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Preface

Statistical inference is oftentimes based on first-order asymptotic theory.
In particular, it is a common practice to perform likelihood ratio, score and Wald
tests using approximate critical values. Such critical values are obtained from the
test statistic limiting distribution when the null hypothesis is true. The approx-
imation holds when the number of observations in the sample tends to infinity,
and it is thus expected to deliver reliable inferences in large samples. When the
sample is not large, however, size distortions are likely to arise. That is, the
effective type I error probability may not be close to the nominal size selected by
the practitioner. It is thus important to have at hand alternatives that deliver more
reliable inference in small samples. In this monograph, we cover analytical
corrections known as Bartlett and Bartlett-type corrections. Bartlett corrections
are applied to likelihood ratio test statistics whereas Bartlett-type corrections are
applied to score test statistics and also to other asymptotically v2 criteria.
The corrections deliver modified tests with error rates that decay faster toward
zero. Thus, such tests can be expected to display superior finite sample behavior.

Practitioners are usually also interested in parameter estimation. Maximum
likelihood estimators are typically consistent and asymptotically normal, but are
usually biased. That is, the estimator expected value differs from the true
parameter value, which implies the existence of a systematic error. We provide
analytical and numerical approaches that can be used to reduce the bias of the
maximum likelihood estimator. Preventive and corrective bias reduction schemes
are presented and discussed. The former entails modifying the log likelihood or
score function prior to obtaining the estimator whereas the latter entails obtaining
the estimator in the usual fashion and then bias correcting it. These bias corrections
can deliver modified estimators that have much smaller systematic errors than the
corresponding unmodified estimators.

The material we present in this book is a compilation of analytical results
and numerical evidence available in the literature. We do not include new results.
Our goal is to present, in a coherent way, strategies that can be used to achieve
more accurate inferences. Our main focus lies on obtaining analytical corrections
to tests that are based on a first-order asymptotic approximation and also on
achieving bias reduction in small samples. Numerical (Monte Carlo) results are
presented in order to illustrate the gains involved in using such finite sample
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corrections. We also point out that the details involved in many of the derivations
were not included in the text since we intend to provide readers with a concise
monograph. Further details can be found in the references listed at the end of each
chapter.

The structure of our monograph was dictated by three main choices we made.
First, we intend to provide readers with a concise overview of the topic. Second,
we decided to focus on point estimation and testing inference. We do so by
focusing on bias reduction of estimators and corrections that can be applied to test
statistics. Additionally, even though our focus lies on analytical corrections we
also include material on bootstrap-based inference since it is often cited as an
appealing alternative to analytically corrected estimators and tests.

Finally, we would like to thank Klaus Vasconcellos for suggestions on parts
of our monograph. We also gratefully acknowledge financial support from
CNPq/Brazil.

Recife, February 2014 Gauss M. Cordeiro
Francisco Cribari-Neto
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Chapter 1
Likelihood-Based Inference and Finite-Sample
Corrections: A Brief Overview

Abstract This chapter introduces the likelihood function and estimation by maxi-
mum likelihood. Some important properties of maximum likelihood (ML) estima-
tors are outlined. We also briefly present several important concepts that will be
used throughout the book. Three asymptotic testing criteria are also introduced. The
chapter also motivates the use of Bartlett and Bartlett-type corrections. The under-
lying idea is to transform the test statistic in such a way that its null distribution is
better approximated by the reference χ2 distribution. We also investigate the use of
bias corrections. They are used to reduce systematic errors in the point estimation
process. Finally, we motivate the use of a data resampling method: the bootstrap.

Keywords Bartlett correction · Bartlett-type correction · Bias correction · Boot-
strap · Likelihood ratio test · Maximum likelihood · Score test · Wald test

1.1 Introduction

Statistics deals with measurement under uncertainty. Its ultimate goal is to perform
inference on a population or phenomenon from which data can be sampled. This is
achieved by first considering a model that represents the phenomenon of interest.
A model is a simplified representation of a more comprehensive reality. A good
model must retain the most important features of the phenomenon it represents.
A statistical model has a stochastic component—since it represents a phenomenon
that occurs in uncertain fashion—and is typically indexed by fixed and (usually)
unknown quantities known as parameters. Statistical inference is then performed on
such parameters using data previously collected. By performing inference on the
model parameters, we make inference on the model and hence on the phenomenon
it is supposed to describe.

Inference can be carried out in three different ways, namely (1) point estima-
tion, (2) interval estimation, and (3) hypothesis testing. Several approaches for

G. M. Cordeiro and F. Cribari-Neto, An Introduction to Bartlett Correction 1
and Bias Reduction, SpringerBriefs in Statistics, DOI: 10.1007/978-3-642-55255-7_1,
© The Author(s) 2014



2 1 Likelihood-Based Inference and Finite-Sample Corrections: A Brief Overview

parameter point estimation were proposed in the literature, the maximum likeli-
hood (ML) method being the most commonly employed. The maximum likelihood
estimator (MLE) enjoys desirable properties and can be used when constructing
confidence intervals and regions and also in test statistics.

In what follows, let Y be a random variable whose density function with respect
to the Lebesgue or the counting measure on the real line is fY (·; θ) which we shall
also write as f (·; θ).Here, θ is the parameter vector that indexes the distribution. It is
usually unknown and takes values in the parameter space χ. We shall also consider
random samples obtained from f (·; θ), which shall be denoted as Y1, . . . , Yn . We
wish to perform inference on θ using the n-dimensional sample (Y1, . . . , Yn). An
estimator is a quantity that depends on the data and optionally on known quantities
that can be used to estimate θ (or a given function of θ).

1.2 Likelihood Inference

One of the most widely used estimation methods is the ML method. Its underlying
motivation is simple and intuitive. Let Y1, . . . , Yn be an n-dimensional sample and
assume that each variate has probability density function (pdf) f (·; θ), θ being a
p-dimensional vector, i.e., θ = (θ1, . . . , θp)

∗ ∈ χ. Assume that Y1, . . . , Yn are
independent and identically distributed (i.i.d.). Their observed values are denoted as
y1, . . . , yn .

The likelihood function is the joint density function fY1,...,Yn (y1, . . . , yn; θ) con-
sidered as a function of the parameter θ = (θ1, . . . , θp)

∗. Since the n variates in our
sample are i.i.d., the likelihood function is the product of the n marginal pdfs. We
shall denote the likelihood function as L(θ; Y1, . . . , Yn). The MLE is the value of θ
in the parameter space χ which maximizes the likelihood function, if such a value
exists. It is noteworthy that the MLE also maximizes the log-likelihood function,
θ = θ(θ; Y1, . . . , Yn) = log L(θ; Y1, . . . , Yn). The log-likelihood derivative with
respect to θ is known as the score function. It is possible to show that

IE

(
∂θ

∂θ

)
= 0,

that is, the score function has mean zero. The Fisher information matrix is

K (θ) = IE

(
∂θ

∂θ

∂θ

∂θ∗

)
.

Under the conditions given below, it can be shown that K (θ) = IE(−∂2θ/∂θ∂θ∗).

Notice that the Fisher information equals the score function variance.
The relevant assumptions for ML inference can be stated as follows:
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1. The parameter space χ is open, and the log-likelihood function assumes a global
maximum in χ.

2. For almost all y, the fourth-order derivatives∂4 f (y; θ)/∂θh∂θ j∂θk∂l (h, j, k, l ∈
{1, . . . , p}) exist and are continuous in an open neighborhood M ⊂ χ that con-
tains the true parameter value.

3. Consider the integral with respect to y of a function that can be represented as
a polynomial in one or more variables in f, log f and their derivatives of any
order with respect to θ. The derivative of such an integral with respect to any
component of θ can be obtained by differentiating inside the integral.

4. Consider the p × p matrix K = K (θ), whose (h, j) element is

Khj (θ) = IE

(
∂θ

∂θh

∂θ

∂θ j

)
,

h, j = 1, . . . , p. Here, K is positive definite and finite for all θ ∈ M.

5. There exist functions Mhjk such that

∣∣∣∣∂
3 log f (y; θ)

∂θh∂θ j∂θk

∣∣∣∣ ≤ Mhjk(y),

for all θ ∈ M and for all h, j, k = 1, . . . , p, and IE0[Mhjk(Y )] < ∞, for all
h, j, k = 1, . . . , p,where IE0 denotes expectation under the true parameter value.

These regularity conditions hold in most, nearly all applications. They are thus
not restrictive.

1.3 Some Properties of Maximum Likelihood Estimators

An important property of the MLE is its invariance. Let θ̂ be the MLE of θ, and let
g(·) be a function from IRp to IRs (not necessarily one to one). Then, g(θ̂) is the
MLE of g(θ). For instance, suppose that σ̂2 is the MLE of a given variance. Then,√

σ̂2 is the MLE of σ (standard deviation).
The MLE enjoys other important properties, including large sample ones. It is

noteworthy that it is consistent for θ, i.e., θ̂n
p→ θ, where

p→ denotes convergence in
probability and the subscriptn indicates dependence on the sample size. This property
means that in large samples, the estimator will be close to the true parameter with
high probability.

Another important property is related to the asymptotic distribution of the MLE.
It follows that √

n
(
θ̂n − θ

)
D→ N

(
0, K −1(θ)

)
,
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where
D→ denotes convergence in distribution (or law). Notice that the inverse of

Fisher’s information equals the MLE asymptotic variance and that the estimator is
asymptotically Gaussian. It should also be noted that the MLE is asymptotically
efficient; that is, its asymptotic variance achieves the Cramér-Rao lower bound; see
Bickel and Doksum (2001, pp. 181–182).

1.4 A Simple Example

Let y1, . . . , yn be a random sample from the beta distribution B(a, b). The density
of yi , for each i = 1, . . . , n, is

f (y; a, b) = �(a + b)

�(a)�(b)
ya−1(1 − y)b−1,

where 0 < y < 1, a > 0, b > 0 and �(·) is the gamma function. The interest lies in
the estimation of θ = (a, b)∗. The log-likelihood function is

θ(a, b) = n

{
(a − 1) log g1 + (b − 1) log g2 + log

(
�(a + b)

�(a)�(b)

)}
,

where the sufficient statistics g1 and g2 are the geometric means of the yi ’s and
(1 − yi )’s, respectively.

The MLEs â and b̂ of a and b are the solution to the nonlinear system

ψ(a) − ψ(a + b) = log g1
ψ(b) − ψ(a + b) = log g2,

where ψ(·) denotes the digamma function, i.e., the first derivative of the log-gamma
function. TheMLEs of a and b cannot be expressed in closed form. They are obtained
by numerically maximizing the log-likelihood function using a nonlinear optimiza-
tion algorithm.

We shall now compute the estimates of the parameters that index the beta lawusing
the R software (http://www.R-project.org). To that end, we shall use the fitdistr
function of the MASS package.

> library(MASS)
> set.seed(16851750) # random number generator seed
> randomsample <- rbeta(100, shape1=0.5, shape2=1.5)
> MLfit = fitdistr(random, dbeta, start=list(shape1=1,
+ shape2=1), lower=c(0,0))
> MLfit

shape1 shape2
0.50056877 1.50584321
(0.05925167) (0.22864059)

http://www.R-project.org
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In this example, the true parameter values are a = 0.5 and b = 1.5 and the
sample size is n = 100. The MLEs are â = 0.501 and b̂ = 1.506. The number
in parentheses are the standard errors of the estimates, which are obtained as the
square roots of the diagonal elements of Fisher’s information matrix inverse after the
unknown parameters are replaced by their MLEs.

1.5 Likelihood-Based Testing Inference

Let θ denote the p-dimensional parameter vector that indexes the model used to
represent the population or phenomenon of interest and partition it as θ = (θ∗

1 , θ∗
2 )∗,

dim(θ1) = q and dim(θ2) = p − q. Suppose our interest lies in making testing
inference on θ1, i.e., we wish to test H0 : θ1 = θ01 against H1 : θ1 	= θ01, where
θ01 is a given q-vector. We say θ1 is the parameter of interest and θ2 is the nuisance
parameter. For instance, we have a random sample from the beta distributionB(a, b)

and wish to test H0 : b = 1 against a two-sided alternative. Here, b is the parameter
of interest and a is the nuisance parameter; additionally, θ01 = 1.

Let θ̂ = (θ̂∗
1 , θ̂∗

2 )∗ and θ̃ = (θ01
∗
, θ̂∗

2 )∗ denote the unrestricted and restricted
MLEs of θ, respectively. The restricted MLE is obtained by imposing θ1 = θ01 and
maximizing θ(θ) over θ2. The likelihood ratio (LR) test statistic is

L R = 2
[
θ(θ̂) − θ(θ̃)

]
. (1.1)

When the null hypothesis is true, little is lost by imposing it when estimating
the parameter vector and, as a consequence, the likelihood function evaluated at
the unrestricted and restricted MLEs should be approximately the same; that is, the
difference between the likelihood functions evaluated at the two point estimates is
small. It then follows that L R is small and the null hypothesis is not rejected. Notice
that likelihood ratio testing inference requires the estimation of both null and non-null
models.

Alternatively, the null hypothesis can be tested using Rao’s score test (Rao 1948).
The underlying idea is that if the null hypothesis is true, the score function (i.e., the
log-likelihood derivative) should be close to zero when evaluated at the restricted
MLE, θ̃. The score test statistic is

SR = s(θ̃)∗K −1(θ̃)s(θ̃), (1.2)

where s(θ) = ∂θ(θ)/∂θ is the score function. Notice that the score function and
Fisher’s information matrix are evaluated at the restricted MLE, θ̃. It then follows
that only the null model is estimated.

It is also possible to base our testing inference on a different test statistic, namely
the Wald statistic. It is given by
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W = (θ̂1 − θ01)
∗K 11(θ̂)−1(θ̂1 − θ01), (1.3)

where K 11(θ)−1 is the upper q × q block of Fisher’s information matrix inverse;
i.e., it is the upper q-dimensional block of K −1(θ). Thus, the null hypothesis is not
rejectedwhen the distance between θ̂1 and θ01 is small. Notice that in order to compute
the Wald test statistic, one only estimates the non-null (unrestricted) model.

The exact null distributions of the test statistics given in (1.1), (1.2) and (1.3) are
usually unknown. Under certain regularity conditions (Bickel and Doksum 2001,
Chap. 6; Serfling 1978, Chap. 4), however, it can be established that they converge
to χ2

q as n → ∞. It is then possible to base our testing inference on critical values
obtained from such a distribution. It follows that, for T = L R, SR, W and under
the null hypothesis, Pr(T ≤ χ2

1−α;q) = α + o(1), where α is the test nominal

significance level andχ2
1−α;q is the (1−α)thχ2

q upper quantile. That is, the difference

between the probability that T ≤ χ2
1−α;q (null rejection rate) and α (the nominal

significance level) vanishes as n → ∞.

1.6 Some Remarks on Bartlett and Bartlett-Type Corrections

The likelihood function L(θ) = L(θ; y) is the basis for most methods of statistical
inference.Anatural rule is to base inferenceon L(θ̂)/L(θ) > c in order to decidewhat
is the range of ‘plausible’ values of θ, where θ is assumed to have dimension p and
θ̂ is the MLE of θ. Inference based on the likelihood function can also be calibrated
with reference to the probability model f (y; θ), by examining the distribution of
L(θ) as a random function, or more usually, by examining the distribution of various
associated quantities. Let θ(θ) = log[L(θ)] be the log-likelihood function. The
asymptotic likelihood theory is based on a version of the central limit theorem for
the score function U (θ) = ∂θ(θ)/∂θ and also on Fisher’s information matrix K (θ).
These quantities were introduced in Sect. 1.2. If Y = (Y1, . . . , Yn)∗ has independent
components, then U (θ) is a sum of n independent components, which, under mild
regularity conditions, is asymptotically normal. If θ̂ is consistent for θ and L(θ) has
sufficient regularity, the quantities (θ̂ − θ)∗K (θ)(θ̂ − θ), U (θ)∗K (θ)−1 U (θ) and
2{θ(θ̂) − θ(θ)} converge in distribution to χ2

p. It is noteworthy, however, that the use
of χ2

p as an approximation to the true underlying distributions can lead to inaccurate
inferences when the sample size is small. The book by Cox and Hinkley (1974) gives
a detailed account of likelihood inference and principles of statistical inference.Other
good book-length treatments of likelihood inference are Barndorff-Nielsen and Cox
(1994), Pawitan (2000), Severini (2000), and Brazzale et al. (2000).

Large sample tests are commonly used in the applied statistics since exact tests
are not always available. These tests rely on what is called ‘first-order asymptotics’;
that is, they employ critical values obtained from a known limiting null distribu-
tion. Generally speaking, the main difficulty of testing a null hypothesis using the
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LR statistic lies not so much in deriving its closed-form expression—when it has
one—but in finding its exact null distribution, or at least a good approximation to
it. In a very influential paper, Bartlett (1937) pioneered the correction to the LR sta-
tistic in the context of comparing the variances of several populations. For regular
problems, Lawley (1956), through a heroic series of calculations, obtained a general
formula for the null expected value of L R and demonstrated that all cumulants of
the Bartlett-corrected statistic for testing a composite hypothesis agree with those of
the reference χ2 distribution with error of order n−3/2.1 Alternative expressions for
the Bartlett corrections were developed by DiCiccio and Stern (1993), McCullagh
and Cox (1986), and Skovgaard (2001). In particular, Cordeiro (1983, 1987) was the
first to provide matrix expressions for generalized linear models.

Cordeiro and Ferrari (1991) extended the idea of Bartlett corrections to other test
statistics, such as the score (SR) andWald (W ) statistics. In fact, they derived a general
formula for Bartlett-type corrections to improve any test statistic that is, under the
null hypothesis, asymptotically distributed as χ2. The standard Bartlett correction
is a special case of their general result. Bartlett and Bartlett-type corrections intend
to bring the empirical sizes of asymptotic tests close to the corresponding nominal
sizes. In most cases, they do so quite effectively. It is important to bear in mind that
these corrections can lead to a loss in power. However, an important result is that the
untransformed statistic and its Bartlett-corrected version have the same local power
to order n−2. More precisely, let S be a test statistic which is χ2 distributed under
the null hypothesis and let S∂ denote the Bartlett-corrected statistic obtained as a
transformation of S. Then, under local (Pitman) alternatives, Pr(S∂ ≥ x) = Pr(S ≥
x) + O(n−2).

In this book, we shall restrict ourselves to the LR, score test, and Wald test, since
they are the most commonly used large sample testing inference. As is well known,
these three statistics are asymptotically distributed as χ2 when the null hypothesis
H0 is true, where q is the number of restrictions under test. However, it is also well
known that this first-order approximation may not be accurate in finite samples, thus
leading to size distortions.We address the issue of evaluating such approximation and
designing more accurate tests. The question ‘Can we do better?’ can be approached
from two distinct viewpoints. First, we can obtain a new test statistic whose null
distribution is better approximated by the first-order limiting distribution. Second,
we can obtain a new distribution which is ‘closer’ to the test statistic exact null
distribution. In this monograph, we shall focus on the former approach. Readers
interested in the latter approach are referred to Barndorff-Nielsen and Cox (1979,
1989), Reid (1988, 1991), and Hall (1992) and the references therein.

One of the main goals of our monograph is to provide a unified review of the lit-
erature on Bartlett and Bartlett-type corrections, i.e., corrections that can be applied
to test statistics (not to critical values). An issue of interest is how to define Bartlett-
type corrections since it is possible to write the correction in different ways which
are equivalent up to a certain order of magnitude. We address this issue by Monte
Carlo simulation. We also include discussions on how to obtain the corrections in

1 Henceforth, ‘to order n−k ’ means that terms of order smaller than n−k are neglected.
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regression models, such as generalized linear models, Birnbaum-Saunders nonlinear
regression models, and heteroskedastic linear regressions. We use the linear regres-
sion framework to address two important issues through simulation: the influence
of the covariate values and of the number of nuisance parameters on the first-order
asymptotic approximation used in some asymptotic tests.

Bartlett corrections constitute an important topic of research among statisticians.
However, they have not yet found their appropriate space and usage in several applied
areas of statistics, in which size corrections are almost always based on transforma-
tions of critical values obtained from Edgeworth expansions. We hope this book
will help narrow this gap. The authors have established general results and explicit
expressions for Bartlett and Bartlett corrections in a series of joint publications, as
can be seen in their Web pages: http://www.de.ufpe.br/~gauss (Gauss M. Cordeiro)
and http://www.de.ufpe.br/~cribari (Francisco Cribari-Neto). Some applications of
Bartlett-type corrections in regression models include score tests for generalized
linear models with known dispersion (Cordeiro et al. 1993) and unknown disper-
sion (Cribari-Neto and Ferrari 1995), exponential family nonlinear models (Ferrari
and Cordeiro 1996), and heteroskedastic t regression models (Barroso et al. 2002),
among several others. A detailed account of Bartlett and Bartlett-type corrections
can be found in Cribari-Neto and Cordeiro (1996).

1.7 Some Remarks on Bias Corrections

We shall also be concerned with point estimation. To that end, we shall review
the literature on bias correction. Bias is a systematic error, and there are strategies
that can be used to reduce it. The MLEs can be quite biased in small samples.
It is thus important to evaluate the n−1 biases of these estimators, where n is the
sample size, and then define modified estimators that are bias free to this order of
approximation. In particular, it is important to derive closed-form expressions for the
second-order biases of estimators in some classes of models which can be used in
practical applications in order to evaluate the accuracy of these estimators and also
to define estimators with smaller biases.

One of our goals in this monograph is to review the literature on bias correc-
tion of MLEs. The obvious difficulty is that many MLEs cannot be expressed as
explicit functions of the data. Over the last 25 years, there have been many advances
with respect to bias calculation of nonlinear MLEs in special distributions and wider
classes of regression models such as generalized linear models and heteroskedas-
tic regressions. The computation of higher-order biases is perhaps one of the most
important approximations in the theory of estimation by ML in regression models.

There has been considerable interest in finding simple closed-form expressions for
second-order biases ofMLEs in some classes of regressionmodels. By ‘closed-form’
we mean expressions that do not involve cumulants of log-likelihood derivatives. In
fact, theO(n−1) biases of theMLEs have been derived in homoscedastic normal non-
linear models (Cook et al. 1986), generalized log-gamma regression models (Young

http://www.de.ufpe.br/~gauss
http://www.de.ufpe.br/~cribari
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and Bakir 1987), generalized linear models (Cordeiro and McCullagh 1991), mul-
tiplicative regression models (Cordeiro 1993), ARMA models (Cordeiro and Klein
1994), multivariate nonlinear regression models with normal errors (Cordeiro and
Vasconcellos 1997), univariate nonlinear Student’s t-regression models (Cordeiro
et al. 1998), multivariate Student’s t-regression models (Vasconcellos and Cordeiro
2000), heteroskedastic models (Vasconcellos et al. 2000), beta regression models
(Ospina et al. 2006), and heteroscedastic normal linear models (Cordeiro 2008).
These results were obtained using the general formula given byCox and Snell (1968).
Simulation results on bias corrections can be found in Cordeiro and Cribari-Neto
(1993). An appealing alternative approach to computer-intensive bias correction is
described by MacKinnon and Smith (1998). For alternative methods, see Cadigan
(1994) and Taniguchi and Puri (1995). Second- and third-order bias corrections for
one-parameter models were obtained by Ferrari et al. (1996). More recent general
results on bias corrections in regressionmodels can be found in Patriota and Lemonte
(2009).

1.8 Some Remarks on the Bootstrap

Even though our focus is on analytical corrections to test statistics and estimators,
we also cover alternatives that are based on data resampling, more specifically on
bootstrap resampling (Efron 1979). The underlying idea is that additional artificial
samples can be obtained by sampling from the original sample as if we were sam-
pling from the population. The random drawing mechanism can be of parametric or
nonparametric nature. Higher precision can be achieved by using nested bootstrap
schemes; see Hall andMartin (1988). For further details on the bootstrapmethod, see
Efron and Tibshirani (1986, 1993), Hall (1992), Shao and Tu (1995) and the refer-
ences therein. We also refer readers to Young (1994), who also lists the shortcomings
of using data resampling. The relationship between Edgeworth expansions and the
bootstrap is discussed in generality by Hall (1992). For an econometric example of
this relationship, see Rayner (1990). Rocke (1989) suggested the use of a bootstrap
Bartlett adjustment for the log-likelihood ratio statistic in the context of seemingly
unrelated regressions. As we shall see, his proposal is to use data resampling to
estimate the Bartlett correction factor.

In what follows, we shall describe how the bootstrap can be used as an alternative
to analytical finite sample corrections to estimators and tests. Empirical researchers
can then choose which method is more appropriate to the application at hand. It is
important to note that two researchers who use the same data and perform the same
analytical correction will arrive at exactly the same result. The same does not hold
true, however, for the bootstrap since the final exact result will depend on the number
of bootstrap replication, on the random number generator used, and on other factors.
The data resampling mechanism used can also be a discrepancy source. The two
approaches are thus different in nature, but they aim at the same goal: delivering
more accurate and reliable inferences.
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Chapter 2
Bartlett Corrections and Bootstrap Testing
Inference

Abstract This chapter introduces the Bartlett correction to the likelihood ratio test
statistic. The likelihood ratio test typically employs critical values that are only
asymptotically correct and, as consequence, size distortions arise. The null distribu-
tion of Bartlett-corrected test statistic is typically better approximated by the limiting
distribution than that of the corresponding unmodified test statistics. The correction
reduces the test error rate, that is, size discrepancies of the corrected test vanish at a
faster rate. We also show how to estimate the exact null distribution of a test statistic
using data resampling (bootstrap). It is noteworthy that the bootstrap can be used to
estimate the Bartlett correction factor.

Keywords Bartlett correction · Bootstrap · Likelihood ratio test · Size distortion ·
Power · Type I error

2.1 Introduction

Statistical large-sample theory is concerned with the behavior of statistical proce-
dures as the sample size increases to infinity. It is important to statisticians because
it usually delivers simple approximations that work well in finite samples. Statisti-
cians often seek to approximate quantities, such as the density of a test statistic, that
depend on the sample size in order to obtain better approximate distributions. The
resulting approximation should be easy to handle either analytically or numerically.
Asymptotic expansions are usually assessed by examining the error behavior as the
sample size increases to infinity.

The LR statistic is one of the most commonly used statistics for performing
testing inference in parametric models. Let w be the LR statistic for testing some
composite or simple null hypothesis H0 against an alternative hypothesis H . It is well
known that under the null hypothesis, w is asymptotically distributed as χ2

q , where
q is the difference between the dimensions of the parameter spaces under the two

G. M. Cordeiro and F. Cribari-Neto, An Introduction to Bartlett Correction 13
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hypotheses (alternative and null). Since the test uses an approximate critical value,
which is obtained from the limiting null distribution of w, size distortions may take
place in small samples.

Generally speaking, the main difficulty of testing a null hypothesis using the LR
criterion lies not so much in deriving its closed form, when it has one, but in finding
its exact distribution, or at least a good approximation, when the null hypothesis
is true. In a paper that later became quite influential, Bartlett (1937) proposed an
improved LR statistic. His argument goes as follows. Suppose that under the null
hypothesis E(w) = q + b + O(n−2), where b is a constant of order O(n−1) that
can be consistently estimated under H , n is the number of observations or some
related quantity and q is the difference between the dimensions of the parameter
spaces under the alternative and null hypotheses. Then, the expected value of the
transformed statistic w∗ = w/(1 + b/q) is closer to that of the limiting null χ2

distribution than that of w. For the test of homogeneity of variances, he showed that
the first three cumulants of w∗ agree with those of the χ2

q distribution with error of
order O(n−2), thus providing strong grounds for one to believe that the density of
w∗ is better approximated by the limiting null χ2 distribution than that of w.

It is well known that a way of improving the χ2 approximation to the LR statistic
is by dividing w by the correction factor c = (1 + b/q); this is known as Bartlett
correction (Lawley 1956; Hayakawa 1977; Cordeiro 1987). This idea was pioneered
byBartlett (1937) and later generalized byLawley (1956). Bartlett obtained a number
of these corrections in a series of papers on multivariate analysis that were published
between 1938 and 1955. The correction factors obtained by Bartlett were widely
used for improving the large-sample χ2 approximation to the null distribution of w.
The Bartlett correction c = 1+ b/q now represents an important tool for improving
the χ2 approximation used when performing LR tests. The expected value of the
Bartlett-corrected statistic w∗ = w/c is closer to that of χ2

q than that of w. Moreover,
for continuous data, the null distribution ofw∗ is, in general, closer toχ2

q than the null
distribution of w. Box (1949) used Bartlett’s approach to investigate the moments
of w in the following cases: the test of constancy of variances and covariances of
k sets of p-variate samples and the Wilks test for the independence of k sets of
residuals, where the i th set contains pi variables. For these cases, he showed that the
modified statisticw∗ follows a χ2

q distributionmore closely than does the unmodified
statistic w. Box’s results are applicable whenever the Laplace transform of the test
statistic can be explicitly written in terms of gamma and reciprocal gamma functions.

A general method to obtain Bartlett corrections for regular statistical models was
developed in full generality by Lawley (1956), who obtained a general formula for
the correction factor c as function of covariant tensors. He derived expressions for
the moments of certain log-likelihood derivatives and, through an exceedingly com-
plicated calculation, obtained a general formula for the null expected value of w.
Further, he showed that all cumulants of the corrected statistic w∗ for testing com-
posite hypotheses agree with those of the referenceχ2

q distributionwith error of order
O(n−2); see Hayakawa (1977) and Cordeiro (1987). The analytical derivation of the
Bartlett corrections using Lawley’s approach is, however, notoriously cumbersome
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since it requires the computation of some joint cumulants of log-likelihood deriva-
tives. See, also, Eqs. (5.30)–(5.32) in Barndorff-Nielsen and Cox (1994).

It is noteworthy that the expected value needed for determining w∗ may be very
difficult or even impossible to compute.Ageneralmatrix formula for cwas derived by
Cordeiro (1993a). His matrix formula can be useful when it comes for implement-
ing Bartlett corrections. Such corrections can substantially reduce size distortions
when used with continuous data. However, for discrete data, the Bartlett correction
may not yield a clear improvement in the asymptotic error rate of the χ2 approx-
imation. Several papers have focused on deriving Bartlett corrections for special
regression models using matrix formulae for specific models, bypassing the tradi-
tional machinery of calculating the required cumulants. One can always obtain these
matrix formulae when the joint cumulants of log-likelihood derivatives are invariant
under permutation of parameters. These formulae can be easily handled by computer
algebra systems (e.g.,Mathematica andMaple) and programming languages with
support for matrix operations (e.g., Gauss, Ox, and R).

