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Preface

“Wir behalten von unseren Studien am Ende doch nur das, was wir praktisch anwenden.”

“In the end, we really only retain from our studies that which we apply in a practical way.”

J. W. Goethe, Gespräche mit Eckermann, 24. Feb. 1824.

The complexity of statistical data nowadays requires modern and numerically
efficient mathematical methodologies that can cope with the vast availability of
quantitative data. Risk analysis, calibration of financial models, medical statistics
and biology make extensive use of mathematical and statistical modeling.
Practice makes perfect. The best method of mastering models is working with
them. In this book we present a collection of exercises and solutions which can
be helpful in the advanced comprehension of Mathematical Statistics. Our exercises
are correlated to Spokoiny and Dickhaus (2014). The exercises illustrate the theory
by discussing practical examples in detail. We provide computational solutions for
the majority of the problems. All numerical solutions are calculated with R and
Matlab. The corresponding quantlets – a name we give to these program codes – are
indicated by in the text of this book. They follow the name scheme MSExyz123
and can be downloaded from the Springer homepage of this book or from the
authors’ homepages.

Mathematical Statistics is a global science. We have therefore added, below each
chapter title, the corresponding translation in one of the world languages. We also
head each section with a proverb in one of those world languages. We start with a
German proverb from Goethe (see above) on the importance of practice.

We have tried to achieve a good balance between theoretical illustration and
practical challenges. We have also kept the presentation relatively smooth and, for
more detailed discussion, refer to more advanced text books that are cited in the
reference sections.

The book is divided into three main parts where we discuss the issues relating to
option pricing, time series analysis and advanced quantitative statistical techniques.

v



vi Preface

The main motivation for writing this book came from our students of the course
Mathematical Statistics which we teach at the Humboldt-Universität zu Berlin. The
students expressed a strong demand for solving additional problems and assured
us that (in line with Goethe) giving plenty of examples improves learning speed
and quality. We are grateful for their highly motivating comments, commitment
and positive feedback. Very special thanks go to our students Shih-Kang Chao, Ye
Hua, Yuan Liao, Maria Osipenko, Ceren Önder and Dedy Dwi Prastyo for advise
and ideas on solutions. We thank Niels Thomas from Springer Verlag for continuous
support and for valuable suggestions on writing style and the content covered.

Berlin, Germany Wolfgang Karl Härdle
Essen, Germany Vladimir Panov
Berlin, Germany Vladimir Spokoiny
January 2013 Weining Wang
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Symbols and Notation

Basics

X; Y random variables or vectors
X1;X2; : : : ; Xp random variables
X D .X1; : : : ; Xp/

> random vector
X � F X has distribution F
�;� matrices
† covariance matrix
1n vector of ones .1; : : : ; 1

„ ƒ‚ …

n-times

/>

0n vector of zeros .0; : : : ; 0
„ ƒ‚ …

n-times

/>

Ip identity matrix
1.:/ indicator function, for a set M is 1 D 1 on

M , 1 D 0 otherwise
i

p�1
� approximately equal
˝ Kronecker product
iff if and only if, equivalence
Wt standard Wiener process
C complex number set
R real number set
N positive integer set
Z integer set
.X/C jX j � 1.X > 0/

Œ�� largest integer smaller than �
a:s: almost sure
rv random variable

xi



xii Symbols and Notation

cdf cumulative distribution function
edf empirical distribution function
pdf probability density function
/ proportionally equal
O.ˇn/ ˛n D O.ˇn/ iff j˛n=ˇnj � constant, as

n �! 1
O.ˇn/ ˛n DO.ˇn/ iff ˛n=ˇn �! 0, as n �! 1
Op.Bn/ An D Op.Bn/ iff 8" > 0 9M; 9N such that

PŒjAn=Bnj > M� < "; 8n > N .
Op.Bn/ An DOp.Bn/ iff

8" > 0 W limn!1 PŒjAn=Bnj > "� D 0

Characteristics of Distributions

f .x/ pdf or density of X
f .x; y/ joint density of X and Y
fX.x/; fY .y/ marginal densities of X and Y
fX1.x1/; : : : ; fXp.xp/ marginal densities of X1; : : : ; Xp
Ofh.x/ histogram or kernel estimator of f .x/
F.x/ cdf or distribution function of X
F.x; y/ joint distribution function of X and Y
FX.x/; FY .y/ marginal distribution functions of X and Y
FX1.x1/; : : : ; FXp.xp/ marginal distribution functions of X1; : : : ; Xp
fY jXDx.y/ conditional density of Y given X D x

'X.t/ characteristic function of X
mk kth moment of X
~j cumulants or semi-invariants of X

Moments

E.X/;E.Y / mean values of random variables or vectorsX
and Y

E.Y jX D x/ conditional expectation of random variable or
vector Y given X D x

�Y jX conditional expectation of Y given X
Var.Y jX D x/ conditional variance of Y given X D x

�2
Y jX conditional variance of Y given X

�XY D Cov.X; Y / covariance between random variables X
and Y
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�XX D Var.X/ variance of random variable X

�XY D Cov.X; Y /
p

Var.X/Var.Y /
correlation between random variables X

and Y
†XY D Cov.X; Y / covariance between random vectors X and Y ,

i.e., Cov.X; Y / D E.X � EX/.Y � EY />
†XX D Var.X/ covariance matrix of the random vector X

Samples

x; y observations of X and Y
x1; : : : ; xn D fxi gniD1 sample of n observations of X
X D fxij giD1;:::;nIjD1;:::;p (n � p) data matrix of observations of

X1; : : : ; Xp or of X D .X1; : : : ; Xp/
>

x.1/; : : : ; x.n/ the order statistics of x1; : : : ; xn

Empirical Moments

x D n�1 n
P

iD1
xi average of X sampled by fxi giD1;:::;n

sXYDn�1 n
P

iD1
.xi � x/.yi � y/ empirical covariance of random variablesX

and Y sampled by fxi giD1;:::;n and
fyi giD1;:::;n

sXX D n�1 n
P

iD1
.xi � x/2 empirical variance of random variable X

sampled by fxigiD1;:::;n
rXY D sXYp

sXXsYY
empirical correlation of X and Y

S D fsXiXj g empirical covariance matrix of X1; : : : ; Xp or
of the random vectorX D .X1; : : : ; Xp/

>
R D frXiXj g empirical correlation matrix of X1; : : : ; Xp or

of the random vectorX D .X1; : : : ; Xp/
>

Mathematical Abbreviations

tr.A/ trace of matrix A
diag.A/ diagonal of matrix A
rank.A/ rank of matrix A



xiv Symbols and Notation

det.A/ or jAj determinant of matrix A
hull.x1; : : : ; xk/ convex hull of points fx1; : : : ; xkg
span.x1; : : : ; xk/ linear space spanned by fx1; : : : ; xkg

Distributions

N.�; �2/ normal distribution with mean �, variance �2

ˆ cdf of N.0; 1/

' pdf of N.0; 1/

B.n; p/ binomial distribution with parameters n and p

LN.�; �2/ lognormal distribution with mean � and
variance �2

P�! convergence in probability
a:s:�! almost sure convergence
L�! convergence in distribution

CLT Central Limit Theorem

LLN Law of Large Numbers

	2p 	2 distribution with p degrees of freedom

	21�˛Ip 1 � ˛ quantile of the 	2 distribution with p
degrees of freedom

tn t-distribution with n degrees of freedom
t1�˛=2In 1 � ˛=2 quantile of the t-distribution with n

degrees of freedom
Fn;m F -distribution with n and m degrees of

freedom

F1�˛In;m 1 � ˛ quantile of the F -distribution with n
and m degrees of freedom

PR.˛; �/ Pareto distribution with parameters ˛ and �

U.a; b/ uniform distribution with parameters a and b

Be.˛; ˇ/ beta distribution with parameters ˛ and ˇ



Symbols and Notation xv

Maximum Likelihood Estimation

LPA local parametric approximation

W
n

wi D K.x�xi
h
/
o

– weighting scheme

Q�; Q�.W / local estimate forW
cr = Ej
j2r risk bound for Gaussian shift model
rr risk bound for EF
Rr risk bound in a parametric model
W .k/ k-th weighting scheme
Q�k estimate forW .k/

zk k-th critical value
O�k adaptive estimate after k steps
O� final adaptive estimate
Ok selected model
k� “oracle choice”
�.W;�/ modeling bias
SMB “small modeling bias” condition

Other Notation

L.�/ log-likelihood of P�
L.�;� 0/ D L.�/ �L.� 0/, log-likelihood ratio of P�

with respect to P�0

K.P;Q/ Kullback-Leibler divergence between
measures P and Q

K.�;� 0/ Kullback-Leibler divergence between
measures P� and P� 0

I.�/ Fisher information matrix at �
�� true parameter f 	 f��





Some Terminology

Odabrana terminologija

“Law of Variation”: When you change lanes whilst driving, the lane you leave
will always then move faster than the one you have joined.

This section contains an overview of some terminology that is used throughout the
book. The notations are in part identical to those of Harville (2001). More detailed
definitions and further explanations of the statistical terms can be found, e.g., in
Breiman (1973), Feller (1966), Härdle and Simar (2011), Mardia et al. (1979), or
Serfling (2002).

Asymptotic normality A sequence X1;X2; : : : of random variables is asymptot-
ically normal if there exist sequences of constants f�i g1

iD1 and f�i g1
iD1 such that

��1
n .Xn��n/ L�! N.0; 1/. The asymptotic normality means that for sufficiently

large n, the random variable Xn has approximately N.�n; �
2
n/ distribution.

Bias Consider a random variable X that is parametrized by � 2 ‚. Suppose that
there is an estimator O� of � . The bias is defined as the systematic difference
between O� and � , Ef O� � �g. The estimator is unbiased if E O� D � .

Characteristic function Consider a random vector X 2 R
p with pdf f . The

characteristic function (cf) is defined for t 2 R
p:

'X.t/ D EŒexp.it>X/� D
Z

exp.it>X/f .x/dx:

xvii



xviii Some Terminology

The cf fulfills 'X.0/ D 1, j'X.t/j � 1. The pdf (density) f may be recovered
from the cf: f .x/ D .2�/�p

R

exp.�it>X/'X.t/dt .
Characteristic polynomial (and equation) Corresponding to any n � n matrix

A is its characteristic polynomial, say p.:/, defined (for �1 < � < 1) by
p.�/ D jA � �Ij, and its characteristic equation p.�/ D 0 obtained by setting
its characteristic polynomial equal to 0; p.�/ is a polynomial in � of degree n
and hence is of the form p.�/ D c0 C c1�C 
 
 
 C cn�1�n�1 C cn�

n, where the
coefficients c0; c1; : : : ; cn�1; cn depend on the elements of A.

Conditional distribution Consider the joint distribution of two random vectors
X 2 Rp and Y 2 Rq with pdf f .x; y/ W RpC1 �! R. The marginal density ofX
is fX.x/ D R

f .x; y/dy and similarly fY .y/ D R

f .x; y/dx. The conditional
density of X given Y is fX jY .xjy/ D f .x; y/=fY .y/. Similarly, the conditional
density of Y given X is fY jX.yjx/ D f .x; y/=fX.x/.

Conditional moments Consider two random vectors X 2 Rp and Y 2 Rq with
joint pdf f .x; y/. The conditional moments of Y given X are defined as the
moments of the conditional distribution.

Contingency table Suppose that two random variables X and Y are observed
on discrete values. The two entry frequency table that reports the simultaneous
occurrence of X and Y is called a contingency table.

Critical value Suppose one needs to test a hypothesisH0. Consider a test statistic
T for which the distribution under the null hypothesis is given by P0. For a given
significance level ˛, the critical value is c˛ such that P0.T > c˛/ D ˛. The
critical value corresponds to the threshold that a test statistic has to exceed in
order to reject the null hypothesis.

Cumulative distribution function (cdf) Let X be a p-dimensional random vec-
tor. The cumulative distribution function (cdf) of X is defined by F.x/ D
P.X � x/ D P.X1 � x1;X2 � x2; : : : ; Xp � xp/.

Eigenvalues and eigenvectors An eigenvalue of an n � n matrix A is (by
definition) a scalar (real number), say �, for which there exists an n�1 vector, say
x, such thatAx D �x, or equivalently such that .A��In/x D 0; any such vector
x is referred to as an eigenvector (of A) and is said to belong to (or correspond to)
the eigenvalue �. Eigenvalues (and eigenvectors), as defined herein, are restricted
to real numbers (and vectors of real numbers).

Eigenvalues (not necessarily distinct) The characteristic polynomial, say p.:/,
of an n � n matrix A is expressible as

p.�/ D .�1/n.� � d1/.� � d2/ 
 
 
 .� � dm/q.�/ .�1 < � < 1/;

where d1; d2; : : : ; dm are not-necessarily-distinct scalars and q.:/ is a polynomial
(of degree n�m) that has no real roots; d1; d2; : : : ; dm are referred to as the not-
necessarily-distinct eigenvalues of A or (at the possible risk of confusion) simply
as the eigenvalues of A. If the spectrum of A has k members, say �1; : : : ; �k , with
algebraic multiplicities of 
1; : : : ; 
k , respectively, then m D Pk

iD1 
i , and (for
i D 1; : : : ; k) 
i of the m not-necessarily-distinct eigenvalues equal �i .
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Empirical distribution function Assume that X1; : : : ; Xn are iid observations
of a p-dimensional random vector. The empirical distribution function (edf) is
defined through Fn.x/ D n�1Pn

iD1 1.Xi � x/.
Empirical moments The moments of a random vector X are defined through
mk D E.Xk/ D R

xkdF.x/ D R

xkf .x/dx. Similarly, the empirical
moments are defined through the empirical distribution function Fn.x/ D
n�1Pn

iD1 1.Xi � x/. This leads to Omk D n�1Pn
iD1 Xk

i D R

xkdFn.x/.
Estimate An estimate is a function of the observations designed to approximate

an unknown parameter value.
Estimator An estimator is the prescription (on the basis of a random sample) of

how to approximate an unknown parameter.
Expected (or mean) value For a random vector X with pdf f the mean or

expected value is E.X/ D R

xf .x/dx:

Hessian matrix The Hessian matrix of a function f , whose value is an m

dimension real vector, is the m � m matrix whose ij�th element is the ij�th
partial derivative @2f=@xi@xj of f .

Kernel density estimator The kernel density estimator Of of a pdf f , based on a
random sample X1;X2; : : : ; Xn from f , is defined by

Of .x/ D .nh/�1
n
X

iD1
K

�

x �Xi
h

�

:

The properties of the estimator Of .x/ depend on the choice of the kernel function
K.:/ and the bandwidth h. The kernel density estimator can be seen as a
smoothed histogram; see also Härdle et al. (2004).

Likelihood function Suppose that fxi gniD1 is an iid sample from a population
with pdf f .xI �/. The likelihood function is defined as the joint pdf of
the observations x1; : : : ; xn considered as a function of the parameter
� , i.e., L.x1; : : : ; xnI �/ D Qn

iD1 f .xi I �/. The log-likelihood function,
`.x1; : : : ; xnI �/ D logL.x1; : : : ; xnI �/ D Pn

iD1 logf .xi I �/, is often easier
to handle.

Linear dependence or independence A nonempty (but finite) set of matrices (of
the same dimensions .n � p/), say A1;A2; : : : ; Ak , is (by definition) linearly
dependent if there exist scalars x1; x2; : : : ; xk , not all 0, such that

Pk
iD1 xiAi D

0n0
>
p ; otherwise (if no such scalars exist), the set is linearly independent. By

convention, the empty set is linearly independent.
Marginal distribution For two random vectors X and Y with the joint pdf
f .x; y/, the marginal pdfs are defined as fX.x/ D R

f .x; y/dy and fY .y/ D
R

f .x; y/dx.
Marginal moments The marginal moments are the moments of the marginal

distribution.
Mean The mean is the first-order empirical moment x D R

xdFn.x/ D
n�1Pn

iD1 xi D Om1.
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Mean squared error (MSE) The mean squared error (MSE) is defined as
E. O� � �/2.

Median Suppose that X is a continuous random variable with pdf f .x/. The
median Qx lies in the center of the distribution. It is defined as

R Qx
�1 f .x/dx D

R C1
Qx f .x/dx � 0:5.

Moments The moments of a random vectorX with the distribution functionF.x/
are defined throughmk D E.Xk/ D R

xkdF.x/. For continuous random vectors
with pdf f .x/, we have mk D E.Xk/ D R

xkf .x/dx.
Normal (or Gaussian) distribution A random vector X with the multinormal

distribution N.�;†/ with the mean vector � and the variance matrix † is given
by the pdf

fX.x/ D j2�†j�1=2 exp

�

�1
2
.x � �/>†�1.x � �/

�

:

Orthogonal matrix An .n � n/ matrix A is orthogonal if A>A D AA> D In.
Pivotal quantity A pivotal quantity or pivot is a function of observations and

unobservable parameters whose probability distribution does not depend on
unknown parameters.

Probability density function (pdf) For a continuous random vector X with cdf
F , the probability density function (pdf) is defined as f .x/ D @F.x/=@x.

Quantile For a random variable X with pdf f the ˛ quantile q˛ is defined
through:

R q˛
�1 f .x/dx D ˛.

p-value The critical value c˛ gives the critical threshold of a test statistic T for
rejection of a null hypothesisH0. The probability P0.T > c˛/ D p defines that
p-value. If the p-value is smaller than the significance level ˛, the null hypothesis
is rejected.

Random variable(rv) Random events occur in a probability space with a certain
even structure. A random variable (rv) is a function from this probability space
to R (or Rp for random vectors) also known as the state space. The concept
of a random variable (vector) allows one to elegantly describe events that are
happening in an abstract space.

Scatterplot A scatterplot is a graphical presentation of the joint empirical
distribution of two random variables.

Singular value decomposition (SVD) An m � n matrix A of rank r is express-
ible as

A D P

�

D1 0
0 0

�

Q> D P1D1Q
>
1 D

r
X

iD1
siPiQ

>
i D

k
X

jD1
˛jUj ;

where Q D .Q1; : : : ;Qn/ is an n � n orthogonal matrix and D1 D diag.s1;

: : : ; sr / an r � r diagonal matrix such that Q>A>AQ D
�

D2
1 0

0 0

�

; where

s1; : : : ; sr are (strictly) positive, where Q1 D .Q1; : : : ;Qr/, P1 D .P1; : : : ;

Pr / D AQ1D
�1
1 , and, for any m � .m � r/ matrix P2 such that P>

1 P2 D 0,
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P D .P1; P2/, where ˛1; : : : ; ˛k are the distinct values represented among
s1; : : : ; sr , and where (for j D 1; : : : ; k) Uj D P

fi W siD˛j g PiQ>
i ; any of these

four representations may be referred to as the singular value decomposition ofA,
and s1; : : : ; sr are referred to as the singular values ofA. In fact, s1; : : : ; sr are the
positive square roots of the nonzero eigenvalues of A>A (or equivalently AA>),
Q1; : : : ;Qn are eigenvectors of A>A, and the columns of P are eigenvectors of
AA>.

Spectral decomposition A p � p symmetric matrix A is expressible as

A D �ƒ�> D
p
X

iD1
�i
i


>
i

where �1; : : : ; �p are the not-necessarily-distinct eigenvalues of A, 
1; : : : ; 
p
are orthonormal eigenvectors corresponding to �1; : : : ; �p , respectively, � D
.
1; : : : ; 
p/, D D diag.�1; : : : ; �p/.

Subspace A subspace of a linear space V is a subset of V that is itself a linear
space.

Taylor expansion The Taylor series of a function f .x/ in a point a is the

power series
P1

nD0
f .n/.a/

nŠ
.x � a/n. A truncated Taylor series is often used to

approximate the function f .x/.
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Chapter 1
Basics

Constant sprinkle can make you wet

In this chapter on basics of mathematical statistics we present simple exercises that
help to understand the notions of sample, observations and data modeling with
parameterized distributions. We study the Bernoulli model, linear regression and
discuss design questions for a variety of different applications.

Exercise 1.1. Let Y D fY1; : : : ; Yng be i.i.d. Bernoulli with the parameter ��.

1. Prove that the mean and the variance of the sum Sn D Y1 C : : :C Yn satisfy

E��Sn D n ��;

Var�� Sn
defD E��

�

Sn � E��Sn
�2 D n ��.1 � ��/:

2. Find �� that maximizes Var�� Sn.

1. Observe that the Yi ’s are i.i.d.

E��

�

Y1 C Y2 C Y3 C : : :C Yn/ D n E��.Y1/

D n f�� � 1C .1� ��/ � 0g
D n ��

W.K. Härdle et al., Basics of Modern Mathematical Statistics, Springer Texts in Statistics,
DOI 10.1007/978-3-642-36850-9__1, © Springer-Verlag Berlin Heidelberg 2014
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Since the variance of a sum of i.i.d variables is the sum of the variances,
we obtain:

Var�� Sn D nVarY1 D n��.1 � ��/

2. Maximizing the function u.1 � u/ for u in Œ0; 1� yields u D 1=2. The fair coin
toss therefore has the maximum variance in this Bernoulli experiment.

Exercise 1.2. Consider the Bernoulli model with parameter �� and Q� D
n�1Pn

iD1 Yi its estimator. Prove that Q�.1� Q�/ is estimating the population variance
�2 D E�� .Y1 � ��/2

Q� is a consistent estimator of ��. By the continuous mapping theorem, Q�.1 � Q�/
estimates ��.1 � ��/. In fact, the empirical counterpart of �2 equals to
n�1Pn

iD1 Y 2i � �

n�1Pn
iD1 Yi

�2
. Since Yi is either 0 or 1, this exactly equals to

n�1Pn
iD1 Yi � �

n�1Pn
iD1 Yi

�2
, which is Q�.1 � Q�/.

Exercise 1.3. Let Yi D ‰>
i �

� C "i be a regression model with fixed design ‰i D
f 1.Xi/; 
 
 
 ;  p.Xi/g> 2 Rp . Assume that the error "i are i.i.d. with mean 0 and
Var."/ D �2.
The LS estimator is:

Q� D .‰‰>/�1‰Y:

Show that Var. Q�/ D �2.‰‰>/�1.

Var. Q�/ D Var

�

.‰‰>/�1‰Y
�

D Var

�

.‰‰>/�1‰.‰>
i �

� C "/

�

D Var

�

.‰‰>/�1‰"
�

D .‰‰>/�1‰Var."/‰>.‰‰>/�1�2I

D �2.‰‰>/�1:

Exercise 1.4. Consider a linear regression model Yi D ‰>
i �

� C "i for i D
1; 
 
 
 ; n with uncorrelated "i satisfying E"i D 0, E"2 D �2 < 1, ‰ D
. 1;  2; 
 
 
 ;  n/p�n. Define a linear transformation of �� as a� defD v>��, v 2 R.

1. Show that ‰� D vp�1, where � 2 Rn, implies:

Cov.�>Y; Qa/ defD E��f.�>Y � a�/. Qa � a�/g D �2v>.‰‰>/�1v
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2. Check that 0 � Var.�>Y � Qa/ D Var.�>Y / � �2v>.‰‰>/�1v

1.

Cov.�>Y; v> Q�/ D Cov.�>Y; v>.‰‰>/�1‰Y /

D Cov.�>Y � a�; v>.‰‰>/�1‰Y � a�/

D Ef.�>Y � a�/. Qa � a�/>g:

Since �>Y � a� D �>" and Qa � a� D v>.‰‰>/�1‰", this yields:

EŒ�>"fv>.‰‰>/�1‰"g>� D �2�‰>.‰‰>/�1v

D �2v>.‰‰>/�1‰�:

2.

Var.�>Y � Qa/ D Var.�>Y /C Var. Qa/� 2Cov.�>Y; Qa/
D Var.�>Y /C Varfv>.‰‰>/�1‰Y g � 2�2v>.‰‰>/�1‰�

D Var.�>Y /C �2v>.‰‰>/�1v � 2�2v>.‰‰>/�1‰�

D Var.�>Y /C �2v>.‰‰>/�1v � 2�2v>.‰‰>/�1v

D Var.�>Y / � �2v>.‰‰>/�1v:

Exercise 1.5. Let Yi D ‰>
i �

� C "i for i D 1; : : : ; n with "i � N.0; �2/ and
‰i;�

� 2 Rp . Let rank.‰/ D p and let v be a given vector from Rp . Denote the
estimate Qa D v> Q�; denote the true value a� D v>��. Prove that

1.

Qa � a� � N
�

0; s2
�

with s2 D �2v>�‰‰>��1v .
2.

P��

�j Qa � a�j > z˛ s
� D ˛;

where ˆ.z˛/ D 1 � ˛=2 .

1. Note that

Qa � a� D v>
� Q� � ��	 D v>f�‰‰>��1 ‰Y � ��g

D v>f�‰‰>��1 ‰
�

‰>�� C "
� � ��g

D v> �‰‰>��1 ‰"
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has a normal distribution, because it is a linear transformation of normally
distributed vector ". So, it is sufficient to prove that

E
� Qa � a�� D 0 and Var

� Qa � a�� D s2:

First fact is exactly the Gauss-Markov theorem. Second fact can be checked via
simple calculation:

Var
� Qa � a�� D E

� Qa � a��2 D v> �‰‰>��1 ‰ "">
„ƒ‚…

D�2I
‰> �‰‰>� v D s2

2. The cdf of Y � N
�

0; s2
�

is ˆ.u=s/, u 2 R. Hence

P��

�jY j > z˛ s
� D 2 P��

�

Y > z˛ s
� D 2 f1 �ˆ.z˛/g

D 2 f1 � .1 � ˛=2/g D ˛:

Exercise 1.6. Let Y1; : : : ; Yn be i.i.d. U Œ0; ��. For any integer k

E� .Y
k
1 / D ��1

Z �

0

ykdy D �k=.k C 1/;

or � D ˚

.k C 1/E� .Y
k
1 /

1=k

. For any k one defines

Q�k D
�

k C 1

n

n
X

iD1
Y ki

�1=.kC1/
:

Prove that

lim
k!1

Q�k D Q�1 D maxfY1; : : : ; Yng:

Define the order statistics Y.1/ � Y.2/ � : : : � Y.n/. Since Y.i/ � 0 for all i we
have

�

k C 1

n

�1=.kC1/
Y

1
kC1

.n/ �
�

k C 1

n

n
X

iD1
Y ki

�1=.kC1/
D
�

k C 1

n

n
X

iD1
Y k.i/

�1=.kC1/

� .k C 1/1=.kC1/Y 1=.kC1/
.n/ :

The limit of Y k=.kC1/
.n/ for k ! 1 is Y.n/ D Q�1. Both

�

kC1
n

�1=.kC1/
and

.k C 1/1=.kC1/ tend to 1 as k ! 1.
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Exercise 1.7. A statistical decision problem is defined in terms of a decision
space D, a loss function }.
; 
/ on D � ‚ and the statistical decision � D �.Y /.
Define the statistical decision problem for testing a simple hypothesis �� D �0 for
a given point �0.

Let ‚0 D f�0g and ‚1 D ‚ n ‚0. The decision space D consists of two points
f0; 1g, where d D 0 means that H0 W �� D �0 is accepted, while H1 W �� ¤ �0
favors the alternative. The loss is defined as:

}.d;�/ D 1.d D 1;� D �0/C 1.d D 0;� ¤ �0/:

A test is a binary valued function � D ˆ.Y / ! f0; 1g. The risk is calculated as:

R.�;��/ D E���.Y /;

i.e. the probability of selecting � ¤ �0.

Exercise 1.8. The risk of a statistical decision problem is denoted as R.�;�/. The
quality of a statistical decision can be measured by either the minimax or Bayes
risk. The Bayes risk with prior � is given by R�.�/ D R

R.�;�/� .d�/, while the
minimax risk is given by R.��/ D inf� R.�/ D inf� sup�2‚ R.�;�/.
Show that the minimax risk is greater than or equal to the Bayes risk whatever the
prior measure � is.

Define 8�; R.�/
defD sup�2‚ R.�;�/

It is easy to see

R.�/ �
Z

R.�;�/� .d�/ (1.1)

since
Z

R.�;�/� .d�/ � sup
�

R.�;�/

Z

� .d�/ D sup
�

R.�;�/

The relation in (1.1) will of course not change if we move to inf� R.�/ leading to

inf
�
R.�/ � inf

�
R�.�/

which proves the claim.

Exercise 1.9. Consider the model in Exercise 1.9, where Qa D v> Q� and � 2 R
p .

Check that the minimization of the quadratic form�>� under the condition‰� D v

leads to the equation �>� D v>�‰‰>��1v.

1. Define ˘ D ‰>.‰‰>/�1‰ and show that ˘ is a projector in Rn in the sense
that ˘2 D ˘> D ˘ .
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2. Decompose �>� D �>˘� C �>.I �˘/�.
3. Check that �2�>˘� D �2v>.‰‰>/�1v D Var. Qa/ using  � D v.
4. Show that �>.I �˘/� D 0 iff ˘� D �.

1. Define ˘ D ‰>.‰‰>/�1‰
We can prove that

˘2 D ‰>.‰‰>/�1‰‰>.‰‰>/�1‰

D ‰>.‰‰>/�1‰ D ˘

and

˘> D .‰>.‰‰>/�1‰/> D ‰>.‰‰>/�1‰ D ˘

so ˘ is a projector in Rn because

˘2 D ˘ D ˘>

2. Decompose �>� D �>˘� C �>.I �˘/� where

�>˘� D �>‰>.‰‰>/�1‰�

D v>.‰‰>/�1v

Therefore �2�>˘� D �2v>.‰‰>/�1v D Var. Qa/
Recall that .I � ˘/ is a projector matrix which just has eigenvalues 1 or 0. Thus
it is non-negative definite and therefore �>.I � ˘/� � 0 and �>.I � ˘/� D 0

iff �>� D �>˘�.

�>.I �˘/1=2.I �˘/1=2� D 0

Set now u
defD �>.I �˘/1=2, then we obtain:

u>u D 0

u D 0

�.I �˘/1=2� D 0

�.I �˘/� D 0

� D ˘�
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Fig. 1.1 The shape of Jiao
Bei

then

�� D �>˘� C �>.I �˘/�
� �>˘� D �2v>.‰‰>/�1v

if and only if � D ˘� for “D”.

Exercise 1.10. In Taiwanese culture, there is the “Jiao Bei” ( , Fig. 1.1), which
helps to know if the Gods agree with important matters such as marriage, home
moving or dilemmas. This kind of divination–tossing “Jiao Bei”–is given by the
outcome of the relative location of the two wooden pieces. Worshippers stand in
front of the statue of the God they believe in, and speak the question in their mind.
Finally they toss the Jiao Bei to see if the Gods agree or not.
As a pair of crescent moon-shaped wooden pieces, each Jiao Bei piece has a convex
(C) and a flat side (F). When tossing Jiao Bei, there are four possible outcomes:
(C,C), (F,F), (C,F), (F,C). The first two outcomes mean that the Gods disagree and
one needs to restate or change the question. The last two outcomes mean that the
Gods agree, and this outcome is called “Sheng Bei” ( ).
Suppose that each piece of Jiao Bei is fair and the probability to show C or F is
equal. Sequential tossings of Jiao Bei can be viewed as sequence of i.i.d. Bernoulli
trials.

1. What is the probability of the event of Sheng Bei?
2. If tossing Jiao Bei ten times, how many times of Sheng Bei would show up?
3. What is the probability that Sheng Bei finally shows up at the 5th tossing?
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1. The probability for the event (C,C) is 1/4, given the assumption that the events
C and F have equal chances for each piece of the Jiao Bei. Similarly, the
probabilities for the events (F,F), (C,F) and (F,C) are also 1/4.
For the event of Sheng Bei, it would be either (C,F) or (F,C). Therefore the
probability for the event Sheng Bei is p D 1=4C 1=4 D 1=2.

2. Using the result of 1. in Exercise 1.1, the expected number of Sheng Bei if tossing
ten times is np D 10 � 1=2 D 5.

3. We know that the probability for the event Sheng Bei is 1/2. There are four
failures before Sheng Bei shows up at the 5th tossing. So the probability for
this event is

�

1

2

�4
1

2
D
�

1

2

�5

:

Exercise 1.11. The crucial assumption of Exercise 1.10 is the Jiao Bei fairness
which is reflected in the probability 1=2 of either C or F. A primary school student
from Taiwan did a controlled experiments on a pair of Jiao Bei tossing 200 times,
yielding the outcomes (C,C), (F,F), (F,C), (C,F). The outcomes (F,C), (C,F) are
“Sheng Bei” and are denoted by 1, while the outcomes (C,C), (F,F) are not “Sheng
Bei” and are denoted by 0. We have a sequence of experiment results:

1 0 1 0 0 1 0 1 0 0 0 1 1 0 1 1 0 1 0 0
1 0 1 0 1 1 0 0 0 1 0 1 0 0 0 0 0 1 0 0
0 0 1 0 1 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 1 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0
1 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 1 0 0 1 0
1 0 0 0 0 1 1 1 0 1 0 1 0 1 0 0 0 1 0 0
0 1 0 1 1 0 0 0 0 1 1 0 1 0 1 1 1 1 1 0
1 1 0 1 0 0 0 1 1 0 0 0 1 1 0 0 0 0 0 1
0 1 0 0 0 1 1 1 1 0 0 1 0 0 1 1 1 0 0 1

Can you conclude from this experiment that the Jiao Bei is fair?

We can decide if this pair of Jiao Bei is fair by applying a test on the null hypothesis
H0 W p0 D 0:5, where p is the probability that “Sheng Bei” shows up. Denote this
set of data as fxi g2iD100, and the event xi D 1 is shown 75 times.
To compute the test statistics, first we have x D 75=200 D 0:375.

p

�2=n D
p

0:5 � 0:5=200 D 0:0354. The test statistics is .x � p0/=
p

�2=n D �3:5311.
According to the asymptotic normality, the test statistics has p-value 0.0002. Thus,
the null hypothesis is rejected by a significance level ˛ D 0:001.



Chapter 2
Parameter Estimation for an i.i.d. Model

Оценивание параметров в модели с независимыми одинаково
распределёнными наблюдениями 

Кадры, овладевшие техникой, решают всё! 

Personnels that became proficient in technique decide
everything!

Joseph Stalin

Exercise 2.1 (Glivenko-Cantelli theorem). Let F be the distribution function of
a random variable X and let fXigniD1 be an i.i.d. sample from F . Define the edf as

Fn.x/
defD n�1

n
X

iD1
1.Xi � x/:

Prove that

sup
x

ˇ

ˇFn.x/� F.x/
ˇ

ˇ

a:s:�! 0; n ! 1

1. If F is a continuous distribution function;
2. If F is a discrete distribution function.

W.K. Härdle et al., Basics of Modern Mathematical Statistics, Springer Texts in Statistics,
DOI 10.1007/978-3-642-36850-9__2, © Springer-Verlag Berlin Heidelberg 2014
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1. Consider first the case when the function F is continuous in y. Fix any integer
N and define with " D 1=N the points t1 < t2 < : : : < tN D C1 such that

F.tj / � F.tj�1/ D " for j D 2; : : : ; N: (2.1)

For every j , by the law of large numbers: Fn.tj /
a:s:�! F.tj /. This implies that

for some n."/, it holds for all n � n."/

ˇ

ˇFn.tj / � F.tj /
ˇ

ˇ � "; j D 1; : : : ; N: (2.2)

F.t/ and Fn.t/ are nondecreasing functions. This implies that for every t 2
Œtj�1; tj � it holds

F.tj�1/ � F.t/ � F.tj /; Fn.tj�1/ � Fn.t/ � Fn.tj /: (2.3)

Let us subtract the first inequality (2.3) from the second:

Fn.tj�1/� F.tj / � Fn.t/ � F.t/ � Fn.tj /� F.tj�1/; (2.4)

Let us continue with the right hand side using (2.1) and (2.2):

Fn.t/ � F.t/ � Fn.tj / � F.tj�1/

D ˚

Fn.tj /� F.tj /



„ ƒ‚ …

�"
C ˚

F.tj / � F.tj�1/



„ ƒ‚ …

D"
� 2";

In the same way (considering the left part of (2.4)), one can prove that

Fn.t/ � F.t/ � �2"

So,

ˇ

ˇFn.t/ � F.t/
ˇ

ˇ � 2": (2.5)

Thus for all " > 0 there exists constant n."/ > 0 such that for every n > n."/

the inequality (2.5) holds for all t 2 R.
2. By T D ftmgC1

mD1 we denote points of discontinuity of function F.x/. Of course,
these points are also points of discontinuity of function Fn.t/ (for any n).

Let us fix some " > 0 and let us construct some finite set S."/. We include in
S."/ the following points:

(a) Points such that at least one inequality fulfills:

F.tm/ � F.tm�1/ > " or F.tmC1/ � F.tm/ > "
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(b) Continuous set of points such that

F.tm/ � F.tm�1/ < "

Denote amount of elements in S."/ byM .
We know that Fn.t/ ! F.t/ almost sure. In particular

Fn.tm/
a:s:�! F.tm/; 8 m 2 S."/:

By definition

9nm."/ 2 N W 8n > nm."/ jFn.tm/� F.tm/j < "

Define n."/
defD maxfn1."/; : : : ; nM ."/g. Then for all tm 2 S."/

8n > n."/ jFn.tm/� F.tm/j < ":

Let us prove that the inequality

8n > n."/ jFn.tm/ � F.tm/j < 2": (2.6)

is also true for all points tm … S."/. Fix some tm … S."/ and find index s such
that

F.ts�1/ � F.tm/ � F.ts/; Fn.ts�1/ � Fn.tm/ � Fn.ts/:

Consider

Fn.tm/ � F.tm/ � Fn.ts/� F.ts�1/

D fFn.ts/� F.ts/g
„ ƒ‚ …

<"

C fF.ts/ � F.ts�1/g
„ ƒ‚ …

�"
� 2";

Similarly, one can prove that

Fn.tm/ � F.tm/ � �2"

This means that

jFn.tm/ � F.tm/j � 2"

So, (2.6) is true for all tm 2 T .
For all t there exists some point tm 2 T such that

Fn.t/ D Fn.tm/ and F.t/ D F.tm/:
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Fig. 2.1 The standard normal cdf (thick line) and the empirical distribution function (thin line) for
n D 100. MSEedfnormal

Thus

8n > n."/ jFn.t/ � F.t/j < ":

This observation completes the proof.
For an illustration of the asymptotic property, we draw fXigniD1 i.i.d. samples

from the standard normal distribution. Figure 2.1 shows the case of n D 100 and
Fig. 2.2 shows the case of n D 1;000. The empirical cdf and theoretical cdf are
close in the limit as n becomes larger.

