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Preface

“Wir behalten von unseren Studien am Ende doch nur das, was wir praktisch anwenden.”

“In the end, we really only retain from our studies that which we apply in a practical way.”

J. W. Goethe, Gespriche mit Eckermann, 24. Feb. 1824.

The complexity of statistical data nowadays requires modern and numerically
efficient mathematical methodologies that can cope with the vast availability of
quantitative data. Risk analysis, calibration of financial models, medical statistics
and biology make extensive use of mathematical and statistical modeling.

Practice makes perfect. The best method of mastering models is working with
them. In this book we present a collection of exercises and solutions which can
be helpful in the advanced comprehension of Mathematical Statistics. Our exercises
are correlated to Spokoiny and Dickhaus (2014). The exercises illustrate the theory
by discussing practical examples in detail. We provide computational solutions for
the majority of the problems. All numerical solutions are calculated with R and
Matlab. The corresponding quantlets — a name we give to these program codes — are
indicated by @ in the text of this book. They follow the name scheme MSExyz123
and can be downloaded from the Springer homepage of this book or from the
authors’ homepages.

Mathematical Statistics is a global science. We have therefore added, below each
chapter title, the corresponding translation in one of the world languages. We also
head each section with a proverb in one of those world languages. We start with a
German proverb from Goethe (see above) on the importance of practice.

We have tried to achieve a good balance between theoretical illustration and
practical challenges. We have also kept the presentation relatively smooth and, for
more detailed discussion, refer to more advanced text books that are cited in the
reference sections.

The book is divided into three main parts where we discuss the issues relating to
option pricing, time series analysis and advanced quantitative statistical techniques.



vi Preface

The main motivation for writing this book came from our students of the course
Mathematical Statistics which we teach at the Humboldt-Universitit zu Berlin. The
students expressed a strong demand for solving additional problems and assured
us that (in line with Goethe) giving plenty of examples improves learning speed
and quality. We are grateful for their highly motivating comments, commitment
and positive feedback. Very special thanks go to our students Shih-Kang Chao, Ye
Hua, Yuan Liao, Maria Osipenko, Ceren Onder and Dedy Dwi Prastyo for advise
and ideas on solutions. We thank Niels Thomas from Springer Verlag for continuous
support and for valuable suggestions on writing style and the content covered.

Berlin, Germany Wolfgang Karl Hardle
Essen, Germany Vladimir Panov
Berlin, Germany Vladimir Spokoiny

January 2013 Weining Wang
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Symbols and Notation

Basics

X, Y

X1, Xo, ...

X = (X,
X ~F

aXp
LX)

random variables or vectors
random variables

random vector

X has distribution F
matrices

covariance matrix

vector of ones (1,...,1)T
——

n-times

vector of zeros (0, ... ,O)T
——

n-times
identity matrix

indicator function, foraset M is1 = 1 on
M, 1 = 0 otherwise

V=1

approximately equal

Kronecker product

if and only if, equivalence

standard Wiener process

complex number set

real number set

positive integer set

integer set

| X|*1(X > 0)

largest integer smaller than A

almost sure

random variable

xi



xii

cdf
edf
pdf
[0

O(Bn)

O(Ba)
Op(B)

O[)(Bn)

Symbols and Notation

cumulative distribution function
empirical distribution function
probability density function
proportionally equal
a, = O(By) iff |ay/Bu| < constant, as
n — 00
a, =0 iffa, /B, — 0,as n — o0
A, = Op,(By) iff Ve > 0 3M, 3N such that
P[|A,/B,| > M] <&, Vn> N.
Ay =0, (B, iff
Ve >0 : limy,— oo P[|4,/B,| > €] =0

Characteristics of Distributions

S (x)

S(x,y)

Sx(x), fr(y)

S (), fx, (xp)
Jn(x)

F(x)

F(x,y)

Fx(x), Fy (y)

FX1 (xl), ey Fxp(xp)
fY\X=x(J’)

ex (1)

mi

xj

Moments
EX), E(Y)
E(Y|X = x)
Hy|x
Var(Y |X = x)

G%\X
Oxy = COV(X, Y)

pdf or density of X

joint density of X and Y

marginal densities of X and Y

marginal densities of Xq,..., X,
histogram or kernel estimator of f(x)

cdf or distribution function of X

joint distribution function of X and Y
marginal distribution functions of X and Y
marginal distribution functions of Xi,..., X,
conditional density of ¥ given X = x
characteristic function of X

kth moment of X

cumulants or semi-invariants of X

mean values of random variables or vectors X
and Y

conditional expectation of random variable or
vector ¥ given X = x

conditional expectation of ¥ given X

conditional variance of Y given X = x

conditional variance of ¥ given X

covariance between random variables X
and Y
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oxx = Var(X)
Cov(X,Y)

prr = v/ Var(X) Var(Y)

Yxy = COV(X, Y)

ZXX = Var(X)
Samples

X,y

-xlv"'s-xn = {'xl}:l=]

X = {xij}i=1 ..... n;j=1,...p

X(l), ey X(n)

Empirical Moments

n
XxX= n!'Y x

i=1

sr=n"' 20— D0 —7)

i=1

n
sxx = n7' Y ( —%)?
i=1

A Sxy
XYy = —/—
/ SxxSyy
S = {SXin}
R= {rXin }

Mathematical Abbreviations

tr(A)
diag(A4)
rank(A)

Xiii

variance of random variable X

correlation between random variables X
and Y
covariance between random vectors X and Y,
ie,Cov(X,Y) =EX —EX)(Y —EY)T
covariance matrix of the random vector X

observations of X and Y

sample of n observations of X

(n x p) data matrix of observations of
Xi,o..,Xporof X = (X1,...,X,)7T

the order statistics of xq,..., X,

average of X sampled by {x;};=1..

empirical covariance of random variables X
and Y sampled by {x;};=;
{iti=1,.n

empirical variance of random variable X
sampled by {x;};=;

n

empirical correlation of X and ¥

empirical covariance matrix of Xy,..., X, or
of the random vector X = (X1,..., Xp)T

empirical correlation matrix of Xy, ..., X, or
of the random vector X = (X,..., Xp)T

trace of matrix 4
diagonal of matrix A
rank of matrix A
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det(A) or |A|
hull(x1, ..., xg)
span(xy, ..., Xx)

Distributions

N(u,0?)
)

%

B(n, p)
LN(w,0?)

P
—

a.

=

Fl—a;n,m

PR(o, 1)
U(a,b)
Be(a, B)

Symbols and Notation

determinant of matrix A
convex hull of points {x1,..., xx}
linear space spanned by {xi, ..., x;}

normal distribution with mean u, variance o2

cdf of N(0, 1)
pdf of N(0, 1)
binomial distribution with parameters n and p

lognormal distribution with mean px and
variance o

convergence in probability

almost sure convergence

convergence in distribution
Central Limit Theorem
Law of Large Numbers

x? distribution with p degrees of freedom

1 — o quantile of the y? distribution with p
degrees of freedom

t-distribution with n degrees of freedom

1 — «/2 quantile of the ¢-distribution with n
degrees of freedom

F -distribution with n and m degrees of
freedom

1 — a quantile of the F-distribution with n
and m degrees of freedom

Pareto distribution with parameters o and p
uniform distribution with parameters ¢ and b

beta distribution with parameters « and j
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XV

Maximum Likelihood Estimation

LPA
w

Other Notation

L(8)
L(0,6")

K(P,Q)
%(0,0")

1(6)
0*

local parametric approximation

{w,- = K(=* )} — weighting scheme

local estimate for W

= E|£|*" risk bound for Gaussian shift model
risk bound for EF

risk bound in a parametric model
k-th weighting scheme

estimate for W ®)

k-th critical value

adaptive estimate after k steps
final adaptive estimate

selected model

“oracle choice”

modeling bias

“small modeling bias” condition

log-likelihood of Py

= L(0) — L(#"), log-likelihood ratio of Py
with respect to IPy/

Kullback-Leibler divergence between
measures P and Q

Kullback-Leibler divergence between
measures Py and Py

Fisher information matrix at 6

true parameter f = fp=






Some Terminology

Odabrana terminologija

"Zakon varijacije": Kada na cesti prijedete u drugu traku, ona u kojoj

ste bili ¢e se poceti micati brze od one u kojoj se trenutnonalazite.

“Law of Variation”: When you change lanes whilst driving, the lane you leave
will always then move faster than the one you have joined.

This section contains an overview of some terminology that is used throughout the
book. The notations are in part identical to those of Harville (2001). More detailed
definitions and further explanations of the statistical terms can be found, e.g., in
Breiman (1973), Feller (1966), Hardle and Simar (2011), Mardia et al. (1979), or
Serfling (2002).

Asymptotic normality A sequence X, X, ... of random variables is asymptot-
ically normal if there exist sequences of constants {u; }72, and {o; }?2, such that

o, N (X — ) N N(0, 1). The asymptotic normality means that for sufficiently
large 7, the random variable X, has approximately N(p,, 2) distribution.

Bias Consider a random variable X that is parametrized by 8 € ©. Suppose that
there is an estimator 6 of 6. The bias is defined as the systematic difference
between 6 and 6, E{é — 0}. The estimator is unbiased if E6 = 6.

Characteristic function Consider a random vector X € R? with pdf f. The
characteristic function (cf) is defined for t € R?:

ox (1) = Elexp(it 'X)] = / exp(ir " X) f(x)dx.

Xvii
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The cf fulfills x(0) = 1, |px ()| < 1. The pdf (density) f may be recovered
from the cf: f(x) = (27)7” [exp(—it " X)px (t)d1.

Characteristic polynomial (and equation) Corresponding to any n X 1 matrix
A is its characteristic polynomial, say p(.), defined (for —co < A < 00) by
p(A) = |A — AJ|, and its characteristic equation p(1) = 0 obtained by setting
its characteristic polynomial equal to 0; p(1) is a polynomial in A of degree n
and hence is of the form p(1) = co + c{A + -+ + ¢, A" ! 4+ ¢, A", where the
coefficients ¢y, 1, ..., cy—1, ¢, depend on the elements of A.

Conditional distribution Consider the joint distribution of two random vectors
X e RPand Y € RY with pdf f(x,y) : R?*! — R. The marginal density of X
is fx(x) = [ f(x,y)dy and similarly fy(y) = [ f(x,y)dx. The conditional
density of X given Y is fyy(x|y) = f(x,y)/fy(y). Similarly, the conditional
density of Y given X is fyx(y|x) = f(x,y)/fx(x).

Conditional moments Consider two random vectors X € R” and ¥ € R? with
joint pdf f(x,y). The conditional moments of Y given X are defined as the
moments of the conditional distribution.

Contingency table Suppose that two random variables X and Y are observed
on discrete values. The two entry frequency table that reports the simultaneous
occurrence of X and Y is called a contingency table.

Critical value  Suppose one needs to test a hypothesis Hy. Consider a test statistic
T for which the distribution under the null hypothesis is given by Py. For a given
significance level «, the critical value is c, such that Poy(T > ¢,) = «. The
critical value corresponds to the threshold that a test statistic has to exceed in
order to reject the null hypothesis.

Cumulative distribution function (cdf) Let X be a p-dimensional random vec-
tor. The cumulative distribution function (cdf) of X is defined by F(x) =
P(X < x)= IP(X] <x1,X2 < XQ,...,X], < x,,).

Eigenvalues and eigenvectors An eigenvalue of an n x n matrix A4 is (by
definition) a scalar (real number), say A, for which there exists an n x 1 vector, say
X, such that Ax = Ax, or equivalently such that (A—A1,)x = 0; any such vector
x is referred to as an eigenvector (of A) and is said to belong to (or correspond to)
the eigenvalue A. Eigenvalues (and eigenvectors), as defined herein, are restricted
to real numbers (and vectors of real numbers).

Eigenvalues (not necessarily distinct) The characteristic polynomial, say p(.),
of an n X n matrix A is expressible as

pA) =(D)'A=d)A—dy)---(A—dn)g(d)  (—00 <1 <00),

where dy, dy, . .., d,, are not-necessarily-distinct scalars and ¢(.) is a polynomial
(of degree n —m) that has no real roots; di,d>, ..., d, arereferred to as the not-
necessarily-distinct eigenvalues of A or (at the possible risk of confusion) simply
as the eigenvalues of A. If the spectrum of A has k members, say A, ..., A, with
algebraic multiplicities of yy, ..., yk, respectively, then m = Zi;l yi, and (for
i =1,...,k) y; of the m not-necessarily-distinct eigenvalues equal A; .
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Empirical distribution function Assume that X,..., X, are iid observations
of a p-dimensional random vector. The empirical distribution function (edf) is
defined through F,(x) = n~! Y7, 1(X; < x).

Empirical moments The moments of a random vector X are defined through
mp = EX*) = [xYdF(x) = [x*f(x)dx. Similarly, the empirical
moments are defined through the empirical distribution function F,(x) =
n~! 3 1(X; < x). Thisleads to iy = n~ ' Y !, Xk = [x*dF,(x).

Estimate An estimate is a function of the observations designed to approximate
an unknown parameter value.

Estimator An estimator is the prescription (on the basis of a random sample) of
how to approximate an unknown parameter.

Expected (or mean) value For a random vector X with pdf f the mean or
expected value is E(X) = [ xf(x)dx.

Hessian matrix The Hessian matrix of a function f, whose value is an m
dimension real vector, is the m x m matrix whose ij —th element is the ij —th
partial derivative 9 f/dx;dx; of f.

Kernel density estimator The kernel density estimator f of a pdf f, based on a
random sample X, X, ..., X, from f,is defined by

F@) =@ K (" ‘hX") |

i=1

The properties of the estimator f (x) depend on the choice of the kernel function
K(.) and the bandwidth h. The kernel density estimator can be seen as a
smoothed histogram; see also Hérdle et al. (2004).

Likelihood function Suppose that {x;}/_, is an iid sample from a population
with pdf f(x;0). The likelihood function is defined as the joint pdf of
the observations Xxj,...,x, considered as a function of the parameter
0, ie., L(xi,....,x,;0) = [l f(xi;6). The log-likelihood function,
(xt, ..., xp30) = logL(xy,...,x,:0) = >/_,log f(x;:0), is often easier
to handle.

Linear dependence or independence A nonempty (but finite) set of matrices (of
the same dimensions (n x p)), say Aj, Aa, ..., Ak, is (by definition) linearly
dependent if there exist scalars x1, X3, ..., Xk, not all 0, such that Zf.(:l x;A; =
0, 0;; otherwise (if no such scalars exist), the set is linearly independent. By
convention, the empty set is linearly independent.

Marginal distribution For two random vectors X and Y with the joint pdf
f(x, ), the marginal pdfs are defined as fy(x) = [ f(x,y)dy and fy(y) =
[ @ y)dx.

Marginal moments The marginal moments are the moments of the marginal
distribution.

Mean The mean is the first-order empirical moment X = [xdF,(x) =

-1 n A
nTlY ey Xi = i
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MeanAsquared error (MSE) The mean squared error (MSE) is defined as
E© —0).

Median Suppose that X is a continuous random variable with pdf f(x). The
median X lies in the center of the distribution. It is defined as f:oo fx)dx =
[ fo)dx — 0.5,

Moments The moments of arandom vector X with the distribution function F(x)
are defined through m; = E(X*) = / x*d F (x). For continuous random vectors
with pdf f(x), we have m = E(X*) = [ x* f(x)dx.

Normal (or Gaussian) distribution A random vector X with the multinormal

distribution N(u, X) with the mean vector p and the variance matrix X is given
by the pdf

fr() = 12rS ™ exp 3 v =) T - o)

Orthogonal matrix An (n x n) matrix A is orthogonal if ATA = AAT = I,.

Pivotal quantity A pivotal quantity or pivot is a function of observations and
unobservable parameters whose probability distribution does not depend on
unknown parameters.

Probability density function (pdf) For a continuous random vector X with cdf
F, the probability density function (pdf) is defined as f(x) = dF(x)/0dx.

Quantile For a random variable X with pdf f the « quantile g, is defined
through: [* _ f(x)dx = a.

p-value The critical value ¢, gives the critical threshold of a test statistic 7' for
rejection of a null hypothesis Hy. The probability Py(T > c,) = p defines that
p-value. If the p-value is smaller than the significance level ¢, the null hypothesis
is rejected.

Random variable(rv) Random events occur in a probability space with a certain
even structure. A random variable (rv) is a function from this probability space
to R (or R? for random vectors) also known as the state space. The concept
of a random variable (vector) allows one to elegantly describe events that are
happening in an abstract space.

Scatterplot A scatterplot is a graphical presentation of the joint empirical
distribution of two random variables.

Singular value decomposition (SVD) An m x n matrix A of rank r is express-
ible as

k
D, 0 -
A=P( 01 O)QT=P1D1Q?—=Z POl =) U,
i=1 =1

where Q = (Q1,...,Q,) is an n x n orthogonal matrix and D; = diag(sy,
D12 0) where
00)

S1,...,8 are (strictly) positive, where Q1 = (Q1,...,0,), P1 = (Py, ...,
P,) = AQ D", and, for any m x (m — r) matrix P, such that PlTPz =0,

.., 8) an r x r diagonal matrix such that QTATAQ = (
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P = (P, P,), where «y,...,0; are the distinct values represented among
S1s-..,8p, and where (for j = 1,.... k) Uj = Y.,y P Qs any of these
four representations may be referred to as the singular value decomposition of A,

and sy, ..., s, are referred to as the singular values of 4. In fact, sy, ..., s, are the
positive square roots of the nonzero eigenvalues of AT 4 (or equivalently AAT),
0i1,...,Q, are eigenvectors of AT A, and the columns of P are eigenvectors of
AAT.

Spectral decomposition A p x p symmetric matrix A is expressible as

P
A= FAFT = Z A,,']/,')/iT
i=1
where A1,..., A, are the not-necessarily-distinct eigenvalues of 4, y1, ..., v,
are orthonormal eigenvectors corresponding to Aq,...,A,, respectively, I' =

1s.--,7p), D =diag(A1, ..., 4,).

Subspace A subspace of a linear space V is a subset of V that is itself a linear
space.

Taylor expansion The Taylor series of a function f(x) in a point a is the

. Q) .
power series Y oo %(x — a)". A truncated Taylor series is often used to

approximate the function f(x).
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Chapter 1
Basics

7l % d= & BEav

Constant sprinkle can make you wet

In this chapter on basics of mathematical statistics we present simple exercises that
help to understand the notions of sample, observations and data modeling with
parameterized distributions. We study the Bernoulli model, linear regression and
discuss design questions for a variety of different applications.

Exercise 1.1. Let Y = {Y1,...,Y,} be i.i.d. Bernoulli with the parameter 0*.

1. Prove that the mean and the variance of the sum S, = Y| + ... + Y, satisfy
Eg*Sn =n 9*,
Vargs S, & B (S, — Eg+S,)” = n 0*(1—6%).

2. Find 6* that maximizes Varg= S,,.

1. Observe that the Y;’s are i.i.d.

Eo*(Yl + Y +Y3+...4Y,) =nEg(Y))
=n{0*x1+(1-0% %0}
=n0*
W.K. Hirdle et al., Basics of Modern Mathematical Statistics, Springer Texts in Statistics, 1
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Since the variance of a sum of i.i.d variables is the sum of the variances,
we obtain:

Varg+ S, = nVarY; = nf*(1 — 0%)
2. Maximizing the function u(1 — u) for u in [0, 1] yields u = 1/2. The fair coin

toss therefore has the maximum variance in this Bernoulli experiment.

Exercise 1.2. Consider the Bernoulli model with parameter 0* and 6 =
n~! Y i, Y its estimator. Prove that 6(1 —0) is estimating the population variance

02 = Ep= (Y; — 6%)?

6 is a consistent estimator of 6*. By the continuous mapping theorem, é(l - é)
estimates 0*(1 — 6*). In fact, the empirical counterpart of o2 equals to

nt Y Y2 — (Y Yi)z. Since Y; is either O or 1, this exactly equals to
A Y Y — (nm Y, Vi), whichiis 6(1 — 6).

1

Exercise 1.3. Let Y; = W 0* + ¢; be a regression model with fixed design V; =
W1 (X:), -+, ¥, (Xi)} T € RP. Assume that the error ¢; are i.i.d. with mean 0 and
Var(e) = o2,
The LS estimator is:
6 =(wu) lwy.
Show that Var(6) = a2(WW 1)1,
Var(é) = Var % (\I/‘-IJT)_I‘-IJY}
= Var { WU 'w(wTo* + s)}

= Var % (\IJ‘-IJT)_I‘-I-'e}

= WU )W Var(e)w T (vw "6

=o2(ww )™
Exercise 1.4. Consider a linear regression model Y; = W.I0* + ¢ fori =
1,---,n with uncorrelated ¢; satisfying Ite; = 0, Ee?2 = 02 < 00, U =
. . def
(1, Y2, -+, W) pxn- Define a linear transformation of 0* as a™ =vT0*, veR.

1. Show that V¢ = v,x1, where ¢ € R", implies:

Cov(¢pTY,d) & Egue{(¢TY —a*)(d@—a*)} = o2 (W) ly
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2. Check that 0 < Var(¢'Y —a) = Var(¢p'Y) —a2v T (PW )1y
1.
Cov(¢p Y, vT8) = Cov(¢p Y, v (W T)~'wy)
=Cov(¢'Y —a*, v (WU )WY —a%)
=E{(@"Y —a")@-a")"}.
Since 'Y —a* = ¢ eandd —a* = v (WU )" We, this yields:
Elp e{vT (@) 'welT] = 020 T (W) ly
=2 (W) we.

Var(¢p'Y — @) = Var(¢p'Y) + Var(d) —2Cov(¢ ' Y,a)
= Var(¢'Y) + Var{v " (WO )T'wy} — 2020 T (W) wg
= Var(¢'Y) + 020 (¥U )1y — 2620 T (WO )" wgp
= Var(¢'Y) +o2v (W) 1y — 2020 T (wWT) 1y
= Var(qSTY) - asz(\If\IJT)_lv.
Exercise 1.5. Let Y; = W[ 0* +¢; fori = 1,....n with & ~ N(0,0°) and

U;,0* € R”. Let rank(V) = p and let v be a given vector from R?. Denote the
estimate @ = v 0; denote the true value a* = v 0*. Prove that

1.
a—a* ~N(0,s?)

with 52 = osz(‘-IJ\I/T)_lv.
2.

Py« (ja —a*| > za5) = a,
where ®(zg) = 1 —a/2.
1. Note that
G—a*=0vT (é — 0*) = (W) wy — 0%}
=0 {(WuT) " W (T 4 ¢) - 0%}

— o (W) we
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has a normal distribution, because it is a linear transformation of normally
distributed vector e. So, it is sufficient to prove that

E(G—a*)=0 and Var(a—a*)= s2.

First fact is exactly the Gauss-Markov theorem. Second fact can be checked via
simple calculation:

Var(@—a*) =E(@—a*)’ =0T (WWT)" W ee” W (00T p = s

=021
2. The cdf of ¥ ~ N(0,s?) is ®(u/s), u € R. Hence

P+ (Y] >zas) =2Pp+(Y > 245) =2{1 — D (z)}
=2{1-(1—-a/2)} =a.

Exercise 1.6. Let Yy,...,Y, bei.id. UJ0,0). For any integer k
[4
Eo(rf) = 67" [ yhay = 65/ + 1),
0

or0 = {(k + 1)]E9(Y1k)}l/k. For any k one defines

_ k+1< 1/(k+1)
9, = Y+ .
= (xr)

i=

Prove that

lim 6; = fs = max{Yi,...,Y,}.

k—o00
Define the order statistics Y(1) < Yoy < ... < ¥,. Since Y;y > 0 forall i we
have

K 4+ 1)\ V/G+D o L, 1/(k+1) k+1gn, 1/(k+1)
( . ) Yo 5( . ZY,) :( p ZYm)

i=1 i=1

< (k + 1)1/(k+1>Y(}/)‘k+”.

and

The limit of Y™ for k — oo is ¥y = fu. Both () /6D

(k + 1)/&+D tend to 1 as k — oo.
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Exercise 1.7. A statistical decision problem is defined in terms of a decision
space D, a loss function ©(-,-) on D x O and the statistical decision p = p(Y).
Define the statistical decision problem for testing a simple hypothesis 0* = 0 for
a given point 0.

Let ®y = {0y} and ®; = ® \ Oy. The decision space D consists of two points
{0, 1}, where d = 0 means that Hy : 8* = 0 is accepted, while H; : 6* # 0,
favors the alternative. The loss is defined as:

od,0)=1(d =1,0 =6)) +1(d =0,0 # 6).
A test is a binary valued function ¢ = ®(Y) — {0, 1}. The risk is calculated as:

R(¢.07) = Eg=¢(Y),

i.e. the probability of selecting 6 # 6.

Exercise 1.8. The risk of a statistical decision problem is denoted as R(p, 8). The
quality of a statistical decision can be measured by either the minimax or Bayes
risk. The Bayes risk with prior 7 is given by R (p) = [ R(p, 0)7 (d6), while the
minimax risk is given by R(p*) = inf, R(p) = inf, supgeg R(p, #).

Show that the minimax risk is greater than or equal to the Bayes risk whatever the
prior measure 1 is.

Define ¥p.  R(p) = supyee R(p. 0)
It is easy to see

R(p) = /ﬂup,a)n do) (L)
since

/ﬂz(p,o)n (dh) < sgpﬂz(p,o)/n (@0) = supR(p. )

The relation in (1.1) will of course not change if we move to inf, R(p) leading to

inf R(p) > inf R, (p)
p p

which proves the claim.

Exercise 1.9. Consider the model in Exercise 1.9, where a = v'0 and ¢ € R?2.
Check that the minimization of the quadratic form ¢T¢ under the condition V¢ = v

leads to the equation ¢T¢ =v' (‘-IJ \IJT)_lv.

1. Define IT = W (W) ~'U and show that I1 is a projector in R" in the sense
that 1> = 17 = II.



KN

—_—

Decompose ¢ ¢p = ¢ IIp + ¢ T (I — IT).

Check that 0%¢ [T = v (YW T) "'y = Var(@) using Y = v.

Show that p " (I — IT)p = 0 iff [T = ¢.

. Define [T = T (¥ )~y

We can prove that

m=v (wuH'ww (we")'y
=vTwuH'w =71

and
o =wTweH 'y =eT(wehH)~lv =1
so I is a projector in R” because

m=n0=mn"

. Decompose ¢p'p = ¢ ITp + ¢ ' (I — IT)¢p where

¢ Ty =¢TWT (WU 'V
=0 (WeH™y

Therefore 02¢ ' [T¢p = o>v T (YW )"y = Var(a)

1

Basics

Recall that (I — IT) is a projector matrix which just has eigenvalues 1 or 0. Thus
it is non-negative definite and therefore ¢ (I — IT)¢ > O and ¢ (I — IT)p = 0
if T =9 M.

¢TI -1 —1)"P¢p =0

Set now u = ¢ T (I — IT)!/2, then we obtain:

wu=0

u=20

¢ —11)"%¢ =0
oI —I)¢ =0

¢ =19
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Fig. 1.1 The shape of Jiao
Bei

then

pp=0¢ I +¢ (I M)
>¢ My =0T (WW )y

if and only if ¢ = I1¢ for “=".

Exercise 1.10. In Taiwanese culture, there is the “Jiao Bei” (%#%, Fig. 1.1), which
helps to know if the Gods agree with important matters such as marriage, home
moving or dilemmas. This kind of divination—tossing “Jiao Bei”—is given by the
outcome of the relative location of the two wooden pieces. Worshippers stand in
front of the statue of the God they believe in, and speak the question in their mind.
Finally they toss the Jiao Bei to see if the Gods agree or not.

As a pair of crescent moon-shaped wooden pieces, each Jiao Bei piece has a convex
(C) and a flat side (F). When tossing Jiao Bei, there are four possible outcomes:
(C,C), (EF), (C,F), (F,C). The first two outcomes mean that the Gods disagree and
one needs to restate or change the question. The last two outcomes mean that the
Gods agree, and this outcome is called “Sheng Bei” (2#%).

Suppose that each piece of Jiao Bei is fair and the probability to show C or F is
equal. Sequential tossings of Jiao Bei can be viewed as sequence of i.i.d. Bernoulli
trials.

1. What is the probability of the event of Sheng Bei?
2. Iftossing Jiao Bei ten times, how many times of Sheng Bei would show up?
3. What is the probability that Sheng Bei finally shows up at the 5th tossing?



8 1 Basics

1. The probability for the event (C,C) is 1/4, given the assumption that the events
C and F have equal chances for each piece of the Jiao Bei. Similarly, the
probabilities for the events (FF), (C,F) and (F,C) are also 1/4.

For the event of Sheng Bei, it would be either (C,F) or (F,C). Therefore the
probability for the event Sheng Beiis p = 1/4+ 1/4=1/2.

2. Using the result of 1. in Exercise 1.1, the expected number of Sheng Bei if tossing
ten timesisnp = 10x 1/2 = 5.

3. We know that the probability for the event Sheng Bei is 1/2. There are four
failures before Sheng Bei shows up at the 5th tossing. So the probability for

this event is

N1ty

2) 2 \2) "
Exercise 1.11. The crucial assumption of Exercise 1.10 is the Jiao Bei fairness
which is reflected in the probability 1/2 of either C or F. A primary school student
Jfrom Taiwan did a controlled experiments on a pair of Jiao Bei tossing 200 times,
yielding the outcomes (C,C), (EF), (EC), (C,F). The outcomes (F,C), (C,F) are
“Sheng Bei” and are denoted by 1, while the outcomes (C,C), (EF) are not “Sheng
Bei” and are denoted by 0. We have a sequence of experiment results:

1P 01 0 01 0 1 0 O 0O 1 1 O 1 1 0 1 0 O
$1 01 0 1 1 0 0 01 0 1 O O O O O 1 0 O
o o601 0 1 1 0 01 O OO T1 OO O T1T O 0 O
o 1 o0 o0 0 o0 1 1 0 1 1 0O 0O OO O O O O O
$1 1.0 1 0 0 0 0O1 0O1 00 O OT1T OO O O
o o0 o0 o0 0 0 0 0 1 0 1 0 0 1 0 1 0 O 1 O
1P 0 0 0 01 1 1 01 0 1 01 0 0 O0 1 0 O
o 1 o0 1 1 0 0 o0 01T 1 01 0 1 1 1 1 1 O
1 1r o0 1 0 0 0O 1 1 O O O I 1 O O O O 0 1
o 1» o0 o0 o011 1 1 0 01 0 0 1 1 1 0 0 1

Can you conclude from this experiment that the Jiao Bei is fair?

We can decide if this pair of Jiao Bei is fair by applying a test on the null hypothesis
Hy : po = 0.5, where p is the probability that “Sheng Bei” shows up. Denote this
set of data as {x;}?_,00, and the event x; = 1 is shown 75 times.

To compute the test statistics, first we have X = 75/200 = 0.375. y/o%/n =
/0.5 %0.5/200 = 0.0354. The test statistics is (X — pg)/+/02/n = —3.5311.
According to the asymptotic normality, the test statistics has p-value 0.0002. Thus,
the null hypothesis is rejected by a significance level o = 0.001.



Chapter 2
Parameter Estimation for an i.i.d. Model

OneHnBaHue MapaMeTpoB B MOJIETH C HE3aBUCHMBIMU OJTMHAKOBO
pacnpeeIéHHBIMU HaOTIOICHISIMHI

Kanpel, oiiajieBirie TEXHUKOM, pemaroT BCE!

Personnels that became proficient in technique decide
everything!
Joseph Stalin

Exercise 2.1 (Glivenko-Cantelli theorem). Let F be the distribution function of
a random variable X and let {X;}!_, be an i.i.d. sample from F. Define the edf as

i=1

def

Fo(x) Sn7' ) 1(X; < x).

i=1
Prove that

sup| F (x) — F(x)| =5 0, n— oo

1. If F is a continuous distribution function;
2. If F is a discrete distribution function.

W.K. Hirdle et al., Basics of Modern Mathematical Statistics, Springer Texts in Statistics, 9
DOI 10.1007/978-3-642-36850-9__2, © Springer-Verlag Berlin Heidelberg 2014
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. Consider first the case when the function F is continuous in y. Fix any integer
N and define with e = 1/N the points #; < #; < ... < ty = 400 such that

F(l‘j) _ F(lj—l) =¢for j =2,...,N. 2.1

For every j, by the law of large numbers: F, (¢;) N F (¢;). This implies that
for some n(¢), it holds for all n > n(e)

|Fu(tj) — F(t))| <e, j=1,....N. (2.2)

F(¢) and F,(t) are nondecreasing functions. This implies that for every ¢ €
[Zj_l, Zj] it holds

F(tj—1) < F(t) < F(tj), Fu(tj—1) < Fa(t) < Fo(@)). (2.3)
Let us subtract the first inequality (2.3) from the second:

Fu(tj—1) — F(tj) < F,(t) — F(t) < Fu(1;) — F(t;-1), (2.4)
Let us continue with the right hand side using (2.1) and (2.2):

F,(t) — F(t) < Fu(t;) — F(tj—1)
= {Fn(t]) — F(lj)} +{F(t]) — F(tj_l)} < 2¢,

<e =¢

In the same way (considering the left part of (2.4)), one can prove that
Fu(t) = F(r) =z =2¢
So,
|Fu(1) — F(1)] < 2e. (2.5)

Thus for all ¢ > 0 there exists constant n(e) > 0 such that for every n > n(e)
the inequality (2.5) holds for all # € R.
.By T = {tn };3 we denote points of discontinuity of function F(x). Of course,
these points are also points of discontinuity of function F, (¢) (for any n).

