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Preface

Prior to 1980, the subject of equating was ignored by most people in the
measurement community except for psychometricians, who had responsibility for
equating. Beginning in the early 1980s, the importance of equating was recognized
by a broader spectrum of people associated with testing. This increased attention to
equating is attributable to at least three developments. First, there continues to be
an increase in the number and variety of testing programs that use multiple forms
of tests, and the testing professionals responsible for such programs have recog-
nized that scores on multiple forms should be equated. Second, test developers and
publishers often have referenced the role of equating in arriving at reported scores
to address a number of issues raised by testing critics. Third, the accountability
movement in education and issues of fairness in testing have become much more
visible. These developments have given equating an increased emphasis among
measurement professionals and test users.

In addition to statistical procedures, successful equating involves many aspects
of testing, including procedures to develop tests, to administer and score tests, and
to interpret scores earned on tests. Of course, psychometricians who conduct
equating need to become knowledgeable about all aspects of equating. The
prominence of equating, along with its interdependence with so many aspects of
the testing process, also suggests that test developers and all other testing
professionals should be familiar with the concepts, statistical procedures, and
practical issues associated with equating.

Before we published the first edition in 1995, the need for a book on equating
became evident to us from our experiences in equating hundreds of test forms in
many testing programs, in training psychometricians to conduct equating, in
conducting seminars and courses on equating, and in publishing on equating and
other areas of psychometrics. Our experience suggested that relatively few
measurement professionals had sufficient knowledge to conduct equating. Also,
many did not fully appreciate the practical consequences of various changes in
testing procedures on equating, such as the consequences of many test-legislation
initiatives, the use of constructed-response items in assessments, and the intro-
duction of computer-based test administration. Consequently, we believed that
measurement professionals needed to be educated in equating methods and
practices; the 1995 book was intended to help fulfill this need. Although several
general published references on equating existed at the time (e.g., Angoff 1971;
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viii Preface

Harris and Crouse 1993; Holland and Rubin 1982; Petersen et al. 1989), none of
them provided the broad, integrated, in-depth, and up-to-date coverage of the first
edition of this book.

After the publication of the first edition in 1995, a large body of new research
was published. Much of this work was in technical areas that include smoothing in
equipercentile equating, estimation of standard errors of equating, and the use of
polytomous item response theory methods in equating. In addition, the use of
constructed-response items and computer-based tests became more prominent.
These applications create complexities for equating beyond what is typically
encountered with paper-and-pencil multiple-choice tests. Thus, updating the
material in the first edition was one of the reasons for publishing a second edition.

The first edition briefly considered score scales and test linking. The second
edition devoted whole chapters to each of these topics. The development of score
scales is an important component of the scaling and equating process. Linking of
tests has been of much recent interest, due to various investigations of how to link
tests from different test publishers or constructed for different purposes (e.g., Feuer
et al. 1999). Because both scaling and linking are closely related to test equating, it
seemed natural to extend coverage along these lines.

Following the publication of the second edition in 2004, a considerable amount
of research was conducted on equating, scaling, and linking. In addition to a
substantial number of journal articles, Dorans, Pommerich, and Holland (2007)
and von Davier (2011) published edited books on equating, scaling, and linking.
In addition, a substantial chapter by Holland and Dorans (2006) provides a con-
ceptual framework for classifying equating and linking methodology that focuses
on the properties of scores that are linked and on the requirements of different
types of linking. A chapter by Kolen (2006) provides a updated discussion of score
scales. The third edition updates all chapters to incorporate this recent literature.
Following is a brief overview of the chapters of the third edition.

In Chap. 1, a general introduction is provided, primarily in terms of a
conceptual overview. In this chapter, we define equating, describe its relationship
to test development, and distinguish equating from scaling and linking. We also
present equating designs, properties of equating, and introduce the concept of
equating error.

In Chap. 2, using the random groups design, we illustrate traditional equating
methods, such as equipercentile and linear methods. We also discuss here many of
the key concepts of equating, such as properties of converted scores and the
influence of the resulting scale scores on the choice of an equating result.

In Chap. 3, we cover smoothing methods in equipercentile equating. We show
that the purpose of smoothing is the reduction of random error in estimating
equating relationships in the population. We describe methods based on log-linear
models, cubic splines, and strong true score models.

In Chap. 4, we treat linear equating with nonequivalent groups of examinees.
We derive statistical methods and stress the need to disconfound examinee-group
and test-form differences. Also, we distinguish observed score equating from true
score equating.
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http://dx.doi.org/10.1007/978-1-4939-0317-7_1
http://dx.doi.org/10.1007/978-1-4939-0317-7_2
http://dx.doi.org/10.1007/978-1-4939-0317-7_3
http://dx.doi.org/10.1007/978-1-4939-0317-7_4

Preface ix

In Chap. 5, we continue our discussion of equating with nonequivalent groups
with a presentation of equipercentile methods.

In Chap. 6, we describe item response theory (IRT) equating methods under
various designs. This chapter covers issues that include scaling person and item
parameters, IRT true and observed score equating methods, equating using item
pools, and equating using polytomous IRT models.

Chapter 7 focuses on standard errors of equating; both bootstrap and analytic
procedures are described. We illustrate the use of standard errors to choose sample
sizes for equating and to compare the precision in estimating equating relation-
ships for different designs and methods.

In Chap. 8, we describe many practical issues in equating, including the
importance of test development procedures, test standardization conditions, and
quality control procedures. We stress conditions that are conducive to adequate
equating. Also, we discuss comparability issues for mixed-format assessments and
computer-based tests.

Chapter 9 is devoted to score scales for tests. We discuss different scaling
perspectives. We describe linear and nonlinear transformations that are used to
construct score scales, and we consider procedures for enhancing the meaning of
scale scores that include incorporating normative, content, and score precision
information. We discuss procedures for maintaining score scales and scales for
batteries and composites. We conclude with a section on vertical scaling that
includes consideration of scaling designs and psychometric methods and a review
of research on vertical scaling.

In Chap. 10, we describe linking categorization schemes and criteria and
consider equating, vertical scaling, and other related methodologies as a part of
these categorization schemes. An extensive example is used to illustrate how the
lack of group invariance in concordance relationships can be examined and used as
a means for demonstrating some of the limitations of linking methods.

We use a random groups illustrative equating example in Chaps. 2, 3, and 7,
anonequivalent groups illustrative example in Chaps. 4-6; a second random groups
illustrative example in Chaps. 6 and 9; and a single-group illustrative example in
Chap. 10. We use data from the administration of a test battery in multiple grades
for an illustrative example in Chap. 9, and data from the administration of two
different tests for an illustrative example in Chap. 10. Chapters 1-10 each have a set
of exercises that are intended to reinforce the concepts and procedures in the
chapter. The answers to the exercises are in Appendix A. We describe computer
programs and how to obtain them in Appendix B.

In addition to updating the review of literature for all of the chapters, the third
edition incorporates substantial new material as follows:

e Chapter 3 includes additional procedures to choose models in log-linear
pre-smoothing and includes a new brief section on the kernel method of
equating.

e Chapter 4 includes a new section on chained linear equating and incorporates
chained linear equating in the illustrative example. In addition, it includes a new
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discussion of the relationships among linear methods in the common-item
nonequivalent groups design.

e Chapter 5 includes new descriptions of modified frequency estimation equating
and chained equipercentile equating, and incorporates these methods in the
illustrative example.

e Chapter 8 includes a new extensive section on equating criteria in research
studies. Material on equating mixed-format tests containing multiple-choice and
constructed-response items is significantly updated.

e Chapter 9 includes a new section on unit scores, item scores, and raw scores.
A new section on scores for mixed-format tests, including issues in weighting
scores for different item types, is added. In addition, a new section on score
scales and growth is added.

e Chapter 10 includes a new summary of the Holland and Dorans (2006) linking
framework.

In addition, each chapter contains a reference list, rather than having a single
reference list at the end of the volume as in the first two editions.

We anticipate that many readers of this book will be advanced graduate
students, entry-level professionals, or persons preparing to conduct equating,
scaling, or linking for the first time. Other readers likely will be experienced
professionals in measurement and related fields who will want to use this book as a
reference. To address these varied audiences, we make frequent use of examples
and stress conceptual issues. This book is not a traditional statistics text. Instead, it
is meant for instructional use and as a reference for practical use that is intended to
address both statistical and applied issues. The most frequently used methodolo-
gies are treated, as well as many practical issues. Although we are unable to cover
all of the literature on equating, scaling, and linking, we provide many references
so that the interested reader may pursue topics of particular interest.

The principal goals of this book are for the reader to understand the principles
of equating, scaling, and linking; to be able to conduct equating, scaling, and
linking; and to interpret the results in reasonable ways. After studying this book,
the reader should be able to

e Understand the purposes of equating, scaling, and linking and the context in
which they are conducted.

e Distinguish between equating, scaling, and linking methodologies and
procedures.

e Appreciate the importance to equating of test development and quality control
procedures.

e Understand the distinctions among equating properties, equating designs, and
equating methods.

e Understand fundamental concepts—including designs, methods, errors, and
statistical assumptions.

e Compute equating, scaling, and linking functions and choose among methods.

e Interpret results from equating, scaling, and linking analyses.


http://dx.doi.org/10.1007/978-1-4939-0317-7_5
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http://dx.doi.org/10.1007/978-1-4939-0317-7_9
http://dx.doi.org/10.1007/978-1-4939-0317-7_10

Preface xi

e Design reasonable and useful equating, scaling, and linking studies.

e Conduct equating, scaling, and linking in realistic testing situations.

e Identify appropriate and inappropriate uses and interpretations of equating,
scaling, and linking results.

We cover nearly all of the material in this book in a three semester-hour
graduate seminar at The University of Iowa. In our course, we supplement the
materials here with general references (Angoff 1971; Holland and Dorans 2006;
Holland and Rubin 1982; Petersen et al. 1989) so that the students become familiar
with other perspectives and notational schemes.

We have used much of the material in this book in various training sessions,
including those at the annual meetings of the National Council on Measurement in
Education, the American Educational Research Association, and the American
Psychological Association, and in workshops given in Israel, Japan, South Korea,
Spain, Taiwan, and The University of lowa.

We acknowledge the generous contributions that others made to the first edition
of this book. We benefitted from interactions with very knowledgeable psycho-
metricians at ACT and elsewhere, and many of the ideas in this book came from
conversations and interactions with these people. Specifically, Bradley Hanson
reviewed the entire manuscript and made valuable contributions, especially to the
statistical presentations. He conducted the bootstrap analyses that are presented in
Chapter 7 and, along with Lingjia Zeng, developed much of the computer software
used in the examples. Deborah Harris reviewed the entire manuscript, and we
thank her especially for her insights on practical issues in equating. Chapters 1 and
8 benefitted considerably from her ideas and counsel. Lingjia Zeng also reviewed
the entire manuscript and provided us with many ideas on statistical methodology,
particularly in the areas of standard errors and IRT equating. Thanks to Dean
Colton for his thorough reading of the entire manuscript, Xiaohong Gao for her
review and for working through the exercises, and Ronald Cope and Tianqi Han
for reading portions of the manuscript. We are grateful to Nancy Petersen for her
in-depth review of a draft of the first edition, her insights, and her encouragement.
Bruce Bloxom provided valuable feedback, as did Barbara Plake and her graduate
class at the University of Nebraska—Lincoln. We thank an anonymous reviewer,
and the reviewer’s graduate student, for providing us with their valuable critique.
We are indebted to all who have taken our equating courses and training sessions.

For the second edition, we are grateful to Ye Tong for the many hours she spent on
electronic typesetting, for all of the errors she found, and for helping with many of
the examples and the exercises. We thank Amy Hendrickson for helping to develop
the polytomous IRT examples in Chapter 6, Seonghoon Kim for reviewing the
additions to Chapter 6 on polytomous IRT and for developing the computer program
POLYST, and Ping Yin for her work on Chapters 4 and 10. We acknowledge the
work of Zhongmin Cui and Yueh-Mei Chien on the computer programs, and the
work of Noo Ree Huh on checking references. We thank the students in our equating
and scaling classes at The University of lowa who discovered many errors and for
helping us clarify some confusing portions of earlier drafts. We are grateful to Neil
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Dorans, Samuel Livingston, and Paul Holland for reviewing portions of the new
material in the second edition. We express our appreciation to the lowa Measure-
ment Research Foundation for providing support to the graduate students who
worked with us on the second edition. For the third edition, we thank Wei Wang for
her many hours spent on electronic typesetting. We also thank many graduate stu-
dents at The University of Iowa for helping us correct errors that appeared in the
second edition. Amy Kolen deserves thanks for her superb editorial advice for all
three editions.

Iowa City, IA November, 2013 Michael J. Kolen
Robert L. Brennan
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Population taking Form X (Chapter 4)

Population taking Form Y (Chapter 4)

Slope constant in linear equating and raw-to-scale score transfor-
mations (Chapter 4)

Slope constant in IRT 6 scale transformation (Chapter 6)

Item slope parameter in IRT (Chapter 6)

Location constant in linear equating and raw-to-scale score trans-
formations (Chapter 4)

Location constant in IRT 6 scale transformation (Chapter 6)

Item location parameter in IRT (Chapter 6)

Item or category location parameter in polytomous IRT (Chapter 6)
Nonlinear transformation of b (Chapter 9)

Bias (Chapter 3)

Number of degrees of the polynomial in log-linear smoothing
(Chapter 3)

Item pseudochance level parameter in IRT (Chapter 6)

Item location parameter in Bock’s nominal categories model
(Chapter 6)

A constant (Chapter 2)

Sampling covariance (Chapter 7)

Scaling constant in IRT, usually set to 1.7 (Chapter 6)

Difference That Matters (Chapter 10)

Category location parameter in generalized partial credit model
(Chapter 6)

Expected value of a cubic spline estimator of ey(x) (Chapter 3)
Average of two splines (Chapter 3)

Degrees of freedom (Chapter 3)

Expected value (Chapter 1)

Number correct error score (Chapter 4)

The equipercentile equating function, such as ey{x) (Chapter 2)
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ex(y)

effect size
eq
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ewREMSD

Notation

The Form Y equipercentile equivalent of a Form X score (Chapter 1)
The Form X equipercentile equivalent of a Form Y score (Chapter 2)
Effect size (Chapter 9)

General equating function, such as eqy(x) (Chapter 1)

Effective weight (Chapter 9)

Equally weighted average of absolute differences (Chapter 10)
Equally weighted average of differences (Chapter 10)

Equally weighted Root Expected Mean Square Difference (Chapter
10)

Exponential (Chapter 6)

Pr(X <x) is the cumulative distribution for X (Chapter 1)
Cumulative distribution function of egx(y) (Chapter 2)

Inverse of function F (Chapter 2)

A general function (Chapter 7)

The first derivative of f (Chapter 7)

Pr(X = x) is the discrete density for X (Chapter 2)

Pr(X = xandV =v) is the joint density of X and V (Chapter 5)
Pr(X = xgivenV =v) is the conditional density of x given
v (Chapter 5)

Function solved for in Newton—Raphson iterations (Chapter 6)
First derivative of function solved for in Newton—Raphson iterations
(Chapter 6)

Pr(Y <y) is the cumulative distribution for Y (Chapter 1)

The cumulative distribution function of ey (Chapter 1)

Inverse of function G (Chapter 2)

Item subscript in IRT (Chapter 6)

Index used to sum over categories in generalized partial credit model
(Chapter 6)

Arcsine transformed proportion-correct score (Chapter 9)

Pr(Y =) is the discrete density for Y (Chapter 2)

Pr(Y = yandV =v) is the joint density of ¥ and V (Chapter 5)
Pr(Y = ygivenV =v) is the conditional density of y given
v (Chapter 5)

Density adjusted by adding 107° to each density and then
standardizing (Chapter 2)

Number of subgroups (Chapter 10)

Criterion function for Haebara’s method (Chapter 6)

Difference function for Haebara’s method (Chapter 6)

Index for summing over categories (Chapter 6)

Number of scale score points for a confidence interval (Chapter 9)
Subgroup designator (Chapter 10)

Pr(V =v) is the discrete density for V (Chapter 5)

IRT scale (Chapter 6)

Number of scale scores on Test X (Chapter 10)

Individuals (Chapter 6)
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intercept Intercept of an equating function (Chapter 2)
irt IRT true-score equating function (Chapter 6)
J IRT scale (Chapter 6)
J Number of scale scores on Test Y (Chapter 10)
jandj Items (Chapter 6)
K Number of items (Chapter 2)
KR-20 Kuder—Richardson Formula 20 reliability coefficient (Chapter 9)
KR-21 Kuder—Richardson Formula 21 reliability coefficient (Chapter 9)
k Lord’s k in the Beta4 method (Chapter 3)
k Categories for an item in polytomous IRT (Chapter 6)
ku Kurtosis, such as ku(X) = E[X — u(X)]*6*(X) (Chapter 2)
Iy(x) The Form Y linear equivalent of a Form X score (Chapter 2)
Ix(y) The Form X linear equivalent of a Form Y score (Chapter 2)
MAD Weighted average of absolute differences (Chapter 10)
MD Weighted average of differences (Chapter 10)
m Number of categories for an item in polytomous IRT (Chapter 6)
my(x) The mean equating equivalent of a Form X score (Chapter 2)
mx(y) The mean equating equivalent of a Form Y score (Chapter 2)
max Maximum score (Chapter 6)
min Minimum score (Chapter 6)
mse Mean squared error (Chapter 3)
N Number of examinees (Chapter 2)
NCE Normal Curve Equivalent (unrounded) (Chapter 9)
NCE,,; Normal Curve Equivalent rounded to an integer (Chapter 9)
P(x) The percentile rank function for X (Chapter 2)
P* A given percentile rank (Chapter 2)
p** P/100 (Chapter 7)
p! The percentile function for X (Chapter 2)
p Probability of a correct response in IRT (Chapter 6)
)4 Category response function in polytomous IRT (Chapter 6)
p* Cumulative category response function in polytomous
IRT (Chapter 6)
)4 First derivative of p (Chapter 6)
plyn, Parallel linear equating equivalent on Test Y for subgroup
h (Chapter 10)
o) Percentile rank function for Y (Chapter 2)
0! Percentile function for Y (Chapter 2)
R Number of bootstrap replications (Chapter 7)
REMSD Root Expected Mean Square Difference (Chapter 10)
RMSD Root Mean Square Difference (Chapter 10)
RP Response Probability level in item mapping (Chapter 9)
r Index for calculating observed score distribution in IRT (Chapter 6)
r Index for bootstrap replications (Chapter 7)

rmsel Root mean squared error for linking (Chapter 10)
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Smoothing parameter in postsmoothing (Chapter 3)

Scale score random variable (Chapter 9)

Criterion function for Stocking-Lord method (Chapter 6)
Difference function for Stocking-Lord method (Chapter 6)
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Scale score transformation, such as sc(y) (Chapter 2)

Scale score rounded to an integer (Chapter 2)
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Slope of equating function (Chapter 2)

Stanine (unrounded) (Chapter 9)

Scaling test (Chapter 9)

Stanine rounded to an integer (Chapter 9)

Number correct true score (Chapter 4)

Normalized score with mean of 50 and standard deviation of 10
(Chapter 9)

Normalized score with mean of 50 and standard deviation of 10
rounded to an integer (Chapter 9)

Realization of number correct true score (Chapter 4)

Expected value of an alternate estimator of ey{(x) (Chapter 3)
Uniform random variable (Chapter 2)

Standard deviation units (Chapter 7)

The random variable indicating raw score on Form V (Chapter 4)
Spline coefficient (Chapter 3)

A realization of V (Chapter 4)

Subgroup weight for a particular score (Chapter 10)

Sampling variance (Chapter 3)

Weight for synthetic group (Chapter 4)

Nominal weight (Chapter 9)

Subgroup weight (Chapter 10)

The random variable indicating raw score on Form X (Chapter 1)
Random variable indicating scale score on Test X (Chapter 10)
Equals X+ U, used in the continuization process (Chapter 2)

A realization of X (Chapter 2)

Integer closest to x such that x* — .5 <x<x* 4+ .5 (Chapter 2)
Form X, score equated to the Form X, scale (Chapter 7)

Upper limit in spline calculations (Chapter 3)

The largest integer score with a cumulative percent less than P*
(Chapter 2)

Lower limit in spline calculations (Chapter 3)

Smallest integer score with a cumulative percent greater than P*
(Chapter 2)
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scores (Chapter 2)

The largest integer score with a cumulative percent less than Q*
(Chapter 2)

The smallest integer score with a cuamulative percent greater than Q*
(Chapter 2)

The random variable indicating raw score on Form Z (Chapter 4)
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Selected set of normalized scores in Thurstone scaling (Chapter 9)
Unit normal score associated with a 100y % confidence interval
(Chapter 9)
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Chapter 1
Introduction and Concepts

This chapter provides a general overview of equating and briefly considers important
concepts. The concept of equating is described, as is why it is needed, and how to
distinguish it from other related processes. Equating properties and designs are con-
sidered in detail, because these concepts provide the organizing themes for address-
ing the statistical methods treated in subsequent chapters. Some issues in evaluating
equating are also considered. The chapter concludes with a preview of subsequent
chapters.

1.1 Equating and Related Concepts

Scores on tests often are used as one piece of information in making important
decisions. Some of these decisions focus at the individual level, such as when a
student decides which college to attend or on a course in which to enroll. For other
decisions the focus is more at an institutional level. For example, an agency or
institution might need to decide what test score is required to certify individuals for
a profession or to admit students into a college, university, or the military. Still other
decisions are made at the public policy level, such as addressing what can be done
to improve education in the United States and how changes in educational practice
can be evaluated. Regardless of the type of decision that is to be made, it should be
based on the most accurate information possible: All other things being equal, the
more accurate the information, the better the decision.

Making decisions in many of these contexts requires that tests be administered on
multiple occasions. For example, college admissions tests typically are administered
on particular days, referred to as fest dates, so examinees can have some flexibility in
choosing when to be tested. Tests also are given over many years to track educational
trends over time. If the same test questions were routinely administered on each test

Some of the material in this chapter is based on Kolen (1988).

M. J. Kolen and R. L. Brennan, Test Equating, Scaling, and Linking, 1
Statistics for Social and Behavioral Sciences, DOI: 10.1007/978-1-4939-0317-7_1,
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2 1 Introduction and Concepts

date, then examinees might inform others about the test questions. Or, an examinee
who tested twice might be administered the same test questions on the two test dates.
In these situations, a test might become more of a measure of exposure to the specific
questions that are on the test than of the construct that the test is supposed to measure.

1.1.1 Test Forms and Test Specifications

These test security problems can be addressed by administering a different collection
of test questions, referred to as a fest form, to examinees who test on different test
dates. A test form is a set of test questions that is built according to content and
statistical fest specifications (Schmeiser and Welch 2006). Test specifications provide
guidelines for developing the test. Those responsible for constructing the test, the
test developers, use these specifications to ensure that the test forms are as similar
as possible to one another in content and statistical characteristics.

1.1.2 Equating

The use of different test forms on different test dates leads to another concern: the
forms might differ somewhat in difficulty. Equating is a statistical process that is used
to adjust scores on test forms so that scores on the forms can be used interchangeably.
Equating adjusts for differences in difficulty among forms that are built to be similar
in difficulty and content.

The following situation is intended to develop further the concept of equating.
Suppose that a student takes a college admissions test for the second time and earns
a higher reported score than on the first testing. One explanation of this difference is
that the reported score on the second testing reflects a higher level of achievement
than the reported score on the first testing. However, suppose that the student had been
administered exactly the same test questions on both testings. Rather than indicating
a higher level of achievement, the student’s reported score on the second testing
might be inflated because the student had already been exposed to the test items.
Fortunately, a new test form is used each time a test is administered for most college
admissions tests. Therefore, a student would not likely be administered the same test
questions on any two test dates.

The use of different test forms on different test dates might cause another problem,
as is illustrated by the following situation. Two students apply for the same college
scholarship that is based partly on test scores. The two students take the test on
different test dates, and Student 1 earns a higher reported score than Student 2.
One possible explanation of this difference is that Student 1 is higher achieving
than Student 2. However, if Student 1 took an easier test form than Student 2, then
Student 1 would have an unfair advantage over Student 2. In this case, the difference
in scores might be due to differences in the difficulty of the test forms rather than in
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the achievement levels of the students. To avoid this problem, equating is used with
most college admissions tests. If the test forms are successfully equated, then the
difference in equated scores for Student 1 and Student 2 is not attributable to Student
1’s taking an easier form.

The process of equating is used in situations where such alternate forms of a test
exist and scores earned on different forms are compared to each other. Even though
test developers attempt to construct test forms that are as similar as possible to one
another in content and statistical specifications, the forms typically differ somewhat
in difficulty. Equating is intended to adjust for these difficulty differences, allowing
the forms to be used interchangeably. Equating adjusts for differences in difficulty,
not for differences in content. After successful equating, for example, examinees who
earn an equated score of, say, 26 on one test form could be considered, on average,
to be at the same achievement level as examinees who earn an equated score of 26
on a different test form.

1.1.3 Processes That are Related to Equating

There are processes that are similar to equating, which may be more properly referred
to as scaling to achieve comparability, in the terminology of the Standards for Edu-
cational and Psychological Testing (AERA, APA, NCME 1999), or linking, in the
terminology of Holland and Dorans (2006), Linn (1993) and Mislevy (1992). One
of these processes is vertical scaling (frequently referred to as vertical “equating”),
which often is used with elementary school achievement test batteries. In these batter-
ies, students often are administered questions that test content matched to their current
grade level. This procedure allows developmental scores (e.g., grade equivalents) of
examinees at different grade levels to be compared. Because the content of the tests
administered to students at various educational levels is different, however, scores
on tests intended for different educational levels cannot be used interchangeably.
Other examples of linking include relating scores on one test to those on another,
and scaling the tests within a battery so that they all have the same distributional
characteristics. As with vertical scaling, solutions to these problems do not allow
test scores to be used interchangeably, because the content of the tests is different.

Although similar statistical procedures often are used in linking and equating, their
purposes are different. Whereas tests that are purposefully built to be different are
linked, equating is used to adjust scores on test forms that are built to be as similar
as possible in content and statistical characteristics. When equating is successful,
scores on alternate forms can be used interchangeably. Issues in linking tests that are
not built to the same specifications are considered further in Chaps. 9 and 10.
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1.1.4 Equating and Score Scales

On a multiple-choice test, the raw score an examinee earns is often the number of
items the examinee answers correctly. Other raw scores might involve penalties for
wrong answers or weighting items differentially. On tests that require ratings by
judges, a raw score might be the sum of the numerical ratings made by the judges.
Raw scores often are transformed to scale scores. The raw-to-scale score trans-
formation can be chosen by test developers to enhance the interpretability of
scores by incorporating useful information into the score scale (Kolen 2006; Petersen
et al. 1989). Information based on a nationally representative group of examinees,
referred to as a national norm group, sometimes is used as a basis for establishing
score scales. For example, the number-correct scores for the four tests of the initial
form of a revised version of the ACT tests were scaled (Brennan 1989) to have a
mean scale score of 18 for a nationally representative sample of college-bound 12th
graders. Thus, an examinee who earned a scale score of 22, for example, would know
that this score was above the mean scale score for the nationally representative sam-
ple of college-bound 12th graders used to develop the score scale. One alternative
to using nationally representative norm groups is to base scale score characteristics
on a user norm group, which is a group of examinees that is administered the test
under operational conditions. For example, a rescaled SAT scale was established for
use beginning in 1995 by setting the mean score equal to 500 for the group of SAT
examinees that graduated from high school in 1990 (Cook 1994; Dorans 2002).

Scaling and Equating Process

Equating can be viewed as an aspect of a more general scaling and equating process.
Score scales typically are established using a single test form. For subsequent test
forms, the scale is maintained through an equating process that places raw scores
from subsequent forms on the established score scale. In this way, a scale score has
the same meaning regardless of the test form administered or the group of examinees
tested. Typically, raw scores on the new form are equated to raw scores on the old
form, and these equated raw scores are then converted to scale scores using the
raw-to-scale score transformation for the old form.

Example of the Scaling and Equating Process

The hypothetical conversions shown in Table 1.1 illustrate the scaling and equating
process. The first two columns show the relationship between Form Y raw scores and
scale scores. For example, a raw score of 28 on Form Y converts to a scale score of 14
(At this point there is no need to be concerned about what particular method was used
to develop the raw-to-scale score transformation). The relationship between Form
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Table 1.1 Hypothetical conversion tables for test forms

Scale Form Y raw Form X raw Form X, raw
° ° °

° ° [ ]

[ ] ° ° [ ]
13 26 27 28
14 27 28 29
14 28 29 30
15 29 30 31
15 30 31 32
L] °

° L] °

° ° [ ]

Y raw scores and scale scores shown in the first two columns involves scaling—not
equating, because Form Y is the only form that is being considered so far.

Assume that an equating process indicates that Form X is 1 point easier than
Form Y throughout the score scale. A raw score of 29 on Form X; would thus reflect
the same level of achievement as a raw score of 28 on Form Y. This relationship
between Form Y raw scores and Form X; raw scores is displayed in the second and
third columns in Table 1.1. What scale score corresponds to a Form X; raw score
of 297 A scale score of 14 corresponds to this raw score, because a Form X raw
score of 29 corresponds to a Form Y raw score of 28, and a Form Y raw score of 28
corresponds to a scale score of 14.

To carry the example one step further, assume that Form X is found to be uni-
formly 1 raw score point easier than Form X;. Then, as illustrated in Table 1.1, a
raw score of 30 on Form X5 corresponds to a raw score of 29 on Form X;, which
corresponds to a raw score of 28 on Form Y, which corresponds to a scale score of
14. Later, additional forms could be converted to scale scores by a similar chaining
process. The result of a successful scaling and equating process is that scale scores
on all forms can be used interchangeably.

Possible Alternatives to Equating

Equating has the potential to improve score reporting and interpretation of tests that
have alternate forms when examinees administered different forms are evaluated at
the same time, or when score trends are to be evaluated over time. When at least
one of these characteristics is present, at least two possible, but typically unaccept-
able, alternatives to equating exist. One alternative is to report raw scores regardless
of the form administered. As was the case with Students 1 and 2 considered ear-
lier, this approach could cause problems because examinees who were administered
an easier form are advantaged and those who were administered a more difficult
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form are disadvantaged. As another example, suppose that the mean score on a test
increased from 27 one year to 30 another year, and that different forms of the test were
administered in the 2 years. Without additional information, it is impossible to deter-
mine whether this 3-point score increase is attributable to differences in the difficulty
of the two forms, differences in the achievement level of the groups tested, or some
combination of these two factors.

A second alternative to equating is to convert raw scores to other types of scores
so that certain characteristics of the score distributions are the same across all test
dates. For example, for a test with two test dates per year, say in February and
August, the February raw scores might be converted to scores having a mean of
50 among the February examinees, and the August raw scores might be converted
to have a mean of 50 among the August examinees. Suppose, given this situation,
that an examinee somehow knew that August examinees were higher achieving, on
average, than February examinees. In which month should the examinee take the
test to earn the highest score? Because the August examinees are higher achieving,
a high converted score would be more difficult to get in August than in February.
Examinees who take the test in February, therefore, would be advantaged. Under
these circumstances, examinees who take the test with a lower achieving group
are advantaged, and examinees who take the test with a higher achieving group
are disadvantaged. Furthermore, trends in average examinee performance cannot be
addressed using this alternative because the average converted scores are the same
regardless of the achievement level of the group tested.

Successfully equated scores are not affected by the problems that occur with these
two alternatives. Successful equating adjusts for differences in the difficulty of test
forms; the resulting equated scores have the same meaning regardless of when or to
whom the test was administered.

1.1.5 Equating and the Test Score Decline of the 1960s and 1970s

The importance of equating in evaluating trends over time is illustrated by issues
surrounding the substantial decline in test scores in the 1960s and 1970s. A num-
ber of studies were undertaken to try to understand the causes for this decline (See,
for example, Advisory Panel on the Scholastic Aptitude Test Score Decline 1977;
Congressional Budget Office 1986; Harnischfeger and Wiley 1975). One of the poten-
tial causes that was investigated was whether the decline was attributable to inaccurate
equating. The studies concluded that the equating was adequate. Thus, the equating
procedures allowed the investigators to rule out changes in test difficulty as being the
reason for the score decline. Next the investigators searched for other explanations.
These explanations included changes in how students were being educated, changes
in demographics of test takers, and changes in social and environmental conditions.
It is particularly important to note that the search for these other explanations was
made possible because equating ruled out changes in test difficulty as the reason for
the score decline.
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1.2 Equating and Scaling in Practice: A Brief Overview
of This Book

So far, what equating is and why it is important have been described in general
terms. Clearly, equating involves the implementation of statistical procedures. In
addition, as has been stressed, equating requires that all test forms be developed
according to the same content and statistical specifications. Equating also relies on
adequate test administration procedures, so that the collected data can be used to judge
accurately the extent to which the test forms differ statistically. In our experience,
the most challenging part of equating often is ensuring that the test development, test
administration, and statistical procedures are coordinated. The following is a list of
steps for implementing equating (the order might vary in practice):

1. Decide on the purpose for equating.

2. Construct alternate forms. Alternate test forms are constructed in accordance
with the same content and statistical specifications.

3. Choose a design for data collection. Equating requires that data be collected for
providing information on how the test forms differ statistically.

4. Implement the data collection design. The test is administered and the data are
collected as specified by the design.

5. Choose one or more operational definitions of equating. Equating requires that
a choice be made about what types of relationships between forms are to be esti-
mated. For example, this choice might involve deciding on whether to implement
linear or nonlinear equating methods.

6. Choose one or more statistical estimation methods. Various procedures exist for
estimating a particular equating relationship. For example, in Chap. 4, linear
equating relationships are estimated using the Tucker and Levine methods.

7. Evaluate the results of equating. After equating is conducted, the results need
to be evaluated. Some evaluation procedures are discussed along with methods
described in Chaps. 2-6. The test development process, test administration, sta-
tistical procedures, and properties of the resulting equating are all components
of the evaluation, as is discussed in Chap. 8.

As these steps in the equating process suggest, individuals responsible for con-
ducting equating make choices about designs, operational definitions, statistical
techniques, and evaluation procedures. In addition, various practical issues in test
administration and quality control are often vital to successful equating.

In practice, equating requires considerable judgment on the part of the individ-
uals responsible for conducting equating. General experience and knowledge about
equating, along with experience in equating for tests in a testing program, are vital to
making informed judgments. As a statistical process, equating also requires the use
of statistical techniques. Therefore, conducting equating involves a mix of practical
issues and statistical knowledge. This book treats both practical issues and statistical
concepts and procedures.
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This book is intended to describe the concept of test form equating, to distinguish
equating from other similar processes, to describe techniques used in equating, and to
describe various practical issues involved in conducting equating. These purposes are
addressed by describing information, techniques, and resources that are necessary to
understand the principles of equating, to design and conduct an informed equating,
and to evaluate the results of equating in reasonable ways.

This book also is intended to describe the concept of test scaling in detail. Test
scaling is distinguished from test form equating. Techniques and practical issues
involved in scaling are developed that are necessary for understanding how tests are
scaled and to evaluate the results of scaling techniques. Linking methods are also
discussed by presenting conceptual frameworks for linking and discussing some
prominent examples of linking as it is used in practice.

Many of the changes that have taken place in the literature on equating, scaling,
and linking in recent years are reflected in this book. Although the vast literature
that has developed is impossible to review in a single volume, this book provides
many references that should help the reader access the literature. We recommend that
works by Angoff (1971), Dorans et al. (2007), Harris and Crouse (1993), Holland and
Dorans (2006), Holland et al. (2007), Holland and Rubin (1982), Kolen (2006), Kolen
and Hendrickson (2013), Linn (1993), Livingston (2004), Mislevy (1992), Petersen
et al. (1989), Ryan and Brockmann (2009) and von Davier (2011) be consulted as
supplements.

Subsequent sections of this chapter focus on equating properties and equating
designs, which are required concepts for Chaps. 2—6. Equating error and evaluation
of equating methods also are briefly discussed. Specific operational definitions and
statistical estimation methods are the focus of Chaps. 2—6. Equating error is described
in Chaps. 7 and 8. Practical issues in equating, along with new directions, are also
discussed in Chap. 8. Score scales are discussed in Chap. 9 and linking in Chap. 10.

1.3 Properties of Equating

Various desirable properties of equating relationships have been proposed in the
literature (Angoff 1971; Harris and Crouse 1993; Holland and Dorans 2006; Lord
1980; Petersen et al. 1989). Some properties focus on individuals’ scores, others on
distributions of scores. At the individual level, ideally, an examinee taking one form
would earn the same reported score regardless of the form taken. At the distribution
level, for a group of examinees, the same proportion would earn a reported score at
or below, say, 26 on Form X as they would on Form Y. These types of properties
have been used as the principal basis for developing equating procedures.

Some properties focus on variables that cannot be directly observed, such as frue
scores in classical test theory (Lord and Novick 1968) and latent abilities in item
response theory (IRT) (Lord 1980). True scores and latent abilities are scores that an
examinee would have earned had there been no measurement error. For example, in
classical test theory the score that an examinee earns, the examinee’s observed score,
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is viewed as being composed of the examinee’s true score and measurement error.
It is assumed that if the examinee could be measured repeatedly, then measurement
error would, on average, equal zero. Statistically, the true score is the expected score
over replications. Because the examinee is not measured repeatedly in practice, the
examinee’s true score is not directly observed. Instead, the true score is modeled
using a test theory model.

Other equating properties focus on observed scores. Observed score properties of
equating do not rely on test theory models.

1.3.1 Symmetry Property

The symmetry property (Lord 1980), which requires that equating transformations be
symmetric, is required for a relationship to be considered an equating relationship.
This property requires that the function used to transform a score on Form X to the
Form Y scale be the inverse of the function used to transform a score on Form Y
to the Form X scale. For example, this property implies that if a raw score of 26 on
Form X converts to a raw score of 27 on Form Y, then a raw score of 27 on Form
Y must convert to a raw score of 26 on Form X. This symmetry property rules out
regression as an equating method, because the regression of ¥ on X is, in general,
different from the regression of X on Y. As a check on this property, an equating
of Form X to Form Y and an equating of Form Y to Form X could be conducted.
If these equating relationships are plotted, then the symmetry property requires that
these plots be indistinguishable. Symmetry is considered again in Chap. 2.

1.3.2 Same Specifications Property

As indicated earlier, test forms must be built to the same content and statistical spec-
ifications if they are to be equated. Otherwise, regardless of the statistical procedures
used, the scores can not be used interchangeably. This same specifications property
is essential if scores on alternate forms are to be considered interchangeable.

1.3.3 Equity Properties

Lord (1980, p. 195) proposed Lord’s equity property of equating, which is based
on test theory models. For Lord’s equity property to hold, it must be a matter of
indifference to each examinee whether Form X or Form Y is administered.
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Lord defined this property specifically. Lord’s equity property holds if examinees
with a given true score have the same distribution of converted scores on Form X as
they would on Form Y. To make the description of this property more precise, define

T as the true score;

Form X as the new form—Iet X represent the random variable score on Form X,
and let x represent a particular score on Form X (i.e., a realization of X);

Form Y as the old form—Iet Y represent the random variable score on Form Y,
and let y represent a particular score on Form Y (i.e., a realization of Y);

G as the cumulative distribution of scores on Form Y for the population of exam-
inees;

eqy as an equating function that is used to convert scores on Form X to the scale
of Form Y; and

G* as the cumulative distribution of egy for the same population of examinees.

Lord’s equity property holds in the population if
G*leqy (x)|T] = G(y|T), forallT. (1.1)

This property implies that examinees with a given true score would have identical
observed score means, standard deviations, and distributional shapes of converted
scores on Form X and scores on Form Y. In particular, the identical standard deviations
imply that the conditional standard error of measurement at any true score are equal
on the two forms. If, for example, Form X measured somewhat more precisely at
high scores than Form Y, then Lord’s equity property would not be met.

Lord (1980) showed that, under fairly general conditions, Lord’s equity property
specified in Eq. (1.1) is possible only if Form X and Form Y are essentially identical.
However, identical forms typically cannot be constructed in practice. Furthermore,
if identical forms could be constructed, then there would be no need for equating.
Thus, using Lord’s equity property as the criterion, equating is either impossible or
unnecessary.

Morris (1982) suggested a less restrictive version of Lord’s equity property that
might be more readily achieved, which is referred to as the first- order equity property
or weak equity property (also see Yen 1983). Under the first-order equity property,
examinees with a given true score have the same mean converted score on Form X as
they have on Form Y. Defining E as the expectation operator, an equating achieves
the first-order equity property if

Elegy (X)|7] = E(Y|r) forall 7. (1.2)

The first-order equity property implies that examinees are expected to earn the same
equated score on Form X as they would on Form Y. Suppose examinees with a given
true score earn, on average, a score of 26 on Form Y. Under the first-order equity
property, these examinees also would earn, on average, an equated score of 26 on
Form X.
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As is described in Chap. 4, linear methods have been developed that are consistent
with the first-order equity property. Also, the IRT true score methods that are dis-
cussed in Chap. 6 are related to this equity property. The equating methods that are
based on equity properties are closely related to other psychometric procedures, such
as models used to estimate reliability. These methods make explicit the requirement
that the two forms measure the same achievement through the true score. Procedures
for evaluating the equity properties are considered in Chap. 8.

1.3.4 Observed Score Equating Properties

In observed score equating, the characteristics of score distributions are set equal for
a specified population of examinees (Angoff 1971). For the equipercentile equating
property, the converted scores on Form X have the same distribution as scores on
Form Y. More explicitly, this property holds, for the equipercentile equating function,
ey, if

G*ey ()] = G(y), (1.3)

where G* and G were defined previously. The equipercentile equating property
implies that the cumulative distribution of equated scores on Form X is equal to the
cumulative distribution of scores on Form Y.

Suppose a passing score was set at a scale score of 26. If the equating of the forms
achieved the equipercentile equating property, then the proportion of examinees in
the population earning a scale score below 26 on Form X would be the same as the
proportion of examinees in the population earning a scale score below 26 on Form Y.
In addition, in the population, the same proportion of examinees would score below
any particular scale score, regardless of the form taken. For example, if a scale score
of 26 was chosen as a passing score, then the same proportion of examinees in the
population would pass using either Form X or Form Y.

The equipercentile equating property is the focus of the equipercentile equating
methods described in Chaps. 2, 3, and 5 and the IRT observed score equating method
described in Chap. 6. Two other observed score equating properties also may be used
sometimes. Under the mean equating property, converted scores on the two forms
have the same mean. This property is the focus of the mean observed score equating
methods described in Chap. 2. Under the linear equating property, converted scores
on the two forms have the same mean and standard deviation. This property is the
focus of the linear observed score methods described in Chaps. 2, 4, and 5. When
the equipercentile equating property holds, the linear and mean equating properties
must also hold. When the linear equating property holds, the mean equating property
also must hold.

Observed score equating methods associated with the observed score properties
of equating predate other methods, which partially explains why they have been used
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more often. Observed score methods do not directly consider true scores or other
unobservable variables, and in this way they are less complicated. As a consequence,
however, nothing in the statistical machinery of observed score equating requires
that test forms be built to the same specifications. This requirement is added so that
results from equating may be reasonably and usefully interpreted.

1.3.5 Group Invariance Property

Under the group invariance property, the equating relationship is the same regard-
less of the group of examinees used to conduct the equating. For example, if the
group invariance property holds, the same equating relationship would be found for
females and males. Lord and Wingersky (1984) indicated that methods based on
observed score properties of equating are not strictly group invariant. This obser-
vation was further discussed by van der Linden (2000). However, research on the
group invariance property conducted by Angoff and Cowell (1986) and Harris and
Kolen (1986) suggested that the conversions are very similar across various examinee
groups, at least in those situations where carefully constructed alternate forms are
equated. Lord and Wingersky (1984) indicated that, under certain theoretical con-
ditions, which were stated explicitly by van der Linden (2000), true score equating
methods are group invariant. However, group invariance does not necessarily hold
for these methods when observed scores are substituted for true scores. Dorans and
Holland (2000) developed procedures and statistics for investigating group invari-
ance. These statistics were summarized by Holland and Dorans (2006), and are also
considered in Chap. 10. Because group invariance cannot be assumed to exist in the
strictest sense, even in equating situations, the population of examinees on which
the equating relationship is developed should be clearly stated and representative of
the group of examinees who are administered the test.

1.4 Equating Designs

A variety of designs can be used for collecting data for equating. The group of
examinees included in an equating study should be reasonably representative of the
group of examinees who will be administered the test under typical test administration
conditions. The choice of a design involves both practical and statistical issues. Three
commonly used designs are illustrated in Fig. 1.1. Assume that a conversion from
Form Y to scale scores has been developed, and that Form X is a new form to be
equated to Form Y.
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Fig. 1.1 Illustration of three Random Groups
data collection designs Random Subgroup 1 Random Subgroup 2

Single Group with Counterbalancing
Random Subgroup 1 Random Subgroup 2

Form
Taken
First

Form
Taken
Second

Common-Item Nonequivalent Groups
Group 1

Group 2

1.4.1 Random Groups Design

The random groups design is the first design shown in Fig. 1.1. In this design,
examinees are randomly assigned the form to be administered.

A spiraling process is one procedure that can be used to randomly assign forms
using this design. In one method for spiraling, Form X and Form Y are alternated when
the test booklets are packaged. When the booklets are handed out, the first examinee
receives Form X, the second examinee Form Y, the third examinee Form X, and so
on. This spiraling process typically leads to comparable, randomly equivalent groups
taking Form X and Form Y. When using this design, the difference between group-
level performance on the two forms is taken as a direct indication of the difference
in difficulty between the forms.
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For example, suppose that the random groups design is used to equate Form X
to Form Y using large representative examinee groups. Suppose also that the mean
for Form Y is 77 raw score points and the mean for Form X is 72 raw score points.
Because the mean for Form Y is 5 points higher than the mean for Form X, Form Y is
5 raw score points easier, on average, than Form X. This example is a simplification of
equating in practice. More complete methods for equating using the random groups
design are described in detail in Chap. 2.

One practical feature of the random groups design is that each examinee takes
only one form of the test, thus minimizing testing time relative to a design in which
examinees take more than one form. In addition, more than one new form can be
equated at the same time by including the additional new forms in the spiraling
process. The random groups design requires that all the forms be available and
administered at the same time, which might be difficult in some situations. If there is
concern about test form security, administering more than one form could exacerbate
these concerns. Because different examinees take the forms to be equated, large
sample sizes are typically needed.

When spiraling is used for random assignment, certain practical issues should
be considered. First, examinees should not be seated in a way that would defeat
the process. For example, if examinees were systematically seated boy—girl, boy—
girl, then the boys might all be administered Form X and the girls Form Y. Also,
suppose that there were many testing rooms. If the first examinee in each room was
administered Form X, then more Form X booklets would be administered than Form
Y booklets in those rooms with an odd number of examinees.

1.4.2 Single Group Design

In the single group design (not shown in Fig. 1.1) the same examinees are admin-
istered both Form X and Form Y. What if Form X was administered first to all
examinees followed by Form Y? If fatigue was a factor in examinee performance,
then Form Y could appear relatively more difficult than Form X because examinees
would be tired when administered Form Y. On the other hand, if familiarity with
the test increased performance, then Form Y could appear to be easier than Form X.
Because these order effects are typically present, and there is no reason to believe
they cancel each other out, this design is rarely used in practice.

1.4.3 Single Group Design with Counterbalancing

Counterbalancing the order of administration of the forms is one way to deal with
order effects in the single group design. In one method for counterbalancing, test
booklets are constructed that contain Form X and Form Y. One-half of the test
booklets are printed with Form X following Form Y, and the other half are printed
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Table 1.2 Means for two forms of a hypothetical test administered
using the single group design with counterbalancing

Subgroup 1 Subgroup 2
Form taken first Form X Form Y
72 77
Form taken second FormY Form X
75 71

with Form Y following Form X. In packaging, test booklets having Form X first are
alternated with test booklets having Form Y first. When the test booklets are handed
out, the first examinee takes Form X first, the second examinee takes Form Y first, the
third examinee takes Form X first, and so on. When the booklets are administered,
the first and second forms are separately timed. This spiraling process helps to ensure
that the examinee group receiving Form Y first is comparable to the examinee group
receiving Form X first.

Figure 1.1 provides an illustration of the single group design with counterbalanc-
ing. The portion of the design labeled “Form Taken First” is identical to the random
groups design shown in Fig. 1.1. Therefore, Form X could be equated to Form Y
using only the data from the form taken first (i.e., Form X data from Subgroup 1
and Form Y data from Subgroup 2). To take full advantage of this design, however,
the data from the “Form Taken Second” also could be used. Assume that examinees
typically take only one form of the test when the test is later administered opera-
tionally to examinees. In this case, the equating relationship of interest would be the
relationship between the forms when the forms are administered first. If the effect of
taking Form X after taking Form Y is the same as the effect of taking Form Y after
taking Form X, then the equating relationship will be the same between the forms
taken first as it is between the forms taken second. Otherwise, a differential order
effect is said to have occurred, and the equating relationships would differ. In this
case, the data for the form that is taken second might need to be disregarded, which
could lead to instability in the equating (see Chap. 7 for a discussion of equating
error) and a waste of examinee time.

As an example, Table 1.2 presents a situation in which the effect of taking Form
X after taking Form Y differs from the effect of taking Form Y after taking Form X.
In this example, alternate forms of a test are to be equated by the single group design
with counterbalancing using very large groups of examinees. The raw score means
for the form that was taken first are shown in the first line of the table. Subgroup 2
had a mean of 77 on Form Y, which is 5 points higher than the mean of 72 earned
by the randomly equivalent Subgroup 1 on Form X. Thus, using only data from the
form that was taken first, Form Y appears to be 5 points easier, on average, than
Form X. The means for the form that was taken second are shown in the second line
of the table. Subgroup 1 had a mean of 75 on Form Y, which is 4 points higher than
the mean of 71 earned by randomly equivalent Subgroup 2 on Form X. Thus, using
data from the form taken second, Form Y is 4 points easier, on average, than Form
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X. Because the sample size is very large, this 4- versus 5-point difference suggests
that there is a differential order effect. When a differential order effect like this one
is present, the data from the form taken second might need to be disregarded. These
issues are discussed further in Chap. 2.

In addition to the need to control for differential order effects, other practical
problems can restrict the usefulness of the single group design with counterbalancing.
Because two forms must be administered to the same students, testing time needs to be
doubled, which often is not practically feasible. If fatigue and practice are effectively
controlled by counterbalancing and differential order effects are not present, then
the primary benefit in using the single group design with counterbalancing is that
it typically has smaller sample size requirements than the random groups design,
because, by taking both of the forms, each examinee serves as his or her own control.

In practice, the single group design with counterbalancing might be used instead
of the random groups design when (1) administering two forms to examinees is
operationally possible, (2) differential order effects are not expected to occur, and
(3) it is difficult to obtain participation of a sufficient number of examinees in an
equating study that uses the random groups design. Relative sample size requirements
for these two designs are discussed in Chap. 7.

1.4.4 ASVAB Problems with a Single Group Design

The Armed Services Vocational Aptitude Battery (ASVAB) is a battery of ability
tests that is used in the process of selecting individuals for the military. In 1976, new
forms of the ASVAB were introduced. Scores on these forms were to be reported on
the scale of previous forms through the use of a scaling process (Because the content
of the new forms differed somewhat from the content of the previous forms, the
process used to convert scores to the scale of the previous forms is referred to here
as scaling rather than as equating). Maier (1993) indicated that problems occurred
in the scaling process, with the result that many individuals entered the military who
were actually not eligible to enter under the standards that were intended to be in
effect at the time. As a result, Maier estimated that between January 1, 1976, and
September 30, 1980, over 350,000 individuals entered the military who should have
been judged ineligible. Maier reported that a complicated set of circumstances led
to these problems. Most of the problems were a result of how the scaling study was
designed and carried out. The effects of one of these problems are discussed here.
The examinees included in the study were applying to the military. In the scaling
process, each examinee was administered both the old and new forms (Supposedly,
the order was counterbalanced—see Maier 1993, for a discussion). The scores on the
old form were used for selection. No decisions about the examinees were made using
the scores on the new form. Many examinees were able to distinguish between the
old and the new forms (For example, the content differed and the printing quality of
the old form was better than that for the new form). Also, many examinees knew that
only the scores on the old form were to be used for selection purposes. Because the
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scores on the old form were to be used in the process of making selection decisions,
the examinees were likely more motivated when taking the old form than they were
when taking the new form. It seems reasonable to assume that scores under conditions
of greater motivation would be higher than they would be under lower motivation
conditions.

The following hypothetical example demonstrates how this motivation difference
might be reflected in the scale scores. Suppose that the following conditions hold:

1. A raw score of 10 on the old form corresponds to a raw score of 10 on the new
form under conditions of high motivation.

2. Araw score of 8 on the old form corresponds to a raw score of 8 on the new form
under conditions of high motivation.

3. A raw score of 10 on each form corresponds to a scale score of 27 under the
conditions of high motivation.

4. A raw score of 8 on each form corresponds to a scale score of 25 under the
conditions of high motivation.

5. When either of the forms is administered under conditions of lower motivation
the raw scores are depressed by 2 points.

Conditions 1 and 2 imply that the old and new forms are equally difficult at a raw
score of 10 under high motivation conditions. The same is true at a raw score of 8.

What would happen in a scaling study if the old form was administered under high
motivation and the new form under low motivation, and the motivation differences
were not taken into account? In this case, a score of 8 on the new form would appear
to correspond to a score of 10 on the old form, because the new form score would
be depressed by 2 points. In the scaling process, an 8 on the new form would be
considered to be equivalent to a 10 on the old form and to a scale score of 27. That is,
an 8 on the new form would correspond to a scale score of 27 instead of the correct
scale score of 25. Thus, when the new form is used later under high motivation
conditions, scale scores on the new form would be too high.

Reasoning similar to that in this hypothetical example led Maier (1993) to con-
clude that motivation differences caused the scale scores on the new form to be too
high when the new form was used to make selection decisions for examinees. The
most direct effect of these problems was that the military selected many individu-
als using scores on the new form whose skill levels were lower than the intended
standards. After the problem was initially detected in 1976, it took until October of
1980 to sort out the causes for the problems and to build new tests and scales that
were judged to be sound. It took much effort to resolve the ASVAB scaling problem,
including conducting a series of research studies, hiring a panel of outside testing
experts, and significantly improving the quality control and oversight procedures for
the ASVAB program.
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Table 1.3 Means for two forms of a hypothetical 100-item test with
an internal set of 20 common items

Group Form X Form Y Common Items
(100 items) (100 items) (20 items)

1 72 - 13 (65 %)

2 - 77 15 (75 %)

1.4.5 Common-Item Nonequivalent Groups Design

The last design shown in Fig. 1.1 is the common-item nonequivalent groups design.
This design often is used when more than one form per test date cannot be
administered because of test security or other practical concerns. In this design,
Form X and Form Y have a set of items in common, and different groups of exami-
nees are administered the two forms. For example, a group tested one year might be
administered Form X and a group tested another year might be administered Form
Y. This design has two variations. When the score on the set of common items con-
tributes to the examinee’s score on the test, the set of common items is referred to as
internal. The internal common items are chosen to represent the content and statisti-
cal characteristics of the old form. For this reason, internal common items typically
are interspersed among the other items in the test form. When the score on the set of
common items does not contribute to the examinee’s score on the test form, the set
of common items is referred to as external. Typically, external common items are
administered as a separately timed section.

To reflect group differences accurately, the set of common items should be propor-
tionally representative of the total test forms in content and statistical characteristics.
That is, the common-item set should be a “mini version” of the total test form. The
common items also should behave similarly in the old and new forms. To help ensure
similar behavior, each common item should occupy a similar location (item number)
in the two forms. In addition, the common items should be exactly the same (e.g., no
wording changes or rearranging of alternatives) in the old and new forms. Additional
ways to help ensure adequate equating using the common-item nonequivalent groups
design are described in Chap. 8.

In this design, the group of examinees taking Form X is not considered to be
equivalent to the group of examinees taking Form Y. Differences between means
(and other score distribution characteristics) on Form X and Form Y can result
from a combination of examinee group differences and test form differences. The
central task in equating using this design is to separate group differences from form
differences.

The hypothetical example in Table 1.3 illustrates how differences might be
separated. Form X and Form Y each contain 100 multiple-choice items that are
scored number correct, and there is an internal set of 20 items in common between
the two forms. The means on the common items suggest that Group 2 is higher
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Table 1.4 Percent correct for two groups on a hypothetical test

Group 1 Group 2
Content
| 70 % 80 %
11 80 % 70 %
For Total Test 75 % = 75 % =
1 1 1 1 1 1
E(Content D+ E(Content 1) 5(70 %) + 5(80 %) 5(80 %) + 5(70 %)
For Common Items 72.5 % = 77.5 % =
3 1 3 1 3 1
Z(Content D+ Z(Content 10 1(70 %) + 1(80 %) 1 (80 %) + 7 (70 %)

achieving than Group 1, because members of Group 2, on average, correctly answered
75 % of the common items, whereas members of Group 1 correctly answered
only 65 % of the common items. That is, on average, Group 2 correctly
answered 10 % more of the common items than did Group 1.

Which of the two forms is easier? To provide one possible answer, consider the
following question: What would have been the mean on Form X for Group 2 had
Group 2 taken Form X? Group 2 correctly answered 10 % more of the common items
than did Group 1. Therefore, Group 2 might be expected to answer 10 % more of the
Form X items correctly than would Group 1. Using this line of reasoning (and using
the fact that Form X contains 100 items), the mean for Group 2 on Form X would be
expected to be 82 = 72 4 10. Because Group 2 earned a mean of 77 on Form Y and
has an expected mean of 82 on Form X, Form X appears to be 5 points easier than
Form Y.

This example is an oversimplification of how equating actually would be accom-
plished, and these results would hold only under very stringent conditions. The
equating methods discussed in Chaps. 4—-6 might even lead to the opposite conclu-
sion about which form is more difficult. This example is intended to illustrate that a
major task in conducting equating with the nonequivalent groups design is to separate
group and form differences.

As indicated earlier, for this design to function well the common items need to
represent the content and statistical characteristics of the total test. Table 1.4 provides
data for a hypothetical test that is intended to illustrate the need for the set of common
items to be content representative. In this example, Group 1 and Group 2 are again
nonequivalent groups of examinees. The test consists of items from two content areas,
Content I and Content II. As shown near the top of Table 1.4, on average, Group 1
correctly answered 70 % of the Content I items and 80 % of the Content II items.
Group 2 correctly answered 80 % of the Content I items and 70 % of the Content
II items. If the total test contains one-half Content I items and one-half Content 11
items, then, as illustrated near the middle of Table 1.4, both Group 1 and Group 2
will earn an average score of 75 % correct on the whole test. Thus, the two groups
have the same average level of achievement for the total test, consisting of one-half
Content I and one-half Content II items.
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Assume that two forms of the test are to be equated. If, as illustrated near the
bottom of Table 1.4, the common-item set contains three-fourths Content I items and
one-fourth Content II items, Group 1 will correctly answer 72.5 % of the common
items, and Group 2 will correctly answer 77.5 % of the common items. Thus, for this
set of common items, Group 2 appears to be higher achieving than Group 1, even
though the two groups are at the same level on the total test. This example illustrates
that common items need to be content representative if they are to portray group
differences accurately and lead to a satisfactory equating (See Klein and Jarjoura,
1985, for an illustration of the need for content representativeness for an actual test).

The common-item nonequivalent groups design is widely used. A major reason
for its popularity is that this design requires that only one test form be administered
per test date, which is how test forms usually are administered in operational set-
tings. In contrast, the random groups design typically requires different test forms
to be administered to random subgroups of examinees, and the single group design
requires that more than one form be administered to each examinee. Another advan-
tage of the common-item nonequivalent groups design is that, with external sets of
common items, it might be possible for all items that contribute to an examinee’s
score (the noncommon items) to be disclosed following the test date. The ability
to disclose items is important for some testing programs, because some states have
mandated disclosure for certain tests, and some test publishers have opted for dis-
closure. However, common items should not be disclosed if they are to be used to
equate subsequent forms (See Chap. 8 for further discussion).

The administrative flexibility offered by the use of nonequivalent groups is gained
at some cost. As is described in Chaps. 4-6, strong statistical assumptions are required
to separate group and form differences. The larger the differences between examinee
groups, the more difficult it becomes for the statistical methods to separate the group
and form differences. The only link between the two groups is the common items,
so the content and statistical representativeness of the common items are especially
crucial when the groups differ. Although a variety of statistical equating methods
have been proposed for the common-item nonequivalent groups design, no method
has been found that provides completely appropriate adjustments when the examinee
groups are very different.

1.4.6 NAEP Reading Anomaly: Problems with Common Items

The National Assessment of Educational Progress (NAEP) is a congressionally man-
dated survey of the educational achievement of students in American schools. NAEP
measures performance trends in many achievement areas, based on representative
samples at three grade/age levels. The preliminary results from the 1986 NAEP
Assessment in Reading indicated that the reading results “showed a surprisingly
large decrease from 1984 at age 17 and, to a lesser degree, at age 9.... Such large
changes in reading proficiency were considered extremely unlikely to have occurred
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in just two years without the awareness of the educational community” (Zwick 1991,
p. 11).

A series of inquiries were conducted to better understand the reasons for the
decline. One potential cause that was investigated was the manner in which common
items were used in linking the 1984 and 1986 assessments. Zwick (1991) indicated
that the following differences existed between the administrations:

1. In 1984, the test booklets administered to examinees contained reading and writ-
ing sections. In 1986, the booklets administered to examinees contained reading,
mathematics, and/or science sections at ages 9 and 13. In 1986, the booklets
contained reading, computer science, history, and/or literature at age 17.

2. The composition of the reading sections differed in 1984 and 1986. Items that
were common to the 2 years appeared in different orders, and the time available
to complete the common items differed in the 2 years.

The investigations concluded that these differences in the context in which the com-
mon items appeared in the two years, rather than changes in reading achievement,
were responsible for much of the difference that was observed (Zwick 1991). This
so-called NAEP reading anomaly illustrates the importance of administering com-
mon items in the same context in the old and new forms. Otherwise, context effects
can lead to very misleading results.

1.5 Error in Estimating Equating Relationships

Estimated equating relationships typically contain estimation error. A major goal in
designing and conducting equating is to minimize such equating error.

Random equating error is present whenever samples from populations of exam-
inees are used to estimate parameters (e.g., means, standard deviations, and per-
centile ranks) that are involved in estimating an equating relationship. Random error
is typically indexed by the standard error of equating, which is the focus of Chap. 7.
Conceptually, the standard error of equating is the standard deviation of score equiv-
alents over replications of the equating procedure. The following situation illustrates
the meaning of the standard error of equating when estimating the Form Y score
equivalent of a Form X score.

1. Draw a random sample of size 1,000 from a population of examinees.

2. Find the Form Y score equivalent of a Form X score of 75 using data from this
sample and a given equating method.

3. Repeat steps 1 and 2 a large number of times, which results in a large number of
estimates of the Form Y score equivalent of a Form X score of 75.

4. The standard deviation of these estimates is an estimate of the standard error of
equating for a Form X score of 75.

As these steps illustrate, the standard error of equating is defined separately for each
score on Form X.
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As the sample size becomes larger, the standard error of equating becomes smaller,
and it becomes inconsequential for very large sample sizes (assuming very large
populations, as discussed in Chap. 7). Random error can be controlled by using large
samples of examinees, by choosing an equating design that reduces such error, or
both. Random error is especially troublesome when practical issues dictate the use
of small samples of examinees.

Systematic equating error results from violations of the assumptions and condi-
tions of equating. For example, in the random groups design, systematic error results
if a particular spiraling process is inadequate for achieving group comparability. In
the single group design with counterbalancing, failure to control adequately for dif-
ferential order effects can be a major source of systematic error. In the common-item
nonequivalent groups design, systematic error results if the assumptions of statistical
methods used to separate form and group differences are not met. These assump-
tions can be especially difficult to meet under the following conditions: the groups
differ substantially, the common items are not representative of the total test form in
content and statistical characteristics, or the common items function differently from
one administration to the next. A major problem with this design is that sufficient
data typically are not available to estimate or adjust for systematic error.

Over time, after a large number of test forms are involved in the scaling and
equating process, both random and systematic errors tend to accumulate. Although
the amount of random error can be quantified readily using the standard error of
equating, systematic error is much more difficult to quantify. In conducting and
designing equating studies, both types of error should be minimized to the extent
possible. In some practical circumstances the amount of equating error might be so
large that equating would add more error into the scores than if no equating had
been done. Thus, equating is not always defensible. This issue is described further
in Chap. 8.

1.6 Evaluating the Results of Equating

In addition to designing an equating study, an operational definition of equating
and a method for estimating an equating relationship need to be chosen. Then, after
the equating is conducted, the results should be evaluated. As indicated by Harris
and Crouse (1993), such evaluation requires that criteria for equating be identified.
Estimating random error using standard errors of equating can be used to develop
criteria. Criteria for evaluating equating also can be based on consistency of results
with previous results.

The properties of equating that were described earlier also can be used to develop
evaluative criteria. The symmetry and same specifications properties always must
be achieved. Some aspects of Lord’s equity property can be evaluated. For example,
procedures are discussed in Chap. 8 that indicate the extent to which examinees
can be expected to earn approximately the same score, regardless of the form that
they take. Procedures are also considered that can be used to evaluate the extent to
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which examinees are measured with equal precision across forms. Observed score
equating properties are especially important when equating is evaluated from an
institutional perspective. An institution that is admitting students needs to know that
the particular test form administered would not affect the numbers of students who
would be admitted. The group invariance property is important from the perspective
of treating subgroups of examinees equitably. The equating relationship should be
very similar across subgroups. As a check on the group invariance property, the
equating can be conducted on various important subgroups. Procedures for evaluating
equating are discussed more fully in Chap. 8.

1.7 Testing Situations Considered

In this chapter, equating has been described for testing programs in which alternate
forms of tests are administered on various test dates. Equating is very common in this
circumstance, especially when tight test security is required, such as when equating
professional certification, licensure, and college admissions tests. Another common
circumstance is for two or more forms of a test to be developed and equated at one
time. The equated forms then are used for a period of years until the content becomes
dated. Alternate forms of elementary achievement level batteries, for example, often
are administered under these sorts of conditions. The procedures described in this
book pertain directly to equating alternate forms of tests under either of these cir-
cumstances.

In recent years, test administration on the computer has become common. Com-
puter administration is often done by selecting test items to be administered from a
pool of items, with each examinee being administered a different set of items. In this
case, a clear need exists to use processes to ensure that scores earned by different
examinees are comparable to one another. However, as discussed in Chap. 8, such
procedures often are different from the equating methods to be discussed in Chaps. 2
through 7 of this book.

In this book, equating is presented mainly in the context of dichotomously (right
versus wrong) scored tests. Recently, there has been considerable attention given to
tests that contain constructed-response test items, which require judges or a computer
to score tasks or items. Many of the concepts of equating for multiple-choice tests also
pertain to tests that contain constructed-response items. However, the use of judges
along with difficulties in representing the domain of content complicate equating for
tests that contain constructed-response items. Chap. 8 discusses when and how the
methods treated in this book can be applied to these tests.

The procedures used to calculate raw scores on a test affect how equating pro-
cedures are implemented. In this book, tests typically are assumed to be scored
number-correct, with scores ranging from zero to the number of items on the test.
Many of the procedures described can be adapted to other types of scoring, how-
ever, such as scores that are corrected for guessing. For example, a generalization
of equipercentile equating to scoring which produces scores that are not integers is
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described in Chap. 2. In Chap. 3, smoothing techniques are referenced which can
be used with scores that are not integers. Many of the techniques in Chaps. 4 and 5
can be adapted readily to other scoring schemes. In Chap. 6, noninteger IRT scor-
ing is discussed. Issues associated with constructed-response items are described in
Chap. 8. To simplify exposition, unless noted otherwise, assume that alternate forms
of dichotomously scored tests are being equated. Scores on these tests range from
zero to the number of items on the test.

1.8 Preview

This chapter has discussed equating properties and equating designs. Chapter 2 treats
equating using the random groups design, which, compared to other designs, requires
very few statistical assumptions. For this reason, the random groups design is ideal for
presenting many of the statistical concepts in observed score equating. Specifically,
the mean, linear, and equipercentile equating methods are considered. The topic of
Chap. 3 is smoothing techniques that are used to reduce total error in estimated
equipercentile relationships.

Linear methods appropriate for the common-item nonequivalent groups design
are described in Chap. 4. In addition to considering observed score methods, methods
based on test theory models are introduced in Chap. 4. Equipercentile methods for
the common-item nonequivalent groups design are presented in Chap. 5.

IRT methods, which are also test theory-based methods, are the topic of Chap. 6.
IRT methods are presented that can be used with the equating designs described in
this chapter. In addition, IRT methods appropriate for equating using item pools are
described.

Equating procedures are all statistical techniques that are subject to random
error. Procedures for estimating the standard error of equating are described in
Chap. 7 along with discussions of sample sizes required to attain desired levels
of equating precision. Chapter 8 focuses on various practical issues in equating.
These topics include evaluating the results of equating and choosing among equat-
ing methods and results. In addition, current topics, such as equating tests that contain
constructed-response items and equating issues associated with computerized tests,
are considered.

Chapter 9 considers issues associated with developing score scales for individual
tests and test batteries. In addition, vertical scaling processes that are often used with
elementary level achievement test batteries are considered in detail. Linking of tests
is the topic of Chap. 10. Chapter 11 discusses current and future challenges, and
areas for future developments are highlighted.
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1.9 Exercises

Exercises are presented at the end of each chapter of this book, Some of the exercises
are intended to reinforce important concepts and consider practical issues; others
are intended to facilitate learning how to apply statistical techniques. Answers to the
exercises are provided in Appendix A.

1.1.

1.2.

1.3.

1.4.

L.5.

1.6.

1.7.

A scholarship test is administered twice per year, and different forms are admin-
istered on each test date. Currently, the top 1 % of the examinees on each test
date earn scholarships.

a. Would equating the two forms affect who was awarded a scholarship? Why
or why not?

b. Suppose the top 1 % who took the test during the year (rather than at each
test date) were awarded scholarships. Would the use of equating affect who
was awarded a scholarship? Why or why not?

Refer to the example in Table 1.1. Suppose that a new form, Form X3, was
found to be uniformly 1 point easier than Form X,. What scale score would
correspond to a Form X3 raw score of 297

A state passes a law that all items which contribute to an examinee’s score on
a test will be released to that examinee, on request, following the test date.
Assume that the test is to be secure. Which of the following equating designs
could be used in this situation: random groups, single group with counterbal-
ancing, common-item nonequivalent groups with an internal set of common
items, common-item nonequivalent groups with an external set of common
items? Briefly indicate how equating would be accomplished using this (these)
design(s).

Equating of forms of a 45 min test is to be conducted by collecting data on a
group of examinees who are being tested for the purpose of conducting equating.
Suppose that it is relatively easy to get large groups of examinees to participate
in the study, but it is difficult to get any student to test for more than one 50 min
class period, where 5 min are needed to hand out materials, give instructions,
and collect materials. Would it be better to use the random groups design or the
single group design with counterbalancing in this situation? Why?

Suppose that only one form of a test can be administered on any given test date.
Of the designs discussed, which equating design(s) can be used?

Refer to the data shown in Table 1.4.

a. Which group would appear to be higher achieving on a set of common items
composed only of Content I items?

b. Which group would appear to be higher achieving on a set of common items
composed only of Content II items?

c. What is the implication of your answers to a and b?

Consider the following statements for equated Forms X and Y:
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1. “Examinees A and B are at the same level of achievement, because A scored
at the 50th percentile nationally on Form X and B scored at the 50th percentile
nationally on Form Y.

II. “Examinees A and B are at the same level of achievement, because the
expected equated score of A on Form X equals the expected score of B on
Form Y.

Which of these statements is consistent with an observed score property of
equating? Which is consistent with Lord’s equity property of equating?

1.8. If a very large group of examinees is used in an equating study, which source
of equating error would almost surely be small, random or systematic? Which
source of equating error could be large if the very large group of examinees used
in the equating were not representative of the examinees that are to be tested,
random or systematic?
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Chapter 2
Observed Score Equating Using the Random
Groups Design

As was stressed in Chap. 1 the same specifications property is an essential property of
equating, which means that the forms to be equated must be built to the same content
and statistical specifications. We also stressed that the symmetry property is essential
for any equating relationship. The focus of the present chapter is on methods that
are designed to achieve the observed score equating property, along with the same
specifications and symmetry properties. As was described in Chap. 1, these observed
score equating methods are developed with the goal that, after equating, converted
scores on two forms have at least some of the same score distribution characteristics
in a population of examinees.

In this chapter, these methods are developed in the context of the random groups
design. Of the designs discussed thus far, the assumptions required for the random
groups design are the least severe and most readily achieved. Thus, very few sources
of systematic error are present with the random groups design. Because of the minimal
assumptions required with the random groups design, this design is ideal for use in
presenting the basic statistical methods in observed score equating, which is the focus
of the present chapter.

The definitions and properties of mean, linear, and equipercentile equating meth-
ods are described in this chapter. These methods are presented, initially, in terms of
population parameters (e.g., population means and standard deviations) for a specific
population of examinees. We also discuss the process of estimating equating rela-
tionships, which requires that statistics (e.g., sample means and standard deviations)
be substituted in place of the parameters. The methods then are illustrated using a
real data example. Following the presentation of the methods, issues in using scale
scores are described and illustrated. We then briefly discuss equating using the single
group design.

An important practical challenge in using the random groups design is to obtain
large enough sample sizes so that random error (see Chap.7 for a discussion of
standard errors) is at an acceptable level (rules of thumb for appropriate sample sizes
are given in Chap. 8. For the equipercentile equating method, in Chap. 3 we describe
statistical smoothing methods that often are used to help reduce random error when
conducting equipercentile equating using the random groups design.
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For simplicity, the statistical methods in this chapter are developed using a testing
situation in which tests consist of test items that are scored correct (1) or incorrect
(0), and where the total score is the number of items answered correctly. Near the
end of the chapter, a process for equating tests that are scored using other scoring
schemes is described.

2.1 Mean Equating

In mean equating, Form X is considered to differ in difficulty from Form Y by a
constant amount along the score scale. For example, under mean equating, if Form
X is 2 points easier than Form Y for high-scoring examinees, it is also 2 points easier
than Form Y for low-scoring examinees. Although a constant difference might be
overly restrictive in many testing situations, mean equating is useful for illustrating
some important equating concepts.

As was done in Chap. 1, define Form X as the new form, let X represent the
random variable score on Form X, and let x represent a particular score on Form
X (i.e., a realization of X); and define Form Y as the old form, let Y represent the
random variable score on Form Y, and let y represent a particular score on Form Y
(i.e., a realization of Y. Also, define p(X) as the mean on Form X and u(Y) as the
mean on Form Y for a population of examinees. In mean equating, scores on the two
forms that are an equal (signed) distance away from their respective means are set
equal:

x = p(X) =y — p(¥). @1

Then solve for y and obtain
my(x) =y =x — pu(X) + pul). (2.2)

In this equation, my (x) refers to a score x on Form X transformed to the scale of
Form Y using mean equating.

As an illustration of how to apply this formula, consider the situation discussed
in Chap. 1, in which the mean on Form X was 72 and the mean on Form Y was 77.
Based on this example, Eq. (2.2) indicates that 5 points would need to be added to
a Form X score to transform a score on Form X to the Form Y scale. That is,

my(x)=x—T724+77=x+5.

For example, using mean equating, a score of 72 on Form X is considered to indicate
the same level of achievement as a score of 77 (77 = 72 4+ 5) on Form Y. And, a
score of 75 on Form X is considered to indicate the same level of achievement as
a score of 80 on Form Y. Thus, mean equating involves the addition of a constant
(which might be negative) to all raw scores on Form X to find equated scores on
Form Y.
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2.2 Linear Equating

Rather than considering the differences between two forms to be a constant, linear
equating allows for the differences in difficulty between the two test forms to vary
along the score scale. For example, linear equating allows Form X to be more diffi-
cult than Form Y for low-achieving examinees but less difficult for high-achieving
examinees.

In linear equating, scores that are an equal (signed) distance from their means
in standard deviation units are set equal. Thus, linear equating can be viewed as
allowing for the scale units, as well as the means, of the two forms to differ. Define
0(X) and o(Y) as the standard deviations of Form X and Form Y scores, respectively.
The linear conversion is defined by setting standardized deviation scores (z-scores)
on the two forms to be equal such that

x—pu(X) y—pY)
oX) o)

(2.3)

If the standard deviations for the two forms were equal, Eq. (2.3) could be simplified
to equal the mean equating Eq. (2.2). Thus, if the standard deviations of the two forms
are equal, then mean and linear equating produce the same result. Solving for ¥ in
Eq.(2.3),

x — pu(X)

ly(x)=y=0(Y) [ o(X)

] + u(Y), 2.4)

where ly (x) is the linear conversion equation for converting observed scores on Form
X to the scale of Form Y. By rearranging terms, an alternate expression for ly (x) is

o =y =292 4 [ury - 292,00 25)
ro=yr=coot e )" '
This expression is a linear equation of the form slope (x) + intercept with
Y Y
slope = %, and intercept = pu(Y) — %N(X). (2.6)

What if the standard deviations in the mean equating example were o(X) = 10 and
o(Y) = 9? The slope is 9/10 = .9, and the intercept is 77 — (9/10)72 = 12.2. The
resulting conversion equation is Iy (x) = .9x + 12.2. What is Iy (x) if x = 75?

Iy (75) = .9(75) + 12.2 =179.7.

How about if x = 77 or x = 85?

Iy(77) = .9(77) + 12.2 = 81.5, and
Iy (85) = .9(85) + 12.2 = 88.7.
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These equated values illustrate that the difference in test form difficulty varies with
score level. For example, the difference in difficulty between Form X and Form Y
for a Form X score of 75 is 4.7(79.7 — 75), whereas the difference for a Form X
score of 85 is 3.7(88.7 — 85).

2.3 Properties of Mean and Linear Equating

In general, what are the properties of the equated scores? From Chapter 1, E is the
expectation operator. The mean of a variable is found by taking the expected value
of that variable. Using Eq. (2.2), the mean converted score my (x), for mean equating
is

E[my(X)] = E[X — pu(X) + p(Y)] = p(X) — p(X) + p(¥) = p(¥).  (2.7)

That is, for mean equating the mean of the Form X scores equated to the Form Y scale
is equal to the mean of the Form Y scores. In the example described earlier, the mean
of the equated Form X scores is 77 [recall that my (x) = x + 5 and pu(X) = 72], the
same value as the mean of the Form Y scores. Note that standard deviations were not
shown in Eq. (2.7). What would be the standard deviation of Form X scores converted
using the mean equating Eq. (2.2)? Because the Form X scores are converted to Form
Y by adding a constant, the standard deviation of the converted scores would be the
same as the standard deviation of the scores prior to conversion. That is, under mean
equating, o[my(X)] = o(X).

Using Eq. (2.5), the mean equated score for linear equating can be found as fol-
lows:

Ely 01 = E| 20 x 4 ) - 29 ux)
o(X) o(X)
_ a(Y) oY)
= TR ECO + () = Zoau(x)
= u(Y), 2.8)

because E(X) = u(X).
The standard deviation of the equated scores is found by first substituting Eq. (2.5)
for Iy (X) as follows:

olly(X)] =0 [ﬂX + u(¥) — @u(X)}
o(X) o(X)

To continue, the standard deviation of a score plus a constant is equal to the standard
deviation of the score. That is, o (X 4 constant) = o(X). By recognizing in the linear
equating equation that the terms to the right of the addition sign are a constant, the
following holds:
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o) X} .

olly(X)]=0

[ly (X)] [U X
Also note that the standard deviation of a score multiplied by a constant equals the
standard deviation of the score multiplied by the constant. That is, o (constant X) =
constant o(X). Noting that the ratio of standard deviations in the large parentheses
is also a constant that multiplies X,

oY)

olly(X)] = o(X)

o(X) = o(Y). (2.9)

Therefore, the mean and standard deviation of the Form X scores equated to the Form
Y scale are equal to the mean and standard deviation, respectively, of the Form Y
scores. In the example described earlier for linear equating, the mean of the equated
Form X scores is 77 and the standard deviation is 9; these are the same values as the
mean and standard deviation of the Form Y scores.

