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Preface

This book is a consultant’s guide for the researcher in astronomy or physics who
is willing to analyze his (or her) own data by offering him (or her) a statistical
background, some numerical advice, and a large number of examples of statisti-
cal analyses of real-world problems, many from the experiences of the first author.
While writing this book, we placed ourselves in the role of the researcher willing to
analyze his/her own data but lacking a practical way to do it (in fact one of us was
this once). For this reason, we choose the JAGS symbolic language to perform the
Bayesian fitting, allowing us (the researchers) to focus on the research applications,
not on programming (coding) issues. By using JAGS, it is easy for the researcher
to take one of the many applications presented in this book and morph them into a
form that is relevant to his needs. More than 50 examples are listed and are intended
to be the starting points for the researchers, so they can develop the confidence to
solve their own problem. All examples are illustrated with (more than 100) figures
showing the data, the fitted model, and its uncertainty in a way that researchers
in astronomy and physics are used to seeing them. All models and datasets used
in this book are made available at the site http://www.brera.mi.astro.it/∼andreon/
BayesianMethodsForThePhysicalSciences/.

The topics in this book include analyzing measurements subject to errors of dif-
ferent amplitudes and with a larger-than-expected scatter, dealing with upper limits
and with selection effects, modeling of two populations (one we are interested in
and a nuisance population), regression (fitting) models with and without the above
“complications” and population gradients, and how to predict the value of an un-
available quantity by exploiting the existence of a trend with another, available,
quantity. The book also provides some advice to answer the following questions:
Is the considered model at odds with the fitted data? Furthermore, are the results
constrained by the data or unduly affected by assumptions? These are the “bread
and butter” activities of researchers in physics and astronomy and also to all those
analyzing and interpreting datasets in other branches as far as they are confronted
with similar problems (measurement errors, variety in the studied population, etc.).

The book also serves as a guide for (and has been shaped thanks to) Ph.D. stu-
dents in the physical and space sciences: by dedicating 12 h of studying the content
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of this book, the average student is able to write alone and unsupervised the complex
models in Chap. 8 (and indeed the example in Sect. 8.2 was written by a student).

Content
The book consists of ten chapters. After a short description on how to use the book
(Chap. 1), Chaps. 2 and 3 are a gentle introduction to the theory behind Bayesian
methods and how to practically compute the target numbers (e.g., parameter esti-
mates of the model). In later chapters, we present problems of increasing difficulty
with an emphasis on astronomy examples. Each application in the book has the
same structure: it presents the problem, provides the data (listed in the text, or in
the case of large datasets, a URL is provided) or shows how to generate the data,
has a detailed analysis including quantitative summaries and figures (more than 100
figures), and provides the code used for the analysis (using again the open-source
JAGS program). The idea is that the reader has the capability to fully reproduce our
analysis. The provided JAGS code (of which the book contain over 50 examples)
can be the starting point for a researcher applying Bayesian methods to different
problems. The key subject of model checking and sensitivity analysis is addressed
in Chap. 9. Lastly, Chap. 10 provides some comparisons of the Bayesian approach to
older ways of doing statistics (i.e., frequentist methods) in astronomy and physics.
Most chapters conclude with a set of exercises. An exercise solution book is avail-
able at the same URL given above.

Contact Details
Send comments and errors found to either stefano.andreon@brera.inaf.it or theguz@
lanl.gov. Updated programs and an erratum are kept at http://www.brera.mi.astro.it/
∼andreon/BayesianMethodsForThePhysicalSciences/.
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Chapter 1
Recipes for a Good Statistical Analysis

or “How to use this book”

Performing a sound analysis of a data set is never a simple endeavor. There are,
however, a few well-known steps that are necessary for any statistical analysis. We
present them below.

Learn the theory. A bit of background about statistical methods is useful when
analyzing complex data sets, even when the data set looks simple at first sight.
Some probability theory is described in Chap. 2. It is also useful to learn how the
computer will compute (for you) the set of numbers (i.e., statistics) that you want
(Chap. 3), especially if these have an influence on your career or reputation.

Start simple. Start with simple examples, in particular the one in Sect. 4.1, where
a step-by-step guide provides the basics of building a Bayesian model. If you are
unfamiliar with the concept of a prior, then read the first part of Chap. 5.

Practice. Next develop some experience by practicing with models of medium
complexity: try to reproduce, by yourself, one of the many examples given in
the book. During your study period, pay attention to possible coding mistakes:
it may occur that the model you fit (i.e., the one you wrote) is not the one you
intended to, much like when you write a program in a program language that you
are not familiar with. If you are in doubt about your fitted model, simulate data
from the model (as explained in Sect. 9.2) and try to recover the input parameters
of your model. If you do not recover the input parameters, then most likely the
fitted model is not the model intended to be fitted (the one used to generate the
data). In fact, in a Bayesian framework, bias (a systematic difference between
input and fitted values) does not exist.

Build the model and check that it adequately describes the data. Search this book
for examples similar to the problem you are interested in, or that may be the
building blocks of your (likely complex) model. Modify your initial (simple)
model until it matches the model you want to fit. This is one of the main themes
of the book, we almost always start simple and then add complexity (e.g., in-
trinsic scatter, heteroscedastic errors, a complex data structure, contamination by
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2 1 Recipes for a Good Statistical Analysis

something unwanted like a background source, a selection function, incompatible
data, etc.). To check if the model adequately describes the data, generate simu-
lated data from the model, and check that they look like the real data (how to do
this is explained in Sect. 9.2). If there is a clear discrepancy between the real and
the simulated data, the fitted model is inadequate for the data being fitted. You
should then modify the fitted model, and iterate until adequacy is demonstrated.

Fit. You may now fit the model to the real data and get the (posterior) probability
distribution of the parameters. As you (almost certainly) are using a computer to
make the computations, it is recommended to check if the performed numerical
computations are miscalculated (Chap. 3).

Sensitivity analysis & Model checking. Are the data informative about the quan-
tity you want to measure or are the results sensibly dependent on details of the
fitted model? Furthermore, is your prior uncertain, i.e., it is not too clear which
exact form of a prior you should use? Regardless, if you have not already checked
the various parts of the model, this is the right time to do so, because very soon
you will publish your results. If you have not assessed your model, we urge you
to look at Sect. 9.2.

Publish & Distribute. Do not forget to state (and possibly show) the adopted prior
(perhaps on the same figure where you show the posterior), and, possibly, dis-
tribute the specific form of the model (i.e., the code), the data, and every other
additional quantity you may have used, in such a way that your analysis is repro-
ducible and can be used as a starting point for more complex analyses involving
other data.

If you have used this book, you are taking the Bayesian approach. At some mo-
ment in your life, you may also want to be familiar with “the other half of the
sky,” i.e., what non-Bayesian approaches use, what do their estimated quantities
represent, how does one interpret these numbers, and what these numbers are not.
Chapter 10 gives a very brief, and largely incomplete, view about these methods.



Chapter 2
A Bit of Theory

The purpose of this chapter is to provide the very basics of the probability theory
needed for Bayesian statistics. If the reader is interested in a more extended and
thorough description of probability foundations, we recommend Casella and Berger
(2001) and Athreya and Lahiri (2006).

When we informally talk about probabilities (e.g., “there is a 10 % probability
that it will rain tomorrow” or “Earth has a 3 % probability of having a catastrophic
impact with an asteroid in the next 20 years”) our own concept of probability satis-
fies three rules (formally known as Kolmogorov’s axioms of probability) listed and
described below.

2.1 Axiom 1: Probabilities Are in the Range Zero to One

Probabilities are bounded between 0 and 1. In formulae:

0 ≤ p(E)≤ 1 (2.1)

for some object (event, proposition, set, or whatever) E. Equation (2.1) is the first ax-
iom of probability. If someone were to tell you that a physical parameter has 130 %
probability (i.e., 1.3) or −30 % (i.e., −0.3) to be in a given range, then you must not
trust this person, because you know probabilities are bounded to be between 0 and
1 (or 0 % and 100 %).

2.2 Axiom 2: When a Probability Is Either Zero or One

If a die is thrown, the probability of observing any of its faces is one: one of the
die’s faces must be viewed. If all possible outcomes are included in the set Ω (i.e.,
the set that includes everything, known as the sample space), then one is 100 % sure
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4 2 A Bit of Theory

Table 2.1 Likelihoods of drawing different objects from a bag (bag content)

Ball Die Total
Blue 4/22 5/22 9/22
Red 10/22 3/22 13/22
Total 14/22 8/22 22/22

(i.e., with probability one) of observing the set Ω . In formulae:

p(Ω) = 1 . (2.2)

Equation (2.2) is the second axiom of probability. Informally, this axiom ensures
that the probability that we will observe anything (i.e., we will observe one of the
faces of the die) is one.

For example, suppose we are talking about the physical distance of a source.
The allowed values of this distance are between zero and infinity. So, intuitively, the
second axiom of probability states that the probability that the distance to the source
is between zero and infinity is one.

From the second axiom, it immediately follows that

p( /0) = 0 , (2.3)

where /0 is the symbol for “nothing” and is called the empty set. For example, by
Eq. (2.3), the probability of throwing a die and not observing a face is zero.

This axiom states that for the whole (empty) set of possible outcomes, the prob-
ability is one (zero).

2.3 Axiom 3: The Sum, or Marginalization, Axiom

Suppose that in a bag I have 4 blue balls, 10 red balls, 5 blue dice, and 3 red dice.
What is the probability of extracting something blue?

Quite naturally, it is given by the probability of getting a blue ball, 4/22, plus
the probability of getting a blue die, 5/22, i.e., 4/22+ 5/22 = 9/22. This simple
example illustrates the next axiom of probability known as the sum axiom.

In mathematical terms, the sum axiom states

p(x) = ∑
y

p(x,y). (2.4)

In our example, y takes the values “ball” and “die” and x takes the values “red”
or “blue,” and the sum has to be performed on y. This rule is called marginalization
because the sum was written, once upon a time, on the margin of the table on a piece
of paper, as in Table 2.1.



2.5 Bayes Theorem 5

Equation (2.4) above holds for categorical variables, i.e., when outcomes are a
discrete set (like the letter of the alphabet or the integers between 1 and 100). Often,
quantities are real numbers (sometimes bounded in a range), and the summation has
to be replaced by an integral:

p(x) =
∫

p(x,y)dy . (2.5)

This is the third, and last, axiom of probabilities. The mathematical purist may
disagree with this axiom and we refer him/her to Appendix B.1.

In addition to these basic axioms, there is another definition in probability that
needs to be presented before we get to Bayes theorem which is the fundamental
result needed for Bayesian statistics.

2.4 Product Rule

Let us return to another bag example. Suppose we emptied our bag and put in it 4
blue balls and 10 red balls. If I extract two balls without replacement (i.e., when
I draw my first ball, I note the color and do not return it to the bag), what is the
probability that the first ball is red and the other one is blue?

The probability of getting a red ball first is p(x = first ball is red) = 10/14. The
probability of getting a blue ball second, after having drawn a red ball in the first
extraction, p(y = blue ball second |x = first ball is red),1 is 4/13 (13 balls are left
and 4 of them are blue). The probability of getting a red ball first and a blue ball
second, p(x,y), is the product of the two numbers above: p(x)× p(y|x) = 10/14×
4/13 ≈ 0.22.

Of course, the order of extraction does not matter, we may have started by con-
sidering the probability of getting a blue ball first, p(y) = 4/14, followed by the
probability of getting a red ball after having acquired a blue one, p(x|y) = 10/13.
The aimed probability is therefore p(y)× p(x|y) = 4/14×10/13 ≈ 0.22, the same
as before! This result is formalized in a single line:

p(x,y) = p(x|y)× p(y) = p(y|x)× p(x) . (2.6)

We now have enough probability foundations to present Bayes theorem.

2.5 Bayes Theorem2

A simple re-arrangement of Eq. (2.6) gives:

1 The notation p(y|x) reads “probability of y given x.” See Appendix B.2 for the mathematical
definition of conditional probability.
2 Some of the material of this section has been drawn from Andreon and Hurn (2010).
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p(x|y) = p(y|x)× p(x)
p(y)

. (2.7)

This famous equation is known as Bayes theorem (or Bayes rule). We can freely
change the name of the variables (since the names are arbitrary) and rewrite the
above equation as:

p(θ |data) =
p(data|θ)× p(θ)

p(data)
. (2.8)

Each term in this expression is important enough to have a name:

Posterior =
Likelihood × prior

evidence
. (2.9)

This rule is the central tool for parameter estimation in Bayesian statistics. Let us
understand it with a physical example.

Suppose one is interested in estimating the mass of a particle, M, say the Higgs
boson.3 Before we collect any data, we may have certain beliefs and expectations
about the values of M. In fact, these thoughts are often used in deciding which
instrument will be used to gather data and how this instrument may be configured
and operated. For example, one may want to construct an instrument with a large
sensitivity (as the ATLAS and CMS experiments at the Large Hadron Collider) in
the range where one expects to detect the Higgs: from 110 to 160 GeV/c2. The same
applies to astronomical objects, for example if we are measuring the mass, via the
velocity dispersion, of a group of galaxies, it is preferable to select a spectroscopic
resolution high enough to measure galaxy velocities with errors smaller than the
scatter (velocity dispersion) we expect to measure. Crystallizing these thoughts in
the form of a probability distribution for M provides the prior p(M). Notice that we
are describing our uncertainty in M, before observing any data, using a probability
distribution, and we are not stating that the parameter (say, the mass of the Higgs
boson) is randomly fluctuating.

For example, one may believe (i.e., from previous experiments) that the mass
of the Higgs boson is most likely between 110 and 160 GeV/c2 and this might
be modeled by saying that the probability distribution of the mass is a Gaussian
distribution centered on the midpoint, 135, and with σ , the standard deviation, equal
to 12.5. A useful way to report that is by writing M ∼ N (135,12.52), where the
symbol ∼ reads “is distributed as” and N denotes the Gaussian distribution.

Once the appropriate instrument has been selected (or perhaps built) and config-
ured, data can be collected on the quantities of interest. In our example, this means
we record a measurement of mass, say Mobs. The physics, or sometimes simula-
tions, of the measurement process may allow us to estimate the reliability of such
measurements. Repeated measurements are also extremely useful for assessing the
quality of the measurements. Costly experiments, however, rarely can be repeated
numerous times. The likelihood is the model which we adopt for how the noisy
observation Mobs arises given a value of M. For example, we may find that the

3 While the example is real, we have idealized it in several aspects.
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measurement technique allows us to measure masses in an unbiased way but with
a measurement error of 0.4 GeV/c2 and that the error structure is Gaussian, i.e.,
Mobs ∼ N (M,0.42). If we observe Mobs = 125.3 GeV/c2, we usually summarize
the above by writing M = 125.3±0.4 GeV/c2.

The likelihood (“instrument calibration,” i.e., the probability distribution of the
noisy observation we get when a given value is injected) is certainly interesting, but
we may perhaps want to know which values of M are more probable after having
observed Mobs, i.e., derive the probability of M given Mobs, p(M|Mobs). After all,
even the most fanatic instrumental physicist should agree that spending billions of
euros to build an instrument just to know how well we are able to calibrate it at
≈ 125 GeV/c2 is not one of the most pressing research priorities.

Bayes theorem given in Eq. (2.8) allows us to update our beliefs about the unob-
served mass M in light of the observed measurement, Mobs:

p(M | Mobs) =
p(Mobs | M)p(M)

p(Mobs)
. (2.10)

Simple algebra4 shows that in our example the posterior distribution of M | Mobs

is Gaussian, with mean M = 125.3/0.42+135/12.52

1/0.42+1/12.52 ≈ 125.3 and σM =
√

1
1/0.42+1/12.52

≈ 0.4. M is just the usual weighted average of two “input” values, the prior and
the observation, with weights given by the prior and the observation σ ’s. In this
example, the posterior is numerically indistinguishable from the likelihood, because
of the precise measurement and the quite broad prior (see Chap. 5 for more details
on that), but this is not necessarily the rule.

In summary, the posterior quantifies what we know about a parameter after ob-
serving the data. If the posterior is sharply peaked on a value, then the parameter
is well measured. If instead the posterior is a broad function, then the parameter is
poorly measured, i.e., uncertain. Uncertainty can therefore be quantified by a mea-
sure of the posterior’s width, such as standard deviation, 68 % interval, interquartile
range, etc.

2.6 Error Propagation

There are many situations where the researcher is not interested in the probability
distribution of a quantity, p(x), but in a transformation of that quantity, for example
p(logx). Similarly, we may have the error on flux and we want to convert it to error
on mag, the latter is defined to be −2.5log10 f lux+ c.

If we have random draws xi from the distribution p(x), as will be always the
case in this book (see next chapter), whose width (e.g., 68 % interval, interquartile
range) gives the uncertainty of x, it is very simple to propagate this uncertainty on

4 This is one of the very few analytic computation of this book. Later on, a computer will be
charged with the burden of performing the computations. Why else call it computer?
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derived quantities, say, y = f (x): to obtain draws from the distribution of fY it is
enough to compute yi = f (xi) for each draw xi (e.g., take the log of each draw xi

if we want p(logx)). In this way, to compute the uncertainty of fY , it is enough to
compute the spread of the yi draws. The above holds true for any f , including non-
linear functions (imagine the sinx function with 0 < x < 100). The commonly used
formula using the function’s derivative only holds if it is linear in a region of size
comparable to the spread in x.

2.7 Bringing It All Home

To perform Bayesian inference you only need to remember that inference passes
through Bayes theorem (you do not need to remember this formula, other resources
can remember it for you), and the marginalization rule.

An obvious consequence is that, in general, any other rule is allowed (which is
good, there is nothing more to learn). A second consequence is that if you are using
something different from one of the three probability rules, then the derived quantity
will not behave as a probability, even if you baptize it with that name, as illustrated
in the next section. Finally, if you use the Bayes theorem on things that are not
probabilities, you will not obtain the probabilities you are looking for, precisely
as if you use couscous in place of spaghetti, you are not preparing spaghetti alla
“carbonara”!

2.8 Profiling Is Not Marginalization5

The sum rule (Eqs. 2.4 and 2.5) is at odds with the frequently adopted methods of
computing errors on x when there is a further variable y. Let us illustrate this point
with an example.

Consider X-ray data collected from one of the most distant galaxy clusters known
(at the time of the writing of this book). Andreon et al. (2009) fit a model with two
free parameters to the spectrum of the cluster. The two free parameters are the ab-
sorption nH and the cluster temperature T . We calculate probabilities on a grid of
34× 34 of (nH ,T ) values. This grid, when tabulated, is similar in structure to Ta-
ble 2.1, only differing in size: it has 34×34 elements instead of 2×2 elements. Since
it is impractical to show this large table, both in this book and in scientific papers,
it is illustrated using a figure. The top panel of Fig. 2.1 shows contours of constant
probability at some standard levels, chosen here to be such that −2lnL is lower
than its maximal value by 2.3 and 6.17, where L is the likelihood. These levels are
chosen in accordance with the current practice in astronomy and physics (at least),
as recommended by Press et al. (2007). In order to get the probability distribution of

5 This section can be skipped the first time through.
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Fig. 2.1 Top panel: Iso-probability contours at the 68 % and 95 % confidence (red, dashed) levels
for the (T,nH) determination of the most distant cluster of galaxies known. The dot indicates the lo-
cation where the likelihood takes its maximum. Bottom panel: Marginal probability (blue), profile
likelihood (lower, dashed, histogram), and unit-normalized profile likelihood (upper, dashed, his-
togram). The figure is based on data from Andreon et al. (2009). The profile likelihood is broader
and more (right) skewed compared to the marginal probability

T , we use the same rule used for the bag example, we marginalize over nH , i.e., we
sum up probabilities for different nH values (when we wish to integrate out one of
our random variables, in this case nH , this variable is called a nuisance parameter).
The result is shown in the bottom panel of Fig. 2.1 as a solid blue line.

Many researchers in physics and astronomy, including one of the authors early
in their career, facing the problem of summarizing the probability distribution in
one parameter when other nuisance parameters are present (as in our case), follow
a different procedure, often mis-citing Press et al. (2007) and/or Avni (1976). For
every value of T , the misinformed researchers scan the table/figure and select the
value of nH that yields the maximal probability, as shown as the lower dashed line in
the bottom panel of Fig. 2.1. This procedure is often called profile likelihood. While
the marginal probability sums along each column, profile likelihood records the
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largest values along each column. In frequentist statistics, profile likelihood methods
are used for point and interval estimation of model parameters.

The upper dashed line of the bottom panel in Fig. 2.1 is again the profile likeli-
hood after forcing its integral to be one. Normalizing the profile likelihood to one
will not make it equal to the marginal probability, the former being broader and right
skewed with respect to the latter.

Back to the bag example (i.e., Table 2.1) applying the profile likelihood approach
returns a probability of extracting a ball of 10/22 when there are 14 balls, out of 22
objects, in the bag. Marginalizing over the columns returns instead the obvious re-
sult (14/22). To summarize, if the word probability in your paper has the same sense
as in your current life and if you are happy that the rules used in statistics return
numbers in agreement with what good sense suggests, then remember to marginal-
ize. This is one of the two rules you will mostly use in this book and the only one
you need to remember, the other one (Bayes theorem) will be remembered by your
computer.

The mathematical purist has certainly noted that our (nH ,T ) variables are stepped
on a grid, even if they take values on the real axes. In principle, we should have used
the continuous version of the marginalization (Eq. 2.5). The latter may be (and actu-
ally is, except in purely mathematical contemplation) approximated by Eq. (2.4): as
it is clear from physical and mathematical intuition, if the distribution being sampled
is smooth, it will make little practical difference if one mathematically integrates the
underlying function or one samples it with a tightly packed grid. In our examples,
the function being sampled is quite smooth and our 34× 34 grid is more than ade-
quate for the computation.

2.9 Exercises

Exercise 1

Suppose you wish to bet on a roulette wheel. A roulette wheel is a game of chance
where a number is randomly selected between 1 and 36 with the additional entries
0 and 00. The task of the gambler is to guess what the next number will be.

Exercise 1a

You place your chips on “00.” What is the probability that you will win on the next
spin of the roulette wheel? (Answer: 1/38)
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Exercise 1b

Using a table similar to Table 2.1, give the probabilities of getting an odd black
number, an even black number, a red odd number, and a red even number on the
next spin of the roulette wheel. (Answer: You should find that they are all 9/38)

Exercise 1c

Using your table from exercise 1b, what is the probability of getting a red number?
(Answer: 9/19)

Exercise 1d

Do your probabilities from your table sum to one? Explain. (Answer: They should
not because of the additional 0 and 00, which roulette does not define to be a color
or even or odd).

Exercise 2

Suppose x and y are independent Gaussian distributions with means m[1] and
m[2] and standard deviations equal to 1. Derive the joint distribution of x and
y (i.e., use the fact that they are independent random variables and multiply their
densities).

Exercise 3

Two random variables x[1] and x[2] have a bivariate Gaussian distribution if their
joint distribution is given as:

f (x[1],x[2]) =
1

2πs[1]s[2]
√

1−ρ2
exp

(
z

2(1−ρ2)

)

where

z =
(x[1]−m[1])2

s[1]2
+

(x[2]−m[2])2

s[2]2
− 2ρ(x[1]−m[1])(x[2]−m[2])

s[1]s[2]
.

Show that the marginal distribution of x[1] is also Gaussian with mean m[1] and
variance s[1].
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Exercise 4

The Cauchy distribution can be derived by taking the ratio of two, independent
Gaussian random variables both with mean 0 and variance 1. In other words, let
obsx and obsy be Gaussians with mean 0 and variance 1. Then the random vari-
able obsw = obsx/obsy has a Cauchy distribution. Instead of proving this an-
alytically (which the eager student can do), let us do this by simulation (a useful
exercise when doing Bayesian statistics).

Exercise 4a

i) Simulate n = 10,1000, and 10,000 pairs of independent standard gaussian dis-
tribution (obsx[i],obsy[i]) and for each pair calculate obsw[i] = obsx[i]/
obsy[i].

ii) Plot a histogram of obsw[i] and overlay on top of this histogram a Cauchy
distribution. What do you observe as n increases?

Exercise 4b

An alternative way of obtaining random samples from a Cauchy distribution is to
first simulate a uniform(0,1) random variable, say obsz, and calculate the new vari-
able obsu= tan[π(obsz−0.5)]. Redo steps i) and ii) using this new definition of
the Cauchy distribution. Compare your results from this exercise to those done in
the other definition of a Cauchy distribution.

Exercise 5

This exercise will illustrate a well-known fact in probability theory (and the careful
reader should remember the results of this exercise).

Exercise 5a

i) Simulate a large number of random variables (say 100,000) from your favorite
distribution whose expected value exists (for example, a Gaussian or Gamma
distribution, but not a Cauchy distribution). Call these simulations obsx[i].

ii) For each obsx[i], calculate obsy[i] = obsx[i]2.
iii) We can use Monte Carlo integration to approximate an expected value using

the sample average (i.e., Z̄ = (∑Zi)/n). Use the sample average to estimate
E(obsx) and E(obsy) from your simulated random variables.

iv) Compare [E(obsx)]2 and E(obsy). What do you observe?
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Exercise 5b

Repeat steps i)–iv) using the alternative transformations obsy[i] =
√
obsx[i]

and obsy[i] = 1+ 2obsx[i]. Compare E[
√
obsx] to

√
E[obsx] and E[1+

2obsx] to 1+ 2E[obsx]. Make sure the distribution you are using has positive
support because of the square root function. This results is actually quite general.
The interested reader should investigate Jensen’s inequality.

Exercise 6

One of the probability axioms is p(Ω) = 1 (Sect. 2.2). Although this probability is
quite obvious, we invite the reader to browse the literature of their favorite subject to
find counterexamples, i.e., cases in which the integral over the whole set of possible
values of the “probability” distribution differs from one. Lazy astronomers may find
a suggestion inside Sect. 2.2.
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Chapter 3
A Bit of Numerical Computation

The posterior probability distribution quantifies what we known about a quantity
after observing the data, the narrower this distribution is the better the quantity is
measured. But how to compute this distribution in practice? In problems of some
complexity, the analytical computation of the posterior distribution is either cum-
bersome, exceeds the analytic skills (or time available) of the researcher, or, more
simply, does not exist in closed form. It is of the opinion of the authors that CPU
time costs less than brain time, so why should researchers spend their own time
when a machine can do the work for them?

The development of powerful software for stochastic computation, for example
WinBUGS, OpenBUGS, and JAGS,1 replaces the researcher’s analytical skills with
CPU power, i.e., with numerical computation: the “desired” function, i.e., the poste-
rior distribution, is computed by numerical approximations, quite similar to the way
integrals are often computed. In particular, the target function is evaluated by some
sort of sampling scheme, as in Monte Carlo computations. The value of f (θ)dθ is
given by the number of θis between θ −Δθ/2 and θ +Δθ/2: the larger the value
of the function at θ , the more samples will fall in the considered range. In this book,
we refer to the list of θis as a chain, or Monte Carlo sample.

To the end user, the precise knowledge about how the posterior is numerically
computed has the very same relevance as how the computations are performed for
the sine or logarithm functions: almost none.2 There are however a few things, most
of which fall in the category of “numerical tips,” that need to be known:

• Internal to the mentioned software (WinBUGS, OpenBUGS, and JAGS) are the
full expressions of most common functions and distributions. For example, to
specify the Gaussian distribution, one does not need to type:

1 JAGS (Plummer 2010) can be downloaded from http://mcmc-jags.sourceforge.net/.
2 Skeptical readers are compelled to check that the numerically-sampled posterior is identical to
the analytically-derived posterior listed in the exercises.

© Springer International Publishing Switzerland 2015
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p(x0|x,σ) =
1√

2πσ
exp

[
− (x− x0)

2

2σ2

]
, (3.1)

but simply

x0 ∼N (x,σ2) . (3.2)

This not only saves time for the researcher, but also prevents coding mistakes,
especially with distributions more complex than Gaussians.

• The posterior distribution is numerically sampled. These samples are called
chains. Additional draws (a longer chain) typically deliver a more precisely de-
termined posterior distribution unless the newly added samples are sampling the
posterior in a poorer way than those we already have. From these draws one may
directly estimate means, standard deviations, and credible regions of any param-
eter or any function of parameters. For example, for a point estimate one may
compute the sample mean, median, or mode of the chain. Similarly, to compute
a 90 % interval of the parameter σ in Eq. (3.1), it is sufficient to take the interval
that contains 90 % of the σ samplings.

• Most software platforms, such as WinBUGS, OpenBUGS, and JAGS, sample
the posterior using a special Monte Carlo computation technique called Markov
Chain Monte Carlo (MCMC), in particular, the Gibbs sampler or Metropolis-
Hastings algorithm. Using these methodologies, values in the chain are not fully
independent of each other, or, said more simply, the precision of the posterior
increases slowly with chain length. This is yet another reason to prefer a long
chain to a shorter one.

• If independent samples are needed, it is useful to decimate (take one element
every 10) or centimate (one in 100) the chain (known as thinning). Additionally,
thinning also saves disk space. Note that the computational time for our examples
or for science based models is often of the order of seconds or minutes, even on
an obsolete laptop, i.e., computations of a long chain is totally inexpensive, and
always shorter than the time needed to write a paper describing the found results.
There is, therefore, always time for computing a long chain.

• The computations used in an MCMC depend on a set of initial values. At the be-
ginning of the MCMC, the sampler is not necessarily sampling from the desired
function (the posterior distribution). Given enough time, the MCMC will begin
drawing samples from the desired function. Therefore, it is good practice to dis-
card a generous number of draws from the beginning of the chain. This way you
have a better chance of obtaining a chain that is from the posterior. This prac-
tice of discarding the first set of draws from the MCMC is known as “burn-in.”
Again, it is inexpensive to obtain long chains and so accounting for the additional
“burn-in” samples is not a huge burden.
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Fig. 3.1 Examples of trace plots that indicate that the chain’s length needs to be longer: in the left
panel, the chain is struggling to explore the posterior (shows a slow mixing), in the central panel,
the chain resides on the same value for too long before changing, in the right panel, the two chains
are still not converging

3.1 Some Technicalities3

As with all numerical computations, there is always the risk that things will not work
correctly. A possibility is that the saved chain is only coarsely sampling the posterior
because it is “not long enough” for the scientific application in mind. Fortunately,
there exist some diagnostic tools (e.g., CODA, Plummer et al. 2006) that can be
used to determine when this occurs (although the proposed methods do not always
guarantee to catch chains that are too short):

• Refer to Fig. 3.1. Start by inspecting the chain’s trace (i.e., plot draw i against its
index i). If the chain slowly moves from one value to another (central panel), or
if the chain is slowly wandering (left-hand panel), then longer chains or more ef-
ficient sampling schemes are needed. Sometimes, researcher’s “cleverness” may
replace “brute force” CPU, devising a way to output better behaved chains.

• Recall that all MCMCs must begin with a set of initial values. To assess the
MCMC’s dependency on the initial values, and to check convergency, it is ad-
vised to start multiple chains from different starting values (this is done in JAGS
and Open/WinBUGS at no additional programming cost for the researchers).
Then, if the multiple chains converge, one can have confidence that the MCMC
is converging to the desired function. Otherwise, the chains have not converged
(right-hand panel) and longer chains (or more thoughts from the researcher) are
needed. Some programs, such as CODA (Plummer et al. 2006), automate the task
of comparing chains produced by JAGS and Open/WinBUGS, and return a num-
ber of diagnostics. One of them is the R statistic, given by the scatter in the chain
vs. the scatter across the chains. For converged chains, R should be near to 1.

To be fully honest, there is a more powerful method: your brain. For a hypo-
thetical statistical model, it is difficult to imagine the shape of the posterior. In a

3 This section can be skipped the first time through.
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mathematical world, one can always imagine a problem for which there is no way
to guess the posterior without computing it. For a real experiment that was carefully
performed, we approximately know how well we will be measuring the target quan-
tity, i.e., we have a qualitative summary of the posterior. We may have it by physical
intuition, by similarity to a previously run experiment, or from forecasts which re-
cently have become common given the large cost of experiments, telescopes, and
instruments. In astronomy, where data is abundant and mostly public, careful re-
searchers first do a qualitative (or quick and dirty) analysis aimed at determining
which data is best for a given purpose (the one giving the sharper posterior, as qual-
itatively computed). Once a powerful data set is identified, the researchers start to
download the data from the archives, clean the data, and then perform the anal-
ysis. Using software, the researchers quantitatively compute a point estimate and
associated uncertainty of the target quantity, improving upon the initial qualitative
analysis (e.g., that the target parameter is expected to be determined at, say, around
10 % accuracy with the chosen data set).

We conclude this section by stating that the numerical issues just raised are not
a problem of Bayesian methods, but instead the computational issues related to the
numerical implementation of the methods adopted in this book (MCMC). Analytic
Bayesian computations do not have convergence issues, as well as posterior sam-
ples obtained using sampling methods such as importance sampling (as MultiNest,
see Feroz et al. 2009). Unfortunately, analytical methods and importance sampling
require the researcher’s time: the researcher has to either program the analytical re-
sults or program the likelihood for the importance sampler, rather than using a sim-
pler symbolic expression (as in this book). It is for this reason we use the symbolic
expressions in this book.

3.2 How to Sample from a Generic Function4

While many distributions have been implemented in JAGS, there are still many that
have not (or it is hard for a researcher with normal analytical skills to note that the
wanted distribution is an “obvious” case of one available). Here we want to intro-
duce the most straightforward implementation of a generic distribution in JAGS.

We begin by telling JAGS a little white lie, called the “zero trick,” namely that
we observe a datum point with a value of 0 from a Poisson distribution with mean
log(g(y,θ)). For a Poisson(μ) distribution, the probability of observing a zero is
e−μ . So, for a Poisson(log(g(y,θ))) distribution, the probability is g(y,θ). Because
the rate of a Poisson is strictly positive, one may need to add some suitably big C,
log(g(y,θ))+C to enforce this constraint.

Let us suppose, for example, that we are interested in obtaining a sample from a
Cauchy distribution,

p(y|θ) ∝
1

1+(y−θ)2 (3.3)

4 This section can be skipped the first time through.
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Fig. 3.2 Schechter (1976) luminosity function. The analytic expression is given by the blue,
smooth, solid line. The histogram of a sample derived using the “zero trick” is given by the black,
jagged curve

with location parameter θ . In JAGS, this is implemented as:

data {
zeros <- 0
C <- 1
}
model {
#Using the zero trick
y ˜ dnorm(0.0,1.0E-6)
phi <- log(1+pow(y-theta,2))
zeros ˜ dpois(phi+C)
}

In short, we only need to complete the line starting with “phi <-” with minus
the natural logarithm of the mathematical expression of the distribution that we want
to sample, and remember to add a suitable constant C to keep phi+C positive.

For example, if we want to sample from a function known as the Schechter (1976)
function with parameters lgM∗,α:

p(lgM|α, lgM∗) ∝ 100.4(α+1)×(lgM−lgM∗)× exp
[
−100.4×(lgM−lgM∗)

]
(3.4)

ln p(lgM|α, lgM∗) ∝ 2.3025×0.4(α +1)×(lgM− lgM∗)−100.4×(lgM−lgM∗). (3.5)

As seen from the analytic expression and Fig. 3.2, the Schechter function is a
straight line bended at one end (damped) by an exponential.

In JAGS, the model reads:

data{
zeros <- 0
C <- 10
}
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model{
lgM ˜ dunif(12,18)
#Using the zero trick
phi <- -2.3025*0.4*(alpha+1)*(lgM-lgMstar)+10ˆ(0.4*(lgM-lgMstar))
zeros ˜ dpois(phi+C)
}

Readers with advanced analytical skills might find more elegant ways of drawing
a sample from an arbitrary distribution than the zero trick. For example, one may
recognize that the previously mentioned Cauchy distribution can be computed as the
ratio between a standard Gaussian (mean 0 and standard deviation 1) and the square
root of a χ2 distribution with one degree of freedom. In turn, a χ2 is a Gamma
distribution with parameters (0.5,0.5). The Cauchy can then be coded in JAGS as:

model{
tau.eta ˜ dgamma(.5,.5) # chi2
x˜dnorm(0.,1.)
# cauchy = normal/sqrt(chi2)
theta <- x / sqrt(tau.eta)
}

Similarly, the Schechter function with α > −1 can be written using a Gamma
distribution and a power-law can be coded as a Pareto distribution. Nowhere in this
book do we assume that you will be able to recognize a target distribution as a
combination of other distributions. In this book, we will use the “zero trick” even
when we are aware of a more elegant solution.
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Chapter 4
Single Parameter Models

In this chapter we introduce some of the basic concepts of Bayesian statistics. These
concepts are illustrated with probability models containing a single scalar-valued
parameter. In particular, a Gaussian distribution with a known standard deviation is
used to illustrate the basics of a Bayesian analysis of an experiment that attempted
to measure the mass of the neutrino. Following the neutrino example, we intro-
duce other single parameter probability distributions that are useful to Physicists and
Astronomers.

4.1 Step-by-Step Guide for Building a Basic Model

4.1.1 A Little Bit of (Science) Background

The first step, and probably the most important, of any statistical analysis is under-
standing the problem.

Consider an experiment1 where the researchers are interested in measuring the
mass of the (anti-electron) neutrino, denoted as m. For this simplified analysis, let
us assume that the instrument resolution (the likelihood) is adequately modeled
as a Gaussian distribution with known width (i.e., standard deviation σ ) equal to
3.3 eV/c2 (note from here on the units are not always quoted for this example).

The results of the experiment yielded an observed value of obsm=−5.4 where
obsm denotes the observed mass. Notice that a negative number is observed for the
positively defined mass. This type of result may occur in frontier measurements: the
(electron) neutrino mass is computed (in our experiment) as the difference between
two big and similar quantities, each one not perfectly known (the neutron and proton
masses. Of course there is also the mass of the electron to be accounted for). For
example, in 1994, seven out of the eight published values of the neutrino squared

1 The experiment is real, but dated, for reasons that will be self-evident by the end of this section.
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mass were negative (Montanet et al. 1994), and the situation has not improved too
much in the next 20 years. These negative observations of a positive quantity have
prompted recent experimenters to develop different methods for measuring the mass
of the neutrino.

4.1.2 Bayesian Model Specification

As with any statistical analysis (and Bayesian statistics is no exception), a model
must be specified. A Bayesian model specification consists of specifying a data
model (i.e., the likelihood) and a distribution for the parameter (i.e., the prior distri-
bution).

For the neutrino mass example, the data model was already mentioned to be a
Gaussian distribution with mean equal to the true value of the neutrino (m) and with
standard deviation 3.3. JAGS, following BUGS (Spiegelhalter et al. 1996), uses pre-
cision prec= 1/σ2 = pow(σ ,−2), in place of variance σ2 (the pow function, as
you might guess, stands for power). Therefore our wordy statement on the Gaussian
error is mathematically expressed by:

obsm ˜ dnorm(m,prec)
prec<-pow(3.3,-2) ,

where the symbol ∼ denotes “distributed as,” and the arrow reads “takes the value
of.”

To finish our model specification, a prior distribution has to be assigned to m.
Ideally, the prior distribution should come from experts who have a strong knowl-
edge of the mass of the neutrinos. Here we take, for simplicity, a uniform prior be-
tween 0 (mass is positive) and 33 (a value certainly larger than all plausible values
of mass):

m ˜ dunif(0,33) .

In JAGS notation, our model reads:

model{
#Data Model
obsm ˜ dnorm(m,prec)
prec<-pow(3.3,-2)
#Prior Distribution
m ˜ dunif(0,33)
}.

4.1.3 Obtaining the Posterior Distribution

Now that we have specified our model, we need to obtain draws from our posterior
distribution so that we may perform inference. Our model is simple enough that
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Fig. 4.1 Posterior probability distribution of the neutrino mass (histogram). The shaded region
marks the 95 % highest posterior credible interval. The dashed line indicates the assumed prior

a posterior distribution can be obtained analytically (see, for example, D’Agostini
2003, from which this example is taken, and also the exercises at the end of this
chapter). We prefer instead to compute the posterior numerically through Markov
chain Monte Carlo (MCMC), i.e., with JAGS, because our time is more precious
than CPU time.

Figure 4.1 displays the posterior distribution of m. The posterior has been com-
puted from the MCMC draws (i.e., JAGS output) and plotted with a histogram, along
with its prior distribution (dashed line).

Figure 4.1 illustrates how our current knowledge of the neutrino mass (m) has
updated after observing obsm= −5.4. In particular, notice how before observing
obsm, our prior knowledge stated that m was equally likely to be a value in the
interval 0 and 33. After observing obsm, notice how the bulk of the posterior distri-
bution’s mass is now less than eight, indicating the data was informative in changing
the prior to the posterior.

4.1.4 Bayesian Point and Interval Estimation

Once the posterior distribution is obtained, parameter estimates (m for the neutrino
mass example) can be calculated by various summaries of the posterior distribution.
For example, point estimates of the parameter can be computed using either the
mean, median, or mode from the posterior distribution (i.e., of the Monte Carlo
samples).

Table 4.1 provides various sample statistics for both the prior and posterior distri-
butions. Notice again that before observing the data, the prior mean and median are
quite large. After observing obsm, however, the likelihood shifted these quantities
to smaller values.

As with any statistical analysis, we wish to not only estimate our model param-
eters, but also express our uncertainty in these estimates. We may, for example,
compute the posterior width (scale), by quoting the standard deviation of the chain,
or its interquartile range. We may also use the Bayesian analogue to the confidence
interval called the credible interval. Unlike the confidence interval, these intervals
have the interpretation “the probability that our parameters is in the interval is .95.”
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Table 4.1 Prior and posterior sample statistics for the neutrino mass m

Sample statistic Prior Posterior
Mean 16.5 1.38
Median 16.5 1.04
Mode – 1.01

Table 4.2 Prior and posterior widths for the neutrino mass m

Distribution Interquartile range 95 % HD interval
m prior [8.25, 24.75] –
m posterior [0.45, 0.98] [0, 3.84]
m2 posterior [0.20, 0.39] [0, 14.74]

Similar to point estimation, these intervals are obtained using the chain. For exam-
ple, to calculate the 95 % highest density (HD) interval we take the interval that
includes 95 % of the drawings with the constraint that all points in the interval have
higher probability than points outside the interval. For scalar-valued parameters,
95 % highest density intervals are also the 95 % shortest intervals. For simplicity,
we will sometimes refer to them as “95 %” intervals, or “95 % probability” inter-
vals. We may also, if desired, compute 95 % upper limits, by taking the value larger
than 95 % of the chain elements. Similarly, we may also compute the interquartile
range, for example by ranking the elements in the chain and computing the interval
between the 25th and 75th percentile.

Returning to the neutrino mass example, Table 4.2 provides the interquartile
range, and the 95 % HD intervals for the neutrino mass m for both the prior and
posterior distribution. Before observing our data, our uncertainty in m was quite
large (relative to the posterior). As we make an observation, the interquartile range
and the 95 % interval of the posterior illustrate how more certain we are about the
neutrino mass m (its width is much smaller than the width of the prior interval).

The 95 % upper limit is 3.84, comparable with the instrument resolution (3.3),
i.e., with what good sense expects it to be: if the neutrino mass turns out to be
unmeasurable (we got a negative number!), then the upper limit to the neutrino
mass should be of the order of the instrument resolution.

Intervals for other quantities can be easily derived. For example, we may want
to know the highest 95 % posterior density interval for the squared mass, m2. It is
just a matter of taking the square of each mi value listed in the chain (Sect. 2.6) and
computing the 95 % interval (as already done for m). The 95 % upper limit of the
square mass is 14.74 eV2/c4, the 96.5 % upper limit is 17.80 eV2/c4

4.1.5 Checking Chain Convergence

Figure 4.2 shows the first 950 draws (the remaining look qualitatively similar), after
burn-in, of the three chains used. Qualitatively speaking, we do not see anything
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Fig. 4.2 Trace plots of the neutrino mass posterior where each of the three panels contains a
different chain

unusual in these chains (see Sect. 3.1). Quantitatively, our inferences (mean values,
intervals, etc.) are the same using any of the three chains and, finally, the compu-
tation of the R statistic (see Sect. 3.1) is already equal to 1.00 with the first 950
samplings (note that for Table 4.2 we used the full chains). This strongly suggests
our MCMC has converged to the correct distribution.

4.1.6 Model Checking and Sensitivity Analysis

Before relaxing and being proud of our obtained result (the upper limit above), it
is wise to check if the data are consistent with the fitted model and assessing the
role of the prior on the result. These key ingredients of every statistical analysis are
approached in Chap. 9. In particular, the sensitivity analysis of this experiment is
detailed in Sect. 9.1.1.

4.1.7 Comparison with Older Analyses

Chapter 10 provides some detailed comparisons of the Bayesian approach to older
(and simpler) ways of doing statistics in astronomy and physics. Let us focus on a
couple of previous analyses of the neutrino mass.

Our analysis returns [0,17.80] eV2/c4 as the 96.5 % interval of the square mass.
Some other (and older) analyses state that “m2 is positive with only a 3.5 % proba-
bility.” We prefer our (and indeed every positive) m2 96.5 % range, only including
possible physical values for the quantity being measured, to stating that the quantity
being measured has 96.5 % probability to have an impossible or unphysical value
(the square of a real number is non-negative!).
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Our analysis returns 3.84 eV/c2 as the 95 % upper limit, comparable with the
instrument resolution (3.3 eV/c2). Let us consider what may occur in a sloppy anal-
ysis of the neutrino data if one forgets that mass is positively defined and computes
the 84 % (= 50+68/2%) upper confidence interval as the observed value plus the
likelihood σ (effectively only using the likelihood and ignoring the prior). These
analyses find −2.1(= −5.4+ 3.3) eV/c2 as the 84 % upper confidence interval be-
cause the observed value is −5.4 and the likelihood σ is 3.3. If we are to com-
pletely trust this result, then this 84 % upper confidence interval is more stringent
(it includes a very short range of the physically acceptable range, precisely one of
zero length) than every positive value a future precise experiment will return for the
neutrino mass (e.g., 0.4 eV/c2). This is against logic (precisely as a negative square
of a real number): a clearly untrustable upper limit (such as a negative quantity for
a positive defined quantity) cannot be more trustworthy than the upper limit derived
in a precise experiment.

4.2 Other Useful Distributions with One Parameter

Now that we have introduced some of the concepts related to Bayesian analysis, we
introduce other distributions with one parameter that are of interest to astronomers
and physicists. In particular, we introduce the Poisson and binomial distribution.

For the remaining examples in this book, we will not be as detailed in our analysis
as we were in Sect. 4.1. Instead, we skip these common steps of the analysis and
focus more on the steps that change from one analysis to another (e.g., inference).
We urge the reader to reference back to Sect. 4.1 if more of the details are needed.

4.2.1 Measuring a Rate: Poisson

Many natural phenomena can be modeled as a Poisson process: the number of pho-
tons being emitted from a source, the number of galaxies, the number of nuclear
particles in a nuclear reaction, etc. Consider, for example, the number of photons
from a source. Because of the quantum nature of photons and possibly other errors
in the observation process, the observed and true photon counts are not the same. In
this situation, the observed number of collected photons, denoted as obsn, may be
adequately modeled using a Poisson distribution with parameter s > 0. Here, s is
interpreted as the true number of photons being emitted from the source. In JAGS,
this model is denoted by

obsn ˜ dpois(s) .
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Fig. 4.3 Posterior probability distribution for the flux s of a source when obsn = 4 (left panel) and
obsn = 100 (right panel). The shaded region marks the 95 % highest posterior credible interval

Table 4.3 Sample statistics and 95 % credible intervals for s in the point source example for the
different observation cases

obsn Mean Median Mode Standard deviation 95 % HD Interval
4 5 4.7 3.8 2.2 [1.21, 9.44]

100 101 100.7 100.1 10.0 [81.8, 121.1]

For illustrative purposes, we assign a uniform prior on s, where s lies between
zero and some large value, say 1×107 (for this example the results do not depend on
which large value is taken, though in general this may not be true). After observing
obsn and specifying a Bayesian model (likelihood and prior), we are now able to
make inference on s through its posterior distribution. Our model (in JAGS) reads:

model{
obsn ˜ dpois(s)
s˜ dunif(0,1.0E+7)
}.

Consider two possible data observations:

1. We observed 4 counts from the source (which is typical for sources detected by
the Chandra Space X-ray Telescope).

2. We observed 100 counts from the source.

As in the previous section, interest is in obtaining the posterior probability distribu-
tion for the source signal s.

Figure 4.3 shows the posterior distribution for these two cases. In the second case
(right panel), the shape of the posterior looks symmetric about its mode, similar to
a Gaussian distribution. In the former case (left panel), however, the distribution is
slightly asymmetric (or skewed), similar in shape as a Gamma distribution. Addi-
tionally, we provide various point estimates of s and uncertainty estimates for this
parameter in Table 4.3.
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4.2.2 Combining Two or More (Poisson) Measurements

Suppose now that we have k independent measurements of the signal s from the
point source, i.e., k values of obsn, say obsn1 and obsn2. JAGS uses “[i]” in
place of the subscript i, i.e., obsn[i] in place of obsni, which will serve as our
notation for the rest of the book. Clearly, we want to use all these k observations to
estimate the source flux s. If we assume all measurements are independent, then the
probability of observing this set of measurements is just the product of the probabil-
ities of observing each measurement (i.e., through the probability product rule, see
Sect. 2.4).

Fortunately, JAGS is general enough that we only need to add terms with an index
i in a for loop structure. The model reads:

model{
for (i in 1:length(obsn)){
obsn[i] ˜ dpois(s)
}
# uniform prior on s
s ˜ dunif(0,1.0e+7)
},

where length(obsn) is the number of observations in obsn.
Suppose we have performed various experiments on the same point source yield-

ing different numbers of observations for each run of the experiment, say one, four,
ten, and forty observations. Figure 4.4 shows the posterior distributions obtained
from these different data scenarios. At the start, when only a single measurement is
available, the posterior distribution is quite broad: there is little information in this
single data point. As the amount of data increases, the posterior is dominated by
the information contained in the data. As the amount of data increases, the posterior
becomes a sharper distribution, becoming more centered on the true value of s.

The simulated observations were generated from the following probability model
(JAGS code):

model{
obsn ˜ dpois(4)
},

i.e., we observed N observations from a Poisson distribution with parameter s= 4
where the number of observations (saved elements of the chain) is N = 1,4,10,40.
The first four drawn values are 8,4,3,5 (these differ at the next running of the JAGS
code, of course).

4.2.3 Measuring a Fraction: Binomial

Consider processes or experiments where there are only two possible responses, for
example recording the result of flipping a coin, or if a particle is decayed, or if a
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Fig. 4.4 Posterior probability distribution of the Poisson signal s. The shading marks the 95 %
highest posterior interval. As the number of measurements increases the posterior get narrower
and narrower, i.e., the signal will be more precisely measured. The vertical line represents the true
value of s

galaxy can be characterized as being a red galaxy or not. Such processes are called
Bernoulli trials. A Bernoulli trial is characterized by a random draw with only two
outcomes, typically labeled as success or failure, with probability f of observing a
success (and likewise, 1-f of observing a failure).

Suppose we are interested in characterizing the probability that a galaxy is either
a red galaxy (success) or not (failure) or, equivalently, the fraction f of red galaxies.
Then, if we observe n galaxies, the number of observed red galaxies obsn will
follow a binomial distribution with probability f (here we are assuming that we can
perfectly characterize a galaxy as being a red galaxy or not and that the number of
galaxies from which the n are drawn is sufficiently large). Other physical examples
that can be adequately modeled with a binomial distribution are: the fraction of
absorbed active galactic nuclei in the Universe, the branching ratio of a nuclear
reaction, the fraction of particles of a given type, etc.

The binomial model states that the observed value obsn is binomially distributed
with parameters f and n:

obsn ˜ dbin(f,n) .

For the red galaxy example, on average, we expect the number of red galaxies to
be near f×n, and rarely far from this number. In other words, for fixed values of the
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parameters f and n, we expect to observe a distribution of obsn values, through
repeated experimentation, centered on f×n.

To help illustrate the use of the binomial model, consider the following example
from Astronomy. According to some theories, gas-poor galaxies are formed by the
merging of other gas-poor galaxies. Just before merging, the galaxies should grad-
ually be approaching each other, i.e., we should observe gas-poor galaxies with a
nearby gas-poor companion. Therefore, using the fraction f of gas-poor galaxies
having a nearby gas-poor companion, one may derive the gas-poor (dry, in the as-
tronomical parlance) merging rate: a low value means that gas-poor galaxies did not
experience many gas-poor mergers in the past and a large value means that present-
day gas-poor galaxies were separate gas-poor galaxies previously.

The problem can be formulated as follows, after observing n passive (gas-poor)
galaxies, obsn of these galaxies have a passive nearby companion. We then wish to
estimate the fraction f of passive galaxies having a nearby passive companion. As
just mentioned, the parameter f is relevant in astrophysics after its value is trans-
formed into the appropriate astronomical units, yielding the dry merging rate.

