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Preface

This volume, dedicated to recent advances in statistical methodology and appli-
cations, has two parts. The first is devoted to functional statistics, which involves
taking a mathematical function (usually a real vector function of real scalar or
vector variables, like time and/or space) as an entity to globally estimate and test
in a suitable functional space. The approach is often nonparametric and involves the
approximation of the studied function by the element of a functional kernel, then
the calculation of some characteristics (temporal and/or spatial) of this approximant,
considered as estimators of the homologous characteristics of the studied function
and, finally, to study the asymptotic distribution and convergence properties of these
estimators. This first part includes the following themes: the M-estimation of the
regression function for quasi-associated processes, by Said Attaoui, Ali Laksaci,
and Elias Ould Said; the kernel estimation of extreme conditional quantiles, by
Stéphane Girard and Sana Louhichi; the estimation of a linear regression operator
for functional covariates, by Amina Naceri, Ali Laksaci, and Mustapha Rachdi;
and the estimation of a loss function for spherically symmetric distribution, by Idir
Ouassou.
For the second part, three application areas are preferred. First area comes from
the tradition of signal analysis inaugurated by J. Fourier (see Fig. 1) in Grenoble
two centuries ago in his famous paper on the propagation of heat in solid bodies,
published in the Nouveau Bulletin des Sciences de la Société Philomatique de
Paris (1, 112–116, 1808). After his return to France from the Egyptian campaign
in 1802, Napoleon appointed J. Fourier as “préfet” of Grenoble and he recreates
in 1810 as rector, the University of Grenoble, who had already started in 1339
under the auspices of Dauphin Humbert II, with the approval of Pope Benedict XII
(14th founded medieval European University). J. Fourier will host in this university
as Professor JF Champollion, the father of Egyptology. This first area concerns
the following contributions: the approximation of strictly stationary Banach-valued
random sequence by Fourier integral, by Tawfik Benchikh; the proposal of a new
tool for biological signal processing, the Dynalets, a natural generalization of the
Fourier and wavelet transforms, by Jacques Demongeot, Ali Hamie, Olivier Hansen,
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Fig. 1 Genealogy (from AMS Mathematics Genealogy Project) of B. Maisonneuve, author of the
regenerative systems theory (PhD supervisor is located on the line below his student name, with,
in blue, Grenoble scientists)

and Mustapha Rachdi; and Estimation of the block shrink wavelet density in
'-mixing framework, by M. Badaoui and N. Rhomari.
The second application area revisits the classic approach initiated by D. Bernoulli,
mathematician and physician, prominent member of the large family of Swiss
mathematicians, the Bernoulli family, and J. d’Alembert (son of the famous
Madame du Tencin from Grenoble), by using copula theory, for estimating some
characteristics of the temporal evolution of subpopulations involved in the epidemic
spread of a vector-borne disease in the copula approach in epidemiologic modeling,
by J. Demongeot, M. Ghassani, H. Hazgui, and M. Rachdi.

The third application domain concerns estimation problems in queuing theory
in the contribution to the impact of nonparametric density estimation on the
approximation of the G/G/1 Queue, by A. Bareche and D. Aissani, and stochastic
analysis of an M/G/1 Retrial Queue, by M. Boualem, M. Cherfaoui, N. Djellab, and
D. Aissani.

Grenoble, France Jacques Demongeot
September 2014
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Asymptotic Results for an M-Estimator
of the Regression Function for Quasi-Associated
Processes

Said Attaoui, Ali Laksaci, and Elias Ould Saïd

Abstract In this paper, we study a family of robust nonparametric estimators for the
regression function based on the kernel method. It is assumed that the observations
form a stationary quasi-associated sequence. Under general conditions we establish
the almost-complete convergence with rate of the estimator as well as its asymptotic
normality.

1 Introduction

Let .Zi/iD1;:::;n WD .Xi;Yi/iD1;:::;n be an IRd � IR-valued measurable and strictly
stationary process, defined on the probability space .˝; A ; IP/. Our purpose is to
study the co-variation between Xi and Yi via the robust estimation of the regression
function. This nonparametric model, denoted by �x, is implicitly defined as a zero
with respect to (w.r.t.) t, in the equation:

�.x; t/ WD IE Œ .Y1; t/ j X1 D x� D 0; (1)
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Département de Mathématiques, Université des Sciences et de la Technologie, Mohamed
Boudiaf, BP 1505, 31000 El Mnaouer-Oran, Algerie
e-mail: s_attaoui@yahoo.fr

A. Laksaci
Laboratoire de Statistique et Processus Stochastiques, Université Djillali Liabès, BP 89, 22000
Sidi Bel Abbès, Algerie
e-mail: alilak@yahoo.fr

E. Ould Said
Université Lille Nord de France, F-59000 Lille, France

ULCO, LMPA, F-62228 Calais, France
e-mail: ouldsaid@lmpa.univ-littoral.fr

© Springer International Publishing Switzerland 2015
E. Ould Saïd et al. (eds.), Functional Statistics and Applications,
Contributions to Statistics, DOI 10.1007/978-3-319-22476-3_1

3

mailto:s_attaoui@yahoo.fr
mailto:alilak@yahoo.fr
mailto:ouldsaid@lmpa.univ-littoral.fr


4 S. Attaoui et al.

where  is a real-valued Borel function satisfying some regularity conditions to
be stated below. We suppose that, for all x 2 IRd, �x exists and is unique (cf. for
instance, [2]). A natural estimator of �x denoted by b�x is a zero w.r.t. t of the equation:

O�.x; t/ D 0 (2)

with

O�.x; t/ WD
Pn

iD1 K.h�1.x � Xi// .Yi; t/
Pn

iD1 K.h�1.x � Xi//
;

where K is a kernel function and h WD hn is a sequence of positive real numbers
which goes to zero as n goes to infinity.

It is well known that robust regression is an important analysis tool in statistics.
It is used to circumvent some of the limitations of the classical regression, namely
when data are heteroscedastic or contain outliers. Due to this interesting feature,
robust regression has been widely considered in time series analysis. Key references
on this subject are [2, 3, 7, 13–15, 22] for previous results and [4, 18] for recent
advances and references. However, in all these works the dependence structure
is modeled on the mixing hypothesis. In this paper, we focus on a more general
correlation type, that is the quasi-association condition. This kind of dependence
structure was introduced by Bulinski and Suquet [6] for real-valued random fields
as a generalization of positively associated variables introduced by Esary et al. [12]
and negatively associated random variables considered by Jong-Dev and Proschan
[16]. Both types of association have great importance in various applied fields (see
the book by Barlow and Proschan [1] for a deeper discussion on this topic).

Nonparametric estimation involving (positively and negatively) associated ran-
dom variables has been extensively studied. We quote, for instance, [20, 21, 23–25]
and the reference therein. We refer the reader to [8] or [10] for some other weak
dependence structures and their applications.

The goal of this paper is to study a family of nonparametric robust estimators of
the regression function, based on the kernel method. These estimates are constructed
by combining the ideas of robustness with those of smoothed regression which
allows us to obtain reliable estimation when outlier observations are present within
the responses. Under general conditions, we establish the uniform almost complete
convergence of these estimators and we show their asymptotic normality suitably
normalized. As far as we know, only the recent paper by Douge [9] has paid attention
to studying the kernel estimation under the quasi-association condition. He studied
the asymptotic properties of the kernel estimator of the classical regression which
can be viewed as a particular case of the present work.

The paper is organized as follows: the next section is dedicated to fixing notations
and hypotheses. We state the uniform almost complete convergence in Sect. 3. The
asymptotic normality is given in Sect. 4. The last section is devoted to the proofs.
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2 Notations and Hypotheses

We begin by recalling the definition of the quasi-association property.

Definition 1 A sequence .Xn/n2IN of real random vectors is said to be quasi-
associated, if for any disjoint subsets I and J of IN and all bounded Lipschitz
functions f W IRjIjd ! IR and g W IRjJjd ! IR we have

ˇ

ˇCov. f .Xi; i 2 I/; g.Xj; j 2 J//
ˇ

ˇ � Lip. f /Lip.g/
X

i2I

X

j2J

d
X

kD1

d
X

lD1

ˇ

ˇCov.Xk
i ;X

l
j/
ˇ

ˇ

(3)

(here and in the sequel jIj denotes cardinality of a finite set I), where Xk
i denotes the

kth component of Xi, and

Lip. f / D sup
x¤y

jf .x/� f .y/j
kx � yk1 ; with k.x1; : : : ; xk/k1 D jx1j C � � � C jxkj:

Note that there are interesting stochastic models in mathematical statistics, relia-
bility theory, percolation theory, and statistical mechanics described by families
of positively or negatively associated random variables (see for instance [6]). It
is shown in [5] that positively and negatively associated random variables with
finite second moment do satisfy (3). Moreover, the quasi-association property of
a Gaussian process X D fXt; t 2 Tg is studied by Shashkin [26].

Throughout this paper, we suppose that the sequence .Xi;Yi/iD1;:::;n is quasi-
associated, S is a fixed compact subset of IRd and f (resp. fi;j ) the density of X
(resp. the joint density of .Xi;Xj/). Furthermore, we set by C or C0 some positive
generic constants and by

�k WD sup
s>k

X

ji�jj�s

�i;j;

where

�i;j D
d
X

kD1

d
X

lD1
jCov.Xk

i ;X
l
j/j C

d
X

kD1
jCov.Xk

i ;Yj/j

C
d
X

lD1
jCov.Yi;X

l
j/j C jCov.Yi;Yj/j:
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In order to state the asymptotic proprieties of our estimate we consider the following
assumptions:

(U1) The density f is of class C 1.IRd/, such that infx2S f .x/ > C > 0 and the
joint density fi;j satisfies supji�jj�1 kf.Xi;Xj/k1 < 1, where k�k1 is the supremum
norm.