Consider the equation for mean equating, Eq. (2.2), and the equation for linear
equating (2.5). If either of the equations were solved for x, rather than for y, the
equation for equating Form Y scores to the scale of Form X would result. These
conversions would be symbolized by m x (y) and Iy (y), respectively. Equating rela-
tionships are defined as being symmetric because the equation used to convert Form
X scores to the Form Y scale is the inverse of the equation used to convert Form Y
scores to the Form X scale.

The equation for linear equating (2.5) is deceptively like a linear regression equa-
tion. The difference is that, for linear regression, the (Y) /o (X) terms are multiplied
by the correlation between X and Y. However, a linear regression equation does not
qualify as an equating function because the regression of X on Y is different from
the regression of Y on X, unless the correlation coefficient is 1. For this reason,
regression equations cannot, in general, be used as equating functions. The com-
parison between linear regression and linear equating is illustrated in Fig.2.1. The
regression ¥ on X is different from the regression of X on Y. Also note that there is
only one linear equating relationship graphed in the figure. This relationship can be
used to transform Form X scores to the Form Y scale, or to transform Form Y scores
to the Form X scale.

2.4 Comparison of Mean and Linear Equating

Figure 2.2 illustrates the equating of Form X and Form Y using the hypothetical test
forms already discussed. The equations for equating scores on Form X to the Form
Y scale are plotted in this figure.

Also plotted in this figure are the results from the “identity equating.” In the
identity equating, a score on Form X is considered to be equivalent to the identical
score on Form Y; for example, a 40 on Form X is considered to be equivalent to a 40
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Fig.2.1 Comparison of linear
regression and linear equating

Regression of X on Y

Linear Equating

Raw Score Form Y

Regression of Y on X

Raw Score Form X

on Form Y. Identity equating would be the same as mean and linear equating if the
two forms were identical in difficulty all along the score scale.

To find a Form Y equivalent of a Form X score using the graph, find the Form X
value of interest on the horizontal axis, go up to the function, and then go over to the
vertical axis to read off the Form Y equivalent.

How to find the Form Y equivalent of a Form X score of 72 is illustrated in the
figure using the arrows. This equivalent is 77, using either mean or linear equating.
The score 72 is the mean score on Form X. As indicated earlier, both mean and linear
equating will produce the same result at the mean.

Now refer to the identity equating line in the figure, and note that the line for
mean equating is parallel to the line for the identity equating. The lines for these
two methods will always be parallel. As can be seen, the line for mean equating is
uniformly 5 points vertically above the line for the identity equating, because Form
Y is, on average, 5 points less difficult than Form X. Refer to the line for linear
equating. This line is not parallel to the identity equating line. The linear equating
line is further above the identity equating line at the low scores than at the high scores.
This observation is consistent with the earlier discussion in which the difference in
difficulty between Form X and Form Y was shown to be greater at the lower scores
than at the higher scores.

Assume that the test in this example is scored number-correct. Number-correct
scores for this 100-item test can range from O to 100. Figure 2.2 illustrates that
equated scores from mean and linear equating can sometimes be out of the range of
possible observed scores. The dotted lines at 0 on Form X and at 100 illustrate the
boundaries of possible observed scores. For example, using linear equating, a score
of 100 on Form X equates to a score of approximately 102 on Form Y. Also, using
linear equating, a score of 0 on Form Y equates to a score of approximately —14 on
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Form X. There are a variety of ways to handle this problem. One way is to allow the
top and bottom to “float.” For example, the highest equated score might be allowed
to exceed the highest raw score. An alternative is to truncate the conversion at the
highest and lowest scores. In the example, truncation involves setting all converted
scores greater than 100 equal to 100 and setting all converted scores less than 0 equal
to 0. That is, all Form Y scores that equate to Form X scores below 0 would be set
to 0 and all Form X scores that equate to Form Y scores above 100 would be set to
100. In practice, the decision about how to handle equated scores outside the range
typically interacts with the score scale that is used for reporting scores. Sometimes
this issue is effectively of no consequence, because no one achieves the extreme raw
scores on Form X that equate to unobtainable scores on Form Y.

In summary, in mean equating the conversion is derived by setting the deviation
scores on the two forms equal, whereas in linear equating the standardized deviation
scores (z-scores) on the two forms are set equal. In mean equating, scores on Form X
are adjusted by a constant amount that is equal to the difference between the Form Y
and Form X means. In linear equating, scores on Form X are adjusted using a linear
equation that allows for the forms to be differentially difficult along the score scale.
In mean equating, the mean of the Form X scores equated to the Form Y scale is equal
to the mean of the Form Y scores; whereas in linear equating, the standard deviation
as well as the mean are equal. In general, mean equating is less complicated than
linear equating, but linear equating provides for more flexibility in the conversion
than does mean equating.
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2.5 Equipercentile Equating

In equipercentile equating, a curve is used to describe form-to-form differences
in difficulty, which makes equipercentile equating even more general than linear
equating. Using equipercentile equating, for example, Form X could be more difficult
than Form Y at high and low scores, but less difficult at the middle scores.

The equating function is an equipercentile equating function if the distribution of
scores on Form X converted to the Form Y scale is equal to the distribution of scores
on Form Y in the population. The equipercentile equating function is developed by
identifying scores on Form X that have the same percentile ranks as scores on Form Y.

The definition of equipercentile equating developed by Braun and Holland (1982)
is adapted for use here. Consider the following definitions of terms, some of which
were presented previously:

X is arandom variable representing a score on Form X, and x is a particular value
(i.e., a realization) of X.

Y is arandom variable representing a score on Form Y, and y is a particular value
(i.e., a realization) of Y.

F is the cumulative distribution function of X in the population.

G is the cumulative distribution function of Y in the same population.

ey 1s a symmetric equating function used to convert scores on Form X to the Form
Y scale.

G* is the cumulative distribution function of ey in the same population. That is,
G* is the cumulative distribution function of scores on Form X converted to the Form
Y scale.

The function ey is defined to be the equipercentile equating function in the pop-
ulation if

G*=G. (2.10)

That is, the function ey is the equipercentile equating function in the population if
the cumulative distribution function of scores on Form X converted to the Form Y
scale is equal to the cumulative distribution function of scores on Form Y.

Braun and Holland (1982) indicated that the following function is an equiper-
centile equating function when X and Y are continuous random variables:

ey(x) = GT'[F(x)], Q2.11)

where G~ ! is the inverse of the cumulative distribution function G.

As previously indicated, to be an equating function, ey must be symmetric. Define

ex as a symmetric equating function used to convert scores on Form Y to the
Form X scale, and

F* as the cumulative distribution function of ey in the population. That is, F* is
the cumulative distribution function of scores on Form Y converted to the Form X
scale.
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By the symmetry property,
ex'(x) = ey(x) and e, (y) = ex (). (2.12)

Also,
ex(y) = F' G, (2.13)

is the equipercentile equating function for converting Form Y scores to the Form X
scale. In this equation, F —1 is the inverse of the cumulative distribution function F.

Following the definitions in Egs. (2.10-2.13), an equipercentile equivalent for the
population of examinees can be constructed in the following manner: For a given
Form X score, find the percentage of examinees earning scores at or below that Form
X score. Next, find the Form Y score that has the same percentage of examinees at
or below it. These Form X and Form Y scores are considered to be equivalent. For
example, suppose that 20 % of the examinees in the population earned a Form X
score at or below 26 and 20 % of the examinees in the population earned a Form Y
score at or below 27. Then a Form X score of 26 would be considered to represent the
same level of achievement as a Form Y score of 27. Using equipercentile equating,
a Form X score of 26 would be equated to a Form Y score of 27.

The preceding discussion was based on an assumption that test scores are con-
tinuous random variables. Typically, however, test scores are discrete. For example,
number-correct scores take on only integer values. With discrete test scores, the defin-
ition of equipercentile equating is more complicated than the situation just described.
Consider the following situation. Suppose that a test is scored number-correct and
that the following is true of the population distributions:

1. 20 % of the examinees score at or below 26 on Form X.
2. 18 % of the examinees score at or below 27 on Form Y.
3. 23 % of the examinees score at or below 28 on Form Y.

What is the Form Y equipercentile equivalent of a Form X score of 26? No Form Y
score exists that has precisely 20 % of the scores at or below it. Strictly speaking, no
Form Y equivalent of a Form X score of 26 exists. Thus, the goal of equipercentile
equating stated in Eq. (2.10) cannot be met strictly when test scores are discrete.
How can equipercentile equating be conducted when scores are discrete? A tradi-
tion exists in educational and psychological measurement to view discrete test scores
as being continuous by using percentiles and percentile ranks. In this approach, an
integer score of 28, for example, is considered to represent scores in the range 27.5—
28.5. Examinees with scores of 28 are considered to be uniformly distributed in
this range. The percentile rank of a score of 28 is defined as being the percentage
of scores below 28. However, because only 1/2 of the examinees who score 28 are
considered to be below 28 (the remainder being between 28 and 28.5), the percentile
rank of 28 is the percentage of examinees who earned integer scores of 27 and below,
plus 1/2 the percentage of examinees who earned an integer score of 28. Placing the
preceding example in the context of percentile ranks, 18 % of the examinees earned
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Table 2.1 Form X score distribution for a hypothetical four-item test

X fx) F(x) P (x)
0 2 2 10
1 3 5 35
2 2 7 60
3 2 9 80
4 1 1.0 95

a Form Y score below 27.5 and 5% (23—-18 %) of the examinees earned a score
between 27.5 and 28.5. So the percentile rank of a Form Y score of 28 would be
18% + 1/2(5 %) = 20.5 %. In the terminology typically used, the percentile rank
of an integer score is the percentile rank at the midpoint of the interval that contains
that score.

Holland and Thayer (1989) presented a statistical justification for using percentiles
and percentile ranks. In their approach, they use what they refer to as a continuization
process and a kernel smoothing process. Given a discrete integer-valued random
variable X and a random variable U that is uniformly distributed over the range
—1/2 to +1/2, they defined a new random variable, X* = X + U.

This new random variable is continuous. The cumulative distribution function of
this new random variable corresponds to the percentile rank function. The inverse of
the cumulative distribution of this new function exists and is the percentile function.
Holland and Thayer (1989) also generalized their approach to incorporate continuiza-
tion processes that are based on distributions other than the uniform.

This approach was developed further by von Davier et al. (2004) and is discussed
in more detail in Chap. 3. In the present chapter, the traditional approach to percentiles
and percentile ranks is followed.

The equipercentile methods presented next assume that the observed scores on
the tests to be equated are integer scores that range from zero through the number of
items on the test, as would be true of tests scored number-correct. Generalizations
to other scoring schemes are discussed as well.

2.5.1 Graphical Procedures

Equipercentile equating using graphical methods provides a conceptual framework
for subsequent consideration of analytic methods. A hypothetical four-item test is
used to illustrate the graphical process for equipercentile equating. Data for Form X
are presented in Table 2.1.

In this table, x refers to test score and f (x) to the proportion of examinees earning
the score x. For example, the proportion of examinees earning a score of 0 is .20.
F(x) is the cumulative proportion at or below x. For example, the proportion of
examinees scoring 3 or below is .9. P(x) refers to the percentile rank, and for an
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integer score it equals the percentage of examinees below x plus 1/2 the percentage
of examinees at x—i.e., for integer score x, P(x) = 100[F(x — 1) + f(x)/2].

To be consistent with traditional definitions of percentile ranks, the percentile rank
function is plotted as points at the upper limit of each score interval. For example, the
percentile rank of a score of 3.5 is 90, which is 100 times the cumulative proportion
at or below 3. Therefore, to plot the percentile ranks, plot the percentile ranks at
each integer score plus .5. The percentile ranks at an integer score plus .5 can be
found from Table 2.1 by taking the cumulative distribution function values, F (x),
at an integer and multiplying them by 100 to make them percentages. Figure 2.3
illustrates how to plot the percentile rank distribution for Form X.

A percentile rank of 0 is also plotted at a Form X score of —.5. The points are
then connected with straight lines. An example is presented for finding the percentile
rank of a Form X integer score of 2 using the arrows in Fig.2.3. As can be seen, the
percentile rank of a score of 2 is 60, which is the same result found in Table 2.1.

In Fig.2.3, percentile ranks of scores between —.5 and 0.0 are greater than zero.
These nonzero percentile ranks result from using the traditional definition of per-
centile ranks, in which scores of 0 are assumed to be uniformly distributed from —.5
to .5. Also, scores of 4 are considered to be uniformly distributed between 3.5 to 4.5,
so that scores above 4 have percentile ranks less than 100. Under this conceptual-
ization, the range of possible scores is treated as being between —.5 and the highest
integer score +.5.

Data from Form Y also need to be used in the equating process. The data for
Form Y are presented along with the Form X data in Table 2.2. In this table, y refers
to Form Y scores, g(y) to the proportion of examinees at each score, G(y) to the
proportion at or below each score, and Q(y) to the percentile rank at each score.
Percentile ranks for Form Y are plotted in the same manner as they were for Form X.
To find the equipercentile equivalent of a particular score on Form X, find the Form
Y score with the same percentile rank. Figure 2.4 illustrates this process for finding
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Table 2.2 Form X and Form Y distributions for a hypothetical four-item test
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the equipercentile equivalent of a Form X score of 2. As indicated by the arrows, a
Form X score of 2 has a percentile rank of 60. Following the arrows, it can be seen
that the Form Y score of about 2.8 (actually 2.83) is equivalent to the Form X score
of 2.

The equivalents can also be plotted. To construct such a graph, plot, as points,
Form Y equivalents of Form X scores at each integer plus .5. Then plot Form X
equivalents of Form Y scores at each integer plus .5. To handle scores below the
lowest integer scores +.5, a point is plotted at the (x, y) pair (—.5, —.5). The plotted
points are then connected by straight lines. This process is illustrated for the example
in Fig.2.5. Asindicated by the arrows in the figure, a Form X score of 2 is equivalent
to a Form Y score of 2.8 (actually 2.83), which is consistent with the result found
earlier. This plot of equivalents displays the Form Y equivalents of Form X scores.

In summary, the graphical process of finding equipercentile equivalents is as
follows: Plot percentile ranks for each form on the same graph. To find a Form Y
equivalent of a Form X score, start by finding the percentile rank of the Form X score.
Then find the Form Y score that has that same percentile rank. Equivalents can be
plotted in a graph that shows the equipercentile relationship between the two forms.

One issue that arises in equipercentile equating is how to handle situations in which
no examinees earn a particular score. When this occurs, the score that corresponds
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to a particular percentile rank might not be unique. Suppose for example that x has
a percentile rank of 20. To find the equipercentile equivalent, the Form Y score that
has a percentile rank of 20 needs to be found. Suppose, however, that there is no
unique score on Form Y that has a percentile rank of 20, as illustrated in Fig.2.6.

The percentile ranks shown in Fig. 2.6 could occur if no examinees earned scores
of 6 and 7. In this case, the graph indicates that scores in the range 5.5 to 7.5 all have
percentile ranks of 20. The choice of the Form Y score that has a percentile rank of
20 is arbitrary. In this situation, usually the middle score would be chosen. So, in the
example the score with a percentile rank of 20 would be designated as 6.5. Choosing
the middle score is arbitrary, technically, but doing so seems sensible.
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2.5.2 Analytic Procedures

The graphical method discussed in the previous section is not likely to be viable
for equating a large number of real forms in real time. In addition, equating using
graphical procedures can be inaccurate. What is needed are formulas that provide
more formal definitions of percentile ranks and equipercentile equivalents. The fol-
lowing discussion provides such formulas. The result of applying these formulas is
to produce percentile ranks and equipercentile equivalents that are equal to those that
would result using the graphical procedures.

To define percentile ranks, let Ky represent the number of items on Form X of a
test. Define X as a random variable representing test scores on Form X that can take
on the integer values 0, 1, ..., Kx. Define f(x) as the discrete density function for
X = x. That is,

f(x) > 0 for integer scores x =0, 1, ..., Kx;

f(x) = 0 otherwise; and
> =1

Define F(x) as the discrete cumulative distribution function. That is, F(x) is the
proportion of examinees in the population earning a score at or below x. Therefore,

O0<Fx)<lforx=0,1,...,Ky;
F(x) =0forx <0; and
F(x)=1forx > Ky.

Consider a possible noninteger value of x. Define x* as that integer that is closest
to x such that x* — .5 < x < x* 4 .5. For example, if x = 5.7, x* = 6; if x = 6.4,
x* = 6;and if x = 5.5, x* = 6. The percentile rank function for Form X is

P(x) = 100{F(x* — 1) 4+ [x = (x* = 5)][F(x*) — F(x* = D]},
—-5<x<Kx+.5,
=0, x < —.5,
= 100, x> K, +.5. (2.14)

To illustrate how this equation functions, consider the following example based on
the data in Table 2.1. Calculate the percentile rank for a score of x = 1.3, using
Eq.(2.14):

P(1.3) = 100{F(0) +[1.3 — (1 — .5)I[F(1) — F(O)]}
= 100{.2 + [.81[.5 — .21} = 100{.2 + .24} = 44.
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In this case, x* = 1.0, because 1 is the integer score that is closest to 1.3. The term
[F(1)— F(0)] = .5—.2 = .3represents the proportion of examinees earning a score
of 1. These scores are considered to range from.5to 1.5. The term [1.3—(1—.5)] = .8
indicates that the score of 1.3 is, proportionally, .8 of the distance between .5 and
1.5. So, [.8][.3] = .24 represents the probability of scoring between .5 and 1.3. The
probability of scoring below .5 is represented by F (0) = .2. Therefore, the percentile
rank of a score of 1.3 equals 44.

The inverse of the percentile rank function, which often is referred to as the per-
centile function, is symbolized as P~!. Two alternate percentile functions are given
as follows. These functions produce the same result, unless some of the probabilities
are zero. Given a percentile rank (e.g., the 10th percentile rank), this inverse function
is used to find the score corresponding to that percentile rank. To find this function,
solve Eq. (2.14) for x. Specifically, for a given percentile rank P*, the percentile is

P*/100 — F(x}, — 1)

F(xi) — F(xj, — 1)
= Kx + .5, P* = 100. (2.15)

xy(P*) = P7[P*] =

+ (x}; —.5), 0 < P* < 100,

In Eq. (2.15), for 0 < P* < 100, xZ‘, is the smallest integer score with a cumulative
percent [100F (x)] that is greater than P*. An alternate expression for the percentile
is

_ P*/100 — F(x})
 F(x}+ 1) —F())
=25, P*=0. (2.16)

xL(P*) = P7'[P*] +(F 4.5, 0< P* <100,

In Eq.(2.16), for 0 < P* < 100, xi is the largest integer score with a cumulative
percent [100F (x)] that is less than P*. If the f(x) are nonzero at all score points
0,1,..., Kx, then x = xy = xr, and either expression can be used. If some of
the f(x) are zero, then xyy # x, for at least some percentile ranks. In this case, the
convention x = (xy + x1)/2 is used. This convention produces the same results
as the one described in association with Fig.2.6 using the graphical procedures. In
most situations, it seems reasonable to assume that the f(x) are all nonzero over
the integer score range O, 1, ..., Kx. For this reason, and to simplify issues, when
considering population distributions in the following discussion, only Eq.(2.15) is
used with xy = x. When considering estimates of population distributions, estimated
probabilities of zero are often encountered (i.e., when no examinees in a sample earn
a particular score).

As an example of how to use Eq. (2.15), find the score corresponding to a percentile
rank of 62 using the inverse of the percentile rank function using the data in Table 2.1.
In this case x[*] = 2 because, in Table 2.1, it is the smallest integer score with F'(x)
that is greater than .62. Then
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L 627100 — F(1) ~
Pl(62) = Fo—Fn 2 —.5)
62—5

= S (25 =12/204+15= 60+ 15 =2.1.

In equipercentile equating, the interest is in finding a score on Form Y that has
the same percentile rank as a score on Form X. Referring to y as a score on Form Y,
let Ky refer to the number of items on Form Y, let g(y) refer to the discrete density
of y, let G (y) refer to the discrete cumulative distribution of y, let Q (y) refer to the
percentile rank of y, and let Q! refer to the inverse of the percentile rank function
for Form Y. Then the Form Y equipercentile equivalent of score x on Form X is

ey(x)=y=07'[P(x)], —-5<x<Kx+.5. (2.17)

This equation indicates that, to find the equipercentile equivalent of score x on the
scale of Form Y, first find the percentile rank of x in the Form X distribution. Then
find the Form Y score that has that same percentile rank in the Form Y distribution.
Equation (2.17) is symmetric. That is, to find the Form X equivalent of a Form Y
score, Eq.(2.17) is solved for v, giving ex (y) = p-! [OW)].

Analytically, to find ey (x) given by Eq.(2.17), use the analog of Eq.(2.15) for
the Form Y distribution. That is, use

07 'P()]

P(x)/100 — GGyl — 1) |
— + —.5), o<P 100,
Gu) -GG, —n TW T =P <

Ky + .5, P(x)=100.  (2.18)

ey(x)

[Note that, to use this equation when some Form Y scores have zero probabilities,
it also is necessary to use y; as described in the discussion following Eq.(2.16).]
Refer to Table 2.2. As an example of finding equipercentile equivalents, find the
Form Y equipercentile equivalent of a Form X score of 2. The percentile rank of a
Form X score of 2 is P(2) = 60, as is shown in Table 2.2. To find the equipercentile
equivalent, the Form Y score that has a percentile rank of 60 must be found. Because
3 is the score with the smallest G(y) that is greater than .60, y;; = 3. Thus, using
Eq. (2.18),

60/100 — .5

ey (x) = 07'[60] = ———

+@B3-.5 =.1/34+25=2.8333.

The raw score equipercentile equivalents that result typically are noninteger. Nonin-
teger scores arise through the continuization process used to define percentiles and
percentile ranks. Issues related to rounding to integers are considered later in the
discussion of scale scores.
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Table 2.3 Form Y equivalents of Form X
scores for a hypothetical four-item test

x S x) ey (x)
0 2 .50
1 3 1.75
2 2 2.8333
3 2 3.50
4 1 4.25

2.5.3 Properties of Equated Scores in Equipercentile Equating

Conducting equipercentile equating using Eq. (2.18) always results in equated scores
intherange —.5 < ey(x) < Ky +.5. Thus, equipercentile equating has the desirable
property that the equated scores will always be within the range of possible scores
under the traditional conceptualization of percentiles and percentile ranks. The prob-
lem of having equated scores that are out of the range of possible scores which occur
with mean and linear equating does not occur with equipercentile equating.

Ideally, in equipercentile equating the equated scores on Form X would have the
same distribution as the scores on Form Y. As was previously indicated, if test scores
were continuous, then these distributions would be the same. However, test scores
are discrete. A continuization process involving percentiles and percentile ranks was
used to render the problem mathematically tractable. However, when the results of
equating are applied to discrete scores, the equated Form X score distribution will
differ from the Form Y distribution.

Consider the following illustration. Using the hypothetical four-item test from
Tables 2.2 and 2.3 provides the Form Y equivalents of scores resulting from the use
of Eq.(2.18). The moments that result are shown in Table 2.4, where skewness and
kurtosis are defined for Form X, respectively, as

_ EX — p(X)P
Sk(X) = W, and (219)
_ EX — )1

Central moments for other variables are defined similarly. To arrive at the moments
of the equated scores, ey (x), in Table 2.4, the Form X scores were equated to Form Y
scores. For example, as indicated in Table 2.3, the proportion of examinees earning
an ey (x) of .50 is .20.

Moments of these equated scores then were found. Ideally, the moments for ey (x)
in Table 2.4 would be equal to those for y. As can be seen, however, there are depar-
tures. These departures are a result of the discreteness of the scores. The departures
in Table 2.4 are relatively large because the test is so short. Departures likely would
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2.4 Moments for equating Form X and Form Y of a hypothetical
four-item test

Score m o sk ku

Y 2.3000 1.2689 —.2820 1.9728
X 1.7000 1.2689 .2820 1.9728
ey (x) 23167 1.2098 —.0972 1.8733

be considerably less with longer, more realistic tests. For tests of realistic lengths,
not being able to achieve the equal distribution goal precisely often is more of a
theoretical concern than a practical one.

The approach taken here is to compare moments of the equated scores to the
moments of the Form Y scores as was just done. von Davier et al. (2004) introduced
the percent relative error index to compare these moments. The percent relative error
is computed by finding the difference between a particular moment for the equated
scores and that same moment for the Form Y scores. This difference is then divided
by the same moment for the Form Y scores.

2.6 Estimating Observed Score Equating Relationships

So far, the methods have been described using population parameters. In practice,
sample statistics are all that are available, and these sample statistics are substituted
for the parameters in the preceding equations.

One estimation problem that occurs in equipercentile equating is how to calculate
the function P~! when the frequency at some score points is zero. The conventions
associated with Eqgs. (2.15) and (2.16) for averaging the results is one procedure for
producing a unique result. Another procedure is to add a very small relative frequency
to each score, and then adjust the relative frequencies so they sum to one. If adj is
taken as this small quantity, then the adjusted relative frequencies on Form Y are

9(y) + adj
1+ (Ky +1)-adj’

éadj (y) =

where §(y) is the relative frequency that was observed. For example, if Ky = 10,
adj = 107°, and §(2) = .02, then

024107°
=.02000078.
1+ (10+1)-10-0

Jadj(2) =

A similar procedure could be used for Form X. The equating then can be done
using the adjusted relative frequencies. Experience has shown that a value around
adj = 107° can be used without creating a serious bias in the equating. A third
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solution to the zero frequency problem is to use smoothing methods, which are the
subject of Chap. 3.

Data for an example of an equating of Form X and Form Y of the original ACT
Mathematics test are presented in Table 2.5. This test contains 40 multiple-choice
items scored incorrect (0) or correct (1). Form X was administered to 4,329 examinees
and Form Y to 4,152 examinees in a spiral administration, which resulted in random
groups of examinees being administered Form X and Form Y. The sample sizes
for the two forms differ, in part, because Form X always preceded Form Y in the
distribution of booklets in each testing room. Thus, one more Form X than Form
Y booklet was administered in some testing rooms. In the table, a “*” is used to
indicate an estimate of a population parameter, and Ny and Ny refer to sample sizes
for the forms. Consider, for example, a score of 10 on Form Y. From Table 2.5, 194
examinees earned a score of 10, and 857 examinees earned a score of 10 or below; the
proportion of examinees earning a score of 10 is .0467, the proportion of examinees
at or below a score of 10 is .2064, and the estimated percentile rank of a score of 10
is 18.30.

Percentile ranks for Forms X and Y are plotted in Fig.2.7. The percentile ranks
are plotted for each score point plus .5. Form X appears to be somewhat easier than
Form Y, because the Form X distribution is shifted to the right. The relative frequency
distributions are shown in Fig.2.8.

Both score distributions are positively skewed, and Form X again appears to be
somewhat easier than Form Y. Estimates of central moments for Form X and Form
Y are given in the upper portion of Table 2.6. Both forms have means, fi, less than 20
(which is 50 % of the 40 items), so it appears that the tests are somewhat difficult for
these examinees. Form X is, on average, nearly 1 point easier than Form Y. Based
on the standard deviations, &, the distribution for Form X is less variable than the
distribution for Form Y. As indicated by the skewness values, sk the distributions
are positively skewed, where skewness for the population is defined in Eq.(2.19).
Based on the kurtosis estimates, 154, the distributions have lower kurtosis than a
normal distribution, which would have a kurtosis value of 3, where kurtosis for the
population is defined in Eq. (2.20).

The conversions for mean, linear, and equipercentile equating are shown in
Table 2.7 and are graphed in Fig. 2.9. The linear and equipercentile results were cal-
culated using the RAGE-RGEQUATE computer program described in Appendix B,
and are also described in Brennan et al. (2009, pp. 57-64). The moments for con-
verted scores are shown in the bottom portion of Table 2.6. As expected, the mean
converted scores for mean equating are the same as the mean for Form Y. For lin-
ear equating, the mean and standard deviation of the converted scores agree with
the mean and standard deviation of Form Y. The first four moments of converted
scores for equipercentile equating are very similar to those for Form Y. In Table 2.7,
it can be seen that mean and linear equating produce results that are outside the
range of possible raw scores. Because of the large number of values in Table 2.7 and
the considerable similarity of equating functions in Fig. 2.9, differences between the
functions are difficult to ascertain.
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Table 2.5 Data for equating Form X and Form Y of the original ACT
mathematics test

FormY Form X
Ny- Ny- Nx- Nx-
Rawscoreg(y) G(y) g(y) G Q@) [f(x) Fx) f(x) F(x) P(x)

0 0 0 .0000 .0000 .00 O 0 .0000 .0000 .00
1 1 1 .0002 .0002 .01 1 1 .0002 .0002 .01
2 3 4 .0007 .0010 .06 1 2 .0002 .0005 .03
3 13 17 .0031 .0041 25 3 5 .0007 .0012 .08
4 42 59 .0101 .0142 92 9 14 .0021 .0032 .22
5 59 118 .0142 .0284 2.13 18 32 .0042 .0074 .53
6 95 213 .0229 .0513 399 59 91 .0136 .0210 1.42
7 131 344 .0316 .0829 6.71 67 158 .0155 .0365 2.88
8 158 502 .0381 .1209 10.19 91 249 .0210 .0575 4.70
9 161 663 .0388 .1597 14.03 144 393 .0333 .0908 7.42
10 194 857 .0467 .2064 1830 149 542 .0344 .1252 10.80
11 164 1021 .0395 .2459 22.62 192 734 .0444 .1696 14.74
12 166 1187 .0400 .2859 26.59 192 926 .0444 2139 19.17
13 197 384 .0474 3333 3096 192 1118 .0444 .2583 23.61
14 177 561 .0426 .3760 3546 201 1319 .0464 .3047 28.15
15 158 1719 .0381 .4140 39.50 204 1523 .0471 .3518 32.83
16 169 1888 .0407 .4547 43.44 217 1740 .0501 .4019 37.69
17 132 2020 .0318 .4865 47.06 181 1921 .0418 .4438 42.28
18 158 2178 .0381 .5246 50.55 184 2105 .0425 .4863 46.50
19 151 2329 .0364 .5609 54.28 170 2275 .0393 .5255 50.59
20 134 2463 .0323 .5932 57.71 201 2476 .0464 .5720 54.87
21 137 2600 .0330 .6262 60.97 147 2623 .0340 .6059 58.89
22 122 2722 .0294 .6556 64.09 163 2786 .0377 .6436 62.47
23 110 2832 .0265 .6821 66.88 147 2933 .0340 .6775 66.05
24 116 2948 .0279 .7100 69.61 140 3073 .0323 .7099 69.37
25 132 3080 .0318 .7418 72.59 147 3220 .0340 .7438 72.68
26 104 3184 .0250 .7669 75.43 126 3346 .0291 .7729 75.84
27 104 3288 .0250 .7919 77.94 113 3459 .0261 .7990 78.60
28 114 3402 .0275 .8194 80.56 100 3559 .0231 .8221 81.06
29 97 3499 .0234 .8427 83.10 106 3665 .0245 .8466 83.44
30 107 3606 .0258 .8685 85.56 107 3772 .0247 .8713 85.90
31 88 3694 .0212 .8897 8791 91 3863 .0210 .8924 88.18
32 80 3774 .0193 .9090 89.93 83 3946 .0192 9115 90.19
33 79 3853 .0190 .9280 91.85 73 4019 .0169 .9284 92.00
34 70 3923 .0169 .9448 93.64 72 4091 .0166 .9450 93.67
35 61 3984 .0147 .9595 9522 75 4166 .0173 .9623 95.37
36 48 4032 .0116 .9711 96.53 50 4216 .0116 .9739 96.81
37 47 4079 0113 9824 97.68 37 4253 .0085 .9824 97.82
38 29 4108 .0070 .9894 98.59 38 4291 .0088 .9912 98.68
39 32 4140 .0077 9971 99.33 23 4314 .0053 .9965 99.39

N
(e}

12 4152 .0029 1.0000 99.86 15 4329 .0035 1.000 99.83
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Fig. 2.7 Percentile ranks for equating Form X and Form Y of the original ACT Mathematics test

0.06

—=— Form X
0.05 4
—— FormY

o

o

E
|

0.03

Relative Frequency
o
[=3
NS
1

o
o
|

e
=3
S

T T T T 1
0 5 10 15 20 25 30 35 40
Raw Score

Fig. 2.8 Relative frequency distributions for Form X and Form Y of the original ACT Mathematics
test

The use of considerably larger graph paper would help in such a comparison.
Alternatively, difference-type plots can be used, as in Fig.2.10. In this graph, the
difference between the results for each method and the results for the identity equating
are plotted. To find the Form Y equivalent of a Form X score, just add the vertical
axis value to the horizontal axis value. For example, for equipercentile equating a
Form X score of 10 has a vertical axis value of approximately —1.8. Thus, the Form
Y equivalent of a Form X score of 10 is approximately 8.2 = 10 — 1.8. This value
is the same as the one indicated in Table 2.7 (8.1607), apart from error inherent in
trying to read values from a graph.
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Table 2.6 Moments for equating Form X and Form Y

Test Form il o sk ku
FormY 18.9798 8.9393 .3527 2.1464
Form X 19.8524 8.2116 .3753 2.3024
Form X equated to Form Y scale for various methods
Mean 18.9798 8.2116 .3753 2.3024
Linear 18.9798 8.9393 .3753 2.3024

Equipercentile 18.9799 8.9352 .3545 2.1465

In Fig. 2.10, the horizontal line for the identity equating is at a vertical axis value
of 0, which will always be the case with difference plots constructed in the manner of
Fig. 2.10. The results for mean equating are displayed by a line that is parallel to, but
nearly 1 point below, the line for the identity equating. The line for linear equating
crosses the identity equating and mean equating lines. The equipercentile equating
relationship appears to be definitely nonlinear. Referring to the equipercentile rela-
tionship, Form X appears to be nearly 2 points easier around a Form X score of 10,
and the two forms appear to be similar in difficulty at scores in the range of 25 to 40.

The plot in Fig.2.10 for equipercentile equating is somewhat irregular (bumpy).
These irregularities are aresult of random error in estimating the equivalents. Smooth-
ing methods are introduced in Chap.3, which lead to more regular plots and less
random error.

2.7 Scale Scores

When equating is conducted in practice, raw scores typically are converted to scale
scores. As described in Chap. 9, scale scores are constructed to facilitate score inter-
pretation, often by incorporating normative or content information. For example,
scale scores might be constructed to have a particular mean in a nationally repre-
sentative group of examinees. The effects of equating on scale scores are crucial to
the interpretation of equating results, because scale scores are the scores typically
reported to examinees. A further discussion of methods for developing score scales
is provided in Chap.9. The use of scale scores in the equating context is described
next.

2.7.1 Linear Conversions

The least complicated raw-to-scale score transformations that typically are used in
practice are linear in form. For example, suppose that a national norming study was
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Table 2.7 Raw-to-raw score conversion tables

Form X Form Y equivalent using equating method

Score Mean Linear Equipercentile
0 —.8726 —2.6319 .0000
1 1274 —1.5432 9796
2 1.1274 —.4546 1.6462
3 2.1274 .6340 2.2856
4 3.1274 1.7226 2.8932
5 4.1274 2.8112 3.6205
6 5.1274 3.8998 4.4997
7 6.1274 4.9884 5.5148
8 7.1274 6.0771 6.3124
9 8.1274 7.1657 7.2242
10 9.1274 8.2543 8.1607
11 10.1274 9.3429 9.1827
12 11.1274 10.4315 10.1859
13 12.1274 11.5201 11.2513
14 13.1274 12.6088 12.3896
15 14.1274 13.6974 13.3929
16 15.1274 14.7860 14.5240
17 16.1274 15.8746 15.7169
18 17.1274 16.9632 16.8234
19 18.1274 18.0518 18.0092
20 19.1274 19.1405 19.1647
21 20.1274 20.2291 20.3676
22 21.1274 21.3177 21.4556
23 22.1274 22.4063 22.6871
24 23.1274 23.4949 239157
25 24.1274 24.5835 25.0292
26 25.1274 25.6722 26.1612
27 26.1274 26.7608 27.2633
28 27.1274 27.8494 28.1801
29 28.1274 28.9380 29.1424
30 29.1274 30.0266 30.1305
31 30.1274 31.1152 31.1297
32 31.1274 32.2039 32.1357
33 32.1274 33.2925 33.0781
34 33.1274 34.3811 34.0172
35 34.1274 35.4697 35.1016
36 35.1274 36.5583 36.2426
37 36.1274 37.6469 37.1248
38 37.1274 38.7355 38.1321
39 38.1274 39.8242 39.0807

IS
[e]

39.1274 40.9128 39.9006
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Fig. 2.10 Results expressed as differences for equating Form X and Form Y of the original ACT
Mathematics test

conducted using Form Y of the 100-item test that was used earlier in this chapter to
illustrate mean and linear equating. Assume that the mean raw score, ;(Y), was 70
and the standard deviation, o(Y), was 10 for the national norm group. Also assume
that the mean scale score, u(sc), was intended to be 20 and the standard deviation
of the scale scores, o(sc), 5. Then the raw-to-scale score transformation (sc) for
converting raw scores on the old form, Form Y, to scale scores is

o(sc)

sc(y) = my + [u(sc) -

o(sc)
a(Y)

,LL(Y)] . (2.21)
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Substituting we have

5 5
sc(y) = Ey + [20 - E7Oi|
= .5y —15.

Now assume that scores on Form X are to be converted to scale scores based on the
equating used in the earlier linear equating example. As was found earlier, the linear
conversion equation for equating raw scores on Form X to raw scores on Form Y
was ly (x) = .9x + 12.2. To find the raw-to-scale score transformation for Form X,
substitute [y (x) for y in the raw-to-scale score transformation for Form Y. This gives

sclly(x)] = Slly(x)] — 15
SLOx +12.2] — 15
= 45x — 8.9.

For example, a raw score of 74 on Form X converts to a scale score of .45(74)—8.9 =
24.4. In this manner, raw-to-scale score conversions for all Form X raw scores can
be found. When another new form is constructed and equated to Form X, a similar
process can be used to find the scale score equivalents of scores on this new form.

2.7.2 Truncation of Linear Conversions

When linear transformations are used as scaling transformations, the score scale
transformation often needs to be truncated at the upper and/or lower extremes. For
example, the Form Y raw-to-scale score transformation, sc(y) = .5y — 15, produces
scale scores below 1 for raw scores below 32. Suppose that scale scores are intended
to be 1 or greater. The transformation for this form then would be as follows:

Sy—15, y > 32,
=1, y < 32.

sc(y)

Also, araw score of 22 on Form X is equivalent to a raw score of 32 = .9(22) + 12.2
on Form Y. So, the raw-to-scale score conversion for Form X is

sclly(x)] = .45x — 8.9, x > 22,
=1, x < 22.

Truncation can also occur at the top end. For example, truncation would be needed
at the top end for Form X but not for Form Y if the highest scale score was set to 35
on this 100-item test (the reader should verify this fact).
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Scale scores are typically rounded to integers for reporting purposes. Define scjy,
as the scale score rounded to an integer. Then, for example, sci;[ly (x = 74)] = 24,
because a scale score of 24.4 rounds to a scale score of 24.

2.7.3 Nonlinear Conversions

Nonlinear raw-to-scale score transformations are often used in practice. Examples
of nonlinear transformations include the following: normalized scales, grade equiva-
lents, and scales constructed to stabilize measurement error variability (see Chap.9).
The use of nonlinear transformations complicates the process of converting raw
scores to scale scores. The nonlinear function could be specified as a continuous
function. However, when using discrete test scores (e.g., number-correct scores) the
function is often defined at selected raw score values, and linear interpolation is
used to compute scale score equivalents at other raw score values. The scheme for
nonlinear raw-to-scale score transformations that is presented here is designed to be
consistent with the definitions of equipercentile equating described earlier.

The first step in describing the process is to specify sc(y), the raw-to-scale score
function for Form Y. In the present approach, the conversions of Form Y raw scores
to scale scores are specified at Form Y raw scores of —.5, Ky + .5, and all integer
score points through and including 0 to Ky. The first two columns of Table 2.8
present an example. As can be seen, each integer raw score on Form Y has a scale
score equivalent. For example, the scale score equivalent of a Form Y raw score of
24 is 22.3220. These equivalents resulted from an earlier equating of Form Y.

When Form X is equated to Form Y, the Form Y equivalents are typically non-
integer. These noninteger equivalents need to be converted to scale scores, so a
procedure is needed to find scale score equivalents of noninteger scores on Form Y.
Linear interpolation is used in the present approach. For example, to find the scale
score equivalent of a Form Y score of 24.5 in Table 2.8, find the scale score that is
halfway between the scale score equivalents of Form Y raw scores of 24 (22.3220)
and 25 (22.9178). The reader should verify that this value is 22.6199.

Note that scale score equivalents are provided in the table for raw scores of —.5
and 40.5. These values provide minimum and maximum scale scores when equiper-
centile equating is used. (As was indicated earlier, the minimum equated raw score
in equipercentile equating is —.5 and the maximum is Ky + .5.)

To make the specification of conversion for Form Y to scale scores more explicit,
let ; refer to the i-th point that is tabled. For —.5 < y < Ky + .5, define y as
the tabled raw score that is the largest among the tabled scores that are less than or
equal to y. In this case, the linearly interpolated raw-to-scale score transformation
is defined as
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Table 2.8 Raw-to-scale score conversion tables

Form Y scale Form X scale scores

Raw Scores Mean equating Linear equating Equipercentile
Score sc SCint sc SCint sc SCint sc SCint
-5 .5000 1 .5000 1 .5000 1 .5000 1
0 .5000 1 .5000 1 .5000 1 .5000 1
1 .5000 1 .5000 1 .5000 1 .5000 1
2 .5000 1 .5000 1 .5000 1 .5000 1
3 .5000 1 .5000 1 .5000 1 .5000 1
4 .5000 1 .5000 1 .5000 1 .5000 1
5 .6900 1 .5242 1 .5000 1 .5000 1
6 1.6562 2 .8131 1 .5000 1 .5949 1
7 3.1082 3 1.8412 2 .6878 1 1.1874 1
8 4.6971 5 3.3106 3 1.7681 2 2.1098 2
9 6.1207 6 4.8784 5 3.3715 3 3.4645 3
10 7.4732 7 6.2930 6 5.0591 5 4.9258 5
11 8.9007 9 7.6550 8 6.5845 7 6.3678 6
12 103392 10 9.0839 9 8.0892 8 7.7386 8
13 11.6388 12 10.5047 11 9.6489 10 9.2622 9
14 12.8254 13 11.7899 12 11.1303 11 10.8456 11
15 14.0157 14 129770 13 12.4663 12 12.1050 12
16 15.2127 15  14.1682 14 13.7610 14 13.4491 13
17 163528 16  15.3579 15 15.0626 15 14.8738 15
18 17.3824 17  16.4839 16 16.3109 16 16.1515 16
19 18.3403 18  17.5044 18 17.4321 17 17.3912 17
20 19.2844 19  18.4606 18 18.4729 18 18.4958 18
21 20.1839 20  19.3990 19 19.4905 19 19.6151 20
22 20.9947 21 202872 20  20.4415 20 20.5533 21
23 21.7000 22 21.0845 21 21.2813 21 21.4793 21
24 223220 22 21.7792 22 22.0078 22 222695 22
25 229178 23 223979 22 22.6697 23 229353 23
26 235183 24 229943 23 23.3214 23 23.6171 24
27 241314 24 235964 24 239847 24 242949 24
28 247525 25  24.2105 24 24.6590 25 24.8496 25
29 252915 25 248212 25 25.2581 25 253538 25
30 257287 26 253472 25 25.7400 26 25.7841 26
31 26.1534 26 25.7828 26 262104 26 262176 26
32 26.6480 27 262164 26  26.7684 27 26.7281 27
33 27.2385 27 2677232 27 27.4343 27 27,2908 27
34 279081 28  27.3238 27 28.2070 28 279216 28
35 28.6925 29  28.0080 28 29.1886 29 28.7998 29
36 20.7486 30  28.8270 29  30.5595 31 30.1009 30
37 31.2010 31 299336 30  32.1652 32 31.3869 31
38 32.6914 33 31.3908 31 33.7975 34 32.8900 33
39 341952 34 32.8830 33 35.2388 35 342974 34
40 354615 35  34.3565 34 36.5000 36 353356 35
40.5 36.5000 36  34.9897 35 36.5000 36 36.5000 36
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*

Yy—vy;
sc(y) = sc(y)) + —5lsclyj ) —scy))], —5<y=<Ky+.5,
Yig1 Y
= sc(—.9), y <=3,
= sc(Ky +.5), y> Ky+.5, (2.22)

where y7, | is the smallest tabled raw score that is greater than or equal to y; . Note
that sc(—.5) is the minimum scale score and that sc(Ky + .5) is the maximum scale
score.

To illustrate how this equation works, refer again to Table 2.8. How would the
scale score equivalent of a raw score of y = 18.3 be found using Eq. (2.22)? Note
that y* = 18, because this score is the largest tabled score that is less than or equal
to y. Using Eq. (2.22),

(y) = sc(18) + 83— 18[ 19) (18)]
sc(y) = sc 913 sc sc
18.3 — 18
= 17.3824 + W[18.3403 — 17.3824]

= 17.6698.

To illustrate that Eq.(2.22) is a linear interpolation expression, note that the scale
score equivalent of 18 is 17.3824. The scale score 18.3 is, proportionally, .3 of the way
between 18 and 19. This .3 value is multiplied by the difference between the scale
score equivalents at 19 (18.3403) and at 18 (17.3824). Then .3 times this difference
is .3[18.3403 — 17.3824] = .2874. Adding .2874 to 17.3824 gives 17.6698.

Typically, the tabled scores used to apply Eq.(2.22) will be integer raw scores
along with —.5 and Ky + .5. Equation (2.22), however, allows for more general
schemes. For example, scale score equivalents could be tabled at each half raw
score, such as —.5, .0, .5, 1.0, etc.

In practice, integer scores, which are found by rounding sc(y), are reported to
examinees. The third column of the table provides these integer scale score equiv-
alents for integer raw scores (scj;). A raw score of —.5 was set equal to a scale
score value of .5 and a raw score of 40.5 was set equal to a scale score value of 36.5.
These values were chosen so that the minimum possible rounded scale score would
be 1 and the maximum 36. In rounding, a convention is used where a scale score
that precisely equals an integer score plus .5 rounds up to the next integer score. The
exception to this convention is that the scale score is rounded down for the highest
scale score, so that 36.5 rounds to 36.

To find the scale score equivalents of the Form X raw scores, the raw scores on
Form X are first equated to raw scores on Form Y using Eq. (2.18). Then, substituting
ey (x) for y in Eq. (2.22),

% eY(x) - yl* * *
scley (x)] = sc(y;) + y*ﬁ[sc(yi+l) —sc(y)], =5 <ey(x) < Ky +.5.
i1~ Yi

(2.23)



2.7 Scale Scores 57

In this equation, y;" is defined as the largest tabled raw score that is less than or equal
to ey (x). This definition of y; as well as the definition of ¥, | are consistent with
their definitions in Eq. (2.22). The transformation is defined only for the range of
Form X scores, —.5 < x < Kx +.5. There is no need to define this function outside
this range, because ey (x) is defined only in this range in Eq.(2.17). The minimum
and maximum scale scores for Form X are identical to those for Form Y, which occur
at scley(x = —.5)] and at sc[ey (x = Kx + .5)], respectively.

As an example, Eq. (2.23) is used with the ACT Mathematics equating example.
Suppose that the scale score equivalent of a Form X raw score of 24 is to be found
using equipercentile equating. In Table 2.7, a Form X raw score of 24 is shown to
be equivalent to a Form Y raw score of 23.9157. To apply Eq. (2.22), note that the
largest Form Y raw score in Table 2.8 that is less than 23.9157 is 23. So, y = 23,
and y;" | = 24. From Table 2.8, s¢(23) = 21.7000 and sc(24) = 22.3220. Applying
Eq.(2.22),

scley (x = 24)] = 5¢(23.9157)

= se@3) + 2221250 04) - se3)]
= SC 24— 23 SC scC
23.9157 — 23
= 21.7000 + ——————[22.3220 — 21.7000]
24 — 23

= 22.2696.

For a Form X raw score of 24, this value agrees with the value using equipercentile
equating in Table 2.8, apart from rounding. Rounding to an integer, sciy[ey (x =
24)] = 22.

Mean and linear raw score equating results can be converted to nonlinear scale
scores by substituting my (x) or Iy (x) for y in Eq.(2.22). The raw score equivalents
from either the mean or linear methods might fall outside the range of possible Form
Y scores. This problem is handled in Eq. (2.22) by truncating the scale scores. For
example, if Iy (x) < —.5, then sc(y) = sc(—.5) by Eq. (2.22). The unrounded and
rounded raw-to-scale score conversions for the mean and linear equating results are
presented in Table 2.8.

Inspecting the central moments of scale scores can be useful in judging the accu-
racy of equating. Ideally, after equating, the scale score moments for converted Form
X scores would be identical to those for Form Y. However, the moments typically
are not identical, in part because the scores are discrete. If equating is successful,
then the scale score moments for converted Form X scores should be very similar
(say, agree, to at least one decimal place) to the scale score moments for Form Y.
Should the Form X moments be compared to the rounded or unrounded Form Y
moments? The answer is not entirely clear. However, the approach taken here is to
compare the Form X moments to the Form Y unrounded moments. The rationale for
this approach is that the unrounded transformation for Form Y most closely defines
the score scale for the test, whereas rounding is used primarily to facilitate score
interpretability. Following this logic, the use of Form Y unrounded moments for
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Table 2.9 Scale score moments

Test Form [bse Ose skse Ftye
Form 'Y
unrounded 16.5120 83812  —.1344 2.0557
rounded 164875 83750 —.1025 2.0229
Form X equated to Form Y scale for various methods
Mean
unrounded 16.7319  7.6474  —.1868 2.1952
rounded 16.6925  7.5965 —.1678 2.2032
Linear
unrounded 16.5875  8.3688  —.1168 2.1979
rounded 16.5082  8.3065 —.0776 2.1949
Equipercentile
unrounded 16.5125  8.3725  —.1300 2.0515
rounded 16.4324 83973 —.1212 2.0294

comparison purposes should lead to greater score scale stability when, over time,
many forms become involved in the equating process.

Moments are shown in Table 2.9 for Form Y and for Form X using mean, linear,
and equipercentile equating. Moments are shown for the unrounded (sc) and rounded
(scint) score transformations. Note that the process of rounding affects the moments
for Form Y. Also, the Form X scale score mean for mean equating (both rounded
and unrounded) is much larger than the unrounded scale score mean for Form Y.
Presumably, the use of a nonlinear raw-to-scale score transformation for Form Y is
responsible. When the raw-to-scale score conversion for Form Y is nonlinear, the
mean scale score for Form X is typically not equal to the mean scale score for Form
Y for mean and linear equating. Similarly, when the raw-to-scale score conversion
for Form Y is nonlinear, the standard deviation of the Form X scale scores typically
is not equal to the standard deviation of Form Y scale scores for linear equating.

For equipercentile equating, the unrounded moments for Form X are similar to
the unrounded moments for Form Y. The rounding process results in the mean of
Form X being somewhat low. Is there anything that can be done to raise the mean of
the rounded scores? Refer to Table 2.8. In this table, a raw score of 23 converts to an
unrounded scale score of 21.4793 and a rounded scale score of 21. If the unrounded
converted score had been only .0207 points higher, then the rounded converted score
would have been 22. This observation suggests that the rounded conversion might
be adjusted to make the moments more similar. Consider adjusting the conversion
so that a raw score of 23 converts to a scale score of 22 (instead of 21) and a raw
score of 16 converts to a scale score of 14 (instead of 13). The moments for the
adjusted conversion are as follows: [i;c = 16.5165, 65 = 8.3998, skge = —.1445,
and Iasc = 2.0347. Overall, the moments of the adjusted conversion seem closer
to the moments of the original unrounded conversion. For this reason, the adjusted
conversion might be used in practice.
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Should the rounded conversions actually be adjusted in practice? To the extent
that moments for the Form X rounded scale scores are made more similar to the
unrounded scale score moments for Form Y, adjusting the conversions would seem
advantageous. However, adjusting the conversions might lead to greater differences
between the cumulative distributions of scale scores for Form X and Form Y at some
scale score points. That is, adjusted conversions lead to less similar percentile ranks
of scale scores across the two forms. In addition, adjusted conversions affect the
scores of individual examinees.

Because adjusting can lead to less similar scale score distributions, and because it
adds a subjective element into the equating process, we typically take a conservative
approach to adjusting conversions. A rule of thumb that we often follow is to consider
adjusting the conversions only if the moments are closer after adjusting than before
adjusting, and the unrounded conversion is within .1 point of rounding to the next
higher or lower value (e.g., 21.4793 in the example is within .1 point of rounding to
22). Smoothing methods are considered in Chap. 3, which might eliminate the need
to consider subjective adjustments.

In the examples, scale score equivalents of integer raw scores were specified and
linear interpolation was used between the integer scores. If more precision is desired,
scale score equivalents of fractional raw scores could be specified. The procedures
associated with Eqgs. (2.22) and (2.23) are expressed in sufficient generality to handle
this additional precision. Procedures using nonlinear interpolation also could be
developed, although linear interpolation is likely sufficient for practical purposes.

When score scales are established, the highest and lowest possible scale scores
are often fixed at particular values. For example, the ACT score scale is said to range
from 1 to 36. The approach taken here to scaling when using nonlinear conversions
is to fix the ends of the score scale at specific points. Over time, if forms become
easier or more difficult, the end points could be adjusted. However, such adjustments
would require careful judgment. An alternative procedure involves leaving enough
room at the top and bottom of the score scale to handle these problems. For example,
suppose that the rounded score scale for an original form is to have a high score of
36 for the first form developed. However, there is a desire to allow scale scores on
subsequent forms to go as high as 40 if the forms become more difficult. For the initial
Form Y, a scale score of 36 could be assigned to a raw score equal to Ky and a scale
score of 40.5 could be assigned to a raw score equal to Ky + .5. If subsequent forms
are more difficult than Form Y, the procedures described here could lead to scale
scores as high as 40.5. Of course, alternate interpolation rules could lead to different
properties. Rules for nonlinear scaling and equating also might be developed that
would allow the highest and lowest scores to float without limit. The approach taken
here is to provide a set of equations to be used for nonlinear equating and scaling
that can adequately handle, in a consistent manner, many of the situations we have
encountered in practice.

One practical problem sometimes occurs when the highest possible raw score
does not equate to the highest possible scale score. For the ACT, for example, the
highest possible raw score is assigned a scale score value of 36, regardless of the
results of the equating. For the SAT (Donlon 1984, p. 19), the highest possible raw
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score is assigned a scale score value of 800, and other converted scores are sometimes
adjusted, as well.

2.8 Equating Using Single Group Designs

If practice, fatigue, and other order effects do not have an effect on scores, then
the statistical process for mean, linear, and equipercentile equating using the single
group design (without counterbalancing) is essentially the same as with the random
groups design. However, order typically has an affect, and for this reason the single
group design (without counterbalancing) is not recommended.

When the single group design with counterbalancing is used, the following four
equatings can be conducted:

1. Equate Form X and Form Y using the random groups design for examinees who
were administered Form X first and Form Y first.

2. Equate Form X and Form Y using the random groups design for examinees who
were administered Form X second and Form Y second.

3. Equate Form X and Form Y using the single group design for examinees who
were administered Form X first and Form Y second.

4. Equate Form X and Form Y using the single group design for examinees who
were administered Form X second and Form Y first.

Compare equatings 1 and 2. Standard errors of equating described in Chap.7 can
be used as a baseline for comparing the equatings. If the equatings give different
results, apart from sampling error, then Forms X and Y are differentially affected
by appearing second. In this case, only the first equating should be used. Note that
the first equating is a random groups equating, so it is unaffected by order. The
problem with using the first equating only is that the sample size might be quite
small. However, when differential order effects occur, then equating 1 might be the
only equating that would not be biased.

If equatings 1 and 2 give the same results, apart from sampling error, then Forms
X and Y are similarly affected by appearing second. In this case, all of the data
can be used. One possibility would be to pool all of the Form X data and all of the
Form Y data, and equate the pooled distributions. Angoff (1971) and Petersen et al.
(1989) provided procedures for linear equating. von Davier et al. (2004) described
a systematic scheme that is based on statistical tests using log-linear models for
equipercentile equating under the single group counterbalanced design.

2.9 Equating Using Alternate Scoring Schemes

The presentation of equipercentile equating and scale scores assumed that the tests
to be equated are scored number-correct, with the observed scores ranging from 0
to the number of items. Although this type of scoring scheme is the one that is used
most often with educational tests, alternative scoring procedures are becoming much
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more popular, and the procedures described previously can be generalized to other
scoring schemes. For example, whenever raw scores are integer scores that range
from O to a positive integer value, the procedures can be used directly by defining K
as the maximum score on a form, rather than as the number of items on a form as
has been done.

Some scoring schemes might produce discrete scores that are not necessarily inte-
gers. For example, when tests are scored using a correction for guessing, a fractional
score point often is subtracted from the total score whenever an item is answered
incorrectly. In this case, raw scores are not integers. However, the discrete score
points that can possibly occur are specifiable and equally spaced. One way to con-
duct equating in this situation is to transform the raw scores. The lowest possible
raw score is transformed to a score of 0, the next lowest raw score is transformed
to a score of 1, and so on through K, which is defined as the transformed value of
the highest possible raw score. The procedures described in this chapter then can be
applied and the scores transformed back to their original units.

Equipercentile equating also can be conducted when the scores are considered
to be continuous, which might be the case when equating forms of a computerized
adaptive test. In many ways, equating in this situation is more straightforward than
with discrete scores, because the definitional problems associated with continuiza-
tion do not need to be considered. Still, difficulties might arise in trying to define
score equivalents in portions of the score scale where few examinees earn scores.
In addition, even if the range of scores is potentially infinite, the range of scores for
which equipercentile equivalents are to be found needs to be considered.

2.10 Preview of What Follows

In this chapter, we described many of the issues associated with observed score
equating using the random groups design, including defining methods, describing
their properties, and estimating the relationships. We also discussed the relationships
between equating and score scales. One of the major relevant issues not addressed
in this chapter is the use of smoothing methods to reduce random error in estimating
equipercentile equivalents. Smoothing is the topic of Chap.3. Also, as we show in
Chaps.4 and 5, the implementation of observed score equating methods becomes
much more complicated when the groups administered the two forms are not ran-
domly equivalent. Observed score methods associated with IRT are described in
Chap. 6. Estimating random error in observed score equating is discussed in detail
in Chap.7, and practical issues are discussed in Chap.8. Scaling and linking are
discussed in Chaps.9 and 10.
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Table 2.10 Score distributions for exercise 2.4

x  fx) Fx) P y 9y Gl 0
0 .00 0 .00
1 .01 1 .02
2 .02 2 .05
3 .03 3 .10
4 .04 4 .20
5 .10 5 25
6 .20 6 .20
7 25 7 .10
8 .20 8 .05
9 .10 9 .02
10 .05 10 .01
Table 2.11 Equated scores for exercise 2.4
my (x) Ly (x) ey (x)
0
1
2
3
4
5
6
7
8
9
10

2.11 Exercises

2.1. From Table 2.2 find P(2.7), P(.2), P~ (25), P~1(97).

2.2. From Table 2.2, find the linear and mean conversion equation for converting
scores on Form X to the Form Y scale.

2.3. Find the mean and standard deviation of the Form X scores converted to the
Form Y scale for the equipercentile equivalents shown in Table 2.3.

2.4. Fill in Tables2.10 and 2.11.

2.5. If the standard deviations on Form X and Y are equal, which methods, if any,
among mean, linear, and equipercentile will produce the same results? Why?

2.6. Suppose that a raw score of 20 on Form W was found to be equivalent to a
raw score of 23.15 on Form X. What would be the scale score equivalent of a
Form W raw score of 20 using the Form X equipercentile conversion shown in
Table 2.8?
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2.7. Suppose that the linear raw-to-scale score conversion equation for Form Y was
sc(y) = 1.1y + 10. Also suppose that the linear equating of Form X to Form
Y was ly(x) = .8x + 1.2. What is the linear conversion of Form X scores to
scale scores?

2.8. In general, how would the shape of the distribution of Form X raw scores
equated to the Form Y raw scale compare to the shape of the original Form X
raw score distribution using mean, linear, and equipercentile equating?
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Chapter 3
Random Groups: Smoothing in Equipercentile
Equating

As described in Chap. 2, sample statistics are used to estimate equating relationships.
For mean and linear equating, the use of sample means and standard deviations in
place of the parameters typically leads to adequate equating precision, even when the
sample size is fairly small. However, when sample percentiles and percentile ranks
are used to estimate equipercentile relationships, equating often is not sufficiently
precise for practical purposes because of sampling error.

One indication that considerable error is present in estimating equipercentile
equivalents is that score distributions and equipercentile relationships appear irreg-
ular when graphed. For example, the equating shown in Fig.2.10 was based on over
4,000 examinees per form. Even with these large sample sizes, the equipercentile
relationship is somewhat irregular. Presumably, if very large sample sizes or the en-
tire population were available, score distributions and equipercentile relationships
would be reasonably smooth.

Smoothing methods have been developed that produce estimates of the empiri-
cal distributions and the equipercentile relationship which will have the smoothness
property that is characteristic of the population. In turn, it is hoped that the result-
ing estimates will be more precise than the unsmoothed relationships. However, the
danger in using smoothing methods is that the resulting estimates of the population
distributions, even though they are smooth, might be poorer estimates of the pop-
ulation distributions or equating relationship than the unsmoothed estimates. The
quality of analytic smoothing methods with the random groups design is an empiri-
cal issue and has been the focus of research (Cope and Kolen 1990; Cui and Kolen
2009; Fairbank 1987; Hanson et al. 1994; Kolen 1984, 1991; Little and Rubin 1994,
Liu 2011; Liu and Kolen 2011a, b; Moses and Holland 2009a). Also, when there
are very few score points, the equating relationships can appear irregular, even after
smoothing, because of the discreteness issues discussed in Chap. 2. Two general
types of smoothing can be conducted: In presmoothing, the score distributions are
smoothed; in postsmoothing, the equipercentile equivalents are smoothed. Although
smoothing is sometimes conducted by hand, it is most often conducted using
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analytical methods. Various analytic smoothing techniques are described in this
chapter. In addition, various practical issues in choosing among various equating
relationships are considered.

3.1 A Conceptual Statistical Framework for Smoothing

A conceptual statistical framework is developed in this section which is intended to
provide a framework for distinguishing random error in equipercentile equating from
systematic error that is introduced by smoothing. The following discussion considers
different sources of equating errors. To be clear that the focus is on a Form X raw
score, define x; as a particular score on Form X. Define ey (x;) as the population
equipercentile equivalent at that score, and define éy (x;) as the sample estimate.
Also assume that E[ey(x;)] = ey(x;), where E is the expectation over random
samples. Equating error at a particular score is defined as the difference between the
sample equipercentile equivalent and the population equipercentile equivalent. That
is, equating error at score x; for a given equating is

[éy (xi) — ey (x)]. (3.1

Conceive of replicating the equating a large number of times; for each replication
the equating is based on two random samples of examinees from a population of
examinees who take Form X and Form Y, respectively. Equating error variance at
score point x; is

var[éy (x)] = E[éy (x;) — ey ()12, (3.2)

where the variance is taken over replications. The standard error of equating is defined
as the square root of the error variance,

seléy (x)] = Vvarléy (x)] = VE[éy (x;) — ey (x;)12. (3.3)

The error indexed in Egs. (3.1)—(3.3) is random error that is due to the sampling of
examinees to estimate the population quantity.

A graphic depiction is given in Fig. 3.1. In this figure, the Form Y equivalents of
Form X scores, indicated by ey (x), are graphed. Also, a particular score, x;, is shown
on the horizontal axis. Above x;, a distribution is plotted that represents estimated
Form Y equivalents of x; over replications of the equating. As can be seen, the
mean equivalent falls on the ey (x) curve. Random variability, due to the sampling
of examinees, is indexed by se[éy (x;)]. Smoothing methods often can be used to
reduce the error variability. Define fy (x;) as an alternative estimator of ey (x;) that
results from using a smoothing method. Define

ty (xi) = Elfy (x;)], (34
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which is the expected value over replications of the smoothed equating. Defining
total error at score x; as fy (x;) — ey (x;), the mean-squared error (mse) in equating
at score x; using the smoothing method is

mselfy (xi)] = Eliy (x)) — ey (x)]*. (3.5)

Random error variability in the smoothed equating relationships is indexed by

var(ty (x;)] = Elfy (x;) — ty (x1)]?, (3.6)

selty (xi)] =\ var[iy (x)].

Systematic error, or bias, in equating using smoothing is defined as

and

bias[ty (x;)] =ty (x;) — ey (x;). (3.7)

Total error can be partitioned into random error and systematic error components as
follows:

fy (xi) — ey (x;) = [fy (xi) — ty (x)] + [ty (x;) — ey (x))].
{Total Error}  {Random Error} {Systematic Error}
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In terms of squared quantities,
mseliy (x;)] = var[fy (x;)] + {bias[ty (x)]}*
= Elfy (x;) — ty (x) 1> + [ty (xi) — ey (x)]°. (3.8)

Thus, when using a smoothing method, total error in equating is the sum of random
error and systematic error components. Smoothing methods are designed to produce
smooth functions which contain less random error than that for unsmoothed equiper-
centile equating. However, smoothing methods can introduce systematic error. The
intent in using a smoothing method is for the increase in systematic error to be more
than offset by the decrease in random error. Then the total error using the smoothing
method is less than that for the unsmoothed equivalents. That is, smoothing at score
point x; is useful to the degree that mse[fy (x;)] is less than var[éy (x;)].

Refer to Fig. 3.2 for a graphic description. In this figure, the Form Y equivalents
of Form X scores, indicated by ey (x), are graphed as they were in Fig. 3.1. Also,
ty (x) is graphed and differs from ey (x). This difference at x; is referred to as “Sys-
tematic Error” in the graph. The distribution plotted above x; represents Form Y
equivalents of x; over replications of the smoothed equating. The random variability
due to sampling of examinees is indexed by se[fy (x;)]. Compare the random error
component in Fig. 3.2 to that in Fig. 3.1, which presents random equating error with-
out smoothing. This comparison suggests that the smoothing method results in less
random equating error at score x; than does the unsmoothed equipercentile equating.
Thus, the smoothing method reduces random error but introduces systematic error.

The preceding discussion focused on equating error at a single score point. Overall
indexes of error can be obtained by summing each of the error components over score
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points. In this case, the goal of smoothing can be viewed as reducing mean-squared
(total) error in estimating the population equipercentile equivalents over score points.

3.2 Properties of Smoothing Methods

Mean and linear equating methods can be viewed as smoothing methods that estimate
the equipercentile relationship. In some situations, these methods can lead to less
total error in estimating the equipercentile equivalents than equipercentile equating.
For example, what if the score distributions for Form X and Form Y are identical
in shape (i.e., they differ only in mean and standard deviation)? In this case, the
population linear equating and equipercentile equating relationships are identical.
For samples of typical size, linear equating will produce less total error in estimating
equipercentile equivalents than equipercentile equating when the distributions are of
the same shape, because less random error is associated with linear equating than
with equipercentile equating (see Chap. 7). Even if the distribution shapes are only
similar, linear methods might still produce less total error in estimating equipercentile
equivalents than equipercentile equating for small samples.

A smoothing method should possess certain desirable characteristics for it to
be useful in practice. First, the method should produce accurate estimates of the
population distributions or equipercentile equivalents. That is, the method should
not systematically distort the relationship in a manner that has negative practical
consequences. Second, the method should be flexible enough to handle the variety of
distributions and equipercentile relationships that are found in practice. Third, there
should be a statistical framework for studying fit. Fourth, the method should improve
estimation, as shown by an empirical research base. Fortunately, there are analytic
smoothing methods that share these characteristics.

Log-linear presmoothing methods and cubic spline postmoothing methods have
been researched extensively and have been found to improve estimation of score
distributions or equipercentile equating relationships under the random groups design
(Cui and Kolen 2009; Fairbank 1987; Hanson et al. 1994; Kolen 1984, 1991; Liu
2011; Liu and Kolen 2011a, b; Moses and Holland 2009a). In addition, a strong
true score method has been found to be useful in certain situations. Hanson et al.
(1994) demonstrated, empirically, that the presmoothing and postsmoothing methods
described here improve estimation of equipercentile equivalents to a similar extent.
These methods possess the four characteristics of smoothing methods that were
described earlier: they have been shown to produce accurate results, they are flexible,
they are associated with a statistical framework for studying fit, and they can improve
estimation as shown by an empirical research base. These methods are described next.

Other methods have been studied that estimate the relative frequency at a score
point by averaging the relative frequency at a score point with relative frequencies at
surrounding score points; these rolling average or kernel smoothing methods were
reviewed by Kolen (1991) and include the Cureton and Tukey (1951) method. Kolen
(1991) indicated that these methods often lead to estimated distributions that appear
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bumpy or are systematically distorted. Although these methods have been found to
improve estimation, the improvement is less than for some other methods. For these
reasons, rolling average methods are not described further.

Brandenburg and Forsyth (1974) fit score distributions with a continuous four-
parameter distribution. Haberman (2011) and Wang (2008, 2011) have developed
procedures for fitting test score distributions using continuous functions. In addition,
Cui and Kolen (2009) examined alternative spline functions. Although not described
in detail in this chapter, these methods appear promising.

3.3 Presmoothing Methods

In presmoothing methods, the score distribution is smoothed. In smoothing the dis-
tributions, accuracy in estimating the distributions is crucial. One important property
that relates closely to accuracy is moment preservation. In moment preservation, the
smoothed distribution has at least some of the same central moments as the observed
distribution. For example, a method preserves the first two central moments if the
mean and standard deviation of the smoothed distribution are the same as the mean
and standard deviation of the unsmoothed distribution.

One presmoothing method uses a polynomial log-linear model with polynomial
contrasts to smooth score distributions. The second method is a strong true score
model. In strong true score models, a general distributional form is specified for true
scores. A distributional form is also specified for error given true score. For both
methods, after the distributions are smoothed, Form X is equated to Form Y using
the smoothed distributions and equipercentile equating. This equating relationship
along with the raw-to-scale score transformation for Form Y are used to convert
Form X scores to scale scores.

3.3.1 Polynomial Log-Linear Method

Log-linear models that take into account the ordered property of test scores can be
used to estimate test score distributions. The method considered here fits polynomial
functions to the log of the sample density. This model was described by Darroch
and Ratcliff (1972), Haberman (1974a, b, 1978) and Rosenbaum and Thayer (1987).
Holland and Thayer (1987, 2000) presented a thorough description of this model,
including algorithms for estimation, properties of the estimates, and applications
to fit test score distributions. The polynomial log-linear method fits a model of the
following form to the distribution:

log[Nx f(x)] = wo + w1x + w2x2 + -4 wcxc. (3.9
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In this equation, the log of the density is expressed as a lower-order polynomial of
degree C. For example, if C = 2, then log[Ny f (x)] = wo + wix + wrx2, and the
model is a polynomial of degree 2 (quadratic). The w parameters in the model can
be estimated by the method of maximum likelihood. Note that the use of logarithms
allows for log-linear models to be additive, as in Eq. (3.9).

The resulting fitted distribution has the moment-preservation property, meaning
that the first C moments of the fitted distribution are identical to those of the sample
distribution. For example, if C = 2, then the mean and standard deviation of the
fitted distribution are identical to the mean and standard deviation of the sample
distribution. Holland and Thayer (1987) described algorithms for maximum likeli-
hood estimation with this method. Some statistical packages for log-linear models
can be used, including the LOGLINEAR procedure of SPSS-X and the SAS macro
described by Moses and von Davier (2006) and referenced by Moses and von Davier
(2011) as well as the RAGE-RGEQUATE computer program described in Appendix
B and EQUATING RECIPES (Brennan et al. 2009).

The choice of C is an important consideration when using this method. The fitted
distribution can be compared, subjectively, to the empirical distribution. Because this
method uses a log-linear model, goodness-of-fit statistical significance testing meth-
ods can be used. The procedures considered here are based on the likelihood ratio
chi-square goodness-of-fit statistic for a log-linear model with a particular smooth-
ing parameter C, X%;' These procedures were described and investigated by Moses
and Holland (2009a) in the context of using log-linear methods to smooth score
distributions.

In one procedure, the overall chi-square statistic, X%;, is tested for significance
with C — 1 degrees of freedom. A significant value of the statistic suggests the
model does not fit. In model selection, preference is given to the simplest model
that adequately fits the distribution, under the presumption that models that are more
complicated than necessary might lead to excess random equating error.

Because the models are hierarchical, a difference chi-square statistic can be cal-
culated by finding the difference between likelihood ratio chi-squares for adjacent
values of C as ch — X2C 41~ This difference chi-square statistic is tested for signifi-
cance with one degree of freedom. For example, the difference between the overall
likelihood ratio chi-square statistics for C = 2 and C = 3, X% - X%’ is compared
to a chi-square table with one degree of freedom. A significant difference suggests
that the model with the larger value of C (e.g., C = 3) fits the data better than the
model with the smaller value of C (e.g., C = 2). A particular significance level (say
.05) might be chosen for all tests. Alternatively, to control the Type I error rate over
significance tests for all models (i.e., values of C) being considered, a significance
level of 1 — (1 — o ) Y/ #models=1) could be used, where v is the desired nominal
significance level and #models is the number of models (distinct values of C) that
are under under consideration.

Moses and Holland (2009a) described how to use these difference chi-square
statistics to select a smoothing parameter using a complex-to-simple model selection
strategy that was described by Haberman (1974b). Beginning with the model with the
second largest value of C, the difference chi-square statistic is tested for significance.
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A significant difference chi-square leads to retaining the model with the largest value
of C and rejecting all models with lower values of C. A non-significant difference
chi-square statistic leads to consideration of the model with the next smallest value
of C. This process continues for each smaller value of C until a significant difference
chi-square statistic is found. The selected value of C is one greater than the largest
value of C with a significant difference chi-square statistic.

The Aikake information function (AIC, Akaike 1981) wuses what
Moses and Holland (2009a) referred to as the parsimony strategy to balance model
fit and the number of parameters in the model. The A/ C criterion is based on the
overall chi-square statistic and is calculated as AIC = ch + 2(C + 1). This sta-
tistic is calculated for each C being considered, and the C with the smallest value
of AIC among the values of C being considered is taken as the best model under
this criterion. Moses and Holland (2009a) and Liu and Kolen (201 1b) found that the
AIC criterion led to less estimation error than other parsimony strategies that they
considered.

Because multiple significance tests and multiple model selection procedures can
be involved, these procedures should be used in combination with the inspection
of graphs and central moments, and previous experience in choosing a degree of
smoothing. When inspecting graphs, the investigator tries to judge whether the fitted
distribution is smooth and does not depart too much from the empirical distribution.
Refer to Bishop et al. (1975) for a general description of model fitting procedures for
log-linear models and to Moses (2008) and Cureton and Tukey (1951) for additional
strategies for use with log-linear models in fitting score distributions.

3.3.2 Strong True Score Method

Unlike the log-linear method, strong true score methods require the use of a para-
metric model for true scores. Lord (1965) developed a procedure, referred to here
as the beta4 method, to estimate the distribution of true scores. This procedure also
results in a smooth distribution of observed scores, which is the primary reason that
Lord (1965) method is of interest here. In the development of the beta4 procedure, a
parametric form is assumed for the population distribution of proportion-correct true
scores, ¥ (7). Also, a conditional parametric form is assumed for the distribution of
observed score given true score, f (x|7). Then the observed score distribution can be
written as follows:

1
J(x) :/0 Jfx[m)p(rydr. (3.10)

In the beta4 method proposed by Lord (1965) the true score distribution, ¥(7), was
assumed to be four-parameter beta. The four-parameter beta has two parameters that
allow for a wide variety of shapes for the distribution. For example, the four-parameter
beta can be skewed positively or negatively, and it can even be U-shaped. The four-
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parameter beta also has parameters for the high— and low—proportion-correct true
scores that are within the range of zero to one. The conditional distribution of observed
score given true score, f(x|7), was assumed by Lord (1965) to be either binomial
or compound binomial. Lord (1965) provided a two-term approximation to the com-
pound binomial method that is usually used in implementing the method. The score
distribution, f(x), that results from the use of Eq. (3.10) in combination with the
model assumptions just described is referred to as the four-parameter beta compound
binomial distribution or the beta4 distribution. This distribution can take on a wide
variety of forms.

Lord (1965) presented a procedure for estimating this distribution and the asso-
ciated true score distribution by the method of moments. This estimation procedure
uses the number of items, the first four central moments (mean, standard deviation,
skewness, and kurtosis) of the sample distribution, and a parameter Lord referred to
as k. Lord’s k can be estimated directly from the coefficient alpha reliability coeffi-
cient. Hanson (1991) also described the estimation procedure in detail. He described
situations in which the method of moments leads to invalid parameter values, such as
an upper limit for proportion-correct true scores above 1, and provided procedures
for dealing with them.

One important property of this method is that the first four central moments of the
fitted distribution agree with those of the sample distribution, provided there are no
invalid parameter estimates. Otherwise, fewer than four central moments agree. For
example, suppose that the method of moments using the first four central moments
produces invalid parameter values. Then the method described by Hanson (1991) fits
the distribution using the method of moments so that the first three central moments
agree, and the fourth moment of the fitted distribution is as close as possible to the
fourth moment of the observed distribution.

As with the log-linear model, the fit of the model can be evaluated by comparing
plots and central moments of the sample and fitted distributions. Statistical methods
also can be used. A standard chi-square goodness-of-fit statistic can be calculated,
as suggested by Lord (1965). Assuming that all score points are included in the
calculation of the chi-square statistic, the degrees of freedom are the number of score
points (K + 1, to account for a score of 0), minus 1, minus the number of parameters
fit. For the beta4 method, the degrees of freedom are K —4 = (K + 1) — 1 — 4.

There are some other strong true score methods that are related to the betad
method. One simplification of the beta4 method is the beta-binomial or negative
hypergeometric distribution described by Keats and Lord (1962). One difference
between this model and the Lord (1965) model is that the two-parameter beta distri-
bution is used for true scores. The two-parameter beta distribution is identical to a
four-parameter beta distribution with the highest and lowest proportion-correct true
scores set at 1 and 0, respectively. The beta-binomial model uses a binomial dis-
tribution for the distribution of observed score given true score. The beta-binomial
distribution fits a narrower range of distributions than the beta4 distribution. For
example, the beta-binomial distribution cannot be negatively skewed if the mean is
less than one-half the items correct. Kolen (1991) concluded that the beta-binomial
is not flexible enough to be used in typical equating applications. Carlin and Rubin
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Fig. 3.3 Presmoothing Form Y distribution

(1991) studied a special case of the beta4 method that fits three moments, and found
that it fit considerably better than the beta-binomial model. Little and Rubin (1994)
studied and extended the beta binomial model and found that it and the log-linear
method improved estimation.

