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Chapter 1
Unobserved Variables

Abstract Although unobserved variables go under many names there is a com-
mon structure underlying the problems in which they occur. The purpose of this
Brief is to lay bare that structure and to show that the adoption of a common
viewpoint unifies and simplifies the presentation. Thus, we may acquire an
understanding of many disparate problems within a common framework. The case
of missing observations in a sample is, perhaps, the most obvious example, but the
field of latent variables provides a wider field which also draws attention to the fact
that unobserved variables may be hypothetical as well as ‘real’. Other fields, like
time series analysis, also fit into this framework even though the connection may
not be immediately obvious. The use of these methods has given rise to many
misunderstandings which, we shall argue, often arise because the need for a sta-
tistical, or probability, model is unrecognised or disregarded. A statistical model is
the bridge between intuition and the analysis of data.

Keywords Categorical variables � Factor analysis � Latent variables � Mea-
surement � Missing values � Mixtures � Prediction � Time series

1.1 Background

Unobserved variables are a characteristic of many statistical problems but the links
between them are often obscured by, both terminology and notation. In sample
surveys they may, for example, be missing from the sample because respondents
refuse to respond or are unobtainable or their responses may be lost. In time series
they may be unobservable because they lie in the future. In some applications,
factor analysis, for example, they are purely hypothetical and cannot therefore
unobservable, even in principle. Terminology likewise reflects their diverse origins
and includes, for example the adjectives: hidden, latent, and missing. Notation also
tends to be peculiar to particular applications, not to mention the disciplinary

D. J. Bartholomew, Unobserved Variables, SpringerBriefs in Statistics,
DOI: 10.1007/978-3-642-39912-1_1, � The Author(s) 2013
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allegiances of their originators. As well as giving rise to duplication of research
effort, these features have tended to foster and perpetuate misunderstandings.

This Brief aims to lay bare the common underlying structure of some of the
problems involving unobserved variables and so to simplify our understanding of
them. Its purpose is not, primarily, to provide new statistical methods but to give
greater insight into the common characteristics of many problems hitherto regar-
ded as distinct and to reduce the misunderstandings which have arisen.

A typical problem in statistical inference may be expressed as follows. We have
a sample (often random) drawn from a population of known form which depends
on a set of parameters which we denote, collectively, by the vector h of dimension
k. We suppose that the observed variables x0 ¼ ðx1; x2; . . . xnÞ; are given and they
are, of course, natural numbers obtained by some measurement process. The aim is
to make some inference about h on the evidence of x.

In the class of problems which we are discussing here this specification may be
supplemented by a further set of unobserved variables denoted by y0 ¼
ðy1; y2 . . .; ymÞ: If, of course, the ys were to constitute a further independent
random sample, there is no problem because we can simply ignore them. If on the
other hand, they were a part of an original random sample of size n ? m we have a
standard case of inference with missing observations. Any link between the xs and
ys can be exploited by the methods described, for example, in Little and Rubin
(2002) (see Chap. 11). However, most of the problems we shall meet are a little
more subtle because the term ‘missing’ has many connotations.

1.2 Models: Parameters and Random Variables

The key idea, lying behind everything we shall do is a probability model. This
specifies the joint distribution of the xs and, where appropriate, the ys. It is clear
that the xs should be treated as random variables and the elements of h as
parameters as in any standard inference problem. However, the role of the ys in
any model is crucial. According to context they may be treated as, either, random
variables or parameters. The failure to make this distinction has led to much
confusion, especially in the field of educational testing. It also lies, as we shall see
later, behind the appropriateness of the Rasch model and it is crucial to the
resolution of the so-called factor scores problem in factor analysis.

1.3 Continuous and Categorical Variables

Conceptually there is very little difference between continuous and categorical
variables. But in practice they involve mathematical and arithmetical operations
which look very different. For this reason, methods appropriate to the two types of
variable have tended to develop separately, with categorical methods generally
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lagging behind their continuous counterparts. This difference has been particularly
striking in the field of latent variable modelling where the essential unity of the
many diverse methods has been overlooked and has led to the creation of
apparently watertight compartments for different methods. This matter was high-
lighted and largely remedied in the unified treatment given in the recent book by
Bartholomew et al. (2011). In this Brief we shall continue in that tradition by
treating continuous and categorical variables within a common framework. At first
sight this makes for a greater degree of abstraction, and hence difficulty, but first
impressions are deceptive. What appears to be lost through abstraction is more
than regained by the conceptual simplicity which results.

Wherever possible we shall ignore the difference between continuous and
categorical variables in our notation and terminology. For the most part we shall
use the terminology and notation normally reserved for continuous variables using,
for example, integrals rather than sums. We shall use the term ‘probability func-
tion’ to refer both to the constituent terms of a discrete probability distribution and
to the probability density function of a continuous random variable. Where ranges
covered by variables, discrete or continuous, are self- evident, they will usually be
omitted. This is to emphasise our overall aim of displaying the structure of the
problems as clearly as possible. The style adopted is more akin to that of the
lecture than to a treatise and mathematical rigour has been sacrificed to facilitate
understanding.

1.4 Particular Cases

We shall consider seven problems which fall within the general area we have
defined although, at first sight, the selection may appear somewhat eclectic. They
are listed below along with the chapter number to indicate where they may be
found. The seven topics are neither exhaustive nor shall we treat each in its most
general form. But they share a common structure and illustrate the range of very
familiar problems which can be viewed from the present standpoint. Starting with
mixtures of distributions we move on to consider latent variable models but we
approach them by following an unfamiliar route via the data matrix and the
analysis of variance. This leads on to a number of individual topics which concern
unobserved variables in a variety of senses but which are connected by their shared
structure. Some chapters do not deal with specific topics but serve a linking role.
By approaching the various topics from a common standpoint, many of the
common misunderstandings will dissolve, or never appear. Finally, we consider
Bayesian models which, in a sense, brings all of statistical analysis within a
common framework. The seven topics are:

Simple Mixtures (see Chap. 3)

A simple mixture problem may be expressed in the preceding framework as
follows. The observed and unobserved variables may be bracketed in pairs, thus:
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x1; y1ð Þ; x2; y2ð Þ; x3; y3ð Þ; . . .; xn; ynð Þ:

The first term in each bracket is the observed value and the second, y, indexes
the ‘mixing’ variable. This term requires further explanation. If the ys were all
equal they would be redundant and the xs would all be sampled from the same
distribution. However, the mixing model supposes that each x has been sampled
from a different population indexed by y. One of the earliest practical examples to
be considered relates to the distribution of accidents. If a set of persons were
exposed to the same degree of risk one might expect the distribution of the number
of accidents per unit time to follow a Poisson distribution. In practice the actual
distribution often displays greater dispersion than the Poisson distribution predicts.
One way of explaining this is to suppose that the degree of risk (‘proneness’)
varies among people. If the proneness can be characterised by a varying quantity,
this may be regarded as a random variable and the situation is then as described
above. This is an example of what is sometimes called ‘unobserved heterogeneity’.
The distribution of y may be continuous, as in this example, but it may be discrete,
taking on, perhaps, as few as two possible values.

The One-way Analysis of Variance (see Chap. 4)

The situation may be set out as in the following array

y1 y2 . . . ym

x11 x12 . . . x1m

x21 x22 . . . x2m

. . . . . . . . . . . .
xn1 xn2 . . . xnm

As before, there are m groups with n observations in each group. (The numbers
in each group need not be equal, of course, but the point we wish to make does not
require that degree of generality.) In the usual set-up the ys represent the unknown
group means and the aim is to estimate those means or to test the hypothesis that
they are equal. In the fixed effects version of the analysis of variance, the ys are
treated as parameters and we require any inference to apply to that particular set of
means. In the random effects version of the problem, the m groups are selected at
random from some population of categories so that the ys are random variables.
The usual purpose of the analysis is then to estimate the variance of the ys or to test
that it is zero.

Time Series Prediction (see Chap. 9)

Initially, this problem appears to be quite different from the foregoing. Here we
have a sequence of xs, x1, x2, x3, x4,…xn observed at successive discrete points in
time where time n represents the ‘present’. The next and subsequent members of
the sequence are unobserved because they lie in the ‘future’. They are denoted by
y1, y2,… as far as necessary. The xs do not constitute a random sample from any
population in this case because if they did there would obviously be no possibility
of predicting future members of the series. A common purpose of time series
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analysis is to predict future members of the series given those which have already
occurred. Traditional methods have typically approached the problem as one of
curve-fitting or of modelling patterns of change in the short term. The more
general approach followed here does not add to the armoury of techniques for time
series analysis but it shows, rather, that all methods flow from the same distri-
butional foundation.

Models for Human Ability (see Chaps. 4 and 5)

These models are often treated under the general heading of ‘Latent Variable
Models’ but they have distinctive features which justify them being dealt with
separately. They have a wider field of application, of course, but here we introduce
them as they arise in the context of educational testing. Each individual in a
random sample of subjects from some population is supposed to possess an ability
which can be located on a scale. In particular cases this might be designated as
‘arithmetical ability’, ‘verbal ability’ or, even, general intelligence. Several test
items are administered to each individual and the resulting score for that ability is
recorded. The result is an array of data which may be set out as follows.

x11 x12 . . . x1m y1

x21 x22 . . . x2m y2

. . . . . . . . . . . . . . .
xn1 xn2 . . . xnm yn

The score given to the ith individual on the jth test is xij. The ys, have now been
placed in the last column, where they represent the abilities of the individuals.
Whether or not the ys are to be regarded as parameters or random variables turns
out to be a key question to which we shall return. The essential point is that they
are unobservable either in practice or theory: that is they are genuinely latent. A
point to which we shall return, concerns the manner in which the tests themselves
are selected.

Latent Variable Models and Factor Analysis (see Chap. 5)

This is an umbrella title which has been used to cover all statistical models
which include latent variables. For our purposes, the factor analysis part is
redundant and henceforth, we shall often omit it. Some special cases have already
been covered above and the same array of observed and latent variables will serve
here. However, the distinctive feature of the models included here is that the latent
variables are now vector-valued of unknown dimension. When fitting a model we
are interested in discovering whether or not a model fits the data where the
dimension of y is to be determined. A related, but non-statistical problem, is to
identify the latent variables with some hypothetical variables of substantive
interest. In the case of ability testing we knew in advance that there was one latent
variable and that it represented ability. More generally, the question of how many
latent variables there are and what they represent is left open.
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Missing Values (see Chap. 10)

Most statistical analyses in practice are bedevilled by missing values. In many
cases this threatens any analysis carried out which ignores them. This is because,
in the social sciences especially, being missing is often related to the subject
matter of the investigation. The ease with which missing values can be disregarded
has often led to them being unjustifiably ignored as van Buuren (2012) has shown.
We shall discuss the problem in the present context which enables us to see it as
one more example of looking at the distribution of the unobserved variables
conditional on those that are observed. However the major difference between this
problem and those considered earlier is that we are seldom interested in the
missing values themselves but rather in the effect which their loss has on the
estimation of the parameters of the model.

Social Measurement (see Chap. 11)

The proposition that all measurement can be expressed, in statistical terms at
least, as one of estimation or prediction, as proposed in Bartholomew (1996), is
something of a counsel of perfection. It presupposes that there is already a model
to hand. In some very important practical problems the confusion lies at an earlier
point, where measures have been proposed without reference to any explicit model
and without seeing the need for one. Two such examples are provided by labour
turnover (or wastage) and heritability. Both play an important role in public debate
and yet, although the concept lying behind each of them is central to many debates,
they are potentially highly misleading. In Chap. 11 we shall therefore illustrate
how poorly founded both concepts are. We shall do this by reference to models of
the processes underlying them, showing that the commonly used measures are
confounded with other factors which can easily obscure what one is really looking
for these examples do not, in every case, correspond precisely with individual
chapters and, as we have already noted, some chapters cover aspects which span
several fields of application. Nevertheless the foregoing categories will serve to
locate the subject of this Brief on the broader map of Statistics.

1.5 Models and Misunderstandings

The subtitle of this Brief is intended to act as a warning. We shall have occasion to
draw attention to particular instances where this warning is particularly apposite in
the course of our exposition but some preliminary remarks are in order.

Modern statistics is built on the idea of models—probability models in par-
ticular. The standard approach to any new problem is to identify the sources of
variation, to describe those sources by probability distributions and then to use the
model thus created to estimate, predict or test hypotheses about the undetermined
parts of that model. It was not always thus. It is difficult to identify any point in
time at which the transition to analyses based on probability models took place, but
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in the middle of the last century it was becoming increasingly common to con-
struct and use models as part of everyday statistical practice. It might be justly
argued that models were often implicit long before they were formulated explicitly
but the failure to be explicit, especially in applications outside statistics, has given
rise to many misunderstandings, as we shall see.

A statistical model involves the identification of those elements of our problem
which are subject to uncontrolled variation and a specification of that variation in
terms of probability distributions. Therein lies the strength of the statistical
approach and the source of many misunderstandings.

Paradoxically, misunderstandings arise both from the lack of an adequate model
and from over reliance on a model. Perhaps the best example of that, within our
present purview, is in the case of factor scores treated in Chap. 6 but this is not an
isolated example. More serious, is the failure to recognise the limitations of the
modelling approach. At one level is the failure to recognise that there are many
aspects of a model which cannot be tested empirically. At a higher level is the
failure is to recognise that any model is, necessarily, an assumption in itself. The
model is not the real world itself but a representation of that world as perceived by
ourselves. This point is emphasised when, as may easily happen, two or more
models make exactly the same predictions about the data. Even worse, two models
may make predictions which are so close that no data we are ever likely to have
can ever distinguish between them. We shall emphasise this point in relation to
linear structural equations and other models in Chap. 7 but it is an ever-present
danger. All model-dependant inference is necessarily conditional on the model.
This stricture needs, especially, to be borne in mind when using Bayesian methods.
Such methods are totally model-dependent and thus all are vulnerable to this
criticism. The problem can apparently be circumvented, of course, by embedding
the model in a larger model in which any uncertainties are, themselves, expressed
in probability distributions. However, in doing this we are embarking on a
potentially infinite regress which quickly gets lost in a fog of uncertainty.
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Chapter 2
Measurement, Estimation and Prediction

Abstract Measurement is commonly taken for granted in statistical work but, in the
fields where missing observations occur, it is often the main objective. This is
because the quantities to be ‘measured’ turn out to be represented by the parameters
or random variables of a statistical model. Measurement then becomes a matter of
predicting the values of random variables or of estimating the parameters of a
distribution. When the unobserved variables are latent and, possibly indeterminate
in number, the key idea is to determine their conditional distribution given what has
been observed. This is essentially a routine matter involving the manipulation of
probability functions. However, it is necessary to make clear what has to be defined
and what are the constraints imposed by the logic of probability theory. This is
important because much controversy, for example in relation to factor scores, has
resulted from a failure to appreciate this point. We also introduce the one-parameter
exponential family of distributions. This achieves a substantial simplification
without incurring a serious loss of generality. In fact, it permits a considerable
degree of unification of existing models and the development of new ones.

Keywords Conditional distributions � Estimation � Exponential family � Factor
scores � Measurement � Prediction � Missing values

2.1 Measurement

In psychometrics and related branches of Science there is much discussion of
measurement. In psychometrics, for example, there is the classical measurement
model which supposes that what we observe differs from what we seek to measure
by an ‘error’. There is no comparable theory of measurement in Statistics where
the term measurement is used in less specific ways. It is important, therefore, to be
clear about how the general term ‘measurement’ is linked to the standard statistical
procedures.

D. J. Bartholomew, Unobserved Variables, SpringerBriefs in Statistics,
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Measurement is commonly defined as the assignment of numbers to objects in
such a way that the numbers are related in ways which reflect the relationship
between the objects. In one of the simplest cases, the length of objects, rods say, is
reflected in the numbers which measure length. So if two rods of the same length
are put end to end, the measure length of the combination will be twice that of each
individual rod. It is not immediately obvious how this relates to statistical theory.
The objects with which we deal in a statistical model are either parameters or
random variables. The former are treated as fixed and the latter as varying in a way
that can be described by a probability distribution. In Statistics the process of
assigning numbers to parameters is known as estimation and the corresponding
procedure for random variables is prediction. In statistical language, then, mea-
surement is achieved by estimating unknown parameters or by providing predic-
tors for random variables.

In the last chapter we saw that the unobserved variables in our models, the ys,
could be regarded either as parameters or as random variables. We shall therefore
need to consider the estimation and prediction problems to which these give rise.

2.2 Estimation

With one exception, the estimation problems posed by our models for unobserved
variables are standard and straightforward and therefore require no special dis-
cussion. Thus, in the notation introduced in Sect. 1.1, if the ys are to be regarded as
parameters they are no different from the hs and can, in principle at least, be
estimated by standard methods. The important exception occurs with latent vari-
able models where the number of ys may be proportional to the sample size. The
asymptotic theory which is used to support the method of maximum likelihood in
such cases, for example, requires the sample size to go to infinity with the number
of parameters remaining fixed. In particular, this difficulty arises with the Rasch
model which we shall look at in more detail in Chap. 4.

2.3 Prediction

All that we can know about the random variables in a statistical model is contained
in their distribution conditional on all else that is known at the time the prediction
has to be made. Any prediction for a random variable, based on a single number,
will then be some measure of location of that distribution—often the mean. The
key step, which lies behind all subsequent analysis, is then the determination of the
relevant conditional distribution. In the remainder of this chapter we shall there-
fore set out the theory which is common to all of the models mentioned in Chap. 1
and which will be worked out in more detail in the following chapters.
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2.4 Some Basic Distributional Results

All of the diverse procedures we shall meet share the same basic structure. There
are two classes of variable to be distinguished: the observed, denoted by x and the
unobserved variables, denoted by y. The model, whatever the particular applica-
tion, specifies the joint probability distribution of x and y but any inference has to
be based on x alone since that is all that we can observe. The relationship between
the two joint distributions is

f xð Þ ¼ Z
f x; yð Þdy ð2:1Þ

where the integral is over the range space of y and which, for reasons stated in
Chapter 1, we have assumed y to be continuous. For the moment, any unknown
parameters on which the distributions depend are to be understood, even though
they are not made explicit. It is clear that further progress depends upon being able
to specify the link between x and y and then this must be added to the specification.
Equation (2.1) may place some restrictions on what models are possible. If, for
example, we factorise the joint distribution as f ðx; yÞ ¼ f ðxÞf ðyjxÞ, the factor f ðxÞ
can be taken outside the integral where it cancels with the same factor on the left
hand side. This produces the trivial and otherwise obvious result that the condi-
tional distribution of y given x must integrate to one. A more interesting case arises
if we make the alternative factorisation f ðx; yÞ ¼ f ðyÞf ðxjyÞ, for then we have

f xð Þ ¼ Z
f yð Þf xjyð Þdy ð2:2Þ

It is clear from this equation that, though it does place some restrictions on the
choice of the two distributions within the integral, the latter are not uniquely
determined by Eq. (2.2). Once one member of the pair ff ðyÞ; f ðxjyÞg is specified
the other is determined by Eq. (2.2). Thus, in general, there will be infinitely many
such pairs satisfying Eq. (2.2). This representation, and the associated equations,
will form the starting point of almost every chapter. We shall illustrate the inde-
terminacy by a simple example in Chap. 3.