Let us fix some ¢ > 0 and let us construct some finite set S(¢). We include in
S (&) the following points:

(a) Points such that at least one inequality fulfills:

F(tm) - F(Zm—l) >¢& or F(tm+l) - F(tm) > &
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(b) Continuous set of points such that
F(tm) - F(Zm—l) <é

Denote amount of elements in S(¢) by M.
We know that F,(t) — F(¢) almost sure. In particular

Fotw) = F(tn), ¥V me S).
By definition
() eN: Vn>nu(e) |Fo(tn) — F@ty)| <e
Define n(¢) &t max{ni(e),...,ny(e)}. Then for all z,, € S(¢)
Vn>n(e) |F,(tm)— F(tn)| <e.
Let us prove that the inequality
Vn>n(e) |F,(tm) — F(tn)| < 2e. (2.6)

is also true for all points #,, ¢ S(¢). Fix some t,, ¢ S(¢) and find index s such
that

F(ts—l) = F(tm) = F(ts)v Fn(ts—l) = Fn(tm) = Fn(ts)-
Consider

Fy(tm) — F(tm) = F(t;) — F(t5-1)
= {Fn(ts) - F(ts)} + {F(ts) - F(ts—l)} <2,

<e <&

Similarly, one can prove that

Fy(tm) — F(tm) = —2¢
This means that

| Fa(tm) — F(tm)| < 2¢

So, (2.6)is true forall ¢,, € T.
For all ¢ there exists some point #,, € T such that

Fy(t) = Fy(tw) and  F(t) = F(im).
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EDF and CDF

0.8

0.6

0.4

EDF(X), CDF(X)

0.2

Fig. 2.1 The standard normal cdf (thick line) and the empirical distribution function (thin line) for
n = 100. @ MSEedfnormal

Thus
Vn >n(e) |F,(t)— F@)| <e.

This observation completes the proof.

For an illustration of the asymptotic property, we draw {X;}/_, i.i.d. samples
from the standard normal distribution. Figure 2.1 shows the case of n = 100 and
Fig. 2.2 shows the case of n = 1,000. The empirical cdf and theoretical cdf are
close in the limit as n becomes larger.

Exercise 2.2 (Illustration of the Glivenko-Cantelli theorem). Denote by F the
cdf of
1. Standard normal law,

2. Exponential law with parameter A = 1.

Consider the sample { X; }!_ . Draw the plot of the empirical distribution function

=1

F,, and cumulative distribution function F. Find the index i € {1, ..., n} such that

|Fy (Xix) = F(Xix)| = sup| Fy(X;) — F(X))|.

The examples for the code can be found in the Quantnet. The readers are
suggested to change the sample size n to compare the results (Figs. 2.3 and 2.4).
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EDF and CDF

0.8 A

0.6 A

0.4 A

EDF(X), CDF(X)

Fig. 2.2 The standard normal cdf (thick line) and the empirical distribution function (thin line) for
n =1,000. @ MSEedfnormal

EDF and CFD

0.8
0.7 +
0.6 |
0.5

04}

EDF(X), CDF(X)

0.3

0.2

0.1

Fig. 2.3 The standard normal cdf (thick line) and the empirical distribution function (thin line)
for n = 1,000. The maximal distance in this case occurs at X;« = 1.0646 where i *x = 830.
@ MSEGCthmnorm
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EDF and CFD

0.7 R
0.6 k
0.5 ]

04| 1

EDF(X), CDF(X)

0.3 R
02 r ]

0.1 ]

Fig. 2.4 The exponential (A = 1) cdf (thick line) and the empirical distribution function (thin
line) for n = 1,000. The maximal distance in this case occurs at X;« = 0.9184 where i * = 577.
@ MSEedfnormal

Exercise 2.3. Compute the estimate of method of moments for the following
parametric models:

1. Multinomial model:
m\ ok m—k
]Pg(sz)z(k)H (1—-6)"*, k=0,...,m.

2. Exponential model
Po(X > x) = e /",

In both cases one can follow the algorithm consisting of two steps:

* Calculate mathematical expectation m () = g X;
* Solve the equation m(f) = n~! > '_, X;; the solution is the required estimate.

Let us apply this:

1. Multinomial model, we first calculate expectation:
_ -l . o - m\ k —k
m(0) =n ZX = Zk(k>9 (1-06)"
i=1 k=0
m—1) i —k
=mz<k_l)e (1—6)""* = m9.
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Secondly we solve the equation
- 1<
m@zzzx;
which gives the solution:

n

1
e—m;

2. Exponential family. Both items are trivial: m(@) = 5 and
~ . _
0 =n(Xio Xi)
Exercise 2.4. Let {X;}'_, be an ii.d. sample from a distribution with Lebesgue
density

fo(x) = % 1+ Gx) I[_l,l](x)

1. Find an estimator via the method of moments;
2. Find a consistent estimator.

Let us begin with calculation of the mathematical expectation:

1! 1
]EgX]ZE/ (1+9x)xdx:§9
—1

Both items of the exercise follow immediately:

1. The estimator of method of moments is a solution of the equality

E; X, =n"" Xn:Xi

i=1
So, 6 = 3n~! Y Xi
2. By the law of large numbers,

n
5. 1
n_IZX,- ﬂ)EXl = 59, n — oQ.

i=

This means that

3n_IZXi ﬂ)@, n — oo,

i=1

hence the estimator § = 3n~! "7, X; is consistent.
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Exercise 2.5. Consider the model
X; =0"+e,

where 0% is the parameter of interest and ¢; are independent normal errors
N(0, 6?).

Compute the MLE 6 of the parameter 0* and prove that this estimate has the
following properties:

(a) The estimate 6 is unbiased: Eg*é =0*.
(b) The quadratic risk of 0 is equal to

R(0,6%) E Bge|6 — 0*> = O oD\
i=1
The corresponding log-likelihood reads
1 . 2 (Xi - 9)2
L) = Z{log(%mi )+ —2}

i=1 9

The first derivative is equal to

IL(O) = Xi—0 X |
TR o2 :ZF_HZ(TZ'

i=1 i i=1 i i=1 i

Then the MLE 0 equals

= def 1 X;
0= L) =— E —,
argznax 0) N aiz

where N = Y0772

(a)
~ 1 EX; 1 o* 0 1 *
E@*QZNZU—iz:ﬁZU—iz:ﬁZU—; =0
(b) The quadratic risk of 0 is equal to the variance Var(é):
1 X 2
~ def Jo 2 i
RO, 0%) = By« |0° — 0% > = Egx Nza—g—e*
1 X 1 1 2
= Eox | — L L _
P o2 N4 g2
1 Xi—0 1 X; — 0% [
=B |52 | S e | T
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Note that random value X; — 6* has a normal distribution with zero mean and

variance 07. Then (X; — 0*)/0? ~ N(0,0,7%) and

1

no * 1 -2
R(6°, 0 )=m20i =5

Exercise 2.6. Let {X;}'_, be ani.i.d. sample with distribution that depends on some

parameter 0. Let 0, be an estimate of parameter 0.

Assume that this estimate is root-n normal, i.e. there exists a function 6 (0) such

that
Vil —0) LN (0.60)%).  n—co.

Prove that 0, is consistent,

6, =0

This fact can be briefly formulated as “root-n normality implies consistency”.
We need Slutsky’s Theorem:

. Let a, (sequence of real numbers) be convergent in probability,

P
a, — a, n— oo

Let 1, (sequence of random variables) be convergent in distribution,
£
N, —> Law(n), n— oo

Then

£
ann, — Law(an), n— 0o

. Let &, be a sequence of random variables that converges in law to the distribution
that is degenerated in some point ¢ (we denote this degenerated distribution by
Law(c)). Then &, also tends to c in probability.

Let us apply these observations to our situation. We use the first part of Slutsky’s

Theorem with a, = JL; and §, = ﬁ(éﬂ —0).

The sequence a, tends to zero and the sequence &, tends in probability to a

normal distribution. So,

ané&, i) Law(0)
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According to the second part, this sequence also tends to zero in probability. Thus,
A P
ané, =6, —0 — 0.
Remark 2.1. In fact our proof is true for any estimate that has an asymptotic

distribution (not necessarily normal).

Exercise 2.7. Let F be the distribution function of a random variable X and let
{X;}I_, beanii.d. sample from F. Let g : R — R be a function such that

def
o; = Var{g(X)} < 0o
Denote

sEEBg(X). S, EnY g(x)

i=1

1. Prove that
(a) S, L S, n— oo
(b) (S, —5) —> N(©0,02),  n— oo

2. Let h(z) be a twice continuously differentiable function on the real line such that
W (s) # 0.and h'" (s) is bounded in some neighborhood of s. Prove that

(a) h(S,) —> hs)
(b) JA(h(S,) —h(s)} > N(O.02). 1 — oo,
where 07 &f |h’(s)|2cr§.

1. (a) Note that {g(X;)}/_, is a sample from the distribution with expectation equal
to Eg(X).
One can apply the law of large numbers for the sequence {g(X;)}/_,:

n
n! Zg(X,-) i Eg(X) n — oo.
i=1
(b) This statement directly follows by the CLT for i.i.d. random variables:

nI Y g(Xi) — Eg(X)
L var{g(X)}

~ N(0,1)
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2. (a)

(b)

In other words,

Vi dn S g (X)) - Bg(X)y <5 N(0.02). 1 - oo,
i=1

‘We know:

P
S, — s, n — oo

Then for any continuous function g:

2(S)) —> g(s). 1 — oo

One can find a neighborhood U of the point s such that

(i) S, belongs with high probability to U ;
(ii) h"(s) is boundedin U.

Applying the Taylor expansion to / in this neighborhood U':

Jn

Vi {h(Sy) = h(s)} = V/nh'(s) (Sy —5) + 7h”(§) (S, =9, @7

where § is some point between s and S,. The right hand side of (2.7) is a
sum of two random variables. First random variable \/nh’(s) (S, — s) tends
to N (O, |h’(s)|20§) in distribution.

Let us show that the second component tends to zero in probability.
Actually,

—% VS -,

where U is an upper bound for 4”(s) in the considering neighborhood
Expression in the right hand side is a product of the sequence f’ which

tends to zero, and sequence {ﬁ (S, — s)} , which converges in distribution.
Then

'fh//( )(

4”(5) (S, —s)?

Thus, the right hand side in (2.7) (and left hand side also) tends to
N(0, [ (s)|*07) in distribution.
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Exercise 2.8. (Analogue of the Exercise 2.7 for multi-dimensional case) Let g (-) =
(1(), ... 8gm ())T : R — R™ be a function such that

i EE[g(X)g(X)] < oo, for jk < m.
Denote

s = BEg(X) = Bgi(X),...., Bgn(X))T,

n n n T
S, = %Zg(Xi) = (%Zgl(xi)s---s’%zgm(Xi)) -
i=1 i=1 i=1

1. Prove that

(a) S, L s, n— oo
(b) JH(Sy —5) =5 N, %), n— oo,
where ¥ = (X jk) jk=1...m

2. Let H(z) : R™ — R be a twice continuously differentiable function such that
VH(z) and H V2H(z) || is bounded in some neighborhood of s. Prove that
(a) H(S,) —> H(s)
(b) JA{H(S,) — H(s)} = N(©,0%), 1 — oo,
where 0%, & VH(s) TSV H(s).

First note that items la and 2a follow from items 1b and 2b correspondingly. Let
us check items 1b and 2b.

Consider for every v = (vy,..., vm)T € R™ the scalar products v " g(-), v 's,
v S ,. For the statement 1b, it suffices to show that

Vv (S, —s) LN N©O, v Zv), n — oo.

Actually

Vv (S, —s) = ﬁZv; {%Zgj(Xi)_Egj(X)
j i

i

=n %Z D vigi(X)p —E{Y vgi(X)
j J

’

1
= ﬁ{ " Z G(X;) —EG(X)

where G(-) = 3, v,g; () = vTg().
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Now one can apply result of the Exercise 2.7 (item 1b) for the function G(:) and
obtain the required statement.
For the statement 2b, consider the Taylor expansion

VA{H(S,) = H(s)} = Vn VH(s)" (S, —5) + %ﬁ(sn —5) VZHGE) (S, —s).

This formula is an analogue of (2.7). One can continue the line of reasoning in the
same way as in the proof of (2.7) (item 2b).
In fact,

JAVHS)T (S, —5) = N0, VH(s)TSVH(s)),

and

N

- 1
S S =) VHE S0 =9 = 5 [V Sy =) max [VH)|

_)0

These two observations conclude the proof.
Exercise 2.9.
1. Consider a sample {X;};_, from a distribution Py € (Py,0 € © € R). Let 6

be an estimator of 0 such that the bias

b(0,0%) ¥ Eyell — 6

and the variance Vargx (é) tend to zero as n — oo. Prove that 0 is consistent.

2. Let {X;}/_, be a sample from the uniform distribution on [0, 0). Using the first
item of this exercise, prove that the estimator

évl =max{Xy,..., X,}

is consistent.

1. Applying the so called bias-variance decomposition, which is true for any
estimate 6:

E,» (é — 9*)2 = Varg+(8) + b*(8.6™). (2.8)
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Let us prove (2.8):

By (é - 9*)2 = By {é —E@) + E@6) — 9*}2

Ey+ {é —E(@) + b(@, 9*)}2

Vary+(8) + 2b(0, 0%)Ey» (é . Eé) + b2, 6%
= Varg+(0) + b%(0, 0%)

If bias and variance tend to zero as n — o0, then

g+ (5—9*)2—>0, n— 0o

This means that 6 tends to 6* in L, sense. Then 6 also tends to §* in probability,
i.e. 6 is a consistent estimator. _
2. First of all, let us calculate the cdf of 6.

Py (élfx) = Pe+ (X1 =Zx,..., X,y < Xx)

{Py+ (X1 < x)}" = (91) x €[0,6%]

Afterwards we can take the derivative and obtain the density function

p(x) =n(0*)"x"'1(0 < x < 6%)

For applying the first item, one has to calculate expectation and variance of 6,:

~ n % ~ n *2
LT ) = T 2)

Now we are ready for applying the first item:

~ 1
b(0,0%) = — 0" 9  =—— 6% 50, n— oo
n—+1 n+1
0 n *2
Varg«(8) = —— "2 50, n— oo.

n+1)2mn+2)
So, assumptions are fulfilled. This concludes the proof.

Exercise 2.10. Check that the i.i.d. experiment from the uniform distribution on the
interval 0, 0] with unknown 0 is not regular.
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First condition from the definition of the regular family is the following one: the sets

A(@) {y p(y,0) = 0} are the same for all § € ©.
The uniform distribution on the interval [0, 6] doesn’t satisfy this condition,

A(f) = (—00,0) U (6, +00).

This exercise gives a local approximation of the Kullback-Leibler divergence.
Exercise 2.11. Let (Py) be a regular family.
1. Show that the KL-divergence X (0, 0) satisfies for any 0, 0’ :

(a)
(b)
d
ZXO.0)| =0
(c)
= 1(0).
d9’2 ©)

2. Show that in a small neighborhood of 6, the KL-divergence can be approxi-
mated by

K(H,0") ~ 1(0)|6' —6]%/2.
1. Note that

K(0,0") = g log p(x,0) — Eglog p(x,0")

(a) First item is trivial.

(b)

4 50.0) =

d
” B log p(x, 0')

do

d
0 log p(x,0")p(x, 0)dx

// 79/
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where pj, (x,0") &f %p(x, 0’). Substitution 8’ = 0 gives

20,0 = - [ oo
- p(x,@’)dx’e/ze =0.
(©)

Substitution 8’ = 6 yields

d? / o {py(x.0))°
WK(@, 0 ) e = /pe,(x, 0 )dx‘0/=9 +/ de = 1(9)
2 , _ =1(6)
d';,z [ p(x,07)dx , :6_0

2. The required representation directly follows from the Taylor expansion at the
point 8’ = 6.
The following exercise

. Ilustrates two methods for checking the R-efficiencys;
. Shows that the Fisher information can depend on the parameter (for some
parametric families), but can be a constant (for other parametric families).

N —

Exercise 2.12. Consider two families:
(a) the Gaussian shift (b) the Poisson family

1. Compute the Fisher Information for these families. _
2. Check that the Cramér-Rao inequality for the empirical mean estimate 60 =
n~'Y""_ | X; is in fact an equality, i.e.

Varg(0) = n~'17'(6).

3. Check R-efficiency ofé

(i) Using only the definition;
(ii) Using the Theorem 2.6.3. of Spokoiny and Dickhaus (2014)
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1. (a) Recall

p(x,@):\/lz_nexp{—(x_ze)z}.
Then
2 2y 12
I(Q)ZEe‘alogge(X,H) _E, a%%_(Xze)}
= By |X - 0]
= By |X ~Ep X[’
= Var(X) = 1.

Therefore, the Fisher information is equal to 1 for any values of the
b parameter 6.
(b)

X

0
p(x,0) = e x=1,2,...
x!

2 2

dlog p(X, 6 5
1(9)=E9‘% =E9‘@(Xlog9—1ogxy—e)
X P )

1

1 1
2
GZEQ IX —EgXI = ﬁVarg(X) = 5

So, in the case of the Poisson family, the Fisher information depends on 6.
2. Estimator 6 is unbiased for both cases. Then the Cramér-Rao inequality stands
that

- 1 — 1
Varg(f) = Varg (- in) = — Varg(Xy) 2 n~'17'(0).
n i1 n

So, the aim is to check that

Varg(X,) 1(6) = 1. 2.9)

(a) For the Gaussian shift Varg(X;) = 1 and /(0) = 1. Hence, (2.9) is fulfilled.
(b) For the Poisson family, Vary(X;) = 6 and /(6) = 1/6. Hence, (2.9) is also
fulfilled.
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3. (1) The definition says that R-efficient estimators are exactly the estimators that
give the equality in the Cramér-Rao inequality. So, this item is already proved.
(ii) The estimate 6 can be represented as

0=n"'Y UM

with U(x) = x. The aim is to show that the log-density £(y, 6) of Py can be
represented as

£(x,0) = C(0)x — B(O) + £(x), (2.10)

for some functions C(-) and B(-) on ® and a function £(-) on R.

(a)

2 1
0(x,0) = 0x — 2 2+(—x—+1 )
(x,0) =0x / 7 Ogm

and (2.10) follows with C() = 0, B(0) = 6?/2, and £(x) = —x?/2 +
log1/+/2m.
)

£(x,0) =log(f)x — 6 + log(x!), (2.11)

and (2.11) follows with C(0) = logf, B(8) = 0, and £(x) = log(x!).

Exercise 2.13. Let X be a random variable with a distribution from (Py,0 €
® C R). Let also a function ¥° : R x ® — R be such that

vo(x,0) =a(x—0)>+b(x—0)+ec,
where a,b,c € R.

1. Find a condition on the constants a,b,c and the family (Py) such that the
Sunction ¥°(x, 0) is a contrast.

2. Find a condition on the constants a, b, ¢ such that such that the function y°(x, 0)
is a contrast for the model of the Gaussian shift N(0, 1).

1. By definition, the function 1/° is a contrast if and only if

argmin By ¥°(X,0) =0, V6.
0/

Introduce a function

def

f(ev 9/) = EG [1//°(X’ 9/)]
= (aEgX>+bE¢X +¢) — 2aEgX +b)0' +ab?. (2.12)
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The aim is to find a condition on the constants a, b, ¢ and the family (Py) such
that

argmin f(6,0") =0, V0. (2.13)
0/

Take the derivative of the function f(6,60’) with respect to 6’ and solve the
equation df(6,6")/d0" = 0:

afo,0" _

T —(2aEgX +b)+2a0 =0

This means that

argmin f(6,0) = g X + i
[l 2a

Together with (2.13), this yields the required condition on the constants a, b and
the family (Py):

b
0 =FEpX + —, V6. (2.14)
2a

Constant ¢ can be chosen arbitrary.
2. For the model of the Gaussian shift N(6, 1),

EoX =6, V6.

Condition (2.14) in this case yields » = 0. This means, that any function
¥°(x,0) with b = 0 and any constants ¢ and ¢ is a contrast for the Gaussian
shift.

Exercise 2.14. Let {X;}!_, be an i.i.d. sample from a distribution Pg+ € (Pg,0 €
® CR).

1. Let also g(x) satisfy [ g(x)dPg=(x) = 0*, leading to the moment estimate

~ def _ -
O=n"" ) g(Xi).

i=1

Show that this estimate can be obtained as the M-estimate for a properly selected

Sfunction yr(-).
2. Let [ g(x)dPo=(x) = m(0%) for the given functions g(-) and strictly monotonic

and continuously differentiable m(-). Show that the moment estimate 0 =
m~Y>" g(X;)/n} can be obtained as the M-estimate for a properly selected

Sfunction Y (-).
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1. It is the worth mentioning that
6Ly Xn:g(Xi) = arggnian: {g (X)) — 0}, (2.15)
i=1 i=1
This observation helps us to find an appropriate function y. Fix
¥(x.6) = {gx) - 0y

and prove that

0* = argmin Eg= ¥ (X, 6), (2.16)
o

where X is a variable that has the distribution Pg+.
The proof of (2.16) is straightforward:

Eo« (X, 0) = Eg+ {g(X) = 0}° = Eg=g(X) — 20Eg+g(X) + 6°
Minimizing the right hand side expression by 6 yields
emin = E9*g(X) =0".

This concludes the proof.
2. The proof follows the same lines as the proof of the first statement. Note that

T I
O6=m"{- X;
m {n;g( )

= argminz {g (X)) —m (6)¥.
v =1

Function

def

Y(x.0) = {g(x) —m (0)}°
is appropriate because of

6* = argmin Eg+ {g(X) —m (0)}* (2.17)
6

In fact, fix some 6 € © and find a minimum value of the function

£(0) = Eg« {g(X) —m (9)}



2 Parameter Estimation for an i.i.d. Model 29

In order to minimize this function, solve the equation f'(6) = 0:

20~ am@) ao ~ Lele®) m@) =2 =0

The first derivative of the function m(6) doesn’t change the sign because of
monotonicity. This means that the minimum value of function f satisfies the
following equation

m(@mm) = E@*g (X) .

Then (2.17) fulfills. This completes the proof.
Exercise 2.15. Let {X;}'L, be a sample from the distribution with the pdf

2x
p(x,0) = R x € [0, 0].

Find the MLE of the median of the distribution.

First let us find a relation between 6 and the median m. By the definition of the

median,
m m
2
/ p(x,0)dx :/ Q—de: 1/2,
0

—00

i.e. # = +/2m. Then the likelihood function

L(m) = HP(X,,\/_m) l_[X (X e [0, x/_m])

i=1 i=l1

has a maximum at the point 772 = max; X;/v/2.

Exercise 2.16. Let {X W } . and {X @ } » be two independent samples from

the Poisson distributions with unknown parameters 1 and (o, = 1 + U
correspondingly. Find the maximum likelihood estimator for the parameter |i.
Hint: Is it possible to find separately [i| (the MLE for j1) from the first sample, [i,
(the MLE for |1,) from the second sample, and then obtain the MLE estimator for |4
as the difference il = i} — fi2?

Denote by L;(u1) and L,(u») the log-likelihood functions for the first and the
second samples correspondingly.
The MLE estimate for the parameter p is determined as

(A, 1) = argmax { L (1) + La(ur + 1)}
1
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Hence, it = argmax,, Ly (ft1+ ). The maximal value of the function L, is achieved
at the point f1,. This yields

max Lo(jfiy + p) = Lao(f12) = La{j + (fia — f11)}.

So, it = 12 — fl1.
In the case of the Poisson distribution,

ni i na
Li(uy) =) _log e"“% and  Ly(up) = ) _log e"”% :

i=1 i o i=l1 i

and the MLE of the parameter is the mean value, i.e. i; = n_1 Zn’ X; () &f

X(]), Jj =1, 2. Thus, we conclude that

= 7(2) _7(1)‘
Exercise 2.17. Let {X;}7_, be an iid. sample from a distribution with the
Lebesque density

(07 _
p(x,0) = ﬂ—ax“ "o.p)(x),

def
where a, B > 0 and 0 = (a, B). Find estimators for the multivariate parameter 0

using the following approaches:

1. Maximum likelihood approach;
2. Method of moments.

1. The likelihood function in this case

l‘l

LO) =[] r(xi.0) = 1"[X“ op)(Xi)

an
i=1 ’3 i=1

= o 1<0ﬂ>(X<n))l—[X“ !
i=1

is equal to zero if B < X(,) and decreases for 8 > X,. Therefore the maximum

likelihood estimator for the parameter § is B = X(»). In order to find MLE for
the parameter «, one should maximize the function

fl@) = Ca"Cs7,
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where Ci = I,5Xu)B™, C = [l Xi/B = [li=, Xi/Xw). The
equation f’(«) = 0 gives the MLE of the parameter o:
n n

—logCx ¥ log T

So, the MLE is

~ ~ n
b =@p) = <ﬁ X(n)).
> i= log )g:)

2. Firstly we compute the first and the second moments:

P o af
0) =EyX, = ,0)dx = —x%dx =
m1(0) 0 X1 /xp(x )dx /0 ,3“x Ix .
P o ap?
0:IEX2:/2 ,0d:/—“+ld:
mo(0) 0 X x“p(x,0)dx | ﬂax X )
The empirical counterparts are
1 ¢ 1
Ml—;é_ Xi, Mz_n E X/, (2.18)

i=l1 i=l1
The required estimators are the solutions of the system of equations
M] = 06,3/(0[ + 1)
2.19
| — oo 1 @1

Raise both parts of the first equation to the second power and divide it to the
second equation:

M,  a(x+2)

M, (a+1)?

This yields the following quadratic equation w.r.t o:

o + 20 + 0. (2.20)

1
My — M,

If Mlﬂf le < 0 (orequivalently M; < M5) then (2.20) has one positive solution
M,

b= —1 11—
o + MM,
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The first equation of system (2.19) gives

a+1

a

g =

M.

So, the estimate by the method of moments is

/1 _ M
M\—M,
(&, ,3) -1+ ,/1— M1 M2 M,

Ml—Mz

where M| and M, are given by (2.18).

Exercise 2.18. Let {X;}7_, be an iid. sample from a distribution with the
Lebesgue density that depends on the parameter 8 € R (o is a fixed positive
number):

p(x.0) = 0)~te7 e,

Compute the maximum likelihood estimate for the parameter 0.

This model is known as a shift of a Laplace law.
The maximum likelihood approach leads to maximizing the sum

L(0) = —nlog(20) — Y _|X; — 6|/,
i=1

or equivalently to minimizing the sum ) ;_, | X; — 6|:

n
0 = argmin Y |X; —0|.
min )

i=1
Order the observations X (1) < X(2) < --- X(,) and consider two cases.

1. Suppose that n is even. Denote k = n/2 € N. It is worth mentioning that
Xy =0l + | Xy — 0] = [ Xy — Xyl (2.21)
where equality takes place if and only if 6 € [X 1, X (n)] Analogously,

1X@) =0 + | X1 — 0] = [Xu—1) — X (2.22)

[ X = 01 + [ Xkt — O = [Xkt1) — Xwl (2.23)
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This yields that

n n k
DoIXi—01= " 1Xe)— 01 =D (1X() = 01 + | Xo—j+1) — 6l

i=1 i=1 i=1
k

>3 | Xaojrny — Xl (224)
j=1

Equality in (2.24) takes place if and only if all the inequalities (2.21)—(2.23)
are in fact equalities. This means that argmin ) |X; — 6] is minimized by any
6 € [Xw&). Xk+1) ] in particular by

Xy + X+

ézmedX,- 7

2. Suppose that 7 is odd. Denote k = (n — 1)/2 € N. Equalities (2.21)—(2.23) are
still true. This yields the analogue for (2.24):

n n k
DoIXi—01 = 1Xiy=01 = [Xa+n — 01+ D 1XG) — 01 + | Xo—j41) — 0

i=1 i=1 =1
=0 = Xu—j+1— Xl

k
> Y 1 Xa—j+n — Xipl- (2:25)

J=1

Note that the following two equalities take place only in the case of 6 =
medX,- = X(k_H)Z

X+ —0] =0
k k
D [1XG) = 01+ Xa—jy = 011 = D [ Xa—j+1) — Xl
j=l1 =1

This completes the proof.

Exercise 2.19. Consider the volatility model with parameter 0:
Y =8, £~N(©,0).
1. Prove that 0 is a natural parameter.

2. Find a canonical parameter for this model.
3. Compute the Fisher information for this model with canonical parameter.
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1. The proof is straightforward:

EY = E& = Varé + (E§) 2 = 0.
~—— ~——

=0 =0

2. Denote by pg(x) the pdf of &:

1 x2
pets) = ——exp (—ﬁ) .

The density function of Y can be derived from pe(x):

1
pr(y,0) = ﬂps(\/yj =3

1 y
e a0 )

1 y 1
= — —— ——logf ). (2.26
zme"p( 20~ 28 ) (2.26)

This density representation means that C(6) = —(20)"!. The canonical
parameter is determined by the equality v e (), ie. v = —(26)7". This
yields

1
prO.v) = 5 expl —d)}.

where d(v) = 1/2log{—1/(2v)}.
3. According to the general theory,

IW)=d"(v) = ZLUZ

Exercise 2.20. Let (P,) be a Gaussian shift experiment, that is P, = N(v, 1),
v e R Let {X;}/_, be ani.id. sample from a distribution Pyx.

1. Is the parameter v a natural parameter? Is it a canonical parameter?
2. Check that

K(v1.v2) = (v = v2)* /2.
3. Check that for any vy and any C > 0, the equation
K(vg + u,v9) = C (2.27)

has only one positive (u™) and only one negative (u™) solution.
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. Compute the maximum likelihood estimator v and check that
L(,v) = (0 —v)*n/2.

. Fix some { > 0. Consider the equation (2.27) with vo = v* and C = {/n.
According to item 3, this equation has two solutions: denote the positive solution
by u™t, and the negative solution by u™. Denote also v* = v* +u™, and v~ =
v 4 u.

(a) Compute the sets {L(0,v*) > ¢}, {L(vT,v*) > ¢}, {L(v™,v*) > ¢}

(b) Check that

(L@, v*) >y C{LwT,v*) > U{L™,v*) > &)

Note that the last item is fulfilled for any v* (not necessary the true value).

. Parameter v is a natural parameter, because the expected value of a r.v. with
distribution N(v, 1) is equal to v. The parameter v is also a canonical parameter,
because the density function can be represented in the following way

(x —v)?

pr) = e | =S peoexp - do).

where

2
PE) = p(x).  d@) =T

. According to the formula for the canonical parametrization,
K(v1,v2) = d'(v1)(v1 —v2) = {d(v1) — d(v2)}. (2.28)

In the case of a Gaussian shift, (2.28) yields

2 _ .2 2
vi—v v+ v2 (vi —v2)
K(vi,v2) = vi(v1 —v2) — === = (1 =) [ V1 — = :
2 2 2
. The statement is a straightforward corollary from the previous item:
(vo +u—v9)> u?
Kw,vg) = ————=—=C.
(1, vo) > 5
This equation has two solutions: one positive u™ = +/2C and one negative

u- = —+/2C.
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4. The maximum likelihood approach leads to maximizing the sum
1 Xi—
Lv)=n 10g Z ( U)

Then the maximum likelihood estimator is equal to = ) ; X;/n. Consider the
difference between L(v) and L(v):

L(#,v) = L(5) — L(v) = Z(X Z(X —v)’

=%,Z{<Xf_v>2—(x,-_m2}=E,Z(2Xf‘ﬁ_”)(ﬁ_”)

& 2
= %(22)(,- —n® — ) (5 —v) = w (2.29)
;’_/
2nv

5. (a) Formula (2.29) yields
(L") > ) = {Mzg}
= {0 > \/27—§+v*}u{f)§—\/§+v*}
n n

From (2.27) (in item 3) we know that v* = v* + \/2¢/n and v~ = v* —

v/2¢/n. Then
(LO* 0 2 8 = (@ vt —v)E ) 2 4

= (2v—2* \/7)\/7>§}
={v> v*+\/:}.
n

{L™,v)>0>2{0 <v*- \/an}.

(b) The required embedding is trivial.

Analogously,
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Natural parametrization has some “nice” properties:

™
I
I | =

i=1

L(0,0) = nX(Pz, Py).

The following exercise shows, that the choice of parametrization is crucial for the
first property, but the second one is fulfilled for any parametrization.

Exercise 2.21. Let (Pyg) be an exponential family (6 —any parameter). Let {X;}/_,
be an i.i.d. sample from distribution that belongs to (Py), and X be a random
variable with the same distribution. ~

Show that the maximum likelihood estimator 6 has the following properties:

1 n
E;X = ;ZX,-.

i=1

L(0,0) = nX(Pz, Py).

1. fisa point of maximum of the function

L(6) =) log p(X;.0) = C(6) > X; — nB(6).
i=1 i=1
Differentiating w.r.t 6 yields the equation for 6:
C'(0))_X; —nB'(6) =0. (2.30)
i=1

On the other hand, differentiating both sides of the equality

/p(x,@)dx =1
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w.r.t. 0 yields
0= /i{p(x 0)}dx = / 9 tlog p(x. 0)} p(x. B)dx
90 ’ 20 ' ’

_ /{xc’(e) — B'(0)! p(x.0)dx

C’(@)/xp(x,@)dx—B’(Q)/p(x,@)dx.