Lord (1969) generalized the beta4 distribution. In this generalization, the paramet-
ric form of the true score distribution was not specified. Lord (1969, 1980) referred
to the resulting procedure as Method 20. Method 20 is more flexible than the beta4
method. For example, Method 20 can produce a variety of multimodal distributions.
However, Lord (1969) indicated that Method 20 requires sample sizes of at least
10,000 examinees per form, which makes it impractical in most equating situations.

3.3.3 Illustrative Example

The ACT Mathematics example that was considered in the previous chapter is used
to illustrate the presmoothing methods. The computer program RAGE-RGEQUATE
described in Appendix B was used to conduct the equating. This example was also
considered in Brennan et al. (2009). The first step in applying these methods is to fit
the raw score distributions. The smoothed distributions (indicated by solid symbols)
for Form Y are shown in Fig. 3.3 along with the unsmoothed distributions. The



3.3 Presmoothing Methods 75

0.06 —
0.06 Log-linear C =2
0.05 0.05
g g
§ 0.04 g 004
g g
£ 0.03 i 003
2 =
£ 0.02 4 < 002
&’ -7
0.01 — 0.01
0.00 0.00 e ———————T—T—
0 5 10 15 20 25 30 35 40 0O 5 10 15 20 25 30 35 40
Raw Score Form X Raw Score Form X
0.06 — 0.06 —
Log-linear C =6 Log-linear C =10
0.05 R 0.05 .

0.04

Relative Frequency
=)
o
(98]
1
Relative Frequency
=)
=)
(98]
|

0.02 0.02
0.01 0.01
0.00 0.00
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
Raw Score Form X Raw Score Form X

Fig. 3.4 Presmoothing Form X distribution

distributions for Form X are shown in Fig. 3.4. The beta4 and selected log-linear
smoothed distributions are shown. In fitting the beta4 method for Form X, fitting all
four moments resulted in invalid parameter estimates, so only the first three moments
were fit. The beta4 model was fit setting Lord’s £ = 0. Visual inspection suggests
that the beta4 method fits the distributions of both forms very well. The log-linear
method with C = 2 appears to fit both distributions poorly. For Form X and Form
Y, C = 6 appears to fit the distributions well. The C = 10 smoothings appear to
slightly overfit the distributions for both forms in the score range of 23-30, in that
the fitted distributions are a bit irregular. These irregularities suggest that C = 10
might be fitting aspects of the distributions that are due to sampling error.

Summary statistics for the fitted distributions are shown in Table 3.1 for Form
Y and Form X. Because of the moment-preservation property of the beta4 method,
the first three or four moments of the fitted distribution for this method agree with
those for the sample distribution. Only three moments could be fit using the beta4
method with Form X, so the kurtosis for the betad method differs from the kurto-
sis for the sample data. However, this difference in kurtosis values is small (2.3024
for the sample distribution and 2.2806 for the fitted distribution). For both distribu-
tions, the chi-square statistic, X2 (df) for the beta4 method is less than its degrees of
freedom, indicating a reasonable fit.
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Table 3.1 Moments and fit statistics for presmoothing
Form Method [ & sk ku o x2df) xE—xi, AIC

Y Sample  18.9798 8.9393 .3527 2.1464
Beta4 18.9798 8.9393 .3527 2.1464  31.64(36)

Log-linear

C =10 18.9798 8.9393 .3527 2.1464  25.92(30) 47.92
C=9 18.9798 8.9393 .3527 2.1464  26.38(31) 46 46.38
Cc=38 18.9798 8.9393 .3527 2.1464  27.00(32) .62 45.00
Cc=1 18.9798 8.9393 .3527 2.1464  28.30(33) 1.30 4430
C=6 18.9798 8.9393 .3527 2.1464  29.45(34) 1.15 4345
Cc=5 18.9798 8.9393 .3527 2.1464  39.31(35) 9.86 51.31
C=4 18.9798 8.9393 .3527 2.1464  61.53(36) 2222 71.53
C=3 18.9798 8.9393 .3527 2.5167 318.66(37) 257.13 326.66
CcC=2 18.9798 8.9393 .0709 2.3851 489.47(38) 170.81 495.57
C=1 18.9798 11.8057 .1037 1.8134 1579.99(39)  1090.52 1583.99

X Sample  19.8524 8.2116 .3753 2.3024
Beta4? 19.8524 8.2116 .3753 2.2806  33.97(37)

Log-linear

C =10 19.8524 8.2116 .3753 2.3024  29.68(30) 51.68
Cc=9 19.8524 8.2116 .3753 2.3024  29.91(31) 23 4991
C=38 19.8524 8.2116 .3753 2.3024  29.94(32) .03 4794
C=1 19.8524 8.2116 .3753 2.3024  30.40(33) 46 46.40
C=6 19.8524 8.2116 .3753 2.3024  30.61(34) 20 44.61
C=5 19.8524 8.2116 .3753 2.3024  35.78(35) 5.18 4778
C=4 19.8524 8.2116 .3753 2.3024  40.80(36) 5.01  50.80
Cc=3 19.8524 8.2116 .3753 2.6565 212.82(37) 172.02 220.82
C=2 19.8524 8.2116 .0082 2.5420 445.19(38) 23236 451.19
C=1 19.8524 11.8316 .0150 1.7989 2215.02(39)  1769.83 2219.02

2 Only 3 moments could be fit using the beta4 method with Form X

The log-linear method was fit using values of C ranging from 1 to 10 for both
forms. Because of the moment-preservation property of the log-linear method, the
first four moments of the fitted distribution for C > 4 agree with those for the
sample distribution, three moments agree for C = 3, and fewer moments agree for
lower values of C. Likelihood ratio chi-square and AIC statistics are presented in
Table 3.1. The model selection strategy here is to use these statistics as guides.

The column with heading x?(df) in Table 3.1 is the overall goodness-of-fit test.
A significant chi-square statistic suggests that the model does not fit the observed
data. For Form Y, at the 0.05 level of significance C = 5 is the smallest value of C
with a nonsignificant overall chi-square statistic, so it is selected by this criterion.
For Form X, at the 0.05 level of significance C = 4 is the smallest value of C with a
nonsignificant overall chi-square statistic, so it is chosen by this criterion. (Note that
at the 0.05 level, the chi-square critical values range from 43.8 to 54.6, approximately,
for the degrees of freedom of these tests.)
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The difference statistic, X2C — X2c +1- is a one degree of freedom chi-square that is
the difference between the overall chi-square at C and the overall chi-square at C + 1.
A significant difference suggests that the model with parameter C + 1 improves the
fit over the model with parameter C. Using the XZC — ch 4 Statistic with the complex-
to-simple model selection strategy, a value of C is chosen that is one greater than the
largest value of C that has a significant chi-square statistic. For both distributions,
using a significance level of 0.05 for each of the tests, the value at C = 5 is the highest
value with a significant chi-square statistic (i.e., greater than 3.84), suggesting that
C = 6 should be chosen. If, however, the alpha level is adjusted to control the alpha
level over all tests, then the alpha level used is 1 — (1 — 0.05)1/(10’1) = 0.0057, and
the chi-square critical value with one degree of freedom is 7.65. Using this critical
value, C = 6 is chosen for Form Y, and C = 4 is chosen for Form X.

The AIC criterion is given in the last column of Table 3.1. Using this criterion,
the value of C is chosen with the smallest value of AIC. For both forms, C = 6 is
chosen using this criterion.

Based on all of the chi-square criteria, the C chosen for Form Y is either 5 or 6,
and the range of C chosen for Form X is 4 to 6. Although any combinations of these
values of C might be considered for use in practice, models using C = 6 for Form
X and C = 6 for Form Y are examined further in this example.

After fitting the distributions, equipercentile methods are used to equate Form
X and Form Y. The equipercentile relationships are presented in Table 3.2 and are
graphed in Fig. 3.5 for the beta4 method and the log-linear method with C = 6 in the
same format that was used in Fig. 2.10. Figure 3.5 also shows the identity equating
and unsmoothed relationships. In addition, -1 standard error bands are shown. These
bands were calculated using standard errors of unsmoothed equipercentile equating
that are described in Chap. 7. The upper part of the bands were formed by adding
one standard error of equipercentile equating to the unsmoothed relationship. The
lower part of the bands were formed by subtracting one standard error. For equat-
ing to be adequate, a sensible standard is that the smoothed relationship should lie
predominantly within the standard error band.

The equipercentile relationship shown for the beta4 method falls within the stan-
dard error band except at Form X raw scores of 1, 2, 7, and 39. These scores are
extreme, with few examinees earning any of the scores. Because there are few ex-
aminees at these scores, and standard errors of equipercentile equating are poorly
estimated at the extremes, these scores can be disregarded and the fit for the betad
method appears to be adequate. The equipercentile relationship shown for the log-
linear method with C = 6 is within the standard error band at all scores except at
a Form X raw score of 2. The log-linear equivalents are, in general, closer to the
unsmoothed relationship than those for the beta4 method. Because the log-linear
method results in a smooth curve that is closer to the unsmoothed relationship, it
might be viewed as somewhat superior to that for the beta4 method in this case.
Because the relationship for both methods appears smooth without departing too far
from the unsmoothed relationship, equating using either method seems adequate.

Summary statistics for the raw-to-raw equipercentile equating using these two
presmoothing methods are presented in Table 3.3. The moments for the two smoothed
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Table 3.2 Raw-to-raw score conversions for presmoothing

Form Y equivalent using equating method

Form X Standard Log-linear
score error Unsmoothed Betad cC=6
0 1.9384 .0000 —.4581 —.4384
1 .8306 9796 .1063 .1239
2 5210 1.6462 .8560 9293
3 .8210 2.2856 1.7331 1.8264
4 .2950 2.8932 2.6380 2.7410
5 1478 3.6205 3.5517 3.6573
6 2541 4.4997 4.4434 4.5710
7 1582 5.5148 5.3311 5.4725
8 .1969 6.3124 6.2572 6.3577
9 1761 7.2242 7.2121 7.2731
10 1731 8.1607 8.1931 8.2143
11 .1952 9.1827 9.2010 9.1819
12 .1800 10.1859 10.2367 10.1790
13 2311 11.2513 11.3003 11.2092
14 2431 12.3896 12.3892 12.2750
15 2138 13.3929 13.4985 13.3764
16 2764 14.5240 14.6263 14.5111
17 2617 15.7169 15.7633 15.6784
18 .3383 16.8234 16.9047 16.8638
19 2826 18.0092 18.0470 18.0566
20 2947 19.1647 19.1880 19.2469
21 .3299 20.3676 20.3258 20.4262
22 3183 21.4556 21.4589 21.5911
23 .3865 22.6871 22.5890 22.7368
24 .3555 23.9157 23.7131 23.8595
25 3013 25.0292 24.8287 24.9594
26 .3683 26.1612 25.9347 26.0374
27 3532 27.2633 27.0296 27.0954
28 .3069 28.1801 28.1124 28.1357
29 3422 29.1424 29.1817 29.1606
30 .2896 30.1305 30.2362 30.1729
31 .3268 31.1297 31.2743 31.1749
32 .3309 32.1357 32.2945 32.1691
33 .3048 33.0781 33.2951 33.1576
34 .3080 34.0172 34.2741 34.1424
35 .3044 35.1016 35.2296 35.1250
36 .3240 36.2426 36.1603 36.1064
37 2714 37.1248 37.0669 37.0873
38 .3430 38.1321 37.9553 38.0676
39 2018 39.0807 38.8442 39.0462

N
[}

2787 39.9006 39.7984 40.0202
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Fig. 3.5 Raw-to-raw score equivalents for presmoothing

Table 3.3 Raw score moments for presmoothing

Test form il o sk ku
Form Y 18.9798 8.9393 3527 2.1464
Form X 19.8524 8.2116 3753 2.3024
Form X Equated to Form Y Scale

Unsmoothed 18.9799 8.9352 3545 2.1465
Beta4 18.9805 8.9307 .3556 2.1665

Log-linear C =6 18.9809 8.9354 3541 2.1464

methods are very similar to those for Form Y, again suggesting that both of the
smoothings were adequate.

The next step in equating is to convert the raw scores on Form X to scale scores,
as was done in Table 2.8. Scale score moments are shown in Table 3.4, and the
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Table 3.4 Scale score moments for presmoothing

Test form [bse Ose skse Ftye
Form Y
unrounded 16.5120 8.3812 —.1344 2.0557
rounded 16.4875 8.3750 —.1025 2.0229
Form X Equated to Form Y Scale
Unsmoothed
unrounded 16.5125 8.3725 —.1300 2.0515
rounded 16.4324 8.3973 —.1212 2.0294
Beta4
unrounded 16.5230 8.3554 —.1411 2.0628
rounded 16.4999 8.3664 —.1509 2.0549
Log-linear C =6
unrounded 16.5126 8.3699 —.1294 2.0419
rounded 16.5461 8.3772 —.1289 2.0003

raw-to-scale score conversions are shown in Table 3.5. The unsmoothed moments
and equivalents are identical to the values shown previously in Chap. 2. The mo-
ments for the unrounded scale scores all appear to be very similar to those for
the unrounded scale scores for Form Y. Also, the moments for the rounded scale
scores for the beta4 method appear to be similar to those for the unrounded scale
scores for Form Y. However, the mean for the rounded log-linear method (16.5461)
appears to be somewhat larger than the mean for the Form Y unrounded equiv-
alents (16.5120). This observation suggests that it might be desirable to consider
adjusting the rounded raw-to-scale score conversion for the log-linear method, as
was done in Chap. 2. Refer to Table 3.5. For the log-linear method, a raw score
of 23 converts to a scale score of 21.5143, which rounds to a 22. If the raw score
of 23 is converted to a scale score of 21 instead of a scale score of 22, then the
moments are as follows: [i;c = 16.5121, 65, = 8.3570, S7€sc = —0.1219, and
lgz}sc = 2.0142. After adjustment, the mean is closer to the unrounded mean for
Form Y. However, the standard deviation and skewness are farther away. Because
the mean is more often given primary attention and the other moments are still reason-
ably close to the Form Y unrounded moments, the adjustment appears to improve the
equating. However, the results without adjustment also appear to be acceptable. As
was indicated in Chap. 2, adjustment of conversions should be done conservatively,
because it affects score distributions and individual scores.

3.4 Postsmoothing Methods

In postsmoothing methods, the equipercentile equivalents, éy (x), are smoothed di-
rectly. Postsmoothing methods fit a curve to the equipercentile relationship. In imple-
menting postsmoothing methods, the smoothed relationship should appear smooth
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Table 3.5 Raw-to-scale score conversions for presmoothing

Form Y scale Form X scale scores
Raw Scores Unsmoothed Beta4 Log-linear C =6
Score sc SCint sc SCint sc SCint sc SCint
-5 .5000 1 .5000 1 .5000 1 .5000 1
0 .5000 1 .5000 1 .5000 1 .5000 1
1 .5000 1 .5000 1 .5000 1 .5000 1
2 .5000 1 .5000 1 .5000 1 .5000 1
3 .5000 1 .5000 1 .5000 1 .5000 1
4 .5000 1 .5000 1 .5000 1 .5000 1
5 .6900 1 .5000 1 .5000 1 .5000 1
6 1.6562 2 .5949 1 .5842 1 .6084 1
7 3.1082 3 1.1874 1 1.0100 1 1.1465 1
8 4.6971 5 2.1098 2 2.0296 2 2.1756 2
9 6.1207 6 3.4645 3 3.4451 3 3.5421 4
10 7.4732 7 4.9258 5 4.9720 5 5.0022 5
11 8.9007 9 6.3678 6 6.3925 6 6.3667 6
12 103392 10 7.7386 8 7.8111 8 7.7287 8
13 11.6388 12 9.2622 9 9.3327 9 9.2016 9
14 12.8254 13 10.8456 11  10.8450 11  10.6965 11
15 14.0157 14 121050 12 122303 12 12.0855 12
16 152127 15 13.4491 13 13,5709 14  13.4337 13
17 163528 16  14.8738 15 14.9294 15 14.8277 15
18 17.3824 17 16.1515 16 162441 16  16.1975 16
19 18.3403 18 17.3912 17 17.4274 17  17.4367 17
20 19.2844 19 18.4958 18 185178 19  18.5734 19
21 20.1839 20 19.6151 20 195775 20 19.6678 20
22 209947 21 205533 21 205560 21 20.6631 21
23 217000 22 21.4793 21 21.4101 21  21.5143 22
24 223220 22 222695 22 221436 22 22.2346 22
25 229178 23 229353 23 228158 23  22.8936 23
26 235183 24 23,6171 24 234791 23 23.5412 24
27 241314 24 242949 24 241498 24 24.1906 24
28 247525 25 248496 25 248131 25 24.8256 25
29 252915 25 253538 25 253710 25  25.3617 25
30 257287 26 2577841 26 25.8290 26  25.8021 26
31 26.1534 26 262176 26 262891 26  26.2399 26
32 26.6480 27 26,7281 27 26.8219 27  26.7479 27
33 27.2385 27 272908 27 274361 27  27.3441 27
34 279081 28 279216 28 28.1230 28  28.0198 28
35 28.6925 29 287998 29 289350 29  28.8245 29
36 29.7486 30  30.1009 30 299815 30 29.9032 30
37 31.2010 31 313869 31 313006 31 31.3312 31
38 32,6914 33 32.8900 33  32.6247 33  32.7931 33
39 34.1952 34 342974 34 339609 34 34.2539 34
40 354615 35 353356 35 352062 35 354871 35
40.5 36.5000 36 36.5000 36 36.5000 36  36.5000 36
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without departing too much from the observed relationship. The method to be de-
scribed was presented by Kolen (1984) and makes use of cubic smoothing splines
described by Reinsch (1967). The spline fitting algorithm was also described by de
Boor (1978, pp. 235-243). Polynomials also could be used, but cubic splines are
used instead because they appear to provide greater flexibility.

For integer scores, x;, the spline function is,

dy (x) = vo, + v1, (x = ;) + v, (x — x)? + v3, (¥ = x)?, 3.11)
x;i <x <x;+1. ’
The weights (vo;, v1;, v2;, v3;) change from one score point to the next, so that there
is a different cubic equation defined between each integer score. At each score point,
X;, the cubic spline is continuous (continuous second derivatives). The spline is fit
over the range of scores Xjoy t0 Xpigh, 0 < Xiow < X < Xpjgh < Kx, where x, is the
lower integer score in the range and xj;gp, is the upper integer score in the range.
The function, over score points, is minimized subject to having minimum curva-
ture and satisfying the following constraint:

high T » . 2

i dy (x;) — ey (x;)

et seley (x;)]

= <s. (3.12)
Xhigh — Xlow + 1

In this equation, the summation is over those points for which the spline is fit. The
term Se[ey (x;)] is the estimated standard error of equipercentile equating, which is
defined specifically in Chap. 7. The standard error of equating is used to standardize
the differences between the unsmoothed and smoothed relationships. The use of the
standard error results in the smoothed and unsmoothed relationships being closer
where the standard error is small, and allows them to be farther apart when the
standard error is large. The parameter S (where S > 0) is set by the investigator
and controls the degree of smoothing. Several values of S typically are tried and the
results compared.

If § = 0, then the fitted spline equals the unsmoothed equivalents at all integer
score points. If S is very large, then the spline function is a straight line. Interme-
diate values of S produce a nonlinear function that deviates from the unsmoothed
equipercentile relationship by varying degrees. If S = 1 then the average squared
standardized difference between the smoothed and unsmoothed equivalents is 1.0.
Values of S between 0 and 1 have been found to produce adequate results in practice.

The spline is fit over a restricted range of score points so that scores with few
examinees and large or poorly estimated standard errors do not unnecessarily influ-
ence the spline function. Kolen (1984) recommended that x;,,, and xj;g, be chosen
to exclude score points with percentile ranks below 0.5 and above 99.5.

A linear interpolation procedure that is consistent with the definition of equiper-
centile equating in Chap. 2 can be used to obtain equivalents outside the range of the
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spline function. The following equations can be used for linear interpolation outside
the range:

| 1dy (iow) +0.5]
dy () = { Xow + 0.5 ]x

0.5[dy (xjon) + 0.5]
Xiow + 0.5

+ {—0.5 + } , —0.5 <x < xpom,

dy () = [dy (xnign) — (Ky +0.5)] .
Xpigh — (Kx +0.5)

5 i d ioh) — (K 0.5
+{dy(xhigh)—xhgh[ Y (Xnigh) — (Ky + )]]’

Xnigh — (Kx +0.5)
Xnigh < X < (Kx +0.5). (3.13)

At the lower end, linear interpolation is between the point (—0.5, —0.5) and
[Xiow> c?y (xi0w)]. At the upper end, linear interpolation is between the point [xp;gp,
dy (xnign)] and (Kx + 0.5, Ky + 0.5).

Table 3.6 illustrates a cubic spline function that was fit to the ACT Mathematics
datausing S = 0.20. For this example, the spline function is defined over the Form X
raw score range from 5 to 39. The second column shows the spline conversion at Form
X integer scores. Equation (3.11) is used to find smoothed values at noninteger scores
that are needed for equating. For example, to find the estimated Form Y equivalent
of a Form X score of 6.3, note that x; = 6 and (x — x;) = (6.3 — 6.0) = 0.3. Then,

dy (6.3) = 4.4379 + 0.9460(0.3) + 0.0013(0.3) + 0.0005(0.3)° = 4.7218.

To illustrate that the spline is continuous, note that the tabled value for a score of
x; = 7 is 5.3857. This spline function at 7 also can be obtained using x = 7 and
x; = 6 as follows. In this case, (x — x;) = (7—6) = 1. Applying the cubic equation,

dy (7) = 4.4379 + 0.9460(1) + 0.0013(1) + 0.0005(1) = 5.3857,

which equals the tabled value for x; = 7. Also, the sum of the coefficients in any row
equals the value of dy (x;) shown in the next row. This equality property is necessary
if the spline is to be continuous.

In addition, the spline has continuous second derivatives evaluated at all score
points. The second derivative of the spline function evaluated at x in Eq. (3.11) can
be shown to equal 2v2; + 6v3; (x — x;). The second derivative evaluated at a score
of 7 using the coefficients at x; = 6 is

2(0.0013) + 6(0.0005)(7 — 6) = 0.0056.
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Table 3.6 Spline coefficients for converting Form X scores to the Form Y scale for § = .20

N A 2
x dr@=f & % 8 Slr®] {‘Mw
seley (x)]

5 3.4927 9447 .0000 .0004 1478 7418
6 4.4379 9460 0013 .0005 2541 0597
7 5.3857 9502 .0028 .0009 1582 6680
8 6.3397 9585 .0055 .0008 .1969 0198
9 7.3046 9721 .0081 .0006 1761 2095
10 8.2854 19902 .0100 .0003 1731 5165
11 9.2859 1.0112 .0110 .0001 1952 2779
12 10.3082 1.0336 .0114 —.0001 .1800 4609
13 11.3531 1.0560 .0110 —.0003 2311 1952
14 12.4197 1.0770 .0101 —.0003 2431 .0149
15 13.5066 1.0963 .0091 —.0005 2138 2823
16 14.6114 1.1129 .0076 —.0006 2764 .1000
17 15.7313 1.1263 .0058 —.0006 2617 .0030
18 16.8627 1.1359 .0039 —.0006 3383 0138
19 18.0019 1.1419 .0020 —.0006 2826 .0006
20 19.1451 1.1439  .0001 —.0006 2947 .0046
21 20.2885 1.1423 —.0018 —.0006 3299 0581
22 21.4285 1.1370 —.0035 —.0005 3183 .0075
23 22.5615 1.1285 —.0051 —.0005 3865 1054
24 23.6844 1.1169 —.0065 —.0003 3555 4244
25 24.7945 1.1028 —.0076 —.0002 3013 6057
26 25.8895 1.0872 —.0080 .0000 3683 5434
27 26.9687 1.0712 —.0080 .0002 3532 .6943
28 28.0321 1.0557 —.0075 .0003 3069 2322
29 29.0806 1.0416 —.0066 .0003 3422 0322
30 30.1159 1.0294 —.0056 .0003 2896 .0024
31 31.1401 1.0192 —.0046 .0003 3268 .0010
32 32.1551 1.0111 —-.0036 .0003 3309 .0033
33 33.1630 1.0050 —.0026 .0003 3048 0778
34 34.1657 1.0006 —.0018 .0001 3080 2331
35 35.1646 9974 —.0014 .0001 3044 0423
36 36.1607 9949 —.0011 .0001 3240 0645
37 37.1547 9931 —.0007 .0001 2714 0120
38 38.1473 9921 —.0003 .0001 3430 .0020
39 39.1392 2018 .0832

The second derivative evaluated at a score of 7 using the coefficients at x; = 7 is

2(0.0028) 4 6(0.0009) (7 — 7) = 0.0056.
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The equality of these two expressions illustrates the continuous second derivative
property of the cubic spline. This property can be shown to hold at the other score
points as well.

The rightmost column in Table 3.6 shows the squared standardized difference at
each score point. The mean of the values in this column is 0.20, because S = 0.20.

One problem with the spline expression in Egs. (3.11) and (3.12) is that it is
a regression function, so it is not symmetric. That is, the spline that is used for
converting Form X to Form Y is different from the spline that is used for converting
Form Y to Form X. To arrive at a function that is more nearly symmetric, define
dx () as the spline function that converts Form Y scores to Form X scores using the
same procedures and the same value of S. Assuming that the inverse function exists,
define the inverse of this function as d x ! (x). (Note that the inverse is not guaranteed
to exist, although the lack of an inverse has not been known to cause problems in
practice.) This inverse can be used to transform Form X scores to the Form Y scale.
A more nearly symmetric equating function then can be defined as the average of
two splines: the spline developed for converting Form X to the Form Y scale and
the inverse of the spline developed for converting Form Y to the Form X scale. For
a particular S, define this quantity as

dy (x) +dx " (x)

dy(x) = >

,—0.5<x <Kx+0.5. (3.14)
The expression in Eq. (3.14) is the final estimate of the equipercentile equating
function (See Wang and Kolen (1996), for a further discussion of symmetry and for
an alternative postsmoothing method to the one described here).

To implement the method, the equating is conducted using a variety of values of S.
Graphs of the resulting equivalents can be examined for smoothness and compared
to the unsmoothed equivalents. Standard errors of equating can be very useful for
evaluating various degrees of smoothing. Ideally, the procedure results in a smooth
function that does not depart too much from the unsmoothed equivalents. In addi-
tion, the central moments for the Form X scores equated to the Form Y scale using
smoothing should be compared to those for the Form Y scores. Central moments for
the scale scores that result from the equating also should be inspected.

3.4.1 Illustrative Example

Because there are no statistical tests associated with the postsmoothing method de-
scribed here, inspection of graphs and moments is even more crucial for choosing a
degree of smoothing than in the presmoothing methods. For the ACT Mathematics ex-
ample, equating was conducted using eight different values for S ranging from 0.01 to
1.0. The RAGE-RGEQUATE computer program described in Appendix B was used
to conduct the analyses. This example was also considered in Brennan et al. (2009).
The equipercentile relationships using these methods are presented in Table 3.7 and
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Table 3.7 Raw-to-raw score conversions for postsmoothing

Form Y equivalent

Form

X No

Score Smooth S§=.01 S=.05 S§=.10 S§S=.20 §=.30 S=.50 S§=.75 S§=1.00
0 .000 —.129 —-.129 —.133 —.138 —.141 —.146 —.150 —.154
1 .980 614 612 .600 .586 577 .563 .550 .539
2 1.646 1.356 1.353 1.333 1.311 1.295 1.272 1.250 1.232
3 2.286  2.098 2.094 2.067 2.035 2.013 1.981 1.950 1.925
4 2.893  2.841 2.835 2.800 2.759 2.731 2.690 2.650 2.618
5 3,620 3.583 3.576 3.534 3.484 3.449 3.398 3.350 3.311
6 4500  4.480 4.440 4.400 4.354 4.322 4.273 4.225 4.185
7 5.515 5.443 5.372 5.349 5.323 5.305 5.277 5.249 5.226
8 6.312  6.324 6.306 6.302 6.296 6.292 6.284 6.276 6.269
9 7.224  7.218 7.252 7.265 7.278 7.286 7.297 7.306 7.313
10 8.161 8.168 8.216 8.243 8.271 8.290 8.317 8.342 8.362
11 9.183  9.166 9.205 9.241 9.281 9.308 9.347 9.385 9.415
12 10.186  10.195 10.221 10.262 10.309 10.342 10.390 10.436 10.474
13 11.251  11.260 11.266 11.307 11.357 11.392 11445 11496 11.538
14 12.390  12.345 12.338  12.375 12.424 12460 12.513 12.565 12.607
15 13.393 13419 13434 13.467 13511 13.544 13.594 13.642 13.683
16 14.524  14.541 14553 14.579 14.616 14.643 14.686 14.728 14.763
17 15717  15.695 15.692 15710 15736 15.756 15.788 15.820 15.848
18 16.823 16.846 16.846 16.855 16.868 16.879 16.898 16918 16.936
19 18.009 18.005 18.011 18.010 18.008 18.009 18.013 18.020 18.026
20 19.165 19.171 19.183 19.170 19.153 19.143 19.132 19.123  19.118
21 20.368 20.337 20.356 20.330 20.298 20.278 20.251 20.228  20.211
22 21.456 21.499 21.525 21485 21.439 21409 21.368 21.331 21.303
23 22.687 22.695 22.685 22.630 22572 22.534 22480 22432 22393
24 23916 23.890 23.826 23.761 23.694 23.650 23.586 23.528 23.481
25 25.029 25.045 24945 24.873 24802 24.754 24.685 24.619 24.566
26 26.161 26.160 26.037 25966 25.894 25.846 25774 257704 25.648
27 27263 27.214 27.101 27.038 26971 26924 26.853 26.783 26.725
28 28.180 28.197 28.140 28.091 28.033 27.990 27.922 27.855 27.798
29 29.142  29.161 29.160 29.127 29.080 29.042 28.982 28920 28.867
30 30.130  30.138 30.166 30.150 30.115 30.084 30.033 29.979 29.932
31 31.130 31.126 31.162 31.162 31.139 31.117 31.076 31.032 30.994
32 32,136 32.107 32.154 32.166 32.156 32.141 32.113 32.081 32.052
33 33.078 33.075 33.144 33.165 33.166 33.160 33.144 33.125 33.108
34 34.017 34.065 34.136 34.161 34.171 34.173 34.171 34.167 34.161
35 35.102  35.112 35.130 35.155 35.174 35.183 35.195 35205 35.213
36 36.243  36.165 36.126 36.148 36.174 36.191 36.217 36242  36.263
37 37.125 37.156 37.120 37.140 37.172 37.197 37.237 37.278 37.313
38 38.132  38.125 38.114 38.131 38.169 38.202 38.256 38313 38.362
39 39.081 39.092 39.103 39.117 39.155 39.188 39.243 39.297 39.341

39.901 40.031 40.034 40.039 40.052 40.063 40.081 40.099 40.114

N
[e]
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Fig. 3.6 Raw-to-raw equivalents for postsmoothing, S = 0.01, 0.05, 0.10, 0.20

graphed in Figs. 3.6 and 3.7. (Note in this example, unsmoothed equipercentile equat-
ing was based on RAGE-RGEQUATE with x;,,, set to 0 and xp;g, set to 100, so that
no scores were excluded. This was done so that the unsmoothed equivalents are
the same as those used with unsmoothed and presmoothed equipercentile methods
shown earlier. Postsmoothed equivalents were based on RAGE-RGEQUATE with
Xiow set t0 0.5 and xp;gp, set to 99.5. These differences affect unsmoothed equivalents
at very low scores in the example.)

As can be seen in the figures, the equivalents deviate more from the unsmoothed
equivalents as the values of § increase. For S = 0.01, the smoothed and unsmoothed
equivalents are very close, and the smoothed equivalents appear to be bumpy. How-
ever, the smoothed equivalents are within the standard error bands. For S = 0.05,
the equivalents appear to be smooth and are within the standard error bands at all
points. As S increases, the smoothed relationship continues to deviate more from
the unsmoothed relationship. For § > 0.75, the smoothed relationship is outside the
standard error bands at many score points. The relationship for S = 0.05 appears
to be the one for which there is the least amount of smoothing required to achieve
a smooth function of the values tried. The relationship for S = 0.10 also seems
acceptable.

Moments for the smoothed relationships are shown in Table 3.8. As S in-
creases, the moments for the smoothed equipercentile equating depart more from the



88 3 Random Groups: Smoothing in Equipercentile Equating

. —— Identity B —+— Identity

—+— Unsmoothed
—— §=.50
---- t 1 Standard Error

'\ —a— Unsmoothed
L —e— §=.30
\---- £ 1 Standard Error

FormY Equivalent Minus Form X Score
FormY Equivalent Minus Form X Score

0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
Raw Score Form X Raw Score Form X
15 R —— Identity 13 T —e— Identity
. —+— Unsmoothed : —+— Unsmoothed

1048 e 525
Y - 1 Standard Error

—e— §=1.00
-- + 1 Standard Error

FormY Equivalent Minus Form X Score
FormY Equivalent Minus Form X Score

0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
Raw Score Form X Raw Score Form X

Fig. 3.7 Raw-to-raw equivalents for postsmoothing, S = 0.30, 0.50, 0.75, 1.00

Form Y moments. This result suggests that lower values of S are to be preferred for
this example.

Now consider Form X scale score equivalents. Scale score moments are shown in
Table 3.9 for the scale score equivalents shown in Tables 3.10 and 3.11. An asterisk
indicates the moment that is closest, among the smoothed results, to the Form Y
unrounded equivalents. The rounded mean and standard deviation are closest for the
S = 0.05 conversion, and the other moments also are fairly close.

As indicated in Chap. 2, scale scoresthat are reported to examinees are rounded.
The rounded conversion is shown in Table 3.11. Asterisks in this table indicate
score points where adjacent smoothing values convert to different scale scores. For
example, a Form X raw score of 9 converts to a scale score of 3 for § = 0.01 and
to a scale score of 4 for § = 0.05. As can be seen, this is the only difference in the
rounded conversions between these two degrees of smoothing. Sometimes, there are
gaps in the conversion table that can be removed by adjusting the conversion. Other
times, adjustments can be used to improve the scale score moments. In this example,
adjustment of conversions does not seem warranted.

All things considered, the results from these procedures suggest that S = 0.05
is the most appropriate of the values tried. However, this example should not be
overgeneralized. The smallest smoothing values do not always appear to produce the
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Table 3.8 Raw score moments for postsmoothing

Test form i o sk ku

Form Y 18.9798  8.9393 3527 2.1464

Form X 19.8524  8.2116 3753 2.3024

Form X equated to form Y scale

Unsmoothed 189799  8.9352 3545 2.1465
§=.01 18.9789*  8.9393* .3533* 2.1488*
§=.05 18.9767  8.9313 3561 2.1587
S =.10 18.9743 89172 .3603 2.1738
§=.20 18.9717  8.8987 .3644 2.1922
§=.30 18.9699  8.8852 3670 2.2054
§=.50 18.9676  8.8643 3704 2.2258
§=.75 18.9656  8.8439 3733 2.2457
S =1.00 189642  8.8271 3756 2.2624

* Indicates moment closest to Form Y moment among smoothed estimates

most adequate equating. Especially for the rounded conversions, higher values of S
often lead to more adequate results. There is no single statistical criterion that can
be used. Instead, various values of S need to be tried and the results compared.

3.5 The Kernel Method of Equating

The kernel method of equating was introduced by Holland and Thayer (1989) and
developed further by von Davier et al. (2004). This method uses presmoothing meth-
ods, such as log-linear methods, to smooth the discrete test score distributions for
Form X and Form Y and kernel smoothing to transform the discrete distributions
for Form X and Form Y into continuous distributions. See Brennan et al. (2009,
pp- 171-186) for a summary of the kernel method of equating, a consideration of the
method for other designs, an example for the random groups equating data used in
this chapter, and open source C computer code.

Based on a review by von Davier (2011a), the kernel method of equating is
implemented using the following steps:

Step 1. Presmoothing. Use presmoothing methods such as log-linear methods to
smooth the discrete score distributions.

Step 2. Estimating the Score Probabilities. For the random groups design, the
smoothed score distributions from Step 1 are used for estimating the score
distributions. This step is more complex for other designs.

Step 3. Continuization. Use a kernel smoothing function to fit a continuous distrib-
ution to the discrete distributions from Step 2.

Step 4. Computing the Equating Function. Use equipercentile equating methods to
equate the two continuous score distributions from Step 3.
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Table 3.9 Scale score moments for postsmoothing

Test Form flsc Ose skse Ky,
FormY

unrounded 16.5120 8.3812 —.1344 2.0557

rounded 16.4875 8.3750 —.1025 2.0229
Form X equated to form Y scale for
Unsmoothed

unrounded 16.5125 8.3725 —.1300 2.0515

rounded 16.4324 8.3973 —.1212  2.0294
S =.01

unrounded 16.5120% 8.3758*  —.1303* 2.0543*

rounded 16.4823 8.4164  —.1308* 2.0334
S =.05

unrounded 16.5158 8.3638 —.1302 2.0606

rounded 16.5156*  8.3648* —.1164 2.0262
S=.10

unrounded 16.5236 8.3475 —.1294  2.0737

rounded 16.5366 8.3223 —.1308 2.0597*
S =.20

unrounded 16.5336 8.3284 —.1289  2.0908

rounded 16.5345 8.2576 —.1103  2.0859
S =.30

unrounded 16.5409 8.3152 —.1287 2.1034

rounded 16.5345 8.2576 —.1103 2.0859
S =.50

unrounded 16.5523 8.2956 —.1288 2.1229

rounded 16.5551 8.2288 —.0907 2.1525
S=.75

unrounded 16.5635 8.2770 —.1292 2.1423

rounded 16.5211 8.2165 —.0804 2.1632
S =1.00

unrounded 16.5731 8.2619 —.1297 2.1586

rounded 16.5211 8.2165 —.0804 2.1632

* Indicates moment closest to unrounded for Form Y among smoothed estimates

Step 5. Evaluating the Equating Results and Computing Accuracy Measures. Use
the procedures described by von Davier et al. (2004) to evaluate equating
results and to calculate standard errors of equating for the equating relation-
ship in Step 4. In addition, standard errors of equating differences can be
calculated when comparing alternative equating functions.

In Step 3, von Davier et al. (2004) used a normal (Gaussian) kernel to fit a continu-
ous distribution to the smoothed discrete distribution. Defining a smoothed frequency
distribution for the discrete test score variable X as f (x;) and ¢ as the ordinate of a
standard normal curve, the continuous distribution of the random variable X* is of
the form
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Table 3.10 Unrounded raw-to-scale score conversions for postsmoothing

Form Form Y equivalent

X No

score smooth §=.01 §=.05 §S=.10 §=.20 §=.30 S=.50 §=.75 S=1.00
0 .500 .500 .500 .500 .500 .500 .500 .500 .500
1 .500 .500 .500 .500 .500 .500 .500 .500 .500
2 .500 .500 .500 .500 .500 .500 .500 .500 .500
3 .500 .500 .500 .500 .500 .500 .500 .500 .500
4 .500 .500 .500 .500 .500 .500 .500 .500 .500
5 .500 .500 .500 .500 .500 .500 .500 .500 .500
6 .595 591 .584 576 567 .561 552 543 535
7 1.187  1.118 1.049 1.027 1.002 985 958 931 908
8 2,110  2.126 2.101 2.095 2.087 2.080 2.069 2.057 2.046
9 3.464  3.455 3.508 3.529 3.550 3.562 3.579 3.595 3.606

10 4926 4936 5.004 5.043 5.084 5.110 5.148 5.184 5.213
11 6.368  6.346 6.398 6.447 6.501 6.537 6.591 6.641 6.682
12 7739  1.752 7.789 7.847 7914 7.961 8.030 8.095 8.149
13 9262  9.274 9.284 9.342 9.414 9.465 9.541 9.614 9.674
14 10.846  10.787 10.778 10.827 10.891 10937 11.006 11.073  11.129
15 12.105 12.136  12.154 12.193 12.246 12.284 12343 12401  12.449
16 13.449 13469 13.484 13515 13.559 13.591 13.642 13.692  13.734
17 14.874 14.848 14.844 14.866 14.897 14920 14959 14997 15.030
18 16.152  16.177 16.178 16.188 16.202 16.215 16.236 16.259  16.279
19 17.391 17387 17.393 17.392 17.390 17391 17395 17.401 17.408
20 18.496 18501 18.513 18.501 18.485 18.476 18.465 18.457  18.452
21 19.615 19.588 19.605 19.582 19.552 19.534 19.510 19.489  19.474
22 20.553 20.588 20.610 20.577 20.539 20.515 20.482 20452  20.429
23 21.479 21485 21477 21439 21.398 21371 21333 21299 21.272
24 22270 22254 22214 22.173 22131 22104 22.065 22.028  21.999
25 22935 22945 22885 22.842 22.800 22771 22730 22.691  22.659
26 23.617 23.616 23.541 23498 23455 23426 23382 23341 23.307
27 24295 24264 24.194 24.155 24.114 24.085 24.041 23998 23.963
28 24.850 24.859 24.828 24802 24.770 24746 24704 24.662  24.627
29 24354 25362 25361 25347 25326 25310 25282 25248  25.220
30 25.784 257787 257799 25.792 25.777 25.7764 257743 257719  25.699
31 26218 26216 26234 26.233  26.222 26211 26.191 26.169  26.151
32 26.728 26.711 26.739 26.746  26.740 26.731 26.715 26.696  26.679
33 27.291 27289 27335 27.349 27350 27345 27335 27.322 27311
34 27.922 27959 28.015 28.034 28.042 28.044 28.043 28.039 28.034
35 28.800 28.811 28.830 28.856 28.876 28.886 28.899 28909 29917
36 30.101 29.988 29.931 29.964 30.001 30.026 30.064 30.100  30.131
37 31.387 31.433 31380 31410 31.457 31494 31554 31.615 31.667
38 32.800 32.879 32.863 32.889 32946 32995 33.076 33.161 33.235
39 34297 34311 34326 34343 34391 34434 34503 34571  34.627
40 35336 35.525 35533 35542 35569 35592 35.630 35.667  35.698
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Table 3.11 Rounded raw-to-scale score conversions for postsmoothing

Form Form Y equivalent

X No

score smooth S=.01 §=.05 §=.10 §=.20 §=30 $§=50 S=.75 S=1
0 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1 1 1
4 1 1 1 1 1 1 1 1 1
5 1 1 1 1 1 1 1 1 1
6 1 1 1 1 1 1 1 1 1
7 1 1 1 1 1 1 1 1 1
8 2 2 2 2 2 2 2 2 2
9 3 3* 4 4 4 4 4 4 4
10 5 5 5 5 5 5 5 5 5
11 6 6 6 6* 7 7 7 7 7
12 8 8 8 8 8 8 8 8 8
13 9 9 9 9 9 9* 10 10 10
14 11 11 11 11 11 11 11 11 11
15 12 12 12 12 12 12 12 12 12
16 13 13 13* 14 14 14 14 14 14
17 15 15 15 15 15 15 15 15 15
18 16 16 16 16 16 16 16 16 16
19 17 17 17 17 17 17 17 17 17
20 18* 19 19 19* 18 18 18 18 18
21 20 20 20 20 20 20 20* 19 19
22 21 21 21 21 21 21* 20 20 20
23 21 21 21 21 21 21 21 21 21
24 22 22 22 22 22 22 22 22 22
25 23 23 23 23 23 23 23 23 23
26 24 24 24* 23 23 23 23 23 23
27 24 24 24 24 24 24 24 24 24
28 25 25 25 25 25 25 25 25 25
29 25 25 25 25 25 25 25 25 25
30 26 26 26 26 26 26 26 26 26
31 26 26 26 26 26 26 26 26 26
32 27 27 27 27 27 27 27 27 27
33 27 27 27 27 27 27 27 27 27
34 28 28 28 28 28 28 28 28 28
35 29 29 29 29 29 29 29 29 29
36 30 30 30 30 30 30 30 30 30
37 31 31 31 31 31 3] 32 32 32
38 33 33 33 33 33 33 33 33 33
39 34 34 34 34 34 34* 35 35 35
40 35* 36 36 36 36 36 36 36 36

* Indicates a different conversion obtained for adjacent methods
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h ne LS R(x;, x* 3.15
fkernel(x)—mgf(xl)(b[ (xi, x9)], (3.15)

where R (x;, x™) is related to the difference between x; and x*. In addition, R (x;, x™)
and the constant depend on the mean and standard deviation of the scores and a
bandwidth parameter. The bandwidth parameter is chosen by the investigator, and
larger values lead to more smoothing. See Brennan et al. (2009, p. 173) or von Davier
et al. (2004) for a precise definition of all terms.

At each discrete score point, the kernel method of equating described by von
Davier et al. (2004) uses a normally distributed kernel to spread out the score density
over the range —oo to +00. The larger the bandwidth parameter, the more the density
at each discrete score point is spread out. Although the primary purpose of the use
of the Gaussian kernel is to continuize score distributions, the kernel also leads to
smoother score distributions. The resulting distribution of random variable X* is a
continuous probability distribution for scores that range from —oo to +00. These
continuous scores have same mean and standard deviation as the scores of the discrete
smoothed distribution, but the scores can differ in skewness, kurtosis, and higher
order moments.

The kernel method of equating has been the subject of considerable research,
much of which was summarized by von Davier (2011b). This research includes
examining kernels other than the normal (e.g., logistic, Lee and von Davier 2011),
comparisons of kernel equating to equipercentile equating as defined in Chap. 2 (Liu
and Low 2008; Mao et al. 2006), and Wang’s (2008, 2011) continuized log-linear
method that preserves all of the moments of the discrete distribution as well as the
range of scores.

The kernel method of equating provides an elegant statistical framework for ob-
served score equating. It can be implemented using EQUATING RECIPES (Brennan
et al. 2009). However, the kernel method is quite complicated and it requires con-
siderable statistical knowledge and background. Whereas we prefer equating that
operates on scores that are as similar as possible to the scores we are interested in
equating, the kernel method requires the transformation of a discrete distribution to a
continuous distribution with a range of scores (—oo to 4-00) that differs considerably
from the range of the discrete scores. In addition, to our knowledge, this method has
not been used with operational equating in large-scale testing programs. For these
reasons, in this book we focus on more traditional methods of equipercentile equat-
ing. Based on the kernel framework, these more traditional methods can be viewed
as using log-linear smoothing with a uniform kernel as described in Chap. 2.

3.6 Practical Issues in Equipercentile Equating

As was indicated earlier, the purpose of smoothing in equipercentile equating is
to reduce equating error. However, there is a danger that smoothing will introduce
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equating error. Provided next are guidelines to help ensure that smoothing improves
the equating process. Guidelines for the sample sizes needed to produce adequate
equating are considered subsequently.

3.6.1 Summary of Smoothing Strategies

The strategies for presmoothing and postsmoothing that are illustrated in this chapter
have much in common, although the strategies differ. The focus in presmoothing is on
finding a method for smoothing score distributions, whereas the focus in postsmooth-
ing is on choosing among degrees of smoothing of the equipercentile relationship.
Another difference is that statistical tests can be used with the presmoothing meth-
ods, whereas no statistical tests exist for the cubic-spline postsmoothing method. The
following are the steps in the smoothing strategies that have been discussed. Step 1 is
used only with presmoothing. Differences between presmoothing and postsmoothing
strategies are highlighted.

Step 1. Fit the score distributions (presmoothing only). The strategy used for fitting
the score distributions involves both graphic inspection and the use of statistical
indices. For the log-linear method

(a) Examine graphs of the fitted versus the sample distribution. For an adequate fit,
the fitted distribution should be smooth without departing more than necessary
from the sample distribution.

(b) Examine the overall \? fit statistic. Choose the model associated with the smallest
value of C that is not significant.

(c) Beginning with one less than the largest C being considered, choose the model
with the first value of C that has a nonsignificant 2.

(d) Choose the model associated with C that has the smallest value of AIC.

(e) Consider any of the values of C selected by these methods. In making a choice of
C, itis important to note that (i) choosing larger values of C tends to lead to more
random error, (ii) choosing smaller values of C tends to lead to more systematic
error, (iii) when sample size is very large, minor differences between models
might be significant, and (iv) a variety of model selection criteria are being
considered. For these reasons, model selection procedures should be applied
with caution and not followed too rigidly. More than one acceptable set of values
for C can be chosen and evaluated in subsequent steps.

Step 2. Construct the raw-to-raw equivalents. After presmoothing (if any), con-
struct the equipercentile equivalents. For postsmoothing, construct the equipercentile
equivalents for the degrees of smoothing that are to be evaluated.

(a) Examine the graphs of the raw-to-raw equivalents. For smoothing to be ade-
quate, the relationship should be smooth without departing too much from the
unsmoothed equivalents, as indicated by the standard error bands.
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(b) Examine the moments of the equated raw scores. The moments of the Form X
equated raw scores should be close to those for Form Y.

Models that are judged to produce adequate results are considered further.

Step 3. Construct the raw-to-scale score equivalents. For presmoothing, construct
the equivalents for the methods chosen in Step 1. For postsmoothing, construct the
equivalents for various degrees of smoothing that are to be considered further.

(a) The moments for the Form X scale scores should not be too different from the
moments for the unrounded Form Y scale scores.

(b) The moments for the Form X rounded scale scores should be similar to the
moments for the unrounded Form Y scales scores.

(c) Consider adjusting the rounded raw-to-scale score equivalents for Form X. If
the moments for the Form X rounded scale scores are not close enough to the
moments for the unrounded Form Y scale scores, then different adjustments of
the conversion should be considered. Also, adjustments in rounded scale scores
might be made to minimize gaps or many-to-one conversions, especially at the
extremes of the score scale, and to accommodate program constraints such as
minimum and maximum scale scores.

The strategy described might result in more than one method or degree of smoothing
being adequate, and various subjective judgments could be made. Such judgments are
necessarily dependent on the testing program in which the equating is being done.
General rules of thumb do not seem possible, because testing programs vary so
much in their sample sizes, distribution shapes, numbers of items, and other relevant
characteristics. However, rules of thumb for a particular testing program often can
be developed after some experience with the program.

3.6.2 Smoothing and Population Distribution Irregularities

The log-linear smoothing procedures described in this chapter are intended to pro-
duce smooth score distributions. However, in certain special cases, the population
distribution is likely not smooth, such as in the situation described by von Davier
et al. (von Davier et al. 2004, p. 160). In this situation, raw scores were calculated
using a correction for guessing in which a fractional score point was subtracted from
the total number-correct score whenever an item was answered incorrectly. Item
scores for omitted items were 0. The resulting scores were rounded to integers, and
negative scores were set equal to 0. As Moses and Holland (2009a) pointed out,
“item omission patterns define sets of total scores that are impossible to obtain”
(p- 22). For this reason, the distributions of rounded formula scores have irregular-
ities that are due to examinee patterns of omits rather than to sampling error, and
these irregularities would be expected to be present in the score distribution for the
population. When the population distribution is irregular, the applicability of the log-
linear model fitting procedures is questionable. Postsmoothing might be affected, as
well. von Davier et al. (2004) studied the fit of more complex log-linear models that
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take into account such irregularities. Smoothing with irregular distributions has been
the focus of recent research (Liu et al. 2009; Moses and Holland 2009b; Moses and
Liu 2011; Puhan et al. 2010).

3.6.3 Equating Error, Sample Size, and Smoothing Method

Holland et al. (1989) and von Davier et al. (2004) developed standard error formulas
for equipercentile equating using log-linear presmoothing. Standard error formu-
las have not been derived for the other smoothing methods, although the bootstrap
methods (Efron and Tibshirani 1993) (to be described in Chap. 7) can be used. There
is no general analytic procedure for estimating systematic error. Technically, the
estimation of both types of error is necessary to thoroughly evaluate the effects of
smoothing.

Studies that have investigated equating error, sample size, and smoothing methods
in random groups equipercentile equating include those by Cui and Kolen (2009),
Hanson et al. (1994), Moses and Holland (2009a), Liu (2011), and Liu and Kolen
(2011a, b). In this section, the study by Hanson et al. (1994) is described in detail to
illustrate how such a study can be conducted and how the findings can be interpreted.
Hanson et al. (1994) conducted an empirical comparison of the presmoothing and
postsmoothing methods. In this study, empirical score distributions were smoothed.
The smoothed distributions were assumed to be the population distributions. Random
samples of a given size then were drawn from the population distributions. Equiper-
centile equivalents were estimated from these random samples using both presmooth-
ing and postsmoothing methods. Because the population distributions were known,
random and systematic error components could be estimated separately. Note that
the use of smoothed distributions as population distributions helps ensure that the
distributions are realistic.

Mean-squared errors for a portion of the Hanson et al. (1994) study are presented
in Table 3.12 for the enhanced ACT Assessment English and Science Reasoning tests.
The values in the table are estimates of the total error of equation (3.8). Larger values
indicate more total equating error. The first row in the upper and lower portions of
the table is for the identity equating. Note the relatively large value for ACT English
compared to that for ACT Science Reasoning. This difference occurs because the
two English forms are quite different from one another, whereas the two Science
Reasoning forms are very similar. The sample sizes in the table are per form. For the
English test with N = 100, the identity equating results in less error than some of
the smoothing methods. For the Science Reasoning test with N = 100, the identity
equating results in the least amount of error of all of the methods. For the English test,
one of the smoothed equipercentile methods (postsmoothing S = 0.50) produces the
lowest mean-squared error for all sample sizes. For the Science Reasoning test, only
at a sample size of 3,000 do all of the smoothing methods have mean-squared error
values equal to or lower than the value for linear equating.
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Table 3.12 Mean-squared equating error from Hanson et al. (1994) study

Test Equating method ~ N=100 N=250 N=500 N=1000 N=3000
ACT Identity 576 576 5.76 5.76 5.76
english  Linear 6.15 365 280 233 2.00
(K =175) Unsmoothed 6.60 2.83 150 5 25
Beta4 528 224 122 .63 24
Log-linear C =3 520 230 1.29 71 .35
Log-linear C =4 566 247 1.39 7 .36
Log-linear C = 6 6.09 255 133 .67 23
Postsmoothing § = .10 598  2.55 1.33 .67 22
Postsmoothing § = .25 5.57 234 1.23 .62 21
Postsmoothing § = .50 5.17  2.19  1.17 .59 21
ACT Identity 51 Sl 51 51 51
science  Linear 1.03 46 .20 11 .05
reasoning Unsmoothed 1.62 .70 32 17 .06
(K = 40) Beta4 1.28 .55 24 12 .04
Log-linear C =3 1.17 51 22 12 .04
Log-linear C =4 1.34 57 25 13 .04
Log-linear C =6 1.52 .63 28 .14 .05
Postsmoothing § = .10 1.42 .63 .28 .14 .05
Postsmoothing S = .25 1.32 .56 24 12 .04
Postsmoothing § = .50 1.26 51 22 A1 .04

In comparing the smoothing results to one another, there is no method that appears
to be clearly superior to the others. For the English test, the mean-squared error for
the best smoothing method is approximately 80 % of that of the unsmoothed equiper-
centile method. For the Science Reasoning test, the mean-squared error for the best
smoothing method is approximately 70 % of that of the unsmoothed equipercentile
method. Thus, smoothed equipercentile equating produces a modest reduction in
error compared to unsmoothed equipercentile equating. These results are for equating
error averaged over all score points. More detailed results presented by Hanson et
al. (1994) indicate that the smoothing reduces error, even at extreme scores.

The results from the Hanson et al. (1994) study, other research cited earlier in this
section, as well as practical experience with these methods suggest the use of the
following guidelines:

e Use of the identity equating for carefully constructed forms can be preferable to
using one of the other equating methods, especially with sample sizes at or below
100 examinees per test form. The use of equipercentile equating with fewer than
250 examinees per form might even introduce error.

e Smoothing in equipercentile equating can be expected to produce a modest de-
crease in mean-squared equating error when compared to unsmoothed equiper-
centile equating.



98 3 Random Groups: Smoothing in Equipercentile Equating

No clear method exists for choosing whether to use presmoothing versus
postsmoothing. One positive characteristic of the presmoothing methods is that there
are statistical tests that can be readily used. Such tests do not exist for the postsmooth-
ing method. In addition, the postsmoothing method described here requires averaging
two splines, and there is no compelling theoretical reason for doing so other than
to produce a symmetric relationship. However, postsmoothing directly smoothes the
equipercentile relationship, which is more direct than smoothing the distributions,
as is done with the presmoothing methods. The presmoothing and postsmoothing
methods have been used in practice in testing programs with good results. Research
evidence suggests that both types of methods can produce results which have the
potential to improve equating accuracy. Thus, either type of method can function
adequately in operational testing programs.

3.7 Exercises

3.1. Suppose that, in the population, the Form Y equipercentile equivalent of a
Form X score of 26 is 28.3. Also, suppose that the expected (over a large
number of random samples) equivalent using a smoothing method is 29.1.
Based on a sample, the unsmoothed equivalent is estimated to be 31.1 and
the smoothed equipercentile equivalent is estimated to be 31.3. Answer the
following questions about finding the Form Y equipercentile equivalent of a
Form X score of 26. Indicate if the question cannot be answered from the
information given.

a. What is the systematic error in using the smoothing method?

b. What is the error in estimating the equipercentile equivalent using the un-
smoothed equipercentile method in the sample?

c. What is the error in estimating the equipercentile equivalent using the
smoothed equipercentile method in the sample?

d. What is the standard error of equating using the unsmoothed equipercentile
method?

e. Which method (smoothed or unsmoothed) was more accurate in the sample?

f. Which method (smoothed or unsmoothed) would be better over a large
number of replications?

3.2. If C = 3 inthe log-linear method, which of the following would be the same for
the observed distribution and smoothed distribution: mean, standard deviation,
skewness, kurtosis?

3.3. Suppose a nominal alpha level of 0.30 had been used. In Table 3.1, what values
of C would have been eliminated using the single degree of freedom difference
X2 statistics for Form X and for Form Y? (The critical value is 1.07.)

3.4. What would be the cubic spline equivalent of a score on x of 28.6 using the
data shown in Table 3.6?
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3.5. In Table 3.11, which pairs of conversions are identical? Are there any circum-
stances under which it would matter whether one or the other of the identical
conversions was chosen?

3.6. InFigs. 3.6 and 3.7, &1 standard error bands are presented. If &2 standard error
bands had been used, which S parameters would have had relationships that
fell within the band? How about the relationship for the identity equating?

3.7. InTable 3.12, under what conditions in the studies presented was it better to use
the identity equating than to use any of the methods studied? What factor do
you think could have made the identity equating appear to be relatively better
with small samples for the Science Reasoning test than for the English test?
Can you think of a situation in which the identity equating would always be
better than one of the other equating methods?
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Chapter 4
Nonequivalent Groups: Linear Methods

Chapter | introduced the common-item nonequivalent groups design. For this design,
two groups of examinees from different populations are each administered different
test forms that have a set of items in common. This design often is used when only
one form of a test can be administered on a given test date. As discussed in Chap. 1,
the set of common items should be as similar as possible to the full-length forms in
both content and statistical characteristics.

There are two special cases of the common-item nonequivalent groups design. The
common item set is said to be internal when scores on the common items contribute to
the total scores for both forms. By contrast, the common items are said to be external
when their scores do not contribute to total scores. Notationally, denote the new test
form and the random variable score on that form as X, the old form and the random
variable score on that form as Y, and the common-item set and the random variable
score on the common-item set as V. Assume that X and V are taken by a group of
examinees from Population 1, and Y and V are taken by a group of examinees from
Population 2. If V is an internal set of common items, then X and Y include scores on
V.If V is external, then X and Y do not include scores on V. For example, consider
an examinee who got 10 common items correct and 40 noncommon items correct.
If V is an internal set of common items, then x = 50. If V is an external set, then
x = 40.

In general, the common items are used to adjust for population differences. Doing
so requires strong statistical assumptions because each examinee comes from only
one population and takes only one form. The various methods for performing equating
under the common-item nonequivalent groups design are distinguished in terms of
their statistical assumptions.

Even though the design under consideration here involves two populations, an
equating function is typically viewed as being defined for a single population. There-
fore, Populations 1 and 2 must be combined to obtain a single population for defining
an equating relationship. To address this issue Braun and Holland (1982) introduced
the concept of a synthetic population in which Populations 1 and 2 are weighted by
w1 and wy, respectively, where w; + wy = 1 and wy, wy > 0.

M. J. Kolen and R. L. Brennan, Test Equating, Scaling, and Linking, 103
Statistics for Social and Behavioral Sciences, DOI: 10.1007/978-1-4939-0317-7_4,
© Springer Science+Business Media New York 2014
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The equating methods considered in this chapter are all linear. Three of the
methods are called observed score equating methods because observed scores on
X are transformed to observed scores on the scale of Y. The fourth method is called
atrue score method because it relates true scores on X to the scale of true scoreson Y.
All of these methods are described by in some detail by Angoff (1971) and Holland
and Dorans (2006), and they are referenced by Petersen et al. (1989). The presenta-
tions here are considerably more detailed and more closely parallel a combination
of Kolen and Brennan (1987), Brennan (1990) and Brennan (2006).! Other authors
who have provided derivations of one or more of these methods include MacCann
(1990) and Woodruft (1986, 1989).

As discussed in Chap. 2, the linear conversion is defined by setting standardized
deviation scores (z-scores) equal for the two forms. For the common-item nonequiva-
lent groups design, this results in the following linear equation for equating observed
scores on X to the scale of observed scores on Y:

——[x — s (X ] + ps(Y), 4.1

where s indicates the synthetic population. The four synthetic population parameters
in Eq. (4.1) can be expressed in terms of parameters for Populations 1 and 2 as
follows:

s (X) = wip (X) + wapa(X), 4.2)
s (V) = wia (V) + wapa(Y), (4.3)
o2(X) = w103 (X) + w203 (X) + wiwa 1 (X) — 12 ()], (4.4)
and
oY) = w10 (¥) + w203 (Y) + wiwa [ (V) — ma ()], (4.5)

where the subscripts 1 and 2 refer to Populations 1 and 2, respectively.

For the common-item nonequivalent groups design, X is not administered to
examinees in Population 2, and Y is not administered to examinees in Population 1.
Therefore, 112(X), 03(X), 11(Y), and o3 (Y) in Egs. (4.2)~(4.5) cannot be estimated
directly. The Tucker and Levine observed score methods considered in Sects. 4.1 and
4.2 make different statistical assumptions in order to express these four parameters
as functions of directly estimable parameters. (A similar statement applies to the
chained method in Sect. 4.4) Throughout this chapter, all results are reported in terms
of parameters, some of which are directly estimable [e.g., ;11 (X)], while others are not
[e.g., u2(X)]. In practice, of course, the results are used by replacing all parameters
with estimates. The parameters estimated from the data and from assumptions are
distinguished in Fig.4.1.

! This chapter provides detailed proofs of almost all results, whereas other chapters usually present
results, only, or simply outline derivations.
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Fig. 4.1 Linear equating Parameters Estimated from Data
parameters for the common-

item nonequivalent groups .

design Form X Administered Form Y Administered
in Population 1: in Population 2:
w,(X)and o7 (X) w,(Y) and o3(Y)

Parameters Estimated from Assumptions

Form X Moments Form Y Moments
in Population 2: in Population 1:
#,(X) and 03(X) u,(Y) and 02(Y)

Parameters for Synthetic Population

us(X) = wi (X) + w1t (X)
us(¥) = wity (X) +w,p1,(Y)
3(X) = w02 (X) 4+ w,02 (X) + wpw 1,0 - i (X)]

3(¥) = wat (X)) + 0,03 (V) + wo [, (F) = (V)]

4.1 Tucker Method

The Tucker method was described by Gulliksen (1950, pp. 299-301), who attributed
it to Ledyard Tucker. This method makes two types of assumptions in order to
estimate the parameters in Eqs. (4.2)—(4.5) that cannot be estimated directly. The
first type of assumption concerns the regressions of total scores on common-item
scores. The second type of assumption concerns the conditional variances of total
scores given common-item scores. Basically, these are the assumptions of univariate
selection theory (see Gulliksen 1950, pp. 131, 132).

4.1.1 Linear Regression Assumptions

First, the regression of X on V is assumed to be the same linear function for both
Populations 1 and 2. A similar assumption is made for ¥ on V. Letting « represent
a regression slope and (3 a regression intercept,

al(X|V) = a1(X, V) /or (V) (4.6)
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and
B1(X|V) = (X)) — a1 (X[V)p (V) 4.7

are the slope and intercept, respectively, for the regression of X on V in Population 1.
These two quantities are directly observed. In Population 2, the slope and intercept
are

(X|V) = 02(X, V) /o3(V) (4.8)

and
B2 (X|V) = p2(X) — o (X|V)pa (V). 4.9)

These two quantities are not directly observed. For X and V, then, the regression
assumption is
a(X|V) = a1 (X|V) (4.10)

and
Ba(X|V) = Bi1(X]|V), 4.11)

where the quantities to the left of the equal sign are not directly observable. Similarly,
for Y and V, the regression assumption is

a1 (YV) =a(Y|V)

and

BrY1V) = B (Y]V).

4.1.2 Conditional Variance Assumptions

Also, for the Tucker method, the conditional variance of X given V is assumed to be
the same for Populations 1 and 2. A similar statement holds for Y given V. Stated
explicitly, these assumptions are

B3O - p3X, V)] = ot (XO[1 - p3(X, V)] (4.12)

and
i M[1 = pi (Y, V)] = 31 = p3(¥, V)],

where p is a correlation and the quantities that are not directly observable are to the
left of the equalities.



4.1 Tucker Method 107

4.1.3 Intermediate Results

The above assumptions are sufficient to solve for w3 (X), 02(X), u1(Y),and o1 (Y) in
terms of observable quantities. Consider, for example, 12 (X). Because the regression
of X on V is assumed to be linear,

p2(X) = B2(X|V) + o (X[V) 2 (V).
Using Egs. (4.10) and (4.11),

p2(X) = Bi(X|V) + a1 (X|V)u2(V).
Now, using Eq. (4.7),

p2(X) = [p1(X) — ar(X|V) s (V)] + e (X[ V) pa(V)
= (X) —ar(X|V) [ (V) — pa(V))]. (4.13)

Following a similar approach,
1 (Y) = p2(Y) + a2 (Y [V)[p1 (V) = pa (V). (4.14)
To obtain a%(X ), begin by noting that
p1(X, V) = o1(X, V)/[o1(X)a1(V)],
where o1 (X, V) is a covariance. Rearranging terms in Eq. (4.6),
o1(X, V) = a1 (X|V)ai (V).

Therefore,
p1(X, V) = ai(X|V)o1(V)/o1(X)

and, with a little bit of algebra,
at(X)[1 = pi(X, V)] = 0}(X) — o} (X|V)aT (V).

Similarly,
a3(X0[1 = p3(X, V)] = 03(X) — a3(X|V)a3(V).

Now, using Eq. (4.12),
a3(X) — a3(X|V)o3(V) = 01(X) — a3 (X|V)ai(V).

Because a (X|V) = a1 (X|V) by assumption,
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03 (X) = 01(X) — af(X|V)[o](V) — 03(V)]. (4.15)
A similar derivation gives,

ot (Y) = o3(Y) + 3 (Y|V)[oT(V) — a3(V)]. (4.16)

4.1.4 Final Results

Given the results in Egs. (4.13)—(4.16), the synthetic population means and variances
in Egs. (4.2)—(4.5) can be shown to be

ps(X) = p1(X) = wayi [ (V) = pa (V)] (4.17)
ps(Y) = pa(Y) + wimna [ (V) = pa(V)], (4.18)

a2 (X) = 0}(X) — wr[o} (V) = 3 (V)] + wiwa i [ (V) = i (W], (4.19)
and
o2(V) = 3(Y) + w1 [o2 (V) — 3 (V)] + wiwan3 [ (V) — mie(V)]7, (4.20)
where the «-terms are the regression slopes
N = ai(X|V) = o1(X, V) /o (V) 4.21)

and
Y= (Y |V) =02 (Y, V) /a3 (V), (4.22)

and the parameters to the right of the equal signs can be estimated directly from the
data. The Tucker linear equating function is obtained by using the results from Eqgs.
(4.17)-(4.22) in Eq. (4.1).

It is evident from the form of Eqgs. (4.17)—(4.20) that the synthetic population
means and variances for X and Y can be viewed as adjustments to directly observable
quantities. The adjustments are functions of differences in means and variances for
the common items. If p1(V) = pa2(V) and JIZ(V) = U%(V), then the synthetic
population parameters would equal observable means and variances.

The foregoing derivation does not require specifying whether the common-item
set is internal or external. Consequently, the results apply to both possibilities, pro-
vided, of course, that X is correctly specified as the total set of items that directly
contribute to an examinee’s score. That is, scores on X include scores on V if V is
an internal common-item set, and scores on X do not include scores on V if V is an
external common-item set.
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4.1.5 Special Cases

Equations (4.17)—(4.22) apply for any set of nonnegative weights, w; and wj,
provided wi + wy = 1. At least three special cases are sometimes considered.
First, Gulliksen’s (1950, pp. 299-301) initial presentation of the Tucker method
can be obtained by setting w; = 1 and wy = 0, in which case the synthetic pop-
ulation is the population that took the new form. Second, Angoff (1971, p. 580)
provides formulas for the Tucker method based on weights that are proportional to
sample sizes—i.e., w; = Ni/(Ny1 + N») and wy = N2/(Ny + N») where N1 and
N, are the sample sizes from Populations 1 and 2, respectively. Third, the weights
are sometimes set equal (i.e., w1 = wy = .5), reflecting an a priori judgment that
both Populations 1 and 2 are equally relevant for the investigator’s conception of the
synthetic population.

4.2 Levine Observed Score Method

The assumptions of the Tucker method involve only observable quantities. No
reference is made to true scores. Yet, it would seem that for equating to be sen-
sible, true scores must be functionally related. Otherwise, it would not be sensible
to talk about scores being interchangeable. This argument per se does not render the
Tucker method inappropriate, but it does suggest that there may be merit in deriv-
ing equating results based on assumptions about true scores. One such method is
discussed in this section.

The Levine observed score method was originally developed by Levine (1955),
although he did not explicitly consider the concept of a synthetic population. Conse-
quently, the present development is more general than Levine’s (1955). This method
is an observed score equating method in the sense that it uses Eq. (4.1) to relate
observed scores on X to the scale of observed scores on Y. However, the assump-
tions for this method pertain to true scores Ty, Ty, and Ty which are assumed to be
related to observed scores according to the classical test theory model (see Feldt and
Brennan 1989; Haertel 2006):

X =Tx + Ey, (4.23)

Y =Ty + Ey, (4.24)
and

V =Ty + Ey, (4.25)

where Ey, Ey, and Ey are errors that have zero expectations and are uncorrelated
with true scores.
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4.2.1 Correlational Assumptions

The Levine method assumes that X, Y, and V are all measuring the same thing in the
sense that Ty and Ty as well as Ty and Ty correlate perfectly in both Populations 1
and 2:

p1(Tx,Ty) = p2(Tx, Ty) =1 (4.26)

and
p1(Ty, Ty) = po(Ty, Ty) = 1. (4.27)

Note that Eqgs. (4.26) and (4.27) imply that Tx and Ty are functionally related in both
populations.

4.2.2 Linear Regression Assumptions

Also for the Levine method, the regression of Tx on Ty is assumed to be the same
linear function for both Populations 1 and 2, and a similar assumption is made for
the regression of Ty on Ty.

The slope of Tx on Ty is a1 (Tx|Tv) = p1(Tx, Ty)o1(Tx)/o1(Ty), by def-
inition. Since p;(Tx, Ty) = 1 from the correlational assumption in Eq. (4.26),
a1 (Tx|Ty) = o1(Tx)/o1(Ty). Similarly, ax(Tx|Ty) = 02(Tx)/02(Tv). Conse-
quently, the assumption of equal true score regression slopes for Tx on Ty in Popu-
lations 1 and 2 is effectively

02(Tx) _ o1(Tx)
o (Ty)  o1(Ty)’

(4.28)

By an analogous derivation,

o1(Ty) _ o2(Ty)
o1(Ty)  o2(Ty)

(4.29)

For each of the classical test theory model Eqgs. (4.23)—(4.25), the mean of observed
scores equals the mean of true scores. Consequently, the assumption of equal true
score regression intercepts for Tx on Ty in Populations 1 and 2 is

02(Tx) o1(Tx)
X)— ——— V)= X)— —— V). 4.30
p2(X) 0’2(Tv)'u2( ) = p1(X) al(Tv)M( ) (4.30)
Similarly, for the intercepts of Ty on Ty,
T T
i) - 29wy =y - 20y @31)

o1(Tv) o2(Tv)
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4.2.3 Error Variance Assumptions

The Levine method also assumes that the measurement error variance for X is the
same for Populations 1 and 2. A similar assumption is made for ¥ and V. Because
true scores and errors are uncorrelated under the classical test theory model, error
variance is the difference between observed score variance and true score variance.
Therefore, the error variance assumptions are

03(X) — 05(Tx) = 01(X) — o1 (Tx), (4.32)
o{(Y) — of(Ty) = 03(Y) — 03(Ty),

and
o3(V) — o2 (Ty) = 05(V) — 03(Ty). (4.33)

4.2.4 Intermediate Results

Recall that expressions for p2(X), 02(X), p1(Y), and o1 (Y) are needed in order to
obtain the synthetic population means and variances in Eqs. (4.2)—(4.5).
By rearranging terms in Eq. (4.30) and then using Eq. (4.28),

T
p2(X) = i (X) — %[ul (V) — (V). (4.34)

Similarly, using Eqgs. (4.31) and (4.29),

o2(Ty)
o2(Tv)

p(Y) = p2(Y) + [11(V) = (V)] (4.35)

From Eq. (4.32) an expression for ag(X ) is
o3 (X) = 0H(X) — 0H(Tx) + 03(Tx).
From Eq. (4.28), 02(Tx) = 01(Tx)o2(Ty)/o1(Ty). It follows that

03(X) = 01(X) — o} (Tx)[1 — o3 (Tv) /o (Tv)]
o} (Tx)

2
= X -
S -

[07(Ty) — o5(Tv)].
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Using Eq. (4.33),

2(T
03(X) = o3 (X) — Z;ET’V‘; [o1(V) = a2(V))]. (4.36)
1
Similarly,
2(T;
o2(Y) = o3(Y) + %[of(V) —a3(V)]. (4.37)
2

4.2.5 General Results

Given the results in Eqgs. (4.34)—(4.37), it can be shown algebraically that the synthetic
population means and variances in Eqgs. (4.2)—(4.5) are given by Eqs. (4.17)-(4.20)
with

7 =o1(Tx)/o1(Ty) (4.38)

and
Y2 = 02(Ty)/o2(Ty). (4.39)

That is, under the Levine assumptions, the y-terms are ratios of true score standard
deviations. Note that the derivation of these results did not require specifying whether
V was an internal or external set of common items.

The expressions for the v-terms in Egs. (4.38) and (4.39) are not immediately
usable because they are ratios of true score standard deviations, which are not directly
observed. Given the assumptions of classical test theory, and letting p(X, X') =
02(Tx)/o*(X) denote the reliability of X, it follows that o(Tx) = o(X)/p(X, X/).
Similarly, o(Ty) = o(Y)/p(¥,Y") and o(Ty) = o(V)/p(V, V’). Consequently,

the y-terms can be expressed as

_ a1 OVpIX. X
1 (V)Vpi (V. V)

(4.40)

and

_ aMVprY)
SONCUAD

In principle, any defensible estimates of the reliabilities in Eqs. (4.40) and (4.41)
could be used to estimate 7 and 7,. In practice, the most frequently used equations
for the Levine method can be shown to result from applying what will be called the
“classical congeneric” test theory model (see Feldt and Brennan 1989, pp. 111, 112).
[Note that Levine’s 1955 derivation effectively stopped with Egs. (4.40) and (4.41)].

4.41)
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4.2.6 Classical Congeneric Model Results

In this section, unless otherwise noted, the classical congeneric model is assumed
for X and V, and for a single population. It is straightforward to extend the results
presented here to Y and V, and to Populations 1 and 2.

Recall from Eqs. (4.23) and (4.25) that for the classical model X = Tx + Ex
and V = Ty + Ey, where Ex and Tx, as well as Ey and Ty, are assumed to be
uncorrelated. The congeneric model goes one step further in specifying that Ty and
Ty are linearly related, which is consistent with the assumption in Eq. (4.26) that T’x
and Ty are perfectly correlated.

For our present purposes, a convenient way to represent that Ty and 7y are linearly
related is to set Ty = AxT + dx and Ty = Ay T + Jy, where the A’s are slopes and
the §’s are constant intercepts (see Feldt and Brennan 1989, pp. 110, 111; Haertel
2006, p. 76). This implies that Tx = (Ax/Av)Ty + [0x — (Ax/Av)dy ], although
this expression is not required in the subsequent derivation. Under the congeneric
model, then, the equations for X and V can be expressed as

X=Tx+Ex =\xT +6x) + Ex (4.42)

and
V=Ty+Ey =\yT +dy)+Ey. (4.43)

The classical congeneric model adds the assumptions that
0*(Ex) = Axo*(E) (4.44)

and
02(Ey) = A\yo?(E). (4.45)

In classical test theory, error variances are proportional to test length. Here, error
variances are proportional to Ay and Ay which are called “effective” test lengths.
Note also that the ratio 0% (Ex)/o*(Ey) is simply Ax /Ay .

Given Eqs. (4.42)-(4.45), the following can be shown relatively easily:

o2 (X) = \,0%(T) + Axo?(E), (4.46)
X (V) = Xbo*(T) 4+ Ay (E), (4.47)

and
o(X, V) = AxAvo>(T) + o(Ex, Ev). (4.48)

Here, we make use of the classical congeneric model to obtain an expression for
0(Tx)/o(Ty), which is the y-term in Eq. (4.38). From Egs. (4.42) and (4.43),
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Y= o(Tx) _ Axa(T) _ Ax
ao(Ty) Ayo(T) Ay’

(4.49)

which means that v can be interpreted as the ratio of effective test lengths for X and
V, respectively. Two cases need to be considered: (a) an internal anchor in which all
items in V are included in X, and (b) an external anchor in which V and X consist
of entirely different sets of items. These two cases can be distinguished in terms of
the error covariance o (Ex, Ey) in Eq. (4.48).

Internal Anchor

When V is included in X, the full-length test is X. Now, let A be the noncommon
part of X such that X = A+ V. Under the congeneric model, the covariance between
the errors for A and V is assumed to be 0 because these two parts of X consist of
entirely different items. Consequently,

0(Ex, Ev) = 0(Eayv, Ev) = 0(Ey, Ev) = 0*(Ey) = A\vo*(E).  (4.50)

That is, the covariance between Ex and Ey is simply the variance of Ey .
Using Eq. (4.50) in (4.48) gives

o(X, V) = AxA\vo2(T) + \vo?(E)
= Ay [Axa*(T) + 2(E)]. (4.51)

After rewriting Eq. (4.46) as

o (X) = Ax[Axo(T) + o*(E)],
it is evident from Eq. (4.51) and the above expression for o2(X) that v in Eq. (4.49)
is

v =Ax/Ay = 02(X)/o(X, V) = 1/a(V|X). (4.52)

Therefore, for the internal anchor case, the results for Levine’s observed score
method under the classical congeneric model are obtained by using

Y1 = 1/ai(V|X) = 0}(X)/o1(X, V) (4.53)

and
Y2 = 1/ax(VIY) = 03 (Y)/o2(Y, V). (4.54)

That is, with an internal anchor, the v-terms in Eqgs. (4.17)—(4.20) under the classical
congeneric model are the inverses of the regression slopes of V on X and V on Y.
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External Anchor
When X and V contain no items in common, under the congeneric model,
o(Ex, Ev) =0. (4.55)
Using Eq. (4.55) in (4.48) gives
a(X, V) = AxAva(T). (4.56)
From Egs. (4.46) and (4.56),
a?(X) + (X, V) = Ax[Ax + Ao (T) + o*(E)].
Similarly, using Eqs. (4.47) and (4.56),
(V) +0(X, V) = Av[QAx + Av)a*(T) + 0 (B)].
It follows that v in Eq. (4.49) is

M o2(X) +o(X,V)
TN T2V roX. V)

4.57)

Therefore, for the external anchor case, the results for Levine’s observed score
method under the classical congeneric model are obtained by using

o)+ o (X V)
T2V oX. V)

(4.58)

and s
2(Y) + 0a(Y, V)
— 4.59
PE 2V o, V) (439

in Egs. (4.17)-(4.20).