There is one important example of the situation we have described which is of
considerable generality and widespread application, especially to latent variable
models. This arises when the xs are assumed to be mutually independent, given
y. That is, we suppose that

f xjyð Þ ¼
Y

i
f xijyð Þ ð2:3Þ

and we let

f xijyð Þ ¼ F xið ÞG aið ÞexpðaixiÞ ð2:4Þ

with

ai ¼ ai 0ð Þ þ ai 1ð Þy1 þ ai 2ð Þy2 þ . . .þ ai mð Þym ð2:5Þ
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The probability function in Eq. (2.4) is known as the one-parameter exponential
family. The family includes both continuous and discrete distributions—among
which are the normal, Poisson, gamma distributions and many others. The
parameter ai is known as the canonical parameter and we have supposed in Eq.
(2.5) that it is a linear function of the unobserved variables. First, under these
assumptions, we start from the conditional distribution of y given x, given by

f yjxð Þ ¼ f x; yð Þ
f xð Þ ;

¼ f yð Þf xjyð ÞR
f yð Þf xjyð Þdy

:

ð2:6Þ

Next we substitute from Eq. (2.4) into Eq. (2.3) and then use the expression
given by Eq. (2.6). If we look first at the parts which depend on the xs we note that
the factor

Q
wðxiÞ occurs in both numerator and denominator of Eq. (2.6) and thus

cancels. In the remainder, xs only occur in the sums
P

aixi: So if we substitute the
expression for ai from Eq. (2.5) the sum becomes

P
j yjXj where Xj ¼

P
i xiajðiÞ: It

is clear, therefore, that the distribution of y given x depends on the xs only through
the m linear functions fXjg:

As we shall see later, this result has important practical implications. It supports
the widespread empirical practice of choosing linear functions of the variables as
indicators of an underlying latent variable. Furthermore, it delineates the cir-
cumstances under which such a practice may be justified. A fuller account of these
manipulations will be found in Bartholomew et al. (2011),
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Chapter 3
Simple Mixtures

Abstract Mixtures of distributions play a fundamental role in the study of
unobserved variables as Eq. (2.2) shows. The present chapter serves a double
purpose in that it both prepares the ground for later chapters and treats a subject
which has an intrinsic interest of its own. The two important questions which arise
in the analysis of mixtures concern how to identify whether or not a given dis-
tribution could be a mixture and, if so, to estimate the components. We define
finite and continuous mixtures and show, by examples, that it is very often
extremely difficult to distinguish between them. Thus even if it is theoretically
possible to make the distinction, it may be very difficult to do so in practice.
Mixtures of normal and exponential distributions are both common and important
and the mathematical simplicity of the latter makes them an ideal vehicle for
exploring some of the fundamental issues.

Keywords Exponential distribution �Mixtures � Negative binomial distribution �
Normal distribution � Poisson distribution

3.1 Introduction

All of the models discussed in this Brief can be regarded as mixtures and many of
the topics covered in this chapter will also occur elsewhere in various guises. Here
we shall treat mixing as an important topic in its own right and in its simplest form.
This will also prepare the ground for the more subtle applications which occur in
other types of problem.

Mixtures arise in practice because of failure to recognise that samples are drawn
from several populations. If, for example, we measure the heights of men and
women without distinction the overall distribution will be a mixture. It is relevant
to know this because women tend to be shorter than men. The analysis of mixtures
has two closely related objectives. Firstly, to identify whether a given sample
could have arisen by mixing and then to estimate the components. The unobserved

D. J. Bartholomew, Unobserved Variables, SpringerBriefs in Statistics,
DOI: 10.1007/978-3-642-39912-1_3, � The Author(s) 2013
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variable in this case indexes the member of the family of distributions from which
the components of the mixture have come.

Sometimes a histogram will strongly suggest that mixing has occurred as
Fig. 3.1 illustrates. The two humps strongly suggest that what we see is the result
of mixing two distributions, each with a single mode.

This example is exceptional in that the shape of the solid curve strongly sug-
gests that the distribution is actually a mixture of the two normal components
which are shown as dotted curves on the figure. It is often not at all obvious
whether a given distribution could be a mixture and this situation is illustrated in
Fig. 3.2 The distributions shown in Figs. 3.1 and 3.2 may both be described as
‘two-component mixtures’.

In general the probability distribution of a two-component normal mixture may
be written

f xð Þ ¼ pN l1; r2
1

� �
þ ð1� pÞN l2; r2

2

� �
ð3:1Þ

Fig. 3.2 A mixture of two normal distributions where the mixing is not obvious

Fig. 3.1 A mixture of two normal distributions (solid curve) where the mixing is obvious
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where Nðli; r2
i Þ is the probability function of a normal random variable with mean

li and variance r2
i . It will be evident that, even a two-component mixture of normals,

has 5 unknown parameters. As further components are added the estimation prob-
lems become formidable. If there are many components, separation may be difficult
or impossible. Many other examples are given in Titterington et al. (1985).

The distribution represented by Eq. (3.1) is a simple example of a finite mixture.
It can easily be extended to include more components. It is then a natural model to
use when it is possible that the sample has come from a distribution formed by
mixing a small number of simpler distributions—which do not have to be of the
same form, of course. In other contexts it may be more natural to consider infinite,
or continuous, mixtures. Such a mixture may be written

f xð Þ ¼ Z 1
0

f xjkð ÞhðkÞdk ð3:2Þ

where k indexes the members of the family of distributions being mixed and hðkÞ
is the probability function of k. Such a model is often used when it is desired to
build into the model the possibility that k varies continuously in some, possibly
unknown, manner. The unobserved variable here is k and its variability is often
described as unobserved heterogeneity.

3.2 The Negative Binomial Distribution

The example of unobserved heterogeneity which arises in the study of accident
distributions has already been mentioned in Chap. 1. For any given individual we
supposed that accidents occurred randomly and hence that the distribution of the
number per unit time would have a Poisson distribution with mean k, say. But if the
risk of having an accident varies from one individual to another, what we observe
will be a continuous mixture whose probability distribution will have the form,

f xð Þ ¼ Z 1
0

kx

x!
e�kh kð Þ dk ð3:3Þ

The two questions which we raised above about mixtures in general can now be
expressed by asking what can be deduced about hðkÞ and about whether the con-
ditional distribution of x can be inferred from the observed distribution, f xð Þ; of x.

One approach to the first question is to select a parametric form for hðkÞ which
is sufficiently flexible to describe wide patterns of variation. One such distribution,
which also has the useful property that the integral of Eq. (3.3) can be evaluated in
closed form, is

h kð Þ ¼ cq

CðqÞ k
q�1e�ck: ð3:4Þ
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In this case it is easy to show that

f xð Þ ¼ xþxq�1
� � c

cþ 1

� �q 1
cþ 1

� �x

: ð3:5Þ

This is a discrete distribution called the negative binomial distribution because
the probabilities are such as would be obtained from the expansion of a binomial
expression with negative index. It is more highly dispersed than a Poisson dis-
tribution having the same mean. If we fit the distribution of Eq. (3.5) we may
obtain estimates of the parameters q and c which determine the mixing distribu-
tion. hðkÞ:

3.3 Determination of the Mixing Distribution

The last example may have suggested that the mixing distribution could always be
determined. This is not necessarily true either exactly or, even approximately. We
illustrate the situation by two examples.

Suppose with x has a conditional distribution which, given l is Nðl; r2Þ and
that l is a random variable has a distribution which is Nð0; s2Þ. It is then
straightforward to show that the unconditional distribution of x is Nð0; r2 þ s2Þ.
(This is also a special case of a basic result in factor analysis—see Bartholomew
et al. (2011) equations (1.11 and 1.12). This is what we described earlier as a
continuous mixture; in this case of normal distributions. The first important point
to note is that the form of the distribution is unaffected by the mixing. Thus there is
no way that we can recognise that mixing has taken place by inspecting the form of
the resulting distribution alone. Any given normal distribution could have arisen
naturally or be the result of normal mixing.

The second point to notice is that the variance of the mixture is greater than that
of the original distribution. In the case of the negative binomial distribution we
also noted that its spread would be greater than that of the Poisson distribution,
having the same mean, from which it was generated. It is generally the case that
mixing will increase the spread of a distribution, as measured by the variance, and
later examples will also show this.

The fitting of mixtures of distributions to random samples is not always easy
but can sometimes be achieved using the E-M algorithm discussed in Chap. 10.

3.4 The Mixed Exponential Distribution

The exponential distribution is, perhaps, second in importance only to the normal
distribution and mixtures of exponential distributions have found many applica-
tions both because of their practical relevance and of their mathematical
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tractability. Many of the general questions which arise in the study of mixtures can
be answered explicitly for the mixed exponential and thus shed some light on more
general issues. Here, it will be useful to consider the family in its finite and
continuous forms.

The probability function of the finite exponential mixture may be written

f xð Þ ¼
Xk

i¼1

pikie
�kix ð3:6Þ

Where pi [ 0 and
Pk

i¼1 pi ¼ 1:
The probability function of the corresponding continuous mixture is

f xð Þ ¼ Z 1
0

ke�kxhðkÞdk ð3:7Þ

where h(k) is the probability function of k.
A particularly convenient feature of Eq. (3.7) is that it has the form of a Laplace

transform. In fact f ðxÞ is the Laplace transform of khðkÞ and this fact makes it
possible, in principle, to find the mixing distribution in any particular case.

3.5 The Sensitivity of the Mixing Distribution

The foregoing results suggest approaches to ways of determining the mixing
distribution once f ðxÞ is known. However, a much more important practical
question is how to estimate the mixing distribution from an estimate of f ðxÞ. This
question is not one which lends itself to an immediate answer by the proof of
general mathematical theorems but we can obtain a few indications from mathe-
matical analysis about show how the land lies. In particular we shall see that there
may be little information in our estimate of f ðxÞ about the form of the mixing
distribution. We have already seen that, if f ðxÞ is normal, there is no way of
knowing whether it is the result of mixing and hence, if it is, what the mixing
distribution might be. Some further light will be shed on the matter by looking at a
finite mixture of exponentials and comparing the finite and continuous mixture of
exponentials in particular cases.

Suppose we have a continuous mixture of exponentials defined as follows. Let
h(k) in Eq. (3.7) have the probability function

h kð Þ ¼ cq

CðqÞ k
q�1e�ck ð3:8Þ

then it follows that

f xð Þ ¼ q

c

1

ð1þ x
cÞ

qþ1 : ð3:9Þ
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It is obvious that this distribution, like the exponential, is monotonic decreasing
over its whole range and that it starts from a point at t ¼ 0 at which it is greater
than the exponential having the same mean. Some more information about its
shape can be deduced by looking at its behaviour when q is large (meaning that the
mixing distribution shows little variation). For the distribution of Eq. (3.9)the
mean, l, is c=ðq� 1Þ and so we may re-parameterise the distribution in terms of l
and a ‘shape’ parameter q as follows

f xð Þ ¼ q

ðq� 1Þl
1

1þ x
ðq�1Þl

� �qþ1 ð3:10Þ

Using the approximation

1þ a

n

� �n
� ex 1� a2

2n

� �
ð3:11Þ

we find

f xð Þ� 1
l

e�x=l 1þ 1
q

1� 2
x

l
þ 1

2
x2

l2

� 	
 �
ð3:12Þ

For large q it is clear that f ðxÞexceeds the exponential near the origin and in the
upper tail but is below it in the neighbourhood of the mean.

A good deal can be learnt about sensitivity by a study of the finite mixture given
by

f xð Þ ¼
Xk

i¼1

pikie
�kix ð3:13Þ

If k ¼ 2 for example, the mixing distribution consists of two discrete proba-
bilities of magnitude p and 1 - p. This appears at first sight to be radically
different from the continuous distribution given by (3.7). Yet in practice it has
proved very difficult to distinguish the two types of mixture. Qualitatively, both
distributions are monotonic decreasing over their whole range with excesses of
frequency, compared with the exponential, near the origin and in the upper tail.
When the mean is fixed, the continuous distribution of Eq. (3.9) has one free
parameter which determines the shape of the distribution. The corresponding two-
term exponential has three parameters altogether so when the mean is fixed there
are, effectively, two free parameters remaining to determine the shape. One would
therefore expect to be able to bring the two distributions close together by
appropriate choice of parameter values though this is not immediately obvious
because the parameters do not have unrestricted range. However, it is easy to
verify numerically that pairs of members of the two families can be very close. In
Fig. 3.3 we have illustrated the position by taking particular examples. We fix the
means to be unity in each case. For the continuous family of Eq. (3.9) we take
q = 4.25. For the two term exponential the distribution having parameters
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p = 0.391, k1 = 0.6 and k2 = 1.75 has the same mean and upper and lower
quartiles.

The dotted curve is the exponential; the solid curve the continuous mixed
exponential and the dashed line (hardly distinguishable from the solid curve) the
two-term mixture. It is obvious that any information in the last two cases about the
mixing distribution has to be gleaned from the minute difference between the two
plotted curves which would be undetectable in practice. For all practical purposes
it is thus clear that although the effect of mixing is to make the distribution more
skewed, the form of the mixing distribution has virtually no detectable influence.
These somewhat fragmentary numerical results suggest that, for exponential
mixtures at least, the information contained in the distribution
f ðxÞ about the form of the mixing distribution is negligible: This simple fact will
have far-reaching implications when we come to consider latent variable models in
later chapters.
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Chapter 4
Models for Ability

Abstract Here we begin our approach to a general class of latent variable models
by studying a simple example set within the context of a particular practical
problem. This offers the readily intelligible vocabulary of ability testing and it
firmly anchors what is sometimes seen as a somewhat esoteric topic in the
mainstream of statistics by drawing on the ideas of the analysis of variance. First
we show that the Rasch model fits neatly into that framework and that, by gen-
eralising it in a number of directions, the link with a special case of factor analysis
can be made. In particular, it is the random effects version of the analysis of
variance which provides that link and it also brings into the picture what psy-
chometricians call generalizability theory. Maximum likelihood estimation and
notions of sufficiency also appear in a central role which is developed in later
chapters. A good deal of misunderstanding and controversy has surrounded the
Rasch model and we hope some of this may be dispelled by the present approach.

Keywords Analysis of variance � Factor analysis � Generalizability theory �
Maximum likelihood � Rasch model � Psychometrics � Latent variable models �
Random effects

4.1 The Problem and the Models

Although the class of models we are about to consider is quite general, we shall
discuss it in the context of ability testing. It is this application which provides the
motivation and the context for the models and the misunderstandings to which they
have given rise. We begin with the data matrix having the form set out in Chap. 2,
namely

D. J. Bartholomew, Unobserved Variables, SpringerBriefs in Statistics,
DOI: 10.1007/978-3-642-39912-1_4, � The Author(s) 2013
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x11 x12 . . . x1m y1

x21 x22 . . . x2m y2

. . . . . . . . . . . . . . .
xn1 xn2 . . . xnm yn

In the testing context, the xs would represent the scores obtained by each of
n individuals on m tests, or items. The ys in the original table in Chap. 2 were the
unobserved variables, which in the present context, will be ability scores; for the
moment we ignore these and begin farther back.

Any individual score will depend on both the individual providing it and the test
item being undertaken. Since the score will vary and depend only on the row and
column in which it appears, it needs to be modelled by a random variable whose
distribution depends likewise on both row and column. The form which this model
takes will depend on what kind of a variable x is. Commonly x is a binary variable
which, conventionally, only takes the values 0 and 1. This specification has given
rise to several models; these include the Rasch model and item response models to
which we come later. (It should be noted that the interpretation of the Rasch model
has been extremely controversial in educational testing circles and this makes it
doubly important to see it arise naturally in the present setting). There is an
advantage, conceptually at least, in starting with the case where the xs are assumed
to be continuous and normally distributed.

In the case of the so-called fixed effects model of the analysis of variance we
have something which is equivalent to the two-way standard analysis of variance
set up with one observation per cell. The latter feature is important and it limits
what can be learnt from the data.

The standard linear model would express all of this in the linear equation,

xij ¼ l þ ai þ bj þ eij ð4:1Þ

where
P

i ai ¼
P

j bj ¼ 0 and the errors, eij, are independently and normally
distributed with means zero and common variance r2. The parameters ai and bjare
the ‘row’ and ‘column’ effects respectively. Under these assumptions the maxi-
mum likelihood (or least squares) estimators of the parameters and the unknown
variance can easily be obtained. If the xs are continuous but not normal, it may be
possible to transform them to normality and thus make the model applicable. Note
that in this model there is no replication within the cells and so it is not possible to
test for any interaction between person and item effects. Any such interaction must
therefore be assumed to be zero since there is no possibility of replication within
cells because this would mean obtaining several independent test scores on the
same item for the same individual and this is clearly impossible.

If, instead of being fixed, the subjects are sampled at random from some
population, we would have a random effects model with the ys in the array above
being random variables. On the assumption that the ‘person’ effects were normally
distributed, we could estimate the variance of their distribution from the appro-
priate mean squares of the analysis of variance table. The whole analysis is
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therefore covered by the standard theory of the analysis of variance though the
assumptions underlying the analysis must be emphasised; in particular, the nor-
mality of all the random variables involved and, especially, the non-existence of an
interaction. An interaction might easily arise in practice if some of the persons had
particular familiarity with test items of a particular character.

So far we have said nothing, about the items. If the item effects are treated as
fixed, then our analysis will apply only to those particular items. If they are
regarded as sampled at random from a population of items a random effects model
with two sets of unobserved variables would apply. However, in practice it is rare
for the test items to be selected at random from any population.

The foregoing model will serve if the test scores are normal, or can be trans-
formed to normality. But one of the commonest situations, which has attracted the
greatest attention in this field, is the one where the scores are binary. This arises if
the items are either ‘right’ or ‘wrong’—usually scored 1 and 0. In this case the
linear Eq. (4.1) cannot be appropriate and an alternative must be sought. The
uncertainty about the responses can be captured by the probability that person
i gives a correct answer to item j. Problems which involve this specification are
often referred to as item response tests (IRT) or item response models (IRM) and
they have generated an enormous literature. A good survey of this field is provided
by Thissen and Steinberg (2009) who also provide a wide-ranging list of refer-
ences including the relevant papers by Rasch.