Exercise 2.2 (Illustration of the Glivenko-Cantelli theorem). Denote by F the
cdf of

1. Standard normal law,
2. Exponential law with parameter � D 1.

Consider the sample fXigniD1. Draw the plot of the empirical distribution function
Fn and cumulative distribution function F . Find the index i� 2 f1; : : : ; ng such that

jFn .Xi�/ � F.Xi�/j D sup
i

ˇ

ˇFn.Xi /� F.Xi/
ˇ

ˇ:

The examples for the code can be found in the Quantnet. The readers are
suggested to change the sample size n to compare the results (Figs. 2.3 and 2.4).
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Fig. 2.2 The standard normal cdf (thick line) and the empirical distribution function (thin line) for
nD 1;000. MSEedfnormal
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Fig. 2.3 The standard normal cdf (thick line) and the empirical distribution function (thin line)
for n D 1;000. The maximal distance in this case occurs at Xi� D 1:0646 where i� D 830.

MSEGCthmnorm
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Fig. 2.4 The exponential (� D 1) cdf (thick line) and the empirical distribution function (thin
line) for n D 1;000. The maximal distance in this case occurs at Xi� D 0:9184 where i� D 577.
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Exercise 2.3. Compute the estimate of method of moments for the following
parametric models:

1. Multinomial model:

P� .X D k/ D
 

m

k

!

�k.1 � �/m�k; k D 0; : : : ; m:

2. Exponential model

P� .X > x/ D e�x=� :

In both cases one can follow the algorithm consisting of two steps:

• Calculate mathematical expectationm.�/ D E�X ;
• Solve the equationm. Q�/ D n�1Pn

iD1 Xi ; the solution is the required estimate.

Let us apply this:

1. Multinomial model, we first calculate expectation:

m.�/ D n�1
n
X

iD1
Xi D

m
X

kD0
k

 

m

k

!

�k.1 � �/m�k

D m

m
X

kD1

 

m � 1

k � 1

!

�k.1 � �/m�k D m�:
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Secondly we solve the equation

m. Q�/ D 1

n

n
X

iD1
Xi I

which gives the solution:

Q� D 1

nm

n
X

iD1
Xi :

2. Exponential family. Both items are trivial: m.�/ D 1
�

and
Q� D n

�Pn
iD1 Xi

��1
.

Exercise 2.4. Let fXigniD1 be an i.i.d. sample from a distribution with Lebesgue
density

f�.x/ D 1

2
.1C �x/ IŒ�1;1�.x/

1. Find an estimator via the method of moments;
2. Find a consistent estimator.

Let us begin with calculation of the mathematical expectation:

E�X1 D 1

2

Z 1

�1
.1C �x/ x dx D 1

3
�

Both items of the exercise follow immediately:

1. The estimator of method of moments is a solution of the equality

E Q�X1 D n�1
n
X

iD1
Xi

So, Q� D 3n�1Pn
iD1 Xi

2. By the law of large numbers,

n�1
n
X

iD1
Xi

a:s:�! EXi D 1

3
�; n ! 1:

This means that

3n�1
n
X

iD1
Xi

a:s:�! �; n ! 1;

hence the estimator O� D 3n�1Pn
iD1 Xi is consistent.
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Exercise 2.5. Consider the model

Xi D �� C "i ;

where �� is the parameter of interest and "i are independent normal errors
N.0; �2i /.

Compute the MLE Q� of the parameter �� and prove that this estimate has the
following properties:

(a) The estimate Q� is unbiased: E��
Q� D ��.

(b) The quadratic risk of Q� is equal to

R. Q�; ��/ defD E�� j Q� � ��j2 D .

n
X

iD1
�2i /

�1:

The corresponding log-likelihood reads

L.�/ D �1
2

n
X

iD1

n

log.2��2i /C .Xi � �/2
�2i

o

:

The first derivative is equal to

@L.�/

@�
D

n
X

iD1

Xi � �

�2i
D

n
X

iD1

Xi

�2i
� �

n
X

iD1

1

�2i
:

Then the MLE Q� equals

Q� defD argmax
�

L.�/ D 1

N

X Xi

�2i
;

where N D P

��2
i .

(a)

E��
Q� D 1

N

X EXi

�2i
D 1

N

X ��

�2i
D ��

N

X 1

�2i
D ��:

(b) The quadratic risk of Q� is equal to the variance Var. Q�/:

R. Q�; ��/ defD E�� j Q�ı � ��j2 D E��

ˇ

ˇ

ˇ

ˇ

ˇ

1

N

X Xi

�2i
� ��

ˇ

ˇ

ˇ

ˇ

ˇ

2

D E��

ˇ

ˇ

ˇ

ˇ

ˇ

1

N

X Xi

�2i
� �� 1

N

X 1

�2i

ˇ

ˇ

ˇ

ˇ

ˇ

2

D E��

ˇ

ˇ

ˇ

ˇ

ˇ

1

N

X Xi � ��
�2i

ˇ

ˇ

ˇ

ˇ

ˇ

2

D 1

N2

X

E��

ˇ

ˇ

ˇ

ˇ

ˇ

Xi � ��
�2i

ˇ

ˇ

ˇ

ˇ

ˇ

2

:
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Note that random value Xi � �� has a normal distribution with zero mean and
variance �2i . Then .Xi � ��/=�2i � N.0; ��2

i / and

R. Q�ı; ��/ D 1

N 2

X

��2
i D 1

N
:

Exercise 2.6. Let fXigniD1 be an i.i.d. sample with distribution that depends on some
parameter � . Let O�n be an estimate of parameter � .

Assume that this estimate is root-n normal, i.e. there exists a function �.�/ such
that

p
n. O�n � �/ d�! N

�

0; �.�/2
�

; n ! 1:

Prove that O�n is consistent,

O�n P�! �

This fact can be briefly formulated as “root-n normality implies consistency”.
We need Slutsky’s Theorem:

1. Let an (sequence of real numbers) be convergent in probability,

an
P�! a; n ! 1

Let �n (sequence of random variables) be convergent in distribution,

�n
L�! Law.�/; n ! 1

Then

an�n
L�! Law.a�/; n ! 1

2. Let 
n be a sequence of random variables that converges in law to the distribution
that is degenerated in some point c (we denote this degenerated distribution by
Law.c/). Then 
n also tends to c in probability.

Let us apply these observations to our situation. We use the first part of Slutsky’s
Theorem with an D 1p

n
and 
n D p

n. O�n � �/.

The sequence an tends to zero and the sequence 
n tends in probability to a
normal distribution. So,

an
n
L�! Law.0/
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According to the second part, this sequence also tends to zero in probability. Thus,

an
n D O�n � � P�! 0:

Remark 2.1. In fact our proof is true for any estimate that has an asymptotic
distribution (not necessarily normal).

Exercise 2.7. Let F be the distribution function of a random variable X and let
fXigniD1 be an i.i.d. sample from F . Let g W R ! R be a function such that

�2g
defD Var fg.X/g < 1

Denote

s
defD Eg.X/; Sn

defD n�1
n
X

iD1
g.Xi /

1. Prove that

(a) Sn
P�! s; n ! 1

(b)
p
n.Sn � s/

L�! N.0; �2g/; n ! 1:

2. Let h.z/ be a twice continuously differentiable function on the real line such that
h0.s/ ¤ 0 and h00.s/ is bounded in some neighborhood of s. Prove that

(a) h.Sn/
P�! h.s/

(b)
p
nfh.Sn/ � h.s/g L�! N.0; �2h /; n ! 1;

where �2h
defD jh0.s/j2�2g .

1. (a) Note that fg.Xi /gniD1 is a sample from the distribution with expectation equal
to Eg.X/.

One can apply the law of large numbers for the sequence fg.Xi /gniD1:

n�1
n
X

iD1
g.Xi/

P�! Eg.X/ n ! 1:

(b) This statement directly follows by the CLT for i.i.d. random variables:

n�1Pn
iD1 g.Xi /� Eg.X/
q

1
n

Varfg.X/g
� N.0; 1/
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In other words,

p
n

(

n�1
n
X

iD1
g.Xi /� Eg.X/

)

L�! N.0; �2g/; n ! 1:

2. (a) We know:

Sn
P�! s; n ! 1

Then for any continuous function g:

g.Sn/
P�! g.s/; n ! 1

(b) One can find a neighborhoodU of the point s such that

(i) Sn belongs with high probability to U ;
(ii) h00.s/ is bounded in U .

Applying the Taylor expansion to h in this neighborhoodU :

p
n fh.Sn/� h.s/g D p

nh0.s/ .Sn � s/C
p
n

2
h00.Qs/ .Sn � s/2 ; (2.7)

where Qs is some point between s and Sn. The right hand side of (2.7) is a
sum of two random variables. First random variable

p
nh0.s/ .Sn � s/ tends

to N
�

0; jh0.s/j2�2g
	

in distribution.

Let us show that the second component tends to zero in probability.
Actually,

ˇ

ˇ

ˇ

ˇ

p
n

2
h00.Qs/ .Sn � s/2

ˇ

ˇ

ˇ

ˇ
� U

2

1p
n

˚p
n .Sn � s/
2 ;

where U is an upper bound for h00.s/ in the considering neighborhood.
Expression in the right hand side is a product of the sequence 1p

n
, which

tends to zero, and sequence
˚p
n .Sn � s/


2
, which converges in distribution.

Then

ˇ

ˇ

ˇ

ˇ

p
n

2
h00.Qs/ .Sn � s/2

ˇ

ˇ

ˇ

ˇ

P�! 0

Thus, the right hand side in (2.7) (and left hand side also) tends to
N.0; jh0.s/j2�2g/ in distribution.
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Exercise 2.8. (Analogue of the Exercise 2.7 for multi-dimensional case) Let g.
/ D
.g1.
/; : : : ; gm.
//> W R ! Rm be a function such that

†jk
defD E

�

gj .X/gk.X/
�

< 1; for j; k � m:

Denote

s D Eg.X/ D .Eg1.X/; : : : ;Egm.X//
>;

S n D 1

n

n
X

iD1
g.Xi/ D

 

1

n

n
X

iD1
g1.Xi /; : : : ;

1

n

n
X

iD1
gm.Xi/

!>
:

1. Prove that

(a) S n
P�! s; n ! 1

(b)
p
n.S n � s/ L�! N.0;†/; n ! 1;

where † D .†jk/j;kD1;:::;m
2. Let H.z/ W Rm ! R be a twice continuously differentiable function such that

rH.z/ and




r2H.z/




 is bounded in some neighborhood of s. Prove that

(a) H.S n/
P�! H.s/

(b)
p
n
˚

H.S n/ �H.s/
 L�! N.0; �2H /; n ! 1;

where �2H
defD rH.s/>†rH.s/.

First note that items 1a and 2a follow from items 1b and 2b correspondingly. Let
us check items 1b and 2b.

Consider for every v D .v1; : : : ; vm/
> 2 Rm the scalar products v>g.
/, v>s,

v>S n. For the statement 1b, it suffices to show that

p
nv>�S n � s� L�! N.0; v>†v/; n ! 1:

Actually

p
nv>�S n � s� D p

n
X

j

vj

(

1

n

X

i

gj .Xi /� Egj .X/

)

D p
n

2

4

1

n

X

i

8

<

:

X

j

vj gj .Xi/

9

=

;

� E

8

<

:

X

j

vj gj .X/

9

=

;

3

5

D p
n

(

1

n

X

i

G.Xi /� EG.X/

)

;

where G.
/ D P

j vj gj .
/ D v>g.
/.
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Now one can apply result of the Exercise 2.7 (item 1b) for the functionG.
/ and
obtain the required statement.

For the statement 2b, consider the Taylor expansion

p
n fH.S n/ �H.s/g D p

n rH.s/> .S n � s/C
p
n

2
.S n � s/> r2H.Qs/ .S n � s/ :

This formula is an analogue of (2.7). One can continue the line of reasoning in the
same way as in the proof of (2.7) (item 2b).

In fact,

p
nrH.s/> .S n � s/ L�! N.0;rH.s/>†rH.s//;

and

ˇ

ˇ

ˇ

ˇ

p
n

2
.S n � s/> r2H.Qs/ .S n � s/

ˇ

ˇ

ˇ

ˇ
� 1

2
p
n







p
n .S n � s/

2 max

s





r2H.s/






P�! 0

These two observations conclude the proof.

Exercise 2.9.

1. Consider a sample fXi gniD1 from a distribution P�� 2 .P� ; � 2 ‚ 2 R/. Let Q�
be an estimator of � such that the bias

b. Q�; ��/ defD E��
Q� � ��

and the variance Var��. Q�/ tend to zero as n ! 1. Prove that Q� is consistent.
2. Let fXi gniD1 be a sample from the uniform distribution on Œ0; ��. Using the first

item of this exercise, prove that the estimator

e�1 D max fX1; : : : ; Xng

is consistent.

1. Applying the so called bias-variance decomposition, which is true for any
estimate Q� :

E��

� Q� � ��
	2 D Var��. Q�/C b2. Q�; ��/: (2.8)
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Let us prove (2.8):

E��

� Q� � ��	2 D E��

n Q� � E. Q�/C E. Q�/ � ��o2

D E��

n Q� � E. Q�/C b. Q�; ��/
o2

D Var��. Q�/C 2b. Q�; ��/E��

� Q� � E Q�
	

C b2. Q�; ��/

D Var��. Q�/C b2. Q�; ��/

If bias and variance tend to zero as n ! 1, then

E��

� Q� � ��	2 ! 0; n ! 1

This means that Q� tends to �� in L2 sense. Then Q� also tends to �� in probability,
i.e. Q� is a consistent estimator.

2. First of all, let us calculate the cdf of e�1.

P��

� Q�1 � x
	

D P�� .X1 � x; : : : ; Xn � x/

D fP�� .X1 � x/gn D
� x

��
	n

; x 2 Œ0; ���

Afterwards we can take the derivative and obtain the density function

p.x/ D n.��/�nxn�11
�

0 � x � ���

For applying the first item, one has to calculate expectation and variance of Q�1:

E Q�1 D n

nC 1
��; Var. Q�1/ D n

.nC 1/2.nC 2/
��2

Now we are ready for applying the first item:

b. Q�1; ��/ D n

nC 1
�� � �� D � 1

nC 1
�� ! 0; n ! 1:

Var��. Q�/ D n

.nC 1/2.nC 2/
��2 ! 0; n ! 1:

So, assumptions are fulfilled. This concludes the proof.

Exercise 2.10. Check that the i.i.d. experiment from the uniform distribution on the
interval Œ0; �� with unknown � is not regular.
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First condition from the definition of the regular family is the following one: the sets

A.�/
defD fy W p.y; �/ D 0g are the same for all � 2 ‚.

The uniform distribution on the interval Œ0; �� doesn’t satisfy this condition,

A.�/ D .�1; 0/[ .�;C1/ :

This exercise gives a local approximation of the Kullback-Leibler divergence.

Exercise 2.11. Let .P� / be a regular family.

1. Show that the KL-divergence K.�; � 0/ satisfies for any �; � 0:

(a)

K.�; � 0/
ˇ

ˇ

ˇ

� 0D� D 0I

(b)

d

d� 0 K.�; �
0/
ˇ

ˇ

ˇ

� 0D� D 0I

(c)

d2

d� 02K.�; �
0/
ˇ

ˇ

ˇ

� 0D� D I.�/:

2. Show that in a small neighborhood of � , the KL-divergence can be approxi-
mated by

K.�; � 0/ � I.�/j� 0 � � j2=2:

1. Note that

K.�; � 0/ D E� logp.x; �/ � E� logp.x; � 0/

(a) First item is trivial.
(b)

d

d� 0 K.�; �
0/ D � d

d� 0 E� logp.x; � 0/

D � d

d� 0

Z

logp.x; � 0/p.x; �/dx

D �
Z

p0
� 0.x; �

0/
p.x; � 0/

p.x; �/dx;
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where p0
� 0.x; �

0/ defD d
d� 0p.x; �

0/. Substitution � 0 D � gives

d

d� 0 K.�; �
0/
ˇ

ˇ

ˇ

� 0D� D �
Z

d

d� 0 fp.x; � 0/gdx
ˇ

ˇ

ˇ

� 0D�

D � d

d� 0

Z

p.x; � 0/dx
ˇ

ˇ

ˇ

� 0D� D 0:

(c)

d2

d� 02K.�; �
0/ D �

Z

d

d� 0

�

p0
� 0.x; �

0/
p.x; � 0/

�

p.x; �/dx

D �
Z
"

p00
� 0.x; �

0/p.x; � 0/ � ˚

p0
� 0.x; �

0/

2

fp.x; � 0/g2
#

p.x; �/dx:

Substitution � 0 D � yields

d2

d� 02K.�; �
0/
ˇ

ˇ

ˇ

� 0D� D
Z

p00
� 0.x; �

0/dx
ˇ

ˇ

ˇ

� 0D�
„ ƒ‚ …

d2

d� 02

R

p.x;� 0/dx

ˇ

ˇ

ˇ

� 0
D�

D0

C
Z
˚

p0
� .x; �/


2

p.x; �/
dx

„ ƒ‚ …

DI.�/

D I.�/:

2. The required representation directly follows from the Taylor expansion at the

point � 0 D � .

The following exercise

1. Illustrates two methods for checking the R-efficiency;
2. Shows that the Fisher information can depend on the parameter (for some

parametric families), but can be a constant (for other parametric families).

Exercise 2.12. Consider two families:
(a) the Gaussian shift (b) the Poisson family

1. Compute the Fisher Information for these families.
2. Check that the Cramér-Rao inequality for the empirical mean estimate Q� D
n�1Pn

iD1 Xi is in fact an equality, i.e.

Var� . Q�/ D n�1I�1.�/:

3. Check R-efficiency of Q�
(i) Using only the definition;

(ii) Using the Theorem 2.6.3. of Spokoiny and Dickhaus (2014)
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1. (a) Recall

p.x; �/ D 1p
2�

exp

�

� .x � �/2

2

�

:

Then

I.�/ D E�

ˇ

ˇ

ˇ

ˇ

@ logp.X; �/

@�

ˇ

ˇ

ˇ

ˇ

2

D E�

ˇ

ˇ

ˇ

ˇ

@

@�

�

� .X � �/2

2

�ˇ

ˇ

ˇ

ˇ

2

D E� jX � � j2

D E� jX � E�X j2

D Var.X/ D 1:

Therefore, the Fisher information is equal to 1 for any values of the
parameter � .

(b)

p.x; �/ D �x

xŠ
e�� ; x D 1; 2; : : :

I.�/ D E�

ˇ

ˇ

ˇ

ˇ

@ logp.X; �/

@�

ˇ

ˇ

ˇ

ˇ

2

D E�

ˇ

ˇ

ˇ

ˇ

@

@�
.X log � � logXŠ� �/

ˇ

ˇ

ˇ

ˇ

2

D E�

ˇ

ˇ

ˇ

ˇ

X

�
� 1

ˇ

ˇ

ˇ

ˇ

2

D 1

�2
E� jX � � j2

D 1

�2
E� jX � E�X j2 D 1

�2
Var� .X/ D 1

�
:

So, in the case of the Poisson family, the Fisher information depends on � .
2. Estimator Q� is unbiased for both cases. Then the Cramér-Rao inequality stands

that

Var� . Q�/ D Var�

 

1

n

n
X

iD1
Xi

!

D 1

n
Var� .X1/ � n�1I�1.�/:

So, the aim is to check that

Var� .X1/ I.�/ D 1: (2.9)

(a) For the Gaussian shift Var� .X1/ D 1 and I.�/ D 1. Hence, (2.9) is fulfilled.
(b) For the Poisson family, Var� .X1/ D � and I.�/ D 1=� . Hence, (2.9) is also

fulfilled.
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3. (i) The definition says that R-efficient estimators are exactly the estimators that
give the equality in the Cramér-Rao inequality. So, this item is already proved.

(ii) The estimate Q� can be represented as

Q� D n�1XU.Yi/

with U.x/ D x. The aim is to show that the log-density `.y; �/ of P� can be
represented as

`.x; �/ D C.�/x � B.�/C `.x/; (2.10)

for some functions C.
/ and B.
/ on ‚ and a function `.
/ on R.
(a)

`.x; �/ D �x � �2=2C
�

�x
2

2
C log

1p
2�

�

;

and (2.10) follows with C.�/ D �; B.�/ D �2=2, and `.x/ D �x2=2C
log 1=

p
2� .

(b)

`.x; �/ D log.�/x � � C log.xŠ/; (2.11)

and (2.11) follows with C.�/ D log �; B.�/ D � , and `.x/ D log.xŠ/.

Exercise 2.13. Let X be a random variable with a distribution from .P� ; � 2
‚ � R/. Let also a function  ı W R �‚ ! R be such that

 ı.x; �/ D a .x � �/2 C b .x � �/C c;

where a; b; c 2 R.

1. Find a condition on the constants a; b; c and the family .P� / such that the
function  ı.x; �/ is a contrast.

2. Find a condition on the constants a; b; c such that such that the function ı.x; �/
is a contrast for the model of the Gaussian shift N.�; 1/.

1. By definition, the function  ı is a contrast if and only if

argmin
� 0

E�  
ı.X ; � 0/ D �; 8�:

Introduce a function

f .�; � 0/ defD E�
�

 ı.X ; � 0/
�

D �

a E�X
2 C b E�X C c

� � .2aE�X C b/ � 0 C a� 02: (2.12)
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The aim is to find a condition on the constants a; b; c and the family .P� / such
that

argmin
� 0

f .�; � 0/ D �; 8�: (2.13)

Take the derivative of the function f .�; � 0/ with respect to � 0 and solve the
equation @f .�; � 0/=@� 0 D 0:

@f .�; � 0/
@� 0 D � .2aE�X C b/C 2a� 0 D 0

This means that

argmin
� 0

f .�; � 0/ D E�X C b

2a
:

Together with (2.13), this yields the required condition on the constants a; b and
the family .P� /:

� D E�X C b

2a
; 8�: (2.14)

Constant c can be chosen arbitrary.
2. For the model of the Gaussian shift N.�; 1/,

E�X D �; 8�:

Condition (2.14) in this case yields b D 0. This means, that any function
 ı.x; �/ with b D 0 and any constants a and c is a contrast for the Gaussian
shift.

Exercise 2.14. Let fXigniD1 be an i.i.d. sample from a distribution P�� 2 .P� ; � 2
‚ � R/.

1. Let also g.x/ satisfy
R

g.x/dP�� .x/ D ��, leading to the moment estimate

Q� defD n�1
n
X

iD1
g.Xi /:

Show that this estimate can be obtained as the M-estimate for a properly selected
function  .
/.

2. Let
R

g.x/dP�� .x/ D m.��/ for the given functions g.
/ and strictly monotonic
and continuously differentiable m.
/. Show that the moment estimate Q� D
m�1fP g.Xi/=ng can be obtained as the M-estimate for a properly selected
function  .
/.
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1. It is the worth mentioning that

Q� defD n�1
n
X

iD1
g.Xi/ D argmin

�

n
X

iD1
fg .Xi /� �g2 : (2.15)

This observation helps us to find an appropriate function  . Fix

 .x; �/
defD fg.x/ � �g2

and prove that

�� D argmin
�

E�� .X ; �/; (2.16)

where X is a variable that has the distribution P�� .
The proof of (2.16) is straightforward:

E�� .X ; �/ D E�� fg.X/ � �g2 D E��g2.X/ � 2�E��g.X/C �2

Minimizing the right hand side expression by � yields

�min D E��g.X / D ��:

This concludes the proof.
2. The proof follows the same lines as the proof of the first statement. Note that

Q� defD m�1
(

1

n

n
X

iD1
g.Xi/

)

D argmin
�

n
X

iD1
fg .Xi/ �m.�/g2 :

Function

 .x; �/
defD fg.x/ �m.�/g2

is appropriate because of

�� D argmin
�

E�� fg.X /�m.�/g2 (2.17)

In fact, fix some � 2 ‚ and find a minimum value of the function

f .�/ D E�� fg.X/ �m.�/g2
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In order to minimize this function, solve the equation f 0.�/ D 0:

df .�/

d�
D df .�/

dm.�/

dm.�/

d�
D 2E�

� fg .X/�m.�/g dm.�/

d�
D 0

The first derivative of the function m.�/ doesn’t change the sign because of
monotonicity. This means that the minimum value of function f satisfies the
following equation

m.�min/ D E��g .X/ :

Then (2.17) fulfills. This completes the proof.

Exercise 2.15. Let fXi gn1iD1 be a sample from the distribution with the pdf

p.x; �/ D 2x

�2
; x 2 Œ0; ��:

Find the MLE of the median of the distribution.

First let us find a relation between � and the median m. By the definition of the
median,

Z m

�1
p.x; �/dx D

Z m

0

2x

�2
dx D 1=2;

i.e. � D p
2m. Then the likelihood function

L.m/ D
n
Y

iD1
p.Xi ;

p
2m/ D

n
Y

iD1

Xi

m2
1
�

Xi 2 Œ0;p2m�
	

has a maximum at the point Om D maxi Xi=
p
2.

Exercise 2.16. Let
n

X
.1/
i

on1

iD1 and
n

X
.2/
i

on2

iD1 be two independent samples from

the Poisson distributions with unknown parameters �1 and �2 D �1 C �

correspondingly. Find the maximum likelihood estimator for the parameter �.
Hint: Is it possible to find separately O�1 (the MLE for �1) from the first sample, O�2
(the MLE for �2) from the second sample, and then obtain the MLE estimator for �
as the difference O� D O�1 � O�2?

Denote by L1.�1/ and L2.�2/ the log-likelihood functions for the first and the
second samples correspondingly.

The MLE estimate for the parameter � is determined as

. O�1; O�/ D argmax
�1;�

fL1.�1/C L2.�1 C �/g :
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Hence, O� D argmax� L2. O�1C�/. The maximal value of the functionL2 is achieved
at the point O�2. This yields

max
�
L2. O�1 C �/ D L2. O�2/ D L2f O�1 C . O�2 � O�1/g:

So, O� D O�2 � O�1.
In the case of the Poisson distribution,

L1.�1/ D
n1
X

iD1
log

0

@e��1 �
X
.1/
i

1

X
.1/
i Š

1

A and L2.�2/ D
n2
X

iD1
log

0

@e��2 �
X
.2/
i

2

X
.2/
i Š

1

A ;

and the MLE of the parameter is the mean value, i.e. O�j D n�1
j

Pnj
iD1 X

.j /
i

defD
X
.j /
; j D 1; 2. Thus, we conclude that

O� D X
.2/ �X.1/

:

Exercise 2.17. Let fXigniD1 be an i.i.d. sample from a distribution with the
Lebesque density

p.x;�/ D ˛

ˇ˛
x˛�1I.0;ˇ/.x/;

where ˛; ˇ > 0 and �
defD .˛; ˇ/. Find estimators for the multivariate parameter �

using the following approaches:

1. Maximum likelihood approach;
2. Method of moments.

1. The likelihood function in this case

L.�/ D
n
Y

iD1
p.Xi ;�/ D ˛n

ˇ˛n

n
Y

iD1
X˛�1
i I.0;ˇ/.Xi/

D ˛n

ˇ˛n
I.0;ˇ/.X.n//

n
Y

iD1
X˛�1
i

is equal to zero if ˇ < X.n/ and decreases for ˇ � X.n/. Therefore the maximum
likelihood estimator for the parameter ˇ is Q̌ D X.n/. In order to find MLE for
the parameter ˛, one should maximize the function

f .˛/ D C1˛
nC ˛�1

2 ;
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where C1 D I.0; Q̌/.X.n// Q̌�n; C2 D Qn
iD1 Xi= Q̌ D Qn

iD1 Xi=X.n/. The
equation f 0.˛/ D 0 gives the MLE of the parameter ˛:

Q̨ D n

� logC2
D n
Pn

iD1 log
X.n/
Xi

:

So, the MLE is

Q� D . Q̨ ; Q̌/ D
 

n
Pn

iD1 log X.n/
Xi

; X.n/

!

:

2. Firstly we compute the first and the second moments:

m1.�/ D E�X1 D
Z

xp.x;�/dx D
Z ˇ

0

˛

ˇ˛
x˛dx D ˛ˇ

˛ C 1

m2.�/ D E�X
2
1 D

Z

x2p.x;�/dx D
Z ˇ

0

˛

ˇ˛
x˛C1dx D ˛ˇ2

˛ C 2

The empirical counterparts are

M1 D 1

n

n
X

iD1
Xi ; M2 D 1

n

n
X

iD1
X2
i : (2.18)

The required estimators are the solutions of the system of equations
�

M1 D ˛ˇ=.˛ C 1/

M2 D ˛ˇ2=.˛ C 2/
(2.19)

Raise both parts of the first equation to the second power and divide it to the
second equation:

M1

M2

D ˛.˛ C 2/

.˛ C 1/2
:

This yields the following quadratic equation w.r.t ˛:

˛2 C 2˛ C M1

M1 �M2

D 0: (2.20)

If M1

M1�M2
< 0 (or equivalentlyM1 < M2) then (2.20) has one positive solution

Ǫ D �1C
s

1 � M1

M1 �M2

:



32 2 Parameter Estimation for an i.i.d. Model

The first equation of system (2.19) gives

Ǒ D Ǫ C 1

Ǫ M1:

So, the estimate by the method of moments is

. Ǫ ; Ǒ/ D

0

B

@�1C
s

1 � M1

M1 �M2

;

q

1 � M1

M1�M2

�1C
q

1 � M1

M1�M2

M1

1

C

A ;

where M1 andM2 are given by (2.18).

Exercise 2.18. Let fXigniD1 be an i.i.d. sample from a distribution with the
Lebesgue density that depends on the parameter � 2 R (� is a fixed positive
number):

p.x; �/ D .2�/�1e�jx�� j=� :

Compute the maximum likelihood estimate for the parameter � .

This model is known as a shift of a Laplace law.
The maximum likelihood approach leads to maximizing the sum

L.�/ D �n log.2�/ �
n
X

iD1
jXi � � j=�;

or equivalently to minimizing the sum
Pn

iD1 jXi � � j:

Q� D argmin
�

n
X

iD1
jXi � � j:

Order the observationsX.1/ � X.2/ � 
 
 
X.n/ and consider two cases.

1. Suppose that n is even. Denote k D n=2 2 N. It is worth mentioning that

jX.1/ � � j C jX.n/ � � j � jX.n/ �X.1/j; (2.21)

where equality takes place if and only if � 2 �X.1/; X.n/
�

Analogously,

jX.2/ � � j C jX.n�1/ � � j � jX.n�1/ � X.2/j (2.22)


 
 

jX.k/ � � j C jX.kC1/ � � j � jX.kC1/ � X.k/j (2.23)
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This yields that

n
X

iD1
jXi � � j D

n
X

iD1
jX.i/ � � j D

k
X

jD1

�jX.j / � � j C jX.n�jC1/ � � j�

�
k
X

jD1
jX.n�jC1/ �X.j /j: (2.24)

Equality in (2.24) takes place if and only if all the inequalities (2.21)–(2.23)
are in fact equalities. This means that argmin

P jXi � � j is minimized by any
� 2 �X.k/; X.kC1/

�

, in particular by

Q� D medXi D X.k/ CX.kC1/
2

:

2. Suppose that n is odd. Denote k D .n � 1/=2 2 N. Equalities (2.21)–(2.23) are
still true. This yields the analogue for (2.24):

n
X

iD1

jXi �� j D
n
X

iD1

jX.i/�� j D jX.kC1/ � � j
„ ƒ‚ …

�0

C
k
X

jD1

jX.j/ � � j C jX.n�jC1/ � � j
„ ƒ‚ …

�jX.n�jC1/�X.j /j

�
k
X

jD1

jX.n�jC1/ � X.j/j: (2.25)

Note that the following two equalities take place only in the case of Q� D
medXi D X.kC1/:

jX.kC1/ � � j D 0

k
X

jD1

�jX.j / � � j C jX.n�jC1/ � � j� D
k
X

jD1
jX.n�jC1/ �X.j /j

This completes the proof.

Exercise 2.19. Consider the volatility model with parameter �:

Y D 
2; 
 � N.0; �/:

1. Prove that � is a natural parameter.
2. Find a canonical parameter for this model.
3. Compute the Fisher information for this model with canonical parameter.
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1. The proof is straightforward:

EY D E
2 D Var 

„ƒ‚…

D�
C .E
/
„ƒ‚…

D0

2 D �:

2. Denote by p
.x/ the pdf of 
:

p
.x/ D 1p
2��

exp

�

�x
2

2�

�

:

The density function of Y can be derived from p
.x/:

pY .y; �/ D 1

2
p
y
p
.

p
y/ D 1

2
p

2��y
exp

�

� y

2�

	

D 1

2
p
2�y

exp

�

� y

2�
� 1

2
log �

�

: (2.26)

This density representation means that C.�/ D �.2�/�1. The canonical

parameter is determined by the equality v
defD C.�/, i.e. v D �.2�/�1. This

yields

pY .y; v/ D 1

2
p
2�y

exp fyv � d.v/g ;

where d.v/ D 1=2 logf�1=.2v/g.
3. According to the general theory,

I.v/ D d 00.v/ D 1

2v2
:

Exercise 2.20. Let .Pv/ be a Gaussian shift experiment, that is Pv D N.v; 1/;

v 2 R. Let fXigniD1 be an i.i.d. sample from a distribution Pv� .

1. Is the parameter v a natural parameter? Is it a canonical parameter?
2. Check that

K.v1; v2/ D .v1 � v2/
2 =2:

3. Check that for any v0 and any C > 0, the equation

K.v0 C u; v0/ D C (2.27)

has only one positive .uC/ and only one negative .u�/ solution.
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4. Compute the maximum likelihood estimator Qv and check that

L. Qv; v/ D . Qv � v/2n=2:

5. Fix some � > 0. Consider the equation (2.27) with v0 D v� and C D �=n.
According to item 3, this equation has two solutions: denote the positive solution
by uC, and the negative solution by u�. Denote also vC D v� C uC, and v� D
v� C u�.

(a) Compute the sets fL. Qv; v�/ � �g, fL.vC; v�/ � �g, fL.v�; v�/ � �g.
(b) Check that

fL. Qv; v�/ � �g 
 fL.vC; v�/ � �g [ fL.v�; v�/ � �g:

Note that the last item is fulfilled for any v� (not necessary the true value).

1. Parameter v is a natural parameter, because the expected value of a r.v. with
distribution N.v; 1/ is equal to v. The parameter v is also a canonical parameter,
because the density function can be represented in the following way

p.x; v/ D 1p
2�

exp

�

� .x � v/2
2

�

D p.x/ exp fxv � d.v/g ;

where

p.x/ D '.x/; d.v/ D v2

2
:

2. According to the formula for the canonical parametrization,

K.v1; v2/ D d 0.v1/.v1 � v2/� fd.v1/� d.v2/g : (2.28)

In the case of a Gaussian shift, (2.28) yields

K.v1; v2/ D v1.v1 � v2/� v21 � v22
2

D .v1 � v2/
�

v1 � v1 C v2

2

�

D .v1 � v2/
2

2
:

3. The statement is a straightforward corollary from the previous item:

K.u; v0/ D .v0 C u � v0/2
2

D u2

2
D C:

This equation has two solutions: one positive uC D p
2C and one negative

u� D �p
2C .
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4. The maximum likelihood approach leads to maximizing the sum

L.v/ D n log
1

2�
�

n
X

iD1

.Xi � v/2

2
:

Then the maximum likelihood estimator is equal to Qv D P

i Xi=n. Consider the
difference between L. Qv/ and L.v/:

L. Qv; v/ D L. Qv/� L.v/ D �
X

i

.Xi � Qv/2
2

C
X

i

.Xi � v/2
2

D 1

2

X

i

n

.Xi � v/2 � .Xi � Qv/2
o

D 1

2

X

i

.2Xi � Qv � v/ . Qv � v/

D 1

2
. 2
X

i

Xi

„ ƒ‚ …

2nQv

�n Qv � nv/ . Qv � v/ D . Qv � v/2n
2

: (2.29)

5. (a) Formula (2.29) yields

fL. Qv; v�/ � �g D
�

. Qv � v�/2n
2

� �

�

D fQv �
r

2�

n
C v�g [ f Qv � �

r

2�

n
C v�g

From (2.27) (in item 3) we know that vC D v� C p

2�=n and v� D v� �
p

2�=n. Then

fL.vC; v�/ � �g D fn
2
.2 Qv � vC � v�/. Qv � v�/ � �g

D fn
2
.2 Qv � 2v� �

r

2�

n
/

r

2�

n
� �g

D f Qv � v� C
r

2�

n
g:

Analogously,

fL.v�; v�/ � �g � f Qv � v� �
r

2�

n
g:

(b) The required embedding is trivial.
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Natural parametrization has some “nice” properties:

1.

Q� D 1

n

n
X

iD1
Yi :

2.

L. Q�; �/ D nK.P Q� ;P� /:

The following exercise shows, that the choice of parametrization is crucial for the
first property, but the second one is fulfilled for any parametrization.

Exercise 2.21. Let .P� / be an exponential family (� – any parameter). Let fXigniD1
be an i.i.d. sample from distribution that belongs to .P� /, and X be a random
variable with the same distribution.

Show that the maximum likelihood estimator Q� has the following properties:

1.

E Q�X D 1

n

n
X

iD1
Xi :

2.

L. Q�; �/ D nK.P Q� ;P� /:

1. Q� is a point of maximum of the function

L.�/ D
n
X

iD1
logp.Xi ; �/ D C.�/

n
X

iD1
Xi � nB.�/:

Differentiating w.r.t � yields the equation for Q� :

C 0. Q�/
n
X

iD1
Xi � nB 0. Q�/ D 0: (2.30)

On the other hand, differentiating both sides of the equality

Z

p.x; �/dx D 1
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w.r.t. � yields

0 D
Z

@

@�

˚

p.x; �/



dx D
Z

@

@�

˚

logp.x; �/



p.x; �/dx

D
Z

˚

xC 0.�/ � B 0.�/



p.x; �/dx

D C 0.�/
Z

xp.x; �/dx
„ ƒ‚ …

DE�X

�B 0.�/
Z

p.x; �/dx
„ ƒ‚ …

D1

:

This means that the equality

C 0.�/E�X � B 0.�/ D 0

holds for any parameter � , in particular for � D Q� :

C 0. Q�/E Q�X � B 0. Q�/ D 0: (2.31)

Comparison of the equations (2.30) and (2.31) (using positivity of the first
derivative of function C.�/) completes the proof.