Comments

Under the assumption that wy = N;/(N1 + N») and wp = Ny/(N1 + Na),
the results for Levine’s observed score method and a classical congeneric model
are identical to those reported by Angoff (1971), although the derivation is dif-
ferent. Angoft (1971) results are sometimes called the Levine-Angoff method, or
described as “Levine’s method using Angoff error variances”. The error variances
are those in Angoff (1953), which are also reported by Petersen et al. (1989, p. 254).
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Table 4.1 Classical congeneric model results

Anchor
Quantity Internal External
_Ax 1 X)) o2(X)+o(X,V)
TN aV|X)  o(X,V) a2(V)+o(X,V)
) — 7
o2(Ty) v [J(X’yvi : a*(V)] (X V)
ATy a(X,V)—a2(V) a(X,V)
252 7/71 X,V !
o2(Ex) 7o )7—_’le( V) o2 (X) —vo(X, V)
20y —
o2(Ey) SEAAS At i (V’)y _CIT(X’ 4 oX(V) — X V)
2 2
/ Y lo(X, V) —o7(V)] yo(X,V)
P X0 (= D2(X) 2(X)
, o(X. V) —o?(V) (X, V)
v 0= D2V 1 2(V)

Note Here, the population subscript “1”” has been suppressed

Brennan (1990) has shown that Angoff’s error variances are derivable from the classi-
cal congeneric model. Table 4.1 reports these error variances along with other results
for the classical congeneric model that can be used to express the quantities illustrated
in Fig.4.1.

4.3 Levine True Score Method

Levine (1955) also derived results for a true score equating method using the same
assumptions about true scores discussed in the previous section. The principal differ-
ence between the observed score and true score methods is that the observed score
method uses Eq. (4.1) to equate observed scores on X to the scale of observed scores
on Y, whereas the true score method equates true scores. Specifically, the following
equation is used to equate true scores on X to the scale of true scores on Y:

os(Ty)
os(Tx)

lys(tx) = [tx — 15 (Tx)] + ps (Ty).

In classical theory, observed score means equal true score means. Therefore,

os(Ty)
os(Tx)

Iy (tx) = [1x — 115 CO] + 115 (¥). (4.60)
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4.3.1 Results

Equations (4.2) and (4.3) are still appropriate for us(X) and us(Y), respectively.
Also, under Levine’s assumptions, Eqgs. (4.34) and (4.35) still apply for p(X) and
w1 (Y), respectively. Consequently, Egs. (4.17) and (4.18) for us(X) and ps(Y) are
valid for both the Levine observed score and the Levine true score methods, with
the y-terms given by Egs. (4.38) and (4.39). For ease of reference, these results are
repeated below:

s (X) = p1(X) — wam [ (V) — pa (V)] (4.17)
and
ps(Y) = pa(Y) + sz[,ul(V) - Mz(V)], (4.18)
where
y =01(Tx)/o1(Tv) (4.38)
and
Y2 = 02(Ty)/o2(Ty). (4.39)

Using Levine’s true score assumptions, the derivation of expressions for the vari-
ance of Ty and Ty for the synthetic population is tedious (see Appendix), although
the results are simple:

o (Tx) = 7oL (Tv) (4.61)

and
o2(Ty) = v302(Ty), (4.62)

where 5
o2(Ty) = wiot(Ty) + w203 (Ty) + wiwa [ (V) — (V)]

From Eqgs. (4.61) and (4.62), the slope of the equating relationship [y, (fx) in
Eq. (4.60) is
os(Ty)/os(Tx) = 72/, (4.63)

where the y-terms are given by Eqs. (4.38) and (4.39).

These results are quite general, but they are not directly usable without expres-
sions for the true score standard deviations o1 (Tx), 02(Ty), o1(Ty), and o2(Ty),
which are incorporated in v and ;. As with the Levine observed score method,
o1(X)+/p1(X, X') can be used for o1 (Tx), and corresponding expressions can be
used for the other true score standard deviations. Then, given estimates of the required
reliabilities, the linear equating relationship /y, (x) in Eq. (4.60) can be determined.

One counterintuitive property of the Levine true score method is that the slope
and intercept do not depend on the synthetic population weights w and w;. Clearly,
this is true for the slope in Eq. (4.63). From Egs. (4.60) and (4.63), the intercept is
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s (Y) — (v2/71) ps (X)),

and, using Egs. (4.17) and (4.18), it can be expressed as

12(Y) + wiva[p (V) = (V)] = (2 /) {1 (X) — wayi [ (V) — pa(V) ]}
= 12(Y) — (v2/7)1 (X) + 12 (wi + w)[p1 (V) — p2(V)]
= 2(Y) — (2/7) 1 (X) + 12[ 1 (V) — p2(V)], (4.64)

which does not depend on the weights w; and w;.
Given the slope and intercept in Eqgs. (4.63) and (4.64), respectively, the linear
equating relationship for Levine’s true score method can be expressed as

ly (1x) = (2/7D[tx — 1 (X)] + p2(Y) + [ (V) — p2(V)], (4.65)

which gives the same Form Y equivalents as Eq. (4.60). Note, however, that s does
not appear as a subscript of [ in Eq. (4.65) because this expression for Levine’s true
score method does not involve a synthetic population. In short, Levine’s true score
method does not require the conceptual framework of a synthetic population and is
invariant with respect to the weights w; and w>.

Classical Congeneric Model

Results for Levine true score equating under the classical congeneric model with an
internal anchor are obtained simply by using Eqgs. (4.53) and (4.54) for ; and 72,
respectively. For an external anchor, Egs. (4.58) and (4.59) are used.

Using Levine’s True Score Method with Observed Scores

Equations (4.60) and (4.65) were derived for true scores, not observed scores. Even
S0, in practice, observed scores are used in place of true scores. That is, observed
scores on X are assumed to be related to the scale of observed scores on Y by the
equation

ly(x) = (2/D)[x = mX) ] + p2(¥) + 2 [ 1 (V) = (V)] (4.66)

Although replacing true scores with observed scores may appear sensible, there
is no seemingly compelling logical basis for doing so. Note, in particular, that the
transformed observed scores on X [i.e.,/y (x)] typically do not have the same standard
deviation as either the true scores on Y or the observed scores on Y. However, as
will be discussed next, Levine’s true score method applied to observed scores has an
interesting property.
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4.3.2 First-Order Equity

Although the logic of using observed scores in Levine’s true score equating function
appears somewhat less than compelling, Hanson (1991) has shown that using
observed scores in Levine’s true score equating function for the common-item non-
equivalent groups design results in first-order equity (see Chap. 1) of the equated test
scores under the classical congeneric model. Hanson’s (1991) result gives Levine’s
true score equating method applied to observed scores a well-grounded theoretical
justification. In general, his result means that, for the population of persons with a
particular true score on Y, the expected value of the linearly transformed scores on
X [Eq. (4.66)] equals the expected value of the scores on Y, and this statement holds
for all true scores on Y. In formal terms, first-order equity means that

E[ly(X)|¢(Tx) = 7] = E[Y|Ty = 7] forall T, (4.67)
where 1) is a function that relates true scores on X to true scores on Y, and X is
capitalized in [y (X) to emphasize that interest is focused here on the variable X
rather than on a realization x.

Before treating the specific case of the common-item nonequivalent groups design,
it is shown next that first-order equity holds whenever there exists a population such
that Forms X and Y are congeneric and true scores are replaced by observed scores.
As was discussed previously, for the congeneric model,

X=Tx+Ex=0M\xT+dx)+ ExandY =Ty + Ey = (\yT + dy) + Ey.

To convert true scores on X to the scale of true scores on Y, it can be shown that
Ay
Ty = V(Tx) = —(Tx — 6x) + dy.
Ax
Substituting X for Ty gives
Ay
ly(X) = )\—(X—(Sx)+5y. (4.68)
X

In congeneric theory, the expected value of errors is 0. Thus,

EX|T =1) ZE[AxT+5x+Ex] = AxT + dx and
EY|T =171) :E[)\yT-i-(Sy—i-Ey] = AyT + dy.

First-order equity holds for ly(X) because the expected value of ly(X) given
W (Tx) = 7 equals the expected value of Y given Ty = 7:
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Ay
E )\—(X —0x) +oy|VW(Tx) =T
X

A
=E|:>\_Y(/\XT+(5X + Ex —dx) +6ylTy = T}
X
=AyT + oy
=E[Y|Ty = 7],
as was previously indicated.

For the common-item nonequivalent groups design, one parameterization of the
classical congeneric model is

X1 = (\xTi +0x) + Ex,, 01(Ex) = Ax01(E),
Yo = A\yTa +6y) + Ey,, 03(Ey) = Ayo3(E),
Vi = \yTi +6v) + Ev,, 03(Ey) = Ayoi(E),
Vo = Ay T2 +6v) + Ev,, 03(Ey) = Ayo3(E),

(4.69)

where the subscripts 1 and 2 designate the populations. This parameterization is
different from that in Hanson (1991), but it is consistent with the parameterization
introduced previously.

Given the parameterization in equation set (4.69),

p(X) = Axp(T) + o, 2 (Y) = Ay pua(T) + dy,
1 (V) = Ay (T) + dv, w2 (V) = Ay pa(T) + 0y,
0}(X) = N,03(T) + Ax02(E), 05(Y) = N\305(T) + A\yos(E),
o} (V) = X,oi(T) + Avoi(E), o5(V) = \,03(T) + Avo3(E),

o1(X, V) = AxAvai(T) o2(Y, V) = Ay Avos(T)
+01(Ex, Ey), +02(Ey, Evy).

(4.70)
From Eq. (4.50), for the internal case, oi(Ex, Ey) = /\VUIZ(E); similarly,
o2(Ey, Ey) = )\vag(E). From Eq. (4.55), for the external case, o1 (Ex, Ey) = 0;
similarly, o2 (Ey, Ey) = 0.

To prove that first-order equity holds for Levine’s true score method applied to
observed scores, it is sufficient to show that the slope and intercept in the Levine
equation (4.66) equal the slope and intercept, respectively, in Eq. (4.68).

To prove the equality of slopes, it is necessary to show that

T2/71 = Ay /Ax.
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For the internal case, from Eq. (4.53),

M = 01(X)/o1(X, V)
_ A30H(T) + Axo}(E)
MxAvoX(T) + Ayoi(E)

= Ax/Avy.
Similarly,
v = Ay/Ay 4.71)
and, consequently,
T2/M = Ay /Ax. 4.72)

The external case is left as an exercise for the reader.
To prove the equality of intercepts, it is necessary to show that

12(Y) = (2 /)11 (X) + 12[p1 (V) = p2(V)] = 6y — Ay /Ax)dx.

For the internal case, from Egs. (4.71) and (4.72), the intercept is

12(Y) — Ay /A0 1 (X) + Oy /A [ (V) = pa (V)]
= [Avpa(T) + 6y ] — O /20 [Ax 1 (T) + 0x]
+ Ay /AN [Avpn (T) + 6y — Ay pa(T) — oy ]
= Ay[p2(T) — p1 (D)) + [6y — Qv /Ax)0x |+ Ay [1(T) — pa(T)]
=dy — (A\y/Ax)0x.

The external case is left as an exercise for the reader.

4.4 Chained Linear Equating

A seemingly obvious way to conduct linear equating is to

1. put X on the scale of V—call this [y (x);
2. put V on the scale of Y—call this Iy (v); and
3. obtain Y-equivalents as Iy (x) = ly[ly (x)].

The logic behind Step 3 is based on the transitive notion that if X is related to V, and
V isrelated to Y, then X is related to Y. More formally, Step 3 is called a composed
function. Chained linear equating was initially discussed by Angoff (1971, p. 583)
and subsequently by Holland and Dorans (2006, p. 208). The method is quite simple,
although not as widely used as the Tucker and Levine methods.
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In an equating context, chaining in this manner may seem problematic since step
1 involves relating scores of a longer form to scores of a shorter form, and Step 2
involves relating scores on a shorter form to scores on a longer form. Indeed, the very
use of the word “form” is dubious here since we have elsewhere reserved that word
for “versions” of a test that are equally long or at least quite similar in reliability.

For the common-item nonequivalent groups design, another problem would seem
to be that Step 1 can be performed using Population 1, only, whereas Step 2 can be
performed using Population 2, only. To what population, then, does the result in Step
3 apply? The Holland and Dorans (2006, p. 208) framework avoids this problem by
simply assuming “up front” that the equating is invariant for all weightings of the
two populations.

4.4.1 Chained Linear Observed Score Equating

The linear observed score equation for equating X to the scale of V in Population 1
(the population that took Form X) is

\% \%
Iyi(x) = [mm — 2 EX;M(X)} + :Exi (x) (4.73)
= Byx + Ay (x), (4.74)

where B is the intercept and A is the slope. The linear observed score equation for
equating V to the scale of Y in Population 2 (the population that took Form Y) is

Y Y
ly2(v) = |:H2(Y) - ZEEV; Hz(V)] + Zj((V)) ) 4.75)
= By + Ayp(v). 4.76)

The essence of the word “chained” in chained linear equating is the replacement of
v in Eq. 4.75 (or 4.76) with Iy (x) given by Eq. 4.73 (or 4.74), neglecting the fact
that the two equations are for different populations. That is,

ly(x) = By|y + AyplBy |y + Ay (x)]
= [Bypy + AypByx] + Ayp Ay ()]

o2(Y) 02(Y)/o2(V)
= (¥) + 2 [ (V) — o (V)] — =22 2 (X
[,uz( )+02(V) (1 (V) — p2 (V)] Jl(X)/al(V)[M( )]]
o2(Y)/o2(V) ). @77)
o1(X)/a1(V)

Ithas been shown previously that the Tucker and Levine observed score procedures
differ only with respect to the ~ terms in Eqgs. (4.17)—(4.20), which are the parame-
ters for the basic linear observed score equating Eq. (4.1). Brennan (2006) shows
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that the same statement holds for chained linear observed score equating. Specifi-
cally, Eq. (4.77) is identical to Eq. (4.1), based on using the following ~ terms in
Eqgs. (4.17)-(4.20):

_a(X)

v = (V) (4.78)
and )

Y = T 4.79)

These results hold for both an internal and an external anchor, and they do not depend
on the population weights, w; and w,, whereas the Tucker and Levine observed score
methods do depend on these weights.

Replacing Eqs. (4.78) and (4.79) in Eq. (4.77) gives

ly (x) = {p2(Y) + 2[p1 (V) — pi2(V)] = (v2/ 7D [ (X1}
+ (/1) (x). (4.80)

4.4.2 Chained Linear True Score Equating

Recall that when observed scores are used in place of true scores in the Levine true
score method, the linear equating Eq. (4.66) is

Iy(x) = (y2/vD)[x — p1(X)] 4+ p2(Y) + yalp1 (V) — pa (V)]
= {u2(Y) +2lpu1 (V) = po(V)] = (v2/vD) 1 (X))}
+ (/7)) x), (4.81)

where the two 7y terms are ratios of true score standard deviations—namely, 7 =
01(Tx)/o1(Ty) and v = 02(Ty)/o2(Ty). It is evident from Eq. (4.80) that chained
linear observed score equating has the same form as Eq. (4.81). For chained linear
observed score equating, however, the  terms are ratios of observed score standard
deviations—namely, v; = 01(X)/0o1(V) and v2 = 02(Y) /o2 (V).

It follows that chained linear true score equating is mathematically identical to
Levine true score equating. This equivalence necessarily applies, as well, when the
classical congeneric model is used with both the Levine true score method and the
chained linear true score method. Under these circumstances, from Hanson’s (1991)
proof, when chained linear true score equating is used with observed scores replacing
true scores, the resulting equivalents possess the property of first-order equity.
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Table 4.2 Computational formulas and equations for linear equating methods
with the common-item nonequivalent groups design

Tucker and Levine Observed Score Methods

lys(x) = [o5(Y)/os (X)][x — s (X)] + s (¥) 4.1
Levine True Score Method Applied to Observed Scores

ly(x) = (y2/yD)[x — p1 (X)] + p2(Y) + y2[p1 (V) = pa (V)] (4.66)
ps(X) = p1(X) — wan [p1 (V) — p2 (V)] (4.17)
ps(¥) = oY) + winelp (V) — pa (V)] (4.18)

o2(X) = a2 (X) — way o3 (V) — a3V + wiwp i [ (V) — i (V)P (4.19)
o2(Y) = a3(Y) + w3 o3 (V) — a2 (V)] + wiwayi i (V) — i (V)? - (4.20)

Tucker Observed Score Method

Y = a1 (XIV) = 01(X, V) /a2 (V)

d 4.21
2 = ax(Y|V) = 0a(Y, V) /o2(V) an @-21)

] internal anchor
external anchor

4.22)
Levine Methods Under a Classical Congeneric Model
N =1/ai(V|X) = a7 (X) /o1 (X, V) } .
internal anchor 4.53
72 = 1/as(V[Y) = 63 (Y)[02(Y. V) @33)
(4.54)
., o} (X) +o1(X, V)
1= 5 oo o0
o (V) +o1(X, V)
3 ¥) + oa (Y. V) external anchor (4.58)
P2Vt V)
4.59)

Levine Methods Without Assuming a Classical Congeneric Model
For both internal and external anchors (see Egs. (4.40) and (4.41)),

R W 28 BN W e o &

Chained Method
For both internal and external anchors (see Egs. (4.78) and (4.79)),

_a®VpX. X a2 (V)vV/p (Y. Y")

= o1(X) and = a2(Y)
o1 (V) o2(V)’

4.5 Tllustrative Example and Other Topics

Table 4.2 provides the principal computational equations for the three linear equating
methods that have been developed in this chapter. In this section, all references to
Levine methods (except for parts of Table 4.2) assume the classical congeneric model.
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Table 4.3 Directly observable statistics for an illustrative example of equat-
ing forms X and Y using the common-item nonequivalent groups design

Group  Score i o Covariance Correlation
1 X 15.8205 6.5278

1 Vv 5.1063 2.3760 13.4088 .8645

2 Y 18.6728 6.8784

2 1% 5.8626 24515 14.7603 .8753

Note N1 = 1,655 and N, = 1, 638

4.5.1 Illustrative Example

Table 4.3 provides statistics for a real data example that employs two 36-item forms,
Form X and Form Y, in which every third item in both forms is a common item.
Therefore, items 3, 6, 9, ..., 36 constitute the 12-item common set V. Scores on V
are contained in X, so V is an internal set of items. Form X was administered to 1,655
examinees, and Form Y was administered to 1,638 examinees. Method of moments
estimates of directly observable parameters are presented in Table 4.3. Results were
obtained using EQUATING RECIPES, which is described in Appendix B.

To simplify computations, let w; = 1 and wy = 1 — w; = 0 for the Tucker and
Levine observed score methods. For this synthetic population, using Egs. (4.17) and
(4.19),

fis(X) = fi (X) = 15.8205

and
05(X) =01(X) = 6.5278.

For the Tucker method, using Eq. (4.22),
Y =62(Y,V)/55(V) = 14.7603/2.4515% = 2.4560.
Using this value in Egs. (4.18) and (4.20) gives
fis(Y) = 18.6728 + 2.4560(5.1063 — 5.8626) = 16.8153

and

54(Y) = \/6.87842 + 2.45602(2.37602 — 2.4515%) = 6.7167.
Applying these results in Eq. (4.1) gives

Iy, (x) = (6.7167/6.5278)(x — 15.8205) + 16.8153
= .5370 + 1.0289x. (4.82)
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For the Levine observed score method under the classical congeneric model, with
wy = 1, i5(X) = 15.8205, 65(X) = 6.5278, and using Eq. (4.54),

4y = 65(Y)/62(Y, V) = 6.8784% /14.7603 = 3.2054. (4.83)
Then, using Eqgs. (4.18) and (4.20),
s (Y) = 18.6728 + 3.2054(5.1063 — 5.8626) = 16.2486,

and

54(Y) = /6.87842 + 3.20542(2.37602 — 2.4515%) = 6.6006.
Applying these results in Eq. (4.1) gives

Iy, (x) = (6.6006/6.5278)(x — 15.8205) + 16.2486
= 2517+ 1.0112x. (4.84)

For the Levine true score method applied to observed scores, 42 = 3.2054 in
Eq. (4.83) still applies and, using Eq. (4.53),

A1 = 63(X)/61(X, V) = 6.52782/13.4088 = 3.1779.
Therefore, Eq. (4.66) gives

Iy (x) = (3.2054/3.1779) (x — 15.8205) + 18.6728
+ 3.2054(5.1063 — 5.8626)
= .2912 + 1.0087x. (4.85)

For the chained linear method, using Eqgs. (4.78) and (4.79),
A1 = 01(X)/01(V) = 6.5278/2.3760 = 2.7474,

and
Ap = 62(Y)/52(V) = 6.8784/2.4515 = 2.8058.

Therefore, Eq. (4.80) gives

Iy (x) = {18.6728 + 2.8058(5.1063 — 5.8626) — (2.8058/2.7474)15.8205}
+ (2.8058,/2.7474) (x)
= 3940 + 1.0213. (4.86)

These results are summarized in Table 4.4. The slight discrepancies in slopes and
intercepts in Eqgs. (4.82), (4.84), (4.85) and (4.86) compared to those in Table 4.4
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Table 4.4 Linear equating results for the illustrative example in Table 4.3 using the classical
congeneric model with Levine’s methods

—

wi Method o A fs(X) fs(Y)  65(X) 6,(Y) int  slope

1 Tucker a 2.4560 15.8205 16.8153 6.5278 6.7168 .5368 1.0289
Lev Obs. Sc. @ 3.2054 15.8205 16.2485 6.5278 6.6007 2513 1.0112

5 Tucker 23751 2.4560 16.7187 17.7440 6.6668 6.8612 .5378 1.0292
Lev Obs. Sc. 3.1779 3.2054 17.0223 17.4607 6.7747 6.8491 2514 1.0110

.5026° Tucker 23751 24560 16.7141 17.7392 6.6664 6.8608 .5378 1.0292
Lev Obs. Sc. 3.1779 3.2054 17.0161 17.4544 6.7740 6.8484 2514 1.0110

—  LevTrueSc. 3.1779 3.2054 © b b b 2912 1.0086

—  Chained Lin. 2.7474 2.8058 P b b b 3937 1.0213

4 Not required when w; = 1

b Proportional to sample size [i.e., w; = Nj/(N1 + N2) = .5026]

¢ Not required

Table4.5 Selected form Y equivalents for illustrative example using w; = 1
for Tucker and Levine observed score methods

Chained Levine Levine
X Tucker Linear Observed score True score
0 .5368 .3937 2513 2912
10 10.8263 10.6064 10.3630 10.3777
20 21.1157 20.8191 20.4747 20.4641
30 31.4052 31.0318 30.5863 30.5506
36 37.5789 37.1595 36.6533 36.6024
m 16.8153 16.5508 16.2485 16.2485
i 6.7168 6.6667 6.6007 6.5843

Note 11 and  are based on using frequencies for X in Population 1

are due to rounding error; the results in Table 4.4 are more accurate. In practice, it is
generally advisable to perform computations with more decimal digits than presented
here for illustrative purposes, especially for accurate estimates of intercepts.

The similarity of slopes and intercepts for the methods suggests that the Form
Y equivalents will be about the same for all methods. This finding is illustrated in
Table 4.5. The Form Y equivalents for the methods are very similar, although there is
a greater difference between the equivalents for the Tucker method and either Levine
method than between the equivalents for the two Levine methods. The new Form X
is more difficult than the old Form Y for very high achieving examinees, as suggested
in Table 4.5, where, for all methods, the Form Y equivalent of x = 36 is a score
greater than the maximum possible score of 36. Of course, the similarities among
results for the methods does not necessarily extend to other data sets.

As was discussed in Chap. 2, raw score equivalents that are out of the range of pos-
sible scores can be problematic. Sometimes, equivalents greater than the maximum
observable raw score are set to this maximum score. In other cases, this problem
is handled through the transformation to scale scores. In most cases, doing so has
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little practical importance, but this issue could be consequential when various test
forms are used for scholarship decisions. The occasional need to truncate Form Y
equivalents is a limitation of linear equating procedures. This issue will be discussed
further in Chap. 8.

4.5.2 Synthetic Population Weights

As noted previously, the synthetic population weights (w; and wy, = 1 — wy) have
no bearing on Levine’s true score method or the chained method. That is why the
results for these two methods appear on separate lines in Table 4.4. For the Tucker
and Levine observed score methods, however, the weights do matter, in the sense
that they are required to derive the results. From a practical perspective, however, the
weights seldom make much difference in the Form Y equivalents. This observation is
illustrated in Table 4.4 by the fact that the intercepts and slopes for Tucker equating are
almost identical under very different weighting schemes (e.g., w; = 1 and wy = .5),
and the same is true for Levine observed score equating.

Although the choice of weights makes little practical difference in the vast majority
of real equating contexts, many equations are simplified considerably by choosing
w1 = 1 and wy = 0. This observation is evident from examining Eqs. (4.17)-(4.20)
in Table 4.2. Furthermore, setting w; = 1 means that the synthetic group is simply the
new population, which is often the only population that will take the new form under
the nonequivalent groups design. Therefore, using w; = 1 often results in some
conceptual simplifications. For these reasons, setting w; = 1 appears to have merit.
However, the choice of synthetic population weights ultimately is a judgment that
should be based on an investigator’s conceptualization of the synthetic population.
It is not the authors’ intent to suggest that w; = 1 be used routinely or thoughtlessly.
(See Angoftf 1987; Kolen and Brennan 1987; Brennan and Kolen 1987, for further
discussion and debate about choosing wi and w>.)

4.5.3 Mean Equating

If sample sizes are quite small (say, less than 100), the standard errors of linear
equating (as will be discussed in Chap. 7) may be unacceptably large. In such cases,
mean equating might be considered. Form Y equivalents for mean equating under the
Tucker and Levine observed score methods are obtained by setting o (Y) /o (X) = 1
in Eq. (4.1), which gives

my (x) =[x — ps (X)) + ps (Y), (4.87)
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where ps(X) and ps(Y) are given by Eqs. (4.17) and (4.18). Effectively, the Form Y
equivalent of a Form X score is obtained by adding the same constant, zt5(Y) — 5 (X),
to all scores on Form X.

Form Y equivalents under Levine’s true score method and the chained method
are obtained by setting 2 /1 = 1 in either Eq. (4.66) or (4.80), which gives

my (x) = [x — p1(X)] + {p2(Y) + 721 (V) — p2(V)1}. (4.88)

If w; = 1, Egs. (4.87) and (4.88) are identical because s (X) = p1(X) and ps(Y)
is given by the term in braces in Eq. (4.88). Since ~; is the same for both of Levine’s
methods, this implies that, when w; = 1, mean equating results are identical for
Levine’s observed score and true score methods.

4.5.4 Decomposing Observed Differences in Means and Variances

In the common-item nonequivalent groups design, differences in the observable
means (1 (X) — u2(Y) and observable variances O’% (X) — cr%(Y ) are due to the con-
founded effects of group and form differences. Since estimates of these parameters
are directly observed, a natural question is, “How much of the observed difference in
means (or variances) is attributable to group differences, and how much is attribut-
able to form differences?”” An answer to this question is of some consequence to both
test developers and psychometricians responsible for equating. There is nothing a
test developer can do about group differences; but in principle, if form differences
are known to be relatively large, test developers can take steps to create more similar
forms in the future. Furthermore, if a psychometrician notices that group differences
or form differences are very large, this should alert him or her to the possibility that
equating results may be suspect.

One way to answer the question posed in the previous paragraph is discussed by
Kolen and Brennan (1987). Their treatment is briefly summarized here.

Decomposing Differences in Means
Begin with the tautology
p1(X) — pa(Y) = pus (X) — ps (V) +{[11 (X)) — pos (XD ] = [p2 (V) — ps (V)1}. (4.89)

Note that pi5 (X)— s (Y) is the mean difference for the two forms for the synthetic pop-
ulation. Since the synthetic population is constant, the difference is entirely attribut-
able to forms and will be called the form difference factor. The remaining terms in
braces will be called the population difference factor. [Since Eq. (4.89) involves a
synthetic population, it applies to the chained method and Levine’s true score method
only if wy is set to 1, somewhat arbitrarily.]
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After replacing Egs. (4.2) and (4.3) in Eq. (4.89), it can be shown that

w1(X) — (YY) = wi{ur(X) — p1(Y)} Form difference for Population 1
Fwo{p2(X) — w2 (Y)}  Form difference for Population 2
F+wo{p1(X) — u2(X)}  Population difference on X scale
+wi{p1(Y) — u2(Y)}  Population difference on Y scale,
(4.90)

where the descriptions on the right describe the mathematical terms in braces (i.e.,
excluding the w; and w, weights). This expression states that p1(X) — pa(Y) is a
function of two weighted form difference factors (one for each population) and two
weighted population difference factors (one for each scale). Since this result is rather
complicated, it is probably of little practical value in most circumstances.

Equation (4.90) simplifies considerably, however, if w; = 1. Then

w1(X) — oY) = {um(X) — p1(Y)} Form difference for Population 1
+{u1(Y) — u2(Y)}  Population difference on Y scale.
4.91)
When w; = 1 in Eq. (4.18),

ps(Y) = p1(Y) = pa(Y) + 2lpr (V) — pa (V)1

Therefore, Eq. (4.91) results in

p1(X) — p2(Y) = {1 (X) — pa(¥)
-7l (V) — pua(VH1} Form difference for Population 1
+{v2[p1(V) — u2(V)]}  Population difference on Y scale.
(4.92)

Equation (4.92) applies to all methods in this chapter provided w; = 1. As discussed
previously, the choice of synthetic population weights generally has little effect on
Form Y equivalents. Consequently, Eq. (4.92) should be adequate for practical use
in partitioning 1 (X) — p2(Y) into parts attributable to group and form differences.

Refer again to the example in Table 4.3 and the associated results in Table 4.4.
For the Tucker method, Eq. (4.92) gives

15.8205 — 18.6728 = {15.8205 — 18.6728 — 2.4560(5.1063 — 5.8626)}
+ {2.4560(5.1063 — 5.8626)},

which simplifies to
—2.85=—-.99 — 1.86.

This result means that, on average: (a) for the new group, the new Form X is more
difficult than the old Form Y by .99 unit; and (b) Population 1 is lower achieving
than Population 2 by 1.86 units on the Form Y scale.
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The corresponding result for both of the Levine methods under the classical
congeneric model is obtained by using > = 3.2054 in Eq. (4.92), which gives

—2.85=—-.43-2.42.

Under the Levine assumptions, population mean differences on the Form Y scale
are greater than under the Tucker assumptions by 2.42 — 1.86 = .56 unit. For the
chained linear observed score method v, = 2.8058, and the decomposition is

—2.85=-73-2.12.

Decomposing Differences in Variances

As has been shown by Kolen and Brennan (1987), decomposing a%(X ) — O'%(Y) is
considerably more complicated, in general. However, for all three equating methods
discussed in this chapter, when w; = 1 the result is quite simple:

a1 (X) = 03 (Y) = {07 (X) — 03(Y)
—y3[03(V) —03(V)]}  Form difference for Population 1
+{’y§[a%(V) — a%(V)]}. Population difference on Y scale.
(4.93)

The form of Eq. (4.93) parallels that of Eq. (4.92) for decomposing the difference in
means.
For the example in Tables 4.3 and 4.4, under Tucker assumptions, using Eq. (4.93),

6.5278° — 6.8784% = {6.5278% — 6.8784% — [2.4560%(2.3760% — 2.4515%)]}
+ {2.4560%(2.3760% — 2.4515%)},

which gives approximately
—4.70 = —2.50 — 2.20,

where —2.50 is the form difference factor, and —2.20 is the population difference
factor. This result means that, on average: (a) for the new group, the new Form X
has smaller variance than the old Form Y by 2.50 units; and (b) on the old Form Y
scale, Population 1 has smaller variance than Population 2 by 2.20 units.
For both Levine methods under the classical congeneric model, v, = 3.2054, and
the decomposition is
—4.70 = —.96 — 3.74.

Under the Levine assumptions, population differences in variances on the Form Y
scale are greater than under the Tucker assumptions by 3.74 — 2.20 = 1.54 units.
For the chained linear observed score method v, = 2.8058, and the decomposition
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is
—4.70 = —1.83 — 2.87.

4.5.5 Relationships Among Linear Observed Score Methods

This section begins by discussing relationships among the ~y terms for linear observed
score equating procedures. Then, relationships are derived for quantities such as
means, slopes, and variances for the methods. The net effect is that once the -y terms
are known for the methods, a number of relationships among results for the methods
can be ascertained.

Internal Anchor

For an internal anchor, Brennan (2006) shows that there is a relatively simple rela-
tionship among the  terms for the Tucker method (v17), the Levine observed score
method under the classical congeneric model (v ), and the chained linear observed
score equating method (v;¢).% Specifically,

) Nre- (4.94)

= J/r72L- (4.95)

As shown by Kolen and Brennan (1987), when o1(X, V) > 0 (as must be the
case for equating to be reasonable), yi7 < ~v1r. Since the v terms for chained linear
observed score equating are the geometric means of the v terms for Tucker and
Levine observed score equating as demonstrated in Egs. (4.94) and (4.95), it follows
that?

YT <Y1c < Y1L, (4.96)

Similarly, when o1 (Y, V) > 0,

Y21 < Y2 < V2L- 4.97)

2 Note that, in this section, the subscript 7 stands for Tucker, not true score.

3 Strictly speaking, if p; (X, V) = 1, then all three ~y terms are equal, but p; (X, V) = 1 is unattain-
able in practice.
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As indicated by Eqgs. (4.17)—(4.20), the v terms multiply the differences in the
first two population moments for scores on the common items. Therefore, larger
values for the « terms cause the associated method to attribute more of the observed
raw score differences in X and Y to population differences and correspondingly less
of the observed raw score differences to form differences. Given the inequalities in
Egs. (4.96) and (4.97), the equivalents for chained linear observed score equating
are expected on average to be “between” those for the Tucker and Levine observed
score methods, with the Tucker method attributing more of the observed raw score
differences in X and Y to forms than either of the other two methods. That is,
Tucker equivalents are expected on average to be further from their corresponding X
scores than equivalents for chained linear observed score equating, which in turn are
expected on average to be further from their corresponding X scores than equivalents
for Levine observed score equating. Stated more mathematically, |x — ly(x)| for
Tucker equating is expected on average to be greater than |x — [y (x)| for chained
linear observed score equating, which is expected on average to be greater than
|x — Iy (x)| for Levine observed score equating. This relationship is illustrated by
results for the example in Table 4.5.

The relationships among ~y terms also allow us to predict other relationships among
equivalents. For example, if w; = 1, from Egs. (4.1) and (4.18) it is clear that*

ly[p1(X)] = pm(¥Y) = pa(¥Y) + ylpi (V) — (V)1
Given the relationship between the v, terms in Eq. (4.97), it follows that
Lyr[p (X)) < lyclpi (X)) < lyplpi(X)] when pi (V) > pa(V), (4.98)
and
Lyt (X)] > lyclpi(X)] > Iy L[p(X)] when pi (V) < pa (V). (4.99)

Also, when w; = 1, from Eqgs. (4.1), (4.19), and (4.20), the slope is

A=

oy (Y) \/ 03(Y) + Blo}(V) — 03 (V)]
o5(X) o} (X) '

Clearly, when O'IZ(V) > cr%(V), as 7, gets larger, the slope gets larger; and, when
012(V) < ag(V), as 7y, gets larger, the slope gets smaller. Therefore, given the

inequality in Eq. (4.97),

Ayt < Ayc < Ayp whenol (V) > a3(V), (4.100)

4 The inequalities in Eqs. (4.98) and (4.99) also apply when Iy [11(X)] is based on Levine true
score equating in Eq. (4.66).
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and
Ayr > Ayc > Aypwheno?(V) < a3(V). (4.101)

Since the methods considered here are linear, inequalities analogous to the last two
apply, as well, to the variances and ranges of the equivalents. These results for slopes
imply that the linear equating observed score conversion lines intersect somewhere.
Experience suggests, however, that with real data and well-constructed forms, inter-
sections tend to occur outside the range of observed scores on X, or at relatively
extreme X scores.

For the example in Tables (4.3), (4.4), and (4.5) with w; = 1, the inequality in
Eq. (4.97) applies; i.e.,

(721 = 2.4560) < (y2¢ = 2.8058) < (721 = 3.2054).

Also, since [p1(V) = 5.1063] < [u2(V) = 5.8626], the inequality in Eq. (4.99)
applies to the mean of the equivalents; i.e.,

{lyrlp1 (X)] = 16.8153} > {lyc[p1(X)] = 16.5508} > {lyL[p1(X)] = 16.2485}.

Finally, since [03(V) = 2.3760°] < [03(V) = 2.45157], the inequality in
Eq. (4.101) applies to the slopes; i.e.,

(Ayr = 1.0289) > (Ayc = 1.0213) > (Ayr = 1.0112).

For this particular example, Table (4.5) clearly indicates that the conversion lines do
not intersect within the 0-36 range of possible scores for X, which means that, within
this range, lyr (x) > lyc(x) > lyr (x).

Most of the above results have been proven for the case of w; = 1, only. Expe-
rience and simulations suggest, however, that the weights make relatively little dif-
ference in linear equating results (see, for example, Suh et al. 2009; and von Davier
et al. 2004).

External Anchor

For an external anchor, Brennan (2006) shows that

Yic = v (L —r) +yenr, (4.102)

and

Yac = (2L — Y2r) + V21727 - (4.103)

Although the relationships among the  terms for the linear observed score methods
are different for the internal and external cases, the inequalities in Egs. (4.96) and
(4.97) still apply provided o1(X, V) > 0 and o02(Y, V) > 0, respectively. Also,
when w; = 1, the other inequalities in Eqs. (4.98)—(4.101) apply.
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4.5.6 Relationships Involving Levine Methods

The  terms for the Levine observed score method and true score method are the
same. Otherwise, however, comparing the Levine true score method (LT) with any
of the observed score methods is more challenging than simply comparing observed
score methods. We offer only a few comments, here. Using w1 = 1 for the Levine
observed score method (LO), the two Levine methods intersect when x = p1(X),
which has an equivalent of 15 (Y) +72[1t1 (V) — p2(V)]. For the example in Table 4.5,
the point of intersection occurs at x = 15.8205 with an equivalent of 16.2485.
Also, when w; = 1 for LO, it can be shown that

slope(LO) < slope(LT) when o1(V),/1 = p3(V, X) < 02(V)/1 = p3(V,Y)

and

slope(LO) > slope(LT) when a1(V)y/1 = p3(V, X) > 02(V)y/1 — p3(V, Y),

where o1(V),/1 — p%(V, X) and o2(V),/1 — p%(V, Y) are the standard errors of

estimate for the regressions of V on X and V on Y, respectively.® It follows that
the equivalents for LO are sometimes less variable than those for LT, and sometimes
more variable. For the example, it is evident from Table 4.5 that the equivalents for
LO are more variable than those for LT, which is consistent with the fact that

o1(V)/1— p%(V, X) = 2.3760v1 — .86452 = 1.1943

is greater than

02(V)y/1— p%(V, Y) =2.4515v1 — .87532 = 1.1855.

As noted previously, the fact that vz < ~r implies that population differences
under the Levine assumptions are greater than under the Tucker assumptions. This
observation suggests that an investigator might choose one of the Levine methods
when it is known, or strongly suspected, that populations differ substantially. This
logic is especially compelling if there is also reason to believe that the true score
assumptions of the Levine methods are plausible. Since the magnitude of ~y¢ is
between that of y7 and yr, the chained linear method might be appropriate when
groups are known to be “somewhat” dissimilar. Note that if the populations are too
dissimilar, any equating is suspect.

5 The squares of these terms are the conditional variances of V given X, and V given Y, in
Populations 1 and 2, respectively.
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If the forms are known or suspected to be dissimilar, the Levine true score assump-
tions are likely violated, which may lead an investigator to choose the Tucker method
or chained linear method. Of course, if forms are too dissimilar, any equating is sus-
pect. It is virtually impossible to provide strict and all-inclusive guidelines about
what characterizes forms that are “too” dissimilar. However, forms that do not share
common content and statistical specifications certainly are “too” dissimilar to justify
a claim that their scores can be equated, as the term is used in this book, no matter
what method is chosen.

When Levine (1955) developed his methods, he referred to the observed score
method as a method for use with “equally reliable” tests, and he referred to the
true score method as a method for “unequally reliable” tests. This terminology,
which is also found in Angoff (1971) and other publications, is not used here for
two reasons. First, as is shown in this chapter, the derivations of Levine’s meth-
ods do not require any assumptions about the equality or inequality of reliabilities.
(It is possible to derive Levine’s methods using such assumptions, but it is not nec-
essary to do so.) Second, this terminology suggests that the two methods should
give the same results if Forms X and Y are equally reliable. This conclusion does
not necessarily follow, however, because it fails to explicitly take into account the
facts that reliabilities are population dependent, Levine’s observed score method
involves a synthetic population, and Levine’s true score method does not. For exam-
ple, suppose that p1(X, X') = p»(Y, Y’), which means that Forms X and Y are
equally reliable for Populations 1 and 2, respectively. It does not necessarily follow
that ps (X, X') = ps(Y, Y’) for the particular synthetic population used in Levine’s
observed score method.

Kane et al. (2009) discuss alternative derivations for the Levine methods, and
subsequent papers by them provide explanations and empirical evaluations of not
only the Levine methods but also the other linear methods discussed in this chapter
(see Mroch et al. 2009 and Suh et al. 2009). Rather than using assumptions about
true scores, their derivations of the Levine methods employ assumptions about the
invariance of the regression of V on X and V on Y in the two populations. These
derivations are somewhat restrictive in that they apply to the internal anchor case,
only, and, in addition, the authors assume w; = 1 for LO. A surprising consequence
of the Kane et al. (2009) approach is that it recasts LT as an observed score method,
rather than a true score method.® Brennan (2010) discusses these papers from the
perspectives of population invariance assumptions and true-score assumptions.’

von Davier’s (2008) shows that the Tucker, Levine observed score, and chained
linear methods produce the same linear equating function when observed scores on
the total test and the anchor are perfectly correlated. Note that due to measurement
error, it seems unlikely that these scores would ever be perfectly correlated. Still,

6 In the Kane et al. (2009) approach, LT is obtained using a chaining procedure, whereas LO is
obtained by estimating the means and variances for X and Y in Population 1, as described in this
chapter (using wy = 1).

7 Commentaries by others are provided in the same issue of Measurement in which Brennan (2010)
appears.
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von Davier’s (2008) demonstration suggests that the three methods will produce
more similar results as the correlation between the total score and anchor score
increases. Davier (2008) also shows that the three linear methods produce the same
results when the mean and standard deviation of the anchor scores are the same in
the two populations. This condition would occur when the two populations are the
same, and it suggests that as the two populations become more similar, the linear
functions for the three methods will become more similar.

4.5.7 Other Issues Involving Methods

The methods discussed in this chapter make linearity assumptions that are, in some
cases, amenable to direct examination. For example, the regression of X on V in
Population 1 can be examined directly. If it is not linear, then at least one of the
assumptions of the Tucker method and the chained linear method is false, and an
alternative procedure (the Braun-Holland method) discussed in Chap. 5 might be
considered.

Even though the derivations of the methods described in this chapter do not directly
require assumptions about reliability, if Forms X and Y are not approximately equal
in reliability then the equating will be suspect, at best. For example, suppose that
Form X is very short relative to Form Y. Under these circumstances, even after
“equating”, it will not be a matter of indifference to examinees which form they take.
Because Form X has more measurement error than Form Y, well prepared examinees
are likely to be more advantaged by taking Form Y, and poorly prepared examinees
are likely to be more advantaged by taking Form X.

4.5.8 Scale Scores

In most testing programs, equated raw scores (e.g., Form Y equivalents) are not
reported to examinees and users of scores. Rather, scale scores are reported, where
the scale is defined as a transformation of the raw scores for the initial form of the
test, as was discussed in Chap. 1. In principle, the scale scores could be either a linear
or nonlinear transformation of the raw scores. This section extends the discussion of
linear conversions in Chap. 2.

Let sc represent scale scores. If Form Y is the initial test form and the raw-to-scale
score transformation is linear, then

sc(y) = By|se + Aylse(¥)- (4.104)

The linear equation for equating raw scores on Form X to the raw score scale of
Form Y can be represented as
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ly(x) =y = Bxjy + Axjy (x). (4.105)

Therefore, to obtain scale scores associated with the Form X raw scores, y in
Eq. (4.105) is replaced in Eq. (4.104), giving

sc(x) = By|sc + Ayjse[Bxy + Axjy (0)]
= (By|sc + Ayjse Bx|y) + Ay|scAxy (x) (4.106)
= BX\sc + AX\SC(X)» 4.107)

where the intercept and slope are, respectively,
Bx|sc = By|sc + Ay|s¢Bx|y and Ax|sc = AyscAx)y.

Suppose that Ay|sc = 2 and By|sc = 100. Then, for the illustrative example, assum-
ing Tucker equating with w; = .5 (see Table 4.4), Eq. (4.106) gives

[100 + 2(.5378)] + 2(1.0291) (x)
= 101.08 + 2.06(x).

sc(x)

For example, if x = 25,
sc(x =25) =101.08 + 2.06(25) = 152.58.

Alternatively, the Form Y equivalent of x = 25 could be obtained first and then used
as y in Eq. (4.104).

The same process can be used for obtaining scale scores for scores on a subsequent
form, say Z, that is equated to Form X. The transformation has the same form as
Egs. (4.106) and (4.107):

sc(z) = (Bxjse + AxjseBz1x) + Ax)5cAz1x(2)
= BZ\sc + Alec(Z)-

If the transformation of raw scores on the initial form to scale scores is nonlinear,
then Eq. (4.104) is not valid and the process described in this section will not work.
In that case, the scale score intercepts and slopes for each form [e.g., Eq. (4.107)]
are replaced by a conversion table that maps the raw score on each form to a scale
score, as was discussed in Chap. 1 and illustrated in Chap. 2.
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4.6 Appendix: Proof that asz(TX) = 'yfasz(Tv) Under the
Classical Congeneric Model

The true score analogue of Eq. (4.4) (see also Exercise 4.1) is
o3 (Tx) = w107 (Tx) + w205 (Tx) + wiwalpi (Tx) — p2(Tx)I.

For the classical congeneric model, 111 (Tx) = p1(X), w2 (Tx) = p2(X) and, from
Eq. (4.34),

2(X) = p1(X) = [o1(Tx) /o1 (Tv)l[1 (V) — p2 (V)]
It follows that

02 (Tx) = w10t (Tx) + w05 (Tx) + wiw[os (Tx)/as (Ty) [ (V) — pa (V)]

2 2
. O'I(TX) 2 O'I(TV) 2 B 5
o) {wm(m g SR Fwiwali (V) = (V)] ]

Under the Levine assumptions, the slope of the linear regression of Ty on Ty in
both Populations 1 and 2 is given by Eq. (4.28):

o1(Tx)/o1(Ty) = 02(Tx) /o2(Tv).
Applying this equation to the second term in braces in the previous equation gives

o} (Tx)

2
Ty) = X2
o; (Tx) 2(Ty)

{103 + waod (1) + wiwalin (V) = 2P}

The term in braces is O‘SZ(Tv) and, by Eq. (4.38), af(TX)/af(Tv) = vf. Thus,

o2(Tx) = vio2(Ty),

as was to be proved.

4.7 Exercises

4.1. Prove Eq. (4.4). [Hint:

o2(X) = w E[X — 115 (X)) + wy E[X — s (X)1%,
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4.2.

4.3.
4.4.

4.5.

4.6.

4.7.

4.8.

4.9.

4.10.
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where E means the expected value in Population i (i = 1 or 2)].

l
Using the notation of this chapter, Angoff (1971, p. 580) provides the fol-
lowing equations for the synthetic group means and variances under Tucker
assumptions:

s (X) = p1(X) + ar (X|WV)[ps (V) — pi(V)],
ps(Y) = po(Y) + (Y| V) [ps (V) — p2(V)],
o2 (X) = 01 (X) + o (X|V)[o3 (V) — a1 (V)],
o2(Y) = a2 (Y) + a3 (Y V)02 (V) — a3 (V).

Show that Angoff’s equations give results identical to Eqs. (4.17)—(4.20), using
Eqgs. (4.21) for 1 and (4.22) for ~,. (Strictly speaking, Angoff refers to a
“total” group rather than a synthetic group with the notion of a total group
being all examinees used for equating, which implies that Angoff’s weights
are proportional to sample sizes for the two groups.)

Verify the results in Table 4.4 when w; = .5 and w1 = .5026.

Suppose the data in Table 4.3 were for an external anchor of 12 items, and X
and Y both contain 36 items. If w; = .5, what are the linear equations for the
Tucker and Levine observed score methods?

Under the classical congeneric model, what are the reliabilities p; (X, X’) and
(Y, Y') for the illustrative example?

Suppose the Levine assumptions are invoked and X, Y, and V are assumed to
satisfy the classical test theory model assumptions for both populations, such
that 01 (Tx) = (Kx/Kv)o1(Ty) and 02(Ty) = (Ky/Kv)oa2(Tv).

a. Under these circumstances, what are the ~y’s given by Egs. (4.38) and (4.39)?
b. Provide a brief verbal interpretation of these +’s as contrasted with the +’s
under the classical congeneric model.

If w; = 1 and the common-item means for the two groups are identical, how
much of the difference 1 (X) — p2(Y) is attributable to forms?

Jessica is a test development specialist for a program in which test forms are
equated. She has been taught in an introductory measurement course that good
items are highly discriminating items. Therefore, in developing a new form of
a test, she satisfies the content requirements using more highly discriminating
items than were used in constructing previous forms. From an equating per-
spective, is this good practice? Why? [Hint: If p; is the difficulty level for item
i and r; is the point-biserial discrimination index for item i, then the standard
deviation of total test scores is Z[ ria/pi(1 — pi).]

Given equation set (4.70), show that the external anchor 7, given by Eq. (4.59)
is A Y / A V.

Let V be an internal anchor such that X = A 4 V and assume that 0 <
p1(X, V) < 1. Show that
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a. O']Z(V) <o01(X,V) < UIZ(X) and

b. 1 < v17 < 711, where T stands for Tucker equating and L stands for Levine
observed score equating under the classical congeneric model.

¢. Name one condition under which the result in (a) would not hold if V were
an external anchor.
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Chapter 5
Nonequivalent Groups: Equipercentile Methods

Equipercentile equating methods have been developed for the common-item
nonequivalent groups design. These methods consider the distributions of total scores
and scores on the common items, rather than only the means, standard deviations,
and covariances that were considered in Chap. 4. As has been indicated previously,
equipercentile equating is an observed score equating procedure that is developed
from the perspective of the observed score equating property described in Chap. 1.
Thus, equipercentile equating with the common-item nonequivalent groups design
usually requires that a synthetic population, as defined in Chap. 4, be considered.

We begin this chapter by considering an equipercentile method, referred to
as frequency estimation, that is closely aligned to the Tucker linear method of
Chap. 4. Then we consider two additional methods. One of them is a modified version
of frequency estimation; the other is closely aligned to the chained linear method dis-
cussed in Chap. 4. We also describe how smoothing methods, such as those described
in Chap. 3, can be used when conducting equipercentile equating with nonequiva-
lent groups. The methods described in this chapter are illustrated using the same data
that were used in Chap. 4, and the results are compared to the linear results from
Chap. 4.

5.1 Frequency Estimation Method

The frequency estimation method described by Angoff (1971) and Braun and Holland
(1982) provides a means for estimating the cumulative distributions of scores on
Form X and Form Y for a synthetic population from data that are collected using the
common-item nonequivalent groups design. Percentile ranks are then obtained from
the cumulative distributions and the forms are equated by equipercentile methods,
as was done in Chap. 2.
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5.1.1 Conditional Distributions

Conditional score distributions are required in order to use these statistical methods.
Two identities are particularly useful, and they are presented here. The use of these
identities is illustrated later, in connection with the frequency estimation method.

Define f(x, v) as the joint distribution of total score and common-item score, S0
that f (x, v) represents the probability of earning a score of x on Form X and a score
of v on the common items. Specifically, f(x, v) is the probability that X = x and
V = v. Define f(x) as the marginal distribution of scores on Form X, so that f(x)
represents the probability of earning a score of x on Form X. That is, f (x) represents
the probability that X = x. Also define i (v) as the marginal distribution of scores
on the common items, so that /2 (v) represents the probability that V = v, and define
f(x]v) as the conditional distribution of scores on Form X for examinees earning a
particular score on the common items. Thus, f(x|v) represents the probability that
X = x given that V = v. Using standard results from conditional expectations, it
can be shown that

f(x,v)

Sfxlv) = OR (5.1)

From Eq. (5.1), it follows that

fx,v) = fx[v)h(v). (5.2)

These identities are used to develop the frequency estimation method.

5.1.2 Assumptions and Procedures

To conduct frequency estimation equipercentile equating, it is necessary to express
the distributions for the synthetic population. These distributions are considered to
be a weighted combination of the distributions for each population. Specifically, for
Form X and Form Y,

fs(x) = w1 fi(x) + wa fo(x) (5.3)

and
9s(¥) = wig1(y) + wag2(y),

where the subscript s refers to the synthetic population, the subscript 1 refers to
the population administered Form X, and the subscript 2 refers to the population
administered Form Y. As before, f and g refer to distributions for Form X and Form
Y, respectively, and w; and wa(w; + wp = 1) are used to weight Populations 1 and
2 to form the synthetic population.

From the data that are collected in the nonequivalent groups design, direct esti-
mates of fi(x) and g>(y) may be obtained. Because Form X is not administered
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to examinees from Population 2, a direct estimate of f>(x) is unavailable. Also,
because Form Y is not administered to examinees from Population 1, a direct esti-
mate of g;(y) is unavailable. Statistical assumptions need to be invoked to obtain
expressions for these functions using quantities for which direct estimates are avail-
able from data that are collected.

The assumption made in the frequency estimation method is that, for both Form
X and Form Y, the conditional distribution of total score given each score, V = v,
is the same in both populations. The same assumption is made whether the common
items are internal or external. This assumption is stated as follows:

fi(x|v) = fo(x|v), forallv and g;(y|v) = g2(y|v), forallv. 5.4)

For example, fi(x|v) represents the probability that total score X = x, given that
V = v in Population 1. The other conditional distributions are interpreted similarly.
Equation (5.2) can be used to obtain expressions for these functions using quantities
for which direct estimates are available from data that are collected.

The following discussion describes how the assumptions presented in Eq. (5.4)
can be used to find expressions for f>(x) and g1 (y) using quantities for which direct
estimates are available.

From Eq. (5.2), the following equalities hold:

fx,v) = Hxlv)ha(v) and g1(y, v) = gi1(y[v)h1(v). (5.5)

For Population 2, f>(x,v) represents the joint distribution of total scores and
common—item scores. Specifically, f>(x, v) represents the probability that X = x
and V = v in Population 2. For Population 2, h,(v) represents the distribu-
tion of scores on the common items. Thus, h>(v) represents the probability that
V = v in Population 2. The expressions g1 (y, v) and A (v) are similarly defined for
Population 1.

Combining the equalities in Eq. (5.5) with the assumptions in Eq. (5.4), f2(x, v)
and g1 (v, v) can be expressed using quantities for which direct estimates are available
from data that are collected as follows:

fa(x,v) = filx[v)ha(v) and g1(y, v) = g2(y|v)h1 (V). (5.6)

For the first equality, fi(x|v) can be estimated directly from the Population 1 exam-
inees who take Form X. The quantity /4;(v) can be estimated directly from the
Population 2 examinees who take Form Y. For the second equality, g>(y|v) can be
estimated directly from the Population 2 examinees who take Form Y, and /1 (v) can
be estimated directly from the Population 1 examinees who take Form X.

The associated marginal distributions can be found by summing over common-
item scores as follows:
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HE@) =D Hv) =D fitxlv)ha(v) and

g1 =D g1y, v) = D (ylv)hi V). (5.7)

In this equation, f>(x) represents the probability that X = x in Population 2, and
g1(y) represents the probability that ¥ = y in Population 1.

All of the terms in Eq. (5.7) use quantities for which direct estimates are available
from data. The expressions in Eq. (5.7) can be substituted into Eq. (5.3) to provide
expressions for the synthetic population as follows:

fsG) = w1 fix) + w2 D filx[v)ha(v) and

9:(») = w1 D (v [0)h1 (V) + waga (). (5.8)

v

Equation (5.8) uses quantities for which direct estimates are available from data.
For the synthetic population, f;(x) can be cumulated over values of x to produce
the cumulative distribution F;(x). The cumulative distribution G(y) is similarly
derived. Define P; as the percentile rank function for Form X and Qj as the per-
centile rank function for Form Y, using the definitions for percentile ranks that were
developed in Chap. 2. Similarly, Ps_1 and Q! are the percentile functions.
The equipercentile function for the synthetic population is

eys(x) = Q7 [P (0)], (5.9)

which is analogous to the equipercentile relationship for random groups equiper-
centile equating in Eq. (2.17).

The frequency estimation assumption of Eq. (5.4) cannot be tested using data
collected using the common-item nonequivalent groups design. To test this assump-
tion, a representative group of examinees from Population 1 would need to take
Form Y, and a representative group of examinees from Population 2 would need to
take Form X. Unfortunately, these data are not available in practice. If Populations
1 and 2 were identical, then the assumption in Eq. (5.4) would be met. Logically,
then, the more similar Populations 1 and 2 are to one another, the more likely it
is that this assumption will hold. Thus, frequency estimation equating should be
conducted only when the two populations are reasonably similar to one another.
How similar “reasonably similar” is depends on the context of the equating and on
empirical evidence of the degree of similarity required. When the populations differ
considerably, methods based on true score models, such as the modified frequency
estimation method described later in this chapter or item response theory methods
described in Chap. 6, should be considered, although adequate equating might not be
possible when populations differ considerably. This problem is considered further in
Chap. 8.
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Table 5.1 Form X and common-item distributions for population 1 in
a hypothetical example

x 0 1 2 3 f1(x) Fi(x)
0 04 04 02 .00 10 .10

1 04 08 02 01 15 25

2 06 12 .05 02 25 50

3 .03 12 .05 .05 25 75

4 02 .03 .04 .06 15 .90

5 01 01 02 .06 .10 1.00

() 20 40 20 20

Note Values shown in the body of table are for f1(x, v)

5.1.3 Numerical Example

A numerical example based on synthetic data is used here to aid in the understanding
of this method. In this example, Form X has 5 items, Form Y has 5 items, and there
are three common items. Assume that the common items are external.

Table 5.1 presents the data for Population 1 for the hypothetical example. The
values in the body of the table represent the joint distribution, f(x, v). For example,
the upper left-hand value is .04. This value represents the probability that an examinee
from Population 1 would earn a score of 0 on Form X and a score of 0 on the common
items. The values in the body of Table 5.1 sum to 1. The values at the bottom of the
table are for the marginal distribution on the common items for Population 1, /1 (v).
For example, the table indicates that the probability of earning a common-item score
of 0 is .20 over all examinees in Population 1. The values listed under the column
labeled fi(x) represent the marginal distribution for total score on Form X. The sum
of the values in each row in the body of the table equals the value for the marginal
shown for f1(x) and the sum of the marginal distribution values for fj(x) equals
1. The rightmost column is the cumulative distribution for Form X scores, Fi(x).
The values in this column are obtained by cumulating the probabilities shown in the
Jf1(x) column. Table 5.2 presents the joint and marginal distributions for Form Y and
common-item scores in Population 2.

Estimates of the distributions presented in Tables 5.1 and 5.2 would be available
from the common-item nonequivalent groups design. Estimates of the distribution for
Form X in Population 2 would be unavailable, because Form X is not administered
in Population 2. Similarly, estimates of the distribution for Form Y in Population 1
would be unavailable. However, equating still can proceed by making the frequency
estimation assumption in Eq. (5.4).

To simplify the example, assume that w; = 1, which results in the following
simplification of Eq. (5.8):

fs() = filx) and  gs(y) = Zgz(ylv)hl(v)- (5.10)
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Table 5.2 Form Y and common-item distributions for population 2 in
a hypothetical example

y 0 1 2 3 92(¥) Ga(y)
0 04 .03 .01 .00 08 08
1 .07 .05 .07 .01 .20 28
2 .03 .05 12 .02 22 .50
3 .03 .04 13 .05 25 75
4 .02 .02 .05 .06 15 .90
5 .01 .01 .02 .06 .10 1.00
ha(v) 20 20 40 20

Note Values shown in the body of table are for g»(y, v)

Table 5.3 Conditional distributions of Form Y given common-item
scores for population 2 in a hypothetical example

v

y 0 1 2 3

0 .20 15 .025 .00
1 35 25 175 .05
2 15 25 .30 .10
3 15 .20 325 .25
4 .10 .10 125 .30
5 .05 .05 .05 .30
ha(v) .20 20 .40 .20

2 (y.v)

Note Values in the body of the table are for g2 (y|v) = )

The first of the equations labeled (5.10) indicates that the distribution of Form X
scores for the synthetic population is the same as the distribution in Population 1.
Thus the rightmost column in Table 5.1 labeled Fj(x) also gives F(x) for w; = 1.

The synthetic group is Population 1, because w1 = 1in the example. Thus, the sec-
ond of the equations in Eq. (5.10) provides an expression for the cumulative distribu-
tion of Form Y scores for examinees in Population 1. Because Form Y was not admin-
istered in Population 1, it is necessary to use the conditional distribution of Form
Y scores given common-item scores in Population 2 and assume that this condi-
tional distribution also would hold in Population 1 at all common-item scores [see
Eq. 5.4)].

Table 5.3 presents the Form Y conditional distribution for Population 2. To cal-
culate the values in the table, take the joint probability in Table 5.2 and divide it by
its associated marginal probability on the common items. Specifically,

g2 (y, v)

) 5.11
ha(v) e-1D

g(ylv) =
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Table 5.4 Calculation of distribution of Form Y and common-item scores for population 1 using
frequency estimation assumptions in a hypothetical example

v

y 0 1 2 3 g1(y)  Gi1(y)
0 20(.20) = .04 .15(.40) = .06 .025(.20) =.005 .00(.20) =.00 .105 .105
1 .35(.20) = .07 .25(.40) = .10 .175(.20) = .035 .05(.20) = .01 215 320
2 J15(20) = .03 .25(.40) =.10 .30(.20) =.06 .10(.20) =.02 .210 530
3 15(.20) = .03 .20(.40) = .08 .325(.20) =.065 .25(.20) = .05 .225 755
4 .10(.20) = .02 .10(.40) = .04 .125(.20) =.025 .30(.20) = .06  .145 .900
5 .05(.20) = .01 .05(.40) = .02 .05(.20) = .01 .30(.20) = .06 .100 1.000
h1(v) 20 40 20 20

Note Values in the body of the table are for g;(y, v) = g2(y|v)h1(v)

Table 5.5 Cumulative distributions and finding equipercentile equivalents for w; = 1

X Fi(x) Py (x) y G1(y) 01(y) x eys(x)
0 .100 5.0 0 .105 5.25 0 —.02
1 250 17.5 1 .320 21.25 1 .83
2 .500 37.5 2 530 42.50 2 1.76
3 750 62.5 3 755 64.25 3 2.92
4 .900 82.5 4 .900 82.75 4 3.98
5 1.000 95.0 5 1.000 95.00 5 5.00

which follows from Eq. (5.1). For example, the .20 value in the upper left cell of
Table 5.3 equals .04 from the upper left cell of Table 5.2 divided by .20, which is
the probability of earning a score of V = 0 as shown in Table 5.2. Note that the
conditional probabilities in each column of the body of Table 5.3 sum to 1.

To find the values to substitute into Eq. (5.10), at each v the conditional distribution
in Population 2, g2 (y|v), is multiplied by the marginal distribution for common items
for Population 1, 1 (v). The result is the joint distribution in Population 1 under the
frequency estimation assumption of Eq. (5.4). The results are shown in Table 5.4.

Table 5.5 presents the cumulative distributions, percentile ranks, and equiper-
centile equivalents. These values can be verified using the computational procedures
described in Chap. 2.

Refer to Table 5.4 to gain a conceptual understanding of what was done. In this
table, the joint distribution of Form Y total scores and common-item scores was
calculated for Population 1. As was indicated earlier, Population 1 did not even take
Form Y. The way that the values in this table could be calculated was by making
the statistical assumptions associated with frequency estimation. To estimate this
joint distribution, the conditional distribution observed in Population 2 was assumed
to hold for Population 1 at all common-item scores. The Population 2 conditional
distribution was multiplied by the Population 1 common-item marginal distributions
to form the joint probabilities shown in Table 5.4. The Population 1 marginal distri-
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bution on the common items can be viewed as providing weights that are multiplied
by the Population 2 conditional distribution at each score on the common items.

5.1.4 Estimating the Distributions

Estimates of distributions can be used in place of the parameters when using fre-
quency estimation in practice. However, a problem occurs when no examinees earn
a particular common-item score in one of the groups but some examinees earn that
score in the other group. When estimating the Form Y distribution in Population 1,
the assumption is made in Eq. (5.4) that g1 (y|v) = g2(y|v), for all v. If no Pop-
ulation 2 examinees earn a particular score on v in a sample, then no estimate of
g1(y|v) exists at that v. However, such an estimate would be needed to conduct the
equating if some examinees in Population 1 earned that v. Jarjoura and Kolen (1985)
recommended using the conditional distribution at a score close to that v (e.g., at
v 4 1) as an estimate for what the conditional distribution would be at v. On logical
grounds, they argued that this substitution would cause insignificant bias in practice
in those cases where very few examinees in one population earn a score that has a
frequency of 0 in the other population. A practical solution is to use the conditional
distribution for the v with nonzero frequency that is closest to the v in question as
we move toward the median of the distribution of v.

Smoothing methods also can be used with the frequency estimation method. An
extension of the log-linear presmoothing method was described by Holland and
Thayer (1987, 1989, 2000), von Davier et al. (2004a), and Rosenbaum and Thayer
(1987) in the context of frequency estimation. In this extension, the joint distributions
of scores on the items that are not common and scores on the common items are fit
using a log-linear model. The resulting smoothed joint distributions then are used
to equate forms using the frequency estimation method described in this chapter.
Model fitting using this method requires the fitting of a joint distribution, which
makes the moment preservation property for this method more complicated than
with the random groups design. To fit the joint distribution, the number of moments
for each fitted marginal distribution that are the same as those for the observed
distribution need to be specified. In addition, the cross-product moments for the fitted
joint distribution that are the same as those for the observed distribution need to be
specified. For example, a model might be specified so that the first four moments of
each marginal distribution and the covariance for the fitted and observed distributions
are equal. The fit of this model could be compared to other more and other less
complicated models. Moses and Holland (2010a, b) studied different model selection
methods for smoothing the joint distributions using log-linear pre smoothing.

Lord’s (1965) beta4 method that was described in Chap. 3 also can be used to
fit the joint distributions of total scores and common-item scores. In this applica-
tion, the assumption is made that true score on the common items and true score on
the total tests are functionally related. That is, the total test and common items are
measuring precisely the same construct. Empirical research conducted by Hanson
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(1991), Livingston and Feryok (1987), Liou and Cheng (1995) indicates that bivari-
ate smoothing techniques can improve equating precision with the common item
nonequivalent groups design.

The cubic spline postsmoothing method described by Kolen and Jarjoura (1987)
is a straightforward extension of the random groups method described in Chap. 3. In
this method, unsmoothed equipercentile equivalents are estimated using frequency
estimation as described in this chapter. The cubic spline method described in Chap. 3
then is implemented. The only difference in methodology is that standard errors of
frequency estimation equating developed by Jarjoura and Kolen (1985) are used in
place of the random groups standard errors. Kolen and Jarjoura (1987) reported that
the cubic spline method used with frequency estimation increased equating precision.

5.1.5 Special Case: Braun-Holland Linear Method

Braun and Holland (1982) presented a linear method that uses the mean and standard
deviation which arise from using the frequency estimation assumptions to conduct
linear equating. This method is closely related to the Tucker linear method presented
in Chap. 4. Under the frequency estimation assumptions in Eq. (5.4), the mean and
standard deviation of scores on Form X for the synthetic population can be expressed
as

ps(X) = D" xfs(x), (5.12)

o2(X) = D [x — (X)) £ (x), (5.13)

X

where f;(x) is taken from Eq. (5.8). The synthetic population mean and standard
deviation for Form Y are expressed similarly. The resulting means and standard devi-
ations then can be substituted into the general form of a linear equating relationship
for the common-item nonequivalent groups design that was described in Chap. 4.
The resulting equation is referred to here as the Braun-Holland linear method.

Braun and Holland (1982) showed that an equating which results from using the
Braun-Holland linear method is identical to the Tucker linear method described in
Chap. 4 when the following conditions hold:

(1) The regressions of X on V and Y on V are linear.

(2) The regressions of X on V and Y on V are homoscedastistic. This property
means that the variance of X given v is the same for all v, and the variance of Y
given v is the same for all v.

Thus, the Braun-Holland method can be viewed as a generalization of the Tucker
method when the regressions of total test on common items are nonlinear. Braun
and Holland (1982) suggested that the regression of X on V for Population 1 and
Y on V for Population 2 be examined for nonlinearity. The Braun-Holland method
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Table 5.6 Computation of equating relationship for Braun-Holland method in a hypothetical
example

From Table 5.1 From Table 5.4
x f1(x) y g1(y)
0 .100 0 .105
1 .150 1 215
2 250 2 210
3 .250 3 225
4 .150 4 .145
5 .100 5 .100
w1 (X) 2.5000 w1 (Y) 2.3900
o1(X) 1.4318 o1(Y) 1.4792
sl = 1.4792 = 1.0331
SOPe= T ;g T

intercept = 2.3900 — 1.0331(2.5000) = —.1927
lys(x = 0) = —.1927, Iys(x = 1) = .8404, Iy, (x = 2) = 1.8735,
lys(x = 3) = 2.9066, Iy, (x = 4) = 3.9397, Iy, (x = 5) = 4.9728

is more complicated computationally than the Tucker method, and it also has been
used much less in practice. Still, the Braun-Holland method should be considered
when nonlinear regressions are suspected.

The results of using the Braun-Holland method with the hypothetical data in
the frequency estimation example with w; = 1 are presented in Table 5.6. In this
table, the distribution for Form X was taken from Table 5.1. The distribution for
Form Y, which was calculated using the frequency estimation assumption, was taken
from Table 5.4. Means and standard deviations were calculated using Egs. (5.12)
and (5.13). The slope and intercept were calculated from the means and standard
deviations. The linear equivalents were calculated using this slope and intercept. Note
that the linear equivalents differ somewhat from the equipercentile equivalents shown
in Table 5.5, indicating that the equating relationship is not linear when frequency
estimation assumptions are used.

5.1.6 Illustrative Example

The real data example from Chap. 4 is used to illustrate some aspects of frequency
estimation equating. As was indicated in that chapter, the test used in this example is
a 36-item multiple-choice test. Two forms of the test, Form X and Form Y, were used.
Every third item on the test forms is a common item, and the common items are in
the same position on each form. Thus, items 3, 6,9, ..., 36 on each form represent
the 12 common items. Form X was administered to 1,655 examinees and Form Y to
1,638 examinees.
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Table 5.7 Moments for equating Form X and Form Y in the common-item nonequivalent groups
design

Group Score L T sk ku Correlation
1 X 15.8205 6.5278 5799 2.7217 X, V)=
1 1% 5.1063 2.3760 4117 2.7683 .8645

2 Y 18.6728 6.8784 2051 2.3028 mY, V)=
2 Vv 5.8626 2.4515 1072 2.5104 .8753
Results

Summary statistics for this example are shown in Table 5.7 (sk refers to estimated
skewness and ku to estimated kurtosis). The examinees who were administered
Form X had a number-correct score mean of 5.1063 and a standard deviation of
2.3760 on the common items. The examinees who were administered Form Y had
a number-correct score mean of 5.8626 and a standard deviation of 2.4515 on the
common items. Thus, based on the common-item statistics, the group taking Form
Y appears to be higher achieving than the group taking Form X. The statistics shown
in this table were also used to calculate the Tucker and Levine equating functions
described in Chap. 4. Some of the statistics shown in Table 5.7 were also presented in
Table 4.3. The analyses were conducted using the CIPE computer program described
in Appendix B.

For frequency estimation equating, the joint distributions of total score and
common-item score also need to be considered. As was indicated earlier in this
chapter, the assumptions in frequency estimation equating require that the distri-
bution of total score given common-item score be the same for both populations.
However, from the data that are collected, no data are available to address this assump-
tion directly. The linearity of the regressions of total test on common items can be
addressed, however. If the regression is nonlinear, then the use of the Tucker method
might be questionable, and the Braun-Holland method might be preferred.

Statistics relevant to the regression of X on V for Group 1 are shown in Table 5.8.
The first column lists the possible scores on the common items. The second column
lists the number of examinees in Group 1 earning each score on the common items.
The third column lists the mean total score given common-item score. For example,
the mean total score on Form X for the 14 examinees earning a common-item score of
zero is 6.2143. Note that, as expected, the means increase as v increases. The fourth
column presents the standard deviation, and the fifth column is based on estimating
the mean on Form X given v using standard linear regression. The slope and intercept
of the regression equation can be estimated directly from the data in Table 5.7 as
follows:
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Table 5.8 Analysis of residuals from the linear regression of total score on common-item score
for group 1

v Number of Mean X Standard Deviation Mean X given v, Residual
examinees given v X given v Linear regression mean
0 14 6.2143 2.2097 3.6923 2.5220
1 54 7.5741 2.2657 6.0674 1.5067
2 142 9.1901 2.6429 8.4425 7476
3 249 10.8032 2.9243 10.8177 —.0145
4 274 12.7628 3.1701 13.1928 —.4300
5 247 15.1377 3.3302 15.5680 —.4303
6 232 16.9957 3.6982 17.9431 —.9474
7 173 20.5260 3.5654 20.3182 2078
8 118 23.1610 3.5150 22.6934 4676
9 75 25.6533 2.8542 25.0685 .5848
10 42 28.5000 3.4658 27.4436 1.0564
11 27 31.1852 2.1780 29.8188 1.3664
12 8 33.2500 1.6394 32.1939 1.0561

. A a1(X) 6.5278
lope = p1(X, V) ——— = .8645

regression slope = pi( )01 % 23760

regression intercept = [11(X) — (regression slope) 11 (V)

= 15.8205 — (2.3751) 5.1063 = 3.6923,

= 2.3751.

apart from the effects of rounding. The slope and intercept can be used to produce
the values in the fifth column, The residual mean equals the third column minus the
fifth column. The residual mean indicates the extent to which the mean predicted
using linear regression differs from the mean that was observed. The mean residuals
for Form X are plotted in Fig. 5.1.

If the regression was truly linear, then the mean residuals would vary randomly
around 0. However, the residual means are positive for low and high scores on v and
are negative for scores from 3 through 6. This pattern suggests that the regression
is not linear. More sophisticated methods for testing hypotheses about the linearity
of regression could also be used (e.g., see Draper and Smith 1998). The regression
of Y on V for Group 2 is shown in Table 5.9, and the mean residuals are plotted in
Fig. 5.2.

This regression also appears to be somewhat nonlinear. These nonlinear regres-
sions suggest that the Braun-Holland method might be preferable to the Tucker
method.



5.1 Frequency Estimation Method 155

3

Form X Mean Residual

Fig. 5.1 Form X mean residual plot

Table 5.9 Analysis of residuals from the linear regression of total score on common-item score
for group 2

v Number of Mean Y Standard Deviation Mean Y given v, Residual
examinees given v Y given v Linear regression mean
0 11 6.2727 2.1780 4.2740 1.9988
1 36 8.0000 2.2361 6.7300 1.2700
2 38 9.6023 3.0359 9.1860 4162
3 159 12.1195 3.2435 11.6421 4774
4 213 13.9202 3.3929 14.0991 —.1779
5 240 16.0750 3.4234 16.5541 —.4791
6 232 18.3147 1.5623 19.0101 —.6955
7 246 21.2073 3.4854 21.4662 —.2588
8 161 24.1801 3.3731 23.9222 2579
9 120 27.3333 2.9533 26.3782 9551
10 85 29.1294 2.8811 28.8343 2952
11 34 31.8235 1.8396 31.2903 .5332
12 13 33.6154 1.7338 33.7463 —.1309

Comparison Among Methods

The Tucker and Braun-Holland linear methods and frequency estimation equiper-
centile equating with cubic spline smoothing were all applied to these data. The
Levine observed score method under a congeneric model was also applied. The
resulting moments are shown in Table 5.10, and the equating relationships are shown
in Fig. 5.3.
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Fig. 5.2 Form Y mean residual plot

Table 5.10 Moments of Form X scores converted to Form Y scores using various methods for
examinees from population 1

Method i 5 sk ku
Tucker linear 16.8153 6.7168 .5799 2.7217
Levine linear 16.2485 6.6007 .5799 2.7217
Braun-Holland linear 16.8329 6.6017 .5799 2.7217
Equipercentile
Unsmoothed 16.8329 6.6017 4622 2.6229
S=.10 16.8334 6.5983 4617 2.6234
§=.25 16.8333 6.5947 4674 2.6249
§=.50 16.8192 6.5904 4983 2.6255
S=.75 16.8033 6.5858 .5286 2.6503
S =1.00 16.7928 6.5821 .5501 2.6745

First, refer to Fig. 5.3. The Levine relationship seems to differ from the others.
As was indicated in Chap. 4, the Levine method is based on assumptions about true
scores, whereas the other methods make assumptions about observed scores. The dif-
ferences in assumptions are likely the reason for the discrepancy. Unfortunately, data
are not available that allow a judgment about whether the Levine method assump-
tions (other than possibly linearity of regression) are more or less preferable than the
assumptions for the other methods in this example.

The Tucker, Braun-Holland, and frequency estimation methods all require assump-
tions about characteristics of the observed relationship between total scores and
scores on the common items being the same for the two populations. These methods
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Fig. 5.3 Equating relationships for frequency estimation equipercentile equating and linear
methods

differ with respect to which characteristics of the relationship are assumed to be the
same.

First consider the Tucker and Braun-Holland methods. The major difference
between these methods is in the assumption of linearity of regression. Thus, the
relatively small differences between the two methods in the example are due to the
differences in assumptions. The Braun-Holland method might be preferred, because
the regression was judged to be nonlinear.

Next compare the Braun-Holland and frequency estimation method, referred to as
unsmoothed, in Table 5.10 and Fig. 5.3. The relationship appears to be nonlinear. The
Braun-Holland relationship falls outside the standard error band for the frequency
estimation method over parts of the score range. Thus, the frequency estimation
method (labeled unsmoothed) appears to more accurately reflect the equipercentile
relationship between the forms than does the Braun-Holland method in this example.

Table 5.10 presents the results for various degrees of cubic spline smoothing. The
moments for values of § that are greater than .25 seem to differ more than would be
desired from those for the unsmoothed equating. For this reason, the relationship for
S = .25 is plotted in Fig. 5.3. This relationship stays within the standard error bands
and seems to be smooth without deviating too far from the unsmoothed values.