Let the probability that person i makes a positive response to item j be denoted
by pij. We need to express this as a function of the parameters l, ai and bj in such a
manner as to make the probability lie between 0 and 1. Since the linear combi-
nation of Eq. (4.1) is unbounded, a natural way to achieve this to choose

pij ¼ Fðl þ ai þ bjÞ ð4:2Þ

where F(.) is a cumulative distribution function. However, there is a natural
constraint to be placed on the choice of this function which arises from the fact that
the labelling chosen for the binary response is entirely arbitrary. We labelled the
positive response 1 but we could equally have labelled it 0. We would not wish this
choice to change the form of the response probability so we also require that
F(x) = 1 - F(-x) which then implies that pij ¼ 1� 1� pij

� �
, as it obviously

does. F(.) is therefore the cumulative distribution function of a symmetrical dis-
tribution centred at 0.

There are two distributions commonly used for this purpose, namely the normal
and the logistic. We shall see that these distributions have particular interpretations
when we come to consider what we shall call ‘underlying variable’ models but, at
this stage, they are adopted simply as convenient functions which have the right
form. The logistic form is chosen here because it matches the conditions required
by the general theory set out in Chap. 2. It may be written

logitpij ¼ log
pij

1� pij

� �
¼ ðl þ ai þ bjÞ: ð4:3Þ
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4.2 Maximum Likelihood Estimation

The likelihood function for the model defined above is

l ¼
Y
i;j

pxij

ij 1� pij

� �1�xij ;

¼
Y
i;j

pij

1� pij

� �xij

ð1� pijÞ

¼
Y
i;j

ð1� pijÞexpfxijðlþ ai þ bjÞg

hence

L ¼ logl ¼ constantþ lX þ
X

i

aiXi þ
X

j

bjXj ð4:4Þ

where

X ¼
X

i;j

xij; Xi ¼
X

j

xij and Xj ¼
X

i

xij:

This is known as the Rasch model after its originator who developed it from
first principles, apparently without realising how closely it was connected to the
two-way analysis of variance. It is usually parameterised in a slightly different way
without the as and bs being referred to an arbitrary origin. The advantage of doing
it in our way is that it makes the link with the familiar analysis of variance and
emphasises that the origin of the row and column parameters is arbitrary. One
advantage often claimed for the Rasch model is that once the column parameters
have been estimated using one selection of test items, the estimates of the row
parameters should be unchanged even if a different set of persons is tested using
those same items. This property is automatically ensured by the standard formu-
lation of the analysis of variance model. Although the Rasch model has many
attractive properties it must be remembered that it is a ‘fixed affects’ model and
thus only enables us to test its fit with the particular set of items and persons for
which we happen to have data. This is rarely what we are actually interested in.
The persons will have been selected from some population to which we may wish
to generalise our conclusions. It is straightforward to write down a model to cover
this case but this does not appear to have been studied. Further, we might wish to
generalise about the whole set of items though, since they are often specially
constructed there may not be an extant population to which we can refer. This
latter point is one to which we shall return shortly.

24 4 Models for Ability



4.3 Continuous Variables

If we return to the case where the xs are continuous variables we are back with the
analysis of variance set-up. If we then make the additional assumption that the
variables are normally distributed, the standard theory will apply. The model will
then be that of Eq. (4.1) where the as represent the row(person) effects and the bs
the column(item) effects.

This means that for any model for which we specify in terms of the conditional
distribution of y given x, that model will not be unique. We cannot make inferences
about the interaction effects in the two-way analysis of variance with only one
observation per cell because all the degrees of freedom have been used up by the
main effects. Or, put another way, the interaction and residual effects are con-
founded. However, it is possible to make some progress in this direction in the case
of the random effects version of the model. This is evident if we write it in the forms

xij ¼ l þ ai þ byj þ eij ð4:5Þ

where lþ ai continues to represent the item effects and byj is now the contribution
of the randomly selected jth person. In analysis of variance terminology this is a
‘mixed’ effects model with one fixed effect and one random effect. When
expressed in this form it is, as we shall see later, also essentially the same as a
special case of the ‘one-factor’ model of factor analysis. To make the corre-
spondence complete we add a subscript i to b. By this addition we have allowed
the contribution made by the ‘person’ effect to depend on the item whose score is
being determined. This is a rather special kind of interaction which makes par-
ticular sense in ability testing. The parameter bi is referred to in this context as the
discriminating power of the item. Thus if bi is large the person with y makes a
bigger contribution than someone with a smaller discriminating power. The only
difference between Eq. (4.5) and the usual factor analysis model is that we have
expressed the item effect as the sum of a ‘grand’ mean, l, and a deviation, ai;
instead of the more usual li:

With equal discriminating power we have a continuous analogue of the Rasch
model. When we are dealing with continuous test scores, we find we have enough
further information in the data to estimate the discriminating effect of the items as
well. Maximum likelihood estimation could be used in this case for the fixed effect
but, as the model we have just described is a special case of a more general class to
be discussed in the next chapter, we shall return to it there.

4.4 The Selection of Items

In the foregoing discussion we have supposed, in turn, that the ‘person’ effect was
fixed or random. The ‘item’ effect has been fixed in both cases. From a theoretical
perspective it would seem natural to allow the item effect to be random also, but
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there is rarely any physical justification for doing so. It is certainly possible to
imagine a population of items from which those actually used have been drawn
and one can envisage this happening sometimes in practice. For example, if the
test items consist in adding up a fixed number of 2-digit numbers there is a finite
number of such ‘sums’ and hence those used are a sample from such a population.
However, it would be hard to find many cases where this had been done. Alter-
natively, the test items may be constructed to span the range of ability which the
item is intended to cover. It is not usually possible to relate this in a meaningful
way to any formal process of sampling. Nevertheless, psychologists and others
have recognised the need (which statisticians have often failed to do) to generalise
the results obtained for a particular set of items to the larger population from which
the items have been drawn. This has become a major field of research activity
know as generalizability theory, or, somewhat more narrowly, as Psychometric
inference.

Although we are dealing here with unobserved variables they are certainly not
random variables. But, even if nothing is known about how the test items were
selected, or constructed, it may be possible to draw some conclusions, however
limited. We can certainly learn something about the variability of item difficulty
by inspecting the ‘between items’ sum of squares. If this is very small then,
however the items have been selected, we would be more confident in generalising
the conclusions from the analysis of ‘all items’ than if they were widely dispersed.
However, we can go a little farther if we consider the two-way analysis of variance
for the data matrix. If we set out the table as follows, using SS and MS to denote
‘sum of squares’ and ‘mean square’ respectively and DF the degrees of freedom,
then the analysis of variance table is as follows

Between persons SSP DFP MSP

Between tests SST DFT MST

Residual SSR DFR MSR

The residual mean square, which is the same as the interaction mean square for
this data matrix, is a measure of the extent to which variations in persons is
associated with variation in tests. If this is small, it means that there is very little
association between tests and persons and hence MSP is largely unaffected by
which of those tests happen to have been selected. Conversely, a large residual
mean square tells us that the choice of tests does matter very much. Hence a
suitable coefficient for measuring the extent to which the variation is unaffected by
test differences is:

MSP �MSR

MSP

This is equivalent to one version of a coefficient often known as ‘coefficient
alpha’ due to Cronbach (1951). It is also closely related to measures of test
reliability.
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There is, of course an assumption implicit in this argument. We have assumed
that the interaction mean square would be much the same for any other set of test
items used. This would be assured if the items were sampled randomly from some
population of items but otherwise it would be difficult to justify.
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Chapter 5
A General Latent Variable Model

Abstract This chapter shows that, starting from the two-way analysis of variance
with random effects, it is possible to arrive at a general latent variable model. It does
this, first by enlarging the family of conditional distributions considered and sec-
ondly, and more fundamentally, by allowing the random effect associated with the
rows of the two-way table to be linear in a set of (unobserved) latent variables. In the
case when the observed variables are conditionally normal, the standard model for
factor analysis emerges but the framework adopted includes a great many other
possibilities, including non-linear models. One advantage of adopting this general
framework is that it makes the essential arbitrariness of the distribution of the latent
variables transparent. It also paves the way for the following chapter in which we
turn to clarifying what can be said about the prediction of the latent variables.

Keywords Analysis of variance � Factor analysis � Random effects � Latent
variables � Latent variable models � Two-way classification

5.1 An Extended Model

The two-way table which has been the basis of the models for ability in the last
chapter can be extended to become the basis of a more general class of models as
we now show. The extra generality is achieved partly by enlarging the class of
distributions from which the xs are supposed to have come. Instead of considering
only two conditional distributions—the binary and the normal—we now suppose
that the distribution may any member of the exponential family. This leads, quite
naturally, to the classical factor analysis model although it is not usually
approached in this way.

There are two particular aspects of inference with which we shall be concerned.
One, which we deal with in this chapter, is that of estimating the parameters of the
model. The second is measuring latent variables, to which we come in the next
chapter.

D. J. Bartholomew, Unobserved Variables, SpringerBriefs in Statistics,
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We start with the data matrix as set out at the beginning of the last chapter. The
only observable quantities are the xs and estimation must therefore start with their
joint distribution. We have already met the cases where the xs are normal or
binary. Here we shall suppose that their distribution is a member of the one-
parameter exponential family. To be specific, we suppose that the probability
function, f ðxÞ, has the form

f xð Þ ¼ F xð ÞG hð Þexphx ð5:1Þ

This includes the binary and normal distributions as special cases and we note
again that x can be categorical or continuous. In the two-way table x will be
indexed by i and j. We adopt the model

hij ¼ ðlþ ai þ bjÞ ð5:2Þ

where hij is the value of theta for the distribution of the observation in cell (i, j) of
the table. Then, following in the same steps as in Chap. 4, we find that the
likelihood function has exactly the same form as in Eq. (4.4) of that chapter.
Hence, we deduce that the row and column totals are jointly sufficient for their
corresponding row and column parameters. This is what intuition might lead us to
expect and it shows that the well-known results for the Rasch model apply to a
much wider class of models.

If we are dealing with the random effects version of the model, bj in Eq. (5.2)
will be a random variable and the model is as expressed in the same fashion as in
Eq. (4.5) of the last chapter. In the notation of the present chapter, the values which
it takes for each column of the table may be supposed to be drawn from a pop-
ulation with probability function wðbÞ centred at zero. The joint probability
function for the xs appearing in the jth column of the table may then be written

fj x1; x2; . . .. . .xnð Þ ¼
Y

i

FðxijÞ
Z Y

i

Gðlþ ai

þ bÞ exp
X

i

ðlþ ai þ bÞxij

( )
w bð Þdb ð5:3Þ

One could construct a likelihood function from this joint probability function if
the form of wðbÞ were known and then if we could estimate the ais and any
unknown parameters in wðbÞ. We now look at this matter in more detail.

5.2 More Than One Latent Variable (Factor Analysis)

In the last section we referred to two generalisations that were to be made. The first
was to use the exponential family in place of the normal or binary. The second,
with which we deal now, is to allow the ‘random effects’ to be multi-dimensional.
In the two-way analysis of variance situation it is natural to think of the ‘random
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effect’ as one-dimensional. But we now move on to consider situations where more
than one random variable may be involved and where the various ‘effects’ com-
bine to produce the overall effect. In the analysis of variance problem the ‘effect’,
if there is one, is a clearly identifiable source of variation in which we are inter-
ested though it is often called a factor—a particularly confusing use of the term in
this context! In what is called ‘factor analysis’, the nature of the ‘effect’ is less
well-defined and a prime purpose of the analysis is then to establish its existence
and elucidate its character.

We begin by supposing that there may be a set of random variables, of unknown
number, which contribute to the value of the xs in each row of the table. Clearly
this contribution may be specified in a variety of ways but the obvious way to do
this is by supposing that it is through some function of the latent variables. We
shall formalise this by supposing that the single random variable envisaged in the
random effects analysis of variance is replaced by some function of these new
latent variables. Almost all the work is based on linear functions though other
possibilities, including polynomial functions, have been envisaged. Here we
consider only linear functions, supposing that the random effect is so represented
and thus we have the model

xij ¼ lþ ai þ k1iy1 þ k2iy2 þ � � � þ kqiyq þ eij ð5:4Þ

where q is unknown and eij is the usual error term, which is assumed to be
independent of the ys. There are good reasons, which we shall come to in the
following chapter, for treating the ys as mutually independent standard normal
variables. In that case the xs turn out to have a joint multivariate normal distri-
bution with covariance matrix

R ¼ K0KþW ð5:5Þ

where K is a n� q matrix of the loadings (ksÞ as they are known in this context, W
is a p� p diagonal matrix whose elements are the variances of the eijs. The
problem in the case of this model is to make inferences about the number and
interpretation of the ys.

Other latent variable models arise when, in effect, we make different distribu-
tional assumptions about the eijs or choose a different function of the ys in Eq. (5.4).

An alternative and more usual way of introducing the general factor analysis
model, which does not start from the two-way-table, is that given, for example, in
Bartholomew et al. (2011) and most standard works. It is interesting to see how the
two are related. The usual approach starts along the lines set out in Chap. 1 (Sect.
1.1) where we considered two types of random variable, the xs which were col-
lected in a p-dimensional vector x and the latent variables in a q-dimensional
vector, y. Only the vector x was observed and so the only probability distribution
about which we could make inferences was f ðxÞ: Any model tells us how the xs are
related to the unobserved latent variables. This may be expressed, as we saw in
Chap. 2, by the conditional distribution of x given y which we denoted there by
hðxjyÞ. The prime purpose of any latent variable model was then to learn
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something about y when x is given and this information is conveyed by hðyjxÞ. By
Bayes’ theorem we deduced that

hðyjxÞ ¼ h yð ÞhðxjyÞ=f xð Þ: ð5:6Þ

(The fact that we have used ‘h’ to denote probability functions here rather than
the ‘f’ of Eq. (2.2) has no significance but is to conform with usage in the context
of this chapter). This result contains two important messages which are often
overlooked and are worth repeating because they are a common source of mis-
understanding. First, the conditional distribution, in which we are interested,
depends on h yð Þ which will usually be unknown. We return to this point in the
following chapter which is about the prediction of y. The second point, which is
essentially the first in a different guise, is that the distribution of f ðxÞ, from which
any unknown parameters must be estimated, also depends on this unknown dis-
tribution. The reason that this rather important element of the model is often
overlooked is that there is a common but unjustified tendency among modellers to
regard any unknown distribution as standard normal. The present situation is quite
different and, in general, no such assumption is justified.

There is no necessity, of course, to be restricted to the linear model of Eq. (5.4).
The possibilities are endless but it turns out that the linear model includes virtually
all models in current use and provides a foundation from which others could be
developed. There are models in use which do not belong to this family but, in
practice, they are hardly distinguishable from those which are included.
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Chapter 6
Prediction of Latent Variables

Abstract The second main object in finding the conditional distribution of a latent
variable is to make a prediction. In the factor analysis literature this is known as
‘the problem of factor scores’. This has been a major source of controversy and
debate because of the failure to recognise the distinction between a parameter and
a random variable. The debate has concerned only the case of the normal model,
for good historical reasons. For all other models, which have only come into
prominence recently, the approach advocated here has been followed without
controversy. For the normal case there are two competing solutions, known by the
names of their originators, Thomson and Bartlett. They sometimes coincide
numerically, but otherwise differ because they provide solutions to different
problems. Thomson’s scores aim to predict the values of future observations of the
latent variable whereas Bartlett’s scores are estimators of the values taken by the
latent variables for particular individuals. This feature means that they must be
regarded as parameters.

Keywords Bartlett � Bayes theorem � Factor analysis � Factor scores � Latent
variables � Prediction � Thomson

6.1 Prediction and Factor Scores

Perhaps the greatest misunderstanding in this field surrounds what is called the
factor scores problem. This confusion can be largely dispelled by recognising that
the problem centres upon latent variables and their conditional distributions and
hence that the problem is essentially one of prediction. Since latent variables are
elements in a model, the whole issue resolves itself into one of appropriately
specifying the model in which they appear.

We shall begin by considering the problem in general terms because this makes
it easier to see how to handle the problem at that level. Because it has been at the
root of so much misunderstanding, we shall repeat much about the model that has
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already been covered, especially in Chap. 4. This, more general approach also
serves to clear up the long-standing, but only apparent, confusion surrounding
what have become known as Thomson’s regression scores and Bartlett’s scores.

In any latent variable problem, as we have mentioned several times before,
there are two kinds of variable—the manifest, or observable, variables and the
latent, or unobservable variables. As before, the former will be denoted by x and
the latter by y and individual values will be distinguished by subscripts. Since we
observe the xs alone, all inferences must ultimately depend on their joint distri-
bution. It is important to emphasise again that, at the stage our problem arises, the
xs will already have been observed and hence all that we can know about the latent
variables is contained in their joint distribution conditional on the xs. This, as we
know, is given immediately by Bayes theorem and can be expressed as

h yjxð Þ ¼ h yð Þf ðxjyÞ
f ðxÞ ð6:1Þ

Of the quantities appearing on the right hand side, f ðxÞ is known, or can be
estimated, f ðxjyÞ is specified by the model but hðyÞ is unknown. Since f ðyjxÞ is a
probability function its integral, or sum over the whole sample space must be 1, so
the denominator of Eq. (6.1) is a constant factor determined by that fact. There is
no means of determining this distribution from the data and the ‘prior’ distribution
is completely arbitrary. This means that that we cannot determine hðyjxÞ, or any
summary measure derived from it. The general problem, as we expressed it above
is therefore insoluble. However, this also means that any distribution we may
choose to use must be a matter of convention only and cannot claim any support
from the data. This elementary point, which we have already made, has often been
overlooked and papers have been published purporting to ‘estimate’ the distri-
bution. It is evident that in order to do this, something else must be assumed.

The normal model expressed as a linear equation in Eq. (6.4) of the last chapter
can be cast into this form by writing the conditional distribution of x as

xijjy _ Nðlþ ai þ k1iy1 þ k2iy2 þ � � � kqiyq; r
2
i : ð6:2Þ

There are good practical reasons in favour of using a standard normal distri-
bution for the prior distribution for each of the elements of y and assuming them to
be mutually independent. This is because the normal distribution commonly arises
in measurement work, partly since many naturally occurring quantities used as
measures have distributions close to normal and partly because it spaces indi-
viduals along the scale of measurement in a way which accords with our intuition.
Furthermore, the normal distribution is well-known and its properties are readily
available. However, we emphasise again, that its adoption is a matter of conve-
nience and not an empirical fact.