2.2 Bartlett Identities

Let L = L(θ) and � = �(θ) = log [L(θ)] be the total likelihood and total log-
likelihood functions for a regular parametric model depending on a p × 1 vector
θ of unknown parameters having continuous partial derivatives up to the fourth
order. We assume that the model is regular in the sense that we can interchange
differentiation and integration. The derivatives at an arbitrary point θ are denoted
by Ur = ∂�/∂θr , Urs = ∂2�/∂θr∂θs , Urst = ∂3�/∂θr∂θs∂θt , and so on. Hereafter,
the moments of the log-likelihood derivatives are assumed finite and are denoted by
μr = E(Ur ), μrs = E(Urs), μr,s = E(UrUs), μrst = E(Urst ), μr,st = E(Ur Ust ),
and so on.

Differentiation of
∫

L dy = 1 with respect to θr and reversing the order of differ-
entiation gives μr = E(Ur ) = 0. This is the well-known result that the mean of the
score function equals zero. From this basic relation, we can obtain a sequence of bal-
ance equations known as Bartlett identities. In particular, differentiation with respect
to θs yields

∫
(Urs +Ur Us)Ldy = 0, which can be expressed asμrs +μr,s = 0. This

equation provides two alternative formulae for computing the expected information
matrix for θ : K = {μr,s} = {−μrs}.

In similar fashion, we obtain the third Bartlett identity: μr,s,t + μrst + �(3)
μr,st = 0, where the notation (m) indicates the sum of m permutations of indices.
The fourth Bartlett identity is

μr,s,t,u + μrstu + �(4)μrst,u + �(3)μrs,tu + �(6)μrs,t,u = 0.

We now introduce the cumulants (denoted from now on by κ’s) of log-likelihood
derivatives which can be defined in terms of the moments by

http://dx.doi.org/10.1007/978-3-642-55255-7_5
http://dx.doi.org/10.1007/978-3-642-55255-7_5
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κr = μr = 0, κrs = μrs, κr,s = μr,s,

κr,s,t = cum(Ur , Us, Ut ) = μr,s,t , κrs,t = Cov(Urs, Ut ) = μrs,t ,

κrs,tu = Cov(Urs, Utu) = μrs,tu − μrsμtu,

κr,s,tu = cum(Ur , Us, Utu) = μr,s,tu − μr,sμtu,

κr,s,t,u = cum(Ur , Us, Ut , Uu) = μr,s,t,u − �(3)μr,sμt,u,

and so on.
These cumulants satisfy the Bartlett identities

κrs + κr,s = 0, κr,s,t + κrst + �(3)κr,st = 0

and
κrstu + �(4)κr,stu + �(3)κrs,tu + �(6)κr,s,tu + κr,s,t,u = 0.

The order of the identity is defined by the number of indices in its terms. So, κr,s,t +
κrst + �(3)κr,st = 0 is a Bartlett identity of third order.

In addition, the derivatives of the cumulants are denoted by κ
(t)
rs = ∂κrs/∂θt ,

κ
(tu)
rs = ∂κrs/∂θtθu , etc. From these definitions, we can obtain new Bartlett identities
involving the κ’s:

κr,st +κrst −κ
(r)
st = 0, κr,s,t −2κrst +�(3)κ

(t)
rs = 0, κ(t)

rs +κr,s,t +κr,st +κs,r t = 0,

κ
(u)
rst = κrstu + κrst,u, κr,stu + κrstu − κ

(r)
stu = 0,

κr,s,t,u = −3κrstu + 2�(4)κ
(u)
rst − �(6)κ

(tu)
rs + �(3)κrs,tu,

κr,s,tu = κrstu − κ
(s)
r tu − κ

(r)
stu + κ

(rs)
tu − κrs,tu,

etc. These identities usually simplify the derivation of several asymptotic quantities
in regular likelihood theory.

For the one-parameter model (i.e., when θ is a scalar), we obtain κθ,θθ + κθθθ −
κ

(θ)
θθ = 0, κθ,θ,θ − 2κθθθ + 3κ(θ)

θθ = 0, κ
(θ)
θθθ = κθθθθ + κθθθ,θ , and so on.

As an example, consider a simple derivation of the joint cumulants. For the
N (μ, σ 2) distribution, the log likelihood � = �(θ) for θ = (μ, σ 2)∈ from a sample
of n i.i.d. random variables is

� = −n

2
log(2π) − n

2
log(σ 2) − 1

2σ 2

n∑
i=1

(yi − μ)2.

The joint cumulants are κμμ = −n/σ 2, κσ 2σ 2 = −n/2σ 4, κμσ 2 = 0, κμ,μ,μ =
κμ,μμ = κμμμ = 0, κσ 2,σ 2,σ 2 = −κσ 2,σ 2σ 2 = n/σ 6, κσ 2σ 2σ 2 = 2n/σ 6, κμ,μσ 2 =
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−κμμσ 2 = −n/σ 4, κμ,μ,σ 2 = 3n/σ 4, κμμσ 2σ 2 = −2n/σ 6, etc. Some of these
cumulants can be easily computed using Bartlett identities.

2.3 Lawley’s Expansion

Bartlett (1938, 1947, 1954) obtained a number of adjustment factors in the area of
multivariate analysis, and these factors became widely used for improving the large-
sample χ2 approximation to the null distribution of the LR statistic. Box (1949)
used Bartlett’s (1937) results to investigate in detail the general expression for the
moments of LR statistics in the following cases: the test of constancy of variance and
covariance of m sets of p-variate samples and the Wilks test for the independence of
k sets of residuals, the i th set having pi variates. He has shown that in these cases and
under the null hypothesis, the modified statistic w∗ follows a χ2 distribution more
closely than the unmodified statistic w. Box’s results are applicable to all tests for
which the Laplace transform of the test statistic can be explicitly written in terms
of gamma and reciprocal gamma functions. In particular, it is possible to use these
results to obtain E(w) and Var(w). The results in Lawley (1956), McCullagh and
Cox (1986) and Cordeiro (1993a) are, however, more useful for deriving Bartlett
corrections in regression and time series models.

For regular problems, Lawley (1956) obtained expressions for themoments of cer-
tain derivatives of the log-likelihood function and, using an exceedingly complicated
derivation, gave a general formula for the null expected value of the log-likelihood
criterion and showed that all cumulants of the Bartlett-corrected statistic w∗ for test-
ing a composite hypothesis agree with those of the reference χ2 distribution with
error of orderO(n−2). A related reference is Beale (1960), who obtained an approx-
imation to the asymptotic distribution of the residual sum of squares in the normal
non-linear regression model and gave an interpretation for the correction factor in
terms of the curvature of a surface. Beale’s paper has three noteworthy contributions:
It defined a measure of the intrinsic non-linearity of a regression model as a function
of the covariates and of the parameter values, it showed how improved confidence
regions for the parameter values of the model can be obtained, and it showed how to
select a suitable transformation of the parameters that delivers near linearity in the
neighborhood of the MLEs. His results, however, are limited to normal models. In
terms of Bartlett correction, its main contribution was to give a geometric interpre-
tation of the correction for normal models. This interpretation was later generalized
to non-normal models by McCullagh and Cox (1986).

Supposewe have n independent but not necessarily identically distributed variates
Y = (Y1, . . . , Yn)∈ and that the total log-likelihood function �(θ) is a function of
the p × 1 parameter vector θ . Further, we assume that � = �(θ) is regular (Cox and
Hinkley 1974) with respect to all θ derivatives up to and including those of fourth
order. We assume that the MLE θ̂ of θ is a consistent solution of the non-linear
equations Ûr = 0 for r = 1, . . . , p. In what follows, we shall use the Einstein
summation convention, which is useful for dealing with coordinate formulae. By
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expanding Ûr = 0 around θ , we obtain

Ur +Urs(θ̂s −θs)+ 1

2
Urst (θ̂s −θs)(θ̂t −θt )+ 1

6
Urstu(θ̂s −θs)(θ̂t −θt )(θ̂u −θu)+· · · .

Let −Urs denotes the (r, s) element of the inverse observed information matrix
−Urs . By inverting the previous expansion, we obtain

θ̂r − θr = −UrsUs − 1

2
UrsU tuU vwUstvUuUw + 1

6
UrsU tuU vwU xy(Usuyw

− 3U pqUsw pUquy)UtUvUx + · · · . (2.1)

The quantity −Urs generally exists and admits the following expansion in terms of
the (r, s)th element −κrs of the inverse information matrix:

Urs = −κrs +κr tκsu(Utu −κtu)−κr tκsuκvw(Utv −κtv)(Uuw −κuw)+· · · . (2.2)

We now consider the expansion of �(θ̂) − �(θ) given by

�(θ̂) − �(θ) = Ur (θ̂r − θr ) + 1

2
Urs(θ̂r − θr )(θ̂s − θs)

+ 1

6
Urst (θ̂r − θr )(θ̂s − θs)(θ̂t − θt )

+ 1

24
Urstu(θ̂r − θr )(θ̂s − θs)(θ̂t − θt )(θ̂u − θu) + · · · . (2.3)

By inserting Eqs. (2.1) and (2.2) into (2.3) and rearranging terms according to their
asymptotic orders, we obtain, after lengthy algebra, the expected value of 2[�(θ̂) −
�(θ)] to order O(n−1), where �(θ) is the log likelihood at the true parameter value.
This result was first derived by Lawley (1956). His expansion can be expressed as
2E[�(θ̂) − �(θ)] = p + εp +O(n−2), where εp, which is of order O(n−1), is given
by

εp =
∑⊂

(λrstu − λrstuvw), (2.4)

where
λrstu = κrsκ tu

{κrstu

4
− κ

(u)
rst + κ

(su)
r t

}
(2.5)

and

λrstuvw = κrsκ tuκvw
{
κr tv

(κsuw

6
− κ(u)

sw

)
+ κr tu

(κsvw

4
− κ(v)

sw

)

+ κ
(v)
r t κ(u)

sw + κ
(u)
r t κ(v)

sw

}
. (2.6)
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Here,
∑⊂ denotes summation over all components of θ , i.e., the indices r, s, t, u, v,

and w vary over all p parameters. All individual terms in the sums in (2.5) and (2.6)
are of orderO(n−1). The main difficulty with these sums is that the individual terms
are not invariants, and therefore, they have no geometrical interpretation independent
of the coordinate system chosen.

Lawley (1956) showed that the r th cumulant of 2[�(θ̂) − �(θ)], say τr , can be
expressed as

τr = 2r−1 (r − 1)! p

(
1 + εp

p

)r

+ O(n−2). (2.7)

The leading term in (2.7) is the r th cumulant of the χ2
p distribution. So, all cumulants

of 2 [�(θ̂)− �(θ)] may be matched with those of the appropriate χ2
p random variable

as far as terms of orderO(n−1). Thematching of cumulants in (2.7) ismore obviously
appropriate for continuous than discrete random variables.

Several papers have focused on deriving matrix formulae for Bartlett corrections
in general classes of regression models based on Eqs. (2.4)–(2.6). Sharp (1975) used
these equations to obtain corrections for testing the following hypotheses in Markov
chains: that the transition probabilities are stable over time, that the chain is of a given
order, and that several samples come from the same chain. Sharp’s results cover most
of the tests on Markov parameters used in practice. Williams (1976) derived Bartlett
correction factors for log-linear models in complete multidimensional tables with
closed-form estimators by expanding the LR criterion in a Taylor series instead
of using these equations. Cordeiro (1983, 1987) obtained Bartlett corrections for
generalized linear models (GLMs) when the dispersion parameter is known and
unknown, respectively.

Barndorff-Nielsen andCox (1984) gave an indirect method for computing Bartlett
corrections under rather general parametric models by establishing a simple con-
nection between the correction term b and the normalizing constants of the general
expression for the conditional distribution of theMLE, namely b = (A0/A)q (n/2π),
where A and A0 are the normalizing constants of the general formula for the density
of the MLE conditional on an exact or approximate ancillary statistic when this for-
mula is applied to the unrestricted and null (restricted) models, respectively. It is usu-
ally easier to obtain the Bartlett correction for special cases using Lawley’s formula
than using Barndorff-Nielsen and Cox’s expression, since the former involves only
moments of log-likelihood derivatives, whereas the latter requires exact or approxi-
mate computation of the conditional distribution of the MLE. When there are many
nuisance parameters, it may not be easy to obtain ancillary statistics for these para-
meters, and hence, the evaluation of Barndorff-Nielsen and Cox’s formula can be
quite cumbersome. The constants A0 and A are usually functions of the maximal
ancillary statistic, although to the relevant order of magnitude, w∗ is independent of
the ancillary statistic selected. The authors have also obtained various expressions for
these quantities and, in particular, an approximation that does not require integration
over the sample space for the one-parameter case.
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Since the statistic w is invariant under reparameterization, it is possible to
obtain large-sample expansions for it and for its expectation in terms of invariants.
McCullagh and Cox (1986) used this fact to represent the Bartlett correction as a
function of invariant combinations of cumulants of the first two log-likelihood deriv-
atives and gave it a geometric interpretation in full generality in terms of the model
curvature. It is also noteworthy thatMcCullagh and Cox’s (1986) formula is in agree-
ment with Lawley’s (1956) formula. The advantage ofMcCullagh and Cox’s formula
lies in its geometric interpretation, whereas the main advantage of Lawley’s result
is that it can be more easily implemented to obtain Bartlett corrections for special
models.

Considerable attention in the literature has been given to the computation of
Bartlett corrections, both using alternative methods to Lawley’s formula and by
means of simpler formulas for specific models; see, for example, the references in
Cribari-Neto and Cordeiro (1996).

2.4 Bartlett-Corrected Likelihood Ratio Tests

Consider a parametric model f (y; θ), whose probability or density function is
indexed by the parameter vector θ = (ψ∈, λ∈)∈, with dim(ψ) = q and dim(λ) =
p − q for q < p. The interest lies in testing the composite null hypothesis
H0 : ψ = ψ(0) against the two-sided alternative hypothesis H : ψ ≤= ψ(0), where
λ is a vector of nuisance parameters. The LR statistic w is defined as

w = 2[�(ψ̂, λ̂) − �(ψ(0), λ̃)],

where ψ̂ and λ̂ are the MLEs of ψ and λ under the alternative hypothesis and λ̃ is
the restricted MLE of λ subject to ψ = ψ(0).

The expected value of w can be expressed as

E(w) = 2E[�(ψ̂, λ̂) − �(ψ, λ)] − 2E[�(ψ(0), λ̃) − �(ψ, λ)],

and then using (2.4) it follows that

E(w) = q + εp − εp−q , (2.8)

where εp is obtained from Eqs. (2.5) and (2.6) by summing over the parameters in
ψ and λ. The term εp−q is calculated analogously, the only difference being that the
summations run over the parameters in λ since ψ is fixed at ψ(0). For further details,
see Lawley (1956) and Cordeiro (1993a).
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A further step on the improvement of the statistic w was taken by Hayakawa
(1977), who derived an asymptotic expansion for the null distribution of w to order
O(n−1), under the null hypothesis H0 : ψ = ψ(0), given by

Pr(w ∞ z) = Fq(z) + 1

24

[
A2Fq+4(z) − (2A2 − A1)Fq+2(z) (2.9)

+ (A2 − A1)Fq(z)
]
,

where Fq(·) is the cumulative distribution function (cdf) of aχ2 randomvariablewith
q degrees of freedom and the quantities A1 and A2 are of orderO(n−1). Here, A1 is a
function of expected values of the first four log-likelihood derivatives and of the first
two derivatives of these expected values with respect to the model parameters. When
there are nuisance parameters, A1 can be determined as the difference between two
functions identical to (2.4), evaluated under the null and alternative hypotheses. The
error in Eq. (2.9) is O(n−2) and not O(n−3/2) as it is sometimes reported. Recall,
however, that the Bartlett correction factor is given by c = 1 + (12q)−1A1, which
differs from the one that follows from (2.9) unless A2 = 0. This points to a conflict
between Hayakawa’s and Lawley’s results. This puzzle was solved by Harris (1986)
and Cordeiro (1987). Harris showed that A2 should not be present in (2.9), whereas
Cordeiro showed that A2 always equals zero; see also Chesher and Smith (1995). The
main contribution of Eq. (2.9) with A2 = 0 is that it provides a relatively simple proof
that w∗ = w/c has a χ2

q null distribution with errorO(n−2). In fact, Cordeiro (1987)
demonstrated that the simple correction of the first moment of w to order O(n−1)

causes the removal of the term of the same order in the asymptotic expansion of
the corrected statistic w∗. This result was a starting point for numerous subsequent
research efforts in the direction of establishing several explicit expressions forBartlett
corrections in various classes of statistical models. Let fq(·) be the density function
of a χ2

q distribution. Differentiation of (2.9) with A2 = 0 yields the density function
of w to order O(n−1), which is given by

fw(x) = fq(x)

{
1 + b

2

(
x

q
− 1

)}
, (2.10)

where b = b(ψ(0), λ) = A1/12 = εp −εp−q is evidently a quantity of orderO(n−1)

to be estimated under the null hypothesis H0. A general formula for the constant b
can be obtained using Eqs. (2.4), (2.5), and (2.6).

Clearly, fw(·) depends only on the dimension of ψ , on the reference density
function fq(·) and on the term of orderO(n−1) in the expected value of w. Using Eq.
(2.10), it is possible to show that the null density function of the modified statistic
w∗ = w/(1+ b/q) or w(1− b/q), up to terms of order O(n−1), is fw∗(x) = fq(x).
Hence, Pr(w ∞ x) = Fq(x) + O(n−2), whereas Pr(w∗ ∞ x) = Fq(x) + O(n−1).
In other words, the error of the χ2

q approximation to the null distribution of w is of
order O(n−1), which is reduced to order O(n−2) when the limiting χ2 distribution
is used to approximate the null distribution of w∗. Thus, the modified statistic w∗
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has a χ2
q null distribution, except for terms of order O(n−2) as first suggested by

Lawley’s Eq. (2.7). In general, convergence of the cumulants implies convergence
in distribution, because the asymptotic cumulants uniquely determine a distribution.

In practice, we can obtain the Bartlett correction from the joint cumulants of the
log-likelihood derivatives. Such cumulants can, however, be cumbersome in some
statisticalmodels. In certain regressionsmodels, they are invariant under permutation
of parameters and that fact considerably simplifies the computations.

When testing a simple null hypothesis H0 : θ = θ(0) against a simple compos-
ite hypothesis H : θ ≤= θ(0), all indices are equal to θ , and the Bartlett correction
simplifies to

ε1 = κθθ2{κθθθθ /4 − κ
(θ)
θθθ + κ

(θθ)
θθ } − κθθ3{κθθθ (5κθθθ /12

− 2κ(θ)
θθ ) + 2κ(θ)2

θθ }. (2.11)

The corrected LR statistic w∗ = w/(1 + ε1) is χ2
1 distributed under the null hypoth-

esis to order O(n−1). An important non-regression case is that of the one-parameter
exponential family model. A simple closed-form Bartlett correction for testing the
null hypothesis that its parameter equals a given scalar was obtained by Cordeiro et
al. (1995). They then applied their result to a number of distributions in the expo-
nential family, some of which are widely used in empirical applications in a variety
of fields.

We now provide three simple examples. First, we consider n i.i.d. observations
from the exponential distributionwithmeanμ. The log-likelihood function is �(μ) =
−n log(μ) − ny/μ, where y is the sample mean. The LR statistic for testing H0 :
μ = μ(0) against H : μ ≤= μ(0) is w = 2n{Y log(Y/μ(0))− (Y −μ(0))}. The cumu-
lants are κμ,μ = n/μ2, κμ,μ,μ = −κμ,μμ = 2n/μ3, κμμμ = 4n/μ3, κμμμμ =
−30n/μ4, κμ,μμμ = 18n/μ4, etc. By plugging these cumulants into (2.11), we
obtain the Bartlett correction c = 1 + 1/(6nμ(0)).

Next, we take n i.i.d. observations from the normal distribution N (μ, σ 2). The
log-likelihood function � = �(θ) for θ = (μ, σ 2)T reduces to

� = −n

2
log(2π) − n

2
log(σ 2) − 1

2σ 2

n∑
i=1

(yi − μ)2.

For testing H1 : μ = μ(0) against A1 : μ ≤= μ(0) (σ 2 unknown) and H2 : σ 2 =
σ (0)2 against A2 : σ 2 ≤= σ (0)2 (μ unknown), the LR statistics reduce to

w1 = 2{�(μ̂, σ̂ 2) − �(μ(0), σ̃ 2)} = n log

{
�(Yi − μ(0))2

�(Yi − Y )2

}

and



2.4 Bartlett-Corrected Likelihood Ratio Tests 23

w2 = 2{�(μ̂, σ̂ 2) − �(μ̃, σ (0)2)} = n

[
log

(
σ (0)2

σ̂ 2

)
+ σ̂ 2 − σ (0)2

σ (0)2

]
,

respectively, where μ̂ = μ̃ = Y/n, σ̂ 2 = �(Yi −Y )2/n and σ̃ 2 = �(Yi −μ(0))2/n.
The cumulants κ’s required for computing the Bartlett corrections are κμμ =

−n/σ 2, κσ 2σ 2 = −n/2σ 4, κμσ 2 = 0, κμ,μ,μ = κμ,μμ = κμμμ = 0, κσ 2,σ 2,σ 2 =
−κσ 2,σ 2σ 2 = n/σ 6, κσ 2σ 2σ 2 = 2n/σ 6, κμ,μσ 2 = −κμμσ 2 = −n/σ 4, κμ,μ,σ 2 =
3n/σ 4, κμμσ 2σ 2 = −2n/σ 6, etc. Several of them are obtained using Bartlett iden-
tities. From Eqs. (2.4)–(2.6), we have

E(w1) = 1 +
∑
μ,σ 2

(�rstu − �rstuvw) − (�σ 2σ 2σ 2σ 2 − �σ 2σ 2σ 2σ 2σ 2σ 2)

and
E(w2) = 1 +

∑
μ,σ 2

(�rstu − �rstuvw) − (�μμμμ − �μμμμμμ).

After some algebra, we obtain

E(w1) = 1 + 3

2n
and E(w2) = 1 + 11

6n
.

Thus, the modified LR statistics are w∗
1 = w1/(1+3/2n) and w∗

2 = w2/(1+11/6n)

(for testing H1 and H2, respectively). The corrections can also be obtained from first
principles by noting that nσ̂ 2/σ 2 √ χ2

n and nσ̃ 2/σ 2 √ χ2
n−1 and then approximating

E[log(χ2
n )] by log(n) − n−1.

Bartlett corrections represent an important area of research in asymptotic the-
ory because of their widely applicability. Corrected LR statistics for exponential
family non-linear models were obtained by Cordeiro and Paula (1989). They gave
general matrix expressions for Bartlett corrections in these models involving an
unpleasant looking quantity which may be regarded as a measure of non-linearity
of the model systematic component. Attfield (1991) and Cordeiro (1993b) have
shown how to correct LR statistics used in heteroscedasticity tests. Computer code
for calculating Bartlett corrections was developed by Andrews and Stafford (1993).
Cordeiro et al. (1994) derived matrix formulas for Bartlett corrections in dispersion
models, thus extending previous results by Cordeiro (1983) and Cordeiro and Paula
(1989). Cordeiro (1995) presented extensive simulation results on the performance
of the corrected statistic w∗ in GLMs with focus on gamma and log-linear models.
Zucker et al. (2000) obtained Bartlett correction formulas for LR tests for the regres-
sion parameters in the general mixed model and investigated the performance of the
Bartlett-corrected tests. More recently, using Eqs. (2.4)–(2.6), Giersbergen (2009)
derived Bartlett corrections for testing hypotheses on the autoregressive parameter in
the stable AR(1) model, in the AR(1) model with intercept and in the AR(1) model
with intercept and linear trend. Melo et al. (2009) addressed the issue of improving
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LR tests in mixed linear models. For a detailed account of the applicability of Bartlett
corrections, see Cribari-Neto and Cordeiro (1996).

2.5 Generalized Linear Models

The class of GLMs is particularly useful for fitting non-normal models, typically by
the ML method. A wide variety of models can be studied within the framework of
GLMs when the classical assumptions of normal theory are violated. The unified
theory of these models, including a general algorithm for computing the MLEs, is
extremely important for data analysis. This class ofmodels is basedon the exponential
family. The use of GLMs has become very common in recent years, and it is thus
useful to develop second-order asymptotic theory for inference and diagnostics. The
statistical analysis of such models is generally based on the asymptotic properties
of the MLEs. Standard references on GLMs are McCullagh and Nelder (1989) and
Dobson and Barnett (1998).

In these models, the random variables Y1, . . . , Yn are assumed to be independent,
each Yi having distribution in the linear exponential family given by

π(y; θi , φ) = exp{φ [y θi − b(θi ) + a(y)] + c(y, φ)}, (2.12)

where b(·) and c(·, ·) are known appropriate functions. The parameter φ is said to
be the precision parameter and is assumed constant throughout the observations. Let
σ 2 = φ−1 be the dispersion parameter. If Y is continuous π is assumed to be a
density with respect to the Lebesgue measure, whereas if Y is discrete π is assumed
to be a density with respect to the counting measure. Several important distributions
are special cases of exponential family models.

Themean and variance of Yi areE(Yi ) = μi = db(θi )/dθi andVar(Yi ) = φ−1Vi ,
where V = dμ/dθ is the variance function. The parameter θ = ∫

V −1dμ = q(μ) is
a known one-to-one function of μ. The exponential family model (2.12) is uniquely
characterized by its variance function V , which plays a key role in the study of
its mathematical properties and in estimation. For gamma models, the dispersion
parameter σ 2 is the reciprocal of the index, whereas for normal and inverse Gaussian
models, σ 2 is the variance and Var(Y )/E(Y )3, respectively. If the distribution of Y
involves only one unknown parameter, as in the binomial and Poisson models, then
φ can be taken to be equal to one.

For two-parameter full exponential family distributions with canonical para-
meters φ and φ θ , the decomposition c(y, φ) = d1(φ) + d2(y) holds. Here,
d1(φ) = log(φ)/2 and d2(y) = − log(2π)/2 for the normal distribution with vari-
ance φ−1, d1(φ) = φ log(φ) − log[Γ (φ)] and d2(y) = −y for the gamma distribu-
tion with index φ and d1(φ) = log(φ)/2 and d2(y) = − log(2πy3)/2 for the inverse
Gaussian distribution with φ = E(Y )3/Var(Y ), where Γ (·) is the gamma function.

A GLM is defined by the family of distributions in (2.12) and by the system-
atic component g(μ) = η = Xβ, where g(·) is a known one-to-one continuously
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twice-differentiable function, X is a specified n × p model matrix of full rank p
(p < n) and β = (β1, . . . , βp)

∈ is a set of unknown linear parameters. The link
function defined by θ = η is known as the canonical link function. The canonical
link functions for the most commonly used distributions are: normal g(μ) = μ,
Poisson g(μ) = log(μ), gamma g(μ) = −μ−1, binomial g(μ) = log[μ/(1 − μ)],
and inverse Gaussian g(μ) = −μ−2.

Denote the n observations by y1, . . . , yn , the total log-likelihood forβ by � = �(β)

and the MLE of β by β̂. The information matrix for β is given by K = {−κrs} =
φ (X∈W X), where W = diag{wi } and wi = V −1

i (dμi/dηi )
2. Since X has full

rank and w and φ are positive, the information matrix is positive definite and so is
its inverse, K −1 = {−κrs} = φ−1 (X∈W X)−1. Let η̂ = X β̂ and μ̂ = g−1(η̂) be
the MLEs of η and μ, respectively. The precision parameter φ does not enter into
the estimating equations (X∈ Ŵ X) β̂ = X∈ Ŵ ẑ, which have the form of a linear-
weighted least-squares regression with weight matrix given by W . The dependent
variable in the weighted regression is z = (z1, . . . , zn)∈, where zi = ηi + (yi −
μi )dηi/dμi , i = 1, . . . , n.

For two-parameter exponential models when φ is unknown, we have c(y, φ) =
d1(φ) + d2(y). Hence, the MLE φ̂ of φ can be obtained as the solution of

2n d ⊂
1(φ̂) + 2

n∑
i=1

[v(yi ) + a(yi )] = Dp(y, μ̂),

where

Dp(y, μ̂) = 2
n∑

i=1

{v(yi ) − v(μ̂i ) + (μ̂i − yi ) q(μ̂i )}

is the deviance of the model, v(μ) = μ q(μ) − b(q(μ)) and primes here denote
derivatives with respect to φ. The deviance can be computed from the observations
and from the MLEs μ̂1, . . . , μ̂n . Thus, φ̂ is a function of the model deviance.

2.5.1 Bartlett Correction

In what follows, dashes denote derivatives of the mean with respect to the linear
predictor. So, μ⊂ = dμ/dη, μ⊂⊂ = d2μ/dη2, etc. Further, let V (r) = dr V/dμr for
r = 1, 2. We introduce the scalars f = V −1μ⊂μ⊂⊂, g = V −1μ⊂μ⊂⊂ − V −2V (1)μ⊂3
and

h = V −1μ⊂⊂ (μ⊂⊂ − 4wV (1)
)

+ w2
(
2V −1V (1)2 − V (2)

)
,

and the corresponding diagonal matrices F = diag{ f1, . . . , fn}, G = diag{g1, . . . ,
gn}, and H = diag{h1, . . . , hn}. We define the n × n positive semi-definite matrix
Z = {zi j } = X (X∈W X)−1 X∈ of rank p which is, apart from the multiplier
φ−1, the asymptotic covariance matrix of the estimators η̂1, . . . , η̂n of the linear
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predictors. Additionally, Zd = diag{z11, . . . , znn} is a diagonal matrix with the
diagonal elements of Z , Z3 = {z3i j } and 1 is an n × 1 vector of ones. The joint
cumulants corresponding to the β components in Eqs. (2.5) and (2.6) can be easily
derived. Some of them are κrs = E(∂2�/∂βr∂βs) = −φ

∑n
i=1 wi xir xis, κrst =

E(∂3�/∂βr∂βs∂βt ) = −φ
∑n

i=1( fi + 2gi ) xir xis xit ,
1
4κrstu − κ

(u)
rst + κ

(su)
r t =

φ
4

∑n
i=1 hi xir xis xit xiu , and so on. All κ’s refer to a total over the sample and are, in

general, of order n. For GLMs, these cumulants are invariant under permutation of
parameters, for example, κrs,t = κr t,s = κst,r holds but not in general models.