To begin our Bayesian inference, we must first specify a prior for f (recall that n
is known and so no prior is needed). We take a uniform prior between 0 and 1. This
may be coded in JAGS as f ∼ dunif(0,1). After noting that a beta(1,1) func-
tion is uniform between 0 and 1, the posterior can be easily analytically computed:
p(f|obsn) = beta(obsn+1,n−obsn+1) (Laplace 1812, this result is known as
conjugacy). For now, suppose we ignore this analytical result and instead proceed
as usual using JAGS. The Bayesian model reads:

model{
obsn ˜ dbin(f,n)
f˜dbeta(1,1)
}.

The data for our example is taken from the remarkable work by De Propris et al.
(2010): the authors observed n= 2127 galaxies and characterized obsn= 2 of these
galaxies as having a nearby gas-poor companion galaxy.2 The posterior distribution
of the fraction f, computed using JAGS, is plotted in Fig. 4.5 as the black his-
togram, whereas the analytical derived beta distribution, beta(3,2126), is superim-
posed in blue. The analytically and numerically computed posteriors are, of course,
identical (apart from sampling errors in the MCMC). The posterior has a peak at
f= 2/2127 = 0.094% and a standard deviation of 0.081 %.

De Propris et al. (2010) are interested in quoting a 5σ upper limit for f. We are
interested in estimating the same quantity here, meaning, more precisely, a 1−2×
10−7 (or 99.99998 % confidence) upper limit, which corresponds to the 5σ value
for a Gaussian distributed quantity.

2 The author’s starting galaxy sample is larger, but not all galaxies from their sample can be rec-
ognized as having a nearby companion, even if they truly have one. This is due to observational
limitations. Therefore, using the same approach as the authors, we adopted an effective sample of
2127 galaxies.
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Fig. 4.5 Posterior probability distribution for the fraction f of galaxies in pairs computed using
both JAGS (the black histogram) or by (analytic) calculus (blue line, hardly distinguishable from
the histogram), based on data in De Propris et al. (2010). The shaded region marks the 95 % highest
posterior credible interval. The red, symmetric, curve is the Gaussian approximation adopted in De
Propris et al. (2010)

To compute the upper limit with a numerical sampling of the posterior (e.g., with
JAGS) we need:

a) to save a chain from the MCMC of length l;
b) sort the chain of f in increasing order;
c) take the value that leaves to its left (1−2×10−7)× l elements of the chain.

For a chain of length l = 2×107 elements, this means take the largest or the second-
largest point. This operation is computationally expensive, especially if we want
to compute this number with high accuracy. In fact, in order to reduce the Monte
Carlo error, one may want a chain containing 108 elements! We therefore turn to the
analytically derived posterior distribution. To calculate this quantity, we integrate the
beta(3,2126) density function from f= 0 until its integral is 1−2×10−7. Again for
computational precision, it is instead preferable to start from f = 1 and stop when
the integral of 1−f is 2×10−7, using the well-known fact that all probabilities sum
up to one. We find a value of 0.017, i.e., that f < 0.017 at 5σ .

What would happen if De Propris et al. (2010) observed five pairs of galaxies
instead of two? Integrating the posterior distribution, beta(6,2123), we obtain an
upper limit of 0.020 = 0.2%. For such a case, De Propris et al. (2010) quote an
upper limit half this size because they approximate the binomial likelihood with a
Gaussian (the red curve shown in Fig. 4.5 for the case of 2 pairs). This factor of two
applies also to the dry merging rate, which is the very same number expressed in
astronomical units. Because of the adopted approximation, they obtained an upper
limit to the dry merger rate that is double than what it should be, i.e., they were more
optimistic than their data by a factor of two.
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4.3 Exercises

Exercise 1

Many processes having to do with times between events may be modeled with an
exponential distribution, such as decay time. Assume the likelihood of our data is
an exponential distribution with rate parameter s, i.e., obsy∼ dexp(s). Assume a
gamma prior distribution for s with parameters a and b, s∼ dgamma(a,b). Using
Bayes theorem, show that the posterior distribution is s∼ dgamma(a+1,obsy+
b), a gamma distribution with parameters a+ 1 and b+obsy. Note this is one of
those special cases where the posterior can be derived. Use JAGS to verify this result
with a= b= 1 and obsy= 0.819.

Exercise 2

Many positively defined quantities in astronomy and physics are distributed as log
normal, for example, the mass of galaxy clusters. Suppose that obsm ∼ dlnorm
(m,prec) where prec, the precision, is known. Assume the prior m ∼ dnorm
(a,b). Using Bayes theorem, show that the posterior distribution is also normal
with posterior mean

μ =
a∗b+prec∗ log(obsm)

b+prec

and posterior precision b+prec. Check this result with JAGS when obsm = 2,
prec= 1 and the prior parameters are a= 0 and b= 1.

Exercise 3

Suppose obsx ∼ dunif(0,b) and assume a power law (Pareto) prior for b with
parameters s and f, b∼ dpar(s,f). Using Bayes theorem, show that the posterior
distribution is b∼ dpar(s+1,max{obsx,f}) which is a Pareto with parameters
max{obsx,f} and s+ 1. Use JAGS to verify this result with s = 2, f = 1, and
obsx= 1.138.

Exercise 4

Suppose obsn ∼ dpois(s) and s ∼ dunif(0,smax). Show that the posterior
distribution is:
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p(s|obsn) = c
Γ (obsn+1)

sobsne−sI[s ∈ (0,smax))]

where

c =
1∫ smax

0
1

Γ (obsn+1)s
obsne−sds

.

where I is the indicator function with I(x ∈ A) = 1 if x ∈ A and 0 otherwise. Use
JAGS to verify this result with smax= 5 and obsn= 3.

Exercise 5

Again consider obsn∼ dpois(s) and s∼ dgamma(k,r) where r = 1/theta for
s ∈ (0,smax). Show that the posterior distribution is:

p(s|obsn) = c(θ +1)k

θ k

1
Γ (k+obsn)

sk+obsn−1e−s(θ+1)/θ I[s ∈ (0,smax))]

where

c =
1∫ smax

0
(θ+1)k

θ k
1

Γ (k+obsn)s
k+obsn−1e−s∗(θ+1)/θ ds

,

and I is the indicator function with I(x ∈ A) = 1 if x ∈ A and 0 otherwise. Use JAGS
to verify this result with k = 5, theta = 1, smax = 8, and obsn = 3. A note of
caution: in JAGS, the parameterization of the gamma distribution uses r = 1/θ .

Exercise 6

Analytically derive the posterior distribution for the binomial model with a uni-
form prior, following the suggestion in Sec 4.2.3. For the analytical derivation, re-
call that the posterior has an integral equal to one (as all probability distributions
should). Thus, you may leave aside all constants (i.e., quantities independent of f)
and derive just the functional dependence with obsn and n. You should find that the
posterior is:

p(f|obsn,n) = (n+1)!
obsn!(n−obsn)!

fobsn(1−f)n−obsn.

Use JAGS to verify this result with a= 1, b= 1, obsn= 2, and n= 10.
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Exercise 7

Neutrino mass, from D’Agostini (2003), see Sect. 4.1. Analytically derive the pos-
terior for the neutrino mass example and check that with a uniform prior m ∼
dunif(0,30), the result is

p(m|obsm) = 19.8√
2πσ

exp− (m−obsm)2

2σ2 .
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Chapter 5
The Prior

In Bayesian statistics (and in human life), our conclusions depend both on the data
(the event itself) and on what we already know before the event occurred (prior
information). For example, when we draw with replacement ten cards from a full
deck, getting ten kings is considered good luck if cards are randomly extracted from
a regular deck of cards. This is not a surprising outcome if, however, the pack of
cards only contain kings, or is considered a card trick if the draws were done by a
conjurer.

For the three different card-deck scenarios just given, the data (“ten kings in ten
draws”) are unique. On the other hand, our conclusions (what we claim is truly
going on) depend on the other (prior) information too (i.e., what we believed about
who is drawing the cards and the state of the deck of cards before we observed the
ten kings). Bayes theorem quantifies the above scenarios and will return different
(posterior) inferences for the same data because of the different prior information.
Therefore, the prior matters in inference.

In this chapter, we first show an example where ignoring the prior can lead to
erroneous conclusions. Then, we illustrate with examples the role of the prior. We
also provide some advice on where to look for information useful for sculpting the
prior. Finally, we conclude this chapter by illustrating two more real examples where
the prior is essential.

5.1 Conclusions Depend on the Prior . . .

5.1.1 . . . Sometimes a Lot: The Malmquist-Eddington Bias

As in the conjurer example, conclusions may heavily depend on the prior so much
that ignoring the prior may lead one to be wrong most of the time, as we now
illustrate with an example common in astronomy. In this example, the prior drives
the posterior mean away from the data (the observed value).

© Springer International Publishing Switzerland 2015
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Fig. 5.1 Prior (blue curve diverging toward zero) and posterior (solid curve) probability distribu-
tion of the source flux, having observed four photons and knowing that the source number counts
have a euclidean distribution. The highest posterior 95 % interval is shaded

Astronomers have known for about 100 years that when observations are noisy
the true value s of the source’s intensity is systematically smaller than the observed
value obsn, regardless of the type of source they are considering. This conclusion
comes after having re-observed many sources in much better conditions and having
found that in general s < obsn most of the time. Why does this happen? In the
Universe there are many faint sources for each bright source. Because of this uneven
distribution of fluxes and of the presence of noise, there are more sources whose flux
is scattered up by noise than scattered down. Therefore, a source with obsn is likely
a fainter source with an overestimated flux. This knowledge is the astronomer’s
prior: before measuring the source’s flux, the probability that the source has a flux
s is not a uniform distribution of s but a steep function of s.

Let us consider a quantitative example, tailored around the X-Bootes survey
(Kenter et al. 2005), which is a survey of X-ray sources performed with the Chandra
Space Telescope. As in Sect. 4.2.1, we continue to assume that counts are Poisson
distributed,

obss ˜ dpois(s) .

For past and deep (precise) observations, however, we know that the probability
distribution of logs (called number counts by astronomers and prior by statisticians)
is a power-law with slope −2.5, which is also adopted by the authors. Figure 5.1
shows this prior, apart from other numerical constants (irrelevant to the statistical
computation, but of astronomical importance). A possible implementation of this
prior is

s <- pow(tmps, -0.66666666)
tmps ˜ dunif(0,100) .

Here, we used the fact that if a quantity tmps is uniformly distributed,
tmps−1/1.5 is distributed as a power-law with slope −2.5 (in case the reader is
not aware, this is also known as a Pareto distribution). Our model now reads:
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model {
obsn ˜ dpois(s)
s <- pow(tmps, -0.666666666)
tmps ˜ dunif(0,100)
}.

We let JAGS do the computational work of numerically sampling the posterior,
leaving the mathematically skilled readers the exercise of computing the (known)
analytic formula.

Consider observing a source of obsn = 4 photons, a typical value for sources
observed in the X-Bootes survey. The posterior distribution has its mode at s= 1.5
and its mean at s= 2.5 (Fig. 5.1), in agreement with the astronomer’s experience
that the true flux, s, of a source is likely lower than the observed value obsn.

The conclusion is that by taking the observed value obsn = 4 as an estimate of
the source flux s, the pragmatist will be wrong most of the time by systematically
overestimating s: a better re-observation of a 4 photon source will discover it will
be, on average, a 2.5 photon source. The pragmatist, refusing to use any information
other than the data being analyzed, is not able to profit from past observations show-
ing the power-law nature of the distribution of source fluxes. The Bayesian benefits
from the knowledge of the steep number counts (by encoding this information in
the prior) and by using both the prior and the data is able to draw conclusions in
agreement with better re-observations. In this example, the prior shows such a large
gradient that the posterior mean significantly differs from the observed value, i.e.,
plays a major role in estimating the source’s flux.

The posterior’s sensitivity to the prior is routinely used in cosmology, where no
experiment measures a (cosmological) parameter per se, but only some combina-
tions of these parameters. In order to break this multiple dependency among the pa-
rameters, researchers can combine results from different experiments, i.e., assume
the posterior of a past experiment as a prior for the current experiment (this is known
as sequential Bayes, the accumulation of knowledge through experimentation).

It should be noted that for those times that the prior probability displays a large
variation in the range where the likelihood is different from zero, one should ex-
pect a Malmquist- or Eddington-like effect (after the names of the astronomers who
explained why such an effect occurs), i.e., that the prior matters. This effect is the
manifestation of the phenomenon that by ignoring the prior one may be wrong most
of the time.

5.1.2 . . . by Lower Amounts with Increasing Data Quality

The impact of the prior decreases with increasing data quality, as we now illustrate
by revisiting the four counts example of Sect. 4.2.1. In particular we compare the
posterior using two different priors and by increasing the amount of data.

We assume now that the researcher, before running the experiment, thought that
the source s is 100 counts plus or minus 33 %. We mathematically quantify the
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Fig. 5.2 Prior (top panel) and posterior probability distributions for the Poisson signal example for
a log-normal prior (dark/blue shading) or a uniform prior (light/yellow shading)

stated prior by taking a log-normal distribution. The first argument of a log-normal
is the log of the median (4.605= ln(100)), and its second is the precision (1/0.332 =
10) of the log of s. The top panel of Fig. 5.2 shows this prior. The model with the
log-normal prior reads:

model {
for (i in 1:length(obsn)){
obsn[i] ˜ dpois(s)
}
# lognormal prior on s
s ˜ dlnorm(4.605,10)
}.

Figure 5.2 plots the posterior thus obtained (dark/blue shaded), and the poste-
rior obtained in the previous model when a uniform prior was adopted (light/yellow
shaded). Obviously, when one observes just a single measurement (second panel
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from the top), i.e., when the data are poor, the two posteriors widely differ because
the two priors widely differ. When the quality of the data increases (lower panels),
however, the two posteriors become more and more similar. This occurs because
what matters in parameter estimation is the shape of the prior in the range where
the likelihood is significantly non-zero and this range becomes narrower and nar-
rower as the quality of the data increases. Every prior, without singularities, can be
approximated by a constant in a sufficiently small range. So it does not matter if we
started with a constant as a prior or if we end up with such a narrow posterior that
the prior may be approximated by a constant, the role of the prior is decreasing with
increasing data quality.

This example also offers us the possibility of reassuring some of our colleagues
with very little experience with Bayesian methods. Some of them worry about the
possibility of specifying a “wrong” prior, a prior that is in tension with the data or
the posterior, as in the above example: a prior centered on 100 counts when the
observed values are of the order of 4 counts. As far as the prior correctly matches
the researcher’s idea before performing the experiment, the prior is “right,” even if
the experiment will return a fairly different number. Actually, these are the most
exciting results, when we found something different from our prior expectations.
This discussion should clarify that a researcher should not refrain from using the
Bayesian way because he/she worries about the risks of specifying a “wrong” prior.
A prior’s correctness is not established by how it matches the true value (or the
outcome of the experiment), but how it matches the available information before
the experiment. The only “wrong” prior is one that is sloppily chosen, say a prior
that allows positively defined quantities (as mass, or dispersion) to take negative
values, i.e., those formulated so sloppily that they do not match the intent of who is
formulating them.

5.1.3 . . . but Eventually Becomes Negligible

When the data constrain conclusions very tightly, priors do not play a major role in
drawing conclusions, as we now illustrate using the dry merging rate (the fraction
of passive galaxies) example of Sect. 4.2.3. In that example, we assumed a uniform
prior for the fraction f. Which role is played by the prior?

Recall that Bayes theorem tells us that the posterior is given by the product of
the likelihood and the prior (Sect. 2.5). Figure 4.5 shows that the posterior is signifi-
cantly different from zero only in the small range 0 < f< 0.005. Since the prior has
been selected so that the density values are constant in the range [0,1], the likelihood
is equal to the posterior, except for a normalizing constant. Hence, the likelihood is
non-zero only in the small range 0 < f< 0.005. Therefore, the behavior of the prior
outside this range matters very little, given that it is multiplied by values (likelihood)
very close to zero. Furthermore, in order to find a noticeably different posterior we
need a prior with large variation across the range 0 < f< 0.005, one with an almost
singularity in this range. If the presence of a singularity can be excluded (and it can
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in this example) then the behavior of the prior in the 0 < f < 0.005 range matters
only a little to the overall conclusion of the experiment: the dry merging rate (i.e., f)
is extremely low. The lesson to be learned from this example is that if the likelihood
is sharp and is non-zero in only a small range of the parameter space, then the prior
plays a little role, provided it is not allowed to take widely different values in this
small parameter range. Of course, our quite general statement should be verified for
the given data (e.g., by adopting a different prior) and cannot be taken for granted
in every possible situation one may imagine.

5.1.4 . . . and the Precise Shape of the Prior Often Does Not Matter

In the previous section, we introduced the concept of how the shape of the prior
influences the posterior. Here we describe this a bit more. Note that what really
matters is the general shape of the prior and not its precise shape. This can be an-
alytically understood by noting that the posterior mean is given, through the use of
Bayes theorem, by the average of the likelihood, weighted by the prior. In formulae:

E(θ |data) ∝
∫

θ p(data|θ)p(θ)dθ . (5.1)

Those that instead prefer numerical examples may consider the following
illustration.

We are still interested in measuring the source flux of a faint source with 4 ob-
served photons. In order to understand the effect of the precise shape of the prior, we
consider two mathematically different priors, but at the same time grossly similar
in shape: a uniform distribution versus a Gaussian distribution with a large sigma.
These priors are depicted in the top panel of Fig. 5.3. Since flux is a positively de-
fined quantity, negative values are unphysical. Therefore, we set a zero prior for
negative values to keep a connection with reality. Priors are zero-ed for negative
values of s by truncating them with the JAGS function T(0,). Alternatively, we
may use the mathematical abs() function.

The model now reads (priors are listed and should be uncommented in turn when
the program is run) :

model {
# likelihood
obsn ˜ dpois(s)
# Gauss prior with large sigma
#s ˜ dnorm(0,0.01) T(0,)
# uniform
#s ˜ dunif(0,1.0e+7)
}.

The bottom panel of Fig. 5.3 shows the posterior distribution computed for the
two priors. Clearly, the exact shape of the prior plays a negligible role: differences
between posteriors are so tiny that we are able to note that there are two lines plotted
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Fig. 5.3 Top panel: Gaussian (solid blue line) and uniform (dotted red line) priors. Bottom panel:
Posterior probability distribution for the Gaussian (solid blue line) and uniform (dotted red line)
priors. Very narrow bins are adopted for the histograms in the bottom panel, to emphasize numeri-
cal noise and hence shows that two histograms, otherwise indistinguishable, are plotted

in the bottom panels only because of numerical noise associated with our finite
sampling of the posterior. Therefore, what matters is the gross shape of the prior.
This is a reassuring fact because we typically do not possess a precise knowledge of
the exact shape of the prior unless the prior is the posterior of a previous experiment.
What really matters is to specify the prior’s gross behavior.

5.2 Where to Find Priors

At this point, the reader should be convinced that conclusions depend on the prior
by an amount that varies from case to case.

The next logical question to ask is how does one determine the prior? Said simply,
it should match the researcher’s ideas before performing the experiment, i.e., what
we know about the quantity being measured other than the information coming from
the considered experiment.

Our experience as scientists tells us that researchers in physics or astronomy have
some sort of prior knowledge and that we rarely know nothing about the “rough
size” of what is about to be measured. If at all, some of us just do not know that
prior is the name for what is already known about the quantity being measured.
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Researchers get access to experimental facilities by competition. This usually en-
tails writing a facility request and a portion of this request is dedicated to what is
called a “feasibility section.” The feasibility section requires that researchers quan-
tify their expectation about the size of the quantity they want to measure. This is the
prior. This is also essential for evaluating if a result will likely occur: if the mea-
surand is likely outside the range probed by the instrument, the experiment may
result in a waste of money. Therefore, it is usually requested that researchers quote
a plausible range of where they expect the quantity to reside. This is the prior. The
prior is also needed to select the most appropriate instrument for the experiment, its
configuration, and how long the experiment should run (exposure time).

Even if no facility request has been written, conscious scientists do not waste
their time trying to measure an effect at a facility that does not offer the sensi-
tivity/resolution requested for the measurement. Even these scientists have a prior,
they know that the measurement is, likely, in a given range, and, less likely, outside
it. This is their prior.

Therefore, rarely do researchers not have some sort of prior. On the contrary,
when they decide to use their own time to perform a study, they already know that
the quantity being measured is more likely to be in some range rather than outside
it.

As detailed in Chap. 9, irrespective of the adopted prior, it is always opportune
to measure the impact of the prior on conclusions.

5.3 Why There Are So Many Uniform Priors in this Book?

In the following chapters we will not provide much discussion about the prior as
we have done here, and we will often use uniform priors. This should not be taken
as a suggestion to use uniform priors in real problems. We (will) use uniform priors
only because the prior depends on the scientific problem under study, and we cannot
imagine for which application a model will be used!

5.4 Other Examples on the Influence of Priors on Conclusions

5.4.1 The Important Role of the Prior in the Determination of the
Mass of the Most Distant Known Galaxy Cluster1

Andreon et al. (2009) calculated the mass of the most distant cluster of galaxies,
JKCS041 at z = 1.8, and found an observed (log) mass of obslgM = 14.6± 0.3
M� (units are not longer quoted). In our notation, obslgM ∼ dnorm(lgM,
pow(0.3,-2)), and obslgM <- 14.6.

1 This section can be skipped the first time through.
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Fig. 5.4 JKCS041 mass estimate. The blue continuous line depicts the prior (named mass function
by astronomers), the red point indicates the observed value, and the histogram represents the pos-
terior probability distribution. Note the log scale on the ordinate and the effect of the steep prior,
that moves the most probable value of the cluster’s mass to values smaller than observed

What is the JKCS041 mass? This question seems odd because we have just men-
tioned its value! Why not simply use the observed value? Because, as the reader
by now suspects, the prior (named the mass function by astronomers) changes sig-
nificantly in the range where the likelihood is not negligible, as shown in Fig. 5.4.
Note the adoption of a log scale on the ordinate because of the very large change
in the prior’s value (more than four orders of magnitude in the range of interest).
Using the observed value leads to incorrect inferences about the likelihood of living
in a ΛCDM Universe (Mortonson et al. 2011; Andreon et al. 2009), because wrong
probabilities of observing clusters like the ones we observe would be inferred.

The theoretically predicted mass function, p(lgM), at the cluster’s redshift,
z = 1.8, has been computed several times with several approximations in various
astronomical papers. For the sake of clarity, we take the Jenkins et al. (2001) mass
function, that we approximate with a Schechter function (Schechter 1976) with
slope alpha=-1.8 and lgMstar=13. This is our prior and we generate it (quite
verbosly) using JAGS as described in Sect. 3.2. Our model (quite verbose, all but
one single line is used to implement the Schechter prior in JAGS) reads:

data {
zeros <- 0
C <- 10
}
model {
# likelihood
obslgM ˜ dnorm(lgM,pow(0.3,-2))
# prior, using the zero trick
lgM ˜ dunif(12,18)
phi <- -2.3025*0.4*(alpha+1)*(lgM-lgMstar)+10ˆ(0.4*(lgM-lgMstar))
zeros ˜ dpois(phi+C)
}.

The posterior probability of the cluster’s mass is depicted in Fig. 5.4. Its mean and
standard deviation are 14.3±0.3, lower than the observed value 14.6 (by a factor 2



44 5 The Prior

in mass, or 0.3 dex). This shift is due to the important variation of the prior in
the range where the likelihood is significant (more than a factor of 10 in the range
[14.3,14.9], i.e., in the 1σ range centered on the observed value). Astronomers ex-
plain this shift by saying that since there are a lot of clusters of small mass, there are
more clusters with overestimated mass than massive clusters with underestimated
masses, and therefore the error (scatter) pushes more systems up than down. This
is the very same Malmquist bias discussed in Sect. 5.1.1 for the source flux. While
stated in this way, the “bias” is obvious (at least to astronomers), yet the “bias” was
forgotten in at least four papers in 2010 dealing with high redshift massive clusters,
in spite of the warning in Andreon et al. (2009), making a wrong inference about
the likelihood of the current cosmological model (Mortonson et al. 2011).

5.4.2 The Importance of Population Gradients for Photometric
Redshifts2

We have already emphasized in previous sections the importance of accounting for
the prior when it appreciably changes in the range where the likelihood is non-null.
In Sect. 5.1.1, we have illustrated the case of the flux and in Sect. 5.4.1 the case
of mass; we now illustrate the case of redshift, echoing what was been previously
presented. Recall that p(s) was the specified prior for both the object’s intensity s
and the distribution (abundance) of objects of intensity s. Similarly, p(zspec) is
both the prior on the redshift zspec and the distribution (abundance) of objects of
redshift zspec.

Determining a galaxy’s redshift (distance) by spectroscopy is an expensive task
on a telescope and faint galaxies are often too dim to get their redshift by spec-
troscopy. Instead, one can use the galaxy’s color (or even better, the galaxy’s spec-
tral energy distribution) because it exhibits a tight correlation with the redshift and
can be collected in a reasonable amount of telescope time, even for faint galaxies. In
such a way, we can get an estimate of the cluster’s redshift: its photometric redshift
zphot.

Figure 5.5 shows a quite common plot of zphot against the spectroscopic red-
shift zspec. The latter is taken from Le Fèvre et al. (2005) while the former,
zphot, has been determined with EAZY (Brammer et al. 2008). The bottom panel
shows residuals, given by (zspec−zphot)/(1+zphot). A trend in the resid-
uals is clearly evident, and astronomers tend to work hard to eliminate this trend,
either by fitting the residuals with a smooth function and using it to correct zphot
or by modifying the zphot estimation until the effects disappear. The rationale is
that some sort of systematic problem is present and should be corrected.

The right panel shows the distribution in spectroscopic redshift, in small bins,
p(zspec), i.e., the prior p(zspec). It is clearly not uniformly distributed.

2 This section can be skipped the first time through.
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Fig. 5.5 zphot vs zspec for the Le Fèvre et al. (2005) true data (top panel), residuals (bottom
panel), and redshift distribution (right panel)

We want to now show that the systematic trend is a manifestation of the
Malmquist bias: the observed value tends to overestimate the true value because
of the (neglected) population gradient (i.e., non-uniform prior, plotted in the right
panel) of the spectroscopic sample. This is an important difference compared to
rectifying the estimate of zphot, because if zphot is used for a fainter galaxy
sample, which is usually the case, the latter will have a different redshift distribu-
tion and requires a different correction or none at all.

To explain how the systematic error arises, we consider simulated data. We first
draw a large sample of zspec and zphot pairs from a Gaussian distribution cen-
tered around zphotwith dispersion (σ ) equal to 0.03×(1+zphot)3. The adopted
coefficients are set to reproduce real Le Fèvre et al. (2005) data, as will be clear in
a moment. Simulated data have been generated by the JAGS code:

model {
zphot ˜ dunif(0,2.0)
zspec ˜ dnorm(zphot,pow(0.03*(1+zphot)ˆ3,-2))
}.

In the simulation there is no systematic effects: the mean zspec at a given
zphot is equal to zphot, and the mean zphot at a given zspec is equal to
zspec (except at zspec≈ 0 and 2).

The simulated data above are not distributed as p(zspec) in the Le Fèvre et al.
(2005) sample. Therefore we now match the p(zspec) distribution of this sim-
ulated sample to the Le Fèvre et al. (2005) distribution in Fig. 5.5 (right panel)
by extracting from the large sample of simulated data a (random) sub-sample hav-
ing the same p(zspec) as the real data. The upper-left panel of Fig. 5.6 shows the
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Fig. 5.6 zphot vs zspec for simulated data. Contrast it with the previous Figure

selected (zphot, zspec) pairs. If we now plot the residuals (bottom panel), a trend
appears, with increasingly negative residuals as zphot increases. Since our zphot
and zspec are correct and not biased at all, the trend visible in the residuals is due
to the population gradient of zspec values entering in the spectroscopic sample.
In fact, the population gradient in the spectroscopic redshift makes it more probable
that a, say, zphot = 1.4 galaxy is a lower redshift galaxy scattered up by zphot
errors than a zspec � 1.4 galaxy scattered down, almost none of which is in the
spectroscopic sample. This sentence should sound familiar, if we were talking about
fluxes instead of redshift.

Back to the Le Fèvre et al. (2005) data set, p(zspec) decreases at z > 0.9, not
because the Universe ends there, but because of the VVDS spectroscopic selection
function (see Chap. 7 about how to deal with selection functions) makes the inclu-
sion of galaxies in the spectroscopic sample less probable as the redshift increases.
To be included in the Le Fèvre et al. (2005) sample, a zspec> 1 galaxy should be a
special galaxy, either a star forming galaxy or an AGN: passive galaxies at z > 1 are
under represented in the sample because of the Le Fèvre et al. (2005) spectroscopic
selection function. Forcing an agreement at zspec > 1 is biasing the estimate of
zspec of galaxies with a different a priori redshift distribution, for example faint
red galaxies or galaxies fainter than the spectroscopic redshift (in both cases the
median value of the redshift probability distribution is larger).

In the presence of population gradients, zphot and zspec should systemat-
ically disagree where the population has a redshift gradient unless the scatter be-
tween them is negligible (i.e., zphot errors are negligible).

A forced agreement between zphot and zspec is also the standard approach
of empirical photometric redshift estimates (i.e., those that look for a trend between
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zspec and combinations of galaxy colors) and therefore these have to be consid-
ered with skepticism when applied to galaxy populations with a different a priori
redshift distribution.

5.5 Exercises

Exercise 1

Suppose we observed the following data, drawn from a Gaussian with mean m = 7
and variance s2 = 4: {16.25,11.82,6.59,2.44,11.8,12.62,6.18,4.17}. Assume m∼
dnorm(−50, .01) (recalling that JAGS uses the precision in place of the variance)
and s∼ dunif(0,100).

Exercise 1a

Using JAGS, obtain draws from the posterior distribution of m and s. Plot the priors
and the posteriors on the same graph.

Exercise 1b

simulate 100 more data points from the dnorm(7, 0.25) and use this new data set
to obtain draws from the posterior. Plot the priors and the posteriors on the same
graph.

Exercise 1c

simulate 10000 more data points from the dnorm(7, 0.25) and use this new data set
to obtain draws from the posterior. Plot the priors and the posteriors on the same
graph.

Exercise 1d

What do you observe about the different posteriors obtained in a)–c)?

Exercise 2

Is your flat prior truly noninformative? Consider the simple example. Assume a
uniform prior to f, i.e., f ∼ dunif(0,1), where f is the success probability in a



48 5 The Prior

binomial likelihood. Now suppose that for whatever reason, you are not interested
in estimating f but rather f2 and log(f). Using simulation, plot an estimate of the
density of f2 and log(f) based on the flat prior assigned to f. What to do you
observe?

Exercise 3

Continuing with Exercise 2, the Jeffrey’s prior (a class of noninformative priors
meant to be transformation invariant) for f is given as a f∼ dbeta(0.5,0.5). Sim-
ulate from the beta(0.5,0.5) distribution and use those simulations to view the in-
duced prior for f2 and log(f).

Exercise 4

Assume that obsy ∼ dnorm(m,prec), where m is unknown but the precision
prec is known, and the prior m ∼ dnorm(a,b). Derive the posterior distribution
of m. Compare the form of the prior to the posterior (and again gives you an idea of
how conjugacy is defined).

Exercise 5

Recall that when we introduced the Malmquist-Eddington bias (Sec 5.1.1), we used
a Poisson distribution as the likelihood. Some authors claim that this bias appears
because of the asymmetry of the Poisson distribution. Again assume that we ob-
served 4 counts from the source, refit the model using a Gaussian distribution (a
symmetric distribution) with standard deviation of 2. Comment on your results.

Exercise 6

Returning to the Malmquist-Eddington bias section:

Exercise 6a

Verify that with the adopted uniform prior the posterior of the Poisson signal deter-
mination has mean obss+1 and standard deviation

√
(obss+1).
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Exercise 6b

Change the uniform prior in the Poisson signal determination from the adopted uni-
form to a Jeffreys prior (1/s). Verify that the posterior is Poisson centered on obss.
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Chapter 6
Multi-parameters Models

In this chapter we consider multi-parameter estimation problems. This chapter is
split into three parts. In the first part, we address common problems such as the
determination of location and spread and simple measurements of the spectral shape
(slope and curvature). In the second part we consider measurements that require
the modeling of two populations, for example the interesting one and a nuisance
population. We then list, in the section titled “Advanced Analysis,” quite complex
models precisely tailored to specific experiments. The latter section can be skipped
the first time through.

6.1 Common Simple Problems

6.1.1 Location and Spread

Suppose we have some measurements with Gaussian errors, and that the values
scatter more than the measurement error allows. We want to measure the center of
the distribution from which the data are drawn and the size of the spread attributed
to the variability in the population.

To focus this idea, let us refer to a common measurement of spread in astro-
physics: the cluster velocity dispersion. Galaxies, as gas particles, move with ve-
locity vector v distributed as a nearly-Maxwell distribution. Astronomers are only
able to measure the line of sight component of the velocity, v, which is (with a good
approximation) normally distributed around the true value vcent with dispersion
sigma.clus:

v[i] ˜ dnorm(vcent,pow(sigma.clus,-2)).

As usual, every measurement is affected by noise, which we assume to be
Gaussian, whose amplitude sigma.v[i] varies from measurement to measure-
ment,

© Springer International Publishing Switzerland 2015
S. Andreon, B. Weaver, Bayesian Methods for the Physical Sciences,
Springer Series in Astrostatistics 4, DOI 10.1007/978-3-319-15287-5 6

51



52 6 Multi-parameters Models

Fig. 6.1 Histogram of the (simulated) data. We measured 25 velocities of (fake) galaxies. The
mean model is marked with the continuous line. The shaded region marks the 68 % interval

obsv[i] ˜ dnorm(v[i],pow(sigma.v[i],-2)).

We want to know the velocity barycenter, vcent, and the intrinsic spread,
sigma, called cluster velocity dispersion by astronomers.

To complete the model description we need to assign priors for vcent and
sigma.clus. The prior on vcent is largely irrelevant in many situations because
a few measurements are sufficient to determine this parameter. Instead, the prior on
sigma may matter if the sample size is small (do you remember the Malmquist-like
bias?).

Let us assume a uniform prior for the velocity dispersion sigma.clus (re-
member the prior chapter, do not adopt this prior as default). The model reads:

model{
for (i in 1:length(obsv)){
v[i] ˜ dnorm(vcent,pow(sigma.clus,-2))
obsv[i] ˜ dnorm(v[i],pow(sigma.v[i],-2))
}
vcent ˜ dnorm(10000,1e-7)
sigma.clus ˜ dunif(0,5000)
} .

Figure 6.1 shows (simulated) data for 25 galaxies.
After fitting the model to these 25 data points, we estimate a location vcent=

10180± 255 km s−1 and a dispersion sigma.clus of 1240± 195 km s−1 (the
data were generated from a Gaussian centered in 10000 km s−1 and with sigma
1000 km s−1 as detailed at the end of this section).

Figure 6.1 shows the mean model (continuous line) and its 68 % interval, super-
posed to the data. Figure 6.2 shows the marginal posterior distribution of the two key
parameters, location and spread. Figure 6.3 shows the joint probability distribution
of location and spread. The contours are drawn at 68 % and 95 % probability, i.e.,
enclose 68 % and 95 % of the draws. More specifically, we consider higher poste-
rior density contours, indicating that the region enclosed by the contour has, locally,
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Fig. 6.2 Posterior probability for the (velocity) dispersion sigma.clus and central location
vcent of the velocity dispersion problem. The shaded region marks the 95 % interval

Fig. 6.3 Joint probability distribution of location and spread. Contours are drawn at 68 % and 95 %
probability

a higher probability density than non-selected regions. The circular shape of the
contours indicates that the two parameters are approximately not correlated.

Derived velocity dispersions have the properties of non-negativity, and their un-
certainties do not include unphysical (negative or complex) values of the velocity
dispersion. While the above properties seem useless to state, it should be noted that
they are non-trivial properties, because unphysical velocity dispersions, derived us-
ing different methods, appear, from time to time, in astronomical papers.

The model discussed in this section is depicted in Fig. 6.4, named a Bayesian
graph: arrows indicate logical links between quantities (tilde symbols in our coding),
the observed values are in the bottom line, the parameters that have a prior are in the
top line, whereas “intermediate” quantities (latent variables), true velocities v[i]
in this example, are in the middle line. The graph makes clear that both parameters,
vcent and sigma.clus affect the v[i] values, constrained by the observed
values obsv[i]. Bayesian graphs are useful for more complex models, allowing
one to visualize the complex link between the many intervening quantities.

Let us open a parenthesis for astronomers. First, all our computations derive re-
sults in the system of the provided numbers, i.e., in the observer’s frame in the
case of the velocity dispersion. Therefore, do not forget to remove the cosmological
(1+z) stretching factor if you are quoting a measurement in the cluster’s rest-frame.
Second, if you are dealing with noisy velocity dispersions, remember to adopt the
prior appropriate for your problem, to avoid what we called the Malmquist bias
(see Sect. 5.1.1), i.e., a systematic overestimate of the true value of the velocity
dispersion.
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v[i]

vcentsigma.clus

obsv[i]

Fig. 6.4 Graph showing the stochastic relationship between quantities involved in estimating lo-
cation and spread

The simulated data used in this example were generated with the model:

model{
prec.v ˜ dunif(pow(300,-2),pow(80,-2))
v ˜ dnorm(vcent,prec.clusdisp)
obsv ˜ dnorm(v,prec.v)
vcent <- 10000
prec.clusdisp <- pow(1000,-2)
}.

As the model indicates, we generated heteroscedastic errors (velocity measure-
ments have different uncertainties, from 80 to 300 km/s). Because draws within a
chain are not independent (Chap. 3), remember to decimate, or centimate them, if
you use this model to generate fake data.

The model discussed in this section deals with Gaussian-distributed quantities
with Gaussian errors, but these assumptions can be easily modified if the data behave
differently. If, for example, the modelled quantities are, say, Student-t distributed,
then a Student-t distribution, dt should be used in place of the normal dnorm in
the model.

A numerical comment is needed: when performing numerical computations, it
is good practice to feed programs with reasonable numbers (for example to avoid
numerical overflows). Velocities in astronomy can be huge numbers. It may some-
times be useful to remove a round number near the data average before passing data
to JAGS (and add this number back after stochastic computation).

6.1.2 The Source Intensity in the Presence of a Background

Often we are confronted with measuring the flux of a source superposed on a back-
ground. This very same problem may take other forms, for example, it may consist
of measuring the richness (number of galaxies) of a cluster of galaxies projected on
the top of background galaxies. Or, in a nuclear reaction, the number of particles
satisfying some properties (e.g., compatible with being Weakly Interacting Massive
Particles) or, in particle physics, the number of neutrinos produced by the Earth’s
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sbkg

obstotobsbkg

Fig. 6.5 Graph showing the stochastic relationship between quantities involved in estimating the
signal in the presence of a background

radioactivity. In all these cases, and in many similar others, we have to infer the
value of an interesting signal from noisy measurements contaminated by a back-
ground or by other sources. From now on, we call background everything except
the signal of interest.

Because of various reasons, observed and true values are not identically equal.
The variables s and bkg represent the true signal and true background in the studied
solid angles. In these solid angles, assumed to be perfectly known, we measured
obstot and obsbkg, respectively. The solid angle ratio (or the ratio between the
time the background and the source are observed) is C. We consider the case in
which observed values are Poisson distributed.

In formulae, our wordy statements can be summarized by:

obstot ˜ dpois(s+bkg/C)
obsbkg ˜ dpois(bkg).

For the time being, we take for the signal s and for background bkg independent
uniform priors in the physically acceptable range (i.e., positive):

s ˜ dunif(0,any_large_value)
bkg ˜ dunif(0,any_large_value).

In summary, the statistical model reads:

model {
obstot ˜ dpois(s+bkg/C)
obsbkg ˜ dpois(bkg)
s ˜ dunif(0,1.0e+7)
bkg ˜ dunif(0,1.0e+7)
},

where we took 1.0×107 as any large value, because the numbers considered
in our examples are much smaller.

Note that the model is more general than stated: the quantity named C, which
we called the solid angle can be other things as well, depending on the experiment
we are modeling. If we were running a nuclear experiment, C would be the ratio
between the times used for signal and background determination (e.g., a large C
means that the experiment is run for a long time with the source switched off).

Figure 6.5 summarizes the stochastic links between the involved quantities of our
model. The model is quite simple, obsbkg is only affected by bkg, while obstot
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Table 6.1 Data for the signal on background example: posterior mean and standard deviations are
also reported

Case obstot obsbkg C bkg s
a) 31 1 1 2.0± 1.4 30.0± 5.8
b) 60 30 1 31.0± 5.5 30.0± 9.5
c) 60 1 1/30 33.3±16.1 28.6±16.5
d) 60 3000 100 30.0± 0.5 31.0± 7.8
e) 170 172 1 165.0±10 14.0±10

depends on both parameters bkg and s. The lack of an intricate network (arrows)
makes this example quite simple.

Let us consider a number of possible observations, summarized in Table 6.1:

a) We observed 31 counts in the source direction vs. one count observed in the
background area (obstot= 31, obsbkg= 1) of the same solid angle as the
source solid angle (C= 1).

b) We observed 60 counts toward the source, and 30 from the background. Solid
angles are equal (C= 1). Net counts, computed as in the butcher shop, is total
minus tare, obstot-obsbkg/C, are equal to those in the first example, 30
net counts, but the background level is higher than in previous example.

c) A small C. We observed 60 counts in the source direction and 1 in the back-
ground direction, measured, however, on a solid angle 30 times smaller than
the one on which the source is measured (C= 1/30). This example differs
from the previous example only by the fact that the background is measured
on a smaller area, although the net counts computed as in the butcher shop,
obstot-obsbkg/C is the same, 30 net counts. This example resembles the
situation where there is a noisy background determination, either because the
solid angle available for the background measurement is small, or because it
is expensive (or difficult to realize) to have a measurement with the source
switched off. This is the typical case when we cannot switch off the signal
source, as for weakly interacting massive particles, or for neutrinos coming
from the reactions in the Earth’s core.

d) A large C. We observed 60 counts in the source direction and 3000 in the back-
ground direction, measured however on a solid angle 100 times larger than the
one where the source is measured (C= 100). This example differs from example
b) only by the fact that the background is measured on a larger area, although
the net counts, again computed as in the butcher shop, obstot-obsbkg/C
are the same, 30 net counts. This example resembles situations where the mea-
surement of the background is less costly than the measurement of the signal
and for this reason, a large C can be taken (or the experiment is run a lot without
the source signal).

e) Let us consider the cluster of galaxies XLSSC 12 (Andreon et al. 2006). In this
example, solid angles are equal (C= 1) and the total galaxy counts in the source
direction is lower than the background value. This may occur as a result of back-
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Fig. 6.6 Probability distribution of the signal s and background per unit solid angle bkg/C for
the signal plus background example. The shaded region marks the 95 % probability interval

ground fluctuations. The net number of galaxies, computed as in the butcher
shop, is obstot-obsbkg, which is negative (170−172 =−2) although there
is no doubt about the fact that the number of galaxies comes in positive units
(have you ever seen −1 galaxy?), and there is no doubt either about the exis-
tence of this cluster, because there are two independent, and unambiguous as-
tronomical observations: the detection of X-ray emission from the intracluster
medium, and spectroscopic observations of 12 galaxies belonging to XLSSC
12 (Andreon et al. 2004). Actually, if one just counts red galaxies (for which
background counts are lower and hence lower Poisson fluctuations), the cluster
has a positive number of net galaxies, as all clusters do. In summary, the butcher
shop rule for computing the net weight (number of galaxies) seems to not work
in this example.

Figure 6.6 shows the posterior distribution of the signal s and of the average
background in the source solid angle, bkg/C for these five examples. In the panels,
the highest posterior 95 % interval is shaded.
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Fig. 6.7 Joint 68 % and 95 % probability contours for the signal plus background examples in the
case b) (left panel) and c) (right panel). In the right panel contours stop at s= 0 and bkg/C= 0,
even if not obvious from the plot

Let us start by commenting on the background posterior distributions. In case a)
the true background is low, a few counts at most, because the observed value of the
background is one count only. Cases b), c), and d) have similar values of bkg/C,
about 30 counts, but in the last case the true value of the background is sharply
determined: it could be only about half unit away from 30 (bkg/C= 30 ± 0.5),
thanks to the large solid angle used to determine it. Case c) is the opposite of case
d), the true value of the background is poorly determined, because only a small
solid angle (C) is available. Case b) is intermediate between these two extremes
(bkg/C= 31±5.5).

The signal’s posterior of the first example is bell-shaped, with an average of 30
and σ = 5.8. In the second example, the higher background makes the width of the
posterior wider, σ ∼ 9.5. In case c), the background is measured on a tiny solid
angle, making the average value of the background very uncertain. For this reason,
the posterior is much wider than in case b), σ = 16.5 (and with a non-Gaussian
shape). If instead the background is measured on a wide solid angle, as in case d),
the signal’s posterior is narrower, σ = 7.8, because the average background is well
known, and this source of error becomes negligible.

Finally, panel e) shows the case of the cluster XLSSC 012: the posterior has
no maximum (in the mathematical sense, i.e., a point of zero derivative inside the
range of acceptable values, with a negative second derivative). It has an extremum
at the boundary of the acceptable range. The net number of galaxies, i.e., the central
location of the s posterior, is poorly characterized by any single number (e.g., the
median or mean), but it is positive no matter which summary is used (the mean and
median are 14 and 11, respectively), fairly different from the butcher rule, which
returns a negative number of galaxies. The (highest posterior) 95 % interval is found
to be [0,35].

Figure 6.7 shows 68 % and 95 % probability contours for the cases b) and c). In
case c), the data actually constrain bkg/C+s to be about 60, because obsbkg
is very noisy. Therefore contours of equiprobability are aligned along the line
bkg/C+s= 60, plotted in red. In case b), the correlation between bkg/C and
s arises from the fact that a larger value of s has to be somewhat compensated
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by a lower value of bkg/C to keep s+bkg/C near to obstot. The correlation
is mitigated, in this case, by the other datum, bkg cannot be too different from
obsbkg/C.

The uncertainties computed with this model are preferable to those derived as-
suming Gaussian errors on counts propagated on the source signal: at the very least
they do not extend outside the range of physically acceptable values, and can be
derived even in absence of a clean signal detection.

In all of the examples, we keep the interval including 95 % of the posterior prob-
ability to compute the 95 % interval. In particular, we do not use different recipes
for computing the interval depending on whether the source is detected. In fact, we
have one single computer code to compute the 95 % interval, also used for the signal
of case e), where the signal is manifestly not detected. In the Bayesian approach, in
order to compute a probability interval, we do not need to state whether the signal s
has been detected. This property is welcome, because there are cases where the sig-
nal detection is ambiguous (imagine a source marginally detected if any at all), and
the Bayesian way does not oblige the researcher to state what he/she ignores, i.e.,
whether a signal is there. This is an advantage compared to other methods, some-
times used in physics, that determine the confidence interval using two different
recipes, one in the case the signal is (claimed to be) detected, and one in the case it
is not, forcing the researcher to assume, for sure, what is intrinsically uncertain. In
passing, the upper limit computed under the two assumptions turns out often to be
different.

6.1.3 Estimating a Fraction in the Presence of a Background

We now want to estimate a fraction, but with a slight twist from Sect. 4.2.3. Here
we allow our data to be contaminated by a background, i.e., by some unwanted
events. This is the typical case in astronomy and physics where we want to infer a
property of a population contaminated by another population not of interest (called
here background, as in the signal plus background example). The aimed fraction
takes different names, e.g., blue fraction or branching ratio. Background properties
are often measured on a sample with the signal switched off, or along a (reference)
line of sight uncontaminated by the objects under study. For example, one may want
to infer the fraction of blue galaxies in clusters from an observed sample formed by
galaxies both in the cluster and outside it, estimating the latter from a control field
sample. An identical situation occurs in nuclear physics where the determination
of a branching ratio is contaminated by a particle background. Let us focus on the
former case, for clarity.

We observed obsnbkg galaxies in the reference line of sight, and obsntot
in the cluster’s line of sight. These two quantities are Poisson distributed. In the
two directions, we observed obsbluebkg and obsbluetot blue galaxies. These
two quantities are binomial distributed. Perhaps the most interesting quantity is the
blue fraction fclus. To derive it, we use (but this is not compelling) an auxiliary
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Fig. 6.8 Graph showing the stochastic relationship between quantities involved in estimating a
fraction in the presence of a source of contamination

variable f, the blue fraction in the cluster direction, that can be analytically derived
from the two true blue fractions fbkg and fclus as:

f <- (fbkg*nbkg/C+fclus*nclus)/(nbkg/C+nclus) ,

where C is the ratio between the solid angles on which the number of galaxies have
been counted.

The problem is summarized in Fig. 6.8. The interesting quantity fclus only
affects obsbluetot, but the latter is affected by all other parameters.

We take uniform priors for all variables: a beta(1,1) for fractions, and a uni-
form for values above 1 (and up to a large number approximating infinity in our
computer) for the number of galaxies in the cluster and reference lines of sight. The
model reads:

model {
obsnbkg˜dpois(nbkg)
obsbluebkg˜dbin(fbkg,obsnbkg)
obsntot˜dpois(nbkg/C+nclus)
obsbluetot˜dbin(f,obsntot)
f <- (fbkg*nbkg/C+fclus*nclus)/(nbkg/C+nclus)
nbkg ˜ dunif(1,1e+7)
nclus˜ dunif(1,1e+7)
fbkg ˜ dbeta(1,1)
fclus ˜ dbeta(1,1)
}.

In short, we “merged” the model of the signal+background determination and the
model of the fraction determination. This high modularity is one of the advantages
of the Bayesian approach: once the full problem is broken down into smaller parts
and these parts are modeled, the full problem is largely solved too.

Let us start from a simple case: we observed 10 blue galaxies out of 10 in the
reference line of sight, and 90 blue galaxies out of 170 in the cluster’s line of sight.
Using the butcher rule (6.1), we obtain a fraction of (90−10)/(170−10) = 50%.
The model above returns 0.50±0.04.

Let us now consider the (difficult) case of XLSSC 012, the cluster mentioned
in Sect. 6.1.2 with more galaxies in the reference line of sight than in the clus-
ter’s direction. The observed values are: obsntot= 170, obsbluetot= 78,
obsnbkg= 2,861, and obsbluebkg= 1,625 with C= 16.61 (we consider here a
larger solid angle for the reference line of sight than in Sect. 6.1.2). Note that we ob-
served almost identical number of galaxies in the cluster and reference line of sight
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Fig. 6.9 Posterior probability of the fraction f of blue galaxies in a cluster in the difficult case
of XLSSC 012 described in the text. The shaded region marks the 95 % (highest posterior)
interval

per unit solid angle (i.e., obsntot≈ obsnbkg/C), but largely different numbers
of blue galaxies (78 vs ≈ 98 expected =obsbluetotbkg/C). Blue galaxies are
in deficit toward XLSSC 012 and therefore non-blue galaxies are in excess. The
butcher rule (Eq. 6.1 detailed below) returns as an estimate of the fraction the value
(78− 98)/(170− 172) = 10 which is non-sense (and even more so noticing that it
is derived from the ratio of two negative numbers, when instead both are positively
defined). The model above returns instead the posterior plotted in Fig. 6.9, a result
in agreement with good sense: the fraction is small because there is a deficit in the
observed number of blue galaxies in the cluster’s line of sight, whereas a large blue
fraction implies larger observed values of blue galaxies.

Note that a naive analysis may have concluded that because the number of cluster
galaxies is low (so low to be negative!), the denominator should be very uncertain,
and therefore the blue fraction should be very uncertain as well, i.e., that large values
of the blue fraction are possible. Instead, the correct approach is to note that we
observed a deficit of blue galaxies in the cluster’s line of sight whereas a large blue
fraction implies a large excess. To summarize, a reasonable constraint on the blue
fraction fclus is achieved even for XLSSC 012, which, according to the butcher
rule, has a vanishing (small), and thus very uncertain, number of galaxies.

The butcher rule to compute a fraction is to compute the ratio of the net (clus-
ter+background minus background) number of blue galaxies over the net number of
galaxies of all colors:

fb(clus) =
n(blue,cluster+ f ield)−n(blue, f ield)
n(total,cluster+ f ield)−n(total, f ield)

(6.1)

using the observed values. This formula certainly holds in the everyday practice,
but rarely for research, and thus one should not be too surprised that the use of the
formula above in research produces values outside the zero to one range. In fact,
in scientific applications, the population of interest is often numerically minor, and
the background is subject to Poisson fluctuations. In such conditions, Poissonian
fluctuations may make background counts larger than counts in the cluster’s line
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of sight, or give more blue galaxies in the background than in the cluster’s line of
sight, situations that return meaningless numbers, because Eq. (6.1) returns negative
values for the blue fraction (i.e., we would claim that there are more red galaxies
than galaxies of all colors) or blue fractions larger than one (i.e., we would claim
that there are more blue galaxies than galaxies of all colors), statements that are hard
to defend. The mistake lays in using the observed number of galaxies, instead of the
(unknown) true one. The use of this formula obliged researchers to discard precious
data, e.g., Postman et al. (2005) discarded two out of three of their z > 1 clusters in
the determination of the spiral fraction.