If we insert this conditional distribution into Eq. (6.1) and choose the elements
of y to be independent standard normal, it is readily shown that

yjx _ NðK0R�1ðx�EðxÞÞ; K0W�1Kþ IÞÞ: ð6:3Þ
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This distribution expresses our uncertainty about y when x is given. In this most
general form the ys are not conditionally independent and hence what we say
about any particular y will depend on the values of the other. An important special
case arises when K0W�1K is diagonal in which case the ys are conditionally
independent. (In practice one can ensure that this condition is satisfied by an
appropriate rotation.) If we need a single summary measure for y there is still a
choice of what is the most appropriate location measure but, in the case of the
normal distribution, all the usual measures, mean, median and mode coincide. We
may therefore take the mean as our summary measure, or factor score. We then
have

EðyjxÞ ¼ K0R�1x ð6:4Þ

Where here, and subsequently, x is assumed to be standardised with mean zero.
An equivalent and more convenient, version of these factor scores is given by

EðyjxÞ ¼ ðK0W�1Kþ IÞ�1K0W�1x ð6:5Þ

Bearing in mind the diagonality of the first matrix on the right hand side of
(6.5), these scores are proportional to the elements of the vector K0W�1x. Shortly
we shall discover that there are many other problems of a similar kind which
produce scores which are linear in the x s like this and we shall refer to them
generically as components. This is by analogy with principal components, which
are also linear functions and serve a similar purpose, but the two are quite distinct.

When dealing with the ‘fixed effects’ version of the data matrix in the last
chapter, we found that the row and column totals were jointly sufficient for the
respective row and column parameters. A somewhat similar result holds for
components if we suppose that, instead of being restricted to normal distributions,
the xs have the more general conditional distributions of the exponential form.

Thus suppose that xij has a distribution in the exponential family of the form

f xijjhi

� �
¼ Fi xij

� �
Gi hið Þexphixij ð6:6Þ

where each hi is a function of y. The ys are, of course, hypothetical variables so we
suppose that they are defined so as to exert their influence through a linear
function. That is we suppose that

hi ¼ ai0 þ ai1y1 þ ai2y2 þ � � � þ aiqyq: ð6:7Þ

The notation used in (6.7) expresses the fact that the distribution of xij depends
on which row it belongs to but not on the column. The conditional distribution of
y given the xs is thus, according to Eq. (6.1),

h yjxð Þ ¼ h yð Þ
Qp

1

Qn
1 f xijjhi

� �
f ðxÞ : ð6:8Þ

Substituting from Eq. (6.6) we then find that
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h yjxð Þ / hðyÞ
Yn

1
Gi hið Þ exp

X
i

X
j
xijhi ð6:9Þ

Since hi is assumed to be a linear function of the ys, we may substitute the
expression given in Eq. (6.7) for hi; obtaining
X

i
xijhi ¼ ai0

X
i
xij þ y1

X
i
xijai1 þ y2

X
i
xijai2 þ � � � þ yq

X
i
xijaiq: ð6:10Þ

If we write

Xl ¼
X

j

X
i
xijail ðl ¼ 1; 2; . . .qÞ: ð6:11Þ

We note that hðyjxÞ as given by Eqs. (6.8) or (6.9) depends on x only through
the linear functions Xl given by (6.11). It does not follow, of course, that the
expected value of y is a linear function of the Xs (except in the normal case) but
that it will not depend on any other function of the xs.

6.2 Thomson’s Scores and Bartlett’s Scores

It is common when defining factor scores for the normal model, to say that there
are two families of scores without giving any insight into the reasons why they are
often not the same. The two families are known as Thomson’s scores and Bartlett’s
scores. The issue is further confused by the fact that the two are usually close and,
sometimes, equivalent. In reality they provide solutions to rather different prob-
lems as we shall now show.

The scores arrived at using the approach of this chapter, as given by Eq. (6.5),
are in fact Thomson’s scores. The conditional expectations which we have derived
are also known as the regression scores. Although Thomson derived them in a
fairly straightforward way using the standard theory of least squares regression,
Thomson, himself, would not have understood the significance of the regression
terminology. Nevertheless, his derivation and ours are essentially equivalent.
Thomson had considerable correspondence with Bartlett about factor scores but
neither seems to have recognised, what is evident to us, albeit with the benefit of
hindsight. Bartlett was essentially showing how to estimate a set of parameters
whereas Thomson was aiming to predict the value of a random variable, as we now
show.

The crucial difference between Thomson’s approach and Bartlett’s is that
Bartlett treats the unknown values of the factors as parameters. Bartlett’s proposal
was to find the best linear unbiased estimators of those parameters. These are the
same as the maximum likelihood estimators which are obtained by maximising the
log likelihood and this amounts to minimising

ðx� KyÞ0w�1ðx� KyÞ

with respect to y. Equating the derivative with respect to y to zero we obtain
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�2K0w�1 x� Kyð Þ ¼ 2ðCy� K0w�1xÞ

where C ¼ ðK0W�1Kþ IÞ�1and hence

y ¼ C�1K0w�1x ð6:12Þ

Equation (6.12) differs from Eq. (6.5) only by the fact that the factor ðI þ CÞ�1

in Eq. (6.5) is replaced by C�1 in Eq. (6.12). If C is diagonal the two sets of scores
differ only by a scale factor and in that sense they are equivalent.

The misunderstandings which have arisen over these two approaches to factor
scores centre on the distinction between parameters and random variables. The
failure to make this distinction has led to the scores being evaluated in wholly
inappropriate ways. For example, Lawley and Maxwell (1973, p. 113) say that
‘‘No general preference can therefore be given’’ on the grounds that the choice
depends on a trade-off between bias and precision. But the unbiassedness of the
Bartlett scores is a consequence of treating y as fixed and x as a random variable
and the greater precision of the regression scores by lies in reversing the roles of
x and y. The real question is whether we want to estimate the value of y for a given
set of individuals or to predict the values of y for a random sample of individuals
drawn from some population. These are two distinct questions and it is fortunate
that for practical reasons that their answers are often so similar. A fuller treatment
of the relationship between the two sets of scores will be found in Bartholomew
et al. (2009).

This confusion reflects a wider misunderstanding which is prevalent throughout
the extensive literature on factor scores which is to be found mainly in the psy-
chological publications. It results from a failure to notice that the concept of a
random variable as used in probability and statistics, is not the same as what we
may term a ‘mathematical’ variable such as occurs in everyday algebraic
expressions. No doubt, this is partly because it is cumbersome to distinguish
between them notationally. In fact, we have failed to make that notational dis-
tinction completely clear here, in the interests of greater simplicity, but we have
compensated for this omission by using forms of words intended to make the
distinction clear.
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Chapter 7
Identifiability

Abstract Even if there is close agreement between a model and the data it does
not follow that the model provides a true account of how the data arose. It may be
that several models explain the data equally well. When this happens there is said
to be a lack of identifiability. Failure to take full account of this fact, especially in
the social sciences, has led to many over-confident claims about the nature of
social reality. Lack of identifiability within a class of models may arise because
different values of their parameters provide equally good fits. Or, more seriously,
models with quite different characteristics may make identical predictions. Both
kinds of lack of identifiability are common where the observations are incomplete,
or latent, and several examples are given in this chapter. One arises in the field of
intelligence measurement where our analysis shows that the common assumption
that Spearman’s g corresponds to a physical reality in the brain is not necessarily
true. A second concerns the widespread use of latent structure models where, since
it may be exceedingly difficult to determine a satisfactory metric for the latent
variables, little confidence can be placed in any results of the analysis.

Keywords Bonds � Brain � Endogenous variables � Exogenous variables � Factor
model � Social science � Intelligence � Measurement � Spearman’s g � Latent
structure models (LISREL)

7.1 The Meaning of Identifiability

We are using identifiability as an umbrella term to cover several different concepts
but they all have a common principle underlying them. This is that they involve an
asymmetry between a model and the data. If we start with a model we can predict,
albeit uncertainly, what data it should generate. But if we are given a set of data we
cannot necessarily infer that it was generated by a particular model. In some cases
it may, of course, be possible to achieve identifiability by increasing the sample
size but there are cases in which, no matter how large the sample size, no
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separation is possible. It is that situation with which we are particularly concerned
in this chapter.

Identifiability matters can be considered under three headings. First there is lack
of parameter identifiability which is the most common use of the term. This refers
to the situation where there is more than one value of a parameter in a given model
each of which gives an equally good account of the data. For example, if we are
aiming to estimate a parameter by the method of maximum likelihood, it may
happen that the likelihood function has exactly the same value for two different
values of the parameter—or, more likely, that the likelihood function is flat in
some region of the parameter space.

Secondly there is what we shall call lack of model identifiability which occurs
when two or more models make exactly the same data predictions. This has serious
practical implications because, if we find that there are at least two explanations
for our data, the whole basis of induction by statistical modelling is compromised.
We shall give an important example of model unidentifiablity later in this chapter.

The third type of identifiability is actually the combination of the foregoing
types.

Mathematical statistics is not well-equipped to cope with situations where
models are practically, but not precisely, indistinguishable because it typically
deals with things which can only be expressed in unambiguously stated theorems.
Of necessity, these make clear-cut distinctions which do not always correspond
with practical realities. For example, there are theorems concerning such things as
sufficiency and admissibility. According to such theorems, for example, a proposed
statistic is either sufficient or not sufficient for some parameter. If it is sufficient it
contains all the information, in a precisely defined sense, about that parameter. But
in practice we may be much more interested in what we might call ‘near suffi-
ciency’ in some more vaguely defined sense. Because we cannot give a precise
mathematical definition to what we mean by this, the practical importance of the
notion is easily overlooked. The same kind of fuzziness arises with what are called
structural eqation models (or structural relations models) which have played a very
important role in the social sciences. In Sect. 7.4 of the present chapter we shall
argue that structural equation models are almost always unidentifiable in the
broader sense of which we are speaking here. This has far-reaching implications
for social research.

7.2 The Factor Model

A well-known example of non-identification of parameters arises in the factor
model if there are at least two factors. This can easily be demonstrated using the
standard equation given in Eq. (5.4). We start with the model in the form

x ¼ Kyþ e ð7:1Þ
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If we introduce an orthogonal matrix M (implying that M0M ¼ IÞ and write

x ¼ KM0Myþ e ð7:2Þ

This model is equivalent to that of Eq. (7.1) but its loading matrix is now KM0

and the factors have become My. This is called a rotation because that is what it is
if we look at the geometry of the transformation. The set of loadings generated by
the new model has exactly the same likelihood and so cannot be distinguished; this
means the model is not identifiable. In effect we have an infinite set of equivalent
solutions. If a choice has to be made among them it has to be based on substantive
and not statistical considerations (unless, of course, one can propose some
objective criterion to make the rotation unique, but this is extremely rare in
practice). There is a substantial literature on how non-stistical considerations
might be brought to bear on this matter. For future reference it should be noted that
rotation does not depend on whether or not the number of factors is given or
whether it has to be estimated from the data.

7.3 The g-Factor and Bonds

Ability testing and intelligence testing in particular have generated an enormous
literature and considerable controversy. It is therefore highly desirable to have a
satisfactory statistical account of the situation so that inferences, about heritability,
for example, are securely based. The somewhat disconcerting fact is that there are
two statistical models which both give an equally good description of the situation
and, therefore, provide a perfect illustration of, model unidentifiability.

We begin by giving a brief description of the essentials of the two models
associated with the names of Charles Spearman and Godfrey Thomson, the latter
of whom was mentioned in connection with factor scores in the last chapter.

At the root of the whole matter is the empirical fact that individuals who
perform well in one mental test tend to perform well in other similar tests. Put
another way, the correlations among test scores tend to be positive—the so-called
positive manifold. Why does this happen?

Spearman attempted to explain this fact by supposing that a person’s test score
was the sum of two parts. The first part reflected their general ability and the
second part was a contribution specific to that particular test. Scores on any two
tests would therefore be correlated because the person’s general ability was
common to the scores obtained on both tests.

Using modern notation and terminology Spearman proposed a one-factor model
which, in the notation we have used hitherto, may be written

xi ¼ lþ kiyþ ei ð7:3Þ

where xi is the score on the ith test, y is the position of the individual on the scale
of ability, kiy is the contribution which that individual makes to the test score and
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ei is the ‘error’. In Spearman’s terminology, lþ kiy represents the general ability
of the individual and ei the ‘specific factor’. The use of the term ‘factor’ here is out
of line with much modern usage, but it accounts for the fact that Spearman called
his model the ‘two-factor model’ whereas it would now be called a ‘one-factor
model’. Also it is obviously a special case of the general factor model considered
in Chap. 5. Spearman used the symbol g instead of y in Eq. (7.3) to designate what
he called the general factor. Thus was because he did not wish to pre-judge any
issues by referring to it as general intelligence; he therefore preferred a less spe-
cific description. For this reason the quantity is referred to as the ‘g-factor’ or
Spearman’s g:

Thomson proposed an alternative, and very different, explanation. He supposed
that a person’s brain contained a number of what he called ‘bonds’. When a person
attempted a test, a random selection of bonds was activated. The resulting test
score was supposed to be the sum of the contributions from the selected bonds. On
attempting a second test the selection of bonds would include some of those used
for the first test. The correlation was supposed to arise because those common
bonds would make the same contribution to the score as in the two tests.

A comparison of the two models was made in Bartholomew et al. (Bartholo-
mew 2009a) where Thomson’s model was also expressed in modern notation. This
showed that the two models made exactly the same statistical predictions and
therefore they could not be distinguished on statistical grounds. It was also con-
cluded that the biological evidence did not unequivocally favour either model. The
question, still unresolved, is: which of the two models more accurately represents
what goes on in the brain?

One statistical possibility for distinguishing between the two models is to see
what happens when we look beyond the first factor. Although the positive mani-
fold is practically universal in ability testing, it is not true that the one factor model
provides a complete description of the data. The g-factor usually accounts for
much of the correlation structure but not all of it. The fit can often be improved by
introducing a second factor (and possibly a third and so on). This would prove to
be an advantage over Thomson’s model if the latter could not be extended in a
natural way to accommodate such deviations. There is such an extension, which
we describe briefly below which suggests that the lack of identifiability which we
shall uncover is quite general.

The generalisation of the bonds model needed for this purpose was given in
Bartholomew et al. (2013) and it depends of the idea of what is there called a
‘pass’. It is supposed that, when attempting a test item, the brain makes a number
of passes through the items focussing on a different aspect at each pass. Thus, for
example, it may focus on the quantitative aspects of the items at the first pass and
the number of bonds required for each item will therefore reflect the quantitative
aspects of that item. At the second pass the brain may be focussing on, say, the
verbal aspects of each item and this will require more or fewer bonds according to
the amount of verbal content of the items. The neural basis for the idea of suc-
cessive ‘passes’ is, on current evidence, neither stronger nor weaker than that for
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the existence further dimensions in Spearman’s model. Both models are therefore
on an equal footing on that score.

In order to show that the bonds model with several passes produces a corre-
lation structure which is identical with that of the factor model it is only necessary
to consider a single pass, because results for a multi-pass model can be obtained
from it by a process of aggregation. The score obtained from a single pass may be
written

xi ¼ a1ie1i þ a2ie2i þ � � � aNieNi ð7:4Þ

where the as are indicator variable each indicating whether or not the ith bond is
active. N is the number of bonds in the brain (this need not be the same for each
person) and eji is the contribution which the jth bond makes to the score of that
individual. It is supposed that pij is the probability that the jth bond is used when
attempting the ith item. Starting from these simple assumptions it is possible to
determine the covariance and hence the correlations between any pair of xs and the
variance of any individual x: If there are several independent passes the corre-
sponding covariances and variances are obtained by adding up the results for the
constituent passes. As a result it is easy to show that, for k passes

Corrðxi; xjÞ ¼
P

r priprjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
r pri

P
r prj

p ¼
X

r

� priffiffiffiffiffiffiffiffiffiffiffiffiffiP
r pri

p priffiffiffiffiffiffiffiffiffiffiffiffiffiP
r pri

p �
: ð7:5Þ

This has exactly the same form as the off-diagonal elements of the corre-
sponding matrix for Spearman’s model. This immediately recognisable if we write

kri ¼
priffiffiffiffiffiffiffiffiffiffiffiffiffiP

r pri

p : ð7:6Þ

This analysis shows that for every bonds model with k passes there is a factor
model with exactly the same correlation structure. The converse is not necessarily
true which means that there is not a bonds model corresponding to every possible
factor model. This is not surprising because factor models have a much wider
range of applicability, but this correspondence has been shown empirically to exist
for all ability matrices so far examined.

7.4 Linear Structural Equation Models

Linear structural relations models are a generalisation of the factor model which
involve linear relations among the latent variables. They are sometimes referred to
as covariance structure models because they specify the structure of the covariance
matrix; the parameters of the model are estimated by fitting the theoretical matrix
to that which is observed. Although the models are a generalisation of the linear
factor model, they are a rather special kind of generalisation. In the first place, the
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number and identity of the latent variable is assumed to be known in advance, so
there is no need to estimate their number or to use rotations to select the most
meaningful. The models imply a fairly well-developed theory in which the vari-
ables have been already specified. In this sense they are more naturally thought of
as developments of models for ability, where we knew what the single latent
variable was at the outset. Secondly, the latent variables are of two kinds, known
as endogenous and exogenous. These terms are well-known in econometrics. They
derive their meaning from the notion of an ‘inside’ and an ‘outside’ to the system
being studied. The structural part of the model concerns the relationship between
the endogenous (internal) and the exogenous (external) variables which relation-
ships, in the standard model, are assumed to be linear. Before specifying the model
we need to pause to make an observation on notation. Any attempt to present
statistical methods from a more general and unified framework runs into the
problem of using a notation which is both internally consistent and also consistent
with the published literature. This is impossible in the present instance. Structural
relations modelling has developed as a fairly self-contained subject using a
notation which is firmly established but at variance with common statistical usage.
In Bartholomew et al. (2008) the balance of advantage lay with adopting the
notation usual in the field, but in Bartholomew et al. (2011) we judged that the
advantage lay in the other direction. Here, because we wish to emphasise the link
with factor analysis and other latent variable models, I have followed the usual
statistical conventions, that is, Roman letters are used to denote variables and
Greek letters to denote constants—that is, parameters.

Let y denote an endogenous latent variable and z an exogenous variable; as
before, subscripts will be used to distinguish one variable from another and bold
type to denote vectors. The core of a structural relations model expresses the
relationship between the ys and the zs as follows,

y ¼ Byþ Czþ f ð7:7Þ

where f is now a vector of error terms. We do not need to specify the dimensions of
the various vector and matrices for our very limited purpose. A slightly curious
feature of (7.7) is the appearance of yon both sides of the equation. This reflects the
difference between endogenous and exogenous variables. Variables external to the
system do not affect one another but those inside may do so.

