strings
The Ruby String class is one of the largest Ruby classes, with over 150 methods available
to utilize. We are going to interpret a text file of DVDs within a collection using String
methods to output a list of available films under 125 minutes that are suitable for a
14 year old by:

100000 | 2:17 | Skyfall | 12
100001 | 2:06 | The Hurt Locker | 15
100002 | 1:45 | 21 Jump Street | 15
100003 | 1:40 | Finding Nemo | U

To start off, we set the preceding text into a variable, loop through per line and then
split each column when a vertical bar is found (with optional spaces):

dvds = <<EOF
100000 | 2:17 | Skyfall | 12
100001 | 2:06 | The Hurt Locker | 15
100002 | 1:45 | 21 Jump Street | 15
100003 | 1:40 | Finding Nemo | U
EOF

dvds.chomp.split(/\n/).each do |line|
 id, length, name, rating = line.chomp.split(/\s*\|\s*/)
 puts name
end

#=>
Skyfall
The Hurt Locker
21 Jump Street
Finding Nemo

We now need to calculate from this list the suitable films for the 14 year old to watch.
We use some simple if statements utilizing string comparisons/methods to output the
suitable films.

dvds = <<EOF
100000 | 2:17 | Skyfall | 12
100001 | 2:06 | The Hurt Locker | 15
100002 | 1:45 | 21 Jump Street | 15
100003 | 1:40 | Finding Nemo | U
EOF

Chapter 3 ■ StringS

20

dvds.chomp.split(/\n/).each do |line|
 id, length, name, rating = line.chomp.split(/\s*\|\s*/)
 if rating.to_i <= 14
 hours, mins = length.split(/:/)
 min_length = hours.to_i*60+ mins.to_i
 if min_length < 125
 puts "\aYAY! We can watch #{name}"
 else
 puts "Cannot watch #{name}, too long"
 end
 else
 puts "Cannot watch #{name}, only suitable for #{rating}"
 end
end

#=>
Cannot watch Skyfall, too long
Cannot watch The Hurt Locker, only suitable for 15
Cannot watch 21 Jump Street, only suitable for 15
YAY! We can watch Finding Nemo

21

Chapter 4

Arrays

Ruby arrays are integer–indexed arrays starting at position 0, rather like Java or C.
Negative values can be used to retrieve values from the array from the end, so −1 would
show the last element of an array, and −2 would show the second from last element.

2.1.0 :001 > array = [1,10,3,1]
 => [1, 10, 3, 1]
2.1.0 :002 > array[0]
 => 1
2.1.0 :003 > array[-1]
 => 1
2.1.0 :004 > array[-2]
 => 3

Creating Arrays
An array can be created within ruby in a number of different syntaxes, the simplest is the
use of the literal constructor []. Arrays are not type dependent, and therefore can contain
multiple data types such as another array, a string and an integer.

2.1.0 :001 > array = [2, "Hello", 10.02]
 => [2, "Hello", 10.02]

An array can also be initialized by using the new method from the Array class; this
can be called with 0, 1, or 2 arguments. The first optional parameter is the number of
elements to initialize the array with; the second optional parameter is the default value
for each of these elements.

2.1.0 :001 > array = Array.new
 => []
2.1.0 :002 > Array.new(5)
 => [nil, nil, nil, nil, nil]
2.1.0 :003 > Array.new(4, 10.00)
 => [10.0, 10.0, 10.0, 10.0]

Chapter 4 ■ arrays

22

Note that the default value is populated into each element of the array, and therefore
is only normally used to initialize an array that will be updated afterward.

To set an array to have default elements that are objects, rather than primitive
data-types, the block syntax can be used instead:

2.1.1 :001 > array = Array.new(4) {Hash.new}
 => [{}, {}, {}, {}]

Accessing Array Elements
Within Ruby, a number of methods are made available to us, in order to access array
elements, like used previously when accessing strings as shown previously.

The [] method can be used to retrieve individual elements, using the integer index
position (starting from 0):

2.1.1 :001 > array = [1,10,3,1]
 => [1, 10, 3, 1]
2.1.1 :002 > array[0]
 => 1
2.1.1 :003 > array[3]
 => 1
2.1.1 :004 > array[2]
 => 3

Again, similar to accessing a string, a negative index position can be used:

2.1.1 :001 > array = [1,10,3,1]
 => [1, 10, 3, 1]
2.1.1 :002 > array[-2]
 => 3

Alternatively, pairs and ranges of indexes can be used to extract portions of the array.
A pair of indexes is shown as the initial position, followed by the length to extract:

2.1.1 :001 > array = [1,10,3,1]
 => [1, 10, 3, 1]
2.1.1 :002 > array[1,3]
 => [10, 3, 1]
2.1.1 :003 > array[1..2]
 => [10, 3]

Chapter 4 ■ arrays

23

In addition to the preceding methods of extracting data by position, Ruby provides
an at method that works identically to the [] method

2.1.1 :001 > array = [1,10,3,1]
 => [1, 10, 3, 1]
2.1.1 :002 > array.at(1)
 => 10
2.1.1 :003 > array.at(5)
 => nil

Using the preceding methods can cause an issue when attempting to extract an
element, which does not exist from the array; this would be returned as a nil value. As an
alternative we can use the fetch method, which takes a default value on the element not
existing within our array.

2.1.1 :001 > array = [1,10,3,1]
 => [1, 10, 3, 1]
2.1.1 :002 > array.at(5)
 => nil
2.1.1 :003 > array[5]
 => nil
2.1.1 :004 > array.fetch(5)
IndexError: index 5 outside of array bounds: -4...4
 from (irb):4:in `fetch'
 from (irb):4
 from /Users/matt/.rvm/rubies/ruby-2.1.1/bin/irb:11:in `<main>'
2.1.1 :005 > array.fetch(5,"error")
 => "error"

Accessing Array Elements (Part 2)
Similar to the string extraction, we also have a number of methods that can be used
with an array to extract data and information about the array. Using the method named
“methods” will detail a list of all available methods that we can use to extract data from
our array:

2.1.1 :001 > [1,2,6].methods
 => [:inspect, :to_s, :to_a, :to_h, :to_ary, :frozen?, :==, :eql?, :hash,
:[], :[]=, :at, :fetch, :first, :last, :concat...

Chapter 4 ■ arrays

24

A few of these are detailed here.
Length – Output the Array Length (we can also use Size or Count):

2.1.1 :001 > [1,2,6].length
 => 3
2.1.1 :002 > [1,2,6].size
 => 3
2.1.1 :003 > [1,2,6].count
 => 3

First/Last – Output the First/Last element of the array:

2.1.1 :001 > [1,2,6].first
 => 1
2.1.1 :002 > [1,2,6].last
 => 6

Sample – Output a random element of the array:

2.1.1 :001 > [1,2,6].sample
 => 6
2.1.1 :002 > [1,2,6].sample
 => 1
2.1.1 :003 > [1,2,6].sample
 => 1

Empty – Query whether the array is empty:

2.1.1 :001 > [1,2,6].empty?
 => false

Include – Check whether the array contains an element with a particular value:

2.1.1 :001 > [1,2,6].include?(5)
 => false

Sort – Reorders the array by values:

2.1.1 :001 > [1,6,2].sort
 => [1, 2, 6]

Shuffle – Randomizes the order of the arrays elements:

2.1.1 :014 > [1,6,2].shuffle
 => [2, 6, 1]
2.1.1 :015 > [1,6,2].shuffle
 => [2, 1, 6]

Chapter 4 ■ arrays

25

Adding/Removing Items from an Array
Within Ruby we can also add and remove items within an array after the array is
initialized. Depending on the action required and the position of the new elements, there
are a number of methods available.

Adding a new element to the end of an array:

2.1.1 :001 > [1,6,2].push(10)
 => [1, 6, 2, 10]

An alternative syntax to push is <<:

2.1.1 :003 > [1,6,2] << 10
 => [1, 6, 2, 10]

However the push method adds an element to the end of an array; if we need to add
an element to the beginning of an array we can instead use unshift:

2.1.1 :004 > [1,6,2].unshift(10)
 => [10, 1, 6, 2]

If we need to add an element (or elements) to the middle of an array, we can use the
insert method. For this we specify the index position (beginning at 0) for the insert, and
the elements to insert:

2.1.1 :005 > [1,6,2].insert(2,10)
 => [1, 6, 10, 2]
2.1.1 :006 > [1,6,2].insert(2,10,12)
 => [1, 6, 10, 12, 2]

The preceding methods allow us to add elements to various positions of an array; we
have similar methods available to remove elements from an array. The pop method is the
reverse of the push method; simply removing the last element:

2.1.1 :001 > array = [1,6,2]
 => [1, 6, 2]
2.1.1 :002 > array.pop
 => 2
2.1.1 :003 > array
 => [1, 6]

To retrieve, and remove the first element from the array we use shift (the opposite
of unshift):

2.1.1 :001 > array = [1,6,2]
 => [1, 6, 2]
2.1.1 :002 > array.shift
 => 1
2.1.1 :003 > array
 => [6, 2]

Chapter 4 ■ arrays

26

Like the insert method, we can use a delete_at method to delete a specific position
of an array:

2.1.1 :001 > array = [1,6,2]
 => [1, 6, 2]
2.1.1 :002 > array.delete_at(1)
 => 6
2.1.1 :003 > array
 => [1, 2]

We can also use a delete method to delete by value, rather than by position:

2.1.1 :001 > array = [1,6,2]
 => [1, 6, 2]
2.1.1 :002 > array.delete(6)
 => 6
2.1.1 :003 > array
 => [1, 2]

The previous methods allow us to add and remove specific values to specific
positions. If we need to clean up arrays that contain nil or duplicate values, we have two
methods available. The first is compact, for removing nil values:

2.1.1 :001 > array = [1,6,nil,2,nil]
 => [1, 6, nil, 2, nil]
2.1.1 :002 > array.compact
 => [1, 6, 2]
2.1.1 :003 > array
 => [1, 6, nil, 2, nil]
2.1.1 :004 > array.compact!
 => [1, 6, 2]
2.1.1 :005 > array
 => [1, 6, 2]

Notice, that the initial compact method simply strips the nil values and displays
them, to update the array object itself, we need to use a compact! method instead.

Likewise we can use a uniq method to remove duplicate values from an array. Note
that as per the compact method, we also need to use the uniq! method to update the
array variable:

2.1.1 :001 > array = [1,6,1,1,nil,2]
 => [1, 6, 1, 1, nil, 2]
2.1.1 :002 > array.uniq
 => [1, 6, nil, 2]
2.1.1 :003 > array
 => [1, 6, 1, 1, nil, 2]

Chapter 4 ■ arrays

27

2.1.1 :004 > array.uniq!
 => [1, 6, nil, 2]
2.1.1 :005 > array
 => [1, 6, nil, 2]

Looping Through Arrays
Like all enumerable objects within Ruby, an array has an each method for iterating
through the elements within the array.

2.1.1 :001 > array = [1,6,1,1,2,1]
 => [1, 6, 1, 1, 2, 1]
2.1.1 :002 > array.each { |item| print item, " " }
1 6 1 1 2 1 => [1, 6, 1, 1, 2, 1]

Likewise, if we want to print items in a reverse order we can replace the each
method, with a reverse_each method.

2.1.1 :001 > array = [1,6,1,1,2,1]
 => [1, 6, 1, 1, 2, 1]
2.1.1 :002 > array.reverse_each { |item| print item, " " }
1 2 1 1 6 1 => [1, 6, 1, 1, 2, 1]

With the each method, even if we update the elements value, this does not change
the initial array. Instead we can use the map method to output the changed elements,
or the map! method to change the original array.

2.1.1 :001 > array = [1,6,1,1,2,1]
 => [1, 6, 1, 1, 2, 1]
2.1.1 :002 > array.each { |item| item-1 }
 => [1, 6, 1, 1, 2, 1]
2.1.1 :003 > array.map { |item| item-1 }
 => [0, 5, 0, 0, 1, 0]
2.1.1 :004 > array
 => [1, 6, 1, 1, 2, 1]
2.1.1 :005 > array.map! { |item| item-1 }
 => [0, 5, 0, 0, 1, 0]
2.1.1 :006 > array
 => [0, 5, 0, 0, 1, 0]

Chapter 4 ■ arrays

28

While these methods are extremely useful for looping through an array, these simply
loop through the elements within the array. We can also use a method each_with_index,
which pulls through two items with each iteration of the loop, the index and the value

2.1.1 :002 > array.each_with_index { |item,index| puts "#{index} = #{item}"
}
0 = Hello
1 = World
2 = Welcome
 => ["Hello", "World", "Welcome"]

Selecting Elements from an Array
Using Ruby we have a number of methods to select elements from an array. This works
similar to the each or reverse_each method, but allows selective filtering of these arrays
to further limit the elements within the array. We have two types of selection methods:

•	 Non-destructive methods: These are simply the limiting of an array
without making any changes to the original array once we are
finished selecting from it.

•	 Destructive methods: These are methods that limit down an array,
but then make changes to the original array.

Starting with the non-destructive methods, we can select (only include this range)
and reject/drop_while (exclude this range):

2.1.1 :001 > array = [1,2,3,4,5,6,7,8]
 => [1, 2, 3, 4, 5, 6, 7, 8]
2.1.1 :002 > array.select { |item| item > 5 }
 => [6, 7, 8]
2.1.1 :003 > array.reject { |item| item > 5 }
 => [1, 2, 3, 4, 5]
2.1.1 :004 > array.drop_while { |item| item < 5 }
 => [5, 6, 7, 8]
2.1.1 :005 > array
 => [1, 2, 3, 4, 5, 6, 7, 8]

Alternatively we could use similar selection methods with destructive methods,
which will affect the final array:

2.1.1 :001 > array = [1,2,3,4,5,6,7,8]
 => [1, 2, 3, 4, 5, 6, 7, 8]
2.1.1 :002 > array.delete_if { |item| item > 5 }
 => [1, 2, 3, 4, 5]
2.1.1 :003 > array
 => [1, 2, 3, 4, 5]

Chapter 4 ■ arrays

29

2.1.1 :001 > array = [1,2,3,4,5,6,7,8]
 => [1, 2, 3, 4, 5, 6, 7, 8]
2.1.1 :002 > array.keep_if { |item| item > 5 }
 => [6, 7, 8]
2.1.1 :003 > array
 => [6, 7, 8]

Exercise
Now we can utilize a number of array methods to replicate the example within Chapter 3.
Rather than using string adaption/extraction we can instead use arrays and array
methods to replicate the same result.

dvds = Array.new

dvds.push([100000,[2,17],"Skyfall",12])
dvds.push([100001,[2,06],"The Hurt Locker",15])
dvds.push([100002,[1,45],"21 Jump Street",15])
dvds.push([100003,[1,40],"Finding Nemo",'U'])

dvds.map { |item| item[1] = item[1][0]*60+item[1][1]}

dvds.delete_if { |item| item[3].to_i >=14}

dvds.keep_if { |item| item[1] < 125 }

dvds.each { |item| print "\aYAY! We can watch ", item[2], "\n" }

#=>
YAY! We can watch Finding Nemo

31

Chapter 5

Hashes

A hash in Ruby is a dictionary-style collection, also known as an associative array in other
programming languages. Rather than using integer-based indexes, a hash uses any object
as the key.

Creating Hashes
To create a hash within Ruby, we can simply use the {} braces, surrounding a set of
elements. We can also initialize an empty hash using the empty {} braces:

2.1.1 :001 > score = { "Joe Bloggs" => 10, "Sarah Bloggs" => 8 }
 => {"Joe Bloggs"=>10, "Sarah Bloggs"=>8}
2.1.1 :002 > stock = {}
 => {}

When creating a hash, an alternative syntax is available using symbols as the index,
this is shown by using the :key_name syntax, which can also be written without the initial
colons:

2.1.1 :001 > stock = { :books => 25, :cds => 7 }
 => {:books=>25, :cds=>7}
2.1.1 :002 > stock = { books: 25, cds: 7 }
 => {:books=>25, :cds=>7}

A hash can also be initialized using the new method:

2.1.1 :001 > stock = Hash.new
 => {}
2.1.1 :002 > stock[:books] = 25
 => 25
2.1.1 :003 > stock[:cds] = 7
 => 7
2.1.1 :004 > stock => {:books=>25, :cds=>7}

Chapter 5 ■ hashes

32

We can also assign a default value to use when attempting to retrieve a key that does
not exist within the hash:

2.1.1 :001 > stock = Hash.new(0)
 => {}
2.1.1 :002 > stock[:books] = 25
 => 25
2.1.1 :003 > stock[:dvds]
 => 0

Alternatively, we can set the default parameter on an existing hash:

2.1.1 :001 > stock = { :books => 25, :cds => 7 }
 => {:books=>25, :cds=>7}
2.1.1 :002 > stock.default = 0
 => 0
2.1.1 :003 > stock[:dvds]
 => 0

Hash Information
Just like other data types, we have a number of methods available to view meta-data style
information about a hash and its elements.