(U2) There exists ı0 > 0 such that

sup
x2S

j�xj � ı0:

(U3) The process f.Xi;Yi/; i 2 INg is quasi-associated with covariance coefficient
�k; k 2 IN satisfying

9a > 0 such that �k � Ce�ak:

(U4)

8

ˆ

ˆ

<

ˆ

ˆ

:

.U4a/ The function �.:; :/ is of class C 1 on S � Œ�ı0;Cı0�; such that
infx2S; t2Œ�ı0;ı0� @�@t .x; t/ > C > 0;

.U4b/ For each fixed t 2 Œ�ı0;Cı0�; the function �.:; t/ is continous
over S:

(U5) The function  is strictly monotonic w.r.t. the second component, Lipschitz
and such that, 8t 2 Œ�ı0;Cı0�,

IE .exp .j .Y; t/j// � C and 8i ¤ j; IE
�

ˇ

ˇ .Yi; t/ .Yj; t/
ˇ

ˇ

ˇ

ˇ

ˇXi;Xj

�

� C0:

(U6) K is ˇ-Holder with compact support.
(U7) There exist � 2 .0; 1/, �1; �2 > 0 and � C �2 < 1 such that

C.log n/1=d

n.1����2/=d
� h � C

.log n/.1C�1/=d
.

2.1 Comments on the Hypotheses

Our assumptions are classical for time series analysis. Moreover, the robustness of
our model is exploited with Hypothesis (U5), where we keep the same condition
given by Collomb and Härdle [7] in the multivariate case. We point out that our
robustness condition is verified for the usual functions (Huber, Hample, Tuckey, . . . )
which gives more flexibility in the practical choice of . Note that the nonparametric
regression studied by Douge [9] can be treated as a particular case of our study by
taking  .Y; t/ D Y � t. The rest of hypotheses are technical conditions imposed for
the concision of proofs. Finally, it should be noted that Condition (U7) is needed
to express the of our robust model even if  is unbounded. In particular, Condition
(U7) yields that limn!1 log n

n1�� hd D 0 which implies limn!1 log n
nhd D 0.
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3 Results

3.1 Consistency

The following result ensures the almost complete consistency of O�x:

Theorem 1 Under Hypotheses (U1)–(U7), the estimator O�x exists and is unique.
Moreover, we have, as n �! 1,

sup
x2S

ˇ

ˇ

ˇ

O�x � �x

ˇ

ˇ

ˇ D O

 

h C
�

log n

n1��hd

�1=2
!

a:co: (4)

3.2 Asymptotic Normality

Now we study the asymptotic normality of b�x for a fixed x 2 S. In this case,
Assumption (U7) must be replaced by

(U7’). There exists � 2 .0; 1/ and �1; �2 > 0 such that 1

n2.1=2��=6��2/=d � h �
C

n.1C�1/=.dC2/ .

Theorem 2 Assume that (U1)–(U7’) hold, then we have for any x 2 S,

�

nhd

	2.x; �x/

�1=2
�

b�x � �x

�

D! N .0; 1/ as n ! 1;

where

	2.x; �x/ D IEŒ 2x .Y; �x/jX D x�
�

@
@t�.x; �x/

�2

Z

BBrd
K2.z/dz;

A D
n

x 2 S; IEŒ 2x .Y; �x/jX D x�
@

@t
�.x; �x/ 6D 0

o

and
D! denotes the convergence in distribution.

4 Proofs

In the following, we denote, for all x 2 IRd and i D 1; : : : ; n Ki.x/ D K.h�1.x�Xi//.

Proof of Theorem 1 The proof is based on the fact that  is strictly monotonic w.r.t.
the second component. However, for sake of simplification, we give only the proof
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for the increasing case. Under this assumption, we write

sup
x2S

jb�x � �xj D sup
x2S

jb�x � �xj1In
supx2S jb�xj�ı0

o C sup
x2S

jb�x � �xj1In
supx2S jb�xj>ı0

o:

So, to prove the result, it suffices to prove that

X

n

IP

�

inf
x2S
b�x < �ı0

�

< 1;
X

n

IP

�

sup
x2S

b�x > ı0

�

< 1 (5)

and

sup
x2S

ˇ

ˇ

ˇ

b�x � �x

ˇ

ˇ

ˇ 1In
supx2S jb�xj�ı0

o D O

 

h C
�

log n

n1�� hd

� 1
2

!

; a:co: (6)

Since O�.x; �/ is increasing for each x 2 S, we need to show that

X

n

IP

�

sup
x2S

O�.x;�ı0/ > 0
�

< 1 and
X

n

IP

�

inf
x2S

O�.x; ı0/ < 0
�

< 1:

Assumption (U2) implies

sup
x2S

�.x;�ı0/ < 0 and inf
x2S
�.x; ı0/ > 0:

Provided we can check that

sup
x2S

O�.x;�ı0/ �! sup
x2S

�.x;�ı0/; a:co:

and

inf
x2S

O�.x; ı0/ �! inf
x2S
�.x; ı0/; a:co:

we obtain

X

n

IP

�

sup
x2S

O�.x;�ı0/ > 0
�

�
X

n

IP

�ˇ

ˇ

ˇ

ˇ

sup
x2S

O�.x;�ı0/� sup
x2S

�.x;�ı0/
ˇ

ˇ

ˇ

ˇ

� 
1

�

< 1
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and

X

n

IP

�

inf
x2S

O�.x; ı0/ < 0
�

�
X

n

IP

�ˇ

ˇ

ˇ

ˇ

inf
x2S

O�.x; ı0/� inf
x2S
�.x; ı0/

ˇ

ˇ

ˇ

ˇ

� 
2

�

< 1

with 
1 D � sup
x2S

�.x;�ı0/ and 
2 D inf
x2S
�.x; ı0/.

Moreover, under (U4a), we write

�

b�x � �x

�

1Injb�x��xj�ı
o D �.x;b�x/� O�.x;b�x/

@�
@t .x; �n/

1Injb�x��xj�ı
o;

where �n is between b�x and �x.
Thus, all what is left to show is the convergence rate of

sup
x2S

sup
t2Œ�ı0;ı0�

j O�.x; t/ � �.x; t/j: (7)

The proof of (7) is based on the following decomposition

sup
x2S

sup
t2Œ�ı0;ı0�

ˇ

ˇ

ˇ

O�.x; t/ � �.x; t/
ˇ

ˇ

ˇ

� 1

infx2S

ˇ

ˇ

ˇ

O�D.x/
ˇ

ˇ

ˇ

n

sup
x2S

sup
t2Œ�ı0;ı0�

ˇ

ˇ

ˇ

O�N.x; t/ � IE
h O�N.x; t/

iˇ

ˇ

ˇ

C sup
x2S

sup
t2Œ�ı0;ı0�

ˇ

ˇ

ˇIE
h O�N.x; t/

i

� H.x; t/
ˇ

ˇ

ˇ

C sup
x2S

sup
t2Œ�ı0;ı0�

ˇ

ˇ

ˇ�.x; t/
�

f .x/ � IE
h O�D.x/

i�ˇ

ˇ

ˇ

C sup
x2S

sup
t2Œ�ı0;ı0�

ˇ

ˇ

ˇ�.x; t/
�

IE
h O�D.x/

i

� O�D.x/
�ˇ

ˇ

ˇ

o

;

where

O�N.x; t/ WD 1

nhd

n
X

iD1
K
�

h�1.x � Xi/
�

 x.Yi; t/

O�D.x/ WD 1

nhd

n
X

iD1
K
�

h�1.x � Xi/
�

and H.x; t/ WD �.x; t/f .x/:

Finally, the proof of Theorem 1 is based on the following lemmas and corollary.



10 S. Attaoui et al.

Lemma 1 Under Hypotheses (U1), (U4) and (U6), we have, as n �! 1

sup
x2S

sup
t2Œ�ı0;ı0�

ˇ

ˇ

ˇIE
h O�N.x; t/

i

� H.x; t/
ˇ

ˇ

ˇ D O.h/:

Proof of Lemma 1 By equidistribution of the variables, we get

IEŒ O�N.x; t/� D 1

hd

Z

IRd
IEŒ .Y; t/jX D u/�K

�x � u

h

�

f .u/ du

D 1

hd

Z

IRd
�.u; t/K

�x � u

h

�

f .u/ du

D
Z

IRd
H.x � hz; t/K.z/ dz:

Since both f and � are of class C 1, a Taylor expansion of H.x � hz; t/ permits to
write

sup
x2S

sup
t2Œ�ı0;ı0�

ˇ

ˇ

ˇIEŒ O�N.x; t/� � H.x; t/
ˇ

ˇ

ˇ D O.h/:

Lemma 2 Under Hypotheses (U1), (U3)–(U7), we have

sup
x2S

sup
t2Œ�ı0;ı0�

ˇ

ˇ

ˇ

O�N.x; t/ � IE
h O�N.x; t/

iˇ

ˇ

ˇ D O

 
r

log n

n1��hd

!

a:co:

Proof of Lemma 2 Since  may not be bounded we employ a truncation method by
introducing the following random variable

O��
N .x; t/ D 1

nhd

n
X

iD1
K
�

h�1.x � Xi/
�

 x.Yi; t/1Ij .Yi ;t/j<�n with �n D n�=6:

Then, the claimed result is a consequence of the following intermediate results

sup
x2S

sup
t2Œ�ı0;ı0�

ˇ

ˇ

ˇIEŒ O��
N .x; t/� � IEŒ O�N.x; t/�

ˇ

ˇ

ˇ D O

 
r

log n

n1��hd

!

; (8)

sup
x2S

sup
t2Œ�ı0;ı0�

ˇ

ˇ

ˇ

O��
N .x; t/ � O�N.x; t/

ˇ

ˇ

ˇ D Oa:co:

 
r

log n

n1��hd

!

; (9)
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and

sup
x2S

sup
t2Œ�ı0;ı0�

ˇ

ˇ

ˇ

O��
N .x; t/ � IEŒ O��

N .x; t/�
ˇ

ˇ

ˇ D Oa:co:

 
r

log n

n1��hd

!