—— S——
=E9X =1

This means that the equality
C'(0)EsX —B'(9) =0
holds for any parameter 6, in particular for 6 = 6:
C'(O)E;X — B'(H) = 0. (2.31)

Comparison of the equations (2.30) and (2.31) (using positivity of the first
derivative of function C(8)) completes the proof.
2. Transformation of the left-hand side yields:

n

L(0.6) = Y {log p(X:,0) — log p(X;. 6)|

i=1
= {C()—C(O)} Y_ X; —n{B(6) — B(H)}. (2.32)
i=1

The Kullback-Leibler divergence in the right-hand side can be transformed in
the following way:

p(x.0)
p(x,0)

JC(IP@,IP@) = /log{ }Pg(dx)

= {C(O)-C©)} / xP;(dx) — {B(0) — B(0)}
= {C(0) - C(0))E;X — {B(O) — B(H)}. (2.33)
Comparison of the equalities (2.32) and (2.33) using the first item completes

the proof.

Exercise 2.22 (Suhov and Kelbert 2005). There is widespread agreement
amongst the managers of the Reliable Motor Company that the number x of faulty
cars produced in a month has a binomial distribution



2 Parameter Estimation for an i.i.d. Model 39

P(x =s) = (:)p“(l—p)”_“,s=0,1,...,n;0§p5 1.

There is, however, some dispute about the parameter p. The general manager has
a prior distribution for p which is uniform (i.e. with the pdf f,(x) = 1(0 < x < 1)),
while the more pessimistic production manager has a prior distribution with density
fp(x) = 2x1(0 < x < 1). Both pdfs are concentrated on (0, 1).

(i) In a particular month, s faulty cars are produced. Show that if the general
manager’s loss function is (p — p)?, where p is her estimate and p is the true
value, then her best estimate of p is

s+ 1
n+2

pA:

(ii) The production manager has responsibilities different from those of the general
manager, and a different loss function given by (1 — p)(p — p)?. Find his best
estimator of p and show that it is greater than that of the general manager
unless s > n/2.

You may assume that, for non-negative integers o, B,

alp!

1
o _ B ~ s
/Op(l p) K Y

AsP,(X =s5) =ap’(1—p)"7,s =0,1,...,n, the posterior for the general
manager (GM) is

7Mps) =ap’(1—p)" 10 < p < 1),
and for the production manager (PM)
7™M (ps) = app*(1 - p)" 100 < p < 1).

Then the expected loss for the GM is minimized at the posterior mean:

ﬁGM _ fol pp’(1 —p)'™ dp
Jo p*(L=p)"=dp
s+Dn—s)!n—s+s+1)! s+1
T i—s+ts+2)! sln—s)  n+2

For the PM, the expected loss

1
/0 (1= p) (p—a) 2™ (ps) dp



40 2 Parameter Estimation for an i.i.d. Model
is minimized at

LU =)n™ @) dp
Jy(L=p)ePM(ps)dp

which yields

e _ Jo P(1L=p)pp*(1 = p)"~* dp

Jo p(1 = p)pp*(1 — p)"== dp
DM —s ) (n—s+s+3) 542
n—s+s+d +Dn—-s+1)! n+4

We see that (s +2)/(n +4) > (s + 1)/(n + 2),ie.,5s <n/2.

Exercise 2.23. Denote the number of incoming telecom signals between [0,t] as
C(0,1). Assume that C(0,t) satisfies

(a) The number of arrivals in disjoint time intervals are independent;

(b) The distribution of C(s,t) dependsont —s;

(c) For h > 0small, P{C(0,h) = 1} = Ah + o(h), where A > 0 is a constant;
(d) P{C(0,h) =2} = o(h).

Please answer the following questions:

1. Prove that C(0,t) follows a Poisson distribution with mean At.
2. Find the function p(y), C(0) and B(0) of the natural parametrization

P(r.6) £ p(y)er OO
and function d(6) of the canonical parametrization
p(y.0) € e~

for this Poisson distribution with mean At.
3. Find an estimator for constant A.

l. Let X)) = C{(m — )t/n,mt/n},1 <m <n, X areii.d. by assumption (a).
Define Y,! be i.i.d. Bernoulli random variable such that ¥,) = 1 with probability
/n, 1 <m < n.Define

Sy=X! 4. +X!

and
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Suppose P{C(0,h) = 1} = Ah + gi(h) and P{C(0,h) > 2} = g,(h) where
g1(h) and g, (h) are of order o(h). We claim the following lemma:

Lemma 2.1. Let ay,...,a, and by, ...,b, be complex numbers with modulus
<c, then

n n n
[Tam=T]bn| <" lam—bul.
m=1 m=1 m=1

The proof of this simple lemma is left to the reader (hint: use induction). The
modulus of ¢y(§) = exp(iY, &) and gyx»(§) = exp(iX,,§) are less than I,
l0x;,(6) — oy (§)] < 2g1(t/n) + 2g2(t/n) (verify!). By the lemma,

|Eexp(iT, &) — Eexp(iS,§)|

[Texs® -] e @)‘
m=1 m=1

> lox &) — v (©)]
m=1
t t
o ()] e ()
n n

— 0, asn— oo.

Now we show that Eexp(i7,,§) — exp{At(exp(if) — 1)}, the characteristic
function of the Poisson distribution with mean A¢ and finish the proof. Observe
that |Eexp(iY,;€)| = (1 — At/n) + (At/n) exp(i€) = 1 + (At/n){exp(if) — 1}
and | exp(i§) — 1| < 2. When n large, A¢/n < 1/2. Using the lemma again,

IA

n

5o

m=1

IA

exp(At{exp(i§) — 1}) — [ [ + A1/ n){exp(i) — 1}1‘

m=1
. A A
< Y foxo | Stenptiey < 13] = [ 14 tenpiiey - 1]
m=1
" a2 ) s
< (5) tewtie -1
m=1
<4 (%) Y
— 0,

as n — oo. This finishes the proof.
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2. The Poisson density with mean A¢ is

p(y, A1) = exp(=At)(A1)Y/y!.

The p(y), C(A), B(X) of the natural parametrization is

1
p(y) = ;;

C(At) = log(Ar);
B(At) = At.

The d(At) for the canonical parametrization is
d(At) = —At(y + 1) + y log(Ar) —log y!.

3. Suppose we have an observation of the number of signal y between time 0 and 7.
The maximizer for the log natural parametrization is A = y/t.

Exercise 2.24. Let Y be an i.i.d. sample from Py € (Py), where (Py) is a regular
parametric family. The fundamental exponential bound for the maximum likelihood
is given by the fact that for any0 < o < 1, 0 <s < 1, u > 0, the log-likelihood
process L(0,0%) fulfills for a fixed constant Q(o, s)

]Eexp[g sup{uL(6,0) + s M(u.0, 0*)}] < 9o, ), (2.34)
)

see Spokoiny and Dickhaus (2014). Denote the set A (3,0*) = {0:M(u. 0, 0*) <3},
where 3 is positive, and M(jt, 0, 0%) is the rate function defined for 1 > 0 by

M(p, 0,0%) % —log By« exp {uL(6,0%)) .

Using (2.34), prove that for any ¢’ < o,
1.

B [explo’s M(1.8.67)|1{8 ¢ AG.0)} ]| < Q0. ) exp{~(o — &s3}:
in particular,

P{f ¢ AG,0%)} < Q(0,s) exp(—0s3)-

B[ 8,010 #46.0)] = —-2(e.5) exp{~(e ~ ).
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43

1. The inequalities L(#,0*) > 0 and M(i,0,0*) > 3 for 8 & A(3,0%) imply

E [exp{(o — ¢)s3} exp|e's M(u.8.07) 1{8 ¢ AG.07)]]
<E [exp{gs M, 8, 0*)}1{6 & AG, 0*)}]
<E [exp{gs M. 0, 0*)}]

<E [exp{g,uL(é, 0*) + os M(u, 9, 0*)}]
< (o, ),

and the assertion follows.

2. The second item directly follows from the first one, because x < e* for any

positive x.

Exercise 2.25. Consider a multivariate normal rv Y ~ N(0*,X), where & =
(nD*)~! for some matrix D. In other words, Y = 0*+¢ with& ~ N{0, (nD*)~'}.

1. Check that the log-likelihood ratio computed on one observation of Y is equal to

L(0,0%) =n(@ —0%)" D¢ —n| DO —0%)|?/2.
2. Prove that the r.v. € is equal to
¢ =@mD*)'VL(6*).
1. The log-likelihood is equal to

L(0.6%)
= L(8) — L(6%)

1 1
:—E(Y—O)TZ_I(Y—0)+E(Y—O*)TE_I(Y—e*)
1 * * Ts—1 * *
:—E(Y—O +6*—6) X (Y—-0"+0"—-0)
1
+§(Y—0*)TE‘1(Y—0*)
1
:_(o*—o)Tz—l(Y—o*)—5(0*—0)T2—1(0*—0).
To conclude the proof, it is sufficient to note that

(Y —0%) = nD%¢,

(2.35)
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and

%(0* —0)'=7'0*-0) = %(0* —0) nD*(0* —9)
=n||D(6 —0%)|/2.

2. The proof is straightforward:

VL") = v{—% log [27%| — %(Y 09T (v - 0*)}

=X (Y — 6% =nD%¢.

Exercise 2.26. Consider the model from the previous exercise, Y ~ N(08*, X) with
% = (nD*)~! for some matrix D.

Using the formula (2.35), simulate the log-likelihood ratio for D> = (3 1),

12
0 et (1 ot (1.2
0*:(0)eR2and0=01d=f(1),0=02d=f(1).

Draw a plot for L(0,0%) as a function of & and a plot for an estimator of the
density function of L(0,0™).

Define u & H D@ —0%) H2 /2, and note that nD*¢ ~ N(0, nD?). Therefore,
by formula (2.35), the rv L(#, 8 ) has the distribution

L(0,0%) ~ N, (6 —0%)T (nD*)(6 — 0*)}.

The square root of D? can be found via the Jordan decomposition D> = T'AT' T,
where T is the eigenvector matrix and A is the diagonal matrix of eigenvalues of D?.
In our case, the diagonal entries of the matrix A are A; = (5 + +/5)/2and A, =
(5-+5)/2.

Figure 2.5 describes the simulation of the r.v. { forn = 1,000, § = 6, and
0 =20,

Exercise 2.27 (Shao 2005). Let (X, ..., X,) be a random sample from a distribu-
tion on R with the Lebesgue density %f(%), where f(x) > 0is a known Lebesgue
density and f'(x) exists forall x €e R, u € R, and o > 0. Let § = (i, 0). Show
that the Fisher information about 0 contained in X, ..., X, is

JMEN f)'r'(f)wf( )} £ f’(f)j;f( )3
X)X X X X X X
S o J 7@ dx

1(6) =

" ( JULE G L0 @) dx)

o2

assuming that all integrals are finite.



Density

Density

Parameter Estimation for an i.i.d. Model

density.default(x = L, bw = 6)

-250
-300
-350
-400 1.0
-450 00 0.5

0.000 | — — -500 710
450 400 350 3000 250 10 05 00 05 10
v LLR[1]

N=1000 Bandwidth =6

0.010 +

LLR[,3]

density.default(x = L2, bw = 6)

-250
-300
-350
-400 1.0
450 55 05

0.000 {_ —— — -500 =1
T T T T T T T -10 -05 00 05 10
-850 -800 750 ~-700 -650 600  -550 LLR2[1]

N =1000 Bandwidth =6

0.008 —

0.004 —

LLR2[,3]

Fig. 2.5 Plots of density estimator and log-likelihood ratio function. @ MSEloglikelihood

Denote g(1t, 0, x) & log 1 f (=£). Then

a
380 X) = ——— 75
I o

ad
a g(“vovx) = -
o

By the direct computation,

E{%g(u,o,){l)}z ey ((j :)) (rf< ,u) dx

o
o

(58 —
:crz/ x“) d( o )
_ Lo g
_02 Cf)

1|1

9 R R Ry P e
E%gg(MsUle)} —;/ 5 W p

| q
v
+
~
—
=
|
=
N—"
&

45

LLR[,2]

LLR2[,2]



46 2 Parameter Estimation for an i.i.d. Model

AN } ’
P 1) s
1+ @
B 02 S(x) ’
and
0 0
E %a_g(ﬂvovx)gg(ﬂaovx)}
f Hf( ) 1 X —
/ § en T S ()
_ I f(X){Xf (x) + f(x)} dx
B 02 S(x) ‘

The result follows since

I(0)=n]E§%logéf(X10_'u)}{%log f( U_“)}T

Exercise 2.28 (Shao 2005). Let X be a random variable having a cumulative
distribution function F. Show that if IEX exists, then

EX =/000{1—F(x)}dx—/0 F(x) dx.

—00

By Fubini’s theorem,

/000{1 —F(x)}dx = /000 /(x’oo) dF(y)dx
= /000 /(o,y) dxdF(y)

= /Ooode(y)-

Similarly,

/_io F(x)dx = /_(; /(_oo’x] dF(y)dx = —/_io y dF(y).
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If EX exists, then at least one of [;° y dF(y) and fi)oo y dF(y) is finite and

IEX:/_ZyF(y):/OOO{I—F(x)}dx—/O F(x) dx.

—0o0

Exercise 2.29 (Shao 2005). Let (X1,..., X,) be a random sample from the expo-
nential distribution on (a, 00) with scale parameter 1, where a € R is unknown.

1. Construct (1 — «) — confidence interval for a using the cumulative distribution
Sfunction of the smallest order statistic X ).

2. Show that the confidence interval in (i) can also be obtained using a pivotal
quantity.

1. The cumulative distribution function of X (i) is

t<a
Fu(t) = o
l—exp = ¢ >a,

which is decreasing in a for fixed ¢t > a. A (1 — «) — confidence interval for
a has upper limit equal to the unique solution of F,(7T) = «; and lower limit
equal to the unique solution of F,(T) = 1 — ap, where o} + oo = «. Then,
[T +n~'log(az), T 4+ n~'log(1 — a1)] is the resulting confidence interval.

2. Note that W(a) = n(X)—a) has the exponential distribution on (0,1) with scale
parameter 1. Therefore the distribution of W(a) doesn’t depend on the parameter
and, hence, W(a) it is a pivotal quantity. The 1 — « confidence interval for a
constructed this random variable is the same as that derived in item (i).

Exercise 2.30 (Shao 2005). Let F, be the edf based on a random sample of size n
from cdf F on R having Lebesgue density f. Let ¢, (t) be the Lebesgue density of the
pth sample quantile F,'(p).

Denote by m, the integer part of np. Introduce also the quantity £,, which is
equal to m,, if np is an integer and is equal to m,, + 1 if np is not an integer.
Prove that

ouy=n (L) PO = PP ),
P

1. Using the fact that nF, (t) has a binomial distribution;
2. Using the Lebesque density of the j-th order statistic.

1. Since n F,(¢) has the binomial distribution with size n and probability F(¢), for
any t € R,

P{F, ' (p) <t} = P{F,(t) > p}

-y () OV (1 - FOy™
i=l,
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Differentiating term by term leads to

n

o0 = 3 (5) itFor = For o

i=l,

~ (n . i n—i—
X (1) o= nroya - For-so

= (1) tFoy = Foy o)
P

w0 30 (5 2)) ot For- s

i=l,+1

n—1
oy (7)o - For
i=l

P

a2 ) = Fop s

I

2. The Lebesgue density of the j-th order statistic is
n—1 j-1 n—j
n(02)) Fey - oy s,
Then, the result follows from the fact that

— Xm if np is an integer,
E N py =47 "

X(m,+1) if np is not an integer.

Exercise 2.31. Consider samples {Y;}7_,, where Y; are ii.d. with distribution

function Fy(y). We want to estimate the tth quantile of the distribution function
F7Y(7):
Y

Fil() Einf{y eR:1 < Fy(y)}.
This problem can be seen as in a location model:

Y, =0*+¢&;, & ~ALD(1),
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where Fe_l(r) = 0 and e;’s are i.i.d. The QMLE estimation follows the framework
with ALD likelihood, where ALD stands for “Asymmetric Laplace Distribution”,
and has probability density function

fult) = (1 = t)exp {—p: (W)},

with p (1) = u{tl(u > 0) — (1 — )1(u < 0)}.

1. Prove that

argmin Ep, (Y; — 0) = F; '(v) = 6*. (2.37)
6

2. Please write the empirical loss function for the estimation of FY_l (7).

1. To prove (2.37),

IEp (Y; — 6)
a0
3 [{r(¥Yi —O)1(Y; — 0 > 0)dFy (W)} — (1 — 1) [{(¥; — 0)1(Y; — 6 < 0)}dFy (u)
a6
=—t0fy(0) —t{l = Fy (0)} + 70/(0) — (1 — 1) fy (0) + (1 — 1) (Fy (6) + Ofy (0))

= (1= Fy(0) —t{l - Fy(0)}

=Fy)—r1
Solve
0Ep (Y —0) _
a0 -
we get
F(0*) =t.

Thus, 0* = F; (7).
2. An estimator of 8* would be

argminz {t1(Y; >0)—(1—1)1(Y; <0)}.
0

i=1
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Exercise 2.32. Consider samples {(X;,Y;)}/_, i.id., in a regression framework,
we now want to estimate the conditional Tth quantile of the conditional distribution
Sfunction FY_&(‘L') If we believe in the following linear model:

Y, = X;T0* + &, e ~ALD(v),

where Fe_‘)l( (r) = 0 and &;s are iid. Similarly we take a QMLE in an ALD
likelihood.

1. Prove that
0* = argmin By x o, (Y; — X, ) (2.38)
%
Fyy, (1) = X,T6* (2.40)

2. Suppose now {(X;,Y;)}'_, is a bivariate i.i.d. sequence from a joint normal
distribution N(u, X), where

M:(Ml)’ 2::(011012)'
K2 021 022
Please write down the theoretical form of FY_Ig((r). (Hint: Observe that the

conditional distribution is again normally distributed, with |y x=, = p1 +
01205, (X — pa) and oy |x = 011 — 0, /0. )

1. To prove (2.40),

AEp. (Vi — X,'6)

36,

_ J{r(¥; — XTOL(Y; — X;T0 > 0)d Fy|x (u)}

- 36,

(=) A = XTOL(Y; — X760 < 0)}d Fy|x (u)
36,

= —tX; X, 0fy (X' 0) — X;T{l — Fy (X, 0)} + X;7X,T0£(X,76)
—(1 =) Xy fr (X1 0) + (1 — ) Xy(Fy (X7 0) + X, 0.7 (X, 6))
= (1 =) X;Fyx (X, 0) — tX;{1 — Fyx(XT6)}

= X;Fyx(XT0) —tX;
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Solve

OBy xpe(Yi — X,6)
30,

=0,Vjel,....d

we get
Fyix(X,76%) =7,Vi,1,....n

Thus, Fy\ (v) = X;To*.
2. Use the hint, we have the normal conditional distribution. Given X = x,
(Y; — uy|x=x)/0y|x ~ N(0, 1). Denote ®~'(7) as the rth quantile of a standard

normal distribution. Then we have,

FY_|g(=x(T) = O—Y|Xq>_l(r) + Uy|x=x
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Chapter 3
Parameter Estimation for a Regression Model

Bir regresyon modeli i¢in parametre tahmini

Ayagii yorganina gore uzat.

Stretch your legs according to the length of the quilt.

Exercise 3.1. Let a regression function f(-) be represented by a linear combination
of basis functions V1 (-), ..., ¥,(-).

Suppose that for x € R? the regression function f(-) is quadratic in x. Describe the
basis and the corresponding vector of coefficients in these cases.

The function f(-) being quadratic in x, means when d = 1,
f(x) = 01 + 62x + 63x%, which obviously leads to

Ui(x) =1, W(x)=x, Ws(x)=x>

Whend > 1, f(x)=6,+A"Tx+x"Bx, where A € R?, Bisad xd matrix.
Then we can write

d d d
SO =01+ Apx;+ Y > Buxjxg (3.1)
j=1 j=lk=1

where A; is the jth element in A, and Bj is the element in j th row and kth column
of B.

W.K. Hirdle et al., Basics of Modern Mathematical Statistics, Springer Texts in Statistics, 53
DOI 10.1007/978-3-642-36850-9__3, © Springer-Verlag Berlin Heidelberg 2014
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Definee; = (0,...,1,...,0) (;rxl, the jth unit vector. The second term in (3.1) can
J

be rewritten as: Z(j’: 1 Aj e;rx, similarly the quadratic term in (3.1) can be rewritten

as: Z?:l Z,‘le e;'—xxTek Bijr.

Defining now: ¥ (x) = 1, ¥(x) = eI'—x, WUs(x) = e;x, ..

Wapa(x) = e xx"e; = x7,

\Dd+3(x) = eIrxxTez = X1X2,

Wyy42(x) = eszxTez = x%,

T T
Wrg+3(X) = ey xx' e3 = X2X3,

_ T T, _ 2
‘I—'%+%+2(x)—edxx eq =Xy

We see that (3.1) can be written as a linear combination of W;, j = 1, ..., J,
_ d? 3d
J=5+F+2

Exercise 3.2. Let X be a continuous rv with cdf F(x). The median med(x) is defined
as P{X > med(x)} = 4 = P{X < med(x)}.
Suppose that med(x) = 0, show that

VzeR E|X —z > E|X] (3.2)

Interpret (3.2) in terms of a loss function framework.
z +o0
]E|X—z|=/ (X—z)dF(x)+/ (z— X)dF(x)
—00 z

:/Z F(x) dx+/z+oo{1—F(x)}dx

[0 F(o) dx+ 7 F(x)dx+ [P — F(x)} dx
—[f{1=F(x)}dx (z=0)
SO (o) dx— [P F(x)dx+ [, — F(x)} dx
+ M1 - F(x)}dx (z<0)
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_NEIX[+2 [f{F(x) =05} dx (z>0)
EX| =2 " {F(x) =05} dx (z<0)

> E[X]

since the second terms are in both cases positive.
Define the loss function p(u) = |u|. The above inequality (3.2) can be rewritten as:

Ep(X —z2) = Ep(X) VzeR,

meaning that med(x) = 0 is the minimum loss (contrast) parameter w.r.t p(u) = |u|.

Exercise 3.3. Specify the estimating equation for the generalized EFn (exponential
family) and find the solution for the case of the constant regression function

£(X:,6) = 0.

Recall we say that P is an EF if all measures Py € P are dominated by a o-finite
measure (4o on Y and the density functions p(y, 8) = dPy/do(y) are of the form

ef dP _
(., 0) € ZL(y) = p(y)e?CO-BO
dpo

where C(6) and B(8) are some given nondecreasing functions on 8 and p(y) is a
negative function on Y.

Also we know B'() =6 C’(0)

Consider Y; = f(X;,0)+e¢;, &5 arei.i.d, 8 € R” the parameter 6 can be estimated
via maximum likelihood with

L) & e f(Xi.0))
= D _tlog (Y1)} + YiC{f(Xi. 0)} = BUS(X;. 0))
The corresponding MLE 6 maximizes L(6):
6 = arglonaxZE{Y,-, F(X:,0)).
The estimating equation VL (6) = 0 reads as

i

Zf/ Y, f(X:.0)} V(X;.0) = Z ViC'{f(Xi,0)} — B (X, )}V f(X;,0)

= 2 [¥C .6 = F(XLOC (XL} V£(Xi.6)
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= Z Y — f(X;, O}C {f(X:. 0}V f(X;.,0)]

=0
When f(X;,0) =0,
YUY f(X, 00 f(Xi,0) = YUY, 0}

=Y (X, = 6)C'(0)
=0

then we have
6 = Z Yi/n
i

Exercise 3.4. Specify the estimating equation for generalized EFc regression and
find the solution for the case of constant regression with f(X;,v) = v. Relate the
natural and the canonical representation.

Recall from Exercise 3.3, the natural parametrization of an EF distribution has the
likelihood

t(y,v) = C(v)y — B(v) +log P(y),
while the canonical parametrization:
t(y.v) =yv—d(v)
therefore
U'(y.v) =C'(v)y = B'(v) = (y —v)C'(v)

=y—d'(v),
SO

dv) =y - —-v)C').

Thus the estimating equation

Y Y —d'{f(X;, 03]V f(Xi,0) =0

4
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can be written as
Z (Y —[Yi = {Y; — f(Xi, O)}C'{f(Xi, O)}) V f(X;,0) =0, (3.3)

when f(X;,0) =0, (3.3)is

> ¥ —6}C'(9) =0.

and the solutionis 8 = Y, ¥;/n
Exercise 3.5. Specify the estimating equation for the case of logit regression.

The log likelihood with canonical parametrization equals
L(y,v) = yv—log(l + V).

Therefore § = argmax, L(0) = argmaxy »_{Y; wiTQ —log(1 + e‘ﬁiTg)}.
Differentiating w.r.t. 6 yields:

ad 1 T
i — 2 A — Vi O
BQL(H) i (Yl Vi 1+ e""we wl) .

Therefore, the estimation equation is:

Z(Yi—ﬂ)%:&

To
; 1+eYi

Exercise 3.6.

Credit scoring is a method used to evaluate the credit risk of loan applications. In
this example, demographic and credit history variables are used in a logit regression
to isolate the effects of various applicant characteristics on credit defaults.

The data is obtained from Fahrmeir and Tutz (1994). A total of n = 1,000
observations is used, in which 700 of the individuals have no problem with paying
the credit. The response variable Y € {0, 1} is binary, where Y = 0 and ¥ = 1
represent “no default” and “default”, respectively. Explanatory variables are the age
of the applicant, amount of loan, and some dummy variables are used indicating
that:

* Previous loans were okay

* Savings of the applicant is more than 1,000 EUR
* Loanis fora car

» The applicant is a house owner
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Table 3.1 GLM results and overall model fit. @ MSEglmest

Estimate Std. Error z value Pr(> |z|)
(Intercept) —0.7238 0.3395 —2.1320 0.0330
Age —0.0178 0.0072 —2.4760 0.0133
Amount —0.0001 0.0000 2.0040 0.0450
Previous loan —0.8220 0.1617 —5.0840 0.0000
do.12 0.4904 0.2821 1.7380 0.0822
d12.18 0.7513 0.2848 2.6380 0.0083
d18.24 0.7522 0.2803 2.6830 0.0073
d24 1.2080 0.3006 4.0190 0.0001
Savings —1.0040 0.2209 —4.5450 0.0000
Purpose (car) —0.4389 0.1684 —2.6060 0.0092
House 0.6852 0.2049 3.3450 0.0008
Overall model fit
Null model —2 log likelihood 1,221.7
Full model —2 log likelihood 1,104.5
Chi-square 117.2
Degrees of freedom 10

Table 3.2 The goodness of the model. @ MSEperformance

Bankrupt (estimated) Non-bankrupt (estimated)  Total

Bankrupt (data) 658 42 700
Non-bankrupt (data) 236 64 300
Total 894 106 1,000

e The durations of the desired loans are; 9—12 months, 12—18 months, 18—
24 months and more than 24 months

In the first step, scores denoted by “s” are calculated by By + BT x and then the
probability of default of each individual credit applicant is found by G(By + B x),
where G : R — [0, 1] is a known function that only takes on a value between O
and 1. In this example, G is a logistic function :

G(t) = ¥(t) = {1 + exp(—t)}

The results of the model can be summarised as (Table 3.1):

To test the goodness of fit we check the difference in deviance residuals for the
model used above versus the null model. The large value of the chi-square test
statistics of 117.2 indicates that the model as a whole fits significantly better than
an empty model. Moreover, the comparison of real data set and logit estimation is
given in the Table 3.2.

Additionally, so as to visualize the model we plot the scores with respect to
probability of default and response variable as Fig. 3.1. The goodness of the model
can be checked with Lorenz curve (Fig. 3.2), the plot of P(S < s) against P(S <
s|Y =1).
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Fig. 3.1 The plot of scores with respect to response variable. @ MSElogit
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Fig. 3.2 Lorenz curve. @ MSElorenz

Given the results, the older the applicant and the shorter the duration of the desired
loan, the less the probability of default is. Creditworthiness is higher for the
applicants having savings more than 1,000 EUR, less problems about paying back
the previous loans and demanding a loan for a car, whereas the applicants owning
a house have higher probability of default. On the other hand, the model yields a
positive relation between the amount of the desired loan and the ability of applicants
to pay the loan back which can be explained by the fact that high levels of credits
are given to reliable applicants.
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Exercise 3.7. Simulate an i.i.d. random sample {X;}!_, which follows a specific

distribution (n = 300).

1. Assume the true distribution of X;’s is t (3). Estimate the kernel density function
f;l(x) using a Gaussian kernel and plot the kernel density curve.

2. Let fy be the true density of the sample. Since f;,(x) is biased in a finite sample,
we can not compare it with fo directly. We rather compare it with IE ;[ f;, (x)]
which is the expectation of fh(x) under fy, where

X—U

h

Eqlie] = g0 = ; [ K() fiwde (3.4)

Let Z;’s be the random variables which come from a specific distribution,
assume that Hy: Z; ~ fo = t(3). Then we can approximate g(x) via

N 1 X — Zj
&) = 5 2 K( ). (3.5)
j=1
where N = 10, Plot g(x) and compare it with the kernel density curve.

3. Assume that Hy: Z; ~ fo = N(fi,6?), where i and & are the mean and
standard deviation estimated from the sample respectively. Approximate g(x) as
in question 2. Plot the curve of it and compare it with the kernel density estimate.

4. Assume now the true distribution of X;’s is N(0, 1), perform the same procedure
as in question 2 and 3. Compare the resulting curves.

1. The kernel density estimator is as follows:

he= 5 XK ()

i=1

where we use the Gaussian kernel function:
K(u) = ¢(u).

In Fig. 3.3, the solid line denotes the kernel density estimator ﬁ, (x).

2. In Fig. 3.3, the dashed line denotes g(x), where fo = #(3). We find that ﬁ, (x) is
very close to g(x). If we had compared fh (x) with the true density fj, we would
not see such degree of closeness due to the finite sample bias.

3. The mean and standard deviation can be estimated as follows:

MZ%ZXi,

i=1

1 n
~2 AN2
52 = E:X__“ )

n—1i=1(l )

>
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0.30

Fig. 3.3 The kernel density estimator f;, (x) (solid line), g(x) with fy = t(3) (dashed line), and
&(x) with fy = N(f, 62) (dotted line), for n = 300. @ MSEnonparal

In Fig. 3.3, the dotted line denotes g(x), where fy = N(/i,6?). From Fig.3.3
we find that f;l(x) is closer to g(x) with fy = #(3), it provides the evidence for
Jo=1(03). .

4. In Fig. 3.4, the solid line denotes the kernel density estimator f,(x), the dashed
line denotes g(x) with fo = #(3), and the dotted line denotes g(x) with fy =
N(/i, 62). From Fig. 3.4 we find that f; (x) is closer to £ (x) with fy = N(&, 62),
it provides the evidence for fy = N(f,6?2).

Exercise 3.8. Consider the error in design model
Y,-:\IJiTO*—i-ei, Zi =V, +U;,, i=1,...,n,

where both V; and 6* are p x 1 vectors. Assume that p = 1, V;’s are unobservable.
Instead, (Y;, Z;)’s are observable. Cov(g;, ¥;) = Cov(e;, U;) = Cov(¥;,U;) =0,

Var(¥;) & oy, Var(U;) et o2, Var(e;) et a2,

1. Let b be the regression coefficient by regressing Y; on Z;, show that b < 6*.

2. Let 0 = 2, ¥; ~ U(0,1), & ~ N(0,0.01), U; ~ N(0,0.09). Estimate the
coefficient b and verify the result in question 1.

3. Let n = 300, where the value of 6 and the distributions of the variables are the
same as in question 2. Plot the regression line of Y; on Z;, then plot the linear
regression line of Y; on \V; on the same graph, interpret the result.

1. Assume that the regression equation of regressing Y; on Z; is Y; = bZ; + v;,
then rnbin E(Y; — bZ;)? has solution (3.6):
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Fig. 3.4 The kernel density estimator fh(x) (solid line), g(x) with fy = 1(3) (dashed line), and
2(x) with fy = N(il, 6?) (dotted line), for n = 300. @ MSEnonpara2

_ Cov(Y;, Z;)

Var(Z;) (3.6)

where by assumption:

Var(Z;) = Var(¥; + U;)
= Var(¥;) + Var(U;) + 2 Cov(¥;, U;)
————
=0
=0, +0,.

and

Cov(Y;, Z;) = Cov(¥;0" +¢;,Z;)
= Cov(¥; 0" + ¢, ¥; + U;)
= Cov(¥;0*,¥;) + Cov(¥,;0*,U;) + Cov(g;, ¥;) + Cov(e;, U;)

=0 =0

= 6* Var(¥;) + 0* Cov(¥;, U;)
———
=0

_ pn*x,. 2
—90,,,.
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Fig. 3.5 The linear regression line of Y; on Z; (solid line) and the linear regression line of ¥; on
W; (dashed line), for n = 300. @ MSEregression

Therefore

ownzy_ 0w A0

Var(Z;)  Var(Z;) oy +0? 1+02/o) ~

*

2. Since ¥; ~ U(0,1), &; ~ N(0,0.01), U; ~ N(0,0.09) and § = 2, then 01/2/ =

+S(1-0)? = 4,02 =0.01,02 = 0.09,

. 1 1 1
b=20 =2X =2Xx —— ~0.9615 < 2.
1+02/0; 14 0.09 x 12 2.08

3. We generate n = 300 samples for ¥;, ¢;, and U;, then perform the linear
regression of ¥; on Z; and the linear regression of ¥; on ;. In Fig.3.5, the
solid line denotes the linear regression line of Y; on Z;, where b is the slope
of the solid line. The dashed line denotes the linear regression line of ¥; on W;,
where 6 is the slope of the dashed line. In Fig. 3.5, we can see that the solid line is
gentler than the dashed line, it can be concluded that the value of b is smaller than
the value of 6. Furthermore, we simulate the sampling 400 times and estimate the
coefficient b as follows:

B 1 400 .
b=——> b; =0.9614.
j=1
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Exercise 3.9. Consider the regression model
_ wTp*
Y=V'0" +¢, e ~N(0, %),

where W is an p X n matrix of stochastic regressors s.t.

v
—~ 2 c#o.
n

Assume that W is an n x | matrix of | instruments (I > p) with:

WTle p
0. (3.7)
n
wTwT
L Qe < . (3.8)
n
wTw
LN Qww (positive definite), 3.9

n

where rank(Qyy) = rank(W T T) = p.