Possibly the simplest method is the ability to show the number of elements within
a hash:

2.1.1 :001 > score = { "Joe Bloggs" => 10, "Sarah Bloggs" => 8 }
 => {"Joe Bloggs"=>10, "Sarah Bloggs"=>8}
2.1.1 :002 > score.count
 => 2
2.1.1 :003 > score.size
 => 2
2.1.1 :004 > score.length
 => 2

To determine whether a hash is empty, we can use the simple empty? method, which
returns true or false:

2.1.1 :001 > score = { "Joe Bloggs" => 10, "Sarah Bloggs" => 8 }
 => {"Joe Bloggs"=>10, "Sarah Bloggs"=>8}
2.1.1 :002 > score.empty?
 => false
2.1.1 :003 > stock = {}
 => {}
2.1.1 :004 > stock.empty?
 => true

Chapter 5 ■ hashes

33

We can also determine whether two hashes are identical by using the eql? method:

2.1.1 :001 > score = { "Joe Bloggs" => 10, "Sarah Bloggs" => 8 }
 => {"Joe Bloggs"=>10, "Sarah Bloggs"=>8}
2.1.1 :002 > grades = { "Joe Bloggs" => 10, "Sarah Bloggs" => 8 }
 => {"Joe Bloggs"=>10, "Sarah Bloggs"=>8}
2.1.1 :003 > score.eql? grades
 => true
2.1.1 :004 > grades = { "Joe Bloggs" => 10, "Sarah Bloggs" => 9 }
 => {"Joe Bloggs"=>10, "Sarah Bloggs"=>9}
2.1.1 :005 > score.eql? grades
 => false

If we need to expose whether the hash contains a particular key or value, we can
utilize the has_key? and has_value? methods:

2.1.1 :001 > score = { "Joe Bloggs" => 10, "Sarah Bloggs" => 8 }
 => {"Joe Bloggs"=>10, "Sarah Bloggs"=>8}
2.1.1 :002 > score.has_key? "Joe Bloggs"
 => true
2.1.1 :003 > score.has_key? "John Bloggs"
 => false
2.1.1 :004 > score.has_value? 3
 => false
2.1.1 :005 > score.has_value? 8
 => true

Sorting Hash Elements
To complete basic sorting on a hash within Ruby, we can utilize the sort method:

2.1.1 :001 > stock = { 25 => "Books", 7 => "CDs", 2 => "DVDs" }
 => {25=>"Books", 7=>"CDs", 2=>"DVDs"}
2.1.1 :002 > stock.sort
 => [[2, "DVDs"], [7, "CDs"], [25, "Books"]]

Accessing Hash Elements
To retrieve hash elements, rather like an array, you address the hash symbol with the hash
[key] syntax:

2.1.1 :001 > stock = { :books => 25, :cds => 7 }
 => {:books=>25, :cds=>7}
2.1.1 :002 > stock[:books]
 => 25

Chapter 5 ■ hashes

34

We can also utilize other types of keys, such as the strings used previously in the
first example:

2.1.1 :001 > score = { "Joe Bloggs" => 10, "Sarah Bloggs" => 8 }
 => {"Joe Bloggs"=>10, "Sarah Bloggs"=>8}
2.1.1 :002 > score["Joe Bloggs"]
 => 10

Hashes are commonly used when passing named parameters into a method, where
the number and order of parameters can differ depending on what is required. With using
a traditional set of parameters, nil or empty data would have to be passed during the
method call, and filtered out later; instead a hash can be used. If a hash is used as the last
parameter to a method, no braces are required either.

class Score
def self.register(params)
 @name = params[:name]
 @score = params[:score]
 puts "#{@name} got a score of #{@score}"
end
end

Score.register(name: "Joe Bloggs", score: 10)
 => Joe Bloggs got a score of 10

We can also utilize a select method to pass a statement to the hash, in order to
select a range of elements:

2.1.1 :001 > stock = { :books => 25, :cds => 7, :dvds => 2 }
 => {:books=>25, :cds=>7, :dvds=>2}
2.1.1 :002 > stock.select{|type,quantity| quantity > 5 }
 => {:books=>25, :cds=>7}

Looping Through Hashes
At times, we need to loop through hashes rather than retrieving individual elements, to
do this utilize the each method.

scores = {
 "John" => 10,
 "Paul" => 8,
 "Sarah" => 9
}
scores.each do|name,score|
 puts "#{name}: #{score}"
end

Chapter 5 ■ hashes

35

This outputs:

John: 10
Paul: 8
Sarah: 9

Hashes are unordered unlike arrays, and therefore will not necessarily be looped
through in the order that elements are inserted.

To shortcut the syntax for this, we can use each_value and each_key instead if only
the keys or values are required:

scores = { "John" => 10, "Paul" => 8, "Sarah" => 9 }
scores.each_key do|name|
 puts "#{name}"
end

=>
John
Paul
Sarah

scores = { "John" => 10, "Paul" => 8, "Sarah" => 9 }
scores.each_value do|score|
 puts "#{score}"
end

=>
10
8
9

Altering Hashes
Rather like an array, we have a number of methods available in order to alter and
manipulate hashes, such as deleting elements by the key:

2.1.1 :001 > stock = {:books => 2, :cds => 7}
 => {:books=>2, :cds=>7}
2.1.1 :002 > stock.delete(:books)
 => 2
2.1.1 :003 > stock
 => {:cds=>7}

Chapter 5 ■ hashes

36

Likewise, under certain scenarios we can utilize a delete_if method if we need to
delete elements within a hash based upon the value (or the key):

2.1.1 :001 > stock = {:books => 2, :cds => 7, :dvds => 200}
 => {:books=>2, :cds=>7, :dvds=>200}
2.1.1 :002 > stock.delete_if {|key, value| value < 3 }
 => {:cds=>7, :dvds=>200}
2.1.1 :003 > stock.delete_if {|key, value| key == :dvds }
 => {:cds=>7}

We can reverse this logic and use a keep_if instead, where all matching elements
from the block are kept and any which return false are deleted:

2.1.1 :001 > stock = {:books => 2, :cds => 7, :dvds => 200}
 => {:books=>2, :cds=>7, :dvds=>200}
2.1.1 :002 > stock.keep_if {|key, value| value < 3 }
 => {:books=>2}

We can also clear a hash of all elements if required:

2.1.1 :001 > stock = {:books => 2, :cds => 7, :dvds => 200}
 => {:books=>2, :cds=>7, :dvds=>200}
2.1.1 :002 > stock.clear
 => {}

Similar to an array, we can use a shift method to remove an element from the hash.
However, note that as a hash’s order is not guaranteed, there is no control over which
key/value pair is being deleted. This is, however, useful during a loop.

stock = {:books => 2, :cds => 7, :dvds => 200}
until stock.empty?
 name, stock_level = stock.shift
 puts "Removing stock for #{name}: #{stock_level}"
end

Removing stock for books: 2
Removing stock for cds: 7
Removing stock for dvds: 200

Chapter 5 ■ hashes

37

Merging Hashes
There are times when you will have two hashes (such as an internal variable and a set
of parameters passed in to a method), which you need to merge to have one hash to
iterate through. Ruby has a merge method for a hash, which can merge two hashes. If you
are merging a hash with the same keys, the new hash being merged in will win on any
conflicts unless otherwise specified:

stock1 = {:books => 2, :cds => 7}
stock2 = {:cds => 2, :dvds => 7}
stock1.merge(stock2)
 => {:books=>2, :cds=>2, :dvds=>7}
stock1
 => {:books=>2, :cds=>7}
stock1.merge!(stock2)
 => {:books=>2, :cds=>2, :dvds=>7}
stock1
 => {:books=>2, :cds=>2, :dvds=>7}

Note that we have to use the merge! method instead if we want the stock1 hash
updated, rather than just the result of the merge returned.

stock1 = {:books => 2, :cds => 7}
stock2 = {:cds => 2, :dvds => 7}
stock1.merge(stock2){|key, oldvalue, newvalue| newvalue+oldvalue}
 => {:books=>2, :cds=>9, :dvds=>7}

As you can see from the preceding code, we have used a block for matching keys to
have their values added together, rather than just the new hash winning conflicts.

Exercise
As in previous chapters, we can now utilize a number of methods linked to hashes to
complete an example.

dvds = Hash.new

dvds["Skyfall"] = {:id => 100000, :hours => 2, :mins => 17, :classification
=> 12}
dvds["The Hurt Locker"] = {:id => 100001, :hours => 2, :mins => 6,
:classification => 15}
dvds["21 Jump Street"] = {:id => 100002, :hours => 1, :mins => 45,
:classification => 15}
dvds["Finding Nemo"] = {:id => 100003, :hours => 1, :mins => 40,
:classification => 'U'}

Chapter 5 ■ hashes

38

dvds.each do|name,details|
details[:mins] = details[:mins] + (details[:hours]*60)
end

dvds.delete_if { |name,details| details[:classification].to_i >=14}

dvds.keep_if { |name,details| details[:mins] < 125 }

dvds.each_key { |name| print "\aYAY! We can watch ", name, "\n" }

39

Chapter 6

Numbers

The Numeric class within Ruby is a containing class for the Integer and Float classes. This
contains all methods linked to numeric variables either with (float) or without (integer)
decimal places. The Numeric class is a very simple class, which holds the ability to
perform a number of complex calculations with numbers.

Creating Numbers
Creating a number in Ruby is extremely simple, rather like creating a String. Rather than
using a New method, or a set of braces, like an array or hash, a Number is created by
setting a variable without quotation marks. If the number contains a decimal place, it is
created as a float; if the number is without a decimal place, it is created as an integer

2.1.1 :001 > number = 10
 => 10
2.1.1 :002 > number.is_a?(Integer)
 => true
2.1.1 :003 > number = 10.2
 => 10.2
2.1.1 :004 > number.is_a?(Integer)
 => false
2.1.1 :005 > number.is_a?(Float)
 => true

This is one of the reasons that Ruby’s loosely typed structure is a very powerful tool.

Numeric Alterations
As with most data types within Ruby, we will need to make some alterations to variables
stored. A number is one of the most manipulated data types within Ruby, due to
its uses in mathematical calculations, and loop counting. Within Ruby there are a
number of methods, and additional ways of manipulating numbers, the simplest being
mathematical symbols.

Chapter 6 ■ Numbers

40

2.1.1 :001 > number = 10
 => 10
2.1.1 :002 > number = number + 2
 => 12
2.1.1 :003 > number = number - 5
 => 7
2.1.1 :004 > number = number * 2
 => 14
2.1.1 :005 > number = number / 7
 => 2

Ruby will not always adjust the data type between an Integer and Float as required.
Note that Ruby classes an Integer as a Fixnum, and a Float as a Float

2.1.1 :001 > number = 10
 => 10
2.1.1 :002 > number.class
 => Fixnum
2.1.1 :003 > number = number + 2
 => 12
2.1.1 :004 > number.class
 => Fixnum
2.1.1 :005 > number / 4
 => 2 #Notice this should be 2.5
2.1.1 :006 > number.class
 => Fixnum
2.1.1 :007 > number = 10
 => 10
2.1.1 :008 > number.class
 => Fixnum
2.1.1 :009 > number = number / 6.5
 => 1.5384615384615385 #Notice a conversion has taken place as the divider

was a float
2.1.1 :010 > number.class
 => Float

In addition to simple mathematical arithmetic, we have the ability to call methods
in order to return various calculations of a number. The first, is the + or – of the initial
number. This will return the unary positive or negative of the number (i.e. the original
number, or the negative of the number

2.1.1 :001 > number = 10
 => 10
2.1.1 :002 > +number
 => 10
2.1.1 :003 > -number
 => -10

Chapter 6 ■ Numbers

41

2.1.1 :004 > number = -5
 => -5
2.1.1 :005 > +number
 => -5
2.1.1 :006 > -number
 => 5

In addition, we may be required to find out the absolute value of the number, this is,
the positive value of the number, regardless as to whether the original number is positive,
or negative.

2.1.1 :001 > number = 10
 => 10
2.1.1 :002 > number.abs
 => 10
2.1.1 :003 > number = -4
 => -4
2.1.1 :004 > number.abs
 => 4

If we have a float value, and wish to round this to the next or previous decimal
number, we can use the ceil or floor methods. The ceil (for ceiling) method rounds
the number to the next decimal number. The floor method rounds the number to the
previous decimal number

2.1.1 :001 > number = 11.5
 => 11.5
2.1.1 :002 > number.ceil
 => 12
2.1.1 :003 > number.floor
 => 11
2.1.1 :004 > number = 3.1
 => 3.1
2.1.1 :005 > number.ceil
 => 4
2.1.1 :006 > number.floor
 => 3

We also have the ability to perform a natural, mathematical round in order to round
the number up or down as expected. A .4 will round down, a .6 will round up, and ties will
round up, so a .5 will also round up

2.1.1 :001 > number = 10.6
 => 10.6
2.1.1 :002 > number.round
 => 11

Chapter 6 ■ Numbers

42

2.1.1 :003 > number = 10.4
 => 10.4
2.1.1 :004 > number.round
 => 10
2.1.1 :005 > number = 10.5
 => 10.5
2.1.1 :006 > number.round
 => 11

In addition to the / divide operator, we have a div method in order to perform a
division to a number

2.1.1 :001 > number = 10
 => 10
2.1.1 :002 > number = number.div 5
 => 2

Whilst this is useful, we discovered that conversions do not always change the
data type, therefore dividing 10 by 4 should output 2.5; however as the data type is an
Integer this will actually output 2. We can therefore use remainder method to find out the
remainder of the division.

2.1.1 :001 > number = 10
 => 10
2.1.1 :002 > number = number.remainder 4
 => 2

We could, instead, use the modulo method instead of the remainder method.
The modulo outputs the remainder again; however the remainder method rounds the
calculated value towards 0, where as the modulo rounds downwards. The remainder also
always outputs the same sign (positive/negative) as the original number.

2.1.1 :001 > number = 10
 => 10
2.1.1 :002 > number = number.modulo 4
 => 2
2.1.1 :003 > number = -10
 => -10
2.1.1 :004 > number.modulo 4
 => 2
2.1.1 :005 > number.remainder 4
 => -2

Whilst these are all useful, they require multiple calculations to run a division, and
then calculate the remainder. Instead we can use the divmod method to return an array of
the division, then the modulo methods calculation.

Chapter 6 ■ Numbers

43

2.1.1 :001 > number = 10
 => 10
2.1.1 :002 > number.divmod 4
 => [2, 2]
2.1.1 :003 > number = -10
 => -10
2.1.1 :004 > number.divmod 4
 => [-3, 2]

The main issue we have seen previously is the lack of automatically converting the
Numeric Type when a division leaves a remainder. There are times that we require an
exact calculation, rather than just a remainder. For this Ruby has a quo method, which
divides (as per the div method) and returns a float when dividing floats, or rational’s for
all other scenarios. Note that rational’s can be cast to floats

2.1.1 :001 > number = 10
 => 10
2.1.1 :002 > number.quo 2
 => (5/1)
2.1.1 :003 > number = 10
 => 10
2.1.1 :004 > number = number.quo 4
 => (5/2)
2.1.1 :005 > number.to_f
 => 2.5

Numeric Comparisons
Previously we have used a number of mathematical formulae, and methods in order to
alter the value or Numeric variables, however at times we need to compare numbers in
order to calculate whether they meet a certain criteria. Again we can utilize a number of
mathematical comparators, and methods.

The first sets of mathematical comparators are the greater than, greater than/equals
to, less than, less than/equals to

2.1.1 :001 > number = 10
 => 10
2.1.1 :002 > number > 5
 => true
2.1.1 :003 > number >= 10
 => true
2.1.1 :004 > number < 5
 => false
2.1.1 :005 > number <= 10
 => true

Chapter 6 ■ Numbers

44

We can also utilize the == comparator to check for equal values

2.1.1 :001 > 10 == 10
 => true
2.1.1 :002 > 10 == 10.0
 => true
2.1.1 :003 > 10 == 11
 => false
2.1.1 :004 > 10 == 10.001
 => false

The final comparator we can utilize is the “spaceship” operator. This returns -1 if the
original is less than the comparison, 0 if they are equal, and +1 if the original is greater
than the comparison. This comparator is used to calculate the previous such as greater
than and less than.

2.1.1 :001 > 10 <=> 11
 => -1
2.1.1 :002 > 10 <=> 9
 => 1
2.1.1 :003 > 10 <=> 10
 => 0

We can also utilize other methods in order to compare Numeric values. The simplest
of these is the eql? method, which simply returns the same output as the == operator.
Note however that the == operator will often cast an integer with an added decimal place
(such as 10.0) whereas the eql? method will not cast.

2.1.1 :001 > 10.eql? 10
 => true
2.1.1 :002 > 10.eql? 10.0
 => false
2.1.1 :003 > 10.eql? 11
 => false
2.1.1 :004 > 10.eql? 10.001
 => false

In order to check types, we have the integer? method to check whether the number
passed in is an integer type, again note that no casting takes place

2.1.1 :001 > 10.integer?
 => true
2.1.1 :002 > 10.2.integer?
 => false
2.1.1 :003 > 10.0.integer?
 => false
2.1.1 :004 > -1.integer?
 => true

Chapter 6 ■ Numbers

45

We can check whether the Numeric value is equals (or not equals) to zero. Notice
here that the zero method returns true or false booleans, whereas the nonzero method
returns the non-zero value (or a nil if the value is 0)

2.1.1 :001 > 10.zero?
 => false
2.1.1 :002 > 0.zero?
 => true
2.1.1 :003 > 10.nonzero?
 => 10
2.1.1 :004 > 0.nonzero?
 => nil

In order to find out whether a value is odd or even, we can use the odd? and even?
methods.

2.1.1 :001 > 10.odd?
 => false
2.1.1 :002 > 10.even?
 => true
2.1.1 :003 > 15.odd?
 => true
2.1.1 :004 > 15.even?
 => false
2.1.1 :005 > 0.even?
 => true
2.1.1 :006 > 0.odd?
 => false

In addition to the mathematical comparators we used previously, we have the ability
to check whether a particular Numeric value or variable is between an allowed range. For
this we use the between? method, which accepts 2 parameters as the 2 bound values.

2.1.1 :001 > 10.between?(5,15)
 => true
2.1.1 :002 > 15.between?(5,15)
 => true
2.1.1 :003 > 16.between?(5,15)
 => false
2.1.1 :004 > 5.between?(5,5)
 => true
2.1.1 :005 > 6.between?(5,5)
 => false

Chapter 6 ■ Numbers

46

In order to easily increment in steps, we can use the upto method, which accepts a
single parameter, followed by a block to be run for each iteration of the loop.