: (10)

We start by proving (10). Since S is compact we write

S �
dn
[

jD1
B.xk; �n/;

with dn D O
�

nˇ
�

and �n D O
�

d�1
n

�

where ˇ D ı.dC2/
2

C 1
2

C �

6
and ı � .1 � � �

�2/=d. Now, for all x 2 S, let

k.x/ D arg mink2f1;:::dng kx � xkk;

and we consider the following decomposition

sup
x2S

sup
t2Œ�ı0;ı0�

ˇ

ˇ

ˇ

O��
N .x; t/ � IE

h O��
N .x; t/

iˇ

ˇ

ˇ

� sup
x2S

sup
t2Œ�ı0;ı0�

ˇ

ˇ

ˇ

O��
N .x; t/ � O��

N .xk.x/; t/
ˇ

ˇ

ˇ

„ ƒ‚ …

T1

C sup
x2S

sup
t2Œ�ı0;ı0�

ˇ

ˇ

ˇ

O��
N .xk.x/; t/ � IE

h O��
N .xk.x/; t/

iˇ

ˇ

ˇ

„ ƒ‚ …

T2

C sup
x2S

sup
t2Œ�ı0;ı0�

ˇ

ˇ

ˇIE
h O��

N .xk.x/; t/
i

� IE
h O��

N .x; t/
iˇ

ˇ

ˇ

„ ƒ‚ …

T3

:

• Firstly, for T2 we use the compactness of Œ�ı0; ı0� and we write

Œ�ı0; ı0� �
zn
[

jD1

�

tj � ln; tj C ln
�

(11)

with ln D n�1=2 and zn D O
�

n1=2
�

. Set

Gn D ˚

tj � ln; tj C ln; 1 � j � zn
�

: (12)
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By the monotony of IEŒ O��
N .x; �/� and O��

N .x; �/ we obtain, for 1 � j � zn

IE
h O��

N .xk.x/; tj � ln/
i

� sup
t2.tj�ln ;tjCln/

IE
h O��

N .xk.x/; t/
i

� IE
h O��

N .xk.x/; tj C ln/
i

O��
N .xk.x/; tj � ln/ � sup

t2.tj�ln;tjCln/

O��
N .xk.x/; t/ � O��

N .xk.x/; tj C ln/: (13)

Moreover, by Assumption (U5), we have, for any t1; t2 2 Œ�ı0; ı0�
ˇ

ˇ

ˇIE
h O��

N .xk.x/; t1/
i

� IE
h O��

N .xk.x/; t2/
iˇ

ˇ

ˇ � Cjt1 � t2j: (14)

So, we deduce from (11)–(14) that

sup
x2S

sup
t2Œ�ı0;ı0�

ˇ

ˇ

ˇ

O��
N .xk.x/; t/ � IE

h O��
N .xk.x/; t/

iˇ

ˇ

ˇ

� max
1�k�dn

max
1�j�zn

max
t2ftj�ln;tjClng

ˇ

ˇ

ˇ

O��
N .xk; t/

� IE
h O��

N .xk; t/
iˇ

ˇ

ˇC 2Cln:

A simple algebraic calculation gives us

ln D o

 
r

log n

nhd

!

: (15)

Then, it suffices to prove that for some positive real  sufficiently large

max
1�k�dn

max
1�j�zn

max
t2ftj�ln ;tjClng

ˇ

ˇ

ˇ

O��
N .xk; t/ � IE

h O��
N .xk; t/

iˇ

ˇ

ˇ D Oa:co:

 
r

log n

n1��hd

!

:

(16)

To do that, we use a Bernstein-type inequality for dependent random variables (cf.
[17]). Indeed, we put:

O��
N .xk; t// � IE

h O��
N .xk; t//

i

D
n
X

iD1
�i;

where

�i D 1

nhd
�.Xi;Yi/;
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with

�.u; v/ D  .v; t/K.h�1.xk � u//1I.j .v;t/j<�n/

�IE
	

 .Y1; t/K.h
�1.xk � X1//1I.j .Y1;t/j<�n/




; u 2 IRd; v 2 IR:

Clearly,

k�k1 �C�nkKk1 and

Lip.�/ �.kKk1Lip. /C �nh�1Lip.K// � C�nh�1Lip.K/:

Note that, Kallabis and Newmann’s inequality is based on the asymptotic evaluation
of Var

�Pn
iD1 �i

�

and Cov.�s1 : : : �su ; �t1 : : : �tv /, for all .s1; : : : ; su/ 2 INu and
.t1; : : : ; tv/ 2 INv . We start by studying the variance term,

Var

 

n
X

iD1
�i

!

D nVar .�1/C
n
X

iD1

n
X

jD1
j¤i

Cov.�i; �j/: (17)

Under (U5), we have

Var .�1/ � 1

n2h2d
IEŒj .Y1; t/K1.xk/j2� � C0 1

n2h2d
IEŒjK1.xk/j2�

� C0n�2h�d
Z

IRd
K2.u/f .xk � hu/du

D O
�

n�2h�d
�

: (18)

Now, let us evaluate the asymptotic behavior of the sum in the right-hand side of
(17). For this we use the technique developed by Masry [19]. Indeed, we need the
following decomposition

n
X

iD1

n
X

jD1
j¤i

Cov.�i; �j/ D
n
X

iD1

n
X

jD1
0<ji�jj�mn

Cov.�i; �j/C
n
X

iD1

n
X

jD1
ji�jj>mn

Cov.�i; �j/;

where .mn/ is a sequence of positive integer tending to infinity as n goes to infinity.
For ji � jj � mn, we use (U1), (U5), and (U6) to write that

IEŒ
ˇ

ˇ�i�j

ˇ

ˇ� � C
1

n2h2d

�

IE
	ˇ

ˇ .Yi; t/Ki.xk/ .Yj; z/Kj.xk/
ˇ

ˇ




C .IE Œj .Y1; t/K1.xk/j�/2
�

� C
1

n2h2d

�

IEŒKi.xk/Kj.xk/�C .IEŒK1.xk/�/
2
�
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� 1

n2

�Z

IRd

Z

IRd
K.u/K.v/f.Xi;Xj/.xk � hu; xk � hv/dudv

C
�Z

IRd
K.u/f .xk � hu/du

�2
!

D O
�

n�2� :

Then, we get

n
X

iD1

n
X

jD1
0<ji�jj�mn

Cov.�i; �j/ � nmn
�

IEŒ�i�j�
�

:

� Cn�1mn:

On the other hand, for ji � jj > mn, we use the quasi-association of the sequence
.Xi;Yi/ and (U3), to write

n
X

iD1

n
X

jD1
ji�jj>mn

Cov.�i; �j/ � �2nn�2h�2.dC1/
n
X

iD1

n
X

jD1
ji�jj>mn

�i;j

� �2nn�1h�2.dC1/�mn

� �2nn�1h�2.dC1/e�amn :

So,

n
X

iD1

n
X

jD1
i¤j

Cov.�i; �j/ � C
�

n�1mn C �2nn�1h�2.dC1/e�amn
�

:

Take mn D 1
a log

�

a�2nh�2.dC1/�. Then, by the left part of (U7), we get

nhd
n
X

iD1

n
X

jD1
i¤j

Cov.�i; �j/ ! 0: (19)

Finally, by combining (18) and (19), we get:

Var

 

n
X

iD1
�i

!

D O

�

1

nhd

�

:
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Now, we deal with the covariance term in (17), for all .s1; : : : ; su/ 2 INu and
.t1; : : : ; tv/ 2 INv . To do that, we consider the following cases:

• If t1 D su, we obtain

jCov.�s1 : : : �su ; �t1 : : : �tv /j �
�

C�nkKk1
nhd

�uCv
IE
ˇ

ˇK2
1 .xk/

ˇ

ˇ

� hd

�

C�n

nhd

�uCv
: (20)

• If t1 > su, we use the quasi-association condition we get

jCov.�s1 : : : �su ; �t1 : : : �tv /j

�
�

�nh�1Lip.K//

nhd

�2 �
2�nkKk1

nhd

�uCv�2 u
X

iD1

v
X

jD1
�si;tj

� h�2
�

C�n

nhd

�uCv
v�t1�su

� h�2
�

C�n

nhd

�uCv
ve�a.t1�su/: (21)

On the other hand, we have

jCov.�s1 : : : �su ; �t1 : : : �tv /j �
�

2C�nkKk1
nhd

�uCv�2
.jIE�su�t1 j/

�
�

C�n

nhd

�uCv
h2d: (22)

We then take the d
2dC2 -power of (21) and the dC2

2dC2 -power of (22)

jCov.�s1 ; : : : �su ; �t1 ; : : : �tv /j � hd

�

C�n

nhd

�uCv
ve� ad

2dC2 .t1�su/:

Applying Theorem 2.1 of [17] for the variables�i; i D 1; : : : ; n where

Kn D C�n

n
p

hd
; Mn D C�n

nhd
and An D Var

 

n
X

iD1
�i

!

D O

�

1

nhd

�

;
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it follows that

IP

 

ˇ

ˇ

ˇ

O��
N .xk; t// � IE

h O��
N .xk; t//

iˇ

ˇ

ˇ > 

r

log n

n1��hd

!

D IP

 

ˇ

ˇ

ˇ

n
X

iD1
�i

ˇ

ˇ

ˇ > 

r

log n

n1��hd

!

� exp

8

ˆ

ˆ

<

ˆ

ˆ

:

� 2 log n=.2n1��hd/
�

Var
�Pn

iD1 �i
�C C�n.nhd/� 1

3

�

log n
n1��hd

� 5
6

�

9

>

>

=

>

>

;

� exp

8

ˆ

ˆ

<

ˆ

ˆ

:

� 2 log n

Cn�� C �nn��=6
�

log5 n
nhd

� 1
6

9

>

>

=

>

>

;

� C0 exp
˚�C2 log n

�

: (23)

By using the fact that, dnzn � n� , where � D ˇ C 1
2
, we get

IP

 

max
1�k�dn

max
1�j�zn

max
t2ftj�ln ;tjClng

ˇ

ˇ

ˇ

O��
N .x; z/ � IE

h O��
N .x; z/

iˇ

ˇ

ˇ > 

r

log n

nhd

!

� C0nˇC1=2�C2 :

A suitable choice of  allows to finish the proof of (10).