The model illustrated in this section has, under simple conditions, a known ana-
lytical posterior distribution (e.g., D’Agostini 2004), see exercise 3.

6.1.4 Spectral Slope: Hardness Ratio

We, astronomers, are often faced with measuring the spectral shape of sources.
When only a few photons are available, we are happy with coarse measurements
of the spectral shape, such as the hardness ratio (or the color, or the optical to X ray
ratio, or the spectral slope, etc.), because these allow one to classify the source in
broad classes (as hard/soft, or red/blue, etc). The model introduced to determine the
source intensity (6.1.2) can easily be modified to measure the probability distribu-
tion of these ratios. For clarity, we consider the hardness ratio, defined by

HR =
H −S
H +S

, (6.2)

where H and S are the object’s flux in the Hard and Soft bands. The hardness ratio
is a coarse measurement of the object’s spectrum: hard sources have higher fluxes
in the hard band at a given soft-band flux, i.e., large (near to 1) HR.

In each of the two bands, we are faced with the usual signal+background deter-
mination, i.e., with the model of Sect. 6.1.2 for the soft band:

obstotS ˜ dpois(S+bkgS/CS)
obsbkgS ˜ dpois(bkgS)
bkgS ˜ dunif(0,1.0e+7)

and the same for the hard band

obstotH ˜ dpois(H+bkgH/CH)
obsbkgH ˜ dpois(bkgH)
bkgH ˜ dunif(0,1.0e+7) ,

where CS and CH account for the difference (ratio, mathematically) of solid angles
(or exposure time, or efficiency, or effective area, depending on the considered ex-
periment), between the background and source, in the soft and hard bands. Now we
need to adopt a prior for the hardness ratio, taken to be uniform over the full range
of possible values, −1 to 1:

HR˜dunif(-1,1).
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bkgSSHRbkgH

obstotS obsbkgSobtotHobsbkgH

Fig. 6.10 Graph showing the stochastic relationship between quantities involved in estimating the
hardness ratio

Fig. 6.11 Posterior probability distribution of the hardness ratio HR when obstotH= 5 (left
panel) or obstotH= 1 (right panel). The shaded region marks the 95 % (highest posterior)
interval

To end the model description, we need a prior on the intensity of the source in
the soft band s, taken to be uniform over (approximately) the whole real positive
axis:

S ˜ dunif(0,1.0e+7)

and a simple re-arrangement of the equation defining the hardness ratio:

H<-2*S/(1-HR)-S.

To summarize, the model, graphically illustrated in Fig. 6.10, reads:

model{
obstotS ˜ dpois(S+bkgS/CS)
obsbkgS ˜ dpois(bkgS)
bkgS ˜ dunif(0,1.0e+7)
obstotH ˜ dpois(H+bkgH/CH)
obsbkgH ˜ dpois(bkgH)
bkgH ˜ dunif(0,1.0e+7)
S ˜ dunif(0,1.0e+7)
HR˜dunif(-1,1)
H<-2*S/(1-HR)-S
}.

Let us consider two cases, only differing in the number of observed counts in the
hard band, obstotH, equal to 5 and 1. In both cases we observe obstotS= 5,
obsbkgS= 10, obsbkgH= 30, and we have CH= 100 and CS= 100. The two
posterior distributions of the hardness ratio are plotted in Fig. 6.11.
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The uncertainties computed with this model are preferable to those derived as-
suming Gaussian errors on counts propagated on the hardness ratio because they do
not extend outside the range of physically acceptable values and because they can
be derived even in absence of a clean detection in one of the bands. Furthermore, as
mentioned by Park et al. (2006), errors are shorter (and as consequence do not waste
the information content of the data) and one selects more often less contaminated
sub-samples of the sources with extreme properties, e.g., hard sources.

The hardness ratio in this section is defined as the ratio of intensities in counts
units. If instead one would prefer to define it as ratios of intensities in other units
(e.g., in flux units), one needs to edit the code and introduce two conversion factors
to account for the change of units (from physical to counts). This may be important
when considering observations taken from instruments with widely different relative
sensitivities in the two considered bands, to bring the two hardness ratios on the
same scale.

A technical detail: the MCMC sampling of this model requires a few thousands
samples to achieve convergence (see Chap. 3) in the low signal to noise condition of
our examples.

6.1.5 Spectral Shape

A crude measurement of the shape of the object’s spectrum can be achieved by
measuring the object’s photons in three bands, S,M, and H and considering the two
hardness ratios:

HR1 =
M−S

H +M+S
, (6.3)

HR2 =
H −M

H +M+S
. (6.4)

Such a crude measurement of the object’s spectrum may be useful when a more
detailed investigation is precluded by the low S/N of the source: the position of a
source in the HR1−HR2 plane allows one to classify it in one of the several classes.
For example, Binder et al. (2013) propose classifying sources in: X-ray binaries,
background sources, absorbed sources, supernovae remnants, and indeterminated
hard or soft sources, according to the location in the HR1−HR2 plane. To compute
these two hardness ratios, we only need to replicate the modeling of the previous
section, which was applied to two bands, to the three bands:

obstotS ˜ dpois(S+bkgS/CS)
obsbkgS ˜ dpois(bkgS)
bkgS ˜ dunif(0,1.0e+7)
obstotH ˜ dpois(H+bkgH/CH)
obsbkgH ˜ dpois(bkgH)
bkgH ˜ dunif(0,1.0e+7)
obstotM ˜ dpois(M+bkgM/CM)
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obstotSobsbkgS obtotH obsbkgHobtotM obsbkgM

Fig. 6.12 Graph showing the stochastic relationship between quantities involved in estimating the
spectral curvature. The interesting quantities HR1 HR2 are non-stochastic (deterministic) combi-
nations of S, M, and H, and are therefore not plotted in the graph

obsbkgM ˜ dpois(bkgM)
bkgM ˜ dunif(0,1.0e+7).

We take a uniform prior for the total net counts tot=S+M+H, and a prior for
the proportions S/tot , M/tot, and H/tot such that the joint prior of HR1 HR2 is
uniform:

tot ˜ dunif(0,1.0e+7)
p[1:3]˜ddirch(alpha[1:3])
alpha[1]<-1
alpha[2]<-1
alpha[3]<-1
S <-p[1]*tot
M <-p[2]*tot
H <-p[3]*tot .

We compute in JAGS the two hardness ratios (but there is no real need of a
statistical software package, as JAGS, to compute a ratio!):

HR1 <- (M-S)/(H+M+S)
HR2 <- (H-M)/(H+M+S) .

To summarize, the fitted model, graphically illustrated in Fig. 6.12, reads:

model {
obstotS ˜ dpois(S+bkgS/CS)
obsbkgS ˜ dpois(bkgS)
bkgS ˜ dunif(0,1.0e+7)
obstotH ˜ dpois(H+bkgH/CH)
obsbkgH ˜ dpois(bkgH)
bkgH ˜ dunif(0,1.0e+7)
obstotM ˜ dpois(M+bkgM/CM)
obsbkgM ˜ dpois(bkgM)
bkgM ˜ dunif(0,1.0e+7)
tot ˜ dunif(0,1.0e+7)
p[1:3]˜ddirch(alpha[1:3])
alpha[1]<-1
alpha[2]<-1
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Table 6.2 Simulated data sets for the spectral determinations

obstotS obstotM obstotH obsbkgS obsbkgM obsbkgH CS CM CH
Source a) 50 30 7 10 50 30 10 10 10
Source b) 50 7 30 10 50 30 10 10 10
Source c) 7 30 50 10 50 30 10 10 10

Fig. 6.13 Joint 68 % and 95 % probability contours of the two hardness ratios for three sources.
The triangle includes the physical region. Note that the contours of sources a) and b) slightly
overflow in the non-physical region because of an unavoidable approximation in the graphical
plotting routines

alpha[3]<-1
S <-p[1]*tot
M <-p[2]*tot
H <-p[3]*tot
HR1 <- (M-S)/(H+M+S)
HR2 <- (H-M)/(H+M+S)
}.

Let us consider observations of three sources whose observations are listed in
Table 6.2. The joint posterior distribution of the two hardness ratios of the three
sources is plotted in Fig. 6.13. The triangle also drawn in the figure includes the
physical region (no source can have a negative flux in any of the three bands). As the
figure illustrates, there is a covariance between the two hardness ratios because four
out of five of the terms entering in the two hardness ratio definitions are common be-
tween the two ratio definitions. Note that because of an unavoidable approximation
in the graphical plotting routines (we need to estimate a density, this obliges us to
sample a finite “pixel” region, part of which may be in the physical region even for
pixels centered outside it), contours slightly overflow outside the physical region.
However, as one may imagine, there is no value in the posterior chain falling in the
non-physical region.
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Table 6.3 Data for the globular cluster mixture model, from Brodie et al. (2012)

8.237±0.740 7.604±0.535 8.612±0.300 5.500±0.410 7.638±0.786 5.648±0.922
8.234±0.309 8.038±0.288 7.914±0.314 6.108±0.365 5.356±0.653 4.979±0.646
5.503±0.629 7.720±0.615 8.117±0.598 4.268±0.688 7.708±0.337 7.559±0.577
8.512±0.379 7.677±0.451 8.701±0.521 4.890±0.394 8.079±0.198 6.970±0.768
5.868±0.349 5.021±0.561 8.090±0.459 7.153±0.557 7.597±0.511 5.930±0.291
5.820±0.313 8.750±0.632 5.560±0.487 8.831±0.381 7.023±0.388 7.084±0.572
7.066±0.402 8.556±0.442 8.029±0.556 7.227±0.567 5.153±0.610 7.922±0.364
7.363±0.358 8.663±0.362 9.334±0.505 4.664±0.507 7.452±0.891 8.738±0.760
6.340±0.905 6.907±0.588 3.343±0.566 5.221±0.650 8.162±0.445 5.022±0.324
4.060±0.419 4.842±0.488 6.054±0.342 6.273±0.347 8.065±0.343 8.244±0.402
5.339±0.577 6.282±0.272 6.964±0.441 5.608±0.399 5.193±0.474 4.695±0.635
7.254±0.360 3.316±0.611 7.336±0.477 4.444±0.541 5.694±0.402

Sources can now be classified: the probability that a source is of a given type is
given by the fraction of the samplings that satisfy the definition of the type (e.g.,
HR2 <−0.4 and HR1 <−0.4 for “supernova remnant”).

Hardness ratios are defined in this section as ratios of intensities in counts units.
Those who prefer instead to define them as ratios of intensities in other units (e.g.,
in physical units) should edit the code and introduce the three conversion factors
(one per band).

6.2 Mixtures

The purpose of this section is to introduce a model to fit multimodal distributions, in
particular distributions that can be composed as the sum of Gaussians. Many com-
plex distributions can be modelled as sums of Gaussians. While we only consider
Gaussians in this chapter, fitting mixtures of other distributions is similarly simple,
e.g., to fit mixtures of Student-t one just needs to replace Normal with Student-t,
(i.e., dnorm with dt). Similarly, although we consider two Gaussians only, our
models are written in such a way that an arbitrary number of Gaussians can be fitted
with little editing.

6.2.1 Modeling a Bimodal Distribution: The Case of Globular
Cluster Metallicity

We begin with a simple application, we are interested in modeling the bimodal
metallicity distribution of globular clusters in the nearby galaxy NGC 3115 (Brodie
et al. 2012). The authors measured the metallicity-sensitive spectroscopic index
CaT, named in our code obsval[i], and its error err[i], for 71 globular
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Fig. 6.14 Data and errors of the NGC 3115 bimodal metallicity distribution example

clusters (the data is listed in Table 6.3). The authors show, using population synthesis
models, that the CaT index is a direct measurement of metallicity [Z/H]. Therefore,
in our figures, we draw both scales, the raw one (CaT) and the derived one ([Z/H]).
The observed values and errors are shown in Fig. 6.14 (the data has been first ranked
by value). The average error is 0.5 Å. The histogram of the observed values is shown
in Fig. 6.15.

We want to determine the parameters that describe the metallicity distribution
of globular clusters in NGC 3115, namely the two Gaussian centers, cent[1] and
cent[2], the two sigmas sig[1] and sig[2], and their relative importance
(heights). We emphasize that we are interested in the more challenging distribution
of the true metallicities, not to model the distribution of observed values which is
increasingly broader as the errors increase.

As usual, observed values of metallicity are noisy. We assume, as the authors do,
Gaussian errors:

obsval[i] ˜ dnorm(val[i],pow(err[i],-2)).

As the authors, we model the distribution of the true values val as a mixture
(sum) of two Gaussians:

val[i] ˜ dnorm(cent[I[i]],pow(sig[I[i]],-2)).

val[i] is drawn from one of the Gaussians whose parameters depend on an
index I[i] that takes value 1 or 2, depending on whether the point belongs to the
first or second Gaussian. The first Gaussian is centered on cent[1] with sigma
sig[1], the second is centered on cent[2] with sigma sig[2].

We emphasize that modeling the distribution as a sum of two distributions with
the same analytic expression (for example, the sum of two Gaussians) induces an
identifiability problem: the model with swapped (1,2) indices is indistinguishable
from the original one because, thus far, there is no information in the model about
which of the two Gaussians should be called “first” and which “second.” This lack
of identifiability raises both numerical challenges (how to optimally sample the pos-
terior) and annoying issues for the researcher (e.g., it becomes harder to know if the
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Fig. 6.15 Fitted distribution, in the true data space (top) and observed data space (bottom) of the
NGC 3115 bimodal metallicity distribution example. The blue line indicates the mean model, the
shading marks the 68 % error of the model. The histogram shows the distribution of the observed
values

chain has converged). The problem may be fixed in several ways, in this example we
assign “second” to the component with the larger center, i.e., we ask that the center
of the second distribution be larger than the center of the first:

cent[1] ˜ dunif(4,10)
cent[2] ˜ dunif(cent[1],10).

As indicated, we take uniform priors for the centers (their location is quite obvi-
ous for the current data and therefore we do not need to bother ourselves anymore
with the center’s prior choice). We take 4 as lower value for the center of the first
component for numerical reasons: this helps the chain converge in a few iterations.
We have already emphasized in Chap. 3 the importance of inspecting trace plots,
when dealing with mixtures this is even more important.

We take uniform distributions over a large enough range that certainly includes
the true value for the two sigmas:

sig[1] ˜ dunif(0.,10)
sig[2] ˜ dunif(0.,10).

We also assume a priori that I, the variable that indicates which Gaussian the
point belongs to, is equal to 1 or 2 with the same probability. The simplest imple-
mentation of this idea is to use the distribution dcat, which returns the value 1 or
2 with probabilities set by its argument p[]:
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sig[1]sig[2]cent[1]cent[2]p[1]

I[i] val[i]

obsval[i]

Fig. 6.16 Graph showing the stochastic relationship between quantities used for mixtures. This
figure uses variable names appropriate for the bimodal example. With minor changes, this graph is
easily generalized

I[i] ˜ dcat(p[]),

where p[1] and p[2] are the probability that the data belong to the first and second
components. These are also the amplitudes of the two Gaussians, a large p[1]
indicates that most of the points belong to the first population.

We take a uniform priors for the amplitudes p[1] and p[2]:

p[1] ˜ dunif(0,1)
p[2] <-1-p[1].

The whole model, illustrated in Fig. 6.16, reads:

model {
for (i in 1:length(obsval)){
obsval[i] ˜ dnorm(val[i],pow(err[i],-2))
val[i] ˜ dnorm(cent[I[i]],pow(sig[I[i]],-2))
I[i] ˜ dcat(p[])
}
sig[1] ˜ dunif(0,10)
sig[2] ˜ dunif(0,10)
cent[1] ˜ dunif(4,10)
cent[2] ˜ dunif(cent[1],10)
p[1] ˜ dunif(0,1)
p[2] <-1-p[1]
}.

Figure 6.15 shows the fitted distribution, in the true data space (top) and observed
data space (bottom). The latter has been obtained, for simplicity, by convolving
the true model by the mean error (0.5), in practice adding in quadrature 0.5 to the
fitted sigmas. This approximation is not necessary, and in Sect. 9.2 we will describe
(with less efforts than writing this sentence!) how to generate simulated data to be
used to plot the predicted distribution. The histogram in the bottom panel shows the
distribution of the observed values.

Figure 6.17 shows the posterior marginals (histograms) and the adopted priors
(dashed lines). In each case the data (likelihood) dominates the posterior because
the prior is quite flat in the range where the posterior is non-null. Two comments
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Fig. 6.17 Posterior (solid lines) and prior (dashed lines) distributions for the parameters of the
NGC 3115 bimodal metallicity distribution example. 95 % intervals are shaded

are in order. First, panel c plots the posterior probability distribution of p[1]. Its
value is ≈ 0.5, indicating that there are two Gaussians with similar amplitude, i.e.,
that approximately 50% of the points belong to the first Gaussian. Second, the pos-
terior distribution of sig[2] (see panel e) allows small values, i.e., the second
component may have a small spread. This situation occurs because the data scatter
marginally more than their error (hence large sig[2] are excluded) but the data
uncertainty is comparable to the width of the Gaussian sig[2], and hence insuffi-
cient to resolve the variance components.

Because we have modeled, probabilistically, the membership of each globular
cluster to one of the two Gaussians, we have for each globular cluster the probability
that it belongs to the first component. This number can be obtained by counting the
number of the times the value 1 occurs in the posterior chain of the ith datum I[i].
As expected, the probability depends on both the data value (extreme values are
usually taken at the extremes of the Z/H scale) and its error (points with large error
have less clear membership and thus usually avoids probabilities close to 0 or 1).
For example, the 45th point has a high metallicity values (Z/H ∼ 0), I[45] is 2
most (90 %) of the time. The 51th point, with a very low values (Z/H ∼ −1.5),
has I[51] equal to 1 almost always (99.9% of the time). The 50th point, near the
middle of the distribution (Z/H ∼−0.6), has I[50] equal to 1 50 % of the time.

Figure 6.18 shows the joint probability distribution. Most parameters show co-
variance, because when a parameter takes a lower-than-average value, the other pa-
rameters are adjusted to fit the data. For example, when cent[1] is higher, the
width sig[1] scales to fit the data. In general, the data set the amplitude of the co-
variance between parameters, with the more constraining data producing parameter
with lower covariance.
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Fig. 6.18 Joint 68 % and 95 % probability contours for the metallicity example. Contours are fully
enclosed in the range of physically acceptable values. In particular, they do not cross the sig[2]=
0 value

We emphasize that if this model is applied to other data sets, it is necessary,
as usual, to pay attention to the prior. In particular, care should be exercised when
specifying the minimal value adopted for the two sigma priors for two reasons: first,
these sigmas are raised to the power of −2 (and very low values may cause nu-
merical troubles), and second, a possible subtle difference may be present between
the model being fitted and the model believed to be fitted: a model with one of the
two sigmas going to zero is modeling a distribution with a Dirac-delta function fit-
ting one point plus a Gaussian fitting all other points. Unless this is the aim of the
researcher’s modeling, this occurrence is not welcome, and thus should be checked
(inspecting the trace plots is useful in this respect). If this occurs and is not welcome
by the researchers, it can be fixed by restricting the sigma prior to strictly positive
values.

Finally, in the case where one may want more flexibility in assigning a prior to
p[], one may adopt the (somewhat involved) construct:

I[i] ˜ dcat(p[])
p[1:2] ˜ ddirch(alpha[1:2])
alpha[1] <-1
alpha[2] <-1
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Fig. 6.19 Posterior probability distribution of the parameter H0 (bottom panel) for the data set
shown in the top panel. The bottom panel also reports the strawman average and uncertainty,
depicted as a Gaussian

and tune the alpha[] values to get the prior one is looking for. The dirichet dis-
tribution ddirch[] returns values, in the 0 to 1 range, distributed as power-laws
with slopes given by the distribution’s arguments minus 1.

6.2.2 Average of Incompatible Measurements

As soon as one has a few measurements of some quantity of scientific interest, it
may occur that the spread of the observed values seems too wide compared to the
data errors. Or, at the very least, there is one suspicious point, i.e., a point that seems
too different from the other ones to be correct (known as an outlier).

Consider the following example from Press (1997). One has a number of esti-
mates of a quantity, called H0, and they vary in the range 50 to 100 km/s with errors
of the order of 1 km/s. How does one average1 these incompatible measurements?

One possibility is to misuse the usual formula for averaging Gaussian quantities.
The resulting Gaussian is depicted in the bottom panel of Fig. 6.19 for the (fake)
data listed in Table 6.4: the Gaussian’s sigma (i.e., the returned error on the average)
is manifestly too small given the wide dispersion of the data, and the Gaussian’s

1 If this example sounds familiar to you, then you are an experienced astronomer. If this sounds
unfamiliar, for decades astronomers discussed how to reconcile incompatible values of the Hubble
constant.
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Table 6.4 Simulated data sets for the two H0 determinations

Left panel: 51±1.0 52±1.0 53±1.0 55±1.0 59±1.5 95±1.5
Right panel: 50±2.0 52±2.5 55±1.5 90±2.5 91±1.5 95±3.0

location is suspect because it falls in the region where no data are observed. To
a statistician, the oddity of this result comes as no surprise: the adopted formula
assumes some regularity conditions manifestly not satisfied: the data are scattered
more than the error. The model clearly does not fit the data.

Instead, let us perform a Bayesian analysis. Because the model does not fit the
data, we need to change something about it. Either there is an unspecified systematic
effect between the measurements of the various experiments, or researchers have
an incurable optimism about the constraint given by their data. In this simplified
analysis, we may suppose that either the measurements have correctly measured
errors (coded with I[i]=1), or optimistically estimated (coded with I[i]=2) by
some amount up to a factor of 50, and, of course, we do not know which experiment
quotes correct or underestimated errors.

The model, very similar to the one in the previous section, reads:

model {
for (i in 1:length(obsH0)){
obsH0[i] ˜ dnorm(H0,pow(corr.err[i],-2))
I[i] ˜ dcat(p[])
corr.err[i] <- obserr[i]*phi[I[i]]
}
H0 ˜ dunif(30,200)
# First Group errors are right
phi[1] <- 1
# Second Group errors are optimistically estimated
# by a common factor phi[2]
phi[2] ˜ dunif(1,50)
p[1]˜dunif(0,1)
p[2]<-1-p[1]
}.

The membership to the two groups of experiments (with correct or optimistic
errors) is updated via the observed values of H0, that constrain both the value of H0
and err.tot, which in turn is the quoted error obserr multiplied by the error
correction factor phi[i].

Figure 6.19 shows the result of the analysis for two hypothetical (simulated) data
sets, detailed in Table 6.4. In the left panel an outlier, at H0= 90 km/s, is quite
obvious and the analysis clearly identify it as such (p(I= 2)∼ 1). A second point,
at H0= 60 km/s, has likely an underestimated error (p(I = 2) ∼ 1), although it is
not straightforward to identify it as such by visual inspection of the data. These two
points drive the strawman estimate away from all points (all points disagree with the
strawman average at 4 sigma or more). These could, in principle, be identified by
some methods detecting outliers, and removed from the average. But what should
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Fig. 6.20 Graph showing the stochastic relationship between quantities used for source intensity
with over-Poisson background fluctuations determination

be done with the third point, the one with about 50 % probability to have the right
error, and 50 % to have an underestimated error? In the Bayesian approach the right
thing is done since the start of the analysis, each datum contributes to the posterior
of H0 with a weight which is larger when the error is smaller and the probability
that the error is correct is large.

The right panel of Fig. 6.19 shows a case more typical of the historical determi-
nation of H0, two sets of points clustering at two different values. In such a case,
the probability distribution of H0 is bimodal, as the logic asks, fairly different from
the (forced Gaussian) strawman average (commonly used for a number of years)
centered on values not represented by the data in this example. None of the data is
discarded in the H0 determination (i.e., all the data are used and nothing is wasted),
and outlier-detecting methods would have trouble deciding which points should be
removed in this case.

6.3 Advanced Analysis2

6.3.1 Source Intensity with Over-Poisson Background Fluctuations

The X-ray background shows a non-zero variance: by performing repeated mea-
surements of the background’s value in different directions, values scatter more
than Poisson fluctuations allow. On the arcmin angular scales, Andreon and Moretti
(2011) measure intrinsic fluctuations of 20 %. These fluctuations limit the maximal
precision with which a source flux may be measured because the background will
never be known better than with 20 % error. We now account for these fluctuations
and determine the probability distribution of the X-ray cluster’s luminosity LX , fol-
lowing Andreon and Moretti (2011). The model, illustrated in the graph in Fig. 6.20,
is very similar to the one used in measuring the source intensity in the presence of

2 This section can be skipped the first time through.
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Table 6.5 Data for the source intensity with over-Poisson background fluctuations

Id obstot obsbkg nbox C
2 35 269 22 41.49
6 156 325 52 41.77
9 415 3827 10 39.67

a background (Sect. 6.1.2), accounting for the Poisson nature of counts, uncertainty
on the mean value of the background, and the existence of boundaries in the data
and parameter space. However, it also accounts for over-Poisson background fluc-
tuations. Let us recap: because of errors, observed and true values are not identical.
We call nclus[i] and nbkg[i] the true cluster and the true background counts
in the studied solid angles. We measured the number of photons in both clusters and
background regions, obstot[i] and obsbkg[i], respectively, for each cluster
that compose the sample. The background’s solid angle is nbox[i] times larger
than the cluster’s solid angle. We assume a Poisson likelihood for both the cluster
and background and that all measurements are conditionally independent given all
necessary parameters:

obstot[i] ˜ dpois(nclus[i]+nbkgind[i]/nbox[i])
obsbkg[i] ˜ dpois(nbkg[i]).

nbkgind[i] has 20 % fluctuations around the global background value:

nbkgind[i] ˜ dlnorm(log(nbkg[i]),pow(0.2,-2)) ,

where dlnorm stands for the lognormal distribution.
We assume uniform priors on cluster and background counts, that assign zero

probability to non-physical values:

nbkg[i] ˜ dunif(1,1.0E+7)
nclus[i] ˜ dunif(0,1.0E+7).

The model returns the X-ray luminosity in counts units, that can be converted to
the usual astronomical units (erg s−1). To a non-astronomer, it is enough to know
that we convert numbers into the standard astronomical units by taking the (dec-
imal) log, and adding a suitable computed constant C[i] (that accounts for the
exposure map, this assumes a thermal spectrum of a given temperature, metallicity,
and redshift and accounts for the Galactic absorption):

lgLx[i] <- log(nclus[i])/2.30258 +C[i] ,

where the 2.30258 coefficient is needed to convert Neperian logs into decimal logs.
The latter operation does not need to be done inside JAGS.

Therefore, the full model reads:

model {
for (i in 1:length(obstot)) {
obstot[i] ˜ dpois(nclus[i]+nbkgind[i]/nbox[i])
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Fig. 6.21 LX probability distribution for three sources. The posterior is marked with a solid line,
and the prior is marked with a dashed-blue line. The 95 % probability interval is shaded. Note the
non-Gaussian shape (e.g., asymmetry) of the faintest source (#9). Numbers indicate the object ID

nbkgind[i] ˜ dlnorm(log(nbkg[i]),pow(0.2,-2))
obsbkg[i] ˜ dpois(nbkg[i])
nbkg[i] ˜ dunif(1,1.0E+7)
nclus[i] ˜ dunif(0,1.0E+7)
# optional, JAGS is not needed to do it
lgLx[i] <- log(nclus[i])/2.30258 +C[i]
}
}.

The data for three sources, taken from Andreon and Moretti (2011), are listed in
Table 6.5.

Figure 6.21 shows the (posterior) probability distribution of LX for three clusters.
Sharp distributions indicate precisely determined LX , such as for cluster #6. Sources
with noisier determinations, such as cluster #9, and to a lesser extent cluster #2,
have asymmetric posterior probability distributions. For cluster #9, the data excludes
bright LX values, whereas at low intensities, the prior on the object flux dominates.

6.3.2 The Cosmological Mass Fraction Derived from the Cluster’s
Baryon Fraction

If clusters of galaxies are representative samples of the Universe, then the baryon
fraction (i.e., mass in baryons over total mass) in clusters should be equal to the
baryon fraction in the Universe Ωb/Ωm (denoted here by omegab and omegam,
respectively). Clusters of galaxies offer a way to measure this combination of cos-
mological parameters. Because omegab is determined with precision of a few per-
cent, the measurement of the baryon fraction in clusters is, by large, offering a way
to determine omegam.
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Fig. 6.22 Graph showing the stochastic relationship between quantities involved in the cosmolog-
ical mass fraction derived from the cluster baryon fraction

Table 6.6 Data set for the cosmological mass fraction determination, from Ettori et al. (2009)

0.131±0.027 0.146±0.009 0.091±0.007 0.133±0.012 0.136±0.014 0.121±0.042
0.165±0.012 0.120±0.012 0.105±0.017 0.160±0.013 0.159±0.010

The actual path to omegam is a bit more complicated than just described, as
detailed in the graph in Fig. 6.22: the constraint on omegam is indirect as it requires
two intermediate steps, each one characterized by an intrinsic stochasticity and an
additional parameter. First, the data, taken from Ettori et al. (2009) and listed in
Table 6.6, only probe the baryon mass in gas. Clusters also host baryons in stars, and,
following the authors, we assume that the ratio of the star and gas baryon fractions
is given by

fcoldonfgas ˜ dnorm(0.18,pow(0.05,-2)) .

This assumption has been improved in Andreon (2010a), but we keep it to make
our analysis as close as possible to Ettori et al. (2009). Second, numerical simula-
tions show that clusters are slightly depleted in baryons, compared to the Universe’s
value, by a factor 0.874±0.023, i.e., that

fbcorr <- fb*corr
corr ˜dnorm(0.874,pow(0.023,-2)) .

The observed value of the gas fraction of each individual cluster, obsfgas[i],
scatters around the true value, fbclus[i], by an amount given by the error,
errfgas[i], i.e.,

obsfgas[i] ˜ dnorm(fbclus[i]*(1-fcoldonfgas),pow(errfgas[i],-2)).

Inspection of the data in Fig. 6.23, previous claims about the existence of an
intrinsic scatter (Sun et al. 2009; Andreon 2010a), and prudence, all imply that it is
sensible to allow for an intrinsic scatter, possibly being very small, in gas fraction.
We assume Gaussian scatter for simplicity
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Fig. 6.23 Values of the gas fraction observed in the 11 LEC clusters with high quality data studied
in Ettori et al. (2009)

fbclus[i] ˜ dnorm(fbcorr,pow(intr.scatt,-2)),

although we note that being the fraction bounded in the zero to one range, the scatter
cannot be, formally speaking, Gaussian because every Gaussian is (mathematically)
non-zero everywhere, i.e., also for unphysical values for a fraction (i.e., fractions
> 1 or < 0). This assumption has been improved in, e.g., Andreon (2010a), but we
keep it to make our analysis as close as possible to Ettori et al. (2009). As shortly
mentioned, independent observations allow one to put a quite stringent constraint
on the Universe baryon fraction:

fb <- omegab/omegam
omegab <-omegabh2 * pow(H0/70,-2)
omegabh2 ˜dnorm(0.0462,pow(0.0012,-2))
H0 ˜ dnorm(70.1,pow(1.3,-2)).

To conclude our model description, we need to specify the prior on omegam,
that we take to be uniform between 0 and 1, and on the intrinsic scatter, that we take
uniform between 0 and 0.1

omegam ˜ dunif(0,1)
intr.scatt ˜ dunif(0.,0.1).

To sum up, our model reads:

model {
for (i in 1:length(obsfb)) {
obsfgas[i] ˜ dnorm(fbclus[i]*(1-fcoldonfgas),pow(errfb[i],-2))
fbclus[i] ˜ dnorm(fbcorr,pow(intr.scatt,-2))
}
intr.scatt ˜ dunif(0.,0.1)
fbcorr <- fb*corr
corr ˜dnorm(0.874,pow(0.023,-2))
fcoldonfgas ˜ dnorm(0.18,pow(0.05,-2))
fb <- omegab/omegam
omegab <-omegabh2* pow(H0/70,-2)
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Fig. 6.24 Posterior probability distribution of omegam and intr.scatt. The shaded region
marks the 95 % probability interval. The horizontal dotted lines indicate the assumed priors

omegabh2 ˜dnorm(0.0462,pow(0.0012,-2))
H0 ˜ dnorm(70.1,pow(1.3,-2))
omegam ˜ dunif(0,1)
}.

Our assumptions are identical to those adopted by Ettori et al. (2009), except for
our allowance of an intrinsic scatter, and the use of omegam and intr.scatt
priors, while Ettori et al. (2009) use a χ2 approach and thus “no prior” on these
parameters. For the remaining parameters, Ettori et al. (2009) take the very same
priors adopted here.

Figure 6.24 shows the posterior distribution computed using the model above on
the 11 high quality LEC galaxy clusters in Ettori et al. (2009) listed in Table 6.6.
We found Ωm = 0.25±0.03 and a posterior distribution on the intrinsic scatter that
strongly avoids 0 (i.e., we definitively find an intrinsic scatter).

In their analysis, Ettori et al. (2009) add other data, which, however, do not
constrain Ωm, and obtain for the very same sample 0.26 ± 0.015. The authors’
apparently more precise Ωm determination is entirely a result of a simplified sta-
tistical analysis (errors are just summed in quadrature) and having assumed no
intrinsic scatter. In fact, under this (manifestly incorrect) assumption, we found
Ωm = 0.25±0.02.

We emphasize that the mean intrinsic scatter, 0.03, is larger, for 10 out of 11
clusters, than the measurement error, and this is the limiting factor in the precision
of gas fraction measurements, not the measurement error.

6.3.3 Light Concentration in the Presence of a Background

Let us suppose one needs to measure how concentrated the light of a source is from
measurements obstot1[i] and obstot2[i] performed in two apertures (the
larger having a 5 times larger radius), of a set of N sources, in the presence of
a background. The background rate has no reason to be the same from source to
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Fig. 6.25 Graph showing the stochastic relationship between quantities involved in the light con-
centration in the presence of a background determination

source, for example because the considered solid changes (from source to source),
but it is the same inside the two source apertures. The model, quite similar to the
determination of the source intensity in the presence of over-Poisson background
fluctuations (Sect. 6.3.1), is depicted in the graph in Fig. 6.25, and given by:

model {
for (i in 1:length(obstot1)){
# aperture 1 (small)
obstot1[i] ˜ dpois(nclus1[i]+nbkgind[i]/nbox[i]/25)
# aperture 2 (large minus small)
obstot2[i] ˜ dpois(nclus2[i]+nbkgind[i]/nbox[i]*24/25)
nbkgind[i] ˜ dlnorm(log(nbkg[i]),1/0.2/0.2)
obsbkg[i] ˜ dpois(nbkg[i])
nbkg[i]˜dunif(0,1e+7)
nclus1[i]˜dunif(nclus2[i]/24,1e+7)
nclus2[i]˜dunif(0,1e+7) # taken indep for the time being
}
}.

Note that we assumed that sources have higher brightness in the central aper-
ture by specifying the prior on nclus1[i] to have a lower boundary given by
nclus2[i]/24. This requirement is almost always satisfied for astronomical
sources.

Light concentration is defined as the ratio of the true flux in the smaller aperture,
nclus1[i], over the true flux in the larger aperture nclus2[i]. Because of the
adopted prior, no log10-concentration can be smaller than −1.38.

Data for three sources, taken from Andreon et al. (in prep), are listed in Table 6.7.
Figure 6.26 shows the (posterior) probability distribution of the log10-concentration
for the three sources. Source # 20 has a well-determined concentration, whereas the
data only offer an upper limit value for source # 35. Source # 23 has a determination
of the concentration of quality intermediate between the two.
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Table 6.7 Data for the light concentration determination

Id obstot1 obstot2 obsbkg nbox
20 125 442 181 10
23 4 97 539 58
35 4 140 2438 58

Fig. 6.26 Probability distribution of the three sources (log) concentrations. 95 % intervals are
shaded

6.3.4 A Complex Background Modeling for Geo-Neutrinos

In this section we illustrate the flexibility of Bayesian modeling by re-analyzing
the detection of geo-neutrinos by the Borexino collaboration (BOREXINO Collab-
oration et al. 2010), but with a different spirit: we are interested in illustrating the
simplicity of a non-approximate statistical analysis, these authors are interested in-
stead to quickly reach the finish line: obtaining physics results. To further emphasize
the different spirit, the data used in this example are those in the first version of their
paper, slightly different from the data used in the published version of their paper.
Mainly, the overall problem addressed in BOREXINO Collaboration et al. (2010) is
the usual signal+background problem discussed many times in this chapter.

6.3.4.1 An Initial Modeling of the Background

After an initial cleaning of the data, applied to enhance the signal and to decrease the
background, the authors detected some events (21 events, for the sake of precision),
some of which are background (not anti-neutrinos). Information on the background
rate is partially available in the paper: the authors list 7 different sources of back-
ground with rates given in the form x±y plus 5 more sources with 90 % upper limits
to their rates, as detailed in Table 6.8, taken from their paper.

In their analysis, the authors ignore upper limits, sum the 7 point estimates (x’s) to
obtain the total background rate of 0.15, and sum in quadrature the error estimates
(y’s) to get the uncertainty on the total background rate, 0.02 (see last line of the
Table 6.8). The result is depicted in Fig. 6.27 as the solid red line.
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Table 6.8 Estimated backgrounds for the ν̄e’s of the Borexino experiment

Adopted symbol Source Background rate
bkg.lihe 9Li–8He 0.03±0.02
bkg.fastn Fast n’s (μ’s in WT) <0.01
bkg.fastn2 Fast n’s (μ’s in rock) <0.04
bkg.untagmu Untagged muons 0.011±0.001
bkg.acccoin Accidental coincidences 0.080±0.001
bkg.timcor Time corr. background <0.026
bkg.fot (γ ,n) <0.003
bkg.spontfi Spontaneous fission in PMTs 0.0030±0.0003
bkg.scin (α ,n) in scintillator 0.021±0.002
bkg.buff (α ,n) in the buffer <0.061

Total 0.15±0.02

The table is taken from BOREXINO Collaboration et al. (2010),
except for the first column which is added by us

Fig. 6.27 Background rate probability distribution for the Borexino experiment, ignoring some
background terms. The histogram accounts for the non-negative nature of the considered rates, the
curve indicates the Borexino approximation. The shading indicates the 68 % interval

Let us start by checking the approximation involved in the adopted procedure.
Ignoring (for a moment), as they do, background sources with upper limits, and
considering, as they do, the other 7 sources of background to have Gaussian distri-
butions, centered in x with standard deviation y, their background model reads:

bkg.lihe ˜ dnorm(0.03,pow(0.02,-2)) T(0,)
bkg.untagmu ˜ dnorm(0.011,pow(0.001,-2)) T(0,)
bkg.acccoin ˜ dnorm(0.080,pow(0.001,-2)) T(0,)
bkg.spontfi ˜ dnorm(0.003,pow(0.0003,-2)) T(0,)
bkg.scin ˜ dnorm(0.021,pow(0.002,2)) T(0,)
bkg <- bkg.lihe +bkg.untagmu +bkg.acccoin +bkg.spontfi

+bkg.scin ,

where we took the x and y numbers from their paper and we add the positive
constraint, T(0,), because negative values for the background are not possible
physically.
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Fig. 6.28 Background rate probability distribution for the Borexino experiment accounting for
all background terms. The histogram accounts for the non-negative nature of the rate, the curve
indicates the Borexino approximation. The shading indicates the 68 % interval

Figure 6.27 shows the distribution of bkg (histogram) and the authors’ approx-
imation (red curve). The histogram is slightly asymmetric. The asymmetry origi-
nated from the fact that each individual background cannot be negative and some
backgrounds have severely truncated distributions, for example bkg.lihe. For the
latter source of background events, the unphysical (negative) background rate is just
1.5 σ away from the most likely background rate. Our computation does account for
this, the authors’ analysis does not, and this explains the small difference between
our (histogram) and their (solid curve) results visible in Fig. 6.27.

Let us now do a step further and account for the five sources with upper limits
neglected by BOREXINO Collaboration et al. (2010). We adopt an exponential dis-
tribution for the five sources such that the 90 % upper limit corresponds to the value
quoted in the paper. The choice of an exponential is motivated by the lack of any
information in their paper about their probability distribution and because this is a
natural choice (what is expected to be obtained for an observation with 0 observed
background events). We are not claiming that an exponential is the correct distribu-
tion to be taken, only that it is a plausible choice in the absence of any better infor-
mation. With these additional 5 sources of background, the background model reads:

model{
bkg.lihe ˜ dnorm(0.03,pow(0.02,-2)) T(0,)
bkg.fastn ˜ dexp(200)
bkg.fastn2 ˜ dexp(58)
bkg.untagmu ˜ dnorm(0.011,pow(0.001,-2)) T(0,)
bkg.acccoin ˜ dnorm(0.080,pow(0.001,-2)) T(0,)
bkg.timcor ˜ dexp(88)
bkg.fot ˜ dexp(765)
bkg.spontfi ˜ dnorm(0.003,pow(0.0003,-2)) T(0,)
bkg.scin ˜ dnorm(0.021,pow(0.002,2)) T(0,)
bkg.buff ˜ dexp(37)
bkg <- bkg.lihe+ bkg.fastn + bkg.fastn2 + bkg.untagmu

+ bkg.acccoin + bkg.timcor + bkg.fot
+bkg.spontfi + bkg.scin + bkg.buff

}.
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Figure 6.28 shows the distribution of bkg (histogram) and the authors approxi-
mation (red curve). The two distributions are centered at fairly different values, our
mean background value, 0.21, is 3 of the author’s sigma away from their derived
value of 0.15. The reason for this difference comes from the authors neglecting of
upper limits in their analysis, even when the neglected background terms are larger
than terms considered. For example, the (α ,n) reaction in the buffer has an upper
limit of 0.061 (and was neglected), but all but one of the considered background
terms have smaller rates (and were considered).

In conclusion, we expect a background rate of 0.21±0.04 in the Borexino search
of anti-neutrinos. To be precise this is the estimate for an experiment ran as long as
the background, 100 ton yr. The Borexino search has an exposure of 252.6 ton yr, so
the background will be 2.526 larger. Borexino observed 21 events (obstot= 21).
The signal to background ratio, computed as the authors do but with our estimate
of the background, is then 39 (=(21−0.21*2.526)/(0.21*2.526)). The authors quote
a larger value, 50, because of the underestimated background. As will be clear in a
moment, what we refer to as signal in this section will partially be background in
the next.

6.3.4.2 Discriminating Natural from Human-Induced Neutrinos

The Borexino experiment does not simply detect antineutrinos, but makes a step fur-
ther, it attempts to discriminate between antineutrinos coming from natural reactions
and those coming from human-induced reactions (i.e., in nuclear reactors). These
authors estimate that neutrinos from reactors account for 9.4± 0.6 plus 5.0± 0.3
events in the Borexino experiment (and in presence of neutrino oscillations). The
new background model reads:

model{
bkg.lihe ˜ dnorm(0.03,pow(0.02,-2)) T(0,)
bkg.fastn ˜ dexp(200)
bkg.fastn2 ˜ dexp(58)
bkg.untagmu ˜ dnorm(0.011,pow(0.001,-2)) T(0,)
bkg.acccoin ˜ dnorm(0.080,pow(0.001,-2)) T(0,)
bkg.timcor ˜ dexp(88)
bkg.fot ˜ dexp(765)
bkg.spontfi ˜ dnorm(0.003,pow(0.0003,-2)) T(0,)
bkg.scin ˜ dnorm(0.021,pow(0.002,2)) T(0,)
bkg.buff ˜ dexp(37)
bkg <- bkg.lihe+ bkg.fastn + bkg.fastn2 + bkg.untagmu

+ bkg.acccoin + bkg.timcor + bkg.fot
+bkg.spontfi + bkg.scin + bkg.buff

bkg.react1 ˜ dnorm(5.0, pow(0.3, -2))
bkg.react2 ˜ dnorm(9.4, pow(0.6, -2))
bkg.tot <- 2.526 * bkg + bkg.react1 + bkg.react2
}.
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Fig. 6.29 Background rate probability distribution for the Borexino experiment, also included in
the background are anti-neutrinos from nuclear reactors. The shading indicates the 68 % interval

Figure 6.29 shows the updated distribution of bkg: it is, unsurprisingly, (almost)
a Gaussian centered on 14.9 and with σ = 0.68, because the last two background
terms, assumed to be Gaussian, as the authors assumed, are one order of magnitude
larger than the sum of all the other background terms and thus dominate the back-
ground.

We emphasize that the distribution above concerns bkg, i.e., the true background
rate; it is a measure of how well we known the true background, not a statement on
the distribution of observed values of the background. The latter will have the usual
Poisson fluctuations, and thus their probability distribution will have at least a width
of 4 counts (vs σ = 0.68 for the uncertainty of the true rate).

The Borexino experiment detected 21 events. We can finally compute the poste-
rior probability of the amplitude of the geo-antineutrinos signal. For this aim, we just
need to add to the model above the observation obstot= 21, the signal likelihood,
taken to be Poisson, and the prior, taken to be uniform, i.e.,

obsbkg ˜ dpois(bkg.tot)
obstot ˜ dpois(s + bkg.tot)
s ˜ dunif(0,100).

To sum up, the whole model reads:

model{
obsbkg ˜ dpois(bkg.tot)
obstot ˜ dpois(s + bkg.tot)
s ˜ dunif(0,100)
bkg.lihe ˜ dnorm(0.03,pow(0.02,-2)) T(0,)
bkg.fastn ˜ dexp(200)
bkg.fastn2 ˜ dexp(58)
bkg.untagmu ˜ dnorm(0.011,pow(0.001,-2)) T(0,)
bkg.acccoin ˜ dnorm(0.080,pow(0.001,-2)) T(0,)
bkg.timcor ˜ dexp(88)
bkg.fot ˜ dexp(765)
bkg.spontfi ˜ dnorm(0.003,pow(0.0003,-2)) T(0,)
bkg.scin ˜ dnorm(0.021,pow(0.002,2)) T(0,)
bkg.buff ˜ dexp(37)
bkg <- bkg.lihe+ bkg.fastn + bkg.fastn2 + bkg.untagmu
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Fig. 6.30 Probability distribution of the number of geo-neutrinos of the Borexino experiment.
Events of all light yield are considered. The shading indicates the 68 % interval

+ bkg.acccoin + bkg.timcor + bkg.fot +bkg.spontfi
+ bkg.scin + bkg.buff

bkg.react1 ˜ dnorm(5.0, pow(0.3, -2))
bkg.react2 ˜ dnorm(9.4, pow(0.6, -2))
bkg.tot <- 2.526 * bkg + bkg.react1 + bkg.react2
}.

Figure 6.30 shows the posterior distribution of the intensity of geo-antineutrinos:
it has a mean of 7.5 but a large dispersion, 4.3, or quoting 68% (highest posterior)
intervals: [3.1, 10.7] (often quoted in articles as 7.6+3.1

−4.5). Figure 6.30 shows that a
zero value for the signal is only half as likely as the most likely values, i.e., that it is
not unlikely given the available data, confirming that geo-neutrinos are not detected
with certainty using these data.

6.3.4.3 Improving Detection of Geo-Neutrinos

To improve the (so far unsuccessful) detection of geo-neutrinos, the authors applied
stronger data cuts. Most of the neutrinos coming from reactors produce a light yield3

larger than 1300 p.e. Therefore, the authors consider only the events (data) with
Qprompt < 1300 p.e. Under these new conditions, they observed 15 events when
5.0±0.3 are expected from reactors and 0.31±0.05 from background events.

The modeling of the (new) background is

bkg.react ˜ dnorm(5.0, pow(0.3,-2))
bkg ˜ dnorm(0.31, pow(0.05,-2))
bkg.tot <- bkg + bkg.react
obsbkg ˜ dpois(bkg.tot).

3 This is one of the many data features useful for discriminating interesting events from background
events.
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Fig. 6.31 Probability distribution of the number of geo-neutrinos of the Borexino experiment.
Events with light yield < 1,300 p.e. are considered. The shading indicates the 68 % probability
interval

As for the observation of 21 neutrinos, we can compute the posterior probability
of the amplitude of the geo-antineutrinos signal by just adding, to the model above,
the observation obstot= 15, with the likelihood, taken to be Poisson, and the prior
taken to be uniform, i.e., adding

obstot ˜ dpois(s + bkg.tot)
s ˜ dunif(0,100).

To sum up the model reads:

model{
obstot ˜ dpois(s + bkg.tot)
s ˜ dunif(0,100)
bkg.react ˜ dnorm(5.0, pow(0.3,-2))
bkg ˜ dnorm(0.31, pow(0.05,-2))
bkg.tot <- bkg + bkg.react
obsbkg ˜ dpois(bkg.tot)
}.

Figure 6.31 shows the posterior distribution of the incoming intensity of geo-
antineutrinos: we found 10.6+3.3

−4.6 (mean and 68 % highest posterior intervals). The
authors find a similar result, 9.9+4.1

−3.4, using a different analysis that makes use of
data not tabulated in their article, and thus not usable by us. As it is fairly obvious
in Fig. 6.31, the probability that the incoming flux of geo-neutrinos is zero is very
small.

6.3.4.4 Concluding Remarks

This example shows the simplicity of accounting for a complex statistical model,
i.e., how one may reach the scientific goal (determine the background rate, the prob-
ability of having detected geo-neutrino, etc.) without needing to use approximations,
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such as Gaussian distributions for positively defined quantities and neglecting up-
per limits. Some of these approximations have an important impact on some of the
measured quantities.

6.3.5 Upper Limits from Counting Experiments

In this section, we will illustrate how to compute upper limits by re-analyzing some
WIMP (Weakly Interacting Massive Particles) experiments. In such re-analysis, we
put ourself in the authors’ place at the time they published their work, making the
same assumptions as they do (even if later papers revisited the original analysis).

At the time of this writing, we know that about 85 % of the Universe’s matter is
dark. We know what it is not (it is not-baryonic, non-luminous, and non-relativistic),
but we do not know what it is. Amongst the many proposed Dark Matter candidates,
Weakly Interacting Massive Particles (WIMP) occupy a special place, as they arise
naturally from well-motivated extensions of the standard model of particle physics.
Experimental searches (e.g., Ahmed et al. 2009) have not neatly detected WIMPs,
but only reported upper limits on how much it interacts with ordinary matter (tech-
nically speaking, most experiments measured the WIMP-nucleon elastic-scattering
spin-independent cross-section). In practice, WIMP experiments consist of apply-
ing cuts that select events compatible with WIMP and exclude as much as possible
events compatible with interactions with known particles.

As it is often the case, there are other sources that interact with ordinary matter,
i.e., a background, that we need to account for. Experiments have been built in a
way that the background is usually expected to produce a few events at most, but the
background rate is poorly known, basically because one cannot run a measurement
of the background alone, i.e., with the WIMP signal switched off.

6.3.5.1 Zero Observed Events

Let us start by considering experiments that reported zero observed events
(obstot= 0). Because information concerning the background rate is, apart from
the large emphasis on its importance, often coarsely reported because the difficulty
of such a measurement, we now proceed to understand the importance of a pre-
cise characterization of the background rate when obstot= 0. Very little, indeed:
when obstot= 0 the 90% upper limit to the true number of WIMP events is 2.3
independent of the true background value, at least for background values between
0 and 10 (these values amply cover the plausible number of background events in
real experiments). This result is obtained with the following model, that is the one
introduced in Sect. 6.1.2, and simplified for the current case:

model{
obstot ˜ dpois(s+bkg)
s ˜ dunif(0,10)
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Fig. 6.32 Posterior probability of the cross-section for the XENON-100 experiment. The arrow
indicates the 90 % upper limit

bkg <-0
# bkg <-10
}

and by comparing the 90 % upper limit on s derived for different bkg values. The
problem is simple enough to have an analytic solution, which we leave for the reader
as an exercise.

The independence of the 90 % upper limit on s with the true value of the back-
ground gives a (partial) justification of the procedure frequently used in the WIMP
domain to ignore the information on the background value for deriving the upper
limit. Of course, when the observed number of events is non-zero, the above justifi-
cation does not hold.