2.1.1 :001 > 10.upto(16) { |i| puts i }
10
11
12
13
14
15
16
 => 10
2.1.1 :002 > -5.upto(-10) { |i| puts i }
 => -5
2.1.1 :003 > -10.upto(-5) { |i| puts i }
-10
-9
-8
-7
-6
-5
 => -10

Exercise
As previously, we can utilize a number of Numeric methods in order to further advance
our DVD selector application. Notice that we have advanced our Array example, and set
the length in minutes in order to utilize the quo method in order to calculate all films that
are under 2 hours in length. We are also checking that the age bracket of our movies is
between 10 and 15.

dvds = Array.new

dvds.push([100000,137,"Skyfall",12])
dvds.push([100001,114,"The Hurt Locker",15])
dvds.push([100002,105,"21 Jump Street",15])
dvds.push([100003,100,"Finding Nemo",'U'])

dvds.delete_if { |item| item[3].to_i.between?(10,15)}

dvds.keep_if { |item| item[1].quo(60).to_f < 2 }

dvds.each { |item| print "\aYAY! We can watch ", item[2], "\n" }

#=>
YAY! We can watch Finding Nemo

47

Chapter 7

Booleans

Booleans within Ruby are actually known as parts of the TrueClass and FalseClass,
rather than a Boolean Data Type as such. It is worth noting that nil (Ruby's version of
a null) is not a Boolean.

2.1.1 :001 > true.class
 => TrueClass
2.1.1 :002 > false.class
 => FalseClass

Creating Boolean Values
Creating a Boolean value within Ruby is similar to creating a String/Numeric value.
You simply set a variable to the value required (true or false):

2.1.1 :001 > test = true
 => true
2.1.1 :002 > puts test
true
 => nil
2.1.1 :003 > test.class
 => TrueClass

Expression Tests
Within Ruby a number of expression tests return a Boolean value; which is most often
used when writing an if/else if/else statement. Ruby tests the conditions and returns a
true or false to determine the code to be executed:

2.1.1 :001 > age = 24
 => 24
2.1.1 :002 > age >=20
 => true

Chapter 7 ■ Booleans

48

Ruby can also utilize the and/or operators to evaluate multiple conditions:

2.1.1 :001 > age = 24
 => 24
2.1.1 :002 > name = "Joe"
 => "Joe"
2.1.1 :003 > age >=20 && name == "Paul"
 => false
2.1.1 :004 > age >=20 || name == "Paul"
 => true

Ruby also negates expressions by using the ! operator (meaning not):

2.1.1 :001 > age = 24
 => 24
2.1.1 :002 > ! (age >=20)
 => false
2.1.1 :003 > ! (age < 20)
 => true

While this shorthand conditional logic is useful for simple checks, when we need
to test multiple conditions, possibly nest other conditional logic within these, we can
use alternative syntax; such as the standard if/else if/else syntax. It is worth noting
that the if brackets in the code that follows are optional within Ruby, unlike other
programming languages.

#!/usr/bin/env ruby

age = 24
name = "Joe"

if (age > 20)
 if(name == "Paul")
 puts "Hello Paul"
 elsif(name == "Joe")
 puts "Hello Joe"
 else
 puts "Hello somebody?"
 end
else
 puts "Sorry, you’re not old enough to enter"
end

#=> Hello Joe

Chapter 7 ■ Booleans

49

For the simpler statements, we can use a shorthand:

(condition ? value if true : value if false)

Such as:

2.1.1 :001 > age = 24
 => 24
2.1.1 :002 > (age > 20 ? "Yes" : "No")
 => "Yes"

Within Ruby we have Double Bang, also known as a Bang-Bang, that takes a value
and casts it directly to a Boolean. It is worth noting however that only a nil returns false;
all others return true.

2.1.1 :001 > !!0
 => true
2.1.1 :002 > !!1
 => true
2.1.1 :003 > !!nil
 => false
2.1.1 :004 > !!false
 => false
2.1.1 :005 > !!true
 => true

Although this does not instantly seem particularly useful, we can use this to
determine whether a value is a Boolean.

2.1.1 :001 > age = 24
 => 24
2.1.1 :002 > !!age == age
 => false
2.1.1 :003 > test = true
 => true
2.1.1 :004 > !!test == test
 => true
2.1.1 :005 > test_false = false
 => false
2.1.1 :006 > !!test_false == test_false
 => true

What happens here is age is casted to a Boolean and then checked against its original
value for equality. Whereas 24 as a Boolean is true, this does not match its original value.
When we cast true or false to a Boolean they remain as true or false when comparing to
their original values.

Chapter 7 ■ Booleans

50

Comparative Operators
Within Ruby we can use comparative operators to compare the two values on either side
of the operator to determine a true or false outcome:

2.1.1 :001 > 10 == 10 #Equals
 => true
2.1.1 :002 > 10 != 10 #Not Equals
 => false
2.1.1 :003 > 10 <= 10 #Less than or equals
 => true
2.1.1 :004 > 10 >=10 #Greater than or equals
 => true
2.1.1 :005 > 10 < 10 #Less than
 => false
2.1.1 :006 > 10 > 10 #Greater than
 => false

Due to Ruby's loosely typed language, there are a couple of pitfalls when using
Booleans. The main one is the loose casting of non-Boolean values to Booleans:

#!/usr/bin/env ruby

destroy_forcefully = false

if (destroy_forcefully)
 puts "Destroying now!"
else
 puts "Are you sure?"
end

#=> Are you sure?

This is as we would expect; however if a numeric value of 0 passed over, the user may
assume that this would equate to false. This will be casted directly and equate to true.

#!/usr/bin/env ruby

destroy_forcefully = 0

puts !!destroy_forcefully.class

if (destroy_forcefully)
 puts "Destroying now!"
else

Chapter 7 ■ Booleans

51

 puts "Are you sure?"
end
#=>
true
Destroying now!

Notice we added some debugging to calculate the class type when casting the 0 to a
Boolean, this shows that Ruby will cast a 0 to true, rather than the expected false.

53

Chapter 8

Objects

In the previous chapters we discussed individual data types within the Ruby
programming language and how these all work individually. The final data type we will
look at is the Object data type. The Object data type (also known as BasicObject) mixes
with the Kernel module to import a number of useful methods, which can be utilized for
variousscenarios within Ruby programming.

2.1.1 :001 > self.class
 => Object

Objects are also associated to Object-Oriented Programming. Object orientation
is an alternative to the procedural method of programming. Procedural code runs from
top to bottom in a very simple and linear way. Object-Oriented programming includes
creating a set of classes, with associated methods (such as a class called Car, with a
method called startEngine). We then initialize these classes by creating instance objects
of the class to call the method. In this chapter we will focus on the objects themselves and
their behavior, rather than the classes at this stage.

#!/usr/bin/env ruby

class Car
 def startEngine
 puts "Engine Started"
 end
end

my_car = Car.new
my_car.startEngine

#=>
Engine Started

Chapter 8 ■ ObjeCts

54

Constants
Within Ruby objects, we have access to a number of constants (meaning that the values
never change within the program itself). These constants can be used to read various
properties of the running application, configuration, the Ruby run-time being used, and
even the outside operating system. These constants include ARGF, ARGV, DATA, ENV,
RUBY_*, STDERR, STDIN, STDOUT, TOPLEVEL_BINDING, and TRUE/FALSE/NIL.

ARGF
ARGF is a stream built when passing in a list of files to be processed using arguments to
an application, or by using STDIN. As a file is processed by ARGF it is removed from the
ARGV array so that it is not re-processed.

test.txt:
Test File 1

test2.txt:
Test File 2

fig02.rb:
#!/usr/bin/env ruby
puts ARGV.to_s

puts ARGF.readlines

puts ARGV.to_s

#=>
ruby fig02.rb test.txt test2.txt
["test.txt", "test2.txt"]
Test File 1
Test File 2
[]

Notice that the Ruby code cast the ARGV array into a string so that we could see the
contents; then we used the ARGF constant to parse the values, and a readlines method to
read the contents of the two files, followed by re-outputting the ARGV constant to show
that it is now empty.

Chapter 8 ■ ObjeCts

55

ARGV
The abilities of the ARGV constant have already been demonstrated in the preceding
example; however this constant is also useful for passing in values other than just
filenames to be processed by using the ARGF constant:

#!/usr/bin/env ruby
puts ARGV[0] + ARGV[1]

#=>
ruby fig03.rb 10 5
15

We can also use this to have arguments passed in, rather like a normal command line
binary application:

#!/usr/bin/env ruby
puts ARGV.to_s

#=>
ruby fig04.rb --verbose -f

DATA
The DATA constant can be used to read a “data section” of the file to be executed. A data
section begins with the __END__ code on a new line, and ends at the end of a file:

#!/usr/bin/env ruby
puts DATA.gets
__END__
Hello World!

#=>
ruby fig05.rb
Hello World!

ENV
The ENV constant is probably one of the most used constants within Ruby, especially in
Ruby on Rails programming. ENV stands for Environment, and it is often used to read
various Environmental Variables within Ruby. Note that the output from the inspect
method has been trimmed down, as it contains a lot of information within this hash:

#!/usr/bin/env ruby
puts ENV['HOME']

Chapter 8 ■ ObjeCts

56

puts ENV.inspect

#=>
ruby fig06.rb

/Users/matt
{ ... "SHELL"=>"/bin/zsh", "HOME"=>"/Users/matt", "USER"=>"matt",
"LOGNAME"=>"matt" ... }

RUBY_*
There are a number of RUBY_ based constants that hold useful information about Ruby
and its environment as shown in the table that follows.

Ruby Constant Output Details

RUBY_COPYRIGHT ruby - Copyright (C) 1993-
2014 Yukihiro Matsumoto

Ruby copyright information

RUBY_DESCRIPTION ruby 2.1.1p76 (2014-02-24
revision 45161) [x86_64-
darwin12.0]

Full Ruby version like ruby
–v outputs

RUBY_ENGINE ruby The Ruby Engine being used
(ruby, or jruby if JRuby is being
used)

RUBY_PATCHLEVEL 76 The Ruby Patchset Level (will be
-1 for development builds)

RUBY_PLATFORM x86_64-darwin12.0 Platform on which Ruby is
running

RUBY_RELEASE_DATE 2014-02-24 Date on which the current version
of Ruby was released

RUBY_REVISION 45161 The Subversion Revision for the
current Ruby version

RUBY_VERSION 2.1.1 Short version of the Ruby version
running

STDERR
Ruby’s Standard Error Output, this is normally mapped to the running console, however
can be remapped to a log file to keep track of errors (rather than standard output)
separately.

Chapter 8 ■ ObjeCts

57

STDIN
The Standard Input, including the input passed in to a script and any input received
during the running of the application.

STDOUT
The Standard Output, which is used by default to output any data to the console during
the running of an application (such as the output from a puts statement).

TOPLEVEL_BINDING
This is the global instance of Binding that is mapped to the object for the main method
when running Ruby.

TRUE/FALSE/NIL
The TRUE, FALSE, and NIL constants are aliases for true, false, and nil used previously
within Chapter 7.

Comparisons
As with other data types we have looked at previously, we can use comparisons to
compare values of Data Types. Likewise, we can actually compare two instances of an
object to check for equality.

#!/usr/bin/env ruby

object = "ABC"
new_object = object.dup #Duplicate the object

puts object == new_object
puts object.equal? new_object
puts object.equal? object

#=>
true
false
true

It is worth noting that the == equality check between the two objects returned true,
as the two objects are identical; however the equal? check requires the two objects to
have the same hash key (i.e., point to the same object). Again note that 1 == 1.0 returns
true, as they are seen as equal; however the eql? check returns false, as they have
different hash keys (one is an integer, the other is a float).

Chapter 8 ■ ObjeCts

58

#!/usr/bin/env ruby

puts 1 == 1.0
puts 1.eql? 1.0

puts 1.eql? 1

#=>
true
false
true

We can also check whether values are set to nil, by using the nil? method:

2.1.1 :001 > nil.nil?
 => true
2.1.1 :002 > false.nil?
 => false
2.1.1 :003 > 0.nil?
 => false

Duplication of Objects
Within Ruby we can also manipulate objects to clone or duplicate an object.

#!/usr/bin/env ruby

class Car
 colour = ""
 def startEngine
 puts "Engine Started"
 end

 def setColour color
 self.colour = colour
 end
end

my_car = Car.new
puts my_car.class

new_car = my_car.clone
puts new_car.class

#=>
Car
Car

Chapter 8 ■ ObjeCts

59

#!/usr/bin/env ruby

class Car
 def startEngine
 puts "Engine Started"
 end
end

my_car = Car.new
puts my_car.class

new_car = my_car.dup
puts new_car.class

#=>
Car
Car

While the Duplicate (dup) and Clone methods seem to do the same thing, there are
some subtle differences, which need to be taken into consideration. Clone duplicates an
object, including its internal state; however Duplicate uses the class that the object is an
instance of to create a new instance.

Freezing of Objects
There are times when we need to make an object frozen, or read-only. We want to prevent
further modification to the object. On trying to modify a frozen object a RuntimeError is
generated:

#!/usr/bin/env ruby

results = [98, 76, 28]

results.freeze
puts results.frozen?

results.pop(10)

#=>
true
fig11.rb:8:in 'pop': can't modify frozen Array (RuntimeError)
 from fig11.rb:8:in '<main>'

Chapter 8 ■ ObjeCts

60

Object Metadata
As with other data types within Ruby, we can easily determine some metadata regarding
an object, such as the Class that it is part of, details about the object, or the methods
available.

#!/usr/bin/env ruby

class Car
 def startEngine
 puts "Engine Started"
 end
end

my_car = Car.new
puts my_car.class #=> Car
puts my_car.instance_of? Car #=> true
puts my_car.is_a? Car #=> true

We can determine the available methods within a class. The methods method shows
all public or protected methods:

#!/usr/bin/env ruby

class Car
 def startEngine
 puts "Engine Started"
 end
end

my_car = Car.new
puts my_car.methods

#=>

startEngine
nil?
===
=~
!~
eql?
hash
<=> #List continued, but trimmed

Chapter 8 ■ ObjeCts

61

Alternatively, we use methods such as public_methods, protected_methods, and
private_methods to output a list of methods by access types:

#!/usr/bin/env ruby

class Car
 def startEngine
 puts "Engine Started"
 end
end

my_car = Car.new

puts "Public Methods"
puts my_car.public_methods
puts "======================="
puts ""

puts "Protected Methods"
puts my_car.protected_methods
puts "======================="
puts ""

puts "Private Methods"
puts my_car.private_methods
puts "======================="
puts ""

#=>
Public Methods
startEngine
nil?
===
=~
!~
eql?
... trimmed ...
=======================

Protected Methods
=======================

Private Methods
initialize_copy
initialize_dup
initialize_clone
sprintf
... trimmed ...

Chapter 8 ■ ObjeCts

62

Within Ruby we also can inspect an object to return the hash pointer of the object:

#!/usr/bin/env ruby

class Car
 def startEngine
 puts "Engine Started"
 end
end

my_car = Car.new
my_car.inspect

#=>
#<Car:0x00000103015e60>

63

Chapter 9

Loops and Iterators

Previously, we have discussed various data types within Ruby, how these operate, and the
methods that we have available. We have also looked at some examples as to using them
within an application. We are now going to investigate loops and iterators within Ruby.
There are many types of loops/iterators within Ruby, from simple to complex methods.

Loop Method
The simplest type of iterator within Ruby is a loop method. While the name sounds like
this is a loop, this is in fact an iterator method. First, we will set up the simplest type of
loop, the infinite loop, printing out Hello World on a new line forever.

#!/usr/bin/env ruby
loop do
 puts "Hello World"
end

#=>
Hello World
Hello World
Hello World
Hello World
...

However, this type of loop is not very useful, as this would continue running forever.
Instead we could use a break, next, or redo keyword to alter the running of the loop. First
we will use the break keyword, which allows us to exit the loop. We will set i to 0 initially,
and then add 1 each time we loop. When i reaches 5, we will break out of the loop:

#!/usr/bin/env ruby
i = 0
loop do
 i+=1
 puts "Hello World"
 break if i==5
end

Chapter 9 ■ Loops and Iterators

64

#=>
Hello World
Hello World
Hello World
Hello World
Hello World

We can use the next keyword to skip over the current iteration of the loop,
if required:

#!/usr/bin/env ruby
i = 0
loop do
 i+=1
 next if i==2
 puts i
 break if i==5
end

#=>
1
3
4
5

Using the break keyword, we can get the loop to return a value back to the calling
method:

#!/usr/bin/env ruby
i = 0
puts(loop do
 i+=1
 puts i
 break 'Hello World' if i==5
end)

#=>
1
2
3
4
5
Hello World

Details for the redo keyword appear later, as it doesn’t make sense to use it during a
loop statement.

Chapter 9 ■ Loops and Iterators

65

While Loop
The while loop is similar to most other programming languages, and works in a similar
way to the loop shown previously, with minor changes to the syntax (namely, you specify
the break when calling the while loop):

#!/usr/bin/env ruby
i = 0
while i < 5
 i+=1
 puts i
end

#=>
1
2
3
4
5

Until Loop
The until loop is similar to the while loop, just with the logic inversed:

#!/usr/bin/env ruby
i = 0
until i >=5
 i+=1
 puts i
end

#=>
1
2
3
4
5

The until loop is the perfect loop to include the redo loop, due to the logic of the
until loop:

#!/usr/bin/env ruby
i = 0
until i >=2
 i+=1

Chapter 9 ■ Loops and Iterators

66

 puts i
 redo if i >=2
end

#=>
1
2
3
4
5
6
...

The until loop, loops up to the second iteration, but during the last iteration the
redo clause is met, and the loop continues. We could instead replace the redo to just redo
when the value is 2:

#!/usr/bin/env ruby
i = 0
until i >=2
 i+=1
 puts i
 redo if i == 2
end

#=>
1
2
3

While and Until Loops – Alternative Syntax
We can also use an alternative syntax when creating while and until loops, which are
often ideal for simple loops, and easier to read.