1. Motivate assumptions (3.7) and (3.8).

2. Propose an instrumental variable estimation (IVE) for 0* and show that it is
consistent.

3. Derive the simple IVE when the number of instruments equals the number of
regressors, i.e. | = p.

WnTS is the sample
analogue of E(W,¢;), so WTT‘E o implies E(W,Te;) = 0, and —WTn‘I’T L

Qwy implies E(W,TW") = Qypy.
2. Let Py & WWTW)"'WT, and P = Py, Py Py = Py, let the new

covariates be Py ¥ 7T, then

1. According to the weak law of large numbers we know that

v = (WP, Py ¥ ) 'wpY
= WPy 'wpP,Y
= (WPy ¥ ) ' WPy, (UTH* + ¢)
=0* + (VPO ) ' WPy,

since

so that
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UPye=VWW W) 'W'e

wWTw\—1 wT
= \IJW( ) i
n n

—>QWW —0
then

P

YPye — 0,,
therefore
1y —> 0%,
3. When! = p,

0,y = (WP 'uPy,Y
=WwwwTw)y'wTehHlewwTw)"'wTy
=wTuH'wTw)ew) 'ewwTw)"'wTy
=wTeH)'wTy.

Exercise 3.10. We know that the income of people is affected by many factors, for
example education level and ability. Suppose we omit the variable which measures
ability. But we know that education level is correlated with ability, which means
that if we omit it, then there would be an endogeneity problem in the regression
function (i.e. the regressor “education” is correlated with the error term). To solve
this problem we need to find an instrumental variable which is correlated with
education level but uncorrelated with ability. Consider the following model

Y=60+0X +e,

where Y is the log-transformation of income, X is the highest year of school
completed, ¢ is the error term and contains the ability. Then choose W (the number
of brothers and sisters) as instrumental variable which means that Cov(X, W) # 0,
and Cov(e, W) = 0, then consider the following model

X =myg+mW +v.

1. Use 2010 GSS data which comes from the website of The General Social Survey:
http://www3.norc.org/ GSS+Website/. For convenience, the missing values of X
and Y have been deleted from the data. Perform the linear regression of Y on X,
estimate the coefficients, write down the equation and interpret the result.


http://www3.norc.org/GSS+Website/
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2. Perform the linear regression of X on W, estimate the coefficients, use t test to
test Hy : my = 0, write down the equation and interpret the result.

3. Take W as instrumental variable, estimate Oy, write down the equation.
Compare the results before and after using the instrumental variable.

¥ = 3.3042 + 0.0626X.

It means that 1 year more eduction increases the income by 6.26 %. @ MSEivgss

X = 15.0783 — 0.3169W.

From result of 7 test for m, we can see that p-value is less than 2¢7 16 which is
statistically significant. Then the Hy : m; = 0 is rejected. We can conclude that
there is a significant negative correlation between X and W.

A

Y =3.5443 4 0.0525X.

Compared with OLS estimator él, the IV estimator é,v is a little lower, i.e. 1 year
more eduction increases the income by 5.25 %. From Exercise 3.9 we know that
if our assumptions Cov(X, W) # 0, and Cov(e, W) = 0 are true, then the IV
estimator is consistent.

Exercise 3.11. Consider an infinite dimensional model of continuously stratified
random sampling in which one has i.i.d. observations W; = (X;, R;, Z;) with X; €
[0,1], Z; = R;Y;, and R;,Y; € [0, 1] and are conditionally independent given X;,
with g(X) = E(R|X) known and h(X) = E(Y |X) unknown. The parameter of
interest is 0 = E(Y).

Prove that the Horvitz-Thompson estimator

is a consistent estimator for 0.

Because R;, Y; are conditionally independent,

RY E(RY|X
E { —} =K { g} (by the law of iterated expectation)
g(X) g(X)

ER|X)E(Y|X)
E{ g(X) }
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L 8X)A(X)
o E{ g2(X) }
= E{h(X)}

= E(E(Y|X)} = E(Y) = 6,

therefore

E{%} — 0. (3.10)

Since W; are i.i.d., according to the weak law of large numbers, the empirical
counterpart of the left hand side of (3.10) is:

I 4y

RY
n— g(Xi) } N

5(X)

Exercise 3.12. Let a sequence of i.i.d. random variables {X;}_, ~ N(0,0?), and
> I'_, a?> = n. Prove the Chernoff bound

i=1%i
P(}ZaiXi
i=1

1) =2e0(512),

Since

]P(‘Zn:a,-x,-} > z) - ]P(Zn:a,-Xi > z) + P(Zn:aiXi < —z),
im1 i=1 i=1

without loss of generality, let us derive

2

P(Zn:aiX,- > t) < exp(—#az),

i=1

the argument is symmetric for P(3_;_, a; X; < —t). Then for any s > 0:

= ]P{exp(s Zn: a; X;) > exp(st)}

i=1

_ Blexp(s Xy 0 X))
- exp(st)

(by Markov’s inequality)
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_ T, Elexp(sa; X;)]
N exp(st)

(by independence of X;’s)

= exp(—st) [ | Elexp(sa; X;)].

i=1

From the moment-generating function of a normal distribution we know that if X ~
N(u,0?), then E[exp(tX)] = exp(tie + %oztz). In our case, since X/s are i.i.d.
random variables and X/s ~ N(0, 0%), then

2.2,2

o-sca:
Elexp(sa; X,)] = exp( =5 ).
thus
n n
]P(Z ai X; > t) < exp(—s?) HE[exp(sa,-X,-)] (3.11)
i=1 i=1
o’s* Yl 4}
= exp(—st + f) 3.12)
2.2
- exp(—st + 28 ”), (3.13)
minimizing (—st + 02s%n/2) for s > 0, we get
—t +0sn = 0,
then
= t
o’
we insert s into (3.13)
o?s’n t? t? t?
exp(—st + ) = exp(—m + 2n02) = exp(— 2n02)’
thus
n 1‘2
P(;aiX,- > t) < exp(—znaz),
therefore

£2
> t) < 2exp<—2 2).
no

]P()Xn:a,-Xi

i=1
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Exercise 3.13. From Exercise 3.12 we have the Chernoff bound for i.i.d. normal
variables:

£2
> t) < 2exp<—2 2).
no

Assume V is a p x n dimensional design matrix in a regression problem, and ¢ is
the n x 1 dimension i.i.d. normal noise, where i = 1,...,n, j = 1,...,p. WV, is
Jth raw of V. Assume that Vs are normalized and orthogonal.

]P()Zn:a,-xi

i=1

1. Prove that

max |¥;e| = O,{o+/2nlog(2p)}.

I=j=p

2. Prove that

IE( max |\IJ]-8|) < o+2nlog(2p).

l=j=<p

P
]P(lléljaéip |We] > 1) < ;P(w,ﬂ > 1)

= r(fy we

j=l1 i=1

V4 /\2
< 2 (_
- JZ=:1 xp 2no?

>2)

) (since W, ’s are normalized),

take A = /2nlog(2p/8§)o?, where § is a constant, then we get

P »
Z 2exp{—w} = Z 2exp{—log(2p/$)}

ot 2no? ot
_ 1
p exp{log(Zp/S)}
2p/é
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ie.
P( max |¥;e] > 1) =P{ max |¥;¢| >0+/2nlog(2p/8)} <3,
I=j=p l=j=<p
therefore
max |W; el = Op{o/2nlog(2p)}.
<j=p
. From Jensen’s inequality we know that if g(X) is convex, then

gEX)] = E[g(X)].

In our case, since exp( max |W j5|) is a convex function, then for any s > 0, we
l=j=<p

get

eXp{sE(lglja;ip |W;e))} < Efexp(s - max e}

P
< ZE{exp(s el
=l

)

no?s?

<2p exp(
we take log for both sides of the inequality, then

log(2 2
E( max |¥;¢]) < 02(2p) 4o

1<j<p s 2

we minimize log(2p)/s + no?s/2, then

(=1)(s7%) log(2p) + no’ _ 0,

2
thus
_ ioen)
ovn
therefore

log(2p) no?s
E(max [¥j¢l) < ==+ —

o /n N no? /2log(2p)

=l T T 2 o
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o+/nlog(2p)
P it o 4
V2

o+/2nlog(2p).

Exercise 3.14. Consider the error in design model

Yi=m(‘p,’)+8,’, Zi=V;+U;, i=1,...,n,

where ¢€;’s are the regression errors, U;’s are the measurement errors, V;’s are
p X 1 dimensional vectors. Assume that p = 1, E(g;|V;) = 0, the true function is
m) = 592, ¥; ~ N3, 4), & ~N(0,0.01), U; ~ N(0,0.81).

1. Write down the kernel regression estimator (Nadaraya-Watson estimator) and
the deconvoluted kernel regression estimator of m(r).

2. Generate a random sample with n = 3,000, download and use the R package
“decon”, then plot the deconvoluted kernel regression curve, the kernel regres-
sion curve from the sample without measurement errors (i.e. kernel regression
based on V) and the kernel regression curve from the sample with measurement
errors (i.e. kernel regression based on z). Determine which estimator is better.

1. The Nadaraya-Watson estimator is as follows:

Yo YK (Y5)
T K (45

myw () =

we use a Gaussian kernel as the kernel function:
K(u) = ¢(u).
The deconvoluted kernel regression estimator is as follows:
n —Z;
iz YiL (wT)

= L(52)

where

_ L —its (pK(t)
Lo =57 / o™

2. From Fig. 3.6 we can conclude that the deconvoluted kernel regression estimator
is closer to the kernel regression estimator from the sample without measurement
errors. The deconvoluted kernel regression estimator performs better than the
kernel regression estimator from the sample with measurement errors.
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300
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m{y)

100

Fig. 3.6 The kernel regression curve from the sample without measurement errors (solid line),
the deconvoluted kernel regression curve (dashed line), and the kernel regression curve from the
sample with measurement errors (dotted line), for n = 3,000. @ MSEdecon
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Chapter 4
Estimation in Linear Models

Estimarea modelelor liniare

Stai stramb, vorbeste drept.

Walk wryly, speak straight.

Exercise 4.1. A company decides to compare the effect of three marketing strate-
gies

1. Advertisement in local newspaper,
2. Presence of sales assistant,
3. Special presentation in shop windows,

on the sales of their portfolio in 30 shops. The 30 shops were divided into
3 groups of 10 shops. The sales using the strategies 1, 2, and 3 were y; =
(9,11,10,12,7,11,12,10,11,13)T, y, = (10,15,11,15,15,13,7,15,13,10)7,
and y3 = (18,14,17,9,14,17,16, 14,17, IS)T, respectively. Define x; as the index
of the shop, i.e., x; = i,i = 1,2,...,30. Using this notation, the null hypothesis
corresponds to a constant regression line, EY = u. What does the alternative
hypothesis involving a regression curve look like?

There are p = 3 factors and n = 30 observations in the data set. The company
wants to know whether all three marketing strategies have the same effect or whether
there is a difference. The null hypothesis is Hy : t; = p», = w3 and the alternative
hypothesis is H; : u; # pp for some [ and I’. The standard approach to this
problem is the analysis of variance (ANOVA) technique which leads to an F'-test.
In this exercise, we use an alternative and in fact equivalent approach based on the
regression model. The null hypothesis can be tested in a regression model that has
explanatory variables defined as zp; = (x; € (11,20)) and z3; = (x; € (21, 30)).

W.K. Hirdle et al., Basics of Modern Mathematical Statistics, Springer Texts in Statistics, 73
DOI 10.1007/978-3-642-36850-9_4, © Springer-Verlag Berlin Heidelberg 2014
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These two variables now allow to describe the difference in sales due to the
marketing strategies.
The regression model can be written as

X1 110 010 010\ [ Bi
X2 =|1lioliwO0w]|B] +e
X3 110 010 110/ \B3

Here, the regression curve corresponding to the alternative hypothesis in the
ANOVA model looks like three horizontal lines, each of them corresponding to one
marketing strategy.

The F-test for testing the null hypothesis Hy : 82 = B3 = 0 corresponds to
the test of the null hypothesis that the effect of the three marketing strategies is the
same.

A N O V A SS daf MSS F-test P-value
Regression 102.600 2 51.300 8.783 0.0012
Residuals 157.700 27 5.841

Total Variation 260.300 29 8.976

Multiple R = 0.62782

R™2 = 0.39416

Adjusted R*2 = 0.34928

Standard Error = 2.41676

PARAMETERS Beta SE StandB t-test P-value
bl 0,1= 10.6000 0.7642 0.0000 13.870 0.0000
bl 1,]1= 1.8000 1.0808 0.2881 1.665 0.1074
bl 2,1= 4.5000 1.0808 0.7202 4.164 0.0003

@ MSEanovapull

The above computer output shows that the value of the F-statistic for our null
hypothesis is 8.783, the corresponding p-value is smaller than 0.05. Thus, on the
usual confidence level 95 %, the null hypothesis is rejected.

The computer output also contains the mean sales of all three marketing
strategies. The mean sales for the first marketing strategy were 10.6, for the second
strategy 10.6 + 1.8 = 12.4, and for the third strategy 10.6 + 4.5 = 15.1.

Exercise 4.2. Consider the linear model Y = W 0* + & where § = argmine ' &
0*

is subject to the linear constraints Ab = a where A(q x p),(q < p) is of rank q
and a is of dimension (q x 1).

Show that

0 =b6os— (WU AT {AWWT) 14T} (AéOLS —a) :
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where éOLS = (WUN7'UY s the unconstrained (ordinary) least squares
estimator.

We define
FO* )= -5 (Y —wT9*)—A1T(46* —a),

where A € R? and solve the system of equations:

UAGHY SN
20" ’
UAGHY SN
oA '

Evaluating the derivatives, we obtain the system of equations:

Af(0*, A . .
% = 2UY 42009 —ATL =0, (4.1)

O . o

rearranging (4.1) with respect to ,3 leads to
~ 1 A
6 =wvH'wy + E(\IAIJT)—IATA, (4.3)
~ ~ 1 A
A0 = Abpor g + EA(\P\IJT)_lATA. (4.4)

Next, rearranging (4.4) with respect to A implies that
A =20A4w¥T) ' AT @ — 401 g). 4.5)
Set (6.28) in (4.3)
0 =00rs— (P ATAWE) AT (A0 oL — a).
Exercise 4.3. Denote by Y = (Yy,..., Yn)T (resp. & = (g1, ... ,en)T) the vector
of observations (resp. of errors) and by WV the p x n design matrix. Consider the
linear Gaussian model under the homogeneous noise assumption

Y =UT0*+e, &~N(0 01,

where 0* = (6F,...,0)T € R? is an unknown parameter vector.
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Prove that the maximum likelihood estimator for the parameter 0* is equal to
6= (vvT) wy. (4.6)
The log-likelihood function equals

m _ %(y ~vTe) =Yy —wTe).

L) = —% log(27) —
In the case of homogenous noise, the last formula boils down to:

21 1
! ;’g“ — 502 —9TO)T(¥ —vTo).

L) = —% log(27) —

The maximum likelihood estimator can be found as a solution of the equation

9 1
—L(0) = ——0 " 2(=2VY +20WTg) =
50 ) 50 ( + 0) =0,

and (4.6) follows.
Exercise 4.4. Consider the model from the previous exercise
Y =VUT0* +e,

but with colored noise, i.e. ¢ ~ N(0, X). Prove that for any 0

1. Var{VL(0)} = v~
2. V2L(0) = —ux—'wT,

(So Var{VL(O)} and V*L(0) don’t depend on 8).
1. The log-likelihood for this model is equal to
L(6) = —%(Y —vTe) T (Y —wTe) - %log{(er)” det X} .
This yields for its gradient VL(0):
VL) =¥~ (Y —vTe), 4.7
and in view of Var(Y) = X, it holds

Var{VL(0)} = Var(¢=7'Y) = U=~ VarY 27'0T = ¢z 'wT.
N——
z

as required.
2. The required formula directly follows from (4.7).
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Exercise 4.5. Consider univariate polynomial regression of degree p — 1
Yi=f(Xi)+e,i=1,...,n,

where X; are fixed points, errors €; are assumed to be i.i.d. normal, and the function
f can be represented as

S =0 +605x+ ... +05x"""
At the same time, for any fixed point xy, this function can also be written as

S) =ul +ui(x —x0) + ... —i—u;(x—xo)p_l.

1. Write the matrices ¥ and W such that for any given design points X;, i =
1,...,n,

f=vTo* =vTu* (4.8)
where

f =X, f(Xa), oo, fX) T,
0* = (65.65.....6%)",

n

*

u* = (u’f,u;,...,u*)-r.

n

Compute also the matrices YW and AN
2. Describe an orthogonal transformation A such that

V=AY
e Forp =1,
» For p > 1 (with assumption thatn > p).
1.
1 1 |

X X X,
=] . .

-1 -1 -1
D' CD CORNN ¢4

Denote B def WU T, Denote also elements of B by by, i,j = 1...p, and
elements of W by ¥;,i = 1...p, j = 1...n. Note that y; = X|~'. By the
definition of the product of matrices,
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n

n
bi=Y Yl =y XM i j=1..p.

s=1 s=1

So,
n VX LY x
wor_ | ZX TX TN
Y XITU Y XL X
Analogously,
1 1 o1
‘i’_ Xl—X() Xz—)C() ...Xn—)C()
(X] —)C())p_1 (Xz — )C())p_1 . (Xn — )C())p_1
and
n (X5 —x0) ... D (Xy—x0)P!
\VIJ‘IVJT _ Z(XS - )C()) Z(XS - xO)z e Z(XS - xO)p

Z(Xs - xO)p_l Z(Xv —Xx0)? ... Z(Xs - )CO)zp_2
2.(a) In the case of p = 1, ¥ and U are real numbers equal to 1. Then A is an

identical transformation.
(b) Letnow p > 1. First we prove two lemmas.

Lemma 4.1.
u* = A"'6*.
Proof.
f=0T0" =0T (447")0* =UT (47'9%).

On the other hand, (4.8) yields

Hence,

Ut (A0 —u*) =0. 4.9)
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Note that the matrix W7 is a n x p matrix with n > p. This matrix has a rank
p, because first p columns form a Vandermonde matrix with determinant

det(¥) = [] (x;-xi)#0.

I<i<j=<p

Hence, equality (4.9) yields A~'6* — u* = 0 as required.
Lemma 4.2.

1
* (m—1) _
um_—(m—l)!f (x0), m=1,...,p. (4.10)

Proof. Recall that
f)=ul +u5(x—x0) +...+ u;(x — x0)?!
Thenform =1,...,p
FO V@) =1..m— Dl +2...mut,  (x —X0) + ...
Substitution x = x( gives
£ 0) = (m— 1)t

and the statement of the lemma follows.

Now substitute the expression
P
) =07 +05x+ . 4+ 05xr =) gk
k=1

into (4.10):

* k—m

1 1 p
* _ _ ©  r(m-l) _ v _
Mm_(m_l)!f (XO)_(m_l)!,gekxo , m=1,....,p

According to Lemma 4.1,
1/0! xo/0! x2/0! ... x™" 0

0 1/10 xo/1! ... x272 /1
At=l0 o 1720 .. X720

00 01—
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0 20 40 60 80 100

Fig. 4.1 Consider the model on a sample (i,Y;) with #* = (1,1)T and 0 = 1. 6 =
(1.012115,1.099624) T . @ MSEExercise471

Exercise 4.6. Consider the model
Y: = cos(2X;) 0; +sin(X;/2) 05 + &, i=1,...,n,

where

T,
e 0F = (91* ,05) " is an unknown parameter vector;
o {e}i_,areiid N©0,0%), X; = (=1)\m, i =1,....n;
* niseven.

1. Rewrite this model as the linear Gaussian model, and show that the design is
orthogonal.

2. Compute the maximum likelihood estimator for the parameter 0* (Figs. 4.1 and
4.2).

1. This model can be rewritten as
Y =U'0* +e, e ~N(0,%),

where Y = (Yy,....Y,)", 0* = (67,657, e = (e1,....&,) " ~N(0.0%I,),
and

cos(2X) sin(X;/2)

ot cos(2X;) sin(X,/2)

cos(.2Xn) sin()'(,,/2)
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Fig. 4.2 Consider the model on a sample (X;,Y;) with 8* = (1,1)T and 0 = 1. 6 =
(1.012115,1.099624) T . @ MSEExercise472

Substitution X; = (=1)/m,i = 1,...,n yields

cos(—2m) sin(—m/2) 1-1
cos(2m) sin(/2) 1 1
el =|: : =|:
cos{(—=1)""12x} sin{(=1)""'m/2} 1-1
cos{(—1)"2x} sin{(—1)"m/2} 11

If n is even then the columns of the matrix W are orthogonal:

T = (’(’) 2) =nl,.

2. The general formula for estimation under the homogeneous noise assumption
simplifies drastically for this design:

6= (woT) Wy =n"'wy.
Thus,

1
91=;(Y1+Y2+...+Yn),

1
b= (Vi+Yh—. . +Y).
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Exercise 4.7. Let

—1/2 1/2 1
U, =| 1/V2|, ¥,=| 1/V2| and Y= 2
1/2 —-1/2 -1

Consider the model

Y=f+e e NN(O,GZI,,).

1. Let U7 be a 3 x 2 matrix with columns ¥, and W ,. and let f be:
f — \PTa*’

for some * € R%. Compute the MLE estimator of 0 *.
2. Let

max Hf —\DTOH > 0.

Find the explicit formula for 8" as linear transformation of the vector f .

1. First note that the design matrix W is orthonormal.

-1/2  1/2
—1/21/42 1/2) | _(1 0)
/N2 1/V2 | = .
( 1/21/4/2—1/2 12— 01
This fact simplifies the computation:
1
- 112 1 0
0:\DY:§(1«/§—1) f :(z)'

2. For the orthonormal design, the computation also simplifies drastically:

N N £ 5) 1)
0_\”_2(1\/5—1 S

Exercise 4.8. 1. Consider the model
Y=f+e e~NOZYX

with f =V¥,0, ¥, €eR", 0 e

Find the formula for 07; as linear transformation of the vector f .
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2. Assume now that the true stochastic is
Y = \11191*+\11292*+€, €NN(O, Z),

Sfor some design ¥ ,%¥,, find the conditions when 07; = 0.
1. In this case matrix W is a matrix with one string ¥;. According to the general
formula (see the proof of Theorem 4.4.3 of Spokoiny and Dickhaus 2014),
-1 ‘IITZ_lf
ol =(¥/z7'w) wzlf= 2=
1 1 1 1 f \III'—E—I v,
2. Now we should put f = W0 4+ ¥,05 in the formula for 01;:

VIETf WS (W6F + ¥a05)
L ADul vz,

LU sy,
2wl n-w,

*
1

i
0] =

This means, that 07; = 6} if and only if
0y W]z, =0,

or, equivalently, if and only if (a) 65 = 0 or (b) \IIITZ_I\Ilz = 0. Condition (a)
means that the model considered in the first item is true (note that 0 = o is
obviously fulfilled in this case). Condition (b) is a condition on the design.

Exercise 4.9. Consider the model

Y=U"0+e, e~NO0I), (4.11)
and let the true stochastic be

Y=U'0*+e, &~NO 3. (4.12)
with a fixed covariance matrix . Prove that in this case

0" =0*.

In the model (4.11), f = UT9 and T = o21. Substituting these values in the
general formula for solving MLE esitmator gives

0t = (vuT) wf.
According to the true model (4.12), f = WT0*. Hence,

01 = (vuT) " wuTer = o+,
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Exercise 4.10. Let ¢ be the stochastic component of 0 built for the misspecified
linear model Y = W' 0* +& with Var(e) = . Let the true noise variance be Xy,

1. Prove that the variance of 0 is equal to
Vars, (0) = (v=~'oT) T ws gz eT (e )T @3)

2. Check that the matrix in the right hand side of (4.13) is of dimension p X p.
1. Note that

é:

[l
h<
Il
&}
~
+
0l
>

where € = (WZ'WT) ' WS~ Then
Vars,(0) = Vars,(Ee) = EEx, [eeT] ET = EDET,

and (4.13) follows.
2. Recall that W is a p x n matrix, ¥ and X —n X n matrices. Then Uy YT jsa
p X p matrix, and the required fact follows:

(v=eN)™ v v ox, = el (wstheT) T
[ N S S S A ———
pPXp pXn nxn nxn nxn nxp pPXp

Exercise 4.11. Assume Y = W' 0* + & with e ~ N(0, X). Then for any i < 1
Eqe exp{uL(®.0%)) = (1- ) 7",

where p is the dimension of the vector 6*.

The distribution of 2L(8, 0 *) is chi-squared with p degrees of freedom. This means
that there exist p independent standard normal distributed variables §;, i = 1...p
such that

P
2L(0.0%) =) &
i=1
Then (under Py+)

B 1 V4 p 1
Eexp{uL(8.6%)} =Bexp(;u ) &) = [[Bexp(;187)

i=1 i=1
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So one has to compute I& exp(% 723 2) for a standard normal &:

1 _.» 1 / 1—
2 x°/2 —
—e dx = —— | exp(—
N2 V2 P 2

The change t = /1 — p x yields

sz)dx.

]Eexp(%,ugz) = [ em?/

L e . S 1
Eexp(3u€7) = (1-p) T exp(—7)dt = (1— )~

and completes the proof.

Exercise 4.12. Consider the model
Y =00 +e. (4.14)

with homogeneous errors e: Bee T = o021,

1. Prove that there exists an orthogonal transformation U : R? — R? leading to
the spectral representation

Z =Au+é,

where Z = UWVY € R?, A is a diagonal p x p matrix, u = U@ € R?, and
errors & = UWe € R? are uncorrelated: BEEET = o2 A.

2. Prove that if € ~ N(0,021,), then the vector & is also normal, i.e.: § ~
N(,02A).

1. The operator W' is self — adjoint, therefore there exists an orthogonal
transformation U such that

UV TUT = diag(Ay,...,A,) = A,

where A;, i = 1,..., p are the eigenvalues of the operator U T. Applying the
transformation U W to both sides of (4.14), we arrive at

UVY =UWY'UT U6 + UWe .
N—— N— e N’ N——
z A u 3

The errors & are uncorrelated, because

EéET =UWEee' VUT =0?UWWTUT = o?A.

o2,
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2. If € is normal, then £ is also normal as a result of the linear transformation of &:
& =UVe.

This completes the proof (Hérdle and Simar 2011).

Exercise 4.13. 1. Find the matrix A for the designs from Exercises 4.4 and 4.5.
2. Let the matrix A be equal to the identity matrix. What can you say about the
design matrix?

1. The design W in both cases is orthonormal. Thus, we conclude that

A=UW'UT =1,
IP

2. Assume now that
Uee Ut =1, (4.15)

Multiplying (4.15) by U from the left side and by U to the right side, we
arrive at

W' =U"U =1,
because the matrix U is orthogonal. So, the design is orthonormal.
Exercise 4.14. Consider the model
Y=U"0+e with e~NQ,ZI).

Check that the linear transformation Y = 512y of the data does not change the
value of the log-likelihood ratio L(0 1, 0,) for any 01, 0.

Recall that
1
L(8) = —5(¥ — vTo)Ts'(Yy —vTe) + R,

where R = —nlog(2m)/2 — log(det ) /2 does not depend on ¥ and 6. Then

1
L(6) = —5(2—1/21/ —-272uTe)T(z72Yy —=720Te) + R

1o V.
= —E(Y —UT)T(Y —¥Te) + R,
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where U = Ux1/2, 5
The transformed data Y follows:

Y =UTo*+¢
with § = £71/2¢ ~ N(0, I,,) yielding the log-likelihood
. 1. . M. .
L(9) = —E(Y —UTe)T(Y —0Te)+ R
=LM®O)+R-R

where R = —n log(2m)/2. Thus, we conclude that for any 6, and 6,

L(0,,0,) = L(6,)— L(#>)

L(01)— L(0>).

Exercise 4.15. Consider the model from Exercise 4.5:
Y=U'0*+e, &~NO,0%I,),

where WT = (W, W,)T is a3 x 2 — matrix with rows:

—1/2 1/2
v, = 1/V2 ], ¥, = 1/+/2
1/2 ~1/2

1. Explain the Wilks’ phenomenon in this case.
2. Compute the likelihood-based confidence ellipsoids for the parameter 0*, if Y =

T
(1.v2.-1) ando =1.
1. From Theorem 4.5.1 of Spokoiny and Dickhaus (2014), we know that

- 1 - -
L(0,0%) = 5(0 —0Twuz w9 —0%).
In our case, WX~ 1WT = 2], and therefore:
L@.0%) = 16— 0™
’ T 202

The Wilks’ phenomenon tells us that the distribution of L (8, 8*) is 3 for any o
and any 6 *.
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2. An « — confidence set for the parameter # * may be constructed as follows:

€G)=1{0:L(6.0) <3.}.

where 3, is defined by P{U > 25a} =, U~ X%.
As it was already shown in Exercise 4.5. 0 = (0, 2)T. Therefore:

() =10 : 67 + (62~ 2)” < 23 .

is an o — confidence set for the parameter 6*.

Exercise 4.16. Consider the estimate obtained by the method of Tikhonov regular-
ization

b, = (VO +al,) WY,
1. Prove that the bias of this estimate
B(a) = |E6, — 67|
grows with the regularization parameter o.

2. Prove that the trace of the variance matrix of 0.,

- ~ - \T
V(@) = trE{(()a - ]an) (0a - ]an) }
decreases in o.
1. Note that
Ef, = (VW7 +al,)” 007",

resulting in the bias:

B(a) = H {(\P\DT +al,) weT — Jp} 0*

!

The matrix W' is positive definite. The Jordan decomposition yields an
orthogonal matrix U and positive numbers A1, ..., A,:

WO = U diag(ri,...,A,) UT.

Then

_ Al A
T 4or,) W — 1, = U di 1,2 ) uT
( +aly) r lag(kl+a Ap +a

~1 -1
= U di UT.
1‘g‘g(1+xl/o¢ 1+A,,/oc)
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This yields:

1 1
A+A/0)? (A + A, /0)?

B2(a) = 0*'U diag To*

L o*TU D) UT >,
where the matrix D(«) is diagonal. Let now o and «, be two positive numbers
such that o; > «oy. From
1 1
Z 9
(1 +Ai/061)2 (1 +A.,'/062)2
we conclude that D(«;) > D(cz). Then
v D()) v = v D(aa) v

i=1,...,p

for any v € R?, in particular for v = U T@*. This observation completes the
proof.
2. Note that

Vi) = wB (i, - i) (3. - ¥3.) )

:tr{(\w +al,) " WTE®Y —EY) (Y —EY)T (00T +al,)” 1}

=52
=o04lp

= 2wl (VT +al,) YU +ar,) 7).

Computation in the basis of the eigenvectors of W yields:

_ _ A
T 14, T T 1 _ . 1 p T
(V' +al,) ¥ W(VY +alp) _Udlag{(a—f—)nl)z""’(a—i—)np)z Uu',
and we arrive at
_ 2 A
Vie) =0 E (oz . Ap)z (4.16)

From (4.16), it directly follows that V(«) is a decreasing function of & > 0.

Exercise 4.17. Let L (0) be the penalized log-likelihood

def

1
Lg(0) = L(0) - §||G0||2,

where G is a symmetric p X p —matrix. Denote 0 g = argmaxy Lg(0).
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1. Prove that for any parameter 0
2LG(66.0) = (06 —0) (072WWT + G?)(fs — ).

2. Denote also 0 ¢ = argmaxy IEL(0). Prove that

2LG(06.06) = 0% e (4.17)

with Mg = WT (WU 4 02G2) ' 0.
1. Recall that the penalized log-likelihood is equal to
Lo(®) = L) ~ 51G6I°

1 Toz_ L 2_ 1 2
= _FHY—\D a] —§||G0|| —Elog(ZJm ).

Consider Lg(0g,0) = Lg(0) — Lg(0) as a function of the second argument
0. This is a quadratic function satisfying L (8¢, 0) = 0. Next, by definition
of 8 ¢, this function attains its minimum exactly at the point = @ ¢ implying

dLG(0g.0)/db]y_5, = 0.
Moreover, simple algebra yields
d*L;(06.0)/d6? = o 20T + G?
for any 0. The Taylor expansion at § = 0 gives:

)Td L(86.0)

; . o
LG(0670)=LG(9G,9G+0—0g)=—( e

(06 —6)

and the required formula for the likelihood ratio follows. _
2. A straightforward calculus leads to the following expression for 0 :

= 1

b6 < (W7 +02G6%) oy,

This gives that

b6 —0c = (V¥ +0%G?) W (Y —EY),
~————

&

and (4.17) is proven.
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Exercise 4.18. Consider the model
Y=U'0%+e, &~NO0*I) (4.18)

with a two-dimensional parameter 8* and orthonormal design, i.e. WV = I,.
Consider the penalized log-likelihood

def

Lo(®) £ L@) - 51O

with diagonal matrix G, G = diag(«, B).