• Secondly, concerning T1 and T3: The Lipschitz condition on the kernel K in (U6)
allows to write directly, for all x 2 S, and 8t 2 Œ�ı0; ı0�

ˇ

ˇ

ˇ

O��
N .x; t/ � O��

N .xk.x/; t/
ˇ

ˇ

ˇ D �n

nhd

ˇ

ˇ

ˇ

ˇ

ˇ

n
X

iD1
Ki.x/�

n
X

iD1
Ki.xk.x//

ˇ

ˇ

ˇ

ˇ

ˇ

� �n

hdC1 kx � xk.x/k

� C�n�n

hdC1 :

Since �n D O
�

n�ˇ�, we have

�n

hdC1 D o

 
r

log n

nhd

!

a:co: (24)
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Hence

sup
x2S

sup
t2Œ�ı0;ı0�

ˇ

ˇ

ˇ

O��
N .x; t/ � O��

N .xk.x/; t/
ˇ

ˇ

ˇ D O

 
r

log n

nhd

!

a:co (25)

and

sup
x2S

sup
t2Œ�ı0;ı0�

ˇ

ˇ

ˇIE
h O��

N .xk.x/; t/
i

� IE
h O��

N .x; t/
iˇ

ˇ

ˇ D O

 
r

log n

nhd

!

: (26)

Now, we prove (8). For all x 2 S and all t 2 Œ�ı0; ı0�, we have

ˇ

ˇ

ˇIE
h O�N.x; t/

i

� IE
h O��

N .x; t/
iˇ

ˇ

ˇ D 1

nhd

ˇ

ˇ

ˇ

ˇ

ˇ

IE

"

n
X

iD1
 .Yi; t/1Ifj .Yi ;t/j>�ngKi

#ˇ

ˇ

ˇ

ˇ

ˇ

� h�dIE
	j .Y1; t/j1Ifj .Yi;t/j>�ngK1




� h�dIE
	

exp .j .Y1; t/j=4/ 1Ifj .Yi;t/j>�ngK1



:

Using Holder’s inequality, we get

sup
x2S

sup
t2Œ�ı0;ı0�

ˇ

ˇ

ˇIE
h O�N.x; t/

i

� IE
h O��

N .x; t/
iˇ

ˇ

ˇ

� h�d
�

IE
	

exp .j .Y1; t/j=2/ 1Ifj .Yi;t/j>�ng

� 1

2
�

IE.K2
1/
� 1
2

� h�d exp .��n=4/ .IE Œexp .j .Y1; t/j/�/ 12
�

IE.K2
1/
� 1
2

� Ch
�d
2 exp .��n=4/ :

Since �n D n�=6, we can then write

sup
x2S

sup
t2Œ�ı0;ı0�

ˇ

ˇ

ˇIE
h O�N.x; t/

i

� IE
h O��

N .x; t/
iˇ

ˇ

ˇ D o

 

�

log n

n1��hd

�1=2
!

:

The last claimed result (9) is shown by using the Markov’s inequality. Indeed,
observe that, for all k, for all t 2 Gn and for all 
 > 0

IP

"

sup
x2S

sup
t2Œ�ı0;ı0�

ˇ

ˇ

ˇ

O�N.x; t/ � O��
N .x; t/

ˇ

ˇ

ˇ > 


#

D IP

 

1

nhd

n
X

iD1
 .Yi; t/1Ij .Yi ;t/j>�n Kij > 


!
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� nIP .j .Y1; t/j > �n/

� n exp .��n/ IE .exp .j .Y1; t/j//
� Cn exp .��n/ :

Then,

X

n�1
IP

 

sup
x2S

sup
t2Œ�ı0;ı0�

ˇ

ˇ

ˇ

O�N.x; t/ � O��
N .x; t/

ˇ

ˇ

ˇ > 
0

 
r

log n

n1��hd

!!

� C
X

n�1
n exp .��n/ : (27)

Using the definition of �n completes the proof of (9) which in turn completes the
proof of lemma.

Lemma 3 Under hypotheses of Lemma 2, we have

sup
x2S

ˇ

ˇ

ˇIE
h O�D.x/

i

� O�D.x/
ˇ

ˇ

ˇ D O

 
r

log n

nhd

!

a:co:

Proof of Lemma 3 Similarly to Lemma 2, we use the compactness of S with respect
the notations of the previous lemma and we write

sup
x2S

ˇ

ˇ

ˇ

O�D.x/ � IE
h O�D.x/

iˇ

ˇ

ˇ � sup
x2S

ˇ

ˇ

ˇ

O�D.x/ � O�D.xk/
ˇ

ˇ

ˇ

„ ƒ‚ …

T0

1

C sup
x2S

ˇ

ˇ

ˇ

O�D.xk/ � IE
h O�D.xk/

iˇ

ˇ

ˇ

„ ƒ‚ …

T0

2

C sup
x2S

ˇ

ˇ

ˇIE
h O�D.xk/

i

� IE
h O�D.x/

iˇ

ˇ

ˇ

„ ƒ‚ …

T0

3

:

• For T 0
1 and T 0

3: the Lipschitz condition on the kernel K permit to write, for all
x 2 S

ˇ

ˇ

ˇ

O�D.x/� O�D.xk/
ˇ

ˇ

ˇ D 1

nhd

ˇ

ˇ

ˇ

ˇ

ˇ

n
X

iD1
Ki.x/ �

n
X

iD1
Ki.xk/

ˇ

ˇ

ˇ

ˇ

ˇ

� C

hdC1 kx � xkk

� C�n

hdC1 :
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The result follows directly, by the fact that
�n

hdC1 D O

 
r

log n

nhd

!

. Thus

sup
x2S

ˇ

ˇ

ˇ

O�D.x/� O�D.xk/
ˇ

ˇ

ˇ D O

 
r

log n

nhd

!

a:co: (28)

and

sup
x2S

ˇ

ˇ

ˇIE
h O�D.xk/

i

� IE
h O�D.x/

iˇ

ˇ

ˇ D O

 
r

log n

nhd

!

a:co: (29)

• For T 0
2, for all real  > 0, we have

IP

 

T 0
2 > 

r

log n

nhd

!

� IP

 

max
k2f1;:::dng

ˇ

ˇ

ˇ

O�D.xk/� IE
h O�D.xk/

iˇ

ˇ

ˇ > 

r

log n

nhd

!

� dn max
k2f1;:::dng

IP

 

ˇ

ˇ

ˇ

O�D.xk/ � IE
h O�D.xk/

iˇ

ˇ

ˇ > 

r

log n

nhd

!

:

(30)

Proceeding as in Lemma 2 (replacing  by 1), we get,

IP

 

sup
x2S

ˇ

ˇ

ˇ

O�D.x/ � IE
h O�D.x/

i ˇ

ˇ

ˇ > 

r

log n

nhd

!

� nˇ�C2 :

A suitable choice of  allows to get

1
X

nD1
IP

 

sup
x2S

ˇ

ˇ

ˇIE
h O�D.x/

i

� O�D.x/
ˇ

ˇ

ˇ > 

r

log n

nhd

!

< 1:

Lemma 4 Under the hypotheses of Lemma 1, we have

sup
x2S

ˇ

ˇ

ˇf .x/� IE
h O�D.x/

iˇ

ˇ

ˇ D O.h/:

Proof of Lemma 4 Using the same arguments as those in Lemma 1, it suffices to
write

IE
h O�D.x/

i

D 1

hd

Z

IRd
K
�x � u

h

�

f .u/ du

D
Z

IRd
f .x � hz/K.z/ dz:



20 S. Attaoui et al.

Next, we obtain by analytical arguments

sup
x2S

ˇ

ˇ

ˇf .x/� IE
h O�D.x/

iˇ

ˇ

ˇ D O.h/:

Corollary 1 Under the hypotheses of Lemma 3, we have

9c > 0
1
X

nD1
IP
�

inf
x2S

ˇ

ˇ

ˇ

O�D.x/
ˇ

ˇ

ˇ � c
�

< 1:

Proof of Corollary 1 We can write, 8x 2 S,

inf
x2S

O�D.x/ <
infx2S f .x/

2
) sup

x2S
jf .x/� O�D.x/j > infx2S f .x/

2
:

Then,

IP

�

inf
x2S

j O�D.x/j � infx2S f .x/

2

�

� IP

�

sup
x2S

jf .x/ � O�D.x/j � infx2S f .x/

2

�

:

The use of the results of Lemmas 3 and 4 completes the proof of the corollary.

Lemma 5 Under the hypotheses of Theorem 1, O�x exists and is unique almost
surely, for n large enough.

Proof of Lemma 5 The strict monotony of  implies:

�.x; �x � 
/ � �.x; �x/ � �.x; �x C 
/

Lemmas 1–3 and Corollary 1 show that for all real fixed t.

O�.x; t/ � �.x; t/ ! 0 a:co:

So, for n sufficiently large, we have:

O�.x; �x � 
/ � 0 � O�.x; �x C 
/ a:co:

As  and K are continuous functions, then O�.P;t/ is continuous for all t. There exists
t0 D O�x in some interval Œ�x � 
; �x C 
� such that O�.x; O�x/ D 0. Finally, the unicity
of O�x is a direct consequence of the strict monotony of  and the positivity of K.

Proof of Theorem 2 Similarly to Theorem 1, we give the proof for the case of a
increasing  , decreasing case being obtained by considering � . Considering this
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case, we define, for all u 2 IR, t D �x C u
	Onhd


�1=2
	.x; �x/. It is clear that, if

O�D.x/ 6D 0 we can write

IP

(

�

nhd

	2.x; �x/

�1=2
�

b�x � �x

�

< u

)

D IP
n

b�x < �x C u
	Onhd


�1=2
	.x; �x/

o

D IP
n

0 < O�N.x; t/
o

D IP
n

IE
h O�N.x; t/

i

� O�N.x; t/ < IE
h O�N.x; t/

io

:

So, Theorem 2 is a consequence of the following intermediate results.