#!/usr/bin/env ruby
i = 0
print "#{i+=1} " while i < 5

puts ""

i = 0
print "#{i+=1} " until i == 5

#=>
1 2 3 4 5
1 2 3 4 5

Chapter 9 ■ Loops and Iterators

67

We can also use this alternative syntax to create an alternative to the do..while loop,
which Ruby doesn’t have directly like other programming languages.

#!/usr/bin/env ruby
i = 0

begin
 puts i
 i+=1
end while i < 5

#=>
0
1
2
3
4

The reason for the do..while loop being so well used within programming languages
is due to its constructor always being called at least once, even if the conditions are not
met. You will notice in the next example the variable i is already set to 10, and therefore
when checking that i must be less than 5, this check fails, and a standard while loop would
not run the loop at all. Instead, with a do..while style loop, the loop will be once initially
regardless, before the while checks whether the loop should continue running.

#!/usr/bin/env ruby
i = 10

begin
 puts i
 i+=1
end while i < 5

#=>
10

Likewise, we could replace a while loop used in this way for an until loop:

#!/usr/bin/env ruby
i = 10

begin
 puts i
 i+=1
end until i == 11

#=>
10

Chapter 9 ■ Loops and Iterators

68

For Loop
The for loop is a span between a loop, and an iterator within Ruby. Although it is
officially a loop construct, it acts very similar to an iterator, just without accepting a block.
For loops are particularly useful when looping through a range, array, or hash.

#!/usr/bin/env ruby
for i in 1..5
 puts i
end

#=>
1
2
3
4
5

Or we could use an array instead:

#!/usr/bin/env ruby
for val in [1,5,8,10,15]
 puts val
end

#=>
1
5
8
10
15

Each Iterator
Now that we have detailed traditional loops, what they offer us, and how we can decide
on the most suitable loop to use, we will look at iterators within Ruby. Iterators execute a
block (a block is simply a section of code that the values are run against) and will iterate
in a similar way that a loop was detailed earlier in the chapter. We will start with the each
iterator, which is the most simple iterator within Ruby, and works similar to the way that
the for loop works.

#!/usr/bin/env ruby
vars = [1,5,8,10,15]

vars.each { |value| puts value }

Chapter 9 ■ Loops and Iterators

69

#=>
1
5
8
10
15

The Times Iterator
The times iterator works similar to the way that the for loop works in other programming
languages. This runs a block of code X number of times.

#!/usr/bin/env ruby
5.times { |i| puts i }

#=>
0
1
2
3
4

Upto and Step Iterators
The upto and step iterators are again similar to other programming languages for loop, in
the sense that rather than a “run this block of code X times” statement, you may specify,
“run this block of code until i reaches 10”.

#!/usr/bin/env ruby
1.upto(5) { |i| puts i }

#=>
1
2
3
4
5

Similarly, we may need to increment by an alternative iterator (say 2 rather than 1),
we can therefore use the step iterator that accepts 2 parameters. The first parameter is
the same as the upto iterator, the maximum number that the iterator should loop up to,
and secondly the step that should be incremented each time.

Chapter 9 ■ Loops and Iterators

70

#!/usr/bin/env ruby
1.step(10,2) { |i| puts i }

#=>
1
3
5
7
9

Each_Index Iterator
There are times, most normally when we are debugging some unusual behavior, that we
need to loop through an array, but we are only interested in the index of an array, rather
than the actual value held within the array. For this we can use the each_index iterator,
which works the same way as the each iterator.

#!/usr/bin/env ruby
vals = [5,10,15,20,25,30,35,40]
vals.each_index { |i| puts "#{i} = #{vals[i]}" }

#=>
0 = 5
1 = 10
2 = 15
3 = 20
4 = 25
5 = 30
6 = 35
7 = 40

Very early on in this chapter we discussed the redo keyword during the while and
until loops. We have an alternative available for use within the for loop, and the iterators
discussed later in the chapter. Whereas the redo keyword restarts the running of the
block, the retry keyword re-evaluates the initial condition, before looping once more.
This is ideal when you have a check within a loop that you require to run one further time
if another condition is met.

Exercise
We can now apply a number of the previous loops and iterators back in to our initial
example exercise to pick suitable DVDs to watch. We initially create three arrays. One will
contain the full list of DVDs, and as we drill down further into the criteria we will set a
new array to contain the suitable values.

Chapter 9 ■ Loops and Iterators

71

Initially we use the each iterator, which as discussed within this chapter is perfect for
looping through an array, to drill down any films with the certification between a 10 and 15.

Finally, we use the while loop, to loop X number of times (the selected_dvd’s
variable’s count) and check that the timing of the film is suitable before adding this film to
the final array.

We then use an until loop to loop through until all the suitable DVDs have been
output onto the screen.

#!/usr/bin/env ruby

dvds = Array.new
selected_dvds = Array.new
final_dvds = Array.new

dvds.push([100000,137,"Skyfall",12])
dvds.push([100001,114,"The Hurt Locker",15])
dvds.push([100002,105,"21 Jump Street",15])
dvds.push([100003,100,"Finding Nemo",'U'])

dvds.each { |item|
 if item[3].to_i.between?(10,15)
 selected_dvds.push(item)
 end
}

i = 0
while i < selected_dvds.count
 if selected_dvds[i][1].quo(60).to_f < 2
 final_dvds.push(selected_dvds[i])
 end
 i+=1
end

i = 0
until i == final_dvds.count
 print "\aYAY! We can watch ", final_dvds[i][2], "\n"
 i+=1
end

#=>
YAY! We can watch The Hurt Locker
YAY! We can watch 21 Jump Street

73

Chapter 10

Functions and Methods

We have learned a lot about the Ruby programming language itself in the previous
chapters along with its syntax and type characteristics. In this chapter we begin to look
at “reusable code,” the ability to write a snippet of code that can be used multiple times
during our application. This is sometimes known as the D.R.Y. (Don’t Repeat Yourself)
principle.

Technically, because Ruby is a fully object-oriented language, Ruby’s functions are
actually all methods, as they are all linked to objects.

Defining and Calling Methods
To call our Hello World multiple times, we will write a simple method named hello, and
will call this once defined:

#!/usr/bin/env ruby
def hello
 puts "Hello World"
end

hello

#=>
Hello World

As Ruby can also accept parameters to methods, we can use the alternative syntax
when calling the method such as hello():

#!/usr/bin/env ruby
def hello
 puts "Hello World"
end

hello()

#=>
Hello World

Chapter 10 ■ FunCtions and Methods

74

Now that we have said “Hello” to the whole world, we will personalize this method
by enhancing it to accept a method, of the name of the user, and the method will say
“Hello” directly to the user.

#!/usr/bin/env ruby
def hello(name)
 puts "Hello #{name}"
end

hello('Matt')

#=>
Hello Matt

Default Parameters
As with many other programming languages, we can enhance the method further to hold
a “default” value, so that we can overload the function. If the function has no parameters
passed (such as the first call to hello) this will take the default value. If we pass a parameter,
this will be used instead.

#!/usr/bin/env ruby
def hello(name = "World")
 puts "Hello #{name}"
end

hello
hello()
hello('Matt')
hello 'Matt'

#=>
Hello World
Hello World
Hello Matt
Hello Matt

You will notice in the preceding examples that the parameter brackets are
completely optional, even when passing in parameters.

Initialize Method
As with many other programming languages, Ruby has an initialize method, similar to
PHP’s __construct method. When writing a class, we can supply multiple methods that
can interact with each other, including the initialize method, which is run on creating
an object of the class.

Chapter 10 ■ FunCtions and Methods

75

#!/usr/bin/env ruby
class ClockInMachine
 def initialize(name)
 @name = name
 end
 def clock_in
 puts "Welcome #{@name}"
 end
 def clock_out
 puts "Goodbye #{@name}, see you tomorrow"
 end
end

clock_in_machine = ClockInMachine.new "Matt"
clock_in_machine.clock_in
clock_in_machine.clock_out

#=>
Welcome Matt
Goodbye Matt, see you tomorrow

Returns
All the methods we have shown here have highlighted how we can write code once, and
use it multiple times, however the previous examples are an “endpoint” method, meaning
they do not pass on anything useful further. We can instead make our methods return a
value, instead of outputting it, which can then be used elsewhere.

#!/usr/bin/env ruby
def hello
 "Hello World"
end

hello
puts hello

#=>
Hello World

You will notice that we called the hello method twice, once we just called the method
that returned Hello World, but we didn’t do anything with the return. When we called
the method for the second time we actually used the return by passing this to puts.

Chapter 10 ■ FunCtions and Methods

76

You will also notice that we just state “Hello World” without actually stating to return this.
In Ruby the last statement will always be returned, unless a return statement is called
before as shown here:

#!/usr/bin/env ruby
def hello
 return "Hello Matt"
 "Hello World"
end

puts hello

#=>
Hello Matt

Returning Multiple Values
We can also extend our returns to return multiple pieces of data if required as follows:

#!/usr/bin/env ruby
def return_multiple
 k = 10
 l = 20
 m = 4
 return k, l, m
end

puts return_multiple

#=>
10
20
4

Complex Methods
We have previously shown how methods can be used for very simple logic, by passing in a
(optional) first parameter or no parameters at all. We can advance this further to compute
more complex problems.

#!/usr/bin/env ruby
def addition(num1, num2)
 num1 + num2
end

Chapter 10 ■ FunCtions and Methods

77

puts addition 1, 4
puts addition 5, 382

#=>
5
387

We can also have functions calling other functions if required.

#!/usr/bin/env ruby
def addition(num1, num2)
 num1 + num2
end

def minus(num1, num2)
 num1 - num2
end

def times(num1, num2)
 num1 * num2
end

def divide(num1, num2)
 num1 / num2
end

def calculate(type, num1, num2)
 if type == 'add'
 return addition num1, num2
 elsif type == 'minus'
 return minus num1, num2
 elsif type == 'times'
 return times num1, num2
 elsif type == 'divide'
 return divide num1, num2
 end

 "Error"
end

puts calculate 'add', 1, 4
puts calculate 'times', 5, 382
puts calculate 'modulus', 5, 3
puts calculate 'divide', 90, 9

#=>
5
1910
Error
10

Chapter 10 ■ FunCtions and Methods

78

Named and Variable Parameters
The only issue with what we have written previously, is that while we can supply default
parameters for a method, if we say we want to change the last parameter; we still have
to provide all parameters as follows:

#!/usr/bin/env ruby
def really_long_maths(num1 = 2, num2 = 2, num3 = 3, num4 = 8, num5 = 1)
 num1 * num2 - num3 + num4 / num5
end

puts really_long_maths
puts really_long_maths 2, 2, 3, 8, 2

#=>
9
5

Notice that in the second example, we only wanted to change the last parameter.
However we had to supply all other parameters default values just to be able to do this.
There is a better way! We can utilize a hash being passed in, and supply some default
values within this hash if the key is not provided.

#!/usr/bin/env ruby
def really_long_maths(opts={})
 params = {
 :num1 => 2,
 :num2 => 2,
 :num3 => 3,
 :num4 => 8,
 :num5 => 1
 }.merge(opts)

 params[:num1] * params[:num2] - params[:num3] + params[:num4] /
params[:num5]
end

puts really_long_maths
puts really_long_maths(:num5 => 2)
puts really_long_maths({ :num3 => 6, :num5 => 2 })

#=>
9
5
2

Chapter 10 ■ FunCtions and Methods

79

Notice that we merge our options hash into a hash of default parameters. This way
we only need to supply the parameters that we want to change.

We can also allow a variable number of parameters to be passed in, and loop through
these if required.

#!/usr/bin/env ruby
def my_pets(*pets)
 puts "I have #{pets.count} types of pet"
 for i in 0...pets.length
 puts "I have a #{pets[i]}"
 end
end

my_pets "Dog", "Cat", "Horse", "Praying Mantis"
puts "-------------"
my_pets "Fish", "Owl"

#=>
I have 4 types of pet
I have a Dog
I have a Cat
I have a Horse
I have a Praying Mantis

I have 2 types of pet
I have a Fish
I have a Owl

Starting with Ruby 2.0, we can now pass “real” named parameters into a function,
without having to resort to a hash to cater for this.

#!/usr/bin/env ruby
def my_name(first_name: "Joe", last_name: "Bloggs")
 puts "#{first_name} #{last_name}"
end

my_name(first_name: "Matt")

#=>
Matt Bloggs

Chapter 10 ■ FunCtions and Methods

80

Aliasing a Method
Within Ruby we can alias a method if required. To do this, we use the syntax

alias <<new name>> <<current method name>>

#!/usr/bin/env ruby
def hello
 puts "Hello World"
end

alias welcome hello

hello
welcome

#=>
Hello World
Hello World

Un-defining a Method
We may require the ability to un-define a method, or alias of a method on occasions.
Ruby supports this by using the undef syntax as follows:

undef <<method name or alias name>>

#!/usr/bin/env ruby
def hello
 puts "Hello World"
end

alias welcome hello

undef hello

welcome
hello

#=>
Hello World
fig14.rb:11:in `<main>': undefined local variable or method `hello' for
main:Object (NameError)

Chapter 10 ■ FunCtions and Methods

81

Class Methods versus Instance Methods
We have shown a number of examples of “instance methods” previously, whereby we
address the instance of a class, rather than a class itself.

#!/usr/bin/env ruby
class Car
 def self.hello
 puts "Hello from the Car Class"
 end
 def hello
 puts "Hello from My Car"
 end
end

Car.hello
Car.new.hello

#=>
Hello from the Car Class
Hello from My Car

Exercise
Now that we have methods in our knowledgebase, we can make the DVD exercise much
simpler and more reusable.

We initially declare our three methods, which each run a piece of the processing. The
first two methods are used for filtering, and use the Ruby 2.0 named parameter syntax to
set default values. These methods simply return a reduced array, which is then passed to
the next function in turn. The last function simply iterates through the remaining array
and outputs the films that we can watch.

We declare the dvds parameter as Array.new if one is not passed, so that an array can
be returned.

#!/usr/bin/env ruby

def age_check(min_age: 10, max_age: 15, dvds: Array.new)
 dvds.keep_if { |item| item[3].to_i.between?(10,15) }
end

def length_check(max_hours: 2, max_minutes: 0, dvds: Array.new)
 max_num_of_minutes = (max_hours*60) + max_minutes
 dvds.keep_if { |item| item[1].to_i < max_num_of_minutes }
end

Chapter 10 ■ FunCtions and Methods

82

def what_can_we_watch(dvds)
 dvds.each {|dvd| print "\aYAY! We can watch ", dvd[2], "\n" }
end

dvds = Array.new
selected_dvds = Array.new
final_dvds = Array.new

dvds.push([100000,137,"Skyfall",12])
dvds.push([100001,114,"The Hurt Locker",15])
dvds.push([100002,105,"21 Jump Street",15])
dvds.push([100003,100,"Finding Nemo",'U'])

selected_dvds = age_check(dvds: dvds)

final_dvds = length_check(dvds: selected_dvds)

what_can_we_watch(final_dvds)

#=>
YAY! We can watch The Hurt Locker
YAY! We can watch 21 Jump Street

83

Chapter 11

Classes and Modules

In the previous chapters we have discussed the basics of the Ruby programming
language, without looking at it from an object- oriented point of view. Object orientation
is an alternative to the procedural method of programming. Procedural code runs from
top to bottom in a very simple and linear way. Object-oriented programming includes
creating a set of classes, with associated methods (such as a class called Car, with a
method called startEngine). We then initialize these classes by creating instance objects
of the class in order to call the method.

#!/usr/bin/env ruby

class Car
 def startEngine
 puts "Engine Started"
 end
end

my_car = Car.new
my_car.startEngine

#=>
Engine Started

Properties
We can extend our classes to support properties; the getting and setting of variables
within a class so that the object as can access these as required, within different methods.
To do so, rather like other programming languages, we create getter and setter methods,
which get the variable and set the variable, respectively.

Chapter 11 ■ Classes and Modules

84

#!/usr/bin/env ruby

class Car
 def getColour
 @colour
 end

 def setColour colour
 @colour = colour
 end

end

my_car = Car.new
my_car.setColour "Blue"

puts "My Car is #{my_car.getColour}"

#=>
My Car is Blue

We can enhance this further, by instead using a method to setColour, and one to
getColour—we can set property setting. This means that we can set a variable within a
class, the same way that you would set an internal variable. Notice the def colour= colour
(without the space) that allows a property to become accessible at a class level.

#!/usr/bin/env ruby

class Car
 def colour
 @colour
 end

 def colour= colour
 @colour = colour
 end

end

my_car = Car.new
my_car.colour = "Blue"

puts "My Car is #{my_car.colour}"

#=>
My Car is Blue

Chapter 11 ■ Classes and Modules

85

While this kind of functionality exists within many other programming languages,
Ruby provides us with the attr_accessor method, which allows us to set properties
that can be updated at an object level, without having to produce any code as we had to
previously.

#!/usr/bin/env ruby

class Car
 attr_accessor :colour, :engine_size
end

my_car = Car.new

my_car.colour = "Red"
puts my_car.colour

my_car.engine_size = 1400
puts my_car.engine_size

#=>
Red
1400

While we have used the attr_accessor statement previously (which allows read
and write access to the properties named) we can use attr_reader to define properties
that we can read-only; and attr_writer to define properties that we can write to, but not
read from.

Constructors
Ruby provides us with the capability to create a constructor method, one that is called
when an object of a class is initialized. This allows some default properties to be set, or
some setup code to be executed before the object is used.