For a GLM, we can easily obtain the cumulants κ’s. The key to obtain a simple
expression for the Bartlett correction in GLMs is that the log-likelihood derivatives
are linear functions of y and the invariance of the cumulants κ’s under permutation of
the β parameters. Let εp be theO(n−1) term in the expected value of 2[�(β̂)−�(β)].
Plugging the expressions for κrs, κrst , κrstu, κ

(t)
rs , κ

(tu)
rs , and κ

(u)
rst in Eqs. (2.4)–(2.6),

carrying out the sums over the sample after evaluating the sums over the parameters,
Cordeiro (1983) obtained a simple matrix formula for εp given by

εp = εp(φ, X, μ) = 1

4φ
tr(HZ2

d) − 1

3φ
1∈ GZ(3) (F + G) 1

+ 1

12φ
1∈ F(2Z (3) + 3Zd Z Zd) F 1, (2.13)

where tr is the trace operator. Equation (2.13) depends only on the model matrix
X , the precision parameter φ and the variance and link functions with their first
and second derivatives. Equation (2.13) only involves simple operations on matrices
and vectors and can be easily applied in practice using a computer algebra system
such as Mathematica or Maple, or using a programming language with support
for matrix operations, such as Ox or R. Numerical computation involving higher-
order joint cumulants as in Eqs. (2.5) and (2.6) is thereby avoided. For GLMs with
closed-form expressions for Z , it is possible to obtain simpler expressions for εp.
This formula for εp is very important to derive corrected LR tests for these models.
It can be applied to several special cases of GLMs as discussed by Cordeiro (1983,
1987).

Consider now a partition of the p × 1 vector β = (β∈
1 , β∈

2 )∈ of the linear
parameters of the GLM, where β1 = (β1, . . . , βq)∈ and β2 = (βq+1, . . . , βp)

∈
for q ∞ p, and an induced partition of the model matrix as X = (X1, X2). Our
interest is in testing the composite null hypothesis H0 : β1 = β

(0)
1 against a two-

sided alternative hypothesis, where β
(0)
1 is a vector of known constants. Usually,

β
(0)
1 = 0. Assume for the moment that φ is known. The LR statistic for testing H0

reduces to w = 2{�(β̂1, β̂2) − �(β
(0)
1 , β̃2)}, where β̃2 is the MLE of β2 restricted to

β1 = β
(0)
1 . Using (2.13), we can write E(w) = q + εp − εp−q + O(n−2), where

εp−q = εp−q(φ, X2, μ) can be determined from this equation with X2 in place of X .
Therefore, the corrected LR statistic is defined by w∗ = w/c, where
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c = 1 + εp − εp−q

q
. (2.14)

After forming the matrices Z = X (X∈W X)−1 X∈ and Z2 = X2 (X∈
2 W X2)

−1 X∈
2 ,

it is then straightforward to evaluate εp and εp−q . A possible motivation for devel-
oping simple formulae for Bartlett corrections to LR statistics is that these formulae
can reveal which aspects of the model contribute to the quality of the first-order χ2

approximation.
For calculating the Bartlett corrections in GLMs when φ is unknown, we have to

take into account the joint cumulants between the components ofβ andφ. In this case,
for testing H0 : β1 = β

(0)
1 , Cordeiro (1987) demonstrated, after intensive algebraic

developments, that the Bartlett correction has an extra quantity and it reduces to

c = 1 + εp − εp−q

q
+ 2[φd ⊂⊂⊂

1 (φ) + d ⊂⊂
1 (φ)] − (p + q)d ⊂⊂

1 (φ)

4nφ2d ⊂⊂
1 (φ)2

. (2.15)

Finally, we consider the composite null hypothesis H0 : φ = φ(0) against the
alternative H : φ ≤= φ(0), where now β denotes a vector of nuisance parameters. For
testing H0 : φ = φ(0), the LR statistic is w = 2[�(φ̂) − �(φ(0))] and the Bartlett
correction, which is equal to the expected value of w to order O(n−1), is given by
Cordeiro (1987)

c = 1+ 1

2nd ⊂⊂
1 (φ)2

{
d ⊂⊂⊂⊂
1 (φ)

2
− 5d ⊂⊂⊂

1 (φ)2

6d ⊂⊂
1 (φ)

+
[
φd ⊂⊂⊂

1 (φ) + d ⊂⊂
1 (φ)

φ2

]
p − d ⊂⊂

1 (φ)

2φ2 p2
}

.

For the normal model with variance σ 2 and for the inverse Gaussian model
with precision parameter φ, d1(φ) = log(φ)/2, which yields c = E(w) =
1 + (6n)−1(3p2 + 6p + 2).

2.5.2 Special Models

Equation (2.13) can be simplified for several important special models as shown in
Cordeiro (1983, 1987). Normal models apply to data with constant variance over
the entire range of parameter values. For the normal model (θ = μ, φ = σ−2), we
obtain

εp = σ 2

4

[
tr(HZ2

d) + 1∈ F(Zd Z Zd − 2Z(3))F 1
]
,

where W = diag{μ⊂2}, F = diag{μ⊂μ⊂⊂}, and H = diag{μ⊂⊂2}. Log-linear models are
appropriate for analyzing count data. For the log-linear model (θ = log(μ), φ = 1),
it follows that
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εp = −1

4
tr(HZ2

d) + 1

6
1∈ WZ(3) W 1 + 1

4
1∈ WZd Z Zd W 1,

where W = diag{μ}. Gamma models are widely used for data, including continuous
measurements as well as discrete data, with constant coefficient of variation. For the
gamma model (θ = −μ−1) with power link function η = μα (α = 0 interpreted as
the logarithm link), we obtain

εp = (α2 − 6α − 1)

4φ
tr(HZ2

d) − (3α2 + 6α − 1)

6φ
1∈ W3/2 Z(3) W3/2 1

+ (α − 1)2

4φ
1∈ W 3/2 Zd Z Zd W 3/2 1,

where W = diag{μ−2α}.
Suppose now that p populations follow the density given in (2.12) and that inde-

pendent random samples of sizes n1, . . . , n p (ni → 1, i = 1, . . . , n) are taken
from such populations. In each population, the observations have the same dis-
persion parameter, which may be unknown. The vector of responses is written
as Y = (Y11, . . . , Y1n1 , . . . , Yp1, . . . , Ypn p )

∈, and the linear structure is given by
ηi = β + βi for i = 1, . . . , n, where β is the overall mean and βi is the effect on
the response of the i th population. Here,

∑
βi = 0 and η is functionally related

to μ = E(Y ). It can be shown that the form of X∈W X in the general one-way
classification model is X∈W X = diag{ni wi } and that rank(X∈W X) = p. The
matrix Z has order

∑
ni with typical element δi j (ni wi )

−1, where δi j = 1 if i and
j index observations in the same population and zero otherwise. Let fi , gi , and
hi be the functions defined in the matrices F , G, and H , respectively, for the i th
population. We can obtain Z (3) = Zd Z Zd = {δi j (ni wi )

−3} and then, for exam-
ple, tr(H Z2

d) = ∑
n−1

i hi w
−2
i , 1∈ G Z (3) (F + G) 1 = ∑

n−1
i gi ( fi + gi )w

−3
i and

1∈ F Z (3) F 1 = ∑
n−1

i f 2i w−3
i , where all the summations range from 1 to p. Sub-

stitution into (2.13) gives

εp = 1

12φ

p∑
i=1

n−1
i

[
2

V

(
dV

dμ

)2

− 3
d2V

dμ2

]
i

.

The subscript i in the right-hand side of the above equation indicates that the quantity
inside brackets is evaluated at the i th population. Clearly, because μ̂i is the sample
mean in the i th population, the quantity εp does not depend on the link function. For
normal and inverse Gaussian models, εp = 0, which is in agreement with the exact
χ2 distribution of the LR statistic in both cases.
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2.5.3 Computer Codes for Calculating Bartlett Corrections

Silva and Cordeiro (2009) provided computer codes for calculating Bartlett correc-
tions in GLMs using the R software. They gave empirical examples where their
computer codes are used to calculate Bartlett-corrected statistics. Their first exam-
ple employs data given by Feigl and Zelen (1965) on survival time to death, in
weeks, from diagnosis (y) and log(10) of initial blood cell count (x) for leukemia
patients. Such data were analyzed by McCullagh and Nelder (1989). Silva and
Cordeiro (2009) fitted an exponential regression model with the systematic com-
ponent log(μi ) = β0 +β1xi . Their interest lies in testing H0 : β1 = 0. At the outset,
the data are entered and the null and non-null models are fitted:

x <- c(3.36, 2.88, 3.63, 3.41, 3.78, 4.02, 4.00, 4.23, 3.73,
3.85, 3.97, 4.51, 4.54, 5.00, 5.00, 4.72, 5.00)

y <- c(65, 156, 100, 134, 16, 108, 121, 4, 39, 143, 56, 26,
22, 1, 1, 5, 65)

d <- data.frame(x, y)
fit1 <- glm(y ˜ 1, family=Gamma(link="log"), x=TRUE, data=d)
fit2 <- glm(y ˜ x, family=Gamma(link="log"), x=TRUE, data=d)
anova(fit2, test="Chisq", dispersion=1)

The (uncorrected) LR test is then performed:

Analysis of Deviance Table
Model: Gamma, link: log
Response: y

Terms added sequentially (first to last)
Df Deviance Resid. Df Resid. Dev P(>|Chi|)

NULL 16 26.2821
x 1 6.8256 15 19.4565 0.0090

To obtain the improved LR test for testing H0 : β1 = 0, they considered the variance
function V (μ) = μ2 and φ = 1. Since the logarithm link function was considered,
the modlrt function is called as

modlrt(fit1, fit2, V="muˆ2", linkfun="log(mu)", phi=1)

The output is

Likelihood Ratio Tests

Error distribution: gamma
Link function : log
Model 1 : y ˜ 1
Model 2 : y ˜ x

Model Residual Df Deviance Dispersion
1 16 26.282 1
2 15 19.457 1

LR criterion Df P(>|Chi|)
Uncorrected 6.826 1 0.0090
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Corrected 6.743 1 0.0094

Bartlett Correction: 1.0122
-----------------------------------------

The Bartlett correction is estimated as 1.0122 and thus reduces the LR statistic from
6.826 to 6.743. In this case, the correction is small, and the p value changes from
0.90 to 0.94 %.

Their second empirical illustration considers the 24 (unreplicated) factorial exper-
iment presented by Myers et al. (2002, p. 176), where the response variable is the
resistivity of test wafers in a semiconductor manufacturing process. The goal is to
test the hypothesis of no interaction between the third and fourth factors. This can be
achieved by comparing the model with main effects and all second-order interactions
to the model that does not include the interactions specified in the null hypothesis.
The data are entered and the model are fitted as

x1 <- gl(2, 1, labels=c(-1,1), 16)
x2 <- gl(2, 2, labels=c(-1,1), 16)
x3 <- gl(2, 4, labels=c(-1,1), 16)
x4 <- gl(2, 8, labels=c(-1,1), 16)
y <- c(193.4, 247.6, 168.2, 205, 303.4, 339.9, 226.3, 208.3,

220, 256.4, 165.7, 203.5, 285, 268, 169.1, 208.5)
d <- data.frame(x1, x2, x3, x4, y)
fit1 <- glm(y ˜ x1 + x2 + x3 + x4 + x1*x2 + x1*x3 + x1*x4 +

x2*x4, family=Gamma(log), x=TRUE, data=d)
summary(fit1)
fit2 <- glm(y ˜ x1 + x2 + x3 + x4 + x1*x2 + x1*x3+ x1*x4 +

x2*x4 + x3*x4, family=Gamma(log), x=TRUE, data=d)
summary(fit2)

The instruction

modlrt(fit1, fit2, V="muˆ2", linkfun="log(mu)")

yields the output corresponding to the LR test:

Likelihood Ratio Tests

Error distribution: gamma
Link function : log
Model 1 : y ˜ x1 + x2 + x3 + x4 + x1 * x2 + x1 *

x3 + x1 * x4 + x2 * x4
Model 2 : y ˜ x1 + x2 + x3 + x4 + x1 * x2 + x1 *

x3 + x1 * x4 + x2 * x4 + x3 * x4

Model Residual Df Deviance Dispersion
1 7 0.098 0.0061
2 6 0.065 0.0041

LR criterion Df P(>|Chi|)
Uncorrected 5.413 1 0.0200
Corrected 3.269 1 0.0706
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Bartlett Correction: 1.656
-----------------------------------------

First, notice that the precision parameter φ was not specified in the call to modlrt,
which caused it to be estimated by the ML method and the Bartlett correction was
computed accordingly. It is clear from the above R output that the uncorrected LR
test rejects the null hypothesis of no interaction between the third and fourth factors
at the 5 % nominal level, since the test p value equals 0.02. The corrected LR test,
however, does not reject H0 at the 5 % nominal level (its p value equals 0.07).

A final example is based on a 3 × 4 factorial experiment with four replicates
that was carried out to evaluate the effects of toxic agents on survival times of rats.
The experiment is described in Box and Cox (1964), and the data set can be made
available into R from the object rats in the package faraway. The factors in
the experiment are poison and treat having three and four levels, respectively.
Silva and Cordeiro (2009) considered the inverse Gaussian model for the survival
times with a canonical link function and tested the significance of an interaction
between poison and treat. The null hypothesis under test is that there is no such
interaction. The two models are fitted as follows:

require(faraway)
fit1 <- glm(time ˜ poison + treat,

family=inverse.gaussian(link = "1/muˆ2"),
x=TRUE, data=rats)

summary(fit1)
fit2 <- glm(time ˜ treat * poison,

family=inverse.gaussian(link = "1/muˆ2"),
x=TRUE, data=rats)

summary(fit2)

The instruction

modlrt(fit1, fit2, V="muˆ3", linkfun="1/muˆ2")

is used to perform LR inference:

Likelihood Ratio Tests

Error distribution: inverse.gaussian
Link function : 1/muˆ2
Model 1 : time ˜ poison + treat
Model 2 : time ˜ treat * poison

Model Residual Df Deviance Dispersion
1 42 5.455 0.1299
2 36 3.642 0.1012

LR criterion Df P(>|Chi|)
Uncorrected 13.96 6 0.0301
Corrected 11.52 6 0.0736

Bartlett Correction: 1.2118
-----------------------------------------
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The estimatedBartlett correction equals 1.2118. It reduces the value of theLRstatistic
from 13.96 to 11.52, thus increasing the test p value from 0.0301 to 0.0736.

2.6 Birnbaum–Saunders Non-linear Regression Models

The random variable T is said to be Birnbaum–Saunders (BS) distributed with para-
meters α, η > 0, say BS (α, η), if its cdf is given by

FT (t) = Φ

[
1

α

(√
t

η
−

√
η

t

)]
, t > 0,

where Φ(·) is the standard normal distribution function and α and η are shape and
scale parameters, respectively. The BS distribution can be used to model lifetime
data and typically yields satisfactory tail fitting. It was originally obtained from a
model in which failure follows from the development and growth of a dominant
crack (Birnbaum and Saunders 1969). It is easy to show that η is the median, i.e.,
FT (η) = Φ(0) = 1/2. For all k > 0, it follows that kT √ BS (α, kη).

Rieck and Nedelman (1991) introduced a log-linear regression model based on
the BS (α, η) distribution. They showed that if T √ BS (α, η), then Y = log(T )

is sinh-normal distributed with shape, location, and scale parameters given by α,
μ = log(η) and σ = 2, respectively, say Y √ SN (α, μ, 2). The density function
of Y is given by

π(y) = 1

α
√
2π

cosh

(
y − μ

2

)
exp

{
− 2

α2 sinh2
(

y − μ

2

)}
, y ≥ R, (2.16)

which has a number of interesting properties. For example, it is symmetric around the
location parameter μ, the mean of Y is E(Y ) = μ and if Yα √ SN (α, μ, σ ), then
Zα = 2(Yα − μ)/(ασ) converges in distribution to the standard normal distribution
when α → 0. Likelihood-based inference in BS linear regression models can be
found in several articles.

Lemonte and Cordeiro (2009) proposed the class of BS non-linear regression
models given by

Yi = μi + εi , i = 1, . . . , n, (2.17)

where Yi is the logarithm of the i th lifetime, xi is an m × 1 vector of explanatory
variables values associated with the i th observable response yi , β = (β1, . . . , βp)

∈
is a vector of unknown non-linear parameters (m ∞ p < n) and εi √ SN (α, 0, 2)
for i = 1, . . . , n. They considered a non-linear structure for the mean parameter
μi = fi (xi ;β), where fi (·) is assumed to be a known and twice continuously dif-
ferentiable function such that the derivative matrix X = X (β) = ∂μ/∂β∈ has
rank p for all β, where μ = (μ1, . . . , μn)∈. The non-linear predictors x1, . . . , xn

are embedded in an infinite sequence of m × 1 vectors that must satisfy these
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regularity conditions for the asymptotics to be valid. Under these assumptions,
the MLEs have the usual desirable properties, such as consistency, sufficiency, and
asymptotic normality. The n × p local matrix X has elements that are, in general,
functions of the unknown parameter vector β. As the name suggests, the class of the
BS non-linear regression models extends Rieck and Nedelman’s model to allow for
non-linear parameters β’s.

The log-likelihood function for the parameter vector θ = (β∈, α)∈ from a
random sample Y = (Y1, . . . , Yn)∈ obtained from (2.16), with observed values
y = (y1, . . . , yn)∈, except for constants, can be expressed as

�(θ) =
n∑

i=1

log(ξi1) − 1

2

n∑
i=1

ξ2i2, (2.18)

where

ξi1 = ξi1(θ) = 2

α
cosh

(
yi − μi

2

)
, ξi2 = ξi2(θ) = 2

α
sinh

(
yi − μi

2

)
,

for i = 1, . . . , n. The derivatives of �(θ) with respect to the components of β and
α are given by Ur = ∂�(θ)/∂βr , Uα = ∂�(θ)/∂α, Urs = ∂2�(θ)/∂βr∂βs, Urα =
∂2�(θ)/∂βr∂α, Ursα = ∂3�(θ)/∂βr∂βs∂α, etc. The joint cumulants of log-likelihood
derivatives are κrs = E(Urs), κr,α = E(UrUα), κrst = E(Urst ), etc. Let κ

(t)
rs =

∂κrs/∂βt , etc. All κ’s and their derivatives are of order O(n). In what follows, we
use the notation: dir = ∂μi/∂βr and girs = ∂2μi/∂βr∂βs for the first and second
partial derivatives of μi with respect to the elements of β. We assume that some
standard regularity conditions on �(θ) and its first four derivatives hold as n tends to
infinity. We use the standard notation where joint cumulants are denoted by indices
r, s, t, . . . if they correspond to β parameters, whereas the index α corresponds to
the α parameter. It follows from the differentiation of (2.18) that

κrs = −ψ1(α)

4

n∑
i=1

dir dis, κrα = 0, καα = −2n

α2 ,

where

ψ1(α) = 2 + 4

α2 −
√
2π

α
ψ0(α), ψ0(α) =

{
1 − erf

(√
2

α

)}
exp

(
2

α2

)
.

Here, erf(·) is the error function defined by erf(x) = (2/
√

π)
∫ x
0 e−t2 dt .

Notice that the parameters β and α are globally orthogonal (Cox and Reid
1987) since κrα = 0 for all r = 1, . . . , p. Thus, the joint information matrix
Kθ for θ = (β∈, α)∈ is block diagonal, say Kθ = diag{Kβ, 2n/α2}, where
Kβ = ψ1(α)(X∈ X)/4. In view of the block diagonality of Kθ , the Fisher scoring
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method can be used to obtain theMLEs β̂ and α̂ simultaneously by iteratively solving
the following equations:

(X (m)∈ X (m))β(m+1) = X (m)∈ ζ (m), α(m+1) = 1

2
α(m)(1 + ξ̄

(m)
2 ), m = 0, 1, . . . ,

where ζ (m) = X (m)β(m) + [2/ψ1(α
(m))] s(m), s = (s1, . . . , sn)∈, ξ̄

(m)
2 = n−1∑n

i=1 ξ
2(m)
i2 and si = ξi1ξi2−ξi2/ξi1. Any software with aweighted linear regression

routine can be used to calculate the MLEs of β and α iteratively. Starting values β(0)

and α(0) for the iterative algorithm are required. These new values can update ζ and
ξ̄2 and so on. The iterating mechanism goes on until convergence is achieved.

In what follows, we present the Bartlett correction for testing nested hypotheses
in BS non-linear regression models. The joint cumulants for β and α required for
the Bartlett correction are easily calculated. They are not given here but can be
obtained from the authors upon request. Our aim is to present the Bartlett corrections
in a more readily computable form by exploiting special properties of these κ’s.
The calculations follow Eqs. (2.4)–(2.6). We can write 2E{�(β̂, α̂) − �(β, α)} =
p + 1 + εp+1 + O(n−2), where εp+1 can be calculated using Eq. (2.4) with all
indices varying in β and α. Some additional matrices are introduced:

Z = X (X∈ X)−1X∈ = {zi j }, Zd = diag{z11, . . . , znn},

Dd = diag{d1, . . . , dn}, B = {bi j }, Bd = diag{b11, . . . , bnn},

where di = tr{Xi (X∈ X)−1}, bi j = tr{Xi (X∈ X)−1X j (X∈ X)−1}, and Xi denotes a
p × p matrix whose elements are ∂2μi/∂βr∂βs for r, s = 1, . . . , p. Also, Z (2) =
Z � Z , Z (2)

d = Zd � Zd , and so on, where ‘�’ denotes the Hadamard product of
matrices.

It is possible to write, after lengthy algebra, εp+1 = ε(α, p, Z , B, Dd) as
(Lemonte et al. 2012)

ε(α, p, Z , B, Dd) = εL(α, p, Z) + εN L(α, Z , B, Dd), (2.19)

where

εL(α, p, Z) = 1

n

{
1

3
+ δ1(α)p + δ2(α)p2

}
+ δ3(α)tr(Z (2)

d )

and

εN L(α, Z , B, Dd) = − 1

ψ1(α)
tr(D(2)

d − 2Bd + Z B).

Additionally,
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δ0(α) = 2 + α2

ψ1(α)α2 , δ1(α) = 4δ0(α)

{
2

2 + α2 + δ0(α) − 2αψ3(α)

ψ1(α)

}
,

δ2(α) = 2δ0(α)2, δ3(α) = 4ψ2(α)

ψ1(α)2
,

ψ2(α) = −1

4

{
2 + 7

α2 −
√

π

2

(
1

2α
+ 6

α3

)
ψ0(α)

}
,

ψ3(α) = 3

α3 −
√
2π

4α2

(
1 + 4

α2

)
ψ0(α).

The details of the calculations can be found in Lemonte et al. (2012).
Equation (2.19) provides a simple decomposition for the Bartlett correction.

A brief commentary on this equation seems in order. The quantity εL(α, p, Z) is
identical to the expression for the BS linear regression models derived by Lemonte
et al. (2010). On the other hand, the quantity εN L(α, Z , B, Dd) may be regarded
as the amount of non-linearity in the null expected LR induced by the non-linear
parameters in fi (xi ;β). In particular, if fi (xi ;β) is linear for i = 1, . . . , n, we
obtain εN L(α, Z , B, Dd) = 0, since di and bi j vanish and thus εp+1 reduces to the
result by Lemonte et al. (2010). Finally, it should be noted that Eq. (2.19) is quite
simple and can be easily implemented in anymathematical or statistical/econometric
programming environment, such as Maple, Ox, and R.

The interest typically lies in testing restrictions on a subset of the regression
parameters. Consider the partition β = (β∈

1 , β∈
2 )∈, where β1 = (β1, . . . , βq)∈ and

β2 = (βq+1, . . . , βp)
∈ are vectors of dimensions q ×1 and (p−q)×1, respectively,

and the test of H0 : β1 = β
(0)
1 against H : β1 ≤= β

(0)
1 , where β

(0)
1 is a q-vector of

known constants, β2 and α being nuisance parameters. The local model matrix X
is partitioned following the partition of β, say X = (X1 X2), the dimensions of X1
and X2 being n × q and n × (p − q), respectively. The Bartlett correction factor is
c = 1+ b/q, where b = εp(α, Z , B, Dd) − εp−q(α, Z1, B2, D2d). It can be shown
that

b = 1

n

{
q δ1(α) + q(2p − q) δ2(α)

} + δ3(α)tr(Z(2)
d − Z(2)

2d )

− 1

ψ1(α)
tr{(D(2)

d − D(2)
2d ) − 2(Bd − B2d) + (ZB − Z2B2)}.

Here,
Z2 = X2(X∈

2 X2)
−1X∈

2 = {z2i j }, Z2d = diag{z211, . . . , z2nn},

D2d = diag{d21, . . . , d2n}, B2 = {b2i j }, B2d = diag{b211, . . . , b2nn},

where d2i = tr{X22i (X∈
2 X2)

−1}, b2i j = tr{X22i (X∈
2 X2)

−1X22 j (X∈
2 X2)

−2}, and
X22i is a (p − q) × (p − q) matrix obtained from the p × p partitioned matrix
following the partition of β,
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Xi =
{

∂2μi

∂βr∂βs

}
=

[
X11i X12i

X21i X22i

]
,

for i = 1, . . . , n.
Consider now the test of H0 : α = α(0) against H : α ≤= α(0), where α(0) is a

given positive scalar and β is a vector of nuisance parameters. The Bartlett correction
factor reduces to

c = 1 + 1

n

{
1

3
+ δ1(α

(0)) p + δ2(α
(0)) p2

}
.

The correction c depends only on the non-linear structure through the rank of X
(i.e., p) and it is exactly the same given by Lemonte et al. (2010) for the BS linear
regression. Thus, the Bartlett correction for testing H0 : α = α(0) is the same for
any non-linear regression structure with the same p.

2.7 Bootstrap-Based Hypothesis Testing

An alternative strategy for improving on LR testing inference (and also on testing
inference based on other criteria) is to use data resampling to estimate the test statistic
null distribution, thus avoiding the use of an asymptotic approximation. This can be
done using Efron’s (1979) bootstrap in its parametric version. The main idea is to
sample from the data as if we were sampling from the population, and then use the
information contained in the pseudo-samples to improve the statistical inference.

Consider a random sample denoted by Y = (Y1, . . . , Yn)∈, where each Yi is a
random draw from the random variable Y . We denote the distribution function of Y
by F = Fθ = Fθ (y), where θ is a scalar- or vector-valued parameter. The parameter
θ can be viewed as a functional of F : θ = t (F). Suppose θ is vector-valued and
we wish to test H0 : ψ = ψ0 against H : ψ ≤= ψ0, where θ = (ψ∈, λ∈)∈.
Here, ψ is a q-vector of parameters of interest and λ is a (p − q)-vector of nuisance
parameters. Hence, θ contains p unknown parameters. The (unrestricted)MLEof θ is
θ̂ = (ψ̂∈, λ̂∈)∈,with ψ̂ and λ̂being theMLEsofψ andλ, respectively. The restricted
MLE of θ (i.e., obtained by imposing the null hypothesis) is θ̃ = (ψ0, λ̃∈)∈, where
λ̃ is the MLE of λ given ψ = ψ0. The LR test statistic becomes

w = 2{�(θ̂) − �(θ̃)},

which, under the null hypothesis, has a limiting χ2
q distribution. As before, � denotes

the log-likelihood function. The null hypothesis is rejected if w > χ2
1−α,q , where

χ2
1−α,q is the (1−α)th quantile from the χ2

q distribution and α is the test significance
level (e.g., α = 0.05). Since the test is based on an asymptotic (approximate) critical
value size, distortions are likely to occur when the sample size is not large.
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Testing inference based on asymptotic χ2 criteria (such as the LR test statistic)
can be made more reliable by a critical value obtained from the test statistic null dis-
tribution estimated by bootstrap resampling. This can be accomplished as follows.
We obtain, from the original sample y, a large number (say, R) of pseudo-samples
y∗ = (y∗

1 , . . . , y∗
n )∈. The null hypothesis is imposed when generating the artificial

samples, which are obtained by taking random draws from Fθ̃ . Notice that we sample
from the distribution function F after replacing the unknown parameter vector by
its restricted MLE. The test statistic is computed for each of the pseudo-samples
w∗
1, . . . , w∗

R . The bootstrap statistics are then used to estimate the null distribution
of w. It is important to note that they were computed from samples generated by
imposing the null hypothesis, and hence, they can be used to estimate the null distri-
bution of w. A bootstrap critical value corresponding to the (1− α)th nominal level
(0 < α < 1) can be obtained as the (1 − α)th quantile of the R + 1 test statistics
(R bootstrap statistics and the test statistic computed using the original sample).
Denote such a critical value by cvb1−α . The null hypothesis is thus rejected if
w > cvb1−α . Notice that the bootstrap test does not use a critical value obtained
from the test statistic limiting (asymptotic) null distribution, which may yield a poor
approximation to the exact critical value; it uses a critical value from the estimated
null distribution of w.

Alternatively, we can state the rejection rule using the bootstrap p value, which is
given by (k + 1)/(R + 1), where k is the number of bootstrap replications in which
w∗ (the LR statistic computed using the pseudo-sample) is greater than w (the LR
statistic computed using the original sample). The null hypothesis is rejected if such
a p-value is smaller than or equal to α, the significance level.

As R → ∞, the bootstrap p value tends to the ideal p value, say p∗, which
leads to the rejection of the null hypothesis whenever p∗ ∞ α. However, a ‘feasible
bootstrap’ must be based on a finite number of bootstrap replications (R < ∞). This
causes a loss of power. Such a loss, however, tends to be small when R (the number of
bootstrap resamples) is large. It is possible to obtain a bound for the loss in power that
follows from using a finite number of resamples. Let πR and π∞ denote the powers
of the feasible and ideal bootstrap schemes, respectively (that is, the probability that
we reject H0 when H0 is false based on R < ∞ and on R = ∞). It can be shown
that (Jöeckel 1986)

πR

π∞
→ 1 −

√
1 − α

2π (R + 1) α
.

This bound can give us a rough idea of the magnitude of the power loss that moderate
values of R may introduce. For details, seeDavison andHinkley (1997, pp. 155–156).

Consider the linear regression model, which is commonly used in a wide variety
of fields:

Y = Xβ + ε,

where Y is an n-vector of responses, ε is an n-vector of (random, unobservable)
errors, X is a fixed n × p model matrix of covariate values (rank(X) = p < n), and



38 2 Bartlett Corrections and Bootstrap Testing Inference

β = (β1, . . . , βp)
∈ is a p-vector of unknown regression parameters. The model can

be written as
Yi = x∈

i β + εi , i = 1, . . . , n,

where xi is the i th row of X . Each error εi has mean zero, constant variance σ 2 (0 <

σ 2 < ∞), and is pairwise uncorrelated with all other errors. The errors covariance
matrix is σ 2 In , where In denotes the n-dimensional identity matrix. The ordinary
least-squares (OLS) estimators of β and σ 2 are β̂ = (X∈ X)−1X∈Y and σ̂ 2 =
(n − p)−1ε̂∈ε̂ = (n − p)−1 ∑n

i=1 ε̂2i , respectively. Here, ε̂ = Y − X β̂ is the vector
of OLS residuals, ε̂i denoting its i th component. It is easy to show that the covariance
matrix of β̂ is σ 2(X∈ X)−1, which can be easily estimated by σ̂ 2(X∈ X)−1.