(i) Find the bias of the penalized MLE as a function of a, B, o, and 6*.
(ii) Find the trace of the variance matrix of the penalized MLE as a function of «,
Bando.
(iii) Show that the bias monotonously increases while the trace of the variance
matrix monotonously decreases in each parameter o, 8, o.

1. The penalized MLE is equal 8 = EgY with Eg = (V¥ + 02G2)_1\IJ (see
Spokoiny and Dickhaus 2014, Sect. 4.6.2). In our case,

1 1
B¢ = di ( : v,
T T 1y ,3202)

The calculation of the bias of this estimate is straightforward:
= |EqwuTo" — 6% = (B¢ — 1) 67|

o o202 8202 )
iag | — ,—
S\ T2 1+ B*o?

@202 2 p2o2 2
- \/(—1 +a20291*) + (—1 +ﬂ20292*) , (4.19)
where 6, 6 are the components of the vector 6.

2. The trace of the variance matrix is equal to o tr(Eg EZ) in this case (See
Spokoiny and Dickhaus 2014, Theorem 4.6.2); therefore

V(a, B,0) =02 tr | di ! ! T di ! !
o, fB,0) =0 tr!{dia , 1, s
F\1+ o202 1 + p202 E\ 11 a202 1+ B202

:02{(1+Lzaz)2+(1+}3202)2}' (4.20)

3. From (4.19) we conclude the monotonicity in «. Indeed by dividing the first term
in (4.19) by o one obtains an increasing function. Similarly the monotonicity

B(a, B,0,0%) = H]Eéc —0*
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with respect to 8, o can be seen. The same mechanism applies to (4.20),
completes the proof.

Exercise 4.19. Consider the model
Y=UT0*+e, &~N©O %I,

with an orthonormal design, i.e. ¥WT = I,. Define the shrinkage estimate of 0™ =
(61, ey QP)T.'

Ouj = o;¥]Y

where aj € (0,1), & = (o, ... ,ozp)T, and w;!— is the j-th column of the matrix
UT, j =1,..., p. Denote the estimate of f = W' 0* by f,=¥"10,.

1. Prove that the risk R(}"a) &f E| f"u — f|I? of this estimate fulfills

P P
R(fy) =) fil—a;)+0>) o
j=1 J=l1
where f; = w;!—f.

2. Specify the risk for the case of projection estimate, i.e. a; = 1(j < m) with
fixed m.

1. The estimate fu allows the following representation:

P P
fa:\yTod:Z a,j'/’jzzajw]'/,;ry
=1 i=
The bias — variance decomposition gives
R(fo) =B (fo) +V(fo). (4.21)

where

2

P
Bfo—FIP=|> ¥, 9] f—f

=1

BX(f,)

2

P
D =Dy ¥ f

=1

V4
> (o = D@ f)

Jj=1
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and

V(fa) = Elfy—Ef,|I° =E|6, —Ef,|

p P
ZVar@ij = Zaiw;— Var Y;

j=1 j=1

2. For the case of projection estimation, the formula for the risk boils down to
R(fy) =) f}+mo’
j=1
Exercise 4.20. Consider the model
Y=UT9*+d " p*+e, &~N®O 021, (4.22)

where 0* € R? is the target parameter, n* € RF is the nuisance parameter, WV is
the p x n matrix, while ® is the k X n matrix.

_ Let some value n° of the nuisance parameter be fixed. Define the estimate
0 (n°) by partial optimization of the joint log-likelihood L(0,3°) w.r.t. the first
parameter 0 :

0(n°) = argmax L(0, 7°).
0

1. Prove that if the adaptivity condition is fulfilled

vol =0, (4.23)
then the partial estimate é(n") does not depend on n°:
o(n°) = (W) Y. (4.24)
2. Prove that the likelihood ratio is equal to

LEG) 1) = L6.7°) = — |97 (6> —6)| 4.25
@@).07) —LO.0) = 5 |97 (0 -0)[ @25

for any value of the parameter 0.

Remark 4.1. Tt immediately follows from (4.24) and (4.25) that if (4.23) is fulfilled
then the likelihood ratio is independent of 7°.
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1. Note that 6 (y°) is the MLE of the residual model Y — ®T5° = WT9* + &:
b(n°) = (WoT) Wy —oTy).

Taking into account the adaptivity condition (4.23), we conclude that the partial
estimate 6 (5°) is equal to

b(n°) = (vvT) 'y,

and therefore does not depend on the nuisance parameter y°
2. The proof follows the same lines as the proof of Theorem 4.5.1 from Spokoiny
and Dickhaus (2014). Consider L(0 n°), 1;°) — L(0,5°) as a function of 6;

denote this function by f(6). This is a quadratic function satisfying f 0 n°) =
0. Next, by definition of the MLE, this function attains its minimum exactly at
the point § = 6 (y°) implying df(0)/d 0|y_j ., = 0. Since

L1 = 5 (V= 0T0 - ®Ty")T (¥ ~ 970 0T y") + R,
where R does not depend on 6, we conclude that
d*f(0(5°).0)/d0?> = o 2w,
The Taylor expansion at the point @ = 0 (3°) yields

d*f(6(n°))

TE 0n°) -0}

0) = 380 -0}
= 5 G0 - VYT @) - )

This completes the proof.

Exercise 4.21. 1. Let L be a likelihood of the linear model that depends on a
parameter v € R?. Let P be a linear operator, P : R? — R¥. Prove that

P argmax L(v) = argmax sup L(v).
v @Rk v:Pv=0

2. Let L be a likelihood of the model that depends on two parameters @ and 3.
Denote (), n) &f argmax L (0, ). Prove that

argmax L(0,5) = argmax sup L(0, n). (4.26)
0 0 1

Remark 4.2. This exercise yields the equivalence of different definitions of the
profile estimation, see Sect. 4.8.3 of Spokoiny and Dickhaus (2014).
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1. Denote by & the MLE of the parameter v. For any fixed § € R,

L) = sup L(v),

v:Pv=0

95

where the equality holds iff the set {v : Pv = 6} includes v. This is
fulfilled only in the case # = Pv. In other words, the maximum value of

SUDP{y: py=py L (V) is attained at the point § = Pv.
2. Obviously,

L(6.7) > sup L(0,7),
n

where the equality is possible if § = 0. The observation that the expression in

the left side of (4.26) equals 6 concludes the proof.

Exercise 4.22. Consider the model (4.22) with p = k = 2, even n, and

1 1 10

1-1 01
vl =1: T =

1 1 10

1 -1 01

1. Show that the adaptivity condition
o' =0

is not fulfilled in this case.
2. Find the p x k matrix C such that the linear transformation

" =n+CT0
leads to the model
Y=UT0+dTy +e.

that satisfies the adaptivity condition.

T—E 1 1
vo _2(1_1).

Therefore the condition (4.27) is violated.

1. By direct calculation,

4.27)

(4.28)

(4.29)

(4.30)
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2. Substituting (4.28) into the original model (4.22), we arrive at
Y=U04+0 () —CT0)+e=(W—-CD)'0+D gy +e¢.
Selecting C to ensure the adaptivity leads to the equation
(V—CP)P' =0

orC = \IJQDT(CDCDT)_I. In our case,

o0 =1,
2
Together with (4.30), this yields
C = bl .
1-1

Exercise 4.23. Consider the model (4.22) with p = 2,k = 1,n = 4, and

11 1
v = 1_1 . 0T 1
1—1

The sample Y = (Y1,Y,, Y3, Y4)T is given. Compute the partial estimates for the
parameters 0™ and y*.

Notice that W and & satisfy the adaptivity condition (4.27)
o' = (0,0)"

is fulfilled in this case. This means that the partial estimate 0 (y°) doesn’t depend on
n° and is equal to

< -1 (1 1 1 1
0(n°) = (V¥") sz(l—l 1_1)Y

:l i+rHh+¥+Y,
A\ -Y+Y3-Y, /)
Similarly we can invert the role of #* and n*. Since the adaptivity condition
holds, the partial estimate 7(6°) does not depend on 6° and is the least square
estimator

i(6°) = (e07) " @Y = %(Y2 —Yy).
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Exercise 4.24. Consider the model Y = v* 4+ &* in R?, v* = (v],..., v;)T and
let the target estimation be the sum of coefficients 0* = v + ... + v}.

1. Find matrices Y and P such that the model can be viewed as
Y =T To* +&*, (4.31)
and the problem is to estimate
0* = Pv*. (4.32)

2. Reduce to (0, 1) — setup (see (4.22)) by an orthogonal change of the basis.

1. The model can be considered in the form (4.31) with the identity p X p — matrix

Y. The target of estimation can be represented the form (4.32) with a linear

operator P from R? to R given by Pv* &ef a1... DHo*.

2. Consider the orthogonal matrix

/P /P 1//p /yp ... 1//p

1/vV/2%1=1//2%1 0 0 .0
1/V/3%2 1//3%2 =2//3%2 0 .0
U=11/Va%3 1/V4%3 1//4%3 =3/J4x3... 0 ;
1 1 1 1 —(1;—1)
Vr(p=1)  p(p-1) Vr(p=1) Vp(p=D 77 Jp(p=D)
(4.33)

i.e., the first row of the matrix U = (u,;j)szl isequalto 1/./p, and fori <2

1/V/iG-1), j<i,
wp=y—-(G-0D/vit-=1, j=i,
0, j>i.

Note that U from (4.32) can be decomposed into

U =U + U,,
where
111...1
000...0
U = ]ooo...0|.
N/ .

000...0
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0 0 0 0

1//2%1 —=1/4/2%1 0 0

U, = 1//3%2 1//3%2 =2//3%2... 0
1 1 1 —(p'—l)
Vr(p=1)  p(p=1 V(=1 T p(p=1)

So, the vector Y is transformed to
UY =Uv*+Ueg*
= Up* + U™ +Ue™.
Note that
Uv* = W' 0%,

where ¥ = (10 ... 0)/,/p. Since &} & Ue* ~ N(0,021,), we conclude that
the model can be reduced to the (@, n) — setup in the following form:

UY = WT0* + Up* + &7,
Exercise 4.25. Consider the general linear model
Y=""Tv*+e
with

(=12 1/V2 1)2
TT_( 1/2 1/3/2 —1/2)‘

The target of estimation is the sum of the components of the vector v*, i.e., 0% =
vf .ty

1. Find the estimate for the parameter 6* as a profile estimate.

2. Compute E||0 — 0*||?> by the Gauss-Markov theorem.

1. Exercise 4.22 yields that this problem can be considered as the profile estimation

problem with P &t (1 1 1). Taking into account that YY T = I,, we conclude

that

6=pP(rrT)'ry

-2 12\ oy |
—ain| Vi oa (Y)=7<Y1+Yz>.
172 —1/2 2 2
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2. According to the Gauss-Markov theorem,
= -1
E|§ — 6*|? = 02 tr{P(TTT) PT} .

So E||f — 6*||*> = 302.
If we are looking at

can one also calculate IE||§ — 6*||2? We leave this as a training exercise.

Exercise 4.26. 1. Consider the model (4.22) with the matrices ¥ and ® from the
Exercise 4.23. Construct the profile estimate of 6 *.

2. Consider the model (4.22) with matrixes ¥ and ® from the Exercise 4.22 and
n = 4. Is it possible to construct the estimate of 0* as the profile MLE by the
linear transformation (4.28) such that the model (4.29) satisfies the adaptivity
condition (4.27)?

1. The adaptivity condition holds for this model (see Exercise 4.23); therefore, the
estimate of @ coincides with the MLE estimate for the model

Y =T"v* +e*,

where YT def (\IJT, CDT) is a 4 x 3-matrix, and the object of estimation is the
vector obtained by the projection P to the first two coordinates. This gives the
profile MLE

6=P((rYT) " TY.

2. Exercise 4.22 shows that the linear transformation (4.28) with the matrix

1 1
C =
(1)
leads to the model (4.29) that satisfies the adaptivity condition. But the matrix

O & ¢ _ Cdis a zero matrix in this case. Therefore, the model (4.29)

doesn’tinclude 6*, and therefore, this parameter cannot be estimated using such
approach.

Exercise 4.27. Consider the model (4.22). Fix the nuisance parameter as 1°,
denote the estimate 0(n°) obtained by partial optimization of the joint log-
likelihood L(0,n°) w.r.t. the first parameter 0 :

0(n°) = argmax L(0, 7°).
0
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Let 7 be a pilot estimate of the parameter ). Denote the estimate obtained by the
plug-in method by 0,

0 £ argmin [V — w702 = (woT) 0¥,
[

where YV £y — o7y

1. Prove that @ = 0 (7).
2. Write down the formulae for the pilot estimates for 6

(a) §;, =0
(b) h, =Yk =1)

(c) General linear estimate 1, def AY, where A is a k x n matrix.
1. Note that the estimate 8 is the MLE in the model

YE0To* 16, &~NO, 021

In other words,

oY { argmax L (0, n)}
0

n=n

so (1) follows.
2. The definition of the estimate @ can be rewritten as:

o< (v 'u(y —o"§).
Plug in ) = 53 = AY, we have
6= (wuT) (s, —oTA)Y.

The other two cases §§ = #, and #j = 1), are the special cases with A = 0 and
A =(1,0,...,0) respectively.

Exercise 4.28. Consider the model (4.22). With the initial guess 0° for the target
0%, consider the following two-step procedure:

(i) Compute the partial MLE for the model
Y(0°)=d p*+e, e~NO0°1,) (4.34)
with Y(0°) =Y — WT@°. This leads to the estimate

i(0°) = (207) DY (0°). (4.35)
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(ii) Estimate the target parameter 0* by fitting W' 0* to the residuals
Y(6°) =Y —dT5(6°). (4.36)
This method results in the estimate

6(6°) = (wuT) "Wy (6°). (4.37)

~

Compute the mean and the variance ofé (6°).
2. Consider the adaptive case with W®T = 0. Show that the two step estimate

0(0°) coincides with the partial MLE 6 = (\IJ\I'T)_I\IJY.
3. Let WV be orthogonal, i.e. vyl = 1,. Show that

Var{(0°)} = 0>(I, - WIT,¥ "),

where [T, = T (®®T) ™' .
1. Combining (4.34)-(4.37) we have

l

— (wuT)

= (vo’)” “v{ T (6%))

= (vwT)” I\II{Y m,Y(6°)

= (o) Y -, (v - 7o)

= (w¥") (1, - m1,)Y + (woT) e, eTeC.

It follows that
E{0(0°)) = (w97) 9 (1, - [,)EY.

Taking into account that VarY = o1, and that IT 7 1s a projector, we conclude
also that

Var {8(6°)} = (W) T w (1, - 11,) 9T (weT)”
2. Substituting (4.36) to (4.37) gives

~

0(6°) = (W) w{y — dT5(6°))
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3. From (4.38) and ¥ W7 = I,,
oW w1, — m)vh (weh)!
= o (W) -2 (W), w (e’
=o' — o’ W,V
Therefore, (4.38) is right.

Exercise 4.29. Consider the iterative procedure based on the two-step procedure
from the Exercise 4.27. One starts with the initial guess 0° for the target 8. Set

0=0°

Then recompute the estimates in the iterative way (k = 1,2,...):

’

b & GGy = {argmaxL(o, n)}
0

n=

N def ~ A
Net1 = N(0k41) = {argmaxL(a,n)}
n

0=0i41

1. Consider the adaptive situation with W' ® = 0. Prove that the above procedure
stabilizes in one step.
def

2. Denote the operators Ilg &yt (\II\IJT)_l\I' and IT, = CDT(CDCDT)_ld). Prove
the following recurrent formula for ‘I—'Ték and ®7 e (k> 1):

W01 = (g — MeI1,)Y + eI, ¥ 0y, (4.38)
O i = (M — M ITy)Y + [T @ i)y (4.39)

1. Note that the estimates ék, iy (k =1,2,...) are equal to

i = (e0T) oy —wTe°), (4.40)
Orrr = (W)WY —0Th), k=12,... 4.41)
g = (@)Y —WThip), k=1,2,... (4.42)

This yields that in the adaptive situation with ¥ T® = 0, we have
i =(e0T) oy,  6,=(vuT) 'wy,

and further iterations don’t change the values of the estimates.
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2. Let us prove the formulae (4.38) and (4.39) by induction on k. From (4.40), it
follows that

oTh =T (@dT) oY —wT6°)
= ,(Y —¥78)).
From (4.41) we conclude that
wTh, =T (wuT) 'uy — o))
= y(Y — 7))
=, {¥ - 11, (Y - 97h,)}
= (g — My IT,)Y + My IT, %7 6,.
Analogously, formula (4.42) yields
T, =T (@DT) O(Y — ¥ h,)
=IT,(Y -V 6,
= 11, =TT (Y = @7#,)}
= (T, — [T, I1y)Y + 1,1 4.

Therefore, the formulas (4.38) and (4.39) are proven for k = 1. To make the
induction step, we note that (4.41) and (4.42) imply that for any k > 1

VT hier = Mo (Y — @Tip).
O iy = My (Y =W 0, 4).
The further proof follow the same lines.
Exercise 4.30. Show that for any self-adjoint matrices A and B,

[ABloo = || BA| oo

Recall that by || A we denote the spectral norm of the matrix A, i.e., the largest
singular value of the matrix A. Denote by A any singular value of the matrix A B. By
the definition of the singular value, there exist unit length vectors e; and e, such that

ABe; = Ae;,  (AB)"e; = dey. (4.43)
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It is worth mentioning that (AB)* = B*A* = BA where A* is the adjoint of A.
Therefore, we conclude that A is also a singular value of the matrix BA. So, the
matrices AB and BA have the same spectral values and hence the spectral norms of
these matrices coincide.

Exercise 4.31. Consider the set-up from the Exercise 4.22. Suppose that

def
A= My plloo < 1.

1. Show by induction arguments that for k > 1
- k =T A
O s = Ak Y + (T 1Tg) @ i, (4.44)

where the linear operator Ay fulfills Ay = 0 and

k—1
Ay = Iy — I, Iy + I, Ty Ay =Y _(IT,11p)" (1T, — Ty ITy).
i=0

2. Show that Ay convergesto A &ef I, — 17,,17.9)_1(17,, — IT,11y).
3. Prove that
o) = (I, — ,ITy)"" (IT, — IT,I1y)Y,
where the value 1) is the limiting value for the sequence ).

Remark 4.3. Analogously, one can prove the same formulas for the estimate 0 and
for the limiting value 6 by changing the role of  and 7.

1. The first item trivially follows from (4.39). In fact, for k = 1 the formula (4.44)
coincides with (4.39):

®T i, = (I, — M,M1p)Y + 1,14
=AY + 1,1, @ 4.
The induction step is also straightforward:
q>Tilk+1 = (H'I - H,,Ho)Y + Hﬂnoq)—ri’k
= (M = M Ty)Y + M, Mo {AY + (1T, T0) ™' @i, |

= (T, — M,y + My T Ay) Y + (IT,T5) T 4,

=Ak+1
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2. The aim is to show that

||Ak+1 — Alleo

as k — o00.This fact follows from the observations that |[[T, — [T, [Ty |lcc < 1
and [|(IT,[Tp)' |loo < |IT,MTg |, < A’. (to be continued)

3. Since ||Ax — Ao — O, the sequence ® ' 7, convergeto ®T 4 &ef AY , because

— 0,

> (1) — (1 — 17,,170)_1§ (IT, — IT,Ty)

oo

A~ k—1 ~
107 i — AY [loo = || (A — A)Y + (IT,1Tp)" @i [loo
< Ak = Alloo 1Y lloo + A1 @y lloc — 0, k — oo

Inserting @ ) in place of ® "7, and " §, ., in (4.39) completes the proof.

Exercise 4.32. (This exercise is based on the ideas from Csiszdr and Tusnddy
1984) Let P and Q be two arbitrary sets and let D be a function depending on
two parameters, P € P and Q € Q. Denote by (P*, Q%) the point of global
maximum, i.e.,

max D(P,Q) = D(P*,Q%).

Consider the following procedure for estimating the pair (P*, Q*): starting with
an initial value PO, one iteratively computes the estimates (k = 0,1,...)

Q(k+1) = argmax D (P(k), Q)
Q€9

P**Y = argmax D (P, Q% 1Y)
Pep

Let the following inequality (so-called 5-point property) be fulfilled for any k > 0:
D(P*, Q") = D(P**D 0¥y < D(P*, Q*F) — D(P*, 0W).  (4.45)
Prove that

lim D(P®, QW) =D(P* 0%).
k——+o00

Hint. Prove the following fact:
Let two upper bounded real sequences {a}32. |, b }72. | satisfy the inequality

i1+ (bkg1 — b)) = ¢ > ax (4.46)

for some ¢ € R and any k € IN. Then ay, converges to ¢ as k — oo.
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First note that the statement of the exercise follows from (4.46). In fact, set

ar = D(P®, Q®),
b = D(P*, W),
¢ = D(P*, Q%).

Both sequences {ay}, {b;} are bounded by ¢, and moreover the 5-point property
(4.45) yields

agy1 + (bry1 —br) = c.

So, our aim is to prove (4.46). For any natural N,

N

N
0= Z(C —aj+1) < Z(bk+l —by) =byy1 — by

k=1 k=1

This means that the series Z,ﬁ;l (¢ — ak+1) converges and therefore ay — c as
k — +oo.

References

Csiszdr, 1., & Tusnddy, G. (1984). Information geometry and alternating minimization procedures.
Statistics & Decisions, Supplement Issue, 1, 205-237.

Hirdle, W., & Simar, L. (2011). Applied multivariate statistical analysis (3rd ed.). Berlin: Springer.

Spokoiny, V., & Dickhaus, T. (2014). Basics of modern parametric statistics. Berlin: Springer.



Chapter 5
Bayes Estimation

Estimation par la méthode de Bayes

Qui ne risque rien n’a rien.

Nothing ventured, nothing gained.

Exercise 5.1. Consider the Bernoulli experiment Y = (Yy,....,Y,)" withn = 10
and let

7(0.5) = 7(0.9) = 1/2.

1. Compute the posterior distribution of 0 if

(a) We observe y = (1,...,1)T. Which value of 0 has the highest probability?
(b) We observe a sample y = (yy, ..., yn)T with the number of successes y| +
<o+ yu = 5. Which value of 0 has the highest probability?

2. Show that the posterior density p(0|y) depends only on the number of suc-
cesses S.

1. (a) Denote the probability of observing y by p(y). Then
7(0.5)p (y160 =0.5) + 7(0.9)p (y]|6 = 0.9)

% {(0.5)10 + (0.9)10} .

r(y)

W.K. Hirdle et al., Basics of Modern Mathematical Statistics, Springer Texts in Statistics, 107
DOI 10.1007/978-3-642-36850-9__5, © Springer-Verlag Berlin Heidelberg 2014
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By the Bayes formula,
p(y|8 =05 p(@B =0.5
()
10
1(0.5) _ 1
% {(0.5)10 4 (0.9)10} 1+ (1.8)10

p(y|60=0.9 p (8 =0.9)
ry)
B 1.9 B 1

Hoow+09°) 1+()"

p(=05]y) =

p(=09y) =

and we conclude that p (6 = 0.9]y) is larger than p (6 = 0.5]y).
(b) Let now the number of successes y; 4 ... 4+ y, be equal to 5. In this case,

([0 = 05) = (150) 0.5 (0.5,

10

p(y]6 = 0.9) = ( .

) (0.9)° (0.1)1975 .

The posterior probabilities can be computed by Bayes formula:

p(y|8 =0.5)p (8 =0.5)

8 ) ry)
- 1p(yl6 =0.5)
_ 0.5)"°
T (0.5 4 (0.9)5(0.1)10-5

1
- 1+ (1.8)5(0.2)10-5"
and
2(0 = 09]y) = P18 =09p(6 =0.9)

ry)
3 (0.9)5(0.1)10-5
(0.5 + (0.9)5(0.1)10-5
1
T+ "
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Comparing p (6 = 0.5|y) with p (8 = 0.9]y) leads to
PO =05y)"" < p@® =09y

5
(1.8)°(0.2)° < (g) 5)°

18x2 25
—_— < —_—
100 9

and the clear conclusion that for § = 0.5 the posterior density is maximized.
2. Let the number of successes be equal to S. Then

p(y|0 =05) = (g) 0.5)° (0.5)"5 = (g) 0.5)%, (5.1)

p(y]0 = 0.9) = (g) 0.9)° (0.1)" 5. (5.2)
The Bayes formula yields

50 (|6 =0.5)
Ip(y|0 =05 +1p(yl6 =0.9)
p(y|6 =0.5)
p(y6 =0.5)+ p(yl6 =0.9)

p(=05]y) =

Thus p (8 = 0.5|y) depends on p (y|60 = 0.5) and p(y |6 = 0.9), both of which
depend only on the numbers of successes S, and don’t depend on the exact
realisations yi, ..., Y, see (5.1)—(5.2).

Exercise 5.2. Let the conditional distribution of Y given 0 be N(0, %), and the
prior distribution of the parameter 6 be N(v, n%). Using the Bayes formula, prove
that

2L yp? 2.2
9|Y~N(Ua+ n- o )

O'2+7]2 ’O'2+7]2

Denote the marginal distribution of Y by p(Y'), the prior density of 6 by 7 (6), and
the density of the conditional distribution of Y given 6 by p(Y |6). We know that

w(8) = n~'el(6 —v)/n}, (5.3)
p(Y10) = o~ p{(Y —6)/0}. (5.4)
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Note that Y = 6 + &, where  ~ N(v,n?) and ¢ ~ N(0, o) independent of 6.

Therefore Y is normal with mean v and variance > + 02, i.e.

—-1/2 1/2
p(¥) = +02) " (p{(Y —v)/ (2 +0?)" } (5.5)
In our notation, the Bayes formula is

p(Y.6) _ p(¥|0)x(6)

01Y ~ pOlY) = = (5.6)
p(Y) p(Y)
Substituting (5.3), (5.4), and (5.5) into (5.6), we arrive at
p(Y10)m(0)
pOlY) = ————
p(Y)
2,2 /2 2 2 2
1((Y -6 60— Y —
PRl RO B D ) s |
o2 + 2 2 o2 2 o2 + 2
For completing the proof, it is sufficient to note that
Y-60)2 (@-v)? (Y -v)?
=0 0w Y=V i apgyc,
o2 2 o2 + 2
where the values A, B and C are equal to
1 1 2 2
A= — + — = u
o2 p? n2o?
=L v _ovEny
o n n‘o
Y2 v? Y?Z-_2Yvu+v?
C=FSt+ts-—r5
o o-+7n

and hence p(A|Y) is a density of the normal distribution with mean (vo? +
Yn?)/(0* + n?) and variance 6%n?/ (0 + 1?).

Exercise 5.3. LetY = (Yy,....Y,)" be i.id. andfor eachY;
Yi | 0 ~N(@,0?),
6 ~ N(v, ).

Prove that for S =Y, + ...+ Y,

24 g2 2.2
9|Y~N(UU+ n o°n )

o2 +nn o2 4 nn?
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Hint: Consider Y; = 0 + &, Y = S/n, and definet = 6 —v — (1 —p)(Y —v),
where p = 0% /(nn* + 02). Check that ¢ and each Y; are uncorrelated and hence
independent.

Note that Y = 6 + &, with 6 ~ N(v.n*) and € = n'Z}_,&; ~ N(0,0%/n)
independent of 6. Therefore Y is normal with mean EY = Ef + Eg = v and the
variance

Var(Y) = Var + Varg = > 4+ o2/n.

Next observe that

E{® —v)(Y —v)} = E{(® —v)(@ +E—v)} =E@O —v)> =1»?
= (1—p) Var(Y)

with p = 02/(nn* + 02). Thus the rv’s ¥ — v and

t=0-v—(1-p)(Y —v)
=p —v)—(1-p)

are Gaussian and uncorrelated and therefore independent. The conditional distribu-
tion L(¢|Y) of ¢ given Y (or S = Y n) coincides with the unconditional distribution
and hence, it is normal with mean zero. The variance of ¢ is equal to

Var(¢) = p® Var(6) + (1 — p)* Var(s)

=p’n" + (1 —p)’c”/n
04

T @+ Py

2

P+ (0% /) —2 ( ) (0*/n)

(o
o2 +nn?
ot
+ m(ﬁz/l’l)
_ (@*/n) —2(c*/n) + (0*/n) (0> + nn*)

o2 +nn?

0.27]2

024 np?
This yields the result because with (5.7)

0=C4pv+(1-p)Y.
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Exercise 5.4. Non-informative priors give equal probability weight to all possible
parameter values. For © = {01, ..., 0y}, the non-informative prior is w(0 ;) =
1/M, j =1,..., M. Check that the posterior measure:

0 =
p(0ily) >0

is non informative if and only if all the measures Py, coincide.

1. Prove if all the measures PPy, coincide, p(f|y) is non informative. The
marginal density of y is:

M
P =MD" p(y|0a)

m=1
The posterior measure is therefore
_p0)m@k)  p(yl0r)  p(y]6k)
pOkly) = = =31 =
p(y) So_ i p(y|0,)  Mp(yl6r)

= M!

Thus p(6«|y) is a non-informative measure.
2. If p(0|y) are the same for any k, p(y|0;) = % also coincide for any k.
Therefore, all the measures IPy,, coincide.

Exercise 5.5. A classical example for Bayes risk is testing for a disease D or the
presence of certain genetic markers on DNA sequences. Every test T has a certain
false alarm rate:

pr—1 =P(T =1|D =-1)
and a false negative rate:
p-11=P(T =-1|D =1)

Suppose that for the test under consideration p; —; = 0.05, p—_;; = 0.05. From
the population screening we know P(D = 1) = 0.01.
Calculate the P(T = 1|D = 1) and calculate the probability of having a disease
given that the test is positive. Also calculate P(D = 1|T = —1).

The probability p;; = P(T = 1|D = 1) = 1 — p_;; = 0.95. Bayes’ formula
yields

PD=1T=1)=PT =1|D=1)P(D=1)/P(T =1)
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= paP(D = 1)/{p11P(D = 1) + p1 -1 P(D = —1)}
— (0.95 % 0.01)/(0.95 % 0.01 + 0.05 % 0.99)
= 0.0095/0.06 = 0.161

Hence the probability of having actually the disease is just about 16 %! How can
this be such a low number? This can be elucidated by noting that with the marginal
distribution of D one person out of 100 has actually this disease. Given the value of
p1.—1 -the false alarm rate- one expects another 5 people. In total we have 6 people
testing positive but only 1 to have the disease. This ratio 1/6 is roughly 16 % as
calculated above.

It is also interesting to investigate the chance of actually having the disease given
that the test is negative. This is calculated as:

P(D=1T=-1)=P(T =-1|D = HP(D = 1)/P(T = 1)
= (0.05 % 0.01)/(0.05  0.01 + 0.95 % 0.99)
= 0.0005/0.94 = 0.00053 = 0.053

In terms of this chance pattern we may conclude that this test is acceptable.

Exercise 5.6. The daily business of an investment bank is to decide upon credit
worthiness based on rating techniques. Two types of customers (firms) demande
credit: good ones and bad ones. Denote similar to Example 5.5 the probability of
successful credit repayment as py = P(T = 1) and D = 1/ — 1 a good/bad
customer. Suppose that p1) = P(T = 1|D = 1) = 80 % and that p; —; = P(T =
1|D = —1) = 10 %. From macroeconomic news and rating companies we observe
o1 = 70 %. Show that the success probability is 94.9 %.

For a change of argument we give a finite population version of the proof.
Suppose there are 10° credit applicants. Given p; = 0.7 there are 700,000 good
clients and 300,000 bad clients. Of these 560,000 = 0.8 * 700,000 respectively
30,000 = 0.1 % 300,000 are successfully repaying their credit. So in total there are
590,000 successful clients giving the success probability of 94.9 %.

From the investment bank point of view credits are issued to bad clients in 5.1 %
of the cases.

Exercise 5.7. Consider the univariate Gaussian shift model Y; |  ~ N(6, ) and
B ~ N(v, 7).

1. Check that for the situation with only one observation (n = 1) the value
f_ozo p(¥10)d 8 is finite for every y and the posterior distribution of 0 coincides
with the distribution of Y .

2. Compute the posterior for n > 1.

1. Recall that

p(y10) =o"'p{(y — 8)/0}
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It is now easy to see that

/_ p(y|0)d0 = / o lg{(y —0)/0}d6 = 1 5.7)

oo —00

since we may interpret the integrand for all y as the pdf of 8 ~ N(y,o?).
Suppose now that € © a compact subset of R. Define 7(®) = ([, d6)~" then

p(y) = 7(©)"! /O p(y10)d8

p(y0)=(6) _  p(y[0)
p(») Jo P(¥10)d06

p@ly) = (5.8)

Using (5.7) one sees that (5.8) yields the identity of the posterior with the pdf
of (Y0).
2. As alternative of proving (5.8) is to recall that in the situation that % ~ N(v, %)
the posterior is:

(5.9)

2y 2.2
9|Y~N(UU+ n-  o°n )

O—2+n2 ’O—Z_’_TIZ

see Exercise 5.2. Let now the prior N(v, %) become informative in the sense that
n> — oo. Then (5.9) will behave asymptotically as N(Y, o) with pdf o~ o {(6 —
y)/o}.