#!/usr/bin/env ruby

class Vehicle
 def initialize (colour, engine_size, type = 'Car')
 @colour = colour
 @engine_size = engine_size
 @type = type
 end
end

my_car = Vehicle.new("Blue",1400)
hire_van = Vehicle.new("While",2200,"Van")

Chapter 11 ■ Classes and Modules

86

Private Methods
Ruby allows us to create private methods, which external calls cannot access. Only
internal methods can call these private methods (an internal method meaning a method
within the same class).

#!/usr/bin/env ruby

class Car
 def showEngineSize
 puts getEngineSize
 end

 private

 def getEngineSize
 1400
 end

end

my_car = Car.new

my_car.showEngineSize

my_car.getEngineSize

#=>
1400
fig05.rb:20:in `<main>': private method `getEngineSize' called for
#<Car:0x00000101089b00> (NoMethodError)

Protected Methods
A private method can only be called by its own object, protected methods allow an object
to access other objects of the same class’s methods.

#!/usr/bin/env ruby

class Car
 attr_accessor :colour

 protected :colour

 def <=>(other_car)
 colour <=> other_car.colour
 end
end

Chapter 11 ■ Classes and Modules

87

my_car = Car.new
my_car.colour = "Red"

hire_car = Car.new
hire_car.colour = "Blue"

puts my_car == hire_car
puts my_car != hire_car

#=>
false
true

Modules
Within other programming languages you have namespaces; Ruby groups classes
together in namespaces by using modules to group a set of classes.

#!/usr/bin/env ruby

module Vehicle
 class Car
 def hello
 puts "I am a car"
 end
 end

 class Van
 def hello
 puts "I am a van"
 end
 end
end

include Vehicle

my_car = Car.new
my_car.hello

#=>
I am a car

We could also drop the use of include, which will include the module required, and
statically include this in our initialization of objects.

Chapter 11 ■ Classes and Modules

88

#!/usr/bin/env ruby

module Vehicle
 class Car
 def hello
 puts "I am a car"
 end
 end

 class Van
 def hello
 puts "I am a van"
 end
 end
end

my_car = Vehicle::Car.new
my_car.hello

#=>
I am a car

In the previous section we have demonstrated using modules for object-oriented
programming, Modules exist simply to group together a set of reusable code. Working
back previous to OOP, we could simply group together a set of functions if required.

#!/usr/bin/env ruby

module Maths
 def self.add num1, num2
 num1 + num2
 end

 def self.minus num1, num2
 num1 - num2
 end
end

puts Maths.add 20, 5

puts Maths.minus 131, 32

#=>
25
99

Chapter 11 ■ Classes and Modules

89

Ruby Class Variables
Within Ruby, we have a number of types of variables available to us, especially
when working with object-oriented programming. It is worth understanding (and
remembering) the various syntaxes to these to avoid complex debugging when trying to
establish why a variable is not holding its value as expected.

Local Variables
Local variables are our “normal variables” that are set within a method in Ruby, and no
other method/call can access these variables at any time. Local variables normally start
with a lowercase letter or an underscore.

#!/usr/bin/env ruby
class Car
 def engine_size engine_size
 engine_size_display = engine_size/1000

 puts "Engine Size is #{engine_size_display}L"
 end
end

my_car = Car.new
my_car.engine_size 2000
#=>
Engine Size is 2L

Instance Variables
Instance variables are available within any method of an instance or object. This means
that the variables can be accessed and updated across various methods, rather like
we demonstrated previously within the getter/setter example. Instance variables are
preceded by the at sign (@) followed by the variable name.

#!/usr/bin/env ruby
class Car
 def engine_size
 puts "Engine Size is #{@engine_size_display}L"
 end
 def engine_size= engine_size
 @engine_size_display = engine_size/1000
 end
end

my_car = Car.new
my_car.engine_size = 2000
my_car.engine_size
#=>
Engine Size is 2L

Chapter 11 ■ Classes and Modules

90

Class Variable
A Class variable is accessible across different objects of the same class. This is a
characteristic of the class, and belongs to the class. These variables start with a double at
sign (@@) followed by the variable name.

#!/usr/bin/env ruby
class Car
 def initialize
 @@broken = false
 end

 def set_broken
 @@broken = true
 end

 def get_broken
 @@broken
 end
end

my_car = Car.new
new_car = Car.new

puts new_car.get_broken
my_car.set_broken
puts new_car.get_broken
#=>
false
true

Global Variable
A Global variable is available across various classes, and all calling code. These are
preceded by the dollar sign ($).

#!/usr/bin/env ruby

$version_number = '1.2.1'

class MyCode
 def get_version
 puts "Current Code is Version: #{$version_number}"
 end
end

Chapter 11 ■ Classes and Modules

91

class Release
 def set_new_version(version_number)
 $version_number = version_number
 end
end

my_code = MyCode.new
release = Release.new

my_code.get_version
release.set_new_version '1.2.2'
my_code.get_version

#=>
Current Code is Version: 1.2.1
Current Code is Version: 1.2.2

93

Chapter 12

Blocks, Procs, and Lambdas

Some of the most powerful features of the Ruby language are closures, which are
known as blocks, procs, and lambdas within Ruby. Closures within Ruby are also often
misunderstood, mainly due to the flexibility when using them within Ruby.

A closure is in essence a function that can be stored as a variable; closures within
Ruby are mainly used for iterating through data/result sets. Closures allow external access
to local variables from within the closure.

Blocks
The simplest of the three closures is a block; this follows Ruby’s “normal” programming
style. Blocks are simply “bits” of code that can be executed.

Ruby blocks follow either the do..end syntax, or curly braces {} and often combine
methods such as each, times, and collect to iterate through each element of a hash or
array.

#!/usr/bin/env ruby
[1, 2, 3, 4].each do |n|
 puts n
end

#=>
1
2
3
4

#!/usr/bin/env ruby
[1, 2, 3].each { |n| puts n }

#=>
1
2
3

Chapter 12 ■ BloCks, proCs, and lamBdas

94

Likewise, we can use the times method to execute the block a set number of times.

#!/usr/bin/env ruby
3.times { |i| puts "Hello!" }
#=>
Hello!
Hello!
Hello!

We mentioned the collect method previously, which is one of the most useful
methods when dealing with blocks. The collect method applies the block to each
element within an array provided.

#!/usr/bin/env ruby
scores = [10, 8, 5]
puts scores.collect { |score| score + 1 }

puts scores

#=>
11
9
6
10
8
5

You will notice that within the block, using the collect method, we increased the
score by 1, and outputting the results from this statement displayed the updated scores.
You will also notice that when we output the contents of the scores array, these were
unchanged.

As outlined in earlier chapters, we can append an exclamation mark to the collect
method, (collect!), which will store the outcomes of the block back to the original array.

#!/usr/bin/env ruby
scores = [10, 8, 5]
puts scores.collect! { |score| score + 1 }

puts scores
#=>
11
9
6
11
9
6

Chapter 12 ■ BloCks, proCs, and lamBdas

95

Yield
Using a yield statement we can pass control between a method and a block, and back
again as required. To utilize this, we simply create a function and a block with the same
name and then use the yield statement to call the block when required.

#!/usr/bin/env ruby

def hello
 puts "In the Method"
 yield
 puts "Back in the Method"
 yield
end

hello { puts "You are in the block" }

#=>
In the Method
You are in the block
Back in the Method
You are in the block

We can enhance the preceding code to support parameters being passed in:

#!/usr/bin/env ruby

def hello
 puts "Hello Person"
 yield "Joe"
 puts "Hello Person"
 yield "Peter"
end

hello { |name| puts "Hello #{name}" }

#=>
Hello Person
Hello Joe
Hello Person
Hello Peter

Chapter 12 ■ BloCks, proCs, and lamBdas

96

Blocks can also support multiple parameters, even when being called via the yield
statement. To do this you simply call yield param1, param2:

#!/usr/bin/env ruby

def hello
 puts "Hello Person"
 yield "Joe", "Bloggs"
 puts "Hello Person"
 yield "Peter", "Crouch"
end

hello { |first_name,last_name| puts "Hello #{first_name} #{last_name}" }

#=>
Hello Person
Hello Joe Bloggs
Hello Person
Hello Peter Crouch

Procs
The main issue with a block is that the code is simply runnable, but cannot be stored to
a variable to be run in multiple places like a method. Therefore the code is not reusable
across our application. A proc is simply a block that can be stored to a variable, and
executed from multiple places across our application.

#!/usr/bin/env ruby
times_two = Proc.new do |n|
 n * 2
end

puts (1..20).to_a.collect(×_two).inspect

#=>
[2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40]

Procs are very simple to write, and simply require you to define Proc.new and assign
this to a variable; other than they work similarly to a block. Also, we need to convert the
proc into a block for methods such as the collect and map methods; which is why we
specify the &proc_name syntax shown previously. (Note that the map and collect methods
do exactly the same thing.)

Chapter 12 ■ BloCks, proCs, and lamBdas

97

#!/usr/bin/env ruby
square = Proc.new { |x| x ** 2 }

puts [1, 2, 3, 4, 5].collect!(&square).inspect
puts [1, 2, 3, 4, 5].map!(&square).inspect

#=>
[1, 4, 9, 16, 25]
[1, 4, 9, 16, 25]

In the previous example we converted our proc back to a block in order to execute it.
We can instead use the proc_name.call syntax to call the proc directly.

#!/usr/bin/env ruby
test_proc = Proc.new { puts "Hello World" }

test_proc.call

#=>
Hello World

Lambdas
A lambda is almost identical to a proc, just with an alternative syntax. Rather than using
the Proc.new syntax, we define a lambda using the lamba keyword

#!/usr/bin/env ruby

def lambda_test(my_lambda)
 puts "Method here!"
 my_lambda.call
end

lambda_test(lambda { puts "Lambda here!" })

#=>
Method here!
Lambda here!

Here we are defining a method called lambda_test, and accepting a parameter
of my_lambda, which will run some code within the method itself, before running the
lambda passed in. Within the call to our method, we are defining a lambda.

Chapter 12 ■ BloCks, proCs, and lamBdas

98

Here we simplify this process further, by removing the method from the code
example to outline how we define a lambda, and passing an array of names to the lambda
(which we convert to a block as per our proc example):

#!/usr/bin/env ruby
output = lambda { |name| puts name }

names = ["Joe", "Paul", "Peter", "John"]

names.collect(&output)

#=>
Joe
Paul
Peter
John

Although procs and lambdas are almost identical, there are a few minor differences
in the way that they function that are worth noting at this stage.

First, a lambda checks the number of parameters passed in, and will throw an error
if an invalid number of parameters are passed in, whereas a proc will just treat all missing
parameters as nil values.

Second, when a lambda returns, it passes control back to the calling method,
whereas a proc instantly returns without passing back control to the calling method.

def villain_superhero_proc
 winner = Proc.new { return "Villain Wins!" }
 winner.call
 "Superhero Wins!"
end

puts villain_superhero_proc

def villain_superhero_lambda
 winner = lambda { return "Villain Wins!" }
 winner.call
 "Superhero Wins!"
end

puts villain_superhero_lambda

#=>
Villain Wins!
Superhero Wins!

You will notice here, that in the proc example, the execution stops after calling the
proc method as the return, passing control directly back to the calling statement rather
than the internal proc; whereas the Lambda returns to the internal method, which then
itself returns further on.

Chapter 12 ■ BloCks, proCs, and lamBdas

99

eXerCISe

We can adapt our original exercise of the dVd sorter to use blocks, procs and
lambdas instead.

We utilize a lambda for our initial check, which returns the original dVd array if the
rating is between a 10 and 15, or else this returns nil (which we then strip out using
the compact method), before storing this as the array selected_dvds.

We then pass this array through a proc, which checks that the dVd’s length is less
than 2 hours, again returning the dVd array if this passes, or nil if this fails. however
we use the collect! call for this, so this updates our selected_dvds array.

Finally we utilize a block to pass each of the selected dVds through, which outputs
the dVds that we can watch.

#!/usr/bin/env ruby

length_check = Proc.new do |dvd|
 if(dvd[1].to_i < 120)
 dvd
 else
 nil
 end
end

age_check = lambda { |dvd| (dvd[3].to_i.between?(10,15) ? dvd : nil)
}

dvds = Array.new
dvds.push([100000,137,"Skyfall",12])
dvds.push([100001,114,"The Hurt Locker",15])
dvds.push([100002,105,"21 Jump Street",15])
dvds.push([100003,100,"Finding Nemo",'U'])

selected_dvds = dvds.map(&age_check).compact

selected_dvds.collect!(&length_check)

selected_dvds.compact.each { |dvd| print "\aYAY! We can watch ",
dvd[2], "\n" }

#=>
YAY! We can watch The Hurt Locker
YAY! We can watch 21 Jump Street

101

Chapter 13

Errors and Exceptions

Within Ruby, as well in almost all other object-oriented and procedural-based
programming languages, we have the option to throw and handle errors and exceptions
within our code. Some of these errors and exceptions we will want to generate ourselves,
such as when we have detected some abnormal behavior within the system, whereas
other errors and exceptions will be thrown from the Ruby language itself, or other
third-party libraries.

For example, we have built a system that allows some text and a photo to be
uploaded to an external service (for example, Twitter). We will want to throw our own
errors if the user’s message is too long for the service, but likewise we will want to handle
a network or communications error that Ruby will throw if we fail to connect to this
external service.

In Ruby, an error is thrown by the means of an exception, which can be handled by
catching or raising the error.

Errors
Ruby errors are simply child classes of the StandardError class that is part of the
Ruby core classes. We can use a small snippet of Ruby code to loop through the
StandardErrors within Ruby and output these in a hierarchical structure. Some of the
more common error codes within Ruby (based upon version 2.1.2) are shown here:

Error Name Meaning (From Ruby Documentation)

NoMemoryError Raised when memory allocation fails.

Gem::LoadError Raised when RubyGems is unable to load or activate a gem.
Contains the name and version requirements of the gem that
either conflicts with already activated gems or that RubyGems
is otherwise unable to activate.

NotImplementedError Raised when a feature is not implemented on the current
platform. For example, methods depending on the fsync or
fork system calls may raise this exception if the underlying
operating system or Ruby runtime does not support them.

(continued)

Chapter 13 ■ errors and exCeptions

102

Error Name Meaning (From Ruby Documentation)

SecurityError Raised when attempting a potential unsafe operation,
typically when the $SAFE level is raised above 0.

Interrupt Raised with the interrupt signal is received, typically because
the user pressed on Control-C (on most posix platforms).
As such, it is a subclass of SignalException.

ThreadError Raised when an invalid operation is attempted on a thread.

TypeError Raised when encountering an object that is not of the
expected type.

[1, 2, 3].first(“two”)

#=> TypeError: no implicit conversion of String into Integer

ZeroDivisionError Raised when attempting to divide an integer by 0.

42 / 0

#=> ZeroDivisionError: divided by 0

In Ruby 2.1.2 there are over 150 different types of errors that can be thrown.

Catching Errors and Exceptions
Within Ruby, we will often need to catch errors, so that the raw error is not displayed back
to the user; to do this we use the rescue syntax:

Unhandled Error:

#!/usr/bin/env ruby
begin
 puts 1/0
end

#=>
fig01.rb:3:in `/': divided by 0 (ZeroDivisionError)
 from fig01.rb:3:in `<main>'

Handled Error:

#!/usr/bin/env ruby
begin
 puts 1/0
rescue
 puts "Sorry, we can't divide by Zero"
end

#=>
Sorry, we can't divide by Zero

Chapter 13 ■ errors and exCeptions

103

We have now correctly handled an error, and displayed a more user-friendly message
instead. However by simply stating rescue we have started to handle all errors thrown
within this code. The same code syntax with just the added ability to pull through the type
of error being thrown, and throwing a different error above (the file does not exist) will
output as follows:

#!/usr/bin/env ruby
begin
 file = File.open("file_not_here.txt")
 puts 1/0
rescue StandardError => error
 puts "Sorry, we can't divide by Zero"
 puts "Error actually thrown is #{error.class}"
end
end

#=>
Sorry, we can't divide by Zero
Error actually thrown is Errno::ENOENT

Notice that as we handled all errors, we displayed an error message stating that
we can’t divide by Zero when the actual error was due to an invalid file attempting
to be opened.

We can improve these error handlings, by handling the actual errors we want to
handle, and doing something useful with them, such as throwing more reasonable
error messages.

#!/usr/bin/env ruby
begin
 file = File.open("file_not_here.txt")
 puts 1/0
rescue ZeroDivisionError => error
 puts "Sorry, we can't divide by Zero"
 puts "Error: #{error.to_s}"
rescue Errno::ENOENT => error
 puts "Sorry, we can't open the file requested"
 puts "Error: #{error.to_s}"
end

#=>
Sorry, we can't open the file requested
Error: No such file or directory @ rb_sysopen - file_not_here.txt

Chapter 13 ■ errors and exCeptions

104

Raising Exceptions
Raising an exception within Ruby is very similar to throwing/catching errors in most
other programming languages; this often confuses new developers working with Ruby, as
they attempt to create some throw/catch statements, which work very differently in Ruby.
Therefore we use the raise/rescue syntax the same way in Ruby as we would use
a throw/catch in other languages such as C#.

#!/usr/bin/env ruby
begin
 raise 'Testing an Exception'
 puts "Shouldn't execute this code"
rescue Exception => error
 puts "Rescued an Exception: #{error.inspect}"
end

#=>
Rescued an Exception: #<RuntimeError: Testing an Exception>

Here we have just thrown a RuntimeError as we did not specify the type of exception
that we wanted to raise. We can pass in an initial parameter when calling raise to specify
the exception type, followed by the message we want to raise.

#!/usr/bin/env ruby
begin
 raise ZeroDivisionError, 'My fake ZeroDivisionError'
 puts "Shouldn't execute this code"
rescue Exception => error
 puts "Rescued an Exception: #{error.inspect}"
end

#=>
Rescued an Exception: #<ZeroDivisionError: My fake ZeroDivisionError>

When an error or exception is thrown within Ruby, this terminates the running of the
block currently being executed (like a try/catch block in other programming languages).
We can however allow continuation of our application by continuing with statements
outside of the block.