The second part of the model, often called the measurement model, links all the
latent variables to observable variables, or indicators. A special feature of the
standard model is that the endogenous and exogenous latent variables have distinct
indicators. This assumption imposes a special structure on the usual factor model
which covers both sets of variable. If all the indicators are collected together in a
single vector x the model has the same form as in (7.1); but if we designate the
separate parts by adding to the various matrices the subscript y or z; the mea-
surement model may be written
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x ¼ Ky 0
0 Kz

� �
y
z

� �
þ ey

ez

� �
: ð7:8Þ

From Eqs. (7.7) and (7.8) we can easily determine the covariance matrix of x
and so proceed to fit the model by minimising some measure of the distance
between the observed and predicted covariance matrices. It is at this stage that
questions of identifiability arise.

The identifiability issue is more subtle than at first sight appears, especially if
we break it up, as we shall and deal with parameter and then model and identi-
fication in turn.

Being a generalisation of the factor model the lack of identification evident
there is also present in the case of the structural relations model. Thus in Eq. (7.7)
we can replace C by CM0 and zby Mz without changing the model (doing the same
with y is less straightforward, but does not affect the point being made). However,
making such a change contradicts the starting assumption that we already know
what the latent variables are.

The question of parameter identifiability is much more important. The intro-
duction of the relationship between the latent variables introduces many additional
variables and we clearly run the risk of not being to estimate them all. This topic
has been the subject of intensive investigation and a full discussion, with various,
incomplete, tests being given, for example in Bollen (1989), especially
pp. 88–104). Perhaps the simplest of these arises directly from the fact that, if the
estimates are obtained by solving equations, there must be at least as many
equations as there are parameters to be estimated.

Model identifiability has hardly been looked at, and deserves much more atten-
tion. There is one example in Bartholomew et al. (2011, Sect. 8.10). This is a simple
example specially constructed to demonstrate non- identifiability. It shows that a
structural model with two categorical latent variables is statistically indistinguish-
able from one with two continuous latent variables. It is not known how easy it
would be to construct other examples but the ease with which this one was found
suggests that it may not be too difficult. It may be objected that one would not use a
structural model unless one knew what the latent variables were and, in particular,
whether they were continuous or discrete. However the force of this argument is
much diminished by the following remark I wish to make about identifiability.

This further point, which is not easy to express in precise mathematical terms,
could be particularly damaging to the whole enterprise. Briefly stated it is that
prior distributions (the assumed forms for the latent variables) are poorly deter-
mined by the data. The reason for this is illustrated by what we learned in Chap. 3
about the information in the data about single latent variable. Essentially, we are
dealing here with a mixture model of the kind we met in Chap. 3. This is because a
latent variable model is a mixture model with the mixing distribution being
equivalent, in the present context, to the prior distribution of the latent variable.
The most extreme example of the phenomenon we wish to illustrate is provided by
the result on a normal mixture of normals. We showed in Chap. 3 that if we are
presented with a normal distribution it is impossible to know whether or not it has
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been generated as a mixture and if so, what the mixing distribution was. A similar
situation arises at the empirical level with mixtures of exponentials. We also noted
in Chap. 3 that the distribution resulting from a mixture of exponentials had very
similar characteristics, whether the mixing distribution was a continuous gamma
distribution or a two-point discrete distribution. A striking example of essentially
the same point in latent variable modelling is provided by an example in which a
latent class model, with two classes, was fitted to the same empirical distribution
(the Law School Admission Test data), see Bartholomew et al. (2011, especially
Table 6.1, p. 160 for an alternative comparison making the same point) as a latent
trait model with a normal prior distribution for the latent variable. The two fits
were hardly distinguishable, which means that there could be no empirical evi-
dence favouring either prior even though they are so radically different. If it is not
even possible to know whether the prior is continuous (i.e. normal) or two-point
discrete, it seems over-ambitious to formulate and estimate models which, it is
assumed, involve linear relationships between variables whose own status is so
poorly defined.

When all these results are brought together they constitute a formidable argu-
ment against the careless use of structural relations models. If some parameters are
non-identifiable, the variables with which they are associated will probably be
dropped from the model but it is not easy to reconcile this with the original
judgement that they should be included. Even if we are sure that a variable should
be included we need a good deal of prior knowledge to ensure that it is indeed
continuous and normal. for this is something the data cannot tell us. In brief, the
valid use of a structural equations model requires us to lean very heavily upon
assumptions about which we may not be very sure. It is undoubtedly true that if
such a model provides a good fit to the data, then it provides a possible account of
how the data might have arisen. It says nothing about what other models might
provide an equally good, or even better fit. As a tool of inductive inference
designed to tell us something about the social world, linear structural relations
modelling has very little to offer.
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Chapter 8
Categorical Variables

Abstract At the conceptual level continuous variables and categorical variables
need not be distinguished but, at the practical level, the form which the analysis of
latter takes needs to be spelt out. This is done in the present chapter where
categorical variables appear in the standard data matrix. The key step is the
replacement of a continuous variable by an indicator vector showing into which of
a number of categories a sample member falls. In some cases more information is
available in the shape of an ordering of the categories. This can be accommodated
by introducing a further kind of unobserved hypothetical variable which is
assumed to induce the ordering of the categories. The analysis can then be carried
out as if these hypothetical variables had actually been observed. The same idea
can be extended to other situations and the chapter concludes with one such
example where it is assumed that there is an underlying model in continuous
variables for which only categorical observed variables are available. This also
provides another example of the lack of identifiability discussed in Chap. 7.

Keywords Binary data � Identifiability � Ordered categories � Indicator variables
(vectors) � Random effects � Purchasing behaviour

8.1 The Role of Categorical Variables

It is a curious feature of the development of statistical methods that the analysis of
categorical data has lagged behind that for continuous data. This may owe more to
the accidents of history than the inner logic of the subject. Biological data of one
kind or another were the raw material of much of the early work of Karl Pearson
and R A Fisher on correlation and the analysis of variance was largely, but not
entirely, continuous and this fact dictated the direction that developments took.
Yet in many ways categorical data is simpler in the sense that it makes weaker
assumptions about measurement. It was relatively late in the development of
statistical methods that books began to appear on the analysis of categorical data,
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as though that were a primary classification. The point of view of this Brief is quite
opposed to this view of the subject. As far as the conceptual framework of the
subject is concerned, whether or not variables are continuous or discrete is a
secondary matter. Accordingly, our main purpose in devoting a special chapter to
this topic, is to show how it fits naturally into the modelling framework which
underlies our treatment. But, in the course of doing this we shall need to introduce
another kind of unobserved variable. The most comprehensive treatment of cat-
egorical variables from the traditional viewpoint will be found in Agresti (2013).

It is already clear from Chap. 5, where distributions belonging to the expo-
nential family were at the centre, and that the character of the variables was not an
issue. The exponential family includes both discrete and continuous distributions
as we have already noted and the results obtained apply equally to both kinds of
variable. We have already met the simplest kind of categorical variable in the
shape of binary data and in this chapter we shall go beyond this to cases where
there are more than two categories.

8.2 Unordered Categories

If we start with the problem of Chap. 4 we can return to the standard data matrix
which we supposed to have arisen if n persons each take m tests. The entries in the
table, xij, were supposed to be the scores obtained by the ith person on the jth test.
In that chapter we started with the usual analysis of variance assumption that the
scores had normal distributions with means that depended only on the row and
column. We next went on to suppose that the xijs had a Bernoulli distribution. In
this chapter we suppose that each xij is a categorical variable which records into
which of cj categories the ith member falls. On that supposition each entry may be
replaced by a vector and the parameter of the exponential family distribution also
becomes vector valued. Once this is done, the results of Chap. 5 carry over with
relatively little change.

A typical score records into which category the member falls and this may be
done by replacing xij by an indicator vector which has a 1 in the position corre-
sponding to the category number with zeroes elsewhere. Thus, for example, the
indicator vector would be xij rð Þ ¼ 0; 0; . . .1. . .0ð Þ0,with 1 in the rth position, if the
individual in cell i; jð Þ of the data matrix fell into the rth category. We further
define pij rð Þ as the probability that the indicator variable takes this value. It is
important to note that binary data is included as a special case when there are only
two possible categories. In that case pij 2ð Þ ¼ 1� pij 1ð Þ because the two proba-
bilities must sum to 1. This makes the designation of the category number
redundant and we then simplify the notation by writing pij 1ð Þ ¼ pij:

In the general case one of the pijðrÞ’s is redundant and so we define pijðcÞ ¼
1� pijð1Þ � pijð2Þ � . . .� pij c� 1ð Þ: The frequencies can be arranged in a c� m
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contingency table. The number in the (r, j)th cell is
P

i xij rð Þ(r); the rth row total isP
j

P
i xijðrÞ and the jth column total is

P
r

P
i xijðrÞ.

Armed with these definitions, we can write down the likelihood function for the
data in the table as follows.

l ¼
Y

i

Y
j
pijð1Þxij 1ð Þ pijð2Þxij 2ð Þ. . .pijðc� 1Þxij c�1ð Þ ð1� pijð1Þ � pijð2Þ

� . . .pij c� 1ð ÞxijðcÞ ð8:1Þ

Recalling that, by definition, xijðcÞ ¼ 1� xij 1ð Þ � xij 2ð Þ � . . .xij c� 1ð Þ we may
write the log likelihood as

L ¼ logl ¼ constant þ
X

i

X
j

X
r

xij rð Þlogpij rð Þ=pij cð Þ: ð8:2Þ

If we now assume an additive model we shall have that

logpijðrÞ=pijðcÞ ¼ lþ aij þ bir: ð8:3Þ

In this case, the likelihood depends on the data only through the expressions

XjðrÞ and XiðrÞ ð8:4Þ

where Xi rð Þ ¼
P

j xij rð Þ and Xj rð Þ ¼
P

i xij rð Þ. The first of these quantities is the
total number of times the ith individual falls into the rth category and the second is
the total number of individuals who fall in the rth category taken across all
variables. If we were to think of the data as summarised in a c� m contingency
table (persons against items) the sums XjðrÞ

� �
would be the item totals which this

analysis shows are jointly sufficient for the item effects. This is the same result as
we found for binary data where, in effect, we were dealing with a 2� m contin-
gency table. The set of totals over items, XiðrÞf g is likewise jointly sufficient for
the person effects.

8.3 Random Effects (Items)

When we moved from the fixed effects to the random effects model in Chap. 4 we
utilised the fact that a simple model which allowed the item effect to depend
linearly on q latent variables was readily available if the distribution if the typical
cell entry had a distribution belonging to the one-parameter exponential family.
This result is easily extended to the case where the variable in question and the
parameter h is vector valued. This is all that we need because the multinomial
probability distribution is a member of this extended family. To see this we only
need to observe that the multinomial probability
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pijð1Þxij 1ð Þpijð2Þxij 2ð Þ. . .pijðc� 1Þxij c�1ð Þ ð1� pijð1Þ � pijð2Þ � . . .� pij c� 1ð ÞxijðcÞ

ð8:5Þ

is proportional to

exp
X

r
xij rð Þog pijðrÞ=pijðcÞ

� �h i

which, in turn, may be written

exp x0ij hij

n o
ð8:6Þ

where xij is the c-vector with elements xij rð Þ and hij has elements given by

hijðrÞ ¼ log pij rð Þ=pij cð Þ
� �

ð8:7Þ

The model now has exactly the same form as we found in the unidimensional case
except that the scalars are now replaced by vectors. Everything goes through as
before if we make the appropriate transformations from scalar quantities to vectors
and matrices. Thus we write

hðrÞ ¼ AðrÞy ð8:8Þ

where AðrÞ is a matrix of coefficients aijðrÞ
� �

. By going back to Eq. (8.7) we see
that, together with Eq. (8.8), this equation specifies a linear model for the prob-
abilities pij rð Þ

� �
.

The posterior distribution of y is obtained by multiplying the prior distribution
by the likelihood whose logarithm is given by Eq. (8.2). On substituting for hðrÞ it
is evident that this posterior distribution depends on the data only through the
quantities x0ijAðrÞ where we recall that xij is a vector containing c elements

xij rð Þ
� �

. These quantities are therefore sufficient for y in the sense of Chap. 4.
In arriving at this solution we encounter another example of non-identifiability,

or rotational invariance. If we insert into Eq. (8.8) the identity matrix resulting
from multiplying an orthogonal matrix M by its transpose M0 we see that hðrÞis
unchanged if AðrÞ is replaced by AðrÞM and y by M0y. There is therefore no
unique value of the random effect y which explains the row differences.

8.4 Ordered Categorical Data

In our treatment of categorical data no assumption was made about the ordering of
the categories, but often, in practice, there is additional information about how the
categories stand in relation to one another. If such information is available it ought
to be used to give the methods greater efficiency. The question does not arise with
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binary data because two categories can always be thought of as ordered, but the
more categories there are, the more there is to be lost by ignoring the ordering.

One inefficient method is to reduce all categorical variables to binary form by
amalgamating categories. In practice this strategy may lose less efficiency than
might appear at first sight. This is because it is quite common in practice to have
several sparsely populated categories so little is lost by merging them with larger
categories. Nevertheless, this does not apply universally and methods are needed
to deal with the general case.

The commonest strategy for dealing with ordered categories introduces us to
another type of unobserved variable. This arises by imagining that the categories
have been formed by grouping values of a continuous variable. In some cases this
may be exactly what has happened but, usually, the imagined underlying variable
is hypothetical. In a real sense it is a latent variable but it would be confusing to
use the same term as has become established in latent variable modelling. We shall
therefore speak of underlying variables in this context.

The information about any underlying variable which the categorization yields
is, of course, very crude. We may have several hundred individuals allocated to
only three or four categories, so what we have is a very crude ranking with
extensive ties. The prospect of progress is offered by the fact that it may be
possible to estimate the correlation coefficients between the underlying variables
from the grouped data. The simplest case arises when all the classifications consist
of only two categories, that is simple dichotomies. We do not need any new theory
here because this case is already covered by the model of the early part of this
chapter relating to binary data. The point of mentioning it is that the method we are
about to propose coincides with the earlier method in this case. This is a
remarkable fact which suggests that the two approaches are not so far removed
from each other as the different formulations of the models might suggest.

If two continuous variables have a normal bivariate distribution, they may be
reduced to two binary variables by recording only whether each variable is above
or below some threshold value. The result is a 2� 2 contingency table. Given only
this table, it is possible to estimate what the correlation coefficient of the under-
lying bivariate normal distribution must have been. This estimate is known as the
tetrachoric correlation (because there are four categories). There are tables and
computer programs which enable this to be calculated. If there are more than two
categories for one or both variables the corresponding coefficient is known as the
polychoric correlation. If we go on to treat these coefficients as if they were
product moment correlations, we can proceed exactly as we did with the contin-
uous normal model. This treatment supposes that all of the variables are cate-
gorical. Sometimes we have a mixture of continuous and categorical variables.
Similarly, the product moment correlation between a continuous variable and a
categorical variable can be estimated by a coefficient known as a polyserial
coefficient.

All of the foregoing methods appear to rest on the assumption that underlying
the categories there is a multivariate normal distribution. In fact what we are really
doing is to carry out the analysis as if there really were underlying variables
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measured in such a way as to render their joint distribution multivariate normal.
This is not quite the same thing. If the underlying variables were treated as if they
had some other distribution, the correlation coefficients would no longer be the
appropriate summarisations of the distributions. The full implications of all this
have not been worked through, but the introduction of underlying variables in this
fashion enables information about ordering to be taken into account and practical
experience suggests that they are useful. In the present state of knowledge these
methods are best regarded us useful exploratory techniques.

In order to fit the model one can maximise the likelihood but there are various
approximations, given in Bartholomew et al. (2011) which are of more interest,
perhaps, for the light they throw on the relationships between this model and
principal components analysis and correspondence analysis.

8.5 An Alternative Underlying Variable Model
for Ordered Categorical Data

The more complicated the structure of our data, the greater the variety of models
which become possible. The fact that the foregoing models have proved useful
does not exclude the possibility that there might be other models which gives an
equally good account of the data. Here we shall describe one such model which, in
one special case, coincides with one of the models we have just considered. This
serves to identify yet another example of lack of model identifiability.

This model is likely to be relevant when the categories are, in a certain sense, in
competition with one another. Thus if a candidate in an examination faces a
multiple choice question the possible answers may be thought of as in competition
for selection as the correct one. Similarly, a shopper in a supermarket may be faced
with a variety of brands of a commodity which are in competition for selection or
purchase. Categorical data arises in such applications by giving the numbers of
answers, or purchases, falling into each category. The pattern of responses may be
explained by a latent variable model of the following kind. More information
about this model may be found in Bartholomew et al. (2011, Sect. 8.9).

Suppose each item has an ‘attractiveness’ which relates to those qualities which
contribute to its overall attractiveness according to the following model.

zi ¼ li þ Kiyþ ei: ð8:9Þ

Individuals are indexed by i and zi is the vector each of whose elements is the
attractiveness of the items for the ith person. That person then selects the category
which is the most attractive. One can make the usual assumptions about the
random variables appearing in Eq. (8.9) and fit the model to categorical data
arising from an examination or purchase records. There are circumstances under
which this model is indistinguishable from the first model described previously.
These occur when the error terms in Eq. (8.9) are assumed to have an ‘extreme
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value’ distribution. This rather unusual characteristic is less surprising when we
notice that in selecting the most attractive choice the subject is choosing an
extreme value.
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Chapter 9
Models for Time Series

Abstract In a discrete time series the unobserved variables are latent only in the
sense that they lie in the future and are therefore unknown. Any model may thus
reasonably begin with the joint distribution of all variables—past and future—from
which the relevant conditional distribution may be determined. Two types of model
will be described. The first specifies the mean values of the joint distribution and the
second, its covariance structure. The former will be described as ‘regression-type’
models and the latter as ‘autoregressive’ models. A regression-type model assumes
that what we observe is the sum of a systematic part and an ‘error’. The systematic
part specifies the mean value at successive points in time and the errors are assumed
independent. Over sufficiently short periods of time one may be willing to assume
that the systematic part is a simple function of time, possibly linear or cyclical, but
whatever form is chosen, it is part of the input. An autoregressive model involves an
assumption about the covariance structure of the data and, in particular, about the
serial correlations of members of the time series. We illustrate this by supposing that
any member of the series is correlated with one or two immediate predecessors. The
results correspond, as they should, with standard results.