2. Transformation of the left-hand side yields:

L. Q�; �/ D
n
X

iD1

n

logp.Xi ; Q�/� logp.Xi ; �/
o

D ˚

C. Q�/ � C.�/

n
X

iD1
Xi � n˚B. Q�/� B.�/




: (2.32)

The Kullback-Leibler divergence in the right-hand side can be transformed in
the following way:

K.P Q� ;P� / D
Z

logfp.x;
Q�/

p.x; �/
gP Q� .dx/

D ˚

C. Q�/� C.�/



Z

xP Q� .dx/ � ˚

B. Q�/ � B.�/


D ˚

C. Q�/� C.�/



E Q�X � ˚

B. Q�/� B.�/



: (2.33)

Comparison of the equalities (2.32) and (2.33) using the first item completes
the proof.

Exercise 2.22 (Suhov and Kelbert 2005). There is widespread agreement
amongst the managers of the Reliable Motor Company that the number x of faulty
cars produced in a month has a binomial distribution
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P.x D s/ D
 

n

s

!

ps.1 � p/n�s ; s D 0; 1; : : : ; nI 0 � p � 1:

There is, however, some dispute about the parameterp. The general manager has
a prior distribution for p which is uniform (i.e. with the pdf fp.x/ D 1.0 � x � 1/),
while the more pessimistic production manager has a prior distribution with density
fp.x/ D 2x1.0 � x � 1/. Both pdfs are concentrated on .0; 1/.

(i) In a particular month, s faulty cars are produced. Show that if the general
manager’s loss function is . Op � p/2, where Op is her estimate and p is the true
value, then her best estimate of p is

Op D s C 1

nC 2

(ii) The production manager has responsibilities different from those of the general
manager, and a different loss function given by .1 � p/. Op � p/2. Find his best
estimator of p and show that it is greater than that of the general manager
unless s � n=2.
You may assume that, for non-negative integers ˛, ˇ,

Z 1

0

p˛ .1 � p/ˇ dp � ˛ŠˇŠ

.˛ C ˇ C 1/Š

As Pp.X D s/ D ˛ps.1 � p/n�s , s D 0; 1; : : : ; n, the posterior for the general
manager (GM) is

�GM.p s/ D ˛ps.1 � p/n�s1.0 < p < 1/;

and for the production manager (PM)

�PM.p s/ D ˛pps.1 � p/n�s1.0 < p < 1/:

Then the expected loss for the GM is minimized at the posterior mean:

OpGM D
R 1

0 pps.1 � p/n�s dp
R 1

0 p
s.1 � p/n�s dp

D .s C 1/Š.n � s/Š
.n � s C s C 2/Š

.n � s C s C 1/Š

sŠ.n � s/Š D s C 1

nC 2
:

For the PM, the expected loss

Z 1

0

.1 � p/ .p � a/2 �PM.p s/ dp
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is minimized at

a D
R 1

0
p.1 � p/�PM.p s/ dp

R 1

0
.1 � p/�PM.p s/ dp

;

which yields

OpPM D
R 1

0
p.1 � p/pps.1 � p/n�s dp

R 1

0
p.1 � p/pps.1 � p/n�s dp

D .s C 2/Š.n� s C 1/Š

.n � s C s C 4/Š

.n � s C s C 3/Š

.s C 1/Š.n � s C 1/Š
D s C 2

nC 4
:

We see that .s C 2/=.nC 4/ > .s C 1/=.nC 2/, i.e., s < n=2.

Exercise 2.23. Denote the number of incoming telecom signals between Œ0; t � as
C.0; t/. Assume that C.0; t/ satisfies

(a) The number of arrivals in disjoint time intervals are independent;
(b) The distribution of C.s; t/ depends on t � s;
(c) For h > 0 small, PfC.0; h/ D 1g D �hC O.h/, where � > 0 is a constant;
(d) PfC.0; h/ � 2g D O.h/.

Please answer the following questions:

1. Prove that C.0; t/ follows a Poisson distribution with mean �t .
2. Find the function p.y/, C.�/ and B.�/ of the natural parametrization

p.y; �/
defD p.y/eyC.�/�B.�/

and function d.�/ of the canonical parametrization

p.y; �/
defD ey��d.�/

for this Poisson distribution with mean �t .
3. Find an estimator for constant �.

1. Let Xn
m D C f.m � 1/t=n;mt=ng, 1 � m � n, Xn

m are i.i.d. by assumption (a).
Define Y nm be i.i.d. Bernoulli random variable such that Y nm D 1 with probability
=n, 1 � m � n. Define

Sn D Xn
1 C : : :CXn

n

and

Tn D Y n1 C : : :C Y nn :



2 Parameter Estimation for an i.i.d. Model 41

Suppose PfC.0; h/ D 1g D �h C g1.h/ and PfC.0; h/ � 2g D g2.h/ where
g1.h/ and g2.h/ are of order O.h/. We claim the following lemma:

Lemma 2.1. Let a1; : : : ; an and b1; : : : ; bn be complex numbers with modulus
� c, then

ˇ

ˇ

ˇ

ˇ

ˇ

n
Y

mD1
am �

n
Y

mD1
bm

ˇ

ˇ

ˇ

ˇ

ˇ

� cn�1
n
X

mD1
jam � bmj:

The proof of this simple lemma is left to the reader (hint: use induction). The
modulus of 'Y .
/ D exp.iY nm
/ and 'Xnm.
/ D exp.iXn

m
/ are less than 1,
j'Xnm.
/ � 'Y .
/j � 2g1.t=n/C 2g2.t=n/ (verify!). By the lemma,

jE exp.iTn
/ � E exp.iSn
/j

D
ˇ

ˇ

ˇ

ˇ

ˇ

n
Y

mD1
'Xnm.
/ �

n
Y

mD1
'Ym.
/

ˇ

ˇ

ˇ

ˇ

ˇ

�
n
X

mD1
j'Xnm.
/ � 'Y .
/j

�
n
X

mD1
2

�ˇ

ˇ

ˇ

ˇ
g1

�

t

n

�ˇ

ˇ

ˇ

ˇ
C
ˇ

ˇ

ˇ

ˇ
g2

�

t

n

�ˇ

ˇ

ˇ

ˇ

�

! 0; as n ! 1:

Now we show that E exp.iTn
/ ! expf�t.exp.i
/ � 1/g, the characteristic
function of the Poisson distribution with mean �t and finish the proof. Observe
that jE exp.iY nm
/j D .1 � �t=n/C .�t=n/ exp.i
/ D 1C .�t=n/fexp.i
/ � 1g
and j exp.i
/ � 1j � 2. When n large, �t=n � 1=2. Using the lemma again,
ˇ

ˇ

ˇ

ˇ

ˇ

exp.�tfexp.i
/ � 1g/�
n
Y

mD1
Œ1C .�t=n/fexp.i
/ � 1g�

ˇ

ˇ

ˇ

ˇ

ˇ

�
n
X

mD1

ˇ

ˇ

ˇ

ˇ
exp

�

�t

n
fexp.i
/ � 1g

�

�
�

1C �t

n
fexp.i
/ � 1g

�ˇ

ˇ

ˇ

ˇ

�
n
X

mD1

�

�t

n

�2

j exp.i
/ � 1j2

� 4

�

�t

n

�

�t

! 0;

as n ! 1. This finishes the proof.
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2. The Poisson density with mean �t is

p.y; �t/ D exp.��t/.�t/y=yŠ:

The p.y/, C.�/, B.�/ of the natural parametrization is

p.y/ D 1

yŠ
I

C.�t/ D log.�t/I
B.�t/ D �t:

The d.�t/ for the canonical parametrization is

d.�t/ D ��t.y C 1/C y log.�t/ � logyŠ:

3. Suppose we have an observation of the number of signal y between time 0 and t .
The maximizer for the log natural parametrization is O� D y=t .

Exercise 2.24. Let Y be an i.i.d. sample from P�� 2 .P�/, where .P�/ is a regular
parametric family. The fundamental exponential bound for the maximum likelihood
is given by the fact that for any 0 < % < 1; 0 < s < 1; � > 0, the log-likelihood
process L.� ;��/ fulfills for a fixed constant Q.%; s/

E exp
h

% sup
�2‚

˚

�L.�;��/C sM.�;�;��/


i

� Q.%; s/; (2.34)

see Spokoiny and Dickhaus (2014). Denote the set A �

z;���D f�WM.�;�;��/� zg,
where z is positive, and M.�;�;��/ is the rate function defined for � > 0 by

M.�;�;��/ defD � logE�� exp f�L.� ;��/g :

Using (2.34), prove that for any %0 < %,

1.

E
h

exp
n

%0sM.�; Q�;��/
o

1
n Q� 62 A.z;��/

oi

� Q.%; s/ exp
˚�.% � %0/sz


I

in particular,

P
˚ Q� 62 A.z;��/


 � Q.%; s/ exp
��%sz�:

2.

E
h

M.�; Q�;��/1
� Q� 62 A.z;��/

�
i

� 1

%0s
Q.%; s/ exp

˚�.% � %0/sz



:
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1. The inequalities L. Q�;��/ � 0 and M.�; Q�;��/ > z for Q� 62 A.z;��/ imply

E
h

exp
˚

.%� %0/sz



exp
n

%0sM.�; Q�;��/
o

1
n Q� 62 A.z;��/

oi

� E
h

exp
n

%sM.�; Q�;��/
o

1
n Q� 62 A.z;��/

oi

� E
h

exp
n

%sM.�; Q�;��/
oi

� E
h

exp
n

%�L. Q�;��/C %sM.�; Q�;��/
oi

� Q.%; s/;

and the assertion follows.
2. The second item directly follows from the first one, because x < ex for any

positive x.

Exercise 2.25. Consider a multivariate normal rv Y � N.��; †/, where † D
.nD2/�1 for some matrixD. In other words,Y D ��C� with � � Nf0; .nD2/�1g.

1. Check that the log-likelihood ratio computed on one observation of Y is equal to

L.� ;��/ D n.� � ��/>D2� � nkD.� � ��/k2=2: (2.35)

2. Prove that the r.v. � is equal to

� D .nD2/�1rL.��/:

1. The log-likelihood is equal to

L.�;��/

D L.�/� L.��/

D �1
2
.Y � �/>†�1.Y � �/C 1

2
.Y � ��/>†�1.Y � ��/

D �1
2
.Y � �� C �� � �/>†�1.Y � �� C �� � �/

C1

2
.Y � ��/>†�1.Y � ��/

D � ��� � ��>†�1.Y � ��/� 1

2
.�� � �/>†�1.�� � �/:

To conclude the proof, it is sufficient to note that

†�1 �Y � ��� D nD2�;
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and

1

2
.�� � �/>†�1.�� � �/ D 1

2
.�� � �/>nD2.�� � �/

D nkD.� � ��/k2=2:

2. The proof is straightforward:

rL.��/ D r
n

�n
2

log j2�†j � 1

2
.Y � ��/>†�1.Y � ��/

o

D †�1.Y � ��/ D nD2�:

Exercise 2.26. Consider the model from the previous exercise, Y � N.��; †/ with
† D .nD2/�1 for some matrix D.

Using the formula (2.35), simulate the log-likelihood ratio for D2 D
�

3 1

1 2

�

,

�� D
�

0

0

�

2 R2 and � D �1
defD
�

1

1

�

, � D �2
defD
�

1:2

1

�

.

Draw a plot for L.� ;��/ as a function of � and a plot for an estimator of the
density function of L.�;��/.

Define �
defD �n

D.� � ��/






2
=2, and note that nD2� � N.0; nD2/. Therefore,

by formula (2.35), the rv L.� ;��/ has the distribution

L.� ;��/ � Nf�; .� � ��/>.nD2/.� � ��/g:

The square root of D2 can be found via the Jordan decomposition D2 D �ƒ�>,
where� is the eigenvector matrix andƒ is the diagonal matrix of eigenvalues ofD2.
In our case, the diagonal entries of the matrix ƒ are �1 D .5 C p

5/=2 and �2 D
.5 � p

5/=2.
Figure 2.5 describes the simulation of the r.v. � for n D 1;000, � D �1 and

� D �2.

Exercise 2.27 (Shao 2005). Let .X1; : : : ; Xn/ be a random sample from a distribu-
tion onR with the Lebesgue density 1

�
f .

x��
�
/, where f .x/ > 0 is a known Lebesgue

density and f 0.x/ exists for all x 2 R, � 2 R, and � > 0. Let � D .�; �/. Show
that the Fisher information about � contained in X1; : : : ; Xn is

I.�/ D n

�2

 R ff 0.x/g2
f .x/

dx
R
f 0.x/fxf 0.x/Cf .x/g

f .x/
dx

R
f 0.x/fxf 0.x/Cf .x/g

f .x/
dx

R fxf 0.x/Cf .x/g2
f .x/

dx

!

;

assuming that all integrals are finite.
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Fig. 2.5 Plots of density estimator and log-likelihood ratio function. MSEloglikelihood

Denote g.�; �; x/
defD log 1

�
f
�
x��
�

�

. Then

@

@�
g.�; �; x/ D � f 0 � x��

�

�

�f
�
x��
�

�

@

@�
g.�; �; x/ D � .x � �/f 0 � x��

�2

�

�f
�
x��
�

� � 1

�
:

By the direct computation,

E

�

@

@�
g.�; �;X1/

� 2

D 1

�2

Z
(

f 0 � x��
�

�

f
� x��

�

�

) 2
1

�
f
�x � �

�

	

dx

D 1

�2

Z ff 0 � x��
�

�g2
f
�
x��
�

� d
�x � �

�

	

D 1

�2

Z ff 0.x/g2
f .x/

dx;

E

�

@

@�
g.�; �;X1/

� 2

D 1

�2

Z
(

x � �

�

f 0 � x��
�

�

f
�
x��
�

� C 1

) 2
1

�
f
�x � �

�

	

dx



46 2 Parameter Estimation for an i.i.d. Model

D 1

�2

Z �

x
f 0.x/
f .x/

C 1

� 2

f .x/ dx

D 1

�2

Z fxf 0.x/C f .x/g2
f .x/

dx;

and

E

�

@

@�
g.�; �; x/

@

@�
g.�; �; x/

�

D 1

�2

Z

f 0 � x��
�

�

f
�
x��
�

�

(

x � �

�

f 0 � x��
�

�

f
�
x��
�

� C 1

)

1

�
f
�x � �

�

	

dx

D 1

�2

Z

f 0.x/fxf 0.x/C f .x/g
f .x/

dx:

The result follows since

I.�/ D nE

�

@

@�
log

1

�
f

�

X1 � �

�

�� �

@

@�
log

1

�
f

�

X1 � �
�

��>
:

Exercise 2.28 (Shao 2005). Let X be a random variable having a cumulative
distribution function F. Show that if EX exists, then

EX D
Z 1

0

f1 � F.x/g dx �
Z 0

�1
F.x/ dx:

By Fubini’s theorem,

Z 1

0

f1 � F.x/g dx D
Z 1

0

Z

.x;1/

dF.y/dx

D
Z 1

0

Z

.0;y/

dxdF.y/

D
Z 1

0

y dF.y/:

Similarly,

Z 0

�1
F.x/ dx D

Z 0

�1

Z

.�1;x�

dF.y/dx D �
Z 0

�1
y dF.y/:
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If EX exists, then at least one of
R1
0
y dF.y/ and

R 0

�1 y dF.y/ is finite and

EX D
Z 1

�1
yF.y/ D

Z 1

0

f1 � F.x/g dx �
Z 0

�1
F.x/ dx:

Exercise 2.29 (Shao 2005). Let .X1; : : : ; Xn/ be a random sample from the expo-
nential distribution on .a;1/ with scale parameter 1, where a 2 R is unknown.

1. Construct .1 � ˛/ – confidence interval for a using the cumulative distribution
function of the smallest order statistic X.1/.

2. Show that the confidence interval in (i) can also be obtained using a pivotal
quantity.

1. The cumulative distribution function of X.1/ is

Fa.t/ D
(

0 t � a

1 � exp�n.t�a/ t > a ,

which is decreasing in a for fixed t > a. A .1 � ˛/ – confidence interval for
a has upper limit equal to the unique solution of Fa.T / D ˛1 and lower limit
equal to the unique solution of Fa.T / D 1 � ˛2, where ˛1 C ˛2 D ˛. Then,
ŒT C n�1 log.˛2/, T C n�1 log.1 � ˛1/� is the resulting confidence interval.

2. Note thatW.a/ D n.X.1/�a/ has the exponential distribution on (0,1) with scale
parameter 1. Therefore the distribution ofW.a/ doesn’t depend on the parameter
and, hence, W.a/ it is a pivotal quantity. The 1 � ˛ confidence interval for a
constructed this random variable is the same as that derived in item (i).

Exercise 2.30 (Shao 2005). Let Fn be the edf based on a random sample of size n
from cdf F on R having Lebesgue density f. Let 'n.t/ be the Lebesgue density of the
pth sample quantile F�1

n .p/.
Denote by mp the integer part of np. Introduce also the quantity `p, which is

equal to mp if np is an integer and is equal to mp C 1 if np is not an integer.
Prove that

'n.t/ D n

�

n � 1

lp � 1

�

fF.t/glp�1f1� F.t/gn�lpf .t/;

1. Using the fact that nFn.t/ has a binomial distribution;
2. Using the Lebesque density of the j -th order statistic.

1. Since nFn.t/ has the binomial distribution with size n and probability F.t/, for
any t 2 R,

PfF�1
n .p/ � tg D PfFn.t/ � pg

D
n
X

iDlp

�

n

i

�

fF.t/gif1� F.t/gn�i :
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Differentiating term by term leads to

'n.t/ D
n
X

iDlp

�

n

i

�

ifF.t/gi�1f1 � F.t/gn�i f .t/

�
n
X

iDlp

�

n

i

�

.n� i/fF.t/gif1 � F.t/gn�i�1f .t/

D
�

n

lp

�

lpfF.t/glp�1f1� F.t/gn�lpf .t/

C n

n
X

iDlpC1

�

n � 1
i � 1

�

fF.t/gi�1f1 � F.t/gn�i f .t/

� n
n�1
X

iDlp

�

n � 1

i

�

fF.t/gi f1� F.t/gn�i�1f .t/

D n

�

n � 1
lp � 1

�

fF.t/glp�1f1� F.t/gn�lpf .t/:

2. The Lebesgue density of the j-th order statistic is

n

�

n � 1
j � 1

�

fF.t/gj�1f1� F.t/gn�j f .t/:

Then, the result follows from the fact that

F�1
n .p/ D

(

X.mp/ if np is an integer,

X.mpC1/ if np is not an integer:

Exercise 2.31. Consider samples fYigniD1, where Yi are i.i.d. with distribution
function FY .y/. We want to estimate the � th quantile of the distribution function
F�1
Y .�/:

F�1
Y .�/

defD inf fy 2 R W � � FY .y/g :

This problem can be seen as in a location model:

Yi D �� C "i ; "i � ALD.�/;
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where F�1
" .�/ D 0 and "i ’s are i.i.d. The QMLE estimation follows the framework

with ALD likelihood, where ALD stands for “Asymmetric Laplace Distribution”,
and has probability density function

f .uj�/ D �.1 � �/exp f��� .u/g ;

with �� .u/ D uf�1.u � 0/� .1 � �/1.u < 0/g.

1. Prove that

argmin
�

E�� .Yi � �/ D F �1
Y .�/ D ��: (2.37)

2. Please write the empirical loss function for the estimation of F�1
Y .�/.

1. To prove (2.37),

@E�� .Yi � �/

@�

D @
R f�.Yi � �/1.Yi � � > 0/dFY .u/g � .1 � �/ R f.Yi � �/1.Yi � � � 0/gdFY .u/

@�

D ���fY .�/ � �f1 � FY .�/g C ��f .�/ � .1� �/fY .�/C .1 � �/.FY .�/C �fY .�//

D .1� �/FY .�/� �f1 � FY .�/g
D FY .�/ � �

Solve

@E�� .Yi � �/

@�
D 0;

we get

F.��/ D �:

Thus, �� D F�1
Y .�/.

2. An estimator of �� would be

argmin
�

n
X

iD1
f�1 .Yi > �/ � .1 � �/1 .Yi < �/g :
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Exercise 2.32. Consider samples f.Xi ; Yi /gniD1 i.i.d., in a regression framework,
we now want to estimate the conditional � th quantile of the conditional distribution
function F�1

Y jX.�/. If we believe in the following linear model:

Yi D X>
i �

� C "i ; "i � ALD.�/;

where F �1
"jX.�/ D 0 and "i s are i.i.d. Similarly we take a QMLE in an ALD

likelihood.

1. Prove that

�� D argmin
�

EY jX�� .Yi �X>
i �/ (2.38)

F�1
Y jXi .�/ D X>

i �
� (2.40)

2. Suppose now f.Xi ; Yi /gniD1 is a bivariate i.i.d. sequence from a joint normal
distribution N.�;†/, where

� D
�

�1
�2

�

; † D
�

�11 �12
�21 �22

�

:

Please write down the theoretical form of F�1
Y jX.�/. (Hint: Observe that the

conditional distribution is again normally distributed, with �Y jXDx D �1 C
�12�

�1
22 .x � �2/ and �Y jX D �11 � �212=�22. )

1. To prove (2.40),

@E�� .Yi � X>
i �/

@�j

D @
R f�.Yi �X>

i �/1.Yi �X>
i � > 0/dFY jX.u/g

@�j

� .1 � �/
R f.Yi �X>

i �/1.Yi � X>
i � � 0/gdFY jX.u/

@�j

D ��XijX
>
i �fY .X

>
i �/ �Xij�f1 � FY .X

>
i �/g CXij�X

>
i �f .X

>
i �/

�.1 � �/XijfY .X
>
i �/C .1 � �/Xij.FY .X

>
i �/CX>

i �fY .X
>
i �//

D .1 � �/XijFY jX.X>
i �/� �Xijf1� FY jX.X>�/g

D XijFY jX.X>�/ � �Xij
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Solve

@EY jX�� .Yi �X>
i �/

@�j
D 0;8j 2 1; : : : ; d

we get

FY jX.X>
i �

�/ D �;8i; 1; : : : ; n

Thus, F�1
Y jXi .�/ D X>

i �
�.

2. Use the hint, we have the normal conditional distribution. Given X D x,
.Yi � uY jXDx/=�Y jX � N.0; 1/. Denoteˆ�1.�/ as the � th quantile of a standard
normal distribution. Then we have,

F�1
Y jXDx.�/ D �Y jXˆ�1.�/C uY jXDx
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Chapter 3
Parameter Estimation for a Regression Model

Stretch your legs according to the length of the quilt.

Exercise 3.1. Let a regression function f .
/ be represented by a linear combination
of basis functions‰1.
/; : : : ; ‰p.
/.
Suppose that for x 2 R

d the regression function f .
/ is quadratic in x. Describe the
basis and the corresponding vector of coefficients in these cases.

The function f .
/ being quadratic in x, means when d D 1,
f .x/ D �1 C �2x C �3x

2, which obviously leads to

‰1.x/ D 1; ‰2.x/ D x; ‰3.x/ D x2

When d > 1, f .x/ D �1 CA>xCx>Bx, where A 2 Rd , B is a d �d matrix.
Then we can write

f .x/ D �1 C
d
X

jD1
Aj xj C

d
X

jD1

d
X

kD1
Bjkxj xk (3.1)

where Aj is the j th element in A, and Bjk is the element in j th row and kth column
of B.

W.K. Härdle et al., Basics of Modern Mathematical Statistics, Springer Texts in Statistics,
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Define ej D .0; : : : ; 1; : : : ; 0/
„ ƒ‚ …

j

>
d�1, the j th unit vector. The second term in (3.1) can

be rewritten as:
Pd

jD1 Aj e>
j x, similarly the quadratic term in (3.1) can be rewritten

as:
Pd

jD1
Pd

kD1 e>
j xx>ekBjk.

Defining now: ‰1.x/ D 1, ‰2.x/ D e>
1 x, ‰3.x/ D e>

2 x; : : :

‰dC2.x/ D e>
1 xx>e1 D x21 ;

‰dC3.x/ D e>
1 xx>e2 D x1x2;

:::

‰2dC2.x/ D e>
2 xx>e2 D x22 ;

‰2dC3.x/ D e>
2 xx>e3 D x2x3;

:::

‰ d2

2 C 3d
2 C2.x/ D e>

d xx>ed D x2d

We see that (3.1) can be written as a linear combination of ‰j , j D 1, . . . , J ,

J D d2

2
C 3d

2
C 2.

Exercise 3.2. Let X be a continuous rv with cdf F(x). The median med.x/ is defined
as P fX � med.x/g D 1

2
D P fX � med.x/g.

Suppose that med.x/ D 0, show that

8z 2 R E jX � zj � E jX j (3.2)

Interpret (3.2) in terms of a loss function framework.

E jX � zj D
Z z

�1
.X � z/ dF.x/C

Z C1

z
.z � X/ dF.x/

D
Z z

�1
F.x/ dx C

Z C1

z
f1 � F.x/g dx

D

8

ˆ
ˆ
ˆ
ˆ
ˆ
<

ˆ
ˆ
ˆ
ˆ
ˆ
:

R 0

�1 F.x/ dx C R z
0
F.x/ dx C R C1

0
f1� F.x/g dx

� R z
0
f1� F.x/g dx .z � 0/

R 0

�1 F.x/ dx � R 0

z F.x/ dx C R C1
0

f1 � F.x/g dx

C R 0

z f1� F.x/g dx .z < 0/
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D
(

E jX j C 2
R z
0 fF.x/ � 0:5g dx .z � 0/

E jX j � 2
R 0

z fF.x/ � 0:5g dx .z < 0/

� E jX j

since the second terms are in both cases positive.
Define the loss function �.u/ D juj. The above inequality (3.2) can be rewritten as:

E�.X � z/ � E�.X/ 8z 2 R;

meaning that med.x/ D 0 is the minimum loss (contrast) parameter w.r.t �.u/ D juj.
Exercise 3.3. Specify the estimating equation for the generalized EFn (exponential
family) and find the solution for the case of the constant regression function
f .Xi ; �/ 	 � .

Recall we say that P is an EF if all measures P� 2 P are dominated by a �-finite
measure �0 on Y and the density functions p.y; �/ D dP�=d�0.y/ are of the form

p.y; �/
defD dP�
d�0

.y/ D p.y/eyC.�/�B.�/:

where C.�/ and B.�/ are some given nondecreasing functions on � and p.y/ is a
negative function on Y.
Also we know B 0.�/ D � C 0.�/
Consider Yi D f .Xi ; �/C"i , "is are i.i.d, � 2 Rp the parameter � can be estimated
via maximum likelihood with

L.�/
defD
X

i

`fYi ; f .Xi ; �/g

D
X

i

flogp.Yi /g C YiC ff .Xi ; �/g � Bff .Xi ; �/g

The corresponding MLE Q� maximizes L.�/:

Q� D argmax
�

X

i

`fYi ; f .Xi ; �/g:

The estimating equation rL.�/ D 0 reads as

X

i

`0 fYi ; f .Xi ; �/g rf .Xi ; �/ D X

i

ŒYiC
0ff .Xi ; �/g �B 0ff .Xi ; �/g�rf .Xi ; �/

D X

i

h

YiC
0 ff .Xi ; �/g � f .Xi ; �/C

0 ff .Xi ; �/g
i

rf .Xi ; �/



56 3 Parameter Estimation for a Regression Model

D X

i

fYi � f .Xi ; �/g ŒC 0 ff .Xi ; �/grf .Xi ; �/�

D 0

When f .Xi ; �/ D � ,

X

i

`0fYi ; f .Xi ; �/gvf .Xi ; �/ D
X

i

`0fYi ; �g

D
X

i

.Yi � �/C 0.�/

D 0

then we have

Q� D
X

i

Yi =n

Exercise 3.4. Specify the estimating equation for generalized EFc regression and
find the solution for the case of constant regression with f .Xi ; v/ 	 v. Relate the
natural and the canonical representation.

Recall from Exercise 3.3, the natural parametrization of an EF distribution has the
likelihood

`.y; v/ D C.v/y � B.v/C logP.y/;

while the canonical parametrization:

`.y; v/ D yv � d.v/

therefore

`0.y; v/ D C 0.v/y � B 0.v/ D .y � v/C 0.v/

D y � d 0.v/;

so

d.v/ D y � .y � v/C 0.v/:

Thus the estimating equation

X

i

ŒYi � d 0ff .Xi ; �/g�rf .Xi ; �/ D 0
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can be written as

X

i

�

Yi � ŒYi � fYi � f .Xi ; �/gC 0ff .Xi ; �/g�
�rf .Xi ; �/ D 0; (3.3)

when f .Xi ; �/ 	 � , (3.3) is

X

i

fYi � �gC 0.�/ D 0:

and the solution is Q� D P

i Yi =n

Exercise 3.5. Specify the estimating equation for the case of logit regression.

The log likelihood with canonical parametrization equals

`.y; v/ D yv � log.1C ev/:

Therefore Q� D argmax� L.�/ D argmax�
P

ifYi >
i � � log.1C e 

>

i � /g.
Differentiating w.r.t. � yields:

@

@�
L.�/ D

X

i

�

Yi i � 1

1C e 
>

i �
e 

>

i � i

�

:

Therefore, the estimation equation is:

X

i

 

Yi � e 
>

i �

1C e 
>

i �

!

 i D 0:

Exercise 3.6.

Credit scoring is a method used to evaluate the credit risk of loan applications. In
this example, demographic and credit history variables are used in a logit regression
to isolate the effects of various applicant characteristics on credit defaults.

The data is obtained from Fahrmeir and Tutz (1994). A total of n D 1;000

observations is used, in which 700 of the individuals have no problem with paying
the credit. The response variable Y 2 f0; 1g is binary, where Y D 0 and Y D 1

represent “no default” and “default”, respectively. Explanatory variables are the age
of the applicant, amount of loan, and some dummy variables are used indicating
that:

• Previous loans were okay
• Savings of the applicant is more than 1;000 EUR
• Loan is for a car
• The applicant is a house owner
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Table 3.1 GLM results and overall model fit. MSEglmest

Estimate Std. Error z value Pr(> jzj)
(Intercept) �0.7238 0.3395 �2:1320 0.0330
Age �0.0178 0.0072 �2:4760 0.0133
Amount �0.0001 0.0000 2:0040 0.0450
Previous loan �0.8220 0.1617 �5:0840 0.0000
d9:12 0.4904 0.2821 1:7380 0.0822
d12:18 0.7513 0.2848 2:6380 0.0083
d18:24 0.7522 0.2803 2:6830 0.0073
d24 1.2080 0.3006 4:0190 0.0001
Savings �1.0040 0.2209 �4:5450 0.0000
Purpose (car) �0.4389 0.1684 �2:6060 0.0092
House 0.6852 0.2049 3:3450 0.0008
Overall model fit
Null model �2 log likelihood 1,221.7
Full model �2 log likelihood 1,104.5
Chi-square 117.2
Degrees of freedom 10

Table 3.2 The goodness of the model. MSEperformance

Bankrupt (estimated) Non-bankrupt (estimated) Total

Bankrupt (data) 658 42 700
Non-bankrupt (data) 236 64 300
Total 894 106 1,000

• The durations of the desired loans are; 9–12 months, 12–18 months, 18–
24 months and more than 24 months

In the first step, scores denoted by “s” are calculated by ˇ0 C ˇ>x and then the
probability of default of each individual credit applicant is found by G.ˇ0 C ˇ>x/,
where G W R ! Œ0; 1� is a known function that only takes on a value between 0
and 1. In this example, G is a logistic function  :

G.t/ D  .t/ D f1C exp.�t/g�1

The results of the model can be summarised as (Table 3.1):
To test the goodness of fit we check the difference in deviance residuals for the
model used above versus the null model. The large value of the chi-square test
statistics of 117:2 indicates that the model as a whole fits significantly better than
an empty model. Moreover, the comparison of real data set and logit estimation is
given in the Table 3.2.
Additionally, so as to visualize the model we plot the scores with respect to
probability of default and response variable as Fig. 3.1. The goodness of the model
can be checked with Lorenz curve (Fig. 3.2), the plot of P.S < s/ against P.S <
s j Y D 1/.
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Fig. 3.1 The plot of scores with respect to response variable. MSElogit
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Fig. 3.2 Lorenz curve. MSElorenz

Given the results, the older the applicant and the shorter the duration of the desired
loan, the less the probability of default is. Creditworthiness is higher for the
applicants having savings more than 1;000 EUR, less problems about paying back
the previous loans and demanding a loan for a car, whereas the applicants owning
a house have higher probability of default. On the other hand, the model yields a
positive relation between the amount of the desired loan and the ability of applicants
to pay the loan back which can be explained by the fact that high levels of credits
are given to reliable applicants.
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Exercise 3.7. Simulate an i.i.d. random sample fXigniD1 which follows a specific
distribution (n D 300).

1. Assume the true distribution of Xi ’s is t.3/. Estimate the kernel density function
Ofh.x/ using a Gaussian kernel and plot the kernel density curve.

2. Let f0 be the true density of the sample. Since Ofh.x/ is biased in a finite sample,
we can not compare it with f0 directly. We rather compare it with Ef0 Œ

Ofh.x/�
which is the expectation of Ofh.x/ under f0, where

Ef0 Œ
Ofh.x/� D g.x/ D 1

h

Z

K
�x � u

h

	

f0.u/du: (3.4)

Let Zj ’s be the random variables which come from a specific distribution,
assume that H0: Zj � f0 D t.3/. Then we can approximate g.x/ via

Og.x/ D 1

Nh

N
X

jD1
K
�x �Zj

h

	

; (3.5)

where N D 106. Plot Og.x/ and compare it with the kernel density curve.
3. Assume that H0: Zj � f0 D N. O�; O�2/, where O� and O� are the mean and

standard deviation estimated from the sample respectively. Approximate g.x/ as
in question 2. Plot the curve of it and compare it with the kernel density estimate.

4. Assume now the true distribution of Xi ’s is N.0; 1/, perform the same procedure
as in question 2 and 3. Compare the resulting curves.

1. The kernel density estimator is as follows:

Ofh.x/ D 1

nh

n
X

iD1
K
�x � Xi

h

	

;

where we use the Gaussian kernel function:

K.u/ D '.u/:

In Fig. 3.3, the solid line denotes the kernel density estimator Ofh.x/.
2. In Fig. 3.3, the dashed line denotes Og.x/, where f0 D t.3/. We find that Ofh.x/ is

very close to Og.x/. If we had compared Ofh.x/ with the true density f0, we would
not see such degree of closeness due to the finite sample bias.

3. The mean and standard deviation can be estimated as follows:

O� D 1

n

n
X

iD1
Xi ;

O�2 D 1

n � 1
n
X

iD1
.Xi � O�/2:
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Fig. 3.3 The kernel density estimator Ofh.x/ (solid line), Og.x/ with f0 D t .3/ (dashed line), and
Og.x/ with f0 D N. O�; O�2/ (dotted line), for n D 300. MSEnonpara1

In Fig. 3.3, the dotted line denotes Og.x/, where f0 D N. O�; O�2/. From Fig. 3.3
we find that Ofh.x/ is closer to Og.x/ with f0 D t.3/, it provides the evidence for
f0 D t.3/.

4. In Fig. 3.4, the solid line denotes the kernel density estimator Ofh.x/, the dashed
line denotes Og.x/ with f0 D t.3/, and the dotted line denotes Og.x/ with f0 D
N. O�; O�2/. From Fig. 3.4 we find that Ofh.x/ is closer to Og.x/ with f0 D N. O�; O�2/,
it provides the evidence for f0 D N. O�; O�2/.

Exercise 3.8. Consider the error in design model

Yi D ‰>
i �

� C "i ; Zi D ‰i C Ui; i D 1; : : : ; n;

where both‰i and �� are p�1 vectors. Assume that p D 1,‰i ’s are unobservable.
Instead, .Yi ; Zi /’s are observable. Cov."i ; ‰i / D Cov."i ; Ui / D Cov.‰i ; Ui / D 0,

Var.‰i /
defD �2 , Var.Ui /

defD �2u , Var."i /
defD �2" .

1. Let b be the regression coefficient by regressing Yi on Zi , show that b � ��.
2. Let � D 2, ‰i � U.0; 1/, "i � N.0; 0:01/, Ui � N.0; 0:09/. Estimate the

coefficient b and verify the result in question 1.
3. Let n D 300, where the value of � and the distributions of the variables are the

same as in question 2. Plot the regression line of Yi on Zi , then plot the linear
regression line of Yi on ‰i on the same graph, interpret the result.

1. Assume that the regression equation of regressing Yi on Zi is Yi D bZi C �i ,
then min

b
E.Yi � bZi /2 has solution (3.6):
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Fig. 3.4 The kernel density estimator Ofh.x/ (solid line), Og.x/ with f0 D t .3/ (dashed line), and
Og.x/ with f0 D N. O�; O�2/ (dotted line), for n D 300. MSEnonpara2

b D Cov.Yi ; Zi /

Var.Zi /
; (3.6)

where by assumption:

Var.Zi / D Var.‰i C Ui/

D Var.‰i /C Var.Ui /C 2Cov.‰i ; Ui /
„ ƒ‚ …

D0
D �2 C �2u ;

and

Cov.Yi ; Zi / D Cov.‰i�
� C "i ; Zi /

D Cov.‰i�
� C "i ; ‰i C Ui/

D Cov.‰i��; ‰i /C Cov.‰i��; Ui /C Cov."i ; ‰i /
„ ƒ‚ …

D0
C Cov."i ; Ui /
„ ƒ‚ …

D0
D �� Var.‰i/C �� Cov.‰i ; Ui /

„ ƒ‚ …

D0
D ���2 :
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Fig. 3.5 The linear regression line of Yi on Zi (solid line) and the linear regression line of Yi on
‰i (dashed line), for n D 300. MSEregression

Therefore

b D Cov.Yi ; Zi /

Var.Zi /
D ���2 

Var.Zi /
D �� �2 

�2 C �2u
D �� 1

1C �2u =�
2
 

� ��:

2. Since ‰i � U.0; 1/, "i � N.0; 0:01/, Ui � N.0; 0:09/ and � D 2, then �2 D
1
12
.1 � 0/2 D 1

12
, �2" D 0:01, �2u D 0:09,

Ob D �
1

1C �2u =�
2
 

D 2 � 1

1C 0:09 � 12 D 2 � 1

2:08
� 0:9615 < 2:

3. We generate n D 300 samples for ‰i , "i , and Ui , then perform the linear
regression of Yi on Zi and the linear regression of Yi on ‰i . In Fig. 3.5, the
solid line denotes the linear regression line of Yi on Zi , where Ob is the slope
of the solid line. The dashed line denotes the linear regression line of Yi on ‰i ,
where � is the slope of the dashed line. In Fig. 3.5, we can see that the solid line is
gentler than the dashed line, it can be concluded that the value of Ob is smaller than
the value of � . Furthermore, we simulate the sampling 400 times and estimate the
coefficient Qb as follows:

Qb D 1

400

400
X

jD1
Obj D 0:9614:
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Exercise 3.9. Consider the regression model

Y D ‰>�� C "; " � N.0;†/;

where ‰ is an p � n matrix of stochastic regressors s.t.