#!/usr/bin/env ruby
begin
 raise ZeroDivisionError, 'My fake ZeroDivisionError'
 puts "Shouldn't execute this code"
rescue Exception => error
 puts "Rescued an Exception: #{error.inspect}"
end

Chapter 13 ■ errors and exCeptions

105

Creating Our Own Exceptions
As shown in the previous examples, we can raise generic exceptions within our code
when an unexpected scenario occurs, however are not always easily identifiable as to the
reason that a particular scenario occurred. Therefore if we rescue the standard errors it
is not guaranteed that the exception was raised for the reason that we intended. Instead
we can define our own exceptions, and raise these so that we have a better idea as to what
has happened within our application.

#!/usr/bin/env ruby
class MyTestException < StandardError
end

begin
 raise MyTestException
rescue MyTestException => error
 puts "Rescued an Exception: #{error.inspect}"
end

#=>
Rescued an Exception: #<MyTestException: MyTestException>

Like with standard Exceptions, we can also pass a message over to the exception, so
that this can be retrieved when caught within the rescue statement. Passing messages to
an exception are particularly useful for debugging purposes; such as logging exceptions
that have been thrown, as this can provide additional information about why the
exception was thrown.

#!/usr/bin/env ruby
class MyTestException < StandardError
end

begin
 raise MyTestException, 'Hello'
rescue MyTestException => error
 puts "Rescued an Exception: #{error.inspect}"
end

#=>
Rescued an Exception: #<MyTestException: Hello>

We can also output the backtrace of the exception, which details further how
the exception was thrown, and which sections of code the exception had been
generated from.

Chapter 13 ■ errors and exCeptions

106

#!/usr/bin/env ruby
def testing_block
 begin
 raise Exception
 rescue Exception => error
 puts error.backtrace.inspect
 end
end

testing_block

#=>
["fig11.rb:4:in `testing_block'", "fig11.rb:10:in `<main>'"]

Ensure
In other object-oriented programming languages we have the finally statement that
always executes after a try/catch block has been completed—regardless of whether the
statement exited normally, or with an exception. Similarly in Ruby we can use the ensure
statement for this.

#!/usr/bin/env ruby
begin
 puts "Hello"
 raise Exception
 puts "Hello Again"
rescue Exception => error
 puts "Rescued an Exception"
ensure
 puts "Goodbye!"
end

#=>
Hello
Rescued an Exception
Goodbye!

The ensure statement is very useful for handling both the successful results and
unsuccessful results of a statement, such as a database update. We could use the main
block to run a query, and raise an exception if something unordinary occurred. We can
roll-back our changes within the rescue statement, and report the error back to the user;
before closing and disconnecting from the database regardless of the outcome during the
ensure statement.

Chapter 13 ■ errors and exCeptions

107

Throw/Catch
While Ruby utilizes the raise/rescue syntax for throwing and catching exceptions, it still
has the throw and catch keywords that can be utilized for a similar purposes, but are not
directly linked to handling exceptions.

The throw/catch syntax within Ruby is similar to a break statement within other
programming languages, as follows:

#!/usr/bin/env ruby
catch :test_throw_catch do
 puts "Here I Am"
 throw :test_throw_catch
 puts "Hello"
end

#=>
Here I Am

We can utilize this further within a loop that allows the loop to exit once a certain
scenario passes.

#!/usr/bin/env ruby
catch :quit_loop do
 1000000.times do |i|
 throw :quit_loop if i > 10
 puts i
 end
end

puts "Ok, we're done!"

#=>
0
1
2
3
4
5
6
7
8
9
10
Ok, we're done!

109

Chapter 14

Input/Output

Input/Output within Ruby is the ability to bi-directionally communicate between Ruby
and an external resource, such as a file or network resource. It is worth noting that
Input/Output is not just restricted to File processes, as often wrongly assumed. Ruby
Input/Output is defined from the single base class IO. Derived from the IO class, we then
have more specialized, but otherwise similar subclasses, such as File and BasicSocket
that deal with the Input/Output for the particular type of resource.

Previously, we have dealt with Standard Input/Output, which allows us to
communicate interactively with the user running our Ruby application. We can output
text to the screen for the user to view, and we can prompt the user to enter some
information back into our application that we can interpret.

#!/usr/bin/env ruby
puts "Hello there, please can you enter your name"

name = gets
puts "Hello #{name}"

#=>
Hello there, please can you enter your name
Matt
Hello Matt

Note that I entered Matt when the application ran, and prompted for user input.

Chapter 14 ■ Input/Output

110

Method Name Purpose

gets Gets the user input until the return key is fired. Note that this also
captures the new line into the variable. We can also use the chomp
method to trim this string down from new lines.

#!/usr/bin/env ruby
name = gets
puts "Hello #{name}, welcome!"

puts ""

name = gets.chomp
puts "Hello #{name}, welcome!"

#=>
Matt
Hello Matt
, welcome!

Matt
Hello Matt, welcome!

puts Puts the string passed in onto the output display, followed by a
new line.

open Opens the resource passed in to the function. This can be a resource or
file and the kernel will work out how to open this
file/resource.

print Puts the string passed in onto the output display; however no new line is
output after the string.

printf Interprets the string passed in (including any placeholder values), and
outputs the modified string:

#!/usr/bin/env ruby
name = gets.chomp
printf("Hello %s\n",name)

#=>
Matt
Hello Matt

In addition to the gets and puts methods, we have additional Standard
Input/Output methods available to us, the most common of which are detailed here:

(continued)

Chapter 14 ■ Input/Output

111

Method Name Purpose

putc Works similar to puts; however allows a single character to be output
rather than a string:

#!/usr/bin/env ruby
str = "ABCDEFGH"
putc str
#=>
A

readline Allows the reading of a single line from a File/Resource Handle or
Standard Input.

readlines Reads a file, and splits the new lines into elements within an array for
Ruby to iterate through.

File Input/Output
The most commonly used method of Input/Output within Ruby is when dealing with files
being input or output. This is where the Ruby interpreter opens a file handle (opening an
existing or new file) and read or writes some data from this file. This is particularly useful
when writing log files, reading configuration files, or general reading or writing to files for
application purposes.

To start with, we will simply open and close a file handle on a file, which we could
then read if required between the opening and closing of the file handle.

#!/usr/bin/env ruby
file = File.open("test.txt","r")

#Do some "stuff" with a Text File

file.close
#=>
fig05.rb:2:in `initialize': No such file or directory
@ rb_sysopen - test.txt (Errno::ENOENT)
 from fig05.rb:2:in `open'
 from fig05.rb:2:in `<main>'

Here, we didn’t create the file test.txt before running our application, as we are
attempting to read the file; and it does not exist, we receive this warning. We can create
the file initially, and then re-run our application:

touch test.txt
ruby fig05.rb
#=>

Chapter 14 ■ Input/Output

112

Note that we receive no output, but receive no error either; this is because we are
simply opening a file for reading, then closing the file without doing anything. Instead we
can now read data from the file, and output it on the screen:

#!/usr/bin/env ruby
file = File.open("test2.txt","r")
puts file.inspect
puts file.read
file.close

#=>
#<File:test2.txt>
Hello World from my file!!

You can see from this code that we are now inspecting the file handle, which simply
reports on details regarding the file handle, such as the filename that is opened. Then we
output the file.read method that reads the entire file’s content and we simply output this.

We will now create a text file containing the following content, and attempt to just
read a single line from the file using the readline method.

Hello World from my file!!

Testing 123

#!/usr/bin/env ruby
file = File.open("test3.txt","r")
puts file.inspect
puts file.readline
file.close

#=>
#<File:test3.txt>
Hello World from my file!!

While this doesn’t seem particularly useful at this stage, we could combine the
readline method with a loop through each line of the file, and process each line of the file.

#!/usr/bin/env ruby
file = File.open("shopping_list.txt","r")
while(item = file.readline) != nil
 puts "We need to buy #{item.chomp} today."
end
file.close

#=>
We need to buy Cheese today.
We need to buy Milk today.
We need to buy Bread today.
fig08.rb:4:in `readline': end of file reached (EOFError)
 from fig08.rb:4:in `<main>'

Chapter 14 ■ Input/Output

113

You will notice that we didn’t correctly rescue and handle the EOFError that Ruby
raised when we tried to reach beyond the end of the file. We could correctly handle this
by rescuing the error and closing the file.

#!/usr/bin/env ruby
begin
 file = File.open("shopping_list.txt","r")
 while(item = file.readline) != nil
 puts "We need to buy #{item.chomp} today."
 end
rescue EOFError
 file.close
end

#=>
We need to buy Cheese today.
We need to buy Milk today.
We need to buy Bread today.

We can also adjust our file pointers location if required; if we read all or part of the
file’s contents, but then need to re-read this again, we can use the rewind method to
adjust the file pointer back to the beginning of the file.

#!/usr/bin/env ruby
file = File.open("shopping_list.txt", "r")
puts file.readline.chomp
file.rewind
puts file.readline.chomp
file.close
#=>
Cheese
Cheese

Likewise, we can seek forward rather than rewind backward within a file pointer;
we simply specify the byte that we want to skip to, and our file pointer is moved.

Our input file:

Testing
Hello
Abc
123456

#!/usr/bin/env ruby
file = File.open("fig13.txt", "r")
puts file.readline.chomp
file.seek(20, IO::SEEK_SET)
puts file.readline.chomp
file.close

Chapter 14 ■ Input/Output

114

#=>
Testing
3456

Seek Types
Previously, we used the IO::SEEK_SET constant that defines where to seek to given the
number of bytes as the initial parameter; there are three seek types that can be used

Seek Type Details

IO::SEEK_SET Seeks to the absolute location given by first integer number
parameter from the start of the file

IO::SEEK_CUR Seeks to first integer number parameter plus current position
(i.e., seeks X number of bytes from the current position)

IO::SEEK_END Seeks to first integer number parameter plus end of stream
(i.e., seeks from the end of the file, so seeking a negative number
allows rewinding by a number of bytes)

File Modes
You will notice so far that we have used the mode r when dealing with opening and
reading a file; this mode stands for read-only, which simply allows our file to be read,
but nothing can be written to the file handle.

Mode Details

R Read-only, starting at beginning of file (default)

r+ Read-write, starts at beginning of file

W Write-only, truncates existing file to an empty file, or creates a new file if it
doesn’t already exist

w+ Read-write, truncates existing file to an empty file, or creates a new file if it
doesn’t already exist

A Write-only, each write call appends data at end of file. Creates a new file
for writing if file does not exist

a+ Read-write, each write call appends data at end of file. Creates a new file
for reading and writing if file does not exist

We will now use other methods of opening files to write/append to files, rather
than just reading data from a file; this could be used for writing log files, reading a file for
validation, then appending a reject message against each line if required.

Chapter 14 ■ Input/Output

115

#!/usr/bin/env ruby
file = File.open("test4.txt", "w")
file.puts "Hello Matt!"
file.close

And a file named test4.txt has been created as follows:

Hello Matt!

Running the code again will simply truncate the file to an empty file, and write the
same line again, so our output file will always contain the same content; we could switch
the file open mode from Write to Append as follows, then run the code three times in a row

#!/usr/bin/env ruby
file = File.open("test-append.txt", "a")
file.puts "Hello there!"
file.close

And the output file contents, once we have run the code three times:

Hello there!
Hello there!
Hello there!

Network Input/Output
While we have mainly detailed File Input/Output, similar functionality exists for dealing
with Network Input/Output using the BasicSocket class (a subclass of the IO class).
There are also a number of specialized classes such as TCPSocket (for dealing with TCP
connections), UDPSocket (for dealing with UDP connections), and many more.

For our first example, we can use the TCPSocket to open a simple telnet session to
an external service, such as the Blinken Lights ASCII Starwars via telnet service:
(http://www.blinkenlights.nl/services.html#starwars)

#!/usr/bin/env ruby
require 'socket'

socket = TCPSocket.open("towel.blinkenlights.nl", 23)

while line = socket.gets
 puts line.chop
end
socket.close

http://www.blinkenlights.nl/services.html#starwars

Chapter 14 ■ Input/Output

116

We can take this further by creating a Server and a Client, and make these two
applications talk to each other.

Server:

#!/usr/bin/env ruby
require 'socket'
BasicSocket.do_not_reverse_lookup = true
client = UDPSocket.new
client.bind('0.0.0.0', 33333)
data, address = client.recvfrom(1024)
puts "#{address} says: #{data}"
client.close

Client:

#!/usr/bin/env ruby
require 'socket'
sock = UDPSocket.new
data = gets
sock.send(data, 0, '127.0.0.1', 33333)
sock.close

We then run the Server, and the Client at the same time; the Server opens a socket
ready for a client to connect. Running the Client requests user input, which when
submitted uses the UDPSocket to pass data over to the server that outputs the message
before exiting.

Chapter 14 ■ Input/Output

117

Client:

Hello there server!

Server:

["AF_INET", 52465, "127.0.0.1", "127.0.0.1"] says: Hello there server

Higher Level Network Input/Output
Although we have used the BasicSocket in the previous examples, along with their
subclasses such as TCPSocket and UDPSocket, these are low-level network Input/Outputs
and require very complex code to retrieve simple data. We can instead use some
higher-level libraries, such as the net library that allows access to network resources,
such as HTTP commonly used for websites. For this example we connect to a website,
and initially check that we receive an OK status back (an HTTP 200 code, meaning that
page is responding), and we then search or scan through the source code looking for the
source within any HTML image tags, and display these on the screen

#!/usr/bin/env ruby
require 'net/http'

conn = Net::HTTP.get_response('www.mattclements.co.uk', '/')
if conn.message == 'OK'
 conn.body.scan(/<img src="(.*?)"/) { |image| puts image }
end

#=>
/content/images/2014/Jul/avatar.jpg

http://www.mattclements.co.uk/

119

Chapter 15

Files and Directories

Continuing from the previous chapter, here we look at Ruby’s ability to deal with files and
directories. Within a Ruby application, we may need to open files, amend those files, and
write them back to a particular directory, or we may need to open a file, process this file,
and move the file into another directory.

To do this we will use the File class, used in the previous chapter, along with the Dir
class which is Ruby’s method of interpreting and interacting with directory paths. Many of
the methods of this class have names similar to the relevant Linux command.

To start with, we can begin navigating through the hosts file system, and printing
out the current directory at each stage, as with the below example we can also change
directory within a block, which will revert to the previous directory once the block has
finished being executed.

#!/usr/bin/env ruby
Dir.chdir("/var/log")
puts Dir.pwd

Dir.chdir("/tmp") do
 puts Dir.pwd
 Dir.chdir("/Users/matt") do
 puts Dir.pwd
 end
 puts Dir.pwd
end
puts Dir.pwd

#=>
/var/log
/tmp
/Users/matt
/tmp
/var/log

Chapter 15 ■ Files and direCtories

120

This is particularly useful when you need to read and write a file within a particular
location, the block can navigate you to a particular directory to read/write files, and once
completed will change back to the previous directory automatically without you having
to store and change back to the initial directory. chdir stands for change directory and
is similar to the cd command within Unix applications. The pwd method stands for print
working directory, which shares the same name as the Unix command. The pwd method
is actually an alias for the getwd method and either can be used.

Now that we can navigate to various directories, and return the path to the current
directory, we can take this further by outputting a list of files/directories within our
current working directory. To do so we can use the entries method, which is similar to the
ls command within Unix. Using this method returns an array of all files and directories
within the current working directory. We can also pass over an optional second
parameter as the encoding of the directory, if this is not passed in, then the filesystem
encoding is used.

#!/usr/bin/env ruby
Dir.chdir("/Users/matt/Projects/ruby_book") do
 puts Dir.pwd
 puts Dir.entries('.').inspect
end
#=>
[".", "..", ".editorconfig", ".git", ".gitignore", "ch03", "ch04", "ch05",
"ch06", "ch07", "ch08", "ch09", "ch12", "ch13", "ch14", "ch15"]

This example shows a few things worth investigating further. The Dir.entries()
method accepts a directory as its first parameter. As we have already changed our
working directory to the folder for which we would like to list the files and directories,
we can simply use '.' as the directory. This stands for the current directory. Also within
our list of files, we can see files named "." and ".." this is Unix’s way of showing that
we can navigate to the current directory (".") and the parent directory (".."), the other
files/directories are then listed, ".editorconfig" is a file, "ch03" is a directory. We can
compare this to the output of an ls command in Unix that shows a number of similarities.

ls -a
. .gitignore ch06 ch12
.. ch03 ch07 ch13
.editorconfig ch04 ch08 ch14
.git ch05 ch09 ch15

We can use a method within Ruby’s Dir class called exist? to check the existence
of a directory. Note that this method strictly checks that the path provided exists and is a
directory. Calling this method with a file rather than a directory will return false.

#!/usr/bin/env ruby
Dir.chdir("/Users/matt/Projects/ruby_book") do
 puts Dir.exists?('ch15')
 puts Dir.exists?('ch15/fig02.rb')
end

Chapter 15 ■ Files and direCtories

121

#=>
true
false

We have the option to output the home directory of either the current user, or another
user, if we pass the username in as a parameter.

#!/usr/bin/env ruby
puts Dir.home()
puts Dir.home("root")
#=>
/Users/matt
/var/root

We can also chroot within our Ruby application. A chroot changes the current
processes view on the filesystem to only include the directory supplied and all child
directories, but will not allow access to other directories above. We must also run any
process that uses the chroot method under a privileged user such as running the code
with the sudo command.