Keywords Autoregressive models � Covariance structure � Multivariate normal
distribution � Prediction � Regression models � Serial correlation

9.1 The Scope of Time Series Analysis

In Chap. 1 we showed why time series modelling, and forecasting problems
generally, could be viewed as problems involving unobserved variables. Here we
expand on that view not so much in order to provide new models but to provide a
new perspective on old models. One traditional way of viewing time series is to
suppose them to be made up of a systematic part and a random error. This is often
appropriate because there may be substantive reasons for supposing that this is the
way that the series has actually arisen. For example, any series which depends on
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seasonal variation may be expected to vary in a cyclical way as the seasons
change. Thus consumption of gas by households will be strongly affected by the
ambient temperature and this varies in a systematic way throughout the year. As an
approximation, therefore, we might suppose that there is an underlying cyclical
pattern on which unpredictable fluctuations are superimposed. Over relatively
short periods one might expect many series to show a monotonic trend which, if
the interval is short enough, might be approximately linear. All of these consid-
erations would encourage us to specify a regression type of model in which the
observed values are supposed to be the sum of a specified function and a random
error. Within such a framework, the familiar techniques of regression analysis can
be brought to bear. There are two other techniques of time series analysis in
common use. One, known as spectral analysis, seeks to represent a series as a sum
of harmonic components thus enabling us to identify any pronounced periodicity
in the data. The other, known as autoregressive modelling, applies regression ideas
to the relationships between successive members of the series. For example we
might estimate the regression of any observation on its immediate predecessors
and use that regression equation for the prediction of later members of the series.

Whatever the technique, one of the prime objectives of time series analysis is to
predict future observations, particularly the next member of the series. The general
approach used here, as anticipated in Chap. 1, is to regard future observations as
unobserved variables and so to predict their values using the appropriate condi-
tional distribution. Thus if we have observed the series x1; x2; . . .; xn and wish to
predict the next member of the series, denoted by y, the relevant distribution will
be f ðyjx1;x2; . . .; xnÞ where n is the length of the observed series, or that part of it
which we wish to use for prediction. An awkward, but inevitable, feature of our
general approach seems to be absent when we come to time series. This is the
unknown, and in general, arbitrary character of the prior distribution of y: This
difficulty does not arise with time series because the assumption of a joint dis-
tribution of all the variables embraces both those that are observed and those that
are not. Thus, for example, if we assume that the joint distribution of
x1; x2; . . .; xn; y has a nþ 1ð Þ-variate normal distribution there is nothing left to say,
in general, about y beyond what is implied by that statement. If, of course, y is,
itself vector-valued the only change is in the dimension of the distribution. This
fact serves to emphasise that more ‘work’ is being done by the initial distributional
assumption, not that we are avoiding the arbitrariness of the distribution of y.

9.2 A General Treatment

Our starting point is the joint distribution of the whole series, including the value
or values to be predicted. In practice, there may be no particular reason for
selecting any a particular distribution but the main value in starting from here is
that we can see how the form of the prediction function is related to the joint
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distribution. For example, when the overall joint distribution is multivariate nor-
mal the regression of the last member of the series on its predecessors w is linear
showing that multivariate normality overall is linked to the linearity of the pre-
dictor. In this chapter we shall concentrate on the case when the overall distri-
bution is multivariate normal because this covers most known models. However
the general framework we are adopting may, in principle, be used for any joint
distribution whatsoever.

It is instructive to begin by looking at the form of this regression function when
we wish to predict m future observations. Suppose that the time series is
x1; x2; . . .; xn; y1; y2; . . .; ymð Þ and that we are interested in predicting the ys when

the xs are given. For this we need the distribution of y given x, if we suppose that
the variables are standardised we then have a well-known result in distribution
theory (see, for example, Kendall and Stuart 1999, Vol 2A, p. 512) that may be
expressed as

yjx _ N
X

xy

X�1

xx
x;

X
yy
�
X

yx

X�1

xx

X
yx

� �
ð9:1Þ

where
P

xx is the covariance matrix of the xs and
P

xyand
P

yx are the covariance
matrices of x and y and y and x respectively. It is clear immediately that the best
predictor of y, whether we use the mean or the mode, is a linear function of the
observed variables. It is also evident that the uncertainty of prediction, expressed
by the covariance matrix, does not depend on x.

If the variables are not standardised, we can express Eq. (9.1) in a slightly more
general form which makes it easier to bring out the link with traditional time series
analysis. If the vector x has mean lx and y has mean ly the result corresponding to
Eq. (9.1) is

yjx _ N
X

yx

X�1

xx
x� lxð Þ;

X
yy
�
X

yx

X�1

xx

X
xy

� �
ð9:2Þ

If the successive members of the time series are independent, it is obvious that a
very simple result follows. In that case the elements of

P
xy are zero and we then

have

yjx _ Nðly; r
2Þ ð9:3Þ

where r2 is the variance of y and is the same as
P

yy; which in this case is a scalar.
The mean, ly; is the expected value of y which is the first unobserved variable.

9.3 Regression-Type Models

To see how the general approach relates to classical time series modelling we
simply compare Eq. (9.3) with what we may call a regression-type model. This is
commonly written
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xt ¼ w tð Þ þ et: ð9:4Þ

We have used the subscript t instead of i, as above, because observations are
usually made at equal intervals of time. The systematic part, w tð Þ; tells us how x
changes with time and this is the expected value of x at time t. The random part, or
error, is represented by the last term. It is assumed that successive errors are
independent and (usually) that they have the same variance. It is this feature which
ensures that, apart from its mean, the distribution of xt does not depend on t.

9.4 Autoregressive Models

The assumption that the successive observations are independent is very strong
and is only appropriate when the function w tð Þ is the main ‘driver’ of the series—
the error terms may then be errors of measurement or observation, which obscure
the underlying pattern. We proceed to investigate some of the consequences of
allowing dependence between the observations. In anticipation of what follows,
we shall refer to all models in which the observations are not independent as
autoregressive models. This is because the predicted values are linear functions of
the observed values. A fuller justification must await the investigation of special
cases. The precise form of the model depends on the nature of the assumed
dependence between successive observations. Before investigating this in detail
we make two observations. According to our approach, any model is specified by
the covariance matrix of a set of consecutive observations. In general, we would
expect the dependence to be stronger between observations which are close
together than between those that are farther apart. In particular, it often seems
reasonable to require that the strength of dependence between two observations
should depend only on their distance apart. If the strength of the dependence is
measured by the correlation coefficient, the resulting coefficients are designated
serial correlations. The correlation between an observation and its immediate
predecessor is said to be of first order; that between an observation and one k
observations earlier is the kth order serial correlation. The entries in the covariance
matrix

P
xx are therefore all serial correlations. There is an obvious problem if the

serial correlations have to be estimated from an existing time series. The sample
correlation may be estimated by pairing each observation with the relevant pre-
decessor. But the first member of the series has no predecessor and the second has
no observation two positions earlier—and so on. Various devices are available for
handling this situation but they are of no concern to us here as we are dealing only
with the modelling aspect.

We begin with the simplest possible case where the prediction is to be based
only on the immediately preceding observed variable. In this case the vector x has
dimension one, hence

P
xx is a scalar which we denote by v: The matrix

P
xy is

also one-dimensional with single element c, which is the covariance of the next
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(unobserved) variable and the previous (observed) variable. The predicted value of
the next unobserved variable is given, from Eq. (9.1), by

c

v

� �
x ¼ qx ð9:5Þ

where q is the first order serial correlation of the series. This is a first order
autoregressive model which in the conventional time series treatment would be
written

y ¼ qxþ e ð9:6Þ

Here x is the last available observation, y is the value to be predicted and e, is
the error term which is assumed to be standard normal. The conditional variance of
the prediction follows by making the appropriate substitutions in Eq. (9.1) and it
turns out to be

v� qc ¼ v 1� q2
� �

: ð9:7Þ

The variance of the predicted value, given x; is thus equal to the original
variance reduced by a factor, which is obviously less than one, and which
decreases as the first order serial correlation increases. This accords with what
intuition would have led us to expect.

The second order autoregressive model will be investigated similarly but the
conventional treatment starts by specifying the coefficients in the conditional
distribution of Eq. (9.1) and then deduces the properties of the model. Our
approach starts with the correlation structure of the data leading to the matricesP

yx and
P�1

xx and then proceeds to determine the coefficients. The comparison of
the two slightly different approaches is instructive.

In the present case there are three variables involved; the variable to be pre-
dicted,y; and the two predictor variables x1and x2. All have the same variance
which we denote by v as before. Let us further suppose that adjacent observed
variables have covariance c1 and those a distance two apart (y and x2 in this case)
have covariance c2. The two matrices required for the conditional distribution are
given as follows:

X�1

xx
¼ 1

v2 � c2
1

v �c1

�c1 v

� �
ð9:8Þ

and

X
xy

X�1

xx
¼ 1

v2 � c2
1

vc1 � c1c2; vc2 � c2
1

� 	
: ð9:9Þ

Expressed in terms of correlation coefficients the right hand side of Eq. (9.9)
may be written
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1
1� q2

1

q1 � q1q2; q2 � q2
1

� 	
ð9:10Þ

where q1 and q2 are the first and second order serial correlation coefficients,
respectively. The expression for the conditional variance of prediction is, from Eq.
(9.1)

v� v

1� q2
1

q2
1 � q2

1q2 þ q2
2 � q2

1q2

� 	

¼ v
1� 2q2

1 þ 2q2
1q2 � q2

2

1� q2
1

� �
:

ð9:11Þ

Equations (9.8) and (9.9) give the coefficients which must be applied to x1and
x2 respectively in order to predict y and Eq. (9.11) gives the variance of the
prediction.

One interesting special case occurs when q2 ¼ q2
1 because then the predictive

variance then reduces to Eq. (9.7) and nothing has been gained. This is because the
first order dependence arising from a first order serial correlation of q1implies a
second order serial correlation of q2

1 so nothing is added to the predictive value.

9.5 Concluding Remarks

The approach outlined here unifies the two rather ad hoc methods of time series
modelling by emphasising that traditional regression-type methods are essentially
concerned with changes in the mean levels over time whereas autoregressive
methods are more concerned with serial correlation in the series. It also shows that
the two aspects can easily be combined in a more comprehensive model. Two
other remarks are in order before we leave this topic. As already noted we do not
have to assume multivariate normality though, without it, the linearity is lost. As in
routine time series analysis, transformations of the data may sometimes be made to
induce normality and thus validate the procedures. Secondly, the choice of ele-
ments in a covariance matrix is not entirely arbitrary as our treatment might have
suggested. They are constrained by the necessity that the matrix shall be positive
definite, for example. Nevertheless, such complications need not concern us here
because our concern is solely with the modelling framework.
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Chapter 10
Missing Data

Abstract It is very common for data to be missing and this introduces a risk of
bias if inferences are drawn from incomplete samples. However, we are not
usually interested in the missing data themselves but in the population charac-
teristics to whose estimation those values were intended to contribute. Learning
something about the data that are missing is thus only the first step on the way to
inference. One approach is to use a direct method, such as maximum likelihood
but the price to be paid is usually much greater complexity in the estimation
process. Methods such as the E-M algorithm sometimes make this easier by
requiring us to solve a much simpler problem many times as the estimates con-
verge to the desired values. Sometimes it is actually advantageous to introduce
hypothetical variables. Which are then treated as unobserved and an example is
provided concerning a mixture of exponential distributions. A different kind of
approach is to impute values to replace those that are missing. This yields a
complete sample which can then be analysed in the usual way. Imputed values can
be derived from the conditional distribution of the missing values given those that
are observed. This possibility depends upon being able to say something about
why some sample members are missing and this may be done by specifying a
probabilistic loss mechanism.

Keywords E-M algorithm � Imputation � Maximum likelihood � Missing at
random � Missing completely at random � Mixed exponential distribution �
Mixtures

10.1 The Problem

Missing data are very common in statistics, especially in social applications, and
this topic provides, perhaps, the most obvious example of unobserved variables.
However, as we first encounter it, the problem differs in one important respect
from those we have discussed earlier because we are no longer directly interested
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in the values of the variables that are missing but in the analysis to which they
were intended to contribute. Nevertheless, we shall note shortly that, since latent
variables may also be regarded as ‘missing’, essentially the same methods can be
used as for some of the problems we have met in earlier chapters. For this reason
we shall pay particular attention to applications of that kind.

To take a very simple example, suppose that we have a random sample of males
and another of females from a human population and ask each member whether or
not they smoke. Not all members will respond and suppose we know that men are
more likely to refuse than women. If we estimate the proportion of smokers in the
population by the proportion in the combined sample the result is likely to be
biased because women smokers will be over-represented. Most actual examples
are much more complicated than this, involving many attributes which are all
potential sources of bias but the problem is essentially the same. There are dif-
ferent ways of handling bias; in this example we would be likely to know how
many men and women there were in the population and so we could correct the
bias by an appropriate weighting. In general, this may not be possible. We return to
this example later.

10.2 The E-M Algorithm

This is an iterative method of obtaining maximum likelihood estimates which is
sometimes much easier to handle than the direct method of maximising the like-
lihood of the observed variables. The algorithm has been used in many guises but
it was given its name and firmly established by Dempster et al. (1977). It depends
on the fact that although we may not be able to easily maximise the loglikelihood
itself, because some of the observations are missing, we can maximise its
expectation iteratively. First, we state the algorithm in its general form and then
illustrate its application when the missing values are, in fact, unobserved variables
of the kind we met in earlier chapters.

Sometimes it is easier to estimate the parameters if we artificially introduce
additional variables which are then treated as if they were unobserved. Paradox-
ically, this happens because it would be easier to solve the problem thus created
than the original problem. In other words, the solution of the problem with
‘missing’ values may have a much simpler form in spite of the fact that some
variables are not observed.

The loglikelihood for the complete sample may be written

ln f ðx; yjhÞ ð10:1Þ

where y is a vector of unobserved random variables and h is a vector of parameters
whose values we wish to estimate. The likelihood itself is a random variable,
because of the presence of y: When x is given, the expectation, with respect to the
unobserved variables, y, is
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Z
f ðyjx; hÞlnf ðx; yjhÞdy: ð10:2Þ

Of course, we do not know the value of the parameters in (10.2) so we cannot
calculate the expectation in this form. We therefore proceed iteratively by first
assigning arbitrary values to the unknown parameters in f ðyjx; hÞ; and then
maximising the expected loglikelihood with respect to h. The expectation we
actually calculate at the first stage is therefore,

Z
f ðyjx; hgÞlnf ðx; yjhÞdy ð10:3Þ

where hg contains the starting, or guessed, values of the unknown parameters. In
the next round of the iteration this expression is then maximised with respect to h

and these maximising values then replace hg in Eq. (10.3). Before continuing with
the cycle we must update f ðyjx; hgÞ by replacing hg by the value of h which
maximises Eq. (10.3).We denote this by h1and at the j th iteration by hj. This cycle
of expectation and maximisation continues until convergence is attained.

Finally, the updating of f ðyjx; hÞ is achieved using Bayes’ theorem as follows.

f ðyjx; hjþ1Þ ¼ f ðx; y; hjÞ=f ðx; hjÞ ¼ f ðx; y; hjÞ=
Z

f ðyÞf ðx; y; hjÞdy: ð10:4Þ

In practice it is clear that the benefit of the method depends on how easy it is to
carry out the steps and this, in turn, depends on what we know about the reason for
the data being missing. An important special case is where the complete sample
has a distribution which belongs to the exponential family. This leads to a situation
where the function to be maximised at each step has essentially the same form.

10.3 An Example with Hypothetical Variables

The E-M algorithm is particularly useful for estimating the parameters of mixtures
of distributions. In this case we introduce a hypothetical latent variable and treat it
just like any other variable which we might have observed but did not. This
establishes a link with the treatment of mixture distributions treated in Chap. 3 and
the latent variable models of the following chapters. We now show, in detail, how
this works for the case of the two-class mixed exponential distribution and then
indicate the generalisation to any number of classes.

We imagine that a random sample from a two term exponential distribution is
generated as follows. Suppose there are available two simple exponentials with
parameters k1 and k2, respectively and that we draw from the distribution having
parameter k1 with probability p and from the other distribution with probability
1 - p. Which distribution we have sampled from is unknown but may be iden-
tified by an unobserved random variable y which takes the value 1 if the first
distribution is selected and 0 otherwise. In the long run the probability distribution
of the sampled values will therefore be
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f xð Þ ¼ pk1exp� k1xþ ð1� pÞk2exp� k2x: ð10:5Þ

It does not matter whether the real distribution with which we are working was
actually generated in this way.

Because of the way we have supposed the distribution to have been generated,
the likelihood can be expressed in a particularly simple form as follows. At each
sampling we shall be drawing either from the simple exponential with parameter
k1 or from one with parameter k2. In the former case the contribution from the
observation xito the likelihood will be a factor k1exp� k1xi and in the second it
will be k2exp� k2xi. Let ai ¼ 1 if the first distribution is sampled and ai ¼ 0
otherwise The likelihood, conditional on observing this particular set of ais, will
then be

l ¼
Y

i
k1ek1xi
� �ai k2ek2xi

� �1�ai ð10:6Þ

The loglikelihood is therefore.

L ¼ logl ¼
X

i
aiðlogk1 � k1xiÞ þ ð1� aiÞðlogk2 � k2xiÞf g ð10:7Þ

¼ rlogk1 � k1

X
i
aixi þ ðn� rÞlogk2 � k2

X
i

ð1� aiÞxi: ð10:8Þ

where r ¼
P

ai are contributions of the first kind and therefore, n� r are of the
second. We cannot maximise the loglikelihood as it stands because it involves
random variables. We can, however, maximise its expectation as the E-M algo-
rithm requires. If we take the expectation with respect to the as we obtain

E Lð Þ ¼ nplogk1 � k1

X
i
pi0xi þ ðn� npÞlogk2 � k2

X
i
ð1� pi0Þxi ð10:9Þ

Where pi0 is the starting (guessed) value of the probability that the ith sample
member is drawn from the population with parameter k1 and p ¼

P
i

pi0=n.

The expression in Eq. (10.9) may be maximised with respect to k1 and k2 giving
a maximum which occurs at

k11 ¼
P

i pi0
.P

i pi0xi
and k21 ¼

P
ið1� pi0Þ

.P
ið1� pi0Þxi

ð10:10Þ

where the second subscript on k denotes he iteration number. Next we must now
update pi0 using Bayes theorem. This gives

pi1 ¼
pi0k10exp� k10xi

pi0k10exp� k10xi þ ð1� pi0Þk20exp� k20xi
: ð10:11Þ

Using these new weights we return to Eq. (10.10) and compute k12 and k22:

These, in turn, lead to new values of pi2, and so on until convergence is reached.
The final iterations for k1 and k2 are the maximum likelihood estimates and the
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estimate of p is the arithmetic mean of the inclusion probabilities pikf g where k is
the number of iterations to convergence.