‰"

n

P�! C; C ¤ 0:

Assume that W is an n � l matrix of l instruments .l � p/ with:

W >"
n

P�! 0: (3.7)

W >‰>

n

P�! �W‰ < 1: (3.8)

W >W
n

P�! �WW .positive definite/; (3.9)

where rank.�W‰/ D rank.W >‰>/ D p.

1. Motivate assumptions (3.7) and (3.8).
2. Propose an instrumental variable estimation (IVE) for �� and show that it is

consistent.
3. Derive the simple IVE when the number of instruments equals the number of

regressors, i.e. l D p.

1. According to the weak law of large numbers we know that W>"
n

is the sample

analogue of E.W >
i "i /, so W>"

n

P�! 0 implies E.W >
i "i / D 0, and W>‰>

n

P�!
�W‰ implies E.W >

i ‰
>
i / D �W‰ .

2. Let PW
defD W.W >W /�1W >, and P>

W D PW , P>
W PW D PW , let the new

covariates be PW‰>, then

O�IV D .‰P>
W PW ‰

>/�1‰P>
W Y

D .‰PW‰
>/�1‰PW Y

D .‰PW‰
>/�1‰PW .‰>�� C "/

D �� C .‰PW ‰
>/�1‰PW ";

since

W >"
n

P�! 0;

so that
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‰PW " D ‰W.W >W /�1W >"

D ‰W
�W >W

n
„ ƒ‚ …

!�WW

	�1 W >"
n

„ƒ‚…

!0

;

then

‰PW "
P�! 0p;

therefore

O�IV P�! ��:

3. When l D p,

O�IV D .‰PW‰
>/�1‰PW Y

D .‰W.W >W /�1W >‰>/�1‰W.W >W /�1W >Y

D .W >‰>/�1.W >W /.‰W /�1‰W.W >W /�1W >Y

D .W >‰>/�1W >Y:

Exercise 3.10. We know that the income of people is affected by many factors, for
example education level and ability. Suppose we omit the variable which measures
ability. But we know that education level is correlated with ability, which means
that if we omit it, then there would be an endogeneity problem in the regression
function (i.e. the regressor “education” is correlated with the error term). To solve
this problem we need to find an instrumental variable which is correlated with
education level but uncorrelated with ability. Consider the following model

Y D �0 C �1X C ";

where Y is the log-transformation of income, X is the highest year of school
completed, " is the error term and contains the ability. Then chooseW (the number
of brothers and sisters) as instrumental variable which means that Cov.X;W / ¤ 0,
and Cov.";W / D 0, then consider the following model

X D m0 Cm1W C �:

1. Use 2010GSS data which comes from the website of The General Social Survey:
http://www3.norc.org/GSS+Website/ . For convenience, the missing values of X
and Y have been deleted from the data. Perform the linear regression of Y onX ,
estimate the coefficients, write down the equation and interpret the result.

http://www3.norc.org/GSS+Website/
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2. Perform the linear regression of X on W , estimate the coefficients, use t test to
test H0 W m1 D 0, write down the equation and interpret the result.

3. Take W as instrumental variable, estimate �IV , write down the equation.
Compare the results before and after using the instrumental variable.

1.

OY D 3:3042C 0:0626X:

It means that 1 year more eduction increases the income by 6.26 %. MSEivgss
2.

OX D 15:0783� 0:3169W:

From result of t test for m1, we can see that p-value is less than 2e�16, which is
statistically significant. Then the H0 W m1 D 0 is rejected. We can conclude that
there is a significant negative correlation between X and W .

3.

OY D 3:5443C 0:0525X:

Compared with OLS estimator O�1, the IV estimator O�IV is a little lower, i.e. 1 year
more eduction increases the income by 5.25 %. From Exercise 3.9 we know that
if our assumptions Cov.X;W / ¤ 0, and Cov.";W / D 0 are true, then the IV
estimator is consistent.

Exercise 3.11. Consider an infinite dimensional model of continuously stratified
random sampling in which one has i.i.d. observationsWi D .Xi ; Ri ; Zi / with Xi 2
Œ0; 1�d , Zi D RiYi , andRi ; Yi 2 Œ0; 1� and are conditionally independent givenXi ,
with g.X/ D E.RjX/ known and h.X/ D E.Y jX/ unknown. The parameter of
interest is � D E.Y /.
Prove that the Horvitz-Thompson estimator

O� D 1

n

n
X

iD1

Zi

g.Xi/

is a consistent estimator for � .

Because Ri , Yi are conditionally independent,

E
n RY

g.X/

o

D E
nE.RYjX/

g.X/

o

.by the law of iterated expectation/

D E
nE.RjX/E.Y jX/

g.X/

o
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D E
ng.X/h.X/

g.X/

o

D Efh.X/g
D EfE.Y jX/g D E.Y / D �;

therefore

E
n RY

g.X/

o

D �: (3.10)

Since Wi are i.i.d., according to the weak law of large numbers, the empirical
counterpart of the left hand side of (3.10) is:

1

n

n
X

iD1

Zi

g.Xi /

P�! E
n RY

g.X/

o

D �:

Exercise 3.12. Let a sequence of i.i.d. random variables fXigniD1 � N.0; �2/, and
Pn

iD1 a2i D n. Prove the Chernoff bound

P
�ˇ

ˇ

ˇ

n
X

iD1
aiXi

ˇ

ˇ

ˇ > t
	

� 2 exp
�

� t2

2n�2

	

:

Since

P
�ˇ

ˇ

ˇ

n
X

iD1
aiXi

ˇ

ˇ

ˇ > t
	

D P
�

n
X

iD1
aiXi > t

	

C P
�

n
X

iD1
aiXi < �t

	

;

without loss of generality, let us derive

P
�

n
X

iD1
aiXi > t

	

� exp
�

� t2

2n�2

	

;

the argument is symmetric for P.
Pn

iD1 aiXi < �t/. Then for any s > 0:

P
�

n
X

iD1
aiXi > t

	

D P
�

s

n
X

iD1
aiXi > st

	

D P
n

exp.s
n
X

iD1
aiXi/ > exp.st/

o

� EŒexp.s
Pn

iD1 aiXi/�
exp.st/

.by Markov’s inequality/
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D
Qn
iD1EŒexp.saiXi /�

exp.st/
.by independence of Xi ’s/

D exp.�st/
n
Y

iD1
EŒexp.saiXi /�:

From the moment-generating function of a normal distribution we know that ifX �
N.�; �2/, then EŒexp.tX/� D exp.t� C 1

2
�2t2/. In our case, since X 0

i s are i.i.d.
random variables and X 0

i s � N.0; �2/, then

EŒexp.saiXi/� D exp
��2s2a2i

2

	

;

thus

P
�

n
X

iD1
aiXi > t

	

� exp.�st/
n
Y

iD1
EŒexp.saiXi/� (3.11)

D exp
�

�st C �2s2
Pn

iD1 a2i
2

	

(3.12)

D exp
�

�st C �2s2n

2

	

; (3.13)

minimizing .�st C �2s2n=2/ for s > 0, we get

�t C �2sn D 0;

then

s D t

�2n
;

we insert s into (3.13)

exp
�

�st C �2s2n

2

	

D exp
�

� t2

n�2
C t2

2n�2

	

D exp
�

� t2

2n�2

	

;

thus

P
�

n
X

iD1
aiXi > t

	

� exp
�

� t2

2n�2

	

;

therefore

P
�ˇ

ˇ

ˇ

n
X

iD1
aiXi

ˇ

ˇ

ˇ > t
	

� 2 exp
�

� t2

2n�2

	

:
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Exercise 3.13. From Exercise 3.12 we have the Chernoff bound for i.i.d. normal
variables:

P
�ˇ

ˇ

ˇ

n
X

iD1
aiXi

ˇ

ˇ

ˇ > t
	

� 2 exp
�

� t2

2n�2

	

:

Assume ‰ is a p � n dimensional design matrix in a regression problem, and " is
the n � 1 dimension i.i.d. normal noise, where i D 1; : : : ; n, j D 1; : : : ; p. ‰j is
j th raw of ‰. Assume that ‰j ’s are normalized and orthogonal.

1. Prove that

max
1�j�p j‰j"j D Op

˚

�
p

2n log.2p/



:

2. Prove that

E
�

max
1�j�p j‰j"j

� � �
p

2n log.2p/:

1.

P
�

max
1�j�p j‰j"j > �

� �
p
X

jD1
P.j‰j"j > �/

D
p
X

jD1
P
�ˇ

ˇ

ˇ

n
X

iD1
‰ji"i

ˇ

ˇ

ˇ > �
	

�
p
X

jD1
2 exp

�

� �2

2n�2

	

.since ‰j ’s are normalized/;

take � D p

2n log.2p=ı/�2, where ı is a constant, then we get

p
X

jD1
2 exp

n

�2n log.2p=ı/�2

2n�2

o

D
p
X

jD1
2 exp

˚� log.2p=ı/



D 2p 
 1

exp
˚

log.2p=ı/



D 2p 
 1

2p=ı

D ı;
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i.e.

P
�

max
1�j�p j‰j"j > �

� D P
˚

max
1�j�p j‰j"j > �

p

2n log.2p=ı/

 � ı;

therefore

max
1�j�p j‰j"j D Op

˚

�
p

2n log.2p/



:

2. From Jensen’s inequality we know that if g.X/ is convex, then

gŒE.X/� � EŒg.X/�:

In our case, since exp
�

max
1�j�p j‰j"j

�

is a convex function, then for any s > 0, we

get

exp
˚

sE. max
1�j�p j‰j"j/


 � E
˚

exp.s 
 max
1�j�p j‰j"j/




�
p
X

jD1
E
˚

exp.s 
 j‰j"j/



� 2p exp
�n�2s2

2

	

;

we take log for both sides of the inequality, then

E
�

max
1�j�p j‰j"j

� � log.2p/

s
C n�2s

2

we minimize log.2p/=s C n�2s=2, then

.�1/.s�2/ log.2p/C n�2

2
D 0;

thus

s D
p

2 log.2p/

�
p
n

;

therefore

E
�

max
1�j�p j‰j"j

� � log.2p/

s
C n�2s

2

D log.2p/ 
 �
p
n

p

2 log.2p/
C n�2

2


p

2 log.2p/

�
p
n



3 Parameter Estimation for a Regression Model 71

D 2 
 �
p

n log.2p/p
2

D �
p

2n log.2p/:

Exercise 3.14. Consider the error in design model

Yi D m.‰i/C "i ; Zi D ‰i C Ui; i D 1; : : : ; n;

where "i ’s are the regression errors, Ui ’s are the measurement errors, ‰i ’s are
p � 1 dimensional vectors. Assume that p D 1, E."i j‰i/ D 0, the true function is
m. / D 5 2, ‰i � N.3; 4/, "i � N.0; 0:01/, Ui � N.0; 0:81/.

1. Write down the kernel regression estimator (Nadaraya-Watson estimator) and
the deconvoluted kernel regression estimator of m. /.

2. Generate a random sample with n D 3;000, download and use the R package
“decon”, then plot the deconvoluted kernel regression curve, the kernel regres-
sion curve from the sample without measurement errors (i.e. kernel regression
based on  ) and the kernel regression curve from the sample with measurement
errors (i.e. kernel regression based on z). Determine which estimator is better.

1. The Nadaraya-Watson estimator is as follows:

OmNW. / D
Pn

iD1 YiK
�

 �‰i
h

	

Pn
iD1 K

�

 �‰i
h

	 ;

we use a Gaussian kernel as the kernel function:

K.u/ D '.u/:

The deconvoluted kernel regression estimator is as follows:

OmD. / D
Pn

iD1 YiL
�

 �Zi
h

	

Pn
iD1 L

�

 �Zi
h

	 ;

where

L.s/ D 1

2�

Z

e�its 'K.t/

'U .t=h/
dt:

2. From Fig. 3.6 we can conclude that the deconvoluted kernel regression estimator
is closer to the kernel regression estimator from the sample without measurement
errors. The deconvoluted kernel regression estimator performs better than the
kernel regression estimator from the sample with measurement errors.
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Fig. 3.6 The kernel regression curve from the sample without measurement errors (solid line),
the deconvoluted kernel regression curve (dashed line), and the kernel regression curve from the
sample with measurement errors (dotted line), for n D 3;000. MSEdecon

Reference

Fahrmeir, L., & Tutz, G. (1994). Multivariate statistical modelling based on generalized linear
models. Heidelberg: Springer.



Chapter 4
Estimation in Linear Models

Walk wryly, speak straight.

Exercise 4.1. A company decides to compare the effect of three marketing strate-
gies

1. Advertisement in local newspaper,
2. Presence of sales assistant,
3. Special presentation in shop windows,

on the sales of their portfolio in 30 shops. The 30 shops were divided into
3 groups of 10 shops. The sales using the strategies 1, 2, and 3 were y1 D
.9; 11; 10; 12; 7; 11; 12; 10; 11; 13/>, y2 D .10; 15; 11; 15; 15; 13; 7; 15; 13; 10/>,
and y3 D .18; 14; 17; 9; 14; 17; 16; 14; 17; 15/>, respectively. Define xi as the index
of the shop, i.e., xi D i; i D 1; 2; : : : ; 30. Using this notation, the null hypothesis
corresponds to a constant regression line, EY D �. What does the alternative
hypothesis involving a regression curve look like?

There are p D 3 factors and n D 30 observations in the data set. The company
wants to know whether all three marketing strategies have the same effect or whether
there is a difference. The null hypothesis is H0 W �1 D �2 D �3 and the alternative
hypothesis is H1 W �l ¤ �l 0 for some l and l 0. The standard approach to this
problem is the analysis of variance (ANOVA) technique which leads to an F -test.

In this exercise, we use an alternative and in fact equivalent approach based on the
regression model. The null hypothesis can be tested in a regression model that has
explanatory variables defined as z2i D .xi 2 .11; 20// and z3i D .xi 2 .21; 30//.

W.K. Härdle et al., Basics of Modern Mathematical Statistics, Springer Texts in Statistics,
DOI 10.1007/978-3-642-36850-9__4, © Springer-Verlag Berlin Heidelberg 2014
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These two variables now allow to describe the difference in sales due to the
marketing strategies.

The regression model can be written as

0

@

x1

x2
x3

1

A D
0

@

110 010 010

110 110 010
110 010 110

1

A

0

@

ˇ1

ˇ2
ˇ3

1

AC ":

Here, the regression curve corresponding to the alternative hypothesis in the
ANOVA model looks like three horizontal lines, each of them corresponding to one
marketing strategy.

The F -test for testing the null hypothesis H0 W ˇ2 D ˇ3 D 0 corresponds to
the test of the null hypothesis that the effect of the three marketing strategies is the
same.

A N O V A SS df MSS F-test P-value
__________________________________________________________________
Regression 102.600 2 51.300 8.783 0.0012
Residuals 157.700 27 5.841
Total Variation 260.300 29 8.976

Multiple R = 0.62782
R^2 = 0.39416
Adjusted R^2 = 0.34928
Standard Error = 2.41676

PARAMETERS Beta SE StandB t-test P-value
__________________________________________________________________
b[ 0,]= 10.6000 0.7642 0.0000 13.870 0.0000
b[ 1,]= 1.8000 1.0808 0.2881 1.665 0.1074
b[ 2,]= 4.5000 1.0808 0.7202 4.164 0.0003

MSEanovapull

The above computer output shows that the value of the F -statistic for our null
hypothesis is 8:783, the corresponding p-value is smaller than 0.05. Thus, on the
usual confidence level 95 %, the null hypothesis is rejected.

The computer output also contains the mean sales of all three marketing
strategies. The mean sales for the first marketing strategy were 10:6, for the second
strategy 10:6C 1:8 D 12:4, and for the third strategy 10:6C 4:5 D 15:1.

Exercise 4.2. Consider the linear model Y D ‰>�� C " where O� D arg min
��

">"

is subject to the linear constraints A O� D a where A.q � p/; .q � p/ is of rank q
and a is of dimension .q � 1/.

Show that

O� D O�OLS � .‰‰>/�1A> ˚A.‰‰>/�1A>
�1 �
A O�OLS � a

	

;
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where O�OLS D .‰‰>/�1‰Y is the unconstrained (ordinary) least squares
estimator.

We define

f .��; �/ D .Y �‰>��/>.Y �‰>��/ � �>.A�� � a/;

where � 2 Rq and solve the system of equations:

@f .��; �/
@�� D 0;

@f .��; �/
@�

D 0:

Evaluating the derivatives, we obtain the system of equations:

@f .��; �/
@�� D �2‰Y C 2‰‰> O� � A> O� D 0; (4.1)

@f .��; �/
@�

D �.A O� � a/> D 0; (4.2)

rearranging (4.1) with respect to Ǒ leads to

O� D .‰‰>/�1‰Y C 1

2
.‰‰>/�1A> O�; (4.3)

A O� D A O�OLS C 1

2
A.‰‰>/�1A> O�: (4.4)

Next, rearranging (4.4) with respect to O� implies that

O� D 2fA.‰‰>/�1A>g�1.a � A O�OLS/: (4.5)

Set (6.28) in (4.3)

O� D O�OLS � .‰‰>/�1A>fA.‰‰>/�1A>g�1.A O�OLS � a/:

Exercise 4.3. Denote by Y D .Y1; : : : ; Yn/
> (resp. " D ."1; : : : ; "n/

>) the vector
of observations (resp. of errors) and by ‰ the p � n design matrix. Consider the
linear Gaussian model under the homogeneous noise assumption

Y D ‰>�� C "; " � N.0; �2In/;

where �� D .��
1 ; : : : ; �

�
p /

> 2 Rp is an unknown parameter vector.
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Prove that the maximum likelihood estimator for the parameter �� is equal to

Q� D �

‰‰>��1‰Y : (4.6)

The log-likelihood function equals

L.�/ D �n
2

log.2�/ � logfdet.†/g
2

� 1

2
.Y �‰>�/>†�1.Y �‰>�/:

In the case of homogenous noise, the last formula boils down to:

L.�/ D �n
2

log.2�/ � 2n log �

2
� 1

2
��2.Y �‰>�/>.Y �‰>�/:

The maximum likelihood estimator can be found as a solution of the equation

@

@�
L.�/ D �1

2
��2.�2‰Y C 2‰‰>�/ D 0;

and (4.6) follows.

Exercise 4.4. Consider the model from the previous exercise

Y D ‰>�� C ";

but with colored noise, i.e. " � N.0;†/. Prove that for any �

1. Var
˚rL.�/
 D ‰†�1‰>,

2. r2L.�/ D �‰†�1‰>.

(So Var
˚rL.�/
 and r2L.�/ don’t depend on �).

1. The log-likelihood for this model is equal to

L.�/ D �1
2
.Y �‰>�/>†�1.Y �‰>�/ � 1

2
log f.2�/n det†g :

This yields for its gradient rL.�/:

rL.�/ D ‰†�1.Y �‰>�/; (4.7)

and in view of Var.Y / D †, it holds

Var
˚rL.�/
 D Var

�

‰†�1Y
� D ‰†�1 VarY

„ƒ‚…

†

†�1‰> D ‰†�1‰>:

as required.
2. The required formula directly follows from (4.7).
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Exercise 4.5. Consider univariate polynomial regression of degree p � 1

Yi D f .Xi /C "i ; i D 1; : : : ; n;

whereXi are fixed points, errors "i are assumed to be i.i.d. normal, and the function
f can be represented as

f .x/ D ��
1 C ��

2 x C : : :C ��
p x

p�1:

At the same time, for any fixed point x0, this function can also be written as

f .x/ D u�
1 C u�

2 .x � x0/C : : :C u�
p.x � x0/

p�1:

1. Write the matrices ‰ and M‰ such that for any given design points Xi; i D
1; : : : ; n,

f D ‰>�� D M‰>u�; (4.8)

where

f D .f .X1/; f .X2/; : : : ; f .Xn//
> ;

�� D �

��
1 ; �

�
2 ; : : : ; �

�
n

�>
;

u� D �

u�
1 ; u

�
2 ; : : : ; u

�
n

�>
:

Compute also the matrices ‰‰> and M‰ M‰>.
2. Describe an orthogonal transformation A such that

M‰ D A‰

• For p D 1,
• For p > 1 (with assumption that n � p).

1.

‰ D

0

B

B

B

@

1 1 : : : 1

X1 X2 : : : Xn
:::

:::
: : :
:::

X
p�1
1 X

p�1
2 : : : X

p�1
n

1

C

C

C

A

:

Denote B
defD ‰‰>. Denote also elements of B by bij, i; j D 1 : : : p, and

elements of ‰ by  ij; i D 1 : : : p; j D 1 : : : n. Note that  ij D Xi�1
j . By the

definition of the product of matrices,
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bij D
n
X

sD1
 is js D

n
X

sD1
XiCj�2
s ; i; j D 1; : : : ; p:

So,

‰‰> D

0

B

B

B

@

n
P

Xs : : :
P

X
p�1
s

P

Xs
P

X2
s : : :

P

X
p
s

:::
:::

: : :
:::

P

X
p�1
s

P

X
p
s : : :

P

X
2p�2
s

1

C

C

C

A

:

Analogously,

M‰ D

0

B

B

B

@

1 1 : : : 1

X1 � x0 X2 � x0 : : : Xn � x0
:::

:::
: : :
:::

.X1 � x0/p�1 .X2 � x0/
p�1 : : : .Xn � x0/

p�1

1

C

C

C

A

:

and

M‰ M‰> D

0

B

B

B

@

n
P

.Xs � x0/ : : :
P

.Xs � x0/
p�1

P

.Xs � x0/
P

.Xs � x0/
2 : : :

P

.Xs � x0/
p

:::
:::

: : :
:::

P

.Xs � x0/
p�1 P.Xs � x0/

p : : :
P

.Xs � x0/
2p�2

1

C

C

C

A

:

2.(a) In the case of p D 1, ‰ and M‰ are real numbers equal to 1. Then A is an
identical transformation.

(b) Let now p > 1. First we prove two lemmas.

Lemma 4.1.

u� D A�1��:

Proof.

f D ‰>�� D ‰> �AA�1��� D M‰> �A�1��� :

On the other hand, (4.8) yields

f D M‰>u�:

Hence,

M‰> �A�1�� � u�� D 0: (4.9)
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Note that the matrix M‰T is a n� p matrix with n > p. This matrix has a rank
p, because first p columns form a Vandermonde matrix with determinant

det. M‰/ D
Y

1�i�j�p

�

Xj � Xi
� ¤ 0:

Hence, equality (4.9) yields A�1�� � u� D 0 as required.

Lemma 4.2.

u�
m D 1

.m � 1/Šf
.m�1/.x0/; m D 1; : : : ; p: (4.10)

Proof. Recall that

f .x/ D u�
1 C u�

2 .x � x0/C : : :C u�
p.x � x0/

p�1

Then for m D 1; : : : ; p

f .m�1/.x/ D 1 : : : .m � 1/ u�
m C 2 : : :m u�

mC1.x � x0/C : : :

Substitution x D x0 gives

f .m�1/.x0/ D .m � 1/Š u�
m

and the statement of the lemma follows.

Now substitute the expression

f .x/ D ��
1 C ��

2 x C : : :C ��
p x

p�1 D
p
X

kD1
��
k x

k�1:

into (4.10):

u�
m D 1

.m � 1/Š
f .m�1/.x0/ D 1

.m � 1/Š
p
X

kDm
��
k x

k�m
0 ; m D 1; : : : ; p

According to Lemma 4.1,

A�1 D

0

B

B

B

B

B

B

@

1=0Š x0=0Š x
2
0=0Š : : : x

p�1
0 =0Š

0 1=1Š x0=1Š : : : x
p�2
0 =1Š

0 0 1=2Š : : : x
p�3
0 =2Š

:::
:::

:::
: : :
:::

0 0 0 : : : 1=.p � 1/Š

1

C

C

C

C

C

C

A

:
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Fig. 4.1 Consider the model on a sample .i; Yi / with �� D .1; 1/> and � D 1. Q� D
.1:012115; 1:099624/> . MSEExercise471

Exercise 4.6. Consider the model

Yi D cos.2Xi/ �
�
1 C sin.Xi=2/ �

�
2 C "i ; i D 1; : : : ; n;

where

• �� D �

��
1 ; �

�
2

�>
is an unknown parameter vector;

• f"igniD1 are i.i.d. N.0; �2/, Xi D .�1/i�; i D 1; : : : ; n;
• n is even.

1. Rewrite this model as the linear Gaussian model, and show that the design is
orthogonal.

2. Compute the maximum likelihood estimator for the parameter �� (Figs. 4.1 and
4.2).

1. This model can be rewritten as

Y D ‰>�� C "; " � N.0;†/;

where Y D .Y1; : : : ; Yn/
>; �� D .��

1 ; �
�
2 /

>; " D �

"1; : : : ; "n/
> � N.0; �2In

�

;
and

‰> D

0

B

B

B

@

cos.2X1/ sin.X1=2/
cos.2X2/ sin.X2=2/

:::
:::

cos.2Xn/ sin.Xn=2/

1

C

C

C

A

:
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−3 −2 −1 0 1 2 3
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−1

0

1
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Xi

Y i

Fig. 4.2 Consider the model on a sample .Xi ; Yi / with �� D .1; 1/> and � D 1. Q� D
.1:012115; 1:099624/> . MSEExercise472

Substitution Xi D .�1/i�; i D 1; : : : ; n yields

‰> D

0

B

B

B

B

B

@

cos.�2�/ sin.��=2/
cos.2�/ sin.�=2/
:::

:::

cosf.�1/n�12�g sinf.�1/n�1�=2g
cosf.�1/n2�g sinf.�1/n�=2g

1

C

C

C

C

C

A

D

0

B

B

B

B

B

@

1 �1
1 1
:::

:::

1 �1
1 1

1

C

C

C

C

C

A

:

If n is even then the columns of the matrix ‰> are orthogonal:

‰‰> D
�

n 0

0 n

�

D nI2:

2. The general formula for estimation under the homogeneous noise assumption
simplifies drastically for this design:

Q� D �

‰‰>��1‰Y D n�1‰Y :

Thus,

Q�1 D 1

n
.Y1 C Y2 C : : :C Yn/ ;

Q�2 D 1

n
.�Y1 C Y2 � : : :C Yn/ :
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Exercise 4.7. Let

‰1 D
0

@

�1=2
1=

p
2

1=2

1

A ; ‰2 D
0

@

1=2

1=
p
2

�1=2

1

A and Y D
0

@

1p
2

�1

1

A :

Consider the model

Y D f C "; " � N.0; �2In/:

1. Let ‰> be a 3 � 2 matrix with columns ‰1 and ‰2. and let f be:

f D ‰>��;

for some �� 2 R2. Compute the MLE estimator of ��.
2. Let

max
�





f �‰>�




 > 0:

Find the explicit formula for �� as linear transformation of the vector f .

1. First note that the design matrix ‰ is orthonormal.

��1=2 1=p2 1=2

1=2 1=
p
2 �1=2

�

0

@

�1=2 1=2

1=
p
2 1=

p
2

1=2 � 1=2

1

A D
�

1 0

0 1

�

:

This fact simplifies the computation:

Q� D ‰Y D 1

2

��1 p
2 1

1
p
2 �1

�

0

@

1p
2

�1

1

A D
�

0

2

�

:

2. For the orthonormal design, the computation also simplifies drastically:

�� D ‰f D 1

2

��1 p
2 1

1
p
2 �1

�

f :

Exercise 4.8. 1. Consider the model

Y D f C "; " � N.0;†/

with f D ‰1�1, ‰1 2 Rn, � 2 R.
Find the formula for ��1 as linear transformation of the vector f .
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2. Assume now that the true stochastic is

Y D ‰1�
�
1 C‰2�

�
2 C "; " � N.0;†/;

for some design ‰1,‰2, find the conditions when ��1 D ��
1 .

1. In this case matrix ‰ is a matrix with one string ‰1. According to the general
formula (see the proof of Theorem 4.4.3 of Spokoiny and Dickhaus 2014),

�
�
1 D

�

‰>
1 †

�1‰1

	�1
‰>
1 †

�1f D ‰>
1 †

�1f
‰>
1 †

�1‰1

:

2. Now we should put f D ‰1�
�
1 C‰2�

�
2 in the formula for ��1:

�
�
1 D ‰>

1 †
�1f

‰>
1 †

�1‰1

D ‰>
1 †

�1 �‰1�
�
1 C‰2�

�
2

�

‰>
1 †

�1‰1

D ��
1 C ��

2

‰>
1 †

�1‰2

‰>
1 †

�1‰1

:

This means, that ��1 D ��
1 if and only if

��
2 ‰

>
1 †

�1‰2 D 0;

or, equivalently, if and only if (a) ��
2 D 0 or (b) ‰>

1 †
�1‰2 D 0. Condition (a)

means that the model considered in the first item is true (note that ��1 D ��
1 is

obviously fulfilled in this case). Condition (b) is a condition on the design.

Exercise 4.9. Consider the model

Y D ‰>� C "; " � N.0; �2I /; (4.11)

and let the true stochastic be

Y D ‰>�� C "; " � N.0;†0/: (4.12)

with a fixed covariance matrix †0. Prove that in this case

�� D ��:

In the model (4.11), f D ‰>� and † D �2I . Substituting these values in the
general formula for solving MLE esitmator gives

�� D �

‰‰>��1 ‰f :

According to the true model (4.12), f D ‰>��. Hence,

�� D �

‰‰>��1 ‰‰>�� D ��:
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Exercise 4.10. Let � be the stochastic component of Q� built for the misspecified
linear model Y D ‰>��C" with Var."/ D †. Let the true noise variance be†0.

1. Prove that the variance of Q� is equal to

Var†0. Q�/ D �

‰†�1‰>��1‰†�1†0†�1‰>�‰†�1‰>��1: (4.13)

2. Check that the matrix in the right hand side of (4.13) is of dimension p � p.

1. Note that

Q� D „Y D „f C„";

where „ D �

‰†�1‰>��1‰†�1. Then

Var†0. Q�/ D Var†0.„"/ D „ E†0
�

"">� „> D „†0„
>;

and (4.13) follows.
2. Recall that ‰ is a p � n matrix,† and †0 – n � n matrices. Then ‰†�1‰> is a
p � p matrix, and the required fact follows:

�

‰†�1‰>��1
„ ƒ‚ …

p�p
‰

„ƒ‚…

p�n
†�1
„ƒ‚…

n�n
†0

„ƒ‚…

n�n
†�1
„ƒ‚…

n�n
‰>

„ƒ‚…

n�p

�

‰†�1‰>��1
„ ƒ‚ …

p�p
:

Exercise 4.11. Assume Y D ‰>�� C " with " � N.0;†/. Then for any � < 1

E�� exp
˚

�L. Q� ;��/

 D .1 � �/�p=2;

where p is the dimension of the vector ��.

The distribution of 2L. Q�;��/ is chi-squared with p degrees of freedom. This means
that there exist p independent standard normal distributed variables 
i ; i D 1 : : : p

such that

2L. Q�;��/ D
p
X

iD1

2i :

Then (under P�� )

E exp
˚

�L. Q�;��/

 D E exp

�1

2
�

p
X

iD1

2i
� D

p
Y

iD1
E exp

�1

2
�
2i

�
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So one has to compute E exp
�

1
2
�
2

�

for a standard normal 
:

E exp
�1

2
�
2

� D
Z

e�x
2=2 1p

2�
e�x2=2dx D 1p

2�

Z

exp.�1 � �
2

x2/dx:

The change t D p
1 � � x yields

E exp
�1

2
�
2

� D .1 � �/�1=2
1p
2�

Z

exp.� t
2

2
/dt D .1 � �/�1=2:

and completes the proof.

Exercise 4.12. Consider the model

Y D ‰>� C ": (4.14)

with homogeneous errors ": E""> D �2In.

1. Prove that there exists an orthogonal transformation U W Rp ! Rp leading to
the spectral representation

Z D ƒu C �;

where Z D U‰Y 2 Rp, ƒ is a diagonal p � p matrix, u D U� 2 Rp , and
errors � D U‰" 2 Rp are uncorrelated: E��> D �2ƒ.

2. Prove that if " � N.0; �2In/, then the vector � is also normal, i.e.: � �
N.0; �2ƒ/.

1. The operator ‰‰> is self – adjoint, therefore there exists an orthogonal
transformation U such that

U‰‰>U> D diag.�1; : : : ; �p/ D ƒ;

where �i ; i D 1; : : : ; p are the eigenvalues of the operator ‰‰>. Applying the
transformation U‰ to both sides of (4.14), we arrive at

U‰Y
„ƒ‚…

Z

D U‰‰>U>
„ ƒ‚ …

ƒ

U�
„ƒ‚…

u

C U‰"
„ƒ‚…

�

:

The errors � are uncorrelated, because

E��> D U‰ E"">
„ƒ‚…

�2In

‰>U> D �2U‰‰>U> D �2ƒ:
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2. If " is normal, then � is also normal as a result of the linear transformation of ":

� D U‰":

This completes the proof (Härdle and Simar 2011).

Exercise 4.13. 1. Find the matrix ƒ for the designs from Exercises 4.4 and 4.5.
2. Let the matrix ƒ be equal to the identity matrix. What can you say about the

design matrix?

1. The design ‰ in both cases is orthonormal. Thus, we conclude that

ƒ D U ‰‰>
„ƒ‚…

Ip

U> D Ip:

2. Assume now that

U‰‰>U> D Ip: (4.15)

Multiplying (4.15) by U> from the left side and by U to the right side, we
arrive at

‰‰> D U>U D Ip;

because the matrix U is orthogonal. So, the design is orthonormal.

Exercise 4.14. Consider the model

Y D ‰>� C " with " � N.0;†/:

Check that the linear transformation MY D †�1=2Y of the data does not change the
value of the log-likelihood ratio L.�1;�2/ for any �1;�2.

Recall that

L.�/ D �1
2
.Y �‰>�/>†�1.Y �‰>�/CR;

where R D �n log.2�/=2� log
�

det†
�

=2 does not depend on Y and � . Then

L.�/ D �1
2
.†�1=2Y �†�1=2‰>�/>.†�1=2Y �†�1=2‰>�/CR

D �1
2
. MY � M‰>�/>. MY � M‰>�/CR;
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where M‰ D ‰†�1=2.
The transformed data MY follows:

MY D M‰>�� C �

with � D †�1=2" � N.0; Ip/ yielding the log-likelihood

ML.�/ D �1
2
. MY � M‰>�/>. MY � M‰>�/C MR

D L.�/C MR � R

where MR D �n log.2�/=2. Thus, we conclude that for any �1 and �2,

L.�1;�2/ D L.�1/� L.�2/

D ML.�1/� ML.�2/:

Exercise 4.15. Consider the model from Exercise 4.5:

Y D ‰>�� C "; " � N.0; �2In/;

where ‰> D .‰1 ‰2/
> is a 3 � 2 – matrix with rows:

‰1 D
0

@

�1=2
1=

p
2

1=2

1

A ; ‰2 D
0

@

1=2

1=
p
2

�1=2

1

A :

1. Explain the Wilks’ phenomenon in this case.
2. Compute the likelihood-based confidence ellipsoids for the parameter ��, if Y D
�

1;
p
2;�1

	>
and � D 1.

1. From Theorem 4.5.1 of Spokoiny and Dickhaus (2014), we know that

L. Q�;��/ D 1

2
. Q� � ��/>‰†�1‰>. Q� � ��/:

In our case, ‰†�1‰> D ��2I2, and therefore:

L. Q� ;��/ D 1

2�2
k Q� � ��k2

The Wilks’ phenomenon tells us that the distribution of L. Q� ;��/ is 	22 for any �
and any ��.
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2. An ˛ – confidence set for the parameter �� may be constructed as follows:

E.z/ D ˚

� W L. Q�;�/ � z˛



;

where z˛ is defined by P
˚

U > 2z˛

 D ˛, U � 	22.

As it was already shown in Exercise 4.5. Q� D .0; 2/>. Therefore:

E.z/ D ˚

� W �21 C .�2 � 2/2 � 2z˛



:

is an ˛ – confidence set for the parameter ��.

Exercise 4.16. Consider the estimate obtained by the method of Tikhonov regular-
ization

Q�˛ D �

‰‰> C ˛Ip
��1
‰Y :

1. Prove that the bias of this estimate

B.˛/ D kE Q�˛ � ��k
grows with the regularization parameter ˛.

2. Prove that the trace of the variance matrix of Q�˛ ,

V.˛/ D trE
n� Q�˛ � E Q�˛

	 � Q�˛ � E Q�˛
	>o

;

decreases in ˛.

1. Note that

E Q�˛ D �

‰‰> C ˛Ip
��1
‰‰>��;

resulting in the bias:

B.˛/ D












n
�

‰‰> C ˛Ip
��1
‰‰> � Ip

o

��











:

The matrix ‰‰> is positive definite. The Jordan decomposition yields an
orthogonal matrix U and positive numbers �1; : : : ; �p:

‰‰> D U diag.�1; : : : ; �p/ U>:

Then

�

‰‰> C ˛Ip
��1
‰‰> � Ip D U diag

�

�1

�1 C ˛
� 1; : : : ; �p

�p C ˛
� 1

�

U>

D U diag

� �1
1C �1=˛

; : : : ;
�1

1C �p=˛

�

U>:
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This yields:

B2.˛/ D ��>
U diag

�

1

.1C �1=˛/2
; : : : ;

1

.1C �p=˛/2

�

U>��

defD ��>
U D.˛/ U>��;

where the matrix D.˛/ is diagonal. Let now ˛1 and ˛2 be two positive numbers
such that ˛1 > ˛2. From

1

.1C �i=˛1/2
� 1

.1C �i=˛2/2
; i D 1; : : : ; p

we conclude that D.˛1/ � D.˛2/. Then

v>D.˛1/ v � v>D.˛2/ v

for any v 2 Rp , in particular for v D U>��. This observation completes the
proof.