#!/usr/bin/env ruby
Dir.chdir("/var")
puts Dir.pwd
puts Dir.entries('.').inspect

Dir.chroot("/var")
Dir.chdir("/")
puts Dir.pwd
puts Dir.entries('.').inspect

Dir.chdir("/etc")
puts Dir.pwd

#=>
sudo ruby fig05.rb • ••••••••••
/var
[".", "..", "agentx", "at", "audit", "backups", "db", "empty", "folders",
"jabberd", "lib", "log", "mail", "msgs", "netboot", "networkd", "root",
"rpc", "run", "rwho", "spool", "tmp", "vm", "yp"]

/
[".", "..", "agentx", "at", "audit", "backups", "db", "empty", "folders",
"jabberd", "lib", "log", "mail", "msgs", "netboot", "networkd", "root",
"rpc", "run", "rwho", "spool", "tmp", "vm", "yp"]

fig05.rb:11:in `chdir': No such file or directory @ dir_chdir - /etc
(Errno::ENOENT)
 from fig05.rb:11:in `<main>'

Chapter 15 ■ Files and direCtories

122

You will notice that we list the contents of the /var directory, we then lock the
process to the /var directory, and output the contents of the root of our (chrooted)
filesystem, which is actually the /var directory. When we then attempt to change to the
/etc directory (which does exist on our full filesystem) this cannot be found as the
process is looking within the chrooted file system. Therefore when changing to the /etc
directory, we are actually attempting to change to the /var/etc directory instead.

We can use the Ruby each and foreach methods to loop through the directory
listings, similar to the entries method, which returns an array of all entries.

#!/usr/bin/env ruby
Dir.foreach(".") {|f| puts "Found #{f}" }

puts

directory = Dir.new(".")
directory.each {|f| puts "Found #{f}" }
#=>
Found .
Found ..
Found fig01.rb
Found fig02.rb

Found .
Found ..
Found fig01.rb
Found fig02.rb

The final method that we cover here is the Dir.glob method, which is one of the
more advanced topics that we will cover during this chapter. A glob is a pattern match for
filenames, we pass in a pattern as an array or a string, and the method returns matching
results. This is often assumed as a regular expression, which is not the case; this is more
similar to a shell filename glob such as:

ls *.rb

The preceding is a Unix command to list all files that contain "(anything).rb" as
the filename.

#!/usr/bin/env ruby
puts Dir.glob("fig01.??").inspect
puts Dir.glob("*.[a-z][a-z]").inspect
puts Dir.glob("*.{rb}").inspect
puts Dir.glob("*").inspect

Chapter 15 ■ Files and direCtories

123

#=>
["fig01.rb"]
["fig01.rb", "fig02.rb", "fig03.rb", "fig04.rb", "fig05.rb", "fig06.rb",
"fig07.rb", "fig08.rb", "fig09.rb", "fig10.rb"]
["fig01.rb", "fig02.rb", "fig03.rb", "fig04.rb", "fig05.rb", "fig06.rb",
"fig07.rb", "fig08.rb", "fig09.rb", "fig10.rb"]
["fig01.rb", "fig02.rb", "fig03.rb", "fig04.rb", "fig05.rb", "fig06.rb",
"fig07.rb", "fig08.rb", "fig09.rb", "fig10.rb", "testing", "testing2",
"testing3", "testing5"]

You will notice various patterns in the preceding code that start to demonstrate
some of the functionality of globbing, the first example, lists all files that are named
fig01.(Any Character)(Any Character).

Table 15-1. Glob Characters

Glob Character Examples Details

* Matches any file. Can be restricted with other
values either side of the * character

c* Matches files beginning with a c

*c Matches files ending with a c

c Matches files with a c in them (including
beginning or end)

** Matches recursive directories (directories within
directories)

? Matches any 1 character (i.e., the letter c)

[set] [a-z] Matches any 1 character within the set, exactly
as with a Regular Expression. The example here
is any character that is between a and z, but we
could change this to [^a-z], which is any character
not between a and z.

{a,b} Matches any 1 character listed, the example
would be a single character that is either a or b.

\ Escapes a metacharacter. For example if we
were looking for a filename that contained the *
symbol, we could use *** meaning contains the *
character somewhere within the filename.

Chapter 15 ■ Files and direCtories

124

Directory Modification
Previously, we have been using the Ruby Dir class to look, navigate, and interrogate our
filesystems, we can now begin to modify the filesystem’s directories.

To start with, we will use the mkdir method, which creates a directory (in similar
fashion to the mkdir command within Unix operating systems). A SystemCallError is
raised if the directory cannot be created (for example, due to a privilege issue).

#!/usr/bin/env ruby
puts Dir.pwd
Dir.mkdir("testing")
Dir.chdir("testing")
puts Dir.pwd

#=>
/Users/matt/Projects/ruby_book/ch15
/Users/matt/Projects/ruby_book/ch15/testing

We can pass a second parameter to the mkdir method, which is for the new permissions
of the directory using the File::umask value (0777 for read/write/execute to the owner,
the owners group, and all other users; 0000 for no access to any user at all).

#!/usr/bin/env ruby
Dir.mkdir("testing2",0600)
Dir.mkdir("testing3",0755)

#=>
ls -la
drw------- 2 matt staff 68 14 Oct 18:32 testing2
drwxr-xr-x 2 matt staff 68 14 Oct 18:32 testing3

We can also delete folders, which will raise a subclass of SystemCallError if the
directory is not empty. To delete a folder we can use the delete, rmdir, or unlink method
which are all identical in the code that they execute.

 #!/usr/bin/env ruby
Dir.delete("testing4")
Dir.delete("testing5")
#=>
fig08.rb:3:in `delete': Directory not empty @ dir_s_rmdir - testing5
(Errno::ENOTEMPTY)
 from fig08.rb:3:in `<main>'

Chapter 15 ■ Files and direCtories

125

File Access
In the previous chapter we covered the File class in regards to the Input/Output
functionalities within Ruby. We will extend this further during this chapter, by outlining
some additional methods within the File class that we have not used previously.

First, we will look at viewing the meta-data available on a file, initially looking at the
Dates and Times that files were created, last modified, and last accessed (note that these
are ISO formatted dates).

#!/usr/bin/env ruby
puts File.ctime('fig01.rb')
puts File.mtime('fig01.rb')
puts File.atime('fig01.rb')
#=>
2014-10-14 17:42:26 +0100
2014-10-14 17:42:52 +0100
2014-10-14 17:42:26 +0100

We can also modify both the access and modification times if we want to:

#!/usr/bin/env ruby
puts File.mtime('fig01.rb')
puts File.atime('fig01.rb')
File.utime(Time.new('2020','01','01','00','00','00','+01:00'),
Time.new('1990','06','14','06','23','11','+01:00'),'fig01.rb')
puts File.mtime('fig01.rb')
puts File.atime('fig01.rb')
#=>
2014-10-14 17:42:52 +0100
2014-10-14 17:42:26 +0100
1990-06-14 06:23:11 +0100
2019-12-31 23:00:00 +0000

Notice that Ruby has handled the change in time zones for us also, we set the access
time to 01/01/2020 at midnight at 1 hour ahead of UTC time, however as December in the
UK is actually at +0 hours ahead of UTC this has been changed to 11p.m. the night before.
These dates and times have been modified at filesystem level.

Chapter 15 ■ Files and direCtories

126

#!/usr/bin/env ruby
file = File.open("test-append.txt", "a")
file.puts "Hello there!"
file.close

Like with our exist? method within the Dir class, we have a similar method within
the File class. This method checks whether the file exists, however does not provide the
additional check (like the Dir class did) that the file is not actually a directory. Instead we
can use the file? method to check that the file is not actually a directory.

#!/usr/bin/env ruby
puts File.exists?('fig01.rb')
puts File.exists?('testing')

puts File.file?('fig01.rb')
puts File.file?('testing')

#=>
true
true
true
false

We can integrate various details regarding the file, such as the file’s actual name
(rather than the path to the file that we are looking for), we can return the extension name
(txt for a Text File, rb for Ruby source code), the directory path for the file that we are
looking at, and whether the file is empty (zero bytes).

#!/usr/bin/env ruby
puts File.basename("/Users/matt/Projects/ruby_book/ch15/fig01.rb")
puts File.extname("/Users/matt/Projects/ruby_book/ch15/fig01.rb")
puts File.dirname("/Users/matt/Projects/ruby_book/ch15/fig01.rb")
puts File.zero?("/Users/matt/Projects/ruby_book/ch15/fig01.rb")
#=>
fig01.rb
.rb
/Users/matt/Projects/ruby_book/ch15
false

File Modification
Finally we will cover the modification of files. We have previously dealt with the access
and modification of directories using the Dir class followed by the access of files by
the File class.

Chapter 15 ■ Files and direCtories

127

We can rename files within Ruby using the File.rename method, supplying the
initial filename, and the destination filename:

#!/usr/bin/env ruby
File.rename("test.txt", "test2.txt")

We can also symbolically link (often called a soft-link) files using the File.symlink
method

#!/usr/bin/env ruby
File.symlink("test2.txt", "test.txt")

Running an ls –l command in Unix now shows the link.

lrwxr-xr-x 1 matt staff 9 15 Oct 13:55 test.txt -> test2.txt
-rw-r--r-- 1 matt staff 0 15 Oct 13:51 test2.txt

We also can truncate a file to either 0 bytes (an empty file), or trim down the file to
be a certain number of bytes. To do so, we use the File.truncate method, passing in the
filename as the initial parameter, and the number of bytes as the second parameter.

#!/usr/bin/env ruby
puts File.size("test2.txt")
File.truncate("test2.txt",6)
puts File.size("test2.txt")
File.truncate("test2.txt",0)
puts File.size("test2.txt")
#=>
10
6
0

129

Chapter 16

Metaprogramming

Metaprogramming is the ability to write code that operates on other code, rather than
data. In all previous chapters we have written code that operates on other data, such as
the reading/writing of variables, outputting to screen, communicating with files or other
input output streams. Metaprogramming is the ability to write code that adjusts the
functionality of a class or dynamically call a method without a direct call to this method
existing within the executable code. This is extremely useful when you want to amend the
method being called depending on a scenario, or if you want to modify the behavior of a
class during the runtime.

Metaprogramming exists within most object-oriented programming languages, but
often is not a frequently used feature, or one that is not well documented. Some other
examples are

Lisp (Homoiconicity)•	

Java (Reflection)•	

C# (Reflection)•	

Classes
For example, we want to amend the Ruby’s Array class to perform some mathematical
equations, and return the value. We simply “redefine” the Array class with an additional
method, and then call this to see the results:

#!/usr/bin/env ruby
class Array
 def maths(method)
 inject {|result, i| result ? result.send(method, i) : i }
 end
end

puts [1000.0, 200.0, 50.0].maths("/")

puts [10, 2].maths("*")

puts [10, 2].maths("+")

Chapter 16 ■ MetaprograMMing

130

#=>
0.1
20
12

Likewise, the String class cannot split a string into sentences; we can simply add an
additional method to allow us to action this.

#!/usr/bin/env ruby
class String
 def sentence
 return self.split('.')
 end
end

puts "Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do
eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad
minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex
ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate
velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat
cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id
est laborum.".sentence.inspect

#=>
["Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod
tempor incididunt ut labore et dolore magna aliqua", " Ut enim ad minim
veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea
commodo consequat", " Duis aute irure dolor in reprehenderit in voluptate
velit esse cillum dolore eu fugiat nulla pariatur", " Excepteur sint
occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit
anim id est laborum"]

Here, we added the sentence method to the String class, then ran the sentence
method on a string that contained a paragraph of Lorem Ipsum text. When we executed
the code, we were returned, and output the contents of this paragraph split into sentences
(or rather by splitting the paragraph where a full stop was found).

A word of caution at this point however, Ruby operates an Open Class approach
using metaprogramming, meaning you can define and refine methods as much as you
want; while this can be incredibly useful, this lets you overwrite initial methods within
Ruby-based classes, which may impact something else that your application is doing.

Chapter 16 ■ MetaprograMMing

131

#!/usr/bin/env ruby

puts "123456789".length

class String
 def length
 return 100
 end
end

puts "123456789".length
#=>
9
100

While this is an obvious example, the two calls to length could be in separate parts
of our Ruby application, which would suddenly start performing in an odd way, without
any indication that metaprogramming was to blame. We can, however, use the methods
method that informs us of the methods that are available for an Object of a certain class.
The output that follows has been cut down to show the differences between the initial call
and the second call.

#!/usr/bin/env ruby

puts "123456789".methods.inspect

class String
 def my_new_method
 return 100
 end
end

puts "123456789".methods.inspect
#=>
[]
[:my_new_method]

Method Calls
We can also dynamically call a method by using Ruby’s call method. This allows a
method to be dynamically called rather than being statically programmed to make a call
to the method. For example:

#!/usr/bin/env ruby
puts "A,B,C,D,E,F".split(',')
puts "A,B,C,D,E,F".method("split").call(',')
#=>

Chapter 16 ■ MetaprograMMing

132

A
B
C
D
E
F
A
B
C
D
E
F

In the first example, we used the actual split method that exists within the Ruby
String class, whereas in the second example we dynamically called the split method on
the String, passing in the parameter required to split. While this does not seem extremely
useful when being written statically as in the preceding we could for example, retrieve the
method calls from a database or file, and execute the code retrieved dynamically; or we
could dynamically run code supplied by the user.

#!/usr/bin/env ruby
def output(object,method,params)
 puts object.method(method).call(params)
end

output "A,B,C,D", 'split', ','

#=>
A
B
C
D

We can also write our code to dynamically accept various method calls, without
previously defining the method within our application. For example, we want to write a
validation class, where we can check a user’s input against a list of values that are allowed.
We could write some static code to check these values against a static list as follows:

#!/usr/bin/env ruby
class Validation
 def validate_pet(value)
 return ['Cat', 'Dog', 'Bird'].include? value
 end
end

validator = Validation.new
puts validator.validate_pet 'Dog'
puts validator.validate_pet 'Rat'

Chapter 16 ■ MetaprograMMing

133

#=>
true
false

However, whenever we want to change the allowed list of pets we need to modify
the initial Validation class; likewise this code is not re-usable if we simply want to check
our value against a list of allowed values. Instead, we can use metaprogramming to
dynamically call methods without them being predefined.

#!/usr/bin/env ruby
class Validation
 attr_accessor :value

 def initialize(value)
 @value = value
 end

 CHECK_QUERY_REGEX = /^is_((?:_or_)?[a-z]+?)+\?$/i

 def method_missing(meth, *args, &block)
 if CHECK_QUERY_REGEX.match meth.to_s
 self.class.class_eval <<-end_eval
 def #{meth}
 self.__send__ :check_value, "#{meth}"
 end
 end_eval
 self.__send__(meth, *args, &block)
 else
 super
 end
 end

 private
 def check_value(query)
 allowed_values = query[3..-2].split("_or_")
 allowed_values.any? { |s| s == @value }
 end
end

animal = Validation.new("dog")
puts animal.is_cat?
puts animal.is_dog?
puts animal.is_cat_or_dog?

vehicle = Validation.new("car")
puts vehicle.is_van?
puts vehicle.is_van_or_car_or_motorbike?

Chapter 16 ■ MetaprograMMing

134

#=>
false
true
true
false
true

The preceding example is a complex example; however we can step through this in
sections, beginning with the initialize of a new object of our Validation class:

class Validation
 attr_accessor :value

 def initialize(value)
 @value = value
 end
...
end

This section simply sets an instance variable (@value) that can be accessed
(read/written to) by our class. This allows our constructor method to have a value passed
to it, which is stored within the object for further processing.

CHECK_QUERY_REGEX = /^is_((?:_or_)?[a-z]+?)+\?$/i

This is a regular expression that simply checks against the pattern is_x? or
is_x_or_y? or is_x_or_y_or_z?, and so on.

class Validation
...
 def method_missing(meth, *args, &block)
 if CHECK_QUERY_REGEX.match meth.to_s
 self.class.class_eval <<-end_eval
 def #{meth}
 self.__send__ :check_value, "#{meth}"
 end
 end_eval
 self.__send__(meth, *args, &block)
 else
 super
 end
 end
...
end

Chapter 16 ■ MetaprograMMing

135

The method_missing method within Ruby is a special method. This method handles
whenever a method is requested that does not exist within the class. The method_missing
method accepts three variables: the method itself being called, the arguments supplied,
and finally the block that the method was called from. If we don’t want to handle this
method, we simply call super, which raises a method_missing exception, rather than
handling it. Within the preceding example, we check the method name against our
regular expression; if the method name is in the format that we require, then we handle
this method, otherwise we simply call super. On handling the method we call the
check_value method with the method name requested as our parameter (for example
is_dog_or_cat?)

class Validation
.
 private
 def check_value(query)
 allowed_values = query[3..-2].split("_or_")
 allowed_values.any? { |s| s == @value }
 end
end

Finally, we define a private method name check_value that accepts the method
name initially called as its parameter. We split up the method name by removing the is_
and ? at either end, followed by splitting the remaining string (dog_or_cat) into an array
where the string contains the _or_ characters. We then check this array (which contains
dog and cat) against our initial instance variable to see if the String we are checking is
contained in the method name called.

This is highly useful, as we have now written some dry (don’t repeat yourself) code
that can be easily implemented whenever we want to check a value against a predefined
list of allowed values. This could be used to check Countries, County/States, or any other
number of predefined lists of values.