158 5 Nonequivalent Groups: Equipercentile Methods

5.2 Other Methods

In this section two additional equipercentile methods for the common-item non-
equivalent groups design, the modified frequency estimation method and the chained
equipercentile method, are considered. The results for these methods are compared
to results for the frequency estimation method in an illustrative example. Refer to
Chen and Holland (2010), Chen et al. (2011), Karabatsos and Walker (2009, 2011)
for other approaches.

5.2.1 Modified Frequency Estimation

Wang and Brennan (2006, 2009) show that there is reason to believe that frequency
estimation results may be biased in certain circumstances. To mitigate this problem,
they suggest replacing the frequency estimation assumptions f1(x|v) = f2(x|v) and
g (y|v) = g1(y|v), with corresponding assumptions based on conditioning on true
scores for the common items, 7,:

fixlty) = fa(x|ty), (5.14)

and
R(|t) = g1(ylty). (5.15)

These assumptions are partially defended by the following argument. If X and V
are congeneric, then conditioning on ¢, is effectively the same as conditioning on z,.
Since, f1(x|ty) is the conditional distribution of errors for observed scores on Form
X, it follows that fi(x|f,) is also the conditional distribution of errors for observed
scores on Form X. Therefore, if X and V are congeneric, the conditional means will
remain invariant across populations.

These revised assumptions are not directly useful, however, because we do not
immediately have the distributions of observed scores conditional on true scores for
V. Let us focus on X (corresponding results apply to Y). We can use a certain rela-
tionship between true scores and observed scores (discussed in the next paragraph)
to replace t,, in Eq. (5.14) with observed scores for V, so that we have

filx|vy) = falx|v2),

where v is the score on V in population 1 and v, is the score on V in population 2.
The goal, then, is to find a relationship between v; and v, such that Eq. (5.14) is
satisfied.

The observed data provide fi(x|vy) directly. To obtain f>(x|vy), for every vy we
need to find the corresponding v;. This is accomplished by using Brennan and Lee’s
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(2006) approach to estimating true scores from observed scores.! Their approach
applied to modified frequency estimation gives:

v =mV)+vp1(V, V) [vr — p1 (V)]

and

ty, = 2 (V) ++/p2(V, V') [va — u2(V)],

where p1 (V, V'), and p(V, V') are the reliabilities for V in the two populations. By
setting t,, = Iy,, for every v, we can compute the corresponding vi, namely,

VP2 (V, V) 1 —/p2(V, V') 1 —+/p1(V, V)

= + V) —
Y RV e SR (e

It is then possible to estimate f(x) using the basic ideas in Sect. 5.1, and, of course,
the same approach can be used to estimate g (y).>

Braun-Holland equating under modified frequency estimation assumptions sim-
ply uses the first two moments of the synthetic densities for X and Y. As with fre-
quency estimation, for modified frequency estimation, bivariate log-linear smoothing
or cubic-spline post smoothing might be used. The illustrative example in Sect. 5.1.6
is extended to modified frequency estimation later in Sect. 5.2.3.

(V).

5.2.2 Chained Equipercentile Equating

Angoff (1971) described an alternative equipercentile method that Marco et al. (1983)
referred to as the direct equipercentile method. Dorans (1990) and Livingston et al.
(1990) referred to this method as chained equipercentile equating. In this method,
Form X scores are converted to scores on the common items using examinees from
Population 1. Then scores on the common items are converted to Form Y scores
using examinees from Population 2. These two conversions are chained together to
produce a conversion of Form X scores to Form Y scores.
More specifically, the steps are as follows:

1. Find the equipercentile relationship for converting scores on Form X to scores
for the common items based on examinees from Population 1 using the equiper-
centile method described in Chap. 2. This equipercentile function is referred to
as eyq(x).

! The basic idea is to find a linear transformation of observed scores to estimated true scores such
that the estimates have a variance equal to true score variance.

2 Note that if p; (V, V') = p2(V, V'), then vy = va + [12(V) — 1 (V)1//p1(V, V7).
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2. Find the equipercentile relationship for converting scores on the common items
to scores on Form Y based on examinees from Population 2. Refer to the resulting
function as ey, (v).

3. To equate a Form X score to a score on Form Y, first convert the Form X score
to a common-item score using ey (x). Then convert the resulting common-item
score to Form Y using ey>(v).

Note that Steps 1 and 2 involve applying the equipercentile method for a single-group
design in Populations 1 and 2, respectively. Neither of these conversions require a
bivariate distribution. All that is required are the marginal distributions for scores on
X and V in Population 1 and the marginal distributions for Y and V in Population 2.

Mathematically, these steps imply that the Form Y equipercentile equivalents of
Form X scores is the composed function:

ey (chain) = ey2levi(x)]. (5.16)

This composed function is referred to as chained equipercentile equating because it
involves a chain of two equipercentile conversions, one in Population 1 and another
in Population 2. This chaining process is the equipercentile analogue of chained
linear equating discussed in Chap. 4.

Numerical Example

Let us consider chained equipercentile equating for the numerical example in
Tables 5.1 and 5.2. Table 5.11 provides the equipercentile results of putting X on the
scale of V in Population 1. Note that in this table, the column headed H; (v) provides
relative cumulative frequencies for V in Population 1, whereas the column headed
‘H1(v) provides the corresponding percentile ranks.

Equivalents in the last column of Table 5.11 are obtained using the analogue of
Eq. (2.18)
P1(x)/100 — Hy (v, — 1)

Hy(vyy) — Hi(vy; — 1)

eyi(x) = + (v, —.5), (5.17)

where vi‘] is the smallest integer score for V with a cumulative percent [100 H; (v)]
that is greater than P;(x). For example, for x = 2, vj; = 1, and ey (x) = (.375 —
2)/(.6 —.2) 4+ (1 —.5) = .9375, as indicated in the figure below Table 5.11.

Table 5.12 provides the equipercentile results of putting V on the scale of ¥ in
Population 2. Note that in this table, the column headed G;(y) provides cumula-
tive relative frequencies for Y in Population 2, whereas the column headed Q> (y)
provides the corresponding percentile ranks.
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Table 5.11 Putting X on the scale of V in population 1 for a hypothetical example

Score fi(x) Fi(x) Py (x) hi(v) Hy(v) Hi(v) eyi(x)
0 10 10 5.0 20 20 10 —.2500
1 15 25 17.5 40 60 40 3750
2 25 50 375 20 80 70 9375
3 25 75 62.5 20 1.00 90 1.6250
4 15 90 82.5 2.6250
5 10 1.00 95.0 3.2500
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Equivalents in the last column are obtained using the analogue of Eq. (2.18)

H2(v)/100 — Ga(yf; — 1)
G20;) — G20, — 1)

ey2(v) = + (v —.5), (5.18)

where yl*j is the smallest integer score for Y with a cumulative percent [100 G2 (y)]
that is greater than Q> ().

The results in Table 5.12 cannot be used directly to obtain the chained equiper-
centile equivalents given by the composed function in Eq. (5.16), because we need
equivalents for the non-integer V scores in the last column of Table 5.11. For exam-
ple, as discussed previously, when x = 2 the equipercentile equivalent for V is
v = .9375. The figure below Table 5.12 graphically illustrates how to obtain the
Y-equivalent of v = .9375, which is 1.5341. Hence, for x = 2, the chained equiper-
centile equivalent for Y is y = 1.5341.
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Table 5.12 Putting V on the scale of Y in population 2 for a hypothetical example

Score ha(v) Hy(v) Ha(v) 92(y) G(y) 02(y) ey2(v)
0 20 20 10 08 08 4.0 .6000
1 .20 40 30 20 28 18.0 1.5909
2 40 .80 60 22 50 39.0 2.9000
3 20 1.00 90 25 75 62.5 4.5000
4 15 .90 82.5
5 .10 1.00 95
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Analytic Procedure

The graphical process in the previous example can be implemented analytically in
three steps.

1. Use Eq. (5.17) to obtain V-equivalents for X in Population 1. In the numerical
example, ey (x = 2) = .9375.

2. For each of the values of V in Step 1, get the percentile rank in Population 2
using the analogue of Eq. (2.14):

Ha(v) = 100[{ (v — ) + [v — (v* — 5)I[H(v*) — Ho(v* — D]}, (5.19)

where v* is the integer closest to v in the sense that v* — .5 < v < v* + .5.
In the numerical example, for v = .9375, v* = 1 and
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H2(.9375) = 100{H2(0) + [.9375 — (1 — .5)][H2(1) — H2(0)]}
= 100{.2 4 [.9375 — .5][.4 — .2]} = 28.75.

3. Using each of the percentile ranks in Step 2, get the Y-equivalent for v in Pop-
ulation 2 using Eq. (5.18). In the numerical example, for v = .9375, y;; = 2
and

ey (chain) = €y2(.9375) = (2875 — .28)(.5 — .28) + (2 — .5) = 1.5341.

Comments

Livingston et al. (1990) suggest that the chained equipercentile method sometimes
can produce accurate and stable results, and they suggest that smoothing methods
might be used to improve the stability of results. Livingston (1993) suggests the use of
log-linear presmoothing to accomplish this goal. For chained equipercentile equating,
bivariate log-linear presmoothing is not required; all that is required is univariate log-
linear presmoothing of the marginal distributions (X and V in Population 1, and Y
and V in Population 2), as described in Chap. 3.

Another alternative that might be considered is cubic spline postsmoothing of the
estimates of ey (x) and ey, (v). The only required modification of the cubic spline
method described in Chap. 3 is to use standard errors for single group equating
rather than standard errors for random groups equating in implementing the cubic
spline method. These smoothed relationships could be used in place of the population
relationships in Eq. (5.16).

Since chained equipercentile equating does not require consideration of the joint
distribution of total scores and common-item scores, computationally it is much less
intensive than frequency estimation. Chained equipercentile equating, however, has
theoretical shortcomings. First, this method involves equating a long test (total test) to
a short test (common items). Tests of considerably unequal lengths cannot be equated
in the sense that scores on the long and short tests can be used interchangeably.
Second, this method does not directly incorporate a synthetic population, so it is
unclear for what population the relationship holds or is intended to hold.

Braun and Holland (1982, p. 42) demonstrate that chained equipercentile and
frequency estimation equating do not, in general, produce the same results, even when
the assumptions for frequency estimation hold. Harris and Kolen (1990) demonstrate
that these methods can produce equating relationships which differ from a practical
perspective. However, the chained equipercentile method does not explicitly require
that the two populations be very similar, so this method might be useful in situations
where the two groups differ. For example, results presented by Marco et al. (1983)
and Livingston et al. (1990) suggest that chained equipercentile equating should be
considered when groups differ considerably.

von Davier et al. (2004b) show that chained and frequency estimation equiper-
centile methods can be expected to produce the same results when (a) the two
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Fig. 5.4 Relationships for frequency estimation (FE), modified frequency estimation (MFE), and
chained equipercentile equating for illustrative example

populations are equivalent or (b) the scores on the total test and the common items
are perfectly correlated. These findings suggest that, in practice, the methods might
be expected to produce different results when there are large group differences.
Wang et al. (2008) show that when there are substantial group differences, fre-
quency estimation (FE) has larger bias than chained equipercentile equating. Almost
always, however, frequency estimation has a smaller standard error of equating than
chained equipercentile equating. The Wang et al. (2008) study suggests that for mod-
ified frequency estimation (MFE), the bias and standard error of equating tend to be
between the results for FE and chained equipercentile equating. In addition, recent
research studies (Hagge and Kolen 2011, 2012; Holland et al. 2008; Lee et al. 2012;
Liu and Kolen 2011; Powers et al. 2011; Powers and Kolen 2011, 2012; Sinharay
2011; Sinharay and Holland 2010a, b; Sinharay et al. 2011) taken together, suggest
that (a) when group differences are substantial, chained equipercentile methods tend
to produce somewhat more accurate (less biased) equating results than frequency
estimation methods and (b) frequency estimation methods tend to produce equating
results with somewhat smaller random errors than chained equipercentile methods.

5.2.3 Illustrative Example

Figure 5.4 provides a difference-plot graph of the relationships among frequency
estimation (FE), modified frequency estimation (MFE), and chained equipercentile
equating for the illustrative example first introduced in Chap. 4 and subsequently
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extended to FE in Sect. 5.1.6.3 For this example, among other things, Fig. 5.4 suggests
that

e for nearly the entire range of raw scores, FE equivalents are clearly the largest;

e from X = 10, ..., 20, MFE equivalents are slightly larger than chained equiva-
lents; and

e from X = 21, ..., 27, there are noticeable differences among the three methods,
with the equivalents ordered as follows: FE > Chained > MFE.

It is also evident that for X = 30, 31, 32, the chained equivalents are the largest, but
sample sizes for these raw scores are less than 20 (recall that the total sample size
for Form X is 1,655), which suggests that standard errors are likely quite large.

When sample sizes at the low and/or high end of the scale are very small (as they
are for this example), it is reasonable to consider using an extrapolation method that
is not influenced by the very small sample sizes. One approach is linear interpolation.
For number-correct scores, linear interpolation (for extrapolation purposes) is defined
between

e (0.5, —0.5) and (x/", ey (x;")) for scores at the low end of the scale, where x;" is
the largest integer score with a cumulative percent for X [100F (X)] that is less
than ¢;;

and between

o (x;,ey(x;))and (Kx +.5, Ky +.5) for scores at the high end of the scale, where
x; is the smallest integer score with a cumulative percent for X [100F (X)] that is
greater than cy,.

The authors often use ¢; = .5 and ¢, = 99.5, which means that extrapolation occurs
only for raw scores associated with the lowest and highest one-half of a percent
of the frequency distribution. This procedure was used for the results reported in
Fig. 5.4 (Specifically, linear interpolation was used for the scores X =0, 1, 2, 3 and
X = 34, 35, 36).

5.3 Practical Issues

A series of additional practical issues should be considered when deciding on which
method to use when equating is conducted in practice. First, scale score moments and
conversions should be considered, as was done in Chap. 2. Second, the reasonableness
of assumptions should be evaluated. Third, practical considerations might suggest
that a linear method be used with a particular testing program. For example, suppose
that the major focus of the testing program was on deciding whether examinees
were above or below a cutting score that was near the mean. Then a linear equating

3 The CIPE computer program and EQUATING RECIPES can be used for FE. In addition, EQUAT-
ING RECIPES provides results for MFE and chained equipercentile equating.
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method (or even a mean equating method) might be considered adequate, because
the results for linear methods are typically similar to those for frequency estimation
equipercentile equating near the mean, and linear methods are less complicated
computationally. Practical issues in choosing among methods are considered further
in Chap. 8.

Sometimes it is possible to equate forms that have items in common when using
the random groups design. Such a design is referred to as the common-item random
groups design. In this design, the use of the common items can lead to greater
precision than would be attained using the random groups design without considering
the common items. Computationally, equipercentile equating could be performed
using any of the three methods discussed in this chapter. The linear methods described
in Chap. 4 also could be applied with this design. The increase in equating precision
that is achieved by using common items is discussed briefly in Chap. 7.

5.4 Exercises

5.1. Using the data in Table 5.1, find the conditional distribution of X given v, and
display the results in a format similar to Table 5.3.

5.2. Using frequency estimation assumptions, find the joint distribution of X and
V in Population 2 and display the results in a format similar to Table 5.4. Also
display the marginal distributions.

5.3. Using the data in Tables 5.1 and 5.4, the results shown in Table 5.4, the results
from Exercise 5.2, and assuming that w; = w; = .5, find the Form Y equiper-
centile equivalents of Form X integer scores 0, 1, 2, 3, 4, and 5.

5.4. Find the Braun-Holland and Tucker linear equations for the equating rela-
tionship for the data in the example associated with Tables 5.1 and 5.2 for
w) = wy = S.

5.5. Do the relationships between X and V and Y and V in Tables 5.1 and 5.2 appear
to be linear? How can you tell? How would you explain the difference in results
for the Braun-Holland and Tucker methods in Exercise 5.47?

5.6. Use chained equipercentile equating to find the Form Y equivalents of Form X
integer scores 1 and 3 using the data in Tables 5.1 and 5.2.
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Chapter 6
Item Response Theory Methods

Item response theory (IRT) methods are used in many testing applications, and the
use of IRT has been informed by a variety of general treatments (e.g., Baker and Kim
2004; de Ayala 2009; Hambleton and Swaminathan 1985; Hambleton et al. 1991;
Lord 1980; Nering and Ostini 2010; Reckase 2009; van der Linden and Hambleton
1997; Wright and Stone 1979; Yen and Fitzpatrick 2006). Applications of IRT include
test development, item banking, differential item functioning, adaptive testing, test
equating, and test scaling. A major appeal of IRT is that it provides an integrated
psychometric framework for developing and scoring tests. Much of the power of IRT
results from the fact that it explicitly models examinee responses at the item level,
whereas, for example, the focus of classical test models and strong true score models
is on responses at the level of test scores.

Unidimensional IRT models have been developed for tests that are intended to
measure a single dimension, and multidimensional IRT models have been developed
for tests that are intended to measure simultaneously along multiple dimensions. IRT
models have been developed for tests whose items are scored dichotomously (0/1)
as well as for tests whose items are scored polytomously (e.g., a short answer test
in which examinees can earn a score of 0, 1, or 2 on each item). See Thissen and
Steinberg (1986) for a taxonomy of IRT models.

Many testing programs use unidimensional IRT models to assemble tests. In these
testing programs, the use of IRT equating methods often seems natural. Also, IRT
methods can be used for equating in some situations in which traditional methods
typically are not used, such as equating to an item pool. Thus, IRT methods are
an important component of equating methodology. However, IRT models gain their
flexibility by making strong statistical assumptions, which likely do not hold precisely
in real testing situations. For this reason, studying the robustness of the models to
violations of the assumptions, as well as studying the fit of the IRT model, is a crucial
aspect of IRT applications. See Hambleton and Swaminathan (1985) and Hambleton
et al. (1991) for general discussions of testing model fit, and see von Davier and
Wilson (2007) for a detailed discussion of the assumptions made in IRT equating
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with the common item nonequivalent groups design along with an example of how
to test these assumptions.

The initial focus of this chapter is on equating scores on test forms that contain
dichotomously (0/1) items using the unidimensional IRT model referred to as the
three-parameter logistic model (Lord 1980). This model, which is described more
fully later in this chapter, is the most general unidimensional model for dichotomously
scored test items that is in widespread use. The Rasch model (Rasch 1960; Wright
and Stone 1979) also is discussed briefly. In this chapter, after an introduction to IRT,
methods of transforming IRT scales are discussed. Then IRT true score equating and
IRT observed score equating are treated. The methods are illustrated using the same
data that were used in Chaps.4 and 5. Equating using IRT-based item pools also is
discussed. Equating with polytomous IRT models is considered near the end of this
chapter. Issues in equating computer administered and computer adaptive tests are
considered in Chap. 8.

As is described more fully later in this chapter, equating using IRT typically is
a three-step process. First, item parameters are estimated using computer software.
Second, parameter estimates are scaled to a base IRT scale using a linear transfor-
mation. Third, if number-correct scoring is used, number-correct scores on the new
form are converted to the number-correct scale on an old form and then to scale
scores.

6.1 Some Necessary IRT Concepts

A description of some necessary concepts in IRT for tests consisting of dichotomously
scored items is presented here to provide a basis for understanding unidimensional
IRT equating of dichotomously scored tests. References cited earlier provide a much
more complete presentation of IRT. Instructional modules on IRT by Harris (1989)
and on IRT equating by Cook and Eignor (1991) can be used as supplements to the
material presented here.

6.1.1 Unidimensionality and Local Independence Assumptions

Unidimensional item response theory (IRT) models for dichotomously (0/1) scored
tests assume that examinee ability is described by a single latent variable, referred to
as 6, defined so that —oo < 6 < oo. The use of a single latent variable implies that
the construct being measured by the test is unidimensional. In practical terms, the
unidimensionality assumption in IRT requires that tests measure only one ability. For
example, a mathematics test that contains some items that are strictly computational
and other items that involve verbal material likely is not unidimensional.

The item characteristic curve for each item relates the probability of correctly
answering the item to examinee ability. The item characteristic curve for item j is
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symbolized by p;(#), which represents the probability of correctly answering item
J for examinees with ability 6. For example, if 50 % of the examinees with ability
6 = 1.5 can be expected to answer item 1 correctly, then the probability can be
symbolized as p1(6 = 1.5) = .5. Note that p; is written as a function of the variable
0. IRT models typically assume a specified functional form for the item characteristic
curve, which is what distinguishes IRT models from one another.

An assumption of local independence is made in applying IRT models. Local inde-
pendence means that, after taking into account examinee ability, examinee responses
to the items are statistically independent. Under local independence, the probability
that examinees of ability € correctly answer both item 1 and item 2 equals the prod-
uct of the probability of correctly answering item 1 and the probability of correctly
answering item 2. For example, if examinees of ability § = 1.5 have a .5 probability
of answering item 1 correctly and a .6 probability of answering item 2 correctly, for
such examinees the probability of correctly answering both items correctly under
local independence is .30 = .50(.60).

The local independence assumption implies that there are no dependencies among
examinee responses to items other than those that are attributable to latent ability. One
example where local independence likely would not hold is when tests are composed
of sets of items that are based on common stimuli, such as reading passages or
charts. In this case, local independence probably would be violated because examinee
responses to items associated with one stimulus are likely to be more related to one
another than examinee responses to items associated with another stimulus.

Although the IRT unidimensionality and local independence assumptions might
not hold strictly, they might hold closely enough for IRT to be used advantageously in
many practical situations. In using IRT equating, it is important to choose an equating
design that minimizes the effects of violations of model assumptions.

6.1.2 IRT Models

Various IRT models are in use that differ in the functional form of the item charac-
teristic curve. Among unidimensional models, the three-parameter logistic model is
the most general of the forms in widespread use. In this model, the functional form
for an item characteristic curve is characterized by three item parameters. Under the
three-parameter logistic model, the probability that persons of ability equal to the
ability of person i correctly answer item j is defined as

exp[Daj(Qi — bj)]
1+ eXp[Daj(e,' —bj)] '

pij = P03 @, by, ¢j) = ¢j + (1 = ¢j) ©6.1)

In this equation, 6; is the ability parameter for person i. Ability, 6, is defined over
the range —oo < € < oo and often is scaled to be normally distributed with a
mean of 0 and standard deviation of 1. In this case, nearly all of the persons have 6
values in the range —3 to +3. The expression “exp” in Eq. (6.1) stands for the natural
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exponential function. That is, the quantity in brackets after exp is the exponent of
e = 2.71828.... The constant D typically is set to 1.7 so that the logistic item
response curve and the normal ogive differ by no more than .01 for all values of 6.

The item parameters a;, b, and ¢; are associated with item j. The meanings of
these parameters are illustrated in the portion of Table 6.1 labeled “Item Parameters”
and in Fig. 6.1. For now, consider only the item parameters for the three items listed
below the labeled portion “Scale I on the left-hand side of the table. Also ignore
the I subscript for the present.

The item parameter c; is the lower asymptote or pseudo-chance level parameter
foritem j. The parameter c; represents the probability that an examinee with very low
ability (actually, # = —o0) correctly answers the item. For example, for low ability
examinees, the curve for item 3 in Fig. 6.1 appears to be leveling off (have a lower
asymptote) at a probability of .18, which corresponds to the c-parameter for this item
listed in Table 6.1. If the horizontal axis in Fig.6.1 were extended beyond § = —3,
items 1 and 2 would appear to have the lower asymptotes of .10 and .17 shown in
Table6.1. The c-parameter for an item must be in the range O to 1. Typically, the
c-parameter for an item is somewhere in the range of 0 to the probability of correctly
answering an item by random guessing (1 divided by the number of options).

The item parameter b; is referred to as the difficulty or location parameter for
item j. The logistic curve has an inflexion point at § = b. When ¢ = 0, b is the
level of ability where the probability of a correct answer is .5. Otherwise, b is the
ability level where the probability of a correct response is halfway between ¢ and 1.0.
The inflexion point of each curve is indicated by the circular symbol on each item
characteristic curve in Fig. 6.1. Typically, b is in the range —3 to 4-3. Higher values
of b are associated with more difficult items. As an illustration, item 3 has the highest
b-parameter in Table 6.1. Of the three items in Fig. 6.1, the item characteristic curve
for item 3 tends to be shifted the farthest to the right.

The item parameter g; is referred to as the discrimination parameter for item j.
The a-parameter is proportional to the slope of the item characteristic curve at the
inflexion point. As can be seen in Table 6.1, item 3 has the highest a-parameter (1.7)
and item 3 also has the steepest item characteristic curve in Fig. 6.1.

The abilities for two persons are shown in the middle of Table6.1 under
the heading “Person Abilities.” The probabilities of correctly answering each of

the three items for examinees of ability § = —2.00 and # = 1.00 are shown at the
bottom of Table 6.1 under the heading “Probability of Correctly Answering Items.”
For example, the probability of person i = 1 with ability §; = —2.00 correctly

answering the first item can be calculated as follows using Eq. (6.1):

exp{1.7(1.30)[-2.00 — (—1.30)]}

pip = A0+ = 0 7 (130 [=2.00 — (—1.30)]]

The reader should verify the computation of the other probabilities by substituting
the abilities and item parameters into Eq. (6.1).

Various simplifications of the three-parameter logistic model have been used.
One variation can be obtained by setting ¢; equal to a constant other than 0. The



6.1 Some Necessary IRT Concepts 175

Table 6.1 Item and person parameters on two scales for a hypothetical test

Scale 1 Scale J
Item parameters
Item  ay by cj ay by cj
j=1 130 —1.30 10 2.60 —1.15 .10
j=2 .60 —.10 17 0 1.20 -.55 17
j=3 170 .90 18 3.40 —.05 18
Person abilities
Person 0y 0;i
i=1 =200 —1.50
i=2 1.00 .00
Scale transformation constants
A=.5 B=-5
Probability of correctly answering items
PijOri; agj, by, cij) pij(01is agj. byj, cjp)
Person Person
Item i=1 i=2 i=1 i=2
j=1 .26 .99 .26 .99
j=2 27 .80 27 .80
j=3 .18 .65 18 .65
Fig. 6.1 Hypothetical 1.0 -
example of scale 0.9
transformations 9
0.8
0.7
067 item 1
p®) 0.5+
0.4
0.3
0.2
0.1
0.0 T T T T T 19
3 2 -1 0 1 2 37
| | | 1 6
-2 -1 0 1 !

two-parameter logistic model is obtained from Eq.(6.1) by setting ¢; equal to 0.
This model does not explicitly accommodate examinee guessing. The Rasch model
is obtained from Eq. (6.1) by setting ¢; equal to 0, a; equal to 1, and D equal to 1. The
Rasch model, therefore, requires all items to be equally discriminating, and it does
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not explicitly accommodate guessing. Other models exist that use a normal ogive to
model p;;.

The three-parameter logistic model is the only one of the three models presented
that explicitly accommodates items which vary in difficulty, which vary in discrim-
ination, and for which there is a nonzero probability of obtaining the correct answer
by guessing. Because of its generality, the three-parameter model is the focus of
this chapter. However, the assumed form of the relationship between ability and the
probability of a correct response (e.g., the three-parameter logistic curve) is chosen
primarily for reasons of mathematical tractability. No reason exists for this relation-
ship to hold, precisely, for actual test items.

6.1.3 IRT Parameter Estimation

IRT item and ability parameters need to be estimated when using IRT methods in
practice. Two general approaches to estimating item and ability parameters are joint
maximum likelihood and marginal maximum likelihood. These estimation procedures
are described in detail by Baker and Kim (2004) and de Ayala (2009) and are only
briefly summarized here.

In joint maximum likelihood, preliminary ability estimates along with exami-
nee item responses are used to estimate item parameters by maximum likelihood
procedures. The estimated item parameters are then used to update the ability esti-
mates by maximum likelihood procedures. The updated ability estimates are used
to update the estimates of the item parameters, and this type of back-and-forth pro-
cedure is repeated until the parameter estimates stabilize. The LOGIST computer
software (Wingersky et al. 1982) uses joint maximum likelihood methods with the
three-parameter logistic model. LOGIST is not used very much because parameter
estimation for the three-parameter logistic model appears to be more stable, and
is on a firmer statistical foundation, with marginal maximum likelihood methods.
Parameter estimation for the Rasch model often is conducted using joint maximum
likelihood procedures using computer software such as WINSTEPS (Linacre 2001).

Marginal maximum likelihood begins by specifying a prior probability distribu-
tion for ability (often standard normal) in the population of examinees. Item parame-
ters are estimated assuming this prior distribution of ability. The prior distribution of
ability often is updated during the estimation process. The outcome from applying
marginal maximum likelihood methods is a set of item parameter estimates for each
of the items and a posterior distribution of examinee ability.

Examinee ability parameter estimates are not provided by the marginal maximum
likelihood method. Ability parameters can be estimated for each examinee from the
examinee’s item responses along with the item parameter estimates and the posterior
ability distribution that result from application of the marginal maximum likeli-
hood method. Computer software such as BILOG-MG (Zimowski et al. 2003), ICL
(Hanson 2002), MULTILOG (Thissen et al. 2003), and PARSCALE (Muraki and
Bock 2003) can be used to implement the marginal maximum likelihood method.
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Unless the user chooses otherwise, ability parameters are scaled to have a mean
of approximately 0 and standard deviation of approximately 1 with these software
packages.

One important characteristic of ability estimation for the three-parameter logistic
model is that the ability estimates depend on the pattern of item responses, rather
than just on the number of items an examinee answers correctly. That is, examinees
who earn the same number-correct score would likely earn different estimated 6’s
if some of the items that they correctly answered were different. The use of such
pattern scoring in IRT increases the precision of the IRT ability estimates over
using the number-correct score if the IRT model holds. However, for many practical
applications, including equating, number-correct scoring often is used. Different IRT
ability parameter estimates are discussed in Chap. 9.

6.2 Transformations of IRT Scales

When conducting equating with nonequivalent groups, the parameters from different
test forms need to be on the same IRT scale. However, the parameter estimates that
result from IRT parameter estimation procedures are often on different IRT scales.
For example, assume that the parameters for the IRT model are estimated for Form
X based on a sample of examinees from Population 1 and separately for Form Y
based on a sample of examinees from Population 2, where the two populations
are not equivalent. As was already indicated, computer software often defines the
f-scale as having a mean of 0 and a standard deviation of 1 for the set of data being
analyzed. In this case, the abilities for each group would be scaled to have a mean
of 0 and a standard deviation of 1, even though the groups differed in ability. Thus,
a transformation of IRT scales is needed.

As is demonstrated later in this section, if an IRT model fits a set of data, then any
linear transformation of the f-scale also fits the set of data, provided that the item
parameters also are transformed. When the IRT model holds, the parameter estimates
from different computer runs are on linearly related 8-scales. Thus, a linear equation
can be used to convert IRT parameter estimates to the same scale. After conversion,
the means and standard deviations of the abilities for the two groups on the common
scale would be expected to differ. The resulting transformed parameter estimates,
which sometimes are referred to as being calibrated, then can be used to establish
score equivalents between number-correct scores on Form X and Form Y, and then
to scale scores.

6.2.1 Transformation Equations

Define Scale I and Scale J as three-parameter logistic IRT scales that differ by a
linear transformation. Then the 6-values for the two scales are related as follows:
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05 = Abj; + B, (6.2)
where A and B are constants in the linear equation and 8; and 6y; are values of 6 for

individual i on Scale J and Scale /. The item parameters on the two scales are related
as follows:

ar;
ay =", 6.3)
bJj = Ab[j + B, 6.4)
and
Cjj = €[ (6.5)

where ay;, by;, and cy; are the item parameters for item j on Scale J and ay;, by;, and
cyj are the item parameters for item j on Scale /. The lower asymptote parameter is
independent of the scale transformation, as is indicated by Eq. (6.5).

6.2.2 Demonstrating the Appropriateness of Scale Transformations

To demonstrate that there is an A and a B which result in the scale transformation
that correctly transforms parameters from Scale I to Scale J, note that the right-hand
side of Eq. (6.1) for Scale J equals

exp[Day;(85; — byj)]
1 + exp[Dayj (0 — bjj)]’

cji+ 1 —cyj)
Now replace 0;, ayj, byj, cj; with the expressions from Egs. (6.2)-(6.5) as follows:

.
aﬂDfm%+B—m@+mﬂ
c + (1 —CIj)

—
1+aﬂpfm@+3—m%+mﬂ

exp[Day;(0; — byj)]

=i+ (1 -y .
e+ (1 =cp) 1 + exp[Dayj (0 — byj)]

This resulting expression is the right-hand portion of Eq.(6.1) for Scale /, which
demonstrates that A and B in Egs. (6.2)—(6.5) provide the scale transformation.
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6.2.3 Expressing A and B Constants

One way to express the constants A and B is as follows. For any two individuals, i
and *, or any two items, j and j*, A and B in Egs. (6.2)—(6.5) can be expressed as

A = =
911’ - 91,'* b[j - b[j* ajj

and
B =bj; —Abj = 0y — Aby;. (6.7)

To illustrate these equalities, refer back to Table 6.1 and Fig.6.1 for a hypothetical
example of scale transformations. Parameters for three items are presented in the
portion of Table 6.1 labeled “Item Parameters.” Parameters for these items are given
for Scale I and for Scale J. The item characteristic curves for these three items are
presented in Fig. 6.1. Note that horizontal scales are presented in this figure for Scale
I and Scale J, and these are labeled 67 and 6;. As is evident from this figure, the item
characteristic curves are the same shape on either scale. To calculate A from Eq. (6.6)
using the difficulty parameters for items 1 and 2 (j = 1 and j* = 2), take

_(-L15)— (=55 -6
T (=1.30) = (—=.10)  —1.2

A 5.

Alternatively, using the slope parameters for item 1,

Using Eq. (6.7) with the difficulty parameters for item 1,
B = (—1.15) — (.5)(—1.30) = —.5.

These values agree with those in the section labeled “Scale Transformation Con-
stants” in Table 6.1. Equations (6.6) and (6.7) also can be used to calculate A and B
using the #-values for Persons 1 and 2. These A and B values can be used to transform
parameters from Scale I to Scale J using Eqgs. (6.2)—(6.5). For example, to transform
the ability of Person 1 from Scale 7 to Scale J using Eq. (6.2), take

01 = Afj + B = .5(=2.00) + (—.5) = —1.5,

which is the value for Person 1 shown under ‘“Person Abilities” in Table 6.1. To
convert the parameters for item 3 from Scale / to Scale J using Egs. (6.3)—(6.5), take
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ars 1.7
I3l 3y
W=7y =75

byy = Abys + B = .5(.90) — .5 = —.05,

and
Cj3 =Cj3 = .18.

These values agree with the Scale J values in the portion of Table 6.1 labeled “Item
Parameters.”

The p;; values based on Eq. (6.1) are presented in the portion of Table 6.1 labeled
“Probability of Correctly Answering Items.” These values can be calculated from
the item and person parameters presented in Table 6.1; they are the same for Scales /
and J, and the p;; values will be identical for any linearly related scales. This property
often is referred to as indeterminacy of scale location and spread.

6.2.4 Expressing A and B Constants in Terms of Groups of Items
and/or Persons

So far, the relationships between scales have been expressed by two abilities and two
items. Often, it is more useful to express the relationships in terms of groups of items
or people. From Egs. (6.6) and (6.7) it follows that (see Exercise 6.3)

__a(by)
A= o)’ (6.8a)
_ #(611)’ (6.8b)
H(ar)
G
= —0(91) , (6.8¢)
B = u(by) — Au(by), and (6.92)
= pu(0y) — ApOy). (6.9b)

The means w(by), u(by), p(ar), and p(ay) in these equations are defined over one
or more items with parameters that are expressed on both Scale I and Scale J.
The standard deviations o(by) and o(b;) are defined over two or more items with
parameters that are expressed on both Scale 7 and Scale J. The means 1.(6;) and 1(6;)
are defined over one or more examinees with ability parameters that are expressed
on both Scale I and Scale J. The standard deviations o (6;) and o(6;) are defined
over two or more examinees with parameters that are expressed on both Scale / and
Scale J.
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To illustrate the use of Eqgs. (6.8a), (6.8b), and (6.9a), the following quantities can
be calculated for the three items from the example in Table6.1: p(by) = —.1667,
o(by) = .8994, u(ay) = 1.2, u(by) = —.5833, o(by) = .4497, and p(ay) = 2.4.
From Egs. (6.8) and (6.9),

_o(by)  plar) 4497 1.2000
o(by)  play)  .8994  2.4000

=.5000,

and
B = u(by) — Au(by) = —.5833 — .5000(—.1667) = —.5000.

Similar calculations can be made using the mean and standard deviations for the two
ability scales in Table 6.1.

In equating with nonequivalent groups, parameter estimates for the common items
would be available for examinees in the two groups. The parameter estimates on the
common items could be used to find the scaling constants by substituting estimates
for these parameters in the preceding equations.

Consider a situation in which the mean and standard deviation of the abilities on
Scale I are known for one group of examinees. Also, the mean and standard deviation
of the abilities are known for a different group of examinees on Scale J. Is there any
way Eqgs. (6.8c) and (6.9b) can be used to transform Scale / to Scale J? No! These
equations can be used only if the parameters for the same group of examinees are
expressed on both scales.

Consider a different situation, in which the mean and standard deviation of abilities
on Scale [ are 0 and 1, respectively. For the same group of examinees, the mean and
standard deviation of abilities are 50 and 10, respectively, on Scale J. Can Egs. (6.8¢c)
and (6.9b) be used to transform parameters from Scale I to Scale J? Yes. The resulting
scaling constants calculated using Egs. (6.8c) and (6.9b) are as follows:

_ 20 _ 10 _ 10 and B = u(ly) — Au(d;) = 50 — 10(0) = 50.
0’(91) 1

These equations might be used to transform IRT parameters to a different scale when
the means and standard deviations of the abilities are known.

6.3 Transforming IRT Scales When Parameters are Estimated

The estimation of item parameters complicates the problem of transforming IRT
scales. The process that needs to be followed depends on the design used for data
collection.
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6.3.1 Designs

In the random groups equating design, the IRT parameters for Form X can be esti-
mated separately from the parameters for Form Y. If the same scaling convention
(e.g., mean of 0 and standard deviation of 1) for ability is used in the separate esti-
mations, then the parameter estimates for the two forms are assumed to be on the
same scale without further transformation. No further transformation is assumed to
be required because the groups are randomly equivalent, and the abilities are scaled
to have the same mean and standard deviation in both groups. If, for some reason,
different scaling conventions were used for the two forms, then estimates of the mean
and standard deviations of the posterior distributions or of the #-estimates could be
used in place of the mean and standard deviations of the #-parameters in Egs. (6.8¢)
and (6.9b).

In the single group design with counterbalancing, the parameters for all examinees
on both forms can be estimated together. Because the parameters for the two forms
are estimated together on the same examinees, the parameter estimates are assumed
to be on the same scale. If the parameters for the two forms are estimated separately
using the same scaling conventions, the parameter estimates can be assumed to be
on the same scale following the logic discussed previously for the random groups
design.

In the common-item nonequivalent groups equating design, the Form Y item and
ability parameters typically are estimated at the time Form Y is first administered.
Consequently, only the Form X parameters need to be estimated when Form X is
equated to Form Y. Because the examinees who took Form X are not considered to
be equivalent to the examinees who took Form Y, parameter estimates for the two
estimations are not on the same scale. However, there is a set of items that is common
to the two forms. The estimates of the item parameters for these common items can
be used to estimate the scale transformation.

As an alternative, the parameters for Form X and Form Y can be estimated together.
This type of estimation is often referred to as concurrent calibration (Wingersky and
Lord 1984). For example, a single run of BILOG-MG (Zimowski et al. 2003) can
be conducted using the item level data for Form X and Form Y on the two examinee
groups, indicating which items are common to the two forms, and indicating to
which group (group taking Form X or group taking Form Y) the examinee belongs.
In conducting the parameter estimation it is important to use the multi-group feature
of BILOG-MG (MG stands for multigroup) because DeMars (2002) showed that item
parameter estimates are biased when using marginal maximum likelihood estimation
that does not take into account group differences and examinee groups taking the
alternate forms differ in ability.

Another alternative is to fix the item parameters for the common items to those
estimated on the old form when calibrating the items on the new form. This process
is referred to as fixed parameter calibration. When there are substantial differences
in ability between the old and new examinee groups and this procedure is used,
fixed parameter calibration can lead to biased item parameter estimates. Such bias
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occurs because the IRT ability scale typically is defined as having a mean of 0 and
standard deviation of 1 for the old group of examinees as well as for the new group
of examinees. This issue was identified and shown to lead to bias by Pack and Young
(2005) and Kim (2006); in these studies it was found that bias could be reduced
using strategies involving multiple runs of IRT estimation software. DeMars and
Jurich (2012) described how to avoid such bias in a single run of BILOG-MG. Keller
and Keller (2011) and Li et al. (2004) also investigated fixed parameter procedures.
Because of the associated complexities, fixed parameter calibration is not considered
further in this chapter.

Parameter estimates must be on the same scale to proceed with equating number-
correct scores on alternate forms and converting them to scale scores. Methods for
equating number-correct scores are described later in this chapter.

6.3.2 Mean/Sigma and Mean/Mean Transformation Methods

The most straightforward way to transform the scales in the common-item nonequiv-
alent groups design is to substitute the means and standard deviations of the item
parameter estimates of the common items for the parameters in Egs. (6.8) and (6.9).
After transformation, the item parameter estimates are often referred to as being
calibrated. One procedure, described by Marco (1977) and referred to here as the
mean/sigma method, uses the means and standard deviations of the b-parameter esti-
mates from the common items in place of the parameters in Egs. (6.82) and (6.9a).
In another method, described by Loyd and Hoover (1980) and referred to here as the
mean/mean method, the mean of the a-parameter estimates for the common items
is used in place of the parameters in Eq.(6.8b) to estimate the A-constant. Then,
the mean of the b-parameter estimates of the common items is used in place of the
parameters in Eq. (6.9a) to estimate the B-constant. The values of A and B then can
be substituted into Egs. (6.2)—(6.5) to obtain the rescaled parameter estimates.

When estimates are used in place of the parameters, or when the IRT model does
not hold precisely, the equalities shown in Egs. (6.8) and (6.9) do not necessarily hold.
So, the mean/sigma and the mean/mean methods typically produce different results.
One reason that the mean/ sigma method is sometimes preferred to the mean/mean
method is that estimates of b-parameters are more stable than estimates of the a-
parameters. However, Baker and Al-Karni (1991) pointed out that the mean/mean
method might be preferable because means are typically more stable than standard
deviations, and the mean/mean method uses only means. Empirical research compar-
ing these two methods is inconclusive, so the approach suggested here is to consider
both procedures, and compare the raw-to-scale score conversions that result from the
application of both methods when equating is conducted.

Mislevy and Bock (1990) recommended a further variation that uses the means
of the b-parameters and the geometric means of the a-parameters. Stocking and
Lord (1983) also discussed procedures for using robust estimates of the means and
standard deviations of estimates of the b-parameters, although they were not satisfied
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with the performance of these robust methods. Linn et al. (1981) described a related
procedure that weights the item parameter estimates by their standard errors.

6.3.3 Characteristic Curve Transformation Methods

One potential problem with the methods considered so far arises when various com-
binations of a-, b-, and c-parameter estimates produce almost identical item charac-
teristic curves over the range of ability at which most examinees score. For example,
in two estimations an item with very different b-parameter estimates could have very
similar item characteristic curves. In this case, the mean/sigma method could be
overly influenced by the difference between the b-parameter estimates, even though
the item characteristic curves for the items on the two estimations were very similar.
This problem arises because the scale conversion methods described so far do not
consider all of the item parameter estimates simultaneously.

In response to this problem, Haebara (1980) presented a method that considers all
of the item parameters simultaneously, and Stocking and Lord (1983) developed a
method similar to Haebara’s. Stocking and Lord (1983) referred to both their method
and the Haebara method as characteristic curve methods. To develop these methods,
note that the indeterminacy of scale location and spread property which was described
earlier implies that, for ability Scales / and J,

aj
pij(0i; agj. byj, cgj) = pij (A911 + B; Xj Abyj; + B, C[/) (6.10)

for examinee i and item j. Equation (6.10) states that the probability that examinees
of a given ability will answer a particular item correctly is the same regardless of the
scale that is used to report the scores.

If estimates are used in place of the parameters in Eq.(6.10), then there is no
guarantee that the equality will hold over all items and examinees for any A and B.
This lack of equality is exploited by the characteristic curve methods.

Haebara Approach

The function used by Haebara (1980) to express the difference between the item
characteristic curves is the sum of the squared difference between the item charac-
teristic curves for each item for examinees of a particular ability. For a given 6;, the
sum, over items, of the squared difference can be displayed as

aj

2
" ,Abjj + B, é,,»)} . (6.11)

Hdiff (0;) = Z |:Pij(91i; agj, by, &) — pij (9Ji;
Jjv
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The summation is over the common items (j:V). In this equation, the difference
between each item characteristic curve on the two scales is squared and summed.

Hdiff then is cumulated over examinees. The estimation process proceeds by
finding A and B that minimize the following criterion:

Herit =" Hdiff (0)). (6.12)

The summation in Eq. (6.12) is over examinees.

Stocking and Lord Approach

In contrast to the Haebara approach, Stocking and Lord (1983) used the square
difference of sums, over items,

2

. PP ag  + .
SLAiff (0;) = .EV pij(0ui: agj, byj, ¢5) — EV Dij (911'; Xj,AbIj + B, Clj) . (6.13)
J: J:

In the Stocking and Lord (1983) approach, the summation is taken over items for
each set of parameter estimates before squaring. Note that in IRT, the function

7(0) = D pii(0)) (6.14)
J

is referred to as the fest characteristic curve. So, the expression SLAiff(6;) is the
squared difference between the test characteristic curves for a given 6;. In contrast,
the expression Hdiff(6;) is the sum of the squared difference between the item charac-
teristic curves for a given 6;, SLdiff then is cumulated over examinees. The estimation
proceeds by finding the combination of A and B that minimizes the following crite-
rion:

SLerit = SLAiff (0;). (6.15)

The summation in Eq. (6.15) is over examinees. The approach to solving for A and
B in Egs. (6.12) and (6.15) is a computationally intensive iterative approach.

Specifying the Summation Over Examinees
In addition to differences in the function used to express the difference between the

characteristic curves described in Egs. (6.11) and (6.13), these methods differ in how
they cumulate the differences between the characteristic curves. Various ways to
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specify the examinees have been used in the summations in Egs. (6.12) and (6.15).
Some of these ways are as follows:

1. Sum over estimated abilities of examinees who were administered the old form
(Stocking and Lord 1983, used a spaced sample of 200 ability estimates).

2. Sum over estimated abilities of examinees who were administered the new form
and sum over estimated abilities of examinees who were administered the old
form (Haebara 1980).

3. Sum over estimated abilities that are grouped into intervals and then weight the
differences by the proportion of examinees in each interval (Haebara 1980).

4. Sum over a set of equally spaced values of ability (Baker and Al-Karni 1991).

5. If the posterior distribution of ability in the population is estimated and repre-
sented by a discrete distribution, which is typically the case when using marginal
maximum likelihood estimation, use a weighted summation over the posterior
ability distribution for the group taking the new form (Zeng and Kolen 1994).

6. If the posterior distribution of ability in the population is estimated and repre-
sented by a discrete distribution, use a weighted summation over the posterior
ability distribution for the examinees who were administered the old form and
a weighted summation over the posterior ability distribution for the group of
examinees who were administered the new form (Kim and Kolen 2007).

A decision needs to be made about which of these options (or others) are used
when implementing the characteristic curve procedures. The computer software ST
and POLYST that is listed in Appendix B can be used to implement these schemes
for summation over examinees; in addition the C computer code described by
Brennan et al. (2009, pp. 223-256) can be used. Although research regarding the
relative accuracy of linking from these different summation procedures has been
inconclusive, Kim and Kolen (2007) recommended that the 6th procedure in the
preceding list is preferable because it is symmetric (i.e., the linking function going
from Form X to Form Y is the the inverse of the linking function going from Form
Y to Form X). In addition, the last method makes use of the estimated posterior dis-
tributions which appears to be preferable from a theoretical perspective when using
marginal maximum likelihood methods.

Hypothetical Example

A hypothetical example is presented in Table 6.2 that illustrates part of the process
of scaling item parameter estimates. Assume that the three items listed are common
items in a common-item nonequivalent groups equating design, and that the resulting
estimates are on different linearly related ability scales. Estimates of A and B based on
these parameter estimates for the mean/sigma and mean/mean methods are presented
in the top portion of Table6.2. The Scale / parameter estimates are converted to
Scale J in the middle portion of the table. The results for the two methods differ
somewhat. These differences likely would cause some differences in raw-to-scale
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Table 6.2 Hypothetical example for characteristic curve methods using estimated parameters

Scale / Scale J
Item a b ¢ a b ¢
1 4000 —1.1000 .1000 5000  —1.5000 .1000
2 1.7000 .9000 .2000 1.6000 .5000 .2000
3 1.2000 2.2000 .1000 1.0000 2.0000 .1000
Mean 1.1000 .6667 .1333 1.0333 3333 .1333
Sd 5354 1.3573 .0471 4497 1.4337 .0471
Mean/Sigma Mean/Mean
A 1.0563 1.0645
B —.3709 —.3763
Scale I Converted to Scale J Scale I Converted to Scale J
Using Mean/Sigma Results Using Mean/Mean Results
Item a b ¢ a b ¢
1 3787 —1.5328 .1000 3758  —1.5473 .1000
2 1.6094 .5798 .2000 1.5970 5817 .2000
3 1.1360 1.9530 .1000 1.1273 1.9656 .1000
Mean 1.0414 .3333 .1333 1.0333 .3333 .1333
Sd .5069 1.4337 .0471 .5030 1.4449 .0471
Estimated probability of correct response given
0;=0
Original
Item Scale J Mean/Sigma Mean/Mean
1 .8034 7556 7559
2 3634 3359 3367
3 1291 1202 .1203
sum 1.2959 1.2118 1.2130

score conversions, which could be studied if equating relationships subsequently
were estimated.

The probability of a correct response, using Eq. (6.1), is shown in the bottom por-
tion of Table 6.2 for examinees with ability §; = 0. In this example, the mean/sigma
and mean/mean methods are compared using Hdiff and SLdiff as criteria. The cri-
teria can be calculated at §; = 0 using the estimated probabilities at the bottom
of Table6.2.To calculate Hdiff(0;) using Eq.(6.11), sum, over items, the squared
difference between the estimated probabilities for the original Scale J and for the
transformed scale that results from the application of one of the methods. For exam-
ple, for the mean/sigma method,

Hdiff (0; = 0) = (.8034 — .7556)% + (.3634 — .3359)% + (.1291 — .1202)>
=.003120.
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Similarly, for the mean/mean method,

Hdiff (6; = 0) = (.8034 — .7559)% + (.3634 — .3367)% + (.1291 — .1203)?
=.003047.

Hdiff(0; = 0) is smaller for the mean/mean method than it is for the mean/sigma
method, indicating that the mean/mean method is somewhat “better” than the
mean/sigma method at §; = 0 based on Hdiff(0;).

To calculate SLJiff(#; = 0) using Eq.(6.13), the estimated probabilities are
summed over items, resulting in the sums listed at the bottom of the table. These
sums represent the value of the test characteristic curve at §; = 0. For the mean/sigma
method,

SLAiff (6; = 0) = (1.2959 — 1.2118)% = .007073.

For the mean/mean method,
SLdiff (; = 0) = (1.2959 — 1.2130)2 = .006872.

SLdiff(#; = 0) is smaller for the mean/mean method than it is for the mean/sigma
method, indicating that the mean/mean method is somewhat “better” than the
mean/sigma method at §; = 0. Thus, the mean/mean method is “better” at §; = 0 for
both criteria. In using these methods, differences would actually need to be calculated
at many values of 6;.

If the scaling were actually done using the characteristic curve methods, Hcrit and
SLcrit would be calculated by summing Hdiff(0;) and SLdiff(6;) over different values
of ;. Also, the iterative minimization algorithms described by Haebara (1980) and
Stocking and Lord (1983) would be used to find the A and B that minimized Hcrit
and SLcrit. Typically, the mean/mean or mean/sigma method estimates of A and B
would be used as starting values in the minimization process.

Comparison of Criteria

Research comparing results for the Hcrit- and SLcrit-based methods have suggested
that they produce similar results (Kim and Kolen 2007) or that they slightly favor the
Hcrit-based methods (Lee and Ban 2010). Theoretically, the Hcrit methods might
be argued to be superior to the SLcrit methods for the following reason: Hdiff(0;)
can be 0 only if the item characteristic curves are identical at 6;, whereas SLdJiff(0;)
could be 0 even if the item characteristic curves differed. In this sense, Hdiff(0;)
might be viewed as being more stringent than SLdiff(6;). On the other hand, it might
be argued the SLcrit-based methods are preferable theoretically, because they focus
on the difference between test characteristic curves.
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One potential limitation of the characteristic curve methods is that they do not
explicitly account for the error in estimating item parameters (See Divgi 1985; Kim
and Cohen 1992; Ogasawara 2001a; for a method that takes into account such error).
The failure to take into account error in estimating item parameters, explicitly, might
not be that crucial when the sample size is large and the item characteristic curves
are well estimated. However, there are situations in which problems might arise.
For example, if considerably larger sample sizes are used to estimate parameters
for one form than for another, then ignoring the error in parameter estimates might
lead to problems in estimating A and B, and in estimating equating relationships.
Empirical research is needed to address this issue. Baker (1996) studied the sampling
distribution of A and B for the Stocking and Lord (1983) method. von Davier and
von Davier (2011) presented a general statistical modeling approach that provides a
framework for many of the scale linking methods.

6.3.4 Comparisons Among Scale Transformation Methods

For dichotomous IRT models, research comparing the characteristic curve methods to
the mean/sigma and mean/mean methods has generally found that the characteristic
curve methods produce more stable results than the mean/sigma and mean/mean
methods (Baker and Al-Karni 1991; Hanson and Béguin 2002; Kim and Cohen 1992;
Lee and Ban2010; Lietal. 2012; Ogasawara 2001b,c). In addition, Ogasawara (2000)
found that the mean/mean method was more stable than the mean/sigma method.
When Ogasawara (2002) estimated standard errors for item parameters and item
characteristic curves, he found that the item characteristic curves could be estimated
accurately, even when the item parameters were not estimated very precisely. This
finding supports the finding that the test characteristic curve linking methods are
more accurate than the mean/mean and mean/sigma methods. Kaskowitz and De
Ayala (2001) studied the effects of error in estimating item parameters on the test
characteristic curve methods. They found that the methods were robust in the presence
of modest amounts of error, and that the methods were more accurate with 15 or 25
common items than with 5 common items.

Using simulation procedures in which the data fit an IRT model, Kim and Cohen
(1998) compared scale linking using the Stocking and Lord (1983) test characteris-
tic curve method to concurrent calibration using an earlier version of MULTILOG.
They also examined concurrent calibration using an earlier version of BILOG-MG
(BILOG 3, Mislevy and Bock 1990) that did not allow for multi-group estimation,
even though using concurrent calibration with this program was not strictly appro-
priate. The simulations were all based on data that fit the three-parameter logistic
model. For small numbers of common items, Kim and Cohen (1998) found that
concurrent calibration produced less accurate results than did the test characteristic
curve method. Also, with small numbers of common items, concurrent calibration
with MULTILOG produced less accurate results than BILOG. With large numbers of
common items, they found that all of the procedures examined had similar accuracy.
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Also using simulation procedures in which the data fit the IRT model, Hanson and
Béguin (2002) compared the mean/sigma, mean/mean, Stocking and Lord, Haebara,
concurrent calibration methods using BILOG-MG, and concurrent calibration using
MULTILOG. In this study, the concurrent calibration procedures produced more
accurate results than the test characteristic curve methods. The mean/mean and
mean/sigma methods were less accurate than the other methods. Kim and Kolen
(2007) also found that concurrent calibration methods produced more accurate scale
linking than the characteristic curve methods in a simulation study that used BILOG-
MG.

Béguin et al. (2000) and Béguin and Hanson (2001) compared the Stocking and
Lord method to concurrent calibration using simulated data that purposefully did not
fit the IRT model due to multidimensionality. When groups were nonequivalent and
the abilities highly correlated, scaling using the Stocking and Lord method produced
more accurate equating than scaling using concurrent calibration. This finding is
different from what was found by Hanson and Béguin (2002) and Kim and Kolen
(2007) where the data were simulated to fit the IRT model.

As a set, these studies suggest that concurrent calibration with currently available
computer software, although more accurate than separate estimation when the data
fit the IRT model, might be less robust to violations of the IRT assumptions than
separate estimation using test characteristic curve methods to link the scales. One
additional benefit of separate estimation is that it facilitates examining item parameter
estimates for the common items, as was done in Fig.6.2. These sorts of plots can
be developed only if separate estimation is used, because only one item parameter
estimate for each common item is produced in concurrent calibration. In practice,
separate estimation using the test characteristic curve methods seems to be safest.
Concurrent calibration could be used as an adjunct to the separate estimation method.

If concurrent calibration is not used and software for implementing the test char-
acteristic curve methods is unavailable, then the following process might produce
acceptable results. Construct a scatterplot of the IRT a-parameter estimates by plot-
ting the parameter estimates for the common items for both groups. Construct sim-
ilar scatterplots for the b- and c-parameter estimates. Examine the scatterplots and
identify any items that appear to be outliers. The identification of outliers is nec-
essarily a subjective process. Estimate the A- and B-constants with the mean/sigma
and mean/mean methods both with and without including the item or items with
parameter estimates that appear to be outliers. If the mean/sigma and mean/mean
procedures give very different results with the outliers included but similar results
with the outliers removed, then consider removing these items. If the results from
this procedure are not clear, then the use of the characteristic curve procedure might
be the best alternative. Note that even when the characteristic curve procedures are
used, it is best to use more than one method, and to examine scatterplots to consider
eliminating items with very different parameter estimates. In practice, it might be best
to implement each of the methods and evaluate the effects of the differences between
the methods on equating relationships and on resulting scale scores. Procedures for
choosing among equating results are considered in Chap. 8.
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Fig. 6.2 Plots of item parameter estimates on Form X versus Form Y

6.4 Equating and Scoring

When a test is scored using estimated IRT abilities, there is no further need to develop
a relationship between scores on Form X and Form Y. Still, the estimated abilities
can be converted to scale scores. The ability estimates can be converted so that the
reported scores are positive integers, which are presumably easier for examinees to
interpret than are scores that may be negative and noninteger, as is the case with esti-
mated IRT abilities. This conversion might involve a linear conversion of estimated
abilities, followed by truncating the converted scores so that they are in a specified
range of positive numbers, and then rounding the scores to integers for reporting
purposes.

However, using estimated IRT abilities results in several practical issues, which
might be why they are often not used. One issue is that, to use estimated abilities
with the three-parameter logistic model, the whole 0/1 response string, rather than
the number-correct score, typically is used to estimate 6. Thus, examinees with the
same number-correct score often receive different estimated abilities, which can be
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difficult to explain to examinees. In addition, estimates of 6 are difficult to compute
(they typically cannot be computed by hand). Another concern is that the estimated
f-values with the three-parameter logistic model typically are subject to relatively
greater amounts of measurement error for high and low ability examinees than for
middle ability examinees. Lord (1980, p. 183) indicated that the measurement error
variability for examinees of extreme ability could be 10 or even 100 times that of
middle ability examinees, which can create problems in interpreting summary sta-
tistics such as means and standard deviations. For these practical reasons, tests often
are scored number-correct, even when they are developed and equated using the
three-parameter logist IRT model. When number-correct scores are used, an addi-
tional step is required in the IRT equating process. The two methods that have been
proposed are to equate true scores and to equate observed scores. These procedures
are considered next.

6.5 Equating True Scores

After the item parameters are on the same scale, IRT true score equating can be used
to relate number-correct scores on Form X and Form Y. In this process, the true score
on one form associated with a given 6 is considered to be equivalent to the true score
on another form associated with that 6.

6.5.1 Test Characteristic Curves

In IRT, the number-correct true score on Form X that is equivalent to 6; is defined as

x(0:) = D pij(6i; aj, bj, ¢)), (6.16)
JX

where the summation j:X is over items on Form X. The number-correct true score
on Form Y that is equivalent to 0; is defined as

Ty (0;) = Zpijwi;aj,bj,q), (6.17)
JjY

where the summation j:Y is over items on Form Y. Equations (6.16) and (6.17)
are referred to as fest characteristic curves for Form X and Form Y. These test
characteristic curves relate IRT ability to number-correct true score.

When using the three-parameter logistic model of Eq. (6.1), very low true scores
are not attainable with the three-parameter logistic IRT model, because as 6
approaches —oo the probability of correctly answering item j approaches ¢; and
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not 0. Therefore, true scores on Forms X and Y are associated with a value of € only
over the following ranges (recall that Ky and Ky are the numbers of items on Form
X and Form Y, respectively):

ch <7x <Kx and ch < 1y < Ky. (6.18)
JjX JjY

6.5.2 True Score Equating Process

In IRT true score equating, for a given 6;, true scores 7y (#;) and 7y (6;) are considered
to be equivalent. The Form Y true score equivalent of a given true score on Form X
is
irty(rx) = 1v(ry). D ¢ < 7 < Kx. (6.19)
JX

where 7y !'is defined as the 6; corresponding to true score 7y. Equation (6.19) implies
that true score equating is a three-step process:

1. Specify a true score Ty on Form X (typically an integer Zj:X ¢j < 71x < Kx).

2. Find the 0; that corresponds to that true score (7 1).
3. Find the true score on Form Y, 7y, that corresponds to that 6;.

Form Y equivalents of Form X integer number-correct scores typically are found
using these procedures.

Whereas Step 1 and Step 3 are straightforward, Step 2 requires the use of an
iterative procedure. For example, suppose that the Form Y equivalent of a Form X
score of 5 is to be found. Implementation of Step 2 requires finding the 6; that results
in the right-hand side of Eq. (6.16) equaling 5. Finding this value of #; requires the
solution of a nonlinear equation using an iterative process. This process is described
in the next section.

6.5.3 The Newton-Raphson Method

The Newton-Raphson method is a general method for finding the roots of nonlinear
functions. To use this method, begin with a function that is set to 0. Refer to that
function as func(#), which is a function of the variable 6. Refer to the first derivative
of the function with respect to 6 as func’ (). To apply the Newton-Raphson method,
an initial value is chosen for 6, which is referred to as 6. A new value for 6 is
calculated as

Sfunc(0)

Tty L7
or=0 func' ()

(6.20)
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Typically, * will be closer to the root of the equation than §~. The new value then is
redefined as §~, and the process is repeated until §* and 0~ are equal at a specified
level of precision or until the value of func is close to O at a specified level of precision.
When using the Newton-Raphson method, the choice of the initial value is an
important consideration, because a poor choice can lead to an erroneous solution.
Press et al. (1989) describe modifications to the Newton-Raphson method that are
more robust than the Newton-Raphson method to the choice of poor initial values.

Using the Newton-Raphson Method in IRT Equating

To apply this method to IRT true score equating, let 7y be the true score whose
equivalent is to be found. From Eq. (6.16) it follows that 6; is to be found such that
the expression

func(6) = mx — > pij(6i; 4, by, ¢)) 6.21)
JX

equals 0. The Newton-Raphson method can be employed to find this #; using the
first derivative of func(6;) with respect to 6;, which is

func' (6)) = =" p(0;; aj, by, ¢)) (6.22)
JX

where p};(0;; a;. bj. ¢;) is defined as the first derivative of p;; (6;; a;, bj, ¢j) with respect
to 0;, Lord (1980, p. 61) provided this first derivative:

L. 7a;(1 — pij)(pij — ¢j)

, 6.23
(I —c¢j) ( )

Py (0i; aj, bj, ¢j) =

where p;j = p;j(6;; aj, bj, ¢j). The resulting expressions for func(6;) and func’(;) are
substituted into Eq. (6.20).

A Hypothetical Example

A hypothetical example using this procedure is presented in Table 6.3. In this exam-
ple, a five-item Form X is to be equated to a five-item Form Y. Parameters (not
estimates) are given, and assume that the parameters for the two forms are on the
same scale. Table 6.3 shows how to find a Form Y equivalent of a Form X score of 2.
The item parameters for Form X are presented in the top portion of the table. To find
the Form Y equivalent, the 6; must be found that corresponds to a Form X score of 2.
That is, the 6; must be found such that, when it is substituted into the right-hand side
of Eq.(6.16), it results in a 2 on the left-hand side. The second portion of Table 6.3
illustrates how to find 6; using the Newton-Raphson method. First, a starting value
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Table 6.3 Hypothetical example for IRT true score equating

Form X item parameters

Item
Parameter  Item 1 Item2 Item3 Item4 Item5
a; .60 1.20  1.00 1.40 1.00
bj —1.70 —1.00 .80 1.30 1.40
¢ .20 .20 25 25 .20
Solve for 7x = 2 Using starting value §; = —2
Iteration Item 1 Item2 Item3 Item4 Item5 sum 0?
1 Pij .5393 2921 2564 2503 2025 1.5405 —.7941
pl’.j .1993 .1662 .0107 .0007 .0042 3811
2 Dij 1727 .6828 .2968 2551 2187 2.2261 —1.1295
p;j .1660 .3905 .0746 .0121 .0311 .6743
3 Dij 7132 .5475 2772 2523 2107 2.0009 —1.1308
p;.j 1877 4010 .0446 .0055 .0180 .6566
4 Pij 7130 5469 2771 2523 2107 2.0000 —1.1308
p;:]- 1877 .4008 .0445 .0055 .0179 .6564
Therefore, Ty = 2 corresponds to 6; = —1.1308.
Form Y item parameters
Item
Parameter  Item 1 Item 2 Item3 Item4 TItemS5
aj .70 .80 1.30 .90 1.10
b; —1.50 —1.20 .00 1.40 1.50
cj .20 25 .20 25 .20
Form Y true score equivalent of ; = —1.1308
Item 1 Item 2 Item3 Item4 Item5 7y
Dij .6865 .6426 .2607 2653 2058 2.0609

Therefore, 7y = 2 corresponds to 7y = 2.0609.

of §7 = —2 is chosen (this value is an initial guess). Using §; = —2, the item
characteristic curve value from Eq.(6.1) is calculated for each item. For example,
the probability of an examinee with an ability of —2 correctly answering item 1 is
.5393. The first derivative is also calculated. For example, for the first item, the first
derivative of this item evaluated at an ability of —2 can be calculated using Eq. (6.23)
as

, 17(60)(1 — .5393)(.5393 — .20)
Pij = (1— 20)

=.1993,

which is also presented in the table.

Next, func(0;") from Eq. (6.21) is calculated using 2 for 7y and the tabled value of
1.5405 as the sum of the item characteristic curves at an ability of —2. So, func(0;") =
2 — 1.5405. Then, the negative of the sum of the first derivatives is func’ 07) =
—.3811 from Eq. (6.22). Finally, using Eq. (6.20), the updated ability is
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0?_ —o - func/(@ii) _ 2 — 1.5405 — 7043,

Sfunc' (07) —.3811

The value of —.7943 differs in the fourth decimal place from the tabled value because

of rounding error; the tabled value is more accurate. The value of —.7941 then is used

as ;" in the next iteration. The iterations continue until the values of ¢ stabilize. Note

that after the fourth iteration, 9;“ equals 9? after the third iteration, to four decimal

places. Also, the sum of the p;; is 2.0000 when 6; = —1.1308. Thus, a true score of
2 on Form X corresponds to a §; of —1.1308.

The Form Y equivalent of a Form X score of 2 is found next. The Form Y item
parameter estimates are needed and are shown in Table6.3. (Note that the item
parameters for Form X and Form Y must be on the same #-scale.) To find the Form
Y equivalent of a Form X score of 2, calculate the value of the item characteristic
curve for each Form Y item at §; = —1.1308 and sum these values over items. This
process is illustrated at the bottom of the table. As shown, a score of 2 on Form X
corresponds to a score of 2.0609 on Form Y.

Using the procedures outlined, the reader can verify that a true score of 3 on Form
X corresponds to a ; of .3655 and a Form Y true score of 3.2586. Also, a true score
of 4 on Form X corresponds to a §; of 1.3701 and a Form Y true score of 4.0836.
Note that a Form X true score of 1 is below the sum of the c-parameters for that form,
so the Form Y true score equivalent of a Form X true score of 1 cannot be calculated
by the methods described so far.

Sometimes Form Y true score equivalents of all Form X integer scores that are
between the sum of the c-parameters and all correct need to be found. The recom-
mended procedure for finding these is to begin with the smallest Form X score that
is greater than the sum of the c-parameters. Use a small value of ¢ as a starting value
(e.g., 9,._ = —3), and then solve for the Form Y true score equivalent. The 6 that
results from this process can be used as the starting value for solving for the next
highest true score. This process continues for all integer true scores on Form X that
are below a score of all correct. Sometimes even this procedure can have convergence
problems. In this case, the starting values might need to be modified or the modified
Newton-Raphson method described by Press et al. (1989) could be tried.

6.5.4 Using True Score Equating with Observed Scores

The true score relationship is appropriate for equating true scores on Form X to true
scores on Form Y. However, true scores of examinees are never known, because
they are parameters. In practice, the true score equating relationship often is used
to convert number-correct observed scores on Form X to number-correct observed
scores on Form Y. However, no theoretical reason exists for treating scores in this
way. Rather, doing so has been justified in item response theory by showing that the
resulting true score conversions are similar to observed score conversions (Lord and
Wingersky 1984).
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Recall from Eq. (6.18) that the lowest possible true score for the three-parameter
IRT model is the sum of the ¢;, not 0. Therefore, when using true score equating with
observed scores, a procedure is needed for converting Form X scores outside the
range of possible true scores on Form X. Lord (1980) and Kolen (1981) presented
ad hoc procedures to handle this problem. The Kolen (1981) ad hoc procedure is as
follows:

1. Set a score of 0 on Form X equal to a score of 0 on Form Y.

2. Set a score of the sum of the cj-parameters on Form X equal to the sum of the
cj-parameters on Form Y.

3. Use linear interpolation to find equivalents between these points.

4. Set a score of Kx on Form X equal to a score of Ky on Form Y.

To formalize this procedure, define 75 as a score outside the range of possible
true scores, but within the range of possible observed scores. Equivalents then are
defined by the following equation:

Zj:ch *

T
X
Zj:XCj

= Ky, TX* = Ky.

irty(t3) = 0=7¢ <2x¢

(6.24)

The use of Kolen’s (1981) ad hoc procedure can be illustrated using the hypothetical
example presented in Table 6.3. For the item parameters presented, the sum of the
cj-parameters is 1.1 for Form X and 1.1 for Form Y. To apply the procedure to find
Form Y equivalents of Form X scores at or below 1.1, take

. j:Y ©J .
lrty(T,*() = _T,*( = —1 17’,*( = T;.
Zj:X < :

Thus, for example, a score of 1 on Form X is considered to be equivalent to a score
of 1 on Form Y. Note that a score of 1 on Form X would have been considered to
be equivalent to a score other than 1 on Form Y if the sum of the c;-parameters was
different for the two forms.

In practice, for IRT true score equating, estimates of the item parameters are
used to produce an estimated true score relationship. Then the estimated true score
conversion is applied to the observed scores.

6.6 Equating Observed Scores

Another procedure, IRT observed score equating, uses the IRT model to produce
an estimated distribution of observed number-correct scores on each form, which
then are equated using equipercentile methods. For Form X, the compound binomial
distribution (see Lord and Wingersky 1984) is used to generate the distribution of
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observed number-correct scores for examinees of a given ability. These observed
score distributions then are cumulated over a population of examinees to produce
a number-correct observed score distribution for Form X. Similar procedures are
followed to produce a number-correct observed score distribution for Form Y. The
resulting number-correct score distributions then are equated using conventional
equipercentile methods. IRT observed score equating requires explicit specification
of the distribution of ability in the population of examinees.

Consider a group of examinees all of ability §; who have been administered a three-
item test with p;; defined by Eq. (6.1). Assuming local independence, the probability
that examinees of ability equal to ¢; will incorrectly answer all three items and earn
a raw score of 0 is f(x = 016;) = (1 — pj1)(1 — pix)(1 — p;3). To earn a score
of 1, an examinee could answer item 1 correctly and items 2 and 3 incorrectly, or
the examinee could answer item 2 correctly and items 1 and 3 incorrectly, or the
examinee could answer item 3 correctly and items 1 and 2 incorrectly. That is, there
are three ways to earn a score of 1 on a three-item test. The probability of earning a
1 is as follows:

f=10) =pi(1 —pi)(1 — pi3) + (1 = piDpia(l — pi3)
+0 = pin(A = p)pis.

The probabilities of correctly answering two and three items can be constructed
similarly as follows:

f&x=210) = pipin(l —pi3) +pi(1 — p)piz + (1 — pi)pipis,

and
f&x =319) = pipiapiz-

Based on the hypothetical example in Table 6.1, for examinees with ability equal to
that of Person 1 (6;; = —2.0),

Fx=0l0)) = (1 —.26)(1 — .27)(1 — .18) = .4430,
flx=110;) = (26)(1 — .27)(1 — .18) + (1 — .26)(.27)(1 — .18)
+(1 — 26)(1 — 27)(.18)
— 4167,
Fx=2]01) = (:26)(:27)(1 — .18) + (.26)(1 — .27)(.18)
+(1 — 26)(.27)(.18)
= 1277,
(.26)(.27)(.18) = .0126.

fx=3]6)

Note that these values sum to 1, which is consistent with their being probabilities.
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A recursion formula (Lord and Wingersky 1984) can be used to generalize this
procedure to more than three items. To implement the recursion formula, define
fr(x|6;) as the distribution of number-correct scores over the first r items for exam-
inees of ability 6;. Define fi(x = 0]6;) = (1 — p;1) as the probability of earning a
score of 0 on the first item and f; (x = 1|6;) = p;1 as the probability of earning a
score of 1 on the first item. For » > 1, the recursion formula is as follows:

frx10) = fr—1(x10) (1 — pir), x=0
=fr1(x|0) (1 = pir) + frm1(x = 10)pir, O0<x<r,  (6.25)
=fr—l(x - l|9i)pirs xX=r

An example of the use of this recursion formula is presented in Table 6.4. An
abbreviated notation is used in this table to simplify the presentation. Specifically,
0; is dropped and p, means p;,-. To find the distribution for a particular value of r,
Eq. (6.25) and Table 6.4 indicate that the distribution for » — 1 and the probability
of correctly answering item r are needed. Although expressions are only presented
up to r = 4, the table readily generalizes to higher values of r using the recursion
formula. The probabilities listed for the example under r = 3 (e.g., .4430, .4167,
1277, and .0126) are identical to results presented earlier.

The procedures presented thus far give the observed score distribution for exami-
nees of a given ability. To find the observed score distribution for examinees of various
abilities, the observed score distribution for examinees at each ability is found and
then these are accumulated. When the ability distribution is continuous, then

fx) = /0 F(x|0)y(0)de, (6.26)

where 1(0) is the distribution of 6.

To implement this procedure in practice, some method is needed to perform the
integration in Eq. (6.26). Some form of numerical integration is one possibility. When
BILOG-MG is used, the distribution of ability typically is characterized by a discrete
distribution on a finite number of equally spaced points as a method of approximating
the integral. Using this characterization,

f@) =D [0 (©). 6.27)

When the distribution of ability is characterized by a finite number of abilities for N
examinees, then

f) = zlv Zf (x16)). (6.28)

This characterization can be used, for example, with a set of abilities that are estimated
using BILOG-MG.
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Table 6.4 IRT observed score distribution recursion formula example

Example
(Using Table 6.1 test for persons with
r xfr(x)forr <4 0; = -2)
L 0A0)=0d-p1) =(1-.26) =74
L A) =p =.26
2 0 £0)=£A0)1—p2) = 74(1 — .27) — 5402
1 A1) =AMA =p2) + fiO)p2=.26(1 —.27) +.74(.27) = .3896
202 = fihpa= 26(27) = .0702
3 0 f3(0) = £2(0)(1 — p3) = .5402(1 — .18) = 4430

1 A1) =H0)A —p3) + L0)p3=.3896(1 — .18)+.5402(.18)= .4167
2 32) = (2)(1 — p3) + fr(I)p3= .0702(1 — .18)+.3896(.18)= .1277
3 303) = HQ)p3= .0702(.18)=.0126

4 0 f200) =01 = p4)
1 fa() =f((A —pa) + f3(0)ps
2 f42)=H2)A -ps) + fs(Dps
3/63)=HG)1 —pa) + 2)ps
4 fa4) = S33)p4

To conduct observed score equating, observed score distributions are found for
Form X and for Form Y. For example, assume that the characterization of the ability
distribution associated with Eq. (6.27) is used. The following distributions could be
specified using this equation:

L. fie)=>,f(x|6:)1(0;) is the Form X distribution for Population 1.
2. h(x)=>",f(x6;)2(6;) is the Form X distribution for Population 2.
3. 1) =2 91011 (6;) is the Form Y distribution for Population 1.
4. ()=, 9(v10:)12(6;) is the Form Y distribution for Population 2.

These quantities then are weighted using synthetic weights described in Chaps. 4 and
5 to obtain the distributions of X and Y in the synthetic population. Conventional
equipercentile methods then are used to find score equivalents.

When BILOG-MG is used, the number-correct observed score distributions can
be estimated by using the estimated posterior distribution of ability in place of 1(6;)
in Eq. (6.27) along with estimates of f(x|6;) based on substituting estimates for
parameters in Eq. (6.25) as suggested by Zeng and Kolen (1995). An alternative is to
use the set of estimated abilities in place of the abilities in Eq. (6.28). However, the
use of estimates of # might create systematic distortions in the estimated distributions
and lead to inaccurate equating (Han et al. 1997; Lord 1982).
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6.7 IRT True Score Versus IRT Observed Score Equating

Compared to IRT observed score equating, IRT true score equating has the advantages
of (a) easier computation and (b) a conversion that does not depend on the distribution
of ability. However, IRT true score equating has the disadvantage that it equates true
scores, which are not available in practice. No justification exists for applying the
true score relationship to observed scores. Also, with the three-parameter logistic
model, equivalents are undefined at very low scores and at the top number-correct
score.

IRT observed score equating has the advantage that it defines the equating rela-
tionship for observed scores. Also, assuming reasonable model fit, the distribution
of Form X scores converted to the Form Y scale is approximately equal to the dis-
tribution of Form Y scores for the synthetic population of examinees. There is no
theoretical reason to expect this property to hold for IRT true score equating. Also,
using posterior distributions of  from BILOG-MG, the computational burden of IRT
observed score equating is reasonable.

IRT observed score and IRT true score equating methods were found by Kolen
(1981) and Han et al. (1997) to produce somewhat different results using the ran-
dom groups design with achievement tests. However, Lord and Wingersky (1984)
concluded that the two methods produce very similar results in a study using the
common-item nonequivalent groups design in the SAT.

Larger differences between IRT true and observed score equating might be
expected to occur near a number-correct score of all correct and near number-
correct scores below the sum of the c-parameter estimates, because these are the
regions where IRT true score equating does not produce equivalents. In practice,
both methods should be applied with special attention paid to equating results near
these regions. Procedures for choosing among the results from equating methods are
considered in Chap. 8.

6.8 Illustrative Example

The real data example from Chaps.4 and 5 is used to illustrate some aspects of IRT
equating, using the common-item nonequivalent groups design. Two forms of a 36-
item multiple-choice test, Form X and Form Y, are used in this example. Every third
item on the test forms is a common item, and the common items are in the same
position on each form. Thus, items 3, 6,9, ..., 36 on each form represent the 12
common items. Form X was administered to 1,655 examinees and Form Y to 1,638
examinees. As was indicated in Chaps. 4 and 5, the examinees who were administered
Form X had a number-correct score mean of 5.11 and a standard deviation of 2.38 on
the common items. The examinees who were administered Form Y had a number-
correct score mean of 5.87 and a standard deviation of 2.45 on the common items.
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Thus, on the common items, the group taking Form Y was higher achieving than the
group taking Form X.