Applying symmetry of the normal pdf one sees again (5.8). Using this same
argument in the situation of Exercise 5.3 when we calculated the posterior for
n > 1 leads us to:

©01Y) NN(S/n,crz/n)

where S =Y, + ...+ 7,.

Exercise 5.8. Let {X;}!_, be an iid. sample from the normal distribution
N(@,az), where 0 and o are unknown. Let n = 2—(112 and the prior p(n) be
the Gamma distribution: p(n) ~ T'(at, A). The prior distribution p(8|c?) of 0 given

02 is also the normal distribution:

2
o]
p(@lo?) ~ N(b, 70)

1. Compute the joint posterior distribution of (6, n).

2. Compute the marginal posterior distribution of 0.

3. Compute the marginal posterior distribution of 0 given 1.
4. Compute Bayes estimates of o and 6.
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1. The joint density of (6, 1) is

p(0.1) = p(8lo®) p(n)
by
] o
= T ep {0 — 0 o)} e
\2mo? )
Therefore, the joint posterior pdf given x = {X;}_, is
p(6.n|x) o (2w6%) ™ exp { Y (xi - 9)2; p(0.m)

i=1

V1

« (276%)"% exp { Y (xi - 9)2}
i=1 208

(0 —6)%) o
{ n((zoé)O)} e

x Vi (27r02)_%
V2ol
_'7(9—90)2} o P!

eXp{—n;(xl 0)> —an a7 (T

Pluginn = ﬁ
(9—90)2”

n+
A= exp |:—n {0{ + 82+ 10 -%)7°+ 55
0

p(0,1n|x) ocn

where,

S -0 = Y B 4 00—

i=1

i=1

In the right hand side expression, & and S? = Yo (x —X)? does not depend

on parameters 6 and y, and it is easy to find:

(9 - 90)2 _ 2 — & —2
=(n+ )0 —2(nx + 202)9 +nx% 4+ 207

n(o —f)z-i- 203 ZTC(% 2
1
(1°+ 352)0 6 + ),
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where,

1, _ 6o
E—(n—f-r‘g) (nx+T‘§)

The joint posterior density function of (8, 1) can therefore be written as:

P@Mﬂ“ﬂﬁwk%m{ﬂ{W+y+m@%Hn+iﬂw—@ﬁ}
0

2. Rewrite the expression of the joint posterior density function as follows:
1 1
p(0.nlx) o nz T exp[—n{a + S + m(x)}] p

1 2
exp { -n(n + 273)(9 -§)

The posterior marginal distribution is

p(nlx) = /_ p(6,0%|x)do

o0

o AT exp—[y {or + 52 + m(x)}]

This is the pdf of a I'(a 4+ S? + m(x), 5 + A) distribution.

3. Note that
0, n|x
p(@l]]’x) = p(—m)
p(nlx)

The posterior marginal distribution of 6 is
1 1 )
p(Oln.x) o< —expi—n(n + —)(0 — &)
o 20

which is proportional to the pdf of a Normal distribution

NE {@n+ o7 )n) 7).
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4. (a) The joint posterior density function is
(0, n]x) nnTJHH_l exp[—n {a + S + m(x)}]
exp | -nln -+ 55)(0 - 6%

The posterior marginal distribution p(#n|x) is proportional to the pdf of a
r {a + S? + m(x), 5+ A} distributed random variable, where

I\ 6
5‘(”*273) ("”273)’

_ 1
1= %262
(6o —x)?
m(x) = ,
203 + %

The Bayes estimate of o is

1 o0 o0

5 =% / / 1 p(6. nlx)dndo
2 0 —0o0
1 o0

= —/ n~ p(nlx)dn

2 Jo
_ o+ 8%+ m(x)
 on422-2

(b) In order to compute the posterior marginal density of 6, it is necessary to
calculate p(0|x) = fooo p (0, n|x)dn. This integration could be expressed as
follows:

o0
p(Olx) = / g
0

exp |:—77 {a + 8+ mx)+ (n+ #)(9 — 5)2} i| dn
0
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Remark 5.1.

nngrl'H_l exp I:—i] {C{ + 8%+ m(x) + (n + %)(9 - 5)2}:|

is the pdf of a

n+1
F ’
(-5 +7)

distributed random variable, here, s = & + §% + m(x) + (n + 5) (6 — £)*.
Therefore, the integration of this density function is 1.

It is now easy to get:

oo
. 1
/ ,7#“_1 exp{—n[a + S* + m(x) + (n + ?)(9 — &)t dn
0
_ 1_‘(n ;— 1 n )/SngrlH

So the posterior marginal density of 8 could be expressed as

p(O]x) = /0 (. 7lx)dn

1 _n+22p+1
S? —)(0 —§)?
o<{oz+ +m(x)+(n+202)( £)
_(m42p)+1
(n+ ;15)(9 —£)? :
« o+ S? + m(x)
et
2

o« (14 ! 12
n+2A

which is proportional to the pdf of a f (n+2A) distributed random variable.
Here, we suppose

2= (0—E)> {(n +20)(n + 55) /e + S + m(x)}
0
= K?(0—£)%,u = K(0—£) is alinear transformation of 6. Denote p(6|x) o

f(u). As p(6|x) is symmetric about u = 0, the Bayes estimate of 6 could
be written as
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§ = /_OO/O 0p(6, n|x)dndo
- /_ 6p(01x)d0 = /_ (0 — ) + Ep(8]x)do

o' /oo %uf(u)du—i—é/:: p(0|x)do

—0o0

we haveu = K(0 —x;), 0 —x; = ¢, 0 = ¢ + x;, the first integration is
symmetric about ¢t = 0, so the result of p(6|x) should be zero. The second
integration is the pdf of Gamma distribution, the result is 1. Therefore,
we have

0=0+¢=¢

Exercise 5.9. Let X ~ f(x,0), 0 = (01,61), 6; € O;,i = 1,2, 0 ~ p(0) =
p(01162) p(82), p(0,) is density function on ®,. Given any 6, p(6,|61) is the
probability density function of 0, on ©1. If 0, is given, and the Bayes estimate
under quadratic loss of h(6,) = g(01,0,) is n(X, 62), then the Bayes estimate
under quadratic loss of g(01, 62) is n(X), which satisfies the following relationship:
nX) = f®2 (X, 02) p(62] X)dO,. p(02|X) is the posterior density function of 6,

Prove this result and apply it to 5.7 to find Bayes estimate of u(0 in 5.7), o2,
g(i,8) = po? with quadratic loss.

From the conditional distribution function formula we have

p(61,02]x) = p(bilx,62) p(6:]x)
p(62|x) is the posterior density function of 8,, p(6|x, 8,)is the posterior density

function of ) given 6,. As the Bayes estimate of h(6)) with quadratic loss is
n(X, 6,),n(X, 06, = f®l h(6,)p(6,]X, 8,)d6,. The Bayes estimate of g(6,, 6) is

5(X) = / / 2(616) p(6y, 62 X A6, 6>
0, Jo,

/ { / 2616 (611X, 62)d6,\ p(6:]X)d6s
(G 0

/0 (X, 02) p(62|X)d0,.

In 5.7, {X;}!_, is an i.i.d. sample from the normal distribution N(x, 0?), 0, = u,
b =1 = 355.0 =0~ p(6) ~ T(a,A); p(6i]62) = p(u|n) is the pdf of a
N(wo, %) distributed random variables, n = #, and the posterior distribution of

6, = §is p(62]X) which is the pdf of a I'(a + S? + m(x),5 + A) distributed
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. _ — 09—x)2
random variables, n = #, E=0m+ #) Y(nx + 2“7%), m(x) = %, S? =
37 (x; —X)*. Now we shall compute the Bayes estimate of g(6;, ;) = i, 0> and

wo? with quadratic loss:
1. g(61,6,) = p = 6. {X;}/_, is an i.i.d. sample from the normal distribution

2
N(u, 0?), the prior 7 is also the normal distribution N (1o, %)(92 =n= #),
the posterior distribution is normal as well. So the Bayes estimate of u = 6,
given 6, is posterior mean.

n N\=1,n_ 7
n(X,0,) = (; + a_g) (FX + %llo)

B Lo, 1
_(n+20§) (nx+20§uo)

=£

This expression does not depend on 6, = 7. Thus, the Bayes estimation of yu =
s =nX) = f®2 Ep(02]1X)d6, = &, which is consistent with the result
in5.7.

2. g(61,6)) = o2 = (262)7', g(A1.6,) = (26,)7! does not depend on 6.
Therefore, the Bayes estimate of g(601, 6) is

n(X.0:) = [ (262)7'p(6:1|X.6,)d6; = (26,)7"
0

As 65| X has a Gamma distribution mentioned above, the Bayes estimate of 0> =

(292)_1 is

o+ S?+m(X)

5.10
n—+21-2 ( )

1 o0
52 =1 / 61 p(62]X)db; =
2 Jo
3. g(61,6,) = pno? = 0,(26,)7". (26,)~" does not depend on 6. Therefore, the

Bayes estimate of g(6;,6,) is n(X,60,) = £(26,)7! given 6,. As & does not
depend on 6,, from (5.10), the Bayes estimate of g(6;, 6,) is

o+ S2+m(X)

— * -1 =
100 = [ 600 p@ulx)ae: = % E

Exercise 5.10. Let {X;}]_, be an i.i.d. sample, compute the Bayes estimate with
quadratic loss and posterior MLE of the corresponding parameters:

1. X1 ~ f(x1,0) =2x10721 {0 < x; < 60}, 8 has a Pareto distribution PR(«, ),
Hint: Try to prove that the Pareto distribution is the conjugate prior distribution
for 0 if ¢ is known (c equals 2 here).
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2. X1 ~ f(x1,¢) = fo_ll{O < x; <1}(c > 0), ¢ has a Gamma distribution
I'(a, ),
Hint: Try to prove that the Gamma distribution is the conjugate prior distribution
for ¢ if 0 is known( 0 equals 1 here).

3. X

~ f(x1,b) = b*x1e P11 {x; > 0}, b has a Gamma distribution T (a, 1);

4. X1 ~ F(%, V), v is known, o has a Inverse Gamma distribution T ™' (a, ).

1. (a)

(b)

2. (a)

0 has a Pareto distribution PR(«, i), that is,
pO) = ap07CTV1{0 > pu}
we know « > 1 and p > 0, the posterior distribution density function is

p(0]x) o 07"1{0 = xn} a0~ @TV1{O > 1}

x 9—(nc+a+l)1{9 > 90}

Here, ) = max {x(n),p,}, so p(f|x) is proportional to the pdf of a
PR(2n + «, 6y) distributed random variables. Therefore the conjugate prior
distribution for 6 is Pareto distribution if ¢ is known. Plug in ¢ = 2, we
easily have

p(0lx) = (2n + a)f2"Teg=Crtethy (g > gyy

Which is the pdf of a PR(2n + «, ) distributed random variables. Thus,
the Bayes estimate of 0 is

2
E@|X) = _ante o

6
2n + o —1

In order to maximize p(|x), it is necessary to minimize 6, in this problem,
0 should not be smaller than 6. Therefore, the posterior MLE of 8 is 6 = 6.

¢ has a Gamma distribution I"(a, A), that is,
at A—1

— —ac - 1 > O

p(©) T’ ¢ {e=0}

a > 0, A > 0, the posterior density function is

n

p(C|X) o " (l—[ xi)c—le_nce—acc)»—l

i=1

n
o " exp —cla — log Z(log x; —log0)]

i=1
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which is proportional to the pdf of a F(a -y _(logx; —logf),n + A)
distributed random variable. Thus, the Gamma distribution is the conjugate
prior distribution for ¢ if 8 is known. Plug in 6 = 1, the posterior distribution
of cis

n

p

-1 at -

plclx) = c”(l |xi) ! e !
Pl rQa)

=" lexp—cla — Z(log x; —log 0)]

i=1

n
= " lexp—cla — log l—[ xi]

i=1

which is the pdf of a I'(a — Y_7_, log x;, n + A) distributed random variable.
Thus the Bayes estimate of ¢ is

n+A
a—3 - logX;

(b) Denote T = Y_/_, logx;, p(c|x) is the pdf of a I'(a — T, n + 1) distributed
random variable, which could be written as

¢ =E(c|X) =

(a — T)n+)k

w ;- —(a—-T n+A—1 )
NCEY exp{—(a )ce
Now it is easy to write down the posterior MLE of ¢ as follows

n+A-1_ n+1-1
a—-T — a-Y"_ logX;

¢ =

3. (a) X; ~ I'(b,?2), the posterior distribution of b is

n n A
— p2n ‘ _ Y —appa-1
pblx)=0b Hx, exp§ bZX’}F(A)e b

i=1 i=1
b2n+/1—l

= exp § —b(Z xi +a)

i=1

which is the pdf of a I' (a + Z?=1 X, 2n + A) distributed random variable.
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The Bayes estimate is

S
Il

E®b[X)
2n + A
a+y"'_logX;

(b) Denote T = > '_,logx;, p(b|x) is proportional to the pdf of a
I'(a + T,2n + A) distributed random variable, which could be written as

(a + T)2n+)k

_ 2n+A—1
Tan i) exp{—b(a+T)}b .

The posterior log-likelihood function is
Lb|x)=—(a+T)b+2n+A—-1)logh+k

Here, k is a constant term. From %ﬁm =—(a+T)+@2n+A-1)/b =0,
the posterior maximum likelihood estimate of b is

4. (a) The posterior distribution of ¢ is

n A

—nv . 1 n 1
p(0|x) = lf-n(])) (HXi) leXp{—;iZ:;Xi} %exp_z(_)kﬁ_l

0O 0
i=1

= exp { —C%(Z xi +a)

i=1

1 nv+A+1
=

which is the pdf of a r-! (Z?:l X;+a,nv+ )L) distributed random variable.
Therefore, the Bayes estimate of o is

& = E(o]X)

1 n
- nv+k—l(a+ZXi)

i=1

(b) Denote 7 = Y '_,logx;, p(c|x) is the pdf of the I '(a + T,nv + 1)
distributed random variable, which could be written as

(a + T)"”'H 1 1 nv+i+1
C(nv + 1) exp{—;(a—}— T)} (c_r) '
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Fig. 5.1 A boy is trying

to test the Robokeeper which
is a machine more reliable
than any human goalkeeper

The posterior log-likelihood function is
1
Lio|x)=—@+T)——mv+A+1)logo +k
o

Here, k is a constant term. M‘g—‘zlx) =@+T)/o>—mv+Ar+1)/c =0,
the posterior maximum likelihood estimate of o is

PR +2 i Xi

nv+A+1

Exercise 5.11. Following a tied soccer game, two teams will have a penalty shoot-
out to decide which team shall finally win the tournament. Suppose you are an
analyst who is employed by one team and you have the record of the goalkeeper
of the other side. Suppose that it is known that in the last two penalty shoot-outs, he
has saved the ball 3 times out of 5 + 5 = 10 shots. Your task is to compute, in the
present shoot out, how many times the goalkeeper shall save the ball (Fig.5.1).
Hint: Note the record is similar to the Bernoulli experiment Y = (Y1,..., Y,,)T
with n = 10 in Exercise 5.1.

We denote the event that the goalkeeper saves the ball as A, therefore p(A) = 6.
In order to estimate 6, we make n independent observations, among which A occurs
x times (Fig.5.2).

It is necessary to predict the times of success z in the Bernoulli experiment Y =
(Y1,...,Yx) T with k = 5. The pdfis

p(xle) = (Z) Qx(l _e)n_xs-x = 15253"'
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Fig. 5.2 Germany
goalkeeper Jens Lehmann’s
crumpled sheet that helped
him save penalties against
Argentina in the 2006 World
Cup quarter-final shootout
raised one million EUR

(1.3 million USD) for charity
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Assume the prior distribution of 8 is Beta distribution Be(«, ),

I'le + B)
C(@)T'(B)

In order to have the posterior distribution of 6, we should firstly find the joint
distribution of x and 6:

p(6) = ' 1—-0)"10<0<1

p(x.0) = p(x|0)p(0)

_(n X(1 _ Q=X F((X+ﬁ) a—=1c1 _ p\B—1
‘(x)e(l O rr O

x=0,1,...,n,0<0 <1

Now determine the marginal distribution p(x)

1
p(x) = /0 p(x.0)d6 5.1
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— : n X1 _ n—xr(a+/3) a—1lc1 _ p\B—1
_/0 (x)ea O Farr 0o

Yin _ —xtpr Ll + B)
— 9x+ot 11 _ 0)" x+p8 l—de
f (3)ersmaormom ot

We only need to pay attention to the expression 9* =1 (1—0)"—*+F=1 We know

L +DTB +1)
Ll + B +2)

1
/ 0% (1—6)'do =
0
Applying this to the (5.11), we have the posterior density:

p(x.0)
p(x)
__ rx.0)
[} p(x,0)dé
_ 'n+a+p)
S T(x+a)T(n—x+p)

pOx) =

9k+a—l (1- G)n—x+ﬁ—l

which it the pdf of a Be(« + x, B + n + x) distribution. The likelihood function of
the new sample z is

k
z

L(z]0) = ( ) 65(1 — O)<—

Thus the posterior density of z given x is

1
peo = [ (" ) 6%(1— ) p(0]x)d0

Z

_(k 'm+ao+pP) : rxta—l1 _ pyk—zdn—x+p—1
_(Z)F(x—i-a)l“(n—x_}_ﬂ)/o 4 (1-10) do

_(k) Tn+a+p) Te+x+a)Tk—z4+n—x+p)
2/ T+l —x+p) T(n+k+a+p)

Pluginn = 10, x = 3,k = 5. As p(8]x) is an expression of @ and B, we make
a = B = 1. Take a prior distribution of 8 as Be(1, 1), which is also the uniform
distribution U(0, 1). The posterior distribution of z is

3 — (5) r(12)0(4+ 2013 - 2)
ps) = T(17)T(4)T(8)



5 Bayes Estimation 127

z 0 1 2 3 4 5
pzlx = 3) 0.1813 0.3022 0.2747 0.1694 0.0641 0.02128

Fig. 5.3 The Jiao Bei pool

We can choose z = 0,1,2,3,4,5 in this problem. For example, when z = 0,
we have

r(12)r(#ras 33

0[3) = = - =0.1813
POB) = T F@are — 12
When z = 1, we have
C(12)T(5)(12 55
p(13) =5—( WOy _ 5 =0.3022

rA7)C4)r@E) 182

we could calculate all of them as follows (Table 5.1):

From the table we observe that P(0 < z < 3) = 0.9231 and the mode is at
0.3022 when z = 1. This says that the goalkeeper has the highest probability to save
the ball twice (and higher probability once).

Exercise 5.12. Following the Exercise 1.10, we continue discussing interesting
statistical issues of the religious ritual-tossing Jiao Bei. Some temples in Taiwan
provide not only a pair of Jiao Bei, but a bowl filled with Jiao Bei, like Fig.5.3.
Worshipers choose one pair from the bowl and perform the ritual introduced in the
Exercise 1.10. Worshipers have priors to each Jiao Bei in the pool. This observation
inspires this exercise.

Let Y denote the outcome of the Jiao Bei tossing. Y is a Bernoulli random
variable with probability p. Y = 1 if it is “Sheng-Bei” and Y = 0 otherwise.
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An experiment is carried out by 20 young statisticians and we obtain 114
observations, with 57 Sheng Bei:Assume that p has a prior distribution P(p =
1/2) = 1/3, P(p = 1/3) = 1/3, P(p = 1/4) = 1/3. What is the posterior
density f(ply)?

o o606 1 1 1 1 0 0 1 1 O O T1T OO 1 1 0 1 O
1P 0 1 1 0 0 1 1 1 0O 1 O 1 O O 1 1 0 0 1
1 0 1 1 0 1 0 1 1 0 1 O O 1T 1 O O O 1 1
o 1 o0 o0 o0 1 0 o0 o0 1 1 0 0O 1 0O 1 1 1 1 O
o o606 o0 o0 1 0 01 0 1 0 0O 1 O O 1 O 1 1 1
1 1 0 1 1 1 O 1 O O 1 0 0 1

Let y be the outcome of Jiao Bei tossing experiment. Under the prior distribution,

P(y)

1 1 1
glP(y =57p=1/2) + glP(y =57p=1/3) + glP(y =57p=1/4)

1 257 357
3x21 T35 T 3 g

The posterior probabilities are:

P(ylp=1/2)P(p =1/2)

P(p=1/2|y) = PG ~ 0.9988:
P =1/3)P(p =1/3
P(p =1/3]y) = ylp ]lé(;)(p /3) ~ 0.0012:
P =1/HP(p = 1/4
P(p = 1/4]y) = ylp ﬂé(;)(p /)%0'
Reference

Spokoiny, V., & Dickhaus, T. (2014). Basics of modern parametric statistics. Berlin: Springer.



Chapter 6
Testing a Statistical Hypothesis

Provare un'ipotesi

11 segreto del successo ¢ la costanza del proposito.

The secret of success is the perseverance.

Exercise 6.1. Let X = {X;}'_, be an i.i.d. sample from a model of Gaussian shift
N(8,0?) (here o is a known parameter and 0 is a parameter of interest).

(i) Fix some level a € (0, 1) and find a number t, € R such that the function

p(X)E1(X >1,)

is a test of level a for checking the hypothesis Hy : 0 = 0y against the
alternative Hy : 0 = 0; < 0y (6y and 0, are two fixed values).
(ii) Find the power function W(60,) for this test.
(iii) Compare o and W(0,). How can you interpret the results of this comparison?
(iv) Why a test in the form

$(X) E1(X <s,),

where s, € R is not appropriate for testing the hypothesis Hy against the
alternative H,?

(i) Observe that /n (Y - 90) has a standard normal distribution N(0, 1) under
Hy. Then for any ¢

W.K. Hirdle et al., Basics of Modern Mathematical Statistics, Springer Texts in Statistics, 129
DOI 10.1007/978-3-642-36850-9__6, © Springer-Verlag Berlin Heidelberg 2014
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Po(X >1) =P
o

VX — b)) ﬁ(1—90)§ zl_cb{ﬁ(f—@o)}’
o o

where P denotes the probability measure of the normal distribution N(6, o?).
Let us fix the parameter ¢ such that Po(X > ) = o

qD{ﬁ(t—@)}

o

a=1-

t=t, =6 +021_a/ﬁ,

where z;_, is the (1 — «)-quantile of the standard normal distribution.
So, a test of level « is

dX) L 1(X > 1,) =1(X = 6+ 021-0/ V7).

(i) By the definition of the error of the second kind,

W) = 1-Pi{¢(X) =0} =P {¢(X) =1}
=P (X = 6 + 0z1-a/~/n)
R e U 900}
_ - ¢{Z1—a _ ﬁ(eo—el)}
o
(iii) One should compare two expressions:
a=1—®(z1—,) and W(H)=1-0 {zl_a — m% .

By assumption, 6y > 6. This yields

V(6 — 91).

(o2

AU—a > 2AU—a —

and therefore « < W(0;) because the function ®(-) is monotone increasing.
This fact can be interpreted in the following way: the probability of rejecting
the hypothesis when it is true is less than the probability of rejecting the
hypothesis when it is false. In other words, “true rejection” has larger
probability than “false rejection”.



6 Testing a Statistical Hypothesis 131

(iv) In the case of the test

p(X) E1(X <),

the error of the first level is larger than the power function at any point 8; < 6.
This means that “false rejection” has larger probability than “true rejection”.

Exercise 6.2. Let a sample X have only one observation X with density p(x — 6).
Consider the hypothesis 0 = 0 against the alternative 6 = 1. Describe the critical
region of the Neyman-Pearson test for different t, if p is a density of

(i) The standard normal distribution N(0, 1),
(ii) The standard Cauchy distribution, i.e. p(x) = {n(l + xz)}_l.

(i) Note that

(=12

1

-1 Vo exp{— H 1
p(l);(x) - l exp(—x—zz) - (x - _) '
V2 2

2

Thus, the critical region is

{2 o))

Ift, < 0then R, = R. On the other hand, if 7, is positive then
Ry, = {x > logt, + 1/2}.

(i) The case of the Cauchy distribution is more complicated.

_ 2

RQZ{MEZ‘Q} Z{th‘y
p(x) 1+ (x —1)2

A plot of the function f(x) = ﬁ is given on the Fig. 6.1.

Note that

¢ The maximum is attained at the point x,,,, = (1 + ﬁ) /2 and is equal to Y, =
B++5)/2
* The minimal value is attained at the point x,,;; = (I — +/5)/2 and is equal to

* The right and the left “tails” of the function tend to the line y = 1.

These three observations yield the following sets Ry:
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2.5+

2.0 4

> 154

1.0

0.5 -

o

Fig. 6.1 The plot y = f(x) = (1 + x2)/(1 4+ (x — 1)?). @ MSEfcauchy

Q, if ty > Yiax

Xmaxs if ty = Ymax

[xlaXZ] 5 if ty € (la ymax)
Ra = .

[x1, +00) ift, =1

(=00, x1] U [xz, +00), ifty € (Vmin, 1)

Rs lf le S Ymin

where x; and x; (x; < x;) are two solutions of the quadratic equation

1+x*
1+ (x—-12

o

Exercise 6.3. (Suhov & Kelbert, 2005) Let X be a single observation of a random
variable X with the density function p(x).

(i) Find the form of the most powerful test of fixed size &« = 0.05 of the hypothesis
Hy: p(x) = 1/21(x € [-1, 1]) against an alternative H, : p(x) = 3/4(1 —
xH1(x € [-1,1]).

(ii) Compute the power of this test.

Let us apply the Neyman-Pearson lemma. The left hand side of the equality
Py {Z(Xl) > la} =a =0.05

can be rewritten as
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Po{Z(X1) = 1} = Po {3/2(1 = X}) = 1} = Po (1X:] = VT—2/31)
= /1—2/3t,.

So, we conclude that the Neyman-Pearson test can be written as

d(X1) = 1(]1X] < 0.05).

(ii) The calculation of the power is straightforward:
0.05

3
P, (| X,| = 0.05) = / Z(1 — x%)dx ~ 0.075.
—0.05 4

Exercise 6.4. Let {X;}]_, be an i.i.d. sample from the exponential distribution
p(x,0) =60exp(—x/0), x>0.
1. Find the form of the most powerful test of fixed size a of the hypothesis Hy : 0 =

0o against an alternative Hy : 6 = 61, where 0y and 0y are given (let 6y < 6).
2. Compute the power of this test (the cdf of Gamma distribution can be involved).

1. The Neyman-Pearson lemma is applicable in this situation, because the likeli-
hood ratio

aer [ /= p(Xi.61) 6o \"
200 M ) (9_1) =P {(90 QI)ZX

is such that the equation

Po{Z(X) > ty} =« (6.1)

has a solution for any o > 0.

In order to find a close form for this solution, note that the random variable
def

&€ = 1/69 ), X; under hypothesis Hy has a gamma distribution with parameters
n and 1. In fact, X; is distributed according to the law I'(1, 6); then ), X; ~
['(n,6y), and & ~ T'(n, 1). Denote the cdf of I'(n, 1) by G, ().

(6.1) can be rewritten as
0o \" 1
Pyl — — — — | 6E} >ty =,
AG) oo —a)aef =f =
or, equivalently (here we use that 6y < 6),

]P() = .

N nlog % + logt, }

- _ %
-3
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So, t, should be chosen from the following equation:

nlogz—(l) + logt, .
—1_% =G, (1-o).
1

According to the Theorem 8.2.2, we conclude that the Neyman-Pearson test with

6o

ty ZEXP{(l_H_l) Gn_l(l—a)—i-nlogZ—(l)

is the most powerful test of size o.
2. For the computation of the power, it is sufficient to mention that under H;

o
GrE~ T,

Hence,

W= Pi{Z(X) > 1) = Py {§ > G;'(1 - )}

to Y
Pl le> LG —
1{915_91&1( 05)}

0
1-G, (—06;1(1 —a)).
0

Exercise 6.5 (Pestman & Alberink, 1991). Let {X;}/_, be a sample from the
distribution with density

p(x,0) = e I1(x > 0),

where 8 € R. Find a uniformly most powerful (UMP) test with given level o
for testing the simple hypothesis Hy : 0 = 0y against the simple alternative
0= 91 > 90.

Firstly, we compute the ratio

Z(X) def [Ti=; p(Xi,01) _ 10, O < Xy < 61,
[T p(Xi.60) e"=0) Xy > 6.

Note that the Neyman-Pearson test is not applicable to this situation, because the
equation

Po{Z(X) 2t} =
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does not have solution for & # Py (X a > 91). The aim is to construct a test 7' such
that

EoT =a and E; T = argmax (E;¢). (6.2)
$€(0.1):Eop<a

First step. It is worth mentioning that a test in the form

v, B < Xqay <64,

7O —
1, X(l) > 91.

Any y € (0, 1) satisfies the second condition from (6.2) because

ETW =yPi(6 < Xay < 0)+P1(Xa) > 01) =1,

=0 =1

and [E;¢ < 1 for any test ¢. Thus, the UMP test can be found by selecting the
y € (0, 1) satisfying BTV = . We have

Eo T

yPo (60 < X1y < 61) + Po (Xy > 61)
y {1 =Py (Xq) > 61)} + Po (Xa1) > 61)

)/{1 _ en(e()—el)} + en(e()_el)

because
IP() (X(l) > 91) = IP() (X, > 91, i = 1..,]1) = {IP() (Xl > 91)}” = en(@g—ﬁl)'

As the result,

o — ebo—61)
V= T enot (6.3)
and y € (0, 1) if and only if
"= < . (6.4)

So, on the first step we prove that if condition (6.4) is fulfilled than 7" with y given
by (6.3) is an UMP test. On the second step, we consider a case if the condition (6.4)
is not fulfilled.
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Second step. For any 1 € (0, 1), denote

T(Z) d;f 0, 90 < X(l) < 91
n, Xay >0

Let us find n from the first condition (6.2):
PoT@ = Py (X(y > 61) = ne" @™ = o
Since condition (6.4) is not fulfilled,
n = e 6.5)
lies between 0 and 1. The power function for this test is equal to
ET? =P (Xa) > 61) = n = ae" %),

It’s easy to see that this power function is maximal over all tests with Eg¢ < «. In
fact, for any such test ¢,

E¢p =Eof Z(X) ¢} < ae" =%,
——

se”(gl —00)

So T is an UMP test with 7 chosen by (6.5) given that the condition (6.4) is not
fulfilled.

Exercise 6.6. Consider the model {X; }?=1 ~ N(6, 02), where o is known and 0 is
the parameter of interest. Define two statistics:

TldzefmaxL(G,Go) and TzdzefmaxL(G,Go),
] 0>0,

and two corresponding tests:

6 EUT > 1y) and ¢y E Ty > 1),

where t;(i = 1,2) are selected to ensure the level condition
Eopi = Po{T; > tia} =«
for a given level o. Both tests, ¢p1 and ¢,, are used for testing the hypothesis

H()I 9290.
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¢ tests Hy against the alternative Hy : 0 # 0y (two-sided test), and ¢, — against
H, : 0 > 0y (one-sided test).

1.
2.

1.

2.

Find the explicit expressions for Ty and T».
Compute the power functions of the tests ¢, and ¢».

Two methods for finding an explicit form for 7 are given in the second chapter
of Spokoiny and Dickhaus (2014), Theorem 2.9.1. One of the methods is based
on deriving the following expression for L (6, 6y) (here 6, 6, are any two points):

- _ 2
Lwﬁwzé%(e—%xe—%yfi3@l . (6.6)

So, L(8,6p) is a quadratic polynomial in @’; the maximum is attained at the
vertex of parabola (at the point 8 = 6):

noz 2
T, = m@axL(Q/,Q) = 27‘2|9 — G|

For maximizing (6.6) for 8 > 6, note that & = 6, is one of two solutions of
the equation L(8, 6p) = 0. Consider two cases:

() If 6y is the larger solution. In other words, 6 is larger than the x-coordinate of
the vertex, i.e. 6y > 6. In this case, L(6, 6y) < 0 for any 6 > 6, with equality
iff 6 = 6,.

(ii) If 6y is the smaller solution. Then the “positive” part of parabola (i.e. {0 :
L(6,6y) > 0})isinthe set {0 : 6 > 6} and maximum is attained at 6 = 6.

To summarize, we conclude that

T, = sup L(@, 9()) =

n|0 — 6o2/26% if6 > 6,
0> 6 0

otherwise.
By the definition of the power function,

Bi1(O) & 1 —Ey I{T) > 114} = Py (Th < 1)

=Py (n|(§ —60)*/20* < tm)

2t ~ 211
:IPG(G()—O'\/ ! <9<90+G‘/ l)
n n

Note that & &t Jno™! (é — 0) is standard normal under IPy. This yields
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bo— 0 6o — 6
Bi(6) = Py {% Vg << SO0 o

o SO0 | ) | S=0) ]

Computation of the power function for the test ¢, follows the same lines:

B2(0)

Py {;—2 (9—90)2/2 < tZa}

Py <é<90+0ﬂ2:a)

V(6o — 0)
o

= P0§§< + Ztla}

@{@4— Zl‘la}.

Exercise 6.7. Consider the volatility model with a natural parameter 6:

Y =€, £~N(0,0)
(see Exercise 2.19). Observe an i.i.d. sample {Y;}"_, with n = 10 and suppose that
Z?:l Y; =8.

(i) Draw a plot of the function f(0) = K(0,6y) for a natural parameter 6 and
6o = 1. Visually check that for every ¢ the set

{6 :X0.1) <}

is a connected subset of R.