Lemma 6 Under Hypotheses (H1), (U2), (U5) and (U7’), we have

IP
n� O�D.x/ D 0

�o

�! 0 as n �! 1:

Proof of Lemma 6 Clearly, for all " < 1, we have

IP
n O�D.x/ D 0

o

� IP
n O�D.x/ � 1 � "

o

� IP
n

j O�D.x/ � 1j � "
o

:

So, it suffices to use Lemmas 3 and 4 to show that

O�D.x/� 1 ! 0 in probability: (31)

Lemma 7 Under the hypotheses of Theorem 2, we have for any x 2 A

 

nhd

�

@
@t�.x; �x/

�2
	2.x; �x/

!1=2
� O�N.x; t/ � IE

h O�N.x; t//
i�

D! N .0; 1/ as n ! 1:

Proof of Lemma 7 Similarly to Lemma 2 we write, for a fixed x 2 S

O�N.x; t/ � IE
h O�N.x; t/

i

D O�N.x; t/ � O��
N .x; t/

C O��
N .x; t/ � IE

h O��
N .x; t/

i

C IE
h O��

N .x; t/
i

� IE
h O�N.x; t/

i

;
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where O��
N .x; t/ is given in Lemma 2. Once again we use the same arguments as in

Lemma 2 to get

 

nhd

�

@
@t�.x; �x/

�2
	2.x; �x/

!1=2
ˇ

ˇ

ˇ

O�N.x; t/ � O��
N .x; t//

ˇ

ˇ

ˇ D op.1/

and

 

nhd

�

@
@t�.x; �x/

�2
	2.x; �x/

!1=2
ˇ

ˇ

ˇIE
h O��

N .x; t//
i

� IE
h O�N.x; t//

iˇ

ˇ

ˇ D o.1/:

Then, it suffices to show the asymptotic normality of

 

nhd

�

@
@t�.x; �x/

�2
	2.x; �x/

!1=2
ˇ

ˇ

ˇ

O��
N .x; t/ � IE

h O��
N .x; t/

iˇ

ˇ

ˇ :

For this we put

 �.Yi; t/ D  x.Yi; t/1Ij .Yi;t/j<�n ; �i D 1

nhd

�

Ki 
�.Yi; t/ � IE

	

Ki 
�.Yi; t/


�

;

Zni D
p

nhd�i and Sn WD
n
X

iD1
Zni:

Therefore,

Sn D
p

nhd
� O��

N .x; t/ � IE
h O��

N .x; t/
i�

:

Thus, our claimed result is, now

Sn ! N .0; 	1.x//; (32)

where 	21 .x/ D �

@
@t�.x; �x/

�2
	2.x; �x/. To do that, we use the basic technique of

[11] (pp. 228–231). Indeed, we consider p D pn and q D qn, two sequences of
natural numbers tending to 1, such that

p D o
�

n1=2��1
n hd=2

�

and q D O.p1�& /; for a certain & 2 .0; 1/

and we split Sn into

Sn D Tn C T 0
n C �k with Tn D

k
X

jD1
j; and T 0

n D
k
X

jD1
�j;
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where

j WD
X

i2Ij

Zni; �j WD
X

i2Jj

Zni; �k WD
n
X

iDk.pCq/C1
Zni;

with

Ij D f .j � 1/.p C q/C 1; : : : ; .j � 1/.p C q/C pg;
Jj D f .j � 1/.p C q/C p C 1; : : : ; j.p C q/g:

Observe that, for k D
h

n
pCq

i

, (where Œ:� stands for the integer part), we have kq
n ! 0;

and kp
n ! 1; q

n ! 0; which imply that p
n ! 0 as n ! 1. Now, our asymptotic

result is based on

IE.T 0
n/
2 C IE.�k/

2 ! 0 (33)

and

Tn ! N .0; 	21 .x//: (34)

For (33), we use the stationarity of variables to get

IE.T 0
n/
2 D kVar.�1/C 2

X

1�i<j�k

jCov.�i; �j/j (35)

and

kVar.�1/ � qkVar.Zn1/C 2k
X

1�i<j�q

jCov.Zni;Znj/j: (36)

The first term in the right-hand side of (36) can be deduced from (18) and the fact
that kq

n ! 0. Indeed,

qkVar.Zn1/ D hdnkqVar.�1/ D O

�

kq

n

�

! 0; as n ! 1: (37)

The second term is

k
X

1�i<j�q

jCov.Zni;Znj/j D knhd
X

1�i<j�q

jCov.�i; �j/j
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and similarly to (19) we show that

X

1�i<j�q

jCov.�i; �j/j D o
� q

n2hd

�

:

Therefore,

k
X

1�i<j�q

jCov.Zni;Znj/j D o

�

kq

n

�

! 0; as n ! 1: (38)

We use the stationarity to evaluate the second term in the right-hand side of (35)

X

1�i<j�k

jCov.�i; �j/j D
k�1
X

lD1
.k � l/jCov.�1; �lC1/j

� k
k�1
X

lD1
jCov.�1; �lC1/j

� k
k�1
X

lD1

X

.i;j/2J1�JlC1

Cov.Zni;Znj/:

It is clear that, for all .i; j/ 2 J1 � Jj, we have ji � jj � p C 1 > p, then

X

1�i<j�k

jCov.�i; �j/j � k
C�2n

nhdC2
p
X

iD1

k.pCq/
X

jD2pCqC1;ji�jj>p

�i;j

� Ckp�2n
nhdC2 �p

� Ckp�2n
nhdC2 e�ap ! 0:

Finally, combining this last result with (36)–(38) we can write

IE.T 0
1/
2 ! 0 as n ! 1:

Since .n � k.p C q// � p, we have

IE.�k/
2 � .n � k.p C q//Var.Zn1/C 2

X

1�i<j�n

jCov.Zni;Znj/j

� pVar.Zn1/C 2
X

1�i<j�n

jCov.Zni;Znj/j
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� pnhdVar.�1/C nhd
X

1�i<j�n

jCov.�i; �j/j
„ ƒ‚ …

o.1/

� Cp

n
C o.1/:

Then,

IE.�k/
2 ! 0; as n ! 1:

Proof of (34): it is based on

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

IE
�

eit
Pk

jD1 j

�

�
k
Y

jD1
IE
�

eitj
�

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

! 0; (39)

and

kVar.1/ ! 	21 .x/; kIE.211If1>
	1.x/g/ ! 0: (40)

Proof of (39):

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

IE
�

eit
Pk

jD1 j

�

�
k
Y

jD1
IE
�

eitj
�

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

�
ˇ

ˇ

ˇIE
�

eit
Pk

jD1 j

�

� IE
�

eit
Pk�1

jD1 j

�

IE
�

eitk
�

ˇ

ˇ

ˇ

C
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

IE
�

eit
Pk�1

jD1 j

�

�
k�1
Y

jD1
IE
�

eitj
�

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D
ˇ

ˇ

ˇCov
�

eit
Pk�1

jD1 j ; eitk

�ˇ

ˇ

ˇC
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

IE
�

eit
Pk�1

jD1 j

�

�
k�1
Y

jD1
IE
�

eitj
�

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

(41)

and successively, we have

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

IE
�

eit
Pk

jD1 j

�

�
k
Y

jD1
IE
�

eitj
�

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

�
ˇ

ˇ

ˇCov
�

eit
Pk�1

jD1 j ; eitk

�ˇ

ˇ

ˇ

C
ˇ

ˇ

ˇCov
�

eit
Pk�2

jD1 j ; eitk�1

�ˇ

ˇ

ˇ

C � � � C ˇ

ˇCov
�

eit2 ; eit1
�ˇ

ˇ : (42)
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Using the quasi-association property to write

ˇ

ˇCov
�

eit2 ; eit1
�ˇ

ˇ � Ct2�2n
nhdC2

X

i2I1

X

j2I2

�i;j

and applying this inequality to each term on the right-hand side of (42), we obtain

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

IE
�

eit
Pk

jD1 j

�

�
k
Y

jD1
IE
�

eitj
�

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

� Ct2�2n
nhdC2

2

4

X

i2I1

X

j2I2

�i;j C
X

i2I1[I2

X

j2I3

�i;j C � � � C
X

i2I1[���[Ik�1

X

j2Ik

�i;j

3

5 :

Observe that for every 2 � l � k � 1, .i; j/ 2 Il � IlC1, we have ji � jj � q C 1 > q,
then

X

i2I1[���[Il�1

X

j2Il

�i;j � p�q:

Therefore, Inequality (41) becomes

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

IE
�

eit
Pk

jD1 j

�

�
k
Y

jD1
IE
�

eitj
�

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

� Ct2�2n
nhdC2 kp�q

� Ct2�2n
nhdC2 kpe�aq ! 0:

Concerning (40) we use the same arguments as those in (35), to get

lim
n!1 kVar.1/ D lim

n!1 kpVar.Zn1/

D lim
n!1 kpnhdVar.�1/:

On the other hand

Var.�1/ D 1

n2h2d

n

IE
h

K2
�

h�1.x � Xi/
�

 2x .Yi; t/
i

� IE
h

K2
�

h�1.x � Xi/
�

 2x .Yi; t/1Ij .Yi;t/j>�n

io

� 1

n2

�

1

hd
IE
h

K
�

h�1.x � Xi/
�

 x.Yi; t/1Ij .Yi;t/j<�n

i

�2

:
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Similarly to (9) and Lemma 1 we show that

Var.�1/ D 	21 .x/

n2hd
C o

�

1

n2hd

�

: (43)

Hence

kVar.1/ D kp	21 .x/

n
C o

�

kp

n

�

! 	21 .x/:

For the second part of (40), we use the fact that j1j � CpjZn1j � C�npp
nhd

, and

Tchebychev’s inequality to get

kIE.211If1>
	1.x/g/ � C�2np2k

nhd
IP.1 > 
	1.x//

� C�2np2k

nhd

Var.1/


2	21 .x/

D O

�

�2np2

nhd

�

which completes the proof.

Lemma 8 Under Hypotheses (U1), (U5), (U7’) and if the bandwidth parameter h
satisfies nh2Cd ! 0 as n ! 1, we have

 

nhd

�

@
@t�.x; �x/

�2
	2.x; �x/

!1=2

IE
h O�N.x; t/

i

D u C o.1/; as n ! C1:

Proof of Lemma 8 By simple analytical arguments we write

IEŒ O�N.x; t/� D
Z

IRd
H.x � hz; t/K.z/ dz:

Next, we use a Taylor expansion of H.x � hz; �x C u
	

nhd

�1=2

	.x; �x// to write

IEŒ O�N.x; t/� D u
	

nhd

�1=2

	.x; �x//�
0.x; �.x//C O .h/ :

The result is then a consequence of (U7’).
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BlockShrink Wavelet Density Estimator
in �-Mixing Framework

Mohammed Badaoui and Noureddine Rhomari

Abstract We study the integrated L2-risk, of a wavelet BlockShrink density esti-
mator based on dependent observations. We prove that the BlockShrink estimator is
adaptive in a class of Sobolev space with unknown regularity for uniformly mixing
processes with arithmetically decreasing mixing coefficients.