Although the method has been illustrated on a very simple example with a
hypothetical missing observation, it is straightforward to extend it in two direc-
tions. The simplicity of the method depended on the fact that it was easy to obtain
maximum likelihood estimators for the component distributions so two-component
mixtures of other similar distributions can be handled in the same way. The
extension to more than two components can also be handled by using vector-
valued indicator variables instead of the binary indicators aif g: Programs for
fitting mixtures of exponentials using the E-M algorithm are available in the R-
library. One such is named ‘‘Renext’’.

10.4 Imputation

A very longstanding way of dealing with missing data is to fill in the gaps by some
means or other and then carry out the standard analysis on the completed data set.
This procedure is known as imputation. If we view the problem from the general
perspective of this Brief it is essentially one of how best to use the information
about the missing values obtained from the appropriate conditional distribution.
This information is supplied by the probability function f ðyjxÞ where y now rep-
resents the missing values and x the remainder that are observed. The problem of
imputation is thus one of selecting values which are representative of this distri-
bution, f ðyjxÞ. In its simplest form, each missing data point is replaced by a single
value. Because there is, inevitably, uncertainty about what the imputed values
should be, one can do better by substituting a range of plausible values and
comparing the results in each case. This is known as multiple imputation. This was
hardly feasible in the pre-computer era but now that that obstacle has been
removed, imputation and multiple imputation is much to be preferred, especially
as it is usually sufficient to repeat the analysis a small number of times, five say.

The E-M method of fitting a mixture distribution, as described above, involved
imputation, in a sense, because we did not know which component the sampled
member came from and so we began by guessing (i.e. imputing) a value. But the
situation we have in mind here is much more general and, often, less well-defined.
There is an enormous literature on this topic and, here, we shall pick out only a few
topics to locate the subject within the framework of this Brief. Much of the
pioneering work in this field is set out in Little and Rubin (2002, first edition 1987)
but a recent and practically orientated treatment is provided by van Buuren (2012).
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10.5 Probability Specifications of Missing Data

For our purposes the problem can best be set in the context of the data matrix,
sometimes referred to as a rectangular array which we have already met in Chaps.
2 and 4. In the present instance missing values may appear anywhere in the body
of the table so that, for example, the first row might be

x11; x12; . . .; y1j; . . .; x1n

where y1j indicates a value of a single missing observation. Inpractice, of course,
missing values may occur anywhere and in any number. They may occur hap-
hazardly or in some pattern. In the latter case, the pattern may provide a clue to the
mechanism underlying the loss of data and so suggest a method for dealing with it.

The conditional distribution which we have supposed might be the basis of
imputation depends, of course, on the mechanism behind the loss of data. From a
practical point of view the detailed information necessary to determine this may
not be readily obtainable or, even, necessary. Nevertheless, it is useful to clarify
some of the issues by introducing the idea of a probability mechanism governing
the loss of data. This will enable us to classify the problems which would have to
be faced in a more comprehensive treatment.

The simplest, if least realistic approach, is to assume that the chance of being
missing is the same for all elements of the data matrix. In that case, we can, in
effect, ignore the missing values and all that is lost is the information which those
missing values would have contributed. In the smoking example used at the
beginning of the chapter this would amount to saying that men and women were
equally likely to refuse to answer. Such situations are designated as MCAR which
is an acronym for Missing Completely at Random. We may express this
assumption formally by saying that

Pr Mjx; yf g ¼ PrfMg ð10:12Þ

where M specifies the mechanism governing the loss of observations.
In the smoking example we have supposed that men are more likely to refuse

than women. If we go further and assume that there are no other biasing factors we
are, in effect, assuming that ‘missingness’ is completely at random for men and
women, separately. This would be an example of what is known as Missing at
Random(MAR). In terms of the standard data matrix layout this supposes that data
are missing at random within columns of the table. This requirement may be
specified probabilistically by requiring that

P Mjx; yf g ¼ PfMjxg ð10:13Þ

which means that the missing mechanism depends on the observed variables but
not on those that are missing.
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The final category is Missing Not at Random (MNAR) which is a residual
category covering all other possibilities. This is difficult to deal with in practice
unless one has an unusually complete knowledge of the missing mechanism.

Another term used in the theory of missing data is that of ignorability. The
conditional distribution of y given x will, in general, depend on any parameters of
the distribution of M yet these are unlikely to be of any practical interest. It would
be convenient if this distribution could be ignored for the purposes of inference
about the parameters of the distribution of x. If this is the case the mechanism of
loss is said to be ignorable. In practice it is acceptable to assume that the concept
of ignorability is equivalent to that of MAR.

References

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood estimation from
incomplete data via the EM algorithm(with discussion). Journal of Royal Statistical Society B,
39, 1–38.

Little, R. J. A., & Rubin, D. B. (2002). Statistical analysis with missing data. New York: Wiley.
(1st edn. 1987).

van Buuren, S. (2012). Flexible imputation of missing data. London: Chapman and Hall/CRC
Press.

10.5 Probability Specifications of Missing Data 67



Chapter 11
Social Measurement

Abstract Latent variables are often necessary to provide an adequate model of a
social or physical situation. Inferences about such variables can be made using the
methods sketched earlier in this Brief, especially in Chaps. 4–6. However, there
are situations which are not well enough defined to permit the construction of a
comprehensive model. Two such examples are considered in this Chapter. The first
is labour wastage and the second is heritability. Both are practically very important
and have been the source of much misunderstanding and controversy arising
through lack of an adequate model. However, it is possible to construct partial
models which elucidate the complexity of the situation making clear where caution
must be exercised and delineating the circumstances under which the simple
measures in common use may be used legitimately. Our treatment of the former
requires the introduction of the hazard function of a probability function for a
positive random variable and the renewal rate, both of which are defined.

Keywords Environnmental effects � Heritability � Hazard function � Genetical
effects � Latent variable models � Renewal function � Turnover � Wastage

11.1 The Problem

It may not be immediately obvious that social measurement falls within the pur-
view of this Brief. However, it is common for public discussion to involve what
appear to be quantitative arguments concerning measures which either cannot be
observed directly or at all. For example, a recent lecture was entitled ‘‘Injustice:
the cause of rising inequality’’. This implies that there exists a quantity appro-
priately described as injustice and that it is monotonically related to another
quantity called inequality. Yet the measurement of injustice and inequality are
both highly problematical. Both centre on variables which are essentially unob-
servable, or, latent, as they might be, alternatively, described. Indeed if we adopt
the viewpoint of Bartholomew (1996), the only sound approach to social
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measurement is to identify the quantities to be measured with latent variables or
parameters in a probability model. This is not always the case with social measures
and certainly not the two to be discussed in this chapter.

We shall not attempt to cover the whole field of social measurement but focus,
instead, on two particular instances where intuition has proved a very poor guide.
They are both cases where important practical issues turn on the measure used.
The first is the propensity of individuals to leave the organisation for which they
work, This is held to be an important indicator of industrial health and there have
been many attempts to construct appropriate measures. This is most commonly
done by constructing a very obvious but potentially misleading index of what is
variously called wastage or turnover. Thus, for example, the proportion of those
who leave an organisation in a year, say, is used as a measure of attachment and
numerical differences between such proportions have been interpreted as indica-
tive of substantive differences. The importance of our second example stems from
the fact that a great deal hangs on the extent to which intelligence is heritable. This
is at the heart of the ‘nature/nurture’ debate which has rumbled on for decades. To
give these arguments substance it is essential to be able to measure intelligence
adequately and then to determine the relationship, if any, which exists between the
intelligence of parent and offspring.

11.2 Propensity to Leave an Organisation

Labour wastage is only one example of the phenomenon we wish to discuss. There
are also other phenomena, only loosely related to employment, such as the pro-
pensity for patients to be discharged from hospital, or for residents to move house,
or to cease membership of a society or movement. But labour wastage has been
studied in greater depth and it is on this that we shall concentrate here. All such
phenomena, however, are extremely complicated and many factors exert an
influence. At times of economic growth, for example, interest tends to focus on
leaving because firms are anxious to retain employees. In times of recession, on the
other hand, the interest is on propensity to leave the pool of the unemployed and to
return to employment. In order to concentrate on essentials we shall divide all
these influences into two classes; the extrinsic and the intrinsic. The extrinsic are
all those factors which are external to the system and which could, in principle, at
least, be controlled and, if necessary, held constant. The intrinsic influence consists
of only one factor; namely the length of time an individual has been in the system.

If propensity to leave did not depend on length of stay, the intrinsic factor
would be irrelevant and the problem we face would vanish. In reality, propensity to
leave depends very strongly on length of stay and it is this empirical fact which
creates our problem. Propensity to leave for any individual is conveniently mea-
sured by their hazard function.
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11.3 The Hazard Function

Figure 11.1 gives three examples of hazard functions.
The hazard function, k(t), is formally defined as follows:

Pr loss occurs in t; t þ dtð Þf g ¼ k tð Þ dt þ oðdtÞ ð11:1Þ

The distribution of the length of time that an individual stays with an organi-
sation is often lognormal in form. The solid curve in Fig. 11.1 is the hazard
function for a lognormal distribution with parameter values typical of those found
in this field. Initially it rises steeply to a peak near the origin (not shown because it
occurs very close indeed to the origin) and then decreases monotonically to zero.
The dotted line is for a continuous mixed exponential as discussed in Chap. 3 with
the typical parameter value of q = 2 and it is hardly distinguishable from the
lognormal hazard. The horizontal line is the hazard for an exponential distribution.
All three distributions have been chosen to have a mean of 1.

Compared with the exponential, the other curves show a much higher pro-
pensity to leave for those with short service. For longer lengths of service the
position is reversed. It is immediately clear that the number of leavers in any time
interval will depend strongly on the current lengths of service of those in the
system. Just how strong this dependence is we must now investigate. When
interpreting Fig. 11.1 it should not be forgotten that the average length of stay,
with all the distributions illustrated is 1 so the very low propensity to leave in the
right hand part of the diagram relates to lengths of stay much greater than the
average.

Fig. 11.1 Examples of hazard functions
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11.4 The Renewal Rate

We now show why the crude rates may be so misleading. Consider a cohort of
individuals who all join at the same time and let us trace their leaving history as
time passes. For this we require what is called the renewal rate or density. The rate
is denoted by rðTÞ and is defined by the fact that NrðTÞdT is the expected number,
from an initial cohort of size N; who leave in the interval ðT ; T þ dTÞ. Renewal
theory shows this to be given by

Nr Tð Þ ¼ Nf ðTÞ þ N

ZT

0

r T � tð Þf tð Þdt ð11:2Þ

Using this equation we can, in principle at least, find the expected number who
will leave in any given interval.

The first relevant thing which may be deduced from (11.2) is that, as T !1,
r tTð Þ ! l�1 where l is the mean length of stay. This establishes the link between
the renewal process and the asymptotic leaving rate. Furthermore it suggests that
the expectation of length of stay would be a suitable way of summarising the
hazard function. The use of expectation of service was, in fact, first suggested by
Lane and Andrew (1955), although it suffers from a practical disadvantage. It
depends strongly on the largest lengths of service. About which there is often the
greatest uncertainty; an alternative measure such as the median may therefore be
more practical in many circumstances.

Asymptotically, at least, the expected number leaving in the interval T1:T2ð Þ is
NðT2 � T1Þl�1 which is a constant, not depending on where the interval is located,
provided that T1 and T2 are both large. A key question is whether this limiting
value is an adequate approximation in the early stages of the development of the
process. In fact, it turns out to be a very poor approximation, as we shall see, and it
is this fact which provides the motivation for this section.

The second deduction which can be made from (11.2) is that the only distri-
bution for which the renewal rate is equal to the asymptotic value for all times is
the exponential given by

f tð Þ ¼ k exp�kt ð11:3Þ

In this case, r Tð Þ ¼ k ¼ l�1. If length of stay distributions did have this form,
the use of wastage rates would be fully justified. In numerical terms, for example,
this would mean that if the average length of stay were 4 years then the limiting
wastage rate would be 25 % per annum. When this is not the case, organisations
having a significant proportion of ‘young’ members will have wastage rates dif-
ferent from the long term values.

We now give some calculations which illustrate just how serious this dis-
crepancy can be in practice. The problem of determining the renewal rate is that it
is the solution of an integral equation which may not be easy to solve either
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analytically or numerically. Fortunately, there is a simple approximation available
which takes a very simple form for the continuous mixed exponential discussed
above. It was given in Bartholomew (1963) and yields

r Tð Þ ffi f Tð Þ þ F2 Tð Þ
RT
0 GðtÞdt

ð11:4Þ

In the case of the distribution of Eqs. (3.9) and (3.10) in Chap. 3 this becomes,
when q ¼ 2;

r Tð Þ ffi 2þ ðT þ 1Þ2

ðT þ 1Þ3
ð11:5Þ

This approximation is plotted on Fig. 11.2. It shows that the renewal rate is
always larger than its limiting value and that, in the early stages especially, it is
very much larger.

Any organisation will be made up of many cohorts each recruited at different
times and each will contribute something to the total wastage. But all will contribute
at more than the average level. The global wastage thus depends on the particular
mix of cohorts present but the important thing to notice is that it depends, not only on
the intrinsic propensity to leave, but also on historic recruitment levels. It is not,
therefore a pure measure of what it is often intended to measure. Furthermore the
contamination can be quite serious as Fig. 11.2 illustrates.

There are less obvious ways in which this misunderstanding may lead to un-
realised expectations. For example, it is common, especially in times of recession,
to wish to contract the size of an organisation. It is then common to argue that the
desired contraction can be achieved by ‘natural wastage’ without any need for
compulsory redundancies. This claim is typically based, for example, on state-
ments that the organisation already has a natural wastage of, 10 %, say, which
suggests that a reduction at this rate can be achieved simply by cutting off

Fig. 11.2 The renewal rate for the mixed exponential distribution with q ¼ 2 and unit mean
compared with its asymptotic level
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recruitment. This argument is fallacious because much of the contribution to
overall wastage comes from those most recently recruited. Once these people have
left, the loss from those remaining is necessarily less, because there are relatively
fewer people with short service. Hence, the expectations prove to be over-
optimistic.

11.5 Heritability

The second problem of social measurement which we shall discuss is that of
heritability. This is a measure of the extent to which any biological or mental
characteristic is inherited. It had its origins in the 1920s in the work of R A Fisher
in the fields of plant and animal breeding. Latterly it has become prominent in a
social context, particularly with respect to the inheritance of such things as
intelligence, where it has become a key element in the nature versus nurture
debate. It is usually expressed by a number in the range (0,1) or, equivalently, as a
percentage. Such numbers have become part of public debate without a clear
understanding of what they mean or what their limitations are. For example, in the
Milburn report on social mobility published in the UK under the title Unleashing
Aspiration, it was stated ‘‘first of all that, the evidence on whether intelligence is
itself inherited is far from clear: estimates varying from zero to 80 %. Recent work
suggests that genetics and environment interact in quite complex ways’’. For the
source of these figures. the reader was referred to the Nobel Prize web site but the
actual source appears to be in the proceedings of a conference on the Nature/
Nurture debate published in Acta Paediatrica of 1997. Consultation of Wikipedia
produces the range of estimates for heritability between 50 and 80 %. Given the
enormous importance of these figures for social policy, it is clear that one needs to
know what these figures actually mean and why there is so much variation in the
ranges given in the sources.

The subject is an immensely complicated part of quantitative genetics and there is
neither the need nor the possibility of going into the details here. A good introduction
to the problem will be found in Daniels et al. (1997) and a non-technical account, so
far as it relates to intelligence, in Bartholomew (2004, Chap. 12).

Let x denote the value of some quantity in whose heritability we are interested.
This is presumed to be determined partly by the parents and partly by the envi-
ronment. In other words there is both a genetic component and an environmental
component. A very simple model expressing this fact might be written

x ¼ gþ eþ ðgeÞ ð11:6Þ

where g is the genetic contribution, e is the environmental component and ðgeÞ is
included to allow for the possibility that there might be an interaction, meaning
that the environmental contribution depends on the genetic contribution and vice
versa. The very simple points we wish to make do not depend on this term so we
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shall treat it as zero. In practice, however, the existence and magnitude of any
interaction effect is still controversial especially in the application to intelligence.
The variance of x, ignoring the interaction effect, may be written,

r2
x ¼ r2

g þ r2
e ð11:7Þ

The coefficient of heritability is then defined as

I ¼ r2
g=r

2
x ð11:8Þ

The rationale behind this choice is that, if there is no environmental variation,
the coefficient will be 1 and if there is no genetic variation it will be 0. The greater
I, therefore, the greater the importance of the genetical component.

The first thing to be noticed is that this measure relates to a population and not
to any individual. It is thus critically dependent on how the population is defined.
The second thing is that the coefficient can only be calculated if the variances can
be estimated. This is not a trivial matter but outside our present concern.

The main source of misunderstanding about measures like I; arises from the
fact that they that they depend on things other than those they are supposed to be
measuring. We have already seen that a wastage rate may depend on the length of
service structure of the system as well as the propensity to leave which it was
designed to measure. In the case of heritability the measure also depends on the
characteristics of the population. In social applications it is particularly vulnerable
to variations in the environment variance. If pressed to the limit, these variations
can easily lead to paradoxical results. For example, intelligence as measured by
IQ, often depends on educational opportunity and this may result in attempts to
increase and equalise educational opportunity. But even if these attempts are only
partially successful they will reduce environmental variation and so increase
heritability as measured by I without there having been any actual change in the
mechanism of inheritance itself. In general, I will depend on the degree of envi-
ronmental variance and this may well vary from one population to another. It may
also happen that some of the variation in heritability reported above may reflect
that fact and have nothing to do with the inheritance of IQ itself.

All of the foregoing discussion relating to heritability was concerned with IQ.
The intelligence quotient (IQ) is an index, calculated from test scores and not the
underlying latent variable which it is intended to measure. The latter is often
known as g and this is presumed to measure some characteristic of the brain.
Ideally we want to know how the g-value of the offspring and parent is related and
it is that relationship which we ought to be estimating. IQ is not, itself, inherited
but is a property of the brain of the person to which it relates. One needs to set up a
model in which heritability, appropriately defined, appears as an unobservable
quantity measuring this relationship. This does not appear to have been attempted
but the modelling approach highlights the problem and shows how it might be
tackled.
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Chapter 12
Bayesian and Computational Methods

Abstract In Bayesian inference the parameters are treated as random variables.
Since they are necessarily unobserved, a Bayesian approach to inference appears
to bring the whole of statistical inference within the purview of this Brief. In a
formal sense, at least, this is the case. However, it is important to distinguish the
different kinds of uncertainty with which we are dealing. First, there are the actual,
observable, distributions of the manifest variables, secondly the hypothetical, and
often arbitrary, distributions of unobservable variables, to these we must now be
add the subjective distributions of unknown parameters. Ideally we would need to
track and evaluate the part which each played in the final outcome. It is common,
however, for our problems to involve many parameters and their actual distribu-
tions turn out not to be critical. For this reason, the pragmatic course is to use the
Bayesian approach and obtain an empirical approximation to posterior distribu-
tions by Monte Carlo sampling. This may be effected by using the Hastings–
Metropolis algorithm, or its simpler derivative, the Gibbs sampler. An outline
discussion of these methods is given.