Suppose we wish to test H0 : β j = β0
j against H : β j ≤= β0

j , for some j =
1, . . . , p. This is usually done by assuming that the errors are normally distributed,
computing the test statistic given by

t = β̂ j − β0
j√

V̂ar(β̂ j )

, (2.20)

where V̂ar(β̂ j ) is the j th diagonal element of σ̂ 2(X∈ X)−1, and then rejecting the null
hypothesis if |t | > t1−α/2,n−p. Here, t1−α/2,n−p denotes the (1− α/2)th quantile of
the Student tn−p distribution and α is the test significance level. This is an exact test,
but it is heavily dependent on the assumptions that the errors are normally distributed
and homoscedastic (i.e., that the errors have constant variance).

Let us use bootstrap resampling to perform the test of H0 : β j = β0
j without

having to resort to the normality assumption. We proceed as follows. First, compute
the t test statistic in (2.20) and estimate the restricted model. Then:

1. For each i , i = 1, . . . , n, sample ε̃∗
i from ε̃1, . . . , ε̃n with replacement, where ε̃i

is the i th restricted OLS residual.
2. Construct a bootstrap sample (Y ∗, X), where Y ∗

i = x∈
i β̃ + ε̃∗

i , i = 1, . . . , n.
Here, β̃ is the restricted parameter estimate.

3. Compute the OLS estimate of β, β̂∗ = (X∈ X)−1X∈Y ∗, and compute the asso-
ciated test statistic, t∗.

4. Execute steps 1–3 a large number (say, R) of times.
5. Compute the quantile of interest of the empirical distribution of the R + 1 real-

izations of the test statistic.
6. Perform the test using the t test statistic computed from the original sample

together with the bootstrap critical value obtained in Step 5.

Note that in the bootstrap test we do not rely on critical values from the Student
t distribution (nor from the standard normal limiting null distribution). Instead, we
use critical values obtained from the bootstrapping scheme. The bootstrap method
described above is usually referred to as the unweighted or naïve bootstrap.

Let us now consider testing inference on the regression parameters under het-
eroscedasticity. Our goal is to perform inference that is valid under both
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homoscedasticity and heteroscedasticity of unknown form. In this setting, ε1, . . . , εn

have variances σ 2
1 , . . . , σ 2

n (0 < σ 2
i < ∞∀ i), respectively, the error covariance

matrix being Ω = diag{σ 2
1 , . . . , σ 2

n }. Note that the n variances show up in the main
diagonal and that all off-diagonal elements equal zero (since each error is uncorre-
lated with all other errors). The OLSE β̂ remains unbiased and consistent when the
errors are heteroscedastic and it is easy to show that its covariance matrix becomes
(X∈ X)−1X∈Ω X (X∈ X)−1. As explained in Sect. 4.10, this matrix can be consis-
tently estimated using a heteroscedasticity-consistent covariance matrix estimator,
such as, for instance, the HC0 estimator (White 1980)

HC0 = Ψ̂ = (X∈ X)−1X∈Ω̂ X (X∈ X)−1, (2.21)

where Ω̂ = diag{ε̂21, . . . , ε̂2n}, with ε̂i being the i th least-squares residual, i.e., ε̂i =
Yi −x∈

i β̂, i = 1, . . . , n. The quasi-t test statistic is as in (2.20), but now the estimated
variance of β̂ j is the j th diagonal element of (2.21). Under the null hypothesis, it
has a limiting standard normal distribution, and hence, a test can be performed by
comparing the test statistic to the appropriate standard normal quantile. It has been
shown, however, that the White estimator is typically quite biased in small samples
and that the associated quasi-t test is usually liberal (oversized).

It is noteworthy that in the naïve bootstrap, the errors are taken to be identically
distributed, which is not the case when they display heteroscedasticity. A weighted
bootstrap for handling heteroscedastic data was introduced by Wu (1986). Let τ

denote the quasi-t test statistic computed from the original sample, i.e., from (Y, X).
Then:

1. For each i , i = 1, . . . , n, draw a random number t∗i from a population that has
mean zero and variance one.

2. Construct a bootstrap sample (Y ∗, X), where Y ∗
i = x∈

i β̃ + t∗i ε̃i/(1 − hi ). Here,
β̃ and ε̃ are the restricted parameter estimates and the associated restricted least-
squares residuals from the regression of Y on X , respectively. Also, hi is the i th
diagonal element of H = X (X∈ X)−1X∈ (the ‘hat matrix’).

3. Compute the OLSE of β, β̂∗ = (X ⊂ X)−1X ⊂Y ∗, and the associated quasi-t test
statistic, τ ∗.

4. Execute steps 1–3 a large number (say, R) of times.
5. Compute the quantile of interest of the empirical distribution of the R + 1 real-

izations of the test statistic.
6. Perform the test using the quasi-t statistic computed initially (τ ) together with

the bootstrap critical value obtained in step 5 above.

The null hypothesis is rejected if (k + 1)/(R + 1) < α, where α is the nominal level
of the test and k is the number of times (out of R) such that |τ ∗| > |τ |. Note that
(k + 1)/(R + 1) can be viewed as a bootstrap p value.

In the above bootstrap scheme, t∗i must be sampled from a population that has
mean zero and unit variance (step 1). This population is sometimes referred to as
‘the pick distribution’ (Godfrey 2009). Obvious choices for the pick distribution are:

http://dx.doi.org/10.1007/978-3-642-55255-7_4
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(1) the regression residuals (standardized to have mean zero and variance one) and
(2) the standard normal distribution. Liu (1988) showed that when the pick distribu-
tion third non-central moment equals one, weighted bootstrap enjoys second-order
optimality in the sense that the test statistic first three moments are estimated cor-
rectly up to order O(n−1). A pick distribution that has mean zero, variance one and
third non-central moment equal to one can be defined as follows. Let Z1 and Z2 be
independent normal random variables with variance 1/2 and means given by

1

2

(√
17

6
+

√
1

6

)
and

1

2

(√
17

6
−

√
1

6

)
,

respectively. We then sample from the pick distribution Z1 × Z2 −E(Z1) ×E(Z2).
The Monte Carlo evidence, however, suggests that the best pick distribution is a very
simple one: the Rademacker distribution. It is defined as: −1 with probability 1/2
and +1 with probability 1/2; see, e.g., Flachaire (2005).

It is possible to obtain a more accurate bootstrap p value using the double boot-
strap, which is, however, more computer intensive. Here, we nest a bootstrap sam-
plingwithin each bootstrap replication, that is, we perform a second level of bootstrap
resampling for each original bootstrap replication; see Davison and Hinkley (1997,
§4.5). Let τ ∗

1 , . . . , τ ∗
R denote the R bootstrap realizations of the test statistic. We pro-

ceed as follows, where C denotes the number of bootstrap replications in the second
level of bootstrapping, and b = 1, . . . , R indexes the first level of bootstrapping:

1. For each i , i = 1, . . . , n, draw a random number t∗∗
i from a population that has

mean zero and variance one.
2. Construct a bootstrap sample (Y ∗∗, X), where Y ∗∗

i = x∈
i β̃† + t∗∗

i ε̃
†
i /(1 − hi ).

Here, β̃† and ε̃† are the restricted parameter estimates and the associated restricted
least-squares residuals from the regression of Y ∗ on X .

3. Compute the OLSE of β, β̂∗∗ = (X ⊂ X)−1X ⊂Y ∗∗, and the associated quasi-t
statistic, τ ∗∗.

4. Compute p∗
b using (2.22); see below.

5. Use the realizations from the two levels of bootstrapping to obtain an adjusted p
value for the test (see below).

Steps 1–4 described above must be performed for each outer bootstrap replication
(b = 1, . . . , R). The adjusted bootstrap p value is given by

padj = 1 + #{p∗
b ∞ p}

R + 1
,

where, for each b,

p∗
b = 1 + #{|τ ∗∗

bc | → |τ ∗
b |}

C + 1
, (2.22)

c = 1, . . . , C . We reject the null hypothesis, tested against a two-sided alternative
hypothesis, if padj ∞ α, where α is the nominal level of the test. Note that the total
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number of bootstrap replications is now R×C , thus implying a heavier computational
burden. Typically, C < R, i.e., we use fewer replications in the inner bootstrap.

Monte Carlo results on the finite sample performance of weighted bootstrap and
weighted double bootstrap tests in heteroscedastic linear regressions can be found in
Cribari-Neto (2004). The number of bootstrap replications used in his simulations
were R = 999 and C = 249. The double bootstrap test typically displays size
distortions that are slightly smaller than those of the bootstrap test. For instance,
when the sample contains 50 observations, themodel is given by Yi = β1+β2xi +εi ,
the interest lies in the test of H0 : β2 = 0 against H : β2 ≤= 0, and the largest error
variance is approximately 95 times larger than the smallest one, and the null rejection
rates of the single and double bootstrap tests at the 5 % nominal level are 8.5 and
7.0 %, respectively. When n = 150, the corresponding null rejection rates are 7.0
and 6.5 %.

Rocke (1989) introduced the bootstrap Bartlett adjustment. His proposal is to
use bootstrap resampling to estimate the Bartlett correction factor used to improve
the LR test and not to obtain a critical value or a p value. Recall that the Bartlett-
corrected test statistic can be written as w/c, where c = E(w)/q, q being the number
of restrictions imposed by the null hypothesis. Rocke (1989) recommended the use
of parametric bootstrap resampling to estimate c. R bootstrap samples are produced
using the parametric bootstrap and imposing the null hypothesis, the LR test statistic
is computed for each artificial sample (w∗), and the bootstrap Bartlett-corrected test
statistic is computed as

wboot = wq

w∗ ,

where w∗ is the average of all bootstrap statistics, i.e.,

w∗ = 1

R

R∑
b=1

w∗
b,

w∗
b being the LR statistic computed using the bth pseudo-sample (b = 1, . . . , R).

The main advantage of Rocke’s approach over the standard bootstrap testing strat-
egy is the smaller number of bootstrap resamples that are needed to achieve a good
approximation: 200 bootstrap replications are usually enough to accurately estimate
the Bartlett adjustment factor, whereas 1,000 bootstrap replications are typically rec-
ommended when estimating the test critical value (or, equivalently, when obtaining
a bootstrap p value). It is noteworthy that in the former, we use the bootstrap to
estimate the test statistic null distribution mean, whereas in the latter, we use it to
estimate a tail quantity (an upper quantile), which is considerably harder to estimate
and thus demands more replications.
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Chapter 3
Bartlett-Type Corrections

Abstract This chapter introduces Bartlett-type corrections. They extend the Bartlett
correction to chi-squared asymptotic criteria other than the likelihood ratio statis-
tic. Bartlett-type corrections are typically applied to score and Wald test statistics.
The corrected tests are usually more accurate than the uncorrected ones. As with the
correction described in the previous chapter, the test error vanishes faster after the
correction to the test statistic has been applied. A key difference between Bartlett
and Bartlett-type corrections is that the latter may involve a polynomial of second
order on the test statistic.

Keywords Bartlett-type correction · Score test · Size distortion · Power · Type I
error · Wald test

3.1 Introduction

The problem of developing a correction similar to the Bartlett correction to other test
statistics was posed by Cox (1988) and addressed three years later in full generality
by Cordeiro and Ferrari (1991), and by Chandra and Mukerjee (1991) and Taniguchi
(1991) for certain special cases; see alsoMukerjee (1992).We shall focus onCordeiro
and Ferrari’s results since they are more general in the sense that they allow for
nuisance parameters. For a comparison of these corrections, see Rao and Mukerjee
(1995). Bartlett-type corrections constitute an extension of Bartlett corrections to
statistics other than LR statistics. We describe some of the main results involving
Bartlett-type corrections in a unified framework and provide simulation studies that
showhow the independent variables and the number of nuisance parameters can affect
the first-order asymptotic approximation to some test statistics in regression models.

G. M. Cordeiro and F. Cribari-Neto, An Introduction to Bartlett Correction 45
and Bias Reduction, SpringerBriefs in Statistics, DOI: 10.1007/978-3-642-55255-7_3,
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3.2 Bartlett-Type Correction to the Score Statistic

Suppose we have n independent random variables Y = (Yi , . . . , Yn)∗ whose prob-
ability or density function is indexed by a parameter vector χ = (χ∗

1 , χ∗
2 )∗, where

χ1 = (χ1, . . . , χq)∗ and χ2 = (χq+1, . . . , χp)
∗, and hence dim(χ) = p, dim(χ1) =

q, and dim(χ2) = p − q, for q ∈ p. We want to test H0 : χ1 = χ(0)
1 against a two-

sided alternative hypothesis H1: χ1 ⊂= χ
(0)
1 , where χ

(0)
1 is a q-vector of constants and

χ2 is a vector of nuisance parameters. Let χ = χ(χ) be the total log-likelihood func-
tion, and define (as in Sect. 2.2) the log-likelihood derivativesUi = θχ/θχi , Ui j =
θ2χ/θχiθχ j , Ui jk = θ3χ/θχiθχ jθχk , and Ui jkr = θ4χ/θχiθχ jθχkθχr . The respec-
tive cumulants are ∂i j = IE(Ui j ), ∂i, j = IE(UiU j ), ∂i jk = IE(Ui jk),∂i, jk =
IE(UiU jk), ∂i, j,k = IE(UiU jUk), ∂i jkr = IE(Ui jkr ), ∂i, jkr = IE(UiU jkr ), ∂i j,kr =
IE(Ui jUkr )−∂i j∂kr , and ∂i, j,k,r = IE(UiU jUkUr )−∂i, j∂k,r −∂i,k∂ j,r −∂i,r∂ j,k .
LetU = (U∗

1 , U∗
2 )∗ be the score function assumed partitioned in the sameway as χ.

Further, the expected information matrix K = {−∂i j } and its inverse K −1 = {−∂i j }
partitioned as χ are given by

K =
(

K11 K12
K21 K22

)
, K −1 =

(
K 11 K 12

K 21 K 22

)
and A =

(
0 0
0 K −1

22

)
.

The unrestricted MLE of χ is (χ̂∗
1 , χ̂∗

2 )∗, and the restricted estimate of χ1 is

denoted by χ̃1. Functions evaluated at the point (χ
(0)∗
1 , χ̃∗

2 )∗ will be distinguished
by the addition of a tilde. The score statistic S (also known as the Lagrangemultiplier
statistic), for testing H0 : χ1 = χ

(0)
1 versus H0 : χ1 ⊂= χ

(0)
1 , has the simple form

S = Ũ∗
2 K̃ 22 Ũ2. The score statistic S is oneof themost used test statistics inStatistics

and Econometrics due to its computational simplicity. It is especially useful when
estimation under the alternative hypothesis is computationally costly since it only
requires estimation under the null hypothesis.

An asymptotic expansion to the null distribution of S up to order O(n−1) was
derived by Harris (1985) as

Pr(S ∈ x) = Fq(x) + 1

24
[A3 Fq+6(x) + (A2 − 3A3) Fq+4(x)

+ (3A3 − 2A2 + A1) Fq+2(x) + (A2 − A1 + A3) Fq(x)] + O(n−2),

(3.1)

where Fq(·) denotes the cumulative distribution of the σ2
q random variable and A1,

A2, and A3 are complicated functions of order O(n−1) of some joint cumulants of
log-likelihood derivatives. In Appendix A.1, we present general formulae for A1, A2,
and A3 in expansion (3.1) and demonstrate that A1 can be expressed in terms of the
quantity ψp given by Eqs. (2.4–2.6). Harris (1985) obtained the first three cumulants
of S to orderO(n−1) given by ∂1(S) = q + A1/12, ∂2(S) = 2q + (A1 + A2)/3, and
∂3(S) = 8q + (A1 + 2A2 + A3). It is well known that the first three cumulants

http://dx.doi.org/10.1007/978-3-642-55255-7_2
http://dx.doi.org/10.1007/978-3-642-55255-7_2
http://dx.doi.org/10.1007/978-3-642-55255-7_2
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of the σ2
q distribution are ∂1(σ

2
q) = q, ∂2(σ

2
q) = 2q, and ∂3(σ

2
q) = 8q, and

then, if we know A1, A2, and A3, we can obtain the first three cumulants of S to
order O(n−1) and compare them with those cumulants of the reference σ2

q random
variable. Equation (3.1) holds for both simple and composite null hypotheses. More
importantly, this result implies that there exists no scalar transformation based on the
test statistic, which corrects all cumulants to a certain order of precision, as it is the
case with the Bartlett correction to the LR statistic. Harris’s results enable us to apply
Hill and Davis (1968) inverse formula to (3.1) in order to obtain transformed critical
values to be used in the score test (Harris 1985, p. 657). The A’s can be used to
obtain corrections for models based on independent, but not necessarily identically
distributed observations, thus covering a number of linear and nonlinear regression
models.

A correction to be directly applied to the test statistic itself was obtained by
Cordeiro and Ferrari (1991). If fq(z) denotes the density function of the σ2

q random
variable,wehave the recurrence formula fm+2(x) = m−1 x fm(x). Bydifferentiating
(3.1), it is possible to demonstrate that the density function expansion of S is

fS(x) = fq(x) (1 + B0 + B1 x + B2 x2 + B3 x3) + O(n−2), (3.2)

where

B0 = (A2 − A1 − A3)/24, B1 = (3A3 − 2A2 + A1)/(24q),

B2 = (A2 − 3A3)/{24q(q + 2)}, B3 = A3/{24q(q + 2)(q + 4)}.

The density function of S given in (3.2) involves a multiplicative polynomial
of third degree with coefficients which depend on three constants and suggests the
corrected score statistic

S≤ = S

⎛
⎝1 −

3∑
j=1

α j S j−1

⎞
⎠ , (3.3)

where the multiplying factor in braces is a kind of Bartlett-type adjustment as a
function of the score statistic S itself. The coefficients α1, α2, and α3 can be deter-
mined as functions of the A’s such that the density function of the modified statistic
S≤ is identical to a σ2

q density function, when terms of order smaller than n−1 are
neglected. Cordeiro and Ferrari (1991) determined these coefficients using two dif-
ferentmethods. A simple one is based on the generating function of S, say MS(t), and

follows by expanding exp
{
−t
∑3

j=1 α j S j−1
}
in Taylor series up to order O(n−1)

and setting the new variable y = x(1 − 2t). We have

MS(t) = Mq(t) + (1 − 2t)−r/2

θ(r/2) 2r/2 I,
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where Mq(t) is the moment generating function of the σ2
q random variable and

I =
∞∫
0

y(r−2)/2 e−y/2
[
(B3 − α3t)

(1 − 2t)3
y3 + (B2 − α2t)

(1 − 2t)2
y2 + (B1 − α1t)

(1 − 2t)
y + B0

]
.

The relation MS(t) = Mq(t) holds to order O(n−1) if and only if I = 0.
The unique solution is given by α1 = (A1 − A2 + A3)/(12q), α2 = (A2 −
2A3)/ {12q(q + 2)}, and α3 = A3/ {12q(q + 2)(q + 4)}.

When the A’s involve unknown parameters, such parameters should be replaced
by theirMLEs under H0, which does not affect the order of approximation of the cor-
rection. The Bartlett-type correction in (3.3) is a function of the unmodified statistic
S, and then, it is not a Bartlett correction in the classical sense. Given its similarity
with the Bartlett correction, however, it is called the Bartlett-type correction.

Based on formulae (1) and (2) of Cox and Reid (1987), Cordeiro and Ferrari
(1991) demonstrated that, under certain regularity conditions and to order O(n−1),
Pr(S≤ ∈ x) = Pr(S ∈ z), where z is a modified critical value given by z =
x
(
1 +∑3

j=1 α j x j−1
)
. Under the null hypothesis, the modified test based on S≤,

with the σ2 distribution as a reference, is equivalent to the test based on the original
statistic S with the modified critical value z defined as above. Nonetheless, the test
based on the corrected statistic is more intuitive and easier to implement.

3.3 An Extended Result

Cordeiro and Ferrari (1991) derived a more general result which can be described as
follows. Let T be a general test statistic which is asymptotically distributed as σ2

q .
Under mild regularity conditions, Chandra (1985) demonstrated that it is possible to
expand Pr(T ∈ z) as

Pr(T ∈ z) = Fq(z) +
k∑

i=0

ai Fq+2i (z), (3.4)

when terms of order O(n−2) or smaller are neglected. Equation (3.4) implies that
the distribution function to O(n−1) of a test statistic asymptotically σ2 distributed
is, under certain conditions, a linear combination of σ2’s with q, q + 2, . . . , q + 2k
degrees of freedom. The ai ’s are linear functions of some joint cumulants of log-
likelihood derivatives of the model for which T is defined. For the L R (k = 1) and
score S (k = 3) statistics, the ai ’s are linear functions of the A’s in (3.1).

Let μ√
i = 2iθ(i + q/2)/θ(q/2) be the i th moment about zero of the σ2

q

distribution, where θ(p) = ∫ p
0 x p−1 e−xdx is the gamma function. Cordeiro and

Ferrari (1991) demonstrated that the modified test statistic
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T ≤ = T

⎧⎨
⎩1 − 2

k∑
i=1

⎛
⎝ k∑

j=i

a j

⎞
⎠ (μ√

i )
−1 T i−1

⎫⎬
⎭ (3.5)

is distributed asσ2
q to orderO(n−1). Equation (3.5) is a very general result which can

be used to improve many important tests in Econometrics and Statistics. Cordeiro
and Ferrari (1991) proof is based on a theorem of Cox and Reid (1987); see their
formula (1). The Bartlett-corrected test statistic T ≤ given in (3.5) converges, under
the null hypothesis, to σ2

q faster than the unmodified statistic, and hence, it should
deliver empirical sizes closer to the nominal ones in finite samples. An extension
of this result to Bartlett-type adjustments of order higher than a second order of
approximation was proposed by Kakizawa (1996).

Building upon Eq. (3.5), Cordeiro et al. (1993) and Cribari-Neto and Ferrari
(1995b) obtained Bartlett-type corrections to score tests in GLMs for the cases
of known and unknown dispersion, respectively. Bartlett-corrected score tests for
heteroskedastic linear models were considered by Cribari-Neto and Ferrari (1995a).
Similar corrections for score tests in multivariate regression models were derived
by Cribari-Neto and Zarkos (1995). Bartlett-type corrections to score tests for het-
eroskedasticity were obtained by Cribari-Neto and Ferrari (1995c). Ferrari and
Arellano-Valle (1993) proposed improved score statistics for regression models with
Student-t errors. Corrections to score tests that can be used in proper dispersionmod-
els were derived by Cordeiro and Ferrari (1996). Bartlett-type corrections to the class
of information matrix tests, which are score tests, were considered by Cribari-Neto
(1997) building upon the Edgeworth expansion in Chesher and Spady (1991).

Bartlett-type corrections are usually defined as T ≤ = T (1− B), where B = B(T )

is a polynomial on the unmodified statistic T of the order O(n−1), such as that one
in Eq. (3.5). Although most of the literature has focused on a particular form of the
Bartlett-type correction given by this equation, we also consider two other forms
which are equivalent to order n−1 to T ≤ and compare them through Monte Carlo
simulation. There are two alternative definitions of Bartlett-type corrections, namely
T ≤
1 = T (1+ B)−1 and T ≤

2 = T exp(−B), which are equivalent to T ≤ when terms of
order smaller than O(n−1) are ignored. The latter form has the advantage of always
delivering non-negative corrected statistics. Quite generally, these three forms are
clearly preferable to the unmodified statistic T . They can be applied to regression
models and compared through Monte Carlo simulation (see Sect. 3.8).

The modified statistic (3.5) corresponding to k = 3 reduces to T ≤ = T
{
1−(α1+

α2T +α3T 2)
}
. The statistic T ≤ is a general result to improve many important tests in

Econometrics and Statistics. We can demonstrate that α3 → 0 for score statistics. It
follows by local orthogonal re-parametrization of the model to make the information
matrix for all parameters at the true parameter point equal to the identity matrix. In
this case, Harris’(1985) expression for a3, with k = 3, implies a3 → 0 and, therefore,
α3 → 0.

The statistic T ≤ is not always amonotone transformation of the original statistic T .
To overcome this problem, the monotone transformation K (T ) = T ≤ + P(T ) was
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suggested by Kakizawa (1996) involving the unmodified statistic T itself and the
coefficients α1, α2, α3, where P(T ) is a polynomial of fifth degree in the original
statistic T and is of order Op(n−2). He proved that P(T ) reduces to

P(T ) = 1

4

{
α2
3 T + 2α2α3 T 2 +

(
2α1α3 + 4

3
α2
2

)
T 3 + 3α1α2 T 4

+ 9

5
α2
1 T 5

}
. (3.6)

A further alternative monotone transformation T̃ was developed by Cordeiro et al.
(1998) in terms of the standard normal cumulative distribution Φ(·). We shall now
derive the statistic T̃ , which is asymptotically equivalent to T ≤, whose monotonicity
in T is immediate. By differentiating T ≤ with respect to T and then integrating, we
obtain a modified statistic of the form

T̃ =
T∫

0

exp{−(α1 + 2α2 T + 3α3 T 2)}dT,

where the integral (assuming α3 > 0) can be expressed in terms of the normal
cumulative distribution Φ(·). We obtain

T̃ =
√

π

3α3
exp

(
α2
2

3α3
− α1

){
Φ

(√
6α1 T +

√
2

3α3
α2

)
− Φ

(√
2

3α3
α2

)}
,

(3.7)
if α3 > 0 (α3 is always non-negative), and

T̃ = 1

2α2
exp(−α1){1 − exp(−2α2T )},

if α3 = 0 and α2 ⊂= 0. Note that, if α2 = α3 = 0, T ≤ is a monotone transformation
of T and there is no need to define an alternative corrected statistic. The three statistics
T ≤, K (T ), and T̃ are equivalent to second order, i.e., they typically differ by terms
of order Op(n−2).

The first two terms in (3.7) areO(n1/2) and 1+O(n−1), respectively, but the last
term (in braces) as a function of T itself is Op(n−1/2). We may obtain a partial check
of (3.7) by using it to derive the expression for T ≤. The bracketed stochastic quantity
in (3.7) can be expanded in the neighborhood of zero up to order Op(n−3/2). As
mentioned earlier, corrected chi-squared tests with better finite size properties can
be performed by using the corrected statistics defined by T ≤, K (T ), and T̃ and the
reference σ2

q distribution. It can be shown that the unmodified statistics and their
three corrected versions have the same powers only to order O(n−1/2).
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Bartlett and Bartlett-type corrections are designed to bring the actual size of
asymptotic tests close to their corresponding nominal sizes. In most cases, they are
effective in doing so. However, they are not intended, however, to be corrections to
increase the power of the test. It is important to bear in mind that these corrections
can lead to a loss in power, much in the same way as the power of Durbin’s h statistic
(Durbin 1970), a transformation of the traditional Durbin–Watson statistic, can be
lower than the power of the Durbin–Watson test in regression models with lagged
dependent variables; see Inder (1984, 1986). However, an important result is that the
untransformed statistic and its Bartlett-corrected version have the same local power
to order n−1/2. This result follows from Theorem 1 in Cox and Reid (1987). More
precisely, let T be a test statistic with null distributionσ2

q , and T ≤ a Bartlett-corrected
statistic obtained as a transformation of T . Then, under local (Pitman) alternatives,
Pr(T ≤ → x) = Pr(T → x) + o(n−1/2).

3.4 Barttlett-Type Correction to the Wald Statistic

TheWald test is convenient to test nonlinear restrictions in linear models since it does
not require estimation of the null model and therefore avoids nonlinear estimation.
However, it has been shown by Gregory and Veall (1985), Lafontaine and White
(1986), and others that a major drawback of this test is that it is not invariant to
alternatively equivalent forms of the null hypothesis. Since many hypotheses of
interest in economics are nonlinear (e.g., restrictions implied by rational expectations
models), it is important to develop corrections that can be reliably applied in finite
samples. Let the data generating mechanism of a random variable Y depend on a
p-vector β of parameters. The following hypothesis H0 : h(β) = 0 is to be tested
against a two-sided alternative, where h(·) is a continuously differentiable vector
function (at least to third order) in IRq , where q ∈ p. Let β̂ be the MLE of β
obtained from a sample of size n and define q = √

n(β̂ − β). We assume that the
covariance matrix of the limiting distribution of q is the identity matrix Ip of order p.

Given this setup, theWald statistic for testing H0 becomes W = nĥ∗(Ĥ Ĥ∗)−1ĥ,
where H is the q × p matrix of the first derivatives of h(·) with respect to the
components of β. The statistic W is asymptotically distributed as σ2

q . Phillips and
Park (1988) obtained an expansion to the null distribution of W in agreement with
(3.4) with k = 3, where the quantities ai ’s are given in their paper. A Bartlett-type
correction to the Wald test of nonlinear restrictions was further obtained by Ferrari
and Cribari-Neto (1993). They demonstrated that the correctedWald statistic is given
by (3.5) with k = 3, i.e., W ≤ = W (1−∑3

i=0 αi W i−1) is distributed as chi-squared
to order n−1. In other words, Pr(W ≤ ∈ x) = Pr(σ2

q ∈ x) + O(n−2).
As an example, consider the model in Lafontaine and White (1986) Yi = β0 +

β1 xi + νi , where νi ≥ NID(0,σ2) for i = 1, . . . , n. The null hypothesis of interest
is H0 : β p = 1 against a two-tailed alternative, where p is a non-zero integer.

The Wald statistic for this test reduces to W = (β̂ p − 1)/
{

pβ̂ p−1 v̂ar(β̂)
}
, where
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v̂ar(β̂) = σ̂2
(∑n

i=1 x2i − nx̄2
)−1

is the estimated variance of β̂, x̄ = ∑n
i=1 xi/n

and σ̂2 is a consistent estimator of the error variance. As shown by Lafontaine
and White (1986), the size of the Wald test is highly sensitive to the value of p.
For this test, we can obtain α0 = α1 = 0, α2 = −(2/3)(p − 1)(p − 2), and
α3 = (1/4)(p − 1)2; see Phillips and Park (1988) and Ferrari and Cribari-Neto
(1993). The Bartlett-type correction to W should be effective for moderately small
values of p. Theσ2

q approximation for theWald statistic becomes very poor when the
nonlinearity increases. It is also possible to design Bartlett-type corrections for other
test statistics. For example,Cribari-Neto andFerrari (1995a) obtained improvedWald
tests for heteroskedastic linear models and Cribari-Neto and Zarkos (1995) derived
similar corrections to be used in multivariate regressions.