1 Introduction

The functional estimation by the wavelet method has been intensively used, these
last years, in various areas. The popularity of these methods comes from the ease
of their implementation, their flexibility, ability to catch details, and for their high
compression ratio. In the statistical literature, different types of wavelet estimators
have been proposed. The performance of the first ones depended on the density’s
regularity. Later, adaptive procedures, as thresholding estimators, were developed
to construct an estimate which does not depend on the explicit knowledge of
this regularity. Those estimators are to make a fine selection of the coefficients
estimators Ǒ

jk of the wavelets coefficient ˇjk and several thresholding techniques,
including local, global, and block thresholdings, have been developed.

Donoho and Johnstone developed the theory of thresholding in a general
framework in the beginning of 1990s. They introduced two techniques of local
thresholding: soft and hard thresholding. The word “local” means that individual
coefficients independently of each other are subject to a possible thresholding.
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The idea of block thresholding was introduced by Efroimovich [9] as part of
Fourier analysis. It has been adapted to the wavelet context analysis by Kerkyachar-
ian et al. [13]. They proposed a global thresholding. Its principle, instead of keeping
or deleting individual wavelet coefficients, one can also keep or delete a whole j-
level of coefficients.

The first localized block thresholding estimators have been developed, in case
of iid observations, by Hall et al. [10, 11], Cai [3–6], and Chesneau [7]. This last
author studied an Lp version of the BlockShrink estimator given by Cai [3] and
proved by simulations that BlockShrink estimator is better than the local and global
ones. All these works have been developed in the independent framework. Tribouley
and Viennet [20] explored the global thresholding method in the case of ˇ-mixing
processes. But to our knowledge, the BlockShrink estimator for the density model
has not been studied for dependent processes.

The aim of this work is to extend some results, of BlockShrink estimator, to
dependent processes in L2-norm for the density estimation. The function density f is
supposed to belong to the Sobolev space Hs with compact support. We consider the
�-mixing’s processes [12] and we study the L2-error convergence for BlockShrink
estimator fn. We show that BlockShrink estimator is consistent with an optimal rate,
under certain conditions on wavelet basis and mixing coefficients. Precisely we give
for arithmetically decreasing �-mixing processes an upper bound of the L2-mean
error

Ek f � fnk2L2 D Cn� 2s
1C2s :

The rest of the paper is organized as follows: Sect. 2 describes briefly the wavelet
basis and the Sobolev space. Section 3 introduces the BlockShrink estimator and
presents its asymptotic properties under �-mixing conditions. Section 4 contains
proofs of various results.

2 Wavelets and Sobolev Space

In this section, we give a brief definition of wavelet decomposition and we refer
to Meyer [16] and Mallat [14, 15] for more details. Without loss of generality, we
suppose that f has Œ0; 1� as support and consider a wavelet basis on the interval Œ0; 1�
of the form

� D f'�k; � � 0; k D 0; : : : ; 2j � 1I jk; j � � I k D 0; : : : ; 2j � 1g :

In general, 'jk.x/ and  jk.x/ are “periodic” or “boundary adjusted” dilation and
translation of a “father” wavelet ' and a “mother” wavelet  , respectively. This last
function is supposed to be N-regular (cf. Meyer [16]).
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For the sake of simplicity, we set 'jk.x/ D 2j=2'.2jx�k/ and jk D 2j=2 .2jx�k/,
where ' and  are father and mother wavelet functions, respectively. Let, now, � be
a large enough integer. For any j0 � � , a function f in L2.Œ0; 1�/ can be expanded in
a wavelet series as

f D
2j0�1
X

kD0
˛j0k'j0k C

X

j�j0

2j�1
X

kD0
ˇjk jk ; (1)

where the wavelet coefficients are defined by

˛j0k D
Z

f .x/'j0k.x/dx et ˇjk D
Z

f .x/ jk.x/dx:

Now, let us give a definition of Sobolev space, the main function spaces used in our
study. To unify notations we write ˇ��1;k D ˛�k. We define the Sobolev space Hs as
being the functions space f whose the associated wavelet coefficients ˇjk, satisfy

0

@

X

j���1
22js

0

@

2j�1
X

kD0
jˇjkj2

1

A

1

A

1=2

< 1;

where s 2�0;N C 1Œ with N denotes the wavelet regularity (cf. Meyer [16]).

3 BlockShrink Estimator

Let X1; : : : ;Xn, n observations from a strictly stationary process, with unknown
density f , with respect to the Lebesgue measure on R, which is supposed to be
in L2.Œ0; 1�/.

Then f admits a representation in (1) with ˛j0k D E.'j0k.X// and ˇjk D
E. jk.X//, where X is a random variable having as probability density f .

We define the nonlinear BlockShrink estimator as proposed by Cai [3] by

f b
n D

2j0�1
X

kD0
Ǫ j0k'j0k C

j1
X

jDj0

X

K2Aj

X

k2BjK

Ǒ
jkIfObjK��g jk; (2)

where j0 and j1 are two integers to be precised below such that: j0 is an integer
chosen so that the linear variance term will not contribute to the overall error in
the same spirit that the integer j1 is chosen to make the bias term negligible in the
overall error. We assume that 2j1 � n

1
2 and 2j0 � .log n/" with " > 2. And for
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j 2 fj0; : : : ; j1g, we split the set f0; : : : ; 2j � 1g into blocks of length lj. We define
the sets:

Aj Df1; : : : ; 2jl�1j g;
BjK Dfk 2 f0; : : : ; 2j � 1gI .K � 1/lj � k � Klj � 1g;

for K 2 Aj, where lj is an increasing sequence in j such that lj0 � .log n/", and
we get

ObjK D
0

@l�1j

X

k2BjK

j Ǒ
jkj2
1

A

1
2

and � is some threshold parameter, depending on n, to be defined below.
The choice of block size lj and the threshold � play a crucial role in the

performance of the resulting estimator. Between the two parameters lj and �, the
block lj size is more important. It plays an important role similar to that of the
bandwidth in the kernel estimator. To achieve the optimal adaptability, the block
size must be at least of order log n, see, for example, Hall et al. [10].

Before announcing our result, we recall the uniformly mixing dependance we
work with. Let .˝;A ;P/ be a probability space and let F and G be two sub 	-
fields of A . In order to estimate the dependence between F and G we use the
uniform mixing (or �-mixing) coefficient [12]

�.F ;G / D supfjP.B/� P.B=A/jI B 2 G ;A 2 F and P.A/ > 0g:

When F D 	.X/ and G D 	.Y/ are sigma algebras generated, respectively, by
random variables X and Y, we write �.F ;G / D �.X;Y/.

Remark that, this measure of dependence is not symmetric with respect to F
and G . Therefore we can define an other coefficient by

�rev.F ;G / D �.G ;F /:

A stationary process X D .Xj; j 2 Z/ is said to be �-mixing if

�.l/ D �.F 0�1;FC1
l / ! 0 when l ! 1;

where F k
i is the sigma algebra generated by the random variables fXj; i � j � kg.

In the same way, we can also define a �rev-mixing processes.
The sequence of the mixing coefficients .�.l//l�0 decrease arithmetically if there

exists � > 0 and a constant c > 0 such that �.l/ � cl�.�C1/; and we say X is an
arithmetically �-mixing process.
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We now give Theorem 1 providing an upper bound of the L2 error of the
BlockShrink estimator defined by (2).

Theorem 1 Assume that f belongs to the class F .M1;M2;A/ D ff 2
Hs; supp. f / � ŒA;�A�; k f kHs � M1; k f k1 � M2g; with 1=2 < s < N C 1, and
the mixing coefficients decrease arithmetically with � > 6 � 4

1C2.NC1/ , then for

� D 4k kL1k k1k f k1.
P

l�0 �.l//=n1=2 there exists a positive constant C such
that

Ek f � f b
n k2L2 � Cn� 2s

1C2s :

Corollary 1 Under the same conditions of Theorem 1, the estimator f b
n is adaptive

in the class fF .M1;M2;A/; 1=2 < s < N C 1;A > 0;M1 > 0;M2 > 0g.

Proofs of our main theorem are based on the following preliminary results, which
are important in themselves.

Proposition 1 Let us set Ǒ
j0�1k D Ǫ j0k, under the summability

X

l�0
�.l/ � B < 1,

we have for all j 2 fj0 � 1; : : : ; j1g

Ej Ǒ
jk � ˇjkj2 � 4Bk kL1k k1k f k1

1

n
:

Proposition 2 Assume that there exists � > 0 and a constant c > 0 such that
�.l/ � cl�.�C1/, then there exists two positive constants C and K2 such that, for all j

P

0

B

@

0

@l�1j

X

k2BjK

j Ǒ
jk � ˇjkj2

1

A

1=2

� 2K2=n1=2

1

C

A � Cn� �
2

�

2j

lj

�
1
2 .2C�/

.log n/�C1;

where K2 D .4B k kL1k k1 k f k1/
1
2 and B D

X

l�0
�.l/.

4 Derivations

In what follows, we use the symbol C as a generic positive constant, independent
of n, which may take different values at different places.

Let us first prove Propositions 1 and 2. We are inspired by techniques developed
in Tribouley and Viennet [20].
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Proof of Proposition 1 It is easy to have

E

�

j Ǒ
jk � ˇjkj2

�

D n�2
E

0

@

ˇ

ˇ

ˇ

ˇ

ˇ

n
X

iD1

�

 jk.Xi/ � E
�

 jk
�

�

ˇ

ˇ

ˇ

ˇ

ˇ

2
1

A

� 2 n�2
n
X

iD0
.n � i/ jCov

�

 jk.X0/;  jk.Xi/
� j:

From, Rio [17, Theorem 1.4, p. 27], we deduce

jCov
�

 jk.X0/;  jk.Xi/
� j

� 2� 1
p . jk.Xi/;  jk.X0//�

1
q . jk.X0/;  jk.Xi//E

�k jk.X0/kLq

�

E
�k jk.X0/kLp

�

:

Then, for q D 1 and p D 1 we have

E
�k jk.X0/kL1

� � 2� j
2 k kL1k f k1 and E

�k jk.X0/k1
� � 2

j
2 k k1;

and finally, we obtain the desired inequality

E

�

j Ǒ
jk � ˇjkj2

�

� 4 n�1
n
X

iD0
�. jk.X0/;  jk.Xi//E

�k jk.X0/kL1

� k jk.X0/k1

� 4 n�1k kL1k k1k f k1
n
X

iD0
�.i/:

Proof of Proposition 2 To prove Proposition 2, we need the following theorem
which gives an exponential type inequality of block of . Ǒ

jk/ coefficients.