2. Note that

V.˛/ D trE
n� Q�˛ � E Q�˛

	 � Q�˛ � E Q�˛
	>o

D tr
n
�

‰‰> C ˛Ip
��1
‰> E .Y � EY / .Y � EY />

„ ƒ‚ …

D�2Ip

‰
�

‰‰> C ˛Ip
��1o

D �2 tr
n
�

‰‰> C ˛Ip
��1
‰>‰

�

‰‰> C ˛Ip
��1o

:

Computation in the basis of the eigenvectors of ‰‰> yields:

�

‰‰> C ˛Ip
��1

‰>‰
�

‰‰> C ˛Ip
��1 D U diag

�

�1

.˛ C �1/2
; : : : ;

�p

.˛ C �p/2

�

U>;

and we arrive at

V.˛/ D �2
p
X

kD1

�p

.˛ C �p/2
: (4.16)

From (4.16), it directly follows that V.˛/ is a decreasing function of ˛ > 0.

Exercise 4.17. Let LG.�/ be the penalized log-likelihood

LG.�/
defD L.�/� 1

2
kG�k2;

where G is a symmetric p � p – matrix. Denote Q�G D argmax� LG.�/.
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1. Prove that for any parameter �

2LG. Q�G;�/ D � Q�G � ��>���2‰‰> CG2
�� Q�G � ��:

2. Denote also �G D argmax� ELG.�/. Prove that

2LG. Q�G;�G/ D ��2">˘G " (4.17)

with ˘G D ‰>�‰‰> C �2G2
��1
‰.

1. Recall that the penalized log-likelihood is equal to

LG.�/ D L.�/ � 1

2
kG�k2

D � 1

2�2
kY �‰>�k2 � 1

2
kG�k2 � n

2
log.2��2/:

Consider LG. Q�G;�/ D LG. Q�G/ � LG.�/ as a function of the second argument
� . This is a quadratic function satisfying LG. Q�G; Q�G/ D 0. Next, by definition
of Q�G , this function attains its minimum exactly at the point � D Q�G implying

dLG. Q�G;�/=d�j�DQ�G D 0:

Moreover, simple algebra yields

d2LG. Q�G;�/=d�2 D ��2‰‰> CG2

for any � . The Taylor expansion at � D Q�G gives:

LG. Q�G;�/ D LG. Q�G; Q�G C � � Q�G/ D 1

2
. Q�G � �/> d

2LG. Q�G;�/
d�2

. Q�G � �/

and the required formula for the likelihood ratio follows.
2. A straightforward calculus leads to the following expression for Q�G :

Q�G defD �

‰‰> C �2G2
��1
‰Y :

This gives that

Q�G � �G D �

‰‰> C �2G2
��1
‰ .Y � EY /
„ ƒ‚ …

"

;

and (4.17) is proven.
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Exercise 4.18. Consider the model

Y D ‰>�� C "; " � N.0; �2I / (4.18)

with a two-dimensional parameter �� and orthonormal design, i.e. ‰‰> D I2.
Consider the penalized log-likelihood

LG.�/
defD L.�/ � 1

2
kG�k2

with diagonal matrix G, G D diag.˛; ˇ/.

(i) Find the bias of the penalized MLE as a function of ˛, ˇ, � , and ��.
(ii) Find the trace of the variance matrix of the penalized MLE as a function of ˛,

ˇ and � .
(iii) Show that the bias monotonously increases while the trace of the variance

matrix monotonously decreases in each parameter ˛, ˇ, � .

1. The penalized MLE is equal Q�G D „GY with „G D �

‰‰> C �2G2
��1
‰ (see

Spokoiny and Dickhaus 2014, Sect. 4.6.2). In our case,

„G D diag
� 1

1C ˛2�2
;

1

1C ˇ2�2

	

‰:

The calculation of the bias of this estimate is straightforward:

B.˛; ˇ; �;��/ D







E Q�G � ��







 D 



„G‰‰
>�� � ��



 D k.„G � I2/ �
�k

D











diag

�

� ˛2�2

1C ˛2�2
;� ˇ2�2

1C ˇ2�2

�

��












D
s

�

˛2�2

1C ˛2�2
��
1

�2

C
�

ˇ2�2

1C ˇ2�2
��
2

�2

; (4.19)

where ��
1 , ��

2 are the components of the vector ��.
2. The trace of the variance matrix is equal to �2 tr.„G„

>
G/ in this case (See

Spokoiny and Dickhaus 2014, Theorem 4.6.2); therefore

V.˛; ˇ; �/ D�2 tr
�

diag
�

1

1C ˛2�2
;

1

1C ˇ2�2

�

‰‰> diag
�

1

1C ˛2�2
;

1

1C ˇ2�2

��

D�2
�
� 1

1C ˛2�2

	2 C
� 1

1C ˇ2�2

	2
�

: (4.20)

3. From (4.19) we conclude the monotonicity in ˛. Indeed by dividing the first term
in (4.19) by ˛2 one obtains an increasing function. Similarly the monotonicity
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with respect to ˇ, � can be seen. The same mechanism applies to (4.20),
completes the proof.

Exercise 4.19. Consider the model

Y D ‰>�� C "; " � N.0; �2Ip/

with an orthonormal design, i.e.‰‰> D Ip . Define the shrinkage estimate of �� D
.�1; : : : ; �p/

>:

Q�˛;j D ˛j 
>
j Y

where ˛j 2 .0; 1/, ˛ D .˛1; : : : ; ˛p/
>, and  >

j is the j -th column of the matrix
‰>, j D 1; : : : ; p. Denote the estimate of f D ‰>�� by Qf ˛ D ‰> Q�˛.

1. Prove that the risk R. Qf ˛/
defD Ek Qf ˛ � f k2 of this estimate fulfills

R. Qf ˛/ D
p
X

jD1
f 2
j .1 � ˛j /2 C �2

p
X

jD1
˛2j ;

where fj D  >
j f .

2. Specify the risk for the case of projection estimate, i.e. ˛j D 1.j � m/ with
fixed m.

1. The estimate Qf ˛ allows the following representation:

Qf ˛ D ‰> Q�˛ D
p
X

jD1
Q�˛;j j D

p
X

jD1
˛j j 

>
j Y :

The bias – variance decomposition gives

R. Qf ˛/ D B2. Qf ˛/C V. Qf ˛/; (4.21)

where

B2. Qf ˛/ D kE Qf ˛ � f k2 D


















p
X

jD1
˛j j 

>
j f � f



















2

D


















p
X

jD1
.˛j � 1/ j 

>
j f



















2

D
p
X

jD1
.˛j � 1/2. >

j f /
2;
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and

V. Qf ˛/ D Ek Qf ˛ � E Qf ˛k2 D Ek Q�˛ � E Q�˛k2

D
p
X

jD1
Var �2˛;j D

p
X

jD1
˛2j  

>
j Var Y j

D �2
p
X

jD1
˛2j :

2. For the case of projection estimation, the formula for the risk boils down to

R. Qf ˛/ D
m
X

jD1
f 2
j Cm�2:

Exercise 4.20. Consider the model

Y D ‰>�� Cˆ>�� C "; " � N.0; �2In/; (4.22)

where �� 2 Rp is the target parameter, �� 2 Rk is the nuisance parameter, ‰ is
the p � n matrix, while ˆ is the k � n matrix.

Let some value �ı of the nuisance parameter be fixed. Define the estimate
Q�.�ı/ by partial optimization of the joint log-likelihood L.�;�ı/ w.r.t. the first
parameter �:

Q�.�ı/ D argmax
�

L.� ;�ı/:

1. Prove that if the adaptivity condition is fulfilled

‰ˆ> D 0; (4.23)

then the partial estimate Q�.�ı/ does not depend on �ı:

Q�.�ı/ D �

‰‰>��1‰Y : (4.24)

2. Prove that the likelihood ratio is equal to

L
� Q�.�ı/;�ı� �L.� ;�ı/ D 1

2�2








‰>
� Q�.�ı/� �

	








2

(4.25)

for any value of the parameter � .

Remark 4.1. It immediately follows from (4.24) and (4.25) that if (4.23) is fulfilled
then the likelihood ratio is independent of �ı.
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1. Note that Q�.�ı/ is the MLE of the residual model Y �ˆ>�ı D ‰>�� C ":

Q�.�ı/ D �

‰‰>��1‰.Y �ˆ>�ı/:

Taking into account the adaptivity condition (4.23), we conclude that the partial
estimate Q�.�ı/ is equal to

Q�.�ı/ D �

‰‰>��1‰Y ;

and therefore does not depend on the nuisance parameter �ı
2. The proof follows the same lines as the proof of Theorem 4.5.1 from Spokoiny

and Dickhaus (2014). Consider L
� Q�.�ı/;�ı� � L.� ;�ı/ as a function of � ;

denote this function by f .�/. This is a quadratic function satisfying f . Q�.�ı// D
0. Next, by definition of the MLE, this function attains its minimum exactly at
the point � D Q�.�ı/ implying df .�/=d�j�DQ�.�ı/ D 0. Since

L.�;�ı/ D � 1

2�2
.Y �‰>� �ˆ>�ı/>.Y �‰>� �ˆ>�ı/CR;

where R does not depend on � , we conclude that

d2f . Q�.�ı/;�/=d�2 D ��2‰‰>:

The Taylor expansion at the point � D Q�.�ı/ yields

f .�/ D 1

2
f Q�.�ı/� �g>d2f . Q�.�ı//

d�2
f Q�.�ı/ � �g

D 1

2�2
. Q�.�ı/� �/>‰‰>. Q�.�ı/ � �/:

This completes the proof.

Exercise 4.21. 1. Let L be a likelihood of the linear model that depends on a
parameter � 2 Rp. Let P be a linear operator, P W Rp ! Rk. Prove that

P argmax
�

L.�/ D argmax
�2Rk

sup
�WP�D�

L.�/:

2. Let L be a likelihood of the model that depends on two parameters � and �.

Denote . Q�; Q�/ defD argmaxL.�;�/. Prove that

argmax
�

L.�; Q�/ D argmax
�

sup
�

L.�;�/: (4.26)

Remark 4.2. This exercise yields the equivalence of different definitions of the
profile estimation, see Sect. 4.8.3 of Spokoiny and Dickhaus (2014).
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1. Denote by Q� the MLE of the parameter �. For any fixed � 2 Rk,

L. Q�/ � sup
�WP�D�

L.�/;

where the equality holds iff the set f� W P� D �g includes Q�. This is
fulfilled only in the case � D P Q�. In other words, the maximum value of
supf�WP�D�g L.�/ is attained at the point � D P Q�.

2. Obviously,

L. Q� ; Q�/ � sup
�

L.�;�/;

where the equality is possible if � D Q� . The observation that the expression in
the left side of (4.26) equals Q� concludes the proof.

Exercise 4.22. Consider the model (4.22) with p D k D 2, even n, and

‰> D

0

B

B

B

B

B

@

1 1

1 �1
:::

:::

1 1

1 �1

1

C

C

C

C

C

A

; ˆ> D

0

B

B

B

B

B

@

1 0

0 1
:::
:::

1 0

0 1

1

C

C

C

C

C

A

:

1. Show that the adaptivity condition

‰ˆ> D 0 (4.27)

is not fulfilled in this case.
2. Find the p � k matrix C such that the linear transformation

�0 D �C C>� (4.28)

leads to the model

Y D M‰>� Cˆ>�0 C ": (4.29)

that satisfies the adaptivity condition.

1. By direct calculation,

‰ˆ> D n

2

�

1 1

1 �1
�

: (4.30)

Therefore the condition (4.27) is violated.
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2. Substituting (4.28) into the original model (4.22), we arrive at

Y D ‰>� Cˆ>.�0 � C>�/C " D .‰ � Cˆ/>� Cˆ>�0 C ":

Selecting C to ensure the adaptivity leads to the equation

.‰ � Cˆ/ˆ> D 0

or C D ‰ˆ>�ˆˆ>��1. In our case,

ˆˆ> D n

2
I2:

Together with (4.30), this yields

C D
�

1 1

1 �1
�

:

Exercise 4.23. Consider the model (4.22) with p D 2; k D 1; n D 4, and

‰> D

0

B

B

@

1 1

1 �1
1 1

1 �1

1

C

C

A

; ˆ> D

0

B

B

@

1

0

� 1

0

1

C

C

A

:

The sample Y D .Y1; Y2; Y3; Y4/
> is given. Compute the partial estimates for the

parameters �� and ��.

Notice that ‰ and ˆ satisfy the adaptivity condition (4.27)

‰ˆ> D .0; 0/>

is fulfilled in this case. This means that the partial estimate Q�.�ı/ doesn’t depend on
�ı and is equal to

Q�.�ı/ D �

‰‰>��1 ‰Y D 1

4

�

1 1 1 1

1 �1 1 �1
�

Y

D 1

4

�

Y1 C Y2 C Y3 C Y4

Y1 � Y2 C Y3 � Y4

�

:

Similarly we can invert the role of �� and ��. Since the adaptivity condition
holds, the partial estimate Q�.�ı/ does not depend on �ı and is the least square
estimator

Q�.�ı/ D �

ˆˆ>��1 ˆY D 1

2
.Y2 � Y4/ :
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Exercise 4.24. Consider the model Y D v� C "� in Rp , v� D .v�
1 ; : : : ; v

�
p/

> and
let the target estimation be the sum of coefficients �� D v�

1 C : : :C v�
p .

1. Find matrices ‡ and P such that the model can be viewed as

Y D ‡>v� C "�; (4.31)

and the problem is to estimate

�� D Pv�: (4.32)

2. Reduce to .�;�/ – setup (see (4.22)) by an orthogonal change of the basis.

1. The model can be considered in the form (4.31) with the identity p � p – matrix
‡ . The target of estimation can be represented the form (4.32) with a linear

operator P from Rp to R given by Pv� defD .1 1 : : : 1/v�.
2. Consider the orthogonal matrix

U D

0

B

B

B

B

B

B

B

B

@

1=
p
p 1=

p
p 1=

p
p 1=

p
p : : : 1=

p
p

1=
p
2 � 1 �1=p2 � 1 0 0 : : : 0

1=
p
3 � 2 1=

p
3 � 2 �2=p3 � 2 0 : : : 0

1=
p
4 � 3 1=

p
4 � 3 1=

p
4 � 3 �3=p4 � 3 : : : 0

:::
:::

:::
:::

: : :
:::

1p
p.p�1/

1p
p.p�1/

1p
p.p�1/

1p
p.p�1/ : : :

�.p�1/p
p.p�1/

1

C

C

C

C

C

C

C

C

A

;

(4.33)

i.e., the first row of the matrix U D .uij/
p
i;jD1 is equal to 1=

p
p, and for i � 2

uij D

8

ˆ
ˆ
<

ˆ
ˆ
:

1=
p

i .i � 1/; j < i;

�.i � 1/=
p

i .i � 1/; j D i;

0; j > i:

Note that U from (4.32) can be decomposed into

U D U1 C U2;

where

U1 D 1p
p

0

B

B

B

B

B

@

1 1 1 : : : 1

0 0 0 : : : 0

0 0 0 : : : 0
:::
:::
::: : : :

:::

0 0 0 : : : 0

1

C

C

C

C

C

A

;
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U2 D

0

B

B

B

B

B

B

@

0 0 0 : : : 0

1=
p
2 � 1 �1=p2 � 1 0 : : : 0

1=
p
3 � 2 1=

p
3 � 2 �2=p3 � 2 : : : 0

:::
:::

:::
: : :

:::
1p

p.p�1/
1p

p.p�1/
1p

p.p�1/ : : :
�.p�1/p
p.p�1/

1

C

C

C

C

C

C

A

:

So, the vector Y is transformed to

UY D U v� C U"�

D U1v
� C U2v

� C U"�:

Note that

U1v
� D ‰>��;

where ‰ D .1 0 : : : 0/=
p
p. Since "�

1

defD U"� � N.0; �2Ip/, we conclude that
the model can be reduced to the .�;�/ – setup in the following form:

UY D ‰>�� C U2v
� C "�

1 :

Exercise 4.25. Consider the general linear model

Y D ‡>�� C "

with

‡> D
��1=2 1=

p
2 1=2

1=2 1=
p
2 �1=2

�

:

The target of estimation is the sum of the components of the vector ��, i.e., �� D
v�
1 C : : :C v�

p .

1. Find the estimate for the parameter �� as a profile estimate.
2. Compute Ek Q� � ��k2 by the Gauss-Markov theorem.

1. Exercise 4.22 yields that this problem can be considered as the profile estimation

problem with P
defD .1 1 1/. Taking into account that ‡‡> D I2, we conclude

that

Q� D P
�

‡‡>��1‡Y

D .1 1 1/

0

@

�1=2 1=2

1=
p
2 1=

p
2

1=2 �1=2

1

A

�

Y1

Y2

�

D 1p
2
.Y1 C Y2/ :
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2. According to the Gauss-Markov theorem,

Ek Q� � ��k2 D �2 tr
n

P
�

‡‡>��1P>o :

So Ek Q� � ��k2 D 3�2.
If we are looking at

�� D
p
X

jD1

1

j
v�
j ;

can one also calculate Ek Q� � ��k2? We leave this as a training exercise.

Exercise 4.26. 1. Consider the model (4.22) with the matrices ‰ and ˆ from the
Exercise 4.23. Construct the profile estimate of ��.

2. Consider the model (4.22) with matrixes ‰ and ˆ from the Exercise 4.22 and
n D 4. Is it possible to construct the estimate of �� as the profile MLE by the
linear transformation (4.28) such that the model (4.29) satisfies the adaptivity
condition (4.27)?

1. The adaptivity condition holds for this model (see Exercise 4.23); therefore, the
estimate of � coincides with the MLE estimate for the model

Y D ‡>v� C "�;

where ‡> defD �

‰>; ˆ>� is a 4 � 3-matrix, and the object of estimation is the
vector obtained by the projection P to the first two coordinates. This gives the
profile MLE

Q� D P
�

‡‡>��1 ‡Y :

2. Exercise 4.22 shows that the linear transformation (4.28) with the matrix

C D
�

1 1

1 � 1

�

leads to the model (4.29) that satisfies the adaptivity condition. But the matrix
M‰ defD ‰ � Cˆ is a zero matrix in this case. Therefore, the model (4.29)
doesn’t include ��, and therefore, this parameter cannot be estimated using such
approach.

Exercise 4.27. Consider the model (4.22). Fix the nuisance parameter as �ı,
denote the estimate Q�.�ı/ obtained by partial optimization of the joint log-
likelihood L.�;�ı/ w.r.t. the first parameter �:

Q�.�ı/ D argmax
�

L.� ;�ı/:
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Let O� be a pilot estimate of the parameter �. Denote the estimate obtained by the
plug-in method by O� ,

O� defD argmin
�

k OY �‰>�k2 D �

‰‰>��1‰ OY ;

where OY defD Y �ˆ> O�.

1. Prove that O� D Q�. O�/.
2. Write down the formulae for the pilot estimates for O�

(a) O�1 D 0

(b) O�2 D Y1.k D 1/

(c) General linear estimate O�3 defD AY , where A is a k � n matrix.

1. Note that the estimate O� is the MLE in the model

OY defD ‰>�� C "; " � N.0; �2In/:

In other words,

O� defD
�

argmax
�

L.� ;�/

� ˇ

ˇ

ˇ

ˇ

�DO�
;

so (i) follows.
2. The definition of the estimate O� can be rewritten as:

O� defD �

‰‰>��1‰
�

Y �ˆ> O��:

Plug in O� D O�3 D AY , we have

O� defD �

‰‰>��1‰
�

In �ˆ>A
�

Y :

The other two cases O� D O�1 and O� D O�2 are the special cases with A D 0 and
A D .1; 0; : : : ; 0/ respectively.

Exercise 4.28. Consider the model (4.22). With the initial guess �ı for the target
��, consider the following two-step procedure:

(i) Compute the partial MLE for the model

Y .�ı/ D ˆ>�� C "; " � N.0; �2In/ (4.34)

with Y .�ı/ D Y �‰>�ı. This leads to the estimate

Q�.�ı/ D �

ˆˆ>��1ˆY .�ı/: (4.35)
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(ii) Estimate the target parameter �� by fitting ‰>�� to the residuals

OY .�ı/ D Y �ˆ> Q�.�ı/: (4.36)

This method results in the estimate

O�.�ı/ D �

‰‰>��1‰ OY .�ı/: (4.37)

1. Compute the mean and the variance of O�.�ı/.
2. Consider the adaptive case with ‰ˆ> D 0. Show that the two step estimate

O�.�ı/ coincides with the partial MLE Q� D �

‰‰>��1‰Y .
3. Let ‰ be orthogonal, i.e. ‰‰> D Ip . Show that

Var
˚ O�.�ı/


 D �2.Ip �‰˘�‰
>/;

where ˘� D ˆ>�ˆˆ>��1ˆ.

1. Combining (4.34)–(4.37) we have

O�.�ı/ D �

‰‰>��1‰ OY .�ı/

D �

‰‰>��1‰
˚

Y �ˆ> Q�.�ı/



D �

‰‰>��1‰
˚

Y �˘�Y .�
ı/



D �

‰‰>��1‰
˚

Y �˘�
�

Y �‰>�ı�


D �

‰‰>��1‰
�

In �˘�
�

Y C �

‰‰>��1‰˘�‰>�ı:

It follows that

E
n O�.�ı/

o

D �

‰‰>��1‰
�

In �˘�
�

EY :

Taking into account that VarY D �2In and that ˘� is a projector, we conclude
also that

Var
n O�.�ı/

o

D �2
�

‰‰>��1‰
�

In �˘�
�

‰>�‰‰>��1:

2. Substituting (4.36) to (4.37) gives

O�.�ı/ D �

‰‰>��1‰
˚

Y �ˆ> Q�.�ı/



D �

‰‰>��1‰Y :
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3. From (4.38) and ‰‰T D Ip ,

�2.‰‰T /�1‰.In �˘�/‰
T .‰‰T /�1

D �2.‰‰T /�1 � �2.‰‰T /�1‰˘�‰
T .‰‰T /�1

D �s � �2‰˘�‰
T :

Therefore, (4.38) is right.

Exercise 4.29. Consider the iterative procedure based on the two-step procedure
from the Exercise 4.27. One starts with the initial guess �ı for the target ��. Set

O�1 	 �ı; O�1 defD Q�.�ı/ D
(

argmax
�

L.�;�/

) ˇ

ˇ

ˇ

ˇ

ˇ

�D�ı

:

Then recompute the estimates in the iterative way (k D 1; 2; : : :):

O�kC1
defD Q�. O�k/ D

�

argmax
�

L.�;�/

� ˇ

ˇ

ˇ

ˇ

�DO�k
;

O�kC1
defD Q�. O�kC1/ D

(

argmax
�

L.� ;�/

) ˇ

ˇ

ˇ

ˇ

ˇ

�D O�kC1

:

1. Consider the adaptive situation with ‰>ˆ D 0. Prove that the above procedure
stabilizes in one step.

2. Denote the operators ˘�
defD ‰>�‰‰>��1‰ and ˘�

defD ˆ>�ˆˆ>��1ˆ. Prove

the following recurrent formula for ‰> O�k and ˆ> O�k (k � 1):

‰> O�kC1 D �

˘� �˘�˘�
�

Y C˘�˘�‰
> O�k; (4.38)

ˆ> O�kC1 D �

˘� �˘�˘�
�

Y C˘�˘�ˆ
> O�k: (4.39)

1. Note that the estimates O�k; O�k (k D 1; 2; : : :) are equal to

O�1 D �

ˆˆ>��1ˆ.Y �‰>�ı/; (4.40)

O�kC1 D �

‰‰>��1‰.Y �ˆ> O�k/; k D 1; 2; : : : (4.41)

O�kC1 D �

ˆˆ>��1ˆ.Y �‰> O�kC1/; k D 1; 2; : : : (4.42)

This yields that in the adaptive situation with ‰>ˆ D 0, we have

O�1 D �

ˆˆ>��1ˆY ; O�2 D �

‰‰>��1‰Y ;

and further iterations don’t change the values of the estimates.
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2. Let us prove the formulae (4.38) and (4.39) by induction on k. From (4.40), it
follows that

ˆ> O�1 D ˆ>�ˆˆ>��1ˆ.Y �‰>�ı/

D ˘�.Y �‰> O�1/:

From (4.41) we conclude that

‰> O�2 D ‰>�‰‰>��1‰.Y �ˆ> O�1/
D ˘�.Y �ˆ> O�1/
D ˘�

n

Y �˘�

�

Y �‰> O�1
	o

D �

˘� �˘�˘�
�

Y C˘�˘�‰
> O�1:

Analogously, formula (4.42) yields

ˆ> O�2 D ˆ>�ˆˆ>��1ˆ.Y �‰> O�2/
D ˘�.Y �‰> O�2/
D ˘�

˚

Y �˘�
�

Y �ˆ> O�1
�


D �

˘� �˘�˘�
�

Y C˘�˘�ˆ
> O�1:

Therefore, the formulas (4.38) and (4.39) are proven for k D 1. To make the
induction step, we note that (4.41) and (4.42) imply that for any k > 1

‰> O�kC1 D ˘�.Y �ˆ> O�k/;
ˆ> O�kC1 D ˘�.Y �‰> O�kC1/:

The further proof follow the same lines.

Exercise 4.30. Show that for any self-adjoint matrices A and B ,

kABk1 D kBAk1:

Recall that by kAk1 we denote the spectral norm of the matrix A, i.e., the largest
singular value of the matrixA. Denote by � any singular value of the matrixAB . By
the definition of the singular value, there exist unit length vectors e1 and e2 such that

ABe1 D �e2; .AB/� e2 D �e1: (4.43)
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It is worth mentioning that .AB/� D B�A� D BA where A� is the adjoint of A.
Therefore, we conclude that � is also a singular value of the matrix BA. So, the
matrices AB and BA have the same spectral values and hence the spectral norms of
these matrices coincide.

Exercise 4.31. Consider the set-up from the Exercise 4.22. Suppose that

�
defD k˘�˘�k1 < 1:

1. Show by induction arguments that for k � 1

ˆ> O�kC1 D AkC1Y C �

˘�˘�
�k
ˆ> O�1; (4.44)

where the linear operator Ak fulfills A1 D 0 and

AkC1 D ˘� �˘�˘� C˘�˘�Ak D
k�1
X

iD0
.˘�˘�/

i .˘� �˘�˘�/:

2. Show that Ak converges to A
defD .In �˘�˘�/�1.˘� �˘�˘�/.

3. Prove that

ˆ> O� D .In �˘�˘� /
�1.˘� �˘�˘�/Y ;

where the value O� is the limiting value for the sequence O�k .

Remark 4.3. Analogously, one can prove the same formulas for the estimate O�k and
for the limiting value O� by changing the role of � and �.

1. The first item trivially follows from (4.39). In fact, for k D 1 the formula (4.44)
coincides with (4.39):

ˆ> O�2 D �

˘� �˘�˘�
�

Y C˘�˘�ˆ
> O�1

D A2Y C˘�˘�ˆ
> O�1:

The induction step is also straightforward:

ˆ> O�kC1 D �

˘� �˘�˘�
�

Y C˘�˘�ˆ
> O�k

D �

˘� �˘�˘�
�

Y C˘�˘�

n

AkY C �

˘�˘�
�k�1

ˆ> O�1
o

D �

˘� �˘�˘� C˘�˘�Ak
�

„ ƒ‚ …

DAkC1

Y C �

˘�˘�
�k
ˆ> O�1:
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2. The aim is to show that

kAkC1 �Ak1

D















(

k�1
X

iD0

�

˘�˘�
�i � .In �˘�˘�/�1

)

.˘� �˘�˘� /
















1
�! 0;

as k ! 1.This fact follows from the observations that k˘� � ˘�˘�k1 � 1

and k.˘�˘�/ik1 � k˘�˘�ki1 � �i . (to be continued)

3. Since kAk � Ak1 ! 0, the sequenceˆ> O�k converge to ˆ> O� defD AY , because

kˆ> O�k �AY k1 D k .Ak � A/Y C �

˘�˘�
�k�1

ˆ> O�1k1

� kAk �Ak1 kY k1 C �k�1 kˆ> O�1k1 �! 0; k ! 1:

Inserting ˆ> O� in place of ˆ> O�k and ˆ> O�kC1 in (4.39) completes the proof.

Exercise 4.32. (This exercise is based on the ideas from Csiszár and Tusnády
1984) Let P and Q be two arbitrary sets and let D be a function depending on
two parameters, P 2 P and Q 2 Q. Denote by .P �;Q�/ the point of global
maximum, i.e.,

max
P;Q

D.P;Q/ D D.P �;Q�/:

Consider the following procedure for estimating the pair .P �;Q�/: starting with
an initial value P .0/, one iteratively computes the estimates (k D 0; 1; : : :)

Q.kC1/ D argmax
Q2Q

D
�

P .k/;Q
�

;

P .kC1/ D argmax
P2P

D
�

P;Q.kC1/� :

Let the following inequality (so-called 5-point property) be fulfilled for any k � 0:

D.P �;Q�/�D.P .kC1/;Q.kC1// � D.P �;Q.kC1//�D.P �;Q.k//: (4.45)

Prove that

lim
k!C1D.P .k/;Q.k// D D.P �;Q�/:

Hint. Prove the following fact:
Let two upper bounded real sequences fakg1

kD1; fbkg1
kD1 satisfy the inequality

akC1 C .bkC1 � bk/ � c � ak (4.46)

for some c 2 R and any k 2 N. Then ak converges to c as k ! 1.
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First note that the statement of the exercise follows from (4.46). In fact, set

ak D D.P .k/;Q.k//;

bk D D.P �;Q.k//;

c D D.P �;Q�/:

Both sequences fakg; fbkg are bounded by c, and moreover the 5-point property
(4.45) yields

akC1 C .bkC1 � bk/ � c:

So, our aim is to prove (4.46). For any natural N ,

0 �
N
X

kD1
.c � akC1/ �

N
X

kD1
.bkC1 � bk/ D bNC1 � b1:

This means that the series
PN

kD1 .c � akC1/ converges and therefore ak ! c as
k ! C1.
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Chapter 5
Bayes Estimation

Estimation par la méthode de Bayes

Qui ne risque rien n’a rien.

Nothing ventured, nothing gained.

Exercise 5.1. Consider the Bernoulli experiment Y D .Y1; : : : ; Yn/
> with n D 10

and let

�.0:5/ D �.0:9/ D 1=2:

1. Compute the posterior distribution of � if

(a) We observe y D .1; : : : ; 1/>. Which value of � has the highest probability?
(b) We observe a sample y D .y1; : : : ; yn/

> with the number of successes y1 C
: : :C yn D 5. Which value of � has the highest probability?

2. Show that the posterior density p.� jy/ depends only on the number of suc-
cesses S .

1. (a) Denote the probability of observing y by p.y/. Then

p.y/ D �.0:5/p .y j� D 0:5/C �.0:9/p .yj� D 0:9/

D 1

2

n

.0:5/10 C .0:9/10
o

:

W.K. Härdle et al., Basics of Modern Mathematical Statistics, Springer Texts in Statistics,
DOI 10.1007/978-3-642-36850-9__5, © Springer-Verlag Berlin Heidelberg 2014
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By the Bayes formula,

p .� D 0:5jy/ D p .y j� D 0:5/ p .� D 0:5/

p.y/

D
1
2
.0:5/10

1
2

n

.0:5/10 C .0:9/10
o D 1

1C .1:8/10
;

p .� D 0:9jy/ D p .y j� D 0:9/ p .� D 0:9/

p.y/

D
1
2
.0:9/10

1
2

n

.0:9/10 C .0:5/10
o D 1

1C �

5
9

�10
;

and we conclude that p .� D 0:9jy/ is larger than p .� D 0:5jy/.
(b) Let now the number of successes y1 C : : :C yn be equal to 5. In this case,

p .y j� D 0:5/ D
�

10

5

�

.0:5/5 .0:5/10�5 ;

p.y j� D 0:9/ D
�

10

5

�

.0:9/5 .0:1/10�5 :

The posterior probabilities can be computed by Bayes formula:

p .� D 0:5jy/ D p .yj� D 0:5/ p .� D 0:5/

p.y/

D
1
2
p .yj� D 0:5/

1
2

˚

p .y j� D 0:5/C p.yj� D 0:9/



D .0:5/10

.0:5/10 C .0:9/5.0:1/10�5

D 1

1C .1:8/5.0:2/10�5
;

and

p .� D 0:9jy/ D p.yj� D 0:9/p.� D 0:9/

p.y/

D .0:9/5.0:1/10�5

.0:5/10 C .0:9/5.0:1/10�5

D 1

1C �

5
9

�5
.5/10�5

:
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Comparing p .� D 0:5jy/ with p .� D 0:9jy/ leads to

p .� D 0:5jy/�1 < p .� D 0:9jy/�1

.1:8/5.0:2/5 <

�

5

9

�5

.5/5

18 � 2
100

<
25

9

and the clear conclusion that for � D 0:5 the posterior density is maximized.
2. Let the number of successes be equal to S . Then

p .y j� D 0:5/ D
�

n

S

�

.0:5/S .0:5/n�S D
�

n

S

�

.0:5/S ; (5.1)

p.y j� D 0:9/ D
�

n

S

�

.0:9/S .0:1/n�S : (5.2)

The Bayes formula yields

p .� D 0:5jy/ D
1
2
p .yj� D 0:5/

1
2
p .yj� D 0:5/C 1

2
p .y j� D 0:9/

D p .y j� D 0:5/

p .yj� D 0:5/C p .yj� D 0:9/
:

Thus p .� D 0:5jy/ depends on p .yj� D 0:5/ and p.yj� D 0:9/, both of which
depend only on the numbers of successes S , and don’t depend on the exact
realisations y1; : : : ; yn, see (5.1)–(5.2).

Exercise 5.2. Let the conditional distribution of Y given � be N.�; �2/, and the
prior distribution of the parameter � be N.�; �2/. Using the Bayes formula, prove
that

� j Y � N

�

��2 C Y�2

�2 C �2
;
�2�2

�2 C �2

�

:

Denote the marginal distribution of Y by p.Y /, the prior density of � by �.�/, and
the density of the conditional distribution of Y given � by p.Y j�/. We know that

�.�/ D ��1'f.� � �/=�g; (5.3)

p.Y j�/ D ��1'f.Y � �/=�g: (5.4)
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Note that Y D � C ", where � � N.�; �2/ and " � N.0; �2/ independent of � .
Therefore Y is normal with mean � and variance �2 C �2, i.e.

p.Y / D �

�2 C �2
��1=2

'
n

.Y � �/=
�

�2 C �2
�1=2

o

: (5.5)

In our notation, the Bayes formula is

� j Y � p.� jY / D p.Y; �/

p.Y /
D p.Y j�/�.�/

p.Y /
: (5.6)

Substituting (5.3), (5.4), and (5.5) into (5.6), we arrive at

p.� jY / D p.Y j�/�.�/
p.Y /

D 2�
� �2�2

�2 C �2

	
�1=2

exp

�

�1
2

�

.Y � �/2

�2
C .� � �/2

�2
� .Y � �/2

�2 C �2

��

:

For completing the proof, it is sufficient to note that

.Y � �/2

�2
C .� � �/2

�2
� .Y � �/2

�2 C �2
D A�2 � 2B� C C;

where the values A;B and C are equal to

A D 1

�2
C 1

�2
D �2 C �2

�2�2
;

B D Y

�2
C �

�2
D �2� C �2Y

�2�2
;

C D Y 2

�2
C �2

�2
� Y 2 � 2Y� C �2

�2 C �2
;

and hence p.� jY / is a density of the normal distribution with mean .��2 C
Y�2/=.�2 C �2/ and variance �2�2=.�2 C �2/.

Exercise 5.3. Let Y D .Y1; : : : ; Yn/
> be i.i.d. and for each Yi

Yi j � � N.�; �2/;

� � N.�; �2/:

Prove that for S D Y1 C : : :C Yn

� j Y � N

�

��2 C S�2

�2 C n�2
;

�2�2

�2 C n�2

�

:
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Hint: Consider Yi D � C "i , Y D S=n, and define � D � � � � .1 � �/.Y � �/,
where � D �2=.n�2 C �2/. Check that � and each Yi are uncorrelated and hence
independent.

Note that Y D � C ", with � � N.�; �2/ and " D n�1†niD1"i � N.0; �2=n/

independent of � . Therefore Y is normal with mean EY D E� C E" D � and the
variance

Var.Y / D Var � C Var " D �2 C �2=n:

Next observe that

Ef.� � �/.Y � �/g D Ef.� � �/.� C "� �/g D E.� � �/2 D �2

D .1 � �/Var.Y /

with � D �2=.n�2 C �2/. Thus the rv’s Y � � and

� D � � � � .1� �/.Y � �/

D �.� � �/� .1 � �/"

are Gaussian and uncorrelated and therefore independent. The conditional distribu-
tion L.�jY / of � given Y (or S D Y n) coincides with the unconditional distribution
and hence, it is normal with mean zero. The variance of � is equal to

Var.�/ D �2 Var.�/C .1 � �/2 Var."/

D �2�2 C .1 � �/2�2=n

D �4

.�2 C n�2/2
�2 C .�2=n/� 2

�

�2

�2 C n�2

�

.�2=n/

C �4

.�2 C n�2/2
.�2=n/

D .�4=n/� 2.�4=n/C .�2=n/.�2 C n�2/

�2 C n�2

D �2�2

�2 C n�2
:

This yields the result because with (5.7)

� D � C �� C .1 � �/Y :
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Exercise 5.4. Non-informative priors give equal probability weight to all possible
parameter values. For ‚ D f�1; : : : ;�M g, the non-informative prior is �.�j / D
1=M , j D 1; : : : ;M . Check that the posterior measure:

p.�kjy/ D p.y j�k/�.�k/
p.y/

is non informative if and only if all the measures P�m coincide.

1. Prove if all the measures P�m coincide, p.�kjy/ is non informative. The
marginal density of y is:

p.y/ D M�1
M
X

mD1
p.y j�m/

The posterior measure is therefore

p.�kjy/ D p.y j�k/�.�k/
p.y/

D p.y j�k/
PM

mD1 p.yj�m/
D p.yj�k/
Mp.yj�k/

D M�1

Thus p.�kjy/ is a non-informative measure.
2. If p.�kjy/ are the same for any k, p.yj�k/ D p.�k jy/p.y/

�.�k/
also coincide for any k.

Therefore, all the measures P�m coincide.

Exercise 5.5. A classical example for Bayes risk is testing for a disease D or the
presence of certain genetic markers on DNA sequences. Every test T has a certain
false alarm rate:

�1;�1 D P.T D 1jD D �1/

and a false negative rate:

��1;1 D P.T D �1jD D 1/

Suppose that for the test under consideration �1;�1 D 0:05, ��1;1 D 0:05. From
the population screening we know P.D D 1/ D 0:01.
Calculate the P.T D 1jD D 1/ and calculate the probability of having a disease
given that the test is positive. Also calculate P.D D 1jT D �1/.