Let us illustrate the case in detail for the XENON100 experiment (Aprile et al.
2010). They observed zero events in an experiment with a low background. Given
the irrelevance of the background rate for deriving a 90 % upper limit for s in such
conditions, we assume a uniform distribution for bkg,

bkg ˜ dunif(0,10)

emphasizing that identical values would be obtained for another background prior.
With this prior, our S+N model of Sect. 6.1.2 becomes:

model{
obstot ˜ dpois(s+bkg)
s ˜ dunif(0,10)
bkg ˜ dunif(0,10)
}

and gives p(s), the posterior distribution of the true number of WIMP events.
This can be expressed in more familiar (to physics researchers) units by multi-
plying s by the count-to-physical conversion factor for a WIMP mass of 55 GeV,
1.48×10−44 cm2. Figure 6.32 shows the posterior distribution for the WIMP cross
section for a WIMP of 55 Gev. The posterior resembles an exponentially decreasing
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Fig. 6.33 Posterior probability of the cross-section for the EDELWEISS-II experiment. The arrow
indicates the 90 % upper limit

function, implying that the cross-section is not large, but its value has not yet been
identified, but only coarsely determined. The 90 % upper limit to the true value of
number of WIMP events is 2.3, i.e., 3.4 10−44 cm2, identical to the value derived by
the authors (using a different procedure).

6.3.5.2 Non-zero Events

We now move to experiments having detected some events compatible with a
WIMP. Let us now consider the preliminary results of EDELWEISS-II (Armengaud
and et al. 2010). This experiment observed four events compatible with a WIMP,
of which “1.6 events (90 % CL) of known origin [background, NDR] are expected
for this WIMP search.” This is the only information of statistical nature given for
the background rate and, alone, it does not fully specify the prior on the background
rate: there are an uncountable set of distributions for which the 90 % upper limit
is 1.6.

We interpret the author’s statement as the true value of background event is ex-
ponentially distributed with scale equal to 1.45 because this distribution (prior) has
a 90 % upper limit equal to 1.6. The assumed exponential shape is the natural out-
come of an experiment measuring the background having recorded no event. The
background prior is therefore given by:

bkg ˜ dexp(1.45).

Assuming a uniform prior for the signal s, the full model therefore reads:

model {
obstot ˜ dpois(s+bkg)
bkg ˜ dexp(1.45)
s ˜ dunif(0,20)
}.

Fitting this model we obtain p(s), the posterior distribution of the true number
of WIMP events. It can be expressed in more familiar (to physicists) physical units
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by using the count-to-physical conversion factor of 1.5× 10−44 cm−2 for a WIMP
mass of 80 GeV. Figure 6.33 shows the posterior distribution for the WIMP (spin-
independent) cross section in both raw units (lower abscissa) and in the standard
physical units (upper abscissa). The 90 % upper limit to the true value of number
of WIMP events is 7.4 in raw units, i.e., 11.1×10−44 cm−2, to be compared to the
more stringent, but preliminary, result, 5×10−44 cm−2 derived by the authors (they
used a method that makes no use of the information on the background).

6.4 Exercises

Exercise 1

Checking numerically sampled posteriors. Kraft et al. (1991) analytically computed
the posterior interval estimates for a source of intensity s in the presence of a back-
ground bkg (all expressed in counts), similarly to what we did in Sect. 6.1.2. In
their paper, however, bkg is assumed to be perfectly known and they only consider
the case C = 1. As in Sect. 6.1.2, obstot∼ dpois(s+bkg). Adapt the code in
Sect. 6.1.2 to deal with this simplified case. Then, numerically compute some of the
90 % posterior intervals given in Table 1 of Kraft et al. (1991). Note that Kraft et al.
(1991) assume an improper prior (i.e., a prior that is flat on the interval (0,∞)) for
s and JAGS does not currently have a method for implementing this but we can
approximate this prior by using s∼ dunif(0,a) where a is large, say 1×107.

Exercise 2

Checking numerically sampled posteriors. Prosper (1985) analytically derived the
posterior distribution for a source intensity s in the presence of an unknown back-
ground bkg (both expressed in counts) similarly to what we did in Sect. 6.1.2. In his
paper, Prosper (1985) assumed, as we do, that the experiment measures obsbkg of
bkg/C where C is known. Prosper introduced the following prior,

p(s,bkg) =
1

(s∗bkg)ν ,

which gives the analytical form of the posterior:

p(s|obstot,obsbkg) =
exp(−s)∑obstot

j=0

(obstot
j

)
sobstot− j−ν Γ (obsbkg+ j−ν+1)

(1+C)obsbkg+ j−ν+1

∑obstot
j=0

(obstot
j

)
Γ (obstot− j−ν +1)Γ (obsbkg+ j−ν+1)

(1+C)obsbkg+ j−ν+1

.



6.4 Exercises 93

Suppose we observe obstot = 23 and obsbkg = 6 and assume C = 0.5. For
ν = 0 (i.e., a dunif(0,a) for a large), manipulate the code in Sect. 6.1.2 to nu-
merically sample from the posterior distribution and compare your results to the
analytical posterior.

Exercise 3

Checking numerically sampled posteriors. D’Agostini (2004) addressed the deter-
mination of a fraction in the presence of a background, similarly to what we did in
Sect. 6.1.3.4 He derived the analytical expression of the posterior in the simpler case
of perfectly knowing the mean number of background galaxies nbkg (with C= 1)
and a perfectly known expected fraction of background blue galaxies fbluebkg.
Adapt the code in Sect. 6.1.3 to deal with this case and plot the numerically com-
puted posterior for obsntot= 12, obsbluetot= 9, and compare it with the
analytically computed posteriors shown in his Fig. 6.10 for the listed nbkg (named
λb there) and fbkg (named pb there). Hint: you may find the following code useful:

model {
obsntot˜dpois(nbkg+nclus)
obsbluetot˜dbin(f,obsntot)
f <- (fbkg*nbkg+fclus*nclus)/(nbkg+nclus)
nclus˜ dunif(1,1e+7)
fclus ˜ dbeta(1,1)
}.

Exercise 4

Recycle. The model for computing the location and scale of a distribution illus-
trated in Sect. 6.1.1 can be revisited, with minor changes, to compute the luminosity
function of lenticular galaxies in the Coma cluster of galaxies (as well as the param-
eters of everything with a Gaussian distribution) whose data5 are in Michard and
Andreon (2008). Assume 0.1 mag errors for all galaxies and also allow for uncer-
tainty on the luminosity function normalization phistar. Hint: you may find the
following code useful:

model {
for (i in 1:length(obsmag)){
mag[i]˜dnorm(magcent,prec)
obsmag[i] ˜ dnorm(mag[i],pow(0.1,-2)

4 It would perhaps be more correct to say that the first author of this book adopted a Bayesian
approach after Giulio D’Agostini wrote, on his request, this paper.
5 The data can be found at http://www.brera.mi.astro.it/∼andreon/BayesianMethodsForThePhysi
calSciences/comaS0FL.dat.R.

www.brera.mi.astro.it/~andreon/BayesianMethodsForThePhysicalSciences/comaS0FL.dat.R


94 6 Multi-parameters Models

}
howmany˜dpois(phistar)
phistar˜dunif(0,100)
sigma ˜ dunif(0,3)
magcent˜dnorm(-19,1/4)
}

Exercise 5

Recycle. Modify the location and spread example (Sect. 6.1.1) to allow a Student-t
likelihood with ten degrees of freedom to increase robustness against outlier mea-
surements. Then change the Gaussian scatter into a Student-t likelihood with ten
degrees of freedom to increase robustness against contamination by non-member
galaxies.

Exercise 6

Suppose we observe obsm= 2.06,5.56,7.93,6.56,2.05 from a Gaussian distribu-
tion with mean m and variance s2. Assume for your priors m ∼ dunif(−10,10)
and s ∼ dunif(0,50). Sample and summarize the posterior distribution for m, s
and m/s.

Exercise 7

Britt et al. (2002) provide density measurements on 27 different asteroids. The den-
sities are (in g/cm3) 2.12, 2.71, 3.44, 2.76, 2.72, 0.96, 2.00, 3.26, 2.35, 1.20, 1.62,
1.30, 1.96, 2.60, 4.60, 2.67, 4.40, 1.80, 4.90, 2.39, 1.62, 1.47, 0.89, 2.52, 1.21, 0.90,
0.80. Assume that this data comes from the same Weibull distribution, i.e., dens∼
dweib(a,b). Assume the priors a∼dunif(0,50) and b∼dunif(0,50). Plot the
prior and posterior for the 0.10 and the 0.90 quantiles of the Weibull distribution. To
make things easier, the formula for the quantiles for the JAGS parameterization of
the Weibull distribution is

dp =

[
− 1
b

log(1− p)

]1/a

,

where dp is the quantile and p ∈ (0,1).
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Exercise 8

Fun with discrete probability distributions. Suppose we have observed the following
data from a binomial distribution: 4, 6, 6, 7, 10, 8, 5, 7, 8, 9, 6, 7, 8, 8, and 6. Denote
these as obsx. Then we are assuming obsx∼ dbinom(n,f). Typically we know
the value of n. But for this exercise we will instead estimate this quantity. Suppose
a priori we know that n must be greater than 0 but less than or equal to 15 and take
a discrete uniform distribution on the integers 1,2, . . . ,15 (i.e., a prior assigning
equal mass to each of the integer values just mentioned). Plot the prior and posterior
distribution of f and n. Hint: You may find the following code useful:

model{
##Likelihood
for(i in 1:length(obsx)){
obsx[i]˜dbin(f,n)
}
##Prior
f ˜ dunif(0,1)
n ˜ dcat(pi)
}

where pi is a vector giving the weights of the discrete uniform prior (pi=(1/15,
1/15,. . . ,1/15)).

Exercise 9

In a study to measure the speed of light in air, Michelson in 1882 made the fol-
lowing measurements: 850, 740, 900, 1070, 930, 850, 950, 980, 980, 880, 1000,
980, 930, 650, 760, 810, 1000, 1000, 960, and 960. The given values are offset
from +299000 km s−1. Assume that speed values, denoted as speed, follow a
gamma distribution, speed∼dgamma(a,b) and assume a∼dunif(0,1000) and
b∼ dunif(0,1000). The mode of the gamma distribution is calculated using

mode =
a−1
b

.

Plot the prior and posterior distribution for the mode and provide the median
and a 95 % probability interval for the posterior mode. Comment on the results, in
particular with respect to the accepted value of 705(+299000).
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Exercise 10

The following heat measurements (in Watts) were made on a Pu-238 fuel cell,
obsheat= 54.581,54.572,54.503,54.667,54.697,54.588,54.574, and 54.466.
Assume that these measurements were made close enough in time that we can
ignore the effects of radioactive decay. These measurements are assumed to follow
obsheat ∼ dnorm(heat,prec) where prec = pow(rho ∗heat,−2), heat
is the item’s true heat at the time the measurements were made and rho is a relative
standard deviation. Assume heat∼dnorm(54.59,1000) and rho∼dunif(0,1).
Plot the prior and posterior distribution of heat and rho.

Exercise 11

Find a recent research paper that illustrates frequentist methods for the S+N prob-
lem, preferably one that is relevant to your research so you can sculpt your own prior.
Redo the analysis but instead use Bayesian methods. Compare the results from your
Bayesian analysis to the frequentist approach. Is your choice of prior appropriate
for the problem?
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Chapter 7
Non-random Data Collection

In an ideal world, the sample we are observing is randomly selected from the
population we wish to study, and so any inference we draw about the sample ap-
plies to the population; in other words, we can ignore the way in which the data
were collected. For example, if we are owners of a coffee shop and wish to know
the opinion customers have about the new espresso, we may be tempted to ran-
domly ask customers coming to our store and record their thoughts. By sampling
easier-to-collect customers, those who are still customers after the introduction of
the new espresso, we are introducing a bias against those who left our coffee shop
because they do not appreciate the new coffee. Furthermore, if a one-out-of-many
schema is used to select customers for their opinions, frequent customers will be
over-represented in the sample, compared to the whole population of customers.

In astronomy and physics data collection is often not a random selection and
we cannot ignore the sampling scheme (think of the coffee example). Rarely are
the recorded events a random sample of the quantity (or population) being studied.
Often, the recorded events are those that are easier to observe. In most cases, in-
struments record events only in a finite range of intensities (e.g., weak signals are
missed) or energy. In some cases, instruments precisely record events in a given
range and completely miss events outside that range. In other cases, boundaries are
fuzzy and some of the events that are near the boundaries are lost. More generally,
events are missed, with varying degrees, in the whole range where the instrument
is sensitive, because no instrument is 100 % efficient. At the same time, some of
the events outside, but near the boundaries, are recorded. In other terms, selection is
probabilistic, not sharp. In some occasions, recorded events are only those that sat-
isfy some conditions on the observed value. Other times, recorded events are those
that satisfy a condition on the true value. In some cases, events are recorded over
a wide range (e.g., energy, wavelength, etc), but the researcher is only interested
on those in a narrower range and is not interested in modeling the data outside that
range. He hence applies a selection that usually needs to be accounted for. Ignoring
these selection effects usually leads to biased estimates.
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These effects have different names depending on the field: censoring, truncation
(usually by truncation one means a harder-than-censoring effect: even the number of
“hidden” data points is unknown), efficiency, contamination, sensitivity, or selection
function.

In this chapter we want to address these different cases that are all related to a
non-random data collection. We will start from the simplest non-random data col-
lection: all events below a threshold are not observed and we will move toward a
more soft (and realistic) selection: one in which the probability of inclusion in the
studied sample does not jump from zero to one abruptly, as in the first example,
but smoothly. We also consider the case of inferring the parameters that describe
two common mixtures of distributions with non-random data collection in astron-
omy: colors and velocities. We defer discussion of dealing with non-random data
collection in a regression application to Sect. 8.8.

Unless otherwise stated, in this chapter we assume that all information about
lost events/data is forever lost, including information about how many events are
missing. This is quite common in astronomy: we ignore how many events (asteroids,
planets, galaxies, clusters, AGNs, etc.) there are below the detection threshold. Yet,
we want to perform inferences in this (obliged) situation. Of course, knowing how
many events are missed makes it possible to more precisely infer the target quantity.

Before proceeding, let us emphasize that in most practical situations the non-
random data collection is similar to, but rather different from, the case assumed
in the widespread tools used in survival and reliability analysis: the latter assumes
sharp, deterministic, selection (e.g., all measurements larger or smaller than a value
are lost) when instead, as mentioned, selection is usually stochastic. Furthermore,
survival and reliability analyses typically know the number of missing records (for
example, the researchers know how many patients are used in the clinical trial),
while this is not known in astronomy and physics. Adopting these techniques would
not be applicable. To further complicate the issue, what is called truncation and cen-
soring presents differences even in languages as similar as JAGS and openBUGS.

7.1 The General Case

Suppose that in absence of data collection issues (e.g., selection effects) the likeli-
hood is p(x|θ) (e.g., the common Gaussian).

Consider a sample affected by some non-random data collection (e.g., selection
effect), mathematically characterized by the function S. S could be as simple as
a step function (zero below a threshold, and one above). In a realistic example, S
is usually a smooth function, for example an error function of some input (e.g.,
energy, flux, etc.), that we collectively call x here, i.e., S is S(det|x). It describes the
probability that the data is collected (recorded, in the sample, etc.) if the value is x.
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In the presence of selection effects, the likelihood of observing a value x is
given by the likelihood above, p(x|θ), times the data collection (selection) func-
tion S(det|x):

p(x|det,θ) =
p(x|θ)S(det|x)

Z(θ ,det)
, (7.1)

where
Z(θ ,det) =

∫
p(x′|θ)S(det|x′)dx′. (7.2)

The denominator is just the integral over the range of x and is requested because
probabilities by definition must integrate (sum) to one. Said simply, the new like-
lihood is the selection-free likelihood, modified by the selection function which is
then normalized to one so that we have the probability that describes the problem
we are modeling. Notice that this is a straightforward application of Bayes theorem
where we replace p(x) in Eq. (2.8) with S(det|x).

Reformulated in a more rigorous way, suppose we introduce a new binary vari-
able (i.e., a variable taking only two values 1 and 0) Di for observation i where
Di = 1 if i is observed and zero otherwise and Di depends only on the value of the
underlying xi. The likelihood of observing a value xobs

i , denoting other parameters
of the model collectively by θ , can then be expressed as

f (xobs
i |Di = 1,xi,θ) =

f (Di = 1|xi) f (xobs
i |xi,θ)∫

f (Di = 1|z) f (z|xi,θ)dz
(7.3)

where the integral in the denominator is across the range of xobs
i , f (xobs

i |xi,θ) is the
usual likelihood when there are no selection effects and f (Di = 1|xi) is the sample
selection function. The integral in the denominator of Eq. (7.3) gives the probability
of selection (inclusion in the sample) given the values xi and θ .

At this point, a computational problem may arise. In certain situations, for exam-
ple if the numerator in Eq. (7.1) (or Eq. 7.3) is among the available distributions in
JAGS (e.g., a truncated Gaussian), its coding in JAGS is straightforward: we only
need to write the JAGS name of that distribution and proceed as usual. In general,
when the numerator of Eq. (7.1) is not among the available distributions in JAGS,
we will need to carefully code the likelihood by writing its mathematical expression.
In such a case, great care should be practiced when implementing the correct equa-
tion (i.e., Eq. 7.1) without making mistakes (some mistakes are known in both the
physics and astronomical literature). We also need to code a way to sample from the
likelihood, and finally, we need to be able to compute the integral Z (for example,
using the Newton method). This causes a (potentially) clear and short model which
can be implemented in a few lines of code in JAGS (e.g., 5 lines long say) to grow
into a program requiring several tens of lines of code and causes the model to lose
most of its clarity, because 90 % of the code deals with the details of the technical
implementation, and not with the statistics. For clarity, in this chapter models are
presented twice: once in the short and clear form (not always understood by JAGS,
and in the latter case starting by symbolic-model) and once in the long ver-
sion (always understood by JAGS, starting by model as usual). For easier reading,
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Fig. 7.1 Simulated data (represented by the histogram) from the truncated Gaussian distribution
represented by the curve, with the fitted truncated Gaussian model (represented by the shading
about the curve). The shading indicates the 68 % interval of the truncated Gaussian model

the longer code examples and the implementation details are postponed and illus-
trated at the end of the chapter. Although following this chapter may seem difficult
(especially in later sections), we emphasize that not accounting for the selection
effects in your model through the likelihood will lead to false conclusions and gen-
eralizations.

7.2 Sharp Selection on the Value

We begin with a simple case. Consider an instrument (or a survey) that misses all
events for which some property of our population, denoted by x, is less than some
threshold, x[i]< xtresh. It is also unknown how many events are missed by
the instrument (or the survey).

Consider a Gaussian model truncated at the threshold xtresh=−1. Figure 7.1
shows simulated data consisting of roughly 300 values, x[i], represented by the
histogram. Note that we want to fit the individual data values and not the histogram
with arbitrary bins depicted in the figure. From the observed data, we want to recover
the center of the (untruncated) Gaussian. In this very first example we assume that
the x[i] are observed without error.

The truncated Gaussian is among the distributions programmed in JAGS and
therefore xcent can be estimated by the simple model:

model {
for (i in 1:length(x)) {
x[i]˜dnorm(xcent,pow(sigma.intr,-2)) T(-1,)

}
sigma.intr <- 3
xcent ˜ dunif(-10,10)
},
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where T(-1,) is the JAGS function for implementing a sharp threshold (note the T
for truncation). Conceptually, non-random data selection is not much different than
other models we have so far presented. As always, one just needs to specify a prior
and a likelihood and to let the computer compute.

Returning to Fig. 7.1, the recovered truncated Gaussian is displayed by the shad-
ing. We found xcent= 0.23±0.24, in good agreement with the value used to gen-
erate the data (xcent= 0). Alternatively, we may infer the value of sigma.intr,
with xcent known. This may be achieved by replacing

sigma.intr <- 3
xcent ˜ dunif(-10,10)

with

sigma.intr ˜ dunif(0,10)
xcent <- 0 .

We found sigma.intr= 3.15± 0.14, in agreement with the input value used
to generate the data (3).

We suggest caution when attempting to infer about more than one parameter
from truncated data such as those depicted in Fig. 7.1 because very often there are
combinations of parameter values that fit the model just as good as other combina-
tions. For our data set and for similar ones (e.g., heavily truncated ones), data can
almost equally well be fitted by the blue curve, or a model with a lower xcent and
an (appropriately) larger sigma.intr. Or said more intuitively, one cannot state
the width of the distribution by not knowing where its center is.

The simulated data in Fig. 7.1 is generated by:

x ˜ dnorm(0,pow(3,-2)),

where we discard values such that x[i]< xtresh=−1.

7.3 Sharp Selection on the Value, Mixture of Gaussians:
Measuring the Gravitational Redshift

In general relativity, the light emitted from a galaxy located well inside the poten-
tial well of a galaxy cluster is expected to be redshifted because photons must lose
energy (change their frequency) in order to escape the potential well. The amount
of energy lost is proportional to the depth of the potential well at the location where
the photon is emitted. For a typical cluster, this effect, named gravitational redshift,
is of the order of 10 km/s. The random motion of galaxies in clusters also induces
a change of frequency, named the Doppler shift, which is on average two orders of
magnitude larger than the gravitational redshift. However, the latter gives rise to a
symmetric broadening of the observed velocity distribution (because it can be pos-
itive or negative), whereas the former shifts its centroid (because it only decreases
frequencies), allowing us to disentangle the two effects and to test general relativ-
ity on a spatial scale never probed before (and not accessible elsewhere). In short,
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Fig. 7.2 Gravitational redshift fit. The solid line marks the mean fitted velocity distribution,
whereas the shaded region (barely visible) indicates the 68 % interval. Points are observed values,
with error bars set to

√
n. For display purposes only, the distributions for bins of cluster centric

distance are vertically offset

the barycenter of the velocity distribution of a cluster of galaxies’ center should
appear more red-shifted (i.e., should display a larger velocity) compared to the outer
regions.

In order to measure the shift, Wojtak et al. (2011) used relative velocities, v,
of about 120,000 galaxies lying within ±4,000 km/s and within 6 Mpc from the
barycenter of a (composite) cluster. Our forthcoming analyses incorporate the data
from Wojtak et al. (2011) (which were kindly provided by the first author1)

The sample consists of both cluster and background galaxies, the latter being
galaxies satisfying the spatial and velocity constraints mentioned above but that are
not gravitationally bound to the cluster. As remarked by the authors, close inspec-
tion of velocity histograms (Fig. 7.2) shows that the distribution of the background
is almost uniform, with a slight excess of galaxies with negative velocities (because
of observational effects). For computational simplicity, we model this background
component using a Gaussian with a large sigma (larger than 5,000 km/s), with cen-
ter, lambda[1] set at −4,000 km/s and truncated outside the [−4,000,4,000] km/s
interval. A Gaussian with such a large sigma is indistinguishable from a linearly
decreasing function in the considered range. We take a uniform prior for the back-
ground precision (one over sigma square), between 1/50,0002 (larger values ends
in indistinguishable functions) and 1/5,0002 (because we want a sigma larger than
5,000 km/s). This reads:

1 Data are available at http://www.brera.mi.astro.it/∼andreon/BayesianMethodsForThePhysical
Sciences/Wojtak.dat.R.

www.brera.mi.astro.it/~andreon/BayesianMethodsForThePhysicalSciences/Wojtak.dat.R
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lambda[1] <- -4000
tau[1] ˜ dunif(pow(50000,-2),pow(5000,-2)) .

As noted by the authors, close inspection of the velocity histogram in the range
where it is dominated by cluster galaxies (say [−2000,2000] km/s) shows that its
shape is close to a Gaussian, just a bit more peaked. Following Wojtak et al. (2011),
we model the velocity histogram with a mixture (sum) of two Gaussians having the
same centers, lambda[2]=lambda[3] and different sigmas. We take a uniform
distribution for lambda[2] in a range large enough to certainly include the true
distribution’s center, [−500,500] km/s:

lambda[2] ˜ dunif(-500,500)
lambda[3] <- lambda[2] .

For the sigmas of these two Gaussians (modeling the galaxy cluster distribution),
we take uniform priors on their squared reciprocal (for computational simplicity):

tau[2] ˜ dunif(pow(2000,-2),pow(100,-2))
tau[3] ˜ dunif(tau[2],pow(100,-2))

with the component with index 3 taken to have the smallest sigma. Of course,
these distributions are also truncated outside the [−4000,4000] km/s range. In sum-
mary, the model consists of a mixture of three Gaussians truncated outside the
[−4000,4000] km/s interval:

model {
for (i in 1:length(v)){
v[i] ˜ dnorm(lambda[I[i]],tau[I[i]]) T(-4000,4000)
I[i] ˜ dcat(p[])
}

where I[i] is the (usual for mixtures) indicator variable that tells which component
galaxy i belongs to.

Finally, the prior for the proportions (relative abundances) of the three compo-
nents is

alpha[1] <-1
alpha[2] <-1
alpha[3] <-1
p[1:3] ˜ ddirch(alpha[1:3])

to have I[i] uniformly distributed and p[1]+ p[2]+ p[3] = 1.
To summarize, the model reads:

model {
for (i in 1:length(v)){
v[i] ˜ dnorm(lambda[I[i]],tau[I[i]]) T(-4000,4000)
I[i] ˜ dcat(p[])
}
lambda[1] <- -4000
tau[1] ˜ dunif(pow(50000,-2),pow(5000,-2))
lambda[2] ˜ dunif(-500,500)
lambda[3] <- lambda[2]
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Fig. 7.3 Observed gravitational redshift (points with errors) as a function of the cluster’s centric
distance. The expectation from General Relativity is shown as solid line

tau[2] ˜ dunif(pow(2000,-2),pow(100,-2))
tau[3] ˜ dunif(tau[2],pow(100,-2))
alpha[1] <-1
alpha[2] <-1
alpha[3] <-1
p[1:3] ˜ ddirch(alpha[1:3])
} .

We fit the four datasets, one per radial range considered by the authors: 0 < R <
1.1 Mpc, 1.1 < R < 2.1 Mpc, 2.1 < R < 4.4 Mpc and 4.4 < R < 6.6 Mpc.

Figure 7.2 shows the velocity distribution of the 120000 considered galaxies and
the fitted models. The distributions are vertically shifted for display purpose.

Figure 7.3 shows the velocity shifts lambda[2] as a function of the distance
from the cluster’s center. Gravitational redshift manifests itself as a blue-shift (neg-
ative velocity) of galaxies with increasing cluster centric distances, indicating that
the deepest part of the cluster (the center) are redshifted (have a larger mean ve-
locity) than the outer regions. Again, this corresponds to what is expected from the
gravitational-redshift result from general relativity (indicated by the curve).

Figure 7.4 shows the posterior distribution of three of the model parameters for
the fit of the galaxies in the outermost radial range.

7.4 Sharp Selection on the True Value

In this section we add two grains of reality, measurements now have errors and these
errors have different sizes for different points.

We again want to determine the center, xcent, of a Gaussian distribution with
width sigma.intr after having observed 100 values obsx[i], with Gaus-
sian heteroscedastic errors err.x[i]. These 100 values are selected by x[i]>
xthresh= 3. For this example, we simulated the data from a Gaussian with pa-
rameters xcent= 0 and sigma.intr= 3. Note that with this distribution and our
threshold, our data is heavily truncated, missing about 80 % of the data (because the
data are kept in the sample only if they are above about 1 sigma.intr).
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Fig. 7.4 Posterior probability distribution for the proportion of the first and second population
(p[1] and p[2]) and for the dispersion of the second one (σ [2]) of the gravitational redshift fit
in the outermost radial range. The histograms show the posteriors, marginalized over the other
parameters. The contour plots on the off-diagonal panels refer to the 68 % and 95 % probability
levels

From the 100 obsx[i] values in the sample (shaded histogram in the top-right
panel of Fig. 7.5), we want to infer the value of xcent (far away from the sampled
range!). The top-left panel shows what is not observed: the distribution (the curve)
from which the x[i] values are drawn, the drawn x[i] values (histogram) and
the selected x[i]’s (shaded histogram). The top-right panel shows all obsx[i]
values (histogram) and those that pass the selection (shaded histogram). Only the
latter are available, and from these we want to reconstruct the blue curve in the top-
left panel. As in previous sections, we know nothing about how many observations
are missed. The main complication added to this example is that x[i] values are
never observed and we have instead observed obsx[i] with error (err[i]).

We only need to make a small modification to the model in Sect. 7.2, i.e., to
model the Gaussian measurement errors (as is often done in this book). The updated
model is:

model {
for (i in 1:length(obsx)) {
obsx[i] ˜ dnorm(x[i], pow(err[i],-2))
x[i] ˜ dnorm(xcent, pow(sigma.intr,-2)) T(3,)
}
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Fig. 7.5 Sharp truncation on the true value. Top-left panel: histogram of unobservable x and the
distribution from which they are drawn (blue curve). The shading indicates events that pass the
threshold x> 3. Top-right panel: histogram of observable obsx. The shading indicates events
that pass the threshold x> 3. Only these are available for the analysis. Bottom-left panel: input
distribution (blue curve), fitted model (blue curve), and 68 % interval of the model (yellow shading)

C <- 10
sigma.intr <- 3
xcent ˜ dunif(-10,10)
}.

Again, to handle this non-random data selection, we just need to specify, as al-
ways, the prior (a uniform) and the likelihood.

By fitting the model, we found: xcent= 0.38±0.79, in good agreement with the
value used to generate the simulated data (0). The error for xcent is large because
we are attempting to determine the location of the peak of the distribution after only
observing a tail of the distribution (the region around the peak is not observable).
The bottom-left panel of Fig. 7.5 shows the input distribution (blue curve) and the
inferred one (red curve) and its 68 % errors (shading).

The model used to generate the data reads:

model {
obsx ˜ dnorm(x,prec.err)
x ˜ dnorm(0, pow(3,-2))
prec.err ˜ dunif(0.8, 1.2)
}

and we discarded obsx[i] values for which x[i]< 3. As indicated, we allowed
the data obsx[i] to have different errors, which are drawn by selecting precisions
from a uniform distribution bounded between 0.8 and 1.2.
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Fig. 7.6 Soft selection on the true value. Top-left panel: histogram of unobservable lnL and the
distribution from which they are drawn (blue curve). The shading indicates events included in the
sample. The probability, multiplied by 100 for readability, of being included in the sample is plotted
in green. Top-right panel: histogram of observable obslnL. The shading indicates events included
in the sample. Only these are available for the analysis. Bottom-left panel: input distribution (blue
curve), fitted model (blue curve) and 68 % interval of the model (yellow shading)

7.5 Probabilistic Selection on the True Value

We are now ready to address a more complex case, we no longer have a sharp
threshold, but instead the probability of detection goes smoothly from zero to one.
In other words, some events are lost at values higher than the “threshold,” and events
are included at values lower than the “threshold.” We are addressing a soft selection
which is implemented using a selection function.

For example, suppose we want to estimate the mean (log of) X-ray luminosity of
galaxy clusters, lnLhat (of clusters of a given mass or richness, but this does not
matter here), disposing of a heavily censored sample of measurements, obslnL,
each with its own error, errlnL, and knowing (e.g., from Monte Carlo simulations)
that a cluster enters in the sample with probability given by an error function. This
same function with a different parametrization is called φ in the statistics domain.
For our example, we take an error function equal to:

p(lnL) = φ
(
lnL−3

2

)
(7.4)

depicted as the green line in the top-left panel of Fig. 7.6.
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Figure 7.6 illustrates the situation: the top-left panel shows the distribution of (log
of) X-ray luminosities (blue continuous line), from which the unobservable (true
values of) X-ray luminosities (histogram) are drawn. The probability (multiplied
by 100 for readability) that an object (cluster) is included in the sample is indi-
cated by a green line. About 480 clusters turn out to be included in the sample, and
their histogram is shaded. Note how much of the population (lnL[i] values) is
missed by the selection function, i.e., how one collects the brightest objects only. As
mentioned, we only observe noisy versions of the lnL[i] included in the sample,
obslnL[i], shaded in the top-right panel, with errors err.lnL[i]. From these,
we want to infer the location lnLhat of the Gaussian from which the lnL[i] data
are drawn.

The (symbolic) fitting model is almost identical to the previous one, except for
the fact that we have now replaced the sharp selection with the soft one, named
here phi((lnL-3)/2) and changed the name to variables to reflect their current
meaning. The model reads:

symbolic-model {
for (i in 1:length(obslnL)) {
obslnL[i] ˜ dnorm(lnL[i],pow(err.lnL[i],-2))
lnL[i] ˜ dnorm(lnLhat,pow(sigma.intr,-2)) phi((lnL-3)/2)
}
sigma.intr <- 3
lnLhat ˜ dunif(-10,10)
} ,

where we adopted a uniform prior for lnLhat. As in the previous sections, to
deal with a non-random data selection we just need to specify the prior and the
likelihood. However, unlike the previous sections, this model cannot be easily fitted
using JAGS, and its numerical implementation, described in Sect. 7.7, requires some
efforts.

We found: xcent= 0.26±0.22, in good agreement with the value used to gen-
erate the simulated data (0). The bottom-left panel of Fig. 7.5 shows the input distri-
bution (blue curve) and the inferred one (red curve) and its 68 % interval (shading).

The data are generated using:

model {
obsLnL ˜ dnorm(lnL,prec.err )
lnL ˜ dnorm(lnLhat, prec.intr)
prec.intr <- 1/9.
prec.err ˜ dunif(0.8, 1.2)
lnLhat <- 0
}

and we discarded obsLnL[i] values according to Eq. (7.4). As indicated in the
model, we allowed the data obsx[i] to have different errors by drawing precisions
from a uniform distribution bounded between 0.8 and 1.2.
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Fig. 7.7 Sharp selection on the observed value for mixtures. Top-left panel: histogram of unob-
servable col and the distributions from which they are drawn (red and green curves). The blue
curve gives the sum of the two distributions. Top-right panel: histogram of observable obscol.
The curves of the previous plot are reported. Bottom-left panel: input distribution (green curve),
fitted model (red curve) and 68 % interval (yellow shading) for the distribution of the population
of interest

7.6 Sharp Selection on the Observed Value, Mixture
of Gaussians

As mentioned in the introduction of this chapter, sometimes we are not interested
in modeling the distribution from which the data are drawn outside a given range
(because these data are corrupt, or not available, too hard to model, not interesting,
etc). Data outside the range are therefore simply ignored.

The top panel of Fig. 7.7 exemplifies the situation, for a (fictitious) quantity
named col[i] (for color). Unobservable (true) data are drawn from a mixture
(sum) of two Gaussians, centered on lambda[1]= 2 and lambda[2]= 1 and
with σ ’s equal to 1/

√
2.1 and 2. In the first author’s mind, the second population is

a nuisance (background) population, which contaminates the interesting population
(the Gaussian with the larger lambda and a narrower distribution). As mentioned,
values of obscol[i] outside the range [1.5,4] are ignored (or lost, corrupted, or
whatever) and we only deal with values inside the range. Our simulated data consist
of 240 values of obscol[i], of which about 80 % comes from the background
(but we do not have this information when fitting the model). To inject a grain of re-
ality, obscol[i] have Gaussian errors err[i] which vary from point to point.
Basically, we only have events shown in the top-right panel of Fig. 7.7 and from
those observations we want to infer, with high precision, the parameters from the
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Gaussian distribution with lambda[1]= 2 and σ = 1/
√

2.1 (of course these are
unknown).

In a mixture of two Gaussians there are five parameters that one may potentially
infer: the centers and spreads of the two Gaussians and the proportion of events
that belong to these distributions. One may infer all five of these parameters if the
data allows it, or perhaps the two parameters related to the distribution of interest
(e.g., the interesting population). In our case, we assume we know all but one of
the parameters, either from previous data or from theoretical calculations, where the
unknown parameter is the width of the Gaussian from the signal’s distribution.

To infer the width of the Gaussian’s signal, we just need to adopt previous models
to the new setting. The symbolic model (not to be run in JAGS2) reads:

symbolic-model {
for (i in 1:length(obscol)) {
obscol[i] ˜ dnorm(col[i], prec[i]) T(1.5,4)
col[i] ˜ dnorm(lambda[type[i]], prec.intr[type[i]], p)
type[i]˜dcat(p[])
}
# Prior
lambda[1] <- 2
lambda[2] <- 1
p[1] <- 0.2
p[2] <- 1 - p[1]
prec.intr[1] ˜ dunif(0.1,10)
prec.intr[2] <- 0.25
} .

The fitted model adopts a uniform prior for the precision of the population of
interest. The signal for our Gaussian is estimated to be 0.62± 0.27, in agreement
with the input value, 0.69 (= 1/

√
2.1).

To generate data distributed as a sum of Gaussians, we use the JAGS distribution
dnormmix. The model used to generate the simulated data is:

model{
obscol ˜ dnorm(col, prec)
col ˜ dnormmix(lambda, prec.intr, p)
lambda[1] <- 2
lambda[2] <- 1
p[1] <- 0.2
p[2] <- 1 - p[1]
prec.intr[1] <- 2.1
prec.intr[2] <- 0.25
err ˜ dunif(0.05,0.15)
prec <- pow(err,-2)
},

where we discard all data outside the range 1.5 <obscol< 4.

2 A special thanks goes to Martin Plummer, the JAGS author, who clarifies that the coding below
corresponds to a likelihood different from the one we are interested in. Our likelihood is given in
Sect. 7.7.4.
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7.7 Numerical Implementation of the Models

As mentioned in Sect. 7.1, the JAGS coding of the models may be quite involved
when the data collection is non-random and the numerator of Eq. (7.1) is not among
the distributions available in JAGS. In such a case, we need to code the likelihood by
writing its mathematical expression, we need to code a way to sample it, and finally
we need to compute by ourselves the integral Z (for example, using the Newton
method). In this section we go through some of the models of the chapter, starting
with how to implement the non-random data collection, first in cases addressed by
the JAGS T function, and, in later subsections, in cases not easily dealt by JAGS.

7.7.1 Sharp Selection on the Value

The JAGS model adopted in Sect. 7.2 reads:

model {
for (i in 1:length(obsx)) {
x[i]˜dnorm(xcent,pow(sigma.intr,-2)T(-1,)
sigma.intr <- 3
xcent ˜ dunif(-10,10)
} .

For now we will ignore this elegant solution to prepare ourselves for more com-
plex situations not addressed by JAGS.

In this case, Eqs. (7.1) and (7.2) require us to write the expression of a Gaussian,
and also require that the integral above xtresh=−1 is equal to 1. To sample from
a generic distribution (the Gaussian in our case) we use the zero trick (Sect. 3.2), and
to compute the integrals we write our own subroutine in JAGS (deliberately ignoring
that JAGS has a function returning this number). We implement the integration in
the simplest way, the histogram (Newton) method: we measure the height of the
function to be integrated on a grid grid.x[k]. Then we sum the products of these
heights and the grid step, step.grid.x. The model, in JAGS, reads:

data {
# grid for integral evaluation
for (k in 1:400){
# start from -1, because integration start here
grid.x[k] <- (k-21.)/20.

}
step.grid.x <-grid.x[2]-grid.x[1]
# dummy variable for zero-trick
# to sample from a distribution not available in JAGS
for (i in 1:length(obsx)) {
dummy[i] <-0

}
}
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model {
# compute the integral at denominator
for (k in 1:length(grid.x)) {
normaliz[k] <- sqrt(prec/6.28)*

exp(-prec*pow(xcent-grid.x[k],2)/2.)
}

tot.norm <- sum(normaliz[])*step.grid.x

for (i in 1:length(obsx)) {
# sampling from an unavailable distribution
dummy[i] ˜ dpois(loglike[i])
# computing the sampled distribution
numerator[i] <- sqrt(prec/6.28)*

exp(-prec*pow(xcent-obsx[i],2)/2.)
loglike[i] <- -log(numerator[i]/tot.norm)+C

}
C <- 100.
sigma.intr <- 3
prec <- pow(sigma.intr,-2)
xcent ˜ dunif(-10,10)
} .

The first for loop prepares the grid grid.x[k] needed for the integral eval-
uation, the second loop prepares the dummy values for the zero trick. Then, we
evaluate the integral of the Gaussian over [−1,∞).

The model, about four lines long in the elegant version, has grown by a factor of
8, losing much of its clarity. Yet, it is important to be able to apply such methods
when an elegant solution is not available.

7.7.2 Sharp Selection on the True Value

The model described in Sect. 7.4 reads:

model {
for (i in 1:length(obsx)) {
obsx[i] ˜ dnorm(x[i], prec.err[i])
x[i] ˜ dnorm(xcent, pow(sigma.intr,-2)) T(3,)
}
C <- 10.
sigma.intr <- 3
xcent ˜ dunif(-10,10)
} .

Again, we will ignore this elegant solution, and solve this problem using the
brute force approach. We now implement the sharp selection with the JAGS func-
tion step(x-3), which takes zero value below 3 and 1 above. Equation 7.1
is coded in JAGS by computing separately the three terms of which it is com-
posed, correcc (the function S(det|x)), tot.norm (the integral Z), and x[i]
∼ dnorm(xcent, pow(sigma.intr,-2)) (the likelihood in absence of se-
lection effects).
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data
{
# grid for integral evaluation
for (k in 1:400){
grid.x[k] <- (k-200.)/20.
correcc[k] <- step(grid.x[k]-3)

}
step.grid.x <-grid.x[2]-grid.x[1]
# dummy variable for zero-trick
# to sample from a distribution not available in JAGS
for (i in 1:length(obsx)) {
dummy[i] <-0

}
}
model {
# compute the integral at denominator
for (k in 1:length(grid.x)) {
normaliz[k] <- sqrt(prec.intr/6.28)*exp(-prec.intr*

pow(xcent-grid.x[k],2)/2.)*correcc[k]
}

tot.norm <- sum(normaliz[])*step.grid.x
for (i in 1:length(obsx)) {
obsx[i] ˜ dnorm(x[i], prec.err[i])
# the following would suffice, if no selection
x[i] ˜ dnorm(xcent, prec.intr)
# but selection is there. Adding the additional likelihood term
# sampling from an unavailable distribution
numerator[i] <- step(x[i]-3)+1e-14
loglike[i] <- -log(numerator[i]/tot.norm)+C
# computing the sampled distribution
dummy[i] ˜ dpois(loglike[i])
}
C <- 10.
sigma.intr <- 3
prec.intr <- pow(sigma.intr,-2)
xcent ˜ dunif(-10,10)

}.

The first for loop prepares the grid grid.x[k] needed for the integral evalua-
tion, and computes the data selection function. The second loop prepares the dummy
values for the zero trick (as in the previous section). Then, we evaluate the integral
of the likelihood times the data selection function over the whole real axis (approx-
imated as [−10,10]). The likelihood times data selection function is computed in
JAGS implementing the former in the symbolic way (x[i] ∼ dnorm(xcent,
prec.intr)) and the second one using the zero trick. Since the logarithm of zero
is undefined, we inelegantly add a very small number to zero. We challenge the
skilled reader to find the elegant coding that does not require such a trick.

As in the previous section, a few lines of code has become so complex that it
requires one line of comment (starting with an #) for every line of code.
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7.7.3 Probabilistic Selection on the True Value

In this section, we would like to implement working code for the model illustrated
in Sect. 7.5:

symbolic-model {
for (i in 1:length(obslnL)) {
obslnL[i] ˜ dnorm(lnL[i],pow(err.lnL[i],-2)
lnL[i] ˜ dnorm(lnLhat,pow(sigma.intr,-2)) phi((x-3)/2)
}
sigma.intr <- 3
lnLhat ˜ dunif(-10,10)
}.

The product of a normal and a φ function is not among the JAGS distributions and
it is not allowed in JAGS to write a line with a tilde and a product of a distribution
and a function. The brute force approach is therefore compelling.

The current model is almost identical to the previous one, except for the fact
that we replaced the previous sharp selection with the soft one. The latter re-
placement enters in three places: when we compute the soft selection p(lnL) (the
correct[k] line), in the integral computation, and in the numerator of the poste-
rior. For our comfort, we also changed the name of the variables. The model reads3:

data
{
# grid for integral evaluation
for (k in 1:400){
grid.x[k] <- (k-200.)/20.
correcc[k] <- phi((grid.x[k]-3)/2)
}
step.grid.x <-grid.x[2]-grid.x[1]
# dummy variable for zero-trick
# to sample from a distribution not available in JAGS
for (i in 1:length(obslnL)) {
dummy[i] <-0
}
}
model {
# compute the integral at denominator
for (k in 1:length(grid.x)) {
normaliz[k] <- sqrt(prec.intr/6.28)*exp(-prec.intr*

pow(lnLhat-grid.x[k],2 )/2.)*correcc[k]
}
tot.norm <- sum(normaliz[])*step.grid.x
for (i in 1:length(obslnL)) {
obslnL[i] ˜ dnorm(lnL[i],prec.lnL[i])
# the following would suffice, if no selection
lnL[i] ˜ dnorm(lnLhat,prec.intr)
# but selection is there. Adding the additional likelihood term
numerator[i] <- phi((lnL[i]-3)/2)

3 A special thanks goes to Merrilee Hurn, who helped us to write this model.
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# sampling from an unavailable distribution
loglike[i] <- -log(numerator[i]/tot.norm)+C
dummy[i] ˜ dpois(loglike[i])
}
C <- 10.
sigma.intr <- 3
prec.intr <- pow(sigma.intr,-2)
lnLhat ˜ dunif(-10,10)
}.

7.7.4 Sharp Selection on the Observed Value, Mixture
of Gaussians

The symbolic model (not to be run with JAGS) we now want to implement is:

symbolic-model {
for (i in 1:length(obscol)) {
obscol[i] ˜ dnorm(col[i], prec[i]) T(1.5,4)
col[i] ˜ dnorm(lambda[type[i]], prec.intr[type[i]], p)
type[i]˜dcat(p[])
}
# Prior
lambda[1] <- 2
lambda[2] <- 1
p[1] <- 0.2
p[2] <- 1 - p[1]
prec.intr[1] ˜ dunif(0.1,10)
prec.intr[2] <- 0.25
}.

To infer the width of the Gaussian signal, we just need to adopt previous models
to the new setting: here we have a sum of Gaussians instead of just one single Gaus-
sian, and therefore both the numerator and the normalization should be evaluated
for the mixture of Gaussians. To evaluate the integral inside the range we just need
to limit the grid on which the integral has to be evaluated, [1.5,4]. The model reads:

data {
# grid for integral evaluation, from 1.5 to 4
for (k in 1:125){
grid.x[k] <- (k+74.5)/50.

}
step.grid.x <-grid.x[2]-grid.x[1]
for (i in 1:length(obscol)) {
### fake data for zeros trick
zero[i] <- 0

}
}
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model {
for (i in 1:length(obscol)) {
## Observations
l1[i] <- p[1]*sqrt(prec.tot[i,1]/6.28)*exp(-prec.tot[i,1]*

pow(obscol[i]-lambda[1],2)/2.)
l2[i] <- p[2]*sqrt(prec.tot[i,2]/6.28)*exp(-prec.tot[i,2]*

pow(obscol[i]-lambda[2],2)/2.)
## integration
for (k in 1:length(grid.x)) {
n1[i,k] <- sqrt(prec.tot[i,1]/6.28)*exp(-prec.tot[i,1]*

pow(lambda[1]-grid.x[k],2)/2.)
n2[i,k] <- sqrt(prec.tot[i,2]/6.28)*exp(-prec.tot[i,2]*

pow(lambda[2]-grid.x[k],2)/2.)
}

tot.norm[i] <- sum(p[1]*n1[i,]+p[2]*n2[i,])*step.grid.x

for (j in 1:2) {
sigma[i,j] <- sqrt(1/prec.intr[j] + 1/prec[i])
prec.tot[i,j] <- pow(sigma[i,j],-2)
}

zero[i] ˜ dpois(loglike[i])
loglike[i] <- -log((l1[i]+l2[i])/tot.norm[i]) + C
}
C <- 10 ## Offset to ensure positivity of loglike[i]
## Prior
lambda[1] <- 2
lambda[2] <- 1
p[1] <- 0.2
p[2] <- 1 - p[1]
prec.intr[1] ˜ dunif(0.1,10)
prec.intr[2] <- 0.25
}.

Note that the integration should be performed per each datum at each iteration of
the chain, resulting in a slow code. The model can be written in a more compact and
efficient form (e.g., Gaussian integrals are known by JAGS), however, when written
in the current form the model is ready for implementing a soft (probabilistic) data
selection.

7.8 Final Remarks

From a conceptual point of view, accounting for a non-random data collection is
simple: one needs, as always, to write the prior and the likelihood of the model being
fitted. However, the coding in JAGS of models accounting for selection effects may
be somewhat involved when the likelihood is not among the distributions offered by
JAGS. Therefore, we strongly invite readers to be extremely cautious and attentive
to numerical-related issues. A non-exhaustive list of points to pay attention includes
the integration range (large enough?), the step (small enough?), the constant C



Reference 119

(large enough to have a positive rate, but not too large to exceed the computer’s
numerical precision?), and double checking that the written likelihood is the likeli-
hood of the model being fitted (i.e., that no mistakes have been done in writing it).

A number of deterministic or probabilistic cases have been presented, both in
the case of single distributions, or mixtures, and in presence or absence of errors.
They are quite general and easy to adapt to numerous applications, for example
the model of Sect. 7.6 is relevant to many applications in astronomy, such as in
computing the width of a contaminated sample whose data have been truncated
(e.g., velocity dispersion of a cluster of galaxies or the luminosity function of stars
in globular clusters). One more model, dealing with a regression problem affected
by non-random data collection, is described in Sect. 8.8.

Reference

R. Wojtak, S. H. Hansen, and J. Hjorth. Gravitational redshift of galaxies in clusters
as predicted by general relativity. Nature, 477:567–569, 2011.



Chapter 8
Fitting Regression Models

In this chapter we introduce regression models, i.e., how to fit (regress) one, or
more quantities, against each other through some sort of functional relationship.
For example, fitting the amount of a radioactive isotope remaining in an item with
time or the relation between interesting object features, such as velocity dispersion,
luminosity, or temperature. Before we address this topic, however, we need to clear
up some common misconceptions in astronomy and physics. Then, we show some
examples of regression fitting, starting with examples where data collection has no
influence on the conclusions. Next, we provide some rather common examples for
which one needs to account for the data-collection scheme, e.g., the data structure
introduces a bias in the fitted parameters (recall Chap. 7). We continue this chapter
by illustrating how to deal with upper and lower limits in regression problems and
how to predict the value of an unavailable quantity by exploiting the existence of a
trend with another available quantity. We conclude this chapter by presenting some
complex regressions problems.

8.1 Clearing Up Some Misconceptions1

8.1.1 Pay Attention to Selection Effects

Very often, easier-to-acquire data/objects are over-represented in samples (and
difficult-to-acquire ones are under-represented). We already devoted a whole chap-
ter to the non-random data collection (see Chap. 7). Unfortunately for the researcher,
this non-random data collection often has an important effect on the determination
of the parameters describing the trend between the quantities of interest.

Consider the data in Fig. 8.1, a case pointed out by Sandage (1972). There ap-
pears to be a trend, where the ordinate y (radio power, logLR) increases with increas-

1 Part of the material of this section has been drawn from Andreon and Hurn (2013).
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Fig. 8.1 An example of a non-random sample (from Sandage 1972). Radio power (basically, in-
trinsic luminosity) of radio sources as a function of their distance (distance modulus on the lower
axis, redshift on the top axis) for various astronomical radio sources coming from various surveys.
The tight relation is largely due to the non-random selection of the sample: points in the bottom-
right corner are too faint to be included in the sample. Astronomical interest: This plot, named the
Hubble diagram, allows one to measure the evolution of the studied population (radio sources in
this plot), and if the latter is known, a cosmological parameter, see also Fig. 8.37. Reproduced from
Sandage (1972) with permission

ing abscissa z (distance). The trend is not real, in the sense that this is a selection
effect: objects with low y (radio power) and large z (distance) do not enter in the
sample because a too smal volume has been explored. At low z (distance), the (Uni-
verse) volume is small (it goes with z3 at the first order at low z), and rare objects
(those with high y) are missing just because a too small volume has been explored.
Therefore, a correlation between quantities is there, but this is not a measure of the
properties of the objects under study, but of the way the sample has been collected.
The latter has to do (also) with the observer, it is not a property of the objects under
study. We emphasize that the problem of the selection cannot be easily fixed because
we usually know nothing about the missed objects (because they are not observed),
their abscissa, ordinate, and also how many are missed.

This is the standard case of X-ray astronomical observations which, because
of their low depth, have faint objects under-represented. An example is illustrated
in Fig. 8.2. At all temperatures T , clusters brighter-than-average are easier to de-
tect (simply because they are brighter) and therefore they are over-represented in
most samples, while those fainter-than-average are under represented. Therefore, at
a given T the mean X-ray luminosity LX of clusters in the sample is higher than the
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Fig. 8.2 A simulation (from Andreon and Hurn 2013) built around a true LX −T data set and selec-
tion function (from Pacaud et al. 2007), illustrating how the observed data may be unrepresentative
compared to the underlying scaling relation due to selection effects. The solid blue line shows the
true relationship but, due to the selection effects, most points lie above the line. Reproduced from
Andreon and Hurn (2013) with permission

average LX of the population at the same T . The selection is stochastic: it is pos-
sible to miss an object above the threshold and yet still record some objects below
the threshold. The selection is profound, we ignore what we miss (both abscissa
and ordinate) and how many objects are missed. While this effect is self-evident, its
consequences are not always fully appreciated (Andreon and Moretti 2011).