Theorem 2 Let .Xi/i�0 be a strictly stationary uniformly mixing process such that
its sequence of mixing coefficients .�.l//l�0 satisfies the summability

P

l�0 �.l/ �
B < 1. We suppose that Xi has a density f with respect to the Lebesgue measure
and that f is uniformly bounded. Then, there exists a positive constant K1 depending
on k f k1 and K2 such that for any integer q � n, �1 > 0 and �2 > 0 we have

P

0

B

@

0

@

X

k2BjK

j Ǒ
jk � ˇjkj2

1

A

1
2

� �1 C K2l
1
2

j

1p
n

C �2

1

C

A

� exp

0

@�K1n

0

@�21l
�1
j ^ �1

q2
j
2

^ �21
p

n

ql
1
2

j 2
j
2

1

A

1

AC 2C

�2
2

j
2 �.q/

with K2 D .4B k kL1k k1 k f k1/
1
2 and x ^ y D min.x; y/.
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The proof of this theorem is postponed to the end.
Let us return to the proof of Proposition 2. Applying this Theorem 2 with: �1 D

�2 D 1
2
K2l

1
2

j
1p
n
, we get: for all q � n

P

0

B

@

0

@

X

k2BjK

j Ǒ
jk � ˇjkj2

1

A

1
2

� 2K2l
1
2

j

1p
n

1

C

A

� exp

0

B

B

B

@

�K1n

0

B

B

B

@

�

1

2
K2l

1
2

j

1p
n

�2

l�1j ^
1
2
K2l

1
2

j
1p
n

q2
j
2

^

�

1
2
K2l

1
2

j
1p
n

�2 p
n

ql
1
2

j 2
j
2

1

C

C

C

A

1

C

C

C

A

C 2C

1
2
K2l

1
2

j
1p
n

2
j
2 �.q/

� exp

0

@�K1n

0

@

1

n
^ l

1
2

j

q
p

n2
j
2

^ l
1
2

j

q
p

n2
j
2

1

A

1

AC C
p

nl
� 1
2

j 2
j
2 �.q/

� exp

�

�K1
1

q
l
1
2

j 2
� j
2
p

n

�

C C
p

nl
� 1
2

j 2
j
2 �.q/:

Now for q D Œl
1
2

j 2
� j
2
p

n. log n/�1� with  a positive constant to be precised, we
have

P

0

B

@

0

@

X

k2BjK

j Ǒ
jk � ˇjkj2

1

A

1
2

� 2K2l
1
2

j

1p
n

1

C

A

� exp .�K1 log n/C C
p

nl
� 1
2

j 2
j
2 �

�

l
1
2

j 2
� j
2
p

n. log n/�1
�

:

So for a good choice of , the exponential term will be less than the mixing part
(ie. the last term in the above inequality, thanks to the arithmetically decrease of �),
which gives

P

0

B

@

0

@

X

k2BjK

j Ǒ
jk�ˇjkj2

1

A

1
2

� 2K2l
1
2

j

1p
n

1

C

A � C
p

nl
� 1
2

j 2
j
2 �

�

l
1
2

j 2
� j
2
p

n. log n/�1
�

:
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As the mixing is arithmetic, �.l/ � c l�.�C1/, we get

P

0

B

@

0

@

X

k2BjK

j Ǒ
jk � ˇjkj2

1

A

1
2

� 2
K2l

1
2

j

n
1
2

1

C

A � C
p

nl
� 1
2

j 2
j
2

�

l
1
2

j 2
� j
2
p

n. log n/�1
��.�C1/

� Cn� �
2

�

2j

lj

�
1
2 .2C�/

.log n/.�C1/:

Proof of Theorem 1 The proof uses techniques from conventional calculations. In
fact, recall that

f D
2j0�1
X

kD0
˛j0k'j0k C

X

j�j0

2j�1
X

kD0
ˇjk jk

fn D
2j0�1
X

kD0
Ǫ j0k'j0k C

j1
X

jDj0

X

K2Aj

X

k2BjK

Ǒ
jkIfObjK��g jk

with �=2 D 2K2=n1=2. It is obvious that

Ek f � fnk22 � 3

0

B

@E

�

�

�

�

�

�

2j0�1
X

kD0
. Ǫ j0k � ˛j0k/'j0k
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�

2
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C E
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�

�

�

�

�

j1
X

jDj0

2j�1
X

kD0
. Ǒ

jkIfObjK��g � ˇjk/ jk

�

�

�

�

�

�

2

L2

C
�
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�

�

�

�

X

j�j1C1

2j�1
X

kD0
ˇjk jk

�

�

�

�

�

�

2

L2

1

C

A :

(3)

1. Bias term: Applying the Hölder’s inequality and the fact that f 2 F .M1;M2;B/
we obtain
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kD0
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�

0

B

@
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@

X

j�j1C1
22js

0

@

2j�1
X

kD0
jˇjkj2

1

A

1

A

1=20

@

X

j�j1C1
2�2js

1

A

1=2
1

C

A

2

� 2�2j1s � Cn�s � Cn� 2s
1C2s : (4)

2. Linear stochastic term: Using the Proposition 1, we obtain

E

�

�

�

�

�

�

2j0�1
X

kD0
. Ǫ j0k � ˛j0k/'j0k

�

�

�
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2
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D C
2j0�1
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E
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ˇ Ǫ j0k � ˛j0k

ˇ
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2

� C

�

2j0

n

�

� Cn� 2s
1C2s : (5)

3. Nonlinear stochastic term: Using techniques similar to those used in the proofs
of Theorems 2 and 3 of Chesneau [8], we give

E
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(a) The upper bound for G2. We have G2 � 2 .G21 C G22/, where

G21 D E
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:

Notice that the l2 Minkowski’s inequality yields

IfObjK<�gIfbjK>2�g � IfjObjK �bjK j��g
� I��

l�1j

P

k2BjK
j Ǒjk�ˇjkj2

�1=2��
 : (6)
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• For bounding the term G22 we will use the Large deviation established in
Proposition 2. Using the inequality (6) and the Proposition 2 we obtain

G22 � E

Z j1
X

jDj0

2j�1
X

kD0
jˇjkj2IfObjK<�gIfbjK>2�gj jk.x/j2dx
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.log n/.�C1/ k f k2L2 :

This quantity is bounded by n� 2s
1C2s for 2j1 � n

1
2 with � > 6 � 4

1C2.NC1/ .
We then obtain for � > 6 � 4

1C2.NC1/ that

G22 � Cn� 2s
1C2s : (7)

• The upper bound for G21. Let js the integer belonging to Œ j0; j1� such that
js is the optimal level of truncation, when the regularity s of the density f

is known (i.e 2js � n
1

1C2s ). So using an elementary inequality of convexity,
we have the following decomposition:
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– The upper bound for S1. Minkowski’s inequality gives the following
bound:
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Thus

S1 D C

0

B

@

js
X

jDj0

0

@

X

K2Aj

X

k2BjK

jˇjkj2I��
l�1j

P

k2BjK
jˇjkj2

�1=2�2�


1

A

1=2
1

C

A

2

� C

2

4

js
X

jDj0

�

cardAj lj �
2
�1=2

3

5

2

� C

2

4

js
X

jDj0

2j=2 �

3

5

2

� C2js�2:

– The upper bound for S2. The Minkowski’s inequality, the basis orthonor-
mality and the inclusion Hs 	 Bs

2;1 imply that

S2 D
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1

A
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1

C

A
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:
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Then, we obtain

S2 �

0

B

@sup
j�j0

2js

0

@

2j�1
X

kD0
jˇjkj2

1

A

1=2
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X
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A
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�
0

@k f kBs
2;1

j1
X
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1

A

2

� C

0
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j1
X

jD1
2�js

1

A

2

� C2�2jss:

Putting the upper bounds of S1 and S2 together in inequality (8), it yields

G21 � C
�

2�2jss C 2js�2
�

:

Since � D 4K2=n1=2 and 2js � n
1

1C2s , we conclude that

G21 � Cn� 2s
1C2s : (9)

(b) For the term G3, we have
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�

�

�

�

�

�

2

L2

1

C

A

D 2 .G31 C G32/ : (10)

• To bound the term G31 we will use the Large deviation established in
Proposition 2. Using l2 Minkowski’s inequality, Hölder’s inequality and
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Jensen’s inequality we obtain

G31 D E
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o

�
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o
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2 �
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�

�

2
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j1
X

jDj0

0

@
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X

kD0
Ej Ǒ

jk � ˇjkj4
1

A

1
2

0

@P

��

l�1j

X

k2BjK

j Ǒ
jk � ˇjkj2

�1=2

� �=2

�

1

A

1
2

:

Using our Proposition 2 and the Proposition 4.1 from Tribouley and
Viennet [20] we get

G31 � C
j1
X

jDj0

2j

n2

�

n� �
2 l

� 1
2 .2C�/

j 2
j
2 .2C�/.log n/1C�

� 1
2

� C
2j1

n2C �
4

�

2j1

lj1

�
1
4 .2C�/

.log n/
�C1
2

� Cn� 2s
1C2s : (11)

• The upper bound for G32. Let j3 an integer belonging to Œ j0; j1� and M1 such

that k f kHs � M1. Since

0

@

X

j���1
22js

0

@

2j�1
X

kD0
jˇjkj2

1

A

1

A

1=2

< 1. We have, for
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all j 2 Œ j3; j1�
0

@

2j�1
X

kD0
jˇjkj2

1

A

1=2

� M12
�js � M12

�j3s: (12)

Recall that �=2 D 2K2=n1=2 and with choice of 2j3 D
�

M1

2K2

� 2
1C2s

n
1

1C2s . We

will prove that by absurd. Assume that for all j 2 Œ j3; j1�we have bjK > �=2

then
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1
2

> �=2

l�1j

X

k2BjK

jˇjkj2 > .�=2/2

2j�1
X

kD0
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1

A

1=2

> 22
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2

K2

n
1
2

D M12
�j3s

which contradicts (12). We conclude therefor, that the terms corresponding
to j 2 Œ j3; j1� are zero. Thus

G32 D E
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�
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�

2
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:
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Using the Proposition 1, we get

G32 D E

�

�

�

�

�

�

j3
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jDj0
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X

kD0
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2
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� E
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�

j3
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jDj0

2j�1
X

kD0
. Ǒ
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�

�

�

�

�

�

2

L2

� C
j3
X

jDj0

2j�1
X

kD0
Ej Ǒ

jk � ˇjkj2

� C
2j3

n
� Cn� 2s

1C2s : (13)

Combining the previous inequalities (4), (5), (8), (9), (11), and (13) in (3), we obtain
the desired upper bounds.