3.5 One-Parameter Model

We consider a set of n i.i.d. random variables Y1, . . . , Yn following an arbitrary regu-
lar continuous or discrete one-parameter distribution indexed by an unknown scalar
parameter χ. Let χ(χ) = log[π(y; χ)] be the log-likelihood for the unknown para-
meter χ given one observation y. We assume that l(χ) satisfies the usual regularity
conditions stated in Serfling (1980, p. 144). LetUχ = dχ(χ)/dχ, Uχχ = d2χ(χ)/dχ2,
etc. In what follows, we use the standard notation for the cumulants of log-likelihood
derivatives (see Sect. 2.2): ∂χχ = IE(Uχχ),∂χχχ = IE(Uχχχ),∂χ,χ = IE(U 2

χ ) =
−∂χχ, ∂χ,χχ = IE(UχUχχ),∂χχ,χχ = IE(U 2

χχ) − ∂2
χχ,∂χχχχ = E(Uχχχχ), ∂χ,χ,χχ =

IE(U 2
χ Uχχ) − ∂χ,χ ∂χχ,∂χ,χ,χ,χ = IE(U 4

χ ) − 3∂2
χ,χ, and ∂χ,χχχ = IE(UχUχχχ). We also

denote the derivatives of the cumulants with superscripts as ∂
(χ)
χχ = d∂χχ/dχ,∂

(χχ)
χχ =

d2∂χχ/dχ2, etc. All ∂’s refer here to a single observation and then are of orderO(1).
Under these regularity conditions, the asymptotic distribution of theMLE χ̂ is normal
N (χ, n−1 ∂−1

χ,χ), with an error of order O(n−1/2). The cumulants ∂’s satisfy certain
Bartlett identities which facilitate their computation as presented in Sect. 2.2; see,
also, Lawley (1956) and Cordeiro (1987).

Suppose that a non-negative statistic T for testing H0 : χ = χ(0) in any regu-
lar one-parameter distribution, where χ(0) is a given scalar, is asymptotically dis-
tributed as σ2

1 under the null hypothesis H0, with the error of the approximation
being O(n−1). Denote the total log-likelihood by χT (χ) and the total score func-
tion by UT (χ) = dχT (χ)/dχ. Consider that T can take the form of any of the
statistics LR (w), Rao score (S), Wald (W ), and modified Wald (MW ) given by
w = 2[χT (χ̂) − χT (χ(0))], S = UT (χ(0))2/(n ∂̃χ,χ), W = n(χ̂ − χ(0))2 ∂̂χ,χ, and
MW = n(χ̂ − χ(0))2 ∂̃χ,χ, respectively, where ∂̂χ,χ and ∂̃χ,χ represent the expected
information for one observation evaluated at χ̂ and χ(0), respectively. The statistic
T can be substantially improved through the Bartlett-type correction given by (3.5)
with k = 3, which yields the corrected statistic in terms of the coefficients α1, α2,
α3, and of the original statistic T as

http://dx.doi.org/10.1007/978-3-642-55255-7_2
http://dx.doi.org/10.1007/978-3-642-55255-7_2
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T ≤ = T

[
1 − 1

n

(
α1 + α2 T + α3 T 2

)]
. (3.8)

Expressions for the coefficients in (3.8) as functions of cumulants of log-likelihood
derivatives, when T equals w, S, W , or MW , in one-parameter models, can be found
in Cordeiro et al. (1995), Ferrari et al. (1996), and Santos and Cordeiro (1999). The
expressions for α1 for the Wald and modifiedWald statistics are identical, and there-
fore, in what follows, we provide results only for the Wald statistic. The expressions
are given explicitly by:

LR statistic (w)

α1 =
5∂2

χχχ + 24∂(χ)
χχ

(
∂

(χ)
χχ − ∂χχχ

)
12∂3

χχ

−
∂χχχχ + 4

(
∂

(χχ)
χχ − ∂

(χ)
χχχ

)
4∂2

χχ

, (3.9)

α2 = α3 = 0. (3.10)

Score statistic (S)

α1 = −∂2
χ,χ,χ

36∂3
χχ

, (3.11)

α2 = 10∂2
χ,χ,χ + 3∂χχ∂χ,χ,χ,χ − 9∂3

χχ

36∂3
χχ

, (3.12)

α3 = −5∂2
χ,χ,χ − 3∂χχ∂χ,χ,χ,χ + 9∂3

χχ

12∂3
χχ

. (3.13)

Wald statistic (W )

α1 = −44∂2
χχχ + 120∂χχχ∂

(χ)
χχ − 81(∂(χ)

χχ )2 + 12∂χχ∂χ,χ,χχ − 3∂χχ∂χ,χ,χ,χ

12∂3
χχ

, (3.14)

α2 =
−10∂χχχ

2 + 48
(
2∂χχχ − 3∂(χ)

χχ

)2 + 6
(
∂

(χ)
χχ − ∂χχχ

) (
17∂χχχ − 45∂(χ)

χχ

)
72∂3

χχ

+3∂χχ,χχ + 20∂(χ)
χχχ − 11∂χχχχ − 12∂(χχ)

χχ

12∂2
χχ

, (3.15)

α3 = − ∂2
χχχ

36∂3
χχ

. (3.16)
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Modified Wald statistic (MW )

α2 = 63∂χχχ∂
(χ)
χχ − 22∂2

χχχ − 45(∂(χ)
χχ )2

18∂3
χχ

+4∂χχχχ − 4∂(χ)
χχχ − 4∂χ,χ,χχ − 3∂χ,χ,χ,χ

12∂2
χχ

, (3.17)

α3 = −
(
3∂(χ)

χχ − ∂χχχ

)2
36∂3

χχ

. (3.18)

Some of the third- and fourth-order cumulants that appear in (3.9)–(3.18) can be
more easily computed using the Bartlett identities

∂χ,χ = −∂χχ, ∂χ,χ,χ = 2∂χχχ − 3∂(χ)
χχ , ∂χ,χχ = ∂

(χ)
χχ − ∂χχχ,

∂χ,χ,χ,χ = −3∂χχχχ + 8∂(χ)
χχχ − 6∂(χχ)

χχ + 3∂χχ,χχ,

∂χ,χ,χχ = ∂χχχχ − 2∂(χ)
χχχ + ∂

(χχ)
χχ − ∂χχ,χχ, ∂χ,χχχ = ∂

(χ)
χχχ − ∂χχχχ. (3.19)

Equation (3.19) usually facilitate the computation of the cumulants ∂√s. We can
use an algebraic manipulation software such as Mathematica to evaluate the ∂√s
for several one-parameter continuous and discrete distributions and then obtain the
coefficients α1, α2, and α3 for all four test statistics. So, we can derive corrected
statistics from Eqs. (3.9–3.18) by evaluating these coefficients at χ(0). All four cor-
rected statistics defined by T ≤ have a σ2

1 distribution to order O(n−1) under the null
hypothesis.

Cordeiro and Stosic (2008) developed a simple program (script) that may be used
with algebraic manipulation software Mathematica (the script was written and
tested onMathematica version 5.2.0.0) to obtain, from Eqs. (3.9–3.19), the coeffi-
cients α1, α2, and α3 in closed form for the four statistics for testing H0 : χ = χ(0).
While the Mathematica symbolic computation software has currently the ability
to deal with analytic expressions of formidable size and complexity, limitations still
exist, and it turns out that the complexity of the formulae involved in calculating the
cumulants of log-likelihood derivatives for some distributions exceed its capacity.
Even for these cases, the current script may be expected to produce results on future
versions of the software (under the assumption that backward compatibility of the
scripting language is maintained).

It should be pointed out that the four statistics under study depend on the functional
form of the density function. In particular, while the LR statistic and its Bartlett
correction are both invariant under re-parametrization, the score,Wald, and modified
Wald statistics together with their corresponding Bartlett-type corrections are not
invariant. Therefore, different choices of the parametrization of the model in general
yield different analytical expressions for these statistics and their corresponding
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Bartlett-type corrections. Moreover, it may turn out that a special choice is more
amenable to algebraic manipulations then another. Hence, it may be expected that in
some cases,Mathematica produces closed-form expressions for a given functional
formof the parameter, but not for other choices.Nonetheless, the presented procedure
is of quite general nature and should yield correct corresponding results for arbitrary
selected parameter. In summary, if for a given choice,Mathematica does not yield
a closed-form expression, others re-parameterizations should be tested.

After specifying the form and the domain of the density function f = f (y; χ) as
well as the assumptions to bemade on y and χ (e.g., y ∈ R or χ > 0), the programfirst
defines and evaluates (analytically) all the cumulants (∂’s), which are then inserted
into Eqs. (3.9–3.18) to produce in regular one-parameter distributions closed-form
expressions for the coefficients α1, α2, and α3 for all corrected test statistics defined
from Eqs. (3.5–3.7).

The Mathematica script that can be used to obtain the corrected L R, score,
Wald, and modified Wald statistics is described in Appendix A.2. In this script,
the function KK embedded inside the module corrections performs the actual cal-
culation of most of the cumulants, the only exception being the cumulant ∂χχ,χχ

(denoted by symbol kt22 in the computer code) which is calculated separately. The
module corrections receives as arguments the form of the density function f (·),
the lower bound p and upper bound q of integration (summation), the required
condition on the parameter χ (as will be shown in Appendix A2 for some special
cases), and a flag indicating whether the distribution is continuous (cont = 1) or
discrete (cont = 0). The expressions for correction terms, evaluated by straight-
forward implementation of Eqs. (3.9–3.18), are printed on the screen and stored
in global variables L R1, S1, S2, S3, W1, W2, W3, MW1, MW2, and MW3, for
possible posterior manipulation. It should be noted that each invocation of module
corrections overwrites the results stored in the global variables representing the cor-
rection terms, and therefore, the results should be stored under different names if
further processing is necessary (in particular if one wants to simultaneously manip-
ulate results for different density functions).

From a programming viewpoint, the above implementation may be considered
quite elementary: This choice was made in order to keep the transparency of the code
and facilitate possible modifications. In particular, we use a single module, with a
single embedded function. We also use only one local variable for intermediate
calculations, while all the cumulants are kept as global, in order to facilitate their
individual inspection and interactive manipulation. The print statements have the
sole purpose of immediate visualization of the results, and they may be commented
out, if the module is used within a concrete application.

After the abovemodule has been copied into aMathematica notebook, it should
be activated (e.g., on the Windows platform by clicking the mouse on any line, and
pressing ‘Shift+Enter’ key combination). In order to obtain the expressions of the
corrections for a given distribution, the user should specify the form of the density
function and then invoke module corrections with the correct range of integration,
the conditions on the parameter χ, and the type (discrete or continuous). Each item
starts with the name of the distribution, followed by several lines of Mathematica
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code, and then the resulting expressions for the corrections. As the output format
and notation implemented for special functions by the software platform is some-
what unusual, we display the results in a notionally simplified form in comparison
with the actual output. In particular, we use the notation ψ√(x) and ψ√√(x) for the
first and second derivatives of the digamma function ψ(x) = d log∂ (x)/dx , respec-
tively, whereas Mathematica output notation for the nth polygamma function is
PolyGamma[n,x]. Also, we use notation ζ(x) for the Riemann zeta function and
γ for the Euler’s constant, which are denoted inMathematica output by Zeta[x]
and EulerGamma, respectively. In some cases, analytical expressions obtained turn
out too large to be given here explicitly, so we present results in tabular form for some
values of the parameter χ. After running the module corrections for a given distrib-
ution, the user may create a table of numerical values by invoking the script

TableForm[
Transpose[
Table[{x, LR1 /. \[Theta] -> x,
S1 /. \[Theta] -> x, S2 /. \[Theta] -> x,
S3 /. \[Theta] -> x, W1 /. \[Theta] -> x,
W2 /. \[Theta] -> x, W3 /. \[Theta] -> x,
MW2 /. \[Theta] -> x, MW3 /. \[Theta] -> x},
{x, 0.5, 3.0, 0.5}]],

TableHeadings -> {{"\[Theta]", "LR1", "S1", "S2", "S3",
"W1", "W2", "W3", "MW2", "MW3"}, {}}],

where χ in the above example varies between 0.5 and 3.0, with step of 0.5.
Finally, the coefficients for the corrected statistics obtained for five continuous

distributions (Cauchy, chi-squared, Maxwell, Rayleigh, and Student t) and two dis-
crete distributions (binomial and Poisson) using the script developed by Cordeiro
and Stosic (2008) agree with previous results reported for the LR statistic (Cordeiro
et al. 1995), for the score statistic (Ferrari et al. 1996), and for theWald and modified
Wald statistics (Santos and Cordeiro 1999).

3.6 The p∗ Approximation

For a scalar parameter χ of interest, there are two familiar first-order statistics to
measure the departure of χ̂ from χ: (i) the Wald departure q = (χ̂−χ) | ĴT |1/2, where
ĴT is the total observed information JT = −d2χT (χ)/dχ2 for χ evaluated at χ̂, and (ii)

the directed LR statistic r = sgn(χ̂−χ)
√

w, where w(χ) = 2
{
χT (χ̂) − χT (χ)

}
. The

corresponding first-order p-values are Φ(q) and Φ(r). However, for small sample
sizes, q and r can be very misleading, since the errors of the approximations for both
statistics to the standard normal distribution are of order O(n−1/2).

A major development in likelihood-based inference is that the likelihood func-
tion can be used directly to provide a more accurate approximation for infer-
ence about χ than the two above-mentioned first-order normal approximations (i)
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and (ii). The main result for this development is the Barndorff-Nielsen (1983) p≤
approximation for the density function of the MLE χ̂ given by

p≤(χ̂; χ) = c(χ) | ĴT |1/2 exp {−w(χ)/2} ,

where the normalizing constant c(χ) is determined numerically. The accuracy of the
p≤ approximation is usually of orderO(n−3/2). Most of the higher-order asymptotic
theory for likelihood inference can be justified by means of the p≤ formula, and
therefore, a variety of alternative corrections have been proposed to improve the
asymptotic standard normal approximation to the distribution of the statistic r . By
integrating the p≤ approximation, the cdf of r with an error usually of orderO(n−3/2)

can be expressed as

F(r) = Φ(r≤) = Φ(r) + (r−1 − u−1)φ(r), (3.20)

where u = Ĵ−1/2
T w(χ)/2, φ(·) is the standard normal density function and r≤ =

r + r−1 log(u/r) is the modified directed likelihood due to Barndorff -Nielsen
(1990) (the term r−1 log(u/r) in r≤ is of order Op(n−1/2)).

The expression for r≤ has been prominent in likelihood theory. Equation (3.20)
offers two alternatives for the approximate calculation of tail probabilities (the first
and second terms on the right-hand side of (3.20)), both being extremely accurate
over the range of r , representing quite simple means to compute the p-value for
inference on χ. Equation (3.20), known as the Lugannani and Rice (1980) formula,
applied to tail areas of one-parameter distributions, also provides an approximate cdf
for χ̂ with relative error O(n−3/2). Usually, computing probabilities from the two
formulae on the right-hand side of Eq. (3.20) yield slightly different results.

Under moderate regularity conditions, and assuming that the log-likelihood has
the usual asymptotic properties as n → ∞, the p-value calculated from (3.20) is
accurate to third order only when the distribution of y is continuous. However, we
can apply this result for the analysis of discrete data. The statistics r and r≤ are in
principle easy to be implemented in software packages with algebraic capabilities
and are generally quite accurate. However, they require ML estimation and are data
dependent. Bartlett and Bartlett-type corrections are based on the geometry of the
model (independent of the data). They thus shed some light on for which regions
of the parameter space the σ2 approximation can be expected to work well, without
previous knowledge of χ̂ (in fact, in some cases, they are actually independent of χ̂).
Finally, it should be mentioned that the approach of Sect. 3.5, applied to improve chi-
squared statistics for one-parameter distributions, can be extended to multiparameter
cases in a more straightforward way than the normal distribution-based statistics (see
Sects. 3.7 and 3.9).
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3.7 Generalized Linear Models

A fairly general framework of regression models is the GLMs described in Sect. 2.5.
Consider a GLM, where Y = (Y1, . . . , Yn)∗ is a vector of independent variables
and each yi has a probability or density function in the exponential family (2.12).
The mean and variance of yi are IE(Yi ) = μi = b√(χi ) and var(Yi ) = φ−1Vi , where
φ−1 is the dispersion parameter, V = V (μ) = dμ/dχ is the variance function, and
χ = ∫

V −1dμ = q(μ) is a strictly monotonic function of the mean. The linear
predictor is given by η = ∑p

j=1 β j x j = Xβ, where X is an n × p matrix that
contains the values of explanatory variables (of rank p) and β is a p-vector of
unknown parameters to be estimated. The mean of the dependent variable is then
related to the linear predictor through a strictly monotonic twice differentiable link
function d(μ) = η, which is usually assumed known. GLMs include as special cases
the normal linear regression, gamma, inverse Gaussian, Poission, logit, and probit
models. For example, V = 1 and μ = η for the normal linear model with variance
φ−1. In this section, we develop Bartlett-type corrections for score tests in GLMs.
Similar Bartlett corrections for LR statistics are discussed in Sect. 2.5.1 (see, also,
Cordeiro 1983, 1987).

Suppose the vector β is partitioned as β = (β∗
1 ,β∗

2 ), where β1 = (β1, . . . ,βq)∗
(q ∈ p) and β2 = (βq+1, . . . ,βp)

∗, thus inducing a corresponding partition of
the model matrix X = (X1 X2). We want to test the null hypothesis H0 : β1 =
β

(0)
1 , where β

(0)
1 is a q-vector of known constants, against a two-sided alternative

hypothesis. The score statistic for this test is given by

S = s̃∗W̃ 1/2X1(R̃∗W̃ R̃)−1X∗
1 W̃ 1/2s̃,

where W = diag{w1, . . . , wn}, s = (s1, . . . , sn)∗, R = X1 − X2(X∗
2 W X2)

−1X∗
2

W X1, and tildes denote evaluation at the restricted MLEs. For i = 1, . . . , n, we
have wi = V −1

i (dμi/dηi )
2 and si = φ1/2V −1/2

i (yi −μi ). When the dispersion para-
meter is unknown, we obtain a two-parameter full exponential family with canon-
ical parameters φ and φχ, and the quantity a(y,φ) in (2.12) can be decomposed
as a(y,φ) = d1(φ) + d2(φ). Each distribution in (2.12) has specific functions for
d1(φ) and d2(y). For example, d1(φ) = log(φ/2)/2 and d2(y) = 0 for the normal
distribution with variance φ−1.

Following the general expressions inAppendixA.1, Cordeiro et al. (1993) derived
the A’s that define the Bartlett-type correction to the score statistic S when φ is
known. The case of φ unknown was discussed further by Cribari-Neto and Ferrari
(1995b). They demonstrated that A1 = A1,β + A1,βφ, A2 = A2,β + A2,βφ and
A3 = A3,β + A3,βφ, where A1,β, A2,β , and A3,β are the A’s for the known dispersion
case (Cordeiro et al. 1993), and A1,βφ, A2,βφ, and A3,βφ are some extra terms that
account for the uncertainty involved in the estimation of φ−1. Cordeiro et al. (1993)
demonstrated that

http://dx.doi.org/10.1007/978-3-642-55255-7_2
http://dx.doi.org/10.1007/978-3-642-55255-7_2
http://dx.doi.org/10.1007/978-3-642-55255-7_2
http://dx.doi.org/10.1007/978-3-642-55255-7_2
http://dx.doi.org/10.1007/978-3-642-55255-7_2
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A1,β = φ−1{3 1∗F Z2d(Z − Z2)Z2d F 1 + 6 1∗F Z2d Z2(Z − Z2)d(F − G)1

− 6 1∗F{Z (2)2 
 (Z − Z2)}(2G − F)1 − 6 1∗ H(Z − Z2)d Z2d1},

A2,β = φ−1{−3 1∗(F − G)(Z − Z2)d Z2(Z − Z2)d(F − G)1

− 6 1∗F Z2d(Z − Z2)(Z − Z2)d(F − G)1

− 6 1∗(F − G){(Z − Z2)
(2) 
 Z2}(F − G)1 + 3 1∗ B(Z − Z2)

(2)
d 1}

and

A3,β = φ−1{3 1∗(F − G)(Z − Z2)d(Z − Z2)(Z − Z2)d(F − G)1

+ 2 1∗(F − G)(Z − Z2)
(3)(F − G)1},

where

Z = X (X∗W X)−1X∗, Z2 = X2(X∗
2 W X2)

−1X∗
2 , Zd = diag{zll , . . . , znn},

Z2d = diag{z2ll , . . . , z2nn}, F = diag{ f1, . . . , fn}, G = diag{gl , . . . , gn},
B = diag{b1, . . . , bn} and H = diag{h1, . . . , hn},

with 1 being an n ×1 vector of ones, ‘
’ denoting the Hadamard product of matrices
and

f = 1

V

dμ

dη

d2μ

dη2
, g = 1

V

dμ

dη

d2μ

dη2
− 1

V 2

dV

dμ

(
dμ

dη

)3
,

b = 1

V 3

(
dμ

dη

)4 {(dV

dμ

)2
+ V

d2V

dμ2

}
,

h = 1

V 2

dV

dμ

(
dμ

dη

)2 d2μ
dη2

+ 1

V 2

d2V

dμ2

(
dμ

dη

)4
.

Further, we have Cribari-Neto and Ferrari (1995b)

A1,βφ = 6q
{
d(3) − (p − q − 2)d(2)

}
nd2

(2)

, A2,βφ = 3q(q + 2)

nd(2)
,

and A3,βφ = 0, where d(2) = d(2)(φ) = φ2d√√1(φ) and d(3)(φ) = φ3d√√√1(φ).
For the normal linear model, the A’s are obtained as special cases by taking V = 1

and η = μ. It should also be noted that similar results for Poisson regression and logit
and probit models that are commonly used in the econometrics literature can also be
obtained as special cases of the formulae above. For Poisson models, V = μ, and
for logit and probit models, V = μ(1 − μ). A generalization of the result presented
above to nonlinear models can be found in Ferrari et al. (1997).
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We can also consider the test of the null hypothesis H0 : φ = φ(0) against the
alternative H1 : φ ⊂= φ(0), where φ(0) is a given scalar. For example, in Poisson
regression models, one might want to test the hypothesis that φ = 1 against the alter-
native of overdispersion or underdispersion. The A’s for the Bartlett-type correction
of the score statistic are (Cordeiro et al. 1993)

A1 = −3p(p − 2)

d(2)
, A2 = −3{2pd(3) + d(4)}

d2
(2)

, A3 = −5d2
(3)

d3
(2)

,

where d(4) = d(4)(φ) = φ4d√√1(φ).

3.8 Simulation Results

In this section, we report some simulation results comparing the sizes and powers of
the LR and score tests and of the tests based on their modified statistics. We adopt
three versions for the LR statistics (see Sect. 2.4), namely w, w≤ = w/(1+b/q), and
w≤
1 = w(1−b/q), and six versions for the score statistics as follows. From Eq. (3.3),

we define B = (c1 + c2S + c3S2) and the score tests based on S, S≤ = S(1 − B),
S≤
1 = S/(1 + B), S≤

2 = S exp(−B), S̃ given by (3.7) and the score test based on the
modified critical value z defined at the end of Sect. 3.2. For a given critical value xα,
the labels (1), (2), (3), (4), (5), (6), (7), (8), and (9) refer to Pr(w → xα), Pr(w≤ → xα),
Pr(w≤

1 → xα), Pr(S → xα), Pr(S≤ → xα), Pr(S≤
1 → xα), Pr(S≤

2 → xα), Pr(S̃ → xα),
and Pr(S → zα), respectively.

For the simulations, we consider eight normal models with mean μ and variance
σ2 = 1 and eight gamma models with mean μ and variance μ2/φ, where φ = 2 and
μ in both cases is related to unknown regression parameters as

(i) η = β0 + β1x1 + β2x2,

(i i) η = β0 + β1x1 + β2x2 + β3x3,
...

(vii i) η = β0 + β1x1 + β2x2 + β3x3 + β4x4 + β5x5 + β6x6 + β7x7 + β8x8 + β9x9.

For the normal and gamma models, we adopt the identity and reciprocal link
functions, respectively. The null hypothesis is H0 : β1 = β2 = 0. Denoting the
number of regression parameters by p and the number of restrictions under H0 by q,
we vary the number of nuisance parameters as p−q = 1, 2, . . . , 8 for the twomodels
described before. Ten thousand samples of n = 30 observations were generated for
eachmodel with β0 = β3 = β4 = β5 = β6 = β7 = β8 = β9 = 0.05. The covariates
were taken as 3 replicates of 10 random draws from the Cauchy,σ2

3, F(2, 5), F(3, 3),
L N (0, 1), U (0, 1), N (0, 1), N (0, 2), and t3 distribution. The values for x’s were
kept constant throughout the experiment.

http://dx.doi.org/10.1007/978-3-642-55255-7_2
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Table 3.1 Sizes of tests for the normal model with σ2 = 1, q = 2, p − q = 1, . . . , 8

p − q Nominal levels (%) LR S
(1) (2) (3) (4) (5) (6) (7) (8) (9)

1 1.0 1.5 1.0 1.0 0.7 0.9 0.9 0.9 0.9 0.9
2 1.0 1.8 1.1 1.0 0.8 0.9 0.9 0.9 0.9 0.9
3 1.0 2.1 1.1 1.0 2.6 1.1 1.3 1.2 1.3 1.1
4 1.0 2.3 1.0 1.0 1.1 1.0 0.9 0.9 0.9 0.9
5 1.0 2.6 1.2 1.0 1.3 1.0 1.0 1.0 1.0 0.9
6 1.0 3.4 1.4 1.0 1.8 1.0 1.0 1.0 1.0 1.0
7 1.0 3.7 1.6 1.0 2.3 1.1 1.1 1.1 1.1 1.0
8 1.0 5.0 1.6 1.0 2.6 1.1 1.3 1.2 1.3 1.1

1 5.0 6.8 4.9 4.8 4.8 4.8 4.8 4.8 4.8 4.8
2 5.0 7.4 5.0 4.7 5.3 4.7 4.7 4.7 4.8 4.7
3 5.0 7.7 5.0 4.7 5.8 4.7 4.7 4.7 4.7 4.7
4 5.0 8.7 5.4 4.7 6.5 4.8 5.0 4.9 4.9 4.8
5 5.0 10.0 5.6 4.7 7.5 4.9 5.1 5.0 5.1 5.0
6 5.0 11.0 6.1 5.0 8.5 5.3 5.6 5.4 5.5 5.4
7 5.0 12.0 6.2 4.6 9.3 5.4 5.8 5.7 5.7 5.7
8 5.0 14.0 7.6 5.4 11.1 6.1 7.0 6.6 6.6 6.6

1 10.0 12.3 10.0 10.0 10.6 10.0 10.0 10.0 10.0 10.0
2 10.0 13.5 10.0 10.1 11.5 10.1 10.2 10.2 10.2 10.1
3 10.0 14.1 10.0 9.4 11.9 10.0 10.0 10.0 10.0 10.0
4 10.0 15.3 10.1 9.6 12.8 10.0 10.0 10.0 10.0 10.0
5 10.0 16.4 10.1 9.9 14.4 10.2 10.7 10.5 10.5 10.5
6 10.0 18.3 10.1 9.7 15.9 10.2 10.9 10.7 10.7 10.7
7 10.0 19.5 12.0 10.0 17.3 10.4 11.4 10.9 10.9 11.0
8 10.0 22.0 13.0 10.4 19.1 11.0 12.4 11.7 11.8 12.0

Tables 3.1 and 3.2 display the estimated sizes of the LR and score tests and
their modified versions above for p − q = 1, . . . , 8 corresponding to the nominal
sizes α = 1, 5 and 10 %. It is clear from these figures that the size performance
of the usual LR and score tests deteriorates as the number of nuisance regression
parameters increases. In fact, for p − q = 8, both tests are quite oversized. The
corrected statistics w≤, w≤

1, S≤, S≤
1 , S≤

2 , and S̃ are quite effective in bringing the sizes
of the modified tests closer to the nominal sizes especially if p − q is not small. It is
clear that the four Bartlett-corrected score statistics have a similar size behavior and
that all corrected tests outperform the original score test, especially when p − q is
large. In particular, S≤

2 has a slightly superior behavior for small samples followed
by S̃ and then S≤

1 . The corrected score test based on the modified critical value zα

provides good σ2
2 approximation for the modified score test. In Tables 3.3 and 3.4,

we present the estimated sizes of the LR and score tests and their modified versions
when p = 10 and q = 2 for the normal and gamma models, respectively, by varying
the number of observations n = 20, 30, 40, and 50. As the sample size increases, all
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Table 3.2 Sizes of tests for the gamma model with φ = 2, q = 2, p − q = 1, . . . , 8

p − q Nominal levels (%) LR S
(1) (2) (3) (4) (5) (6) (7) (8) (9)

1 1.0 1.6 1.1 1.0 1.0 1.1 1.1 1.1 1.1 1.1
2 1.0 1.8 1.0 0.9 0.9 1.0 1.0 1.0 1.0 1.0
3 1.0 2.1 1.1 1.1 1.1 0.9 0.9 0.9 1.0 1.0
4 1.0 2.7 1.2 1.1 1.2 1.0 1.0 1.0 1.0 1.1
5 1.0 2.9 1.3 1.0 1.3 1.0 1.0 1.0 1.1 1.1
6 1.0 3.4 1.3 1.0 1.2 0.9 0.9 0.9 0.9 1.0
7 1.0 4.3 1.7 1.1 1.6 1.1 1.1 1.1 1.1 1.1
8 1.0 5.6 1.7 0.8 2.1 1.1 1.1 1.1 1.1 1.0

1 5.0 6.4 5.0 4.9 4.5 4.8 4.8 4.8 4.8 4.8
2 5.0 7.0 5.2 5.1 4.9 4.9 4.9 4.9 4.9 4.9
3 5.0 7.7 5.1 4.8 5.8 4.8 4.8 4.8 4.8 4.8
4 5.0 8.9 5.3 4.8 6.5 4.9 5.0 5.0 5.0 5.0
5 5.0 10.2 5.8 5.1 7.3 5.1 5.2 5.1 5.2 5.1
6 5.0 10.9 6.0 4.9 7.2 4.9 5.1 5.0 5.1 5.0
7 5.0 12.7 6.7 5.0 8.3 5.3 5.6 5.5 5.6 5.3
8 5.0 14.7 7.5 5.1 9.8 5.6 6.1 5.9 6.0 5.7

1 10.0 12.0 10.0 9.7 9.7 9.9 9.9 9.9 9.9 9.9
2 10.0 13.3 10.2 9.9 10.5 10.0 10.0 10.0 10.0 9.9
3 10.0 13.6 10.2 9.7 11.8 10.0 10.1 10.0 10.0 10.0
4 10.0 16.1 10.9 9.8 13.2 10.0 10.2 10.1 10.1 10.1
5 10.0 17.0 11.3 10.1 13.6 10.4 10.7 10.6 10.6 10.6
6 10.0 18.1 11.5 9.8 14.4 10.2 10.5 10.4 10.5 10.3
7 10.0 20.1 12.5 10.0 16.0 10.7 11.3 11.0 11.1 10.9
8 10.0 23.1 13.2 9.7 18.4 10.5 11.6 11.1 11.2 11.0

statistics converge to the σ2
2 distribution but the rate of convergence of the modified

statistics is much higher.
Some power simulations not reported here for the above experiment were con-

ducted using tabulated and not estimated critical values. This was done mainly
because none of the tests is oversized.We are then comparing the powers of level α (as
opposed to size α) tests. The results showed that S≤

2 has the best power performance.
For the normalmodel, all four corrected score tests had slightly higher power than the
original test. The power behavior of the corrected tests was similar. For the gamma
model, S≤

2 was followed by S̃, S, and S≤
1 . Although S≤ is the most used version of

the Bartlett-type corrected score statistic, the other alternative forms considered here
were slightly more powerful under the alternative hypothesis. It should be remarked
that when the power comparisons are based on estimated critical values so that all
tests are forced to have the same size, some corrected tests become considerably less
powerful than the original test. This illustrates the fact that in some cases, the size
adjustment comes at the expense of some loss in power.