(ii) Change the parameter to the canonical parameter, v = v(0) = —(20)~!. Draw
the similar plot for the canonical parameter v, g(v) = K{v, v(1)} and visually
check that the set

[0 : K(v,v(1)) =]

is not a connected subset for some v.

(i) From Exercise 2.19, we know that

1 y 1
= —= ] .
p(.9) zmeXP( 20 2 "ge)
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0 4

-10 4

-20 4

-30 4

I I I I I I I
0.00 0.05 0.10 0.15 0.20 0.25 0.30

X

Fig. 6.2 The plot y = f(#). @ MSEkInatparam

Hence

LO) = Ylog p(1i.0) = ~==20 1050~ " log (227

i=1 i=1

and

K6, 1) = L(e);m) = —Z?;; ol (%—1) —%logQ.

Substituting the values for n and Y_ Y; yields
f(0) = 040" —0.5log6 + 0.4.
The graph of the function f(8) is given in Fig. 6.2. It is clear that the set

{0:10) =8

is an interval (0, 6;) for some 6; > 0.
(ii) Since v(0) = —(20)~"; the inverse transform is 6(v) = —(2v)~\.

n n 1 n
L(v) = U;Yi - Elog (_ﬂ) — glog (2 271Y,<)
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0.0

-05 4

-1.0 4

-1.5

I T T T T T T

-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0
v

Fig. 6.3 The plot y = g(v). @ MSEklcanparam

1 1 1\ & 1 1
—— == — Y, — =1 -
:K(”’ 2) n(”*’2)§: 2°g( 2v)

Note that

g)= f{OWw)} = f (—%) = 0.8v —0.51og (_Zi) +0.4.

v

The graph is given on the Fig. 6.3. It’s easy to see that for any ¢ € (0, 1) the set

{v:gv) =}

is disconnected.

Exercise 6.8. This exercise is an illustration of Lemma 8.4.5.
Consider the model from the previous exercise (a volatility model with a natural
parameter 0). Denote by 6 the MLE of 6.

(i) Prove that for any 6y € R and any t € R, a function

g0) E Py (6> 0y +1)

is a monotone increasing function on R.
(ii) Draw a plot of the function g(0) for 6y = 1,t = 0,n = 10.

(1) In this exercise, we are faced with an exponential family. Parameter 6 is a
natural parameter (see Exercise 5.5). According to Theorem 2.11.3, the MLE
is equal to
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1.0

0.8

0.6 —

0.4

0.2

0.0 H

I I I I I I
0.0 0.5 1.0 1.5 2.0 25

0

Fig. 6.4 The plot of g(8) = 1 — G(10/6). @ MSEEX0810

i=1

3.0

Note that a random variable 7 ! Y'Y has a chi-squared distribution
with n degrees of freedom; denote the distribution function by G,. We conclude

that

«0) =2 (=) =126, {2+ 0.
n 0

and the monotonicity of the function g is proven.
(i) In this case, g(8) = 1 — G19(10/0) (Fig. 6.4).

Exercise 6.9. Let (Pg) be an EFn.

(i) Prove that the o -level LR test for the null Hy : 6 € [6y,6,] against the

alternative H, : 0 € [0y, 01] can be written as
dp=10 <6 —17)+10 > 6, +15),

where 1} and t] are selected to ensure

6.7)
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sup Pop(¢p =1) <c. (6.8)
9()<9<91

(ii) Let the values to'[" ,t, be selected to ensure

P, (0 <6o—17) =a/2, Py (0>0+1f)=a/2

Prove that the level condition (6.8) is fulfilled in this case.

(i) The LR test is defined as the test in the form 1(7" > ¢,,), where

TY sup L@O)— sup L(H).
0¢[60,01] 0€[60,01]

In order to describe the behavior of the function L, one takes the first derivative
of it:

L(0) = SC(6) —nB(6) + ) log p(¥).

dL . )
25 =nE=0)C'®),

where S = ), Y; and 6 = S/n. This and C'(8) = 1(f) > 0 yield that
the function L(#) monotone increase on the interval (—oo, 6] and monotone
decrease on [, +00). We conclude that

L(6) — L(60). i 4 < 6,
T = {max {L(6), L(6))} — L(0), if6 <6 <8,
L(6) — L(6)). if6 > 0.

Note that if 6y < 0 < 0) then T < 0. Thus, a random set (7" > ¢,) for positive
1, is equal to

Bo(®) = {(L(E.6) > 1) N (0 = 60)} U{(L(B.60) > 1) N (0 = 00}

Below we aim to show that there exist some positive numbers z;” and 7, such
that

{(L@.00> 0@ <00} = (0 <6-17). 6.9)

{(L(é,@l) > 1) N0 > 91)} - (é >0, + tJ) . (6.10)
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L(8, 0)

Fig. 6.5 The plot of 6 < 6, — ;. @ MSEEX0711

Let us concentrate on the first equality. Note that L(é ,6p) = nk (@, 6). For
an exponential family, the Kullback-Leibler divergence K (6, 6y) is a monotone
increasing continuous function with respect to the first argument:

0K(0.0,)
j<(ae ) - 3g [01C(0) = C(80)} = {B(O) = B(B)}] = C(0) = C(6) > 0.

because C'(0) = 1(9) > 0.

Thus, the equality (6.9) is true, and the form of (6.7) of the LR test is proved.
An illustration is given in the Fig. 6.5.

The values 7, and t(j' should be selected to ensure the condition

sup e = a.
90<0<01

The next exercise suggests a way to select these values.
(i) We aim to show that for any 6y < 6 < 6,

Po(0 < 6o—1;) <Py (0 < —1;), (6.11)
Po(0 > 01+ 1) <Py (0 > 01 +1). (6.12)
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The second inequality is proved in Lemma 8.4.5. The first one can be proved
analogously. In fact, for any IPy — measurable set A

Py(A) = /I(A)d]P(; = /I(A) P, dIPgO = g, exp{L(@,@o)}l(A).

Function L(6) monotone decrease on {0 : 6§ > 6 } (it was shown above). Thus,
L(6,60y) = L(8) — L(6y) < 0 forany 0, 6, such that 8 < 6y < 6, and

Py(0 < 6 —1;) = Egy exp{L(0,00)}1(0 < 6y — 1) < Py (0 < 6o —1;),
and the second inequality (6.11) is proved. The observation

[c] sup Po(p=1) < sup Py(f < 6p—ty )+ sup Po(d > 6, +15)  (6.13)
Bp<6<6, Op<0<6, Bp<0<6,

= Py, (0 < 6y —1]) + Py, (6 > 6, + 1) (6.14)

completes the proof.

Exercise 6.10. Consider the time series of weekly DAX returns from Jan 1, 2000 to
Dec. 31, 2011. Does the volatility remain constant during this sample period? To
test this hypothesis, divide the 12 years data into 3 periods:

e Period I: Jan. 1, 2000 to Dec. 31, 2003,
e Period 2: Jan. 1, 2004 to Dec. 31, 2007,
e Period 3: Jan. 1, 2008 to Dec. 31, 2011.

Denote the variance of the DAX return in period i as (712. Please do the following
hypothesis tests:

2
1. H() O'l = 0;.

2
2. H() 0'2 = 03.

3. H 0 - O' 1 =0 32 .

First we take a look at the data as Fig.6.6. This 11 years DAX return has
large volatility clusters between 2000 and 2001, 2003-2004 and 2009-2010. We
compute the standard deviations for the three periods: first period 0.0431, second
period 0.0213 and third period 0.0401. We expect that the volatility (variance) is
nonstationary over time.

We test the three null hypotheses by applying F-fest on this return time series. For
the first hypothesis, the p-value is less than 0.0001, and therefore we reject the first
hypothesis. It is similar for the second hypothesis. The third test has p-value 0.2962.
This suggests that we cannot reject that the volatility of the period 1 is equal to that
of the period 3.

Exercise 6.11. Let X = {X;}7_, bei.i.d. B(0). Consider the hypothesis Hy : 0y =
1/2 against the alternative H, : 0; = 1/3. Let for simplicity n = 2.
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Fig. 6.6 The plot of DAX returns from 20,000,103 to 20,111,227. @ MSEDA Xre

(i) Give the explicit formula for the Neyman-Pearson test with the probability of
the error of the first kind equal to o = 0.25.

(ii) Provide an example of the weighted sum of the errors of the first and second
kind that is minimized in the class of all possible tests by the Neyman-Pearson

test.
(iii) Over which set of tests the Neyman-Pearson test has the largest power?

(i) For one observation X; from the Bernoulli sequence,
Py(X; =x)=(1—-6)""%6*, xe{0,1}, i=1,...,n.
Therefore, with Z(x) being the likelihood ratio:

]_[zr‘l=l IP91 (X = xi)
l_[zr‘l=1 Py, (X = x;)

- anlog{a — o) ey | - anlog{(l —00)' 765}

i=1 i=1

log Z(X) = log

. 0« 1-6,
_Zx,-loge—o—i-Z(l—x,-)logl_@O (6.15)

i=1 i=1

Substituting the values for 6y, 61, n, and considering all possible values of
X1 and X, , we conclude that log Z(X) has the following distribution under
the hypothesis Hy (from (6.15))



146 6 Testing a Statistical Hypothesis

2 log(2) — 2 log(3), with probability 1/4
logZ(X) = { 31og(2) —21log(3), with probability 1/2
4 log(2) —2log(3), with probability 1/4.

So, the equation
Py, {log Z(X) > t,} =«

has for @« = 1/4 a solution f, = 4 log(2) — 2 log(3) . Since, the Neyman-

Pearson test with the error of the first kind equal to 1/4 has the form ¢* o

I{logZ(X) > 41log(2) —2log(3)}.
(i) By Theorem 6.2.1 (Spokoiny and Dickhaus, 2014), the Neyman-Pearson test
minimizes the sum

p0E90¢ + IOIIE91 (1- ¢)

over all possible (randomized) tests ¢, if ¢, = po/p; . Hence, the Neyman-
Pearson test ¢* minimizes the sum for all pairs of coefficients in the form

(po. p1) = (a.a/ {4 log(2) =2 log(3)}. a > 0.

(iii)) The answer for this question follows directly from Theorem 6.2.2 (Spokoiny
and Dickhaus, 2014): the Neyman-Pearson test has the largest power over all
tests under the level constraint Eg,¢p < 1/4.

Exercise 6.12. Let X = {X;}]_, be a Bernoulli sequence of zeros and ones with a
probability of success equal to 0. Consider two functions of the observations X :

7O défmin{kzl,...,n:szl}Q T® défZX"'

i=1

(i) Consider the simple hypothesis Hy : 6 = 60y against the simple alternative
H, : 06 = 0, Construct the tests (of a fixed level o) in the form

]I{T(j) > t,ij)} with some 1 (j =1,2).

(ii) Find the power of TV and T® . Check empirically that the power of the
Neyman-Pearson test is larger than the power of these tests.

(i) First note that for any natural m ,
Po{TV >m} =Py{X; =0,X,=0,..., X,— =0}
=@1-6"". (6.16)
()

Since the critical value #,’” is the solution of the equation

Py {T" > m} <a,
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let [a] denote the smallest integer greater than or equal to a, it is equal to
1) = MNog,_g, (@) + 1.

The critical value t(iz) for the test statistic 7 is equal to the solution of
the equation

Py, {T@ =m} =" Croj(l—60)"" =«

i=m
w.rt. m.
(i) According to the formula (6.16), the power for the first test is equal to

w® = PPy, {T(l) > tzil)} =(1- el)flogl—eo(d)-l-l] )

The power for the second test can be found from the formula

WO =By (70 > 2} = Y ol -0 =

i=m

Exercise 6.13. Let X = {X;}/_, be an i.i.d. sample from a model of Gaussian shift
N(8, 6?). Consider three hypothesis testing problems:

(i) o is known; the aim is to test the hypothesis Ho(o) 1 0 = 6y against the

alternative Hél) 10 = 0,, where 0y # 0,;

(ii) 0 is known; the aim is to test the hypothesis H;O) : 0 = 0p against the

) 1
alternative H,i )i = o1, where 01 # 09 ;

(iii) Both o and 0 are unknown; the aim is to test the hypothesis Hgg; 10 =

0o, 0 = oo against the alternative Hélg : 0 = 6,0 = o1, where 0, #
09,01 # 09 .

Describe the likelihood ratio test for the first and the second situation. Why it is
difficult to find the closed form of the likelihood ratio test in the third case?

(i) The first situation is described in Chap. 6.3.1 from the book by Spokoiny and
Dickhaus (2014). The likelihood ratio is equal to

T = L(X.0,.0) — L(X.6.0)
= 072{(S — n6o)(8) — 6p) —n(6) — 60)*/2), (6.17)

where S = Y "_, X; . The likelihood ratio test has the form:

¢(1) =1 {T(l) > 3((11)} ,
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where the critical value 3&1) can be selected from:
Py, (T >3} =« (6.18)

Since the sum S — nfy has under H, a normal distribution N(0, n02), we
conclude that (6.18) can be rewritten as

Py, 30 400 - 60)%/2)7 = a,

1
2 G o C

where § = (S — nby)/ Vno? has a standard normal distribution (here we
assume for simplicity than 6, > 6;). Denote an (1 — «)-quantile of the
standard normal law by z;,_,, i.e., P(§ > z;—,) = «. Therefore the critical
value can be found from the equation

1
TN A

Finally, we conclude that the likelihood ratio test has the form

230 4 () — 90)2/2} = Zl_g. (6.19)

o0 =T{TV = 0™[z,0 Vi (6 — bo) — n (61 — 6)” /2] .
(i1) Inthe second case, we follow the same lines. The likelihood ratio has the form:

T® = L(X,0,01) — L(X. 0, 00)

_ o\ (1 1\§~ oy g0
—nlog(a) 2(012 og)Z(X’ 6), (6.20)

! i=1
and the corresponding test can be found as
¢(2) =1 {T(Z) > 3(2)}
— da .
Taking into account that under the hypothesis H?, the random variable
o, 23 (X — 0)*hasa x -squared distribution with n degrees of freedom,

denoting by wi—, the (1 — «) -quantile of this distribution and assuming (for
simplicity) that o; > o0, , we arrive at the following expression for the critical

value 5&2):
1 (o}
@ — o (20) 2 (% _ . 6.21
3o nlog (01) 5 (012 )Wl @ (6.21)

(iii) The likelihood ration in this case is equal to
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1 < 1 <
7O 1o (—00)——§ Xi =62+ — > (X — 6.
£ o1 207 ( v 208 ( o)

i=1 i=1

The likelihood ratio test cannot be written in closed form, because the
distribution of 7 and therefore the quantiles of T3 are hardly ever known.

Exercise 6.14. Let X = {X;}/_, be an i.i.d. sample from a model of Gaussian shift
N(8,6?). Consider the hypothesis Hy : 0 = 0o against the alternative Hy : 0 #

oo if

(i) 0 is known;
(ii) 6 is unknown.

Describe the likelihood-ratio tests in both situations.

(1) The test statistic is equal to

T sup L(X.6.0) ~ L(X.6.00) = L(X.0.5) — L(X.0.00)

a0

11 1)\«
:nlog(c(;—o)—z(ﬁ—%)Z(Xi_g)Z’

i=1

~ o def .
where 62 = n~! Yol (X — 6)? . In order to find the critical value for the test
statistic 7", note that

(a) since o is a natural parameter for this model (see Exercise 2.19),
T = nX(o,09);

(b) Lemma 6.4.1 (Spokoiny and Dickhaus, 2014) yields that for every ¢ there
are two values ¢, and ¢ such that

{0:9((0,00)<§}:{0:00—§;<0<00+§(;"}. (6.22)
From here it follows that
I(T > ty) = L(K(5.00) = ta/n) =1 (6 <00—1,,) +1(6 =00 +1,),

where the values 7, and 7,

s which depend on o and 7, can be found from
the level condition:

Py (T > ty) =Py, (6 <00—1,,) + Po, (6 = 00+ 1,,) =a.  (6.23)

Taking into account that n62 /o has a chi-squared distribution with n degrees
of freedom (under the hypothesis Hj ), we conclude that the values
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ta_nzCTO(l— Z“/z), t;'n=ao(,/zl_a/2—l) (6.24)
’ n ’ n

satisfy (6.23), where be z; we denote the g-quantile of the chi-square
distribution with n degrees of freedom.

The second case can be viewed as a mirror situation to the paragraph 6.3.3
(Spokoiny and Dickhaus, 2014), where it is discussed the procedure for testing
the mean when the variance is unknown. In our case,

T* = sup L(0,0) —sup L(0,00) = L(6,5*) — L(6,00),
6,0 0

where

é:n_lzn:X,- and ¢ = n—lzn:(Xi—é)z.

i=1 i=1

Therefore,

e ()3 () D0 =

i=1

and the arguments (a) and (b) from (i) can be applied to this situation also. A
unique difference is that the estimate n5*?/ og has a chi-square distribution
with (n — 1) degrees of freedom. This leads to the critical values as in (6.27),
where by z is denoted the quantiles of the chi-square distribution with n — 1
degrees of freedom.

Exercise 6.15. (This exercise is motivated by Dudewicz and Mishra (1988)) Let
X = {X;}'_, be an i.i.d. sample from a model of Gaussian shift N(6, 6*), where 0
and o are both unknown; the parameter of interest is 6. Consider the hypothesis

Hy

: 0 = 6y against the alternative H, : 0 = 6, where 6, > 0. Prove that no

test of level o has power larger than « .

First note that the Neyman-Pearson test for a known o can be written as

P(X) =I{X >t} =1{X > 6 + 0210/ /n} .

see Exercise 6.13 (i). So, this test coincides with the test from Exercise 6.1 (i), and
therefore the power of ¢ is equal to

W) =1-o Zl_a_m ,
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see Exercise 6.1 (ii). This yields that

G-

o

We)=1—d{d7 ' (1 —a)

Turning to the case of unknown o , note that the power of any test of level o cannot
exceed the power of the Neymann-Pearson test (see Theorem 6.2.2 from Spokoiny
and Dickhaus, 2014). The remark inf, W(6;) = o completes the proof.

Exercise 6.16 (This exercise is motivated by Dudewicz and Mishra (1988)). In
the setup of the previous exercise, assume that the number of observations n can be
taken large enough. Consider the following two-stage procedure.

The first step. Fix some m > 1 and estimate the mean and the variance
of the sample {X;}!_, by

The second step. Fix some A > 1, calculate
n=n(6,) < max {m+1,[162]} (6.25)

and estimate the mean of the subsample {X;}7_, . by

_ 1 "
Koo = n—m i=%;-1Xi.

Next, calculate the weighted sum of the means

Xm,n d;f Wym + (1 - W)Yn—my

where

~ def M
W:W(am);

1+ 1= n 6.26
=S 0- (620

(i) Show that under H, the random value VA (Xm,,, — 90) has t-distribution with
m — 1 degrees of freedom.

(ii) For any fixed o, € (0,1), find the values t, and A such that the test
]I{Xm,,, > ta} has level o and power f.

n

(i) Consider the random variable
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U= Z?:l ai(a—m) X; — 6
~ ~ 2 ’
G/ 2= 1ai (6m)}
where ay(6,) = ... = a(6y) = w(6n) and dp41(6m) = ... = @, (61) =

1 — w(6,,) . By direct calculation, it follows that the choice of w in (6.26)
guarantees

has a chi-squared distribution with m—1 degrees of freedom and is independent
of X, . The first fact yields that the distribution function of U allows the
following representation:

[ele) n(s) o
PU <u :/ P >i—14i($)Xi — o \/_u
0

= d
oy LiL) (ai(s))? G N

where by p . » (v) we denote the density function of the chi-squared distribu-

tion with m — 1 degrees of freedom and s = 6,, = /vo//m . Since X, and
¢ are independent, the sum

n(s)
> ai(9)X; = w(s)mX + (1—w(s)) Z X;

i=1 i=m+1

is also independent of & . This gives

00 n(s) L
P (U <u) :/ p )| Li=1 %)X — 6 < Vuu pp (v)dv
N N T T R A R

[ o) om

The calculation of the last integral is straightforward and remains to the reader.
The error of the first kind is equal to
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@ =Pg (Xnn > ta) = Py, {ﬂ()?m,n —60) = VA (to — 60)} .

Therefore,

_ Zl—a

ty =
VA

where 71—, is a (1 — o) -quantile of the chi-squared distribution with (n — 1)
degrees of freedom.
Next, the power of this test is equal to

+ 6o, (6.27)

:8 = IP91 (Xm,n > ta) = ]P01 {\/X(an - 91) > \/x([a - 91)}

_ P, %\/X(Xm,n—ﬁ) > ﬂ(zi/—xoz +90—91)}.

This yields that

2
21—B — Z—a
A=——]) . 6.28

( 6o — 01 ) (0.28)

So, the test I {fm,n > ta} , where 1, in the form (6.27) and n is chosen from
(6.25) with A in the form (6.28), has the level o and power S .

Exercise 6.17. (from Pestman and Alberink, 1991) Let X = {X;}/_, and Y =
{Y;}'_, be two i.i.d. samples from N(0x,0?) and N(Oy,0?) respectively, where
Ox, Oy, o are unknown. Construct the likelihood-ratio test to check the hypothesis
Hy : 0y — 0x = A against the alternative H, : Oy — 0x # A, where A is fixed.

1. By the definition of the Likelihood-ratio test (see Spokoiny and Dickhaus, 2014,
Sect. 6.3), the statistic is equal to

T, -1,

where

LY sup {L(X,0x,0)+ L(Y,0y,0)},
Ox .0y .0
Oy —Ox=A

LY sup (L(X.0y.0)+ L(Y,0y,0)}.
9)(,9)/,(7
Oy —0x £A

It is worth mentioning that one can omit the condition fy —0x # A in the latter
supremunm.
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2. Next, we aim to find the explicit form for the value /; . By the Lagrange theorem,
the supremum in L; can be found by solving the maximization task

F(0x,0y,0,0) & L(X,0x,0) + L(Y,0y,0) + A (fy —0x — A) — max ,

9)( ,ey oA

where A € R . Taking into account that

1 1 m n
F(0x.0y.0.4) = =5 (m+n)log@r0?)—o— 43 (Xi = 0x)* + Y _ (¥i = 0y)’

i=1 i=1

+A(0y —0x —A),

we calculate the first derivatives of the function F and consider the equation
VF =0:

0=§Ti=;7é(xi—ex>—x,
0=887FY=01—2§(K‘—9Y)+1,

0o=or M, L é(xi—ex)ugm—eyf ,
o:g—izey—ex—A.

From the first two equations, it follows that

> (Xi—6x) + ) (Y= 6y) =0.

i=1 i=1

Together with the fourth equation, this gives
i mX +nY —nA 5 _ mX +nY +mA

X = Y

(6.29)
m-+n m-+n

The third equation yields that

m

> (% -d) + 3 (v - 9})2} L 630

i=1 i=1

) 1
m+n

Substituting (6.29) into the last expression, we get
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— — 2
1 = X +nY —nA
82 = o (x -mEEnT R
m-+n P m+n

: m-+n
i=1

_ 2
. X +nY +mA
Z (Yi _ u) ) 6.31)

This expression can be simplified. In fact,

” mX +nY —nA ? ”
Y\ ) =

i=1 i=1

(X~ 7)—}—(7 mY—i—n?—nA) 2
P — e rrr =

m-+n

” T-x-A\
= (X ~X)’ +mn’ <;)
m-+n

i=1
d X0V +ma) & Y-X-a\
> (n =R ) <y e (A0 )
i=1 m+n i=1 m-+n
Substituting the last expression in (6.31), we arrive at

— — 2

/\2 /\2 _ _

52 _ MmO} +néy +mn(y X A) ’ 6.32)
m-+n m-+n

where by 6)2( and 6,2, we denote the estimated variances for the first and second
samples correspondingly. Finally, using the representations (6.30), we conclude
that

m

I, = —%(m + n)log(ch;z) - ﬁ { Z (Xi - QAX)Z + 2": (Yi - GAY)ZE

i=1 i=1

—_

1 .
= —E(m + n)log(2meo?),

where o2 is given by (6.32).
3. The next step is to maximize

L(X,0x,0)+ L(Y,0y,0)

= 0+ mlogno?) — 2 137 (X~ 6 + 3 (% — 6y

i=1 i=1
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with respect to (fy,0y,o) € R?> x R4 . This maximization is straightforward;
the maximum is attained at the point

(éx, éy,[)"z) def (Y, Y, (m?f)z( + n(}%) /(m + n))
and is equal to
I, = —%(m + n) log(2wed?).
4. To complete the solution, we note that

1 ~2
T=1I5—-1 =—=(m+n)log CI—
2 62

- 2
1 nm (Y —X-—-A
—(m+n)log|1+ (_Az Az) .
2 n+m moy + noy

Exercise 6.18. Given the S&P 500 index quarterly log returns from Q2 1980 to
Q2 2012, which are assumed to be normally distributed with mean 0 and standard
deviation o. Consider two hypothesis testing problems:

(i) 0 = 8.03% (0yearty = 16 %) is known, test the null hypothesis He(o) 1 6) =
1 % against the alternative Hgl) 0 =4%;
(i) 0 =1.97% (0yeariy = 8.11 %) is known; test the null hypothesis H;O) =
5% against the alternative H;l) 01 =10%;,
Perform the likelihood ratio test as given in Exercise 6.13 for the above cases
with 5 % significance level.

(i) The time series plot for the S&P 500 index quarterly log returns is shown in
Fig. (6.7), where log returns are equal to logS, — logS;—_;, with S; is the S&P
500 index at time ¢. The QQ plot presented in Fig. (6.8) shows that the log-
return series is approximately normally distributed.

The likelihood ratio (under normality assumption) is given by Eq. (6.17).
Inserting given values S = Y ', X; =2.52,0 = 8%, 0y = 1%, 6, = 4%,
o = 5% and n = 128, we calculate:

T = -3.15.
The likelihood ratio test for significance level o has the form:

¢(1) =1 {T(l) > 3((11)} ,
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Fig. 6.7 Plot of S&P 500 index quarterly log-returns during the period Q2 1980-Q2 2012.
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Fig. 6.8 QQ-plot for S&P index quarterly log-returns during the period Q2 1980-Q2 2012.
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where the critical value 3&1) can be obtained from Eq.(6.19). For given
significance level o« = 5 %, the z-value from the standard normal table is equal
to z959, = 1.65. Inserting other inputs, the critical value is calculated equal to
321%7 = —1.97. Since T is not greater than 521%7 , the null hypothesis cannot be

not rejected. Thus,

o0 =110 = ) =0,
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(ii) Here we follow the same procedure as in (i), the likelihood ratio is given by
Eq. (6.20) is calculated equal to:

T? =342,

where 0 = 2%, 09 = 5%, 01 = 10%, « = 5% and n = 128. The
corresponding likelihood ratio test is given as:

¢ =T{T® > ;0.

The critical value 5&1) can be obtained from the Eq. (6.21). Given degrees of
freedom n = 128, o = 5 % and using 12 -squared distribution table wos¢, =

155.4 . We calculate the critical value 3(52(;0 = —30.45. Here T is greater than

3(5202 , therefore we reject the null hypothesis,

¢? = II{T(” > 52202} =L
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Chapter 7
Testing in Linear Models
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A tong is made from a tong.
Pirkey Avot

Exercise 7.1. Consider the model:
Y=f+e

with the vector of observations Y, response vector [, and vector of mean zero errors
e e R
Parametrize the mean of Y as:

f=w'o*, 0* € R?
with iid errors € = (g1,...,e,)" with covariance matrix I,,. The MLE 0 of 0* is
6= (vuT) 'wy.
Define the estimated response as:

f=uTo

and note that f = ITY = [(f + &) where IT = \IJT(‘-IJ\IJT)_I‘-IJ is a projector

into the column space of V. Define RSS &f |Y — w7832 and note that

RSSo £ [[Y — £,

=Y —WT0*|> =RSS+| f — fol?

W.K. Hirdle et al., Basics of Modern Mathematical Statistics, Springer Texts in Statistics, 159
DOI 10.1007/978-3-642-36850-9__7, © Springer-Verlag Berlin Heidelberg 2014
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Estimate o by:

1 1 -
52 = RSS= ——||[Y —w'g|? (7.1)
n—p

n—p

Show that, 62 is an unbiased, \/n consistent estimate of o>:

2
E62 = o2, Var6? = ot (7.2)
n—p

Note that 0 2||&||> = 6 2||Y — f|* ~ Xa—, yielding

E6% = (n— p) 'ERSS
=n-p) 'EIlY - fIP
=@n-p~lo*n—p) =0’

Recall that for V' ~ Xﬁ,, Var(V) = 2d. Putting V = o 2||Y — f|*> we see that
Var(V) = 2(n — p) and therefore from (7.1):

Var(5?) = (n — p)~*0*2(n — p) = 26*/(n — p).
The estimator G2 is /7 consistent if /(6> — 0?) =0,(1). Using (7.2) one obtains:

Var(y/nG?) _ 2no*
3 (n — p)3*

P(Vn|6>—o?| >3) <

This yields /7 consistency by setting 3 — 0o

Exercise 7.2. Consider the model:
Y=f+e. (7.3)

with &€ ~ N(0,021,) for an unknown value o>. If Fpu—p(ty) = 1 —a, and
50 = pla, then the test ¢ = (T > 3,) where

def

et 1o —p|F—=fo>°  RSS;—RSS
T:Tisz_f()sz(n p)Hf fOH _ 0

2lY — F2  2RSS/(n—p)’

(7.4)

is an exact level-a test:

]Pt‘)o(g5 = 1) = IPO()(T = ga) =«
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Observe that the event {T > 'ja} is equivalent to the event { p_1 T > ta}. Note also
that p~'T ~ F,,—, and therefore

]P(p_lf" > 1) = a.

which was to be demonstrated.

Exercise 7.3. Consider the model (7.3) with & ~ N(0,021,) again with unknown
variance o*. Take the critical value 3, as P({, > 23,) = o, with {, ~ )(?7 (the
known variance case) and define

¢ =1T = 3u).
Show thatgzuﬁ is an asymptotic level o test:

lim Py, (¢ = 1) = a.

n—o0

We know that from consistency of 52 = (n — p)~'|¥ — f|% forall § > 0

52
lim IP(|U—2—1|> ¢) = 0. (7.5)

n—00

Define the event:
~2
def || O
Q& { 17— 1l< g}
With the definition of 7 as in (7.4) we obtain:

[Po, {16 =130 @UQ)| —a| = [Py, {4 = 11N 2} —0f

+ Py, {Q°}  (7.6)

Py, [{q“s =1}n Q] - / T dPy, .7
($=13nQ

Observe that by (7.5) the second term in (7.6) is negligible. We therefore concentrate
on the term (7.7).
Note that on 2, we have with high probability

(1-¢e)0?<5*<(1+e)0?

therefore (7.7) can be bounded from above:
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/w L7 = FolP dPo, < la
senQ 257 0 S PP

and from below by -
Therefore (7.6) lies in the interval

1 1
[( 1+£a,(1—1_8)ai|

Sending ¢ — 0 we obtain the desired result.

Exercise 7.4. Consider the model (1.3) with € ~ N(0,0%1,) with unknown
variance o . Recall the test statistic ¢ from Exercise 7.3. Show that

lim sup [Py, (¢ = 1) — Py, (¢ = 1)| = 0. (7.8)
n—>oo f

Since ¢ is an exact test of level a according to Exercise 7.2, the claim to prove is
that

sup|a—IP90( = 1)| — 0.
f

Observe that (7.7) holds independent of f, therefore the claim follows.
Exercise 7.5. Consider the model (7.3) with & ~ N(0,621,) for an unknown value

of 6. Define

=) f - Fol’
2Y — 72

T = (7.9)

as in Chap. 7 of Spokoiny and Dickhaus (2014) where f — f"o = (I1 —I1y)Y, and
Iy is the projection on the subspace Lo spanned by the rows of ¥, .

It is evident that the numerator of (7.9) equals the rv 3 = 2(n — p)~'0%¢,— .
$p—po ~ ).(i_ o+ The Qenominator is as seen before twice a y2_ p V- .

Ad]ustmg the scaling factor we see that we are actually looking at a ratio of
a x> »—p, and pe _p 1v. This has evidently as F),—p,,—, distribution and proves the
claim.

Exercise 7.6. Consider a sequence of data generated from
f(t) = 6 cos(wit) + 0 sin(wyt) + 6, cos(wyt) + O sin(wat) +&,, (7.10)

where 01, 05, w; and w, are constants. &, ~ N(0, 02) i.i.d. Suppose we have a data
set {y,}/_, generated from (7.10). Figure 7.1 illustrates the trajectory of y;.
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y(t)

T T T T T
0 100 200 300 400 500
Time

Fig. 7.1 A trajectory of y;. 6 = 2,6, = 0.5, w; = 0.04, w, = 0.5 and 0 = 0.8. @ MSESpectral

1. Taking 6,, 6, as unknown parameters, suggest a linear parametric model for
{1y 37—, and justify your choice.

2. Suppose wi, wy and o* are known, propose a test for the null hypothesis Hy :
6, =6,=0.

3. Suppose instead that w,, w, are known but 6% is unknown, propose a test for the
null hypothesis Hy : 8; = 6, = 0.

1. Let 6 = (6, 92)T, we suggest the model
fo(t) = 0) cos(wit) + 0; sin(wt) + 6, cos(wat) + 6, sin(wat)
=w'o.

where ¥ = (cos(w;t) + sin(w;1), cos(wat) + sin(wat)) T . It is clear that fy(¢) is
in a linear parametric form.
2. LetY = (¥1,¥2,....¥n) . Hy: 0 = 6, = 0 implies f; = 0.