6.8.1 Item Parameter Estimation and Scaling

Item parameters were estimated using an earlier version of BILOG-MG (Bilog 3,
Mislevy and Bock 1990) separately for each form. (Default parameter settings were
used, except for the FLOAT option.) The parameter estimates are given in Table6.5.
The proportion of examinees correctly answering each item (p-value) is also pre-
sented.

The Form X item parameter estimates need to be rescaled. The computer software
ST that is described in Appendix B was used to conduct the scaling. The common
items are tabulated separately in the upper portion of Table 6.6. Because the items
appeared in identical positions in the two forms, item 3 on Form X is the same as
item 3 on Form Y, and so forth.

The parameter estimates for the common items are plotted in Fig. 6.2 to look for
outliers—items with estimates that do not appear to lie on a straight line. In this
figure, one item appears to be an outlier for the a-parameter estimate. This item,
which is item 27, has a-parameter estimates of 1.8826 on Form X and 1.0417 on
Form Y. Because item 27 appears to function differently in the two forms, this item
might need to be eliminated from the common-item set. (The c-parameter estimates
for item 21 might also be judged to be an outlier, so that item 21 could be considered
for elimination as well. This item was not considered for elimination in the present
example because it does not seem to be as clearly an outlier as item 27.) Removal of
items that appear to be outliers is clearly a judgmental process.

The mean and standard deviation of the item parameter estimates for the common
items are shown in Table 6.6. These means and standard deviations were used to
estimate the A- and B-constants for transforming the -scale of Form X to the -
scale of Form Y using the mean/mean and mean/sigma methods. For example, using
Egs. (6.8a) and (6.9a) for the mean/sigma method,

1.2458
A=
1.0658

=1.1689 and B = .4900 — (1.1689).8602 = —.5155.

The B-value differs from the tabled value in the fourth decimal place because of
rounding error; the tabled values are more accurate. The A- and B-constants for the
Stocking and Lord and Haebara methods that are shown also were calculated using
the ST computer software.

Because item 27 appeared to be an outlier, the A- and B-constants were estimated
again, eliminating item 27. The means and standard deviations after eliminating this
item are shown in Table 6.6 as are the new A- and B-constants. Eliminating item 27
results in the estimates of the A- and B-constants for mean/sigma and mean/mean
methods being closer to one another than when item 27 is included. The A- and B-
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Table 6.5 Item parameter estimates for common-item equating

Form X Form Y

Item  p-value a b ¢ p-value a b ¢

1 .8440 .5496 —1.7960 1751 .8527 .8704 —1.4507 .1576
2 .6669 7891 —.4796 1165 .6161 4628 —.4070 .1094
3 7025 4551 —.7101 2087 7543 4416 —1.3349 1559
4 .5405 1.4443 4833 2826 7145 .5448 —.9017 1381
5 .6723 9740 —.1680 2625 .8295 .6200 —1.4865 2114
6 7412 .5839 —.8567 2038 7946 5730 —1.3210 1913
7 5895 .8604 4546 3224 .6351 1.1752 .0691 .2947
8 .6475 1.1445 —.1301 2209 .6094 4450 2324 2723
9 5816 7544 0212 .1600 .6852 5987 —.7098 A177
10 .5296 9170 1.0139 .3648 .6644 .8479 —.4253 1445
11 4825 9592 7218 2399 7439 1.0320 —.8184 .0936
12 5574 .6633 0506 1240 6076 .6041 —.3539 .0818
13 5411 1.2324 4167 2535 .5685 .8297 —.0191 1283
14 4051 1.0492 7882 .1569 .6094 7252 —-3155 .0854
15 4770 1.0690 9610 .2986 5532 9902 5320 3024
16 5139 9193 .6099 2521 .5092 7749 .5394 2179
17 5175 .8935 5128 2273 4786 .5942 .8987 2299
18 4825 9672 1950 0535 5587 .8081 —.1156 .0648
19 .4909 .6562 .3953 1201 .6265 .9640 —.1948 .1633
20 4081 1.0556 9481 2036 4908 7836 .3506 1299
21 3404 .3479 2.2768 .1489 3655 4140 2.5538 .2410
22 4299 .8432 1.0601 2332 .5905 7618 —.1581 1137
23 .3839 1.1142 .5826 .0644 .5092 1.1959 .5056 2397
24 4063 1.4579 1.0241 2453 4774 1.3554 5811 2243
25 .3706 5137 1.3790 1427 4976 1.1869 .6229 2577
26 3077 9194 1.0782 .0879 .5055 1.0296 .3898 .1856
27 2956 1.8811 1.4062 1992 3771 1.0417 9392 1651
28 2612 1.5045 1.5093 .1642 3851 1.2055 1.1350 2323
29 2727 9664 1.5443 1431 .3894 .9697 .6976 .1070
30 1820 7020 2.2401 .0853 2231 .6336 1.8960 0794
31 .3059 1.2651 1.8759 2443 .3166 1.0822 1.3864 1855
32 2146 .8567 1.7140 .0865 .3356 1.0195 9197 .1027
33 1826 1.4080 1.5556 .0789 2634 1.1347 1.0790 10630
34 1814 .5808 3.4728 .1399 .1760 1.1948 1.8411 .0999
35 1288 9257 3.1202 .1090 1424 1.1961 2.0297 .0832
36 1530 1.2993 2.1589 1075 1950 9255 2.1337 1259

Note Common-item numbers and parameter estimates are in boldface type

constants for the Stocking and Lord and Haebara methods are less affected by elim-
inating item 27 than are the constants for the mean/sigma and mean/mean methods.
In the present example, the scalings based on removing item 27 only are considered
for ease of exposition. In practice, however, equating based on scalings with item 27
removed and included could be conducted and the results of the equating compared.
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Table 6.6 Common-item parameter estimates and scaling constants

Form X Form'Y
Item  p-value a b ¢ p-value a b ¢
3 7025 4551 —.7101 .2087 7543 4416 —1.3349 1559
6 7412 .5839 —.8567 2038 71946 5730 —-1.3210 .1913
9 5816 71544 0212 .1600 .6852 .5987 —.7098 1177
12 5574 .6633 .0506 1240 .6076 .6041 —.3539 .0818
15 4770 1.0690 9610 2986 5532 .9902 .5320 3024
18 4825 9672 .1950 .0535 5587 .8081 —.1156 .0648
21 3404 3479 2.2768 .1489 3655 4140 2.5538 2410
24 4063 1.4579 1.0241 2453 4774 1.3554 5811 .2243
27 .2956 1.8826 1.4062 1992 3771 1.0417 9392 1651
30 1820 7020 2.2401 .0853 2231 .6336 1.8960 .0794
33 1826 1.4080 1.5556 .0789 2634 1.1347  1.0790 .0630
36 1530 1.2993 2.1589 1075 1950 9255 2.1337 1259
L 4252 9657 .8602 1595 4879 7934 4900 1510
o 1917 4464 1.0658 .0707 .1960 2837 1.2458 .0736
Mean/ Mean/ Stocking
Sigma Mean —Lord Haebara
A= 1.1689 1.2173 1.0946 1.0678
B= —.5156 —.5572 —.4978 —.4713
Eliminating Item #27
L 4370 8825 .8106 1559 4980 7708 4491 .1498
o .1961 .3665 1.0999 .0728 2019 2858 1.2935 .0768
Mean/ Mean/ Stocking
Sigma Mean —Lord Haebara
A= 1.1761 1.1449 1.0861 1.0638
B = —.5042 —.4790 —.4733 —.4540

The rescaled Form X item parameter estimates for the common items are shown
in Table 6.7. So that all of the computations in this example could be done by hand,
the mean/sigma method was used, excluding item 27. Because the Form Y item
parameter estimates are not being transformed, they are identical to those in Table 6.6.
To verify the tabled Form X b-parameter estimate for item 3, take 1.1761(—.7101)
—.5042 = —1.3393, which differs in the fourth decimal place because of rounding.
To find the tabled Form X a-parameter estimate for this item, take .4551/1.1761 =
.3870.

The means and standard deviations of the rescaled parameter estimates for the
common items are shown at the bottom of Table 6.7. Because the mean/sigma method
was used, the mean and standard deviation of the rescaled b-parameter estimates for
Form X are equal to those for Form Y. Note, however, that the mean of the a-parameter
estimates for Form X differs from the mean for Form Y. These two means would
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Table 6.7 Common-item parameter estimates rescaled using mean/sigma method’s A and B with
all common items (Excluding Item 27)

Form X Form Y

Item  p-value a b ¢ p-value a b ¢

3 7025 3870 —1.3394 2087 7543 4416 —1.3349 1559

6 7412 4965 —1.5118 2038 7946 5730 —1.3210 1913

9 5816 .6414 —.4793 .1600 .6852 .5987 —.7098 1177
12 5574 5640 —.4447 1240 6076 .6041 —.3539 .0818
15 4770 .9089 .6260 .2986 5532 9902 .5320 3024
18 4825 .8224 —.2749 .0535 5587 .8081 —.1156 .0648
21 3404 2958  2.1735 .1489 3655 4140 2.5538 2410
24 4063 1.2396 7002 2453 4774 1.3554 5811 2243
30 1820 .5969 2.1304 .0853 2231 .6336 1.8960 0794
33 .1826 1.1972  1.3253 0789 2634 1.1347  1.0790 .0630
36 1530 1.1048 2.0349 1075 .1950 9255 2.1337 1259
il 4370 7504 4491 .1559 4980 7708 4491 .1498
o .1961 3116 1.2935 0728 2018 2858  1.2935 .0768

Fig. 6.3 Estimated test char-
acteristic curves for common 104
items
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have been the same if the mean/mean method was used. How would the means
and standard deviations of the parameter estimates compare if a characteristic curve
method was used? All of these statistics would likely differ from Form X to Form Y.
These results illustrate that the different methods of scaling using parameter estimates
can produce different results, which in turn would affect the equating.

Test characteristic curves for the common items after the common-item parameter
estimates were placed on the same 6-scale using the mean/sigma method are shown
in Fig. 6.3. The Form X curve is the test characteristic curve for the 11 common items
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(excluding item 27) estimated on the examinees who took Form X. The Form Y curve
is the test characteristic curve for these same items estimated on the examinees who
took Form Y. In general, the test characteristic curves appear to be similar. However,
if the Stocking and Lord method had been used, then these test characteristic curves
likely would have been even closer, because the Stocking and Lord procedure finds
the A- and B-constants that minimize the difference between these characteristic
curves. However, if the Stocking and Lord method had been used, then the means
and standard deviations of both the a-parameter and the b-parameter estimates for
the common items would have differed from Form X to Form Y.

Even after transformation to a common scale, however, the common items have
different parameter estimates on Form X than they do on Form Y. These differences
must be due to error in estimating the item parameters or failure of the IRT model to
hold, because the items are identical on the two forms. McKinley (1988) described
various methods for dealing with different parameter estimates.

The rescaled Form X item parameter estimates for all of the items are shown in
Table 6.8. The same transformation that is used for the common items on Form X is
also used for the other items.

6.8.2 IRT True Score Equating

The rescaled item parameter estimates then are used to estimate the true score equat-
ing function; this processis illustrated in Table 6.9 and Fig. 6.4. Figure 6.4 presents the
test characteristic curves for Form X and Form Y, and Table 6.9 presents the conver-
sion table. The equating was conducted using the PIE computer software described in
Appendix B. Suppose, for example, interest focuses on finding the Form Y equivalent
of a Form X score of 25. First, find the 6 that is associated with a true score of 25. In
Fig. 6.4, begin at a vertical axis value of 25 and go over to the Form X curve. Going
down to the horizontal axis, the score of 25 is associated with a 6 of approximately
1.1. With greater precision, from Table 6.9, this 6 is 1.1022. This tabled value was
found using the Newton-Raphson procedure that was described earlier. Next, find
the Form Y true score that is associated with a 6 of 1.1022. Graphically, this Form Y
score is approximately 26.4. With greater precision, from Table 6.9, this true score
is 26.3874. These procedures are repeated with each of the Form X integer scores,
and the resulting equivalents are plotted in Fig.6.5.

The arrows in this figure illustrate that a Form X score of 25 corresponds to a
Form Y score of 26.4 (26.3874 with greater precision). Based on this graph, Form
Y is easier than Form X, except at the lower scores, because the curve for true score
equating is higher than the line for identity equating at all but the low scores.

In Table 6.9 6 equivalents are not given for very low Form X scores or for a Form
X score of 36. The sum of the c-parameter estimates on Form X equals 6.5271, so
that true score equivalents for Form X integer scores at or below a score of 6 are
undefined. Kolen’s (1981) ad hoc method was used to find the Form Y equivalents
for these scores.
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Table 6.8 Form X item parameter estimates rescaled with the mean/sigma method’s A and B using
all common items except item 27

Form X Form Y
Item p-value a b ¢ p-value a b ¢
1 .8440 4673 —2.6165 1751 .8527 .8704 —1.4507  .1576
2 .6669 .6709 —1.0683 1165 .6161 4628 —.4070 1094
3 7025 3870 13394 2087  .7543 4416 —1.3349  .1559
4 .5405 1.2280  .0641 2826 7145 .5448 —.9017 .1381
5 .6723 .8282 —.7018 2625 .8295 .6200 —1.4865 2114
6 7412 4965  —1.5118  .2038  .7946 5730 —-1.3210 .1913
7 .5895 7316 .0304 3224 6351 1.1752  .0691 .2947
8 6475 9731 —.6572 .2209 .6094 4450 2324 2723
9 .5816 .6414  —.4793 1600  .6852 .5987 —.7098 1177
10 .5296 7797 6882 3648  .6644 .8479 —.4253 .1445
11 4825 8156 .3446 2399 7439 1.0320 —.8184 .0936
12 5574 5640  —.4447 1240  .6076 .6041 —.3539 .0818
13 5411 1.0479  —.0141 2535 5685 .8297 —.0191 .1283
14 4051 .8921 4228 .1569 .6094 7252 —.3155 .0854
15 4770 9089  .6260 2986  .5532 9902 5320 .3024
16 5139 7817 2130 2521 .5092 7749 .5394 2179
17 5175 7598 .0989 2273 4786 .5942 .8987 2299
18 .4825 8224 2749 0535 5587 .8081 —.1156 .0648
19 4909 5580 —.0511 .1201 .6265 .9640 —.1948 .1633
20 4081 .8976 .6109 2036 4908 7836 .3506 1299
21 .3404 2958 2.1735 .1489  .3655 .4140 2.5538 .2410
22 4299 7169 7425 2332 5905 7618 —.1591 1137
23 .3839 9473 .1809 .0644 5092 1.1959 .5056 2397
24 .4063 1.2396  .7002 2453 4774 1.3554 5811 .2243
25 .3706 4368  1.1176 1427 4976 1.1869  .6229 2577
26 3077 7917 7639 .0879 5055 1.0296 .3898 1856
27 .2956 1.5995  1.1495 1992 3771 1.0417 9392 .1651
28 2612 1.2792  1.2708 1642 3851 1.2055  1.1350 2323
29 2727 .8217 1.3120 1431 .3894 9697 .6976 .1070
30 .1820 5969  2.1304 .0853 2231 .6336 1.8960 .0794
31 .3059 1.0757  1.7020 2443 3166 1.0822  1.3864 .1855
32 2146 7285 1.5115 .0865 3356 1.0195 9197 .1027
33 .1826 1.1972  1.3253 0789  .2634 1.1347  1.0790 .0630
34 1814 4939 35801 1399 1760 1.1948  1.8411 .0999
35 1288 7871 3.1654 .1090 1424 1.1961 2.0297 .0832
36 1530 1.1048  2.0349 1075 1950 9255 2.1337 1259

Note Common-item numbers and parameter estimates are in boldface type

6.8.3 IRT Observed Score Equating

Estimates of the distribution of # are needed to conduct observed score equating in
this example. The posterior distributions of # that were estimated are presented in
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Table 6.9 Form Y equivalents of form X scores using IRT estimated
true score equating

Form X FormY
Score 0-Equivalent Equivalent

0 .0000

1 .8890
2 1.7760
3 2.6641
4 3.5521
5 4.4401
6 5.3282
7 —4.3361 6.1340
8 —2.7701 7.1859
9 —2.0633 8.3950
10 —1.6072 9.6217
11 —1.2682 10.8256
12 —.9951 12.0002
13 —.7633 13.1495
14 —.5593 14.2803
15 —.3747 15.3995
16 —.2043 16.5135
17 —.0440 17.6271
18 .1088 18.7429
19 2562 19.8612
20 .3998 20.9793
21 .5409 22.0926
22 .6805 23.1950
23 .8197 24.2806
24 9598 25.3452
25 1.1022 26.3874
26 1.2490 27.4088
27 1.4031 28.4138
28 1.5681 29.4083
29 1.7491 30.3977
30 1.9533 31.3844
31 2.1916 32.3637
32 2.4824 333179
33 2.8604 34.2096
34 3.3992 34.9799
35 4.3214 35.5756
36 36.0000

Table 6.10. As was noted earlier, BILOG-MG treats the posterior distribution as a
discrete distribution on a finite number (10 in this example) of points. For Form X,
the posterior distribution of 6 needs to be converted to the ability scale of the group
that took Form Y. Because the distribution is discrete, the scale conversion can be
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Fig. 6.4 Estimated test
characteristic curves for Form
X and Form Y
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accomplished by using Eq. (6.2) linearly to transform the #-values using the A- and
B-constants that were estimated earlier using the mean/sigma methods. For example,
to transform the first tabled #-value using the constants from the mean/sigma method,
take 1.1761(—4.0000) — .5042 = —5.2086, which is the tabled value. The discrete
densities (/) do not need to be transformed.

To continue the equating process, the number-correct observed score distributions
need to be estimated for the synthetic group. To simplify the presentation, the syn-
thetic group is chosen to be the group taking Form X, so that w; = 1. In this case,
estimates of f1 (x) and g (y) are needed.

The distribution of Form X number-correct scores for Group 1 can be estimated
directly from the data. However, Eq. (6.27) can be used to obtain a smoothed estimate
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Table 6.10 Distributions of # estimated using BILOG
Group Taking Form X

Group Taking Converted to Form Y Group Taking
Form X Scale Form Y

0 Y160 2 Y1(6r) b, $2(6))
—4.0000 .000101 —5.2086 .000101 —4.0000 .000117
—3.1110 .002760 —4.1630 .002760 —3.1110 .003242
—2.2220 .030210 —3.1175 .030210 —2.2220 .034490
—1.3330 .142000 —2.0720 .142000 —1.3330 .147100
—.4444 .314900 —1.0269 .314900 —.4444 .314800
4444 315800 0184 .315800 4444 .311000
1.3330 .154200 1.0635 154200 1.3330 .152600
2.2220 .035960 2.1090 .035960 2.2220 .034060
3.1110 .003925 3.1546 .003925 3.1110 .002510
4.0000 .000186 4.2001 .000186 4.0000 .000112

of the distribution of f(x) by using (a) the item parameter estimates for Form X
converted to the Form Y scale shown in Table 6.8 and (b) the distribution of  for
the group taking Form X converted to the Form Y scale shown in Table6.10. (In
Table 6.10, the distribution of 6 is approximated using 10 points to make it easier to
display the distribution in the present example. However, the distribution of ¢ can be
more accurately represented by 20 or even 40 points.)

The distribution of Form Y number-correct scores in Group 1 is not observed
directly. To estimate this distribution use (a) the item parameter estimates for Form Y
shown in Table 6.8 and (b) the distribution of § for the group taking Form X converted
to the Form Y scale shown in Table 6.10.

The distributions estimated using the IRT model are shown in Table6.11 along
with the equipercentile equivalents that are obtained using these distributions. The
equivalents were calculated using the PIE computer software described in Appen-
dix B. (These smoothed distributions are still somewhat irregular, which might be
due to the use of only 10 quadrature points. For example, modes are present at Form
X scores of 11 and 25 and at Form Y scores of 11, 17, and 26.) Moments for these
distributions are shown in Table 6.12, where the moments labeled “Actual” are those
that came from the data without any IRT estimation. These moments were presented
in Chaps.4 and 5. The moments in the next section of Table 6.12 are for the distribu-
tions estimated using the IRT model. For example, the mean of 15.8177 for Group 1
on Form X is the mean of the distribution for Group 1 on Form X shown in the sec-
ond column of Table6.11. The Group 1 Form X moments from the two sources are
quite similar. The actual mean, without any IRT estimation, was 15.8205, whereas
the mean for the estimate of the distribution using the IRT model was 15.8177. Sim-
ilarly, the moments for Group 2 Form Y from the two sources are similar. Similar
results can be achieved for both IRT true and IRT observed score equating in this
example using the C computer code described by Brennan et al. (2009, pp. 257-284).
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Table 6.11 IRT observed score results using w; = 1

Score i) 910 ey (x)
0 .0000 .0000 —.3429
1 .0001 .0002 6178
2 .0005 0011 1.5800
3 .0018 .0034 2.5457
4 .0050 .0081 3.5182
5 .0110 0155 4.5021
6 .0201 .0248 5.5042
7 .0315 .0349 6.5309
8 .0437 0446 7.5848
9 .0548 0527 8.6604
10 .0626 .0595 9.7464
11 .0660 0606 10.8345
12 0651 .0589 11.9282
13 .0615 .0545 13.0431
14 .0579 .0501 14.1945
15 .0560 .0480 15.3672
16 .0555 .0488 16.5109
17 0541 .0505 17.5953
18 .0498 .0502 18.6416
19 .0424 .0459 19.6766
20 .0338 .0379 20.7364
21 0271 .0290 21.8756
22 .0240 0221 23.1020
23 .0245 0195 24.2897
24 .0261 .0209 25.3624
25 .0262 .0242 26.3651
26 .0233 0264 27.3440
27 .0182 0251 28.3226
28 .0132 .0205 29.3203
29 .0102 0147 30.3521
30 .0092 0106 31.3787
31 .0087 .0093 32.3473
32 .0072 .0092 33.2818
33 .0049 .0083 34.2001
34 .0027 .0060 35.0759
35 .0012 .0035 35.8527
36 .0003 0014 36.3904

Because w; = 1, the moments for Group 1 are the only ones needed. In Group
1, for example, Form X is 16.1753 — 15.8177 = .3576 points more difficult than
Form Y.

The bottom portion of Table6.12 shows the moments of converted scores for
Group 1 examinees for IRT true score, IRT observed score, and frequency estimation
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Table 6.12 Moments for equating Form X and Form Y

Group  Score il o sk ku
Actual

1 X 15.8205 6.5278 5799 2.7217
2 Y 18.6728 6.8784 .2051 2.3028

Estimated using IRT observed score methods

1 X 158177 6.5248 .5841 2.7235
1 Y 16.1753 7.1238 .5374 2.5750
2 X 18.0311 6.3583 .2843 2.4038
2 Y 18.6659 6.8788 .2270 2.3056

Group 1 Form X converted to Form Y scale using IRT true,
IRT observed, and frequency estimation methods

1 Ty (x) 16.1784 7.2038 .4956 2.5194
1 ey (x) IRT 16.1794 7.1122 .5423 2.5761
1 ey (x) Freq. Est. 16.8329 6.6017 .4622 2.6229

(from Chap.5) equating. For example, the mean of the Form X scores converted to
the Form Y scale using IRT true score equating is 16.1784; using IRT observed
score equating the mean is 16.1794. The mean for frequency estimation equating
is 16.8329, which was given in Table5.10. The moments of converted scores are
very similar for the two IRT methods, although the moments differ noticeably from
those for frequency estimation. Note that frequency estimation included item 27 as
a common item, whereas item 27 was not included as a common item for the IRT
equating. This difference, and the different statistical assumptions made for frequency
estimation compared to the IRT methods, likely contributed to the differences in
moments that were observed.

The conversions are plotted in Fig. 6.6. In this plot, the relationship for both IRT
methods differs noticeably from the frequency estimation relationship. This differ-
ence is likely a result of the very different statistical assumptions used in frequency
estimation as compared to IRT. Also, the true and observed score methods relation-
ships are similar over most of the score range. The largest differences occur around
the sum of the c-parameter estimates and at the very high scores, which are near the
regions of the score scale where true scores are undefined. This figure illustrates that
if interest is in accurately estimating equivalents at very high scores or near the sum
of the c-parameter estimates, such as when a passing score is at a point in one of
these score scale regions, then distinctions between the IRT true and observed score
methods need to be considered.
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6.8.4 Rasch Equating

The fit of the Rasch model to these data might not be good because these multiple-
choice items are possibly subject to the effects of guessing, and the items on these
forms are not built to be equally discriminating. Still, these data can be used to
examine equating with the Rasch model. As was described earlier in this chapter, the
Rasch model can be viewed as a special case of the three-parameter logistic model,
where D = 1.0, alla; = 1, and all ¢; = 0.

An earlier version of BILOG-MG (BILOG 3, Mislevy and Bock 1990) was used to
estimate the item parameters and posterior distributions of ¢ using the Rasch model.
After being placed on a common scale, the Rasch item difficulty parameter estimates
are shown in Table 6.13. The item difficulty estimates for the common items (after
scaling) are shown in Fig. 6.7. There appear to be no outliers.

Rasch true score and observed score (with w; = 1) equating results are shown in
Table 6.14, and moments are shown in Table 6.15. The equating relationships for the
Rasch and three-parameter model are plotted in Fig.6.8.

Overall, the Rasch results appear to differ from the three-parameter model results
shown earlier. The Rasch observed score and true score results differ slightly at the
lower scores.

These results demonstrate that Rasch observed score equating and Rasch true score
equating methods are distinct. Even though Rasch true score equating is typically
used in practice, Rasch observed score equating also should be considered, especially
when interest is in ensuring comparability of observed score distributions. Issues
in choosing among results when conducting equating in practice are discussed in
Chap. 8. Because the Rasch model has relatively modest sample size requirements,
this model might be considered when the sample size is small.
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Table 6.13 Rasch item difficulty estimates

Item Form X Form'Y
1 —2.2593 —2.0388
2 —1.1559 —.5748
3 —1.3429 —1.3275
4 —.5455 —1.0935
5 —1.1838 —1.8460
6 —1.5596 —1.5901
7 =.7757 —.6703
8 —1.0582 —.5412
9 —.7384 —.9317

10 —.4947 —.8215
11 —.2756 —1.2651
12 —.6246 —.5325
13 —.5484 —.3414
14 .0903 —.5417
15 —.2502 —.2675
16 —.4217 —.0569
17 —.4386 .0893
18 —.2757 —.2943
19 —.3150 —.6273
20 0757 0306
21 4129 .6461
22 —.0285 —.4484
23 .1936 —.0570
24 .0844 .0948
25 2594 —.0015
26 5861 —.0396
27 .6525 5864
28 .8508 .5463
29 7831 .5246
30 1.3792 1.4673
31 .5958 9051
32 1.1458 .8025
33 1.3750 1.2106
34 1.3835 1.8085
35 1.8361 2.0944
36 1.6137 1.6644

Note Common-item numbers and parameter estimates are in

boldface type

6.9 Using IRT Calibrated Item Pools and Other Designs

A calibrated item pool (Lord 1980; Vale 1986) is a group of items that have item
parameter estimates which have all been placed on the same 6-scale. One potential
benefit of using IRT is that calibrated item pools can be constructed, and the item
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parameter estimates can be used directly in equating. Equating designs that use
calibrated item pools often allow for greater flexibility in constructing test forms than
the other designs that have been described previously. In this section, the development
of IRT calibrated item pools, and how they are used in equating, are described.

6.9.1 Common-Item Equating to a Calibrated Pool

Consider the following simplified example of how an IRT calibrated item pool might
evolve. Form Y is constructed and then administered. A transformation is developed
to convert scores on Form Y to scale scores, and the item parameters for Form Y
also are estimated. So far, equating has not been considered, because there is only a
single form.

Form X is constructed next. Form X contains some new items and some items in
common with Form Y. Form X is administered to a new group of examinees, and the
item parameters are estimated for the new form. Form X can be equated to Form Y
using the common-item equating procedures described earlier in this chapter. Along
with a conversion table for Form X scores, this common-item equating procedure
results in item parameter estimates for Form X; which are on the ability scale that
was established with Form Y. Actually, there is now a calibrated pool of items, some
of which were in Form Y only, some of which were in Form X only, and some of
which were in both forms. Refer to Table 6.8. The item parameter estimates in this
table are all on the same 6-scale. The items in this table could be considered to be an
IRT calibrated item pool.

The use of an IRT calibrated item pool makes possible the use of an equating
design that is similar to the common-item nonequivalent groups design. However,
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Table 6.14 Rasch true and observed score equating results

x Ty (x) ey (x)
0 .0000 .6995
1 1.0780 1.2612
2 2.1550 2.3202
3 3.2280 3.3782
4 4.2953 44318
5 5.3563 5.4739
6 6.4107 6.5024
7 7.4586 7.5207
8 8.5002 8.5419
9 9.5358 9.5670
10 10.5655 10.5914
11 11.5896 11.6098
12 12.6083 12.6206
13 13.6218 13.6257
14 14.6302 14.6275
15 15.6336 15.6280
16 16.6322 16.6274
17 17.6260 17.6239
18 18.6150 18.6153
19 19.5994 19.6010
20 20.5793 20.5809
21 21.5546 21.5560
22 22.5257 22.5272
23 23.4925 23.4956
24 24.4554 24.4628
25 25.4147 25.4269
26 26.3707 26.3891
27 27.3241 27.3486
28 28.2754 28.3047
29 29.2255 29.2587
30 30.1757 30.2137
31 31.1275 31.1711
32 32.0827 32.1302
33 33.0439 33.0914
34 34.0142 34.0572
35 34.9978 35.0302
36 36.0000 36.0113

in this new design, the common items are drawn from the pool rather than from a
single old form. This new design is referred to here as common-item equating to a
calibrated pool.

To describe this design, suppose that another new form, Form X, is constructed.
This form consists of a set of common items from the IRT calibrated item pool and
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Table 6.15 Moments for equating Form X and Form Y using Rasch equating

Group  Score il o sk ku
Actual

1 X 15.8205 6.5278 5799  2.7217
2 Y 18.6728  6.8784 2051  2.3028
Estimated using Rasch observed score methods

1 X 15.8307 6.4805 .3658 2.5974
1 Y 16.3808  6.4388  .3107 2.5542
2 X 18.1342 6.9291  .1328  2.3458
2 Y 18.6553  6.8406  .0810  2.3438

Group 1 Form X converted to Form Y scale using Rasch
True, Rasch observed, and frequency estimation methods

1 Ty (x) 16.3554  6.4685 5212 2.6521
1 ey (x) Rasch 16.3830  6.4266 3156  2.5559
1 ey(x) Freq. Est.  16.8329  6.6017  .4622  2.6229
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some new items. Assume that Form X5 is administered to a group of examinees.
Procedures described earlier can be used to transform the IRT scale that results from
estimating Form X5 item parameters to the scale that was established for the pool.
To implement these procedures, the item parameter estimates from the calibrated
pool for the common items are considered to be on Scale J, and the item parameter
estimates from the calibration of Form X5 are considered to be on Scale /.

After the new form item parameter estimates are transformed to the #-scale for
the calibrated pool, IRT estimated true score or observed score equating could be
conducted. Estimated true score equating for Form X, could be implemented as
follows. First, find the 6 that corresponds to each Form X, integer number-correct
score. Finding these 6 values requires an iterative procedure as described earlier.
Second, find the Form Y true score equivalent of each of the §-values. Following this
step results in a true score equating of Form X, to Form Y. Use the Form Y scale



218 6 Item Response Theory Methods

Common Item Equating to a Calibrated Pool

New Form
All Items Operational (Scored)

IRT Calibrated Items From

Item Pool — Pool New Items

Item Preequating
New Form
Operational Non-operational
(Scored) (Unscored)

IRT Calibrated Items From

Item Pool > Pool New Items

Fig. 6.9 Equating designs that use an IRT calibrated item pool

score transformation to convert the Form X, integer number-correct scores to scale
scores. These procedures are very similar to what is done in common-item equating,
with the major difference being that the common items are taken from a calibrated
item pool rather than from a single previously equated form.

After the equating is completed, the new Form X, items have item parameter
estimates on the #-scale that was established for the pool. These new items can
be added to the IRT calibrated item pool. In this way, the pool can be continually
expanded. The common-item sets for new forms are constructed from a continually
increasing IRT calibrated item pool. A diagram representing common-item equating
to a calibrated pool is presented in the top portion of Fig.6.9.

Many practical issues affect the implementation of IRT calibrated item pools in
practice. For example, items might be removed from a pool because their content
becomes dated or for test security purposes. Also, when items are used more than
once, procedures need to be considered for updating the parameter estimates that
are associated with each item in the pool. (For example, two sets of item parameter
estimates exist for each common item in Table 6.8.) These are among the issues that
are considered when using item pools in a testing program.

Common-item equating to a calibrated pool is more flexible than the common-
item nonequivalent groups design, because it allows the common-item set to be
chosen from many previous test forms rather than from a single test form. The
effects of violations of IRT assumptions need to be considered, however, when using
this design. For example, the position of items can affect their performance. For this
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reason, the position of each common item on the new form should be as close as
possible to its position on the form in which it appeared previously.

Also, real tests are typically not strictly unidimensional. To guard against multi-
dimensionality causing problems with equating, as with traditional equating, the set
of common items should be built to the same content specifications, proportionally,
as the total test. In this way, the violations of assumptions might affect the common
items in the same way that they affect the total scores. Also, a large enough number
of common items should be chosen to represent fully the content of the total test.

IRT might be the only procedure that could be used when equating using common-
item equating with a calibrated item pool. What if the IRT assumptions are severely
violated? Then adequate equating might be impossible with this design. For this rea-
son, if common-item equating to a calibrated item pool is being considered for use,
the common-item nonequivalent groups design should be used for a few adminis-
trations. The results for the IRT method and traditional methods could be compared
and the effects of multidimensionality could be assessed. Switching to common-item
equating with a calibrated item pool should be done only if no problems are found
with that procedure.

6.9.2 Item Preequating

The use of IRT calibrated item pools also makes an item preequating design possible.
The goal of item preequating is to be able to produce raw-to-scale score conversion
tables before aform is administered intact. If a conversion table is produced before the
test form is administered, then scores can be reported to examinees without the need
to wait for equating to be conducted. Item preequating is possible if the items that
contribute to examinees’ scores have been previously administered and calibrated.
Consider the following example of how an item preequating design might evolve.
Form Y is developed. Form Y contains operational items, which are items that
contribute to examinees’ scores. Form Y also contains nonoperational items, which
are items that do not contribute to examinees’ scores. A conversion of Form Y
number-correct scores on the operational items to scale scores is constructed. (The
scale could be defined either before or after administration of Form Y.) Form Y is
administered and item parameters of the operational and nonoperational items are
estimated. At this point, the IRT calibrated item pool consists of the operational and
the nonoperational Form Y items that have parameter estimates on the same IRT
scale. So far, equating has not been considered, because there is only a single form.
The operational component of a new form, Form X, could be constructed from
this calibrated pool of items. If so, the operational component of Form X would con-
sist of some combination of Form Y operational and Form Y nonoperational items.
Because the operational items in Form X already have estimated item parameters,
a conversion table could be constructed for the operational component of Form X
before Form X; was ever administered intact. That is, the operational portion of
Form X could be “preequated.” Form X also would contain nonoperational items,
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which would be newly written items that were not yet part of the item pool. After
Form X was administered, the item parameters for all Form X items (operational
and nonoperational) could be estimated. The operational Form X items then could
be used as the set of common items for transforming the item parameter estimates
for the nonoperational items to the #-scale that was established with Form Y. These
nonoperational Form X items then would be added to the calibrated item pool. The
operational portion of subsequent test forms would be constructed from the cali-
brated pool. The nonoperational portion of subsequent test forms would consist of
new items, and would be used to expand the item pool continually.

A diagram representing the item preequating design is presented in the bottom
portion of Fig.6.9. The item preequating design and common-item designs differ
as to whether or not scores on the new items contribute to examinee scores. These
designs also differ in whether or not conversion tables can be produced before the
new form is administered.

A variety of issues need to be considered when using item preequating in practice.
Suppose it is found that the answer key for an operational item needs to be modified
(e.g., an item needs to be double-keyed) after the test is administered. Then the
preequating would need to be modified.

In addition, to ensure that items will behave the same on each administration,
items should appear in contexts and positions when they appear operationally that are
similar to those used when they appear nonoperationally. Although item preequating
has been found to produce acceptable results (Bejar and Wingersky 1982), problems
can occur when the nonoperational items are presented in a separate section. For
example, Eignor (1985), Eignor and Stocking (1986), and Stocking and Eignor (1986)
conducted a series of studies that suggested problems with item preequating if it
were used with the SAT. Kolen and Harris (1990) found similar problems with item
preequating if it was used with the ACT tests. Context effects and multidimensionality
were suggested as reasons for these problems. On the other hand, Quenette et al.
(2006) obtain reasonably stable IRT item preequating with the ASVAB. In situations
where the context and positions of items cannot be fixed from one testing to the next,
formal studies need to be conducted to make sure that the resulting data will produce
fairly robust parameter estimates and equated scores.

The use of item preequating can cause difficulties in estimating the item para-
meters for the nonoperational items. For example, assume that a test is not strictly
unidimensional. In this case, IRT estimation procedures will estimate some com-
posite of multidimensional abilities. The appropriate composite for a test will be
the composite for forms that are all built to the test specifications. Estimates that
are based only on considering the operational items would estimate this composite.
Consider a situation in which the nonoperational items do not represent well the
test content specifications. What would happen if the nonoperational item parame-
ters were estimated in the same run using IRT computer software as the operational
items? The composite that is estimated might differ from the composite that would
result if only the operational items were used. The use of a different composite might
lead to bias in the estimation of item parameters. Although it might be possible
to handle estimation problems in practice, the scenario just described suggests that
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estimation can be quite complicated when estimating parameters for nonoperational
items. The problems just described can affect parameter estimates whenever nonop-
erational items are used in tests that are equated using IRT methods under any of
the equating designs described in this book, such as whenever items are tried out
(pretested) for inclusion in future forms.

On the surface, item preequating seems straightforward. However, its implemen-
tation can be quite complicated. Context effects and dimensionality issues need to
be carefully considered, or misleading results will be likely.

6.9.3 Other Designs

Many variations on designs for equating using IRT exist. For example, new forms
might consist of items in common with a pool, new operational items, and nonopera-
tional items. Such pools can be used to produce computer administered and computer
adaptive tests (see Chap. 8 for a brief discussion). Glas and Béguin (2011) provide
another example of a complex design. No attempt will be made here to enumerate all
of these variations. However, context effects and dimensionality issues that arise with
each variation need to be carefully considered when using item pools in operational
testing programs.

6.10 Equating with Polytomous IRT

For the IRT models discussed so far, it has been assumed the items are scored dichoto-
mously. When items are scored in more than two categories, dichotomous models are
not appropriate, and polytomous IRT models can be used. In this section, the focus
is on equating with polytomously scored items in which the responses are ordered.
Typically, the responses are ordered so that responses to higher categories are asso-
ciated with better performance on the item, although it is possible for the ordering
to be in the other direction. Kim et al. (2010) reviewed methods for equating using
polytomous IRT models and associated research.

One situation where polytomous IRT models can be used is when writing samples
are collected from students and are scored holistically by raters, say, on a scale from
1 to 5. In addition, sometimes mixed-format tests contain a mixture of polytomously
and dichotomously scored items, such as on a test that contains both multiple-choice
and constructed-response test questions.

Another situation occurs when multiple items are associated with a common
stimulus block, as often occurs in reading comprehension tests. Because there could
be some dependency among items associated with a particular stimulus, violations of
local independence might make the use of dichotomous IRT questionable. To address
this problem, items associated with a common stimulus could be scored as a block,
with scores on the block of items ranging from O to the number of items in the block.
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For analysis purposes, a block of items could be treated as a single polytomous item.
For example, a 15-dichotomous item reading test containing 3 passages with 5 items
each could be treated as a test with 3 polytomous items (blocks), with scores on each
polytomous item ranging from O to 5. These blocks of items are sometimes referred
to as testlets (Thissen et al. 1989). Keller et al. (2003) discussed issues associated
with potential loss of precision when testlets are scored in this way. Lee et al. (2001)
compared equating based on polytomous and dichotomous IRT models in the testlet
situation and found that the polytomous models produced more accurate equating.
Wainer et al. (2007) and DeMars (2012) investigated the use of IRT models designed
for testlets.

Many of the same considerations associated with dichotomous models come into
play when IRT equating is conducted with polytomous models. With polytomous
models, scales can be linked using generalizations of the item characteristic curve
linking methods, and generalizations of IRT true and IRT observed score equating
methods can be used to equate total scores.

In the polytomous models considered here, each item is scored in two or more
ordered categories. As with dichotomous models, examinee ability is described by
a single variable, 6, defined so that —oco < 6 < oo. The category response curve
for each category of an item relates the probability of earning the category score to
examinee ability. The category response curve for category k of item j is symbolized
as pj,(¢), which represents the probability that an examinee of ability ¢ receives a
score in category k. For example, if 10 % of the examinees with ability 1.5 can be
expected to earn a score in category 3 on item 1, then pj3(f = 1.5) = .10. Each
category of the item has a category response curve.

As with dichotomous models, local independence for polytomous IRT models
means that after taking into account examinee ability, examinee responses to the
items are statistically independent. So, for example, if examinees with 6 = 1.5 have
a .1 probability of earning a score in category 3 for item 1 and a .4 probability
of earning a score in category 4 for item 2, their probability of earning a score in
category 3 for item 1 and a score in category 4 for item 2 equals .04 = .1(.4).

6.10.1 Polytomous IRT Models for Ordered Responses

Various polytomous IRT models have been developed that can be used to model
items that are scored polytomously using ordered categories. These include models
suggested by Samejima’s (1969) and Bock (1972), and more recently described by
Samejima (1997) and Bock (1997). Samejima designated the categories of each
item with consecutive integers beginning with 0. Bock designated categories with
consecutive integers beginning with 1. In this section, Bock’s designation is used,
even in describing Samejima’s model, for consistency sake. However, as described
later in this section, a scoring function is also introduced, that might differ from the
category designator. This scoring function is used to accommodate the scores as used
by Samejima as well as other item scoring schemes.
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Samejima’s Graded Response Model

Although originally developed as a normal ogive model, Samejima’s (1969) graded
response model also has been presented in the logistic form that is considered here.
The graded response model directly models the cumulative category response func-
tion. The cumulative category response function for category k of item j is the prob-
ability of earning a score at or above category k on that item. For this model, the
probability that persons of ability equal to that of person i will earn a score on item
J at or above category k can be expressed as

PO aj, bjy, -+ bjm) = 1, k=1,

eXp[Daj(ei —bjp)]
O ai, biy, -+ b)) = , k=2,...,mj. 6.2
Pljk( i aj, Dj, jm,) 1+ eXp[Daj(gi — bjk)] m; ( 9)

For the first category, the cumulative category response function is 1, because the
probability is 1 that any examinee, regardless of their 6 , will earn a score at or above
the first category. In this equation, D is a scaling factor (usually 1.7 so that the logistic
is similar to the cumulative normal) and a; is the item slope parameter. The item has
m; categories, and bj, are item difficulty parameters for categories 2 through m;.
The first category does not have a difficulty parameter. For categories 2 through m;,
the expression is essentially the item characteristic function for the two-parameter
logistic model.

The category response function is calculated by taking the difference between the
cumulative category response functions as follows:

pijkO:s aj, bjy, -+, bjm) = iy (05 aj, bjy, -+, bjmy)

—DPhernyOis @ bjyy -+ b)), k=100 mj— 1,
PijkO:5 aj, bjy, -+, bjmy) = iy (05 aj, bjy -+, bjmy), k = mj. (6.30)
As an example, consider a S-category item with parameters a = 1.2, b, = —.5,

bz = .6, by = 1.1, b5 = 1.3. Using Eq.(6.29), the cumulative category response
function for this item at & = 1.0 can be shown to be .964, 684, .452, and .359 for
categories 2 through 5. Then from Eq. (6.30), the category response function is .036
=(1-.964) for the first category, 0.28 = (.964 — .684) for the second category, 0.232 =
(.684 — .452) for the third category, and 0.093 = (.452 —.359) for the fourth category.
As is always the case, the category response function for the last category is equal
to the cumulative category response function for the last category. For this item, this
probability is .359.

The cumulative category response functions for this item, which represent the
probability of earning a score at or above a particular category, are graphed in
Fig.6.10. Note that the cumulative category response functions are parallel, which
is always the case for Samejima’s graded response model. Also note that the curves
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are farther apart when the differences between adjacent b-parameters are large. For
example, the difference between the b-parameters for category 2 and 3 is 1.1 units
[.6—(-.5)], which is the largest difference between adjacent b-parameters.

The category response functions for this item are graphed in Fig.6.11. The cate-
gory response function for the first category decreases as ¢ increases. The category
response function for the last category increases as 6 increases. The first and last cat-
egories can be expected to have this pattern with polytomous models for items with
ordered categories, as long as higher category designations tend to be associated with
higher 0. The intermediate categories have category response functions that all begin
with probability near 0, increase to their maximum probability, and then decrease
to a probability near zero. Intermediate categories for polytomous models for items
with ordered response items typically have curves of this form. The highest point for
an intermediate curve is greater when the differences between adjacent b-parameters
are large. Thus, for example, the curve for the second category is the highest among
the intermediate curves in Fig.6.11.

Bock’s Nominal Model

Bock’s (1972) nominal model can be used to model polytomous items that have
ordered or unordered categories. The category response function for this model is

exp(ajxti + cjr)
pijk(ai;ajlaanA"' 5ajMi’cjl7cj2"" ,ijj) = m; . (6‘31)

Z exp(ajnt; + cjn)
h=1

Each category for an item has a slope parameter, aj, and an intercept parameter,
cjk. This model is very general. It can be shown that if the slope parameters, aj,
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Fig. 6.11 Category response p
functions for a graded 1.0 7
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increase from one category to the next, such that aj; < ajp < -+ < djm;, then this
model can be used to represent items with ordered categories (Bock 1997; Samejima
1972; Wainer et al. 1991). Thissen et al. (1995) described how to fit this model when
responses are ordered using polynomial contrasts on the slope parameters.

As an example, consider an item with four categories with aj; parameters of
1.7, 3.4, 5.1, 6.8, and cj parameters of 0.0, 2.55, —.85, —2.55. Note that the aj
parameters increase as category increases, consistent with this item’s having ordered
categories. For this item, for example, the reader can verify that the probability of an
examinee with § = 1 earning a score in category 1 is 0.010; and in categories 2—4,
the probabilities are 0.725, 0.132, and 0.132, respectively. The category response
function for this item is shown in Fig. 6.12. As can be seen in this figure, the general
shapes of the functions for the first and last categories are similar to those for the
Samejima graded response model item discussed previously. The general shapes of
intermediate curves are also similar for the two models.

Various other models can be viewed as being special cases of the nominal cate-
gories model. Muraki’s (1992, 1997) generalized partial credit model is one of these.
In this model,

k
exp |:Z Da}"(&i — b + djh)i|

. ok h=1
pljk(olv aj ) b]9 dj]a de» e ’d]m,) = m;

- .
> exp [Z Da (0; — bj + djh)]
g=1

h=1

(6.32)

In this equation, D is a scaling constant (typically 1.7), item parameters are the dis-
crimination parameter a® and the difficulty parameter, b;. There are also difficulty
parameters for each category, dj1, djp, - - -, djm/ This model is overparameterized as
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Fig. 6.12 Category response
functions for a generalized
partial credit model item

stated, and sometimes the parameters are set as follows: b; = 0 and dj; = 0. An alter-
native parameterization is sometimes used in which a category difficulty parameter
is used that is the difference between b; and dj. In this section, the parameterization
shown in Eq. (6.32) is used.

The form of this equation, with the single summation in the numerator and dou-
ble summation in the denominator, is more complicated than the other IRT models
discussed so far. As an example of how this equation would be implemented for a
three category item the numerator is

exp[DaJ’." (0; — bj + dj1)], for category 1,
exp[Da}k O; — bj +dj1) + Daj’-k (0; — bj + djp)], for category 2, and
exp[Da]’.‘ 0; — b +dj1) + Da]’-‘ 0; —bj+dp) + Da}‘ (0; — bj +d}3)], for category 3.

The denominator is the sum of these three numerators.

As an example, consider an item with four categories with D = 1.7, a}“ =1,
bj = 0, and dj, of 0, 1.5, -2, and —1 for the four categories. For this item, the
reader can verify that the probability of an examinee with = 1 earning a score in
category 1 is 0.010, and in categories 2—4, respectively, the probabilities are 0.725,
0.132,and 0.132. Note that these four probabilities are the same as the probabilities for
Bock’s nominal model example discussed earlier. In addition, the category response
function for this item is the same as that for Bock’s nominal model item shown
in Fig. 6.12. Because Muraki’s generalized partial credit model is a special case of
Bock’s nominal model, there are Bock’s nominal model parameters that correspond
to the generalized partial credit model parameters. This Muraki’s generalized partial
credit model example was purposefully chosen to have the same model parameters
as Bock’s nominal model example.

The relationship between the parameters for the two models is expressed as fol-
lows:
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ajg = Dka;-‘, and

k
ci = —Dka?bj + Da} " dj. (6.33)
h=1

If Muraki’s generalized partial credit model parameters for the example are substi-
tuted in this equation, Bock’s nominal model parameters in the earlier example are
obtained.

The relationship between the parameters of these two models and the appear-
ance of the category response functions is much less clear than the relationships for
dichotomous items or for Samejima’s graded response models. For the purposes of
this chapter, it is primarily important to note that these models can be used with test
items that have ordered categories. These models provide descriptions of the cate-
gory response functions for these types of items. In addition, there are other models
discussed by Bock (1997) and Muraki (1997) that can be viewed as special cases of
Muraki’s generalized partial credit model.

6.10.2 Scoring Function, Item Response Function, and Test
Characteristic Curve

Often, total scores are used with test items that are polytomously scored. A scoring
function is used to associate the scores with the categories. Let Wi refer to the integer
score associated with category k. Often a scoring function of Wj; = k is used. In
this case, a response associated with the first category earns a score of 1, a response
associated with the second category earns a score of 2, and so forth. Another scoring
function that is often used is W, = k — 1. For this function, a response associated
with the first category earns a 0, a response associated with the second category earns
a score of 1, and so forth.

Based on a scoring function, the minimum and maximum scores on test Form X
can be calculated as

ming = > Wji,
X

maxy = > Win,. (6.34)
JjX

Thus, to obtain the minimum, the minimum scores for items are summed over items
on Form X. To obtain the maximum, the maximum scores for items are summed.
Note that if all items are scored using a minimum for each item as zero, then the
minimum score is zero. If the minimum score for each item is 1, then the minimum
score for Form X equals the number of items.
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The item response function relates total score on an item to 6. This function is
expressed as
m;
70 = D Wipi (61, (6.35)
k=1

where p;(0;) is the category response function for item j for a polytomous IRT
model.
For polytomous IRT models, the test characteristic curve for Form X is calculated
as
x(0) = D 7(6). (6.36)

JX

Similar to dichotomous IRT models, the test characteristic curve relates IRT ability
to true total scores.

6.10.3 Parameter Estimation and Scale Transformation
with Polytomous IRT Models

Item and ability parameters for Samejima’s graded response model and Bock’s nom-
inal model can be estimated using the computer software MULTILOG (Thissen et al.
2003). PARSCALE (Muraki and Bock 2003) can be used to estimate parameters for
Samejima’s graded response model and for the generalized partial credit model. ICL
(Hanson 2002) can be used for the generalized partial credit model. These programs
can also estimate item parameters on mixed format tests that contain multiple item
types.

As with dichotomous IRT models, for the random groups or single group designs,
as long as the item parameters are estimated using the same scaling conventions
(e.g., mean ability of 0 and standard deviation of ability 1), then the estimates from
separate runs on Form X and Form Y are on the same scale. For the single group
design, the item and ability parameters for Samejima’s graded response model and
Bock’s nominal model can be estimated with MULTILOG in a single computer run.

For the common item non-equivalent groups design, ICL, Mulitlog, and
PARSCALE can be used to concurrently estimate parameters for the old and new
form. Alternatively, when test forms are administered to nonequivalent groups, scale
transformation methods can be used with the polytomous IRT models that are analo-
gous to those for dichotomous IRT models. Methods using moments of item parame-
ter estimates are given first followed by characteristic curve methods. Many of these
methods were provided in greater detail by Kim and Kolen (2005). Although not
considered in detail in this section, Kim (2010) generalized the Ogasawara (2001a)
scale transformation method referenced earlier in this chapter that takes into account
error in estimating item parameters.
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6.10.3.1 Mean/Sigma and Mean/Mean Methods

Mean/mean and mean/sigma methods were suggested by Cohen and Kim (1998)
for the graded response model. For the mean/sigma method, the mean and standard
deviation of the b-parameter estimates are found over all items and all categories.
The mean and standard deviation of the b-parameter estimates for the common items
are calculated separately for the old form and new form calibration. For example, if
there are 5 common items with 4 score categories each, then there are 15 b-parameter
estimates in the common item set (5 items times 4 — 1 = 3 b-parameter estimates per
item in each calibration). The resulting means and standard deviations are substituted
for the parameters in Egs. (6.8a) and (6.9a) to obtain the slope and intercept of the
transformation equation. Equations (6.2), (6.3), and (6.4) are used to transform the
-, a-, and b-parameters. The mean/mean method uses the mean of the b-parameter
estimates as calculated for the mean/sigma method as well as the mean of the a-
parameter estimates over the common items. Equations (6.8b) and (6.9a) are used to
obtain the slope and intercept of the transformation function.

A similar process can be followed for scale linking using the mean/mean
and mean/sigma method with Muraki’s generalized partial credit model shown in
Eq. (6.32). For the mean/sigma method, the mean and standard deviation of the esti-
mates of b; — dj;, are found over all items and categories for each calibration. These
standard deviations are substituted for the standard deviations in Eq.(6.8a) to cal-
culate the slope and the means substituted in Eq.(6.9a) to find the intercept of the
transformation equation. The mean/mean method uses the means of the a* parame-
ter estimates and the means of the estimates of b; — dj;. Equations (6.8b) and (6.9a)
are used to obtain the slope and intercept of the transformation function. The a*
parameter estimates are transformed using Eq. (6.3). The b parameter estimates are
transformed using Eq. (6.4). The d parameter estimates are transformed by multiply-
ing them by the slope computed using Eq.(6.8a). The #-estimates are transformed
using Eq. (6.2). Masters (1984) described linking procedures for the partial credit
model, a special case of the generalized partial credit model, which involve only
adding a constant for this model.

6.10.3.2 Test Characteristic Curve Methods

Test characteristic curve methods can be used with polytomous IRT models. For
polytomous IRT models, it is necessary to establish the criteria over categories within
item as well as over items. The Haebara difference for the graded response model is

. - N 2
PikOgis agjs byjas -+ byjs - byjm;)—
. ar; A
Hdiff (6) = > > T XIJ,AbIjZ B, . (637
ij .

JVok Abpjx +B, - - ,Aéljmj +B
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The first summation is over items and the second is over categories within item.
Thus this function is the sum of squared differences between category response
curves over all categories and items. Hcrit is found by substituting Eq.(6.37) in
Eq.(6.12). This criterion is minimized by summing over examinees as discussed
with the dichotomous model.

The Stocking and Lord difference for the graded response model is

D Wikpijn iz dgj bya. -+ by b)) —

PV ok
SLAiff (6;) = ay - . (6.38)
0y L Abyr +B, - -,
5w (b
iV ok Abjj + B, -+, Abjjm; + B

Recall that the Stocking and Lord approach was based on the squared difference
between the test characteristic curves expressed on the two scales. Referring to
Eqgs. (6.35) and (6.36), it can be seen that this equation is the squared difference
between test characteristic curves. Note that the scoring function (Wj) is used in
SLdiff but not in Hdiff. SLcrit is found by substituting Eq. (6.38) in Eq. (6.15). This
criterion is minimized by summing over examinees as discussed with the dichoto-
mous model.

Baker (1992) developed a Stocking and Lord related method for the graded
response model. Baker’s (1993a) EQUATE 2.0 program can be used with the Stock-
ing and Lord approach, using a fixed set of abilities to cumulate over abilities. Other
ways of cumulating over ability for the Stocking and Lord method are implemented
in POLYST listed in Appendix B. Baker (1993b, pp. 249, 250) described a procedure
for minimizing Hcrit for this model, which is also implemented in POLYST. Also,
see Brennan et al. (2009, pp. 223-256) for C code that can be used with these models.

Hdiff and SLdiff are defined similarly for the generalized partial credit model.
With this model, though, it is necessary to also transform the d-parameter estimates.

For Bock’s nominal model,

_ = . . 2

Oris agjn, -+ agjks -+ 5 Ajm;s

Pijk \ ~ . A A : —

Clils * 5 Cljks * ° 1c.]jmj

g, 1 arjk jm;
HAiff (0) = > a AB’ AT 5 ’ . (6.39)

JVokj | Pijk | it — K;lljh e Gk — Zflljk, ;
L\ Gy — i

Hcrit is found by substituting Eq. (6.39) in Eq. (6.12). This criterion is minimized by
summing over examinees as discussed with the dichotomous model. Baker (1993b)
described this method summing over equally spaced points and it is implemented
in his EQUATE 2.0 computer software (Baker 1993a). Kim and Hanson (2002)
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provided a correction to one of Baker’s (1993b) equations. Generalizations of these
methods are implemented in POLYST and in Brennan et al. (2009, pp. 223-256).

The Stocking and Lord procedure can be implemented for this model in situations
when modeling graded response data. For Bock’s nominal model,

_ R . N 2
eji'aj'] e AT, AT
s AJjls s AJjk > s AJjmj »
P i1 > Cjk s s Cljm;
ar agi X
SLAiff (0;) = O e . (640)
zszkPi/‘k et — —ag, -+, Cpjk — Xagk, e
T R ABA
L Clim; — Kaljmj |

As pointed out by Baker (1993b), this procedure is not appropriate when items are
nominally scored, because in this case scoring weights would not typically be avail-
able. Thus, this procedure can be used only with items scored in ordered categories.
This method is implemented in POLY ST and in Brennan et al. (2009, pp. 223-256).

In addition to the models considered here, scale linking methods have been
developed for a testlet IRT model (Li et al. 2005), a continuous response IRT model
(Shojima 2003), an unfolding IRT model (Koenig and Roberts 2007), and a non-
parametric IRT model (Xu et al. 2011). Kim (2006) developed a method for using
information on distractors to improve IRT linking with Bock’s nominal response
model.

Research on Scale Linking in Polytomous IRT

In a simulation study, Cohen and Kim (1998) compared the mean/mean, mean/sigma,
weighted mean/sigma, Stocking and Lord (1983) extension, and an extension of
Divgi’s (1985) method that Kim and Cohen (1995) developed for linking scales
under the graded response model. They concluded that the methods produced similar
results. Baker (1997) studied the empirical sampling distributions of the linking
coefficients under the graded response model. Kim and Cohen (2002) compared
linking using the Stocking and Lord method and concurrent calibration for data
that were simulated to fit the graded response model. They found that concurrent
calibration was slightly more accurate. Clearly, more research on linking methods
and comparisons between linking methods and concurrent calibration for polytomous
IRT models is needed.

Kim and Lee (2004) applied scaling linking methods to mixed-format tests that
contained both dichotomously and polytomously scored items in a simulation study.
They found the MULTILOG and PARSCALE produced results that were similarly
accurate. They also found that characteristic curve methods produced more accurate
results than the mean/mean and mean/sigma methods.
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6.10.4 True Score Equating

Using Eq.(6.36) to calculate IRT true scores, the true score equating process
described for dichotomous models in conjunction with Eq.(6.19) is used, except
that typically there is no lower asymptote parameter in the polytomous models.

6.10.5 Observed Score Equating

IRT observed score equating for polytomous IRT models is very similar to that for
dichotomous IRT models. The major difference is that the distribution of observed
score given IRT ability is modeled using a compound multinomial distribution, which
is a generalization of the compound binomial distribution described earlier. A recur-
sion formula that was described by Thissen et al. (1995) can be used to perform the
calculations.

Define fi(x = W11160;) = pi11(6;) as the probability of earning a score in the first
category of item 1, fj (x = W132]6;) = pi12(6;) as the probability of earning a score
in the second category of item 1, and so forth up to the last category of item 1. Then
for r > 1, the recursion formula for finding the probability of earning score x after
the r-th item added is,

mj
fr(x]6;) = Zfr—] (x — Wjr)pijx(0;) for x between min, and max,, (6.41)
k=1

where min, and max, are the minimum and maximum scores after adding the r-th
item. Note that whenx—W;; < min,_j orx—Wj;, > max,_1, thenf,_;(x—Wjy) =0,
by definition.

An example using the recursive formula is given in Table 6.16. This example is for
a three-item test, where each item has a scoring function that consists of consecutive
integers beginning with 1. The first and second items have four categories each. The
third item has three categories. In this table, the i subscript for ability is dropped
to simplify the table. To use the recursion formula, it is important to identify the
maximum and minimum score after each new item is added. For the firstitem (r = 1)
the minimum score is 1 and the maximum is 4. When the second itemis added (r = 2),
the minimum is 2 and the maximum is 8. After the third item is added (r = 3), the
minimum is 3 and the maximum is 11. In Table6.16, a zero is displayed whenever
x — W is less than the minimum score or greater than the maximum score.

A computational example that goes along with the recursive example in Table 6.16
is given in Table 6.17. Assume that # = 1. For this example, the first item is Bock’s
nominal model item used as an example earlier. The probabilities for this item as well
as the other two items, conditional on § = 1, are given at the bottom of the table. The
outcome of applying the recursion formula in this example is a distribution of total
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Table 6.16 Polytomous IRT recursive formula example

r X fr(x)
1 1 Si(D) =pi
2 2 =pn
3 fi(3) =p13
4 fi@) =pu4
2 2 £2) = fi()p2 +0 +0 +0
3 £3) =fiQpa  +i(Dpn  +0 +0
4 £ (@) = fiB3)p2 +1Qp22  +fi(Dpz  +0
5 £(5) = fi@)p2 +1Bp22  +H12)p23 +f1(Dp2a
6 12(6) =0 +Hi@pn  H1Bps  H1Q)pu
7 H(T) =0 +0 +i@ps  +H1B)pau
8 £®8) =0 +0 +0 +fi(@paa
33 f3) =HL2ps1 40 +0
4 (@) =LBps1  +HL@pxn 10
5 f06) = f(®p31 +L2Bpx2 L2)p33
6 f3(6) = f2(5)p31 +HL@Hp2 B)p33
7 5 =HLO)ps1  +HLGpx2  HLHp3s
8 f(8) = f(Np31 +L0)p2  L205)p33
9 f09) = £2(8)pa1 +A2(Mp32 f2(6)p33
10 f3(10) =0 +L®)p2  H(Dp3s
11 f3(11) =0 +0 f2(8)p33

scores on this three-item test for examinees with 6 = 1. Note that the total scores
range from 3 to 11.

For IRT observed score equating, the recursion formula, along with a quadrature
distribution for 0, is used to find the marginal distribution for Form X using Eq. (6.26)
and implemented using Eqs. (6.26) or (6.27). Similar procedures are used for Form Y.
These distributions are then equated using equipercentile methods in the same way
that the scores were equated in observed score equating with dichotomous IRT; the
main difference is that the total scores range between the minimum and maximum
score rather than between 0 and Ky.

6.10.6 Example Using the Graded Response Model

A new real data example is used to illustrate use of the graded response model in
equating. The test in this example is Level 9 of the Maps and Diagrams of the Iowa
Tests of Basic Skills (ITBS). Two forms of this test (Form L and Form K) were
administered using a random groups design. Each form contains 24 items. There are
5 stimuli on each form of the test. The first two stimuli each have 3 items associated
with them and the last three stimuli have 6 items associated with them. The items
associated with each stimulus block were assumed to be a testlet. The testlet score
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Table 6.17 Polytomous IRT recursive formula cmputational example

r X Sr(x)

1 1 fi(D) =.010
2 fi(2) =.725
3 fi(3) =.132
4 i) =.132

2 2 H£Q2) = .010(.15) +0 +0 +0 =.0015
3 £03) =.725(.15) +.010(.25) +0 +0 =.1112
4 fr(4) =.132(.15) +.725(.25) +.010(.40) +0 =.2050
5 f(5) =.132(.15) +.132(.25) +.725(.40) +.010(.20) = .3448
6 f2(6) =0 +.132(.25) +.132(.40) +.725(.20) =.2308
7 H(T) =0 +0 +.132(.40) +.132(.20) =.0792
8 H(8) =0 +0 +0 +.132(.20) =.0264

3 3 £03) =.0015(.05) +0 +0 =.0001
4 f4) =.1112(.05) +.0015(.60) +0 =.0065
5 f05) =.2050(.05) +.1112(.60) .0015(.35) =.0775
6 13(6) = .3448(.05) +.2050(.60) 1112(.35) =.1792
7 H(7) =.2308(.05) +.3448(.60) .2050(.35) =.2902
8 f(8) =.0792(.05) +.2308(.60) .3448(.35) = .2631
9 0) =.0264(.05) +.0792(.60) .2308(.35) =.1296
10 £(10) =0 +.0264(.60) .0792(.35) =.0436
11 f(11) =0 +0 .0264(.35) =.0092

Note p11 = .01, p12 = 725, p13 = .132, p1g = 132, py; = .15, p2o = .25,
P23 = 40, pas = 20, p31 = .05, p32 = .60, p33 = .35

was the total number correct on that testlet. Each examinee had 5 scores, one for each
testlet. The range of scores for the first two testlets was O to 3. The range of scores
for the last three testlets was O to 6. The total score on the test ranged from O to 24.
Examinee testlet scores were input into the computer software MULTILOG. Defaults
were used for the analyses, with the exception that 49 equally spaced quadrature
points ranging from —6 to +6 were used. IRT equating was conducted using the
POLYEQUATE computer software that is given in Appendix B.

The item parameter estimates that were obtained in two runs of MULTILOG are
given in Table 6.18. Because the random groups design was used, the groups taking
the two forms are assumed equivalent, and the item parameters from the two runs
assumed to be on the same scale, without transformation. As can be seen, each item
has an g;-parameter estimate and one less bj-parameter estimate than the number of
score categories.

The true score equating results are given in Table6.19. To conduct observed
score equating, it was necessary to have quadrature distributions. MULTILOG does
not print out the quadrature weights. To obtain the weights, the following process
was used, which produces weights that are similar to the prior weights used by
BILOG-MG. Begin with a set of quadrature points that are equally spaced and cen-
tered around zero. Find the density of the standard normal distribution at each point.
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Table 6.18 Graded response model item parameter estimates

Item Parameter Estimates

Form Testlet aj bjz bj3 bj bj5 bj@ bj7
L 1 1.197 —1.906 .103 1.713
2 1.029 —2.094 —.208 2.020
3 1.672 —2.355 —1.481 —.830 —.197 551 1.670
4 1.033 —2.272 —.706 576 1.912 3.267 5.126
5 1.048 —1.904 —.604 .567 1.683 2.944 4.346
K 1 1.407 —3.081 —1.179 .363
2 1.891 —1.851 —1.016 —.026
3 2.143 —2.476 —1.736 —1.174 —.594 .020 961
4 1.471 —2.286 —1.121 —.137 795 1.717 2.840
5 1.442 —2.043 —1.108 —.279 519 1.312 2475

Sum the weights over the points and then divide each weight by this sum, which
standardizes the weights to sum to one. For the example, this process was followed
with 49 quadrature points (rounded to one decimal place) ranging from —6 to +6.
The results from the observed score equating are shown in Table 6.20. In addition,
the frequency distributions that were obtained from the IRT model are displayed
in Table 6.20. Moments of the actual and estimated distributions and the converted
scores are shown in Table 6.21 (these moments were calculated using the actual, not
the smoothed, relative frequency distributions).

In addition to the graded response model, the three-parameter logistic model
(3PL) was also fit to the data. In this case, each form was analyzed as having 24
dichotomously scored items. Also, unsmoothed equipercentile equating was con-
ducted. Only final results are provided for these equatings.

The observed and fitted frequency distributions are shown in Fig. 6.13. As can be
seen, there appears to be a slight distortion in the fitted distribution for the graded
response model, with the mode being a bit too high. This finding is consistent with
the mean for Form K estimated using the graded response model (14.1708) being
slightly too large compared to the actual mean (14.0066). Difference plots for all
of the equatings that were conducted are shown in Fig.6.14. The three-parameter
logistic model true score method produced different results at the low scores than
the other methods, presumably because of the pseudo-chance level parameter.

6.11 Robustness to Violations of the Unidimensionality
Assumption

A unidimensionality assumption is required to use the IRT methods discussed in
this chapter. Research suggests that IRT equating is fairly robust to violations of the
unidimensionality assumption when equating alternate forms of a test, as long as
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Table 6.19 Graded response model true score equating

Form L Score 0 Equivalent Form K Equivalent
0 0.0000
1 -2.8734 1.2173
2 —2.4186 2.4598
3 -2.0852 3.7232
4 -1.7878 5.0624
5 -1.5063 6.4754
6 -1.2335 7.9417
7 -0.9675 9.4249
8 —-0.7093 10.8485
9 -0.4582 12.1977
10 -0.2117 13.5085
11 0.0345 14.8072
12 0.2846 16.0576
13 0.5430 17.2252
14 0.8146 18.3479
15 1.1007 19.4247
16 1.3908 20.3425
17 1.6782 21.0697
18 1.9769 21.6899
19 2.3174 22.3015
20 2.7380 229719
21 3.2746 23.5915
22 3.9718 23.9136
23 4.8693 23.9903
24 24.0000

the violation of the unidimensionality assumption is not too severe (e.g., Bolt 1999;
Camilli et al. 1995; Cook et al. 1985; De Champlain 1996; Dorans and Kingston
1985; Yen 1984).

Some investigators have suggested using multidimensional IRT models for tests
that violate the unidimensionality assumption. In such cases, methods must be used
to link the multidimensional IRT parameter estimates (Davey et al. 1996; Hirsch
1989; Li and Lissitz 2000; Oshima et al. 2000; Reckase 2009; Yao 2011; Yao and
Boughton 2009). Methods for conducting IRT true and observed score equating
for use with tests that are fit with a multidimensional model have been presented by
Brossman (2010) for a situation in which the multiple-choice items on an examination
are treated as measuring a different unidimensional construct than the constructed-
response items on the same examination. Practical issues associated with equating
mixed-format tests are discussed more fully in Chap. 8 and practical issues associated
with deciding on whether to use a unidimensional or multidimensional model with
mixed-format tests is discussed in more detail in Chap.9


http://dx.doi.org/10.1007/978-1-4939-0317-7_8
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Table 6.20 Graded response model observed score equating

Form L Form K Form K Equivalent of
Score Relative frequency Relative frequency Form L raw score
0 .0032 .0015 5120
1 .0067 .0041 1.6295
2 .0118 .0068 2.8232
3 .0191 .0102 4.0965
4 .0290 .0143 5.4718
5 .0408 .0188 6.8479
6 .0533 .0240 8.2768
7 .0649 .0296 9.6702
8 .0745 .0357 10.9918
9 .0810 .0426 12.2716
10 .0846 .0501 13.5346
11 .0863 .0572 14.7981
12 .0865 .0631 16.0148
13 .0838 .0661 17.1592
14 .0765 .0671 18.2546
15 .0643 .0693 19.3020
16 .0489 .0733 20.2601
17 .0343 .0752 21.0926
18 .0229 .0723 21.8007
19 .0144 .0657 22.3942
20 .0082 .0574 23.0970
21 .0037 .0470 23.6443
22 .0012 .0314 24.2817
23 .0002 .0134 24.4676
24 .0000 .0039 24.4981

Table 6.21 Moments for graded response model equating

i & sk fu
Actual
Form L 10.8047 43171 0.2256 2.4343
Form K 14.0066 5.0146 —-0.2638 2.2285
Estimated using graded response observed score method
Form L 10.7900 4.1695 -0.0442 2.5432
Form K 14.1708 4.9801 -0.3757 2.4903
Form L converted to Form K using various methods
Equipercentile 14.0105 5.0046 -0.2577 2.2244
IRT Obs 14.1363 5.0362 -0.1279 2.1586

IRT True 14.0504 5.1688 -0.1735 2.1276
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6.12 Practical Issues and Caveat

12 15 18 21 24
Form L score

We recommend the following when using IRT to conduct equating in practice:

1. When equating with the common item nonequivalent groups design, use both the
Stocking and Lord and Haebara methods for scale transformation. In addition,
concurrent calibration should be used as a check when feasible.

2. When equating number-correct scores, use both IRT true score equating and IRT
observed score equating.

3. Whenever possible, conduct traditional equipercentile or linear methods on the
forms that are being equated as a check.

Often all of the methods applied provide similar equating results and conversion
to scale scores (where appropriate), which is reassuring. However, when the results
for the different methods diverge, then a choice must be made about which results to
believe. The assumptions required and the effects of poor parameter estimates need
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to be considered in these cases. The issue of choosing among results in equating is
discussed in more detail in Chap. 8.

Unidimensional IRT methods assume that the test forms are unidimensional and
that the relationship between ability and the probability of correct response follows
a specified form. These requirements are difficult to justify for many educational
achievement tests, although, as indicated in the previous section, the methodology
has been found to be robust to violations in many practical situations.

The IRT methods considered in detail in this chapter do not include parameters for
item context effects such as item position in a test booklet. Yet, there is considerable
evidence (see Chap. 8) that the difficulty of items is influenced by item context. The
general approach taken in this chapter, and in this book as a whole, is to recommend
that equating studies be designed to minimize the effects of violations of assumptions.
In this regard, the following advice from Cook and Petersen (1987) is especially
relevant:

Regardless of whether IRT true-score or conventional equating procedures are being used,
common items should be selected that are a miniature of the tests to be equated and these
items should remain in the same relative position when administered to the new- and old-
form groups. It would also seem prudent to evaluate the differential difficulty of the common
items administered to the equating samples, particularly when equating samples come from
different administration dates. (p. 242)

6.13 Exercises

6.1 For the test in Table 6.1, find the probability of correctly answering each of the
three items for examinees with ability 6 = .5.

6.2 For the test in Table 6.1, find the distribution of observed scores for examinees
with ability 0; = .5.

6.3 Prove the following:

a. A = (bjj — byj*)/(bj — byj+) from Eq. (6.6). [Hint: The proof can be done by
setting up a pair of simultaneous equations for by« and by; using Eq. (6.4)
and solving for A.]

b. A = ayjj/ay; from Eq. (6.6). [Hint: Use Eq. (6.3).]

c. A=o0(by)/o(br) in Eq.(6.8a). [Hint: Use Eq.(6.4).]

d. A = u(ay)/u(ay) in Eq. (6.8b). [Hint: Use Eq.(6.3).]

6.4 For the test in Table 6.1, what is the value of the test characteristic curve at
0;; = —2.00, .5, and 1.00? How about at 8;; = —1.50 and 0.00?

6.5 For the hypothetical example in Table 6.3, conduct observed score equating
for a population of examinees with equal numbers of examinees at three score
levels: # = —1, 0, 1. [Hints: Use Eq. (6.25) to find f(x|0) and g(y|f) for 6 =
—1, 0, and 1. Then apply Eq.(6.27). Finally, do conventional equipercentile
equating. Warning: This problem requires considerable computation.]


http://dx.doi.org/10.1007/978-1-4939-0317-7_8
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For the example in Table 6.4, provide the probabilities of earning scores 0, 1,
2, 3, and 4 for r = 4 assuming that the probability of correctly answering the
fourth item for an examinee of ability §; = —2 equals .4.

For the example in Table 6.2, calculate Hdiff and SLdiff for 6 = 1 on Scale J
using the mean/sigma and mean/mean methods.

Why is IRT equating to a particular old form important if all items are in an
IRT calibrated item pool?

The following are some of the steps involved in equating (assume that number-
correct scoring is used and that scale scores are reported to examinees): (a)
select the design for data collection and how to implement it; (b) construct,
administer, and score the test; (c) estimate equating relationships; (d) construct
a conversion table of raw-to-scale scores; (e) apply the conversions to exam-
inees; and (f) report scores to examinees. At each of these steps, what would
be the differences in equating a new form using the IRT methods described in
Chap. 6 versus the traditional methods described in Chaps. 2, 3, 4, 5?
Findp;;.k(ei; aj, bjz, cee, bjmj) andpl;,'k(Gi; aj, bjz, cee bjmj) at; = —.5fora
Samejima Logistic graded response model item with the following parameters:
aj=12,bp =—1.1,bj3 =—1.0,bj4 = .5, bj5 = .6, and bjs = 1.0.

Find p;x (0;; aj1, aj, - - -, Ajmjs Cj1, €2, ijj) at¢; = .5 for aBock’s nom-
inal model item with the following parameters: aj; = .905, aj = .522,
aj3 = —.959, ¢j1 = .336, cjp = —.2006, bj3 = .126.

Is the item in the preceding exercise consistent with being an item with ordered
categories? Why or why not?

Find p;jx (0;; a}“, bj,dj1,dp, --- ,djmj) at ; = 1.0 for a Muraki generalized
partial credit model item with the following parameters: a; = 1, b; = 0,
diy =0,dp =1,dj3 = —1.

For the example in Table6.17, find the probability of earning scores of 4
through 14 if on a fourth item, the probability of earning a 1 was .3, the
probability of earning a 2 was .5, and the probability of earning a 3 was .2.
Use the recursive formula.

For the example in Table6.17, what is the (conditional) expected score on
item 1? On item 2? What is the (conditional) expected score on a two-item
test consisting of the first two items? What relationship is there between these
three expected scores? Why? In the terminology of the chapter, what are each
of these (conditional) expected scores?

Show that Eq.(6.33) relates Muraki’s generalized partial credit model para-
meters to Bock’s nominal model parameters.


http://dx.doi.org/10.1007/978-1-4939-0317-7_6
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Chapter 7
Standard Errors of Equating

Two general sources of error in estimating equating relationships are present
whenever equating is conducted using data from an equating study: random error
and systematic error. Random equating error is present when the scores of examinees
who are considered to be samples from a population or populations of examinees
are used to estimate equating relationships. When only random equating error is
involved in estimating equating relationships, the estimated equating relationship
differs from the equating relationship in the population because data were collected
from a sample, rather than from the whole population. If the whole population were
available, then no random equating error would be present. Thus, the amount of
random error in estimating equating relationships becomes negligible as the sample
size increases.

The focus of the present chapter is on estimating random error, rather than
systematic error. The following examples of systematic error are intended to illus-
trate the concept of systematic error, and to distinguish systematic from random
error. One way that systematic error can occur in estimating equating relationships is
when the estimation method introduces bias in estimating the equating relationship.
As was indicated in Chap. 3, smoothing techniques can introduce systematic error—
a useful smoothing method results in a reduction in random error that exceeds the
amount of systematic error which is introduced. Another way that systematic error in
estimating equating relationships can occur is when the statistical assumptions that
are made in an equating method are violated. For example, systematic error would
be introduced if the Tucker method described in Chap.4 was used in a situation in
which the regression of X on V differed from Population 1 to Population 2. Simi-
larly, systematic error would be introduced if IRT true score equating, as described
in Chap. 6, was used to equate multidimensional tests. A third way that systematic
error could occur is if the design used to collect the data for equating were improp-
erly implemented. For example, suppose that in the random groups design, the test
center personnel assigned Form X to examinees near the front of the room and Form
Y to examinees near the back of the room. This distribution pattern likely would
lead to systematic differences between examinees who were administered the forms,
unless the examinees were seated randomly. As another example, suppose that in
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the common-item nonequivalent groups design the common items appeared near the
beginning of the test in Form X and near the end of the test in Form Y. In this case,
the common items might behave very differently on the two forms, because of the
different placement. A fourth way that systematic error could occur is if the group(s)
of examinees used to conduct equating were to differ substantially from the group
who takes the equated form. It is important to note that the use of large sample sizes
would not reduce the magnitude of these systematic error components. Thus, a major
distinguishing factor between random and systematic error is that as the sample size
increases, random error diminishes, whereas systematic error does not diminish.