Therefore, as soon as you suspect the existence of a trend in your data, please
check if the possible trend may be due to some selection effects. Ask yourself why
a datum is in your figure and whether it would be in the figure also if it were in a
completely different part of the plot. If the probability that an object is in the sample
depends on where it falls in the figure, you probably cannot ignore the effects of
the data collection. If you are using an uncontrolled data set (“what is available”),
remember that:

• difficult-to-acquire measurements are under-represented in plots (generally
speaking).

• enlarging the sample size does not remove (usually) the selection effect when the
newly introduced data shares the same selection bias with the available data.

8.1.2 Avoid Fishing Expeditions

Nowadays, there are extensive catalogs with many entries and many features per
entry, for many categories of objects. It is hard to resist the temptation of looking
for the existence of trends among object features. However, such a fishing expedition
is a very risky one.
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Let us suppose that each object has 10 features. There are 45 different pairs of
variables to test for trends. Again suppose, for a moment (and nowhere else in this
book), that we are using some non-Bayesian measurements of significance about
the existence of a trend. If the catalog were filled with random numbers, then, on
average, we expect to find two trends significant at 95 %, because “95 % significant”
means that one in 20 is found by chance if no trend is there. Because we tested 45
pairs of variables, we should almost always find (at least) one pair of variables with
a trend of 95 % significance. This unwanted feature occurs even if the sample is
formed by a large sample, say, three billion entries (objects). A large sample does not
guarantee that a trend is true. This unwanted feature of fishing expeditions occurs
even if you, having found a trend at the first pair of object features, stop and do not
consider any other of the 44 pairs of features.

Therefore, avoid fishing expeditions and do not hope that a large sample size will
protect you from finding a trend that does not exist in reality.

8.1.3 Do Not Confuse Prediction with Parameter Estimation

There are three possible reasons why two quantities are regressed on each other:

• One of the two variables, y, is difficult/costly/impossible to measure. The other
variable, x, is cheaper to measure and informative about the quantity that is dif-
ficult to measure, because there is a trend between x and y with small scatter.
Therefore, one may measure x to estimate y. This task is called prediction (and
sometimes calibration).

• We measured both x and y. The latter is a function of the former, and we want to
measure the parameters describing the relation between the two variables. This
task is named parameter estimation.

• Finally, by the available x and y we may want to infer if the relation between
them is given by one mathematical form, or another: e.g., if y ∝ x2 or y ∝ sin(x).
This task is named model selection.

These are three different tasks that should not be confused. In general, three
different procedures have to be followed to reach the target purpose, one single pro-
cedure is not enough. One should not use the fit performed for parameter estimation
to predict values (and vice versa), because these differ, as we now show.

8.1.3.1 Prediction and Parameter Estimation Differ!

Let us consider the case where the prediction of a variable y is linearly related
to a predictor variable x which is itself a random variable. This is the situation
in which researchers are often confronted when we want to predict a quantity as
a function of another and for both quantities we must collect observational data.
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Fig. 8.3 Left panel: 500 points drawn from a bivariate Gaussian, overlaid by the line showing the
expected value of y given x. The yellow vertical stripe captures those y for which x is close to
2. Central panel: Distribution of the y values for x values in a narrow band of x centered on 2,
as shaded in the left panel. Right panel: as the left panel, but we also add the lines joining the
expected x values at a given y, and the x = y line. Reproduced from Andreon and Hurn (2013) with
permission

For definitiveness, we will consider galaxy cluster mass (the holy grail of astron-
omy) as a function of the number of its galaxies (richness). Of course, the reader
may choose their own favorite relation.

Figure 8.3 shows a set of 500 points drawn from a bivariate Gaussian where
marginally both x and y are standard Gaussians with mean 0 and variance 1 and
x and y have correlation 1/2. The blue solid line in the right panel has slope 1 and
intercept zero. This line seems, by eye, to be an acceptable description of the plotted
data: it does not look odd for any reason, it captures the trend pointed out by the data.

Superimposed on the left-hand panel of Fig. 8.3 is the line giving the theoretical
conditional expectation of y given x (this is known theoretically for this bivariate
Gaussian to be y = 0.5x). We pretend to ignore the above result and re-derive it our-
selves. Consider a small range in x close to 2, shaded in the figure. It is clear from
the histogram of the points falling in the shaded area that their average is closer to
the value predicted by the red line (1 in this case) than the value predicted by the
blue, y = x, line (2 in this case). By repeating the calculation for other small ranges
of x values, and connecting the found (x,E(y)) pairs, we obtain the red dashed line.
This is the line that allows one to best predict y given x. To further illustrate the
point, Fig. 8.4 shows the residuals from this line (with slope 1/2 (i.e., y−1/2x) and
from the y = x line (i.e., y− x). There is no doubt that the former is best for predict-
ing values, while the latter is best to describe the trend between x and y. Therefore,
different lines should be used for different purposes (prediction vs. parameter esti-
mation) and one should therefore refrain from predicting y using the blue line.

Notice that the red line appears too shallow with respect to the trend identified by
the points, which perhaps might be captured by the x = y line shown in blue in the
right-hand panel. However, if what we want to do is to predict a y given an x value,
this “too shallow” line is more appropriate.
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Fig. 8.4 Residuals from the y = 1/2x (top) or y = x relation

The data shown in Fig. 8.3 are generated by the model:

model {
val[1:2] ˜ dmnorm(mu[],prec[,])
} ,

where the zero mean mu and the inverse covariance matrix prec (with variance 1
and correlation 0.5) are given by

prec <-structure(c(1.33333,-0.666667,-0.666667,1.33333),
.Dim = c (2,2))

mu <- c(0,0)

Note that JAGS parameterizes the multivariate normal in terms of the precision
matrix. The precision matrix is defined as the inverse of the covariance matrix. The
covariance matrix for the above example is

covar=

(
1 1/2

1/2 1

)
.

Then using common linear algebra methods, finding the inverse of this matrix
yields the precision matrix, which is given in the JAGS code above,

prec= covar−1.
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Table 8.1 Data for efficiency determination

E[i] nrec[i] ninj[i] E[i] nrec[i] ninj[i] E[i] nrec[i] ninj[i]
2 23 96 38 221 235 74 41 41
6 71 239 42 210 217 78 32 32

10 115 295 46 182 185 82 32 32
14 159 327 50 136 140 86 31 31
18 200 345 54 119 121 90 22 22
22 221 316 58 79 79 94 18 18
26 291 349 62 81 81 98 11 11
30 244 281 66 61 61
34 277 298 70 44 45

8.1.3.2 Direct and Inverse Relations also Differ

Now we want to show that the line allowing one to predict y from x differs from
the line giving predictions of x from y. Similarly to the previous section, we select a
small range in y, take the mean of the corresponding x values, and connect the pairs
(y,E(x|y)) (or one may consult a statistical book written by an analytically skilled
author to find that this line has slope 2). By this procedure, we find the steep line
shown in the right panel of the Fig. 8.3. This new line differs, y = 2x, from both the
E(y|x) line used for prediction earlier (y = 1/2x) and from the y = x line! This new
line is the most appropriate line for predicting x from its y value.

To summarize, the lines E(x|y) and E(y|x) differ, and these two differ from the
y = x line. If

y = ax+b, (8.1)

then in general
x 
= y/a−b/a (8.2)

because the slope of the inverse relation (the one allowing prediction of x given y)
differs from the slope of the direct relation (the one allowing prediction of y
given x).

Unfortunately, these differences are often overlooked. Therefore, gentle reader,
before proceeding in your reading, we ask you to repeat our calculation, because it is
really important not to overlook these differences. If you have some past experience
in fitting data, you should now know one of the reasons why fitting procedures return
different slopes for a single data set.

8.1.3.3 Summary

Do not proceed to fit a regression model before

1. checking for the presence of selection effects;
2. ignoring what you are looking for (i.e., do not embark on in fishing expeditions);
3. understanding what you want: y vs. x, x vs. y, predict y given x or predict x

given y.
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Fig. 8.5 Efficiency of the considered (CERN) experiment, as a function of energy. The shading
indicates the 68 % probability interval

8.2 Non-linear Fit with No Error on Predictor and No Spread:
Efficiency and Completeness2

Now that those common misconceptions are cleared up, we can now start fitting
quantities against each other. Let us start from the simplest possible case: the pre-
dictor quantity is perfectly known, shows a tight relation with another quantity, and
we want to learn about the parameters of the fit describing the trend between predic-
tor and target. By saying that the relation is tight we mean that we have no reason to
suspect that the data scatter around the fitted trend by more than their errors.

One of the standard works in astronomy and physics is estimating the efficiency
of a selection or the completeness of a catalog. For example, some physics exper-
iments are producing an extremely high event rate so that not all of the events can
be recorded, which is quite typical of many of the experiments held at CERN. In
such cases, events considered interesting through some quick, approximate, event
reconstruction are only recorded. For example, the reconstructed event may have
a missing energy of > 20 GeV, suggestive of a possible semi-leptonic W decay at
LHC (a hot topic at the time of the writing of this book), and in such a case this
(based on quick and dirty computations) missing energy triggers the recording of
the event for a later (off-line) more detailed analysis. The trigger efficiency is useful
for checking that the selection is correctly working (e.g., not discarding too many
interesting events, and not including too many non-interesting events), to maximize
the quality of the measurand quantity, and to infer the true rate of interesting events
from the recorded ones. Similarly, in astronomy, star, galaxy or other populations
are not 100 % selected (at all luminosities, masses, etc.), and the efficiency of the
selection needs to be determined.

For definitiveness, we consider here a physics experiment, but our analysis can
be applied to astronomical cases with no changes at all. For clarity, we suppose that

2 This example draws material from (the end-course assessment relation of) Andrea Benaglia.
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Fig. 8.6 Graph showing the stochastic relationship between quantities involved in fitting the effi-
ciency of a CERN experiment

efficiency, eff[i], depends on energy only, and we recorded, at the energy E[i],
nrec[i] events out of ninj[i] injected:

nrec[i] ˜ dbin(eff[i],ninj[i]) .

The data are listed in Table 8.1. Inspection of the experimental data, shown in
Fig. 8.5, suggests that the efficiency in our (not completely) hypothetical experiment
of the semi-leptonic W decay at LHC can be well described by an error function
(which is a phi function in the statistical literature and in JAGS, after a simple
change of variable):

eff[i] <- A + (B-A)*phi((E[i]-mu)/sigma).

We adopt uniform priors for the parameters over a wide range certainly including
the true value, but not so large to include unphysical values:

A˜dunif(0,1)
B˜dunif(0,1)
mu˜dunif(0,100)
sigma˜dunif(0,100).

The complete model, illustrated in Fig. 8.6, then reads:

model {
for (i in 1:length(nrec)) {
nrec[i] ˜ dbin(eff[i],ninj[i])
nrec.rep[i] ˜ dbin(eff[i],ninj[i])
eff[i] <- A + (B-A)*phi((E[i]-mu)/sigma)
}
A˜dunif(0,1)
B˜dunif(0,1)
mu˜dunif(0,100)
sigma˜dunif(0,100)
}.
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Fig. 8.7 Probability distributions of single parameters (histograms, top panel of each column)
and of joint parameters (68 % and 95 % probability contours, remaining panels) for the efficiency
estimation example. The jagged nature of some contours is due to numerical reasons (the finite
length of the plotted chain)

Fitting this model on the data gives:

eff(E) = 0.11±0.06+(0.88±0.06)φ
(
E−16.0±1.4

12.8±1.1

)
(8.3)

which is plotted in Fig. 8.5. The fitted model smoothes irregularities due to (bino-
mial) fluctuations and allows us to interpolate at energies between bin centers. The
analysis does not require that we have data at all energies, we may well have some
missing bins with no change at all to be applied to the code. Parameters show strong
covariance, illustrated in Fig. 8.7: different parameter sets describe equally well the
data.

The code above can be easily extended to the case of efficiency or incompleteness
which depends on two quantities, as is usually the case of (astronomical) spectro-
scopic completeness: the success rate usually decreases for fainter galaxies, but also
for red ones.
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Astronomy is full of examples for which this fitting model, or a simple modifi-
cation of it (changing the expression of eff[i]) can be applied, such as deriving
the parameters describing the completeness of a catalog as a function of magnitude,
color or redshift, or for deriving the trend with redshift (or any other precisely mea-
sured quantity) of the fraction of red galaxies, of early-type galaxies, of stars or
AGN of a given type, etc.

8.3 Fit with Spread and No Errors on Predictor: Varying
Physical Constants?

Very often when there is a trend between two quantities, but the relation is not tight,
the data scatter around the trend by more than allowed by their error. The purpose
of this section is to illustrate how to account for the stochasticity between predictor
and target quantity in a fit.

An interesting question to address is whether constants in physics are really con-
stants or are, instead, variable, in the sense that they may take a different value
somewhere else in the Universe or at a different time. In order to address this pos-
sibility, Wendt and Molaro (2011) observed an object, QSO 0347-383, in the very
distant universe (at redshift about 3) when the Universe was 11 Gyr younger than
today (i.e., when it was 90 % younger). They measured the ratio between the wave-
length of several spectral lines and compared them with the wavelength measured in
the laboratory: (λobs −λlab)/λlab = Δλ/λ . They exploit the fact that the difference
between energy levels, and thus wavelength of the emitted photon, does depend on
physical constants, such as the ratio of the proton-to-electron masses, μ , but with
different coefficients of proportionality: some transitions have energy differences in-
dependent of proton-to-electron masses, some other transitions, however, instead do
depend. This is so because the energy difference between two consecutive levels of
the rotational spectrum of a diatomic molecule scales with the mass ratio μ , whereas
the energy difference between two adjacent levels of the vibrational spectrum is pro-
portional to μ1/2. If physical constants take values different in QSO 0347-383 than
they have today here on Earth, then Δλ/λ should be shifted in wavelength by an
amount that is proportional to the sensitivity k of the transitions producing the wave-
length lines. For a proton-to-electron mass ratio that always takes the same value,
Δλ/λ is independent of k and it is equal to 1+ z, by definition of z (redshift). In
essence, measuring a variation of physical constants is a measurement of the slope of
Δλ/λ with k: if the slope is equal to zero, the proton-to-electron mass ratio has not
changed between us and QSO 0347-383, whereas if k
= 0 it has changed. Figure 8.8
displays recent data for QSO 0347-383 from Wendt and Molaro (2011): the ab-
scissa reports k, the sensitivity of spectral features to the value of physical constants
(larger k means increased sensitivity). The ordinate plots y= 1000(Δλ/λ − z−1),
with z = 3.0248. These two coefficients have been introduced to make numbers eas-
ier to read: we first remove five identical digits present in all values, and we then
multiply the resulting number by 1000, to remove unnecessary zeroes in front of the
interesting part of the numbers.
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Fig. 8.8 Scaling between Δλ/λ and k, observed data, the mean scaling (solid line) and its 68 %
uncertainty (shaded yellow region) and the mean intrinsic scatter (dashed lines) around the mean
relation. The distance between the data and the regression line is due in part to the observational
error on the data and in part to the intrinsic scatter

As mentioned, we expect a linear relation between Δλ/λ and k and therefore
we adopt a linear regression model:

z[i] <- alpha+0.1+beta*(k[i]-0.03) ,

where we center quantities near their average (0.03 for the abscissa, 0.1 for the ordi-
nate) to numerically help with the MCMC, in particular this reduces the covariance
between parameter estimates and simplifies the interpretation of the found results.

Even a casual inspection of the figure shows that data scatter (vertically) by more
than their errors. Because all measurements pertain to a single object, the observed
spread is not due to a population effects, i.e., to intrinsic difference between objects,
but to some sort of systematic error not yet identified. We therefore allow for an
intrinsic scatter intrscat taken to be Gaussian.

y[i] ˜ dnorm(z[i],pow(intrscat, -2)) .

Errors, err.y[i], are also Gaussian:

obsy[i] ˜ dnorm(y[i],pow(err.y[i], -2)).

We assume a uniform prior for the intrinsic scatter, for the intercept (formally,
a Gaussian of large variance), and a uniform prior on the angle b, i.e., a Student-t
distribution on the angular coefficient beta. The latter choice is motivated by the
fact that the slope of the regression should not depend on the convention used (by
humans) to measure angles (e.g., as in astronomy from y clockwise or as in mathe-
matics, from x counterclockwise).

intrscat ˜ dunif(0,3)
alpha ˜ dnorm(0.0,1.0E-4)
beta ˜ dt(0,1,1) .
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alpha beta intrscat

y[i]

obsy[i] k[i]

Fig. 8.9 Graph showing the stochastic relationship between quantities involved in estimating
whether physical constants are indeed constant. Solid arrows indicate stochastic relations, dotted
arrows represent deterministic relations

Table 8.2 Data for the possibly varying physical constant fit, from Wendt and Molaro (2011)

k[i] obsy[i] err.y[i] k[i] obsy[i] err.y[i] k[i] obsy[i] err.y[i]
0.0462 0.10250 0.0008233 0.0352 0.09489 0.001373 0.0165 0.09942 0.00037
0.0215 0.10440 0.0003033 0.0037 0.08917 0.00018 0.0156 0.09680 0.0005033
0.0210 0.09489 0.001663 0.0375 0.08774 0.0003267 0.0126 0.10470 0.00042
0.0482 0.09990 0.0006033 0.0369 0.10010 0.0005567 0.0105 0.09942 0.0007033
0.0477 0.09656 0.00102 0.0341 0.10060 0.0002833 0.0110 0.10280 0.0002367
0.0140 0.09465 0.0004267 0.0285 0.10490 0.00085 0.0100 0.10440 0.0003233
0.0127 0.09489 0.00033 −0.0052 0.08917 0.0001567 0.0072 0.08869 0.00066
0.0368 0.09036 0.0004967 0.0246 0.08965 0.001263 0.0049 0.10130 0.00092
0.0109 0.10280 0.0003233 0.0221 0.09584 0.00056 −0.0011 0.09370 0.00106
0.0406 0.09704 0.0003667 0.0203 0.08845 0.0008167 −0.0014 0.09108 0.0003333
0.0400 0.10230 0.0005133 0.0215 0.09608 0.0004633 −0.0026 0.09584 0.0009433
0.0356 0.09584 0.001007 0.0200 0.09084 0.0001133 0.0176 0.10900 0.0007267

The model, whose graph is shown in Fig. 8.9 reads:

model {
intrscat ˜ dunif(0,3)
alpha ˜ dnorm(0.0,1.0E-4)
beta ˜ dt(0,1,1)
for (i in 1:length(x)) {
# modeling ordinate
obsy[i] ˜ dnorm(y[i],pow(err.y[i], -2))
y[i] ˜ dnorm(z[i],pow(intrscat, -2))
# modeling ordinate vs x
z[i] <- alpha+0.1+beta*(k[i]-0.03)
}
}.

Figure 8.8 shows the scaling between y and k, the observed data, the mean scal-
ing (solid line) and its 68 % uncertainty (shaded yellow region) and the mean intrin-
sic scatter (dashed lines) around the mean relation. The data are listed in Table 8.2.

Figure 8.10 shows the posterior distribution of key parameters: slope, intercept,
and intrinsic scatter. The intrinsic scatter is large, comparable to the variation of
the mean model between the minimal and maximal k. This large scatter makes
the slope determination rather difficult, because the expected variation due to the
k dependency is noised by the intrinsic scatter. In formulae (and after converting
numbers back to the original scale):
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Fig. 8.10 Posterior distribution for the key parameters of the regression model used for testing
whether physical constant are indeed constant

a b

y[i]

intrscat x[i]

obsy[i] obsx[i]

Fig. 8.11 Graph showing the stochastic relationship between quantities involved in estimating a
relation between two quantities, each subject to errors, and in presence of an intrinsic scatter (e.g.,
the Magorrian relation)

Δλ/λ = 3.0248+(0.98±0.01)×10−4 +(0.6±0.7)×10−4(k−0.03) (8.4)

with an intrinsic scatter of 5.8±0.7×10−6. We quote for the regression coefficients
posterior mean ± the standard deviation.

Back to the original question, whether there is any evidence for varying proton-
to-electron mass (i.e., k 
= 0), we note that while the maximum a posteriori (and
mean) slope is non-zero, the slope value of zero is almost as probable (30 % less
only) than the most probable slope (left panel of Fig. 8.10). Furthermore, the model
with the variable beta has one more parameter (yielding an extra degree of flexi-
bility), that can be adjusted to increase the quality of the fit. Its better performance
(larger value of the maximal posterior) is therefore partially due to the larger flexi-
bility of the model.

8.4 Fit with Errors and Spread: The Magorrian Relation

Very often one wants to fit a trend between two quantities but both of these quantities
are subject to errors, and the scatter around the trend is larger than errors allow, i.e.,
there is an intrinsic scatter. To illustrate this regression model, let us consider the
problem (and data set) in Tremaine et al. (2002).

Tremaine et al. (2002) measured the trend between the log of the galaxy’s veloc-
ity dispersion x and the log mass y of the black hole sitting in their center. Errors
on these quantities are assumed to be Gaussian and are different from point to point,
errx[i] and erry[i]:
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Fig. 8.12 Magorrian relation. The solid line marks the mean relation, its 68 % uncertainty is shaded
(in yellow). The dashed lines show the mean relation plus or minus the intrinsic scatter intrscat.
Error bars on the data points represent observed errors for both variables

obsx[i] ˜ dnorm(x[i],pow(errx[i],-2))
obsy[i] ˜ dnorm(y[i],pow(erry[i],-2)).

Figure 8.12 shows the data, which are listed in Table 8.3. Inspection of the plot
shows that the (vertical) scatter is larger than the plotted errors, i.e., an intrinsic
scatter is there. In this case the scatter may be a manifestation of an intrinsic variety
of studied objects (i.e., a population effect). Therefore we need to adopt a regres-
sion model with a (an intrinsic) scatter, intrscat, taken to be Gaussian here for
simplicity. Following the approach by the authors, the trend between black hole and
galaxy velocity dispersion is taken to be linear on a log scale:

y[i] ˜dnorm(b+a*(x[i]-2.3), prec.scat),

where we center the x quantity (log of velocity dispersion) near its average (200
km/s) because again, this is numerically convenient, reduces the covariance between
estimated parameters, and simplifies the interpretation of the found results.

We assume uniform priors for the reciprocal of the square of the intrinsic scatter
(formally, a gamma function with small parameters), for the intercept (formally, a
Gaussian of large variance), and an uniform prior on the angle b, i.e., a Student-t
distribution on the angular coefficient beta

intrscat <- 1/sqrt(prec.intrscat)
prec.intrscat ˜ dgamma(1.0E-2,1.0E-2)
alpha ˜ dnorm(0.0,1.0E-4)
beta ˜ dt(0,1,1)
}.

Finally, for x we adopt a uniform prior, between minus and plus infinity, approx-
imated as:

x[i] ˜ dunif(-1.0E+4,1.0E+4).
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Table 8.3 Data for the Magorrian relation, from Tremaine et al. (2002)

x[i] errx[i] y[i] erry[i] x[i] errx[i] y[i] erry[i] x[i] errx[i] y[i] erry[i]
2.01 0.08 6.27 0.08 2.16 0.02 8.15 0.16 2.57 0.02 9.48 0.15
1.88 0.02 6.40 0.09 2.31 0.02 8.02 0.25 2.21 0.02 7.73 0.04
2.20 0.02 7.72 0.31 2.16 0.02 7.19 0.04 2.18 0.02 7.92 0.21
2.32 0.02 7.65 0.16 2.26 0.02 8.32 0.17 2.59 0.02 9.28 0.12
2.31 0.02 7.64 0.05 2.11 0.02 7.59 0.01 2.25 0.02 8.24 0.04
2.18 0.02 7.30 0.24 2.50 0.02 8.71 0.09 1.95 0.02 7.13 0.15
2.24 0.02 7.13 0.32 2.38 0.02 8.37 0.34 2.37 0.02 8.28 0.22
2.15 0.02 7.61 0.05 2.35 0.02 8.53 0.19 2.46 0.02 8.72 0.15
2.36 0.02 9.08 0.35 2.27 0.02 7.85 0.08 2.42 0.02 8.58 0.22
2.31 0.02 8.32 0.11 2.28 0.02 7.96 0.34 1.83 0.02 6.53 0.17
2.53 0.02 9.41 0.08

The model is similar to the one adopted for the possibly varying physical con-
stant (compare the current graph, Fig. 8.11, with the graph of the previous model,
Fig. 8.9): we only need to model here the error on the predictor (in the previous
section the predictor was assumed to be perfectly known) and adopt a prior for the
predictor.

In summary, our model reads:

model {
for (i in 1:length(obsx)) {
x[i] ˜ dunif(-1.0E+4,1.0E+4)
obsx[i] ˜ dnorm(x[i],pow(errx[i],-2))
y[i] ˜dnorm(b+a*(x[i]-2.3), prec.scat)
obsy[i] ˜ dnorm(y[i],pow(erry[i],-2))
}
prec.scat ˜ dgamma(1.0E-2,1.0E-2)
intrscat <- 1/sqrt(prec.scat)
b ˜ dnorm(0.0,1.0E-4)
a ˜ dt(0,1,1)
}.

We found for the relation between the black hole mass MBH (log10 scale, alias y)
and galaxy velocity dispersion σv (also log10, which we called x):

logMBH = (3.9±0.3) (logσv −2.3)+8.13±0.06, (8.5)

where, as usual, we quote for the regression coefficients the posterior mean ± one
standard deviation.

Figure 8.12 shows the relation between the black hole mass MBH and galaxy
velocity dispersion, the observed data, the mean scaling (solid line) and its 68 %
uncertainty (shaded yellow region), and the mean intrinsic scatter (dashed lines)
around the mean relation. The ±1 intrinsic scatter band is not expected to contain
68 % of the data points, because of the presence of measurement errors.

Figure 8.13 shows the posterior marginals for the model parameters: slope, inter-
cept, and intrinsic scatter intrscat. The intrinsic scatter in black hole mass at a
given galaxy velocity dispersion, intrscat=σlgMBH |σv , is 0.28±0.05 dex. This is
the intrinsic scatter, i.e., the term left after accounting for measurement errors. It is
clearly non-zero (see right panel of Fig. 8.13).
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Fig. 8.13 Posterior probability distribution for the parameters of the Magorrian relation. The black
jagged histogram shows the posterior as computed by MCMC, marginalized over the other pa-
rameters. The red curve is a Gaussian approximation to the posterior. The shaded (yellow) range
shows the 95 % probability interval

8.5 Fit with More Than One Predictor and a Complex Link:
Star Formation Quenching

Very often a quantity is affected not just by one variable, but by several. Therefore,
a researcher may be interested in looking for trends not between pairs of quanti-
ties, but between n-tuples. We need to consider the joint effect of pairs (or triple or
quadruple, etc.) of predictors on the target (interesting) quantity.

We illustrate this case using a classical galaxy evolution problem: the color of a
galaxy (which measures the quenching rate) does depend on many factors: on (the
log of) galaxy mass, lgM, on environment (the distance from the cluster center,
usually expressed in units of a reference dimension, r200) and on redshift, z, at the
very least. Indeed, the galaxy color likely depends on a (an unknown) combination
of these quantities, and, in order to disentangle one dependence from another, we
need to fit a functional dependence on the three parameters simultaneously.

We use the data for 26 clusters of galaxies in Raichoor and Andreon (2012), with
0<z< 2.2. The data consists of the total number of galaxies and the number of blue
galaxies in the cluster’s line of sight (obsntot[i] and obsnbluetot[i], resp-
ectively), and in a reference line of sight (obsnbkg[i] and obsnbluebkg[i],
respectively). The latter has a C[i] times larger solid angle. Measurements are per-
formed in three different cluster circular annuli, r < r200/2, r200/2 < r < r200 and
r200 < r < 2 ∗ r200, for galaxies in four different mass bins,
lgM= 11.47,10.94,10.54, and 10.14M�. The data table has 294 lines (each clus-
ter has, on average, measurements at three or four different mass bins and at three
different cluster-centric radii),3 and its content is illustrated in Fig. 8.14.

The determination of the fraction of red galaxies in each cluster in the presence of
a background has been already addressed in Sect. 6.1.3, and we summarize it here:

obsnbkg[i]˜dpois(nbkg[i])
obsntot[i]˜dpois(nbkg[i]/C[i]+nclus[i])
obsnbluebkg[i]˜dbin(fbkg[i],obsnbkg[i])

3 The table is given in electronic format at the link http://www.brera.mi.astro.it/∼andreon/
BayesianMethodsForThePhysicalSciences/Raichoor Andreon12.dat.

http://www.brera.mi.astro.it/~andreon/BayesianMethodsForThePhysicalSciences/Raichoor_Andreon12.dat
http://www.brera.mi.astro.it/~andreon/BayesianMethodsForThePhysicalSciences/Raichoor_Andreon12.dat
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Fig. 8.14 Blue fraction for individual clusters as a function of cluster-centric distance (r/r200) for
different bins of redshift (increasing rightward) and galaxy mass (increasing downward). Error
bars represent the 68 % probability interval. Reproduced from Raichoor and Andreon (2012) with
permission

obsnbluetot[i]˜dbin(f[i],obsntot[i])
f[i] <- (fbkg[i]*nbkg[i]/C[i]+fclus[i]*nclus[i])/

(nbkg[i]/C[i]+nclus[i]) .

The first two lines just state that counts fluctuate in a Poissonian way, the third
and fourth lines state that the fractions have binomial errors, while the last line is
just plain algebra.

We now need a model that allows us to describe how the fraction of red galax-
ies depends on redshift, mass, and environment. Following Raichoor and Andreon
(2012) we “bend” the real axis on the [0,1] interval by using the ilogit function
(which is the inverse of the logit function), which is defined by:

ilogit(y) =
ey

1+ ey . (8.6)

For simplicity, we initially assume no cross-terms, i.e., no joint dependency on
pairs of parameters among environment, mass and redshift (no terms proportional
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Fig. 8.15 Graph showing the stochastic relationship between quantities involved in estimating the
parameters of the fit to the mass-environment-age star formation quenching. Deterministic links
(to radius and redshift) are not drawn

to environment times mass, for example), and a linear relation between all terms,
centering terms as usual at some value inside the studied range:

fclus[i] <- ilogit(lgfclus0+alpha*log(r200[i]/0.25)+
beta*(lgM[i]-11)+gamma*(z[i]-0.3)) .

The coefficient alpha describes the amplitude of environmental dependency,
the coefficient beta is the amplitude of the mass dependency, and gamma is the
amplitude of the redshift dependency. To speed up computation and for simplicity
in interpreting the found results, we center (i.e., subtract or normalize) quantities at
a value where they are well measured (redshift: z= 0.3, mass: lgM=1011 M�, and
cluster distance: 0.25r200). The coefficient lgfclus0 gives the blue fraction at
these values.

This model does not fit the data (in particular the values in the top panels of
Fig. 8.16 are not well fitted by this model), and the authors were forced to introduce
a more complex model with a cross-term, making the rate of evolution dependent
on mass (i.e., different for galaxies of different masses):

fclus[i] <- ilogit(lgfclus0+alpha*log(r200[i]/0.25)+
beta*(lgM[i]-11)+gamma*(z[i]-0.3)+zeta*
(lgM[i]-11)*(z[i]-0.3)) .

The parameter zeta measures how much faster/slower is the evolution of low
mass galaxies compared to lgM=11 galaxies.

Note that the increased complexity of the link function does not add “special”
difficulties in the Bayesian approach: the latter is not restricted to fit linear relations
between quantities, and indeed our first regression fitting, the determination of the
efficiency (Sect. 8.2), used a non-linear link function.

We now set priors for parameters:

nbkg[i] ˜ dunif(1,1e+7)
fbkg[i] ˜ dbeta(1,1)
nclus[i]˜ dunif(1,1e+7)
lgfclus0 ˜dnorm(0,0.01)
alpha ˜ dnorm(0,0.01)
beta ˜ dnorm(0,0.01)
gamma ˜ dnorm(0,0.01)
zeta ˜ dnorm(0,0.01) .
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Fig. 8.16 Blue fraction for ensemble clusters as a function of cluster-centric distance (r/r200) for
different bins of redshift (increasing rightward) and galaxy mass (increasing downward). Error bars
represent the 68 % probability interval. The solid line and the yellow shaded areas represent the
posterior mean and its 68 % probability interval

Therefore, the full model, illustrated in the Fig. 8.15, reads:

model {
for (i in 1:length(obsntot)){
obsnbkg[i]˜dpois(nbkg[i])
obsnbluebkg[i]˜dbin(fbkg[i],obsnbkg[i])
obsntot[i]˜dpois(nbkg[i]/C[i]+nclus[i])
obsnbluetot[i]˜dbin(f[i],obsntot[i])
f[i] <- (fbkg[i]*nbkg[i]/C[i]+fclus[i]*nclus[i])/

(nbkg[i]/C[i]+nclus[i])
fclus[i] <- ilogit(lgfclus0+alpha*log(r200[i]/0.25)+

beta*(lgM[i]-11)+gamma*(z[i]-0.3)+zeta*
(lgM[i]-11)*(z[i]-0.3))

nbkg[i] ˜ dunif(1,1e+7)
fbkg[i] ˜ dbeta(1,1)
nclus[i]˜ dunif(1,1e+7)
}
lgfclus0 ˜dnorm(0,0.01)
alpha ˜ dnorm(0,0.01)
beta ˜ dnorm(0,0.01)
gamma ˜ dnorm(0,0.01)
zeta ˜ dnorm(0,0.01)
} .
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Fig. 8.17 Probability distribution for the parameters of the star formation quenching problem.
The black histogram shows the posterior as computed by MCMC, marginalized over the other
parameters. The red curve shows a Gaussian approximation of the posterior. The dashed curve
displays the adopted prior. The shaded (yellow) range shows the 95 % probability interval

Figure 8.16 shows the data, after co-adding data (to increase the signal to noise)
concerning galaxies of similar mass, in similar environments and at similar redshifts,
and the model fit, with 68 % errors. Posterior probability distributions of model
parameters are shown in Fig. 8.17. The coefficient of the cross-term (zeta) avoids
the zero value, i.e., this cross-term coefficient is needed (astronomers would say that
mass quenching is dynamic).

Finally, Fig. 8.18 plots the data already shown in Fig. 8.16 for the inner radial
bin in a more common form in astronomy, putting forward the just mentioned effect,
galaxies of different masses (coded with different colors in the figure) quench (stop
form stars, i.e., become red) at different redshifts.

8.6 Fit with Upper and Lower Limits: The Optical-to-X
Flux Ratio

The presence of upper or lower limits does not change at all the fitting of a data set:
a quantity does not have to be declared to be well measured (in some sense), or only
have an upper limit (in some sense) to be used (although in general well-measured
quantities are more informative than upper/lower limits). The analysis does not dif-
fer if the data includes upper limits, as opposed to some other approaches. Of course,
the same is true for lower limits.

Let us consider the case of a linear fit between magB, the B band magnitude, and
lgfluxS, the log10 of the flux in the [0.5, 2] keV band of a set of sources, that we
know (or we suspect) to have a variety of intensity ratios. In the B and [0.5, 2] keV
bands we have (see Sect. 6.1.2):
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Fig. 8.18 Blue fraction for (coadded) clusters as a function of redshift in the inner cluster annulus
for different galaxies’ masses (red, green, blue, and black points), going from most to least massive.
Error bars represent the 68 % probability interval. The solid line, color-coded as data, and the
yellow shaded areas represent the posterior mean and its 68 % probability interval

obstotB[i] ˜ dpois(sB[i]+bkgB[i]/CB[i])
obsbkgB[i] ˜ dpois(bkgB[i])
obstotS[i] ˜ dpois(sS[i]+bkgS[i]/CS[i])
obsbkgS[i] ˜ dpois(bkgS[i]) ,

where sB[i] and bkgB[i] are the true counts of the source and background, and
CB[i] is the ratio between the source and background solid angles in the B band
(and similarly for the [0.5, 2] keV band). Observed values have a prefix obs. The
analyzed sample, shown in Fig. 8.19, contains four different cases: upper limits in
B, upper limits in [0.5, 2] keV, upper limits in both bands and no upper limits in any
band.

Fluxes, magnitudes, and counts are related by (this is basic astronomy):

sB[i] <- pow(10,(zptB-magB[i])/2.5)
sS[i] <- pow(10,lgfluxS[i]-zptS[i]) ,

(the slightly different relations are due to slightly different habits in the B and X-ray
domains), where the conversion from counts to flux in X-ray is object-dependent
(i.e., has an [i]), as is usually the case in X-ray. To have a zero point differ from
point-to-point in the B band too is easily implemented by adding a [i].

As mentioned, we assume a linear relation with intrinsic scatter between magB
and lgfluxS:

lgfluxS[i] ˜ dnorm((magB[i]-22)*beta+alpha,pow(intrscat,-2)) .

We adopt a uniform prior for intrinsic scatter intrscat, and approximately
uniform priors for alpha and beta,

intrscat ˜ dunif(0,10)
alpha ˜ dnorm(0.0,1.0E-4)
beta ˜ dt(0,1,1) ,
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Fig. 8.19 Log of X-ray flux lgfluxS vs. B band magnitude magB. Vertical, horizontal, and
diagonal arrows mark upper limits (see text for details). The solid line and the yellow shaded
areas represent the posterior mean and its 68 % probability interval. The dashed lines delimit the
mean model plus or minus the intrinsic scatter intrscat

and we assume uniform priors for the source and background intensities between
zero and infinity, the latter taken here as 107 because we are dealing with fainter
sources:

sB[i] ˜ dunif(0,1e+7)
bkgB[i] ˜ dunif(0,1e+7)
bkgS[i] ˜ dunif(0,1e+7) ,

and a uniform prior over a wide range for the object’s magnitude

magB[i] ˜ dunif(18,25) .

Therefore, the fitted model reads:

model {
intrscat ˜ dunif(0,10)
alpha ˜ dnorm(0.0,1.0E-4)
beta ˜ dt(0,1,1)
zptB <-24
for (i in 1:length(obstotB)){
obstotB[i] ˜ dpois(sB[i]+bkgB[i]/CB[i])
obsbkgB[i] ˜ dpois(bkgB[i])
obstotS[i] ˜ dpois(sS[i]+bkgS[i]/CS[i])
obsbkgS[i] ˜ dpois(bkgS[i])
magB[i] ˜ dunif(18,25)
sB[i] <- pow(10,(zptB-magB[i])/2.5)
lgfluxS[i] ˜ dnorm((magB[i]-22)*beta+alpha,pow(intrscat,-2))
sS[i] <- pow(10,lgfluxS[i]-zptS[i])
bkgB[i] ˜ dunif(0,1e+7)
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Fig. 8.20 Posterior distribution for the key parameters of the fit with upper limits

Table 8.4 Data of the first 10 entries of the upper limit example

obstotB[i] obsbkgB[i] obstotS[i] obsbkgS[i] zptS[i]
28 35 192 75 −13.72
37 30 277 74 −13.78
72 32 65 55 −11.44
46 48 813 70 −14.28

116 35 94 64 −11.69
47 40 75 64 −12.69
48 32 98 53 −11.95
84 38 549 65 −12.93
37 39 72 70 −11.82
51 40 56 75 −12.61

Note: The 10th object from the top, having obstotS[i] <obsbkgS[i]
and the 1st, having obstotB[i] < obsbkgB[i] offer, obviously, only
an upper limit to the source flux in the respective bands

bkgS[i] ˜ dunif(0,1e+7)
}
}.

The (fake) data (generated with the model listed at the end of this section) of 50
objects is shown in Fig. 8.19. When obstotB-obsbkg/CB<
2
√
obstotB+obsbkgB or obstotS-obsbkgS/CS< 2

√
obstotS+obsbkgSwe

plot an arrow, because the data only offer an upper limit of the object flux. Other
criteria may be used to define the upper limit, but this would not change the analysis
because such a definition is used only for drawing the plot; our fit does not use the
arrows! As one may note, there are vertical arrows (X-ray upper limits), horizontal
arrows (a lot, in the crowded region of the plot, these are B band upper limits), and
diagonal arrows (upper limits in both bands). Indeed, 72 % of the flux measurements
are upper limits.

We fit the data where the first 10 data points are listed in Table 8.4. The (posterior)
probability distribution of the key parameters is shown in Fig. 8.20: we found a
slope of −0.30± 0.02 (input was −0.3), an intercept of −10.99± 0.06 (input was
−11.00), and an intrinsic scatter of 0.11±0.03 (input was 0.10).

This example allows us to make a comment about prediction. As mentioned in
Sect. 8.1.3, and throughout in Sect. 8.10, the existence of a tight relation between
two quantities offers the possibility to predict one of them when the other is avail-
able. This is precisely the case of measurements with upper limits: objects with

magB
<≈ 21 mag are too faint to have a precisely determined B mag. However,

owing to the tight relation with the X-ray flux, they may have a precisely inferred
(predicted) B mag as good as intrscat/slope, = 0.6 mag in our fake example.
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Fig. 8.21 Log of X-ray flux lgfluxS vs. B band magnitude magB. The green lines connect the
observed values to the posterior mean (i.e., the predicted values). Points and arrows are described
in Fig. 8.19

The same is true for predicting lgfluxS starting from magB values. Figure 8.21
visualizes how to change our knowledge from before the analysis (points and ar-
rows) to after: the green lines connect the observed points to the posterior mean. To
get the latter with JAGS, we only need, as for any other quantity, to save on disk
the variable we are interested in, magB and lgfluxS. Clearly, the change will be
mainly vertical when an upper limit of lgfluxS is available (vertical arrows), al-
most horizontal when an upper limit to magB is available (horizontal arrows), and
oblique when we have upper limits on both quantities (oblique arrows).

To generate the sample we used the model:

model {
intrscat <- 0.1
alpha <- -11
beta <- -0.3
CB <-1
CS <-1
zptB <- 24
zptS ˜ dnorm(-13,1)
obstotB ˜ dpois(sB+bkgB/CB)
obsbkgB ˜ dpois(bkgB)
obstotS ˜ dpois(sS+bkgS/CS)
obsbkgS ˜ dpois(bkgS)
magB ˜ dunif(18,25)
sB <- pow(10,(zptB-magB)/2.5)
lgfluxS ˜ dnorm((magB-22)*beta+alpha,pow(intrscat,-2))
sS <- pow(10,lgfluxS-zptS)
bkgB ˜ dunif(25,50)
bkgS ˜ dunif(50,70)
}.

We took CB[i] and CS[i] = 1 for all sources.
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A fit between luminosities would proceed in an almost identical way, one only
needs to change how to go from counts to luminosities (instead of fluxes).

8.7 Fit with An Important Data Structure:
The Mass-Richness Scaling

In this section we illustrate the importance of not overlooking an important data
structure. In particular, we focus on the danger of taking a uniform distribu-
tion for the quantity in the abscissa, implicitly assumed in many analyses pub-
lished in astronomical or physics journals, when instead the quantity is not uni-
formly distributed. In particular, we focus on one real case of overlooking, noted in
Andreon and Hurn (2010).

We want to infer the relation between mass and richness for a data set involv-
ing values of obsn as small as 3. We emphasized many times in this book that
in nature there are many more small items (small richness n clusters) for each
big item, and neglecting this fact may introduce a bias. This is currently the case.
Accounting for the data structure, i.e., the important gradient in the abundance of
clusters of a given n, is essential for determining the trend between richness and
mass (i.e., the richness-mass calibration). To proceed as close as possible to the
published work (whose reference is not given here for obvious reasons) we assume
that only masses of stacks of clusters are available, i.e., we only have the average
mass, obslgMm±err, of clusters of a given observed richness, because this is the
case in question (and also what is often available in astronomy for poor clusters).

To have full control on what is going on, we generate fake data from a model with
known values of the parameters (this is not possible with real data because in such
cases the true values are unknown). We use input values for parameters adopting
plausible values, as detailed below. Richness (n) are drawn from a Schechter (1976)
function, with parameters n∗ = 10 (1/scale, characteristic value) and α =−2 (faint
end slope), which are the values appropriate for a Jenkins et al. (2001) mass function
and a linear mass-richness relation whose parameters are taken from Andreon and
Hurn (2010). The large abundance gradient generated by the steep slope (−2) is the
cause of the mentioned Malmquist-like bias: at a given obsn, the mean mass will
be below the value one may naively expect, because most of these clusters will be,
indeed, lower richness (mass) clusters scattered up by Poisson fluctuations.

We sample the Schechter (1976) function with the zero trick (see Sect. 3.2), be-
cause this distribution, with slope α = −2, is not in the JAGS library. This obliges
us to write the mathematical expression of the log of the likelihood:

data {
zeros<-0
C<-10
}
model {
n <- pow(10,lgn)
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lgn ˜ dunif(-1,3)
# -log likelihood
phi <- n/10ˆ2-(-2+1-1)*lgn
zeros ˜ dpois(phi+C)
} .

In this simulation, we neglect the background (to mimic the original analysis and
to focus on the key points of this example, Sect. 8.10 does instead account for these)
and thus

obsn ˜dpois(n).

Individual lgM values scatter around a linear relation having slope alpha = 1
and intercept beta= 14.4 with sigmaintr= 0.20 (dex, Andreon and Hurn
(2010)).

lgM ˜ dnorm(alpha*(lgn-1.5)+beta,pow(sigmaintr,-2))
alpha <- 1
beta <- 14.4
sigmaintr <- 0.20.

As mentioned, the determination of the mass of these, low richness, individual
clusters is outside our current reach and thus stacked analysis are often adopted.
These stacked analysis compute the mean mass of clusters of a given obsn, and
we do the same using the lgM values. Figure 8.23 shows the obtained richness-
mass data points. In our simulation, we adopt simple mass errors, given by err=
0.20/

√
N, where N is the number of clusters in each obsn bin.

To sum up, the code used to generate the data reads:

data {
zeros<-0
C<-10
}
model {
# true model
lgM ˜ dnorm(alpha*(lgn-1.5)+beta,pow(sigmaintr,-2))
obsn ˜dpois(n)
n <- pow(10,lgn)
lgn ˜ dunif(-1,3)
# -log likelihood
phi <- n/10ˆ2-(-2+1-1)*lgn
tmp <- phi+C
zeros ˜ dpois(phi+C)
alpha <- 1
beta <- 14.4
sigmaintr <- 0.2
}.
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intrscat n[i]

obsn[i]

Fig. 8.22 Graph showing the stochastic relationship between quantities involved in estimating the
parameters of the fit between richness and mass of stacks of clusters

The fitted model is very similar to the generating code and illustrated in Fig. 8.22.
First, we need to model the data structure (the Schechter function), as in the gener-
ating code:

data {
zeros<-obsn-obsn
C<-10
}
model {
n[i] <- pow(10,lgn[i])
lgn[i] ˜ dunif(-1,3)
# -log likelihood
phi[i] <- n[i]/10ˆ2-(-2+1-1)*lgn[i]
zeros[i] ˜ dpois(phi[i]+C)
}.

As before, observed obsn[i] values are Poisson distributed around their true
values:

obsn[i] ˜dpois(n[i]).

The stacked obslgMm[i] values scatter around a linear relation having slope
alpha and intercept beta which is to be estimated

obslgMm[i] ˜ dnorm(lgM[i],pow(err[i],-2))
lgM[i] <- alpha*(lgn[i]-1.5)+beta.

For these two parameters we adopt weak priors, a uniform distribution on the
angle and a Gaussian with σ = 3 for the intercept (which is fairly flat in the range
of plausible values, (13, 14.6):

alpha ˜ dt(0,1,1)
beta ˜ dnorm(14.4,pow(3,-2)).

Therefore, the full analysis code reads:

data {
zeros<-obsn-obsn
C<-10
}
model {
for (i in 1:length(obsn)) {
obslgMm[i] ˜ dnorm(lgM[i],pow(err[i],-2))
lgM[i] <- alpha*(lgn[i]-1.5)+beta
obsn[i] ˜dpois(n[i])
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Fig. 8.23 Richness-mass scaling for our simulated data with an important data structure. The solid
line marks the mean fitted regression line of lgMm on log(n). The shaded region marks the 68 %
probability interval for the regression. The input relation is also plotted (dotted), but hardly distin-
guishable from the mean (recovered) model. The data deviates from the input relation because of
the population gradient (Malmquist bias)

n[i] <- pow(10,lgn[i])
lgn[i] ˜ dunif(-1,3)
# -log likelihood
phi[i] <- n[i]/10ˆ2-(-2+1-1)*lgn[i]
zeros[i] ˜ dpois(phi[i]+C)
}
alpha ˜ dt(0,1,1)
beta ˜ dnorm(14.4,pow(3,-2))
}.

The fit of the model to the data is depicted in Fig. 8.23, and gives a slope of
0.98±0.04 (input was 1) and an intercept of 14.39±0.01 (input was 14.40). Clearly,
it recovers the input values. The figure also clearly shows that the model does not
pass through the data points at low obsn. This is indeed correct, because the trend
is between true values, and obsn values are biased estimates of n at small val-
ues: because of the population gradient (Malmquist bias), clusters with low richness
obsn are most likely of lower richness n<obsn because of the scatter. They thus
have lower masses than their obsn apparently tell. Since the bias depends on the√
obsn/n, it is minor at large obsn and a tilt on the slope is implied. It is equally

obvious that methods not modeling the data structure and that pass through the data
would recover a steeper, biased high, trend (by five times the quoted uncertainty for
the published work).

Of course, this Malmquist-like bias affects the slope, and this feature is a general
one, pertaining to all quantities that have abundance gradients, no matter how they
are named: mass, richness, velocity dispersion, luminosity, color, parallax, etc.

8.8 Fit with a Non-ignorable Data Collection4

Data collection effects cannot be ignored when easier-to-detect objects enter with
a higher probability than the ones which are more difficult to detect. As shown in
Andreon and Bergé (2012), this is the typical case of weak-lensing detected clusters.

4 This section draws material from Andreon and Bergé (2012).
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Weak-lensing is a (coherent) deformation of the images of background sources
induced by the deformation of the space-time manifold induced by the gravitational
potential of a cluster of galaxies on the line of sight between us and the background
sources. As a result of the deformation, background galaxies will appear slightly
elongated in the direction tangential to the line connecting them to the cluster’s cen-
ter. The deformation is minor, and in addition, we do not know the true shape of any
of the background galaxies. In practice, clusters are hard to detect with the weak-
lensing effect, and even when detected their detection has a small signal-to-noise
ratio. In spite of the difficulty of this measurement, weak-lensing offers a direct
measurement of mass, which is useful for calibrating the relation with mass proxies,
such as richness, and from these we are able to infer about cosmological parameters.
However, as shown here following Andreon and Bergé (2012), the determination of
the scaling between mass and richness has to account for the weak-lensing selection
function; not accounting for the selection function would return a wrong calibration.

We consider here the case of the most ambitious cosmological-devoted space
survey, Euclid. In order to show the impact of the non-random data collection, we
use simulated data (from Andreon and Bergé 2012) because the satellite is under
construction at the time of the writing of this book. The sample is formed simulating
10714 clusters with S/N > 5. The (simulated) data consists of measured values of
richness obsn[i], mass obslgM[i] (with error errlgM[i]), and an estimate
of the cluster’s distance (photometric redshift) obsz[i] (see the bottom line of the
graph in Fig. 8.24). We use these values to determine the relation between richness
and mass and its evolution, parameterized with a five-parameter function whose
parameters are given in the five left-most upper boxes in Fig. 8.24.

Figure 8.25 depicts the observed values individually (points). The lack of points
in the bottom-right corner of the figure is due to non-random data collection: these
clusters are undetectable with Euclid’s data (as faint radiogalaxies were at the time
of Sandage, see Fig. 8.1). Following Andreon and Bergé (2012), clusters enter in
the sample if their mass is larger than

lgMtruc = 13.9891+1.04936 *obsz[i]+0.488881 *obsz[i]ˆ2 .

Note that the figure plots observed values of mass, and therefore there are points
below lgMtrunc (the diagonal curve in the figure).

Following Andreon and Bergé (2012), richness is Poisson distributed:

obsn[i] ˜ dpois(pow(10, lgn[i])) ,

whereas masses and photometric redshifts have Gaussian errors:

obslg[i] ˜ dnorm(lgM[i],pow(errlgM[i],-2))
obsz[i] ˜ dnorm(z[i],pow(0.02,-2)) .

We use the posterior distributions measured from the local universe and given in
Andreon and Bergé (2012) as the prior distributions for the slope beta, intercept
alpha, and intrinsic scatter intrscat (remember, yesterday’s prior is today’s
posterior):
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Fig. 8.24 Graph showing the stochastic relationship between quantities involved in estimating the
parameters of the fit between richness and weak-lensing masses

Fig. 8.25 Contours: number of clusters for which weak-lensing mass estimates can be obtained
by a Euclid-like survey. From outer to inner contours, the lines represent isocontours of S/N > 5
weak-lensing detection of 1,10, and 100 clusters as a function of redshift and mass. Points: a
Poisson realization of the above, with errors on mass and redshift (these move points outside the
N = 1 contour). Reproduced from Andreon and Bergé (2012) with permission

intrscat ˜ dnorm(0.25,pow(0.03,-2))
alpha ˜ dnorm(0.08,pow(0.04,-2))
beta ˜ dnorm(0.47,pow(0.12,-2) .