IF12 6Twwd
T = = .
202 2072

where § = (PO T)~'0Y, because &, ~ N(0,0?) iid. The number of
parameters p = 2. The test is based on the exact distribution

2T ~ x3.
3. LetY and f be defined as in the last subexercise.

~2 ||Y—];||2
0" = ——.
n—2
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The test statistics now becomes

202 T2y - v
For p~'T, we have the F-distribution
T
; ~Fyup.

Exercise 7.7. Consider the panel data model (Badi, 2008):

Yi=a+WiB+en i=1l-.N: t=1-.T
&ir = Wi + Ui,

where W; stands for the unobservable individual effect, for instance, the ability. And
ui, is the remaining disturbances with u; ~ (0,02). Both fixed effects model and
random effects model are associated with the assumption of ;. For fixed effects
model we assume that W; is fixed, while for random effects model ; is random, i.e.
i ~ (Os O—i)

1. For fixed effects the matrix representation of the model is:
Y:oleT+\IJT,3+£, e=Gu +u,

where G = Iy Q) 17, rank(G) = N. The fixed effects estimator can be denoted
by Br. Let Br = (WOQWT)™'WQY, O = Iyy — P, and P = G(GTG)™'GT.
Assume that QG = 0 and Q1lyy = 0, show that ,BF is unbiased.

2. The critical assumption of a random effects model is: strict exogeneity of all
regressors. The Hausman test helps us to test this assumption, where Hy :
E(e|¥T) = 0, against the alternative Hy : T(e|®T) # 0. The fixed effects
estimator ,31: is consistent under Hy and H,, but not efficient under Hy. The
random effects estimator can be denoted by ,é R which is efficient, consistent and
asymptotically efficient under Hy, but biased and inconsistent under H,. The
Hausman test statistic is as follows:

m = (,éR - BF)T COV[,gR - ,3F]_1(,3R — ,3F)

Check the asymptotic behavior of the test statistic under H.

3. Use wages data which come from the website: http://www.wiley.com. Regress
Iwages on all the regressors by using random effects model and fixed effects
model. Then perform the Hausman test, interpret the result.


http://www.wiley.com
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1.

E(Br) = E[(¥Q¥ ) 'wQY]
=E[(WQV ) ' WO (alyr + ¥ B+ Gu + u)]
= (VQU ) ' WQWUTB + (LQUT) ' WOE]
=

2.
m -5 42

P

and p is the number of elements in ,3

3. From the result of Hausman test we can see that p-value is less than 2¢~'¢ which
is statistically significant. Therefore Hj is rejected, i.e. there is a problem of
endogeneity. We should apply fixed effects model. @ MSEhausman

Exercise 7.8. Consider the model:
Yi = 90" +oimi,  ni ~NO,1).

where W; = (Y1(X;), ..., ¥,(X;)) and 0% = (07,....0%) are p x 1 vectors, o;
is a constant parameter, and Var(o;n;) = o?. To test the heteroscedasticity of the

residuals we can apply the White test which is proposed by Halbert White in 1980.

The null hypothesis Hy: 0> = o7, against the alternative hypothesis H: 6> # o7,

fori =1,---,n. The procedure of the White test can be stated below:
Assume p = 2, our model can be written as:

Y; = 07y (Xi) + 0, 92(X0) + oimi
Then perform the ordinary least square regression. The residuals can be obtained by

e; = Yi — 0,91 (X;) — Br9a (X))

Then we regress el-2 on the regressors which include the original regressors,

the cross-products of the regressors and the squared regressors. This auxiliary
regression is as follows:

e = v (X) + 12U (X0) + v3va (X)) + vavs (Xi) + ysvi (X)va(X) + u;
Then the White test statistics is as follows:

LM = n x R?
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where R* comes from the auxiliary regression and is defined as follows:

2 SSR_ | SSE
TSST SST

where SSR is the sum of squares of the regression, SSE is the error sum of squared,
and SST denotes the total sum of squares.

1. Check the asymptotic behavior of the test statistic under Hy, and construct the
reject region at the critical value o« = 0.05

2. Use 2010 GSS data which coming from the website of The General Social Survey:
http://www3.norc.org/ GSS+Website/. Perform the White test and interpret the
result.

LM ~ 2

where q denotes the degree of freedom equal to the number of estimated
parameters in the auxiliary regression, in our case ¢ = 5. If LM > X;, Hy is
rejected.

2. From the result of White test we can see that p-value is 0.003385 which
is statistically significant. Therefore Hj is rejected, i.e. there is problem of
heteroscedasticity. @ MSEwhitetest

References

Badi, H. B. (2008). Econometric analysis of panel data. Chichester/Hoboken: Wiley.

Halbert, W. (1980). A heteroskedasticity-consistent covariance Matrix estimator and a direct test
for heteroskedasticity. Econometrica, 48(4), 817-838

Spokoiny, V., & Dickhaus, T. (2014). Basics of modern parametric statistics. Berlin: Springer.


http://www3.norc.org/GSS+Website/

Chapter 8
Some Other Testing Methods

Niektoré z d’alSich testovacich metod

Nie ten majster, ktory zacne, ale ktory dokona.

Not he who begins but he who finishes is the master.

Exercise 8.1. Let X = (Xi,.. .,X,,)T be an i.i.d. sample from an unknown
distribution P and X be a random variable with this distribution. Let a simple
hypothesis Hy be P = Py for a given measure Py .

Let the observation space (which is a subset of R ) be split into non-overlapping
subsets Ay, ..., Ay. Definefor j =1,...,d

1
$;(x) =1(x € 45), 1/fj(x)=;{¢j(x)—l7j}
J
with

pi =P = [ P@) =By (). 07 = pi1=p))

(i) Are these basis functions ; orthonormal under the measure Py?
(ii) Construct a test statistic T, 4 to test Hy.

(1) Recall that basis functions are orthonormal under the measure Py iff
[woria@r =0, [v0nwri@ =5 Vi

W.K. Hirdle et al., Basics of Modern Mathematical Statistics, Springer Texts in Statistics, 167
DOI 10.1007/978-3-642-36850-9__8, © Springer-Verlag Berlin Heidelberg 2014
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or, equivalently,

Eoy;(X) =0, Eo{v; (X)yx(X)} = 8. Vjk.

The first condition is fulfilled
1
Eoy; (X) = Eo;{dh’(X) —Eog;(X)} =0.
J

but the second one is violated for j # k:

Eo {1y (X))} = ——[Eolgy () (X)) ~ Eo{g; (00)} Eo{g(X)} |
J
=0 =p; =Dk
_ Pk
00k

Hence the functions ¥; are not orthonormal.
(i) The basic idea is to compare observed frequencies 1 (X,- €A j) with the
theoretical ones p; under Hy. Direct calculations yield

d n

Toa =n Y M2, =0 Y2 Sy 00)
= =1 i
d 11 n 2
= n;[ga ;{%(Xi) —Pj}]

d 1 1 n 2
n Z[;{; Z%(Xi) - p,»}}
j=1L"/ i=l1

— Zd: n(vj,n - pj)2

2 9
j=1 0j
where
1 1
qu,,:;Zd)j(Xi):;Zl(X,‘EAJ’), (81)
i=1 i=1

The statistic 7}, 4 results into the test:

¢d =1 (Tn,d > é-a) s

which is described in Chap. 8.1.1 of Spokoiny and Dickhaus (2014).
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Exercise 8.2. Using the CLT, prove that the statistic of the chi-square test converges
inlaw ford =2toa y3 rv.

Note that (8.1) ford =2

Von — D2

1 1 &
=Y (X)) —pr==3 {1 =pi1(Xi)} = (1= p1)
i=1 i=1

Vin — Pi1-

The chi-square test (8.1) can now be represented as

2
_ (V',n_P‘)z_ 2 (1 1
Ty —n;# =n (i, — p1) (EJFE)
_ §2?=1¢i(xj)_npl}2

vapi(1 = p1) ’

and the statement of the exercise follows from the CLT. In fact, the rv

{>r_ 1 ¢i(X;) —np1} //npi(1 — py) converges in law to a N(0, 1) rv and from
the continuous mapping theorem we conclude that 7, converges in law to the
squared N (0, 1) rv.

Exercise 8.3. Let F be the distribution function of a random variable X and let
{X;}!_, be an i.i.d. sample from F. Denote the empirical cdf as F,. Show that the
distributions of

1. F(X)
2. sup, n'?|F,(x) — F(x)|
3. [{Fy(x) — F(x)}*dF(x)

do not vary with F.

The test statistic 2. is called Kolmogorov-Smirnov and 3. carries the name of
Cramer-von Mises.

1.
P{F(X)<x}=P{X < F'(x)} = F{F'(x)} = x.
Thus, the random variable F(X) has a uniform distribution on [0, 1], i.e. is
U(,1).

2. Denote F(x) = t and rewrite the supremum in the following form:

supn'/?|F,(x) — F(x)| = sup [F{F~'(1)} —1]
X t€l0,1]
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= sup —Zl X < F~ 1(t)}—t‘

refo,1]' 1

sup —Zl{F(X)q}—z)

refo,1]' 1

As it has been proven in item (i), the random value F(X;) has a U(0,1)
distribution. This means that the distribution of the random variable
sup, n'/?| F,(x) — F(x)| is the same for any F.

3. The proof follows the same lines:

1
[ i = e arco = [ [0 -

2

2/01 [%Zl{XifF_l(t)}—t} dt
i=1
1 1 n 2
=/ [;ZI{F(X,-)S}—Z} dr,
0 i=1

and the statement of the exercise is proven.

Exercise 8.4. Let F be the distribution function of a random variable X and let
{X;}I_, be ani.id. sample from F. Denote the edf as F,. Let Hy be the hypothesis
that the distribution F has the same 4 moments as a N(0, 1) rv:

Hy: EX=0EX’=1, EX?=0, EX*=3,

and the alternative H| is that some of these moments differ. Construct the test of
method of moments with asymptotic level o.
Hint: use only the first and the second empirical moments.

Consider the function g : R — R?, g(x) = (x, x?)T. From the CLT, we know that

n 2V S e(X) — Bog(X)} —> N(O, o), (8.2)

i=1

where Eog(X) = (EoX,EoX?)T = (0,1)T and

V = X - IE)OX X — E()X T
= 0 \mathfrakx? — Eox2 ) \mathfrakX? — Eo X2
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o BoX?— (EoX)? EoX?—TFEoX EoX>
TA\E X} —EoX EgX? EoX*— (EoX2)?

= (65):

Here the index “0” indicates that we are computing expectations under the null
hypothesis Hy.
Hence the statement (8.2) means that

n' X
1/2 i=1i £
n (2—1/2(n—1 S X2 1) — IN(0, 1»),

and the statistic

e

i=1 i=1 i=1
has under Hy a chi-square distribution with 2 degrees of freedom y3. The test

¢:1{Tn>§a}

where ¢, is a (1 — ) quantile of the y? distribution has the desired asymptotic
level «.
The test is also called Jarque Bera Test.

Exercise 8.5. Suppose y; is the time series of DAX 30, a stock index in Germany.
The time series is from December 22, 2009 to December 21, 2011 (as Fig. 8.1).
Define the log return of DAX index:

zz = logy; —log y;—1.

Apply Jarque Bera test to z;.

The test statistics is 99.1888 and the p-value is 2.2 x 107'®, This suggests that the
log returns may not be normally distributed if one takes significant level « = 0.01.

Exercise 8.6. Following Exercise 8.5, apply the Kolmogorov-Smirnov test to z;.

The test statistics is 10.8542 and the p-value is 0.01. This suggests that the log
returns may not be normally distributed if one takes the significance level « = 0.01.

Exercise 8.7. Following Exercise 8.5, apply the Cramer von Mises test to z;.

The test statistics is 1.0831 and the p-value is 8.134 x 107'°, This suggests that
the log returns may not be normally distributed if one takes the significance level
a = 0.01.
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Fig. 8.1 The time series of DAX30. @ MSENormalityTests

Exercise 8.8. Test the hypothesis of the equality of the covariance matrices on two
simulated 4-dimensional samples of sizes n; = 30 and n, = 20.

Let Xin ~ Np(upn, 2p),i = 1,...,n5, h = 1,2, be independent random vectors.
The test problem of testing the equality of the covariance matrices can be written as

Hy : X, = X, versus H| : no constraints.

Both subsamples provide S, an estimator of X, with the Wishart distribution
npSy ~ Wy(Zy, np — 1). Under the null hypothesis Hy : X1 = X, we have for the
common covariance matrix that 7 _, 7,8, ~ W,(Z,n—2), wheren = 3 »_, nj,.

Let § = M be the weighted average of S| and S,. The likelihood ratio
test leads to the test statistic

2

—2log A = nlog|S| = nylog|Sy| (8.3)
h=1

which under H, is approximately distributed as a y2, with m = %(2 —Dpp+1)
degrees of freedom.

We test the equality of the covariance matrices for the three data sets given in
Hérdle and Simar (2011) (Example 7.14) who simulated two independent normal
distributed samples with p = 4 dimensions and the sample sizes of n; = 30 and
ny = 20 leading to the asymptotic distribution of the test statistics (8.3) with m =
%(2 —1)4(4 + 1) = 10 degrees of freedom.

(a) With a common covariance matrix in both populations ¥, = ¥, = I,
we obtain the following empirical covariance matrices:
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(b)

()

0.812 —0.229 —0.034 0.073
—0.229 1.001 0.010 —0.059

1= —0.034 0.010 1.078 —0.098
0.073 —0.059 —0.098 0.823
and
0.559 —0.057 —0.271 0.306
S —0.057 1.237 0.181 0.021
2:

—-0.271 0.181 1.159-0.130
0.306 0.021 —0.130 0.683

The determinants are |S| = 0.590, |S;| = 0.660 and |S,| = 0.356 leading to
the likelihood ratio test statistic:

—2logA = 5010g(0.590) — 3010g(0.660) — 2010g(0.356) = 6.694

The value of the test statistic is smaller than the critical value )(%_95;10 = 18.307
and, hence, we do not reject the null hypothesis.

The second simulated samples have covariance matrices ¥ = X, = 1614.
Now, the standard deviation is 4 times larger than in the previous case. The
sample covariance matrices from the second simulation are:

21.907 1.415-2.050 2.379
1.415 11.853 2.104 —1.864

S = ,
! —2.050 2.104 17.230 0.905
2.379 —1.864 0.905 9.037
20.349 —9.463 0.958 —6.507
S, — —9.463 15.502 —3.383 —2.551
) =

0.958 —3.383 14.470 —0.323
—6.507 —2.551 —0.323 10.311

and the value of the test statistic is:
—2log A = 5010g(40066) — 3010g(35507) — 2010g(16233) = 21.693.

Since the value of the test statistic is larger than the critical value of the
asymptotic distribution, X(2).95;10 = 18.307, we reject the null hypothesis.

The covariance matrix in the third case is similar to the second case ¥; =
¥, = 1614 but, additionally, the covariance between the first and the fourth
variable is 014 = 041 = —3.999. The corresponding correlation coefficient is
rq1 = —0.9997.
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The sample covariance matrices from the third simulation are:

14.649 —0.024 1.248 —3.961
—0.024 15.8250.746 4.301

SI=| 1248 07469446 1241
—3.961 4.301 1.241 20.002
and
14.035 —2.372  5.596 —1.601
S —2.372  9.173 —2.027 —2.954
2 =

5.596 —2.027 9.021 —1.301
—1.601 —2.954 —1.301 9.593

The value of the test statistic is:
—2log A = 5010g(24511) — 3010g(37880) — 2010g(6602.3) = 13.175

The value of the likelihood ratio test statistic is now smaller than the critical
value, 1§ 9510 = 18.307, and we do not reject the null hypothesis.

Notice that in part (b), we have rejected a valid null hypothesis. One should
always keep in mind that a wrong decision of this type (so-called type I error)
is possible and it occurs with probability . a MSEtestcov

Exercise 8.9. Consider two independent iid samples, each of size 10, from two

bivariate normal populations. The results are summarized below:

T=GD%n=>01"

4 —1 2 -2
s=(1)e=(570)
Provide a solution to the following tests:
(a) Hy:  u1 = 2 Hy: oy # o
(b) Hy:  pi = pa1 Hir  pn # pa
(c) Ho:  pi2=pn Hi: pin# pxn

Compare the solutions and comment.

(a) Let us start by verifying the assumption of equality of the two covariance
matrices, i.e., the hypothesis:

Hy:X; =%, versus H;:X # X,
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(b)

This hypothesis can be tested using the approach described in Exercise 8.8
where we used the test statistic (for k = 2 groups):

2

—2logA =nlog|S| — Znh log |Sh|
h=1

which is under the null hypothesis Hy : £ = X, approximately y2, distributed,

wherem = (k —)p(p+ 1) =12-1)22+1) = 3.
We calculate the average of the observed variance matrices

3 —15
5= (—1.5 3 )

and we get the value of the test statistic
—2log A = 201log|S|— (101og|S;| + 101og|Sz|) = 4.8688

which is smaller than the critical value )(%'95;3 = 7.815. Hence, the value of
the test statistic is not significant, we do not reject the null hypothesis, and the
assumption of the equality of the variance matrices can be used in testing the
equality of the mean vectors.

Now, we can test the equality of the mean vectors:

Hy: py = pp versus Hy: g # po.
The rejection region is given by

mny(my +na—p—1 _  _ 1o _  _
p(n1+n2)l’ (XI_XZ) S l(xl_XZ)ZFl_aipqnl'i‘nz—p—l-

For o = 0.05 we get the test statistic 3.7778 > Fy 952,17 = 3.5915. Hence, the
null hypothesis Hy : ;11 = p» is rejected and we can say that the mean vectors
of the two populations are significantly different.

For the comparison of the two mean vectors first components we calculate the
95 % simultaneous confidence interval for the difference. We test the hypothesis

Hy : g = pp1 versus  Hip @y # Wor.

This test problem is only one-dimensional and it can be solved by calculating
the common two-sample 7-test. The test statistic

¥ —% 2
R ] R — 2.5820
42 6
ny ny 10
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is greater than the corresponding critical value 7y 9s.13 = 2.1011 and hence we
reject the null hypothesis.

(c) The comparison of the second component of the mean vectors can be also based
on the two-sample 7-test. In this case, it is obvious that the value of the test
statistic is equal to zero (since X1 = X = 1) and the null hypothesis can not
be rejected.

In part (a) we have rejected the null hypothesis that the two mean vectors are
equal. From the componentwise test performed in (b) and (c), we observe that
the reason for rejecting the equality of the two two-dimensional mean vectors
was due mainly to differences in the first component.

Exercise 8.10. In the vocabulary data set (Bock, 1975) given in the table below,
it predicts the vocabulary score of the children in eleventh grade from the results in
grades 8—10. Estimate a linear model and test its significance.

Subjects Grade 8 Grade 9 Grade 10 Grade 11 Mean

1 1.75 2.60 3.76 3.68 2.95
2 0.90 2.47 2.44 3.43 2.31
3 0.80 0.93 0.40 2.27 1.10
4 2.42 4.15 4.56 4.21 3.83
5 —1.31 —1.31 —0.66 —2.22 —1.38
6 —1.56 1.67 0.18 2.33 0.66
7 1.09 1.50 0.52 2.33 1.36
8 —1.92 1.03 0.50 3.04 0.66
9 —1.61 0.29 0.73 3.24 0.66
10 2.47 3.64 2.87 5.38 3.59
11 —0.95 0.41 0.21 1.82 0.37
12 1.66 2.74 2.40 2.17 2.24
13 2.07 4.92 4.46 4.71 4.04
14 3.30 6.10 7.19 7.46 6.02
15 2.75 2.53 4.28 5.93 3.87
16 2.25 3.38 5.79 4.40 3.96
17 2.08 1.74 4.12 3.62 2.89
18 0.14 0.01 1.48 2.78 1.10
19 0.13 3.19 0.60 3.14 1.77
20 2.19 2.65 3.27 2.73 2.71
21 —0.64 —1.31 —0.37 4.09 0.44
22 2.02 3.45 5.32 6.01 4.20
23 2.05 1.80 3.91 2.49 2.56
24 1.48 0.47 3.63 3.88 2.37
25 1.97 2.54 3.26 5.62 3.35
26 1.35 4.63 3.54 5.24 3.69
27 —0.56 —0.36 1.14 1.34 0.39
28 0.26 0.08 1.17 2.15 0.92
29 1.22 1.41 4.66 2.62 2.47

(continued)
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(continued)
Subjects Grade 8 Grade 9 Grade 10 Grade 11 Mean
30 —1.43 0.80 —0.03 1.04 0.09
31 —1.17 1.66 2.11 1.42 1.00
32 1.68 1.71 4.07 3.30 2.69
33 —0.47 0.93 1.30 0.76 0.63
34 2.18 6.42 4.64 4.82 4.51
35 4.21 7.08 6.00 5.65 5.73
36 8.26 9.55 10.24 10.58 9.66
37 1.24 4.90 2.42 2.54 2.78
38 5.94 6.56 9.36 7.72 7.40
39 0.87 3.36 2.58 1.73 2.14
40 —0.09 2.29 3.08 3.35 2.15
41 3.24 4.78 3.52 4.84 4.10
42 1.03 2.10 3.88 2.81 2.45
43 3.58 4.67 3.83 5.19 4.32
44 1.41 1.75 3.70 3.77 2.66
45 —0.65 —0.11 2.40 3.53 1.29
46 1.52 3.04 2.74 2.63 2.48
47 0.57 2.71 1.90 2.41 1.90
48 2.18 2.96 4.78 3.34 3.32
49 1.10 2.65 1.72 2.96 2.11
50 0.15 2.69 2.69 3.50 2.26
51 —1.27 1.26 0.71 2.68 0.85
52 2.81 5.19 6.33 5.93 5.06
53 2.62 3.54 4.86 5.80 4.21
54 0.11 2.25 1.56 3.92 1.96
55 0.61 1.14 1.35 0.53 0.91
56 —2.19 —0.42 1.54 1.16 0.02
57 1.55 2.42 1.11 2.18 1.82
58 0.04 0.50 2.60 2.61 1.42
59 3.10 2.00 3.92 3.91 3.24
60 —0.29 2.62 1.60 1.86 1.45
61 2.28 3.39 4.91 3.89 3.62
62 2.57 5.78 5.12 4.98 4.61
63 —2.19 0.71 1.56 2.31 0.60
64 —0.04 2.44 1.79 2.64 1.71
Mean 1.14 2.54 2.99 347 2.53
Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) 1.4782 0.2999 4.929 6.86e-06 *xx*
grades8 0.2015 0.1582 1.273 0.2078
grade9 0.2278 0.1152 1.977 0.0526 .
gradelO 0.3965 0.1304 3.041 0.0035 *=*
Signif. codes: 0 x%x 0.001 %% 0.01 % 0.05 0.1 1
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Residual standard error: 1.073 on 60 degrees of freedom
Multiple R-squared: 0.7042, Adjusted R-squared: 0.6894
F-statistic: 47.61 on 3 and 60 DF, p-value: 7.1l44e-16

Regression analysis reveals reasonably high coefficient of determination. Hypothe-
sis of independence (Hj : all parameters= 0) is rejected on level « = 0.05 since
the F-statistics is statistically significant (the p-value is smaller than o = 0.05).

The vocabulary score from tenth grade (83 =gradel0) is statistically signif-
icant for the forecast of performance in eleventh grade. The other two variables,
vocabulary scores from the eighth and ninth grade are not statistically significant
at level @ = 0.05. More formally, the test does not reject the hypothesis that
parameters 8, and f3 are equal to zero.

One might be tempted to simplify the model by excluding the insignificant
variables. Excluding only the score in eighth grade leads to the following result
which shows that the variable measuring the vocabulary score in ninth grade has
changed its significance.

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 1.2355 0.2327 5.309 1.63e-06 *x*x*
grade?9 0.2893 0.1051 2.752 0.00779 %%
gradel0 0.5022 0.1011 4.969 5.75e-06 *xxx

Signif. codes: 0 #%x* 0.001 %+ 0.01 * 0.05 . 0.1 1

Residual standard error: 1.079 on 61 degrees of freedom
Multiple R-squared: 0.6962, Adjusted R-squared: 0.6862
F-statistic: 69.89 on 2 and 61 DF, p-value: < 2.2e-16

Hence, the final model explains the vocabulary score in grade eleven using
vocabulary scores in the previous two grades. @ MSElinregvocab

Exercise 8.11. Assume that we have observations from two p-dimensional normal
populations, xj1 ~ Np(ui,%), i = 1,...,n1, and xi» ~ Np(i2, %), i =
1,...,ny. The mean vectors w, and W, are called profiles. An example of two
such 5-dimensional profiles is given in Fig.8.2. Propose tests of the following
hypotheses:

1. Are the profiles parallel?
2. If the profiles are parallel, are they at the same level?
3. If the profiles are parallel, are they also horizontal?

The above questions are easily translated into linear constraints on the means and
a test statistic can be obtained accordingly.
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Population profiles

5
4 -
C
S 3 Group1
=
Group2
2 M
1 -
T T T T T
1 2 3 4 5

Treatment

Fig. 8.2 Example of population profiles @ MSEprofil

(a) Let C bea (p — 1) x p contrast matrix defined as

1-1 0--- 0
c=(0 1-1-- 0
0--- 01 —1

The hypothesis of parallel profiles is equivalent to

H" : Cpy = Cpa = Cpy — pa) = 0y
The test of parallel profiles can be based on:

ni +na
ny

C (%1~ T2) ~ Ny (C(m ). CEC)

Next, for the pooled covariance matrix S = (1,57 + n252)/(n, + n,) we have
the Wishart distribution:

n1 81 +naSy ~ W, (2,1 +ny —2)
C (mS1 +n8)CT ~ W, (CECT,ny +ny-2).
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Under the null hypothesis, we know that C (1 — u2) = 0,—; and it follows
that the statistic

(412 —2){C 1 —To)}T { Mt

-1
——C (S + nZSZ)CT} C (x1—x2)

= 1+ m =2 (C @ BT {”;—*”2

(n1 + n2) CSCT} C (X — %)
_ (i +nm—=2)mn,

T (CEmmT TG C )

has the Hotelling 7'* distribution 72 (p — 1,n, + n, — 2) and the null hypoth-
esis of parallel profiles is rejected if

niny(ny + ny —
(1 +n2)%(p — 1)

—1
{C(Xl Yz)}—r (CSCT) C(fl _XZ) > Fl—(x;p—l,nl—l—nz—p'
(8.4)

(b) Assuming that the two profiles are parallel, the null hypothesis of the equality
of the two levels can be formally written as

2
H 1 (1 — ) = 0.

For 1;—(%1 — X3), as a linear function of normally distributed random vectors,
we have

+
(X —X) ~ N (IZ(M K2), n n21 X1 )
Since
1 0181+ n282) 1, ~ Wi (1741 pomy 42 = 2),
we have that
T T
(111 +I’lz)1pS1p ~ W1(1p21p,l11 + nj —2),

where S is the pooled empirical variance matrix. The test of equality can be
based on the test statistic:

(m 4+ m =2 O] =TT 1B uS1 4 ma82) CT) 1] (1~ )

nina

2
_ mnp(ny+np—=2) 11 G1=%2)} 72 _
T (mtm)? 1781, T°(l,ny +ny =2)
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which leads directly the rejection region:

2
T — —

nll’lz(nl + ny — 2) {117 (xl - xZ)}
(ny +n2)2 IISIP

> Fl—ot;l,n1+n2—2- (85)

(c) Ifitis accepted that the profiles are parallel, then we can exploit the information
contained in both groups to test if the two profiles also have zero slope, i.e., the
profiles are horizontal. The null hypothesis may be written as:

Hy 1 C(pt + 112) = 0.

The average profile X = (n;X + nyx,)/(n; + n,) has a p-dimensional normal
distribution:

T~ N nypy + nofdy 1 5
P ny +ny ’I’ll—i-l’lz '

Now the horizontal, HéS) : C(ur + p2) = 0p—1, and parallel, Hél) :C(u —
H2) = 0,1, profiles imply that

nijy + napo C
C = n +n
( P ) n1+n2( L+ napn)
C
= —————{(n1 +n2)(u1 + p2) + (1 — n2) (1 — p2)}
2(ny + ny)
=0, .

So, under parallel and horizontal profiles we have

CX ~ N, (op_l, CZCT) .

n+np

and
C(ny +n2)SCT = C (mS1 +n282) CT ~ Wy (CEC T, 11 + 1y —2).
Again, we get under the null hypothesis that

(n1+n,—2)(CT)T(CSCT)'CX ~T>(p—1,n1 + 1y —2)
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which leads to the rejection region:

ny+ny;— _ e
szlp(Cx)T(CSCT) ICF > Fioaipotmimep.  (8.6)
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ﬁ consistent, 160 conditional expectation, xii
5-point property, 105 conditional moments, xviii
conditional variance, xii
confidence ellipsoids, 87
Alternating method, 105 contingency table, xviii
continuous mapping theorem, 169
contrast, 26
contrast matrix, 179
convergence
almost sure, xiv
in probability, xiv
convergence in distribution, xiv
convergence of the alternating method, spectral

adaptivity condition, 95
alternative hypothesis, 129
asymptotic normality, xvii

Bayes estimation, 107, 119 norm, 103
Bayes risk, 112 convex hull, xiv
Bernoulli, 1 correlation, xiii
Bernoulli experiment, 107 empirical, xiii
bias, xvii correlation matrix
Bonferroni rule, 141 empirical, xiii

covariance, xii
empirical, xiii

canonical parameter, 33 COVMiapcé matr'i')'(, X111

Cauchy distribution, 131 empirical, xiii

cdf, xii, xviii, XX Cramér-Rao inequality, 24
empirical, xviii Cramer-von Mises, 169
joint, xii critical value, xviii
marginal, xii cumulants, xii

characteristic function, xii
characteristic polynomial, xviii

chi-square test, 169 data matrix, xiii
chi-squared test, orthonormal under the DAX return, 144
measure basis, test statistic 7}, 4, determinant, xiv
167 deviation probabilities for the maximum
X2 distribution, xiv likelihood, 34
quantile, xiv diagonal, xiii
CLT, xiv, 169 distribution, xi
conditional distribution, xviii ¥2, xiv
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conditional, xviii
F-, xiv
Gaussian, xx
marginal, xix
multinormal, xx
normal, xx
-, Xiv
distribution function
empirical, xviii

edf, see empirical distribution function
eigenvalue, xviii
eigenvector, xviii
empirical distribution function, xviii, 169
empirical moments, Xix
error of the first kind, 129
error of the second kind, 129
estimate, xix
estimation under the homogeneous noise
assumption, 80
estimator, Xix
expected value, xix
conditional, xii
Exponential distribution, 133
exponential family, 33, 37

F-test, 144
F -distribution, xiv
quantile, xiv
Fisher information, 23, 24, 33

Gamma distribution, 120
Gauss-Markov theorem, 3, 98
Gaussian distribution, xx
Gaussian shift, 24, 113
Glivenko-Cantelli theorem, 9

Hessian matrix, xix
horizontal profiles, 178, 181

indicator, xi

Jarque Bera Test, 171

Kolmogorov-Smirnov test, 169
Kronecker product, xi
Kullback-Leibler divergence, 23
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likelihood, xix
likelihood ratio test, 136
linear constraint, 178
linear dependence, xix
linear model, 176

linear regression, 176
linear space, xiv

LLN, xiv
log-likelihood, xix

marginal distribution, xix
marginal moments, Xix
matrix
contrast, 179
covariance, xiii
determinant of, xiv
diagonal of, xiii
Hessian, xix
orthogonal, xx
rank of, xiii
trace, xiil
maximum likelihood estimator, 30
mean, Xii, Xix
mean squared error, see MSE
median, Xx
Method of moments, 30
method of moments for an i.i.d. sample, 170
ML estimator, 37
moments, Xii, XX
empirical, Xix
marginal, xix
MSE, xx
multinormal distribution, xx
multivariate parameter, 30

natural parameter, 33

Neyman-Pearson lemma, 132

Neyman-Pearson test, 131, 132, 134, 144, 146,
150

normal distribution, xx

null hypothesis, 129

observation, xiii

One-sided and two-sided tests, 136
order statistic, xiii

orthogonal design, 80

orthogonal matrix, xx

orthonormal design, 80, 81

parallel profiles, 178, 179
Pareto distribution, 120
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pdf, xii
conditional, xii
joint, xii
marginal, xii
penalized likelihood, bias-variance
decomposition, 90
penalized log-likelihood, ridge regression, 89
pivotal quantity, xx
Poisson family, 24
power function, 129
profile analysis, 178
profile estimation, 94
projection and shrinkage estimates, 92
p-value, xx

quantile, xx

R-efficiency, 24

random variable, Xi, XX

random vector, xi, XX

rank, xiii

Region of rejection (critical region), 131
regular family, 23

sample, xiii

scatterplot, xx

semi-invariants, xii

semiparametric estimation, target and nuisance
parameters, adaptivity condition, 93

singular value decomposition, xx
spectral decomposition, xxi

spectral representation, 85

statistical test, 129

stochastic component, 84

subspace, xxi

SVD, see singular value decomposition

Taylor expansion, xxi
t-distribution, xiv
quantile, xiv
test
covariance matrix, 172
mean vector, 174
two-sample, 175
test of method of moments, 170
Tikhonov regularization, 88
trace, xiii

uniformly most powerful test, 134

variance, xiii
conditional, xii
empirical, xiii

volatility model, 33

Wilks phenomenon, 86
‘Wishart distribution, 179
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