Standard errors of equating index random error in estimating equating relationships
only—they are not directly influenced by systematic error. Standard errors of equat-
ing approach 0 as the sample size increases, whereas systematic errors of equating
are not directly influenced by the sample size of examinees. Only random error in
estimating equating relationships is considered in the present chapter; systematic
error is a prominent consideration in Chap. 8. In the present chapter, standard errors
of equating are defined, and both bootstrap and analytic standard errors are consid-
ered. We describe procedures for estimating standard errors of equating for many
of the methods described in Chaps.?2 through 6, including standard errors for raw
and scale scores. We show how the standard errors can be used to estimate sample
size requirements and to compare the precision of different equating methods and
designs.

7.1 Definition of Standard Error of Equating

The standard error of equating is a useful index of the amount of equating error. The
standard error of equating is conceived of as the standard deviation of equated scores
over hypothetical replications of an equating procedure in samples from a population
or populations of examinees. In one hypothetical replication, specified numbers of
examinees would be randomly sampled from the population(s). Then the Form Y
equivalents of Form X scores would be estimated at various score levels using a
particular equating method. The standard error of equating at each score level is the
standard deviation, over replications, of the Form Y equivalents at each score level
on Form X. Standard errors typically differ across score levels.

To define standard errors of equating, each of the following need to be specified:

e the design for data collection (e.g., common-item nonequivalent groups);

the definition of equivalents (e.g., equipercentile);

the method used to estimate the equivalents (e.g., unsmoothed equipercentile);
the population(s) of examinees;

the sample sizes (e.g., 2,000 for the old form and 3,000 for the new form);

the score level or score levels of interest (e.g., each integer score from 0 to Kx).

Given a particular specification, define ¢gy (x;) as an estimate of the Form Y
equivalent of a Form X score in the sample and define E[egy (x;)] as the expected
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equivalent, where E is the expectation over random samples from the population(s).
For a given sample estimate, equating error at a particular score level on Form X is
defined as the difference between the sample Form Y equivalent and the expected
equivalent. That is, equating error at score x; for a given equating is

eqy(x;)) — Elegy (xi)]. (7.1)

Suppose that the equating is replicated a large number of times, such that for each
replication the equating is based on random samples of examinees from the popula-
tion(s) of examinees who take Form X and Form Y, respectively. The equating error
variance at score point x; is

var[éqy (xi)] = E{égy (x;) — Elégy (x)1}7, (7.2)

where the variance is taken over replications. The standard error of equating is defined
as the square root of the error variance,

seleqy (xi)] = varléegqy (x;)] = \/E{ftly(xz‘) —Elegy(xpl}2. (7.3)

The error indexed in equations (7.1)—(7.3) is random error that is due to the sampling
of examinees to estimate the population quantity, eqy (x;) = E[eqy (x;)].

Standard errors can be considered for specific data collection designs. In a random
groups design, a single population of examinees is considered. A random sample of
size Ny is drawn from the population and administered Form X, another random
sample of size Ny is drawn from the population and administered Form Y, and
equating is conducted using these data. Conceptually, the hypothetical sampling and
equating process is repeated a large number of times, and the variability at each score
point is tabulated to obtain standard errors for this design. Recall from Chap. 3 that a
conceptual scheme for considering standard errors of equipercentile equating using
the random groups design was presented in Fig.3.1.

How would this hypothetical sampling/equating process proceed for the common-
item nonequivalent groups design? In this design, on each replication Nx examinees
from Population 1 who took Form X and Ny examinees from Population 2 who
took Form Y would be sampled. On each replication, the equivalents would be
found using an equating method appropriate for this design, such as the frequency
estimation method. The standard error at a particular Form X score would be the
standard deviation of the Form Y equivalents over replications.

In the present chapter, the population of examinees is assumed to be infinite (or
at least very large) in size. Often it makes sense to conceive of the population as
being infinite in size, such as when the population is conceived of as all potential
past, current, and future examinees. The examinees in a current sample could be
considered as a sample from this population. Although not the approach taken here,
it might be argued that the group of examinees is the whole population. In this
case, there can be no random error in estimating equating relationships because no
sampling of examinees is involved.
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In practice, data are available from a single sample or pair of samples of examinees.
Two general types of procedures have been developed for estimating the standard
errors from such data collection designs. The first type is computationally intensive
resampling procedures. In these procedures, many samples are drawn from the data
at hand and the equating functions estimated on each sampling. Standard errors are
calculated using the data from these many resamplings. The resampling method that
is considered in this chapter is the bootstrap. The second type is analytic in that the
procedures result in an equation that can be used to estimate the standard errors using
sample statistics. The development of the equations in these analytic methods can
be very time-consuming, and the resulting equations can be very complicated. The
analytic method that is described in this chapter is referred to as the delta method.
Both types of methods are useful, depending on the information desired and the uses
to be made of the standard errors.

7.2 The Bootstrap

The bootstrap method (Efron 1982; Efron and Tibshirani 1993) is a method for
estimating standard errors of a wide variety of statistics that is computationally
intensive. As is described subsequently in more detail, the bootstrap involves taking
multiple random samples with replacement from the sample data at hand. A computer
is used to draw random samples using a pseudo-random number generator when
applying the bootstrap in practice. Refer to Press et al. (1989) for a discussion of
pseudo-random number generation. To introduce the bootstrap method, a simple
example is used in which the standard error of a sample mean is estimated. Then
applications to equating are described.

7.2.1 Standard Errors Using the Bootstrap

The steps in estimating standard errors of a statistic using the bootstrap from a single
sample are as follows:

1. Begin with a sample of size N.

2. Draw arandom sample, with replacement, of size N from this sample data. Refer

to this sample as a bootstrap sample.

Calculate the statistic of interest for the bootstrap sample.

Repeat steps 2 and 3 R times.

5. Calculate the standard deviation of the statistic of interest over the R bootstrap
samples. This standard deviation is the estimated bootstrap standard error of the
statistic.

Rl

Of special importance is that the random sample in step 2 is drawn with replacement.
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Consider a simple hypothetical example for illustrative purposes. Suppose that
an investigator is interested in estimating the standard error of a mean using the
bootstrap method. Assume that a sample of size N = 4 is drawn from the population
and the sample values are 1, 3, 5, and 6. To estimate the standard error of the mean
using the bootstrap, bootstrap samples would be drawn with replacement from these
four sample values and the mean calculated for each bootstrap sample. Suppose that
the following four random bootstrap samples were drawn with replacement from the
sample values 1, 3, 5, and 6:

Sample 1: 6 3 6 1 Mean = 4.00
Sample 2: 1 6 1 3 Mean = 2.75
Sample 3:5 6 1 5 Mean = 4.25
Sample 4:5 1 6 1 Mean =3.25

The same sample value may be chosen more than once because bootstrap sampling
is done with replacement. For example, the score of 6 was chosen twice in bootstrap
Sample 1, even though there was only one 6 in the data. The bootstrap estimate of
the standard error of the mean is the standard deviation of the means over the four
bootstrap samples. To calculate the standard deviation, note that the mean of the four
means is (4.00 4+ 2.75 4+ 4.25 4+ 3.25) /4 = 3.5625. Using R — 1 = 3 as the divisor,
the standard deviation of the four means is

\/ (4.00 — 3.5625) + (2.75 — 3.5625)2 + (4.25 — 3.5625)2 + (3.25 — 3.5625)2
3
= .6884.

Thus, using these four bootstrap samples, the estimated standard error of the mean
is .6884. In practice, many more than four samples would be chosen. Efron and
Tibshirani (1993) recommended using between 25 and 200 bootstrap samples for
estimating standard errors. In practice, however, as many as 1,000 bootstrap replica-
tions are common.

In this situation, standard statistical theory would have been easier to implement
than the bootstrap. Noting that the sample standard deviation (using N — 1 in the
denominator) of the original sample values (1, 3, 5, 6) is 2.2174, the estimated
standard error of the mean using standard procedures is 2.2174/+/4 = 1.1087. The
bootstrap estimate would likely be similar to this value if a large number of bootstrap
replications were used for estimating the standard error for the population.

In equating, analytic procedures are not always available for estimating standard
errors, or the analytic procedures that are available might make assumptions that are
thought to be questionable. The bootstrap can be used in such cases. Although com-
putationally intensive, the bootstrap can be readily implemented using a computer,
often with much less effort than it would take to derive analytic standard errors.



252 7 Standard Errors of Equating

7.2.2 Standard Errors of Equating

Now consider using the bootstrap to equate two forms using the random groups
design. To implement this method, begin with sample data. For equipercentile equat-
ing with the random groups design, the samples would consist of Ny examinees
with scores on Form X and Ny examinees with scores on Form Y. To estimate the
seley (xi)]:

1. Draw a random bootstrap sample with replacement of size Nx from the sample
of Nx examinees.

2. Draw a random bootstrap sample with replacement of size Ny from the sample
of Ny examinees.

3. Estimate the equipercentile equivalent at x; using the data from the random boot-
strap samples drawn in steps 1 and 2, and refer to this estimate as ey, (x;).

4. Repeat steps 1 through 3 R times, obtaining bootstrap estimates ey, (x;),
ey2(xi), ..., eyr(xi).

5. The standard error is estimated by

S (v ) — Do (v VT2
Sopounly ()] = \/Zr[en();)_ 1ey.(xl)] ’ (7.4)

where R
Zr eyr(x;)

R (7.5)

ey.(x;) =

These procedures can be applied at any x; . Typically, the same R bootstrap samples
are used to estimate standard errors for all integer values of x; between 0 and Ky,
because the interest is in estimating standard errors for the whole range of scores.

The equipercentile equating of the ACT Mathematics test forms that was described
in Chap.?2 is used to illustrate the computation of bootstrap standard errors. In this
example, Form X and Form Y of the 40-item test were equated using equipercentile
methods. The sample sizes were 4,329 for Form X and 4,152 for Form Y. Unsmoothed
equipercentile results were presented in Table 2.7.

To compute bootstrap standard errors in this example, 4,329 Form X scores and
4,152 Form Y scores were sampled with replacement from their respective distribu-
tions. Form Y equipercentile equivalents at each Form X integer score were found.
R = 500 bootstrap replications were used, and the estimated standard errors were
calculated at each score point using Eq. (7.4). The computer program Equating Error
listed in Appendix B was used to conduct these and the subsequent bootstrap analyses
described in this chapter.

The resulting bootstrap standard errors are graphed in Fig.7.1. For comparison
purposes, the estimated analytic standard errors that were presented in Table 3.2 also
are graphed. [These analytic standard errors were calculated using Eq. (7.12), which
is presented later in the present chapter.] In this figure, the standard errors tend to
be smallest around Form X scores in the range of 8 to 12. These scores tend to be
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Fig. 7.1 Bootstrap and analytic standard errors of equipercentile equating for raw scores

the most frequently occurring Form X scores, as can be seen in Fig.2.8. Also, the
analytic and bootstrap standard errors are very similar. Empirical studies have found
that the two methods produce very similar results in both linear and equipercentile
equating of number-correct scores when a large number of bootstrap replications are
used (e.g. Kolen 1985; Jarjoura and Kolen 1985). Finally, the graph of the standard
errors is irregular in appearance, which is presumably due to the relatively small
numbers of examinees earning each score.

The bootstrap can be readily applied in the common-item nonequivalent groups
design. In this design, a sample of Nx examinees would be drawn from the examinees
who were administered Form X, and a sample of Ny examinees would be drawn from
among the examinees who were administered Form Y. An appropriate method, such
as the Tucker linear method or the frequency estimation equipercentile method, then
would be used to find the equivalents. The sampling process would be repeated a
large number of times, and the standard error again would be the standard deviation
of the estimates over samples.

7.2.3 Parametric Bootstrap

One problem that can be encountered in estimating standard errors in equipercentile
equating is that estimates of standard errors might not be very accurate, especially at
score points with very small frequencies, as was illustrated by the irregular graphs
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in Fig.7.1. Efron and Tibshirani (1993) suggested using the parametric bootstrap in
these situations. In the parametric bootstrap, a parametric model is fit to the data. The
standard errors are estimated by treating the fitted parametric model as if it appropri-
ately described the population and simulating standard errors by sampling from the
fitted model. Because populations are assumed to be infinite in size, sampling with
or without replacement is considered to be the same. As an example, the following
steps could be used to apply the parametric bootstrap to estimate the standard errors
of equipercentile equating using the random groups design:

1. Fitthe Form X empirical distribution using the log-linear method. Choose C using
the techniques described in Chap. 3.

2. Fitthe Form'Y empirical distribution using the log-linear method, Choose C using
the techniques described in Chap. 3.

3. Using the fitted distribution from step 1 as the population distribution for Form
X, randomly select Nx scores from this population distribution. The distribution
of these scores is the parametric bootstrap sample distribution of scores on Form
X.

4. Using the fitted distribution from step 2 as the population distribution for Form
Y, randomly select Ny scores from this population distribution. The distribution
of these scores is the parametric bootstrap sample distribution of scores on Form
Y.

5. Conduct equipercentile equating using the sampled parametric bootstrap distri-
butions from steps 3 and 4, and tabulate the equipercentile equivalent at score
Xi.

6. Repeat steps 3 through 5 a large number of times. The estimated standard error
is the standard deviation of the equivalents at x; over samples.

In the parametric bootstrap, samples are taken from fitted distributions. In the boot-
strap, samples are taken from the empirical distribution. The parametric bootstrap
leads to more stable estimates of standard errors than the bootstrap. In a simula-
tion study, Cui and Kolen (2008) compared the bootstrap and parametric bootstrap
procedures for the random groups design and found that the parametric bootstrap
produced more stable estimates of standard errors of equating than the bootstrap in
most of the conditions studied. However, they warned that the parametric bootstrap
could produce biased estimates of the standard errors if the fitted parametric model
is not an accurate estimate of the population distribution.

Results from the use of the parametric bootstrap are shown in Fig. 7.2. The boot-
strap standard errors are the same as those shown in Fig.7.1. To calculate the para-
metric bootstrap standard errors in Fig. 7.2, a log-linear model with C = 6 was fit to
the Form X and Form Y distributions. Each parametric bootstrap replication involved
drawing a random sample from the fitted distributions and conducting unsmoothed
equipercentile equating. As can be seen in Fig. 7.2, the parametric bootstrap results in
a more regular graph of the standard errors than the bootstrap. In addition, the para-
metric bootstrap results are more regular than the analytic results shown in Fig. 7.1
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Fig. 7.2 Bootstrap and parametric bootstrap standard errors of equipercentile equating for raw
scores

7.2.4 Standard Errors of Equipercentile Equating
with Smoothing

Smoothed equivalents can be used in place of the unsmoothed equivalents in the
preceding procedures to estimate standard errors of smoothed equipercentile equat-
ing. A comparison of standard errors of smoothed and unsmoothed equipercentile
equating is presented in Fig.7.3.

The parametric bootstrap was used in these comparisons. (The regular bootstrap
could have been used here also.) The standard errors of unsmoothed equipercentile
equating shown in Fig.7.3 are identical to those shown in Fig. 7.2 for the parametric
bootstrap. To calculate the standard errors for smoothed equating, the distributions
on each parametric bootstrap replication were smoothed using the log-linear model
with C = 6. The smoothed distributions on each replication then were equated
using equipercentile methods. Over most of the score range the standard errors for
smoothed equipercentile equating were less than those for unsmoothcd, indicating
that smoothing reduces the standard error of equating. Note, however, that the stan-
dard errors only take into account random error; systematic error is not indexed.
Thus, as was stressed in Chap. 3, a smoothing method that results in lower standard
errors still could produce more total error than unsmoothed equipercentile equating.
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Fig. 7.3 Parametric bootstrap standard errors of equipercentile equating for raw scores

7.2.5 Standard Errors of Scale Scores

So far, the bootstrap has been presented using equated raw scores. The bootstrap can
be readily applied to scale scores, as well, by transforming the raw score equivalents
to scale score equivalents on each replication. The standard error is the standard
deviation of the scale score equivalents over replications. Standard errors of both
unrounded and rounded scale score equivalents can be estimated using the bootstrap
procedure.

Scale score standard errors of equipercentile equating are shown in Fig.7.4. First
consider the standard errors for unrounded scale scores. The standard errors tend to
be relatively large in the range of raw scores of 36 to 39, which results because the
raw-to-scale score transformation is steeper than at other ranges. (The raw-to-scale
score transformation for equipercentile equating is shown in Table2.8.)

Next consider the standard errors for rounded scale scores. These standard errors
tend to be greater than those for the unrounded scores, because the rounding process
introduces error. When the decimal portion of the unrounded scale scores is close to
1/2, there tends to be a larger difference between the unrounded and rounded standard
errors. For example, from Table 2.8, the unrounded scale score at a Form X score of
22 is 20.5533, and the standard error for rounded scale scores for a Form X score is
much larger than the standard error for unrounded scale scores. When the decimal
portion of the unrounded scale score is close to 0, the standard errors for the rounded
and unrounded scale scores tend to be similar.
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Fig. 7.4 Parametric bootstrap standard errors of equipercentile equating for scale scores

7.2.6 Standard Errors of Equating Chains

Often equating involves a chain of equating so that scores can be reported on the
scale of an earlier form or in terms of scale scores. For example, in ACT equating
(ACT 2007) , new forms are equated to the score scale using a chain of equating
which goes to the score scale which was developed for use in 1989. This chain could
include numerous test forms. (Also refer to the discussion of the scaling and equating
process described with Table 1.1.) Error in a chain of equating can be estimated using
the bootstrap.

Consider an example where Form X3 is to be equated to Form Y through Form
Xj. The chaining process involves equating Form X, to Form X;, which can be
symbolized as eqx1(X2), and equating Form X; to Form Y, which can be symbolized
as eqy (X1). The chain can be symbolized as eqy (chain:x1)(X2) = egylegx1(X2)].
The notation “chain:X1” in the subscript is used to indicate that the equating function
is for a chain that involves Form X;. The equating chain expression implies that to
convert a Form X score to Form Y, the Form X, score first is converted to the Form
X1 scale using egx1(X3). Then take this converted score and convert it to the Form
Y scale using eqy (X1). In practice, estimates of the equating relationships would be
available. In the example, each of the two equatings that need to be estimated has
error which needs to be incorporated into an estimate of the standard error of the
equating chain.

To develop the example further, assume the following: (a) the equating relation-
ships are to be estimated using the random groups design; (b) Form X; and Form
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Y are spiraled in Administration A, and the resulting data are used to equate these
forms; and (c) Form X, and Form X are spiraled in Administration B, and the result-
ing data are used to equate these forms. Given this situation, the following steps could
be used to estimate bootstrap standard errors of the equating chain:

1. Take a bootstrap sample of the examinees from Administration A who were
administered Form X . Take a bootstrap sample of examinees from Administra-
tion A who were administered Form Y. Equate Form X; to Form Y using these
bootstrap samples. Refer to the estimated equating relationship from bootstrap
samples r as eqy, (X1).

2. Take a bootstrap sample of the examinees from Administration B who were
administered Form X,. Take a bootstrap sample of examinees from Administra-
tion B who were administered Form X;. Equate Form X5 to Form X using these
bootstrap samples. Refer to the estimated equating relationship from bootstrap
samples r as €q y,(X2).

3. Find the conversion of Form X scores to Form Y scores through the equating
chain using the equating relationships developed in steps 1 and 2. Refer to the
estimated equating chain from bootstrap samples r as €qy, chain:x1)(X2)-

4. Repeat steps 1-3 a large number of times. The standard deviation of the converted
scores from step 3 at a particular Form X, score is the bootstrap standard error
of the equating chain at that score.

This procedure could be generalized to longer chains, although the process can
become extremely computationally intensive as the length of the chain increases. This
process also could be adapted to the single group and common-item nonequivalent
groups designs, and to other equating methods, such as linear or IRT methods. Refer
to Li et al. (2012) for a study that examined error in equating chains using IRT true
score equating methods and to Li et al. (2011) for the application of time-series
methods to estimate error in equating chains.

7.2.7 Mean Standard Error of Equating

Sometimes it is useful to have an aggregate value for the standard error of equating,
such as when an index of the overall effect of smoothing is desired. One way to get
an aggregate value is to find the square root of the average equating error variance
over examinees from the population that was administered Form X. In this way, the
average standard error of equipercentile equating is defined as

/Z Fxi)se2[ey (xi)].

In this equation, the error variance at each score point is weighted by its density,
f(xi), and then summed over score points. Weighting by the density is done so that
the error variance for each examinee in the population is weighted equally.
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Table 7.1 Average standard errors of equipercentile equating

Parametric
Score Bootstrap Bootstrap Analytic
Raw Score
Unsmoothed 2713 2674 2767
Smoothed 2536 2519
Unrounded Scale Score
Unsmoothed 2549 2501
Smoothed 2373 2385
Rounded Scale Score
Unsmoothed .3636 3632
Smoothed .3526 .3494

For the equipercentile equating example, the average standard errors estimated
by substituting estimates for the parameters are shown in Table 7.1. Average analytic
standard errors were calculated only for raw scores without smoothing. The averages
for the bootstrap and parametric bootstrap are very similar. For raw scores, the aver-
age standard error is somewhat lower for smoothed equating than for unsmoothed
equating. The same is true for scale scores and rounded scale scores. The average
standard error for rounded scale scores is considerably larger than the average for
unrounded scale scores in this example.

7.2.8 Caveat

The bootstrap is computationally intensive. If, for example, 500 bootstrap replica-
tions are to be conducted, then samples need to be drawn and equating needs to be
conducted 500 times. Stable standard error estimates might require using 1,000 or
more replications. However, with modern computers, this many replications often
can be accomplished reasonably quickly, at least for the mean, linear, and equiper-
centile methods considered in Chaps. 2-5. Bootstrap standard errors of equating can
be used with item response theory methods. However, to do so, random samples
are drawn and item parameters estimated many times. See Tsai et al. (2001) for an
example that used the bootstrap with IRT equating.

7.3 The Delta Method

Equations for estimating standard errors can be useful when computational time
needs to be minimized or when estimating the desired sample sizes for an equating
study. The delta method is a commonly used statistical method for deriving standard
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error expressions. The delta method is used to derive the approximate standard error
of a statistic thatis a function of statistics for which expressions for the standard errors
already exist. As a simple example, the standard error of the sample mean squared
could be estimated using the delta method, because an expression for the standard
error of a sample mean is known. For the mean, linear, and equipercentile equating
methods that were considered in Chaps. 2-5, the estimated equating relationships are
functions of sample moments and cumulative probabilities that have standard errors
which can be estimated directly. Thus, the delta method can be used to estimate
standard errors of scores equated using mean, linear, and equipercentile equating
methods.

The delta method (Kendall and Stuart 1977) is based on a Taylor series expansion.

Define for the population egy (x;; ®1, ®2, ..., ®;) as an equating function of test
score x; and parameters ®1, ®;, ..., ;. In linear equating, ®1, ®,, ..., ®; are
moments. In equipercentile equating, ®1, ©,, ..., ®, are cumulative probabilities.

By the delta method, an approximate expression for the sampling variance is

varlegy (x;)] = Z eq% var(@j) + Z Z eq}jeq}kcov((:)j, Op). (7.6)
J jFk

In this equation, @) j is a sample estimate of ®; and eq;, ; is the partial derivative of
eqy;j withrespect to © ; and evaluated at x;, ®1, O, ..., ©,. This equation requires
that expressions for the sampling variances (var) and sampling covariances (cov) of
the © ;j be available. The standard error is the square root of var in Eq. (7.6).

The following steps are used to apply the delta method:

1. Specify the error variances and covariances for each ©) e
2. Find the partial derivative of the equating equation with respect to each © ;.
3. Substitute the variances and partial derivatives into Eq. (7.6).

The resulting standard errors are expressed in terms of parameters. Estimates of the
parameters are used in place of the parameters to obtain the estimated standard errors.

7.3.1 Mean Equating Using Single Group and Random Groups
Designs

For illustrative purposes, consider a simple example using mean equating in the
single group design with no counterbalancing (use of counterbalancing would make
this example more complicated). In this design, for the population,

my (x;) = x; — (X)) + p(Y),

which is estimated by
my (xi) = xi — (X)) + fi(Y).
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To apply the delta method, note that from standard statistical theory,

var[u(X)] = c*(X)/N,
var[i(Y)] = ¢>(Y)/N, and
cov[u(X), i(Y)] = o(X,Y)/N.

Also, the required partial derivatives are as follows:
om/opu(X) = -1, om/onu(Y)=1.

Define ®1 as pu(X) and ©; as p(Y). Substituting the sampling variances and covari-
ances and partial derivatives into Eq. (7.6) results in

varliy (x)] = (=1)*6*(X)/N + (1)20*(Y)/N +2(= 1) (D)o (X, Y)/N
= [0%(X) + 02(Y) — 20(X, Y)]/N, (1.7)

for the single group design without counterbalancing.

What if a random groups design were used for mean equating with Ny = Ny =
N7 1In this case, the covariance between X and Y is 0 because independent samples
of examinees are administered the two forms. Thus, for random groups,

varliy (x;)] = [02(X) + o*(Y)]/N. (7.8)

As can be seen by comparing Eqgs. (7.7) and (7.8), if scores on Form X and Form Y
have a positive covariance for the single group design, then the error variance for the
single group design will be smaller than the error variance for the random groups
design.

7.3.2 Linear Equating Using the Random Groups Design

In implementing the delta method for linear equating with the random groups design,
w(X), o(X), w(Y), and o(Y) need to be estimated. Because Form X and Form Y
are given to independent random samples, estimates of the moments for Form X are
independent of estimates of the moments for Form Y.

Braun and Holland (1982, p. 33) presented the necessary partial derivatives and
standard errors and covariances between the moments to apply the delta method.
They showed that

S 2 L L sk(X)  sk(Y) ][ xi —p(X)
var[ly (x;))] = o (Y)[NX+NY+|: Ny Ny :||: > (X) :|
kuX)—1  ku(Y) —17[xi — p(X)7?

+[ INy 4Ny H (%) ”

(7.9)
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This equation indicates that the standard error of equating depends on the skewness
and kurtosis of the population distribution.

Inspection of this equation leads to some observations about the standard errors
for the random groups design. First, as the sample sizes increase, the error variance
decreases. In this equation, this observation is made by noting that the sample sizes
are always in the denominators of the expressions. Second, error variance tends to
be smallest near the mean. This observation is based on noting that the term

xi — p(X)7?
[ o(X) ]

becomes larger as x; moves farther from the mean, and this term is multiplied by
a term that is almost always positive (because kurtosis is positive as defined here).
Third, error variance tends to be larger in the direction that a distribution is skewed.
This observation follows because, if both distributions are positively skewed, then

the term
sk(X) n sk(Y) | [ xi — m(X)
[ Nx Ny M a(X) }

is positive for all x; that are above the mean and negative for all x; that are below the
mean. The reverse is true for negatively skewed distributions.

Ascanbe seen, the error variance expression in Eq. (7.9) is fairly complicated, even
in the simple situation in which linear equating is used with the random groups design.
Also, this expression requires computing skewness and kurtosis terms. Equation (7.9)
can be simplified. If X and Y are assumed to be normally distributed, then skewness
is 0 and kurtosis is 3. In this case, Eq. (7.9) simplifies to

2 o 2
varlly ()1 = ) [i + i} {2+ [x‘—“()()] } . (7.10)

2 Nx Ny a(X)

This expression is presented in Petersen et al. (1989) and is similar to the one pre-
sented by Angoff (1971).

A further simplification is possible if sample sizes for the two forms are assumed
to be equal. If Ny, = Nx + Ny = 2Nx = 2Ny, then Eq. (7.10) further simplifies to

S 20%(Y) xi— (X)) 7?
var[ly (x;)] = Nooy [2 + [W} . (7.11)

From Eq. (7.11) it can readily be seen that error variance becomes larger as x; departs
farther from the mean.

As Braun and Holland (1982) pointed out, if Egs. (7.10) or (7.11) for error variance
is used with nonnormal distributions, then the estimates of the standard errors will
be biased to some extent. However, the expressions that assume normality are easier
to calculate and might be useful as approximations in some situations. For example,
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when planning sample size requirements for equating studies, data are unavailable
on the forms that are to be equated. In this case, the approximations might provide
sufficiently accurate estimates of equating error. Procedures for estimating sample
size requirements are described later in this chapter.

7.3.3 Equipercentile Equating Using the Random
Groups Design

Lord (1982a) used the delta method to develop expressions for the standard
error of equipercentile equating under the random groups design. Using the notation
developed in Chap. 2, this error variance can be expressed as

1 [P (xi)/100][1 — P(x;)/100](Nx + Ny)
(GO — GOy — DI? Nx Ny
G OE) — P(xi)/100][P (xi)/100 — G (yy; — D]
Ny[G(yp) — Glyg — D]

~

var[éy (x;)]

(7.12)

To estimate the error variances, sample values can be substituted in place of the
parameters in Eq. (7.12). The error variance depends on the proportion of examinees
at scores on Form Y, as symbolized by G (y;;) — G(y[; — 1). If this quantity were 0,
then the error variance would be undefined because of a O term in the denominator.
As an alternative to using sample values, the Form X and Form Y distributions could
be smoothed using the log-linear method and the smoothed distribution values used
in place of the parameters in Eq.(7.12). The use of smoothed distribution values
in Eq. (7.12) would be similar to using the parametric bootstrap that was described
earlier.

Lord (1982a) also presented an approximation to Eq. (7.12). Petersen et al. (1989)
used Lord’s approximation and made a normality assumption to provide the following
approximation to the standard error of equipercentile equating under the random
groups design:

var[éy (x;)] = o*(Y)

[P(x;)/100][1 — P(x;)/100] [ 1 1
7 (3 +m) o

where ¢ is the ordinate of the standard normal density at the unit-normal score, z,
below which P(x;)/100 of the cases fall. If the sample sizes are equal, such that
Nyt = Nx + Ny = 2Nx = 2Ny, then Eq. (7.13) simplifies to

402(Y) [P (x;)/100][1 — P(x;)/100]

N p (7.14)

var[ey (x;)] =
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7.3.4 Standard Errors for Other Designs

The derivations of standard errors of equating using the delta method can be very
complicated, and the expression of the results can be particularly cumbersome. For
example, Kolen (1985) derived the standard errors of Tucker equating. The presen-
tation of the required partial derivatives took one full page in the article and the
presentation of the sampling errors for the moments took another full page. The
presentation of standard errors of frequency estimation equating by Jarjoura and
Kolen (1985) took even more space to present. For this reason, a comprehensive
presentation of standard errors is not provided in this book.

Table 7.2 contains references to articles that provide standard errors of equating
for many of the methods and designs discussed in this book. These articles should
be consulted for the standard error equations. See Lord (1975) and Zeng (1993)
for descriptions of the use of numerical derivatives with the delta method. Also,
Angoff (1971), Lord (1950) and Petersen et al. (1989) provided standard errors using
normality assumptions. Liou and Cheng (1995) used statistical procedures different
from the delta method to derive analytic standard errors for equipercentile equating.
von Davier et al. (2004) provided standard errors for kernel equating in each of the
designs considered.

Note that standard errors for IRT methods provided in Table7.2 are only for
dichotomous IRT models. For IRT equating, standard errors were given by Lord
(1982b) and Ogasawara (2001b) for chained true score equating in which scores on
Form X are “equated” to the common items, the common items are “equated” to
Form Y, and the Form X is equated to Form Y by a chaining process. Standard errors
for IRT equating that are not chained were derived by Ogasawara(2001b, 2003a).
Ogasawara (2000, 2001c, 2001d) estimated standard errors of A- and B- constants
for various IRT scaling methods. Baker (1996) examined the sampling distribution
of the A- and B- constants for IRT scaling methods in dichotomous IRT models,
and Baker (1997) conducted a similar study for polytomous models. Baldwin (2011)
estimated sampling errors for A- and B- constants in IRT linking using Bayesian
methods. Analytic standard errors of equating have not been derived for polytomous
IRT models.

Tsai et al. (2001) examined bootstrap standard errors of common item nonequiva-
lent groups equating using both IRT true and observed score equating with Stocking
and Lord scale linking, chained IRT equating, and concurrent estimation. Hagge et al.
(2011), Hagge and Kolen (2011) and Liu and Kolen (2011) used bootstrap procedures
to estimate standard errors of IRT true and observed score equating for mixed-format
tests in the common item nonequivalent groups design. Liu et al. (2007) used Markov
chain Monte Carlo procedures to estimate standard errors for IRT true score equat-
ing. Haberman et al. (2009) applied a jackknife procedure, which is a resampling
procedure that is similar to the bootstrap, to estimate standard errors of IRT equating.

Computer subroutines for calculating standard errors of some IRT equating meth-
ods are available from Ogasawara (2003b). Brennan et al. (2009) provided C code
for delta method standard errors for the random groups design, and provided code
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Table 7.2 References® to analytic standard errors

265

Design and method

Reference

Single group

Linear

Equipercentile
Smoothed equipercentile
Kernel

Random groups

Linear

Equipercentile
Smoothed equipercentile
Kernel

Common-item
Nonequivalent groups
Linear-Tucker
Linear-Levine observed score
Linear-Levine true score
Frequency estimation

Chained equipercentile
Smoothed equipercentile

Kernel

IRT A- and B- constants
IRT true score-chained
IRT true score

IRT observed score

Zeng and Cope (1995)

Lord (1982a), Liou and Cheng (1995)
Wang (2009)

von Davier et al. (2004)

Braun and Holland (1982)

Lord (1982a), Liou and Cheng (1995)
Holland et al. (1989), Wang (2009)
von Davier et al. (2004)

Kolen (1985)

Hanson et al. (1993)

Hanson et al. (1993)

Jarjoura and Kolen (1985)

Liou and Cheng (1995)

Liou and Cheng (1995)

Holland et al. (1989),

Liou et al. (1997), Wang (2009)
von Davier et al. (2004)
Ogasawara (2000, 2001¢, 2001d, 2011)
Lord (1982b),0Ogasawara (2001a)
Ogasawara (2001a)

Ogasawara (2003a)

4 Lord (1950) and Angoff (1971) provided standard errors for linear methods based on a normality
assumption. Petersen et al. (1989) also provided standard error expressions

that can be used to estimate standard errors of equating using the bootstrap method
for linear, unsmoothed equipercentile and smoothed equipercentile methods for the
single group, random groups, and common item nonequivalent groups designs.

von Davier et al. (2004), Moses and Zhang (2011), and Rijmen et al. (2011)
described procedures for estimating standard errors of equating differences. They
showed how such standard errors can be used to select among different equating
methods such as between linear and equipercentile methods.

7.3.5 Illustrative Example

For comparative purposes, estimated standard errors of equating for the real data
example presented in Chaps. 4 and 5 are presented in Table 7.3. In this example, Form
X and Form Y were equated using the common-item nonequivalent groups design.
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Table 7.3 Standard errors of equating for the common-item nonequivalent groups example

Standard error

Tucker Levine Frequency
Observed Estimation

X F 1(x) Score Equipercentile
0 .0000 2643 3615

1 .0000 2518 .3437

2 .0006 .2395 3261

3 .0036 2273 .3087

4 .0091 2154 2915 .2880
5 .0169 2038 2746 .2665
6 .0387 1925 .2580 2592
7 .0695 1816 2419 .2603
8 1160 1712 2262 .2499
9 .1680 1613 2111 2351
10 .2236 1521 .1967 2172
11 2918 .1437 .1832 2199
12 3692 1363 1709 2188
13 4236 1300 1598 2123
14 4918 1250 1505 2041
15 .5402 1214 1432 .1995
16 5952 1193 1381 2072
17 6477 .1190 1357 2160
18 .6918 1203 1359 .2336
19 7221 1232 1388 .2308
20 7662 1276 .1443 .2349
21 7988 1334 1520 .2506
22 .8314 .1404 1617 2487
23 .8562 .1484 1730 2614
24 8773 1572 1855 2321
25 .9027 .1668 .1992 2022
26 9215 1770 2137 .1639
27 .9402 1877 .2289 2299
28 9541 .1988 2447 3578
29 9674 2103 2610 3377
30 9776 2221 22776 .3207
31 9825 2341 .2946 2777
32 .9909 2464 3118 3864
33 .9952 .2589 3292 4707
34 .9988 2715 .3468

35 .9994 2942 3646

36 1.0000 2971 3826

Average .1480 1819 .2302

These standard errors were calculated using the CIPE computer program listed in
Appendix B. The synthetic population weight w; = 1 is used in this example.
Estimated standard errors for the Tucker method, the Levine observed score method,
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and the frequency estimation equipercentile method are presented. Average standard
errors also were calculated. As can be seen from this example, the estimated standard
errors are smaller near the middle of the distribution than at the extremes. Also, of the
three methods, the Tucker method produced the smallest estimated standard errors.
The Levine observed score method produced smaller estimated standard errors than
the frequency estimation equipercentile method at most score points. Recall that
standard errors account for random error only. Just because the Tucker method has
smaller standard errors than the Levine method in this case does not necessarily mean
that the Tucker method is preferable. More systematic error might be present with the
Tucker method than with the Levine method in this case, although it is impossible to
know for sure. In practice, a choice of method involves assessing the reasonableness
of the statistical assumptions described in Chap.4 for the equating at hand, as well
as other practical issues that are described in Chap. 8.

7.3.6 Approximations

Approximations to standard error expressions that are less complicated than the
expressions in the Table 7.2 references are useful in some situations. In this section,
two approximations are considered which are useful for comparing designs and
equating methods.

One approximation for the single group design was presented by Angoff (1971).
This approximation ignores counterbalancing and assumes that X and Y have a
bivariate normal distribution. Note also that N refers to the number of examinees
who take both forms:

2 _ L 2
var(ly ()] = T = P 1)) [2+¢1+4xx,Yn[fL—i553] }.(TI&

N o(X)

In this equation, p(X, Y) is the correlation between scores on X and Y.

Another approximation was presented by Angoff (1971) for the common-item
random groups design mentioned in Chap. 5, in which randomly equivalent groups
of examinees are administered two forms that contain common items. This equation
assumes that the populations taking X and Y are equivalent, that X and V are bivariate
normally distributed in the population, that Y and V are bivariate normally distributed
in the population, that the correlation between X and V' is equal to the correlation
between Y and V, and that the sample sizes for examinees taking the old and new
forms are equal. This equation is

a2 (N1 — p*(X, V)]
N tot

~

varlly (x;)]

m—quz

2
[2+ [1+ p*(X, V)] [ -0

(7.16)
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In this equation, p(X, V') is the correlation between common items and total score,
and Ny, is the total number of examinees taking the forms (i.e., twice the number of
examinees taking any one form).

The error variance in Eq. (7.16) can be rewritten as follows:

o2 (Y)

fot

~

varlly (x;)]

i — X7
[2[1 — PX W+ = pHx, V)] [XT;())]
(7.17)

From Eq. (7.17), it can readily be seen that, as positive values of p(X, V') increase, the
error variance decreases. That is, the greater the correlation between the total score
and the common-item score, the smaller the error variance. Equations (7.16) and
(7.17) provide an approximation to the Kolen (1985) result for the Tucker method that
might be useful when estimating sample size requirements for linear equating in the
common-item nonequivalent groups design. However, the standard errors presented
by Hanson et al. (1993) should be used whenever possible, and especially when
documenting the amount of error in an equating.

Standard errors of equating based on normality assumptions can be used as approx-
imations to standard errors under more general conditions. These approximations are
likely more accurate when the score distributions are close to being normal. Refer to
Zu and Yuan (2012) for an investigation of the use of normal approximations when
distributions are not normal.

7.3.7 Standard Errors for Scale Scores

Standard errors of equating for scale scores can be approximated based on the delta
method standard errors for raw scores. A variation of the delta method can be used
to estimate the scale score standard errors. To develop this variation, consider a sit-
uation in which a parameter ® is being estimated, where the estimate is symbolized
by ©. Also assume that the error variance in estimating the parameter is known,
which is symbolized by var (). Finally, assume that the estimate is to be trans-
formed using the function f. In this situation, Kendall and Stuart (1977) showed
that, approximately,
var f(©)] = f*(©)var (®),

where [’ is the first derivative of f. That is, the error variance of the function of a
random variable can be approximated by the product of the square of the derivative
of the function at the parameter value and the error variance of the random variable.

This formulation can be applied to equating by substituting eqy (x;) for the para-
meter O, eqy (x;) for (:), and the Form Y raw-to-scale score transformation s for
the function f. To apply this equation directly, the first derivative of the Form Y
raw-to-scale score transformation is needed at eqy (x;).
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If the Form Y raw-to-scale score transformation is linear, then the derivative of
the raw-to-scale score transformation is equal to the slope of the Form Y raw-to-scale
score linear transformation, which is a constant at all eqy (x;). In this case, the scale
score error variance can be approximated by taking the product of the raw score error
variance and the squared slope of the Form Y raw-to-scale score transformation. If
the Form Y raw-to-scale score transformation is nonlinear but continuous, then the
scale score error variance can be approximated by taking the product of the squared
first derivative of the estimated Form Y raw-to-scale score transformation at eqy (x;)
and the estimated raw score error variance.

The Form Y raw-to-scale score transformation is often nonlinear and not contin-
uous. In this case, the derivative of the Form Y raw-to-scale score conversion near
eqy (x;) needs to be approximated. To approximate this derivative, the Form Y raw-
to-scale score conversion can be viewed as a set of points connected by straight lines.
The slope of the line near gy (x;) can be used as an approximation of the derivative.
For example, in the numerical example presented in Chap.2 (see Table2.7), under
equipercentile equating a Form X raw score of 24 was estimated to be equivalent to a
Form Y raw score of 23.9157. The slope of the Form Y raw-to-scale score conversion
at a Form Y raw score of 23.9157 can be found by taking the difference between the
Form Y scale score equivalents at Form Y raw scores of 24 and 23. From Table 2.8,
these equivalents are 22.3220 and 21.7000. The difference between these equivalents
is 0.6220, which can be taken as the slope of the raw-to-scale score conversion at
a Form Y raw score of 23.9157. From Table 3.2, the estimated raw score standard
error of unsmoothed equipercentile equating at a Form X score of 24 is .3555. Thus,
the scale score error variance for unsmoothed equipercentile equating is approxi-
mately .62207(.3555%) = .0489, and the scale score standard error is approximately
.6220(.3555) = .2211. This process can be used to approximate scale score standard
errors of equating at other score points as well. Because these standard errors are
designed only for unrounded scale scores, the bootstrap or a similar procedure should
be used to estimate standard errors for rounded scale scores.

7.3.8 Standard Errors of Equating Chains

Delta method standard errors can be used to estimate standard errors of equating
chains. When the equatings are independent, as is typically the case with the ran-
dom groups design, a delta method variant suggested by Braun and Holland (1982,
p. 36) can be used. Suppose that in the equating chain, Form X is equated to Form
Y by equating Form X to Form X; and Form X; to Form Y. The error variance of
converted scores for an equating chain can be approximated as follows:

Var(éqy ehain:x 1) (¥2)1 = var(éqy (xP)] + eq’gy (x2) - varlég x; (x2)1.
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where x{ = egx1(x2) and “13?1 (x2) is the squared first derivative of the function
for equating Form X, to Form X;. The standard error is the square root of this
expression. If the equating function is not continuous, then an approximation to the
derivative (e.g., the slope of the conversion at x) could be used in its place. Braun
and Holland (1982) pointed out that when forms which are constructed to be parallel
are equated, this derivative is generally close to 1. In this case, the derivative can be
set equal to 1 and the error variance of the chain can be approximated by summing
the error variances of the two component equatings.

The procedure just described is strictly appropriate only when the equatings are
independent, such as in a chain of equatings conducted using the random groups
design. When using the common-item nonequivalent groups design, Zeng et al.
(1994) suggested that equatings are dependent. As an example of this dependency in
a chain, examinees who were administered Form X; would be involved in equating
Form X5 to Form X, and Form X; to Form Y. In this case, the dependency should
be incorporated into the estimation. See Lord (1975) and Zeng et al. (1994) for
details on how the effects of the dependency can be incorporated into the process of
estimating standard errors. Also see Guo (2010) who described a situation where,
at different times, independent groups of examinees are used to conduct equating
with the common item nonequivalent groups design. Guo (2010) pointed out that
assuming that the equatings are independent, when they are not, can still lead to a
lower bound estimate of the standard error of equating for equating chains.

7.3.9 Using Delta Method Standard Errors

The standard error expressions are useful for comparing the precision of equating
designs and equating methods, and for estimating sample sizes. Because comparisons
can become exceedingly complicated, in this section only an idealized situation is
examined in which normal distributions are assumed. Also, only the random groups
and single group designs are studied, although the approach described can be gen-
eralized to other designs. Equipercentile equating is examined only for the random
groups design. Lord (1950) and Crouse (1991) provided comparisons in addition to
the ones presented here. For ease of reference, Table 7.4 lists the equations that are
used in this section.

Random Groups Linear Versus Random Groups Equipercentile

One question that might be asked is how precise is equipercentile equating relative
to linear equating when using the random groups design? This question can be
addressed readily if the sample size is equal and a normality assumption is made.
Under these assumptions, the linear error variances are given in Eq.(7.11), the
equipercentile error variances are given in Eq.(7.14), and
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Table 7.4 Selected equating error variance equations assuming normality and equal sample sizes
per test form

Random groups linear

e 202 x = p(X) 7
varlly (x;)] = N [2+[ > ) ] (7.11)

Random groups equipercentile
- 40%(¥) [P (x1)/100][1 — P(x;)/100]

varléy (x;)] = N P (7.14)
tot
Single group linear
. 21— p(X, V)] xi—pX) 7
var(ly (x;)] = S — 241+ pX, V)] [W} (7.15)

Table 7.5 Comparison of relative magnitudes of random groups linear and equipercentile error
variances

2P (1 — P*) 2P (1 — P*)

k% *k 2
z P 1—-P 10) 7¢2 24z 201D
.0 .5000 .5000 .3989 3.14 2.00 1.57
5 6915 .3085 3521 3.44 2.25 1.52
1.0 8413 1587 .2420 4.56 3.00 1.52
1.5 9332 .0668 1295 7.43 4.25 1.75
2.0 9772 .0228 .0540 15.28 6.00 2.54
2.5 9938 .0062 .0175 40.23 8.25 4.88
3.0 9987 .0013 .0044 134.12 11.00 12.19
_ X — p(X)
S 0X)

is a unit-normal score, To compare the error variances note that both equations
have 202(Y) / Nior as multipliers, so these terms can be ignored when comparing the
relative magnitudes of the error variances by taking the ratio of one error variance
to the other.

A comparison of the relative magnitudes is made in Table 7.5 at selected z-scores.
The z-scores are used so that the table can be used with any test by converting
the number-correct scores to z-scores. In this table, P** = P/100. The rightmost
column of the table presents the ratio of the error variances at selected z-scores.
For scores near the mean, the values around 1.5 indicate that the error variance for
equipercentile equating is approximately 1.5 times that of linear equating. The ratio
becomes much larger farther away from the mean; for example, for a z-score of 2.5,
the ratio is nearly 5.

The ratios in the table can be used to make statements about the relative sample
sizes required in linear and equipercentile equating to achieve the same equating pre-
cision. For example, to achieve the equating precision near the mean that is achieved
with a sample size of 1,000 with linear equating, a sample size of 1,570 (1, 000x 1.57)
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Table 7.6 Ratio of linear method random groups equating error variance to single group equating
error variance

p=.0 p=.2 p=.5 p=.7 p=.9
z=.0 2.00 2.50 4.00 6.67 20.00
z=.5 2.00 2.45 3.79 6.19 18.18
z=1.0 2.00 2.34 3.43 5.41 15.38
z=15 2.00 2.26 3.16 4.86 13.55
z=2.0 2.00 2.21 3.00 4.55 12.50
z=25 2.00 2.17 2.90 4.36 11.89
z=3.0 2.00 2.15 2.84 4.24 11.52

would be needed with equipercentile equating. As another example, to achieve the
equating precision at a z-score of 2.5 that is achieved with a sample size of 1,000
with linear equating, a sample size of 4,880 (1, 000 x 4.88) would be needed with
equipercentile equating.

Do smaller standard errors for the linear method mean that the linear method is
better than the equipercentile method? Not necessarily. Recall that standard errors
account only for random error in equating. If the relationship is nonlinear, then
equipercentile equating might provide a more accurate estimate of the population
equivalent, even when it has a much larger standard error than the linear method,
because of systematic error that could be introduced by using the linear method.

Random Groups Linear Versus Single Group Linear

Table 7.6 presents the ratio of random groups to single group equating error variance
for the linear method. Normal distributions are assumed. The values in this table
were calculated by taking the ratio of Eq.(7.11) to Eq.(7.15) for selected values of
z and p(X,Y), where p is used to symbolize p(X, Y) in the single group design.
In taking the ratio, the total number of examinees for the single group design (N)
cancels out the total number of examinees for the random groups design (V).

These ratios indicate the relative precision of linear equating in the two designs.
These ratios also indicate the relative number of examinees needed to achieve a given
level of precision. For example, in the unlikely event that the correlation between
X and Y is O, the tabled ratio of 2.00 indicates that twice as many examinees are
needed in random groups design to get the same precision that is achieved with the
single group design. Thus, for example, if p(X, Y) = 0, then 2,000 examinees would
be required in the random groups design to achieve the same level of precision that
could be attained with 1,000 examinees using the single group design.

In the single group design, however, each examinee takes Form X and Form Y. In
the random groups design, different examinees take Form X and Form Y. Thus, in the
preceding example, the 1,000 examinees in the single group design would take 2,000
test forms (1,000 Form X and 1,000 Form Y). That is, if p(X, Y) = 0, then the same
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number of forms would need to be administered under the two designs to achieve
a given level of precision. This example illustrates that, if interest is in estimating the
relative number of test forms that need to be taken, rather than the relative number
of examinees that need to be tested, the values in Table 7.6 should be divided by 2.

The quantity p(X, Y) in the single group design is an alternate forms reliability
coefficient. Of the tabled values, p(X, Y) = .7 or .9 are the most realistic, because
alternate forms to be equated can be expected to be positively correlated when admin-
istered to the same examinees. For p = .70, depending on the level of z, between 4.24
and 6.67 times as many examinees would be needed for the random groups design to
achieve the same level of precision as for the single group design. For example, for
p = .70, atotal of 6,670 examinees would be needed with the random groups design
to achieve the same level of precision as would be achieved with 1,000 examinees in
the single group design. For p = .90 and z = 0, a total of 20,000 examinees would
be needed with the random groups design to achieve the same level of precision
as would be achieved with 1,000 examinees in the single group design. Therefore,
for highly reliable tests, the sample size requirements for the single group design
can be considerably less than those for the random groups design. Of course, it is
possible that either of these sample sizes would lead to considerably more precision
than would be necessary in an equating. (Estimating sample size requirements is
considered in the next section.)

Counterbalancing issues and context effects, such as practice and fatigue, can
introduce systematic error with the single group design. These issues are effectively
ignored in Table 7.6. Using counterbalancing can lead to greater sample size require-
ments. Also, recall from Chap.2 that when differential order effects are present in
the single group with counterbalancing design, the data from the test taken second
might need to be disregarded. In this case, the data that can actually be used to equate
Form X and Form Y are from the form taken first, and the random groups standard
errors would need to be used.

Estimating Sample Size for Random Groups Linear Equating

In addition to comparing equating error associated with different designs and meth-
ods, standard errors of equating also can be useful in specifying the sample size
required to achieve a given level of equating precision for a particular equating
design and method. In order to use standard errors in the process of estimating
sample size requirements, the desired level of precision needs to be stated. Ideally,
equating error should be small and not make a significant contribution to error in
reported test scores. In practical situations, the significance of this contribution needs
to be operationalized.

Consider the following example. Suppose that linear equating with the random
groups design is to be used. Also suppose that, for a particular equating, a standard
error of equating that is less than .1 standard deviation unit is judged not to make
a significant contribution to error in reported scores. In this situation, what sample
size would be required?
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Equation (7.11) presents the error variance for this situation. Let u refer to the
maximum proportion of standard deviation units that is judged to be appropriate for
the standard error of equating. The value of N, is found that gives a specified value
for uo (Y) for the standard error of equating. In the example just presented, u = .1
standard deviation unit. Based on this specification, from Eq.(7.11),

2 2 20°() xi = p(X)7?
u“o“(Y) = N IZ—}— |:—0(X) :| }

Solving for Ny,

~ 2 xi—pX) 7
Niot = P [2+ [W] ] ) (7.18)

which represents the total sample size required for the standard error of equating to
be equal to u standard deviation units on the old form. For example, if u = .1, then
the sample size needed for a Form X unit-normal (z) score of 0 is

2

Thus, a total of 400 examinees (200 per form) would be required at a unit normal
score of 0. How about at a z-score of 2? Using Eq. (7.18), N;r = 1, 200 (600 per
form).

What can be concluded? Over the range of Form X z-scores between —2 and
+2, the standard error of equating will be less than .1 Form Y standard deviation
unit if the total sample size is at least 1,200. This specification requires a normality
assumption, so it should be viewed as an approximation. In addition, the range of
scores is stated in z-score units, which could be transformed to reported score units
when describing how the necessary sample size was estimated.

Estimating Sample Size for Random Groups Equipercentile Equating

A similar question could be asked about equipercentile equating with the random
groups design. Using the same logic that was used with linear equating, an expression
for Ny, can be derived from Eq.(7.14) as

4[P(x;)/100][1 — P(x;)/100]

Nl()t = u2¢2

(7.19)

Recall that this equation assumes that the scores on Form X are normally distributed.
Consequently, z = 0 when P(x;) = 50, and z = 2 when P(x;) = 97.72 (see
Table7.5).
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For example, if u is set at .1 for a Form X z-score of 0, this equation results in
Nior = 628.45. For a Form X z-score of 2, this equation results in N,y = 3, 056.26.
So, over the range of Form X z-scores between —2 and +2, the standard error of
equating will be less than .1 Form Y standard deviation unit if the total sample size
is at least 3,057 (by rounding up) using equipercentile equating. No smoothing is
assumed in deriving this result.

Refer to Table 7.5. The ratio of sample sizes for equipercentile and linear equating
equals (within rounding error) the ratios given in Table7.5. For example, for z = 2,
the ratio of sample sizes is 3, 056.26/1, 200 = 2.55, which is the value shown in
Table 7.5, apart from rounding error.

Estimating Sample Size for Single Group Linear Equating

Sample size requirements also can be estimated for linear equating using the single
group design. Using Eq. (7.15) and a process similar to that used to derive Eq. (7.18),

[— ;g 2
ye =Pt 1l ‘2 + 11+ p(X, Y)] [x—“(x)] ] . (120)
u a(X)

To use Eq. (7.20) it is necessary to specify p(X, Y).

To continue the example considered earlier, what sample size is required with
linear equating for the single group design so that the standard error of equating is
less than .1 Form Y standard deviation unit over the range of z-scores from —2 to
+27? Assume that p(X, Y) = .7. In this case, application of Eq. (7.20) indicates that a
sample size of N = 60 is required at z = 0 and a sample size of N = 264 is required
at z = 2. At z = 0, the ratio of sample sizes for the linear random groups design to
the linear single group design is 6.67 (400/60), which is the ratio shown for z = 0
and p = .7 in Table 7.6. Similarly, the ratio for z = 2.0 is 4.55 (1,200/264), which
also is shown in Table 7.6.

Specifying Precision in sem Units

Sometimes, equating error is specified in terms of the standard error of measurement
(sem) rather than the standard deviation, especially when the focus of test use is on
individual examinees’ scores. For example, an investigator might ask what sample
size would be needed for the random groups design if the standard error of equating
is to be less than .1 of the standard error of measurement? Using p(X, Y) as alternate
forms reliability, the standard error of measurement is

sem =co(Y)y/1—p(X,Y).
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To use Eqgs.(7.18)—(7.20) to estimate sample size, it is necessary to relate error
specified in terms of sem units to standard deviation units. Let u,,, represent sem
units. Then, multiplying both sides of the preceding equation by i, results in

UsemSem = Usem0 (Y)/1 — p(X, Y).

Because u was defined earlier as a multiplier for o (Y),

U= tgem/ 1 —p(X,Y).

In the example, assume that p(X, Y) = .7, as was done earlier. If the standard error
of equating is to be less than .1 of the standard error of measurement, then

U =usgmy!1—pX,Y)=.14/1-.7=.055.

In the example, finding the sample size for which the standard error of equating is .1
standard error of measurement unit is the same as finding the sample size for which
the standard error of equating is .055 standard deviation unit. What would be the
required sample size for the random groups design at z = 2? Applying Eq. (7.18),

2

W(z +2%) = 3966.94.

~
Ntot =

For the single group design, applying Eq. (7.20) gives

1-.7
N — 2+ (1+.7)2%] = 872.73.
.0552[ + (14 .7)27]

The ratio of these two sample sizes is approximately the value of 4.55 shown in
Table7.6 for z = 2.0 and p = .7.

7.4 Using Standard Errors in Practice

Standard errors of equating are used as indices of random error in equating. As was
discussed earlier in this chapter, the delta method standard errors of equating can
be used to compare the amount of equating error variability in different designs
and methods, and to estimate sample size requirements. In this process, the degree of
precision needs to be stated, which is necessarily situation-specific. In some situations
it is necessary to have considerable precision. For example, with the ACT (ACT
2007), important decisions are made over most of the score range; this test is used to
track educational trends, and small changes in the national mean from one year to the
next make front-page news; and large samples can be made available for equating,
so that high equating precision can be obtained. For tests where the decisions are
viewed to be less critical, more equating error (as well as measurement error) might
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be judged to be acceptable. Or, it might be impossible to obtain large samples for
equating, and more equating error might need to be present. For many certification
and licensure tests, interest is primarily in deciding whether examinees exceed a
passing score. Often with these tests, a passing score is set on one test form, and the
primary purpose of equating is to ensure that an equivalent passing score is used on
other test forms. In this case, scores near the passing score are of primary interest,
and the focus would be on equating error near the passing score when comparing
designs and estimating sample size requirements. For example, in finding the sample
size, the standard error of equating at the passing score that would be desirable to
achieve might be no more than .1 standard deviation unit.

In using equating error variability to compare different designs and methods,
and to estimate sample size requirements, the delta method standard errors with
the most restrictive assumptions (e.g., normality) were used in this chapter to pro-
vide reasonable approximations. The simplicity of these approximations facilitates
these comparisons and sample size estimation. Also, more specific information about
distributions, such as precise estimates of skewness and kurtosis, often is not avail-
able, providing further justification for using the approximations. However, these
approximations should be used cautiously because they can be inaccurate, especially
when the distributions are not normal or when the other simplifications used in these
derivations are unrealistic.

Equating is a statistical procedure, and, as such, the amount of random error that
is present in estimating equating relationships should be documented. Like measure-
ment error, which is often indexed by the standard error of measurement, random
equating error is potentially a significant source of error in scores that are reported to
examinees. Therefore, it is important to have reasonable estimates of random equat-
ing error, and to be able to tell whether random equating error adds substantially to the
amount of error in test scores. Bootstrap standard errors are useful for documentation
purposes, and, as was indicated earlier in this chapter, bootstrap standard errors can
be calculated for rounded scale scores. If available, delta method standard errors pro-
vide an analytic expression for the standard errors, although delta method standard
errors have not been developed for rounded scale scores. When using delta method
standard errors for documentation purposes, standard errors derived under the least
restrictive assumptions (e.g., without a normality assumption) should, in general, be
used unless the sample size is very small. With small samples, the standard errors
derived under the least restrictive assumptions might be inaccurately estimated. For
example, estimates of skewness and kurtosis are needed to apply the standard errors
of linear equating derived under the least restrictive assumptions. Large samples
are needed to estimate skewness and kurtosis precisely. In one simulation, Kolen
(1985) found that the delta method standard errors with the normality assumption
were preferable for estimating the standard errors of Tucker equating with a sample
size of 100 examinees per form. In simulations with larger sample sizes conducted
by Kolen (1985), the delta method standard errors without the normality assumption
were more accurate. Parshall et al. (1995) examined standard errors in the process of
choosing among methods of equating. For example, in Chap. 3, standard errors were
used to help choose between different degrees of in equipercentile equating.
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7.5 Exercises

7.1.

Assume that the four bootstrap samples of size Nx = 4 shown near the begin-
ning of the chapter (see the section titled “Standard Errors Using the Boot-
strap”) and listed below were for Form X of a test. Also assume that, for Form
Y, Ny = 3 with values 1, 4, and 5 and that the following four bootstrap samples
were drawn (use N to calculate sample variances):

Form X Form 'Y

Sample 1: 6 3 6 1 Sample 1: 1 4 4
Sample 2: 1 6 1 3 Sample2:4 5 5
Sample 3:5 6 1 5 Sample3:1 5 5
Sample4:5 1 6 1 Sample4:1 1 4

Also assume that Form X and Form Y were administered using the random
groups design.

a. What is the bootstrap estimated standard error of linear equating at Form X
raw scores of 3 and 5?

b. Assume that the following raw-to-scale score conversion equation for Form Y
has already been developed: s(y) = .4y+10. What is the bootstrap estimated
standard error of linear equating of unrounded scale scores for Form X raw
scores of 3 and 57

c. For the situation described in (b), what is the bootstrap estimated standard
error of linear equating of scale scores, rounded to integers, for Form X raw
scores of 3 and 5?

d. What is the delta method (assume normality) estimated standard error of
linear equating of raw scores for Form X raw scores of 3 and 5?

7.2. Verity that the standard error of equipercentile equating at a Form X raw score

7.3.

of 25 is approximately .30 for the data shown in Table 2.5. Use Eq. (7.12). How
does this value compare to the value calculated using Eq. (7.13)? What possible
factors would cause these values to differ?

A standard setting study was conducted on Form Y of a test, and the passing
score was set at a score on Form Y that was approximately 1 standard deviation
below the mean in a group of examinees who took the test earlier. Assume that
the group of examinees to be used in an equating study is similar to the group
of examinees that was administered Form Y earlier.

a. What sample size would be needed in random groups linear equating to
achieve a standard error of equating less than .2 standard deviation unit near
the passing score? Use Eq. (7.18).

b. What sample size would be needed to achieve comparable precision near the
passing score using random groups equipercentile equating? Use Eq. (7.19).

c. Suppose that the population equating relationship was truly linear. Which
method would be preferable? Why?
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7.4. Suppose that Form X scores and Form Y scores each had a population mean
equal to 0 and standard deviation equal to 1. Also assume that, for the population,
the Form Y equipercentile equivalent of a score of 1 on Form X was 1.2 and that
the linear equivalent was 1.3. For estimating the equipercentile equivalent of a
Form X score of 1, would it be better to use linear or equipercentile equating
in this situation if the sample size was 100 examinees per form? How about
if the sample size was 1,000 examinees per form? What are the implications
of your answers? Assume a random groups design. [Use Eqs. (7.11) and (7.14)
as a means to simplify this situation. Hint: It is necessary to incorporate the
notion of equating bias and provide an expression for mean squared equating
error as discussed in Chap. 3 to answer this question. In this exercise, assume
that equipercentile has no bias and that linear has bias of .1 = 1.3 — 1.2.]

7.5. For Form X and Form Y of a 50-item test, assume that u(X) = 25, u(Y) = 27,
o(X)=5,and o(Y) = 4.

a. Assume that a random groups design was used with Ny = Ny = 500.
Find the standard error of linear equating for x = 23 and 35. (Use normal
distribution assumptions.)

b. Assume that a single group design was used with N = 500 and that
p(X,Y) = .75. Find the standard error of linear equating for x = 23 and
35. (Use normal distribution assumptions.)

c. Assume that a random groups design was used with Ny = Ny = 500. Find
the standard error of equipercentile equating for x = 23 and 35. (Use normal
distribution assumptions.)

d. Assuming that the reliability of the test is .75, what sample size would be
needed for the standard error of random groups linear equating to be less
than .3 standard errors of measurement on the Form Y scale for x = 23 and
35? (Use normal distribution assumptions.)

7.6. How would you estimate the standard error of the identity equating? What are
the implications of your answer for using this method in practice?
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Chapter 8
Practical Issues in Equating

Many of the practical issues that are involved in conducting equating are described
in this chapter. We describe major issues and provide many references. The early
portions of this chapter focus on equating dichotomously scored paper-and-pencil
tests. In later portions, the focus broadens to include practical issues in other contexts,
including computer-based testing and tests that contain constructed-response items.
Various articles have been written that consider practical issues in equating and that
inform practice (e.g., Brennan and Kolen 1987a; Cook 2007; Cook and Petersen
1987; Dorans 1990; Dorans et al. 2011; Harris 1993; Harris and Crouse 1993; Kolen
and Lee 2011, 2012; Marco et al. 1979; Petersen 2007; Petersen et al. 1982, 1983;
Skaggs 1990; Skaggs and Lissitz 1986; von Davier 2007).

The practical issues described in this chapter follow from the discussion of equat-
ing in Chap. 1. Chapter 1 indicated that equating should be considered when alternate
forms of tests exist, scores on the alternate forms are to be compared, and the alter-
nate forms are built to the same detailed specifications so that they are similar to one
another in content and statistical characteristics. It was stressed that, under appro-
priate conditions, equating can be used to improve the accuracy of test scores used
in making important individual level, institutional level, or public policy level deci-
sions. When decisions might be made along the entire range of scores, equating at all
score points is important. If only pass-fail decisions are to be made, then the accuracy
of equating might be of concern mainly near the passing score.

Also, as was indicated in Chap. 1, a major consideration in designing and con-
ducting equating is to minimize equating error. Although the purpose of equating is
to decrease error, under some circumstances implementing an equating method can
increase equating error, in which case it might be best not to equate. As was described
in Chap. 7, random error is error due to sampling of examinees from a population of
examinees. The use of large sample sizes, smoothing in equipercentile equating, and
a judicious choice of an equating design can help control random error.

Systematic error results from violations of the conditions of equating or the sta-
tistical assumptions required; it is more difficult to control than random error. Some
examples of situations where systematic error might be a problem include (1) the use
of a regression method (refer to Chap. 2 for a discussion of the lack of symmetry of
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regression methods) to conduct equating, (2) the use of linear equating to estimate
an equipercentile relationship when the linear relationship does not hold, (3) the use
of the Levine observed score method when true scores on the common items are not
perfectly correlated with true scores on the total test, and (4) item context effects, in
which, for example, a common item appears as the first item in Form X and as the
last item in Form Y, with consequent changes in the performance of that common
item. Systematic error is difficult to quantify. In practice, whether or not equating
reduces systematic error can be difficult to determine, and often no clear-cut criterion
for evaluating the extent of the error exists. Systematic error can best be controlled
through careful test development, adequate implementation of an equating design,
and use of appropriate statistical techniques.

When conducting equating, judgments must be made that go beyond the statisti-
cal and design issues described in Chaps. 2 through 7. Equating requires judgments
about issues in test development, designing the data collection, implementing the
design, analyzing the resulting data, and evaluating the results. As is discussed later
in this chapter, sometimes practical constraints do not allow sound equating to be
conducted, in which case it might be better not to equate. When equating is judged
to be useful, many decisions need to be made. Prior to collecting data or applying
statistical equating methods, choices need to be made, such as which data collection
design to use, which form(s) to use as old form(s), and how many common items
to use. Other choices about how to analyze the data need to be made as well, such
as which operational definition(s) of equating to use and which statistical estimation
method(s) to apply. Other decisions are made after the data are collected, such as
which examinees to include in the equating process, which common items to retain,
and which equating result to use. Clear-cut criteria and rules for making these deci-
sions do not exist: The specific context of equating in the particular testing program
dictates how these issues are handled. Equating involves compromises among vari-
ous competing practical constraints. In this sense, an ideal equating likely has never
occurred in practice.

Even when an equating study is well designed and statistical assumptions are
met, an otherwise acceptable equating can be destroyed because of inadequate quality
control procedures. Serious problems can result, for example, if an item is incorrectly
keyed, if a common item differs from one form to another, or if a mistake is made
in communicating the correct conversion table. In our experience, quality control
procedures deserve considerable emphasis, because problems with quality control
have serious consequences. If quality control procedures fail, then the data gathered
in an equating study can lead to erroneous conclusions about the comparability
of test forms. In major testing programs, quality control procedures often require
considerably more effort than that expended in actually conducting the statistical
equating.

The practical issues in equating described in this chapter are organized by topics in
roughly the order that they might need to be considered: test development, equating
designs, statistical procedures, evaluating results, and quality control and standard-
ization procedures. Then, issues in speical circumstances, including comparability
for computer-based tests and constructed-response tests, are discussed.
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8.1 Equating and the Test Development Process

According to Mislevy (1992),

Test construction and equating are inseparable. When they are applied in concert, equated
scores from parallel test forms provide virtually exchangeable evidence about students’
behavior on the same general domain of tasks, under the same specified standardized
conditions. When equating works, it is because of the way the fests are constructed ...
(p-37)

Thus, systematic test development procedures are vital to producing adequate equat-
ing. (See Schmeiser and Welch 2006, for a general discussion of test development
procedures.)

8.1.1 Test Specifications

Equated scores on alternate forms can be used interchangeably only if the alternate
forms are built to carefully designed content and statistical specifications. Develop-
ing tests in this way can result in forms that are very similar in what they measure,
with the only major difference being the particular items that appear on the alternate
forms. No matter how careful the test construction process is, however, the forms
that result will differ somewhat in difficulty. Equating is intended to adjust for these
statistical differences.

When test construction procedures are functioning well in large-scale testing
programs, considerable effort is made to ensure that alternate forms are similar. The
content and statistical test specifications are detailed and forms are constructed to
meet these specifications. Equating can be successful only if the test specifications
are well defined and stable.

The content specifications are developed by considering the purposes of testing,
and they provide an operational definition of the content that the test is intended to
measure. The content specifications typically include the content areas to be measured
and the item types to be used, with the numbers of items per content area and
item types specified precisely. The content specifications are crucial for developing
alternate forms that can be equated. A test form must be sufficiently long to be able
to achieve the purposes of the test, and it must provide a large enough sample of
the domain for the alternate forms to be similar. For example, a 10-item test that
covers a content domain consisting of 20 areas could not be expected to sample
the domain adequately. If each form is an inadequate sample, then the forms can
differ considerably in what they measure, and scores on alternate forms might not
be interchangeable, even after equating is attempted. One useful rule of thumb is
that test length should be at least 30—40 items when equating educational tests with
tables of specifications that reflect multiple areas of content, although the length of
a test required depends on the purposes of testing, the heterogeneity of the content
measured, and the nature of the test specifications.
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Although not as crucial as content specifications, statistical specifications are also
important. Statistical specifications often are based on classical statistics such as the
target mean, standard deviation, and distribution of item difficulties and discrimina-
tions for a particular group of examinees. Correlations of items with other tests in a
test battery also might be checked to maintain the same degree of association among
tests in the new forms of the battery. Statistical specifications based on IRT often are
used, such as target test characteristic curves and target information curves.

For previously used items, the statistics are based on previous administrations.
Statistics for new items often are estimated using pretesting procedures. Another
benefit of pretesting is that previously undetected item flaws might be discovered
before an item is used operationally. Often item statistics are adjusted to estimate
the item characteristics for a particular group of examinees under operational testing
conditions. When a large pool of items with item statistics exist, procedures described
by van der Linden (2005) can be used to assemble test forms that meet specified
characteristics.

In situations where new items cannot be pretested, tests might need to be con-
structed without the benefit of item statistics, which can make it difficult to control
the statistical characteristics of the test. In these situations methodology described
by Mislevy et al. (1993) and Hsu et al. (2002) might be useful for estimating item
statistics from characteristics of items including item content, item format, and expert
judgment about the items.

8.1.2 Changes in Test Specifications

Test specifications often evolve over time. In a strict sense, any change in spec-
ifications leads to forms that might not be interchangeable. With minor changes,
however, testing programs often continue to attempt to equate, often with only
minimalproblems.

Sometimes test specifications are modified in a way that is more than minor, but
such that test developers expect to be able to equate scores from before and after
modification. The 2005 revision of the SAT is an example of this sort of change as
described by Liu and Walker (2007). With this revision, changes in content, item
format, and test length were made, although the changes were constrained with the
goal of being able to equate scores. Liu and Walker (2007) described the process
used to assess whether the scores could be equated. The process included examining
the similarity of test content, the construct assessed, and the precision of scores.
In addition, the strength of the relationship between scores on the test before and
after modification and the invariance of the linking of such scores for subgroups
of examinees were assessed. In another study, Liu et al. (2005) investigated the
population invariance of linking in this situation. The process provided by Liu and
Walker (2007) along with the discussion by Brennan (2007) should be considered
whenever attempting to equate scores following a change in test specifications.
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At other times the changes in the specifications are clearly major. For example, in
an achievement test, curriculum consultants might suggest that changes in instruc-
tional programs have altered the emphases in a subject matter area, thus requiring a
change in the test. In professional certification examinations, the content specifica-
tions often change because of changes in the field of study. For example, a particular
content area might become obsolete and be replaced by a new area. It is even possible
for the answer key for an item to change, say, because of a change in law or a change
in standard procedures.

When the test specifications are modified significantly, scores obtained before the
test was modified cannot be considered interchangeable with scores obtained after
the test was modified, even if an “equating” process is attempted. Indeed, in these
situations it is better to refer to this process as linking. Instead of linking scores across
test versions, the changes in content are often judged to be severe enough that the
tests are rescaled. For example, when the SAT was revised for use in 1995, various
technical issues associated with implications of changes in the test and the score scale
were studied intensively (Lawrence et al. 1994; Dorans 1994a, b, 2002). When the
ACT was rescaled (Brennan 1989) concordance tables were developed that related
scores on the new test to scores on the old test. In both of these cases, the ranges
of scale scores stayed the same for political reasons, although choosing a distinct
new score scale might have avoided confusion between the old and new scores. In
practice, changes in specifications come in varying degrees, and the chosen approach
should be tailored to the situation.

8.1.3 Characteristics of Common-Item Sets

When using the common-item nonequivalent groups design, common-item sets
should be built to the same content specifications, proportionally, as the total test
if they are to reflect group differences adequately. In constructing common-item sec-
tions, the sections should be long enough to represent test content adequately. Harris
(1991a) and Klein and Jarjoura (1985) found that lack of content balance in the
common-item set had a substantial adverse effect on equating. Marco et al. (1979);
Petersen et al. (1982); and Dorans et al. (2008) found that sets of common items that
were from a content area different from the test had an adverse effect on equating.
However, see Zu and Liu (2010) for a study in which equating was improved by
using a set of common items with item type representation that was different from
that for the total test forms. Cook and Petersen (1987) reported that inadequate con-
tent representation of the common-item set creates especially serious problems when
the examinee groups that take the alternate forms differ considerably in achievement
level.

In general, common-item sets should be built to the same statistical specifications,
proportionally, as the total test. However, a series of studies has shown that items
with a less variability in item difficulties can sometimes lead to test equating that is
as stable, and sometimes more stable, than equating with a statistically representative
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set of common item items (Liu et al. 2011; Liu et al. 2011; Sinharay and Holland
2006, 2007).

The number of common items to use should be considered on both content and
statistical grounds. Statistically, larger numbers of common items lead to less ran-
dom equating error (Budescu 1985; Wingersky et al. 1987). Fitzpatrick (2008) and
Petersen et al. (1983) indicated that too few common items could lead to equating
problems. Very small numbers of items were suggested as adequate in some of the
studies reviewed by Harris (1993), although in most of the studies that supported
the use of very few common items the recommendations were based on simulating
data from a unidimensional IRT model. Because educational tests tend to be het-
erogeneous, larger numbers of common items are likely required for equating to be
adequate in practice. Experience suggests the rule of thumb that a common item set
should be at least 20 % of the length of a total test containing 40 or more items, unless
the test is very long, in which case 30 common items might suffice. (Angoff 1971,
suggested a very similar rule of thumb.) In considering the numbers of common
items to use in a particular testing program, the heterogeneity of the test content also
should be considered.

Serious problems can result if the context in which the common items appear
differs from the old to the new form, as was the case with the NAEP example
described in Chap. 1. One way to help avoid having the common items function
differently in the two groups is to administer common items in approximately the
same position in the old and new forms (Cook and Petersen 1987). Also, the response
alternatives should appear in the same order in the old and new forms (Cizek 1994).
If a common item is associated with stimulus materials that were used with a set
of items in the old form, then the entire set of items associated with those stimulus
materials should be included on the new form to avoid context effects. If necessary to
achieve content balance, some of these items could be treated as noncommon items
for the purposes of equating. Other context effects and quality control issues (e.g.,
items changed from one administration to another) also should be controlled.

As was suggested in Chap.6, common-item statistics can be compared across
examinee groups used in the equating to help decide whether the items are functioning
differently in the two groups. IRT statistics and classical statistics can be used. For
example, items might be identified with classical item difficulties that differ by more
than .1, in absolute value, for the old and new groups. These items could be inspected,
and explanations for the differences could be evaluated. An item might be dropped
from the common-item section if it were found to have problems: for example, an
item was printed differently in the two forms, an item became easier due to many
repeating examinees having been administered the item previously, an item whose
key had changed because of changes in the field of study, or an item for which a
preceding item provided information that helped in answering the item. DeMars
(2004), Harris (1993), Han et al. (2012), Michaelides (2008, 2010), and Miller and
Fitzpatrick (2009) suggested that differential item functioning statistics might be
used to screen common items.

Even after all the more obvious context effects are controlled, common items might
still perform differently across administrations. For example, Cook and Petersen
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(1987) reviewed research on a biology achievement test in which differential prepa-
ration of the groups taking the old and new forms led to differential functioning of
some common items that caused serious problems with equating. In short, common
items should be screened for differences in functioning across the groups taking the
old and new forms.

Dropping items from the common-item set due to differential functioning might
result in the set of common items not reflecting the test specifications. In this case,
additional items might be dropped from the common-item set (but still retained as
part of the total test) to achieve proportional content balance. For this reason, the
common-item set should be of sufficient length to be able to tolerate removal of
some items and still remain content and statistically representative. As an alternative
to dropping items to achieve proportional content balance, Harris (1991a) suggested
considering the use of statistical procedures to weight item scores statistically on the
common items to help achieve such balance.

8.2 Data Collection: Design and Implementation

To conduct equating, a choice must be made about which equating design to use
(see Chaps. 1 and 6). Choices also need to be made about which previously admin-
istered form(s) are to be the old form(s) and what sample size to use. Adequate
equating depends on having well-constructed tests, as was described earlier, and
well-developed statistical and quality control procedures, as is described later in this
chapter.

8.2.1 Choosing Among Equating Designs

The random groups, single group, single group with counterbalancing, and common-
item nonequivalent groups designs were discussed in Chap.1 and in subsequent
chapters. In addition, designs that involve equating to an IRT calibrated item pool
were described in Chap. 6.

The choice of an equating design involves a number of practical considerations
that include test administration complications, test development complications, and
statistical assumptions required to achieve the desired degree of equating precision.
The relationship of these considerations to each of these designs is summarized in
Table 8.1. As can be seen from this summary, the choice of a design requires making
a series of trade-offs.