Following Andreon and Bergé (2012), we assume that the scatter and the inter-
cept may both change with redshift

lgnm[i] <- alpha+1.5 +beta*(lgM[i]-14.5)+ gamma*(log(1+z[i]))
lgn[i] ˜ dnorm(lgnm[i], pow(intrscat.z[i],-2))
intrscat.z[i] <- sqrt(pow(intrscat,2)-1+(1+z[i])ˆ(2*csi)) ,

and we adopt weak priors for the newly introduced parameters. First we take a
Student-t distribution centered on zero with 1 degree of freedom for gamma and
csi slopes, similar to other slopes in this book, to make our choice independent of
astronomer’s rules for measuring angles:

gamma ˜dt(0,1,1)
csi ˜dt(0,1,1) .
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We assume a uniform distribution for the redshift prior

z[i]˜dnorm(0,1).

We now specify the prior on lgM. We cannot ignore the fact that the mass func-
tion is steep and that the data collection is non-random, ignoring them would lead
to a biased fit: the recovered slope would be much shallower than the input one, due
to a Malmquist-like bias. In fact, mass errors tend to make the mass’ distribution
broader at both low mass values because of the non-random data collection (alias
the weak-lensing detection), and large mass values because of the steepness of the
mass function. Since high-mass values are overestimated and low-mass values are
underestimated, any quantity that is fitted against these (biased) values, neglecting
the selection function, would return a shallower relation. From theory (following a
path quite similar to the one adopted in Sect. 8.7), Andreon and Bergé (2012) found
that the prior (mass function) at a given redshift is well approximated by a Schechter
(1976) function with slope −1, and characteristic mass given by

lgM* = 12.6- (obsz[i]-0.3)

truncated at lgMtruc, computed as before (see Andreon and Bergé 2012 for details
about this computation).

The coding in JAGS for the above model requires the zero trick to sample distri-
butions not in JAGS. Since we are studying a sample with a non-random selection,
we also need an integral (see Chap. 7.1) for each obsz[i], which we numerically
computed and found to be well approximated by

lg10tot.norm <-0.386165-3.92996*obsz-0.247050*obszˆ2-
2.55814*obszˆ3-5.26633*obszˆ4 .

To sum up, our model reads:

data{
# normaliz
lg10tot.norm <-0.386165-3.92996*obsz-0.247050*obszˆ2-2.55814*

obszˆ3-5.26633*obszˆ4
# dummy variable for zero-trick, to sample from a distribution
# not available in JAGS
for (i in 1:length(obslgM)) {
dummy[i] <-0
}
C<-2
}
model{
intrscat ˜ dnorm(0.25,pow(0.03,-2))
alpha ˜ dnorm(0.08,pow(0.04,-2))
beta ˜ dnorm(0.47,pow(0.12,-2))
gamma ˜dt(0,1,1)
csi ˜dt(0,1,1)
for (i in 1:length(obsn)) {
# modeling lgM
# dummy prior, requested by JAGS, to be modified later
lgM[i] ˜ dunif(13.9891+1.04936*obsz[i]+0.488881*
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obsz[i]ˆ2,16)
# modeling a truncated schechter
lnnumerator[i] <- -(10ˆ(0.4*(lgM[i]-12.6+(obsz[i]-0.3))))
# its integral, from the starting point of the integration
# (S/N=5)
loglike[i] <- -lnnumerator[i]+lg10tot.norm[i]*log(10)+C
# sampling from an unavailable distribution
dummy[i] ˜ dpois(loglike[i])
obslg[i] ˜ dnorm(lgM[i],pow(errlgM[i],-2))
# modeling n, z and relations
obsn[i] ˜ dpois(pow(10, lgn[i]))
obsz[i] ˜ dnorm(z[i],pow(0.02,-2))
z[i]˜dnorm(0,1)
# modeling mass -n relation allowing evolution
lgnm[i] <- alpha+1.5 +beta*(lgM[i]-14.5)+ gamma*(log(1+z[i]))
lgn[i] ˜ dnorm(lgnm[i], pow(intrscat.z[i],-2))
intrscat.z[i] <- sqrt(pow(intrscat,2)-1+(1+z[i])ˆ(2*csi))
}
}.

Fitting the 10714 masses, richness and photometric redshift with this model re-
turns parameters whose (posterior) probability distributions are depicted in Fig. 8.26.
Figure 8.26 is the desired quantity: how well we will be able to measure the richness-
mass scaling with Euclid data. This is an indispensable ingredient for estimating
how well we will be able to measure cosmological parameters using clusters of
galaxies. Marginal probabilities are shown on the diagonal panels, whereas the off-
diagonal panels show the joint probability distributions, i.e., the covariance between
pairs of parameters in the posterior distribution. Some contours are somewhat noisy
because of the finite length of the MCMC chain. The diagonal panels also show
the input values (vertical lines). They are all within 1.5 posterior standard devia-
tions from the recovered value.5 By fitting the observed data, we recover, with good
precision and without bias (i.e., high accuracy), the five (input) parameters describ-
ing the mass-richness scaling. Accounting for the non-random data collection (the
weak-lensing selection) is compulsory, not accounting for it would lead to a fitted
slope � 5σ away from the input one (0.47).

In addition to the input values, the diagonal panels show the prior, i.e., the current
low-redshift calibration of the richness-mass scaling (dashed green line).

There is a strong covariance between the evolution and the z = 0 value of the
intercept (see the off-diagonal panels in Fig. 8.26). It can be easily understood by
noting that z = 0 is outside the range of sampled redshifts. The covariance between
intrinsic scatter and its evolution has a similar origin: the intrinsic scatter is defined
at an unobserved redshift, z = 0, instead of a redshift where it is well observed.

Figure 8.27 compares the model fit (solid line) to the true input relation in stacks
of 201 clusters per point. There is a good agreement between the model fit and the
(unobserved and unused in the analysis) noise-less data, indicating that the fit to the
noisy data captures well the real trend of the noise-less true data.

5 There is only a 10 % probability that in a 5-parameter fit, all fitted values are found within 1 σ
from the input values and 50 % that they are all within 1.5 σ .



154 8 Fitting Regression Models

Fig. 8.26 Marginal (panels on the diagonal) and joint (panels on the off-diagonals) posterior prob-
ability distributions of the mass-richness scaling derived from simulated Euclid data. Red jagged
contours and histograms refer to probabilities computed from the MCMC sampling, whereas the
blue smooth contours refer to a Gaussian approximation of the numerically found posterior. Con-
tours are a 68 % probability level. Vertical (cyan) lines and crosses indicate the values used to gen-
erate the data, whereas the dashed (green) lines show the prior probability distributions (the current
low-redshift calibration of the richness-mass scaling). Reproduced from Andreon and Bergé (2012)
with permission

8.9 Fit Without Anxiety About Non-random Data Collection

Most samples available in astronomy are a non-random subsampling of what exists
in the Universe, because what is available is a either a collection of objects with an
unknown selection function (i.e., without a known function that gives the probability
that an object enters in the sample as a function of object parameters) or because the
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Fig. 8.27 Richness-mass scaling for the simulated Euclid data. The solid line marks the regression
line fitted on observed data. The shaded region marks the 68 % probability interval for the regres-
sion. The red dashed line indicates the input relation. The data points are stacks of true data in
bins of 201 clusters each, which was not used in the fitting. Reproduced from Andreon and Bergé
(2012) with permission

sample has a known selection function (as in surveys), but easier-to-observe objects
are over-represented compared to difficult-to-observe objects.

While it must not be ignored that available samples are not a random sampling
of what exists (unless one is happy with providing biased estimates of target quan-
tities), the importance of the non-random data collection should not be overempha-
sized because not all collections of non-random data display biases. We illustrate
this case by considering an X-ray selected cluster sample. In spite of an obvious
non-random data collection (brighter X-ray clusters are over-represented in the sam-
ple), the non-random data collection is ignorable for deriving the scaling between
richness and mass in the local Universe for the sample considered in Andreon and
Bergé (2012) and also in this section.

The sample selection function (i.e., the probability that a cluster is in the sample)
is fully computed in Andreon and Bergé (2012), but, in short, it follows the same
path already mentioned a couple of times in this chapter: random samples are drawn
from the cluster’s mass function, then “observed” and kept in the collected sample
if they satisfy the conditions used for inclusion in the real sample. For the sample of
interest here, listed in Table 8.5 and taken from Andreon and Hurn (2010), Andreon
and Bergé (2012) derived:

lgM[i] ˜ dnorm(14.5,pow(0.33,-2)) .



156 8 Fitting Regression Models

Table 8.5 Data for Sects. 8.9 and 8.10, from Andreon and Hurn (2010)

ID obstot[i] obsbkg[i] C[i] obslgM[i] errlgM[i]
A0160 29 13 2.951 13.99 0.1928
A0602 23 37 10.77 14.79 0.04194
A0671 36 20 5.443 14.66 0.1192
A0779 19 0 0.4303 14.41 0.06695
A0957 26 20 7.947 14.35 0.2096
A0954 28 168 41.05 13.93 0.242
A0971 50 127 19.57 14.80 0.07902
RXCJ1022.0+3830 26 28 10.27 14.19 0.2592
A1066 65 41 6.421 14.83 0.04492
RXJ1053.7+5450 40 70 13.77 14.69 0.04863
A1142 15 1 1.606 14.5 0.1129
A1173 27 110 30.45 14.13 0.1429
A1190 63 88 9.896 14.53 0.1693
A1205 42 67 11.84 14.47 0.1286
RXCJ1115.5+5426 45 50 10.48 14.58 0.05061
SHK352 32 24 6.125 14.59 0.03659
A1314 33 5 1.832 14.39 0.09893
A1377 50 48 5.913 14.27 0.231
A1424 39 45 13.47 14.60 0.1142
A1436 64 51 8.021 14.09 0.09893
MKW4 19 1 0.5456 14.38 0.0421
RXCJ1210.3+0523 36 67 19.22 14.02 0.2159
Zw1215.1+0400 90 62 7.965 14.55 0.2723
A1552 78 113 11.33 14.41 0.202
A1663 55 86 12.23 14.76 0.1322
MS1306 19 104 44.83 13.92 0.08167
A1728 22 135 26.7 14.62 0.1945
RXJ1326.2+0013 12 118 57.11 13.91 0.2173
MKW11 9 8 4.284 13.69 0.1406
A1750 71 86 12.32 14.36 0.2772
A1767 59 35 6.624 14.94 0.1434
A1773 49 90 15.08 14.45 0.2922
RXCJ1351.7+4622 29 31 13.96 13.73 0.07343
A1809 67 121 11.66 14.28 0.1996
A1885 21 74 50.58 14.81 0.1057
MKW8 17 8 3.39 13.8 0.2704
A2064 22 47 21.44 14.37 0.1405
A2061 85 80 7.381 14.88 0.03937
A2067 28 128 24.3 13.77 0.2001
A2110 32 176 34.32 14.40 0.0796
A2124 48 29 6.036 14.94 0.06879
A2142 186 115 6.141 14.68 0.1478
NGC6107 22 10 4.034 14.18 0.1691
A2175 71 77 14.64 14.05 0.1277
A2197 63 3 0.8029 14.02 0.1936
A2199 88 0 0.239 14.53 0.1213
A2245 88 80 8.376 14.88 0.04412
A2244 99 112 11.75 14.79 0.1607
A2255 173 60 3.514 15.03 0.07326
NGC6338 16 2 1.068 14.34 0.2298
A2399 56 48 7.135 14.16 0.1029
A2428 33 154 25.2 14.31 0.1383
A2670 109 41 4.442 14.43 0.1882

Roughly speaking, massive clusters are rare, those not massive enough have a
low chance of entering in the sample because they are hard to observe. Therefore
the selection function should go to zero at both ends, as the Gaussian above.
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The modeling of richness in the presence of a background has been already pre-
sented a number of times in this book (see Fig. 8.28):

obsbkg[i] ˜ dpois(nbkg[i])
obstot[i] ˜ dpois(nbkg[i]/C[i]+10ˆlgn[i])
nbkg[i] ˜ dunif(0,3000) .

The variables n[i] and nbkg[i] represent the true richness and the true back-
ground galaxy counts in the studied solid angles, whereas we add a prefix obs to
indicate the observed values. We allow Gaussian errors on mass:

obslgM[i] ˜ dnorm(lgM[i],pow(errlgM[i],-2)) .

Following Andreon and Bergé (2012), we assume a power-law relation between
mass and richness n with intercept alpha+1.5, slope beta and intrinsic scatter
intrscat:

lgnm[i] <- alpha+1.5 +beta*(lgM[i]-14.5)
lgn[i] ˜ dnorm(lgnm[i], pow(intrscat,-2)) .

As usual, we centered quantities for improving the MCMC efficiency used to fit
the model and to reduce the covariance between parameter estimates.

Priors are taken to be quite flat:

intrscat <- 1/sqrt(prec.intrscat)
prec.intrscat ˜ dgamma(1.0E-5,1.0E-5)
alpha ˜ dnorm(0.0,1.0E-4)
beta ˜ dt(0,1,1)
nbkg[i] ˜ dunif(0,3000) .

To summarize, the model reads:

model {
intrscat <- 1/sqrt(prec.intrscat)
prec.intrscat ˜ dgamma(1.0E-5,1.0E-5)
alpha ˜ dnorm(0.0,1.0E-4)
beta ˜ dt(0,1,1)
for (i in 1:length(obstot)) {
obsbkg[i] ˜ dpois(nbkg[i])
obstot[i] ˜ dpois(nbkg[i]/C[i]+10ˆlgn[i])
nbkg[i] ˜ dunif(0,3000)
# modeling data selection
lgM[i] ˜ dnorm(14.5,pow(0.33,-2))
# decomment for ignoring data selection
# lgM[i] ˜dunif(13,16)

obslgM[i] ˜ dnorm(lgM[i],pow(errlgM[i],-2))
# modeling mass -n relation
lgnm[i] <- alpha+1.5 +beta*(lgM[i]-14.5)
lgn[i] ˜ dnorm(lgnm[i], pow(intrscat,-2))
}
}.
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alpha beta intrscat nbkg[i]
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Fig. 8.28 Graph showing the stochastic relationship between quantities involved in estimating the
parameters of the fit between richness and masses for a non-random sample, but with an ignorable
data collection

Fig. 8.29 Richness-mass scaling. The solid line marks the mean fitted regression line of log(n200)
on lgM200, while the dashed lines show this mean plus or minus the intrinsic scatter σscat . The
shaded region marks the 68 % probability interval for the regression. Error bars on the data points
represent observed errors for both variables. The distance between the data and the regression
line is due in part to the measurement error and in part to the intrinsic scatter. Reproduced from
Andreon and Bergé (2012) with permission

Fitting the sample of 52 clusters listed in Table 8.5 with the model above yields:

lgn= (0.47±0.12) (lgM−14.5)+1.58±0.04 . (8.7)

Figure 8.29 shows the scaling between richness and mass, the observed data, the
mean scaling (solid line), and its 68 % uncertainty (shaded yellow region) and the
mean intrinsic scatter (dashed lines) around the mean relation.

Figure 8.30 shows the posterior marginals for the key parameters, i.e., for the
intercept, slope, and intrinsic scatter intrscat. The intrinsic mass scatter at a
given richness, intrscat= σlgM| logn, is small, 0.25±0.03 dex.

These posterior probability distributions do not depend, to an appreciable level,
on the adopted prior because the posterior is dominated by the data. In fact, we
refit the same data by using a uniform prior on lgM[i] (a manifestly wrong pop-
ulation structure, which ignores both the rarity of massive clusters and the under-
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Fig. 8.30 Posterior probability distribution for the parameters of the richness-mass scaling com-
puted from the real data. The black jagged histogram shows the posterior as computed by MCMC,
marginalized over the other parameters. The red curve is a Gaussian approximation to the poste-
rior. The shaded (yellow) range shows the 95 % probability interval. Reproduced from Andreon
and Bergé (2012) with permission

representation in the sample of less massive clusters) which returns almost indistin-
guishable results. This occurs because the prior is broad (has a sigma of 0.33 dex)
compared to errlgM[i] (typically 0.1 dex). This example shows that a (specific)
sample whose data collection selection is not random may give a sample whose
data collection is ignorable for the studied trend. Of course, the benign effect of the
selection function cannot be taken for granted, and must be checked case by case.

8.10 Prediction6

In previous sections, we largely addressed the parameter estimation problem, i.e.,
we were interested in the parameters quantifying the (sometimes non-linear) trend
between two or more quantities. As mentioned, this is one of the few reasons why
quantities are regressed. Another reason is prediction.

There are plenty of quantities in astronomy that are too observationally expen-
sive to measure for large samples, for example mass. In such cases, astronomers use
proxies, which are far less expensive to acquire: from a typically small sample of
objects, the researchers measure the target quantity, y and the (mass) proxy, x. Then,
they regress x vs. y and infer y for those objects having only x. This is the most
common way galaxy-cluster masses are estimated, for example using the X-ray lu-
minosity, X-ray temperature, the cluster’s richness, the total optical luminosity, or
other proxies as well.

Let us restate the above in more mathematical terms. Suppose we want to esti-
mate the value of a quantity not yet measured (e.g., the mass of a not yet weighed
cluster). Before data y are collected (or even considered), the distribution of the
predicted values ỹ can be expressed as

p(ỹ) =
∫

p(ỹ,θ)dθ =

∫
p(ỹ|θ)p(θ)dθ . (8.8)

6 Part of the material of this section has been drawn from Andreon and Hurn (2010).



160 8 Fitting Regression Models

These two equalities result from the application of probability definitions (see
Chap. 2), the first equality is simply that a marginal distribution results from in-
tegrating over a joint distribution (Eq. 2.5), the second one is simply an application
of the conditional probability (Sect. 2.4). This result is called the prior-predictive
distribution.

If some data y have been already collected for similar objects, we can use these
data to improve our prediction for ỹ. For example, if mass and richness in clusters
are highly correlated, one may better predict the cluster’s mass knowing its richness
than in the absence of such information, simply because mass shows a lower scatter
at a given richness than when clusters of all richnesses are considered (except if the
relationship has slope exactly equal to tankπ/2, with k = 0,1,2,3).

By explicitly acknowledging the presence of such data, y, we rewrite Eq. (8.8) by
conditioning on y:

p(ỹ|y) =
∫

p(ỹ|y,θ)p(θ |y)dθ . (8.9)

The conditioning on y in the first term in the integral simplifies out because y
and ỹ are considered conditionally independent given θ , so that this term becomes
simply p(ỹ|θ). The left-hand side of the equation is called the posterior predictive
distribution for a new, unobserved ỹ given observed data y and marginalized with
respect to the posterior distribution of our model parameters θ . Its width is a mea-
sure of the uncertainty of the predicted value ỹ, a narrower distribution indicates a
more precise prediction. The quantity computed in Eq. (8.9) is named the posterior
predictive distribution.

How does this work in practice? Let us first consider a simple example. Suppose
we do not know the mass, l̃gM, of a given cluster and we are interested in predict-
ing from it our knowledge of its richness. In this didactic example we assume for
simplicity that

a) all probability distributions are Gaussian,
b) that previous data lgM for clusters of the same richness allowed us to determine

that clusters of that richness have on average a mass of lgM = 13.3± 0.1, i.e.,
p(θ |lgM) =N (13.3,0.12),

c) that the scatter between the individual and the average mass of the clusters is
0.5 dex, i.e., p(l̃gM|θ) =N (θ ,0.52).

Then, Eq. (8.9) can be written in closed form and gives the intuitive solution that
p(l̃gM|lgM) is a Gaussian centered on lgM = 13.3 and with a σ given by the sum
in quadrature of 0.1 and 0.5 (= 0.51 dex). Therefore, a not-yet weighed cluster of
the considered richness has a predicted mass of 13.3 with an uncertainty of 0.51 dex.

This, didactic example, shows that one may analytically predict a quantity, and
its uncertainty. Realistic cases are also addressed by Eq. (8.9), but its evaluation will
likely be a numerical one. The latter is offered by JAGS as a standard feature. In
practice, the integral in Eq. (8.9) is computed quite simply using sampling:

1. Randomly draw θ from the posterior p(θ |y).
2. For each of the randomly drawn θ , randomly select values of ỹ from p(ỹ|θ ,y).
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nbkg[i] n[i] alpha

lgM[i]

beta intrscat precy[i]

obslgM[i]obstot[i]obsbkg[i] obsvarlgM[i]

Fig. 8.31 Graph showing the stochastic relationship between quantities involved in predicting
masses from richnesses

The width of the distribution of these ỹ values gives the uncertainty of the predicted
value. Therefore, the quoted performance accounts for all terms entering into the
modeling of the predictor and target, which includes the uncertainty of the predic-
tor, the uncertainty on the parameters describing the regression between predictor
and target (slope, intercept, intrinsic scatter, and their covariance), as well as other
modeled terms. Some factors are automatically accounted for without any additional
input, for example, where data are scarce, or when we are sampling near or outside
the given range, predictions are noisier (because the regression is poorly determined
in this region). We already used Eq. (8.9) in the upper limit example (Sect. 8.6), it
allowed us to improve the measurements for which we only have upper limits.

Once the above, somewhat technical, text is digested (or at least believed to be
true), the only thing to remember is that in order to predict ỹ for a new object, we
have to put the x values for which we want the prediction in the data file, and “NA”
(for not available) as their y values. JAGS will return a sampling of the posterior
predictive distribution, that we will use as all other posterior samplings. If the object
is already in the list, the user has nothing to do, the posterior distribution is computed
by default.

Andreon and Hurn (2013) and March et al. (2011) show that the Bayesian ap-
proach to prediction is useful: it is more precise than any other method and lacks
the large systematic biases of other approaches (see also Chap. 10). This means, in
the case of masses, that more precise masses can be derived for the same input data,
i.e., at the same telescope-time cost.

Let us now consider a real case, the mass-richness scaling discussed in Andreon
and Hurn (2010). Mass estimates are one of the holy grails of astronomy. Since
these are observationally expensive to measure, or even unmeasurable with existing
facilities, astronomers use mass proxies, which are far less expensive to acquire and
are used to estimate masses. Here we consider the cluster’s richness, i.e., the number
of member galaxies. The model graph is shown in Fig. 8.31.

As usual, we do not measure the true value of the cluster’s richness, but only the
total number of galaxies in the cluster’s line-of-sight and in a control-field region,
the cluster’s richness being the difference of the true values. We already encountered
this problem many times, and by now we should know how to model it:

obsbkg[i] ˜ dpois(nbkg[i])
obstot[i] ˜ dpois(nbkg[i]/C[i]+n[i]) .
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Fig. 8.32 Richness-mass scaling. The solid line marks the mean fitted regression line of lgM on
log(n), while the dashed line shows this mean plus or minus the intrinsic scatter intrscat.
The shaded region marks the 68 % probability interval for the regression. Error bars on the data
points represent observed errors for both variables. Adapted from Andreon and Hurn (2010), re-
produced with permission

The variables n[i] and nbkg[i] represent the true richness and the true back-
ground galaxy counts in the studied solid angles, whereas we add a prefix obs to
indicate the observed values. The data are listed in Table 8.5 and shown in Fig. 8.32.
Upper limits to n are automatically accounted for in our fit (see Sect. 8.6).

The relation between mass, M, and proxy, n, (richness) is usually parametrized
as a power-law with slope beta and intercept alpha+14.5:

z[i] <- alpha+14.5+beta*(log(n200[i])/2.30258-1.5) .

There is, as usual, a Gaussian intrinsic scatter intrscat

lgM[i] ˜ dnorm(z[i], pow(intrscat,-2)) ,

and Gaussian errors on log mass,

obslgM[i] ˜ dnorm(lgM[i],precy[i]) .

In this specific example we have an additional complication: mass errors are
difficult to measure, and therefore we only know their approximate size. Errors
(or anything we measure, indeed) are measured with a finite degree of precision.
We assume that the measured error, obserrlgM200[i], is not biased (i.e., it is
not systematically larger or smaller than the true error, sigma[i], but somewhat
noisy). If a χ2 distribution is adopted, it satisfies both our request of unbiasedness
and noisiness. In formulae:

obserrlgM2
i ∼ σ2

i χ2
ν (8.10)

or, in JAGS,

obsvarlgM200[i] ˜ dgamma(0.5*nu,0.5*nu*precy[i])
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where we used the property that the χ2 distribution is a particular form of the gamma
distribution.

The parameter ν regulates the width of the distribution, i.e., how precise mea-
sured errors are. Following Andreon and Hurn (2010), we are 95 % confident that
quoted errors are correct up to a factor of 2,

nu <-6 .

The remaining part of the model is the same already seen several times in this
book. The data used in this investigation have a high enough quality that all parame-
ters can be estimated, except precy[i], to a sufficient degree of accuracy that we
should not care too much about priors and we can safely take weak (almost uniform)
priors, zeroed for un-physical values of parameters (to avoid, for example, negative
richnesses). The exception is given by the prior on the errors (i.e., σi), for which
there is only one measurement per datum, for which we take a Gamma prior:

precy[i] ˜ dgamma(1.0E-5,1.0E-5)

following the authors (Andreon and Hurn 2010). The same Gamma prior is also
used for the intrinsic scatter term, although any weak prior would return the same
result, because this term is well determined by the data.

We do not need to model the data collection selection: errors on mass are smaller
than the correct mass’ prior (mentioned in the previous section, a Gaussian of 0.3
dex), no selection is applied on richness (the probability of being included in the
sample is richness-independent) and errors on richness are negligible compared to
the variation of the richness’ prior (richness function). Note however that if lower
richnesses were used, as in Sect. 8.9, modeling the data structure would be com-
pelling. Therefore, the population structure cannot be overlooked in general.

The whole model thus reads:

data
{
nu <-6
obsvarlgM <- pow(errlgM,2)
}
model
{
for (i in 1:length(obstot)) {
obsbkg[i] ˜ dpois(nbkg[i])
obstot[i] ˜ dpois(nbkg[i]/C[i]+n[i])
n[i] ˜ dunif(0,3000)
nbkg[i] ˜ dunif(0,3000)

precy[i] ˜ dgamma(1.0E-5,1.0E-5)
obslgM[i] ˜ dnorm(lgM[i],precy[i])
obsvarlgM[i] ˜ dgamma(0.5*nu,0.5*nu*precy[i])

z[i] <- alpha+14.5+beta*(log(n[i])/2.30258-1.5)
lgM[i] ˜ dnorm(z[i], pow(intrscat,-2))
}
intrscat <- 1/sqrt(prec.intrscat)
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Fig. 8.33 Posterior probability distribution for the parameters of the richness-mass scaling. The
black jagged histogram shows the posterior as computed by MCMC, marginalized over the other
parameters. The red curve is a Gaussian approximation to it. The shaded (yellow) range shows the
95 % probability interval

prec.intrscat ˜ dgamma(1.0E-5,1.0E-5)
alpha ˜ dnorm(0.0,1.0E-4)
beta ˜ dt(0,1,1)
}.

Figure 8.32 shows the scaling between richness and mass, observed data, the
mean scaling (solid line) and its 68 % uncertainty (shaded yellow region) and the
mean intrinsic scatter (dashed lines) around the mean relation. The ±1 intrinsic scat-
ter band is not expected to contain 68 % of the data points, because of the presence
of measurement errors.

Using the model above, we found for our sample of 52 clusters:

lgM= (0.57±0.15) (logn−1.5)+14.40±0.05 . (8.11)

Figure 8.33 shows the posterior marginals for the key parameters: for the inter-
cept, slope and intrinsic scatter σscat . These marginals are reasonably well approx-
imated by Gaussians. The intrinsic mass scatter at a given richness, intrscat=
σlgM| logn, is small, 0.27±0.03. The small scatter and its small uncertainty is promis-
ing from the point of view of using richness for estimating the cluster mass.

As mentioned, to predict the mass of a cluster we only need to list in the data file
the values of obstot, obsbkg and C, the string ’NA’ (not available) in place of the
(not available) cluster mass (and any number in the mass error column). JAGS will
compute lgM in the form of sampling for that cluster. Predicted masses will have
errors whose size do account for the proxy error, the scatter between proxy and mass,
and by the uncertainty of the mean relation at the richness of the considered cluster.
Therefore, a cluster with a noisier richness, or a richness not well sampled by the
clusters used to measure the mass-richness regression will have a larger error. For
example, cluster # 38 in Table 8.7 has a larger error on the predicted mass than other
clusters in the table because in the calibrating sample only a few clusters are as rich
as it is. Cluster #9 also has large mass errors because of the extrapolation in going
from the range where the richness-mass is well calibrated, from seven galaxies on,
to its richness, about four galaxies.
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Fig. 8.34 Graph showing the relationship between quantities involved in the meta-analysis of
Sect. 8.11

This example offers us the possibility of directly showing what we illustrated at
the start of the chapter (Sect. 8.1.3): the fit of the inverse relation is not the inverse of
the fit of the direct relation. We fitted twice the elements of Table 8.5, we fitted n as a
function of lgM in Sect. 8.9, and the opposite here. Here we found a slope of 0.57±
0.15. There we found 0.47±0.12 and, beyond any doubt (0.57±0.15) 
= 1

0.47±0.12 .
As mentioned, there is no reason why two regressions should have reciprocal slopes
when, as in this case, they have different goals (and priors), even if they are both
based on the same data.

8.11 A Meta-Analysis: Combined Fit of Regressions
with Different Intrinsic Scatter

Suppose that now you have to combine the results of two fits that share some sim-
ilarities. For example, you may have fitted two data sets with models sharing only
one parameter but not the others. How can one combine such different analyses?
We now come back to the example of the physical constant taking perhaps different
values in our laboratories and at the location of QSO 0347-383 (or at the time its
light was emitted). This object has been independently observed for the very same
reason by two other teams: Ubachs et al. (2007) and Thompson et al. (2009) and
these data are listed in Table 8.6.

Figure 8.35 shows the data of these two teams, which are independently ana-
lyzed, using the model presented in Sect. 8.3 for the Wendt and Molaro (2011) data.
The figures show the scaling between Δλ/λ and k, the observed data, the mean
scaling (solid line), its 68 % uncertainty (shaded yellow region), and the mean in-
trinsic scatter (dashed lines) around the mean relation. We found a negative slope
with a large intrinsic scatter for the data set of Thompson et al. (2009), and a positive
slope for the data set of Ubachs et al. (2007). The intrinsic scatter differs from data
set to data set. This is not surprising because we are witnessing systematic biases
(systematics for short) caused by the different instrument settings at the times of the
observations.

We can enhance this analysis by combining the three data sets. The model is
straightforward, we just need to write three regressions models, one per data set,
with same slope beta (physical constants take the same values independently of
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Table 8.6 Data for the physical constant determination, from Thompson et al. (2009) (upper part
of the table) and Ubachs et al. (2007) (lower part)

k[i] obsy2[i] err.y2[i] k[i] obsy2[i] err.y2[i] k[i] obsy2[i] err.y2[i]
0.05147 0.0918 0.0082 0.00487 0.1047 0.0078 0.01997 0.1032 0.0050
0.04625 0.0944 0.0063 0.03753 0.0908 0.0027 0.01346 0.0985 0.0038
0.02149 0.1018 0.0068 0.03475 0.1061 0.0053 0.01051 0.1035 0.0048
0.02149 0.1061 0.0053 0.03408 0.0958 0.0034 0.01099 0.1004 0.0030
0.02097 0.0930 0.0041 0.03408 0.0808 0.0075 0.01001 0.0985 0.0041
0.04821 0.1018 0.0035 0.00525 0.0987 0.0070 0.00953 0.0949 0.0052
0.04772 0.0973 0.0063 0.00710 0.0997 0.0051 0.00719 0.0911 0.0029
0.01396 0.1068 0.0043 0.00710 0.0861 0.0110 0.00184 0.0975 0.0086
0.01272 0.1049 0.0068 0.03027 0.0980 0.0058 0.00115 0.1018 0.0088
0.03682 0.0994 0.0067 0.02460 0.0925 0.0036 0.00143 0.1018 0.0036
0.01088 0.1061 0.0032 0.02033 0.0911 0.0097 0.00259 0.1025 0.0025
0.00487 0.1049 0.0035 0.02064 0.1059 0.0063
k[i] obsy3[i] err.y3[i] k[i] obsy3[i] err.y3[i] k[i] obsy3[i] err.y3[i]
0.04625 0.1051 0.0031 0.03689 0.1004 0.0012 0.01997 0.0975 0.0018
0.02149 0.1009 0.0025 0.03408 0.0994 0.0010 0.01647 0.1040 0.0026
0.02097 0.0975 0.0026 0.02849 0.0975 0.0020 0.01556 0.1020 0.0025
0.04821 0.0994 0.0027 0.00525 0.0956 0.0032 0.01346 0.0963 0.0040
0.04297 0.0992 0.0030 0.00710 0.0958 0.0026 0.01051 0.1013 0.0011
0.01396 0.0947 0.0015 0.03027 0.1006 0.0019 0.01099 0.0954 0.0021
0.01272 0.0951 0.0023 0.02454 0.0963 0.0069 0.01001 0.0975 0.0016
0.03682 0.0968 0.0023 0.02324 0.0958 0.0024 0.00953 0.1016 0.0027
0.01088 0.0987 0.0018 0.02214 0.0989 0.0066 0.00719 0.0968 0.0024
0.04005 0.1013 0.0019 0.02033 0.1040 0.0017 0.00504 0.0975 0.0025
0.00368 0.1009 0.0038 0.02149 0.0963 0.0021 0.00115 0.0954 0.0027
0.03753 0.1004 0.0019 0.02064 0.1044 0.0016 0.00143 0.0939 0.0016
0.00259 0.0992 0.0030

Fig. 8.35 Scaling between Δλ/λ and k, the observed data, the mean scaling (solid line), its 68 %
uncertainty (shaded yellow region), and the mean intrinsic scatter (dashed lines) around the mean
relation. Data from Thompson et al. (2009) (left panel) and Ubachs et al. (2007) (right panel). The
distance between the data and the regression line is due in part to the data’s observational error and
its intrinsic scatter

which instrument acquires the data) and different intrinsic scatters, intrscat[1],
intrscat[2], intrscat[3], these account for different systematics in the
three experiments. We allow the intercepts, alpha[1], alpha[2], and
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Fig. 8.36 Posterior distribution of the slope β of the meta-analysis of the varying constant problem

alpha[3], to be possibly different, in order to allow possible systematic shifts be-
tween calibrations of the three used instruments. The graph is illustrated in Fig. 8.34.

Here is the model where most of the lines are repeated three times, one per ex-
periment (a more compact form exists):

model {
intrscat[1] ˜ dunif(0,3)
intrscat[2] ˜ dunif(0,3)
intrscat[3] ˜ dunif(0,3)

alpha[1] ˜ dnorm(0.0,1.0E-4)
alpha[2] ˜ dnorm(0.0,1.0E-4)
alpha[3] ˜ dnorm(0.0,1.0E-4)

beta ˜ dt(0,1,1)
for (i in 1:length(x1)) {
# modeling y
obsy1[i] ˜ dnorm(y1[i],pow(err.obsy1[i],-2))
y1[i] ˜ dnorm(z1[i],pow(intrscat[1],-2))
# modeling y-x
z1[i] <- alpha[1]+0.1+beta*(x1[i]-0.03)
}
for (i in 1:length(x2)) {
# modeling y
obsy2[i] ˜ dnorm(y2[i],pow(err.obsy2[i],-2))
y2[i] ˜ dnorm(z2[i],pow(intrscat[2],-2))
# modeling y-x
z2[i] <- alpha[2]+0.1+beta*(x2[i]-0.03)
}
for (i in 1:length(x3)) {
# modeling y
obsy3[i] ˜ dnorm(y3[i],pow(err.obsy3[i],-2))
y3[i] ˜ dnorm(z3[i],pow(intrscat[3],-2))
# modeling y-x
z3[i] <- alpha[3]+0.1+beta*(x3[i]-0.03)
}
}.

In the combined analysis of the three data sets, we found a slope of 4.6±3.2 10−5

when converted in the usual astronomical units. Figure 8.36 shows that β = 0 has
a probability of about 1/6th of the most probable slope, insufficient to claim that
physical constants are variable. As mentioned in previous sections, the model with
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a variable β has an advantage: it has one more degree of freedom, that can be ad-
justed to increase the quality of the fit. Its better performances (larger value of the
maximal posterior) are therefore partially due to the larger flexibility of the model.
To summarize, the data carry little or no evidence for varying physical constants.

8.12 Advanced Analysis

8.12.1 Cosmological Parameters from SNIa7

Supernovae (SNIa) are very bright objects with very similar luminosities. The lu-
minosities spread can be made even smaller by accounting for the correlation with
the supernova’s color and stretch parameter (the latter is a measurement of how
slowly SNIa fade), as illustrated in Fig. 8.37 for the sample in Kessler et al. (2009).
These features make SNIa very useful for cosmology: they can be observed at large
distances and the relation between flux (basically the rate of photons received) and
luminosity (the rate of photons emitted) is modulated by the luminosity distance (to
the square), which in turn is a function of the cosmological parameters. Therefore,
measuring SNIa fluxes (and redshift) allows us to put constraints on cosmological
parameters. The only minor complication is that the SNIa luminosity is a function
of its color and stretch parameters, and these parameters have an intrinsic scatter
too, which in turn has to be determined from the data at the same time as the other
parameters.

March et al. (2011) show that the Bayesian approach, also followed in this sec-
tion, delivers tighter statistical constraints on the cosmological parameters over 90 %
of the time, that it reduces the statistical bias typically by a factor ∼ 2−3, and that
it has better coverage properties than the usual chi-squared approaches.

We observe SNIa magnitudes obsm[i] (= −2.5log( f lux)+ c) with Gaussian
errors errmag[i]):

obsm[i] ˜ dnorm(m[i],pow(errmag[i],-2)) .

These m[i] are related to the distance modulus distmod[i], with a Gaussian
intrinsic scatter intrscatM via

m[i] ˜ dnorm(Mm+distmod[i]- alpha* x[i] + beta*c[i],
pow(intrscatM,-2)),

where Mm is the (unknown) mean absolute magnitude of SNIa, and alpha and
beta allows one to reduce the SNIa luminosity scatter by accounting for the corre-
lation with the stretch and color parameters.

Similarly to March et al. (2011), the Mm, alpha, beta, and log intrscatM
priors are taken to be uniform across a wide range:

7 This section has been drawn from Andreon (2012b).
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Fig. 8.37 Apparent magnitude vs. redshift of the SNIa sample (upper panels), and their residuals
from a ΩM = 0.3, ΩΛ = 0.7 cosmological model (bottom panels) before (left panels) and after
(right panels) correcting for stretching and the color parameter. Reproduced from Andreon (2012b)
with permission

Mm˜ dunif(-20.3, -18.3)
alpha ˜ dunif(-2,2.0)
beta ˜ dunif(-4,4.0)
intrscatM <- pow(10,lgintrscatM)
lgintrscatM ˜ dunif(-3,0) .

x[i] and c[i] are the true value of the stretch and color parameters, re-
spectively, of which we observe obsx[i] and obsc[i] with Gaussian errors
errobsx[i] and errobsc[i]

obsc[i] ˜ dnorm(c[i], pow(errobsc[i],-2))
obsx[i] ˜ dnorm(x[i], pow(errobsx[i],-2)) .

The key point of the modeling is that the obsx[i] and obsc[i] values scatter
more than their errors, but not immensely so, see Fig. 8.38. Therefore, the x[i]
and c[i] distributions are themselves non-uniform. This non-uniformity induces
a Malmquist-like bias (large |obsx[i]| are likely low |x[i]| values scattered to
large values, more than the other way around because of the larger abundance of
low |x[i]| values). Therefore, we model, as March et al. (2011) do, the individual
x[i] and c[i] as drawn from independent normal distributions centered on xm
and cm with standard deviation intrscatx and intrscatR. In formulae:

c[i] ˜ dnorm(cm,pow(intrscatC,-2))
x[i] ˜ dnorm(xm,pow(intrscatx,-2)) .
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Fig. 8.38 Observed values of the stretch parameters, obsx[i], and of the color parameter,
obsc[i] ranked by error. Points scatter more than the error bars (see the left side of the figure).
The dashed lines indicate the size of the intrinsic scatter as determined by our analysis. Reproduced
from Andreon (2012b) with permission

We take uniform priors for xm and cm, and uniform priors on log intrscatx
and on log intrscatC, between the indicated boundaries:

cm ˜ dunif(-3,3)
xm ˜ dunif(-10,10)
intrscatx <- pow(10,lgintrscatx)
lgintrscatx ˜ dunif(-5,2)
intrscatC <- pow(10,lgintrscatC)
lgintrscatC ˜ dunif(-5,2) .

To complete the model, we need to remember the definition of distance modulus:

distmod[i] <- 25 + 5/2.3026 * log(dl[i]) -5/2.3026*
log(H0/300000) ,

where the luminosity distance, dl is a complicated expression, involving integrals,
of the redshift z[i] and the cosmological parameters ΩΛ ,ΩM,w,H0 (see any recent
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cosmology textbook for the mathematical expression), named in the JAGS code as
omegal, omegam, w, and H0.

Redshift, in the considered sample, has a heteroscedastic (i.e., non-constant vari-
ance) Gaussian error errz[i]):

obsz[i] ˜ dnorm(z[i],pow(errz[i],-2)) .

The redshift’s prior is taken to be uniform,

z[i] ˜ dunif(0,2).

Supernovae alone do not allow one to determine all cosmological parameters,
so we need an external prior on them, notably on H0, taken from Freedman et al.
(2001) to be (again this is the beauty of Bayesian methods, it gives us a framework
to incorporate accumulated scientific knowledge)

H0 ˜ dnorm(72,pow(8,-2)).

At this point, we may decide which sets of cosmological models we want to
investigate using SNIa, for example a flat universe with a possible w 
= 0 with the
following priors:

omegam˜dunif(0,1)
omegak <-0
w ˜ dunif(-4,0) ,

or a curved universe with w =−1:

omegam˜dunif(0,1)
omegak˜dunif(-1,1)
w <- -1 ,

or any other set of parameters.
Both considered cosmologies have:

Ωk = 1−Ωm −ΩΛ (8.12)

i.e.,

omegal<-1-omegam-omegak .

Finally, one may want to use some data. As shortly mentioned, we use8 the com-
pilation of 288 SNIa in Kessler et al. (2009).

Most of the distributions above are Gaussian and the posterior distribution can be
almost completely analytically computed (March et al. 2011). However, numerical
evaluations of the stochastic part of the model on an (obsolete) laptop take about
one minute, therefore there is no need for speed up. Instead, the evaluation of the
luminosity distance is CPU intensive (it takes ≈ 103 more time, unless approximate
analytic formulae for the luminosity distance are used), because an integral has to

8 The table is given in electronic format at the link http://www.brera.mi.astro.it/∼andreon/
BayesianMethodsForThePhysicalSciences/SNdata.dat.

http://www.brera.mi.astro.it/~andreon/BayesianMethodsForThePhysicalSciences/SNdata.dat
http://www.brera.mi.astro.it/~andreon/BayesianMethodsForThePhysicalSciences/SNdata.dat
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Fig. 8.39 Graph showing the relationship between quantities involved in the determination of cos-
mological parameters using SN1A

be evaluated a number of times equal to the product of the number of supernovae
and the number of target posterior samplings, i.e., about four millions times in our
numerical computation. The JAGS implementation of the luminosity distance in-
tegral is implemented in the code below as a sum over a tightly packed grid on
redshift values.

To summarize, the fitted model, whose graph is shown in Fig. 8.39, reads:

data {
# grid for distance modulus integral evaluation
for (k in 1:1500){
grid.z[k] <- (k-0.5)/1000.

}
step.grid.z <-grid.z[2]-grid.z[1]
}
model {
for (i in 1:length(obsz)) {
obsm[i] ˜ dnorm(m[i],pow(errmag[i],-2))
m[i] ˜ dnorm(Mm+distmod[i]- alpha* x[i] + beta*c[i],

pow(intrscatM,-2))
obsc[i] ˜ dnorm(c[i], pow(errobsc[i],-2))
c[i] ˜ dnorm(cm,pow(intrscatC,-2))
obsx[i] ˜ dnorm(x[i], pow(errobsx[i],-2))
x[i] ˜ dnorm(xm,pow(intrscatx,-2))
# distmod definition & H0 term
distmod[i] <- 25 + 5/2.3026 * log(dl[i]) -5/2.3026* log(H0/300000)
z[i] ˜ dunif(0,2)
obsz[i] ˜ dnorm(z[i],pow(errz[i],-2))
######### dl computation (slow and tedious)
tmp2[i] <- sum(step(z[i]-grid.z) * (1+w) / (1+grid.z)) *

step.grid.z
omegade[i] <- omegal * exp(3 * tmp2[i])
xx[i] <- sum(pow((1+grid.z)ˆ3*omegam + omegade[i] +

(1+grid.z)ˆ2*omegak,-0.5)*
*step.grid.z * step(z[i]-grid.z))

# implementing if, to avoid diving by 0 added 1e-7 to omegak
zz[1,i] <- sin(xx[i]*sqrt(abs(omegak))) *

(1+z[i])/sqrt(abs(omegak+1e-7))
zz[2,i] <- xx[i] * (1+z[i])
zz[3,i] <- (exp(xx[i]*sqrt(abs(omegak)))-exp(-xx[i]*

sqrt(abs(omegak))))/2 *
*(1+z[i])/sqrt(abs(omegak+1e-7))
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Fig. 8.40 Prior and posterior probability distribution for the three intrinsic scatter terms in the SNIa
problem. The black jagged histogram shows the posterior as computed by MCMC, marginalized
over the other parameters. The red curve is a Gaussian approximation to it. The shaded (yellow)
range shows the 95 % probability interval. The adopted priors are indicated by the blue dotted
curve. Reproduced from Andreon (2012b) with permission

dl[i] <- zz[b,i]
}
b <- 1 + (omegak==0) + 2*(omegak > 0)
########## end dl computation

# priors
Mm˜ dunif(-20.3, -18.3)
alpha ˜ dunif(-2,2.0)
beta ˜ dunif(-4,4.0)
cm ˜ dunif(-3,3)
xm ˜ dunif(-10,10)
# uniform prior on logged quantities
intrscatM <- pow(10,lgintrscatM)
lgintrscatM ˜ dunif(-3,0)
intrscatx <- pow(10,lgintrscatx)
lgintrscatx ˜ dunif(-5,2)
intrscatC <- pow(10,lgintrscatC)
lgintrscatC ˜ dunif(-5,2)
#cosmo priors
H0 ˜ dnorm(72,pow(8,-2))
omegal<-1-omegam-omegak
# cosmo priors 1st set LCDM
#omegam˜dunif(0,1)
#omegak˜dunif(-1,1)
#w <- -1
# cosmo priors 2nd set: wCDM
omegam˜dunif(0,1)
omegak <-0
w ˜ dunif(-4,0)
}.

Figure 8.40 shows the prior (dashed-blue line) and posterior (histogram) proba-
bility distributions for the three intrinsic scatter terms present in the cosmological
parameter estimation: the scatter in absolute luminosity after color and stretch cor-
rections, (intrscatM), and the intrinsic scatter in the distribution of the color and
stretch terms (intrscatx and intrscatC). The (posterior) probability at intrin-
sic scatters near zero is approximately zero and thus the three intrinsic scatter terms
are necessary parameters for the modeling of SNIa, and not useless complications.
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Fig. 8.41 Effect of the population structure for the stretch and color parameters. Each tick goes
from the observed value to the posterior mean. The population modeling attempts to counterbal-
ance the increased spread (Malmquist-like), especially those with larger error (on the right, in the
figures), pulling values toward the mean. Reproduced from Andreon (2012b) with permission

The three posteriors are dominated by the data, the prior is quite flat in the range
where the posterior is appreciably not zero (Fig. 8.40). Therefore, any other choice
for the prior, as long as it is smooth and shallow over the shown parameter range,
would have returned indistinguishable results.

Not only do SNIa have luminosities that depend on color and stretch terms, but
these in turn have their own probability distribution (taken to be Gaussian for sim-
plicity) with a well-determined width. Figure 8.41 depicts the Malmquist-like bias
one should induce if the spread of the distribution of color and stretch parameters is
ignored: it reports the observed values (as in Fig. 8.38), obsx[i] and obsc[i]
as well as the posterior means of the true values x[i] and c[i]. The effect of their
modeling is to pull values toward the mean, and more so those with large errors, to
compensate for the systematic shift (Malmquist-like bias) towards larger observed
values.

Figure 8.42 shows the probability distribution of the two color and stretch slopes:
alpha= 0.12±0.02 and beta= 2.70±0.14, respectively. As for the intrinsic scat-
ter terms, the posterior distribution is dominated by the data and therefore any other
prior, which should be smooth and shallow where the likelihood is greater than zero,
would have returned indistinguishable results.
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Fig. 8.42 Prior and posterior probability distribution for the color and stretch slopes of the SNIa
problem. The black jagged histogram shows the posterior as computed by MCMC, marginalized
over the other parameters. The red curve is a Gaussian approximation of the posterior. The shaded
(yellow) range shows the 95 % probability interval. The adopted (uniform) priors are indicated by
the blue dotted curve. Reproduced from Andreon (2012b) with permission

Fig. 8.43 Constraints on the cosmological parameters ΩM and w. The two contours delimit 68 %
and 95 % constraints. Reproduced from Andreon (2012b) with permission

Finally, Fig. 8.43 reports perhaps the astronomically most interesting result:
contours of equal probability for the cosmological parameters ΩM and w. The
banana shape of the contours is due to the known correlation between these pa-
rameters for the considered experiment. For one dimensional marginals, we found:
omegam= ΩM = 0.40±0.10 and w= w =−1.2±0.2, but with non-Gaussian prob-
ability distributions.

8.12.2 The Enrichment History of the ICM9

Measuring the evolution of the metallicity of the gas that fills the potential well of
galaxy clusters is key information in understanding when metals are produced and
to know the time of stellar feedback on the intracluster medium (i.e., on the gas).

9 The material of this section has been drawn from Andreon (2012a).



176 8 Fitting Regression Models

The determination of the evolution of intracluster medium metal content is made
difficult by

a) upper limits,
b) the low signal-to-noise ratio of the abundance measurements,
c) possible selection effects,
d) boundaries in the parameter space,
e) non-Gaussian errors,
f) the intrinsic variety of the objects studied,
e) abundance systematics.

We simultaneously address all these issues, thus allowing cross-talk (covariance),
following Andreon (2012a). The data contains information on 130 clusters, taken
from Andreon (2012a),10 that combines data observed with different instruments
(Chandra and XMM), a point which requires accounting for. Furthermore, the stud-
ied sample, being a heterogeneous collection without any known selection function,
requires special attention.

8.12.2.1 Enrichment History

Abundance by definition is a positive quantity. Therefore, Andreon (2012a) choose
to fit abundance measurements by a function that can never cross the physical
boundary Ab = 0. It also seems plausible that the Fe abundance at the time of the big
bang is zero. Therefore, following Andreon (2012a), we adopt for the enrichment
history an exponential function, with characteristic time tau, parametrized as:

ft[i] <- Abz02*(1-exp(-t[i]/tau))/(1-exp(-11/tau)) ,

where t[i] is the Universe’s age at the redshift of cluster i. The denominator has
been parameterized to have as its second parameter the Fe abundance at z = 0.2,
f[i]=Abz02, at a redshift well sampled by the data used. This choice simplifies
the interpretation of the results. The τ parameter regulates when enrichment occurs:
early in the Universe’s history (small tau’s) or gradually over time (large tau’s).
More complex histories may be taken in the future when observations will reach the
epoch of first enrichment, for example one with two characteristic times to account
for an initial enrichment by core collapse supernovae followed by a metal production
spread on longer time scales.

8.12.2.2 Intrinsic Scatter

Galaxy clusters show a spread of Fe abundance. The presence of an intrinsic scatter
implies that the information content of a single measurement is lower than indi-
cated by the error, especially when the latter is comparable to, or is smaller than,

10 The table in electronic format is available at the link http://www.brera.mi.astro.it/∼andreon/
BayesianMethodsForThePhysicalSciences/Andreon12 abundance.dat.

http://www.brera.mi.astro.it/~andreon/BayesianMethodsForThePhysicalSciences/Andreon12_abun dance.dat
http://www.brera.mi.astro.it/~andreon/BayesianMethodsForThePhysicalSciences/Andreon12_abun dance.dat
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the intrinsic scatter. The intrinsic scatter acts as a floor: the information content of
a measurement is not better than the intrinsic scatter, no matter how precise the
measurement is. Following Andreon (2012a) we model the distribution of Fe abun-
dances as a log-normal process of unknown intrinsic scatter,

Ab[i] ˜ dlnorm(log(ft[i]), pow(intrscat,-2)) .

Expressed in words, the Fe abundance of cluster i, Ab[i] shows a log-normal
intrinsic scatter intrscat, around the median value, ft[i]. Of course, a Gaus-
sian scatter is precluded by the positive nature of the Fe abundance.