A second experiment study conducted to verify the superiority of the tests based
on the monotone corrected statistics S̃ and K (S) over the usual corrected score
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Table 3.3 Sizes of tests for the normal model (p = 10, q = 2)

n Nominal levels (%) LR S
(1) (2) (3) (4) (5) (6) (7) (8) (9)

1.0 9.5 3.0 1.0 4.3 1.1 1.5 1.2 1.3 1.1
20 5.0 21.6 10.1 4.7 15.9 5.9 7.8 6.9 7.1 6.7

10.0 30.7 17.2 9.5 25.8 11.4 14.5 13.7 13.7 13.6

1.0 5.0 1.6 1.0 2.6 1.1 1.3 1.2 1.3 1.1
30 5.0 13.8 7.6 5.4 11.1 6.1 7.0 6.6 6.6 6.6

10.0 22.0 13.0 10.4 19.1 11.0 12.4 11.8 11.8 12.0

1.0 3.5 1.5 1.1 2.2 1.1 1.3 1.2 1.3 1.1
40 5.0 10.8 6.2 5.3 8.9 5.5 6.0 5.8 5.8 5.8

10.0 18.0 11.7 10.1 16.2 10.4 11.3 11.0 11.0 11.1

1.0 2.7 1.2 1.1 1.7 1.1 1.2 1.1 1.2 1.1
50 5.0 9.4 5.8 5.2 8.1 5.3 5.6 5.5 5.5 5.5

10.0 16.2 11.4 10.4 14.7 10.6 11.1 10.9 10.9 10.9

Table 3.4 Sizes of tests for the gamma model (p = 10, q = 2)

n Nominal levels (%) LR S
(1) (2) (3) (4) (5) (6) (7) (8) (9)

1.0 11.9 3.2 1.0 4.1 1.2 1.5 1.4 1.4 1.6
20 5.0 24.6 11.6 4.8 16.2 6.3 8.0 7.3 7.4 7.4

10.0 34.0 18.8 9.8 26.4 12.3 15.5 14.2 14.3 14.6

1.0 5.6 1.7 1.0 2.1 1.1 1.1 1.1 1.1 1.0
30 5.0 14.7 7.5 5.1 9.8 5.6 6.1 5.9 6.0 5.7

10.0 23.1 13.2 9.7 18.4 10.5 11.6 11.1 11.2 11.0

1.0 3.6 1.4 1.0 1.5 1.0 1.0 1.0 1.0 1.0
40 5.0 11.7 6.2 4.8 8.1 5.4 5.6 5.5 5.5 5.4

10.0 18.5 12.1 9.7 15.5 10.3 11.0 10.7 10.7 10.6

1.0 2.8 1.2 1.0 1.3 1.0 1.0 1.0 1.0 1.0
50 5.0 9.9 5.6 5.0 7.3 6.5 5.3 5.2 5.2 5.0

10.0 17.0 11.5 10.1 14.5 10.5 10.9 10.7 10.8 10.7

test becomes clear when one compares their powers. Ten thousand samples of sizes
n = 20, 40, . . . , 100 were generated from the multiplicative heteroskedastic normal
linear model

Yi = β0 + β1xi + νi , i = 1, . . . , n,

where ψi ≥ N (0,σ2
i ) and σ2

i = exp{α0 +α1xi }. The values of the covariate x were
taken as n t3 random draws. The null hypothesis under test is H0 : α1 = 0. Table 3.5
reports the estimated sizes of the tests. The results indicate that the corrected score
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Table 3.5 Sizes of score tests for the heteroskedastic linear model

n Nominal levels (%) S S≤ S̃ K (S)

20 10 7.2 9.0 9.1 9.0
5 3.2 4.2 4.3 4.2

40 10 8.3 10.1 10.2 10.1
5 4.0 4.8 4.8 4.8

60 10 7.5 10.6 11.1 10.9
5 3.7 5.6 5.4 5.3

80 10 7.5 10.1 10.4 10.2
5 3.7 5.1 5.1 5.0

100 10 8.3 10.2 10.4 10.3
5 4.2 5.0 5.1 5.0

Table 3.6 Powers of score tests for the heteroskedastic linear model

n Nominal levels (%) S S≤ S̃ K (S)

20 10 34.4 38.5 38.8 38.7
5 23.2 26.6 26.8 26.7

40 10 73.3 76.2 76.6 76.5
5 62.2 65.1 65.5 65.4

60 10 97.2 45.6 98.3 98.3
5 94.2 40.0 96.0 95.9

80 10 99.4 39.5 99.6 99.6
5 98.7 35.9 99.1 99.1

100 10 99.9 34.6 99.9 99.9
5 99.7 32.0 99.8 99.8

tests perform much better than the uncorrected score test in terms of size especially
if n is not very large. The figures in Table 3.6 reveal that the usual corrected score
test performs poorly in terms of power in large samples. In fact, the behavior of
the statistic S� in terms of power is very different of the monotonic statistics S̃ and
K (S). The power of the corrected statistic S� does not increase when n increases.
For instance, when n = 100 and at a 10% nominal size, the power of the statistic S�

is 34.6% for α1 = 0.6, while the powers of all the other tests are nearly 100%.

3.9 Heteroskedastic Regression

Most econometric applications involve regressionmodelswhere themean of a depen-
dent variable is related to a linear or nonlinear predictor which is defined by unknown
parameters and independent variables. There are a number of Bartlett and Bartlett-
type corrections that can applied to heteroskedastic regression models, and this
section looks at some of them. It also sheds some light on the effect of covariate
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values and nuisance parameters on the convergence to the limiting null distribu-
tion of some test statistics using Monte Carlo simulation. We consider the linear
regression model Y = Xβ + ν, where Y, the dependent variable, and ν, the ran-
dom disturbance, are n-vectors, X is an n × p matrix of values of covariates and
β is a p-vector of unknown parameters. For each i, i = 1, 2, . . . , n, we assume
νi ≥ NID(0,σ2

i ), where σ2
i = h(w∗

i α), w∗
i = (1 v∗

i ) is a 1 × (q + 1) vector of
exogenous variables, α is a (q +1)-vector of parameters and h(·), the skedastic func-
tion, is any positive-valued function independent of i . It is common practice to use
Breusch and Pagan (1979) score statistic to test the null hypothesis of homoskedas-
ticity H0 : α1 = · · · = αq = 0 against the alternative of heteroskedasticity of
unknown form. A well-known problem associated with this test is its tendency to
under-reject the null hypothesis when heteroskedasticity is not present. The score
statistic for this test becomes S = ũ∗W (W ∗W )−1W ∗ũ, where W = (w1, . . . , wn)

is a (q +1)×n matrix, ũ is an n-vector with typical element ν̃i
2 − σ̃2, ν̃i are the OLS

residuals and σ̃2 = n−1∑n
i=1 ν̃i

2. Closed-form expressions for the A√s for this test
can be found in Honda (1988) and Cribari-Neto and Ferrari (1995c). In particular,
in the latter paper, it is shown that

A1 = 24q(p − 1)

n
− 24 tr(Hd Jd) + 61∗ Jd H Jd1 + 121∗(H 
 J 
 J )1,

A2 = −24q(q + 2)

n
+ 36 tr(Hd 
 Hd) − 241∗ Hd H Jd1,

A3 = 241∗ Hd H Hd1 + 16n1∗ H 
 H 
 H1,

where

J = X (X∗ X)−1X∗, H = V (V ∗V )−1V ∗, V = (v1 − v, . . . , vn − v)∗,

Jd = diag{ j11, . . . jnn}, Hd = diag{h11, . . . , hnn}, 1 is an n-vector of ones, and
‘
’ as before denotes the Hadamard product. These formulae can be used to obtain
numerical values for A1, A2, and A3 in empirical applications or closed-form expres-
sions for special models. These expressions for the A’s provide indication of which
features of the model affect the finite-sample behavior of the score test (to order
n−1). Cribari-Neto and Ferrari (1995c) provided a program written in the S- PLUS
language to compute the A’s above. Bartlett corrections for LR tests for heteroskedas-
ticity can be found in Attfield (1991) and Cordeiro (1993).

Consider a simple linear regression model given by Yi = β0 + β1xi + νi , for
i = 1, 2, . . . , n, with ν ≥ NID(0,σ2

i ), where σ2
i = h(α0 + α1x1), which is a

special case of the heteroskedasticmodel introduced above. For this simple regression
model, Cribari-Neto and Ferrari (1995c) derived the following expressions for the
A’s: A1 = 6(8+4γ2x −3γ2

1x )/n, A2 = 12(3+3γ2x −2γ2
1x )/n, and A3 = 40γ2

1x/n,
where γ1x and γ2x are the sample measures of skewness and excess kurtosis of the
independent variable. Then, the improved score statistic S≤ can be easily obtained
from (3.3) using these A’s and q = 1. In fact, the sample skewness and the sample
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excess kurtosis of the independent variable affect the first-order approximation of the
test. So, the covariate values can play an important role in the quality of the asymptotic
σ2 approximation that is used to perform the Breusch–Pagan test. Cribari-Neto and
Ferrari (1995c) demonstrated that, in some cases, the covariate values can affect the
size performance of asymptotic tests considerably.

Another important factor that can affect the first-order approximation of asymp-
totic econometric criteria is the number of nuisance parameters. To illustrate this
point, we consider a normal linear regression model and test restrictions on the
components of β, the vector of regression parameters. The A’s obtained for the test
are A1 = 12q(p − q)/n, A2 = −6q(q + 2)/n, and A3 = 0 (Cribari-Neto and
Ferrari 1995b). It is then clear that the number of nuisance parameters p − q, where
q is the number of restrictions imposed by H0, has an impact on A1 and thus on
the finite-sample performance of the score test. The simulation results reported by
Cribari-Neto and Ferrari (1995b) indicate that the corrected statistics are not sen-
sitive to the values of the nuisance parameters (as expected) and that the score test
is slightly undersized when p − q = 0 and becomes oversized as p − q increases,
being extremely oversized when p − q becomes large. The Bartlett-corrected test
holds its size close to the nominal levels remarkably well.
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Chapter 4
Analytical and Bootstrap Bias Corrections

Abstract Maximum likelihood estimators are usually biased: In finite samples, their
expected value differs from the true parameter value. This is a systematic error. It
typically vanishes as the sample size increases, but it can be large in small samples.
Different strategies can be employed to reduce such systematic error. In this chapter,
we present two analytical bias corrections. We also show how the bootstrap can
be used to bias-correct estimators. Bias corrections in different statistical models
are presented and discussed. In particular, we address the issue of bias-correcting
covariance matrix estimators in heteroskedastic linear regressions.

Keywords Bias · Bias correction · Bootstrap · Heteroskedasticity · Likelihood ·
Maximum likelihood · Regression

4.1 Introduction

Amain object in asymptotic likelihood theory is to calculate the second-order biases
of the MLEs. These estimators typically have biases of order O(n−1), where n is
the sample size, which are commonly ignored in practice, the justification being that
they are small when compared to the standard errors of the parameter estimators
that are of order O(n−1/2). For small samples sizes, however, these biases can be
appreciable and of the same magnitude as the corresponding standard errors. In such
cases, the biases should not be neglected. Bias reduction approaches based on the
O(n−1) bias function can be quite effective. The usual normal approximation can be
oftentimes improved by making a simple bias adjustment to the MLE.

Approximations to the bias of the MLE in simple models may be obtained analyt-
ically. Bias correction typically does a very good job in reducing the bias. However,
it may either increase the mean-squared error. Whether bias correction is useful in
practice depends basically on the shape of the bias function and on the variance of
the MLE.

G. M. Cordeiro and F. Cribari-Neto, An Introduction to Bartlett Correction 69
and Bias Reduction, SpringerBriefs in Statistics, DOI: 10.1007/978-3-642-55255-7_4,
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In order to improve the accuracy of MLEs using analytical bias reduction, one
needs to obtain several cumulants of log-likelihood derivatives, which are notori-
ously cumbersome. Bias correction has been extensively studied in the statistical
literature, and there has been considerable interest in finding simple matrix expres-
sions for second-order biases of MLEs in a number of classes of regression mod-
els, which do not involve cumulants of log-likelihood derivatives. This approach
has been applied to several regression models. We cite the following models: nor-
mal nonlinear models (Cook et al. 1986), generalized log-gamma regression model
(Young and Bakir 1987), generalized linear models (Cordeiro andMcCullagh 1991),
ARMA models (Cordeiro and Klein 1994), multivariate nonlinear regression mod-
els (Cordeiro and Vasconcellos 1997), generalized linear models with dispersion
covariates (Botter and Cordeiro 1998), Poisson regression (Giles and Feng 2011),
symmetric nonlinear regression models (Cordeiro et al. 2000), Student t regression
model with unknown degrees of freedom (Vasconcellos and Silva 2005), beta regres-
sion models (Ospina et al. 2006), and a class of multivariate normal model where
the mean vector and the covariance matrix have parameters in common (Patriota and
Lemonte 2009). It is noteworthy that the leading term in the asymptotic bias can be
computed using a weighted linear regression. Stosic and Cordeiro (2009) showed
how to symbolically compute the biases of the MLEs in general two-parameter con-
tinuous distributions, thus bypassing the traditional computation of joint cumulants
of log-likelihood derivatives. Bias corrections for the MLEs of the parameters that
index several distributions have also been derived; for instance, Cordeiro et al. (1997)
and Cribari-Neto and Vasconcellos (2002) addressed bias correction for theMLEs in
the beta law, Giles (2012) obtained such a correction for the half-logistic distribution,
and Giles et al. (2013) derived the correction for the Lomax distribution.

One can easily obtain a bias-reduced estimator by subtracting the O(n−1) bias
from the MLE. Alternatively, an examination of the form of the bias may suggest a
reparametrization of the model that results in less biased estimators.

4.2 A General Formula

Consider that the total log-likelihood function χ(θ), based on n observations not
necessarily i.i.d., is a function of a p × 1 vector θ of unknown parameters. We
assume that χ = χ(θ) is regular (Cox and Hinkley 1974) with respect to all θ deriv-
atives up to and including those of third order. We consider the notation for the
log-likelihood derivatives in which we reserve lower-case subscripts r, s, t, . . . to
denote components of the vector θ: Ur = ∂l/∂θr , Urs = ∂2l/∂θr∂θs , and so on.
The standard notation will be adopted for the cumulants of log-likelihood deriva-
tives: κrs = E(Urs), κr,s = E(Ur Us), κrs,t = E(UrsUt ), etc., where all κ’s refer
to a total over the sample and are, in general, of order n. The elements of Fisher’s
information matrix K are κr,s = −κrs and let κr,s = −κrs denote the corresponding
elements of the inverse matrix K −1, which is of order O(n−1).
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The MLE θ̂ of θ can be obtained as a solution of a system of nonlinear equations
Ûr = 0 for r = 1, . . . , p. A general formula for the O(n−1) bias of θ̂ for a regular
statistical model with p unknown parameters was given by Cox and Snell (1968)
and Cordeiro and McCullagh (1991). Hereafter, we shall use Einstein’s summa-
tion convention with indices varying over the corresponding parameters. Assuming
standard regularity conditions (Cox and Hinkley 1974), we can expand Ûr = 0 to
obtain Ur + ∑

s Urs (θs − θs) + Op(1) = 0 and then use matrix notation to write
U = J (θ̂ − θ) + Op(1), where U is the score vector and J is the observed infor-
mation matrix. Since J = K + Op(n1/2), it follows that U = K (θ̂ − θ) + Op(1)
and

θ̂ − θ = K −1 U + Op(n
−1). (4.1)

Equation (4.1) is important because it can be used when computing higher-order
moments and cumulants of the estimator θ̂. By expanding Ûr up to terms of second
order, we have

Ur +
∑

s

Urs (θ̂s − θs) + 1

2

∑
s,t

Urst (θ̂s − θs) (θ̂t − θt ) + op(1) = 0.

Taking expected values, we can write

∑
s

κrs E(θ̂s − θs) +
∑

s

Cov(Urs, θ̂s − θs) + 1

2

∑
s,t

κrst (−κst ) + o(1) = 0. (4.2)

Using (4.1) we obtain, up to terms of order O(n−1),

Cov(Urs, θ̂s − θs) = Cov

(
Urs,−

∑
t

κst Ut

)
= −

∑
t

κrs,t κst . (4.3)

Let B(θ̂a) be the O(n−1) bias of the estimator θ̂a for a = 1, . . . , p. Plugging
(4.3) into (4.2), we obtain

∑
s

κrs B(θ̂s) −
∑
s,t

κst
(

κrs,t + 1

2
κrst

)
+ o(1) = 0

which leads to

B(θ̂a) =
∑
r,s,t

κar κst
(

κrs,t + 1

2
κrst

)
=

∑
r,s,t

κar κst
(

κ(t)
rs − 1

2
κrst

)
. (4.4)

We can verify that the two alternative formulae for B(θ̂a) are equivalents using a
Bartlett identity. For general regression models, we can derive matrix expressions
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for the bias of the MLE θ̂, say B(θ̂), from Eq. (4.4) as long as the cumulants κ’s are
invariant under permutations of parameters (see Cordeiro and McCullagh 1991).

Let B̂(θ̂) denote the estimated second-order bias, i.e., B̂(θ̂) is obtained by replac-
ing θ by θ̂ in B(θ̂).We can now define the bias-corrected estimator θ̃ = θ̂− B̂(θ̂). The
corrected estimator θ̃ is expected to have better sampling properties than the original
estimator θ̂. In fact, several simulation studies presented in the literature (Botter and
Cordeiro 1998; Cordeiro et al. 2000;Vasconcellos and Silva 2005;Ospina et al. 2006;
Patriota and Lemonte 2009) have shown that the corrected estimators θ̃ have smaller
biases than their corresponding uncorrected estimators, thus suggesting that these
bias corrections have the effect of bringing the corrected estimates closer on average
to the true parameter values. It is noteworthy, nonetheless, that bias correction can
lead to variance inflation.

A simple illustration of (4.4) is provided by taking n i.i.d. observations from
the normal distribution with mean μ and variance σ2, namely N (μ,σ2). Suppose
the interest lies in computing the n−1 biases of the estimators of μ and σ. The
information matrix elements are as follows: κμ,μ = n/σ2, κμ,σ = 0, and κσ,σ =
2n/σ2. The third-order cumulants are easily obtained as κμμμ = κμ,μμ = κσ,μμ =
κσ,μσ = κμ,σσ = κμσσ = 0, κμμσ = −κμ,μσ = 2n/σ3, κσ,σσ = −6n/σ3, and
κσσσ = 10n/σ3. Thus, B(μ̂) = 0 since μ̂ = θyi/n has no bias. Further, after
some algebra, B(σ̂) = −3σ/4n. This approximate result is in agreement with the
exact expected value of σ̂ = {θ(yi − y)2/n}1/2 given by E(σ̂) = b(n)σ, where
b(n) = (

∗
2/n) Γ (n/2)/Γ ((n − 1)/2). This exact value can be easily obtained by

noting that (n−1)σ̂2/σ2 isχ2
n−1 distributed. In fact, using Stirling expansion inE(σ̂)

yields E(σ̂) = σ [1 − 3/(4n) + O(n−2)]. The bias-corrected estimator of σ is then
σ̃ = [1+ 3/(4n)]σ̂. Clearly, an unbiased estimator of σ can be obtained by dividing
σ̂ by b(n). As n grows, b(n) approaches one, but for small values of n, the correction
can be important. For example, for n = 4, 10 and 50, we obtain b(4) = 0.797884,
b(10) = 0.922745, and b(50) = 0.984912, respectively. If the calculation of b(n) is
cumbersome, one can then use σ̃.

4.3 One-Parameter Distributions

For a one-parameter model, the n−1 bias of θ̂ follows from Eq. (4.4) by setting all
parameters equal to θ. We then obtain the formula first derived by Bartlett (1953):

B(θ̂) = κθθ2
(

κθθ,θ + 1

2
κθθθ

)
= κθθ2

(
κ(θ)

θθ − 1

2
κθθθ

)
. (4.5)

Let Y1, . . . , Yn be a set of n i.i.d. random variables having distribution in the one-
parameter exponential family defined by

π(y; θ) = 1

ζ(θ)
exp{−α(θ) d(y) + ν(y)}, (4.6)
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where θ is a scalar parameter, ζ = ζ(θ), α = α(θ), d(y), and ν(y) are known
functions. It is assumed that the support of π(y; θ) does not depend upon θ. It is also
assumed thatα and ζ have continuousfirst three derivativeswith respect to θ and that ζ
is positive valued. Let β = β(θ) = ζ ∈ (ζ α∈)−1 and assume thatα∈ and β∈ are different
from zero for all values of θ in the parameter space, primes denoting derivatives with
respect to θ. Many commonly used distributions are special cases of the family of
distributions (4.6). Examples are the binomial, exponential, extreme value, gamma,
inverse Gaussian, Laplace, log-normal with only one unknown parameter, normal,
Pareto and Poisson distributions.

The score function for a single observation is given by Uθ = −α∈ [β + d(y)].
Since E(Uθ) = 0, it follows that μ = E[d(Y )] = −β. The MLE θ̂ comes from
n−1 ∑

i d(yi ) = −β(θ̂). Its computation may require the use of numerical methods.
The second and third log-likelihood derivatives for a single observation are Uθθ =
−α∈∈ [β + d(y)] − α∈β∈ and Uθθθ = −α∈∈∈ [β + d(y)] − 2α∈∈β∈ − α∈β∈∈, respectively.
It is now easy to obtain the cumulants as κθθ = −nα∈β∈, κθθθ = −2nα∈∈β∈ − nα∈β∈∈,
etc. The asymptotic variance of θ̂ is Var(θ̂) = (α∈β∈n)−1. Using the cumulants in
(4.5), we obtain

B(θ̂) = − β∈∈

2α∈ β∈2 n
. (4.7)

It is noteworthy that (4.7) only requires knowledge of α and ζ and their first three
derivatives with respect to θ. It can be easily implemented in a computer algebra
system, such asMaple and Mathematica, to obtain bias-corrected estimates with
minimal effort.

It is possible to check Eq. (4.7) from first principles for special distributions. The
simplest special case is the normal distribution with known mean μ and variance θ

for which B(θ̂) vanishes. Here, θ̂ = ∑
(yi − μ)2/n ⊂ θχ2

n/n is clearly an unbiased
estimator. It is easy to verify that the same happens for the following distributions:
binomial, exponential, inverse Gaussian with unknown scale parameter θ, Laplace,
Poisson and truncated extreme value. We consider two additional examples. For the
inverse Gaussian distribution with known mean μ > 0 and scale parameter θ > 0,
we have α = θ, ζ = θ−1/2, d(y) = (y − μ)2/(2μ2y) and ν(y) = −[log(2π y3)]/2
and then θ̂ = nμ2

[∑
(Yi − μ)2/yi

]−1 ⊂ nθ/χ2
n . A Taylor series expansion to order

n−1 gives E(θ̂) = 2θ/n, which is in agreement with the result obtained from (4.7).
Consider now the gamma distribution with known index k > 0 and scale parameter
θ > 0. Here, α = θ, ζ = θ−k , d(y) = y, and ν(y) = (k − 1) log(y) − log[Γ (k)]. It
is easy to show that θ̂ is 2 n kθ/χ2

2kn distributed. Thus, by direct expansion to order

n−1, we establish that E(θ̂) = θ/(kn), which agrees with the result obtained using
(4.7).
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4.4 Two-Parameter Distributions

Stosic and Cordeiro (2009) presented computer codes that may be used withMaple
andMathematica to obtain closed-form expressions for the bias corrections Bμ and
Bφ of the MLEs of the parameters μ and φ, for arbitrary two-parameter continuous
distributions, through a straightforward application of Eq. (4.4).

The symbolic computation software Maple and Mathematica are quite useful
for dealing with analytic expressions of formidable size and complexity, but we note
that limitations still exist. It turns out that the complexity of the formulae involved in
calculating the cumulants of log-likelihood derivatives for somedistributions exceeds
the software capacity. In some cases, neither Maple nor Mathematica were able
to produce closed-form expressions for the bias corrections. It should be noted,
nonetheless, that the programs provided by the authors are still useful in such cases
since future versions of the software may be able to handle them. It should be also
pointed out that such a limitation does not diminish the usefulness of the scripts
provided by Stosic and Cordeiro (2009), since both software have produced closed-
form expressions for most two-parameter continuous density functions considered.
Moreover, whenever both software yielded a closed-form expression, the resultswere
found to be identical.

For both Maple and Mathematica, the user must specify the form and the
domain of the density function f = f (y;μ,φ), as well as the relevant constraints
on μ and φ (e.g., μ ≤ R or μ > 0), and the program first defines and analytically
computes the cumulants (κ’s). Then, the second-order cumulants are subsequently
inserted into the expression for the informationmatrix, the inverse informationmatrix
is computed, and the results are used together with the third-order cumulants to
produce the final result using Eq. (4.4). In what follows, we denote the first and
second derivatives of the digamma function ψ(p) = d log{Γ (p)}/dp by ψ∈(p) and
ψ∈∈(p), respectively. Also, γ = 1−ψ(2) is Euler’s constant and ζ(p) = ∑∞

n=1 n−p is
theRiemannZeta function. The formulae for the examples listed belowwere obtained
using the Maple and Mathematica scripts of Stosic and Cordeiro (2009):

1. Normal distribution with mean μ and variance φ2:

Bμ = 0, Bφ = −3φ

4n
.

2. Reciprocal normal distribution with mean μ and variance φ2:

Bμ = 0, Bφ = −3φ

4n
.

3. Gamma distribution with mean μ and shape parameter φ:

Bμ = 0, Bφ = −2 − φψ∈(φ) + φ2ψ∈∈(φ)

2 [φψ∈(φ) − 1]2 n
.
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We note that the expression for Bφ given above is a special case of Eq. (5.1) in
Cordeiro and McCullagh (1991) and corrects their Eq. (5.2).

4. Inverse gamma distribution with scale μ and shape φ:

Bμ = μ [2φ ψ∈(φ)2 − 3ψ∈(φ) − φ ψ∈∈(φ)]
2[φ ψ∈(φ) − 1]2n

,

Bφ = φ ψ∈(φ) − φ2ψ∈∈(φ) − 2

2[φ ψ∈(φ) − 1]2n
.

5. Weibull distribution with scale μ and shape φ [here, E(Y ) = μΓ (1 + φ−1)]:

Bμ = μ

2 π4 φ2 n

{
π4 (1 − 2φ) + 6π2

[
1 + γ2 + 5φ − 2 γ (1 + 2φ)

]

+ 72 (γ − 1) φ ζ(3)} ,

Bφ = 18φ
(
π2 − 2 ζ(3)

)
π4 n

.

6. Logistic distribution with mean μ and variance π2 φ2/6:

Bμ = 0, Bφ = −9φ (4π2 + 3)

(π2 + 3)2 4n
.

7. Extreme value distribution with mean μ + γ φ and variance π2 φ2/6:

Bμ = φ [3 (−5 + 4 γ)π2 + π4 − 36 (−1 + γ) ζ(3)]
4π4 n

,

Bφ = −12φ (π2 − 3 ζ(3))

4π4 n
.

8. Random walk distribution:

Bμ = 0, Bφ = 3φ

n
.

9. Student’s t-distribution with location parameter μ and dispersion parameter φ:

Bμ = 0, Bφ = −3 (−3 + 2 ν + ν2)φ

4 ν (5 + ν) n
.

Here, ν denotes the number of degrees of freedom. For ν = 1 (Cauchy distribu-
tion), we obtain Bφ = 0. When ν √ ∞, we obtain Bφ = −3φ/4, which is the
bias function for the normal distribution.

10. Fisher–Tippett distribution with mode μ and variance π2 φ2/6:
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Bμ = φ [3 (−5 + 4 γ)π2 + π4 − 36 (−1 + γ) ζ(3)]
π4 n

,

Bφ = −12φ [π2 − 3 ζ(3)]
π4 n

.

Bias correction is easily carried out and tends to work quite well whenever the
bias function is approximately flat. If the bias function is approximately linear, the
O(n−1) bias can still be easily computed, but the resulting bias correction may not
be as effective. In particular, if the bias function slopes downward, the bias-corrected
estimators will display larger variances than the uncorrected estimators, and they
may thus display larger mean-squared errors. If the bias function slopes upward, the
bias-corrected estimators will have smaller variances than the uncorrected ones.

4.5 Generalized Linear Models

For the two-parameter linear exponential family distributions defined in (2.12), with
canonical parameters φ and φ θ, the decomposition c(y,φ) = d1(φ) + d2(y) holds.
As discussed in Sect. 2.5, a GLM is defined by the family of distributions in (2.12)
and by the systematic component g(μ) = η = X β, where g(·) is a known one-to-one
continuously twice-differentiable function, X is a specified n × p model matrix of
full rank p (p < n) and β = (β1, . . . ,βp)

→ is a set of unknown linear parameters
to be estimated.