Keywords Bayes theorem � Frequentist inference � Gibbs sampling �Metropolis-
Hastings algorithm � Inference � Markov chains � Markov chain Monte Carlo
methods (MCMC) � Monte Carlo sampling

12.1 Approaches to Inference

In the Bayesian approach to inference, parameters are treated as random variables
and this seems to put them on the same footing as other unobserved variables. At
first sight this might make it possible to subsume all of the problems treated in this
Brief under the Bayesian umbrella. Before rushing to this conclusion some cau-
tionary remarks are in order.

The first is to take note of the computing revolution which has taken place in
Statistics. Half a century ago the battle lines were drawn between Bayesians on the

D. J. Bartholomew, Unobserved Variables, SpringerBriefs in Statistics,
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one hand and Frequentists on the other. Much of the debate turned on whether it
was possible or desirable to introduce the subjective element into statistical
inference which was required by the need to provide a prior distribution for the
unknown parameter or parameters. Typically, there were only a small number of
parameters—often only one or two. Simultaneously with the increase of com-
puting power available there arose the need to handle problems with many more
parameters and the need to solve the computational problems associated with
them. This has changed the whole perspective within which inference is
approached.

To begin with, it was practically impossible to elicit from individuals the
multivariate prior distributions required. Secondly, the numerical evaluation of the
multiple integrals, which the formal application of Bayes’ theorem often required,
was formidable. Even had it been possible to obtain the posterior distribution, the
result would have been too complex to be absorbed by the user and radical
summarisation would have been necessary. Such a summarisation would inevi-
tably have concentrated on the region around the maximum of the posterior dis-
tribution in which the maximum of the likelihood and the shape of the likelihood
around it would play a key role. Furthermore, if the prior distribution were fairly
flat in the neighbourhood of its maximum, there would be little practical difference
between the maximum of the posterior and the maximum of the likelihood. All of
this blurs the distinction between Bayesian and likelihood approaches. For prac-
tical purposes, therefore, the difference between Bayesian inference and its com-
petitors, which was never large, is now commonly disregarded, implicitly if not
explicitly.

The relevance of all this to our present theme is that when unobserved, or latent,
variables are added to the parameters of a model, the total number of unobserved
variables moves the problem into the ‘many parameter’ class. But, before moving
on, we make a number of basic points.

12.2 Preliminaries

The term ‘Bayesian’ can be somewhat ambiguous. If it refers to any approach
which uses Bayes’ theorem, then many of the methods used in latent variable
modelling are certainly Bayesian because we typically determine the conditional
distribution of the latent variables given the manifest variables, using Bayes’
theorem. But the term is usually used more narrowly to refer only to the treatment
of parameters as random variables.

As we noted in Chap. 1 we are dealing with three types of quantity: the manifest
variables, the latent variables and the parameters. Even if these are treated indi-
vidually as random variables, the variation which the probability distributions
describe is of very different kinds and it is important to be clear at the outset what
those differences are.
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Manifest variables. These are observable and, in principle, their distributions
are also observable. Their distributions may depend on parameters or latent
variables or both. Hence there is no ambiguity, in principle, about what their
probability distribution is.

Latent variables. Although these are assumed to vary, their distributions cannot
be observed and may not, therefore, be estimable—even in principle. What we
commonly do in these circumstances is to arbitrarily assume the form of their
distribution so, in effect, we are determining the kind of scale on which the latent
variable is measured. Thus, for example, if we use a normal distribution to
describe the distribution of a human ability we are thereby saying that we have
chosen a metric which renders the distribution normal.

Parameters. By definition these are fixed quantities but since we do not know
their values our uncertainty about them may be expressed by probability distri-
butions. We might try to do this in a formal way to represent total ignorance or we
may summarise our state of knowledge which, unless it is agreed with other
persons, is necessarily subjective.

(It is worth noting at this point that in our treatment so far, as in much practical
work, we have actually proceeded as if the parameters are known. But the methods
cannot be implemented unless numerical values are available for all unknown
parameters. In practice unknown parameters are estimated either from data
obtained beforehand or from the current data. The procedures which we have
described will be imprecise but only to the extent that estimated values are being
used instead of true values.)

In a formal sense there is no difficulty in expressing what we have said about
the parametric situation in terms of probability distributions. All we have to do is
to append the unknown parameters, h; to the latent variables and find the expec-
tation with respect to the hs. Thus

hðyjx; hÞ ¼ h yjhð Þhðxjy; hÞ=f ðxjhÞ ð12:1Þ

If we now wish to predict y in the absence of knowledge about h; we shall have
to average the distribution on the left hand side of (13.1) with respect to h. Thus

h yjxð Þ ¼
Z

hðyjx; hÞfðhÞdh ð12:2Þ

On the other hand, if we wish to estimate the parameters, we shall need f ðxjhÞ.
One of the great breakthroughs of modern computational statistics has been the

development of Monte Carlo algorithms for obtaining estimates of multi-param-
eter distributions. These methods are not usually automatic in the sense that there
is an algorithm which leads inexorably to the correct solution. Instead they are
user-guided iterative procedures which require the judgment of a human operator.
It is interesting and, perhaps, significant that the methods were pioneered outside
of Statistics, mainly by physicists and computer scientists. The methods treat latent
variables and parameters alike as random variables, so they may be used to find the
distributions of both simultaneously if necessary.
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12.3 Markov Chain Monte Carlo Methods

The methods we have in mind are known as Markov Chain Monte Carlo methods
(MCMC). They capitalise on the particular strength of modern computers to carry
out a very large number of simple operations exceedingly quickly. The essential
idea is to generate random samples from a probability distribution instead of
determining the distribution itself. For sufficiently large samples, the characteris-
tics of the sample distribution (e.g. mean, standard deviation etc.) will approximate
those of the true distribution. Software packages such as R have built-in routines
for generating samples from many common distributions and these have effec-
tively replaced traditional statistical tables.

Markov chains are relevant because they may generate an equilibrium distri-
bution which can be identified with a desired posterior distribution. To see this we
need some basic properties of Markov chains the essentials of which are as
follows.

For simplicity, we express the results required for discrete time-homogeneous
Markov chains which can be thought of as approximating the continuous version
in which our problem will often be expressed. At a given ‘time’ a Markov chain
can be in one of a number of ‘states’, N, say. Between time t and time t ? 1 the
chain moves from state i to state j with probability pij, say,which does not depend
on t This probability is known as a transition probability. For convenience the set
of transition probabilities can be set out in a ‘transition matrix’ as follows,

p11 p12 . . . p1N

p21 p22 . . . p2N

. . . . . . . . . . . .
pN1 pN2 . . . pNN

We denote this matrix by P. Next we imagine an entity moving between states
of the system in such a manner that it makes the transition from state i to state
j with probability pij: Let pi tð Þ be the probability that the individual is in state i at
time t and let pðtÞ be the row vector with these probabilities as elements. A direct
probability argument then gives that

pðt + 1) = pðt)P ð12:3Þ

Provided that every state can be reached from every other state,and that there is
no cycling round a sub-set of states,the chain will eventually reach a limit with
state probabilities, p, satisfying

p ¼ pP ð12:4Þ

This limiting distribution is also the ‘stationary’ distribution because, once
attained, the process remains there as Eqs. (12.3) and 12.4) show. In general, there
will be many transition matrices which share the same stationary distribution. One
of these is obtained by replacing P by its transpose. If Eq. (12.4) has the same
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solution when P ¼ P0 this means that the development of the chain is the same
backwards as forwards in time and the chain is then said to be reversible.

The link with our problem of estimating a posterior distribution is made as
follows. We think of the desired distribution as (finely) grouped into ‘cells’, each
of which can be identified with a state of the chain. We aim to construct a process
which takes the individual through a sequence of such cells in such a manner that
the proportion of times it is ultimately found in any one state approaches the
desired posterior probability. The means and other statistics of the posterior dis-
tribution can then be estimated from the proportion of times the individual
eventually reaches any cell.

If we can find an appropriate transition matrix (or kernel) and if we can show
that the process we have constructed is a Markov chain, then the general theory
outlined above ensures that a stationary distribution will be reached and main-
tained indefinitely. Constructing a Markov chain with the desired properties might
seem rather challenging but is relatively straightforward. The idea is to define a
process by which changes of state might be supposed to have occurred and then
show that it is indeed a Markov chain with the desired steady stationary distri-
bution. The details are spelt out in some detail in Bartholomew et al. (2011,
pp. 30–33 and Sect. 4.11, pp. 102–107). Here we merely give an indication of how
the argument goes.

Let the unobserved variables be denoted by the vector v, which here includes
both parameters and any latent variables. The ‘cells’ referred to above will each be
indexed by a different value of v. The Metropolis- Hastings algorithm then pro-
ceeds as follows. The algorithm constructs a sequence of estimates,
vð0Þ; vð1Þ; . . .v tð Þ; say, which converges to the desired estimates. The algorithm
begins by choosing a starting value vð0Þ. This starting value is converted into an
improved value, vð1Þby a realisation of a stochastic process constructed as follows.
Imagine an entity which, initially, is assigned the value v 0ð Þ 0ð Þ. This designates its
initial ‘cell’ The entity is now supposed to move to another cell (or state) which is
selected by the ‘jump’ distribution (which is arbitrary). The choice of destination is
chosen by reference to the ratio of the current value of its estimated probability to
the corresponding value at the origin sate. (Since the choice depends only on the
ratio, it is not necessary to know the value of the normalising constant because this
cancels, being the same for both.) The choice is constrained by the need to ensure
that the ‘origin’ state would be the one chosen if the destination state had been the
starting point. This introduces a symmetry which ensures the process will be
reversible. It is obvious that the process is Markovian because the transition
probabilities depend only on the current state. Taking an overall view of the
process we have described, we start with an approximation to the posterior dis-
tribution, obtained by inserting the initial parameter values and then modifying it
as the estimates of the parameters are gradually improved.

When the process has been running sufficiently long to be close enough to its
limiting value, the location of the entity may be regarded as a sample of size one
from the posterior distribution. From that point onwards it will move among the
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states according to a Markov chain, but these values do not constitute a random
sample from that distribution because they are not independent. To obtain a
genuinely random sample, the whole process must be repeated. However, it is
sometimes suggested that we would obtain something which would serve as a
random sample by taking every kth value where k is small. Another important
practical question is to decide when we are sufficiently near to the limiting state.
Such questions have received a good deal of attention in the literature but are not
germane to our present concerns.

12.4 Gibbs Sampling

This is a variant of the procedure described above which is designed to greatly
reduce the complexity of the calculations. Instead of having to compute the pos-
terior distribution at each step, which may involve many variables, it works on one
variable at a time. To this end we need the marginal distribution of each individual
element of v rather than the whole vector and this may be much easier to obtain.
The procedure thus takes each variable in turn and then iterates to a solution as if
that were the only unknown parameter. In a sense, therefore, we are embedding
one iteration within another. This is the routine used in the widely used program
WinBUGS.
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Chapter 13
Unity and Diversity

Abstract This chapter summarises the content of the Brief, focussing on the key
idea of the posterior distribution of the unobserved variables. It gives a chapter by
chapter summary and provides a rationale for the order in which topics have been
presented.

Keywords Analysis of variance � Bayesian paradigm � Categorical variables �
Exponential family � Factor analysis � General linear model � Latent variable
models � Mixtures �Maximum likelihood � Missing data � Posterior distribution �
Rasch model � Social measurement � Structural equation models � Time series

Here we take a retrospective look at how the subject has been developed
throughout the Brief by emphasising those elements which are common but
without neglecting the points of difference.

The unifying theme of this Brief is that the information about unobserved
variables in a statistical problem is properly conveyed by their posterior distri-
bution. However, there is considerable diversity in the ways in which such vari-
ables may arise, and when they do, on whether they have intrinsic meaning or are
merely intermediaries leading on to some more important aspect of the problem.
Such observations may be real in the sense that, in principle at least, they can be
observed. This is the case as with the unobserved variables in a time series where
the variables of interest have not yet occurred. Where observations have simply
been lost, it is not those observations themselves that we are interested in but the
parameters to whose estimation they might otherwise have contributed. At the
other extreme, unobserved variables may be hypothetical because they have been
introduced to accommodate some simplifying feature which makes the model
more intelligible. The latter alternative is more appropriate in many applications in
sociology or psychology where the model is constructed to give expression to
some hypothetical entity such as intelligence. These different types of unobserved
variable are reflected in the subjects of successive chapters. To some extent the
order of the chapters is dictated by the subject matter but there is a degree of
arbitrariness which may have been noted and which needs explaining.

D. J. Bartholomew, Unobserved Variables, SpringerBriefs in Statistics,
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The first two chapters lay the foundations by defining the notation and setting
out conventions and basic results. Chapter 1 also serves the purpose of a Preface
by commenting on the style and limitations of our treatment.

Chapter 3 performs an important double function by first introducing mixtures.
By this means it treats a problem which is of practical interest in its own right, but,
secondly it also provides an introduction to the key idea of a latent variable which
occurs later. As we noted earlier, the term ‘unobserved heterogeneity’ is some-
times used to designate variation in the quantity being mixed and so this chapter
provides, almost incidentally, a first example of a latent variable model.

Chapters 4–6 are closely linked in that they represent a progression from a very
simple type of latent variable problem to the full generality of factor analysis and
its ramifications.

The key elements which link Chaps. 4 and 5 and which prepare the ground for
Chap. 6 are the data matrix, given first in Chap. 1, and the class of probability
models which lie behind them first given in Eq. (2.4). The data matrix of observed
variables may be set out as follows

x11 x12 . . . x1m

x21 x22 . . . x2m

. . . . . . . . . . . .
xn1 xn2 . . . xnm

which represents m independent random samples each of size n. As we progress
through the chapters the xs are first of all treated as binary, then continuous and
then categorical. Their distributions are supposed to all be members of the one-
parameter exponential family with probability function

f xijyð Þ ¼ F xið ÞG aið ÞexpðaixiÞ ð13:1Þ

with

ai ¼ ai 0ð Þ þ ai 1ð Þy1 þ ai 2ð Þy2 þ � � � þ ai mð Þym ð13:2Þ

By appropriate choice of parameters this distribution was made to represent the
various models required. By this means it was possible to include a range of
models, starting with the Rasch model and leading on to a full factor analysis
model via the idea of random effects model as used in the analysis of the general
linear model. Because of its greater familiarity to statisticians it is convenient to
approach the general linear latent variable model, as here, by way of the analysis
of variance. The essential unity of the methods thus developed has sometimes been
concealed by the diversity of terminology which has been introduced, often
reflecting the language of different disciplines. In particular, statisticians brought
up on a diet of analysis of variance may be very familiar with the idea of ‘random
effects’ but may not realise that a latent variable is basically the same as a random
effect. This equivalence may often not have been noticed because the common use
of random effects seldom gets beyond means and variances. It follows that the
subtleties concerning the form of the latent distribution do not arise.
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Chapters 7 and 8 deal with topics—identification and categorical variables—
which pervade many branches of statistics but which are particularly relevant here.
Indeed it is especially the notion of a statistical model that is particularly relevant
because many misunderstandings have arisen because such models have been
neglected or ignored. Indeed, the idea of a model is central to the whole Brief but
the unifying thread would be much weaker without it. The fact that the exponential
family includes both categorical and continuous distributions serves to focus
attention on structure of the problems rather than on the form which those rep-
resentations take for particular kinds of variable. Normality plays a central role in
the theory of Statistics. It lies behind much of the analysis of variance although it
is seldom remarked upon. It turns out, and it is well-known, that normality and
linearity are closely bound up together. This linkage comes out very clearly when
we consider linear structural equations models as in Chap. 7. Such models are
usually formulated as a system of linear equations connecting manifest and latent
variables. From these models one may deduce the covariances between the
manifest variables and the models are then fitted by choosing as estimates of the
parameter those values which bring the observed and theoretical covariances as
close together as possible. This needs no normality assumption but if we also
introduce the assumption (unverifiable empirically, of course) of normal residuals,
the estimates turn out to be maximum likelihood estimates. Looked at the other
way round; we may first specify the model with normal residuals, and then obtain
the maximum likelihood estimators. The latter can then therefore be justified, in
the absence of the normality assumption, as those values which bring the observed
and expected covariance into closest agreement.

One might have expected the subjects of Chaps. 9 and 10 to occur much nearer
the beginning because both deal with unobserved variables in their most rudi-
mentary form. In Chap. 10, on Missing Data we suppose that the missing variables
are real enough and the only reason we do not know them because, in the most
obvious sense, they have not been lost or never observed. Likewise, Time Series,
treated in Chap. 9 is a longstanding member of the family of statistical methods
but it is not ordinarily thought of as having anything to do with unobserved
variables. But variables which are unobserved because they lie in the future are
just as ‘unobserved’ at the time of the analysis as those which lie in the past.

Chapter 11 on Social Measurement, might seem to deal with topics which do
not take us far beyond ‘common sense’ but the reason for their inclusion is because
it is precisely since ‘common sense’ can sometimes be a very poor substitute for a
well-thought-out model! The reason for leaving these various topics to the latter
part of the Brief is that their place and relevance can be more easily recognised
once the general framework is clear and the reason for setting them in this context
is more readily apparent.

The final chapter provides a fitting conclusion by subsuming, conceptually at
least, all unobserved variable problems within the Bayesian paradigm. However, it
is important not to lose sight of the diversity of practical contexts which give rise
to unobserved variables and for this the Bayesian paradigm has no particular
regard. In fact we have argued that the traditional divisions into families of
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methods of inference are of little relevance or importance in many practical
contexts, especially in the common situation where the number of ‘parameters’ is
large and, under which condition, the differences between the methods become
negligible.

Although unobserved variables have been with us since the dawn of statistics,
they have often been dealt with in an ad hoc fashion which, if anything, has
concealed the essential unity of the problems and has given rise to many misun-
derstandings. By following the model-based approach to statistical theory they can
be seen to fit into a simple framework which means that the many of these
misunderstandings can be eliminated or avoided altogether. The diversity of the
problems is, in a sense, accidental; the unity is fundamental.
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