8.12.2.3 Controlling for Temperature T

The Fe abundance might depend on cluster mass. If neglected, this dependence in-
duces a bias in determining the evolution of the Fe abundance unless the studied
sample is a random, redshift-independent sampling of the cluster’s mass function.
For example, if the average mass of clusters in the sample increases with redshift
and the Fe abundance increases with temperature T , one may observe a spurious
Fe abundance tilt (increase) with redshift. Other combinations of dependences are
potential sources of a bias, such as a decreasing metal abundance with increasing T .
Among these combinations, we should also consider those that include variations in
the mass range sampled at a given redshift (e.g., lower redshifts sampling a wider
cluster mass range). To summarize, given the uncontrolled nature of the available
samples, one must at the very least control for T (i.e., a mass proxy) in order to
avoid the risk of mistaking a mass dependency for an Fe abundance evolution. Even
if data are unable to unambiguously determine a T trend, controlling for T allows a
trend to be there as much as allowed by the data and not to overstate the statistical
significance of a redshift trend.

Following Andreon (2012a) we control for mass, by allowing the Fe abundance,
Ab, to depend on T with a power-law dependence.

8.12.2.4 Abundances Systematics

Metal abundances may show some systematic differences when derived by two dif-
ferent teams using data taken with two different X-ray telescopes (Chandra and
XMM) analyzed with similar, but not identical, procedures. In particular, Andreon
(2012a) found for 13 common clusters that XMM abundances are 0.77±0.065 times
those measured with Chandra, i.e.,

factor˜dnorm(0.77-1,pow(0.065,-2)) .

We account for these systematics by allowing metal abundances measured by
different telescopes to differ by a multiplicative factor as large as allowed by the
data. Observationally, the factor is constrained by measurements of both telescopes
having to agree after the multiplicative scaling. Expressed mathematically, we only
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Ab[i]

modeAb[i]modeT[i]

Fig. 8.44 Graph showing the relationship between quantities involved in the enrichment history of
the ICM determination

need to introduce a quantity, tid, that takes the value of zero for the Chandra data,
and one for the XMM data (a convention, but one may choose to do the reverse),
and multiply metal abundances by the factor, 1+factor∗tid, to bring all mea-
surements on a common scale (Chandra, with our convention). For controlling for
temperature and abundance systematic we just need to write:

Abcor[i] <-Ab[i]*pow(T[i]/5,alpha)*(1+factor*tid[i]) .

As usual, we center values near the data’s average (5 keV).

8.12.2.5 T and Fe Abundance Likelihood

X-ray temperature is modeled as log-normal (see Andreon 2012a for data that sup-
port this statement):

modeT[i] ˜ dlnorm(log(T[i]),pow(sigmaT[i],-2)).

Following Andreon (2012a), abundance has a Gaussian likelihood:

modeAb[i] ˜ dnorm(Ab[i],pow(sigmaAb[i],-2)) .

Note that astronomers do not report modeT[i] and sigmaT[i] in their pa-
pers (and similarly for abundance), but other numbers closely related to these (see
Andreon 2012a for details).

The sample includes a few upper limits to the metal abundance. These data do not
require any special treatment, their likelihood is a Gaussian centered at (or below)
zero. Therefore, upper limits to the abundance are automatically accounted for.

8.12.2.6 Priors

We assume we know little about the parameters, i.e., we adopt weak priors, that
assign zero mass for impossible values of the parameters. We adopt almost uniform
priors for all the parameters over a wide range of values, including those of the
observed values, i.e., we do not prefer a parameter value over another one a priori.
Following Andreon (2012a) we take:
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Fig. 8.45 Metal abundance, on the Chandra scale, vs. Universe age. Observed values of metal
abundance and errors are corrected for the T dependence and for the Chandra vs. XMM systematic
as determined by a simultaneous fit of all parameters. Red (blue) circles refer to Chandra (XMM)
measurements. Points indicate the maximum a posteriori, whereas error bars represent the 68 %
probability intervals. The solid line marks the mean fitted relation between metal abundance and
redshift, while the dashed line shows this mean plus or minus the intrinsic scatter intrscat. The
shaded region marks the 68 % probability interval for the regression. Reproduced from Andreon
(2012a) with permission

Abz02˜dunif(0,1)
tau ˜ dunif(1,100)
alpha ˜dt(0,1,1)
intrscat ˜ dunif(0,1)
T[i] ˜ dunif(1,20) .

To sum up, the fitted model, whose graph is shown in Fig. 8.44 is:

model {
for (i in 1:length(modeT)) {
ft[i] <- Abz02*(1-exp(-t[i]/tau))/(1-exp(-11/tau))
Ab[i] ˜ dlnorm(log(ft[i]), pow(intrscat,-2))
Abcor[i] <-Ab[i]*pow(T[i]/5,alpha)*(1+factor*tid[i])
modeAb[i] ˜ dnorm(Abcor[i],pow(sigmaAb[i],-2))
T[i] ˜ dunif(1,20)
modeT[i] ˜ dlnorm(log(T[i]),pow(sigmaT[i],-2))
# for p-value computation
Ab.rep[i] ˜ dlnorm(log(ft[i]), pow(intrscat,-2))
Abcor.rep[i] <-Ab.rep[i]*pow(T[i]/5,alpha)*(1+factor*tid[i])
modeAb.rep[i] ˜ dnorm(Abcor.rep[i],pow(sigmaAb[i],-2))
}
Abz02˜dunif(0,1)
tau ˜ dunif(1,100)
alpha ˜dt(0,1,1)
intrscat ˜ dunif(0,1)
factor˜dnorm(0.77-1,pow(0.065,-2))
}.
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Fig. 8.46 Probability distribution for the parameters of the metal abundance vs. redshift fit. The
solid circles show the posterior probability distribution as computed by MCMC, marginalized
over the other parameters. The red curve (when present) shows a Gaussian approximation to the
posterior. The dashed curve displays the adopted prior. The shaded (yellow) range shows the 95 %
probability interval. Reproduced from Andreon (2012a) with permission

8.12.2.7 Results

The result of the fit of abundance and temperature values for the sample of 130
clusters is summarized in Figs. 8.45 and 8.46.

Figure 8.45 shows the data, corrected for the T dependence and for the abun-
dance systematics, as determined by a simultaneous fit of all parameters. The solid
line marks the mean fitted relation between abundance and Universe age, while the
dashed line shows this mean plus or minus the intrinsic scatter intrscat, that
turns out to be 0.18±0.03, i.e., 18 % of the Fe abundance value. The shaded region
marks the 68 % probability interval of the fit.

Figure 8.46 shows how our knowledge about the parameters changes from before
(prior, dotted line) to after (posterior, solid line) observing and incorporating the
data. The posterior distribution of all parameters is much more concentrated than
the prior, i.e., data are highly informative about these parameters and conclusions
on these parameters are not prior dependent.

A final note of caution: while the analysis accounts for T (mass) dependent se-
lection effects, there could be mass-independent selection effects. The latter are not
accounted for by the analysis.
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8.12.3 The Enrichment History After Binning by Redshift

Some researchers are not happy with adopting a parametric estimate of the stud-
ied quantities, and prefer “to let the data speak for themselves,” which typically
involves binning the data to reduce the noise until a trend appears. This situation
is quite common in the context of measuring the enrichment history. In fact, in the
analysis of the previous section some authors might prefer not to impose a specific
time dependency, and prefer to just inspect the enrichment history found by binning
cluster data in redshift bins. This can be done easily using JAGS, it is just a matter
of removing the code line describing the time dependency and allowing metal abun-
dances in different redshift bins to be independent of each other. The logical link
between intervening quantities becomes

modeAb[i] ˜ dnorm(Ab[i],pow(sigmaAb[i],-2)) T(0,)
modeT[i] ˜ dlnorm(log(T[i]),pow(sigmaT[i],-2))
Ab[i] ˜ dlnorm(log(meanAb), pow(intrscat,-2))
Abcor[i] <- Ab[i]*pow(T[i]/5,alpha)*(1+factor*tid[i])
T[i] ˜ dunif(1,20) ,

to which we have to add the prior for the newly introduced quantity, the mean abun-
dance in the redshift bin, meanAb taken to be a priori in a large range with no
preference of a value over the other:

meanAb ˜ dunif(0.,1) .

For the other parameters we adopt the posteriors determined in the previous sec-
tion as priors. These are, as shown in the previous section, well described by Gaus-
sian distributions:

alpha ˜dnorm(-0.12,pow(0.09,-2))
intrscat ˜ dnorm(0.18,pow(0.03,-2))
factor˜dnorm(-0.22,pow(0.045,-2))I(-1,) ,

The whole model therefore reads:

model {
for (i in 1:length(modeT)) {
modeAb[i] ˜ dnorm(Abcor[i],pow(sigmaAb[i],-2))
modeT[i] ˜ dlnorm(log(T[i]),pow(sigmaT[i],-2))
Ab[i] ˜ dlnorm(log(meanAb), pow(intrscat,-2))
Abcor[i] <- Ab[i]*pow(T[i]/5,alpha)*(1+factor*tid[i])
T[i] ˜ dunif(1,20)
}
meanAb ˜ dunif(0.,1)
alpha ˜dnorm(-0.12,pow(0.09,-2))
intrscat ˜ dnorm(0.18,pow(0.03,-2))
factor˜dnorm(-0.22,pow(0.045,-2))I(-1,)
}.

We emphasize that, strictly speaking, this analysis is using the data twice: once to
derive the posterior of alpha, intrscat, and factor (in previous section), and
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Fig. 8.47 Metal abundance, on the Chandra scale, vs. Universe age, where the individual abun-
dances are replaced by binned values (solid/open points refer to 5/10 redshift bins). The solid line
and shading are as in Fig. 8.46. Two extreme enrichment histories (red lines) are also plotted.
Reproduced from Andreon (2012a) with permission

once to infer the meanAb (in this section). This double use of the data is conceptu-
ally wrong, deprecate, and in general returns underestimated errors. Practically, the
information on the alpha, intrscat, and factor, derived in the previous sec-
tion, is almost independent of meanAb derived here, and therefore errors are very
close to the correct value. Readers unsatisfied by this two-step approach should rely
only on the analysis given in the previous section.

Figure 8.47 shows the result of this binning exercise, after distributing clusters in
5 (solid dots) or 10 (open dots) redshift bins of equal cardinality. The Fe abundance
stays constant for a long time, 4 Gyr or so, after which it decreases, in agreement
with the rigorous derivation of the previous section.

8.12.4 With An Over-Poissons Spread

In this section we are interested in knowing how much the X-ray luminosities of
clusters of a given richness may differ, whether X-ray luminosity and richness are
tightly or only broadly related to each other. The tightness of the relation has im-
plications on the cluster’s astrophysics (the tighter it is, the more homogeneous
the clusters are and their formation histories), and on the X-ray telescope cost of
following-up cluster candidates of a given richness (the larger the spread, more time
should be spent on each target to be sure to acquire a minimal number of photons,
or a given signal to noise).

We now want to find the trend between two quantities we already investigated:
richness, which is given by the difference of two Poisson quantities (cluster and field
counts, already addressed several times in this book), and X-ray luminosity, which,
in first approximation is also given by the difference of two Poisson quantities
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ngalbkg[i] n[i] alpha beta intrscat

lgLx[i] nbkgind[i]

nbkg[i]

obstot[i] obsbkg[i]obsgaltot[i]obsgalbkg[i]

Fig. 8.48 Graph showing the relationship between quantities involved in the X-ray luminosity-
richness scaling

(the X-ray flux in the cluster and field directions). There is an additional compli-
cation, however: background counts fluctuate more than allowed by a Poisson dis-
tribution, an issue modeled in Sect. 6.3.1.

The current regression is, therefore, a merging of the two mentioned models. Its
graph is depicted in Fig. 8.48. This high modularity is one of the advantages of the
Bayesian approach: once the full problem is broken down into smaller parts and
these parts are modeled, the full problem is largely solved too.

As mentioned, richness is modeled as we have done many times (here we change
variable names to avoid any confusion):

obsgalbkg[i] ˜ dpois(ngalbkg[i])
obsgaltot[i] ˜ dpois(ngalbkg[i]/Cgal[i]+n[i])
n[i] ˜ dunif(1,3000)
ngalbkg[i] ˜ dunif(0,3000) .

X-ray luminosity is modeled accounting for the over-Poisson background fluctu-
ations as in Sect. 6.3.1:

# modelling X-ray photons
obstot[i] ˜ dpois(nclus[i]+nbkgind[i]/nbox[i])
nbkgind[i] ˜ dlnorm(log(nbkg[i]),1/0.2/0.2)
obsbkg[i] ˜ dpois(nbkg[i])
nbkg[i] ˜ dunif(0,10000)
# convert nclus in Lx
nclus[i] <- exp(2.30258*(lgLx[i]-C[i])) ,

where the last line is the usual conversion from log10 X-ray luminosities into counts.
To complete the model, we only need to write the link between the abscissa and

ordinate (the linear regression), and specify the prior of the newly inserted parame-
ters (slope, intercept, and intrinsic scatter):

# modeling Lx -n relation
z[i] <- alpha+44+beta*(log(n[i])/2.30258-1.8)
lgLx[i] ˜ dnorm(z[i], prec.intrscat)
# prior
intrscat <- 1/sqrt(prec.intrscat)
prec.intrscat ˜ dgamma(1.0E-5,1.0E-5)
alpha ˜ dnorm(0.0,1.0E-4)
beta ˜ dt(0,1,1) .
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Table 8.7 Data for the X-ray luminosity-richness scaling, from Andreon and Moretti (2011)

ID obsgaltot[i] obsgalbkg[i] Cgal[i] obstot[i] obsbkg[i] nbox[i] C[i]
1 25 61 9.95 259 4079 33 40.41
2 60 29 2.52 35 269 22 41.49
3 115 73 3.78 457 356 51 41.73
6 68 29 4.00 156 325 52 41.77
7 68 18 1.70 53 256 25 41.38
9 4 19 20.33 415 3827 10 39.67

10 72 62 3.85 59 190 41 41.80
11 7 39 34.20 231 4174 35 40.26
12 13 120 28.95 176 4509 63 40.63
13 41 104 12.52 150 4503 61 40.66
16 81 29 1.75 204 330 13 41.04
17 64 22 3.62 296 171 29 41.68
19 53 45 4.73 277 2326 34 40.59
20 48 11 2.01 567 188 10 41.30
23 89 46 3.60 101 562 58 41.88
24 67 21 2.31 179 239 27 41.84
25 76 32 3.48 59 400 43 41.74
26 114 33 2.01 223 337 19 41.20
27 48 65 7.41 190 340 65 41.97
28 46 38 3.36 310 190 14 41.43
29 95 41 3.10 101 262 48 41.90
30 27 18 5.24 434 840 17 40.94
31 59 39 5.51 691 396 36 41.60
32 47 50 7.04 49 724 52 41.29
33 23 172 28.64 380 4650 61 40.80
34 45 43 8.30 38 468 77 41.72
35 15 80 38.45 144 2539 58 40.76
36 8 10 8.05 79 828 15 40.59
37 32 27 7.13 53 199 25 41.63
39 21 101 19.48 412 3302 66 40.87
40 17 39 11.73 50 1098 28 40.91
42 104 87 5.50 33 387 98 42.13
43 139 124 5.37 96 198 96 42.51

The full model, whose graph is shown in Fig. 8.48 then reads:

model{
for (i in 1:length(obstot)) {
# modelling X-ray photons
obstot[i] ˜ dpois(nclus[i]+nbkgind[i]/nbox[i])
nbkgind[i] ˜ dlnorm(log(nbkg[i]),1/0.2/0.2)
obsbkg[i] ˜ dpois(nbkg[i])
nbkg[i] ˜ dunif(0,10000)
# convert nclus in Lx
nclus[i] <- exp(2.30258*(lgLx[i]-C[i]))
# modelling galaxy counts
# n200 term
obsgalbkg[i] ˜ dpois(ngalbkg[i])
obsgaltot[i] ˜ dpois(ngalbkg[i]/Cgal[i]+n[i])
n[i] ˜ dunif(1,3000)
ngalbkg[i] ˜ dunif(0,3000)
# modeling Lx -n200 relation
z[i] <- alpha+44+beta*(log(n[i])/2.30258-1.8)
lgLx[i] ˜ dnorm(z[i], prec.intrscat)
}
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Fig. 8.49 X-ray luminosity-richness scaling. The solid line indicates the mean fitted regression
line of logLX , on logn, while the dashed line shows this mean plus or minus the intrinsic scatter
σscat . The shaded region marks the 68 % probability interval for the regression. The upper abscissa
indicates the cluster mass. Reproduced from Andreon and Moretti (2011) with permission

intrscat <- 1/sqrt(prec.intrscat)
prec.intrscat ˜ dgamma(1.0E-5,1.0E-5)
alpha ˜ dnorm(0.0,1.0E-4)
beta ˜ dt(0,1,1)
}.

Using this model, we found for the samples of 33 color-selected clusters in
Andreon and Moretti (2011) listed in Table 8.7:

lgLx= (1.69±0.30) (logn−1.8)+43.71±0.11. (8.13)

Figure 8.49 shows the scaling between richness and X-ray luminosity, the ob-
served data, the mean scaling (solid line) and its 68 % uncertainty (shaded yellow
region) and the mean intrinsic scatter (dashed lines) around the mean relation. The
±intrscat band is not expected to contain 68 % of the data points because of the
measurement errors. All points are, however, within twice the intrinsic scatter.

Figure 8.50 shows the posterior probability distribution of the intercept, slope,
and intrinsic scatter σscat . These probability distributions are reasonably well ap-
proximated by Gaussians. The intrinsic LX scatter at a given richness, σscat =
σlgLX | logn200, is very large, 0.51± 0.08 dex. In other words, a whole 1 dex in LX

is needed to bracket 68 % of all clusters of a given richness.
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Fig. 8.50 Posterior probability distribution for the parameters of the X-ray luminosity-richness
scaling. The black jagged histogram shows the posterior as computed by MCMC, marginalized
over the other parameters. The red curve is a Gaussian approximation of it. The shaded (yellow)
range shows the 95 % probability interval. The jagged nature of the histogram is caused by the
finite sampling of the posterior. Reproduced from Andreon and Moretti (2011) with permission

8.13 Exercises

Exercise 1

Compare analytically and numerically computed posteriors. D’Agostini (2005) an-
alytically computed the posterior probability distribution of a linear fit with normal
errors and a Gaussian intrinsic scatter (shown in Sect. 8.4), known in the statistical
literature as the errors-in-variable Bayesian regression (Dellaportas and Stephens
1995). After having analytically derived the posterior (perhaps with the help of
D’Agostini 2005), generate some fake data and fit them. Then compare the numeri-
cally and analytically derived posteriors.

Exercise 2

Recycle. The model introduced in Sect 8.4, a trend between two quantities, both
subject to errors and with an intrinsic scatter, is quite general and may find many
applications. Use it for computing the scaling between stellar mass and cluster mass
using the data11 in Andreon (2010a). Then, compute the scaling between the stellar
mass fraction vs. cluster mass. Note that cluster mass enters in both abscissa and
ordinate (stellar mass fraction is stellar mass over cluster mass). There is a way to
account for the error covariance that requires no work at all, fitting stellar mass vs.
cluster mass! (Answer:

lgM� = (0.45±0.08) (logM−14.5)+12.68±0.03, (8.14)

11 The table is given in electronic format at the link http://www.brera.mi.astro.it/∼andreon/
BayesianMethodsForThePhysicalSciences/fstar.dat.

http://www.brera.mi.astro.it/~andreon/BayesianMethodsForThePhysicalSciences/fstar.dat
http://www.brera.mi.astro.it/~andreon/BayesianMethodsForThePhysicalSciences/fstar.dat
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and, as a consequence,

log f� = (−1+0.45±0.08) (logM−14.5)+12.68±0.03. (8.15)

)

Exercise 3

Recycle. The model for estimating efficiency and completeness, illustrated in Sect.
8.2, is perfectly suited for describing the run of the fraction of galaxies of early-type
morphology with distance from the cluster’s center. Using the data,12 in Andreon
et al. (1996) and Andreon et al. (1997), compute the radial profile of the fraction of
early-type galaxies in the Coma cluster.

Exercise 4

Practice writing your own JAGS code. Consider the simple data set:
obsY −7.821 −1.494 −15.444 −10.807 −13.735 −14.442 −15.892 −18.326
obsX 5 6 7 8 9 10 11 12

For this data assume the simple linear regression model

Z[i] = a + b * obsX[i]
obsY[i] ˜ dnorm(Z[i],prec).

Experts familiar with the process that generated this data expect that a ∈ [1,10],
b ∈ [−1,3], and prec ∈ [.03,4]. Use this information to formulate your own prior
distributions and then obtain the posterior distributions of a, b, and prec.

Exercise 5

Return to the previous exercise (i.e., Exercise 4). Using the posterior distribution
from Exercise 4, calculate:

Exercise 5a

the posterior distribution of σ = 1/
√
prec

12 The table is given in electronic format at the link http://www.brera.mi.astro.it/∼andreon/
BayesianMethodsForThePhysicalSciences/Coma earlytype.dat.R.

http://www.brera.mi.astro.it/~andreon/BayesianMethodsForThePhysicalSciences/Coma_earlytype. dat.R
http://www.brera.mi.astro.it/~andreon/BayesianMethodsForThePhysicalSciences/Coma_earlytype. dat.R
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Exercise 5b

the posterior distribution of a+b∗13

Exercise 5c

the prior predictive distribution of a+b∗13

Exercise 5d

the posterior predicted distribution of a+b∗13
In particular, compare the distributions from 5b and 5c and the distributions from 5c
and 5d.

Exercise 6

Recreating history. The following data set is the same data set that Edwin Hubble
used to show that galaxies are either moving away from us or towards us. Using this
data and your own priors, fit the model

obsV[i] ˜ dnorm(b * obsD[i],prec),

where obsV is the observed velocity (in units of km/s), and obsD is the observed
distance (in units of 106 parsecs).

obsD obsV obsD obsV obsD obsV obsD obsV obsD obsV
0.032 170 0.275 −220 0.8 300 1 920 2 500
0.034 290 0.45 200 0.9 −30 1.1 450 2 850
0.214 −130 0.5 290 0.9 650 1.1 500 2 800
0.263 −70 0.5 270 0.9 150 1.4 500 2 1090
0.275 −185 0.63 200 0.9 500 1.7 960

Exercise 7

Regression using indicator variables. Consider the data set given in the table below.
Using this data, fit the model

obsY[i] ˜ dnorm(a+b * obsX[i]+r*Z[i],prec).
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Prior information that can be used for the parameters are a ∈ (0,2), b ∈ (0,16),
r ∈ (0,2) and prec ∈ (0.577,1).

obsY 10.79 18.72 23.89 31.53 39.77 50.73 57.86 69.76 76.93 83.02
obsX 1 2 3 4 5 6 7 8 9 10

Z 0 0 0 0 0 1 1 1 1 1
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Chapter 9
Model Checking and Sensitivity Analysis

In this section we introduce two tasks:

1. model checking, i.e., assessing whether the considered model fits the data in
some sense or needs to be revised;

2. sensitivity analysis, i.e., assessing the effects on conclusions caused by devia-
tions from the assumptions of the statistical model.

The purpose of model checking is to understand whether the model accurately
describes the data, and, in the case it does not, the ways in which the fitted model
does not fit the data and how to improve it. Therefore, the purpose of model check-
ing is related to, but different from, rejecting a model, or choosing between a collec-
tion of candidate models. The reader interested in these topics and these conceptual
subtleties should consult Gelman et al. (1996), Bayarri and Castellanos (2007) and,
most importantly, the discussion at the end of these papers.

Let us emphasize that all models that describe our world are wrong in the sense
of being approximations to the “true” model (e.g., Newtonian gravitation is an ap-
proximation of general relativity), yet even approximated models are still useful in
many circumstances (as the late George Box said, “All models are wrong, but some
are useful”). For example, all cosmological simulations use Newtonian gravity in-
stead of general relativity gravity (Frenk and White 2012). A model is hardly useful
if it does not fit the data in hand (those being fitted). A poor model fit is, however, a
starting point for building a better model. For example, the poor fit between redshift
and luminosity distance of SNIa leads to the building of a better fitted model (the
discovery of the dark energy, which awarded a Nobel prize, see Sect. 8.12.1).

Therefore, the purpose of this chapter is not to determine and declare that once
and forever whether a fitted model is correct or wrong for centuries to come (it is
certainly wrong, for sure), but if the considered model is at odds with the current
available data (the fitted data), for example because it is over-simplified compared
to some specific complexity pointed out by the data. In the latest case, it needs to
be updated right now. In the former case, be prepared, gentle reader, to state (today)
that the model fits the data and to discover, perhaps in a century from now, that

© Springer International Publishing Switzerland 2015
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the model no longer fits the much better data that will be available in the future.
The astronomer may recall, for example, the famous velocity vs. distance linear fit
by Hubble (1925) and remember that the relation between these quantities is, today,
obviously non-linear. The physicist may recall the linear composition of velocities
and remember how to compose them at speeds near to those of light.

Sensitivity analysis is used to investigate how deviations from your statistical
model and its assumptions affect your conclusions. Examples of such deviations
are:

• deviations from the distributional assumptions (i.e., deviations from the assump-
tions regarding the stochastic elements of your model),

• alternative functional forms for the relationships in your model,
• alternative prior distributions.

In summary, model checking and sensitivity analysis are tools used to assess
and understand the current adopted model. The purpose of this chapter is to pro-
vide some advice on how the careful scientist should perform model checking and
sensitivity analysis. We begin with sensitivity analysis and conclude with model
checking.

9.1 Sensitivity Analysis

Every research analysis makes assumptions (e.g., that counts fluctuate according to
a Poisson likelihood, that the relation between two quantities has some relationship
and not another). Some of these assumptions are likely well justified and unlikely
to be wrong. Some other assumptions are taken for simplicity or for other reasons,
but without any strong justification. Before deciding that the analysis is complete,
start relaxing, and being proud of our own work, it is important to test the sensitivity
of the results to the adopted assumptions, and, if any of these assumptions contain
uncertainty, estimate the impact of its uncertainty on the results. It may be that the
results are robust to the uncertainty assumption, or perhaps overly sensitive to it.
It is important to know and inform the reader how much the results depend on the
uncertain assumption.

There is ample literature on the subject of incorporating model uncertainty (i.e.,
we made a good assumption by picking the correct model) into the estimation of
parameter uncertainties, Hoeting et al. (1999) is a good entry point. At the very least
we need to replace uncertain assumptions with other plausible assumptions and
check how the results change. These can be split into three cases (though these cases
may not be exhaustive): check a different prior distribution, check an alternative link
function, and check alternative distributional assumptions.

9.1.1 Check Alternative Prior Distributions

We devoted all of Chap. 5 to discussing the importance of checking the prior’s influ-
ence on the posterior and we reiterated this point several times within this book (e.g.,
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Fig. 9.1 Posterior probability distribution (solid histogram) of the neutrino mass for a lognormal
prior (dotted blue curve). The shaded region marks the 95 % highest posterior credible interval

Sects. 6.2, 8.7, 8.9, 8.12.2), and we can only re-emphasize its importance here and
illustrate it by adopting an alternative prior for the neutrino experiment of Sect. 4.1.

Recall we made a mass observation of −5.4 with the likelihood’s width (σ ) set
at 3.3. We adopted a uniform prior between 0 and 33.

We now consider an alternative prior: we take a lognormal prior with both param-
eters equal to 1. It is a smooth density (gently decreasing at high and low values),
has its median equal to 2.7, and contains 97 % of the probability between 0.33 and
16.5 (i.e., between 0.1 and roughly 5 times the instrument resolution). This prior is
plotted as the dashed curve in Fig. 9.1. With the revised (lognormal) prior, the model
reads:

model{
obsm ˜ dnorm(m,prec)
m ˜ dlnorm(1,1)
prec <- pow(3.3,-2)
}.

With the lognormal prior, the 95 % upper limit to the neutrino mass is 3.2 eV/c2.
With the previously adopted (uniform) prior, it was 3.8 eV/c2. The two upper limits
are not considerably different (remember, the instrument resolution is 3.3 eV/c2).

In this example, conclusions (i.e., the upper limit) depend little on which one of
the two priors is adopted.

9.1.2 Check Alternative Link Functions

Suppose you have modelled the y vs. x relation using a given function y = f (x), and
suppose you have chosen the link function f mostly for convenience, not because
theory predicts that the form of the function f is the one you should assume. It may
be (or may be not, this is the point to be checked) that your conclusions rely on the
assumed form of the function f . For example, you may have taken f to be linear
(for convenience) when instead it might be a non-linear function. Or you may have
taken a constant (i.e., predictor-independent) intrinsic scatter (as everywhere in this
book) when instead it might be a linear function of the predictor (e.g., the scatter
increases as the predictor decreases).
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Fig. 9.2 Mass-YSZ scaling (left–hand panel) and residuals (observed minus expected) as a function
of redshift (right–hand panel). The solid line marks the mean fitted regression line. The shaded
region marks the 68% uncertainty for the regression. In the left–hand panel, measurements are
corrected for evolution. In the right–hand panel the dotted line shows the E2/3 dependency assumed
by the Planck team. Reproduced from Andreon (2014) with permission

Uncertainties on the form of the link f function can be incorporated as usual in
the prior-to-posterior inference: for example, the possibly non-constant scatter can
be modelled as a linear function of the predictor quantity. Sometimes, in practice,
this super-model often requires hard-to-know priors (e.g., on the slope of the linear
coefficient) or on hard-to-know alternative links (the alternative link should be linear
or an exponential?). In spite of these difficulties, alternative link functions must be
explored, in particular when one suspects that conclusions may be badly impacted
by an alternative form of the link function.

Let us consider the Sunayev-Zeldovich mass-observable fitted by the Planck
team (Planck Collaboration et al. 2013) shown in Fig. 9.2. The authors have recently
derived the value of the cosmological parameters using two probes, the cosmic mi-
crowave background and clusters of galaxies. While cosmological parameters are
unique, the values found using the two probes differ from each other. Let us look
in more detail at the galaxy cluster probe: the cosmological constraint comes from
matching the galaxy cluster abundance (per unit observable, YSZ) to the cluster’s
mass function (per unit mass M), via a mass-observable relation. This relation f is
taken by Planck Collaboration et al. (2013) to be

logYSZ=alpha + beta * log(M/Mref) +2/3 * log10 E(z) ,

where the coefficient 2/3 is the value suggested by (a simple) theory, and with
alpha and beta to be determined from the data. Mref is the usual value for
centering quantities near their average to speed up computations and to simplify the
interpretation of the found results. log10 E(z) is the decimal log of a simple
function of the redshift (distance) z. The key point to remember is that the de-
rived value of the cosmological parameters depends on the value of the parameters
alpha and beta, a point well known in the astronomical literature. Performing a
sensitivity analysis on the form of the link function f is, therefore, paramount!
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Andreon (2014) argues that the link function f may be slightly different, with
the difference being that the 2/3 (fixed) coefficient has to be replaced by a gamma
parameter which is to be estimated from the data rather than assuming its value is
known. In fact, as reported in Andreon (2014), there is no observational evidence
that gamma= 2/3, and the estimated value points toward a different gamma, as
shown below.

The full analysis of this data set requires us to properly account for the Malmquist
bias and the sample selection function,1 accounted for in Andreon (2014), but ig-
nored here to focus on the main point. We instead fit the very same bias-corrected
data2 fitted by the Planck team with the errors-in-variable regression model intro-
duced in Sect. 8.4 (and which has already been used a number of times in this book):

model {
for (i in 1:length(obslogM)) {
logM[i] ˜ dunif(13,17)
obslogM[i] ˜ dnorm(logM[i],pow(errlogM[i],-2))
logYm[i] <- alpha-4.3 +beta*(logM[i]-14.778)+gamma*

log(Ez[i])/2.303
logYSZ[i] ˜dnorm(logYm[i], prec.scat)
obslogYSZ[i] ˜ dnorm(logYSZ[i],pow(errlogYSZ[i],-2))
}
alpha ˜ dnorm(0.0,1.0E-4)
beta ˜ dt(0,1,1)
prec.scat ˜ dgamma(1.0E-2,1.0E-2)
intrscat <- 1/sqrt(prec.scat)
gamma <-2/3 # to hold gamma fixed.
}.

When fitted to the Planck data, this model returns beta= 1.68±0.06.
As argued by Andreon (2014), what if the considered link function

logYm[i] <- alpha-4.3 +beta*(logM[i]-14.778)+gamma*
log(Ez[i])/2.303

with fixed gamma were replaced by another with a variable gamma? To test this
hypothesis, we just need to replace the single line

gamma <-2/3

with

gamma ˜ dt(0,1,1) .

With the revised model, beta= 1.51± 0.07, fairly different from the Planck
team’s preferred value of beta= 1.79± 0.06 which they obtained by fitting the
very same data with gamma held fixed at 2/3. The two fits differ by ≈ 3σ , which is

1 This full analysis was performed using a JAGS model whose building blocks are all listed in this
book. The reader can therefore perform the full analysis, basically by cut & paste.
2 The data are available at: http://www.brera.mi.astro.it/∼andreon/BayesianMethodsForThePhysi
calSciences/planckdata biascor.dat.R.

www.brera.mi.astro.it/~andreon/BayesianMethodsForThePhysicalSciences/planckdata_biasc or.dat.R
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Fig. 9.3 Joint probability distribution of the mass-YSZ scaling. Contours are at 68 %, 95 % and
99.7 % probability level. The point with the error bar marks the value derived by the Planck team
imposing gamma= 2/3. Reproduced from Andreon (2014) with permission

remarkable, because the very same data are being fitted.3 Figure 9.3 shows the joint
posterior probability distribution and the Planck team’s preferred value (solid dot
with error bar, derived with a non-Bayesian method fitting the very same data). The
latter is close to the boundary of the 99.7 % probability contour, indicating that the
data strongly favors a value of gamma lower than the one assumed by the Planck
team. Expressed in different words, the data do not favor beta= 2/3, assumed
by the Planck analysis. Back to our original purpose (sensitivity analysis, not cos-
mology), the slope beta strongly depends on the form of the linking function, in
particular whether gamma should, or should not, be held fixed at 2/3.

In summary, it is wise to check if and how conclusions depend on the adopted
form of the linking function, sometimes an apparently minor difference, such as
holding a parameter fixed or fitting it, may make a major difference.

9.1.3 Check Alternative Distributional Assumptions

As an example, let us consider the case of the Gaussian scatter adopted in the inves-
tigation of the enrichment history of the intracluster medium (Sect. 8.12.2). In this
example, the existence of an intrinsic scatter is strongly motivated by the data’s be-
havior. However, intrinsic scatter’s nature, i.e., whether it is Gaussian, log-Normal,
or some other distribution, is largely unknown. Section 8.12.2 adopts, following An-
dreon (2012a), a log-Normal scatter distribution. How strongly do the results depend
on the (log-)Normality assumption on the scatter?

3 This situation occurs because in the analyzed sample more distant clusters are also those with
larger masses. Therefore, the slope beta and evolutionary term gamma are partially collinear, as
shown in Fig. 9.3. The collinearity is partially broken by the spread in logY at a given z.
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Following Andreon (2012a), we replace this assumption by another, a Student-t
scatter, and check how the results change. In Sect. 8.12.2 we adopted:

Ab[i] ˜ dlnorm(log(ft[i]), pow(intrscat,-2)) ,

which is now replaced by

Ab[i] ˜ dt(log(ft[i]), pow(intrscat,-2), 10) .

We fit the new model to the same data used before. We found that values for
the parameters and errors are quite similar to those in Sect. 8.12.2. In particular, we
found intrscat= 0.16± 0.03. A Student-t distribution has a standard deviation
(parameter that we measured for the Gaussian)

√
10/8 times larger, i.e., 0.18±0.04

to be compared with the (Gaussian) scatter 0.18±0.03 derived in Sect. 8.12.2.
To summarize, for the fit of the enrichment history of the intracluster medium,

the adoption of a Student-t or log-normal scatter makes no difference on the results.

9.1.4 Prior Sensitivity Summary

1. If your prior is uncertain, check the sensitivity to the prior, for example, by
adopting a different distribution for the prior or by checking whether the prior
is approximately constant where the posterior is non-null (see Chap. 5).

2. If your link function is adopted for simplicity, explore alternative functional
forms for the link function.

3. If some adopted distribution is not strongly motivated by theoretical arguments
(as often the intrinsic scatter is), explore alternative distributions.

If the results do depend on the stated assumptions, then: first, note that the
Bayesian approach is offering you an easy way to discover that your conclusions
depend on assumptions (and how), a dependence that may have escaped you other-
wise. Second, we suggest to, at the very least, specify how the results depend on the
stated assumptions. Third, consider incorporating the model uncertainty into the un-
certainty of the final result, i.e., average results obtained with different assumptions
following, e.g., Hoeting et al. (1999).

9.2 Model Checking

9.2.1 Overview

As mentioned, the work of the careful researcher does not end by finding the
parameter set that best describes the data, (s)he must also check whether the adopted
model is an acceptable description of the data, or if it is misspecified, i.e., in ten-
sion with the fitted data. Whenever feasible, graphical assessment should be done
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because plots allow us to directly inspect the magnitude of the various quantities
and identify problems that are not visible otherwise. A number of such plots have
been shown throughout this book: in the average of incompatible measurements
(Sect. 6.2.2) a simple plot of the data (Fig. 6.19) shows that the data is incompatible
with a single Gaussian model. Similarly, when modeling the distribution of globular
cluster metallicities (Sect. 6.2.1), the histogram of the data values (Fig. 6.15) shows
a bimodal distribution that cannot be modeled by a unimodal distribution such as a
Gaussian. Recall in Chap. 8 we inspected many figures and noted that data scatter
more than the error, and thus an intrinsic term is needed to describe the data.

Data summaries and visualizations (such as a histogram) are useful tools for
building a model that fits the data. Moreover, these early investigations are a
common way to discover that a preliminary model does not fit. Visual inspection
is very useful for spotting anomalies (differences between the behavior of the data
in hand and of the simulated data) which should carefully be investigated later.

After inspecting the data and fitting a model, it is useful to inspect the residuals.
Inspecting the residuals is one way of looking for anomalies or discrepancies (un-
expected behavior of the residuals) in the model fit. For example, if we fit a linear
model to our data and our residuals (the difference between our data and the mean
of the model) are not symmetrically scattered about zero, then we know that our
model is not adequately describing the data.

If a possible discrepancy is detected or is suspected, or if one is just willing to as-
sess a feature of the model, then how can we quantitatively determine the statistical
significance of the discrepancy? In the non-Bayesian paradigm (i.e., frequentist
statistics), the statistical significance of the discrepancy is measured by comput-
ing a p-value, i.e., the probability of obtaining new data that are more extreme (or
discrepant) than the data in hand once parameters are taken at the best fit value. The
Bayesian version of this concept (e.g., Gelman et al. 2004) acknowledges that pa-
rameters are not perfectly known, and therefore one should also explore, in addition
to best fit values, other values of the parameters. In practice, discrepancy becomes
a vector, instead of a scalar, of dimension j, that measures the distance between
the data and j potential models, one per set of parameters considered. Of course,
more probable models should occur more frequently in the list, quantifying that dis-
crepancy from an unlikely model is less detrimental than discrepancy from a likely
model. Therefore, if parameters are explored by sampling (as in this book), it is just
a matter of computing the discrepancy of the data in hand for each of j sets of pa-
rameters stored in the chain, instead of relying on one single set of parameter values
(say, those that maximize the likelihood). Once one has acquired the discrepancy
vector for the data, one then repeats the computation for fake data generated from
the model, and counts how many times the simulated data are more extreme than
the data on hand, as illustrated in detail in the next sections.



9.2 Model Checking 199

9.2.2 Start Simple: Visual Inspection of Real and Simulated Data
and of Their Summaries

In Sect. 8.2 we computed the trigger efficiency of a CERN experiment by fitting a
phi (error) function to experimental data. The fitting model is quite simple, there are
only very few features that we may get wrong and therefore there is little to test.
As mentioned, in order to test whether the model fits the data, we need simulated
(replicated) data from the model. These can be generated by using

nrec.rep[i] ˜ dbin(eff[i],ninj[i]) ,

which draws for each energy bin [i] a value nrec.rep[i] from a binomial
distribution having the same parameters as those from the data fit. By this operation,
we are generating simulated data drawn from the model which is assumed to be a
correct description of the data. In practice, we have taken the existing code line
corresponding to the part of the model that we want to test and replicate it by adding
a .rep to the variable name.

The left panel of Fig. 9.4 shows the first data set generated. Qualitatively speak-
ing, it does not look much different from the real data set, as the few other simu-
lated data sets that we have inspected. Changing from a qualitative to a quantitative
statement about the similarities between the true and simulated data, we compute
(and plot) the 68 % interval of replicated data and compare them to the observed
data. This comparison is shown in the right panel of Fig. 9.4. Figure 9.4 shows a
good agreement, and suggests that a more attentive exploration of possible model
discrepancies is probably not worth the time it takes (but those of you with spare
time or with a real experiment where a precise modeling of the energy dependency
of efficiency is an important issue should follow the instructions in the next section).

To summarize, an attentive visual inspection of the data, of simulated data, and of
summaries of simulated data (as the 68 % intervals) is the first step of model check-
ing. We invite the reader to plot the data and the model in all the ways that physi-
cal intuition suggests, looking for discrepancies of different kinds (offsets between

Fig. 9.4 Left panel: Real (black) and simulated (red) data as a function of the energy bin. Right
panel: 68 % range of simulated data (red intervals) vs. observed data (point)
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model and data, too much/little scatter around the mean model, localized system-
atic differences, etc.). If one is found, then change the model until discrepancies
disappear.

9.2.3 A Deeper Exploration: Using Measures of Discrepancy

Let us now consider the cosmological estimate using SNIa of Sect. 8.12.1. We as-
sumed there a linear relation with an intrinsic scatter between the absolute mag,
color and stretch parameters (see Sect. 8.12.1 for details):

mcor[i] <- M+distmod[i]- alpha * x[i] + beta * c[i]
m[i] ˜ dnorm(mcor[i], pow(intrscatM,-2) .

Suppose that we wish to test this assumption. To this purpose we simulate
m.fake[i] magnitudes and, from these, we also simulate observations with the
same errors as our true data:

m.fake[i] ˜ dnorm(mcor[i], pow(intrscatM,-2)
obsm.fake[i] ˜ dnorm(m.fake[i], precmag[i]) .

In practice, we added the following three JAGS lines:

mcor[i]<-Mm+distmod[i]- alpha* x[i] + beta*c[i]
m.fake[i] ˜ dnorm(mcor, precM)
obsm.fake[i] ˜ dnorm(m.fake[i],precmag[i])

and we replaced one line by the simpler

m[i] ˜ dnorm(mcor[i], precM) .

We performed 15,000 simulations,4 each one generating 288 simulated measure-
ments of SNIa (one per real measurement).

Visual inspection of the data does not indicate any obvious discrepancies. We
therefore begin our exploration by adopting a modified χ2 to quantify discrepancy
(or its contrary, agreement). For the real data set we have:

χ2
real [ j] = ∑

i

(obsm[i]−mcor[i,j])2

errmag[i]2 +E2(intrscatM)
, (9.1)

where the summation is over the data and j refers to the index in the sampling
chain. Apart from the j index, Eq. (9.1) is just the usual χ2 test statistic, the dif-
ference between observed, obsm[i], and true mcor[i], values, weighted by
the expected variance, computed as a quadrature sum of errors, errmag[i], and

4 Skilled readers may note that we are dealing with Gaussian distributions, and may attempt an
analytic computation.



9.2 Model Checking 201

supernovae mag intrinsic scatter intrscatM. Similarly, the χ2 of the jth fake data
set, χ2

f ake[ j] is:

χ2
f ake[ j] = ∑

i

(obsm.fake[i,j]−mcor[i,j])2

errmag[i]2 +E2(intrscatM)
, (9.2)

We now compute which fraction of the simulations has χ2
f ake[ j]> χ2

real [ j] and quote
the result (this may also be coded inside JAGS, asking it to return a chain of 0
or 1 depending on whether the inequality above is satisfied). If the modeling is
appropriate, then the computed fraction (p-value) is not extreme (far from zero or
one). If the modeling is not appropriate, our statistical model needs to be revised
because the data are in disagreement with the model.

For the data used in Sect. 8.12.1, we found a p-value of 45 %, i.e., that the dis-
crepancy of the data in hand is quite typical (similar to the discrepancy of the fake
data). Therefore, according to the χ2 measure of discrepancy, the real data is ade-
quately described by our statistical model (at least the aspect of the model that was
tested).

In our exploration of possible model misfits, we adopted a χ2 measure of dis-
crepancy. This is just one of the many measures of discrepancy one may adopt, and,
furthermore, it does not detect all types of discrepancies. It is useful to visually in-
spect several data summaries to guide the choice of which discrepancy measure one
should adopt (e.g., Eq. 9.1 or something else), and, if the adopted model turns out to
be inadequate, to suggest how the tested aspect of the model should be revised. For
example, a possible (and common) data summary is the distribution of normalized
residuals, that for errobsx[i] reads:

stdresobsx[i]=
obsx[i]−E(x[i])√

errobsx[i]2 +E2(intrscatx)
(9.3)

i.e., observed minus expected value of x[i] divided by their expected spread (the
sum in quadrature of errors and intrinsic spread). A similar summary may be built
for obsc[i] too. At the very least, standardized residuals should be distributed as
a Gaussian with a standard deviation of one (by construction). Figure 9.5 shows the
distribution of normalized residuals of obsx[i] and obsc[i], with a Gaussian
distribution superimposed and centered at 0 with a standard deviation equal to one
(in blue). Both distributions show a possible hint of asymmetry. At this point, the
careful researcher may want to use a discrepancy measure that is useful for detecting
asymmetries, for example the skewness index, in addition to the χ2 during model
testing. While leaving the actual computation to the reader, we emphasize that if an
extreme Bayesian p-value is found (on obsx[i] for exposing simplicity), then one
may update the model (the JAGS line describing its distribution) with a distribution
allowing a non-zero asymmetry which is easily done using a Bayesian approach, and
easily implemented in JAGS, it is just a matter of replacing the adopted Gaussian
with a suitable asymmetric distribution. If instead the data exploration gives a hint
of a double-bumped distribution (again on obsx[i] for exposing simplicity), and
an extreme Bayesian p-value is found when a measure of discrepancy sensitive to
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Fig. 9.5 Standardized residuals (histogram) and their expected distribution (blue curve). Repro-
duced from Andreon (2012b) with permission

double-bumped distributions is adopted, then one may adopt a mixture of Gaussians
(see Sect. 6.2 about how this is implemented). Even more simple is the (hypotheti-
cal) case of possible distributions (again of obsx[i] for exposing simplicity) with
fat tails: one may adopt a Student-t distribution. In such a case, this is implemented
in JAGS by simply replacing a dnorm with dt.

Once the certain aspect of the model has had a thorough investigation, the careful
researcher should then move to other aspects of the model, whose detailed explo-
ration is left as an exercise.

9.2.4 Another Deep Exploration

Let us now check our modeling of the history of metal abundance described in
Sect. 8.12.2. To this aim, we simulate data using the fitted model and we count
which fraction of the simulations are more discrepant than the real data. Following
the approach in Andreon (2012a) we use a modified χ2 statistic as a measure of
discrepancy:

χ2 = ∑
i

(modeAb[i]−E(Ab[i]))2

sigmaAb[i]2 +E2(intrscat)
(9.4)

where the summation is taken over the data. This simulation is performed in JAGS,
by generating replicated data:

Ab.rep[i] ˜ dlnorm(log(Abcor[i]), pow(intrscat,-2))
modeAb.rep[i] ˜ dnorm(Ab.rep[i],pow(sigmaAb[i],-2)) .

As illustrated in previous examples, we duplicated lines describing the part of the
model that we want to test by adding a .rep to the variable name. The simulation
automatically accounts for all modeled sources of uncertainties (intrinsic scatter,
measurement errors, and their non-gaussian nature).

In practice, we performed 30,000 simulations, each one generating 144 simu-
lated measurements of Fe abundance (one per actual observation). The first set of
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Fig. 9.6 Bottom-left panel: χ2
i values of the real data used for the metal abundance determination.

Top-left panel: χ2
i values of simulated data. Top-right panel: Total χ2 of real data (vertical red line)

and distribution of total χ2 of simulated data. Reproduced from Andreon (2012a) with permission

generated data is shown in Fig. 9.6 (top-left panel). We found that the χ2 statistic
of the real data is quite typical: 52 % of the simulated data sets show larger χ2 (top-
right panel) values. Therefore, it is quite reasonable to assume that our real data
could have been generated by the fitted model and our model shows no evidence of
misspecification.

Generating simulated data from the model and displaying them is useful because
it allows the researcher to understand how a model can be improved. This is exem-
plified in Fig. 9.7, which shows a previous modeling attempt to the evolution of Fe
content of clusters. The real data (bottom-left panel) look quite different than the
simulated data (top-left panel) because of the presence of several large-χ2 values
missing in the simulated data. This occurs because this older modeling lacks an in-
trinsic scatter term. More specifically, in the plot we are using data, model and best
fit from Balestra et al. (2007). The top-right panel shows that such a disagreement
is almost never found using simulated data drawn from the fitted model. This misfit
prompted Andreon (2012a) to revise the model, allowing an intrinsic scatter in the
metal abundance.

9.3 Summary

In summary, model checking consists of continuously evaluating a proposed model
and updating it until it produces data similar to those in hand. One should start by
carefully and attentively inspecting the data and data summaries, plotting the data,
evaluating residuals from the model fit, which includes displaying a histogram of the
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Fig. 9.7 Same description as Fig. 9.6 but for the sample and model in Balestra et al. (2007).
Reproduced from Andreon (2012a) with permission

residuals, etc. This inspection should suggest some sort of measure of discrepancy
which can be used to quantify the model misfit and, if one is found, to guide the
model updating. The procedure should be iterated until the model fully reproduces
the data. Indeed, the good agreement we found for the model in the last section is
the result of failed attempts at modeling the history of metal abundance with simpler
models. In a similar vein, the misfit of the (now old) model relating luminosity and
redshift of SNIa (Sect.8.12.1) leads to the revision of the above relation and the
introduction (discovery) of dark energy to allow the model to fit the data.

Sensitivity analysis consists of replacing uncertain assumptions with other plau-
sible assumptions and check how the results change. Reporting whether results
change, or not, is paramount to understanding the limits of the performed analysis
and, in the case it does, to identify the appropriate observations needed to remove
the found limits.
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Chapter 10
Bayesian vs Simple Methods

In this chapter, we illustrate the advantages and shortcoming of Bayesian meth-
ods against simple, non-Bayesian alternatives commonly used in astronomy and
physics. We will not make an exhaustive comparison of all methods (there are too
many alternate methods) and those methods we illustrate are selected because of
their simplicity, and not necessarily the “best choice.” Very good non-Bayesian ap-
proaches exist, and some of them are even mathematically equivalent (i.e., the same
equations are solved) to their corresponding Bayesian methods (e.g., ridge regres-
sion). However, these are rarely used in astronomical and physics papers, and thus
are not considered here. This chapter is not a review of Bayesian vs non-Bayesian
methods, it is instead the view of a researcher faced with the day-to-day choice of
using one of the models included in this book or a simple, non-Bayesian modeling
approach commonly used. To be fair in our comparisons of Bayesian methods with
their competitors, we will only focus on simple problems. This choice penalizes
Bayesian methods because applying them to simple problems does not reveal how
easily they are adapted to more complex situations (in our opinion), and will give, if
overlooked, the impression that Bayesian methods should only be applied to simple
problems.

In this chapter we first give a very short description of the conceptual differences
of Bayesian and non-Bayesian methods and we then illustrate how the maximum
likelihood estimate can fail. We consider, in particular, two cases: mixtures and
small samples. We then compare the performances of one of the most used sta-
tistical methods in astronomy to infer the location (mean) and scale (dispersion) of
a sample, with a simple Bayesian estimate, showing that the Bayesian estimate has
a lower bias, is fairer (in some sense) and has less noisy errors. We then move to
compare Bayesian and some non-Bayesian linear regression (fitting) models in var-
ious situations. We do not consider non-Bayesian non-linear models because these
are rarely used in Astronomy and Physics. We will finally conclude with a summary
and discuss the experience of the first author, trained as a non-Bayesian astronomer
that discovered the Bayesian literature.

© Springer International Publishing Switzerland 2015
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10.1 Conceptual Differences

In the Bayesian paradigm, the quantities we want to measure have a probability dis-
tribution (e.g., the prior) which describes how well we know these quantities. As
Bayesian researchers, we may say “with 0.90 probability, the Higgs boson’s mass is
in this range.” Repeated experimentation (if done correctly), hopefully, reduces the
width of their probability distribution. In the Bayesian paradigm, the data are fixed
(i.e., they are given), we have some data and we do not have some other data. In-
terestingly, datum (plural: data) is a Latin word which means “given,” and therefore
“data are data” (given, fixed). In short, in the Bayesian approach, the data are fixed
and parameters have a probability distributions which are updated by experiments.