Denote the n observations by y1, . . . , yn and the total log-likelihood for β and φ
by χ = χ(β,φ). The parameters β and φ are orthogonal since E(∂2χ/∂β ∂φ) = 0.
Let β̂ and φ̂ be the MLEs of β and φ, respectively. The joint cumulants are

κrs = E(∂2χ/∂βr∂βs),κrφ = E(∂2χ/∂βr ∂φ),κrst = E(∂3χ/∂βr∂βs∂βt ),

κr,st = E(∂χ/∂βr ∂2χ/∂βs∂βt ),κrs,φ = E(∂2χ/∂βr ∂βs ∂χ/∂φ),

κ
(t)
rs = ∂κrs/∂βt , etc., with the indices being replaced by φ when derivatives

are taken with respect to this parameter. All κ’s refer to a total over the sam-
ple and are, in general, of order n. The joint information matrix for (β→,φ)→
is K = diag{φ (X→W X),−nd

∈∈
1 (φ)}, where Kβ = {−κrs} = φ (X→W X) is

the information for β and {−nd
∈∈
1 (φ)} is the information for φ. Here, K −1 =

diag{{−κrs},−κφφ} = diag{φ−1 (X→W X)−1,−[nd
∈∈
1 (φ)]−1} is the inverse of the

joint information matrix.
Let φ̂, β̂, η̂ = X β̂ and μ̂ = g−1(η̂) be the MLEs of φ, β, η, and μ, respectively.

Estimation of β and φ was discussed in Sect. 2.5.
The MLEs of β and φ are asymptotically independent due to their asymptotic

normality and the block diagonal structure of the joint information matrix K . For a
GLM, we can easily obtain the cumulants κ’s. The key to obtain a simple expression
for the bias B(β̂) in GLMs is the invariance of the κ’s under permutation of the β

http://dx.doi.org/10.1007/978-3-642-55255-7_2
http://dx.doi.org/10.1007/978-3-642-55255-7_2
http://dx.doi.org/10.1007/978-3-642-55255-7_2
http://dx.doi.org/10.1007/978-3-642-55255-7_2
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parameters and the orthogonality between φ and β. Let S = {1, . . . , p} be the set
that indexes the β parameters. Since κrφ = 0 and κrφφ = κ

(φ)

rφ = κrφ,φ = 0 for
r ≤ S, we only need to take into account one summation term involving the various
combinations of β parameters in Eq. (4.4). It can be shown that the crucial quantity
for the n−1 bias of β̂ is equal to

κ(t)
rs − 1

2
κrst = −φ

2

n∑
i=1

fi xir xis xit ,

where f = V −1 dμ/dη d2μ/dη2 is a typical element of the diagonal matrix F =
diag{ f1, . . . , fn}. Rearranging the summation terms in (4.4), we obtain

B(β̂a) = −φ

2

∑
i

fi

(∑
r

κar xir

) (∑
s,t

κst xis xit

)
, (4.8)

where r, s, and t vary in S, and i runs over the observations. We define the matrix
Z = {zi j } = X (X→W X)−1 X→ which is, apart from the multiplier φ−1, the asymp-
totic covariance matrix of the estimators η̂1, . . . , η̂n of the model linear predictors.
Additionally, Zd = diag{z11, . . . , znn} is a diagonal matrix with the diagonal ele-
ments of Z , and 1n is an n × 1 vector of ones. It is now possible to write (4.8) in
simple matrix form as (Cordeiro and McCullagh 1991)

B(β̂) = − 1

2φ
(X→ W X)−1 X→ Zd F 1n. (4.9)

We define the n × 1 vector ξ = −(2φ)−1 W −1 Zd F 1n, whose components are ξi =
−(2φ)−1 μ∈∈

i μ∈
i
−1 zii , where μ∈

i = dμi/dηi and μ∈∈
i = d2μi/dη2i are the derivatives

of the inverse link function and zii is the asymptotic variance of η̂i except for the
multiplier φ−1. The components of ξ are 0 for the identity link, −zii/2 for the
logarithm link, zii (μi − 1/2) for the logit link, and (ziiηi )/2 for the probit link.
Then, Eq. (4.9) reduces to

B(β̂) = (X→ W X)−1 X→ W ξ. (4.10)

Equation (4.10) is easily obtained as the vector of regression coefficients in the formal
linear regression of ξ̂ on X using Ŵ as a weight matrix. We retain the weights and
the model formula from the GLM, but the link function becomes the identity and the
response vector becomes ξ̂. In order to evaluate B(β̂), one only needs the variance and
link functions and the first two derivatives. We can now replace unknown parameters
by their MLEs on the right-hand side of Eq. (4.10) to obtain the bias-corrected
estimator β̃ = β̂ − B̂(β̂), where B̂(β̂) is the value of B(β̂) at the vector (β̂→, φ̂)→.
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We now provide the O(n−1) bias of the MLE of the parameter φ. Using Eq. (4.4)
and the orthogonality between φ and β, we can write

B(θ̂a) = κφφ
∑
r,s

κrs
(

κφr,s + 1

2
κφrs

)
+ κφφ2

(
κφφ,φ + 1

2
κφφφ

)
.

The cumulants required are κφrs = −κφr,s = ∑n
i=1 wi xir xis , κφφ,φ = 0 and

κφφφ = d ∈∈∈
1 (φ). We have

∑n
i=1 wi zii = tr(W Z) = rank(X) = p, and then, the

O(n−1) bias of φ̂ can be expressed as

B(φ̂) = φ d ∈∈∈
1 (φ) − p d ∈∈

1 (φ)

2φ d ∈∈
1 (φ)2n

. (4.11)

Equation (4.11) depends on the model matrix only through its rank. The corrected
estimator of the precision parameter is then φ̃ = φ̂ − B̂(φ̂). For the normal model
with variance given by the reciprocal of φ, (4.11) reduces to B(φ̂) = (p + 2)φ/n.
For the gamma model with index φ,

B(φ̂) = p [φ ψ∈(φ) − 1] − [1 + φ ψ∈∈(φ)]2
2 [φ ψ∈(φ) − 1] n

,

where ψ∈(φ) and ψ∈∈(φ) are the digamma and trigamma functions, respectively.
The second-order bias of the MLE of the mean vector μ can also be obtained.

Since μi is a one-to-one function of ηi , we can expand μ̂i = g−1(η̂i ) in Taylor series
to order n−1 as

B(μ̂i ) = B(η̂i )
dμi

dηi
+ Var(η̂i )

d2μi

dη2i
,

where Var(η̂i ) is theO(n−1) term in the variance of η̂i . Let G1 = diag{dμi/dηi } and
G2 = diag{d2μi/dη2i }. It then follows that

B(μ̂) = (2φ)−1(G2 − G1 Z F) Zd1n,

and the corrected mean estimators are defined by μ̃ = μ̂ − B̂(μ̂).

4.6 The Birnbaum–Saunders Model

The material contained in this section and in the next three sections is based
on Lemonte and Cordeiro (2010). The two-parameter BS distribution, in short
BS (α, η), was defined in Sect. 2.6.

http://dx.doi.org/10.1007/978-3-642-55255-7_2
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Lemonte et al. (2007) derived the second-order biases of theMLEs ofα and η, and
obtained a corrected LR statistic for testing the parameter α. Lemonte et al. (2008)
proposed several bootstrap bias-corrected estimates of α and η.

Rieck and Nedelman (1991) proposed a log-linear regression model based on
the BS distribution. They showed that if T ⊂ BS (α, η), then Y = log(T ) is
sinh-normal distributed, say Y ⊂ SN (α,μ,σ), with shape, location, and scale
parameters given by α, μ = log(η) and σ = 2, respectively. Their model has
been widely used as an alternative model to the gamma, log-normal, and Weibull
regression models, see Rieck and Nedelman(1991, § 7). The density function of Y
can be expressed as

π(y;α,μ,σ) = 2

ασ
∗
2π

cosh

(
y − μ

σ

)
exp

{
− 2

σ2 sinh
2
(

y − μ

σ

)}
, y ≤ R.

(4.12)

The distribution with density given in (4.12) has a number of interesting properties
(Rieck 1989): (1) it is symmetric around the location parameter μ; (2) it is unimodal
for α ≤ 2 and bimodal for α > 2; (3) the mean and variance of Y are E(Y ) = μ and
Var(Y ) = σ2w(α), respectively. There is no closed-form expression for w(α), but
Rieck (1989) obtained asymptotic approximations for both small and large values
of α; and (4) if Yα ⊂ SN (α,μ,σ), then Sα = 2(Yα − μ)/(ασ) converges in
distribution to the standard normal distribution when α √ 0.

As explained in Sect. 2.6 [see Eq. (2.17)], Lemonte and Cordeiro (2009) proposed
the nonlinear regression model

Yi = fi (xi ;β) + εi , i = 1, . . . , n, (4.13)

where Yi is the logarithm of the i th observed lifetime, xi is an m ×1 vector of values
of explanatory variables associated with the i th response Yi , β = (β1, . . . ,βp)

→ is
a vector of unknown nonlinear parameters to be estimated, and εi ⊂ SN (α, 0, 2).
We assume a nonlinear structure for the location parameter μi = fi (xi ;β) in
model (4.13), where fi is a known and twice continuously differentiable function
with respect to β. For the linear regression μi = x→

i β, the model (4.13) reduces to
Rieck and Nedelman’s (1991) model.

The log-likelihood function χ(θ) given in (2.18) is assumed to be regular (Cox
and Hinkley 1974, Chap. 9) with respect to all β and α derivatives up to third
order. It is well known that, under general regularity conditions (Cox and Hinkley
1974, Chap. 9), the MLEs are consistent, asymptotically efficient, and asymptot-
ically normal. Let θ̂ = (β̂→, α̂)→ be the MLE of θ = (β→,α)→. We can write

θ̂
a⊂ Np+1(θ, K −1

θ ) for large n, where
a⊂ denotes approximately distributed, Kθ is

the block diagonal Fisher information matrix given by Kθ = diag{Kβ,κα,α}, K −1
θ

is its inverse, Kβ = ψ1(α)(D→D)/4 is the information for β, and κα,α = 2n/α2 is
the information for α. Here, the n × p local matrix D = D(β) = ∂μ/∂β of partial
derivatives of μ with respect to β is assumed to be of full rank p for all β and

http://dx.doi.org/10.1007/978-3-642-55255-7_2
http://dx.doi.org/10.1007/978-3-642-55255-7_2
http://dx.doi.org/10.1007/978-3-642-55255-7_2
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ψ1(α) = 2 + 4

α2 −
∗
2π

α

[
1 − erf

(∗
2

α

)]
exp

(
2

α2

)
,

where erf(z) = (2/π)
∫ z
0 e−t2dt is the error function. Since Kθ is block diagonal, the

vector β and the scalar α are globally orthogonal (Cox and Reid 1987), and β̂ and α̂
are asymptotically independent. It can be shown (Rieck 1989) thatψ1(α) ≥ 1+4/α2

for α small and ψ1(α) ≥ 2 for α large.
Inwhat followswe shall use the notation dir = ∂μi/∂βr and girs = ∂2μi/∂βr∂βs

for the first and second partial derivatives of μi with respect to the elements of β.
The joint cumulants and their derivatives are

κrs = −ψ1(α)

4

n∑
i=1

dir dis, κrα = κrαα = 0, καα = −2n

α2 , κααα = 10n

α3 ,

κrst = −ψ1(α)

4

n∑
i=1

(girsdit + girt dis + dir gist ), κrsα = (2 + α2)

α3

n∑
i=1

dir dis,

κ(t)
rs = −ψ1(α)

4

n∑
i=1

(girt dis + dir gist ), κ(α)
rα = κ(s)

rα = 0 and κ(α)
αα = 4n

α3 .

Let B(β̂a) and B(α̂) be the n−1 biases of β̂a (a = 1, . . . , p) and α̂, respectively.
The use of Eq. (4.4) to obtain these biases is greatly simplified, since β and α are
globally orthogonal and the cumulants corresponding to the parameters in β are
invariant under their permutation. We have

B(β̂a) =
∑
s,t,u

∈κa,sκt,u
(

κ(u)
st − 1

2
κstu

)
+ κα,α

∑
s

∈κa,s
(

κ(α)
sα − 1

2
κsαα

)
(4.14)

and

B(α̂) = (κα,α)2
(

κ(α)
αα − 1

2
κααα

)
+ κα,α

∑
t,u

∈κt,u
(

κ
(u)
αt − 1

2
καtu

)
, (4.15)

where κr,s is the (r, s)th element of K −1
β (the inverse of the information matrix for

β), κα,α = κ−1
α,α and

∑ ∈ denotes, here and from now on, the summation over all
combinations of parameters β1, . . . ,βp.

First, we consider Eq. (4.14) from which we readily have that the second sum is
zero since κsαα = κ

(α)
sα = 0. By rearranging the summation terms, we can write

B(β̂a) = −ψ1(α)

8

n∑
i=1

∑
s

∈κa,sdis

∑
t,u

∈κt,u gitu .



4.6 The Birnbaum–Saunders Model 81

Let d→
i (1 × p) and g→

i (1 × p2) be vectors containing the first and second partial
derivatives of the mean μi with respect to the β’s. In matrix notation,

B(β̂a) = −ψ1(α)

8
ρ→

a K −1
β D→Gvec(K −1

β ),

where ρ→
a is the ath row of the p × p identity matrix, vec(·) is the operator which

transforms amatrix into a vector by stacking the columnsof thematrix oneunderneath
the other, and G = ∂2μ/∂β→∂β = (g1, . . . , gn)

→ is a n× p2 matrix of second partial
derivatives of the mean vector μ with respect to β. The n−1 bias vector B(β̂) of β̂
can then be expressed as

B(β̂) = (D→D)−1D→d, (4.16)

where d is an n × 1 vector defined as d = −[2/ψ1(α)] G vec{(D→D)−1}.
We can now obtain the n−1 bias of α̂. Using (4.15), we can write

B(α̂) = − α

4n
− (2 + α2)

4αn

n∑
i=1

∑
t,u

∈κt,udit diu = − α

4n
− (2 + α2)

4αn

n∑
i=1

d→
i K −1

β di

= − α

4n
− (2 + α2)

4αn
tr(DK −1

β D→).

Since tr(DK −1
β D→) = 4p/ψ1(α), we can rewrite B(α̂) as

B(α̂) = −1

n

{
p

[
2 + α2

αψ1(α)

]
+ α

4

}
. (4.17)

The bias vector B(β̂) can be determined from a simple OLS regression of d on
the columns of D. It depends on the nonlinearity of the regression function f and on
the parameter α. The bias B(β̂) is small when d is orthogonal to the columns of D.
It may be large when ψ1(α) and n are both small. Equation (4.16) is easily handled
algebraically for any type of nonlinear regression, since it involves simple operations
on matrices and vectors. For special models with closed-form information matrix for
β, it is possible to obtain closed-form expressions for B(β̂). For linear models, the
matrix G and the vector d vanish and hence B(β̂) = 0, which is in agreement with
the result due to Rieck and Nedelman (1991, p. 54). Equation (4.17) depends on the
nonlinear structure of the regression model only through the rank p of D. It reveals
that the bias is always a linear function of the dimension p of β.

By replacing the unknown parameters on the right-hand sides of (4.16) and (4.17),
which are both of ordern−1, by the correspondingMLEs,weobtain the bias-corrected
estimators β̃ = β̂− B̂(β̂) and α̃ = α̂− B̂(α̂), where B̂(β̂) and B̂(α̂) are the values of
B(β̂) and B(α̂), respectively, at θ̂ = (β̂→, α̂)→. The bias-corrected estimates β̃ and α̃

are expected to have better sampling properties than the classical MLEs β̂ and α̂. In
fact, simulation results presented in Sect. 4.8 show that β̃ and α̃ have smaller biases
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than their unmodified counterparts, thus indicating that the bias corrections have the
effect of shrinking the modified estimates toward the true parameter values.

We now calculate the second-order bias B(μ̂i ) of the MLE μ̂i of the i th mean
μi = fi (xi ;β). We can easily verify by Taylor series expansion that

B(μ̂i ) = d→
i B(β̂) + 1

2
tr[MiCov(β̂)],

where Mi is a p × p matrix of second partial derivatives ∂2μi/∂βr∂βs (for r, s =
1, . . . , p), Cov(β̂) = K −1

β is the asymptotic covariance matrix of β̂, and the vectors

di and B(β̂) are as defined before. All quantities in the above equation should be
evaluated at β̂.

The asymptotic variance of μ̂i can also be expressed explicitly in terms of the
covariance of β̂:

Var(μ̂i ) = tr[(di d
→
i )Cov(β̂)].

4.7 Special Models

Equation (4.16) is easily handled algebraically for any type of nonlinear model, since
it involves simple operations on matrices and vectors. This equation, in conjunction
with a computer algebra system such as Mathematica or Maple, can be used to
compute B(β̂) algebraically with minimal effort. In particular, (4.16) can be con-
siderably simplified when the number of nonlinear parameters is small. Moreover,
for any special nonlinear model, we can calculate the bias B(β̂) numerically using a
software with numerical linear algebra facilities such as Ox (Doornik 2009) and R
(R Development Core Team 2006).

First, we consider a nonlinear regression model which depends on a single non-
linear parameter β. Equation (4.16) gives

B(β̂) = − 2

ψ1(α)

κ2

κ2
1

,

where κ1 = ∑n
i=1(d fi/dβ)2 and κ2 = ∑n

i=1(d fi/dβ)(d2 fi/dβ2). The constants
κ1 and κ2 are evaluated at β̂ and α̂ to yield B̂(β̂) and the corrected estimator β̃ =
β̂ − B̂(β̂). For example, the simple exponential model fi = exp(βxi ) yields κ1 =∑n

i=1 x2i exp(2βxi ) and κ2 = ∑n
i=1 x3i exp(2βxi ).

As a second application, we consider a partially nonlinear regression model
defined by

μ = Zλ + η g(γ), (4.18)

where Z is a known n × (p − 2) matrix of full rank, g(γ) is an n × 1 vector, β =
(λ→, η, γ)→, λ = (λ1, . . . ,λp−2)

→ and η and γ are scalar parameters. This class of
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models occurs very often in statistical modeling, see Cook et al. (1986) and Cordeiro
et al. (2000). Here, we consider three examples: μ = λ1z1 + λ2z2 + η exp(γx),
μ = λ − η log(x1 + γx2), and μ = λ + η log(x1/(γ + x2)). Ratkowsky (1983,
Chap. 5) discussed several models of the form (4.18) which include the asymptotic
regression andWeibull-type models given by μ = λ−ηγx and μ = λ−η exp(−γx),
respectively.

The n × p local model matrix D takes the form D = [Z , g(γ), η(dg(γ)/dγ)].
After some algebra, we obtain from (4.16) B(β̂) = (D→ D)−1 D→ (d2g(γ)/dγ2),
which is simply the set of coefficients from the ordinary regression of the vector
d2g(γ)/dγ2 on the matrix D. Clearly, the vector B(β̂) does not depend explicitly on
the linear parameters in λ. Further, the covariance term Cov(η̂, γ̂) only contributes
to the bias of γ̂.

4.8 Monte Carlo Simulation Evidence

We shall now present some Monte Carlo simulation results on the finite-sample
performance of the unmodified and bias-reduced MLEs. Parameter estimates are
calculated by maximizing the log-likelihood function using the BFGS quasi-Newton
method with analytical derivatives. The covariate values are selected as random
draws from the standard uniform U (0, 1) distribution, and, for each sample size
considered, those values are kept constant throughout the experiment. The number
of Monte Carlo replications is 10,000. All simulations are performed using the Ox
matrix programming language (Doornik 2009).

In order to analyze the performance of the estimators,we compute, for each sample
size and for each estimate, the relative bias (the relative bias of an estimate θ̂, defined
as {E(θ̂) − θ}/θ, is obtained by empirically calculating E(θ̂) by Monte Carlo) and
the root-mean-square error (

∗
MSE), where MSE is the estimated mean-square error

from the 10,000 Monte Carlo replications.
First, consider the nonlinear regression model

μi = λ1zi1 + λ2zi2 + η exp(γxi ),

where εi ⊂ SN (α, 0, 2) for i = 1, . . . , n. The sample sizes are n = 15, 30 and 45.
Without loss of generality, the true values of the regression parameters are taken as
λ1 = 4, λ2 = 5, η = 3, γ = 1.5, and α = 0.5 and 1.5.

Table 4.1 displays the relative biases of both uncorrected and corrected estimators.
(In the table, BCE stands for ‘bias-corrected estimator’.) Notice that the bias-
corrected estimates are much closer to the true parameters than the unadjusted esti-
mates. For instance, when n = 15 and α = 1.5, the average of the estimated relative
biases for the model parameters estimators is −0.03224, whereas the average of
the estimated relative biases for the corrected estimates is −0.0086. Hence, the
average bias (in absolute value) of the MLEs is almost four times greater than the
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Table 4.1 Relative biases of the uncorrected and corrected estimators

α n λ1 λ2 η γ α

0.5 15 MLE 0.0006 −0.0013 0.0011 0.0020 −0.1691
BCE 0.0007 −0.0011 0.0001 0.0008 −0.0395

30 MLE 0.0001 −0.0013 0.0013 0.0009 −0.0811
BCE 0.0002 −0.0012 0.0007 −0.0001 −0.0092

45 MLE 0.0003 −0.0012 0.0007 0.0008 −0.0537
BCE 0.0003 −0.0011 0.0003 0.0001 −0.0042

1.5 15 MLE −0.0068 −0.0083 0.0248 0.0197 −0.1916
BCE −0.0055 −0.0046 0.0113 0.0056 −0.0481

30 MLE −0.0016 −0.0034 0.0079 0.0078 −0.0933
BCE −0.0011 −0.0018 0.0027 0.0012 −0.0116

45 MLE −0.0028 −0.0027 0.0052 0.0026 −0.0614
BCE −0.0023 −0.0018 0.0023 −0.0005 −0.0048

Table 4.2 Root-mean-square errors of the uncorrected and corrected estimators

α n λ1 λ2 η γ α

0.5 15 MLE 0.4093 0.4920 0.2707 0.0924 0.1234
BCE 0.4093 0.4921 0.2709 0.0922 0.1067

30 MLE 0.3006 0.3806 0.2113 0.0688 0.0763
BCE 0.3006 0.3806 0.2114 0.0686 0.0702

45 MLE 0.2434 0.2874 0.1768 0.0567 0.0590
BCE 0.2434 0.2874 0.1769 0.0566 0.0555

1.5 15 MLE 1.6302 1.1230 0.9756 0.3235 0.3938
BCE 1.6333 1.1274 0.9819 0.3152 0.3315

30 MLE 0.9684 0.7003 0.5785 0.1931 0.2399
BCE 0.9693 0.7011 0.5807 0.1908 0.2155

45 MLE 0.6505 0.5575 0.3895 0.1318 0.1837
BCE 0.6507 0.5577 0.3901 0.1311 0.1700

average bias of the corrected estimates. This indicates that the second-order biases
of the MLEs should not be ignored in samples of small to moderate size, since they
can be non-negligible.

When the value of α increases, the finite-sample performance of the MLEs dete-
riorates (see Tables 4.1 and 4.2). For instance, when n = 15, the relative biases of
γ̂ (MLE) and γ̃ (BCE) are 0.0020 and 0.0008 (for α = 0.5) and 0.0197 and 0.0056
(for α = 1.5), which indicate an increase in the relative biases of nearly 10 and 7
times, respectively. Also, the root-mean-square errors in the same order are 0.0924
and 0.0922 (for α = 0.5) and 0.3235 and 0.3152 (for α = 1.5). In addition, all
estimators have similar root-mean-square errors (see Table 4.2).

Next, we consider theMichaelis–Menton model, which is very useful for estimat-
ing growth curves, where it is common for the response to approach an asymptote as
the stimulus increases. The Michaelis–Menton model (McCullagh and Nelder 1989,
p. 16) provides an hyperbolic form for μi against xi given by



4.8 Monte Carlo Simulation Evidence 85

Table 4.3 Relative biases and root-mean-squared erros of uncorrected and corrected estimators;
α = 0.5 and different sample sizes

n Relative bias
∗
MSE

η γ α η γ α

20 MLE 0.0476 0.1718 −0.0669 0.6984 0.3947 0.0859
BCE −0.0016 −0.0081 −0.0061 0.5264 0.2783 0.0847

30 MLE 0.0313 0.1077 −0.0439 0.5245 0.2750 0.0684
BCE 0.0004 0.0012 −0.0024 0.4478 0.2252 0.0678

40 MLE 0.0215 0.0754 −0.0330 0.4222 0.2207 0.0582
BCE −0.0001 −0.0003 −0.0015 0.3835 0.1954 0.0578

50 MLE 0.0160 0.0558 −0.0259 0.3609 0.1862 0.0516
BCE 0.0000 −0.0001 −0.0005 0.3380 0.1710 0.0514

μi = ηxi

γ + xi
, i = 1, 2, . . . , n,

where the curve has an asymptote atμ = η. Here, the sample sizes are n = 20, 30, 40
and 50. Also, the true values of the regression parameters are η = 3 and γ = 0.5,
with α = 0.5.

Table 4.3 lists the relative biases and root-mean-squared erros of both uncorrected
and corrected estimators. The figures in this table indicate that theMLEs of themodel
parameters canbe substantially biased, evenwhenn = 50, and that the bias correction
presented in the previous section is quite effective. This shows the importance of using
a bias correction. In addition, all estimators have similar root-mean-square errors.

4.9 An Application

Here, we consider an application to a biaxial fatigue data set reported by Rieck and
Nedelman (1991) on the life of a metal piece in cycles to failure. The response N is
the number of cycles prior to failure, and the explanatory variable w is the work per
cycle (mJ/m3). The data contain forty-six observations and were taken from Table
4.1 of Galea et al. (2004). We consider the nonlinear regression model

Yi = β1 + β2 exp(β3/wi ) + εi , i = 1, . . . , 46, (4.19)

where Yi = log(Ni ) and εi ⊂ SN (α, 0, 2). The uncorrected estimates (estimated
standard errors in parentheses) are β̂1 = 8.988 (0.744), β̂2 = −5.180 (0.508),
β̂3 = −22.520 (7.378), and α̂ = 0.40 (0.042). The bias-corrected estimates are as
follows: β̃1 = 8.781 (0.773), β̃2 = −4.936 (0.527), β̃3 = −22.171 (7.655), and
α̃ = 0.42 (0.043). Hence, the uncorrected estimates are slightly different from the
bias-corrected estimates even for large samples (n = 46 observations).
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4.10 Linear Heteroskedastic Regression

The linear regression model is commonly used in many different fields, such as
chemistry, economics, engineering, finance, medicine, and psychology.
The model is

Y = Xβ + ε,

where Y and ε are n × 1 vectors of responses and random errors, respectively, X
is a full rank n × p matrix of fixed explanatory variables (rank(X) = p < n),
and β = (β1, . . . ,βp)

→ is a p × 1 vector of unknown regression parameters to be
estimated, with n being the sample size. It can also be expressed as

Yi = x→
i β + εi , i = 1, . . . , n,

where xi is the i th row of X . The error εi has mean zero, variance 0 < σ2
i < ∞,

i = 1, . . . , n, and is uncorrelated with ε j for all j �= i . The error covariance matrix
is ∂ = Cov(ε) = diag{σ2

1, . . . ,σ
2
n}. Note that the n variances show up in the main

diagonal and that all off-diagonal elements equal zero (since each error is uncorrelated
with all other errors).

The parameter vector β can be estimated using the method of ordinary least
squares, i.e., finding the value of β that minimizes the sum of squared errors∑n

i=1 ε2i = (Y − Xβ)→(Y − Xβ). It is easy to prove that the OLSE of β can

be expressed in closed form as β̂ = (X→ X)−1X→Y . Its covariance matrix is
Ψ = Cov(β̂) = P∂ P→, where P = (X→ X)−1X→. The main diagonal of Ψ

contains the variances of β̂1, . . . , β̂p, and the off-diagonal elements are the covari-
ances. Under homoskedasticity (i.e., when all errors share the same variance),
σ2

i = σ2, for i = 1, . . . , n, where σ2 > 0, and hence Ψ = σ2(X→ X)−1. The
covariance matrix Ψ can then be easily estimated by Ψ̂ = σ̂2(X→ X)−1, where
σ̂2 = (Y − X β̂)→(Y − X β̂)/(n − p).

Under unequal error variances, the OLSE of β is unbiased, consistent, and asymp-
totically normal, although it is no longer the best (least variance) linear unbiased
estimator. A common practice is to estimate β by least squares and to base interval
estimation and hypothesis testing inference on an estimator of Cov(β̂) that is con-
sistent under both homoskedasticity and heteroskedasticity of unknown form. The
most commonly used estimator was proposed byHalbertWhite in a highly influential
paper (White 1980). His estimator is commonly referred to as ‘HC0’ and is given by

HC0 = Ψ̂ = P∂̂ P→,

where ∂̂ = diag{ε̂21, . . . , ε̂2n}. Here, ε̂i is the i th least-squares residual, i.e., ε̂i = Yi −
x→

i β̂, i = 1, . . . , n. The vector of OLS residuals is ε̂ = (ε̂1, . . . , ε̂n)→ = (I − H)Y ,
where H = X (X→ X)−1X→ = X P and I is the n × n identity matrix. White’s
estimator is consistent under both equal and unequal error variances: plim(Ψ −1Ψ̂ )
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equals the p× p identitymatrix in both cases, where plim denotes limit in probability.
That is, Ψ −1Ψ̂ converges in probability to Ip. It has, nonetheless, an important
shortcoming: It tends to be considerably biased in small to moderately large samples.
More specifically, it tends to underestimate the true variances, more so when the data
contain leverage points; see, e.g., Chesher and Jewitt (1987).

Cribari-Neto et al. (2000) proposed an interative bias-correcting scheme for HC0.
Their sequence of estimators was obtained by correcting HC0, then correcting the
resulting adjusted estimator, and so on. Let (A)d denotes the diagonalmatrix obtained
by setting the non-diagonal elements of the square matrix A equal to zero. The
authors demonstrated that the biases of ∂̂ and Ψ̂ as estimators of ∂ and Ψ are
B

∂̂
(∂) = E(∂̂)−∂ = {H∂(H−2I )}d and B

Ψ̂
(∂) = E(Ψ̂ )−Ψ = P B

∂̂
(∂)P→,

respectively. They then defined the bias-corrected estimator ∂̂(1) = ∂̂ − B
∂̂

(∂̂).

This new estimator can also be adjusted for bias as ∂̂(2) = ∂̂(1) − B
∂̂(1) (∂̂). It is

also possible to adjust ∂̂(2) for bias. After k iterations of the bias-correcting scheme,
one obtains

∂̂(k) = ∂̂(k−1) − B
∂̂(k−1) (∂̂).

The kth order bias-corrected estimator and its respective bias are given by
∂̂(k) = ∑k

j=0(−1) j M ( j)(∂̂) and B
∂̂(k) (∂) = (−1)k M (k+1)(∂), for k = 1, 2, . . ..

The above notation uses the recursive function of an n × n diagonal matrix A
given by M (k+1)(A) = M (1)(M (k)(A)), for k = 0, 1, . . ., where M (0)(A) = A
and M (1)(A) = {H A(H − 2I )}d .