The random groups design typically results in the fewest test development compli-
cations, because there is no need to develop common-item sets that are representative
of the content of the total test. (However, alternate forms still should be built to the
same content and statistical specifications, and the forms must be developed in time
to be equated in a special study.) Also, because group differences are handled by
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Table 8.1 Comparison of equating designs

8 Practical Issues in Equating

Design

Test administration
complications

Test development
complications

Statistical
assumptions
required

Random groups

Single group
with counter-
balancing

Common-item
nonequivalent
groups

Common item to

Moderate—more
than one form
needs to be
spiraled

Major—each
examinee must
take two forms
and order must be
counter-balanced

None—forms can be
administered in
typical manner

None—-forms can be

None

None

Representative
common-item
sets need to be
constructed

Representative

Minimal—that random
assignment to forms is
effective

Moderate—that order
effects cancel out and
random assignment is
effective

Stringent—that common
items measure the same
construct in both
groups, the examinee
groups are similar, and
required statistical
assumptions hold

Stringent—that common

an IRT- administered in common-item items measure the same
calibrated typical manner sets need to be construct in both groups,
item pool constructed the examinee groups are

similar, and the IRT
model assumptions hold

randomly assigning forms to examinees, and because there is no problem with order
effects, this design results in the fewest problems with statistical assumptions.

Many equating situations exist, however, for which the random groups design
cannot be used. If not enough examinees are available for using the random groups
design, then the single group design might be preferable, provided that a study can
be undertaken in which two forms can be administered to each examinee and order
can be counterbalanced effectively.

One situation that is often encountered in which the random groups and single
group designs cannot be used is when only a single test form can be administered on
a test date. Many of the reasons for using a single form revolve around test security.
For example, administering a single form exposes fewer items than administering
more than one form. Also, administering a form that is composed mainly of new
items minimizes the chances that examinees previously would have been exposed to
the test items and minimizes the chances of a security breach in which items become
known to examinees.

When only a single form can be administered on a test date and equating is
to be conducted, the choice of equating design is restricted to a design that uses
common items. When using these designs, representative common-item sets must
be developed. Constructing representative common-item sets and incorporating them
into the forms requires considerable effort during the test development process.
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Test disclosure legislation also can complicate the choice of design (Marco 1981).
Such legislation often requires that all items which contribute directly to an exam-
inee’s score be released to the examinee soon after the test. When the items are
released in this way, they cannot be used in future test forms because they are con-
sidered to be nonsecure. The typical legislation provides test developers with a way
to conduct equating by not requiring that an unscored portion of a test be provided
to examinees. Equating could be conducted, therefore, using the common-item non-
equivalent groups design with external sets of common items, as is done with the
SAT (Donlon 1984). As was pointed out in Chap. 1, external common-item sets do
not contribute directly to an examinee’s raw score. Thus, these sections do not need
to be released to examinees, even though the scored portion would be released to
examinees.

Preequating methods also can be considered in test disclosure situations. In item
preequating (see Chap. 6), an IRT-calibrated item pool is developed. A new form is
constructed from the items in this pool. Because all of the items have already been
calibrated using an IRT model, the item parameter estimates for the new form are
available and can be used to develop the conversion table before administering the
new form intact. In using item preequating, new items are introduced by including
some new items on the operational form, but not including these new items in the
computation of examinees’ scores. Research reviewed in Chap. 6 suggests that vari-
ous context effects need to be controlled with item preequating. To minimize context
effects, items should appear in a position and context when they are operational
that is similar to the position and context in which they appeared when they were
preequated.

Section preequating is another type of preequating methodology. In section pree-
quating the operational portion of the test consists of sections of items that have been
previously administered, with necessary item or section parameters estimated using
data from the previous administrations. Using these results, the conversion table for
the operational portion is estimated before it is ever administered as an intact form.
Other sections administered to examinees are unscored, and are used to build up
the pool of sections with estimated item or section parameters for use in subsequent
forms. Linear methods, as well as IRT methods, can be used in section preequating.
Linear methods can accommodate sections that measure different abilities. Petersen
et al. (1982) provided a summary of section preequating procedures. Holland and
Wightman (1982) empirically studied section preequating. Brennan (1992) illus-
trated that context effects involving the positioning of sections of items need to be
controlled in section preequating designs. Harris (1993) presented a discussion, with
many references, of practical issues in preequating.

Some situations require that tests be equated before being administered intact in
a standard operational setting, such as when scores need to be reported to examinees
immediately after they are administered a test. In this case, a conversion table needs to
be available before the test administration. Preequating can be used in these situations.

Another way conversion tables could be made available prior to administering
the test operationally is to use nonoperational administrations to conduct equating,
so conversion tables are available later for operational administrations. The equating
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results then are used when the form is used operationally. For example, a random
groups design was used initially to equate new forms to an old form of the paper-
and-pencil Armed Services Vocational Aptitude Battery (ASVAB) (Thomasson et al.
1994) based on examinees who are already in the military. In a second random groups
equating study, these new forms, along with a form that was equated previously,
were administered operationally to examinees who wanted to be accepted into the
military. Scores on the new forms for examinees in the second equating study were
based on the initial equating. The conversion tables from the second equating were
used subsequently, because the examinees in the second equating, as compared to
examinees in the first equating, were likely to be more motivated and more similar
to the examinees who are to be tested subsequently.

Another variation is used for equating the ACT (ACT 2007). On most national
test dates, the items on the ACT tests are released to examinees, in part, to meet test
legislation requirements. However, on certain test dates the items are not released. On
one of these test dates, one or more previously administered unreleased forms along
with the new forms to be equated are administered using a random groups design.
These forms are equated following this administration, and scores are reported to
examinees who were administered the new forms. The conversion tables developed
in the equating administration also are used when the new forms are administered
later on.

Although not a comprehensive set of possibilities, the SAT, ASVAB, and ACT
equating designs illustrate the use of the random groups design and the common-item
nonequivalent groups design in situations that might suggest the need for an item or
section preequating design.

8.2.2 Developing Equating Linkage Plans

When conducting equating, a choice is made about which old form or forms are
to be used for equating a new form or forms. The choice of the old form or forms
has a significant effect on how random and systematic equating error affects score
comparisons across forms.

Random Groups Design

Consider the following example of a simple equating linkage plan. For the ACT
(ACT 2007), new forms are equated each year using a random groups design in
which the new forms are spiraled along with one form that was equated in a previous
year. This process allows the new form raw scores to be converted to scale scores
by first equating raw scores on the new forms to raw scores on the old form. The
raw-to-scale score conversion that was developed previously for the old form then is
used to estimate raw-to-scale score conversions for the new forms.
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Table 8.2 A random groups equating linkage plan that uses a different old form at each adminis-
tration

Process Administration Forms

Construct score scale 1
Equate using spiraling
Equate using spiraling

Equate using spiraling
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Equate using spiraling

Table 8.3 A random groups equating linkage plan that uses the same old form at each
administration

Process Administration Forms

Construct score scale 1
Equate using spiraling
Equate using spiraling

Equate using spiraling
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Equate using spiraling

A hypothetical example that displays a linkage plan which is similar to the ACT
plan is shown in Table 8.2, where the old form is listed in a box. In Administration
1, the raw-to-scale score transformation for Form A establishes the score scale. In
Administration 2, new Forms B and C are administered with Form A in a spiral
administration. The data collected from this administration are used to develop the
conversion that transforms Form B and Form C raw scores to scale scores through
Form A. In Administration 3, Form C serves as the old form and Forms D and E as
the new forms. The general plan is to spiral new forms along with an old form that
was equated previously.

Paper-and-pencil forms of the ASVAB (Thomasson et al. 1994) also are equated
using the random groups design. However, in the ASVAB program, the form that
was used to conduct the original scaling is the old form that is spiraled with the new
forms. A hypothetical example that displays a linkage plan similar to the ASVAB
plan is shown in Table 8.3. Note that the major difference between the plans shown
in Tables 8.2 and 8.3 is the old form that is used in the spiraling process. In Table 8.2,
the old form is a form that was equated in the previous year. In Table 8.3, the old
form is a form that was used initially in the scaling process. Both plans can be used
to produce raw-to-scale score conversions. Is one plan preferable to the other? The
answer depends on various practical issues having to do with the context of the
equating.

One of these issues has to do with error in equating. As was suggested earlier, each
time an equating is conducted, equating error is introduced. Error might accumulate
over equatings. In Table 8.2, how many equatings separate Form I from Form A?
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Equating 1: Form I is equated to Form G.

Equating 2: Form G is equated to Form E.
Equating 3: Form E is equated to Form C.
Equating 4: Form C is equated to Form A.

Thus, four equatings separate Form I and Form A. Equating error from four different
equatings would influence the comparison of scores between examinees who took
Form A and those who took Form L.

How many equatings separate Form I from Form A in the example in Table 8.3?
Just one. That is, error sources from only one equating influence the comparison
of scores between examinees who took Form A and those who took Form I in the
Table 8.3 plan. At least from this perspective, the plan in Table 8.3 is preferable.

However, there are at least two potential problems with the plan in Table 8.3.
First, this plan requires Form A to be administered repeatedly. If the items became
known to some examinees because of security breaches (e.g., test booklets stolen or
students memorizing items and supplying them to coaching schools) or because many
repeating examinees had seen the items in an earlier administration, then the equating
could be severely compromised. Second, the content of Form A might become dated.
For example, reading passages might become less relevant, causing examinee groups
to respond differently to the passages over time. Also, an accumulation of minor
changes in the way test specifications are applied over time might make Form A
somewhat different from later forms. For these reasons, a plan like the one displayed
in Table 8.3 must be used cautiously. Whether to use a plan like the one in Table 8.2
or one like that in Table 8.3 depends on weighing the problems associated with each
of the plans and deciding which problems are more serious for the testing program
at hand.

Compromise plans also could be constructed. For example, in the plan in Table 8.3,
Form A could be used as the old form in Administrations 2 and 3. Then Form E
could be used as the old form in Administrations 4 and 5. Compared to the plan in
Table 8.3, this compromise plan would reduce the usage of Form A. Compared to the
plan in Table 8.2, this compromise plan would lead to fewer equating error sources
in comparing scores on Form A to scores on Form I.

In practice, constructing equating plans can be much more complicated than what
has been considered in these hypothetical examples. A particular form might need
to be ruled out as an old form because of security concerns or because many of
the examinees to be included in the equating were administered the old form on a
previous occasion. Also, an old form might be found to have bad items (e.g., items
that are ambiguous, multiply keyed, or negatively discriminating), which could rule
out its use in equating. These sorts of practical concerns often make it impossible to
develop equating plans that are actually used very far into the future.
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Table 8.4 A random groups equating linkage plan that uses double linking

Process Administration Forms

Construct score scale 1
Equate using spiraling
Equate using spiraling

Equate using spiraling
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Equate using spiraling

Double Linking with Random Groups

One procedure that is often used to help solve the problems associated with develop-
ing linkage plans is to use two old forms to equate new forms. This process is referred
to as double linking. As an example of double linking, the scheme in Table 8.2 could
be modified by also administering Form B in Administration 4 and Form D in Admin-
istration 5. The resulting plan is shown in Table 8.4. In applying double linking, the
new forms are equated separately to each of the old forms. The resulting equating
relationships could then be averaged. For example, in Administration 5, one equating
relationship could be developed to equate Form H to scale scores using Form D as
the old form. A second equating relationship could be developed for equating Form
H to scale scores using Form G as the old form. These two relationships likely would
differ because of equating error. The two conversions could be averaged to produce a
single conversion. Braun and Holland (1982) and Holland and Strawderman (2011)
suggested alternatives to simple averaging. Averaging and these alternatives likely
produce very similar results, and averaging is simpler.

The process of double linking has much to recommend it. It provides a built-in
stability check on the equating process. Two conversions that differ more than would
be expected by chance might suggest problems with statistical assumptions, quality
control (e.g., scores incorrectly computed), administration (e.g., spiraling was not
properly performed), or security (e.g., a security breach led to many examinees’
having access to one of the old forms). If such problems are suspected, then one of
the links could be eliminated without destroying the ability to equate in the testing
program. (Note, however, that if a security breach led to many examinees having
had access to one of the old forms, then the scores of the examinees who took that
old form might not be valid.) In addition, the use of double linking can provide for
greater equating stability than the use of a single link, especially when the two old
forms are chosen from different administrations, as was done in Administrations 4
and 5 in Table 8.4.

The average of two links also can be shown to contain less random equating error
than the use of a single link. Consider the following situation. In one equating, Form
C is equated directly to Form A; and in a second equating, Form C is equated first to
Form B and then to Form A. For simplicity, assume that the error variance in equating
is the same for any single equating. The equating of Form C to Form A contains the
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same amount of equating error variance as the equating of Form B to Form A. Refer
to the error variance at a particular score point on Form C as var. Also assume that
all equatings are independent.

In this case, the equating error in equating Form C to Form A equals var. Equating
error variance in equating Form C to Form A through Form B equals 2var. The
average of the equivalents of the two equatings equals the sum of the equivalents
divided by 2. In this case, equating error variance for the average can be shown to
equal

?var + 21—2(2)var = %var.
In this example, equating error variance for the average of the two links, 3/4var, is
less than the equating error variance for either link taken by itself. This relationship
illustrates that the use of double linking can reduce random equating error. See
Hanson et al. (1997) for an empirical demonstration that random equating error is
reduced when two links are averaged.

In practice, the double links might not be equally weighted. If one link is con-
sidered to have more error than another link, the first link might be weighted less
than 1/2. If substantial problems are present with one of the links, that link can be
weighted 0.

Double linking does introduce complications into equating. More than one old
form must be included in the study, which assumes the availability of another form
and requires exposing more forms in the study, which might lead to security concerns.
Using additional forms also requires that the overall sample size be larger, which in
some cases might not be possible. For example, if the sample size needs to be 2,000
examinees per form and 4,000 examinees are available to do equating, then only
one old form could be used when equating one new form. Even though there are
complications in using two old forms, we recommend using double linking when
feasible.

Common-Item Nonequivalent Groups Design

Additional complications are present when developing equating plans with the
common-item nonequivalent groups design. Group differences across administra-
tions sometimes are substantial. As was suggested earlier, the similarity between
examinee groups that are administered the old and new forms significantly affects
the quality of equating: The more similar the groups, in general, the more adequate
the equating.

The following situation illustrates some of these complications. A test is admin-
istered in the spring and in the fall every year, with a different form administered on
each occasion. The group of examinees that tests in the spring tends to be different
in its overall level of achievement than the group that tests in the fall. This difference
in group level achievement suggests greater equating stability when a new form is
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Single Link Plan 1 Single Link Plan 2
Year Spring Fall Year Spring Fall
) C D 5 c [* D
3 E F 3 E [™ F
4 G H 4 c [ H
5 L 7 5 IO J
Single Link Plan 3 Single Link Plan 4
Year Spring Fall Year Spring Fall
’ / N~ B 1 A [ B
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3 E F 3 E F
4 N G H 4 G
5 \ I J 5 1 J

Fig. 8.1 Four hypothetical single link plans

equated to a form from the same time of year than to a form from a different time of
year. A single section of common items is used to equate a new form.

Single Link Plan 1 in Fig.8.1 presents one possible single link pattern for this
situation over a 5-year period. In this example, assume that the score scale was
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established on Form A. The arrows indicate which old form has items shared with
the new form. For example, Form J is equated to the score scale using items that
are in common with Form H. In this plan, spring forms are always equated to spring
forms and fall forms are always equated to fall forms, with the exception of Form B.
Note that in setting up equating patterns, all forms must link back to a single old form
through an equating chain, so scores on all forms can be converted to scale scores.
For this reason, Form B must be equated to Form A in the Fig. 8.1 example.

This equating plan can be used to equate all forms to the score scale, because all
forms eventually link back to Form A. This pattern makes as extensive use as possible
of linking to forms that were previously administered in the same time of year, thus
maximizing the similarity of groups used in the equatings. From the perspective of
using similar groups, this plan is nearly ideal.

However, this plan has significant problems. Suppose that examinees tested in the
fall of Year 5 were to be compared to examinees tested in the spring of Year 5. How
many links would affect this comparison? Another way to ask this question is, how
many arrows does it take to go from Form J to Form I in the linkage plan? By going
fromJtoH, HtoF,FtoD,DtoB,Bto A, AtoC,CtoE, E to G, and G to I, there are
nine of these arrows. Thus, nine links affect the comparison of scores on Form I and
Form J. If this pattern were extended, the number of links for comparisons between
forms administered in a given year increases by two each year. This linkage plan
illustrates the development of what is sometimes referred to as an equating strain.
Equating strains can lead to a situation in which examinees earn higher scale scores
on one form than on another form. In developing equating linkage plans, equating
strains should be avoided.

The random groups and common-item nonequivalent groups examples considered
so far illustrate the following four rules that can be used to construct equating linkage
plans for the common-item nonequivalent groups design with internal common items:

Rule 1. Avoid equating strains by minimizing the number of links that affect the
comparison of scores on forms given at succesive times. (Single Link Plan 1
in Fig. 8.1 violates this rule.)

Rule 2. Use links to the same time of the year as often as possible. (Single Link
Plan 1 in Fig. 8.1 is an example of a plan that follows this rule.)

Rule 3. Minimize the number of links connecting each form back to the initial form.
(The plan in Table 8.3, for the random groups design, is an example of a
plan that follows this rule.)

Rule 4. Avoid linking back to the same form too often. (The plan in Table 8.2, for
the random groups design, is an example of a plan that follows this rule.)

Obviously, all of these rules cannot be followed simultaneously when constructing
a plan that uses single links. Choosing a plan involves a series of compromises that
must be made in the context of the testing program under consideration. For example,
Rule 3 might be considered important when following trends in scores over time, but
not otherwise.

Some additional examples can be used to explore these four rules more fully.
Refer to Single Link Plan 2 in Fig.8.1. Rule 1 is followed as closely as possible,
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because forms are equated directly to the adjacent form. Rule 2 is violated as much
as possible, because forms are always equated to a form from the other month. Rule 3
also is violated, in that the number of links back to Form A is as large as possible.
Rule 4 is followed.

The Single Link Plan 3 in Fig. 8.1 follows Rules 1 and 3. Rules 2 and 4 are not
followed.

In the Single Link Plan 4 in Fig.8.1, Rule 1 is followed reasonably closely, in
that there are no more than two links (arrows) separating adjacent forms. Rule 2 is
followed for nearly 1/2 of the forms. Rule 3 is followed more closely for this plan
than for Single Link Plan 2 in Fig. 8.1, but less closely than for Single Link Plan 3
in Fig.8.1. Rule 4 is followed reasonably closely, although nearly 1/2 of the forms
are equated back to twice. Although Single Link Plan 4 in Fig. 8.1 is less than ideal,
this plan might be a reasonable compromise.

The linkage plans in Fig. 8.1 are presented for illustrative purposes only. Often,
practical constraints make plans like these unworkable. For example, if many exam-
inees repeat the test, a form that was administered within the last year or two might
not be a good choice to use as a link form. The examinees who repeat the test could
be unfairly advantaged by being administered the same items a second time. In other
situations, scores might need to be comparable over a long period, in which case it
probably would be desirable for at least one of the link forms to be a form that was
originally administered in the more distant past. Sometimes problems exist with a
potential old form which suggest that the form not be used as a link form. For exam-
ple, the sample size for a potential link might have been very small when that form
was equated, a potential link form might have had security problems, or a potential
link form might have been found to have not been well constructed. Many testing
programs have more than two test dates per year, which also complicates the design
of equating plans. For an example, refer to the SAT linkage plan that is presented
in Donlon (1984, pp. 16,17). Of necessity, linkage plans should be tailored to the
particular testing program. However, the principles discussed here can be useful in
designing and evaluating these plans.

Double and Multiple Linking with the Common-Item Nonequivalent
Groups Design

Double linking is useful in the common-item nonequivalent groups design because,
as with the random groups design, it provides a built-in check on the equating process
leading to greater equating stability, and it can be used to avoid equating strains. In
addition, with two links, a second link still is available to be used for equating even
if the strong statistical assumptions required under the common-item nonequivalent
design are violated for one of the links. Also, if a significant number of common
items on one link are found to have problems, or if security problems are discovered
with one of the old forms, then a second link still exists that can be used to conduct
the equating.
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Double linking requires greater effort in test development and in equating than
does equating using a single link. When using the common-item nonequivalent
groups design, double linking requires that two sets of common items which are
content representative be used in the development of new forms, which sometimes
can be difficult. Using two links also creates a greater exposure of old forms in the
random groups design and of common items with the common-item nonequivalent
groups design. Double linking is most desirable in situations where form-to-form
comparability is important over a long time, and might be less important in situa-
tions where periodic changes in test content require that the test be rescaled every
few years. It is strongly recommended that double linking be used when feasible.

To capitalize on the benefits associated with double linking, the use of more than
two links has been suggested (McKinley and Schaeffer 1989). However, such use of
multiple links can be difficult, practically, because it requires building three sets of
common items that are content representative, and it can create even more exposure
of forms and items than double linking does.

A few research studies have examined issues associated with the use of double
and multiple links in the common-item nonequivalent groups design. Haberman and
Dorans (2011) discussed sources of random and systematic error for multiple equat-
ings. Haberman (2010) described an analytic approach for assessing the amount of
random error in chains of equating. Guo (2010) empirically investigated the accumu-
lation of random error over multiple equatings. Guo et al. (2011) found less overall
equating error using multiple links than single links. Puhan (2009) and Taylor and
Lee (2010) compared the amount of equating error for different linkage patterns. Liu
et al. (2009) readministered and requated an old form as a way to assess the amount
of equating error that occurred over time. Haberman et al. (2008) studied the stability
of score conversions over multiple forms. Livingston and Antal (2010) and Moses
et al. (2011) discussed alternative procedures for equating using the common-item
nonequivalent groups design when there are multiple links.

One beneficial way to use double linking in IRT equating to an item pool is for
one link to be to a single old form and the other link to be to the overall pool. In this
way, one of the links is an equating using the common-item nonequivalent groups
design. This double linking process allows for use of the traditional methods as a
check on the IRT methods.

8.2.3 Examinee Groups Used in Equating

Equating relationships typically are somewhat group dependent, so the group or
groups of examinees used in equating affect the estimated equating relationship.
For this reason, more adequate equating is expected when the examinees used
in the equating study are as similar as possible to the entire group that is tested
(Harris 1993).

The effect of the group used for equating depends on the data collection design.
When carefully constructed alternate forms are equated using the random groups
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design, the equating relationships seem not to be too dependent on the group of
examinees used to conduct the equating for the SAT (Angoff and Cowell 1986) or
the ACT (Harris and Kolen 1986), although Yi et al. (2008) found some evidence
of population dependence when the groups were formed based on a variable that is
directly related to the construct being measured. For the common item nonequivalent
groups design, little group dependence has been found when forms are carefully
constructed, the common items adequately represent the total test, and the groups
taking the old and new forms are not very different from one another (Puhan et al.
2006; Sinharay et al. 2011; Yang and Gao 2008). Similar results have been found
using other designs (Liu and Holland 2008; Wells et al. 2009).

In the common-item nonequivalent groups design, however, large differences
between the old and the new groups can cause significant problems in estimating
equating relationships, both for traditional and IRT equating methods (for reviews of
relevant research see Cook and Petersen 1987; Harris 1993; Skaggs 1990; Skaggs and
Lissitz 1986). Large group differences can lead to failure of the statistical assumptions
for any equating method to hold. The research in the Dorans (1990) special issue of
Applied Measurement in Education (Eignor et al. 1990a; Kolen 1990; Lawrence and
Dorans 1990; Livingston et al. 1990; Schmitt et al. 1990; Skaggs 1990) and Eignor
et al. (1990b) assessed the use of matching procedures to make otherwise disparate
groups more similar, but found that the procedures studied were not satisfactory.
However, the results found by Wright and Dorans (1993) suggest that matching
might be worthwhile to consider in certain situations. Brinberg and Wiberg (2011),
Liou et al. (1999); Liou et al. (2001); Lyrén and Hambleton (2011); and Powers and
Kolen (2012) considered using variables other than common items as a means for
adjusting for group differences.

The various statistical methods handle group differences differently. The Tucker,
Braun-Holland and frequency estimation equipercentile methods require assump-
tions about the same regression holding across the different populations. These
assumptions cannot be expected to hold when groups differ substantially. The IRT
and Levine methods require that the common items and total scores measure the same
construct in the two groups, in the sense that true scores are functionally related. This
requirement places considerable emphasis on test development procedures, so that
the same construct is measured in precisely the same way across alternate forms
and common-item sets. If this requirement is met precisely, then the Levine and IRT
methods might function more adequately than the other methods when there are
large group differences. However, when the group differences become too large, no
method likely will function well (see Cook and Petersen 1987).

In our experience with the common-item nonequivalent groups design, mean dif-
ferences between the two groups of approximately .1 or less standard deviation unit
on the common items seem to cause few problems for any of the equating meth-
ods. Mean group differences of around .3 or more standard deviation unit can result
in substantial differences among methods, and differences larger than .5 standard
deviation unit can be especially troublesome. In addition, ratios of group standard
deviations on the common items of less than .8 or greater than 1.2 tend to be asso-
ciated with substantial differences among methods. Differences in group standard
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deviations have the potential to lead to differences among methods that are at least as
great as those caused by differences in means. These rules of thumb are necessarily
situation specific.

Problems also might occur when equating is conducted in a special study in which
the groups are very different from the examinees who are to be tested later. In addition
to differences in group characteristics, differences in examinee motivation between
special studies and operational testing can affect equating. The ASVAB example
presented in Chap. 1, in which the examinees were more motivated on the old form
than the new form, is an extreme example of how motivation differences can cause
significant problems.

Repeating Examinees

A consideration when conducting equating is whether or not to eliminate examinees
who have taken the test previously. One argument for removing examinees who are
repeating the test is that they might have seen the old form or common items, which
could bias the equating. However, repeating examinees might not be identifiable
in the time allowed for conducting equating. Also, excluding repeating examinees
reduces sample size, which might lead to inadequate equating precision. Excluding
repeaters might also cause the group being included in the equating not to be repre-
sentative of the group tested, especially if many examinees repeat the test. Research
on the effects of repeating examinees on equating produced mixed results (Andrulis
etal. 1978; Cope 1986; Kim and Kolen 2010; Kim and Walker 2012a; Puhan 201 1a;
Yang et al. 2011). Kim and Walker (2012a) were able to identify repeating examinees
who had previously taken the common items when using a common-item nonequiv-
alent groups design and found that the equating relationship was different for such
repeating examinees than for other examinees. Decisions about whether or not to
include repeating examinees in equating in a particular testing program depend on
assessing how likely it is that examinees would have seen previously administered
items or forms and whether or not it is possible to identify repeating examinees.

Editing Rules

Another consideration is whether to delete examinees whose scores are very low or
who omitted many items. For example, examinees who omit all the items on a test or
earn a number-correct score of 0 often are excluded from equating, These are likely to
be examinees who did not attempt the test and might have been erroneously included
in the data. Editing rules should be tailored to the particular testing program.

Less conservative rules might negatively affect equating. Suppose that in arandom
groups design a sizable number of examinees typically earn scores below “chance”
(number of multiple-choice items divided by the number of alternatives per item) on
a test, and that more examinees scored below chance on the more difficult of the two
forms. Eliminating these below “chance” examinees from the equating process could
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destroy the random equivalence between the samples taking Form X and Form Y,
and it would result in the loss of all data in the lower tail of the distributions. We
recommend using conservative editing rules whenever possible.

Another consideration is whether to eliminate test centers or testing sessions that
had administration problems. For example, in the random groups design, each of
the forms to be equated would be expected to be administered to approximately the
same number of examinees in each test session. Numbers that are grossly unequal
suggest administrative problems. In this case, elimination of the data for a test center
or session can be considered. Elimination of data from test centers or test sessions
with significant irregularities, such as a power failure that disrupted testing, also can
be considered.

8.2.4 Sample Size Requirements

Sample size has a direct effect on random equating error. Livingston (1993), Kolen
and Whitney (1982), and Parshall et al. (1995) conducted empirical research on
the use of standard equating methods with small samples. Harris (1993) reviewed
research on sample size in equating and suggested that larger samples lead to better
equating.

A variety of equating methods have been developed to deal directly with equating
with small samples. These include the circle-arc method (Livingston and Kim 2009),
which is a highly constrained curvilinear method; the use of collateral information
from other equating relationships in estimating the equating relationship for a small
sample equating (Kim et al. 2011); and the use of a synthetic equating function, which
averages the estimated equating function with the identify function (Kim et al. 2008,
2011). These methods were reviewed by Livingston and Kim (2011). These methods,
along with mean and smoothed equipercentile equating, were compared empirically
using small samples for the random groups design (Livingston and Kim 2010) and
for the common-item nonequivalent groups design (Kim and Livingston 2010). In
general, the results of this research suggest that equating relationships might be able
to be estimated more accurately in some equating situations with some of these
methods than with the identity equating. However, Puhan (2011b) showed that such
methods are unlikely to work well when the small samples are not representative of
the test-taking population, and Dorans et al. (2011, p. 40) concluded that “equating
cannot be done effectively in small samples”. See Puhan et al. (2009) for a description
of a modified equating design that is intended for use with very small samples. In
the remainder of this section, schemes for estimating sample size requirements are
considered that are mainly based on considerations in estimating random error in
equating.
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Rules of Thumb Using Standard Deviation Units as a Criterion

In Chap.7, procedures were provided for estimating the sample size required to
achieve a given level of equating precision. For the random groups design under nor-
mality assumptions, the standard error of equating between z-scores of —2 and +2
was shown to be less than .1 raw score standard deviation unit when the sample size
was 400 per form for linear equating and slightly over 1,500 per form for equiper-
centile equating. In any given situation, however, the shapes of the distributions, the
degree of equating precision required, and the effects of smoothing if equipercentile
equating is used (see the sample size discussion in Chap. 3) can be taken into account
when developing sample size requirements. In addition, if a passing score is to be
used in the testing program, then the precision at that passing score might be of
primary concern (see Brennan and Kolen 1987a, pp. 285, 286).

Our experience suggests that these figures are also useful rules of thumb for
sample size requirements for linear and equipercentile equating in the common-
item nonequivalent groups design. Sample size considerations under this design,
however, are complicated in that the degree of relationship between the total score
and common-item score (see Budescu 1985), along with the distribution shapes, have
a strong influence on the standard errors.

Standard error of equating expressions that can be readily used to estimate sam-
ple sizes have yet to be developed for IRT equating procedures. The procedure used
to estimate item parameters will likely affect the sample sizes required. A rule of
thumb that is loosely based on the literature surveyed by Harris (1993) would be to
require the same number of examinees for the three-parameter model as for equiper-
centile equating (approximately 1,500 per form) and to require the same number of
examinees for the Rasch (one-parameter) model as for the linear methods (400 per
form).

Rules of Thumb Based on Comparisons with the Identity Equating

The rules of thumb just developed for the traditional methods were based on using
a conservative criterion (standard errors of equating being less than .1 raw score
standard deviation unit). The sample size issue can be addressed by asking a different
question: What is the smallest sample size that would be expected to reduce equating
error as compared to identity equating?

If identity equating is used, the Form Y equivalent of a Form X score is set to
equal to the Form X score. That is, the Form Y equivalent of a Form X score of
x; is x;. If equipercentile equating is the most appropriate method, then the bias
incorporated by using identity equating is x; — ey (x;). As was indicated in Chap. 3,
the sum of random equating error variance and squared bias equals mean squared
error in equating. Based on this relationship, the identity equating is preferable to
equipercentile equating if the squared bias associated with the identity equating is
less than the random equating error variance associated with using equipercentile
equating.


http://dx.doi.org/10.1007/978-1-4939-0317-7_7
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The following example illustrates the application of this principle. In developing
the rules of thumb mentioned earlier, a sample size of approximately 1,500 per
form was found to be required for the standard error of equating at any score to be
less than .1 raw score standard deviation unit over the z-score range of —2 to +2.
Assume that the largest absolute difference in equivalents between identity equating
and equipercentile equating, |x; — ey (x;)[, is .1 standard deviation unit over the
z-score range of —2 to +2. Thus, over this range, the maximum absolute equating
bias associated with identity equating is assumed to be .1 standard deviation unit.
Because squared bias and squared standard errors contribute equally to mean squared
error, the same maximum level of mean squared error will accrue over the z-score
range of —2 to +2 through the use of identity equating or equipercentile equating
with a sample size of approximately 1,500. Thus, in this situation, a sample size over
1,500 would be required for equipercentile equating to result in less mean squared
error than identity equating.

What if the largest difference in equivalents between using identity equating
and equipercentile equating was assumed to be .2 standard deviation unit over the
z-score range —2 to +2? Using Eq.(7.19) with u = .2, the sample size per form
is approximately 382. Assuming a maximum difference in equivalents of .2 stan-
dard deviation unit, a sample size of over 382 would be required for equipercentile
equating to produce less mean squared error than identity equating.

As was just demonstrated, this scheme is very sensitive to the extent that the forms
are assumed to differ. Assuming that the forms are similar enough to be equated, the
larger the anticipated difference between forms, the smaller the sample size needed
for equating to be useful. However, larger representative samples lead to less random
error. This scheme depends on the distributions of the scores (normal distributions
were assumed here). However, if reasonable approximations to the distribution shapes
can be found, and if reasonable assumptions about the degree of difference between
forms can be made, then this scheme can be used to decide whether identity equating
is preferable to another equating method.

8.3 Choosing from Among the Statistical Procedures

Various statistical methods for equating have been presented. For any of these
methods to be used appropriately, the test specifications, the data collected, and
the standardization and quality control procedures should be adequate. Otherwise,
not equating (or using identity equating) might be the preferred option. Although
it might be possible to implement all of the methods that have been discussed in
a particular testing program, practical circumstances often rule out implementing
some methods and suggest ruling out others.

Deciding which statistical methods to implement for a particular equating depends
on considering the characteristics of equating situations for which each of the methods
is most appropriate. Such a decision should be made by consulting the research
literature on equating methods and conducting research for the testing program for
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which the equating is to be done. In this section, the characteristics of equating
situations are considered.

Table 8.5 presents a list of characteristics of equating situations for which each
of the methods is most appropriate. Mean and linear equating are most useful to
consider when the sample size is small, the test forms are not too dissimilar, and
a great degree of accuracy is needed only at scores that are not too far from the
mean. The conversions for these methods are easy to express (a linear equation, with
rounding and truncation rules), the analyses are relatively easy to conduct (summary
statistics such as means, variances, and covariances are all that are needed), and the
methods are relatively easy to explain to individuals who do not routinely conduct
equating. Many applied situations exist in which these methods are adequate.

For example, many certification testing programs are concerned only that equating
be accurate near a single passing score. In some programs, the equating might be
used only to ensure that the passing score indicates the same level of achievement
from administration to administration. If the passing score is not too far from the
mean, then linear equating could be the most complex equating method that should
be considered.

As another example, small samples of examinees often are administered tests on
test dates in which equating is conducted. In these small sample situations, mean
or linear equating might be the most complicated method that would be needed,
especially if the interest is in accuracy near the mean.

Assuming that the equating relationship is not linear, nonlinear methods (equiper-
centile and IRT) are most often required when the sample sizes are large and accuracy
is required all along the score scale. For example, the ACT (2007) uses equipercentile
equating with large sample sizes because decisions are made at points all along the
score scale. The SAT (Donlon 1984) uses equipercentile and three-parameter IRT
methods, along with linear methods, for similar reasons.

For any equating design, the use of IRT methods requires making strong assump-
tions. Research should be conducted in the context of the testing program to make
sure that the methods are robust to the violations of these assumptions which are
likely to occur in practice. Because Rasch equating is an IRT method, it requires
strong statistical assumptions. However, Rasch equating has considerably smaller
sample size requirements than do the three-parameter model methods.

For any equating method, the assumptions required for the common-item non-
equivalent groups design (or common-item equating to an IRT calibrated item pool)
are very strong. These assumptions can be especially problematic when examinee
groups differ substantially, when alternate forms differ substantially, or when the
specifications of the common-item sets differ from the specifications for the total
test. In these situations, perhaps none of the equating methods would work well.
Because of the strong assumptions that are required, methods based on different
assumptions can be implemented and the results compared to each other and to
results from previous test dates.

Situations can arise in which none of the methods produces an adequate equating.
Suppose that (a) high equating accuracy is required at all points along the score scale,
(b) the forms are expected to differ more than a little in difficulty, and (c) the sample
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size is small. In this situation, the objective of high equating accuracy might not be
achieved by any of the equating methods. Other similar situations sometimes arise
in practice.

8.4 Equating Criteria and Designs in Research Studies

Considerable research has been conducted that can be consulted when deciding which
procedures to use in practice. Findings from this research are described in various
sections of this and earlier chapters. A variety of criteria and designs for investigating
equating methodology have been used. The types of criteria used focus on assessing
the properties of equating discussed in Chap. I and on assessing the amount of error
in estimating equating relationships.

This section begins with a discussion of research designs and associated equating
criteria that are used for estimating the amount of error in equating relationships.
The section continues with a discussion of equating in a circle, methodology for
assessing population invariance of equating relationships, and by a discussion of
methodology for assessing the equity property of equating. Many of the criteria
described here were summarized by Harris and Crouse (1993) in their survey of
criteria for comparing equating methods and results. Kolen (in preparation) discusses
the criteria and designs in more detail than in the current section.

8.4.1 Criteria and Designs Based on Error in Estimating
Equating Relationships

As described in Chap.7, standard errors of equating can be used to estimate the
amount of random equating error in estimating equating relationships. Standard
errors can be estimated for various equating designs and statistical methods using data
from operational test forms administered to operationally tested examinee groups.
Standard errors index only random equating error. To fully evaluate different equat-
ing methods it is also important to be able to estimate systematic equating error
and total equating error. However, systematic equating error and total equating error
are difficult, if not impossible, to estimate directly using data from operational test
forms administered to operationally tested examinee groups. For this reason, various
designs and criteria have been developed that can be used to estimate and compare
systematic error and total error in equating. This section focuses on these designs and
criteria which are often used in research studies on equating methods. The designs
and criteria are based on the following steps:

1. Establish a criterion equating.
2. Use resampling procedures to provide estimated equating relationships over R
replications.


http://dx.doi.org/10.1007/978-1-4939-0317-7_1
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3. Estimate random equating error as indexed by the standard error of equating,
systematic equating error as indexed by squared equating bias, overall error as
indexed by mean-squared equating error. Both total and conditional error indices
can be estimated.

Assume that Form X and Form Y are being equated. The criterion equating rela-
tionship is defined for the equating method using a particular definition of equating.
Refer to this equating relationship as ceqy(x;). Based on samples of examinees
taking the two forms, an equating method is used to estimate the population equat-
ing relationship repeatedly. Refer to the equating relationship on the -tk sample as
eqy (x;),. Over the total number of samples, R, define the mean of the estimated
equivalent as

~ 1 .
eqy(xi) = = > &gy (xi)r. 8.1)

the squared bias, which is an indicator of systematic error, as

bias® [eqy ()] = [éqy (i) —c eqy (x)]” (8.2)

the variance of the estimated equivalent, which is an indicator of random error, as

1 ~
var [eqy (xi)] = 2 Z [éGy (xi)r — e"qy(xi)]2 , (8.3)

r

and the mean-squared error of the estimated equivalents, which is an indicator of
total error, as

1
mse [&qy ()] = 2 > [éay i —c eqr @] (8.4)

r

It can be shown that
mse[éqy (x;)] = bias® [eqy (x)] + var [égy (x)] - 8.5)

Indices over all score points can be defined as

bias® = Z w;bias> [EZ]Y(xi)] , (8.6)
i
var® = wivar [égy(x;)] . and (8.7)
i

mse? = Z w;mse [e’EIY(x,-)] , (8.8)
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where > w; = 1. For example, equal weights or relative frequencies could be used.

1
Some studies have been conducted that use a single replication (R = 1). In this
case random and systematic error cannot be separated, and only mean-squared error
in Eq. (8.5) and overall mean-squared error in Eq. (8.8) can be found. Various research
designs and criterion equatings have been used within this framework. These designs
depend on how the criterion equating is established and on the data collection design
being used.

Random Groups Equating with Pseudo-Test Forms and a Single Group
Criterion

Pseudo-test forms (von Davier et al. 2006) can be constructed by dividing an opera-
tional test form. For example, a test form might be divided into two half-length test
forms by choosing items for each form to be proportionally representative of the two
forms in content and statistical characteristics.

If large numbers of examinees are administered the operational test form, then
scores for these examinees can be used to equate the two pseudo-test forms using
a single group equating. This single group equating can be used as the criterion
equating.

Random samples can be drawn from the examinees taking each of the pseudo-
test forms to study different methods for random groups equating. Based on these
samples, various equating methods can be applied and compared in terms of random
error, systematic error, and overall error using the statistics described earlier in this
section. This design was used, for example, by Liu and Kolen (2011a, b) to study
smoothing in equipercentile equating based on a test form that was administered to
over 16,000 examinees

An advantage of this design is that as long as a large sample of examinees who
took a single test form is available, a single group equating based on large numbers
of examinees can be used as the criterion equating. A limitation of this design is that
the forms that are equated differ from operational forms (e.g., they are shorter).

Random Groups Equating with Intact Test Forms and a Large-Sample
Random Groups Criterion

In the unusual situation when large randomly equivalent groups of examinees are
administered Form X and Form Y, the equating relationship for these groups can be
used as the criterion equating. Random samples of a particular size can be drawn
from these groups.

This design was used, for example, by Hanson et al. (1994) with two forms of
a 20-item test that were each administered to random samples of approximately
85,000 examinees. Equating results for identity, linear, unsmoothed equipercentile,
and smoothed equipercentile equating methods were compared at various sample



8.4 Equating Criteria and Designs in Research Studies 313

sizes. This sort of procedure was also used by Livingston et al. (1990) with over
100,000 examinees per form, although the focus of this study was on comparing
common-item nonequivalent groups equating methods.

An advantage of this design includes the use of a criterion based on large opera-
tional random samples and intact test forms. A limitation is that very large sample
sizes for forms administered to random groups of examinees are rarely available.

Random Groups Equating with a Model-Based Criterion

Operational test data can be fit with a model and the fitted model used to define the
population distributions in a simulation study. The population distributions are used
to establish the criterion equating.

For example, Hanson et al. (1994) began with distributions on forms of the ACT
English and Science Reasoning tests based on around 3,000 examinees per form.
They fit the observed distributions with a log-linear model with C = 9 to define
the population distributions and the criterion equating. They sampled from these
distributions and compared results from various equating methods (some findings
are shown in Table 3.12). Moses (2008) and Moses and Holland (2009a, b) used a
similar approach to investigate strategies for selection of smoothing parameters in
log linear equating. In another example, Cui and Kolen (2009) fit an IRT model to
the operational data, and used the fitted IRT model to establish the population score
distributions. Many other studies have been conducted using model-based criteria.

Advantages of the model-based criterion are that it has modest data requirements,
and the use of operational distributions in developing the criterion helps to make sure
that the form differences and data are realistic. A limitation of this design is that the
criterion equating depends on the extent to which the model fits.

Random Groups Equating: Comparison of Criteria

The three types of criterion equating for the random groups design each have advan-
tages and disadvantages as already indicated. In many situations, studies can be
conducted using both the pseudo-test form-based single group criterion and one or
more model-based criteria. The extent to which the findings using different criteria
are consistent leads to greater confidence in the practical implications of the findings.
For example, using a psuedo-test form-based single group criterion, Liu and Kolen
(2011c) noted some findings that were consistent with those of Hanson et al. (1994)
and Cui and Kolen (2009) that used a model-based criterion. The consistency of
results across these studies provides support for the generalizability of the findings.


http://dx.doi.org/10.1007/978-1-4939-0317-7_3
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Common-Item Nonequivalent Groups Equating with Pseudo-Test Forms,
Pseudo Groups, and a Single Group Criterion

For the common-item nonequivalent groups design, pseudo-test forms can be con-
structed by dividing a single operational test form into pseudo test-Form X, pseudo-
test Form Y, and a set of pseudo common items (either external or internal). Based
on the entire examinee sample, the single group equating relationship between these
two pseudo-test forms can be used as the criterion equating.

In addition, a selection variable that is related to examinee proficiency can be
used to form nonequivalent pseudo groups. Consider the following example: Parental
income is used as a selection variable. To form the pseudo group taking Form X,
examinees with higher parental income are sampled with a greater probability than
examinees with lower parental income. For the pseudo group taking Form Y, exami-
nees are sampled randomly. Using this selection procedure, the pseudo group taking
Form X is expected to be of higher proficiency than the pseudo group that took
Form Y.

Using data from these pseudo groups, scores on pseudo-test Forms X and Y can
be equated using common-item nonequivalent groups methods. Multiple examinee
pseudo group samples can be drawn. The amount of error in equating for these
methods can be compared using the error statistics described earlier.

For example, Liu and Kolen (2011c) used gender as a selection variable and
pseudo-test forms to compare the amount of equating error in estimating equiper-
centile and IRT equating relationships. Powers and Kolen (2011) used parental edu-
cation as a selection variable and Hagge and Kolen (2012) used parental education
and income to make similar comparisons. Powers and Kolen (2012) used parental
education as a selection variable and investigated matched samples equating methods.
Hagge and Kolen (2011) used ethnicity and parental income as selection variables and
pseudo-test forms to compare the amount of equating error for format-representative
and format-nonrepresentative sets of common items for mixed-format tests.

Petersen et al. (1982) used pseudo-test forms and pseudo groups as part of an
extensive comparison of equating methods in which they compared the equating
of different pseudo-test forms using a variety of linear equating methods and the
unsmoothed chained equipercentile method. In this study, pseudo-test forms were
constructed from a test that contained 85 SAT-Verbal operational items, 40 SAT verbal
items from an external set of common items, and 50 items from the Test of Standard
Written English. Pseudo groups were formed using level of educational aspiration
and amount of high school foreign language coursework. Although a single group
criterion equating was used as a check, an IRT model-based criterion equating was
used. Variations in test length, test content, test difficulty, common item difficulty, and
common item content were manipulated in this study. Marco et al. (1979) conducted
a companion study that focused on curvilinear methods.

The combination of pseudo-test forms and pseudo groups provides for a very
flexible design for comparing equating methods and procedures. An advantage of this
design is that it can be used whenever sample size for an operational administration
is sufficient to form pseudo groups using a selection variable. Another advantage is
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that a single group criterion equating is used. A limitation of this design is that the
forms that are equated differ from operational forms (e.g., they are shorter). Another
limitation is that the choice of selection variable used to form the pseudo groups
can influence the results, and any comparisons depend on the extent to which this
selection variable leads to realistic group differences.

Common-Item Nonequivalent Groups Equating with Intact Test Forms,
Pseudo Groups, and a Pseudo-Groups Criterion

Pseudo groups can be used to develop a criterion for equating intact test forms
when data are collected using the common-item nonequivalent groups design. In this
situation a selection variable can be used to form matched pseudo groups that have
similar common item score distributions. An equating relationship based on these
matched pseudo groups can be used as a criterion equating.

The selection variable can also be used to create pseudo groups that differ in pro-
ficiency by various amounts. Various common-item nonequivalent groups equating
procedures can be applied. Multiple samples can be drawn, and the amount of error
in equating for these methods can be compared using the error statistics described
earlier.

For example, Powers et al. (2011) used a reduced fee indicator as a selection
variable. Using this selection variable, they created a pseudo group for Form X that
had the same mean score on the common items as the group that was administered
Form Y; the resulting equating relationships were used as criterion equatings. Equat-
ings for pseudo groups with varying magnitudes of mean differences were compared
to the criterion equatings to assess the effect of group differences on equating error
for different common-item nonequivalent groups equating methods. See Hagge and
Kolen (2012) for another example that used this design and criterion.

An advantage of this design is that it uses intact test forms. In addition, it can
be used whenever sample size for a common-item nonequivalent design equating
is sufficient to form groups using the selection variable. One limitation is that the
criterion depends on the adequacy of forming the matched pseudo groups based on
the selection variable used. Another limitation is that comparisons depend on the
extent to which the selection variable leads to realistic group differences.

Common-Item Nonequivalent Groups Equating with Pseudo-Test Forms,
Intact Groups, and a Single Group Criterion

Consider the unusual situation in which a single test form is administered to two
intact operationally tested groups of examinees that differ in ability. For example,
Group 1 and Group 2 might have been tested on different test dates using the same
test form.

Pseudo-test forms can be formed by dividing the single test form into Form X,
Form Y, and a set of common items (either external or internal). The criterion equating
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is defined as the single group equating for scores on pseudo-test forms for the com-
bined group of examinees. Pseudo-test Form X also can be equated to pseudo-test
Form Y with the common-item nonequivalent groups methods, using data for Group
1 on pseudo-test Form X and data for Group 2 on pseudo-test Form Y. These non-
equivalent groups equatings can be compared to the criterion equating and the error
statistics calculated. This type of criterion equating and design has been used to com-
pare different equating methods, different length sets of common items, and different
compositions of common-item sets (Holland et al. 2008; Puhan 2010; Sinharay 2011;
Sinharay and Holland 2007, 2010a, b; von Davier et al. 2006).

Advantages of this design are that a single group equating is used as a criterion
and group differences are based on operationally intact groups of examinees. One
limitation of this design is that the forms that are equated differ from operational
forms (e.g., they are shorter). Another limitation is that it may be difficult to find a
situation in which a test form is separately administered to two intact operationally
tested groups of examinees.

Common-Item Nonequivalent Groups Equating with Intact Test Forms,
Pseudo Groups, and a Large Sample Random Groups Criterion

Consider the unusual situation where Form X and Form Y have items in common and
have been administered to large randomly equivalent groups (e.g., as in the Livingston
et al. 1990 study referenced earlier). The random groups equating relationship can
be used as the criterion equating relationship.

A selection variable that is related to examinee proficiency can be used to form
nonequivalent pseudo groups. Scores on Form X and Form Y can be equated using
data from these pseudo groups using different equating methods. Multiple examinee
samples can be drawn. The amount of error in equating for these methods can be
compared using the error statistics described earlier. This design has been used to
compare the adequacy of different common-item nonequivalent groups equating
methods (Livingston et al. 1990; Wright and Dorans 1993; Dorans et al. 2008) and
by Dorans et al. (2008) to compare content representative to content unrepresentative
sets of common items.

The choice of selection variable used to form pseudo groups has been shown to be
an issue with this design. Livingston et al. (1990) used scores on another test as the
selection variable. Wright and Dorans (1993) used scores on another test as well as
on the common items on the test being equated as the selection variable. Dorans et al.
(2008) used total score on the test being equated as well as on another test as selection
variables. The results of the comparison of different common-item nonequivalent
groups equating methods depended heavily on which selection variable was used to
form the pseudo groups (see Dorans 2012, for a synthesis). One likely reason that
these studies found such different results is that when the selection variable is either
score on the common items or score on the total test, measurement error for scores
on the test to be equated or scores on the common items is correlated with examinee
selection when forming the pseudo groups. Such correlated error likely would not
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be present in realistic nonequivalent groups equating situations. For this reason, a
selection variable other than scores on the test to be equated or scores on the common
items should be used when forming pseudo groups. That is, selection variables such
as scores on another test or examinee background variables (e.g., socioeconomic
status variables) should be used to form pseudo groups.

One advantage of this design and criterion is that the criterion is based on large
operational samples and intact test forms. A limitation is that very large sample sizes
administered to random groups of examinees typically are not available. Another
limitation is that the choice of selection variable used to form the pseudo groups
can influence the results, and any comparisons depend on the extent to which this
selection variable leads to realistic group differences.

Common-Item Nonequivalent Groups Equating
with a Model-Based Criterion

As with the random groups design, when only modest sample sizes are available,
it is possible to fit the data with a model and use the fitted model as parameters in
a simulation study. The population distributions are used to establish the criterion
equating.

For example, Eignor et al. (1990a) fit an IRT model to two test forms that had
common items. The resulting parameter estimates and proficiency distributions were
used as parameters for a data simulation. Lee et al. (2012), using mixed-format test
data, fit multiple-choice items with a unidimensional IRT model and separately fit the
constructed-response items with another unidimensional IRT model. The correlation
between the multiple-choice and constructed-response proficiencies was estimated.
Based on this model, data were simulated by varying the magnitude of group dif-
ferences and the correlation between the multiple-choice and constructed-response
proficiencies to study the effects of correlation between proficiencies and group dif-
ferences on equating error. Wang et al. (2008) used data simulated from an IRT
model to compare error for several common-item nonequivalent groups equatings.
Sinharay and Holland (2007) used data simulated from an IRT model to compare
equating error for common item sets that had difficulty distributions similar to and
less variable than the difficulty parameter distributions for the total tests. Moses and
Holland (2010) fit a bivariate loglinear model to common-item nonequivalent groups
test data and used these as population distributions to construct a criterion equating.
They simulated data from the fitted model to compare equating error associated with
different strategies for selecting the degree of smoothing. Many other examples of
the use of model-based criteria exist.

Advantages of the use of the model-based criterion are that it has modest data
requirements and the use of operational distributions in developing the criterion
helps to make sure that the form differences and data are realistic. A limitation of
this design is that the criterion equating depends on the extent to which the model
fits. Model-based criteria are useful only to the extent that the simulated data are
realistic.



318 8 Practical Issues in Equating

Common-Item Nonequivalent Groups Equating: Comparison
of Designs and Criteria

All of the designs and criteria considered for the common-item nonequivalent groups
design can be used to compare equating methods. The designs and criteria differ in
whether intact or pseudo groups are used, whether intact- or pseudo-test forms are
used, and by the type of criterion used. The use of the pseudo-test forms, pseudo
groups, and a single group criterion is the most flexible of the designs that uses real
test data. However, such flexibility is gained at the expense of using pseudo-test forms
that differ from operational test forms and pseudo groups that differ from operational
groups. In addition, the results likely depend on how the pseudo-test forms and pseudo
groups are created. The other designs that use real data are less flexible. The use of
the model-based criterion is also quite flexible, but it is realistic only to the extent
that the model closely parallels reality. In addition, the model-based criterion likely
favors equating methods that have assumptions similar to those made by the model.
Ideally, studies should be conducted using different designs and criteria. The extent
to which such findings are consistent leads to greater confidence in the practical
implications of the findings.

8.4.2 Equating in a Circle

Another type of design and criterion that has been used in research studies is equating
in a circle. To use this design in a situation with three forms, Form X is equated to
Form Y, Form Y is equated to Form Z, and Form Z is equated back to Form X.
Following through this chain, Form X is equated to itself. In this paradigm, equating
is adequate to the extent that a Form X raw score of 1 converts to a score of 1, a
raw score of 2 to a score of 2, etc. This paradigm can be used if Forms X, Y, and
Z are equated using a random groups design. This design also can be used with the
common-item nonequivalent groups design if there are items in common between
Forms X and Y, between Forms Y and Z, and between Forms Z and X. Angoff (1987)
considered this criterion to be useful because “it provides advance knowledge of what
the errorless result should be ...” (p. 298). This criterion has been used in various
equating and linking studies (e.g., Cope 1987; Gafni and Melamed 1990; Klein and
Jarjoura 1985; Lord and Wingersky 1984; Marco et al. 1979; Petersen et al. 1983;
Phillips 1985).

Although equating in a circle might appear to be sensible, Brennan and Kolen
(1987a, b) pointed out concerns with this paradigm. First, they indicated that iden-
tity equating will always be preferable to equating when using this paradigm. They
demonstrated that equating methods which estimate fewer parameters (e.g., linear
equating) tend to perform better than methods that estimate more parameters (e.g.,
equipercentile equating). They also demonstrated that, under the common-item non-
equivalent groups design, the results of the comparison depend on the form used to
start the circle. That is, different results are found when Form X is equated to itself
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through Forms Y and Z than when Form Z is equated to itself through Forms X
and Y. Wang et al. (2000) reinforced many of the concerns discussed by Brennan and
Kolen (1987a, b) through a set of simulation and real data studies. These problems
suggest cautious use of the equating in a circle paradigm. However, this procedure
could be useful in identifying methods that produce poor equating results, in that if
a method does not work well when equating a form to itself, it might not work well
when equating alternate forms.

Equating a test to itself is a design and criterion similar to the equating in a
circle design and criterion. Consider a single test form and associated set of common
items. Form pseudo groups using a selection variable. The test form is equated to
itself treating one of the pseudo groups as if it had taken Form X and the other as if
it had taken Form Y. Because Form X and Form Y are actually the same form, the
identity equating is used as the criterion equating. This type of design and criterion
was used in the portion of the Petersen et al. (1982) study in which a test form was
equated to itself. Equating methods were compared using various common items
sets that differed in difficulty and content. This design and criterion, however, has
the same limitations discussed by Brennan and Kolen (1987a, b) for equating in a
circle.

8.4.3 Criteria and Designs Based on Assessing Group
Invariance of Equating Relationships

One of the properties of equating described in Chap. 1 is that equating relationships
are expected to be group invariant. Group invariance can be checked by comparing
the equating relationships for different groups of examinees as was done by Angoff
and Cowell (1986) and Harris and Kolen (1986). Whenever there are substantial
differences in equating relationships for different groups of examinees, the linking
that was done cannot be considered to be an adequate equating.

Dorans and Holland (2000) introduced statistics that can be used to index
the difference between equating relationships for different groups of examinees.
von Davier et al. (2004) developed analogues of the Dorans and Holland (2000)
statistics for the common item nonequivalent groups design. Dorans (2004) dis-
cussed a general approach to assessing invariance. Liu and Dorans (2012) considered
additional approaches to address whether equating are equivalent from a practical
perspective. Many of these indices have been used extensively to evaluate the group
invariance of equating and linking relationships. Indices for assessing group invari-
ance of equating and linking are described in detail in Chap. 10.

Huggins and Penfield (2012) reviewed indices for assessing population invariance.
Brennan (2008) and Petersen( (2008) provided discussions of population invariance.
Kolen (2004) discussed the history of conceptualizing and studying population invari-
ance.
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8.4.4 Criteria and Designs Based on the Equity
Property of Equating

Kolenetal. (1992) described procedures that can be used to find the conditional means
and standard errors of measurement using strong true score models. Kolen et al.
(1996) described similar procedures that can be used with dichotomous IRT models,
and Wang et al. (2000) presented procedures that can be used with polytomous
IRT models. These procedures can be used to assess first- and second-order equity
properties for equated scores earned on alternate forms for raw, scale, and rounded
scale scores.

To apply these methods, itis necessary to assume that a particular test theory model
(either strong true score model or IRT model) holds and that the model has been fit to
the equated forms. The model is then used to calculate expected scores, conditional
on true score (or IRT ability). The conditional expected scores, after equating, are
compared across alternate forms. First-order equity is said to hold to the extent that
these conditional expected scale scores are similar for the alternate forms. The model
also is used to calculate standard errors of measurement, conditional on true score
(or IRT ability). Second-order equity is said to hold to the extent that the conditional
standard errors of measurement, after equating, are similar for the alternate forms.

Some of the necessary theory needed for the version of this approach was already
presented in Chap. 6. For dichotomous IRT models, the recursion formula given in
Eq. (6.25) can be used to find the conditional distribution of observed scores given IRT
ability, which is symbolized f(x|6;). The mean of this distribution can be calculated
as

K
K7 =2 if(X=jlth). (8.9)

J=0

Note that this value is the true number-correct score on Form X and could have
been calculated from the test characteristic curve. The conditional error variance of
number-correct scores is

K
var(X16;) = D" (j = K7)° f(X = jI6)). (8.10)
Jj=0

The square root of this variance represents the standard error of measurement of
number-correct scores.

Also, assume that the transformation sc is used to transform raw scores to scale
scores. The mean of the conditional distribution of scale scores given 6; is

K
£(0;) = ZSC(j)f(X = jlbi), (8.11)

j=0
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which is the true scale score for examinees with ability ;. By considering various
values of 6;, this equation relates true scale score to IRT ability.
Conditional measurement error variance of scale scores given 6; is

K
varlse(NIO] = Y [se(j) — £GP f(X = j16). (8.12)

j=0

The square root of this variance represents the conditional standard error of mea-
surement of scale scores.

Equation (8.11) can be used to assess first-order equity for scale scores on alternate
forms. If first-order equity holds, then the conditional scale score means would be the
same on Form X and Form Y. The extent to which these conditional scale score means
differ indicates the extent to which first-order equity fails to hold. Equation (8.12)
can be used to assess second-order equity on alternate forms. If second-order equity
holds, then the conditional scale score standard errors of measurement would be the
same on Form X and Form Y. The extent to which these conditional scale score
standard deviations differ indicates the extent to which second-order equity fails to
hold.

Average error variance can be calculated as

var(Ey) =/var[sc(j)|0]g(9)d9, (8.13)
0

where g(0) is the distribution of  in the population. If this distribution is expressed
using quadrature points and weights, then the integration can be accomplished by
summation, as was done in Chap. 6.

Letting o>[sc(X)] represent the variance of observed scale scores, an index of
test reliability can be defined as

var(Ejy)

P(X, X )scate =1 — o2sc(X)]

(8.14)

Reliability is defined as 1 minus the ratio of scale score error variance to scale score
observed variance.

As an example of how to apply Egs. (8.9) through (8.14), consider the hypothetical
example of the use of the recursion formula presented in Table 6.4. Given 0; = —2,
the distribution of number-correct scores on a three-item multiple-choice test was
calculated in the example. The number-correct scores of O to 3 are given in the first
column of Table 8.6. The probabilities of earning each of these scores from Table 6.4
are given in the second column of Table 8.6. In the third column, the conditional mean
is found to be .71 using Eq.(8.9). In the fourth column, the conditional variance is
calculated as .5370 using Eq. (8.10).

A hypothetical raw-to-scale score conversion is given in the fifth column. In this
conversion, a number-correct score of 0 is converted to a scale score of 1, a number-
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Table 8.6 Example calculating scale score conditional means and error variances using data from
example in Table 6.4

(x —k7)? sc(x) [sc(x) — £
X f(x10:)  x x f(x]0;) x f(x6;) sc(x) x f (x]0;) x f(x10;)
0 4430 0(.4430) (0 —.71)2 1 1(.4430) (1 —2.2921)2
x (.4430) x (.4430)
1 4167 1(.4167) (1—.71)2 3 3(.4167) (3 —2.2921)2
x (.4167) x (.4167)
2 1277 2(.1277) (2 —.71)? 4 4(.1277) (4 —2.2921)?
x (.1277) x (.1277)
3 .0126 3(.0126) (3 —.71)2 7 7(.0126) (7 —2.2921)%
x (.0126) x (.0126)
Sum Kt = var(X|0;) = £(6;) = var[sc(X)|0;] =
71 .5370 2.2921 1.6002
Fig. 8.2 Raw-to-scale score -
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correct score of 1 is converted to a scale score of 3, and so on. In the sixth column,
Eq.(8.11) is used to calculate the mean of this conditional scale score distribution. As
can be seen, each scale score is multiplied by the probability of earning that score and
then summed over scale scores. In the last column, Eq. (8.12) is used to calculate the
conditional error variance. The conditional mean is subtracted from each scale score,
the difference is squared and multiplied by the probability of earning that scale score,
and the quantities are summed over scale scores. Note that the conditional standard
error of measurement of scale scores is 1.2650, which is the square root of the
variance given at the bottom of the last column.
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As an example of an application of this methodology to real data, consider the
ITBS Maps and Diagrams example from Chap. 6. The raw score distributions for this
example were shown in Fig. 6.13. As can be seen, Form L is more difficult than Form
K. This observation suggests that Form L discriminates among examinees better at
higher scores and Form K discriminates better at lower scores.

Raw-to-scale score conversions that are used operationally with Forms K and L are
shown in Fig. 8.2. Equipercentile equating was used to equate these forms. Consistent
with Form K’s being the easier form, to earn a given scale score, examinees need to
earn a higher raw score on Form K than on Form L. The mean scale score is 176.6
for Form K and 176.9 for Form L. The scale score standard deviations are 21.8 for
Form K and 21.7 for Form L.

The computer program POLYCSEM, listed in Appendix B, was used to examine
first- and second-order equity for these two forms using the methodology described
by Kolen et al. (1996). Three-parameter logistic IRT model parameters were fit to the
forms. Conditional on a set of 8-values, true scale scores were calculated for Form
K using Eq.(8.11). Conditional on the same set of §-values, true scale scores were
calculated for Form L also using Eq. (8.11) . In Fig. 8.3, the Form K true scale scores
are given along the horizontal axis and Form K true scale scores minus Form L true
scale scores are given along the vertical axis. If first-order equity held perfectly, the
relationship would be a line at a vertical axis value of zero. As can be seen, Form
K has slightly higher true scale scores (positive vertical axis values) in the middle
scores and Form L has higher true scale scores (negative vertical axis values) at the
very high and low scores. Note that most of the differences are small relative to the
scale score standard deviation of 21.8 for Form K and 21.7 for Form L.

Conditional scale score standard errors of measurement were calculated for each
of the forms using Eq.(8.12) to evaluate second-order equity. These conditional
standard errors of measurement are plotted in Fig.8.4. The conditional standard
errors of measurement tend to be larger for Form K at the high scores, which is
consistent with Form K being an easier form, and not discriminating as well as Form
L at the high scores. The conditional standard errors of measurement tend to be larger
for Form L at the low scores, which is consistent with Form L’s being a more difficult
form, and not discriminating as well as Form K at the low scores. The conditional
standard errors of measurement are similar for the two forms at the middle scores.
In general, these results suggest that first- and second-order equity were not well
achieved with these forms.

Given that equipercentile procedures were used, it must be the case that the scale
score distributions for the two forms are similar to one another. However, as illus-
trated in Fig.8.3, for example, examinees with true scale scores around 195 are
expected to earn scale scores on Form K that are nearly 2 points higher than those
expected on Form L. Examinees with true scale scores around 150 or around 240
are expected to earn scores that are around 5 points higher on Form L than on Form
K. Based on the results in Fig. 8.4, examinees are measured more precisely with
Form L at higher scores and more precisely with Form K at the lower scores. These
observations suggest that, depending on an examinee’s scale score and the purposes
of the testing, certain examinees would prefer taking one test form over the other.


http://dx.doi.org/10.1007/978-1-4939-0317-7_6
http://dx.doi.org/10.1007/978-1-4939-0317-7_6

324 8 Practical Issues in Equating

(S}
l

._
|

o
|

\
—_
|

'
S
|

|
IS
|

!
o)
|

.
=)}
|

Form K True Scale Score Minus Form L True Scale Score
&
|

'
N

I I I I I
135 155 175 195 215 235 255

Form K True Scale Score

Fig. 8.3 First-order equity plot for Forms K and L

Fig. 8.4 Second-order equity = 18+ Form K

plot for Forms K and L 2
L 164
5
o 144
=
B
S 12
g
M 10
o
s
= 8
=1
S
f 67 \
<
= \
g 44 \
:é \
S '

0 T T T T T 1
135 155 175 195 215 235 255

True Scale Score

The large difference in raw-score means between the two forms likely contributed
to the finding that first- and second-order equity were not well achieved for these
forms. Tong and Kolen (2005) examined the first- and second-order equity proper-
ties for a number of equatings. They found that the first- and second-order equity
properties held reasonably well, except when the score distributions for the forms to
be equated differed markedly, as is the case with the example given in this section.



8.4 Equating Criteria and Designs in Research Studies 325

Lee et al. (2010) and He and Kolen (2011) provided further evidence. Thus, first-
and second-order equity can be expected to hold reasonably well when the score
distributions for forms to be equated are similar to one another.

In an illustrative example, Kolen et al. (1992) examined second-order equity for
ACT Assessment equatings. In one of the examples considered for the English test,
they found that at high scale scores, the conditional standard errors of measurement
were elevated for three of the five forms examined. On reviewing the test forms,
they found that these three test forms were noticeably less difficult than the other two
forms. The difficulty differences resulted in gaps in the conversion tables. As a result,
they concluded that “these three English forms are less capable of distinguishing
among high-achieving students than the other forms” (p. 303).

Wyse and Reckase (2011) provided statistics, in addition to those provided by
Tong and Kolen (2005), for evaluating first-order equity. van der Linden (2006a)
introduced a procedure for evaluating equity that takes into account the conditional
distribution of observed scores given proficiency. He and his colleagues further devel-
oped this approach which they referred to as local observed score equating (van der
Linden 2010, 2011; van der Linden and Wiberg 2010; Wiberg and van der Linden
2011). Brennan (2010) considered equity from the perspective of classical test theory
assumptions and concluded that it is more likely that first- and second-order equity
will hold when tests become more reliable.

The examples considered in this section suggest that examination of first- and
second-order equity provide evidence of the quality of equatings. Such an examina-
tion can provide evidence of problems in equating when the forms that are equated
are significantly different from one another. For this reason, we recommend that an
evaluation of the equity property of equating be used to evaluate the adequacy.

8.4.5 Discussion of Equating Criteria and Designs

Based on their review of these criteria and others, Harris and Crouse (1993) concluded
that “...no definitive criterion for evaluating equating exists ...” (p. 230). They went
on to say that

Given the controversy regarding which criterion is best, whether certain criteria are useful,
and whether a criterion is needed at all, much work needs to be done in the area of equating
criteria. As long as equating is performed, equating criteria will be needed to evaluate the
results ... The fact that equating results appear to be so situation specific demands that studies
be replicated and that some method of comparing results across studies be developed (p. 232).

This discussion of criteria suggests that research can provide information about which
method to use. However, it is unlikely that such research will lead to an unambiguous
choice of an equating method, in part because different criteria might lead to the
choice of different methods.

Each of the designs and criteria discussed in this section has strengths and weak-
nesses. To address important research questions in equating it is necessary to use
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various designs and criteria to assess the extent to which the findings agree across
designs and criteria. When the findings differ, it is important to understand the rea-
sons.

8.5 Choosing from Among Equating Results in Operational
Equating

When various equating methods are applied in a particular situation, a process should
be developed to choose from among the results. The use of double linking increases
the choices that should be considered. Various statistical indices, procedures, and
criteria can be used for comparing results from different equatings.

8.5.1 Equating Versus Not Equating

Assuming that the test specifications, design, data collection, and quality control
procedures are adequate, it is still possible that using the identity function will lead
to less equating error than using one of the other equating methods. Hanson (1992)
developed an approach that can be used to help decide whether to equate or use
the identity function when using the random groups design. This approach includes
using a significance test with the null hypothesis that the distribution of raw scores
on alternate forms is the same in the relevant population of examinees. If the null
hypothesis is rejected, it is concluded that the distributions differ in the population
and that equating should be considered. If the null hypothesis is retained, identity
equating is used. Only random error is considered in Hanson’s (1992) approach.
However, systematic error can be even more problematic than random error. (See
Dorans and Lawrence 1990, for a similar procedure that considers only the mean
and standard deviation.)

In small sample situations it is recommended that Hanson’s (1992) procedure be
used to help decide whether identity equating is preferable to another equating. If the
significance test suggests that the distributions are the same, then identity equating
could be used. Otherwise, the procedure described previously in this chapter can be
used to estimate whether equating would result in more or less error than identity
equating. Only if equating is expected to add in less error than identity equating,
should an equating other than identity equating be considered.
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8.5.2 Use of Robustness Checks

Many procedures have been suggested for estimating the equating relationship for a
population using data from a sample. In any equating situation, a relevant question
is: How robust is the estimation to the choice of method or procedure? To address
this question of robustness, various methods and procedures can be applied, and if
all of the results are similar, then the results are said to be robust with respect to the
choice of method. If the results differ, then the results are not robust with respect
to the choice of method. In this case, the choice of method is crucial, although a
clear-cut basis for making the choice typically is not available.

In addition, equating can be conducted for various subgroups of examinees (e.g.,
males vs. females). To the extent that the equating is robust, the equating should be
similar in the various subgroups. For a particular method, substantial differences in
equating results for different subgroups are suggestive of problems with that method.

8.5.3 Choosing from Among Results in the Random
Groups Design

A general scheme for choosing from among different equipercentile smoothing
results was presented in Chap.3. Identity equating, mean equating, and linear
equating can be considered as more drastic smoothing, and can be compared
with unsmoothed equipercentile equating and with each other. In the discussion
of postsmoothing in Chap. 3, it was suggested that a method be chosen which results
in a smooth relationship without departing more than necessary (based on standard
error bands) from the unsmoothed relationship. A process for choosing from among
the different degrees of smoothing was described. Statistical tests were incorporated
in the choice of presmoothing method. The methods that were presented depend on
judgment at various stages in the process.

Statistical procedures other than those described so far in this book have been
suggested for choosing from among results. Budescu (1987) and Jaeger (1981) con-
sidered statistical indices that could help in choosing between linear and equiper-
centile equating. Zeng (1995) developed a computerized expert system that chooses
between postsmoothing results in a manner intended to mimic the procedures used
by psychometricians.

Thomasson et al. (1994) presented a detailed set of heuristics for choosing among
different smoothed equatings in the ASVAB program. In these procedures, statistical
summary indices between the smoothed and unsmoothed relationships for different
degrees of smoothing are calculated. Heuristics lead to a single relationship being
chosen, based on the similarity of smoothed equating with unsmoothed equating.
Graphic inspection and other judgmental procedures are used to make sure that the
relationship chosen results in an apparently reasonable conversion which is consistent
with previous experience.
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Heuristics should be developed within the context of the testing program. Also,
heuristics should not be applied blindly or followed rigidly. New wrinkles constantly
are occurring. Therefore, the procedures should be flexible.

When double linking is used, a method must be chosen for combining the results
from the two links. The results might be combined by first conducting the equating
separately for the two links. After each equating is conducted, the results could be
combined using a weighted average, and properties of this weighted average studied.
If problems are detected, different combinations of results from the two links can be
tried. Again, procedures should be tailored to the specific testing program.

8.5.4 Choosing from Among Results in the Common-Item
Nonequivalent Groups Design

The choice among results in the common-item nonequivalent groups design is com-
plicated further because so many sets of assumptions can be used to disconfound
group and form differences. For example, in linear equating, results based on Tucker
and Levine observed score method assumptions could be compared. If nonlinear
methods are to be considered, IRT observed score (Chap. 6) and frequency estima-
tion (Chap. 5) results (with various smoothing degrees and smoothing methods) can
enter into the decision process. In theory, the choice of synthetic population weights
is also of some concern, as was indicated in Chap. 4.

Some of the assumptions required for methods can be assessed. For example, the
linearity of the regression of X on V that is required for the Tucker method could
be checked (Braun and Holland 1982, p. 25). If the regression were found to be
nonlinear, the Braun-Holland (see Chap.5) method might be used. The disattenu-
ated correlation between X and V could be estimated. A disattenuated correlation
substantially less than 1 would suggest problems with assumptions for the Levine
method. IRT assumptions could be tested (see Hambleton et al. 1991).

A major problem with this design is that it is impossible to test some of the
crucial assumptions. For example, no direct way exists to assess the Tucker method
assumption that the regression of X on V in Population 2 is the same as the regression
of X on V in Population 1. Similarly, no direct way exists to assess the Levine
method assumption that the correlation between true scores for X and V equals 1 in
Population 2.

The assumptions required for the methods might lead to a preference of one
method over another. For example, Tucker and frequency estimation equipercentile
equating might be preferred when groups are similar. When groups are very different,
the Levine observed score or IRT methods might be preferred, if the assumptions for
these methods hold well enough. Sample size might also affect which method would
perform better in a situation. Only general guidelines can be given here: The choice
among results should be made in the context of the testing program.
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Table 8.7 Scale score means and standard deviations for a hypothetical example

Number Standard
Year tested Mean deviation
1 1005 33.8 54
2 1051 33.1 5.6
3 1161 33.0 5.7
4 1192 32.8 5.8
5 (Tucker) 1210 32.5 5.9
5 (Levine Obs. score) 1210 334 5.7

8.5.5 Use of Consistency Checks

When conducting equating, the consistency of current results with past results is
often the most informative data for choosing a method. For example, consider the
scale score means and standard deviations in Table 8.7 for Years 1 through 4. Over the
period from Year 1 to Year 4, the tested group became larger, overall lower achieving,
and more variable. Assume that we are in Year 5. Equating has been conducted, and
the scale score means and standard deviations that resulted from applying Tucker
and Levine observed score equating are shown in Table 8.7. Which method gives
results that appear more sensible assuming that the past results were accurate? In
this case, the sample size is increasing, which is consistent with the past 4 years.
Scale scores using the Tucker method have a lower mean than the previous year and
a higher standard deviation that is consistent with trends over the past 4 years. The
mean and standard deviation for the Levine observed score method are not consistent
with this trend. Thus, the Tucker results are more consistent with past trends than
are the Levine observed score results. The greater consistency of the Tucker method
might lead to the choice of the Tucker method results in this situation, although the
method that actually produced the most accurate results would never be known for
sure.

The example in Table 8.7 is based on comparing means and standard deviations.
Examining the consistency of entire score distributions can be useful, too, especially
when accuracy is important all along the score scale. Also, examining the consistency
of pass rates or consistency at particular important score points also can be helpful.
Suppose that approximately 40 % of the examinees have passed a test on previous
test dates. In a current equating, 41 % would pass using the Levine observed score
method and 32 % would pass using the Tucker method. In this case, the Levine
observed score results might be preferred for consistency reasons, especially if the
major uses of the test involve a passing score.

Large unexpected differences in consistency checks might suggest either quality
control problems or problems with the assumptions of a particular method. When
these differences are found, the implementation of the equating should be checked
including the functioning of the common items (if appropriate), the execution of
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the equating design, and other quality control issues. Problems might have existed
with past equatings, suggesting that they should be checked as well. These poten-
tial sources of problems should be examined before accepting the results from an
equating.

8.5.6 Equating and Score Scales

As was indicated in Chap. 1, equating is part of a scaling and equating process.
Score scales are discussed in detail in Chap.9 where we indicate that the score
scale often is chosen to facilitate score interpretation. The choice of score scale is
especially important for tests in which decisions are made along a range of scores.
The particular score scale is much less important if a test is used only in making
pass-fail decisions, where decision consistency is crucial.

The choice of score scale affects equating. For example, in Chap.2, rounding
scale scores to integers was shown to have a significant effect on the similarity,
across forms, of the scale score means, standard deviations, and other moments.
Also, in Chap. 9 we discuss problems that can result when raw scores on a form are
used as the score scale—in particular, raw scores become easily confused with scale
scores.

Typically, rounded scale scores are reported to examinees. These rounded scores
might have some properties that appear to be undesirable. For example, in ACT
(ACT 2007) equating, a conversion table might result in many number-correct scores
converting to a single scale score. Also, gaps can occur in conversion tables, in which
no raw score converts to a particular scale score. These occurrences can be viewed
as problematic by examinees. If the scale score increment is 1 point, an examinee
might justifiably question why earning 1 number-correct score less than someone
else would result in a 2- or 3-point difference in scale scores. Under the assumption
that gaps, and too many raw scores converting to a single scale score, would not
occur except for sampling error, results for a method or degree of smoothing might
be chosen that minimize these problems.

In testing programs, such as the ACT (ACT 2007) and the SAT (Donlon 1984,
pp.- 19,20), for practical reasons a number-correct score of all correct is forced to
convert to the highest possible scale score, even if the equating suggests that some
other score would be more appropriate. This process is used with the SAT and the
ACT to ensure that the highest possible scale score can be earned on any form.
However, doing so makes it easier to earn a top score on some forms than on others.
For this reason, other testing programs allow the top score to differ depending on the
difficulty of the form for high-scoring examinees. The effects of adjustments to the
score scale and choosing methods to avoid gaps in the conversion should be evaluated
on a case-by-case basis. The effects on moments and on score distributions should
be carefully monitored.
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8.6 Importance of Standardization Conditions and Quality
Control Procedures

For equating to be adequate, testing conditions should be standardized and quality
control procedures should be followed. Otherwise, identity equating, rescaling, or
scaling to achieve comparability might be the best options. Quality control procedures
are vital to adequate equating, and they often take more effort than other aspects of
the equating process.

8.6.1 Test Development

The following is a list of changes in how the test forms are developed that can cause
problems for equating:

1. Test specifications change. (See Chap. 1 and previous portions of this ch