It is difficult to collectively describe non-Bayesian methods, because a large va-
riety exists. Often, data are not data (given), but random: the data we have are one of
the many possible sets of data that we may possibly observe. Typically, parameters
are fixed (but unknown), without any associated probability distribution, and there-
fore these non-Bayesian researchers cannot say “the Hubble constant has a 90 %
probability to be in this range.” These methods, generally speaking, do not return
how probable that a parameter is in a given range (a concept that simply does not
exist: parameters have no probabilities associated with them), and offer something
else as an alternative to it (e.g., the confidence interval).

Some methods define an event’s probability as the limit of its relative frequency
in a large number of trials. What is, for these methods, the probability of unique
events, such as “tomorrow it is raining in New York,” “there is life on Mars” or “the
James Webb telescope will see the first stars”? The Bayesian approach solves this
issue by associating probability with all quantities, including unique events.

10.2 Maximum Likelihood1

One of the most widely used statistical tools in astronomy and physics is maximum
likelihood. We showed many times that the observed value, i.e., the maximum like-
lihood estimate, is a biased estimator in the presence of an abundance gradient (the
Malmquist-Eddington bias, Sect. 5.1.1). In Sect. 10.4.1 we will remember the well-
known fact that for regressions with errors on the predictor quantity the maximum
likelihood estimate is not unique, but an infinite number of them exists. In the next
two sections we will show two more examples of where the maximum likelihood
methods are not adequate.

The first example shows that the maximum of the likelihood (the best fit) may
not be a good estimate of the true value: averaging the likelihood is preferable to
maximizing it. The second example shows that when the sample size is small, even
simple operations on data, such as performing an average (i.e., taking the maximum

1 Some of the material of this section has been drawn from Andreon (2010b).
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likelihood estimate for the mean of a Gaussian) or fitting it with a function using
maximum likelihood, is a potentially risky operation.

These two examples are quite simple (and we chose them to be) compared to
true problems researchers are faced with, to make obvious certain unpleasant effects
caused by using the best fit or observed value. Of course, in more complex problems
these unpleasant effects could still be there (why should these more complicated
applications not suffer the same problems?) but it would be hard to notice them in
absence of a more appropriate analysis.

10.2.1 Average vs. Maximum Likelihood

Maximum likelihood estimates (called “best fit” by astronomers and physicists) are
one of the most widely used tools and it is taken for granted that maximizing the
likelihood (or minimizing the χ2 =−2lnL ) will always give the correct result.

As repeatedly illustrated in this book, mixture distributions naturally arise in as-
tronomy and physics when data comes from two populations, such as:

a) a signal superposed on a background;
b) there are interlopers in the sample;
c) there are two distinct populations;
d) there are two sources in an image;
e) there are two (stellar) populations in an object spectrum.

To focus this idea, let us consider the simple case of a mixture (sum) of two
Gaussians:

p(yi|μ1,σ1,μ2,σ2,λ ) = λN (yi|μ1,σ2
1 )+(1−λ )N (yi|μ2,σ2

2 ) (10.1)

where (μ j,σ j) j = 1,2 are the location (or center) and scale (or width) parameters
of the two Gaussians with densities

N (yi|μ j,σ2
j ) =

1√
2πσ j

exp

[
− (yi −μ j)

2

2σ2
j

]
,

λ and 1−λ are the proportions of the two components and yi is datum i. Figure 10.1
shows a two dimensional example. Even by eye, one should be able to determine,
with some accuracy, both the centers and the width of the two Gaussians. We now
show that, instead, the maximum likelihood estimators of these parameters fail mis-
erably to find reasonable estimates, in spite of the problem’s simplicity.

As repeatedly mentioned, the likelihood of independently and identically dis-
tributed data (such as the data considered in this example) is given by the product,
over the data yi, of the terms in Eq. (10.1):

p(y|μ1,σ1,μ2,σ2,λ ) = ∏
i

p(yi|μ1,σ1,μ2,σ2,λ ) (10.2)



210 10 Bayesian vs Simple Methods

Fig. 10.1 Left Panel: An example of a mixture distribution in two dimensions. Readers may think
that we displayed the spatial distribution of photons coming from two astronomical extended
sources as observed by a perfect instrument (no background, perfect angular resolution, etc.), or the
distribution of two galaxy populations in a two dimensional parameter space, or something simi-
lar. Right panel: true (input) values, maximum likelihood estimate (MLE), and posterior (Bayes)
probability distributions for the example in the left panel. Reproduced from Andreon (2010b) with
permission

The parameters that maximize the likelihood above (the “best” fit) are not near
their true values (e.g., those used to draw the points in Fig. 10.1), but occur when
μ j = yi and σ j → 0. In fact, the likelihood → ∞ as σ j → 0, because the ith term
of Eq. (10.1) diverges and the remaining ones take a finite, non-zero, value. The
maximum likelihood estimates of the parameters therefore badly fail to recover pa-
rameters for a very simple problem, simple enough that the solution may be guessed
by visual inspection of the data.

The failure of maximum likelihood estimates is a general characteristic of mix-
tures of probability distributions of non-fixed variance (not only of Gaussians) and
does not disappear “in the long run,” i.e., by disposing of a sufficiently large sample
(that we don’t have, Time Allocation Committees are reluctant to allocate and per-
haps does not exist). On the contrary, our chances of failure increase with sample
size, because there is an increasing number of values for which the likelihood goes
to infinity (one per datum).

Therefore, maximizing the likelihood, even for unlimited data, does not return
the size of two astronomical sources, or the velocity dispersion of a cluster in the
presence of interlopers, or many other quantities in the presence of two popula-
tions or signals (or an interesting and an uninteresting population or signal). Even
worse, there is no “warning bell,” i.e., something that signals that something is go-
ing wrong, until an infinity is found when maximizing the likelihood. In some real
applications nothing as bad as infinity appears, and thus there is no “warning bell”
signaling that something has gone wrong.

The Bayesian approach is not affected by such issues: it never instructs us to
maximize any unknown parameters because the sum axiom of probability tells us
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to sum (or integrate) over unknown quantities, so that their effect is averaged over
all plausible values. From a mathematical point of view, the (marginal!) posterior
probability distribution of, say, σ1 is given by the integral over μ1, μ2, and σ2. In
formulae,

p(σ |y) =
∫ ∫ ∫

p(σ1,σ2,μ1,μ2|y)dμ1dμ2dσ2.

This can be decomposed as the sum of the integrals over μ1 = yi and over μ1 
= yi.
The former integral is zero because the support has zero length. The integrand of
the latter has the form 1

σ exp(−c/σ2) with c 
= 0 (assuming uniform priors), and
therefore goes to zero when σ → 0 because the exponential function converges to 0
faster than the function 1

σ diverges to infinity.2

More simply, the posterior probability distribution derived following Sect. 6.2
is shown in the right panel of Fig. 10.1 (we adopted a uniform prior over a large
interval). The posterior is well behaved and it is centered on the values used to
generate the data. The likelihood, instead, has hundreds of points of singularity,
one per datum, all at σ = 0. Indeed, with a minimal knowledge of the statistical
literature, the failure of the maximum likelihood estimate could have been antici-
pated: the just found maximum is not a maximum as intended by mathematicians:
to have a maximum a function should be at least twice differentiable, have zero first
derivative, and negative second derivative. Manifestly, σ = 0 cannot be a maximum
because the first derivative is not zero (the likelihood is diverging, not flat, like in
a maximum!). How many of you, gentle readers, have noted the above (before our
comment) and regularly check the regularity conditions used for the application of
maximum likelihood methods?

There are many such cases where the maximum likelihood approach fails, for
example: when the physicist-maximum falls close to the boundary of the parameter
space, when one measures zero (galaxies of a given type, photons in a given band,
decays compatible with some criteria) out of n trials, when the maximum likelihood
estimate is close to the boundary (e.g., the best estimate of the intensity of an emis-
sion line is near to zero), or in the presence of upper limits (also in such a case the
likelihood shows a non math-maximum). In mixture settings (i.e., when something
is modeled as a sum of two contributions), one may have the same problem if the
maximum likelihood estimate of the proportion of the two components is zero or
poorly determined and near to one of the extremes (0 or 1). Finally, as detailed be-
low, in fitting a regression on data with errors in the presence of an intrinsic scatter,
maximum likelihood estimates are non-unique (because the number of variables to
be fitted is larger than the number of data) and, in such conditions the likelihood is
far from being Gaussian, and will never become as such even with increasing the
sample size.

2 We thank Gianluigi Filippelli for help with this computation.
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10.2.2 Small Samples

Astronomers and physicists are often faced with computing an average by com-
bining a small number of estimates, or fit a trend or a function disposing of just a
few data points. We almost always start with a few measurements of an interesting
quantity, say the rate at which the galaxy’s mass increases. In most of these cases,
the measurand may be parametrized in several ways. For example, if the aim is to
measure the relative evolution of luminous (L) and faint (F) red galaxies, a central
topic on galaxy evolutionary studies, should we study L/F , F/L, L/(L+F) or per-
haps the selected parametrization is not relevant? All of these parametrization have
been adopted in recent astronomical papers (and the first author, in Andreon 2008,
took one more different parametrization!). Specific star formation rates (sSFR) and
e-folding times, τ , are approximately reciprocal measures (long e-folding times cor-
respond to small sSFR). To the authors’ knowledge, none of the parameterizations
have a special status: there is not a physical reason behind the choice of any of them.

Unfortunately, when the sample size is small, results obtained using commonly
used formulae (e.g., weighted average, best fit, etc.) do depend on the adopted pa-
rameteric form. For example, an average value, computed by a weighted sum, or a fit
performed by minimizing the χ2, has a special meaning, because the result depends
on which parametrization is being adopted. In the Bayesian approach this situation
does not occur.

As an example, let us consider two data points for the sake of clarity, ( f/l)1 =
3± 0.9 and ( f/l)2 = 0.3333± 0.1. The small sample is taken to allow the reader
to easily follow the algebra, but the result is general and valid for larger sample
sizes. The error weighted average, which is the maximum likelihood estimate of the
averages, 〈 f/l〉 is 0.37. The reciprocal values ((l/ f )i = 1/( f/l)i; 0.3333±0.1 and
3±0.9) have error weighted averages equal again to 0.37, fairly different from the
reciprocal of 〈 f/l〉, 1/0.37 = 2.7. Therefore 〈 f/l〉 
= 1/〈l/ f 〉, and they differ by
much more than their error (obviously, the error on the mean is smaller than the
error on any data point). At first sight, by choosing the variable parametrization, the
researcher may select the result he/she wants, a situation surely not recommended
by the scientific method. Similar problems are present with two data points differing
by just 1σ , or in general with small samples.

Why does such a strange situation occur? It comes from the freedom, in non-
Bayesian settings, of choosing an estimator of the measurand (〈 f/l〉 or 1/〈l/ f 〉 for
example). Most estimators (satisfying certain conditions) will asymptotically con-
verge on the true value of the parameters, but without any assurance, however, that
such a regime is reached with the sample size in hand. Until this regime is reached,
different estimators will return different numbers. Bayesian methods do not present
this shortcoming, because they already hold with n = 2 and do not pass through
the intermediate and non-unique step of building an estimator of the measurand. On
the other hand, they require a prior for the quantity being measured, and this may,
or may be not, be easily available (or the exact form of the prior may be disputed
amongst a group of researchers).

One may argue that in this example, the number of points is so small that no
one will likely make an average of them. However, one almost always starts by



10.3 Robust Estimates of Location and Scale 213

averaging two or three values. Furthermore, the same problem occurs when one
fits a function using a number of data points only slightly exceeding the number
of parameters. Often, few points are the result of a large observational effort (and
obtained through analyzing thousands of galaxies, as in the example above) and it is
very hard (when not impossible) to assemble a larger sample, and thus the average
of a few numbers is almost all we can do. For example, how many estimations of
SFR at z ∼ 8 or of the Higgs mass exist?3 Should we not then combine the very few
observations available in some way to utilize the information within them? Small
sample problems are often “hidden” in large samples: even the largest astronomical
surveys, including hundreds of thousand of galaxies, estimate galaxy densities using
sub-samples equivalent to just one to ten galaxies.

To summarize, when dealing with small samples, it is not guaranteed that the
asymptotic convergence of the maximum likelihood estimate has occurred with the
sample in hand. Honestly, how many of you, gentle researchers, check, before per-
forming a fit or an average, if the sample size is large enough to perform inference
based on the fit or average? How many of you regularly check that the regularity
conditions requested for the use of maximum likelihood estimates? Would it not
be better to adopt a method that is almost always safe, even when one has a small
sample?

10.3 Robust Estimates of Location and Scale

The estimation of location and scale (spread) parameters of a distribution, contam-
inated by some unwanted events, is a common astronomical exercise. In this book
we addressed this case a number of times: in the case of globular cluster metal-
licities (Sect. 6.2.1), in the average of incompatible measurements (Sect. 6.2.2) and
in a few examples in Chap. 7. When faced with this problem, many astronomers
adopt the non-Bayesian method introduced in astronomy by Beers et al. (1991) and
used/cited in over 500 peer-reviewed articles. Beers et al. (1991) present estimators
(e.g., of the standard deviation), classified as “robust” because they are minimally
affected by the presence of a contaminating population. Basically, the robust esti-
mator down weights data in the tails of the observed distribution to estimate location
(center) and scale (sigma).

We now compare the performances of the “robust” method and the Bayesian ap-
proach, largely drawing ideas from Andreon et al. (2008) and Andreon (2010b), and
where comparisons in more realistic cases are presented. To focus this argument, we
will consider simulated data for use in the determination of the velocity dispersion
of galaxy clusters (addressed in Sect.7.3).

3 If the answer is “many,” you are reading the book well after it was written. Choose then a different
redshift, where only a very few SFR estimates exist.
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Fig. 10.2 Velocity histogram for a simulated data set. The red curve is the cluster’s velocity esti-
mate derived from robust statistics, whereas the blue curve and the shaded yellow region show the
Bayesian estimate: σv = 940±85 km/s. Reproduced from Andreon et al. (2008) with permission

An ideal estimate of the velocity dispersion

• would scatter around the true value (i.e., show no bias)
• would scatter by about the quoted error (i.e., return fair error estimates)
• would return an estimate of the error with little scatter (i.e., return errors with

little noise). This property is important every time these numbers are used. For
example, if one combines two estimates by any sort of weighted average, with
weight given by the errors (squared), it is important that no data point over-
dominates the average only because it has an overly optimistic estimated error
as a result of the error’s noisiness.

10.3.1 Bayes Has a Lower Bias

To quantify the amplitude of the bias, we consider a large sample (small errors
help to see biases). Let us consider a simulated, Gaussian distributed sample of 500
(cluster) galaxy velocities having σ = 1000 km/s superposed over a background of
500 uniformly distributed galaxy velocities within ±3000 km/s. Note that within
1000 km/s from the cluster’s center there are on average 500 ·0.68 = 340 members
and 500/3 = 83 background galaxies, i.e., the contamination here is just 20 %, and
the “robust estimator” handles such cases.

The data are generated by:

model{
vcl ˜ dnorm(10000,pow(1000,-2))
vbkg ˜ dunif(7000,13000)
},

where we set the cluster velocity to 10000 km/s (but results are independent of this
assumption). The data are displayed in the histogram in the left panel of Fig. 10.2.
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Applying the methods of Beers et al. (1991) yields σ̂v = 1400 km/s with a negli-
gible error estimate, when the input velocity dispersion is σ = 1000 km/s.

Using the model described in Sect. 7.3, which fits a sum of two Gaussian to the
data, we find that the posterior mean of the velocity dispersion is 940± 85 km/s,
close to, and in agreement with, the value used to generate the data. This simula-
tion shows the presence of a systematic bias in the Beers et al. estimator, even for
a large sample. Actually, the bias is independent of the sample size, and its ampli-
tude depends on the relative fraction of clusters and interlopers. While the robust
estimate is less biased than what it may be by fitting a Gaussian distribution to the
Gaussian+Uniform distribution, it is more biased than making the right assumption,
i.e., that we are observing two populations, a mixture, which is what the Bayesian
approach does. The Bayesian approach models the mixture instead of down weight-
ing the data in the tails (as the robust approach does) and for this reason it shows a
much lower bias (if any at all).

10.3.2 Bayes Is Fairer and Has Less Noisy Errors

The purpose of this section is to assess which method returns more realistic and less
noisy errors.

We begin by simulating 1000 (virtual) clusters of 25 members drawn from a
Gaussian with σv = 1000 km/s. We allow no background in this numerical experi-
ment, otherwise the Robust estimate would be biased (this choice, of course, penal-
izes the Bayesian approach, not suffering from this limitation).

For each data set, the robust method outputs its estimate of the velocity dispersion
error. In contrast, the Bayesian method returns probability distributions (i.e., the
posterior), and we choose as our error estimate the posterior standard deviation.

These two estimates of the errors are displayed as histograms in Fig. 10.3. One
may immediately note that the width of the histogram of the Bayesian’s quoted error
is narrower than the corresponding Robust histogram: the quoted error is noisier in
the Robust approach than in the Bayesian (70 km/s vs. 18 km/s).

Of course we would like to have less noisy errors, but their (i.e., the less noisy
errors) utility may be completely offset if the quoted errors are wrong (imagine if a
program always returns “42,” i.e., with no scatter, as an error estimate: the quoted
error would be noiseless, but also useless). This is not the case for the Bayesian
estimate: the scatter, from data set to data set, of the posterior mean is 185 km/s
vs. a mean quoted error of 163 km/s. Instead, the robust estimator returns velocity
dispersions which scatter, from data set to data set by 220 km/s, but claim his errors
are smaller, on average, than the mean quoted error most of the time (see Fig. 10.3).
In other words, Robust errors are noisier and underestimated.

A researcher using the Robust approach will believe that his measurement is
accurate, when instead the error is larger than what is quoted most of the time, and,
at the same time, will not take full profit of the data (as if he had used the more
precise Bayesian estimate).
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Fig. 10.3 Comparison between the distributions of the quoted error (histograms) by “Robust”’ (bi-
weight estimator of scale, in blue) and by our Bayesian method (in red) for 1,000 simulations of 25
galaxies uncontaminated by background. The “Robust” error estimate is noisier (the histogram is
wider) and somewhat biased, because the histogram is mostly on the left of the true error (given by
the standard deviation of returned velocity dispersions). Bayesian errors (posterior standard devia-
tion) are less biased and show a lower scatter. Reproduced from Andreon (2010b) with permission

10.4 Comparison of Fitting Methods4

We now illustrate model fitting in astronomical or physics journals. As mentioned
earlier, we will continue our trend of “fairness” by considering another unrealis-
tically simple example (Gaussian homoscedastic with no errors, no mixtures, no
selection effects, only linear relations, sometimes no intrinsic scatter) in order to
use non-Bayesian methods in a situation where they are most valid, hence penaliz-
ing a priori Bayesian methods. If you are now smiling because nothing that simple
exists in your domain of research, well, the same is true in ours but nevertheless,
even the simplest of applications can still teach us valuable lessons (however, if you
prefer to just opt out for the Bayesian method, you can abandon reading the rest of
this chapter)!

10.4.1 Fitting Methods Generalities

In astronomy and physics, the methods most widely used for fitting a function to
data points are (see, e.g., Andreon and Hurn 2013):

• Ordinary Least Square (OLS) methods minimize the sum of squared residuals
(i.e., the difference between the observed data and the values fitted to each point
by the model).

• Weighted least square (χ2) methods minimize a weighted sum of squared resid-
uals, with weights chosen to give a larger weight to less noisy data.

4 Some of the material of this section has been drawn from Andreon and Hurn (2013).
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• Maximum likelihood estimation maximize the likelihood of the data. Rigorously
speaking, as soon as data have errors, the number of unknown (parameters) to be
fitted exceeds the number of data: for example, a linear regression model with
errors on the N x[i] values has N +2 unknown (the N true x[i] values, plus
slope and intercept), which implies that the maximum likelihood estimate is not
unique. Furthermore, in such conditions, the appealing asymptotical properties
of maximum likelihood estimates (those used to derive errors) do not hold. Some
assumptions need to be taken to use maximum likelihood estimates, and here we
marginalize the likelihood over the nuisance x[i], i.e., we give them a Bayesian
flavor. In the presence of an intrinsic scatter, the likelihood cannot be written as,
and is different from, e−χ2/2. Therefore, the maximum likelihood estimates will
differ, in general, from the minimal χ2 estimate.

• Bivariate Correlated Errors and intrinsic Scatter (BCES, Akritas and Bershady
1996) is an extension of OLS to the case of data with Gaussian errors and a
linear regression with intrinsic scatter. It only deals with a single predictor, i.e.,
it cannot fit multiple variables, for example z = a∗ x+b∗ y+ c.

• Bayesian methods described in Chap. 8.

Survival or reliability methods are also sometimes used, however we note that
they are, most of the time, misused because these deal with hard censoring (e.g., data
below a threshold are all available but with missing value) but are used to fit data
with truncated (e.g., data below a threshold are completely missing, including how
many datum points are truncated) and often a soft (probabilistic) truncation. In this
chapter, we do not want to misuse these methods, and are therefore not considered.

10.4.2 Regressions Without Intrinsic Scatter

Let us consider the following simple case: we generate true values x from a uni-
form distribution between −3 and 3 and we assume y=x. Measurement errors are
Gaussian, with σ2 = 1. For the time being, we assume no intrinsic scatter between
x and y.

To generate these observed and true values we use the model:

model {
x ˜ dunif(-3,3)
y <- x + 0.
obsx ˜ dnorm(x,1)
obsy ˜ dnorm(y,1)
}

and we save 10000 element of the chain (to have a large sample that speaks by
itself), part of which is used for fitting the relation, and the other part estimates the
performances of the fitted models.
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Fig. 10.4 Left panel: 100 points drawn from a y=x regression with no intrinsic scatter. The yellow
vertical stripe captures those obsy for which x is close to 3. Right panel: Distribution of the obsy
values for obsx values in a narrow band of x centered on 3, as shaded in the left panel. The red
curve is a Gaussian centered on 3

10.4.2.1 Preamble: Restating the Obvious

We have already shown, in Sect. 8.1.3.1 that the naive prediction is an under-optimal
estimate of the predicted value. We repeat here the argument once more for data
drawn from the current model, because it is very important to understand the differ-
ence between the line most useful for describing the trend and the one most useful
for prediction.

The left panel of Fig. 10.4 shows obsy vs obsx, after centimating it, i.e., re-
moving 99 points out of 100 to limit crowding. The plotted line has slope 1 and
intercept zero, it is the line used to generate the data. This line seems, by eye, to
be an acceptable description of the plotted data: it does not look odd for any reason
(especially because we simulated data from such a line; in research, Nature gener-
ates the data and we cannot be similarly reassured). If we consider a narrow range
in obsx, say obsx∼ 3 for explanational purposes only, the histogram of the obsy
is not centered on 3, i.e., on the value predicted by y=obsx when obsx= 3. In-
stead, the histogram of obsy is clearly shifted towards a lower value. This shift is
present for every obsx
= 0 value. Of course, to reduce uncertainty, the histograms
are computed using all the points near obsx∼ 3, not just the few plotted in the left
panel.

Figure 10.5 replaces obsy with y, i.e., shows the true y values. In research
activities, y is not observable, and therefore this plot will never appear on a scien-
tific paper. When obsx= 3, the histogram of the appropriate y values is not cen-
tered on 3, i.e., on the value predicted by y=obsx. Again, the average y value
of the data having obsx= 3 is 2.1, not 3. By scanning obsx on a grid of values,
we build the right panel that shows the difference between the true value y given
its corresponding obsx, and the value predicted by y= 1∗obsx, i.e. the residuals
<y|obsx> −1∗obsx. As the figure shows, the line with slope 1 overestimates y
at large values, and underestimates y at small values.

The left panel of Fig. 10.5 shows the source of the “problem” for this example:
points at large obsx values are more likely x<obsx than x≈obsx, as fairly obvi-
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Fig. 10.5 Left Panel: As previous figure, but now the unobservable y is plotted in abscissa. Right
panel: plot of the mean of y at a given obsx, after removing a slope 1 dependence

Fig. 10.6 Target value, per small bins in obsx, that regression models should predict as a function
of obsx. The line bends at the extremes because y never exceeds the [−3,3] range by definition

ous for every obsx> 3 datum (all x< 3 by definition). Since y=x, then y<obsx.
The same effect occurs (mutatis mutandis) at the other end of the obsx range. With
a little thinking, all the range obsx> 3−3 (3 = 3σ , for σ = 1) and obsx<−3+3,
i.e., all obsx values, is/are affected, although with a different degree of importance
(larger at the extremes, lower in the middle). Astronomers in the audience may rec-
ognize a sort of Malmquist bias. Readers of this book may notice that this has been
a reoccurring theme.

Figure 10.6 shows target y values per small bins across obsx that all regression
models should predict as a function of obsx. The line bends at the extremes because
y never exceeds the [−3,3] range by definition, while obsx values go outside this
interval because of errors.

10.4.2.2 Testing How Fitting Models Perform for a Regression Without
Intrinsic Scatter

Let us compare the performances of various fitting algorithms with this simple
example.



220 10 Bayesian vs Simple Methods

We first fit the sample of 100 elements shown in Fig. 10.4. We present these
100 obsx and obsy and their errors (all equal to one) to all considered fitting
algorithms. Non-Bayesian fitting algorithms return the slope ̂beta and intercept
̂alpha (and errors, usually) of the best fit regression, and we use them to compute

the predicted value ỹ = ̂beta ∗obsx+ ̂alpha of a testing sample of 104 obsx
values drawn from the same model. The Bayesian model (listed below) directly
returns ỹ for the 104 data points having only obsx (and error).

Let us see which fitted model best predicts y for the testing sample.

• Bayes. For the Bayesian model, we assumed a uniform prior on the angle b,
which is mathematically equivalent to a Student-t distribution on the angular co-
efficient beta, and a uniform prior on the intercept alpha (formally, a Gaussian
of large σ ).

model {
alpha ˜ dnorm(0.0,1.0E-4)
beta ˜ dt(0,1,1)
for (i in 1:length(obsx)) {
obsx[i] ˜ dnorm(x[i],1)
x[i] ˜ dunif(-3,3)
# modeling y
obsy[i] ˜ dnorm(y[i],1)
# modeling y-x
y[i] <- alpha+beta*(x[i]-0.)
}

}.

The fit to the data gives:

y= (1.02±0.07) x−0.07±0.12 (10.3)

i.e., the Bayesian fitting recovers within the errors the input regression with slope
one and intercept zero.

As mentioned, to predict ỹ for the testing data of size 104 with obsx, we use
the posterior predictive distribution. In practice, we list these 104 obsx values in
the data file and we put NA (for Not-Available) at the place of the non-available
obsy. The top-left panel of Fig. 10.7 shows the residuals (true y minus pre-
dicted values) for the Bayesian model. The model performs very well, yields
small residuals, and does not exhibit any major trend with obsx.

• Naive, ỹ = obsx
Suppose, for example, that theory tell us that y= x, and that someone will attempt
to predict ỹ as ỹ = obsx. This is a bad idea, recall the previous section. As already
shown in the right panel of Fig. 10.5, this way of predicting y performs poorly,
re-shown in Fig. 10.7 on the same scale of other fitting algorithms.

• OLS, Least-square
The least-square fit ignores the difference between observed and true values and
finds â and b̂ that minimize the sum of the square of the residuals between obsy
and ̂beta∗obsx + ̂alpha. On the sample of 100 obsx and obsy gives:
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Fig. 10.7 Performances of various candidate models in predicting the true value y. On the abscissa
we plot residuals (true y minus predicted values, for small ranges in obsx). The model plotted in
the bottom panel is not recommended for predictions, but unfortunately is widely used

obsy= 0.74∗obsx−0.09 (10.4)

The slope is well below 1, i.e., the recovered slope is tilted away from the true
slope. The center-left panel of Fig. 10.7 shows that this model performs worse
than the Bayesian one, but still better than freezing the slope to the true value
(one, i.e., case b). Using least-squares, the price to pay to have better predictions
is a bias in the slope estimate.

Some researchers, feeling that this fitted line is not steep enough to capture
the data’s trend, sometimes combine this slope with the one derived from swap-
ping obsx with obsy, obtaining a fitting line with a slope near one, as in our
case b). The performance of this further fitted line is therefore near to the, already
discussed, case b).

• BCES Y |X
This model is one of the most used in astronomy. Fitting this model on the 100
obsx and obsy pairs, the Y |X fit is:

y= (0.95±0.08)∗x−0.05±0.15 (10.5)

BCES estimated parameters recover the input parameters (slope one and intercept
zero) within the errors.
However, the bad news is that for not having a biased slope, BCES performance
in predicting y is very bad, as for the naive fit, as shown in Fig. 10.7.

• BCES orthogonal and bisector.
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Table 10.1 Summary table of comparisons for the regression without intrinsic scatter

Method Parameters Predicted values
Bayes Good Best
Naive Assumed known Very bad
OLS Biased Intermediate
BCES Y—X Good Very bad
Ortog BCES Good Very bad

Akritas and Bershady (1996) offer several fitting models, among which are the
orthogonal and bisector BCES fits. The former minimizes residuals orthogonally
to the regressed line, the latter returns the bisector of the Y |X fit and the fit ob-
tained swapping obsx with obsy (BCES X |Y ).

The BCES orthogonal and bisector fits, for the sample of 100 data obsx with
obsy, are identical:

y= (0.96±0.08)∗x−0.05±0.15 (10.6)

The slope and intercept of the input regression is recovered within the errors,
and, as a consequence, these fits performances in predicting ỹ are very bad, as
shown in the bottom panel of Fig. 10.7.

The performances of the various methods are summarized in Table 10.1. In sum-
mary, for the considered example, non-Bayesian fits either return a good value for
the slope and a very bad ỹ (e.g., naive or BCES fits), or a better, but still poor, ỹ
for a biased value of the slope beta (e.g., OLS fit). The Bayesian model returns
the right slope with very good ỹ. We leave you, the researcher, with the choice of
deciding which fitting model you want to adopt.

The reason why the Bayesian model performs better than other considered meth-
ods should be, by now, clear. As shown in Fig. 10.6, the relation between y and
obsx is non-linear, even if the relation between y and x is linear. This immediately
tells us that a method that adopts a linear scaling between y and obsx, or use it
to predict y from obsx, will perform worse than one that is able to adapt itself
to fit this curved relation. The Bayesian way does not strictly follow this path, and
this is advantageous, because real samples are often small, and therefore the shape
of the curved line is imprecisely determined when one attempts to fit y vs obsx.
The Bayesian fitting method assumes a linear model between true values (x and
y), not between observed values (obsx and obsy). It allows a non-linear relation
between y vs obsx, but does not require the determination of supplementary co-
efficients, because the relation is fitted in the true data space. The Bayesian model
therefore works better than every competing model attempting to fit a straight line
(or to predict ỹ values using a straight line) on observed values.

If we were talking about predicting (observationally expensive) masses (ỹ) from
(observationally parsimonious) mass proxies (obsx, such as richness or X-ray
luminosity), non-Bayesian fitting models are either wrong in predicting the trend
between mass and proxy (i.e., returns a wrong slope of the y vs x relation) or
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perform poorly in predicting masses from observed values of mass proxies. The
Bayesian fit returns the right (input) slope and the best predicted masses.

10.4.3 One More Comparison, with Different Data Structures

In this section we test whether the results found in the previous section are unique to
the adopted data structure (data were drawn from a truncated uniform distribution,
often named “top-hat” in astronomy and physics) or are more general. We also con-
sider other fitting algorithms, and, in the case of the Bayesian approach, a few priors
that do not match the data structure in location, width, asymmetry, and importance
of tails. The purpose of these priors is to simulate the situation in which the prior is
imprecisely known.

We generate 100 values of x from a Student-t distribution with 10 degrees of free-
dom centered on 0.1 and with scale 1.1, x[i]∼dt(0.1,pow(1.1,-2),10),
these x are then perturbed by homoscedastic Gaussian noise with σ2 = 1 to give
100 obsx. As in previous example, y=x with no intrinsic scatter, and these y are
also perturbed by homoscedastic Gaussian noise with σ2 = 1 giving 100 obsy. In
practice, the JAGS code used to generate the sample is:

model {
x ˜ dt(0.1,pow(1.1,-2),10)
y <- 1.0 * x + 0.0
obsx ˜ dnorm(x,1)
obsy ˜ dnorm(y,1)
}.

The resulting 100 (obsx,obsy) pairs are used as the data for fitting the line y=
a∗x+b using various fitting models.

In addition to the Bayesian model fully described below, and the least square and
BCES considered in the previous section, we also consider the χ2 and the MLE fits.
For the MLE, we adopt a Bayesian flavor, because as already remarked there is no
single maximum likelihood estimate (the number of parameters, 102, is larger than
the number of data points, 100). We marginalize over the 100 obsx[i] and adopt
the marginal likelihood (D’Agostini 2005)

L(a,b) =
(2π)−N/2

∏N
i=1

√
σ2

y +a2σ2
x

exp

[
−∑N

i=1(y
obs
i −axobs

i −b)2

2(σ2
y +a2σ2

x )

]
. (10.7)

Note the χ2 in the exponential term and, at the same time, the a dependence in
the leading non-exponential term which makes χ2 and maximum likelihood differ-
ent. Therefore, when there are errors on the predictor quantity, χ2 is not the MLE
estimate, as already remarked.

Concerning the Bayesian modeling, we consider several options for the prior.
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1. In some astronomical problems, the x data structure is fairly well known (e.g.,
from previous experiments or from theory). If this were the case here, the prior
would be

x[i] ˜ dt(0.1,pow(1.1,-2),10)

since this is actually the true population model.
2. Of course it may well be the case that we do not have such a high level of prior

knowledge and so we also consider an alternative prior

x[i] ˜ dnorm(0,1)

which has a difference in location and scale as well as a lighter tail behavior, all
of which are providing examples of a possible mismatch between the true data
structure and what is known about it. This prior is still relatively informative;
it might perhaps be arrived at in a not strictly Bayesian sense by looking at a
histogram of the 100 obsx[i] values.

3. Finally, we also consider a less informative prior, with parameters to be deter-
mined at the same time as the other regression parameters; we have adopted a
Gaussian prior with parameters treated as additional unknowns

x[i] ˜ dnorm(mu,prec)

with weak hyperpriors on the parameters

mu ˜ dnorm(0,1.0E-4)
prec ˜ dunif(0.0,10.0) .

Therefore, the model reads:

model {
alpha ˜ dnorm(0.0,1.0E-4)
beta ˜ dt(0,1,1)
for (i in 1:length(obsx))
{
obsx[i] ˜ dnorm(x[i],prec.obsx[i])
obsy[i] ˜ dnorm(y[i],prec.obsy[i])
y[i] <- alpha+beta*x[i]

# t prior for the x population OR
x[i] ˜ dt(0.1,pow(1.1,-2),10)

# N(0,1) prior for the x population OR
x[i] ˜ dnorm(0,1)

# Normal prior for the x population with hyperparameters
x[i] ˜ dnorm(mu,prec)

}
mu ˜ dnorm(0,1.0E-4)
prec ˜ dunif(0.0,10.0)

} .

Now, we are ready to test how well different methods perform in recovering the
regression parameters and in predicting y. For the latter we used a sample of 10000
obsx generated from the true model, as in previous section. Figure 10.8 summarizes
our tests:
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Fig. 10.8 Performance of the various approaches in predicting the true value y given obsx. Each
point shows the average residual per small bin of obsx. The error bars indicate the standard error
of the mean residuals. Reproduced from Andreon and Hurn (2013) with permission

Top row, left. Bayes regression with a dt(0.1,pow(1.1,-2),10) prior per-
forms very well with small residuals across the entire range of obsx as is to be
expected given that the correct model is being fitted. The point estimates of the
parameters themselves are 1.09 and 0.00 for the slope and intercept, respectively.

Top row, right. Suppose that one naively attempts to predict ỹ by ỹ =obsx, in
effect making use of the knowledge that y=x, but ignoring the noise structure.
The residual in this case is the perturbation x−obsx, i.e., a dnorm(0,1) value
in this example, however, as a result, it is negatively correlated with obsx so that
the largest residuals occur at the extremes of obsx

Second row, left. OLS generates better predictions than the naive estimate. It
achieves this better performance by biasing the fitted slope, returning an esti-
mated slope of 0.65 in place of the input value of 1.

Second row, right. Predicted ỹ values computed using the BCES method are sim-
ilar to those using the naive ỹ =obsx method. By improving the estimates of
the slope and intercept, the prediction performance is degraded.

Third row, left. MLE Bayesian-flavored approach returns reasonable predictions
and a biased slope, as OLS.

Third row, right. χ2 performs less well than MLE and differs from it because
MLE has a leading term missing in the χ2 expression.
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Bottom row, left and right. Bayesian errors-in-variables regression with either a
dnorm(mu,prec) prior for the x[i] or a dnorm(0,1) prior performs al-
most as well as the Bayesian model using the true distribution as a prior, showing
that an accurate knowledge of the prior is not necessary to achieve good perfor-
mance in this example.

To summarize, for this example the methods based on sound statistical mod-
els applied appropriately (MLE Bayesian-flavored, Bayesian regression) outperform
the predictions of BCES and χ2. OLS also does well here paradoxically because of
its sheer simplicity (but returns a biased slope, as indeed the MLE does). This ex-
ample confirms results from the previous section and shows in addition that one
may achieve good prediction performances even when taking a prior for the data
structure that does not match the data structure in location, width and importance of
tails.

We leave to the reader the exercise of showing that similar results are also ob-
tained for data drawn from asymmetric distributions and for regressions with het-
eroscedastic errors and an intrinsic scatter.

10.5 Summary and Experience of a Former Non-Bayesian
Astronomer

We have illustrated that Bayesian methods may easily outperform the common non-
Bayesian methods used in astronomy and physics (χ2, maximum likelihood, OLS,
etc.).

The first author was, for the first 20 years of his career, almost unaware of
Bayesian methods. He used the common methods described (and criticized) in this
chapter, and with some difficulties improved them (and only by a bit) to make them
usable for research applications (e.g., he first published the correct likelihood ex-
pression for fitting the luminosity function in the presence of a background). Nev-
ertheless, he prefers the Bayesian approach for various reasons:

1. It returns what the researcher is looking for: a probability distribution for the
quantity being measured, allowing him to say “the Hubble constant (or the mass
of the Higgs boson or whatever else) is in this range with such a probability,”
instead of forcing the researcher to say something alternative to that.

2. It does not require the researcher to check whether regularity conditions, neces-
sary for the use of other methods, hold, and neither to delay the publication of a
result for the moment when the sample is large enough to be in the asymptotic
regime.

3. It is easy to model the complex relation between the many variables needed
in research applications, and that these are often intrinsically uncertain (i.e.,
should be included in the model and if so in what form) and, often, stochastic.
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4. The Bayesian method is effective in extracting information from the data in an
optimal way (with little or no loss of information) even with a small sample
size.

5. When data size increase, the learning (i.e., the way uncertainty decreases) is
always optimal. In this book we never mention the word “optimal.”

6. It allows us to merge information of different types (theory, measurements, ex-
pert opinions).

7. As seen several times in this book, the Bayesian method is easy to configure and
is flexible. For example, one may easily add components to a model (e.g., an
intrinsic scatter, a noisy predictor) or just modify the model (change a relation
from linear to quadratic, or the scatter from Gaussian to Cauchy).

As briefly mentioned, many non-Bayesian methods exist. Some of them are very
good. Some of them are mathematically equivalent to the Bayesian method, and
therefore it is hard to believe that their relative performances may differ. However,
they are rarely used in astronomy and physics. We further emphasize that some non-
Bayesian methods are often misused and sometimes their performance is criticized
on ill-posed bases.

To summarize, the key advantage of the Bayesian way is just a pragmatical one:
an average Bayesian astronomer can easily and quickly solve by himself a statistical
problem he encounters in his research activity, finding a solution competitive with
the one of a leading non-Bayesian statistician, without the need of losing a lot of his
own time involved in researching the non-Bayesian literature (especially because it
is written in a language that is hard-to-understand for non-statisticians). Not only
is the solution competitive, but the human time required to obtain the solution (i.e.,
to solve the problem) is much shorter in the Bayesian paradigm. CPU computation
times may be larger, however, but a computer works 24 h per day 365 days/y and
potentially across many computers.

Once the basics of probability are learned (the few pages of Chap. 2), an average
Bayesian astronomer/physicist can address a very complex analysis without need-
ing to learn anything new. As mentioned in the preface, the example in Sect. 8.2
was written by a student alone and unsupervised after 12 h of studying the content
of this book. Strictly speaking, our italic statement is correct for parameter estima-
tion problems only. Problems involving choosing, or comparing, competing models
requires learning additional theory and concepts.
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Appendix A
Probability Distributions

A.1 Discrete Distributions

A.1.1 Bernoulli

For f ∈ (0,1) and obsx ∈ {0,1}, obsx follows the Bernoulli distribution, denoted
as obsx ∼ dbern(f) if its distribution is

p(obsx) = fobsx(1−f)1−obsx.

For the Bernoulli distribution, E(obsx) =f and Var(obsx) =f∗(1−f), where
E(·) is the mean, and Var(·) is the variance (square of the standard deviation). Notice
that the Bernoulli distribution is a binomial distribution with n= 1.

A.1.2 Binomial

For f ∈ (0,1) and n = 0,1,2, . . ., obsx follows the binomial distribution, denoted
as obsx ˜ dbin(f,n) if its distribution is

p(obsx) =

(
n

obsx

)
fobsx(1−f)n−obsx

for obsx= 0,1, . . . ,n and where
(

n

obsx

)
=

n!
obsx!(n−obsx)!

.

For the binomial distribution, E(obsx) = n∗f and Var(obsx) = n∗f∗ (1−f).
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Fig. A.1 Binomial distributions both with n= 20 and with f= 0.3 (solid line) and f= 0.8 (dashed
line)

Fig. A.2 Poisson distributions with s= 5 (solid line) and s= 10 (dashed line)

Figure A.1 displays two binomial distributions both with n= 20 and with f= 0.3
(solid line) and f= 0.8 (dashed line).

A.1.3 Poisson

For s> 0, obsx follows the Poisson distribution, denoted as obsx ˜ dpois(s)
if its distribution is

p(obsx) =
sobsx exp(−s)

obsx!
,

for obsx= 0,1, . . .. For the Poisson distribution, E(obsx)=s and Var(obsx) = s.
Figure A.2 displays two Poisson distributions with s = 5 (solid line) and s = 10
(dashed line).
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Fig. A.3 Gaussian distributions both with m= 10 and with prec= 1/4 (solid line) and prec=
1/25 (dashed line)

A.2 Continuous Distributions

A.2.1 Gaussian or Normal

For m,obsx ∈ R and prec > 0, obsx follows the Gaussian distribution, denoted
as obsx ˜ dnorm(m,prec) if its distribution is

p(obsx) =
√
prec√

2π
exp

(−prec∗ (obsx−m)2/2
)
.

For the Gaussian distribution, E(obsx) = m and Var(obsx) = 1/prec = s2.
An alternative parameterization of this model is in terms of the variance s2,

p(obsx) =
1

s
√

2π
exp

(
− (obsx−m)2

2s2

)
.

Figure A.3 displays two Gaussian distributions both with m = 10 and with
prec= 1/4 (solid line) and prec= 1/25 (dashed line).

A.2.2 Beta

For obsn,n > 0, and obsx ∈ (0,1), obsx follows the beta distribution, denoted
as obsx ˜ dbeta(obsn,n) if its distribution is

p(obsx) =
1

B(obsn,n)
obsxobsn−1(1−obsx)n−1
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Fig. A.4 Beta distributions with obsn= 2,n= 2 (solid line) and obsn= 2,n= 5 (dashed line)

where B(·, ·) is the beta function and is defined as

B(obsn,n) =
∫ 1

0
xobsn−1(1− x)n−1dx.

For the beta distribution, E(obsx) = obsn
obsn+n and

Var(obsx) = obsn∗n
(obsn+n)2∗(obsn+n+1)

.

Figure A.4 displays two beta distributions with obsn= 2,n= 2 (solid line) and
obsn= 2,n= 5 (dashed line).

A.2.3 Exponential

For s,obsx > 0, obsx follows the exponential distribution, denoted as obsx ˜
dexp(s) if its distribution is

p(obsx) = sexp(−s∗obsx).

For the exponential distribution, E(obsx) = 1
s and Var(s) = 1

s2 .
Figure A.5 displays two exponential distributions with s = 2 (solid line) and

s= 0.5 (dashed line).

A.2.4 Gamma and Schechter

For nu,prec,obsx> 0, obsx follows the gamma distribution, denoted as obsx
˜ dgamma(nu,prec) if its distribution is
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Fig. A.5 Exponential distributions with s= 2 (solid line) and s= 0.5 (dashed line)

p(obsx) =
1

Γ (nu)precnu
obsxnu−1 exp

(
−obsx

prec

)

where Γ (·) is the gamma function and is defined as

Γ (y) =
∫ ∞

0
ty−1 exp(−t)dt.

For the gamma distribution, E(obsx)=nu∗prec and Var(obsx)=(nu∗prec)2.
A common parameterization of this distribution, which is also implemented in
JAGS, is

p(obsx) =
cnu

Γ (nu)
obsxnu−1 exp(−c∗obsx) ,

where c= 1/prec.
The chi-square distribution is a special case of the gamma distribution and

is obtained by setting nu = v/2 and prec = 2. Similarly, the exponential dis-
tribution is a special case of the gamma distribution and is obtained by setting
nu= 1,prec= s−1.

Related to the Gamma distribution is the Schechter function. If obsx has a
gamma distribution with parameters (nu,prec), then the distribution for the ran-
dom variable obsy= log10(obsx) is the Schechter distribution given as

p(obsy) =
ln(10)
Γ (nu)

10nu(obsy−b) exp
(−10obsy−b

)

where b= log10(prec).
The left panel of Fig. A.6 displays two gamma distributions with nu= 2,prec=

2 (solid line), and nu = 9,prec = 9 (dashed line). The right panel displays the
corresponding Schechter function for these gamma distributions.
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Fig. A.6 Gamma distributions (left panel) and Schechter functions (right panel) with nu =
2,prec= 2 (solid line) and nu= 9,prec= 9 (dashed line)

A.2.5 Lognormal

For m ∈R and obsx,prec> 0, obsx follows the lognormal distribution, denoted
as obsx ˜ dlnorm(m,prec) if its distribution is

p(obsx) =
√
prec

obsx
√

2π
exp(−prec∗ (ln(obsx)−m)2/2).

If obsx is a lognormal random variable with parameters m and prec, then log(x)
is a normal distribution with mean equal to m and precision prec.

For the lognormal distribution, E(obsx) = em−1/(2prec) and Var(obsx) =
(e1/prec−1)∗ e2m+1/prec. An alternative parameterization of this model is

p(obsx) =
1

obsx∗s√2π
exp

(
− (log(obsx)−m)2

2s2

)
.

Figure A.7 displays two lognormal distributions both with m = 0 and with
prec= 16 (dashed line) and prec= 1.778 (solid line).

A.2.6 Pareto or Power Law

For, a,b> 0 and obsx> 0, obsx follows the Pareto distribution, denoted as obsx
˜ dpar(a,b) if its distribution is

p(obsx) =

{
a∗baobsx−(a+1) if obsx> b,

0 otherwise
.
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Fig. A.7 Lognormal distributions both with m= 0 and with prec= 16 (dashed line) and prec=
1.778 (solid line)

For the Pareto distribution, E(obsx)= a∗b
a−1 for a>1 and Var(obsx)= a∗b2

(a−1)2(a−2)
for a> 2. Note that a Pareto distribution is also known as a power-law distribution.

A.2.7 Central Student-t

For nu> 0 and obsx∈R, obsx follows the central Student-t distribution, denoted
as obsx ˜ dt(0,1,nu) if its distribution is

p(obsx) =
Γ ((nu+1)/2)

Γ (nu/2)

(
1

nu∗π

)1/2(
1+

obsx2

nu

)− nu+1
2

.

For the central Student-t distribution, E(obsx) = 0 for nu> 1and Var(obsx) =
nu

nu−2 for nu > 2. Note that the central Student-t distribution is similar in shape to
a Gaussian distribution, only it has heavier tails. Also, as nu increases in value, the
central Student-t distribution converges to a standard Gaussian distribution (mean 0
and variance 1). Figure A.8 displays two central Student-t distributions with nu= 50
(solid line) and nu= 3 (dashed line).

A.2.8 Uniform

For a,b ∈ R where a< b and for obsx ∈ [a,b], obsx follows the uniform distri-
bution, denoted as obsx ˜ dunif(a,b) if its distribution is

p(obsx) =

{
1

b−a if a< obsx< b,

0 otherwise
.
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Fig. A.8 Central Student-t distributions with nu= 50 (solid line) and nu= 3 (dashed line)

Fig. A.9 Uniform distributions with a= 2,b= 10 (solid line) and a= 0,b= 5 (dashed line)

For the uniform distribution, E(obsx) = (a+ b)/2 and Var(obsx) = (b−
a)2/12. Figure A.9 displays two uniform distributions with a = 2,b = 10 (solid
line) and a= 0,b= 5 (dashed line).

A.2.9 Weibull

For a,b,obsx > 0, obsx follows the Weibull distribution, denoted as obsx ˜
dweib(a,b) if its distribution is

p(obsx) =
a

b

(
obsx

b

)a−1

exp((−obsx/b)a).

For the Weibull distribution, E(obsx) = bΓ (1 + 1/a) and Var(obsx) =
b2{Γ (1+2/a)− [Γ (1+1/a)]2}.



Appendix B
The Third Axiom of Probability, Conditional
Probability, Independence and Conditional
Independence

B.1 The Third Axiom of Probability

Readers more theoretically familiar with probability theory may feel that we are
a little loose in our statement of the third axiom of probability in Sect. 2.3. Our
view for this book is to present Bayesian statistics in a more intuitive fashion and
so it is enough for the reader to be familiar with the axioms we have set forth.
The reader interested in a more formal development of probability theory (through
measure theory) should consult the books that we recommended at the beginning of
Chapter 2. In these he/she will find a more formal definition, such as:

p(E1 ∪E2 ∪·· ·) =
∞

∑
i=1

p(Ei).

for an infinite collection of disjoint sets E1,E2, . . . from some measure space. Our
marginalization axiom stems from this more basic axiom.

B.2 Conditional Probability

For two events y and x, the conditional probability of observing the event y given
that we have observed the event x is defined as

p(y|x) = p(y∩ x)
p(x)

.

Intuitively, this definition says the conditional probability is the ratio of the prob-
ability of both events occurring (y∩ x) and the marginal probability of event x.
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B.3 Independence and Conditional Independence

Suppose we are interested in two events A and B and say that event A is that I decide
to buy coffee that is decaffeinated and event B is a supernova event occurring in the
Andromeda galaxy. One would find it hard to argue that my choice of coffee would
have any influence on the occurring of the supernova. In probability theory we call
the events A and B independent when the occurrence of event A has no influence
on the occurrence of event B, and vice versa (for example, the supernova explosion
would not have any influence right now on my choice of coffee). Mathematically,
two random variables x and y are independent if their joint distribution, p(x,y) is the
product of their marginal distributions, p(x) and p(y). Symbolically,

p(x,y) = p(x)p(y).

Independence is a very useful property because it allows us a simple way to write
the joint distribution of a collection of random variables (and hence their likelihood).
If x1, . . ., xn are independent random variables, then their joint distribution is just the
product of their marginal distributions:

p(x1, . . . ,xn) = p(x1) · · · p(xn).

Related to independence is conditional independence. Suppose now that two
events, each one not influencing the other one, such as the explosion of a super-
nova in our Galaxy and in Andromeda. Both depend on, and are useful to measure,
the rate of supernovae occurrences in galaxies. Mathematically, two random vari-
ables (measurements in the example), x and y, are conditionally independent, given
a third random variable z (the supernovae rate in the example), if their joint condi-
tional distribution, p(x,y|z) can be written as the product of their marginal condi-
tional distributions, p(x|z) and p(y|z),

p(x,y|z) = p(x|z)p(y|z).

Conditional independence is what is usually stated by “independent” in many
articles in physics and astronomy: measurements are independent in the sense that
they do not influence each other, yet they depend on a parameter z (often the one we
are interested in studying and that triggered our interest in the data x and y). Math-
ematically, if x1, . . . ,xn (representing our data) are independent random variables
given the parameter θ , i.e., apart from the dependence on θ , then observing xi does
not affect the measurements x j. The likelihood is then the product of the individual
likelihood terms:

p(x1, . . . ,xn|θ) = p(x1|θ) · · · p(xn|θ) = Πi p(xi|θ).

A note of warning, however, independence does not imply conditional indepen-
dence and conditional independence does not imply independence.
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