A sequence of bias-corrected covariance matrix estimators can be defined as
{Ψ̂ (k), k = 1, 2, . . .}, where Ψ̂ (k) = P∂̂(k) P→. The bias of Ψ̂ (k) is

B
Ψ̂ (k) (∂) = (−1)k P M (k+1)(∂)P→, k = 1, 2, . . . .

Assume that the matrix of explanatory variables X is such that P and H are
O(n−1) and that ∂ is O(1). It can then be shown that B

Ψ̂
(∂) = O(n−2), i.e.,

the bias of HC0 is of order O(n−2). Cribari-Neto et al. (2000) have also shown
that B

Ψ̂ (k) (∂) = O(n−(k+2)). That is, the bias of the kth corrected estimator is of
order O(n−(k+2)), whereas the bias of White’s estimator is O(n−2). Notice that the
biases of the corrected estimators decay faster than that of HC0, as the sample size
increases, more so for large values of k.

An alternative sequenceof bias-corrected estimators ofΨ wasobtainedbyCribari-
Neto and Lima (2011). They obtained faster convergence rates by estimating the bias
in each step of the sequence in different fashion. Notice that when constructing the
sequence of estimators adjusted for systematic error, one subtracts the estimated
bias from the estimator and then proceeds to bias-correct it. The estimated bias
used by Cribari-Neto et al. (2000) is obtained by evaluating the bias function B(∂)

at ∂̂ , where ∂̂ is a diagonal matrix containing the vector of squared OLS residu-
als. Cribari-Neto and Lima (2011) estimated the biases of the corrected estimators
by evaluating the bias functions at a more accurate estimator of ∂ , which in turn
yields a more accurate estimator of X→∂ X . They defined the sequence of modified
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estimators of ∂

∂̂
(k)
M = ∂̂

(k−1)
M − B

∂̂
(k−1)
M

(∂̂
(k−1)
M ), k = 1, 2, . . . .

Note that the true biases are no longer evaluated at ∂̂ . They are instead evalu-
ated at the estimate of ∂ obtained in the previous step of the iterative scheme. As
expected, B

∂̂
(k−1)
M

(∂̂
(k−1)
M ) estimates the true bias of ∂̂

(k−1)
M much more accurately

than B
∂̂

(k−1)
M

(∂̂).

The first corrected estimator is ∂̂
(1)
M = ∂̂ − B

∂̂
(∂̂). It equals the first bias-

corrected estimator in the sequence of estimators proposed by Cribari-Neto et al.
(2000). It was shown by Cribari-Neto and Lima (2011) that the remaining elements
of the sequence are

∂̂
(k)
M =

2k−1∑
j=0

(−1) j M ( j)(∂̂), k = 2, 3, . . . ,

and
B

∂̂
(k)
M

(∂) = −M (2k)(∂), k = 1, 2, . . .

The authors then obtained a new sequence of corrected estimators for Ψ̂ : {Ψ̂ (k)
M , k =

1, 2, . . .}, where

Ψ̂
(k)
M = P∂̂

(k)
M P→ and B

Ψ̂
(k)
M

(∂) = −P M (2k )(∂)P→.

Assume again that the matrix of explanatory variables X is such that P =
(X→ X)−1X→ and H = X (X→ X)−1X→ are O(n−1). Cribari-Neto and Lima (2011)
demonstrated that M (k)(∂) = O(n−k) and P M (k)(∂)P→ = O(n−(k+1)). They
have also shown that B

∂̂
(k)
M

(∂) = O(n−2k
) and B

Ψ̂
(k)
M

(∂) = O(n−(2k+1)). It is note-

worthy that the biases of the estimators in the above sequence vanish at a much faster
rate than those of the estimators proposed by Cribari-Neto et al. (2000). The bias
order of the kth estimator is O(n−(2k+1)), whereas the corresponding bias order of
their estimator is O(n−(k+2)). For example, when k = 4, the bias orders are O(n−6)

(for Cribari-Neto et al. 2000) and O(n−17) (for Cribari-Neto and Lima 2011).
The numerical evidence reported by Cribari-Neto and Lima (2011) favors the

sequence of estimators relative to that of Cribari-Neto et al. (2000). They considered
a simple linear regression model and computed the total relative biases. For each
estimator, they calculated and reported

|E{ ˆvar(β̂1)} − var(β̂1)|
var(β̂1)

+ |E{ ˆvar(β̂2)} − var(β̂2)|
var(β̂2)

,
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where ‘ ˆvar’ denotes the relevant variance estimator. When the data are heteroskedas-
tic and the sample contains only 20 observations, the total relative biases of HC0
(White’s estimator), the fourth estimator in the Cribari-Neto et al. (2000) sequence,
and the fourth estimator in Cribari-Neto and Lima (2011) sequence are, respectively,
0.825, 0.338, and 0.036. It is noteworthy that the total relative bias of Cribari-Neto
and Lima (2011) estimator (four iterations, Ψ̂ (4)

M ) is approximately ten times smaller
than that of the corresponding estimator of Cribari-Neto et al. (2000), Ψ̂ (4), and
nearly 23 times smaller than the total relative bias of HC0.

4.11 Beta Regressions

Oftentimes, one wishes tomodel random variables that assume values in the standard
unit interval (0, 1), such as rates and proportions. Ferrari and Cribari-Neto (2004)
proposed a beta regression model which allows such a modeling to be conditioned
on a set of explanatory variables. They have used an alternative parameterization in
which the beta density is indexed by mean and precision parameters. In their model,
the mean of the response is related to a linear predictor that involves explanatory
variables and unknown regression parameters through a link function.

The random variable Y is said to be beta distributed, denoted by Y ⊂ B(p, q), if
its density function is given by

f (y; p, q) = Γ (p + q)

Γ (p)Γ (q)
y p−1(1 − y)q−1, 0 < y < 1, p, q > 0, (4.20)

where Γ (·) is the gamma function. Ferrari and Cribari-Neto (2004) introduced an
alternative beta parameterization for (4.20). Specifically, let

μ = p/(p + q) and φ = p + q,

i.e.,
p = μφ and q = (1 − μ)φ.

It is easy to verify that

E(Y ) = μ and Var(Y ) = V (μ)

1 + φ
,

where V (μ) = μ(1 − μ). Here, μ is the mean and φ can be regarded as a precision
parameter in the sense that, for fixed μ (i.e., for a given mean value), the larger
the value of φ, the smaller the variance of Y . Then, the density of Y can then be
expressed as



90 4 Analytical and Bootstrap Bias Corrections

f (y;μ,φ) = Γ (φ)

Γ (μφ)Γ ((1 − μ)φ)
yμφ−1(1 − y)(1−μ)φ−1, 0 < y < 1,

0 < μ < 1 and φ > 0.

It is noteworthy that the more general case in which the random variable assumes
values in (a, b), where a and b are known constants such that a < b, can be easily
handled by modeling (Y − a)/(b − a), which assumes values in the standard unit
interval. In what follows, we focus, without loss of generality, on the responses that
assume values in (0, 1).

Let Y1, . . . , Yn be a random sample such that Yi ⊂ B(μi ,φ), i = 1, . . . , n. The
beta regression model was defined by Ferrari and Cribari-Neto (2004) as

g(μi ) =
p∑

j=1

xi jβ j = ηi ,

where β = (β1, . . . ,βk)
→ is a p-vector of unknown regression parameters (β ≤ R

p)
to be estimated, ηi is a linear predictor and xi1, . . . , xip are (fixed) explanatory
variables values (p < n). The link function g : (0; 1) √ Rmust be strictlymonotone
and twice differentiable. Some standard link functions are as follows:

1. Cauchy:
g(μ) = tan{π(μ − 0.5)}.

2. complementary log–log:

g(μ) = log{− log(1 − μ)};

3. log–log:
g(μ) = − log{− log(μ)};

4. logit:
g(μ) = log(μ/(1 − μ));

5. probit:
g(μ) = κ−1(μ).

The beta regression log-likelihood function is

χ(β,φ) =
n∑

t=1

χi (μi ,φ),

where
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χi (μi ,φ) = logΓ (φ) − logΓ (μiφ) − logΓ ((1 − μi )φ)

+ (μiφ − 1) log yi + {(1 − μi )φ − 1} log(1 − yi ).

Readers should notice that μi = g−1(ηi ) is a function of β. Parameter estimation
is carried out by numerically maximizing the log-likelihood function, which can
be done with the aid of a Newton (e.g., Newton–Raphson) or quasi-Newton (e.g.,
BFGS) algorithm.

Fisher’s information matrix for the parameter vector (β,φ) can be shown to be

K = K (β,φ) =
(

Kββ Kβφ

Kφβ Kφφ

)
,

where Kββ = φX→W X , Kβφ = K →
φβ = X→T c and Kφφ = tr(D). Here, X is the

n × p matrix of explanatory variables values, T = diag{1/g∈(μ1), . . . , 1/g∈(μn)},
and W = diag{w1, . . . , wn}, with

wi = φ{ψ∈(μiφ) + ψ∈((1 − μi )φ)} 1

g∈(μi )2
,

ψ∈(·) being the trigamma function, i.e., the first derivative of the digamma function.
Also, D = diag {d1, . . . , dn}, where di = ψ∈(μiφ)μ2

i +ψ∈((1−μi )φ)(1−μ2
i )−ψ∈(φ),

and c = (c1, . . . , cn)→, where ci = φ{ψ∈(μiφ)μi − ψ∈((1− μi )φ)(1− μi )}. In what
follows, we denote the inverse information matrix by

K −1 = K (β,φ)−1 =
(

K ββ K βφ

K φβ K φφ

)
.

It is noteworthy that, unlike the class of GLMs, the parameters β and φ are not
orthogonal.

Define X̃ as the (n + 1) × (p + 1) matrix given by

X̃ =
(

X 0
0 1

)
.

Also, let W̃ be the (n + 1) × (n + 1) matrix

W̃ =
(

Wββ Wβφ

Wφβ Wφφ

)
,

where
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Wββ = diag

{(
φ

dμi

dηi

)2

wi

}
, Wβφ = T c,

Wφβ = W →
βφ, Wφφ = tr(diag(di )).

Here, wi = ψ∈(μiφ) + ψ∈((1 − μi )φ). It can be proved that Fisher’s information
matrix for the parameter vector θ = (β→,φ)→ is given by

K (θ) = X̃→W̃ X̃ .

For further details on the class of beta regressionmodels, see Cribari-Neto andZeileis
(2010).

Ospina et al. (2006) obtained closed-form expressions for the second-order biases
of the MLEs of β and φ. They demonstrated that the second-order bias of β̂ can be
expressed as

B(β̂) = K ββ X→[W1δββ + (W2 + W3)X K βφ + {diagonal(W4)
→}K φφ]

+ K βφ[tr(W3X K ββ X→) + K φφtr(S){diagonal(W4 + W5)}X K βφ],

where W1–W5 and S are defined in the appendix of their paper, diagonal(·) is the row
vector formed with the entries in the main diagonal of a square matrix, and δββ is the
n × 1 dimensional vector defined by the main diagonal of X K ββ X→. Furthermore,

K ββ = (X→Wββ X)−1
{

Ip + X→T cc→T → X (X→Wββ X)−1

γ

}
,

γ = tr(diag(di )) − c→T → X (X→Wββ X)−1X→T c,

K βφ = (K φβ)→ = − 1

γ
(X→Wββ X)−1X→T c, K φφ = 1

γ
,

where Ip denotes the p-dimensional identity matrix.
Define the (n + 1)-vector δ̃ as

δ̃ =
(

W1δββ + (W2 + W3)X K βφ + diagonal(W4)
→

tr(W3X K ββ X→) + K φφtr(S) + {diagonal(W4 + W5)} X K βφ

)
.

The second-order bias of β̂ can then be expressed as

B(β̂) = K β∗ X̃→δ̃,

where K β∗ is the k × (k + 1) upper block of K −1, i.e.,

K β∗ = (
K ββ K βφ

)
.
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The authors have also shown that

B(φ̂) = K φβ X→ [
W1δββ + (W2 + W3)X K βφ + {diagonal(W4)

→}K φφ
]

+ K φφ
[
tr(W3X K ββ X→) + K φφtr(S) + {diagonal(W4 + W5)}X K βφ

]
.

Then, considering the 1 × (p + 1) lower block of the matrix K (θ)−1 given by

K φ∗ =
(

K φβ K φφ
)

,

they wrote the second-order bias of φ̂ as

B(φ̂) = K φ∗ X̃→δ̃.

Thus, the second-order bias of the MLE of the joint vector θ = (β→,φ)→ is

B(θ̂) = K (θ)−1 X̃→δ̃ = (X̃→W̃ X̃)−1 X̃→δ̃. (4.21)

Defining ξ̃ = W̃ −1δ̃, the expression in (4.21) becomes

B(θ̂) = (X̃→W̃ X̃)−1 X̃→W̃ ξ̃.

Therefore, the components of B(θ̂) can be estimated through a weighted linear
regression.

The Monte Carlo evidence presented by Ospina et al. (2006) showed that the
MLEs of β1, . . . ,βp (the parameters in the linear predictor) are nearly unbiased in
small samples, unlike the MLE of φ, which is considerably biased when the sample
size is small. The precision parameter bias-corrected MLE, which was obtained by
subtracting the estimated second-order bias from the MLE, displayed almost no bias
even when the sample contained as few as 20 observations.

Finally, we note that the beta regression model can be extended to a more general
setting considering non-constant precision, where the precision parameter is allowed
to vary across observations. The model then consists of two (regression) submodels,
namely a mean submodel and a precision submodel. The results in Ospina et al.
(2006) were extended to cover non-constant precision by Simas et al. (2010).

4.12 An Alternative Analytical Bias Correction

The bias of the MLE of θ is B(θ) = E(θ̂) − θ, depends on the true value of the
parameter, θ, and can be expanded asymptotically as
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B(θ) = B1(θ)/n + B2(θ)/n2 + · · · . (4.22)

As noted in the previous sections, one can obtain a second-order bias-corrected
estimator by calculating the term B1(θ) and then plugging the estimated parameter
into this bias term, yielding the bias-corrected estimator

θ̂BC = θ̂ − B1(θ̂)/n. (4.23)

This is a ‘corrective’ approach in the sense that one first obtains the MLE and then
bias-correct it. An alternative approach consists of transforming the score function
so that the resulting estimator will be unbiased to second order. This is a ‘preventive’
approach in the sense that one corrects the score function and not the MLE. It was
introduced by Firth (1993).

The idea behind the preventive bias correction is the following. The expected
value of the score function, Uθ = ∂χ/∂θ, evaluated at the true parameter value, θ,is
zero, that is,

E[(Uθ)r ] =
∫ +∞

−∞
∂ f (x)

∂θr

1

f (x)
f (x)dx = ∂

∂θr

∫ +∞

−∞
f (x)dx = 0, ∀r ≤ {1, . . . , p},

when θ is a p-component vector. However, the score is generally not linear in θ, and
hence, when one calculates theMLE by equating the value of the score to zero, a bias
typically arises. Through a simple geometrical argument, Firth suggests the score be
shifted by −K (θ)B(θ), where K (θ) denotes Fisher’s information. A second-order
bias-corrected estimator can then be obtained as the solution to the equation

U∗(θ) = U (θ) − K (θ)B(θ).

Notice that here one does not compute the MLE and then applies a bias correction
to it. Instead, one modifies the score function, sets it equal to zero, and then solves
for θ.

Firth (1993) showed that in exponential familieswith canonical parameterizations,
his correction scheme consists in penalizing the likelihood by the Jeffreys invariant
prior. His corrected estimator can then be obtained by numerically maximizing the
modified log-likelihood function.

4.13 Bootstrap Bias Corrections

A different strategy for bias-correcting parameter estimators uses the bootstrap
method pionered by Efron (1979). The main idea is to use data resampling in order
to estimate the bias function. Let Y = (Y1, . . . , Yn)→ be a set of independent and
identically distributed random variables, each Yi having the distribution function
F = Fθ(y), where θ is the parameter that indexes the distribution and is viewed as a
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functional of F , i.e., θ = t (F). Y is our original sample. Let θ̂ be an estimator of θ

based on Y which we write as θ̂ = s(Y ). We proceed as follows. We obtain, from the
original sample Y , a large number (say, R) of pseudo-samples Y ∗ = (Y ∗

1 , . . . , Y ∗
n )→

and then use such artificial samples to improve the statistical inference on θ. We can
obtain the bootstrap samples parametrically or nonparametrically. In the parametric
bootstrap, we sample from F = Fθ̂, i.e., we sample from the model distribution
function after replacing the unknown parameters by the corresponding MLEs. In the
nonparametric bootstrap, we sample from the empirical distribution function F̂ . We
can do so by sampling from the data Y = (Y1, . . . , Yn)→ with replacement. Note that
the nonparametric bootstrap does not entail parametric assumptions. The bootstrap
samples and all statistics computed from them shall be denoted using ‘∗’. Using each
artificial sample y∗, we estimate θ, thus obtaining θ̂∗

1, . . . , θ̂
∗
B . Next, we use these

bootstrap parameter estimates to construct an estimate of the bias function. The bias
of θ̂ is B(θ̂) = E(θ̂)−θ. Notice that we can denote the bias of the estimator θ̂ = s(Y )

by BF (θ̂, θ), i.e.,

BF (θ̂, θ) = EF [θ̂ − θ] = EF [s(Y )] − t (F),

where the subscript F indicates that expectation is taken with respect to F . The
parametric and nonparametric estimates of the bias are given, respectively, by

BF
θ̂
(θ̂, θ) = EF

θ̂
[s(Y )] − t (Fθ̂) and BF̂ (θ̂, θ) = EF̂ [s(Y )] − t (F̂).

An alternative bootstrap bias estimator was introduced by Efron (1990). It is car-
ried out nonparametrically and uses an auxiliary (n×1) resampling vector, whose ele-
ments are the proportions of observations in the original sample Y = (Y1, . . . , Yn)→
that were included in the bootstrap sample. Let P∗ = (P∗

1 , P∗
2 , . . . , P∗

n ) be the
resampling vector. Its j th element ( j = 1, 2, . . . , n), P∗

j , is defined with respect to

a given bootstrap sample Y ∗ = (Y ∗
1 , . . . , Y ∗

n )→ as P∗
j = n−1

(
#{Y ∗

k = Y j }
)
. It is

important to note that the vector P0 = (1/n, 1/n, . . . , 1/n) corresponds to the orig-
inal sample. It should also be noted that any bootstrap replicate θ̂∗ can be defined as
a function of the resampling vector. For example, if θ̂ = s(Y ) = Y = n−1 ∑n

i=1 Yi ,
then

θ̂∗ = Y ∗
1 + Y ∗

2 + · · · + Y ∗
n

n
= #{Y ∗

k = Y1}y1 + · · · + #{Y ∗
k = Yn}Yn

n

= (n P∗
1 )Y1 + · · · + (n P∗

n )Yn

n
= P∗Y.

Suppose we can write the estimate of interest, obtained from the original sample Y ,
as G(P0). It is now possible to obtain bootstrap estimates θ̂∗b using the resampling
vectors P∗b, b = 1, 2, . . . , R, as G(P∗b). Efron’s (1990) bootstrap bias estimator,
B̄F̂ (θ̂, θ), is defined as
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B̄F̂ (θ̂, θ) = θ̂∗(·) − G(P∗(·)), where P∗(·) = 1

R

R∑
b=1

P∗b,

which differs from B̂F̂ (θ̂, θ), since B̂F̂ (θ̂, θ) = θ̂∗(·) − G(P0). Notice that this bias
estimator uses an additional information, namely the proportions of the n observa-
tions that were selected in each nonparametric resampling.

After obtaining an estimator for the bias, it is easy to obtain a bias-adjusted
estimator. Using the three bootstrap bias estimators presented above, we can define
the estimators adjusted for bias as

θ̃1 = s(y) − B̂F̂ (θ̂, θ) = 2θ̂ − θ̂∗(·),
θ̃2 = s(y) − B̄F̂ (θ̂, θ) = θ̂ − θ̂∗(·) + G(P∗(·)),
θ̃3 = s(y) − B̂F

θ̂
(θ̂, θ) = 2θ̂ − θ̂∗(·).

The modified estimates θ̃1 and θ̃3 are said to be constant-bias-correcting (CBC)
estimates, see MacKinnon and Smith (1998).

It is important to note that the bias estimation procedure proposed by Efron (1990)
requires the estimator θ̂ to have closed form. However, oftentimes the MLE of θ, the
parameter that indexes the model used to represent the population, does not have
a closed form. Rather, it needs to be obtained by numerically maximizing the log-
likelihood function using a nonlinear optimization algorithm, such as a Newton
or quasi-Newton algorithm. Cribari-Neto et al. (2002) proposed an adaptation of
Efron’s method that may be used with estimators that cannot be written in closed
form. The authors used the resampling vector to modify the log-likelihood function
and then maximize the modified log-likelihood. The main idea is to write the log-
likelihood function in terms of P0, replace this vector by P∗(·), and then maximize
the resulting (modified) log-likelihood function. The maximizer of such a function
is a bias-corrected MLE. It is noteworthy that this bootstrapping scheme only entails
one nonlinear optimization, i.e., only one log-likelihood maximization is carried out.
This occurs because the bootstrapping scheme is performed in order to obtain a vector
that is used to modify the log-likelihood function which is thenmaximized. As a con-
sequence, this resampling scheme is not as computationally intensive as alternative
schemes inwhich a nonlinear optimizationmust be performed in each bootstrap repli-
cation. Cribari-Neto et al. (2002) used this bootstrapping scheme to bias-correcting
the MLEs of the parameters that index a model used for SAR (synthetic aperture
radar) image processing. Their simulation results showed that the bias-reduced esti-
mator obtained from the maximization of the modified log-likelihood function using
P∗(·) outperfomed other bias-corrected estimators. This approach was also consid-
ered by Lemonte et al. (2008) to reduce the biases of theMLEs of the two parameters
that index the BS model.

According to MacKinnon and Smith (1998), estimators θ̃1 and θ̃3, which the
authors call CBC, can be expected to work well whenever the bias function B(θ)
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is flat, i.e., when it is not a function of θ. They note that a different scheme can be
developed for situations in which B(θ) is a linear function of θ, i.e.,

B(θ) = a + cθ.

It is clear that two constants must be estimated—a and b—using information
available in the bootstrap samples. By doing so, one can estimate the bias of θ̂
and then obtain a bias-adjusted estimator.

At the outset, as in the previous bootstrapping schemes, we compute the estimate
θ̂ = s(Y ) (using the original sample Y ).We then proceed to obtain point estimates for
a and b. This is accomplished by estimating the bias function at two different points.
First, we use a parametric bootstrapping scheme to obtain a bootstrap estimate for the
bias of θ̂, which we denote by B̂. This bias estimate is computed as θ̂∗(·) − θ̂. Next,
we use a second parametric bootstrapping scheme based on θ̃, where θ̃ = 2θ̂ − θ̂∗(·).
Here, for each bootstrap sample, we compute θ̂∗b

Fθ̃
, for b = 1, . . . , R. Therefore, we

estimate the bias of θ̃ as B̃ = θ̂
∗(·)
Fθ̃

− θ̃, where θ̂
∗(·)
Fθ̃

is the average over all bootstrap

replications of θ̃. Notice that here one needs to perform 2R bootstrap replications,
the double the number of bootstrap replications in the previous schemes. Finally,
using the point estimates, θ̂ and θ̃, and their respective estimated biases, B̂ and B̃,
we arrive at the system of two simultaneous equations

B̂ = ă + c̆θ̂ and B̃ = ă + c̆θ̃.

The solution of this two equation system is

ă = B̂ − B̂ − B̃

θ̂ − θ̃
and c̆ = B̂ − B̃

θ̂ − θ̃
.

It is now straightforward to obtain the linear bias-correcting (LBC) estimator, say
θ̃4 (MacKinnon and Smith 1998):

θ̃4 = 1

1 + c̆
(θ̂ − ă).

It is noteworthy that the variance of θ̂4 is

Var(θ̃4) = 1

(1 + c̆)2
Var(θ̂).

We thus conclude that the variance of θ̃4 will exceed that of θ̂ whenever c̆ belongs
to A = {

(−2, 0) \ {−1}}.
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Appendix A
Supplementary Material

A.1 Bartett-Type Correction

Using the notation in Sect. 3.2, the general expressions for A1, A2, and A3 are

A1 = 3
∑∗

(κi jk + 2κi, jk)(κrst + 2κrs,t ) ai j ast mkr

− 6
∑∗

(κi jk + 2κi, jk)κr,s,t ai j akt mst

+ 6
∑∗

(κi, jk − 2κi, j,k) (κrst + 2κrs,t ) a js akt mir

− 6
∑∗

(κi, j,k,r + κi, j,kr ) akr mi j ,

A2 = 3
∑∗

κi, j,kκr,s,t akr mi j mst

+ 6
∑∗

(κi jk + 2κi, jk)κr,s,t ai j mkr mst

− 6
∑∗

κi, j,k κr,s,t akt mir m js

+ 3
∑∗

κi, j,k,r mi j mkr ,

A3 = 3
∑∗

κi, j,k κr,s,t mi j mkr mst

+ 2
∑∗

κi, j,k κr,s,t mir m js mkt .

Here, ai j and mi j are the (i, j)th elements of the matrices A and M , respectively,
and

∑ ∗ denotes the sum over the specified components. The reader is referred to
Harris (1985) for further details.

Now, we consider the expansion (3.1). In order to provide an alternative general
formula for A1, we adopt the same notation of Sect. 2.2. Let
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κ
(k)
i j = ∂κi j

∂θk
, κ

(kr)
i j = ∂2κi j

∂θk∂θr
, κ

(r)
i jk = ∂κi jk

∂θr
.

Then, we can write A1 = 12(εp − εp−q), where εp = ∑ ∗(λi jkr − λi jkrst ) and the
quantities λi jkr and λi jkrst are defined in Eqs. (2.5) and (2.6). For calculating εp,
the summations in

∑ ∗ are over all components of θ. The quantity εp−q is defined
analogously, but the summations run only from q + 1 to p. For further details, see
Cordeiro (1993) and Lawley (1956).

A.2 Bartlett-Type Corrections for Seven Distributions

(1) Maxwell distribution

L R1 = −1

9
,

S1 = 2

27
, S2 = −11

27
, S3 = 1

9
,

W1 = 1

9
, W2 = − 2

27
, W3 = 25

216
,

MW2 = − 2

27
, MW3 = 1

216
.

(2) Rayleigh distribution

L R1 = −1

6
,

S1 = 1

9
, S2 = −11

18
, S3 = 1

6
,

W1 = 1

6
, W2 = −1

9
, W3 = 25

144
,

MW2 = −1

9
, MW3 = 1

144
.
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(3) Cauchy distribution

L R1 = −1

4
,

S1 = 0, S2 = −1

8
, S3 = 3

8
,

W1 = 7

8
, W2 = −17

8
, W3 = 1

2
,

MW2 = −19

24
, MW3 = 1

2
.

(4) Chi-squared distribution

L R1 = 3ψ(1) (θ)ψ(3) (θ) − 5ψ(2) (θ)2

12ψ(1) (θ)3
,

S1 = ψ(2) (θ)2

36ψ(1) (θ)3
,

S2 = 3ψ(1) (θ)ψ(3) (θ) − 10ψ(2) (θ)2

36ψ(1) (θ)3
,

S3 = 5ψ(2) (θ)2 − 3ψ(1) (θ)ψ(3) (θ)

12ψ(1) (θ)3
,

W1 = 5ψ(2) (θ)2 − 3ψ(1) (θ)ψ(3) (θ)

12ψ(1) (θ)3
,

W2 = 9ψ(1) (θ)ψ(3) (θ) − 19ψ(2) (θ)2

36ψ(1) (θ)3
,

W3 = ψ(2) (θ)2

36ψ(1) (θ)3
,

MW2 = 8ψ(2) (θ)2 − 9ψ(1) (θ)ψ(3) (θ)

36ψ(1) (θ)3
,

MW3 = ψ(2) (θ)2

9ψ(1) (θ)3
.
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Table A.1 Coefficients of the corrected statistics for the Student’s t distribution

θ 0.5 1.0 1.5 2.0 2.5 3.0

LR1 −2.41879 −7.16703 −15.6808 −29.4776 −50.3429 −80.3236
S1 0.246807 0.407771 0.578902 0.751495 0.920521 1.08322
S2 −2.62419 −6.39687 −12.7119 −22.5462 −37.0711 −57.6417
S3 4.17048 13.074 29.452 56.3661 97.4056 156.677
W1 7.6835 24.9021 57.0206 110.191 191.611 309.504
W2 −4.62959 −13.2499 −28.6408 −53.3815 −90.4808 −143.37
W3 0.246033 0.477164 0.80764 1.24388 1.79162 2.45566
MW2 1.89066 8.09544 20.2045 40.794 72.8688 119.858
MW3 0.98568 1.76715 2.75409 3.92904 5.28059 6.80078

(5) Student’s t distribution

Since the resulting formulas are too cumbersome to be reported here, the
numerical values of the coefficients of the corrected statistics for the Student’s t
distribution for some values of θ are given in Table A.1. The full expressions
can be obtained from the authors upon request.

(6) Binomial distribution

L R1 = − θ2 − θ + 1

6mθ(1 − θ)
,

S1 = 4θ2 − 4θ + 1

36mθ(1 − θ)
, S2 = −22θ2 − 22θ + 7

36mθ(1 − θ)
, S3 = θ2 − θ + 1

6mθ(1 − θ)
,

W1 = θ2 − θ + 1

6mθ(1 − θ)
, W2 = −11θ2 + 11θ + 1

18mθ(1 − θ)
, W3 = 4θ2 − 4θ + 1

9mθ(1 − θ)
,

MW2 = −22θ2 − 22θ + 7

36mθ(1 − θ)
, MW3 = 4θ2 − 4θ + 1

36mθ(1 − θ)
.

(7) Poisson’s distribution
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L R1 = − 1

6θ
,

S1 = 1

36θ
, S2 = − 7

36θ
, S3 = 1

6θ
,

W1 = 1

6θ
, W2 = 1

18θ
, W3 = 1

9θ
,

MW2 = − 7

36θ
, MW3 = 1

36θ
.
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Glossary

BiasThedifference between the expected value of an estimator and the true parameter
value.
Bias correction Method for removing the bias of an estimator, usually up to some
order of accuracy.
Bootstrap Resampling method proposed by Bradley Efron that can be used, e.g., for
bias correction, interval estimation, and hypothesis testing inference.
Heteroskedasticity Non-constant response variances in regression models.
Homoskedasticity Constant response variances in regression models.
Least-squares estimator Estimator obtained from the minimization of the sum of
squared errors.
Maximum likelihood estimator Estimator obtained from the maximization of a
likelihood function.
Quasi-t test Test similar to the usual t test in the linear regression model, but whose
test statistic uses a heteroskedasticity-consistent standard error; the test is performed
using standard normal critical values.
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