The probability �1;1 D P.T D 1jD D 1/ D 1 � ��1;1 D 0:95. Bayes’ formula
yields

P.D D 1jT D 1/ D P.T D 1jD D 1/P.D D 1/=P.T D 1/
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D �1;1P.D D 1/=f�1;1P.D D 1/C �1;�1P.D D �1/g
D .0:95 � 0:01/=.0:95 � 0:01C 0:05 � 0:99/
D 0:0095=0:06D 0:161

Hence the probability of having actually the disease is just about 16 %! How can
this be such a low number? This can be elucidated by noting that with the marginal
distribution of D one person out of 100 has actually this disease. Given the value of
�1;�1 -the false alarm rate- one expects another 5 people. In total we have 6 people
testing positive but only 1 to have the disease. This ratio 1=6 is roughly 16 % as
calculated above.

It is also interesting to investigate the chance of actually having the disease given
that the test is negative. This is calculated as:

P.D D 1jT D �1/ D P.T D �1jD D 1/P.D D 1/=P.T D �1/
D .0:05 � 0:01/=.0:05 � 0:01C 0:95 � 0:99/
D 0:0005=0:94D 0:00053 D 0:053

In terms of this chance pattern we may conclude that this test is acceptable.

Exercise 5.6. The daily business of an investment bank is to decide upon credit
worthiness based on rating techniques. Two types of customers (firms) demande
credit: good ones and bad ones. Denote similar to Example 5.5 the probability of
successful credit repayment as �1 D P.T D 1/ and D D 1= � 1 a good/bad
customer. Suppose that �1;1 D P.T D 1jD D 1/ D 80% and that �1;�1 D P.T D
1jD D �1/ D 10%. From macroeconomic news and rating companies we observe
�1 D 70%. Show that the success probability is 94.9 %.

For a change of argument we give a finite population version of the proof.
Suppose there are 106 credit applicants. Given �1 D 0:7 there are 700;000 good
clients and 300;000 bad clients. Of these 560;000 D 0:8 � 700;000 respectively
30;000 D 0:1 � 300;000 are successfully repaying their credit. So in total there are
590;000 successful clients giving the success probability of 94.9 %.

From the investment bank point of view credits are issued to bad clients in 5.1 %
of the cases.

Exercise 5.7. Consider the univariate Gaussian shift model Yi j � � N.�; �2/ and
# � N.�; �2/.

1. Check that for the situation with only one observation (n D 1) the value
R1

�1 p.y j�/d� is finite for every y and the posterior distribution of � coincides
with the distribution of Y .

2. Compute the posterior for n > 1.

1. Recall that

p.yj�/ D ��1'f.y � �/=�g
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It is now easy to see that

Z 1

�1
p.y j�/d� D

Z 1

�1
��1'f.y � �/=�gd� D 1 (5.7)

since we may interpret the integrand for all y as the pdf of � � N.y ; �2/.
Suppose now that � 2 ‚ a compact subset of R. Define �.‚/ D .

R

‚ d�/
�1 then

p.y/ D �.‚/�1
Z

‚

p.y j�/d�

p.�jy/ D p.yj�/�.�/
p.y/

D p.yj�/
R

‚
p.yj�/d� (5.8)

Using (5.7) one sees that (5.8) yields the identity of the posterior with the pdf
of .Y j�/.

2. As alternative of proving (5.8) is to recall that in the situation that # � N.�; �2/

the posterior is:

� j Y � N

�

��2 C Y �2

�2 C �2
;
�2�2

�2 C �2

�

: (5.9)

see Exercise 5.2. Let now the prior N.�; �2/ become informative in the sense that
�2 ! 1. Then (5.9) will behave asymptotically as N.Y; �2/with pdf ��1'f.��
y/=�g.

Applying symmetry of the normal pdf one sees again (5.8). Using this same
argument in the situation of Exercise 5.3 when we calculated the posterior for
n > 1 leads us to:

.� j Y / � N
�

S=n; �2=n
�

where S D Y1 C : : :C Yn.

Exercise 5.8. Let fXigniD1 be an i.i.d. sample from the normal distribution
N
�

�; �2
�

, where � and �2 are unknown. Let � D 1
2�2

and the prior p.�/ be
the Gamma distribution: p.�/ � �.˛; �/. The prior distribution p.� j�2/ of � given
�2 is also the normal distribution:

p.� j�2/ � N.�0;
�20
�
/

1. Compute the joint posterior distribution of (� , �).
2. Compute the marginal posterior distribution of �.
3. Compute the marginal posterior distribution of � given �.
4. Compute Bayes estimates of �2 and � .
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1. The joint density of (� , �) is

p.�; �/ D p.� j�2/p.�/

D
p
�

q

2��20

exp
˚��.� � �0/2=.2�20 /


 ˛�

�.�/
e�˛����1

Therefore, the joint posterior pdf given x D fXigniD1 is

p.�; �jx/ / .2��2/�
n
2 exp

(

��
n
X

iD1
.xi � �/2

)

p.�; �/

/ .2��2/� n
2 exp

(

��
n
X

iD1
.xi � �/2

) p
�

q

2��20

exp

� ��.� � �0/
2

.2�20 /

�

˛�

�.�/
e�˛����1

/
p
�

q

2��20

.2��2/�
n
2

exp

(

��
n
X

iD1
.xi � �/2 � ˛� � �.� � �0/

2

.2�20 /

)

˛�

�.�/
���1

Plug in � D 1
2�2

p.�; �jx/ / �
nC1
2 C��1 exp

�

��
�

˛ C S2 C n.� � x/2 C .� � �0/2
2�20

��

where,

n
X

iD1
.xi � �/2 D

n
X

iD1
.xi � x/2 C n.� � x/2

In the right hand side expression, ˛ and S2 D Pn
iD1.xi �x/2 does not depend

on parameters � and y, and it is easy to find:

n.� � x/2 C .� � �0/2
2�20

D �

nC 1

2�20

�

�2 � 2�nx C �0

2�20

�

� C nx2 C �0
2

2�20

D �

nC 1

2�20

�

.� � 
/2 Cm.x/;
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where,


 D .nC 1

2�20
/�1.nx C �0

2�20
/

m.x/ D .�0 � x/2

2�20 C 1
n

The joint posterior density function of (� , �) can therefore be written as:

p.�; �jx/ / �
nC1
2 C��1 exp

�

��
�

˛ C S2 Cm.x/C .nC 1

2�20
/.� � 
/2

��

2. Rewrite the expression of the joint posterior density function as follows:

p.�; �jx/ / �
n
2C��1 exp

��� ˚˛ C S2 Cm.x/

� 1

�

exp

�

��.nC 1

2�20
/.� � 
/2

�

The posterior marginal distribution is

p.�jx/ D
Z 1

�1
p.�; �2jx/d�

/ �
n
2C��1 exp �Œ� ˚˛ C S2 Cm.x/




�

This is the pdf of a �.˛ C S2 Cm.x/; n
2

C �/ distribution.
3. Note that

p.� j�; x/ D p.�; �jx/
p.�jx/

The posterior marginal distribution of � is

p.� j�; x/ / 1

�
exp

�

���nC 1

2�20

�

.� � 
/2
�

which is proportional to the pdf of a Normal distribution
N.
;

˚

.2nC ��2
0 /�


�1
/.
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4. (a) The joint posterior density function is

p.�; �jx/ / �
nC1
2 C��1 exp

��� ˚˛ C S2 Cm.x/

�

exp

�

���nC 1

2�20

�

.� � 
/2
�

The posterior marginal distribution p.�jx/ is proportional to the pdf of a
�
˚

˛ C S2 Cm.x/; n
2

C �



distributed random variable, where


 D
�

nC 1

2�20

��1 �
nx C �0

2�20

�

;

� D 1

2�2
;

m.x/ D .�0 � x/2
2�20 C 1

n

;

S2 D
n
X

iD1
.xi � x/2:

The Bayes estimate of �2 is

Q�2 D 1

2

Z 1

0

Z 1

�1
��1p.�; �jx/d�d�

D 1

2

Z 1

0

��1p.�jx/d�

D ˛ C S2 Cm.x/

nC 2� � 2

(b) In order to compute the posterior marginal density of � , it is necessary to
calculate p.� jx/ D R1

0
p.�; �jx/d�. This integration could be expressed as

follows:

p.� jx/ D
Z 1

0

�
nC1
2 C��1

exp

�

��
�

˛ C S2 Cm.x/C .nC 1

2�20
/.� � 
/2

��

d�
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Remark 5.1.

�
nC1
2 C��1 exp

�

��
�

˛ C S2 Cm.x/C .nC 1

2�2
/.� � 
/2

��

is the pdf of a

�

�

s;
nC 1

2
C p

�

distributed random variable, here, s D ˛CS2 Cm.x/C �

nC 1
2�2

�

.� � 
/2.
Therefore, the integration of this density function is 1.

It is now easy to get:

Z 1

0

�
nC1
2 C��1 exp

�

��Œ˛ C S2 Cm.x/C �

nC 1

2�2

�

.� � 
/2�

�

d�

D �
�nC 1

2
C p

�

=s
nC1
2 C�

So the posterior marginal density of � could be expressed as

p.� jx/ D
Z 1

0

p.�; �jx/d�

/
�

˛ C S2 Cm.x/C �

nC 1

2�2

�

.� � 
/2
�� nC2pC1

2

/
8

<

:

1C
�

nC 1

2�20

�

.� � 
/2
˛ C S2 Cm.x/

9

=

;

� .nC2p/C1
2

/
�

1C 1

nC 2�
t2
�� .nC2p/C1

2

which is proportional to the pdf of a t.nC2�/ distributed random variable.
Here, we suppose

u2 D .� � 
/2
n

.nC 2�/
�

nC 1

2�20

�

=˛ C S2 Cm.x/
o

D K2.��
/2, u D K.��
/ is a linear transformation of � . Denotep.� jx/ /
f .u/. As p.� jx/ is symmetric about u D 0, the Bayes estimate of � could
be written as
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Q� D
Z 1

�1

Z 1

0

�p.�; �jx/d�d�

D
Z 1

�1
�p.� jx/d� D

Z 1

�1
.� � 
/C 
p.� jx/d�

/
Z 1

�1
1

K
uf .u/du C 


Z 1

�1
p.� jx/d�

we have u D K.� � xi /, � � xi D u
K

, � D u
K

C xi , the first integration is
symmetric about t D 0, so the result of p.� jx/ should be zero. The second
integration is the pdf of Gamma distribution, the result is 1. Therefore,
we have

Q� D 0C 
 D 


Exercise 5.9. Let X � f .x; �/, � D .�1; �2/, �i 2 ‚i , i D 1; 2; � � p.�/ D
p.�1j�2/p.�2/, p.�2/ is density function on ‚2. Given any �2, p.�1j�2/ is the
probability density function of �1 on ‚1. If �2 is given, and the Bayes estimate
under quadratic loss of h.�1/ D g.�1; �2/ is �.X; �2/, then the Bayes estimate
under quadratic loss of g.�1; �2/ is �.X/, which satisfies the following relationship:
�.X/ D R

‚2
�.X; �2/p.�2jX/d�2. p.�2jX/ is the posterior density function of �2

Prove this result and apply it to 5.7 to find Bayes estimate of �(� in 5.7), �2,
g.�; ı/ D ��2 with quadratic loss.

From the conditional distribution function formula we have

p.�1; �2jx/ D p.�1jx; �2/p.�2jx/

p.�2jx/ is the posterior density function of �2, p.�1jx; �2/is the posterior density
function of �1 given �2. As the Bayes estimate of h.�1/ with quadratic loss is
�.X; �2/, �.X; �2/ D R

‚1
h.�1/p.�1jX; �2/d�1. The Bayes estimate of g.�1; �2/ is

ı.X/ D
Z

‚2

Z

‚1

g.�1�2/p.�1; �2jX/d�1d�2

D
Z

‚2

�Z

‚1

g.�1�2/p.�1jX; �2/d�1
�

p.�2jX/d�2

D
Z

‚2

�.X; �2/p.�2jX/d�2:

In 5.7, fXigniD1 is an i.i.d. sample from the normal distribution N.�; �2/, �1 D �,
�2 D � D 1

2�2
. �2 D � � p.�2/ � �.a; �/; p.�1j�2/ D p.�j�/ is the pdf of a

N.�0;
�2

�
/ distributed random variables, � D 1

2�2
, and the posterior distribution of

�2 D ı is p.�2jX/ which is the pdf of a �.˛ C S2 C m.x/; n
2

C �/ distributed
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random variables, � D 1
2�2

, 
 D .n C 1
2�2
/�1.nx C �0

2�20
/, m.x/ D .�0�x/2

2�20C 1
n

, S2 D
Pn

iD1.xi �x/2. Now we shall compute the Bayes estimate of g.�1; �2/ D �, �2 and
��2 with quadratic loss:

1. g.�1; �2/ D � D �1. fXigniD1 is an i.i.d. sample from the normal distribution

N.�; �2/, the prior � is also the normal distribution N.�0;
�20
�
/(�2 D � D 1

2�2
),

the posterior distribution is normal as well. So the Bayes estimate of � D �1
given �2 is posterior mean.

�.X; �2/ D � n

�2
C �

�20

��1� n
�2
x C �

�20
�0
�

D �

nC 1

2�20

��1�
nx C 1

2�20
�0
�

D 


This expression does not depend on �2 D �. Thus, the Bayes estimation of � D
�1 is Q� D �.X/ D R

‚2

p.�2jX/d�2 D 
, which is consistent with the result

in 5.7.
2. g.�1; �2/ D �2 D .2�2/

�1, g.�1; �2/ D .2�2/
�1 does not depend on �1.

Therefore, the Bayes estimate of g.�1; �2/ is

�.X; �2/ D
Z

‚1

.2�2/
�1p.�1jX; �2/d�1 D .2�2/

�1

As �2jX has a Gamma distribution mentioned above, the Bayes estimate of �2 D
.2�2/

�1 is

Q�2 D 1

2

Z 1

0

��1
2 p.�2jX/d�2 D ˛ C S2 Cm.X/

nC 2� � 2 (5.10)

3. g.�1; �2/ D ��2 D �1.2�2/
�1. .2�2/�1 does not depend on �1. Therefore, the

Bayes estimate of g.�1; �2/ is �.X; �2/ D 
.2�2/
�1 given �2. As 
 does not

depend on �2, from (5.10), the Bayes estimate of g.�1; �2/ is

�.X/ D
Z 1

0


.2�2/
�1p.�2jX/d�2 D 


˛ C S2 Cm.X/

nC 2� � 2
Exercise 5.10. Let fXigniD1 be an i.i.d. sample, compute the Bayes estimate with
quadratic loss and posterior MLE of the corresponding parameters:

1. X1 � f .x1; �/ D 2x1�
�21 f0 � x1 � �g, � has a Pareto distribution PR.˛;�/;

Hint: Try to prove that the Pareto distribution is the conjugate prior distribution
for � if c is known (c equals 2 here).
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2. X1 � f .x1; c/ D cxc�11 1 f0 � x1 � 1g(c > 0), c has a Gamma distribution
�.a; �/;
Hint: Try to prove that the Gamma distribution is the conjugate prior distribution
for c if � is known( � equals 1 here).

3. X1 � f .x1; b/ D b2x1e
�bx11 fx1 � 0g, b has a Gamma distribution �.a; �/;

4. X1 � �. 1
�
; �/, � is known, � has a Inverse Gamma distribution ��1.a; �/.

1. (a) � has a Pareto distribution PR.˛;�/, that is,

p.�/ D ˛�˛��.˛C1/1 f� � �g

we know ˛ � 1 and � � 0, the posterior distribution density function is

p.� jx/ / ��nc1
˚

� � x.n/



˛�˛��.˛C1/1 f� � �g
/ ��.ncC˛C1/1 f� � �0g

Here, �0 D max
˚

x.n/; �



, so p.� jx/ is proportional to the pdf of a
PR.2nC ˛; �0/ distributed random variables. Therefore the conjugate prior
distribution for � is Pareto distribution if c is known. Plug in c D 2, we
easily have

p.� jx/ D .2nC ˛/�2nC˛
0 ��.2nC˛C1/1 f� � �0g

Which is the pdf of a PR.2nC˛; �0/ distributed random variables. Thus,
the Bayes estimate of � is

Q� D E.� jX/ D 2nC ˛

2nC ˛ � 1�0

(b) In order to maximize p.� jx/, it is necessary to minimize � , in this problem,
� should not be smaller than �0. Therefore, the posterior MLE of � is Q� D �0.

2. (a) c has a Gamma distribution �.a; �/, that is,

p.c/ D a�

�.�/
e�acc��11 fc � 0g

a > 0, � > 0, the posterior density function is

p.cjx/ / cn
�

n
Y

iD1
xi
�c�1

��nce�acc��1

/ cnC��1 exp �cŒa � log
n
X

iD1
.logxi � log �/�
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which is proportional to the pdf of a �
�

a � Pn
iD1.logxi � log �/; n C �

�

distributed random variable. Thus, the Gamma distribution is the conjugate
prior distribution for c if � is known. Plug in � D 1, the posterior distribution
of c is

p.cjx/ D cn
�

n
Y

iD1
xi
�c�1 a�

�.�/
e�acc��1

D cnC��1 exp �cŒa �
n
X

iD1
.logxi � log �/�

D cnC��1 exp �cŒa � log
n
Y

iD1
xi �

which is the pdf of a �
�

a�Pn
iD1 logxi ; nC�

�

distributed random variable.
Thus the Bayes estimate of c is

Qc D E.cjX/ D nC �

a �Pn
iD1 logXi

(b) Denote T D Pn
iD1 logxi , p.cjx/ is the pdf of a �.a� T; nC �/ distributed

random variable, which could be written as

.a � T /nC�

�.nC �/
exp f�.a � T /cg cnC��1:

Now it is easy to write down the posterior MLE of c as follows

Qc D nC � � 1
a � T

D nC � � 1

a �Pn
iD1 logXi

3. (a) X1 � �.b; 2/, the posterior distribution of b is

p.bjx/ D b2n
n
Y

iD1
xi exp

(

�b
n
X

iD1
xi

)

a�

�.�/
e�abb��1

D exp

(

�b.
n
X

iD1
xi C a/

)

b2nC��1

which is the pdf of a �
�

a CPn
iD1 xi ; 2nC �

�

distributed random variable.
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The Bayes estimate is

Qb D E.bjX/

D 2nC �

aCPn
iD1 logXi

(b) Denote T D Pn
iD1 logxi , p.bjx/ is proportional to the pdf of a

�.a C T; 2nC �/ distributed random variable, which could be written as

.aC T /2nC�

�.2nC �/
exp f�b.aC T /gb2nC��1:

The posterior log-likelihood function is

L.bjx/ D �.a C T /b C .2nC � � 1/ log b C k

Here, k is a constant term. From @L.bjx/
@b

D �.aCT /C .2nC��1/=b D 0,
the posterior maximum likelihood estimate of b is

Qb D 2nC � � 1
a CPn

iD1 Xi

4. (a) The posterior distribution of � is

p.� jx/ D ��n�

�n.�/

�

n
Y

iD1
xi
���1

exp

(

� 1
�

n
X

iD1
xi

)

a�

�.�/
exp �a

�

� 1

�

��C1

D exp

(

� 1
�
.

n
X

iD1
xi C a/

)

� 1

�

�n�C�C1

which is the pdf of a ��1�Pn
iD1 xi Ca; n�C�

�

distributed random variable.
Therefore, the Bayes estimate of � is

Q� D E.� jX/

D 1

n� C � � 1
�

a C
n
X

iD1
Xi
�

(b) Denote T D Pn
iD1 logxi , p.� jx/ is the pdf of the ��1.a C T; n� C �/

distributed random variable, which could be written as

.a C T /n�C�

�.n� C �/
exp

�

� 1
�
.aC T /

� �

1

�

�n�C�C1
:
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Fig. 5.1 A boy is trying
to test the Robokeeper which
is a machine more reliable
than any human goalkeeper

The posterior log-likelihood function is

L.� jx/ D �.aC T /
1

�
� .n� C �C 1/ log� C k

Here, k is a constant term. @L.� jx/
@b

D .a C T /=�2 � .n� C �C 1/=� D 0,
the posterior maximum likelihood estimate of � is

Q� D a CPn
iD1 Xi

n� C �C 1

Exercise 5.11. Following a tied soccer game, two teams will have a penalty shoot-
out to decide which team shall finally win the tournament. Suppose you are an
analyst who is employed by one team and you have the record of the goalkeeper
of the other side. Suppose that it is known that in the last two penalty shoot-outs, he
has saved the ball 3 times out of 5 C 5 D 10 shots. Your task is to compute, in the
present shoot out, how many times the goalkeeper shall save the ball (Fig. 5.1).
Hint: Note the record is similar to the Bernoulli experiment Y D .Y1; : : : ; Yn/

>
with n D 10 in Exercise 5.1.

We denote the event that the goalkeeper saves the ball as A, therefore p.A/ D � .
In order to estimate � , we make n independent observations, among which A occurs
x times (Fig. 5.2).

It is necessary to predict the times of success z in the Bernoulli experiment Y D
.Y1; : : : ; Yk/

> with k D 5. The pdf is

p.xj�/ D
�

n

x

�

�x.1 � �/n�x; x D 1; 2; 3 
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Fig. 5.2 Germany
goalkeeper Jens Lehmann’s
crumpled sheet that helped
him save penalties against
Argentina in the 2006 World
Cup quarter-final shootout
raised one million EUR
(1.3 million USD) for charity

Assume the prior distribution of � is Beta distribution Be.˛; ˇ/,

p.�/ D �.˛ C ˇ/

�.˛/�.ˇ/
�˛�1.1 � �/ˇ�1; 0 < � < 1

In order to have the posterior distribution of � , we should firstly find the joint
distribution of x and � :

p.x; �/ D p.xj�/p.�/

D
�

n

x

�

�x.1 � �/n�x �.˛ C ˇ/

�.˛/�.ˇ/
�˛�1.1 � �/ˇ�1;

x D 0; 1; : : : ; n; 0 < � < 1

Now determine the marginal distribution p.x/

p.x/ D
Z 1

0

p.x; �/d� (5.11)



126 5 Bayes Estimation

D
Z 1

0

�

n

x

�

�x.1 � �/n�x �.˛ C ˇ/

�.˛/�.ˇ/
�˛�1.1� �/ˇ�1d�

D
Z 1

0

�

n

x

�

�xC˛�1.1 � �/n�xCˇ�1 �.˛ C ˇ/

�.˛/�.ˇ/
d�

We only need to pay attention to the expression �xC˛�1.1��/n�xCˇ�1. We know

Z 1

0

�˛
0

.1 � �/ˇ
0

d� D �.˛0 C 1/�.ˇ0 C 1/

�.˛0 C ˇ0 C 2/

Applying this to the (5.11), we have the posterior density:

p.� jx/ D p.x; �/

p.x/

D p.x; �/
R 1

0
p.x; �/d�

D �.nC ˛ C ˇ/

�.x C ˛/�.n � x C ˇ/
�kC˛�1.1 � �/n�xCˇ�1

which it the pdf of a Be.˛C x; ˇC nC x/ distribution. The likelihood function of
the new sample z is

L.zj�/ D
�

k

z

�

� z.1 � �/k�z

Thus the posterior density of z given x is

p.zjx/ D
Z 1

0

�

k

z

�

�x.1 � �/k�zp.� jx/d�

D
�

k

z

�

�.nC ˛ C ˇ/

�.x C ˛/�.n � x C ˇ/

Z 1

0

� zCxC˛�1.1 � �/k�zCn�xCˇ�1d�

D
�

k

z

�

�.nC ˛ C ˇ/

�.x C ˛/�.n � x C ˇ/

�.z C x C ˛/�.k � z C n � x C ˇ/

�.nC k C ˛ C ˇ/

Plug in n D 10, x D 3, k D 5. As p.� jx/ is an expression of ˛ and ˇ, we make
˛ D ˇ D 1. Take a prior distribution of � as Be.1; 1/, which is also the uniform
distribution U.0; 1/. The posterior distribution of z is

p.zj3/ D
�

5

z

�

�.12/�.4C z/�.13� z/

�.17/�.4/�.8/



5 Bayes Estimation 127

Table 5.1 The posterior probability when z D 0; 1; 2; 3; 4; 5

z 0 1 2 3 4 5

p.zjx D 3/ 0.1813 0.3022 0.2747 0.1694 0.0641 0.02128

Fig. 5.3 The Jiao Bei pool

We can choose z D 0; 1; 2; 3; 4; 5 in this problem. For example, when z D 0,
we have

p.0j3/ D �.12/�.4/�.13/

�.17/�.4/�.8/
D 33

182
D 0:1813

When z D 1, we have

p.1j3/ D 5
�.12/�.5/�.12/

�.17/�.4/�.8/
D 55

182
D 0:3022

we could calculate all of them as follows (Table 5.1):
From the table we observe that P.0 � z � 3/ D 0:9231 and the mode is at

0.3022 when z D 1. This says that the goalkeeper has the highest probability to save
the ball twice (and higher probability once).

Exercise 5.12. Following the Exercise 1.10, we continue discussing interesting
statistical issues of the religious ritual–tossing Jiao Bei. Some temples in Taiwan
provide not only a pair of Jiao Bei, but a bowl filled with Jiao Bei, like Fig. 5.3.
Worshipers choose one pair from the bowl and perform the ritual introduced in the
Exercise 1.10. Worshipers have priors to each Jiao Bei in the pool. This observation
inspires this exercise.

Let Y denote the outcome of the Jiao Bei tossing. Y is a Bernoulli random
variable with probability p. Y D 1 if it is “Sheng-Bei” and Y D 0 otherwise.
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An experiment is carried out by 20 young statisticians and we obtain 114
observations, with 57 Sheng Bei:Assume that p has a prior distribution P.p D
1=2/ D 1=3, P.p D 1=3/ D 1=3, P.p D 1=4/ D 1=3. What is the posterior
density f .pjy/?

0 0 1 1 1 1 0 0 1 1 0 0 1 0 0 1 1 0 1 0
1 0 1 1 0 0 1 1 1 0 1 0 1 0 0 1 1 0 0 1
1 0 1 1 0 1 0 1 1 0 1 0 0 1 1 0 0 0 1 1
0 1 0 0 0 1 0 0 0 1 1 0 0 1 0 1 1 1 1 0
0 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 1 1 1
1 1 0 1 1 1 0 1 0 0 1 0 0 1

Let y be the outcome of Jiao Bei tossing experiment. Under the prior distribution,

P.y/ D 1

3
P.y D 57jp D 1=2/C 1

3
P.y D 57jp D 1=3/ C 1

3
P.y D 57jp D 1=4/

D 1

3 � 2114 C 257

3115
C 357

3 � 4114 :

The posterior probabilities are:

P.p D 1=2jy/ D P.y jp D 1=2/P.p D 1=2/

P.y/
� 0:9988I

P.p D 1=3jy/ D P.y jp D 1=3/P.p D 1=3/

P.y/
� 0:0012I

P.p D 1=4jy/ D P.y jp D 1=4/P.p D 1=4/

P.y/
� 0:

Reference

Spokoiny, V., & Dickhaus, T. (2014). Basics of modern parametric statistics. Berlin: Springer.



Chapter 6
Testing a Statistical Hypothesis

Provare un'ipotesi

Il segreto del successo è la costanza del proposito.

The secret of success is the perseverance.

Exercise 6.1. Let X D fXigniD1 be an i.i.d. sample from a model of Gaussian shift
N.�; �2/ (here � is a known parameter and � is a parameter of interest).

(i) Fix some level ˛ 2 .0; 1/ and find a number t˛ 2 R such that the function

�.X/
defD 1

�

X � t˛
�

is a test of level ˛ for checking the hypothesis H0 W � D �0 against the
alternative H1 W � D �1 < �0 (�0 and �1 are two fixed values).

(ii) Find the power functionW.�1/ for this test.
(iii) Compare ˛ andW.�1/. How can you interpret the results of this comparison?
(iv) Why a test in the form

�.X/
defD 1

�

X � s˛
�

;

where s˛ 2 R is not appropriate for testing the hypothesis H0 against the
alternative H1?

(i) Observe that
p
n
�

X � �0
�

has a standard normal distribution N.0; 1/ under
H0. Then for any t

W.K. Härdle et al., Basics of Modern Mathematical Statistics, Springer Texts in Statistics,
DOI 10.1007/978-3-642-36850-9__6, © Springer-Verlag Berlin Heidelberg 2014
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P0.X � t/ D P0

( p
n.X � �0/
�

�
p
n.t � �0/

�

)

D 1 �ˆ
� p

n.t � �0/

�

�

;

where P0 denotes the probability measure of the normal distribution N.�0; �
2/.

Let us fix the parameter t such that P0.X � t/ D ˛:

˛ D 1 �ˆ

�p
n.t � �/
�

�

t D t˛ D �0 C �z1�˛=
p
n;

where z1�˛ is the .1 � ˛/-quantile of the standard normal distribution.
So, a test of level ˛ is

�.X/
defD 1

�

X � t˛
� D 1

�

X � �0 C �z1�˛=
p
n
�

:

(ii) By the definition of the error of the second kind,

W.�1/ D 1 � P1 f�.X/ D 0g D P1 f�.X/ D 1g
D P1

�

X � �0 C �z1�˛=
p
n
�

D P1

( p
n.X � �1/

�
� z1�˛ � p

n.�0 � �1/�
)

D 1 �ˆ
�

z1�˛ �
p
n.�0 � �1/

�

�

(iii) One should compare two expressions:

˛ D 1�ˆ.z1�˛/ and W.�1/ D 1 �ˆ
�

z1�˛ �
p
n.�0 � �1/

�

�

:

By assumption, �0 > �1. This yields

z1�˛ > z1�˛ �
p
n.�0 � �1/

�
:

and therefore ˛ < W.�1/ because the function ˆ.
/ is monotone increasing.
This fact can be interpreted in the following way: the probability of rejecting
the hypothesis when it is true is less than the probability of rejecting the
hypothesis when it is false. In other words, “true rejection” has larger
probability than “false rejection”.
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(iv) In the case of the test

�.X/
defD 1

�

X � s˛
�

;

the error of the first level is larger than the power function at any point �1 < �0.
This means that “false rejection” has larger probability than “true rejection”.

Exercise 6.2. Let a sample X have only one observation X with density p.x � �/.
Consider the hypothesis � D 0 against the alternative � D 1. Describe the critical
region of the Neyman-Pearson test for different t˛ if p is a density of

(i) The standard normal distribution N.0; 1/,
(ii) The standard Cauchy distribution, i.e. p.x/ D ˚

�.1C x2/

�1

.

(i) Note that

p.x � 1/
p.x/

D
1p
2�

expf� .x�1/2
2

g
1p
2�

exp.� x2

2
/

D exp

�

x � 1

2

�

:

Thus, the critical region is

R˛ D
�

p.x � 1/

p.x/
� t˛

�

D
�

exp

�

x � 1

2

�

� t˛

�

:

If t˛ � 0 then R˛ D R. On the other hand, if t˛ is positive then

R˛ D fx � log t˛ C 1=2g :

(ii) The case of the Cauchy distribution is more complicated.

R˛ D
�

p.x � 1/

p.x/
� t˛

�

D
�

1C x2

1C .x � 1/2 � t˛

�

:

A plot of the function f .x/ D 1Cx2
1C.x�1/2 is given on the Fig. 6.1.

Note that

• The maximum is attained at the point xmax D .1C p
5/=2 and is equal to ymax D

.3C p
5/=2

• The minimal value is attained at the point xmin D .1 � p
5/=2 and is equal to

ymin D .3 � p
5/=2

• The right and the left “tails” of the function tend to the line y D 1.

These three observations yield the following sets R˛:
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Fig. 6.1 The plot y D f .x/ D .1C x2/=.1C .x � 1/2/. MSEfcauchy

R˛ D

8

ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
<

ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
:

;; if t˛ > ymax

xmax; if t˛ D ymax
Œx1; x2� ; if t˛ 2 .1; ymax/
Œx1;C1/ if t˛ D 1

.�1; x1� [ Œx2;C1/; if t˛ 2 .ymin; 1/

R; if t˛ � ymin

where x1 and x2 (x1 < x2) are two solutions of the quadratic equation

1C x2

1C .x � 1/2
D t˛:

Exercise 6.3. (Suhov & Kelbert, 2005) Let X1 be a single observation of a random
variable X with the density function p.x/.

(i) Find the form of the most powerful test of fixed size ˛ D 0:05 of the hypothesis
H0 W p.x/ D 1=2 1.x 2 Œ�1; 1�/ against an alternative H1 W p.x/ D 3=4.1�
x2/1.x 2 Œ�1; 1�/.

(ii) Compute the power of this test.

Let us apply the Neyman-Pearson lemma. The left hand side of the equality

P0 fZ.X1/ � t˛g D ˛ D 0:05

can be rewritten as
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P0 fZ.X1/ � t˛g D P0
˚

3=2.1� X2
1 / � t˛


 D P0

�

jX1j �
p

1 � 2=3t˛
	

D
p

1 � 2=3t˛:

So, we conclude that the Neyman-Pearson test can be written as

�.X1/ D 1.jX1j � 0:05/:

(ii) The calculation of the power is straightforward:

P1 .jX1j � 0:05/ D
Z 0:05

�0:05
3

4
.1 � x2/dx � 0:075:

Exercise 6.4. Let fXigniD1 be an i.i.d. sample from the exponential distribution

p.x; �/ D ��1 exp .�x=�/ ; x � 0:

1. Find the form of the most powerful test of fixed size ˛ of the hypothesisH0 W � D
�0 against an alternative H1 W � D �1, where �0 and �1 are given (let �0 < �1).

2. Compute the power of this test (the cdf of Gamma distribution can be involved).

1. The Neyman-Pearson lemma is applicable in this situation, because the likeli-
hood ratio

Z.X /
defD
Qn
iD1 p.Xi ; �1/

Qn
iD1 p.Xi ; �0/

D
�

�0

�1

�n

exp

(
�

1

�0
� 1

�1

� n
X

iD1
Xi

)

is such that the equation

P0 fZ.X / � t˛g D ˛ (6.1)

has a solution for any ˛ > 0.
In order to find a close form for this solution, note that the random variable



defD 1=�0

P

i Xi under hypothesisH0 has a gamma distribution with parameters
n and 1. In fact, Xi is distributed according to the law �.1; �0/; then

P

i Xi �
�.n; �0/, and 
 � �.n; 1/. Denote the cdf of �.n; 1/ by Gn.
/.

(6.1) can be rewritten as

P0

��

�0

�1

�n

exp

��

1

�0
� 1

�1

�

�0


�

� t˛

�

D ˛;

or, equivalently (here we use that �0 < �1),

P0

(


 � n log �1
�0

C log t˛

1 � �0
�1

)

D ˛:
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So, t˛ should be chosen from the following equation:

n log �1
�0

C log t˛

1 � �0
�1

D G�1
n .1 � ˛/:

According to the Theorem 8.2.2, we conclude that the Neyman-Pearson test with

t˛ D exp

��

1 � �0

�1

�

G�1
n .1 � ˛/C n log

�0

�1

�

is the most powerful test of size ˛.
2. For the computation of the power, it is sufficient to mention that underH1

�0

�1

 � �.n; 1/:

Hence,

W D P1 fZ.X / � t˛g D P1
˚


 � G�1
n .1 � ˛/


D P1

�

�0

�1

 � �0

�1
G�1
n .1 � ˛/

�

D 1 �Gn
�

�0

�1
G�1
n .1� ˛/

�

:

Exercise 6.5 (Pestman & Alberink, 1991). Let fXigniD1 be a sample from the
distribution with density

p.x; �/ D e�xC�I.x > �/;

where � 2 R. Find a uniformly most powerful (UMP) test with given level ˛
for testing the simple hypothesis H0 W � D �0 against the simple alternative
� D �1 > �0.

Firstly, we compute the ratio

Z.X /
defD
Qn
iD1 p.Xi ; �1/

Qn
iD1 p.Xi ; �0/

D
�

0; �0 < X.1/ � �1;

en.�1��0/; X.1/ > �1:

Note that the Neyman-Pearson test is not applicable to this situation, because the
equation

P0 fZ.X/ � t˛g D ˛
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does not have solution for ˛ ¤ P0
�

X.1/ > �1
�

. The aim is to construct a test T such
that

E0T D ˛ and E1T D argmax
�2.0;1/WE0��˛

.E1�/: (6.2)

First step. It is worth mentioning that a test in the form

T .1/ D
�


; �0 < X.1/ � �1;

1; X.1/ > �1:

Any 
 2 .0; 1/ satisfies the second condition from (6.2) because

E1T
.1/ D 
 P1.�0 < X.1/ � �1/

„ ƒ‚ …

D0
CP1.X.1/ > �1/
„ ƒ‚ …

D1
D 1;

and E1� < 1 for any test �. Thus, the UMP test can be found by selecting the

 2 .0; 1/ satisfying E0T

.1/ D ˛. We have

E0T
.1/ D 
P0

�

�0 < X.1/ � �1
�C P0

�

X.1/ > �1
�

D 

˚

1 � P0
�

X.1/ > �1
�
C P0

�

X.1/ > �1
�

D 
f1 � en.�0��1/g C en.�0��1/;

because

P0
�

X.1/ > �1
� D P0 .Xi > �1; i D 1::; n/ D fP0 .X1 > �1/gn D en.�0��1/:

As the result,


 D ˛ � en.�0��1/
1 � en.�0��1/

; (6.3)

and 
 2 .0; 1/ if and only if

en.�0��1/ < ˛: (6.4)

So, on the first step we prove that if condition (6.4) is fulfilled than T .1/ with 
 given
by (6.3) is an UMP test. On the second step, we consider a case if the condition (6.4)
is not fulfilled.
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Second step. For any � 2 .0; 1/, denote

T .2/
defD
�

0; �0 < X.1/ � �1
�; X.1/ > �1

Let us find � from the first condition (6.2):

P0T
.2/ D �P0

�

X.1/ > �1
� D �en.�0��1/ D ˛

Since condition (6.4) is not fulfilled,

� D ˛en.�1��0/ (6.5)

lies between 0 and 1. The power function for this test is equal to

E1T
.2/ D �P1

�

X.1/ > �1
� D � D ˛en.�1��0/:

It’s easy to see that this power function is maximal over all tests with E0� � ˛. In
fact, for any such test �,

E1� D E0f Z.X/
„ƒ‚…

�en.�1��0/

�g � ˛en.�1��0/:

So T .2/ is an UMP test with � chosen by (6.5) given that the condition (6.4) is not
fulfilled.