A���������
Arrays

accessing elements of
at method, 23
empty method, 24
fetch method, 23
first/last method, 24
include method, 24
length method, 24
[] method, 22
methods method, 23
negative index position, 22
pair of indexes, 22
sample method, 24
shuffle method, 24
sort method, 24

addition of elements
insert method, 25
push method, 25

associative (see Hashes)
block syntax, 22
creation, 21
initialization, 21–22
integer–indexed, 21
iterating through arrays

each method, 27
each_with_index method, 28
map method, 27
map! method, 27
reverse_each method, 27

literal constructor, 21
removal of elements

compact method, 26
compact! method, 26
delete_at method, 26
delete by value, 26

pop method, 25
shift method, 25
uniq method, 26

sample exercise, 29
selection of elements

destructive methods, 28
non-destructive methods, 28

Associative array, 31
At method, 23

B���������
Blocks, 6, 68

collect method, 94
each method, 93
times method, 94

Boolean
comparative operators

casting 0, 50–51
loose casting, 50

definition, 47
expression tests, 47

and/or operators, 48
Double Bang/Bang-Bang, 49
if/else, 48
! operator, 48

value creation, 47
Break keyword, 63–64
Break statement, 107

C���������
Character extraction, 18
Classes

attr_accessor method, 85
constructor method, 85
getter and setter methods, 83

Index

137

private methods, 86
protected methods, 86

Class vs. instance methods, 81
Closures, 93
Command line tools, 2
Compact method, 26
Compact! method, 26
Comparative operators

casting 0, 50–51
loose casting of non-Boolean

to Boolean values, 50
Complex methods, 76

D���������
Delete_at method, 26
Directories.

See Files and directories
Dir.entries() method, 120
Don’t Repeat Yourself

(D.R.Y.) principle, 73
Double Bang/Bang-Bang, 49
Duck typing, 6

E���������
Each_index iterator, 70
Each iterator, 68–69
Each method, 27, 34
Each_with_index method, 28
Empty method, 24
Empty? method, 32
Eql? method, 33
Errors and exceptions

backtrace, 105
ensure statement, 106
finally statement, 106
raising, 104
rescue syntax, 102
StandardErrors,Ruby, 101
throw and

catch keywords, 107
Expressions, 9
Expression tests, 47

and/or operators, 48
Double Bang/

Bang-Bang, 49
if/else, 48
! operator, 48

F, G���������
Fetch method, 23
Files and directories, 119

Dir.entries() method, 120
file access, 125
foreach methods, 122
Glob characters, 123
ls command, 120
modification, 124, 126
pwd method, 120
sudo command, 121

finally statement, 106
First/last method, 24
For loop, 68
Functions and methods. See Methods

H���������
Hashes

accessing elements, 33
creation, 31
definition, 31
deletion of elements

by key, 35
by value/key, 36
delete_if method, 36
keep_if method, 36
merge method, 37
merge! method, 37
shift method, 36
totally, 36

key_name syntax, 31
looping through hashes

each_key method, 35
each method, 34
each_value method, 35

meta-data style information, 32
empty? method, 32
eql? method, 33
has_key? method, 33
has_value? method, 33
score method, 32
sort method, 33

new method, 31
sample exercise, 37
select method, 34

Has_key? method, 33
Has_value? method, 33
Here document, 16

138

Classes (cont.)

■ index

I, J���������
Include method, 24
Initialize method, 74
Input/Output, 109

file
EOFError, 113
file pointer, 113
file.read method, 112
open and close, 111
readline method, 112

file modes, 114–115
gets and puts methods, 110
network

HTML image tags, 117
Server and Client, 116
TCPSocket

and UDPSocket, 115
seek types, 114

Insert method, 25
Instance vs. class methods, 81
Interactive Ruby (irb) shell, 5
Interpolation, string literals, 16
Iterators, 5

each_index iterator, 70
each iterator, 68–69
loops (see Loop method)
sample exercise, 70–71
times iterator, 69
upto and step iterators, 69

K���������
Keep_if method, 36

L���������
Lambda, 97
Length method, 24
Linux, 1

dependencies, 2
Ruby 2.0.0 installation, 4
RVM set up, 3

Literals, string, 15
Loop method

break keyword, 63–64
for loop, 68
infinite loop, 63
next keyword, 64

redo loop, 65–66
until loop, 65

alternative syntax, 66
while loop, 65

alternative syntax, 66
Loose casting of non-Boolean

to Boolean values, 50

M���������
Mac OS X, 1

dependencies, 2–3
Ruby 2.0.0 installation, 4
RVM set-up, 3

Map method, 27
Map! method, 27
Merge method, 37
Merge! method, 37
Metaprogramming, 129

classes
Array class, 129
Open Class approach, 130
String class, 130

method calls, 131
check_value method, 135
method_missing

method, 135
split method, 132
validation class, 134

methods method, 131
[] method, 22
Methods

aliasing, 80
class vs. instance, 81
complex methods, 76
default parameters, 74
defining and calling, 73
endpoint method, 75
initialize method, 74
named and variable

parameters, 78
returning a value, 75
returning

multiple values, 76
sample exercise, 81
un-defining, 80

Methods method, 23
mkdir command, 124
Modules, 6, 87

139

■ index

N���������
Named and variable

parameters, 78
New method, 31
Next keyword, 64
Numeric class

alterations, 39
comparisons

== comparator, 44
eql? method, 44
integer type, 44
mathematical

comparators, 43, 45
nonzero method, 45
odd or even, 45
spaceship operator, 44
upto method, 46
zero method, 45

number creation, 39

O���������
Objects, 53

comparisons, 57
constants

ARGF, 54
ARGV, 55
binding, 57
DATA, 55
ENV, 55
RUBY, 56
STDERR, 57
STDIN, 57
STDOUT, 57

description, 53
duplication, 58
freezing, 59
metadata, 60

Operators, 9
arithmetic operators, 10
associativity, 10
boolean operators, 12
comparison

operators, 11
definition, 9
precedence, 9
range operators, 13
shift or append

operators, 11

P���������
Pair of indexes, 22
Pop method, 25
Print function, 16
Procs, 96
Push method, 25
pwd method, 120

Q���������
%q and %Q, start delimiter strings, 16

R���������
RDoc, 7
Redo loop, 65–66
Reverse_each method, 27
ri tool, 7
Ruby, 1

blocks, 6
completely object-oriented, 5
duck typing, 6
installation on Linux/Mac OS X, 1

Linux dependencies, 2
Mac OS X dependencies, 2–3
Ruby 2.0.0 installation, 4
RVM set-up, 3

installation on Windows, 4
interactive Ruby (irb) shell, 5
iterators, 5
modules, 6
RDoc, 7
ri tool, 7

Ruby 2.0.0 installation, 4

S���������
Sample method, 24
Score method, 32
Select method, 34
Shift method, 25, 36
Shuffle method, 24
Sort method, 24, 33
Step and upto iterators, 69
Strings

character extraction, 18
concatenation, 17
definition, 15
literals, 15

140

■ index

manipulation methods, 17
repetition, 18
substring extraction, 18
utilization, 19

Substring extraction, 18

T���������
Times iterator, 69

U���������
Uniq method, 26
Until loop, 65

alternative syntax, 66
Upto and step iterators, 69

V���������
Variables

class variable, 90
global variable, 90
instance variables, 89
local variables, 89

W, X���������
While loop, 65

alternative syntax, 66

Y, Z���������
yield statement, 95

141

■ index

Ruby Quick Syntax
Reference

Matt Clements

Ruby Quick Syntax Reference

Copyright © 2014 by Matt Clements

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are
brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for
the purpose of being entered and executed on a computer system, for exclusive use by the purchaser
of the work. Duplication of this publication or parts thereof is permitted only under the provisions
of the Copyright Law of the Publisher’s location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4302-6568-9

ISBN-13 (electronic): 978-1-4302-6569-6

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and
images only in an editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility
for any errors or omissions that may be made. The publisher makes no warranty, express or implied,
with respect to the material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Louise Corrigan
Technical Reviewer: Magesh S
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Louise Corrigan,

Jim DeWolf, Jonathan Gennick, Robert Hutchinson, Michelle Lowman, James Markham,
Matthew Moodie, Jeff Olson, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke,
Dominic Shakeshaft, Gwenan Spearing, Matt Wade, Steve Weiss

Coordinating Editor: Christine Ricketts
Copy Editor: Linda Seifert
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference
our Special Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available
to readers at www.apress.com. For detailed information about how to locate your book’s source code,
go to www.apress.com/source-code/.

http://orders-ny@springer-sbm.com
http://www.springeronline.com
http://rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
www.apress.com
http://www.apress.com/source-code/

For Sarah, Jacob & Samuel.

vii

Contents

About the Author �� xiii

About the Technical Reviewer ��� xv

Acknowledgments ��� xvii

Introduction �� xix

Chapter 1: Introducing Ruby ■ ��� 1

Installing Ruby ��� 1

Installing on Linux or Mac OS X �� 1

Installing on Windows ��� 4

A Quick Tour �� 4

irb: The Interactive Ruby Shell �� 5

Object-Oriented �� 5

Blocks and Iterators �� 5

Modules �� 6

Duck Typing �� 6

Where to Find Ruby Documentation �� 7

RDoc and ri ��� 7

Chapter 2: Operators ■ �� 9

Expressions ��� 9

Operators ��� 9

Arithmetic: + - * / % ��� 10

Shift or Append: << >> �� 11

Comparison: < <= > >= <=> �� 11

■ Contents

viii

Booleans: && || ! and or not �� 12

Ranges: �� … ��� 13

Chapter 3: Strings ■ ��� 15

String Literals �� 15

String Methods �� 17

Concatenating Strings ��� 17

Repeating Strings �� 18

Extracting Strings �� 18

Utilizing Strings ��� 19

Chapter 4: Arrays ■ ��� 21

Creating Arrays �� 21

Accessing Array Elements ��� 22

Accessing Array Elements (Part 2) �� 23

Adding/Removing Items from an Array ��� 25

Looping Through Arrays �� 27

Selecting Elements from an Array ��� 28

Exercise ��� 29

Chapter 5: Hashes ■ �� 31

Creating Hashes �� 31

Hash Information ��� 32

Sorting Hash Elements �� 33

Accessing Hash Elements ��� 33

Looping Through Hashes ��� 34

Altering Hashes ��� 35

Merging Hashes �� 37

Exercise ��� 37

■ Contents

ix

Chapter 6: Numbers ■ �� 39

Creating Numbers ��� 39

Numeric Alterations ��� 39

Numeric Comparisons ��� 43

Exercise ��� 46

Chapter 7: Booleans ■ ��� 47

Creating Boolean Values �� 47

Expression Tests �� 47

Comparative Operators ��� 50

Chapter 8: Objects ■ �� 53

Constants �� 54

ARGF ��� 54

ARGV ��� 55

DATA ��� 55

ENV ��� 55

RUBY_* ��� 56

STDERR ��� 56

STDIN �� 57

STDOUT ��� 57

TOPLEVEL_BINDING �� 57

TRUE/FALSE/NIL �� 57

Comparisons ��� 57

Duplication of Objects ��� 58

Freezing of Objects ��� 59

Object Metadata �� 60

■ Contents

x

Chapter 9: Loops and Iterators ■ ��� 63

Loop Method ��� 63

While Loop ��� 65

Until Loop �� 65

While and Until Loops – Alternative Syntax ��� 66

For Loop �� 68

Each Iterator �� 68

The Times Iterator ��� 69

Upto and Step Iterators ��� 69

Each_Index Iterator ��� 70

Exercise ��� 70

Chapter 10: Functions and Methods ■ ��� 73

Defining and Calling Methods ��� 73

Default Parameters ��� 74

Initialize Method �� 74

Returns �� 75

Returning Multiple Values ��� 76

Complex Methods �� 76

Named and Variable Parameters ��� 78

Aliasing a Method �� 80

Un-defining a Method �� 80

Class Methods versus Instance Methods �� 81

Exercise ��� 81

■ Contents

xi

Chapter 11: Classes and Modules ■ �� 83

Properties �� 83

Constructors �� 85

Private Methods �� 86

Protected Methods �� 86

Modules ��� 87

Ruby Class Variables ��� 89

Local Variables �� 89

Instance Variables �� 89

Class Variable ��� 90

Global Variable �� 90

Chapter 12: Blocks, Procs, and Lambdas ■ ������������������������������������� 93

Blocks �� 93

Yield��� 95

Procs ��� 96

Lambdas �� 97

Chapter 13: Errors and Exceptions ■ ��� 101

Errors ��� 101

Catching Errors and Exceptions �� 102

Raising Exceptions ��� 104

Creating Our Own Exceptions ��� 105

Ensure��� 106

Throw/Catch ��� 107

■ Contents

xii

Chapter 14: Input/Output ■ �� 109

File Input/Output �� 111

Seek Types �� 114

File Modes ��� 114

Network Input/Output �� 115

Higher Level Network Input/Output ��� 117

Chapter 15: Files and Directories ■ ��� 119

Directory Modification ��� 124

File Access �� 125

File Modification �� 126

Chapter 16: Metaprogramming ■ �� 129

Classes �� 129

Method Calls ��� 131

Index �� 137

xiii

About the Author

Matt Clements is an experienced Developer, building
Web & Native applications over the last 8 years. Working
in the Finance Industry for a Direct Debit Collection
Company DFC (http://www.debitfinance.co.uk/) as
the IT Development Manager, Matt manages a team
of Developers across a number of technologies. Matt
also works as a Freelance Developer building Web
Applications for numerous clients.

He lives in Milton Keynes, with his wife Sarah, two
boys Jacob and Samuel, and black Labrador Ember.

http://www.debitfinance.co.uk/

xv

About the Technical
Reviewer

Magesh S is a partner at Hash14, a software company that offers both consulting and
training. He has worked for several startups and SME’s in Chennai, which adds up to
5+ years of technical and corporate experience. He is passionate about technology, Ruby
and Open source software. He enjoys blogging, tweeting and socializing at tech and
startup events.

xvii

Acknowledgments

Firstly I would like to lend my thanks to the Apress Team, without who this book wouldn’t
have been possible. My Coordinating Editor, Christine Ricketts who’s encouragement,
and support throughout the process has been invaluable. Thanks to the technical
reviewer Magesh, who’s ongoing reviews and ideas have enhanced this book at every
chapter. Also, thanks to my Lead Editor, Louise Corrigan who initially gave me the chance
to write this book; and who’s constant patience and support has allowed me to complete
this book. My final thanks to the whole Apress Team, who have brought this initially
concept to publication.

Massive thanks are deserved for my family and friends, who have supported me
throughout the process of my writing this book. Thanks to my wife Sarah and two son’s
Jacob & Samuel who have encouraged, and supported me at every stage of the process.
Further thanks to my Mum, Dad and Brother Michael for their boosted help during this
process.

I owe thanks to my work colleagues for massive patience whilst I have been
writing the book, and for offering me their views, reviews, and encouragement on a
day-to-day basis.

My final thanks go out of the Ruby community, who have offered endless resources
and support to what I am writing; who have openly shared examples of their work, ideas
of applications, and provided support during any pitfalls in order to assist me during my
programming work. Likewise to all of the web community, and I hope you enjoy!

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Introducing Ruby
	Installing Ruby
	Installing on Linux or Mac OS X
	Linux Dependencies
	Mac OS X Dependencies
	Setting Up RVM
	Installing Ruby 2.0.0

	Installing on Windows

	A Quick Tour
	irb: The Interactive Ruby Shell
	Object- Oriented
	Blocks and Iterators
	Modules
	Duck Typing

	Where to Find Ruby Documentation
	RDoc and ri

	Chapter 2: Operators
	Expressions
	Operators
	Arithmetic: + - * / %
	Shift or Append: << >>
	Comparison: < <= > >= <=>
	Booleans: && || ! and or not
	Ranges: .. …

	Chapter 3: Strings
	String Literals
	String Methods
	Concatenating Strings
	Repeating Strings
	Extracting Strings
	Utilizing Strings

	Chapter 4: Arrays
	Creating Arrays
	Accessing Array Elements
	Accessing Array Elements (Part 2)
	Adding/Removing Items from an Array
	Looping Through Arrays
	Selecting Elements from an Array
	Exercise

	Chapter 5: Hashes
	Creating Hashes
	Hash Information
	Sorting Hash Elements
	Accessing Hash Elements
	Looping Through Hashes
	Altering Hashes
	Merging Hashes
	Exercise

	Chapter 6: Numbers
	Creating Numbers
	Numeric Alterations
	Numeric Comparisons
	Exercise

	Chapter 7: Booleans
	Creating Boolean Values
	Expression Tests
	Comparative Operators

	Chapter 8: Objects
	Constants
	ARGF
	ARGV
	DATA
	ENV
	RUBY_*
	STDERR
	STDIN
	STDOUT
	TOPLEVEL_BINDING
	TRUE/FALSE/NIL

	Comparisons
	Duplication of Objects
	Freezing of Objects
	Object Metadata

	Chapter 9: Loops and Iterators
	Loop Method
	While Loop
	Until Loop
	While and Until Loops – Alternative Syntax
	For Loop
	Each Iterator
	The Times Iterator
	Upto and Step Iterators
	Each_Index Iterator
	Exercise

	Chapter 10: Functions and Methods
	Defining and Calling Methods
	Default Parameters
	Initialize Method
	Returns
	Returning Multiple Values
	Complex Methods
	Named and Variable Parameters
	Aliasing a Method
	Un-defining a Method
	Class Methods versus Instance Methods
	Exercise

	Chapter 11: Classes and Modules
	Properties
	Constructors
	Private Methods
	Protected Methods
	Modules
	Ruby Class Variables
	Local Variables
	Instance Variables
	Class Variable
	Global Variable

	Chapter 12: Blocks, Procs, and Lambdas
	Blocks
	Yield
	Procs
	Lambdas

	Chapter 13: Errors and Exceptions
	Errors
	Catching Errors and Exceptions
	Raising Exceptions
	Creating Our Own Exceptions
	Ensure
	Throw/Catch

	Chapter 14: Input/Output
	File Input/Output
	Seek Types
	File Modes
	Network Input/Output
	Higher Level Network Input/Output

	Chapter 15: Files and Directories
	Directory Modification
	File Access
	File Modification

	Chapter 16: Metaprogramming
	Classes
	Method Calls

	Index