Exercise 6.6. Consider the model fXi gniD1 � N.�; �2/, where � is known and � is
the parameter of interest. Define two statistics:

T1
defD max

�
L.�; �0/ and T2

defD max
�>�0

L.�; �0/;

and two corresponding tests:

�1
defD 1.T1 > t1˛/ and �2

defD 1.T2 > t2˛/;

where ti˛.i D 1; 2/ are selected to ensure the level condition

E0�i D P0fTi > ti˛g D ˛

for a given level ˛. Both tests, �1 and �2, are used for testing the hypothesis

H0 W � D �0:
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�1 tests H0 against the alternative H1 W � ¤ �0 (two-sided test), and �2 – against
H2 W � > �0 (one-sided test).

1. Find the explicit expressions for T1 and T2.
2. Compute the power functions of the tests �1 and �2.

1. Two methods for finding an explicit form for T1 are given in the second chapter
of Spokoiny and Dickhaus (2014), Theorem 2.9.1. One of the methods is based
on deriving the following expression for L.�; �0/ (here �; �0 are any two points):

L.�; �0/ D n

�2

�

. Q� � �0/.� � �0/� .� � �0/
2

2

�

: (6.6)

So, L.�; �0/ is a quadratic polynomial in � 0; the maximum is attained at the
vertex of parabola (at the point � D Q� ):

T1 D max
�
L.� 0; �/ D n

2�2
j Q� � �0j2:

For maximizing (6.6) for � > �0, note that � D �0 is one of two solutions of
the equation L.�; �0/ D 0. Consider two cases:

(i) If �0 is the larger solution. In other words, �0 is larger than the x-coordinate of
the vertex, i.e. �0 > Q� . In this case, L.�; �0/ � 0 for any � � �0 with equality
iff � D �0.

(ii) If �0 is the smaller solution. Then the “positive” part of parabola (i.e. f� W
L.�; �0/ > 0g) is in the set f� W � > �0g and maximum is attained at � D Q� .

To summarize, we conclude that

T2 D sup
�>�0

L.�; �0/ D
(

nj Q� � �0j2=2�2 if Q� � �0;

0 otherwise:

2. By the definition of the power function,

ˇ1.�/
defD 1 � E� I fT1 > t1˛g D P� .T1 � t1˛/

D P�

�

nj Q� � �0j2=2�2 � t1˛

	

D P�

 

�0 � �

r

2t1˛

n
< Q� < �0 C �

r

2t1˛

n

!

Note that 

defD p

n��1. Q� � �/ is standard normal under P� . This yields
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ˇ1.�/ D P�

�p
n.�0 � �/

�
�
p

2t1˛ < 
 <

p
n.�0 � �/
�

C
p

2t1˛

�

D ˆ

�p
n.�0 � �/

�
C
p

2t1˛

�

�ˆ
� p

n.�0 � �/

�
�
p

2t1˛

�

Computation of the power function for the test �2 follows the same lines:

ˇ2.�/ D P�

�

n

�2

� Q� � �0

	2

=2 � t2˛

�

D P�

 

Q� < �0 C �

r

2t1˛

n

!

D P�

�


 <

p
n.�0 � �/

�
C
p

2t1˛

�

D ˆ

� p
n.�0 � �/

�
C
p

2t1˛

�

:

Exercise 6.7. Consider the volatility model with a natural parameter �:

Y D 
2; 
 � N.0; �/

(see Exercise 2.19). Observe an i.i.d. sample fYigniD1 with n D 10 and suppose that
Pn

iD1 Yi D 8.

(i) Draw a plot of the function f .�/ D K.�; �0/ for a natural parameter � and
�0 D 1. Visually check that for every � the set

f� W K.�; 1/ � �g

is a connected subset of R.
(ii) Change the parameter to the canonical parameter, v D v.�/ D �.2�/�1. Draw

the similar plot for the canonical parameter v, g.v/ D Kfv; v.1/g and visually
check that the set

Œ� W K.v; v.1// � ��

is not a connected subset for some v.

(i) From Exercise 2.19, we know that

p.y; �/ D 1

2
p
2�y

exp

�

� y

2�
� 1

2
log �

�

:
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Fig. 6.2 The plot y D f .�/. MSEklnatparam

Hence

L.�/ D
n
X

iD1
logp.Yi ; �/ D �

Pn
iD1 Yi
2�

� n

2
log � �

n
X

iD1
log

�

2
p

2�Yi

	

and

K.�; 1/ D L.�/ � L.1/

n
D �

Pn
iD1 Yi
2n

�

1

�
� 1

�

� 1

2
log �:

Substituting the values for n and
P

Yi yields

f .�/ D �0:4��1 � 0:5 log � C 0:4:

The graph of the function f .�/ is given in Fig. 6.2. It is clear that the set

f� W f .�/ � �g

is an interval .0; ��/ for some �� > 0.
(ii) Since v.�/ D �.2�/�1; the inverse transform is �.v/ D �.2v/�1.

L.v/ D v

n
X

iD1
Yi � n

2
log

�

� 1

2v

�

�
n
X

iD1
log

�

2
p

2�Yi
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K

�

v;�1
2

�

D 1

n

�

v C 1

2

� n
X

iD1
Yi � 1

2
log

�

� 1

2v

�

Note that

g.v/ D f f�.v/g D f

�

� 1

2v

�

D 0:8v � 0:5 log

�

� 1

2v

�

C 0:4:

The graph is given on the Fig. 6.3. It’s easy to see that for any � 2 .0; 1/ the set

fv W g.v/ � �g

is disconnected.

Exercise 6.8. This exercise is an illustration of Lemma 8.4.5.
Consider the model from the previous exercise (a volatility model with a natural

parameter �). Denote by Q� the MLE of � .

(i) Prove that for any �0 2 R and any t 2 R, a function

g.�/
defD P�

� Q� > �0 C t
	

is a monotone increasing function on R.
(ii) Draw a plot of the function g.�/ for �0 D 1; t D 0; n D 10.

(i) In this exercise, we are faced with an exponential family. Parameter � is a
natural parameter (see Exercise 5.5). According to Theorem 2:11:3, the MLE
is equal to
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Q� D 1

n

n
X

iD1
Yi :

Note that a random variable �
defD ��1Pn

iD1 Yi has a chi-squared distribution
with n degrees of freedom; denote the distribution function byGn. We conclude
that

g.�/ D P

�

�

n
� > �0 C t

�

D 1 �Gn
nn

�
.�0 C t/

o

;

and the monotonicity of the function g is proven.
(ii) In this case, g.�/ D 1 �G10.10=�/ (Fig. 6.4).

Exercise 6.9. Let .P� / be an EFn.

(i) Prove that the ˛ -level LR test for the null H0 W � 2 Œ�0; �1� against the
alternative H1 W � 62 Œ�0; �1� can be written as

� D 1. Q� < �0 � t �̨/C 1. Q� > �1 C tC̨/; (6.7)

where tC̨ and t �̨ are selected to ensure
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sup
�0<�<�1

P� .� D 1/ � ˛: (6.8)

(ii) Let the values tC̨; t �̨ be selected to ensure

P�0
� Q� < �0 � t �̨

� D ˛=2; P�1
� Q� > �1 C tC̨

� D ˛=2:

Prove that the level condition (6.8) is fulfilled in this case.

(i) The LR test is defined as the test in the form 1.T > t˛/, where

T
defD sup

� 62Œ�0;�1�
L.�/ � sup

�2Œ�0;�1�
L.�/:

In order to describe the behavior of the functionL, one takes the first derivative
of it:

L.�/ D SC.�/ � nB.�/C
X

i

logp.Yi /;

dL

d�
D n. Q� � �/C 0.�/;

where S D P

i Yi and Q� D S=n. This and C 0.�/ D I.�/ > 0 yield that
the function L.�/ monotone increase on the interval .�1; Q�� and monotone
decrease on Œ Q�;C1/. We conclude that

T D

8

ˆ
ˆ
<

ˆ
ˆ
:

L. Q�/� L.�0/; if Q� � �0,

max fL.�0/; L.�1/g � L. Q�/; if �0 < Q� < �1,
L. Q�/� L.�1/; if Q� � �1.

Note that if �0 < Q� < �1 then T < 0. Thus, a random set .T > t˛/ for positive
t˛ is equal to

B˛. Q�/ D
n

.L. Q�; �0/ > t˛/ \ . Q� � �0/
o

[
n

.L. Q�; �1/ > t˛/\ . Q� � �1/
o

:

Below we aim to show that there exist some positive numbers tC̨ and t �̨ such
that

n

.L. Q�; �0/ > t˛/ \ . Q� � �0/
o

D
� Q� < �0 � t �̨

	

; (6.9)

n

.L. Q�; �1/ > t˛/ \ . Q� � �1/
o

D
� Q� > �1 C tC̨

	

: (6.10)
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Fig. 6.5 The plot of Q� < �0 � t�˛ . MSEEX0711

Let us concentrate on the first equality. Note that L. Q�; �0/ D nK. Q�; �0/. For
an exponential family, the Kullback-Leibler divergence K.�; �0/ is a monotone
increasing continuous function with respect to the first argument:

@K.�; �0/

@�
D @

@�
Œ� fC.�/ � C.�0/g � fB.�/ � B.�0/g� D C.�/� C.�0/ > 0;

because C 0.�/ D I.�/ > 0.
Thus, the equality (6.9) is true, and the form of (6.7) of the LR test is proved.

An illustration is given in the Fig. 6.5.
The values t �̨ and tC̨ should be selected to ensure the condition

sup
�0<�<�1

E�� D ˛:

The next exercise suggests a way to select these values.
(ii) We aim to show that for any �0 < � < �1

P�
� Q� < �0 � t �̨

� � P�0
� Q� < �0 � t �̨�; (6.11)

P�
� Q� > �1 C tC̨

� � P�1
� Q� > �1 C tC̨

�

: (6.12)
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The second inequality is proved in Lemma 8.4.5. The first one can be proved
analogously. In fact, for any P� – measurable set A

P� .A/ D
Z

1.A/dP� D
Z

1.A/
dP�

dP�0
dP�0 D E�0 exp

˚

L.�; �0/



1.A/:

Function L.�/ monotone decrease on f� W � > Q�g (it was shown above). Thus,
L.�; �0/ D L.�/ �L.�0/ < 0 for any �; �0 such that Q� < �0 < � , and

P�
� Q� < �0 � t �̨� D E�0 exp

˚

L.�; �0/



1
� Q� < �0 � t �̨� < P�0

� Q� < �0 � t �̨
�

;

and the second inequality (6.11) is proved. The observation

Œc� sup
�0<�<�1

P� .� D 1/ � sup
�0<�<�1

P� . Q� < �0 � t�˛ /C sup
�0<�<�1

P� . Q� > �1 C tC˛ / (6.13)

D P�0

� Q� < �0 � t�˛
�C P�1

� Q� > �1 C tC˛
�

(6.14)

completes the proof.

Exercise 6.10. Consider the time series of weekly DAX returns from Jan 1, 2000 to
Dec. 31, 2011. Does the volatility remain constant during this sample period? To
test this hypothesis, divide the 12 years data into 3 periods:

• Period 1: Jan. 1, 2000 to Dec. 31, 2003;
• Period 2: Jan. 1, 2004 to Dec. 31, 2007;
• Period 3: Jan. 1, 2008 to Dec. 31, 2011.

Denote the variance of the DAX return in period i as �2i . Please do the following
hypothesis tests:

1. H0 W �21 D �22 :

2. H0 W �22 D �23 :

3. H0 W �21 D �23 :

First we take a look at the data as Fig. 6.6. This 11 years DAX return has
large volatility clusters between 2000 and 2001, 2003–2004 and 2009–2010. We
compute the standard deviations for the three periods: first period 0.0431, second
period 0.0213 and third period 0.0401. We expect that the volatility (variance) is
nonstationary over time.
We test the three null hypotheses by applying F-test on this return time series. For
the first hypothesis, the p-value is less than 0.0001, and therefore we reject the first
hypothesis. It is similar for the second hypothesis. The third test has p-value 0.2962.
This suggests that we cannot reject that the volatility of the period 1 is equal to that
of the period 3.

Exercise 6.11. LetX D fXigniD1 be i.i.d.B.�/. Consider the hypothesisH0 W �0 D
1=2 against the alternative H1 W �1 D 1=3. Let for simplicity n D 2 .
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Fig. 6.6 The plot of DAX returns from 20,000,103 to 20,111,227. MSEDAXre

(i) Give the explicit formula for the Neyman-Pearson test with the probability of
the error of the first kind equal to ˛ D 0:25 .

(ii) Provide an example of the weighted sum of the errors of the first and second
kind that is minimized in the class of all possible tests by the Neyman-Pearson
test.

(iii) Over which set of tests the Neyman-Pearson test has the largest power?

(i) For one observation Xi from the Bernoulli sequence,

P� .Xi D x/ D .1 � �/1�x�x; x 2 f0; 1g; i D 1; : : : ; n:

Therefore, with Z.x/ being the likelihood ratio:

logZ.X / D log

Qn
iD1P�1 .X D xi /

Qn
iD1P�0 .X D xi /

D
n
X

iD1
log
n

.1 � �1/
1�xi �xi1

o

�
n
X

iD1
log
n

.1 � �0/1�xi �xi0
o

D
n
X

iD1
xi log

�1

�0
C

n
X

iD1
.1 � xi / log

1 � �1
1 � �0 (6.15)

Substituting the values for �0 , �1 , n , and considering all possible values of
X1 and X2 , we conclude that logZ.X / has the following distribution under
the hypothesis H0 (from (6.15))
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logZ.X / D
8

<

:

2 log.2/� 2 log.3/; with probability 1=4
3 log.2/� 2 log.3/; with probability 1=2
4 log.2/� 2 log.3/; with probability 1=4:

So, the equation

P�0 flogZ.X/ � t˛g D ˛

has for ˛ D 1=4 a solution t˛ D 4 log.2/ � 2 log.3/ . Since, the Neyman-

Pearson test with the error of the first kind equal to 1=4 has the form �� defD
I flogZ.X / � 4 log.2/� 2 log.3/g .

(ii) By Theorem 6.2.1 (Spokoiny and Dickhaus, 2014), the Neyman-Pearson test
minimizes the sum

�0E�0� C �1E�1 .1 � �/

over all possible (randomized) tests � , if t˛ D �0=�1 . Hence, the Neyman-
Pearson test �� minimizes the sum for all pairs of coefficients in the form
.�0; �1/ D .a; a= f4 log.2/� 2 log.3/g ; a > 0 .

(iii) The answer for this question follows directly from Theorem 6.2.2 (Spokoiny
and Dickhaus, 2014): the Neyman-Pearson test has the largest power over all
tests under the level constraint E�0� � 1=4 .

Exercise 6.12. Let X D fXigniD1 be a Bernoulli sequence of zeros and ones with a
probability of success equal to � . Consider two functions of the observations X :

T .1/
defD minfk D 1; : : : ; n W Xk D 1gI T .2/

defD
n
X

iD1
Xi :

(i) Consider the simple hypothesis H0 W � D �0 against the simple alternative
H1 W � D �1. Construct the tests (of a fixed level ˛ ) in the form

I
n

T .j / � t
.j /
˛

o

with some t .j /˛ ( j D 1; 2 ).

(ii) Find the power of T .1/ and T .2/ . Check empirically that the power of the
Neyman-Pearson test is larger than the power of these tests.

(i) First note that for any natural m ,

P�
˚

T .1/ � m

 D P� fX1 D 0;X2 D 0; : : : ; Xm�1 D 0g

D .1 � �/m�1 : (6.16)

Since the critical value t .j /˛ is the solution of the equation

P�0
˚

T .1/ � m

 � ˛;
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let dae denote the smallest integer greater than or equal to a, it is equal to

t .1/˛ D dlog1��0.˛/C 1e:

The critical value t .2/˛ for the test statistic T .2/ is equal to the solution of
the equation

P�0
˚

T .2/ � m

 D

n
X

iDm
Cm
n �

i
0.1 � �0/n�i D ˛

w.r.t. m .
(ii) According to the formula (6.16), the power for the first test is equal to

W .1/ D P�1
˚

T .1/ � t .1/˛

 D .1 � �1/dlog1��0 .˛/C1e :

The power for the second test can be found from the formula

W .2/ D P�1
˚

T .2/ > t.2/˛

 D

n
X

iDm
C t

.2/
˛
n � i1.1 � �1/n�i D ˛:

Exercise 6.13. LetX D fXigniD1 be an i.i.d. sample from a model of Gaussian shift
N.�; �2/. Consider three hypothesis testing problems:

(i) � is known; the aim is to test the hypothesis H.0/

� W � D �0 against the

alternative H.1/

� W � D �1 , where �1 ¤ �0 ;

(ii) � is known; the aim is to test the hypothesis H.0/
� W � D �0 against the

alternative H.1/
� W � D �1 , where �1 ¤ �0 ;

(iii) Both � and � are unknown; the aim is to test the hypothesis H.0/

�;� W � D
�0; � D �0 against the alternative H

.1/

�;� W � D �1; � D �1 , where �1 ¤
�0; �1 ¤ �0 .

Describe the likelihood ratio test for the first and the second situation. Why it is
difficult to find the closed form of the likelihood ratio test in the third case?

(i) The first situation is described in Chap. 6.3.1 from the book by Spokoiny and
Dickhaus (2014). The likelihood ratio is equal to

T .1/ D L.X ; �1; �/ � L.X ; �0; �/

D ��2˚.S � n�0/.�1 � �0/ � n.�1 � �0/
2=2




; (6.17)

where S D Pn
iD1 Xi . The likelihood ratio test has the form:

�.1/ D I
˚

T .1/ � z.1/˛



;
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where the critical value z
.1/
˛ can be selected from:

P�0
˚

T .1/ � z.1/˛

 D ˛: (6.18)

Since the sum S � n�0 has under H0 a normal distribution N.0; n�2/, we
conclude that (6.18) can be rewritten as

P�0

�


 � 1

.�1 � �0/ �
p
n

˚

�2z.1/˛ C n.�1 � �0/
2=2




�

D ˛;

where 
 D .S � n�0/=
p
n�2 has a standard normal distribution (here we

assume for simplicity than �1 > �0 ). Denote an .1 � ˛/ -quantile of the
standard normal law by z1�˛ , i.e., P.
 � z1�˛/ D ˛ . Therefore the critical
value can be found from the equation

1

.�1 � �0/ �
p
n

˚

�2z.1/˛ C n .�1 � �0/
2 =2


 D z1�˛: (6.19)

Finally, we conclude that the likelihood ratio test has the form

�.1/ D I
n

T .1/ � ��2�z˛�
p
n .�1 � �0/� n .�1 � �0/2 =2

�
o

:

(ii) In the second case, we follow the same lines. The likelihood ratio has the form:

T .2/ D L.X ; �; �1/ �L.X ; �; �0/

D n log

�

�0

�1

�

� 1

2

�

1

�21
� 1

�20

� n
X

iD1
.Xi � �/2 ; (6.20)

and the corresponding test can be found as

�.2/ D I
˚

T .2/ � z.2/˛



:

Taking into account that under the hypothesis H0
� , the random variable

��2
0

Pn
iD1 .Xi � �/2 has a 	 -squared distribution with n degrees of freedom,

denoting by w1�˛ the .1 � ˛/ -quantile of this distribution and assuming (for
simplicity) that �1 > �2 , we arrive at the following expression for the critical
value z

.2/
˛ :

z.2/˛ D n log

�

�0

�1

�

� 1

2

�

�20
�21

� 1
�

w1�˛: (6.21)

(iii) The likelihood ration in this case is equal to
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T .3/
defD n log

�

�0

�1

�

� 1

2�21

n
X

iD1
.Xi � �1/

2 C 1

2�20

n
X

iD1
.Xi � �0/2 :

The likelihood ratio test cannot be written in closed form, because the
distribution of T .3/ and therefore the quantiles of T .3/ are hardly ever known.

Exercise 6.14. LetX D fXigniD1 be an i.i.d. sample from a model of Gaussian shift
N.�; �2/. Consider the hypothesis H0 W � D �0 against the alternative H1 W � ¤
�0 if

(i) � is known;
(ii) � is unknown.

Describe the likelihood-ratio tests in both situations.

(i) The test statistic is equal to

T
defD sup

�¤�0
L.X ; �; �/ � L.X ; �; �0/ D L.X ; �; Q�/ �L.X ; �; �0/

D n log
��0

Q�
	

� 1

2

�

1

Q�2 � 1

�20

� n
X

iD1
.Xi � �/2 ;

where Q�2 defD n�1Pn
iD1 .Xi � �/2 . In order to find the critical value for the test

statistic T , note that

(a) since � is a natural parameter for this model (see Exercise 2.19),

T D nK. Q�; �0/I

(b) Lemma 6.4.1 (Spokoiny and Dickhaus, 2014) yields that for every � there
are two values ��̨ and �C̨ such that

f� W K.�; �0/ < �g D f� W �0 � ��̨ < � < �0 C �C̨g: (6.22)

From here it follows that

I .T � t˛/ D I .K. Q�; �0/ � t˛=n/ D I
� Q� � �0 � t �̨;n

�C I
� Q� � �0 C tC̨;n

�

;

where the values t �̨;n and tC̨;n , which depend on ˛ and n , can be found from
the level condition:

P�0 .T � t˛/ D P�0
� Q� � �0 � t �̨;n

�C P�0
� Q� � �0 C tC̨;n

� D ˛: (6.23)

Taking into account that n Q�2=�20 has a chi-squared distribution with n degrees
of freedom (under the hypothesis H0 ), we conclude that the values
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t �̨;n D �0

�

1 �
r

z˛=2
n

�

; tC̨;n D �0

�r

z1�˛=2
n

� 1
�

(6.24)

satisfy (6.23), where be zq we denote the q -quantile of the chi-square
distribution with n degrees of freedom.

(ii) The second case can be viewed as a mirror situation to the paragraph 6.3.3
(Spokoiny and Dickhaus, 2014), where it is discussed the procedure for testing
the mean when the variance is unknown. In our case,

T � D sup
�;�

L.�; �/ � sup
�

L.�; �0/ D L. Q�; Q��/� L. Q�; �0/;

where

Q� D n�1
n
X

iD1
Xi and Q�� D

v

u

u

tn�1
n
X

iD1

�

Xi � Q�
	2

:

Therefore,

T � D n log
� �0

Q��
	

� 1

2

�

1

Q��2 � 1

�20

� n
X

iD1

�

Xi � Q�
	2 D nK. Q��; �0/;

and the arguments (a) and (b) from (i) can be applied to this situation also. A
unique difference is that the estimate n Q��2=�20 has a chi-square distribution
with .n � 1/ degrees of freedom. This leads to the critical values as in (6.27),
where by z is denoted the quantiles of the chi-square distribution with n � 1

degrees of freedom.

Exercise 6.15. (This exercise is motivated by Dudewicz and Mishra (1988)) Let
X D fXigniD1 be an i.i.d. sample from a model of Gaussian shift N.�; �2/, where �
and � are both unknown; the parameter of interest is � . Consider the hypothesis
H0 W � D �0 against the alternative H1 W � D �1 , where �1 > �0 . Prove that no
test of level ˛ has power larger than ˛ .

First note that the Neyman-Pearson test for a known � can be written as

�.X/ D I
˚

X � t˛

 D I

˚

X � �0 C �z1�˛=
p
n



;

see Exercise 6.13 (i). So, this test coincides with the test from Exercise 6.1 (i), and
therefore the power of � is equal to

W.�1/ D 1 �ˆ

�

z1�˛ �
p
n.�0 � �1/
�

�

;
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see Exercise 6.1 (ii). This yields that

W.�1/ D 1 �ˆ
�

ˆ�1 .1 � ˛/ �
p
n.�0 � �1/
�

�

> ˛:

Turning to the case of unknown � , note that the power of any test of level ˛ cannot
exceed the power of the Neymann-Pearson test (see Theorem 6.2.2 from Spokoiny
and Dickhaus, 2014). The remark inf� W.�1/ D ˛ completes the proof.

Exercise 6.16 (This exercise is motivated by Dudewicz and Mishra (1988)). In
the setup of the previous exercise, assume that the number of observations n can be
taken large enough. Consider the following two-stage procedure.
The first step. Fix some m > 1 and estimate the mean and the variance

of the sample fXigmiD1 by

Xm D 1

m

m
X

iD1
Xi ; O�2m D 1

m

m
X

iD1

�

Xi �Xm

�2
:

The second step. Fix some � > 1 , calculate

n D n. O�m/ defD max
˚

mC 1;
�

� O�2m
�


(6.25)

and estimate the mean of the subsample fXigniDmC1 by

Xn�m D 1

n �m

n
X

iDmC1
Xi :

Next, calculate the weighted sum of the means

QXm;n defD wXm C .1 � w/Xn�m;

where

w D w. O�m/ defD m

n

(

1C
s

1 � m

n

�

1 � n �m

� O�2m

�
)

: (6.26)

(i) Show that under H0 the random value
p
�
� QXm;n � �0

�

has t-distribution with
m � 1 degrees of freedom.

(ii) For any fixed ˛; ˇ 2 .0; 1/ , find the values t˛ and � such that the test
I
˚ QXm;n � t˛




has level ˛ and power ˇ .

(i) Consider the random variable
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U D
Pn

iD1 ai . O�m/ Xi � �0
O�m
q

Pn
iD1 fai . O�m/g2

;

where a1. O�m/ D : : : D am. O�m/ D w. O�m/ and amC1. O�m/ D : : : D an. O�m/ D
1 � w. O�m/ . By direct calculation, it follows that the choice of w in (6.26)
guarantees

O�m
v

u

u

t

n
X

iD1
.ai . O�m//2 D O�m

q

m fw. O�m/g2 C .n �m/ f1 � w. O�m/g2 D ��1:

Recall that the random variable



defD m

O�2m
�2

has a chi-squared distribution with m�1 degrees of freedom and is independent
of Xm . The first fact yields that the distribution function of U allows the
following representation:

P .U � u/ D
Z 1

0

P

8

ˆ
<

ˆ
:

Pn.s/
iD1 ai .s/Xi � �0

�

q

Pn.s/
iD1 .ai .s//

2

�
p
vup
m

j 
 D v

9

>
=

>
;

p	2m�1
.v/dv;

where by p	2m�1
.v/ we denote the density function of the chi-squared distribu-

tion with m�1 degrees of freedom and s D O�m D p
v�=

p
m . Since Xm and


 are independent, the sum

n.s/
X

iD1
ai .s/Xi D w.s/mXm C .1 � w.s//

n
X

iDmC1
Xi

is also independent of 
 . This gives

P .U � u/ D
Z 1

0

P

8

ˆ
<

ˆ
:

Pn.s/
iD1 ai .s/Xi � �0

�

q

Pn.s/
iD1 fai .s/g2

�
p
vup
m

9

>
=

>
;

p	2m�1
.v/dv

D
Z 1

0

ˆ

�p
vup
m

�

p	2m�1
.v/dv:

The calculation of the last integral is straightforward and remains to the reader.
(ii) The error of the first kind is equal to
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˛ D P�0
� QXm;n � t˛

� D P�0

np
�
� QXm;n � �0

� �
p
� .t˛ � �0/

o

:

Therefore,

t˛ D z1�˛p
�

C �0; (6.27)

where z1�˛ is a .1 � ˛/ -quantile of the chi-squared distribution with .n � 1/
degrees of freedom.

Next, the power of this test is equal to

ˇ D P�1
� QXm;n � t˛

� D P�1

np
�
� QXm;n � �1

� �
p
� .t˛ � �1/

o

D P�1

�p
�
� QXm;n � �1

� �
p
�

�

z1�˛p
�

C �0 � �1
��

:

This yields that

� D
�

z1�ˇ � z1�˛
�0 � �1

�2

: (6.28)

So, the test I
˚ QXm;n � t˛




, where t˛ in the form (6.27) and n is chosen from
(6.25) with � in the form (6.28), has the level ˛ and power ˇ .

Exercise 6.17. (from Pestman and Alberink, 1991) Let X D fXigmiD1 and Y D
fYigniD1 be two i.i.d. samples from N.�X ; �

2/ and N.�Y ; �
2/ respectively, where

�X; �Y ; � are unknown. Construct the likelihood-ratio test to check the hypothesis
H0 W �Y � �X D � against the alternative H1 W �Y � �X ¤ � , where � is fixed.

1. By the definition of the Likelihood-ratio test (see Spokoiny and Dickhaus, 2014,
Sect. 6.3), the statistic is equal to

T
defD I2 � I1;

where

I1
defD sup

�X ;�Y ;�
�Y ��XD�

fL.X ; �X ; �/C L.Y ; �Y ; �/g ;

I2
defD sup

�X ;�Y ;�
�Y ��X¤�

fL.X ; �X ; �/C L.Y ; �Y ; �/g :

It is worth mentioning that one can omit the condition �Y ��X ¤ � in the latter
supremum.
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2. Next, we aim to find the explicit form for the value I1 . By the Lagrange theorem,
the supremum in L1 can be found by solving the maximization task

F.�X ; �Y ; �; �/
defD L.X ; �X ; �/C L.Y ; �Y ; �/C � .�Y � �X ��/ ! max

�X ;�Y ;�;�
;

where � 2 R . Taking into account that

F.�X; �Y ; �; �/ D �1
2
.mCn/ log.2��2/� 1

2�2

(

m
X

iD1
.Xi � �X/

2 C
n
X

iD1
.Yi � �Y /

2

)

C � .�Y � �X ��/ ;

we calculate the first derivatives of the function F and consider the equation
rF D 0 :

8

ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
<

ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
:

0 D @F

@�X
D 1

�2

m
X

iD1
.Xi � �X/� �;

0 D @F

@�Y
D 1

�2

m
X

iD1
.Yi � �Y /C �;

0 D @F

@�
D �mC n

�
C 1

�3

(

m
X

iD1
.Xi � �X/2 C

n
X

iD1
.Yi � �Y /2

)

;

0 D @F

@�
D �Y � �X ��:

From the first two equations, it follows that

m
X

iD1
.Xi � �X/C

n
X

iD1
.Yi � �Y / D 0:

Together with the fourth equation, this gives

O�X D mX C nY � n�
mC n

; O�Y D mX C nY Cm�

mC n
: (6.29)

The third equation yields that

O�2 D 1

mC n

(

m
X

iD1

�

Xi � O�X
	2 C

n
X

iD1

�

Yi � O�Y
	2

)

: (6.30)

Substituting (6.29) into the last expression, we get
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O�2 D 1

mC n

8

<

:

m
X

iD1

 

Xi � mX C nY � n�
mC n

!2

C

n
X

iD1

 

Yi � mX C nY Cm�

mC n

!2
9

=

;

: (6.31)

This expression can be simplified. In fact,

m
X

iD1

 

Xi � mX C nY � n�
mC n

!2

D
m
X

iD1

(

�

Xi �X�C
 

X � mX C nY � n�
mC n

!) 2

D
m
X

iD1

�

Xi �X�2 Cmn2

 

Y �X ��
mC n

!2

;

n
X

iD1

 

Yi � mX C nY Cm�

mC n

!2

D
n
X

iD1

�

Yi � Y �2 Cm2n

 

Y �X ��
mC n

!2

:

Substituting the last expression in (6.31), we arrive at

O�2 D m O�2X C n O�2Y
mC n

Cmn

 

Y � X ��

mC n

!2

; (6.32)

where by O�2X and O�2Y we denote the estimated variances for the first and second
samples correspondingly. Finally, using the representations (6.30), we conclude
that

I1 D �1
2
.mC n/ log.2� O�2/� 1

2 O�2

(

m
X

iD1

�

Xi � O�X
	2 C

n
X

iD1

�

Yi � O�Y
	2

)

D �1
2
.mC n/ log.2�e O�2/;

where O�2 is given by (6.32).
3. The next step is to maximize

L.X ; �X ; �/C L.Y ; �Y ; �/

D �1
2
.mC n/ log.2��2/� 1

2�2

(

m
X

iD1
.Xi � �X/2 C

n
X

iD1
.Yi � �Y /2

)
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with respect to .�X; �Y ; �/ 2 R2 � RC . This maximization is straightforward;
the maximum is attained at the point

� Q�X; Q�Y ; Q�2
	

defD �

X; Y ;
�

m O�2X C n O�2Y
�

=.mC n/
�

and is equal to

I2 D �1
2
.mC n/ log.2�e Q�2/:

4. To complete the solution, we note that

T D I2 � I1 D �1
2
.mC n/ log

� Q�2
O�2
�

D 1

2
.mC n/ log

 

1C nm

nCm

�

Y �X ���2
m O�2X C n O�2Y

!

:

Exercise 6.18. Given the S&P 500 index quarterly log returns from Q2 1980 to
Q2 2012, which are assumed to be normally distributed with mean � and standard
deviation � . Consider two hypothesis testing problems:

(i) � D 8:03% (�yearly D 16%) is known; test the null hypothesis H.0/

� W �0 D
1% against the alternative H.1/

� W �1 D 4% ;

(ii) � D 1:97% (�yearly D 8:11%) is known; test the null hypothesis H.0/
� W �0 D

5% against the alternative H.1/
� W �1 D 10% ;

Perform the likelihood ratio test as given in Exercise 6.13 for the above cases
with 5 % significance level.

(i) The time series plot for the S&P 500 index quarterly log returns is shown in
Fig. (6.7), where log returns are equal to logSt – logSt�1, with St is the S&P
500 index at time t . The QQ plot presented in Fig. (6.8) shows that the log-
return series is approximately normally distributed.

The likelihood ratio (under normality assumption) is given by Eq. (6.17).
Inserting given values S D Pn

iD1 Xi D 2:52, � D 8%, �0 D 1%, �1 D 4%,
˛ D 5% and n D 128, we calculate:

T .1/ D �3:15:

The likelihood ratio test for significance level ˛ has the form:

�.1/ D I
˚

T .1/ � z.1/˛



;
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Fig. 6.7 Plot of S&P 500 index quarterly log-returns during the period Q2 1980–Q2 2012.
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Fig. 6.8 QQ-plot for S&P index quarterly log-returns during the period Q2 1980–Q2 2012.
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where the critical value z
.1/
˛ can be obtained from Eq. (6.19). For given

significance level ˛ D 5%, the z-value from the standard normal table is equal
to z95% D 1:65. Inserting other inputs, the critical value is calculated equal to
z
.1/
5% D �1:97. Since T .1/ is not greater than z

.1/
5%, the null hypothesis cannot be

not rejected. Thus,

�.1/ D I
n

T .1/ � z
.1/
5%

o

D 0:
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(ii) Here we follow the same procedure as in (i), the likelihood ratio is given by
Eq. (6.20) is calculated equal to:

T .2/ D 34:2;

where � D 2%, �0 D 5%, �1 D 10%, ˛ D 5% and n D 128. The
corresponding likelihood ratio test is given as:

�.2/ D I
˚

T .2/ � z.2/˛



:

The critical value z
.1/
˛ can be obtained from the Eq. (6.21). Given degrees of

freedom n D 128 , ˛ D 5% and using 	2 -squared distribution table w95% D
155:4 . We calculate the critical value z

.2/
5% D �30:45 . Here T .2/ is greater than

z
.2/
5%, therefore we reject the null hypothesis,

�.2/ D I
n

T .2/ � z
.2/
5%

o

D 1:
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Chapter 7
Testing in Linear Models

A tong is made from a tong.
Pirkey Avot

Exercise 7.1. Consider the model:

Y D f C "

with the vector of observationsY , response vectorf , and vector of mean zero errors
" 2 Rn.

Parametrize the mean of Y as:

f D ‰>�� ; �� 2 R
p

with iid errors " D ."1; : : : ; "n/
> with covariance matrix In. The MLE Q� of �� is

Q� D �

‰‰>��1‰Y .
Define the estimated response as:

Qf D ‰> Q�

and note that Qf D ˘Y D ˘.f C "/ where ˘ D ‰>�‰‰>��1‰ is a projector

into the column space of ‰. Define RSS
defD kY �‰> Q�k2, and note that

RSS0
defD kY � f 0k2
D kY �‰>��k2 D RSS Ck Qf � f 0k2

W.K. Härdle et al., Basics of Modern Mathematical Statistics, Springer Texts in Statistics,
DOI 10.1007/978-3-642-36850-9__7, © Springer-Verlag Berlin Heidelberg 2014
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Estimate �2 by:

Q�2 D 1

n � p RSS D 1

n � p
kY �‰> Q�k2 (7.1)

Show that, Q�2 is an unbiased,
p
n consistent estimate of �2:

E Q�2 D �2; Var Q�2 D 2

n � p
�4 (7.2)

Note that ��2kQ"k2 D ��2kY � Qf k2 � 	2n�p yielding

E Q�2 D .n � p/�1ERSS
D .n � p/�1EkY � Qf k2
D .n � p/�1�2.n � p/ D �2

Recall that for V � 	2d , Var.V / D 2d . Putting V D ��2kY � Qf k2 we see that
Var.V / D 2.n� p/ and therefore from (7.1):

Var. Q�2/ D .n � p/�2�42.n� p/ D 2�4=.n� p/:

The estimator Q�2 is
p
n consistent if

p
n. Q�2 � �2/ DOp.1/. Using (7.2) one obtains:

P.
p
n
ˇ

ˇ Q�2 � �2
ˇ

ˇ > z/ � Var.
p
n Q�2/

z2
D 2n�4

.n � p/z2

This yields
p
n consistency by setting z ! 1

Exercise 7.2. Consider the model:

Y D f C ": (7.3)

with " � N.0; �2In/ for an unknown value �2 . If Fp;n�p.t˛/ D 1 � ˛ , and
Qz˛ D pt˛ , then the test Q� D 1. QT � Qz˛/ where

QT defD 1

2 Q�2




 Qf � f 0






2 D .n � p/





 Qf � f 0






2

2kY � Qf k2 D RSS0 � RSS

2RSS =.n � p/ : (7.4)

is an exact level-˛ test:

P�0
� Q� D 1

� D P�0
� QT � Qz˛

� D ˛
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Observe that the event
˚ QT � Qz˛




is equivalent to the event
˚

p�1 QT � t˛



. Note also
that p�1 QT � Fp;n�p and therefore

P
�

p�1 QT � t˛
� D ˛:

which was to be demonstrated.

Exercise 7.3. Consider the model (7.3) with " � N.0; �2In/ again with unknown
variance �2 . Take the critical value z˛ as P.�p > 2z˛/ D ˛, with �p � 	2p (the
known variance case) and define

M� D 1. QT � z˛/:

Show that M� is an asymptotic level ˛ test:

lim
n!1P�0

� M� D 1
� D ˛:

We know that from consistency of Q�2 D .n � p/�1kY � Qf k2, for all ı > 0

lim
n!1P

�ˇ

ˇ

Q�2
�2

� 1
ˇ

ˇ> "
� D 0: (7.5)

Define the event:

�
defD
�

ˇ

ˇ

Q�2
�2

� 1
ˇ

ˇ< "

�

With the definition of QT as in (7.4) we obtain:

ˇ

ˇP�0

n

f M� D 1g \ .� [�c/
o

� ˛ˇˇ � ˇ

ˇP�0

n

f M� D 1g \�
o

� ˛
ˇ

ˇ

C P�0 f�cg (7.6)

P�0

h

f M� D 1g \�
i

D
Z

f M�D1g\�
QT dP�0 (7.7)

Observe that by (7.5) the second term in (7.6) is negligible. We therefore concentrate
on the term (7.7).

Note that on �, we have with high probability

.1 � "/�2 � Q�2 � .1C "/�2

therefore (7.7) can be bounded from above:
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Z 1

z˛\�
1

2z2
k Qf � Qf 0k2 dP�0 � 1

1 � "
˛:

and from below by 1
1C"˛

Therefore (7.6) lies in the interval
�

.1 � 1

1C "
˛/;

�

1 � 1

1 � "

�

˛

�

Sending " ! 0 we obtain the desired result.

Exercise 7.4. Consider the model (7.3) with " � N.0; �2In/ with unknown
variance �2 . Recall the test statistic M� from Exercise 7.3. Show that

lim
n!1 sup

f

jP�0
� Q� D 1

� � P�0
� M� D 1

�j D 0: (7.8)

Since Q� is an exact test of level ˛ according to Exercise 7.2, the claim to prove is
that

sup
f

j˛ � P�0
� M� D 1

�j ! 0:

Observe that (7.7) holds independent of f , therefore the claim follows.

Exercise 7.5. Consider the model (7.3) with " � N.0; �2In/ for an unknown value
of �2 . Define

QT D .n � p/

 Qf � Qf 0






2

2kY � Qf k2 (7.9)

as in Chap. 7 of Spokoiny and Dickhaus (2014) where Qf � Qf 0 D .˘ �˘0/Y , and
˘0 is the projection on the subspace L0 spanned by the rows of ‰� .

It is evident that the numerator of (7.9) equals the rv z D 2.n � p/�1�2�p�p0 ,
�p�p0 � 	2p�p0 . The denominator is as seen before twice a 	2n�p rv.

Adjusting the scaling factor we see that we are actually looking at a ratio of
a 	2p�p0 and 	2n�p rv. This has evidently as Fp�p0;n�p distribution and proves the
claim.

Exercise 7.6. Consider a sequence of data generated from

f .t/ D �1 cos.!1t/C �1 sin.!1t/C �2 cos.!2t/C �2 sin.!2t/C "t ; (7.10)

where �1, �2, !1 and !2 are constants. "t � N.0; �2/ i.i.d. Suppose we have a data
set fytgntD1 generated from (7.10). Figure 7.1 illustrates the trajectory of yt .
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Fig. 7.1 A trajectory of yt . �1 D 2, �2 D 0:5, !1 D 0:04, !2 D 0:5 and � D 0:8. MSESpectral

1. Taking �1, �2 as unknown parameters, suggest a linear parametric model for
fyt gntD1 and justify your choice.

2. Suppose !1, !2 and �2 are known, propose a test for the null hypothesis H0 W
�1 D �2 D 0.

3. Suppose instead that !1, !2 are known but �2 is unknown, propose a test for the
null hypothesisH0 W �1 D �2 D 0.

1. Let � D .�1; �2/
>, we suggest the model

f�.t/ D �1 cos.!1t/C �1 sin.!1t/C �2 cos.!2t/C �2 sin.!2t/

D ‰>�:

where ‰ D .cos.!1t/C sin.!1t/; cos.!2t/C sin.!2t//>. It is clear that f�.t/ is
in a linear parametric form.

2. Let Y D .y1; y2; : : : ; yn/
>. H0 W �1 D �2 D 0 implies f0 D 0.

T D k Qf k2
2�2

D
Q�>‰‰ Q�
2�2

;

where Q� D .‰‰>/�1‰Y, because "t � N.0; �2/ i.i.d. The number of
parameters p D 2. The test is based on the exact distribution

2T � 	22:

3. Let Y and Qf be defined as in the last subexercise.

Q�2 D kY � Qf k2
n � 2

:
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The test statistics now becomes

QT D 1

2 Q�2 k Qf k2 D .n � 2/k‰ Q�k2
2kY �‰ Q�k2 :

For p�1 QT , we have the F-distribution

QT
p

� Fp;n�p:

Exercise 7.7. Consider the panel data model (Badi, 2008):

Yit D ˛ C‰itˇ C "it; i D 1; 
 
 
 ; N I t D 1; 
 
 
 ; T:
"it D �i C uit;

where �i stands for the unobservable individual effect, for instance, the ability. And
uit is the remaining disturbances with uit � .0; �2u /. Both fixed effects model and
random effects model are associated with the assumption of �i . For fixed effects
model we assume that �i is fixed, while for random effects model �i is random, i.e.
�i � .0; �2�/.

1. For fixed effects the matrix representation of the model is:

Y D ˛1NT C‰>ˇ C "; " D G�C u;

where G D IN
N

1T , rank.G/ D N . The fixed effects estimator can be denoted
by Ǒ

F . Let Ǒ
F D .‰Q‰>/�1‰QY , Q D INT � P , and P D G.G>G/�1G>.

Assume that QG D 0 and Q1NT D 0, show that Ǒ
F is unbiased.

2. The critical assumption of a random effects model is: strict exogeneity of all
regressors. The Hausman test helps us to test this assumption, where H0 :
E."j‰>/ D 0, against the alternative H1 W E."j‰>/ ¤ 0. The fixed effects
estimator Ǒ

F is consistent under H0 and H1, but not efficient under H0. The
random effects estimator can be denoted by Ǒ

R which is efficient, consistent and
asymptotically efficient under H0, but biased and inconsistent under H1. The
Hausman test statistic is as follows:

m D � Ǒ
R � Ǒ

F

�>
Cov

� Ǒ
R � Ǒ

F

��1� Ǒ
R � Ǒ

F

�

:

Check the asymptotic behavior of the test statistic under H0.
3. Use wages data which come from the website: http://www.wiley.com. Regress
lwages on all the regressors by using random effects model and fixed effects
model. Then perform the Hausman test, interpret the result.

http://www.wiley.com
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1.

E. Ǒ
F / D EŒ.‰Q‰>/�1‰QY �

D EŒ.‰Q‰>/�1‰Q.˛1NT C‰>ˇ CG�C u/�

D .‰Q‰>/�1‰Q‰>ˇ C .‰Q‰>/�1‰QEŒu�

D ˇ

2.

m
d�! 	2p:

and p is the number of elements in Ǒ.
3. From the result of Hausman test we can see that p-value is less than 2e�16 which

is statistically significant. Therefore H0 is rejected, i.e. there is a problem of
endogeneity. We should apply fixed effects model. MSEhausman

Exercise 7.8. Consider the model:

Yi D ‰>
i �

� C �i�i ; �i � N.0; 1/:

where ‰i D . 1.Xi /; : : : ;  p.Xi // and �� D .��
1 ; : : : ; �

�
p / are p � 1 vectors, �i

is a constant parameter, and Var.�i �i / D �2i . To test the heteroscedasticity of the
residuals we can apply the White test which is proposed by Halbert White in 1980.
The null hypothesisH0: �2 D �2i , against the alternative hypothesis H1: �2 ¤ �2i ,
for i D 1; 
 
 
 ; n. The procedure of the White test can be stated below:

Assume p D 2, our model can be written as:

Yi D ��
1  1.Xi/C ��

2  2.Xi/C �i�i

Then perform the ordinary least square regression. The residuals can be obtained by

ei D Yi � O�1 1.Xi/ � O�2 2.Xi/

Then we regress e2i on the regressors which include the original regressors,
the cross-products of the regressors and the squared regressors. This auxiliary
regression is as follows:

e2i D 
1 1.Xi/C 
2 
2
1 .Xi/C 
3 2.Xi/C 
4 

2
2 .Xi/C 
5 1.Xi/ 2.Xi/C ui

Then the White test statistics is as follows:

LM D n � R2
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where R2 comes from the auxiliary regression and is defined as follows:

R2 D SSR

SST
D 1 � SSE

SST

where SSR is the sum of squares of the regression, SSE is the error sum of squared,
and SST denotes the total sum of squares.

1. Check the asymptotic behavior of the test statistic under H0, and construct the
reject region at the critical value ˛ D 0:05

2. Use 2010 GSS data which coming from the website of The General Social Survey:
http://www3.norc.org/GSS+Website/ . Perform the White test and interpret the
result.

1.

LM � 	2q

where q denotes the degree of freedom equal to the number of estimated
parameters in the auxiliary regression, in our case q D 5. If LM > 	2q , H0 is
rejected.

2. From the result of White test we can see that p-value is 0:003385 which
is statistically significant. Therefore H0 is rejected, i.e. there is problem of
heteroscedasticity. MSEwhitetest
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Chapter 8
Some Other Testing Methods

Not he who begins but he who finishes is the master.

Exercise 8.1. Let X D .X1; : : : ; Xn/
> be an i.i.d. sample from an unknown

distribution P and X be a random variable with this distribution. Let a simple
hypothesis H0 be P D P0 for a given measure P0 .

Let the observation space (which is a subset of R1 ) be split into non-overlapping
subsets A1; : : : ; Ad . Define for j D 1; : : : ; d

�j .x/ D 1
�

x 2 Aj
�

;  j .x/ D 1

�j

˚

�j .x/ � pj



with

pj D P0.Aj / D
Z

Aj

P0.dx/ D E0�j .X/; �2j D pj .1 � pj /:

(i) Are these basis functions  i orthonormal under the measure P0?
(ii) Construct a test statistic Tn;d to test H0.

(i) Recall that basis functions are orthonormal under the measure P0 iff
Z

 j .x/P0.dx/ D 0;
Z

 j.x/ k.x/P0.dx/ D ıj;k; 8j; k;

W.K. Härdle et al., Basics of Modern Mathematical Statistics, Springer Texts in Statistics,
DOI 10.1007/978-3-642-36850-9__8, © Springer-Verlag Berlin Heidelberg 2014
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or, equivalently,

E0 j .X/ D 0; E0
˚

 j .X/ k.X/

 D ıj;k; 8j; k:

The first condition is fulfilled

E0 j .X/ D E0
1

�j

˚

�j .X/ � E0�j .X/

 D 0;

but the second one is violated for j ¤ k:

E0
˚

 j .X/ k.X/

 D 1

�j �k

h

E0
˚

�j .X/�k.X/



„ ƒ‚ …

D0
�E0

˚

�j .X/



„ ƒ‚ …

Dpj

E0
˚

�k.X/



„ ƒ‚ …

Dpk

i

D �pjpk
�j �k

¤ 0:

Hence the functions  j are not orthonormal.
(ii) The basic idea is to compare observed frequencies 1

�

Xi 2 Aj
�

with the
theoretical ones pj underH0. Direct calculations yield

Tn;d D n

d
X

jD1
M 2
j;n D n

d
X

jD1

n1

n

n
X

iD1
 j .Xi /

o2

D n

d
X

jD1

h 1

n

1

�j

n
X

iD1

˚

�j .Xi /� pj


i2

D n

d
X

jD1

"

1

�j

˚1

n

n
X

iD1
�j .Xi/ � pj




#2

D
d
X

jD1

n.�j;n � pj /2
�2j

;

where

�j;n D 1

n

n
X

iD1
�j .Xi/ D 1

n

n
X

iD1
1
�

Xi 2 Aj
�

; (8.1)

The statistic Tn;d results into the test:

�d D 1 .Tn;d > �˛/ ;

which is described in Chap. 8.1.1 of Spokoiny and Dickhaus (2014).
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Exercise 8.2. Using the CLT, prove that the statistic of the chi-square test converges
in law for d D 2 to a 	21 rv.

Note that (8.1) for d D 2

�2;n � p2 D 1

n

n
X

iD1
�2.Xi/ � p2 D 1

n

n
X

iD1
f1 � �1.Xi /g � .1 � p1/

D �1;n � p1:

The chi-square test (8.1) can now be represented as

T	 D n

2
X

jD1

.�j;n � pj /2
pj

D n .�1;n � p1/2
� 1

p1
C 1

p2

	

D
(
Pn

iD1 �i .Xj /� np1
p

np1.1 � p1/

) 2

;

and the statement of the exercise follows from the CLT. In fact, the rv
˚Pn

iD1 �i .Xj / � np1



=
p

np1.1 � p1/ converges in law to a N.0; 1/ rv and from
the continuous mapping theorem we conclude that T	 converges in law to the
squared N.0; 1/ rv.

Exercise 8.3. Let F be the distribution function of a random variable X and let
fXigniD1 be an i.i.d. sample from F . Denote the empirical cdf as Fn. Show that the
distributions of

1. F.X/
2. supx n

1=2jFn.x/ � F.x/j
3.
R fFn.x/ � F.x/g2 dF.x/

do not vary with F .

The test statistic 2. is called Kolmogorov-Smirnov and 3. carries the name of
Cramer-von Mises.

1.

P fF.X/ � xg D P
˚

X � F�1.x/

 D F fF�1.x/g D x:

Thus, the random variable F.X/ has a uniform distribution on Œ0; 1�, i.e. is
U.0; 1/.

2. Denote F.x/ D t and rewrite the supremum in the following form:

sup
x

n1=2jFn.x/ � F.x/j D sup
t2Œ0;1�

jFnfF�1.t/g � t j
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D sup
t2Œ0;1�

ˇ

ˇ

ˇ

1

n

n
X

iD1
1
˚

Xi � F�1.t/

 � t

ˇ

ˇ

ˇ

D sup
t2Œ0;1�

ˇ

ˇ

ˇ

1

n

n
X

iD1
1 fF.Xi / � tg � t

ˇ

ˇ

ˇ:

As it has been proven in item (i), the random value F.Xi / has a U.0; 1/
distribution. This means that the distribution of the random variable
supx n

1=2jFn.x/ � F.x/j is the same for any F .
3. The proof follows the same lines:

Z

fFn.x/ � F.x/g2 dF.x/ D
Z 1

0

�

FnfF�1.t/g � t�2 dt

D
Z 1

0

"

1

n

n
X

iD1
1
˚

Xi � F �1.t/

 � t

#2

dt

D
Z 1

0

"

1

n

n
X

iD1
1 fF.Xi / � tg � t

#2

dt;

and the statement of the exercise is proven.

Exercise 8.4. Let F be the distribution function of a random variable X and let
fXigniD1 be an i.i.d. sample from F . Denote the edf as Fn. Let H0 be the hypothesis
that the distribution F has the same 4 moments as a N.0; 1/ rv:

H0 W EX D 0; EX2 D 1; EX3 D 0; EX4 D 3;

and the alternative H1 is that some of these moments differ. Construct the test of
method of moments with asymptotic level ˛.

Hint: use only the first and the second empirical moments.

Consider the function g W R ! R2, g.x/ D .x; x2/>. From the CLT, we know that

n1=2V �1=2nn�1
n
X

iD1
g.Xi /� E0g.X/

o

L�! N.0; I2/; (8.2)

where E0g.X/ D .E0X;E0X
2/> D .0; 1/> and

V D E0

"
�

X � E0X

mathfrakX2 � E0X
2

��

X � E0X

mathfrakX2 � E0X
2

�> #
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D
�

E0X
2 � .E0X/2 E0X

3 � E0X E0X
2

E0X
3 � E0X E0X

2 E0X
4 � .E0X

2/2

�

D
�

1 0

0 2

�

:

Here the index “0” indicates that we are computing expectations under the null
hypothesisH0.

Hence the statement (8.2) means that

n1=2

 

n�1Pn
iD1 Xi

2�1=2
�

n�1Pn
iD1 X2

i � 1
	

!

L�! N.0; I2/;

and the statistic

Tn D n

(

n
X

iD1

�

n�1
n
X

iD1
Xi

	2 C 2�1
�

n�1
n
X

iD1
X2
i � 1

	2

)

has underH0 a chi-square distribution with 2 degrees of freedom 	22. The test

� D 1 fTn > �˛g

where �˛ is a .1 � ˛/ quantile of the 	2 distribution has the desired asymptotic
level ˛.

The test is also called Jarque Bera Test.

Exercise 8.5. Suppose yt is the time series of DAX 30, a stock index in Germany.
The time series is from December 22, 2009 to December 21, 2011 (as Fig. 8.1).

Define the log return of DAX index:

zt D logyt � logyt�1:

Apply Jarque Bera test to zt .

The test statistics is 99.1888 and the p-value is 2:2 � 10�16. This suggests that the
log returns may not be normally distributed if one takes significant level ˛ D 0:01.

Exercise 8.6. Following Exercise 8.5, apply the Kolmogorov-Smirnov test to zt .

The test statistics is 10.8542 and the p-value is 0:01. This suggests that the log
returns may not be normally distributed if one takes the significance level ˛ D 0:01.

Exercise 8.7. Following Exercise 8.5, apply the Cramer von Mises test to zt .

The test statistics is 1.0831 and the p-value is 8:134 � 10�10. This suggests that
the log returns may not be normally distributed if one takes the significance level
˛ D 0:01.
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Fig. 8.1 The time series of DAX30. MSENormalityTests

Exercise 8.8. Test the hypothesis of the equality of the covariance matrices on two
simulated 4-dimensional samples of sizes n1 D 30 and n2 D 20.

LetXih � Np.�h;†h/, i D 1; : : : ; nh, h D 1; 2; be independent random vectors.
The test problem of testing the equality of the covariance matrices can be written as

H0 W †1 D †2 versusH1 W no constraints.

Both subsamples provide Sh, an estimator of †h, with the Wishart distribution
nhSh � Wp.†h; nh � 1/. Under the null hypothesisH0 W †1 D †2, we have for the
common covariance matrix that

P2
hD1 nhSh � Wp.†; n� 2/, where n D P2

hD1 nh.
Let S D n1S1Cn2S2

n
be the weighted average of S1 and S2. The likelihood ratio

test leads to the test statistic

� 2 log� D n log jS j �
2
X

hD1
nh log jShj (8.3)

which under H0 is approximately distributed as a 	2m with m D 1
2
.2 � 1/p.p C 1/

degrees of freedom.
We test the equality of the covariance matrices for the three data sets given in

Härdle and Simar (2011) (Example 7.14) who simulated two independent normal
distributed samples with p D 4 dimensions and the sample sizes of n1 D 30 and
n2 D 20 leading to the asymptotic distribution of the test statistics (8.3) with m D
1
2
.2 � 1/4.4C 1/ D 10 degrees of freedom.

(a) With a common covariance matrix in both populations †1 D †2 D I4,
we obtain the following empirical covariance matrices:
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S1 D

0

B

B

@

0:812 �0:229 �0:034 0:073

�0:229 1:001 0:010 �0:059
�0:034 0:010 1:078 �0:098
0:073 �0:059 �0:098 0:823

1

C

C

A

and

S2 D

0

B

B

@

0:559 �0:057 �0:271 0:306

�0:057 1:237 0:181 0:021

�0:271 0:181 1:159 �0:130
0:306 0:021 �0:130 0:683

1

C

C

A

The determinants are jS j D 0:590, jS1j D 0:660 and jS2j D 0:356 leading to
the likelihood ratio test statistic:

�2 log� D 50 log.0:590/� 30 log.0:660/� 20 log.0:356/ D 6:694

The value of the test statistic is smaller than the critical value 	20:95I10 D 18:307

and, hence, we do not reject the null hypothesis.
(b) The second simulated samples have covariance matrices †1 D †2 D 16I4.

Now, the standard deviation is 4 times larger than in the previous case. The
sample covariance matrices from the second simulation are:

S1 D

0

B

B

@

21:907 1:415 �2:050 2:379

1:415 11:853 2:104 �1:864
�2:050 2:104 17:230 0:905

2:379 �1:864 0:905 9:037

1

C

C

A

;

S2 D

0

B

B

@

20:349 �9:463 0:958 �6:507
�9:463 15:502 �3:383 �2:551
0:958 �3:383 14:470 �0:323

�6:507 �2:551 �0:323 10:311

1

C

C

A

and the value of the test statistic is:

�2 log� D 50 log.40066/� 30 log.35507/� 20 log.16233/D 21:693:

Since the value of the test statistic is larger than the critical value of the
asymptotic distribution, 	20:95I10 D 18:307, we reject the null hypothesis.

(c) The covariance matrix in the third case is similar to the second case †1 D
†2 D 16I4 but, additionally, the covariance between the first and the fourth
variable is �14 D �41 D �3:999. The corresponding correlation coefficient is
r41 D �0:9997.
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The sample covariance matrices from the third simulation are:

S1 D

0

B

B

@

14:649 �0:024 1:248 �3:961
�0:024 15:825 0:746 4:301

1:248 0:746 9:446 1:241

�3:961 4:301 1:241 20:002

1

C

C

A

and

S2 D

0

B

B

@

14:035 �2:372 5:596 �1:601
�2:372 9:173 �2:027 �2:954
5:596 �2:027 9:021 �1:301

�1:601 �2:954 �1:301 9:593

1

C

C

A

:

The value of the test statistic is:

�2 log� D 50 log.24511/� 30 log.37880/� 20 log.6602:3/ D 13:175

The value of the likelihood ratio test statistic is now smaller than the critical
value, 	20:95I10 D 18:307, and we do not reject the null hypothesis.

Notice that in part (b), we have rejected a valid null hypothesis. One should
always keep in mind that a wrong decision of this type (so-called type I error)
is possible and it occurs with probability ˛. MSEtestcov

Exercise 8.9. Consider two independent iid samples, each of size 10, from two
bivariate normal populations. The results are summarized below:

x1 D .3; 1/>I x2 D .1; 1/>

S1 D
�

4 �1
�1 2

�

I S2 D
�

2 �2
�2 4

�

:

Provide a solution to the following tests:
(a) H0: �1 D �2 H1: �1 6D �2
(b) H0: �11 D �21 H1: �11 6D �21

(c) H0: �12 D �22 H1: �12 6D �22
Compare the solutions and comment.

(a) Let us start by verifying the assumption of equality of the two covariance
matrices, i.e., the hypothesis:

H0 W †1 D †2 versus H1 W †1 ¤ †2:
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This hypothesis can be tested using the approach described in Exercise 8.8
where we used the test statistic (for k D 2 groups):

�2 log� D n log jS j �
2
X

hD1
nh log jShj

which is under the null hypothesisH0 W †1 D †2 approximately	2m distributed,
wherem D 1

2
.k � 1/p.p C 1/ D 1

2
.2 � 1/2.2C 1/ D 3.

We calculate the average of the observed variance matrices

S D
�

3 �1:5
�1:5 3

�

and we get the value of the test statistic

�2 log� D 20 log jS j � .10 log jS1j C 10 log jS2j/ D 4:8688

which is smaller than the critical value	20:95I3 D 7:815. Hence, the value of
the test statistic is not significant, we do not reject the null hypothesis, and the
assumption of the equality of the variance matrices can be used in testing the
equality of the mean vectors.

Now, we can test the equality of the mean vectors:

H0 W �1 D �2 versus H1 W �1 ¤ �2:

The rejection region is given by

n1n2.n1 C n2 � p � 1/
p.n1 C n2/p

.x1 � x2/>S�1.x1 � x2/ � F1�˛Ip;n1Cn2�p�1:

For ˛ D 0:05 we get the test statistic 3:7778 � F0:95I2;17 D 3:5915. Hence, the
null hypothesis H0 W �1 D �2 is rejected and we can say that the mean vectors
of the two populations are significantly different.

(b) For the comparison of the two mean vectors first components we calculate the
95 % simultaneous confidence interval for the difference. We test the hypothesis

H0 W �11 D �21 versus H1 W �11 ¤ �21:

This test problem is only one-dimensional and it can be solved by calculating
the common two-sample t-test. The test statistic

x11 � x21
q

4
n1

C 2
n2

D 2
q

6
10

D 2:5820
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is greater than the corresponding critical value t0:95I18 D 2:1011 and hence we
reject the null hypothesis.

(c) The comparison of the second component of the mean vectors can be also based
on the two-sample t-test. In this case, it is obvious that the value of the test
statistic is equal to zero (since x12 D x22 D 1) and the null hypothesis can not
be rejected.

In part (a) we have rejected the null hypothesis that the two mean vectors are
equal. From the componentwise test performed in (b) and (c), we observe that
the reason for rejecting the equality of the two two-dimensional mean vectors
was due mainly to differences in the first component.

Exercise 8.10. In the vocabulary data set (Bock, 1975) given in the table below,
it predicts the vocabulary score of the children in eleventh grade from the results in
grades 8–10. Estimate a linear model and test its significance.

Subjects Grade 8 Grade 9 Grade 10 Grade 11 Mean

1 1:75 2:60 3:76 3:68 2:95

2 0:90 2:47 2:44 3:43 2:31

3 0:80 0:93 0:40 2:27 1:10

4 2:42 4:15 4:56 4:21 3:83

5 �1:31 �1:31 �0:66 �2:22 �1:38
6 �1:56 1:67 0:18 2:33 0:66

7 1:09 1:50 0:52 2:33 1:36

8 �1:92 1:03 0:50 3:04 0:66

9 �1:61 0:29 0:73 3:24 0:66

10 2:47 3:64 2:87 5:38 3:59

11 �0:95 0:41 0:21 1:82 0:37

12 1:66 2:74 2:40 2:17 2:24

13 2:07 4:92 4:46 4:71 4:04

14 3:30 6:10 7:19 7:46 6:02

15 2:75 2:53 4:28 5:93 3:87

16 2:25 3:38 5:79 4:40 3:96

17 2:08 1:74 4:12 3:62 2:89

18 0:14 0:01 1:48 2:78 1:10

19 0:13 3:19 0:60 3:14 1:77

20 2:19 2:65 3:27 2:73 2:71

21 �0:64 �1:31 �0:37 4:09 0:44

22 2:02 3:45 5:32 6:01 4:20

23 2:05 1:80 3:91 2:49 2:56

24 1:48 0:47 3:63 3:88 2:37

25 1:97 2:54 3:26 5:62 3:35

26 1:35 4:63 3:54 5:24 3:69

27 �0:56 �0:36 1:14 1:34 0:39

28 0:26 0:08 1:17 2:15 0:92

29 1:22 1:41 4:66 2:62 2:47

(continued)
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(continued)

Subjects Grade 8 Grade 9 Grade 10 Grade 11 Mean

30 �1:43 0:80 �0:03 1:04 0.09
31 �1:17 1:66 2:11 1:42 1.00
32 1:68 1:71 4:07 3:30 2.69
33 �0:47 0:93 1:30 0:76 0.63
34 2:18 6:42 4:64 4:82 4.51
35 4:21 7:08 6:00 5:65 5.73
36 8:26 9:55 10:24 10:58 9.66
37 1:24 4:90 2:42 2:54 2.78
38 5:94 6:56 9:36 7:72 7.40
39 0:87 3:36 2:58 1:73 2.14
40 �0:09 2:29 3:08 3:35 2.15
41 3:24 4:78 3:52 4:84 4.10
42 1:03 2:10 3:88 2:81 2.45
43 3:58 4:67 3:83 5:19 4.32
44 1:41 1:75 3:70 3:77 2.66
45 �0:65 �0:11 2:40 3:53 1.29
46 1:52 3:04 2:74 2:63 2.48
47 0:57 2:71 1:90 2:41 1.90
48 2:18 2:96 4:78 3:34 3.32
49 1:10 2:65 1:72 2:96 2.11
50 0:15 2:69 2:69 3:50 2.26
51 �1:27 1:26 0:71 2:68 0.85
52 2:81 5:19 6:33 5:93 5.06
53 2:62 3:54 4:86 5:80 4.21
54 0:11 2:25 1:56 3:92 1.96
55 0:61 1:14 1:35 0:53 0.91
56 �2:19 �0:42 1:54 1:16 0.02
57 1:55 2:42 1:11 2:18 1.82
58 0:04 0:50 2:60 2:61 1.42
59 3:10 2:00 3:92 3:91 3.24
60 �0:29 2:62 1:60 1:86 1.45
61 2:28 3:39 4:91 3:89 3.62
62 2:57 5:78 5:12 4:98 4.61
63 �2:19 0:71 1:56 2:31 0.60
64 �0:04 2:44 1:79 2:64 1.71
Mean 1:14 2:54 2:99 3:47 2.53

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.4782 0.2999 4.929 6.86e-06 ***
grade8 0.2015 0.1582 1.273 0.2078
grade9 0.2278 0.1152 1.977 0.0526 .
grade10 0.3965 0.1304 3.041 0.0035 **
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
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Residual standard error: 1.073 on 60 degrees of freedom
Multiple R-squared: 0.7042, Adjusted R-squared: 0.6894
F-statistic: 47.61 on 3 and 60 DF, p-value: 7.144e-16

Regression analysis reveals reasonably high coefficient of determination. Hypothe-
sis of independence (H0 W all parametersD 0) is rejected on level ˛ D 0:05 since
the F -statistics is statistically significant (the p-value is smaller than ˛ D 0:05).

The vocabulary score from tenth grade (ˇ3 Dgrade10) is statistically signif-
icant for the forecast of performance in eleventh grade. The other two variables,
vocabulary scores from the eighth and ninth grade are not statistically significant
at level ˛ D 0:05. More formally, the test does not reject the hypothesis that
parameters ˇ2 and ˇ3 are equal to zero.

One might be tempted to simplify the model by excluding the insignificant
variables. Excluding only the score in eighth grade leads to the following result
which shows that the variable measuring the vocabulary score in ninth grade has
changed its significance.

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.2355 0.2327 5.309 1.63e-06 ***
grade9 0.2893 0.1051 2.752 0.00779 **
grade10 0.5022 0.1011 4.969 5.75e-06 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 1.079 on 61 degrees of freedom
Multiple R-squared: 0.6962, Adjusted R-squared: 0.6862
F-statistic: 69.89 on 2 and 61 DF, p-value: < 2.2e-16

Hence, the final model explains the vocabulary score in grade eleven using
vocabulary scores in the previous two grades. MSElinregvocab

Exercise 8.11. Assume that we have observations from two p-dimensional normal
populations, xi1 � Np.�1;†/, i D 1; : : : ; n1, and xi2 � Np.�2;†/, i D
1; : : : ; n2. The mean vectors �1 and �2 are called profiles. An example of two
such 5-dimensional profiles is given in Fig. 8.2. Propose tests of the following
hypotheses:

1. Are the profiles parallel?
2. If the profiles are parallel, are they at the same level?
3. If the profiles are parallel, are they also horizontal?

The above questions are easily translated into linear constraints on the means and
a test statistic can be obtained accordingly.
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Fig. 8.2 Example of population profiles MSEprofil

(a) Let C be a .p � 1/ � p contrast matrix defined as

C D
0

@

1 �1 0 
 
 
 0

0 1 �1 
 
 
 0

0 
 
 
 0 1 �1

1

A :

The hypothesis of parallel profiles is equivalent to

H
.1/
0 W C�1 � C�2 D C.�1 � �2/ D 0p�1:

The test of parallel profiles can be based on:

C .x1 � x2/ � Np�1
�

C .�1 � �2/ ;
n1 C n2

n1n2
C†C>

�

:

Next, for the pooled covariance matrix S D .n1S1 C n2S2/=.n1 C n2/ we have
the Wishart distribution:

n1S1 C n2S2 � Wp .†; n1 C n2 � 2/

C .n1S1 C n2S2/ C
> � Wp�1

�

C†C>; n1 C n2 � 2� :
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Under the null hypothesis, we know that C .�1 � �2/ D 0p�1 and it follows
that the statistic

.n1 C n2 � 2/ fC .x1 � x2/g>
�

n1 C n2

n1n2
C .n1S1 C n2S2/ C

>
��1

C .x1 � x2/

D .n1 C n2 � 2/ fC .x1 � x2/g>
�

n1 C n2

n1n2
.n1 C n2/ CSC

>
��1

C .x1 � x2/

D .n1 C n2 � 2/ n1n2
.n1 C n2/

2
fC .x1 � x2/g> fCSCg�1 C .x1 � x2/

has the Hotelling T 2 distribution T 2 .p � 1; n1 C n2 � 2/ and the null hypoth-
esis of parallel profiles is rejected if

n1n2.n1 C n2 � p/

.n1 C n2/2.p � 1/
fC.x1 � x2/g>

�

CSC>

	
�1

C.x1�x2/ > F1�˛Ip�1;n1Cn2�p:

(8.4)

(b) Assuming that the two profiles are parallel, the null hypothesis of the equality
of the two levels can be formally written as

H
.2/
0 W 1>

p .�1 � �2/ D 0:

For 1>
p .x1 � x2/, as a linear function of normally distributed random vectors,

we have

1>
p .x1 � x2/ � N1

�

1>
p .�1 � �2/; n1 C n2

n1n2
1>
p †1p

�

:

Since

1>
p .n1S1 C n2S2/ 1p � W1

�

1>
p f†1p; n1 C n2 � 2

	

;

we have that

.n1 C n2/1
>
p S1p � W1.1

>
p †1p; n1 C n2 � 2/;

where S is the pooled empirical variance matrix. The test of equality can be
based on the test statistic:

.n1 C n2 � 2/ f1>
p .x1 � x2/g>

n

n1Cn2
n1n2

C .n1S1 C n2S2/ C
>
o�1

1>
p .x1 � x2/

D n1n2.n1Cn2�2/
.n1Cn2/2

f1>

p .x1�x2/g2
1>

p S1p
� T 2.1; n1 C n2 � 2/
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which leads directly the rejection region:

n1n2.n1 C n2 � 2/

.n1 C n2/2

n

1>
p .x1 � x2/

o2

1>
p S1p

> F1�˛I1;n1Cn2�2: (8.5)

(c) If it is accepted that the profiles are parallel, then we can exploit the information
contained in both groups to test if the two profiles also have zero slope, i.e., the
profiles are horizontal. The null hypothesis may be written as:

H
.3/
0 W C.�1 C �2/ D 0:

The average profile x D .n1x1 C n2x2/=.n1 C n2/ has a p-dimensional normal
distribution:

x � Np

�

n1�1 C n2�2

n1 C n2
;

1

n1 C n2
†

�

:

Now the horizontal, H.3/
0 W C.�1 C �2/ D 0p�1, and parallel, H.1/

0 W C.�1 �
�2/ D 0p�1, profiles imply that

C

�

n1�1 C n2�2

n1 C n2

�

D C

n1 C n2
.n1�1 C n2�2/

D C

2.n1 C n2/
f.n1 C n2/.�1 C �2/C .n1 � n2/.�1 � �2/g

D 0p�1:

So, under parallel and horizontal profiles we have

Cx � Np�1
�

0p�1;
1

n1 C n2
C†C>

�

:

and

C.n1 C n2/SC> D C .n1S1 C n2S2/C
> � Wp�1

�

C†C>; n1 C n2 � 2
�

:

Again, we get under the null hypothesis that

.n1 C n2 � 2/.Cx/>.CSC>/�1Cx � T 2 .p � 1; n1 C n2 � 2/
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which leads to the rejection region:

n1 C n2 � p

p � 1
.Cx/>.CSC>/�1Cx > F1�˛Ip�1;n1Cn2�p: (8.6)
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conditional, xviii
F -, xiv
Gaussian, xx
marginal, xix
multinormal, xx
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t -, xiv
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empirical, xviii

edf, see empirical distribution function
eigenvalue, xviii
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empirical distribution function, xviii, 169
empirical moments, xix
error of the first kind, 129
error of the second kind, 129
estimate, xix
estimation under the homogeneous noise

assumption, 80
estimator, xix
expected value, xix

conditional, xii
Exponential distribution, 133
exponential family, 33, 37

F-test, 144
F -distribution, xiv

quantile, xiv
Fisher information, 23, 24, 33

Gamma distribution, 120
Gauss-Markov theorem, 3, 98
Gaussian distribution, xx
Gaussian shift, 24, 113
Glivenko-Cantelli theorem, 9

Hessian matrix, xix
horizontal profiles, 178, 181

indicator, xi

Jarque Bera Test, 171

Kolmogorov-Smirnov test, 169
Kronecker product, xi
Kullback-Leibler divergence, 23

likelihood, xix
likelihood ratio test, 136
linear constraint, 178
linear dependence, xix
linear model, 176
linear regression, 176
linear space, xiv
LLN, xiv
log-likelihood, xix

marginal distribution, xix
marginal moments, xix
matrix

contrast, 179
covariance, xiii
determinant of, xiv
diagonal of, xiii
Hessian, xix
orthogonal, xx
rank of, xiii
trace, xiii

maximum likelihood estimator, 30
mean, xii, xix
mean squared error, see MSE
median, xx
Method of moments, 30
method of moments for an i.i.d. sample, 170
ML estimator, 37
moments, xii, xx

empirical, xix
marginal, xix

MSE, xx
multinormal distribution, xx
multivariate parameter, 30

natural parameter, 33
Neyman-Pearson lemma, 132
Neyman-Pearson test, 131, 132, 134, 144, 146,

150
normal distribution, xx
null hypothesis, 129

observation, xiii
One-sided and two-sided tests, 136
order statistic, xiii
orthogonal design, 80
orthogonal matrix, xx
orthonormal design, 80, 81

parallel profiles, 178, 179
Pareto distribution, 120
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pdf, xii
conditional, xii
joint, xii
marginal, xii

penalized likelihood, bias-variance
decomposition, 90

penalized log-likelihood, ridge regression, 89
pivotal quantity, xx
Poisson family, 24
power function, 129
profile analysis, 178
profile estimation, 94
projection and shrinkage estimates, 92
p-value, xx

quantile, xx

R-efficiency, 24
random variable, xi, xx
random vector, xi, xx
rank, xiii
Region of rejection (critical region), 131
regular family, 23

sample, xiii
scatterplot, xx
semi-invariants, xii
semiparametric estimation, target and nuisance

parameters, adaptivity condition, 93

singular value decomposition, xx
spectral decomposition, xxi
spectral representation, 85
statistical test, 129
stochastic component, 84
subspace, xxi
SVD, see singular value decomposition

Taylor expansion, xxi
t -distribution, xiv

quantile, xiv
test

covariance matrix, 172
mean vector, 174
two-sample, 175

test of method of moments, 170
Tikhonov regularization, 88
trace, xiii

uniformly most powerful test, 134

variance, xiii
conditional, xii
empirical, xiii

volatility model, 33

Wilks phenomenon, 86
Wishart distribution, 179
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