Proof of Theorem 2 The scheme of this proof is quite classical. We take inspiration
from the proof of Theorem 2.2 in Tribouley and Viennet [20]. The proof is based
on a results of Talagrand [19], the Berbee’s lemma [1] with the fact that the
ˇ-mixing coefficient are less than �-mixing coefficient and mainly on the following
observation

Remark 1 The study of the quantity
P

k2BjK
j Ǒ

jk � ˇjkj2 is related to the study of

supremum of a centered empirical process �n, where �n. jk/ D Ǒ
jk � ˇjk, over the

set F2 D
n

h D P

k2BjK
ak jk=

P

k2BjK
jakj2 � 1

o

. By duality arguments we have

X

k2BjK

j Ǒ
jk � ˇjkj2 D sup

ak;
P

k2BjK
jak j2�1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

X

k2BjK

ak. Ǒ
jk � ˇjk/

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

D sup
h2F2

j�n.h/j2:

Lemma 1 (Berbee [1]) Let .Xi/i>0 be a sequence of random variables taking their
values in a Polish space �. Then, there exists a sequence .X�

i /i>0 of independent
random variables such that for any positive integer i, we have

P.Xi ¤ X�
i / < ˇ.	.XjI j < i/; 	.Xi//:

Return now to the proof of Theorem 2. For the sake of simplicity, we assume in the
following that Xi D 0 and h.Xi/ D 0 if i > n, and that EP.h/ D 0. Let q D Œ

p
n�

be a fixed integer, where Œ:� denotes the integer part. According to Berbee’s lemma,
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there exists a sequence of independent random variables .X�
i /i�0 such that for any

positive integer k, Yk D .XqkC1; : : : ;Xq.kC1// and Y�
k D .X�

qkC1; : : : ;X�
q.kC1// have

the same distribution, and

P.Yk ¤ Y�
k / � ˇ.q/ � �.q/:

Then, the random variables .Y�
2k/k�0 are independent, and even .Y�

2kC1/k�0.
Let ��

n be the empirical process associated with the random variables .X�
i /i�0.

The centered empirical process �n.h/ (that is �n D 1
n

Pn
iD1 ıXi � PX1) is then

decomposed as

�n.h/ D �n.h/� ��
n .h/C ��

n .h/:

Since for any �1 > 0 and �2 > 0 we have

P

 

sup
h2F2

j�n.h/j � �1 C K2l
1
2

j

1p
n

C �2

!

� P

 

sup
h2F2

j�n.h/� ��
n .h/j � �2

!

CP

 

sup
h2F2

j��
n .h/j � �1 C K2l

1
2

j

1p
n

!

: (14)

We just have to control these two terms to get the announced result.
For the first term in the right hand of (14), it is easy to have

j�n.h/� ��
n .h/j D 1

n

ˇ

ˇ

ˇ

ˇ

ˇ

n
X

iD1
ıXi.h/� ıX�

i
.h/

ˇ

ˇ

ˇ

ˇ

ˇ

� 2

n
khk1

n
X

iD1
IXi¤X�

i
:

We obtain then

Ej�n.h/� ��
n .h/j � 2

n
khk1 n �.q/:

Since h 2 F2 D
n

P

k2BjK
ak jk=

P

k2BjK
jakj2 � 1

o

and using Hölder’s inequality,

we have
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1
2
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@
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ˇ
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2

1
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1
2

�
0

@
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X

kD0

ˇ

ˇ jk.x/
ˇ

ˇ

2

1

A

1
2

; x 2 Œ0; 1�:
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According to Lemma 6 in Birgé and Massart [2],

�

�

�

�

�

�

2j�1
X

kD0
 2jk

�

�

�

�

�

�1
� C 2j, we get that

khk1 � C 2
j
2 :

Therefore

Ej�n.h/� ��
n .h/j � 2khk1�.q/ � 2C 2

j
2 �.q/:

By Markov inequality, we deduce that for any �2 > 0

P

 

sup
h2F2

j�n.h/� ��
n .h/j � �2

!

� 2C

�2
2

j
2 �.q/: (15)

For the second term in the right hand of (14), we use the following theorem.

Theorem 3 (Talagrand [19]) Let X1; : : : ;Xn, be n independent identically dis-
tributed random variables, and F2 a family of functions that are uniformly bounded
by some constant M1. Let V and H be defined by

1

n
E
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h2F2

ˇ

ˇ

ˇ

ˇ

ˇ

n
X

iD0
h.Xi/

ˇ

ˇ

ˇ

ˇ

ˇ

!

� H; V D E

 

sup
h2F2

n
X

iD0
h2.Xi/

!

:

Then, there exists a universal constant K1 such that for any �1 > 0,

P

 

sup
h2F2

j�n.h/j � �1 C H

!

� exp

�

�K1n

�

�21
V

^ �1

M1

��

:

Moreover, according to Corollary 3.4 in Talagrand [18], the following bound holds

V � v C 8M1
QH;

where v and QH are defined by

sup
h2F2

Var.h.X// � v;
1

n
E

 

sup
h2F2

n
X

iD0
"ih.Xi/

!

� QH;

where "1; : : : ; "n are n independent Rademacher variables.
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We derive then the following inequality: there exists a positive constant k1 such
that for any �1 > 0,

P

 

sup
h2F2

j�n.h/j � �1 C H

!

� exp

�

�k1n

�

�21
v

^ �1

M1

^ �21

8M1
QH
��

:

Let p D p.n/ be the greatest integer such that n D qp C r with 0 � r < q, then

��
n .h/ D p

n

2

4

1

p
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i /C
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i /

1

A

3

5 :

The control of the second term in the right hand of (14) is made in two steps,
considering odd terms and even ones. They are both treated in the same way,

so we only detail the even part. Since the variables
�

Pq.2lC1/
iD2qlC1 h.X�

i /
�

0�l�p
are

independent by construction, we are allowed to apply the Talagrand’s inequality to
��

p D 1
p

Pp
lD0

Pq.2lC1/
iD2qlC1 h.X�

i /, with adequate choices of �1, H, QH, M1 and v. Let F2
be the family of functions defined previously. We have to determine the quantities
M1, QH, H and v. Since

�

�
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�

�

�

�

�

�1
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j
2 ;

we put

M1 D C q2
j
2 : (16)

Let us now determine the quantity H. Applying Hölder’s inequality and Jensen’s
inequality, we have
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� E
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In order to bound this last term we have, under the summability condition on the

mixing coefficients B < 1 and the fact that the variables
�

Pq.2lC1/
iD2qlC1  jk.X�

i /
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0�l�p

are independent and satisfy E
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� D 0,

E

2

6

4

X

k2BjK

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

p
X

lD0

q.2lC1/
X

iD2qlC1
 jk.X

�
i /

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2
3

7

5 D
X

k2BjK

E

2

6

4

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

p
X

lD0

q.2lC1/
X

iD2qlC1
 jk.X

�
i /

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2
3

7

5

�
X

k2BjK

p 4 k kL1k k1k f k1q
q.2lC1/
X

iD2qlC1
�.i/

� 4lj k kL1k k1k f k1p q
X
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We deduce then
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We take, now
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We notice that
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and we choose

QH D H: (18)

Let us now determine the quantity v such that suph2F2 Var.h.X// � v.

Let h 2
8

<

:

X
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ak jk=
X
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;

, we get
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Thus we set

v D K2
2k f k1qlj: (19)

Finally, applying Talagrand’s inequality with H, QH, M1 and v defined
in (17), (18), (16), and (19) , we obtain
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2
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1
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where K1 is a positive constant depending on k f k1, K2, C and k1. Similarly, we
find for the odd part
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1
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Regrouping (15), (21), and (20), the proof of Theorem 2 is complete.
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Approximation of Strictly Stationary
Banach-Valued Random Sequence by Fourier
Integral

Tawfik Benchikh

Abstract This paper is devoted to the approximation of a second-order E-valued
strictly stationary random sequence by the Fourier transform of a L2E-valued random
measure, where E is a complex separable Banach space. For this purpose, we use
the spectral representation of a second order E-valued stationary random function
and we introduce a bijective linear operator on L2E which preserves the norm in the
form of a “shift operator” associated with a L2E-valued strictly stationary sequence.

1 Introduction

In recent decades, multidimensional statistical methods have known very important
developments in both theoretical aspects (particularly in operatorial statistics)
and practical applications, e.g. enabling functional data treatments. Indeed, the
interpretation of a process as elements with values in functional space has become
a useful tool in the analysis of functional data. For example, to a real continuous
process X we associate the Banach-valued process X.:/ called a window process,
which describes the evolution of X taking into account a memory � > 0. The natural
state space for X.:/ is the Banach space of continuous functions on Œ0; ��. A recent
reference for Banach space-valued processes is Bosq [5].

On the other hand, the frequency domain’s field (and its important tool the
Fourier transform) permits the analysis of the stationary random function, which
is very useful in the descriptive study, interpolation, estimation and prediction prob-
lems of the such processes. The spectral point of view is particularly advantageous
in the analysis of multivariate stationary processes and in the analysis of very large
data sets, for which numerical calculations can be performed rapidly using the fast
Fourier transform or the inverse transform.

There exists a unique C
p-valued random measure Z, called p-random measure

associated to .Xg/g2G; defined on the Borel 	-field B OG of dual of G, and taking
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values in L2
Cp , such that Xg D R

OG.:; g/ OGGICp dZ, for any g 2 G, where .�; g/ OGG denote
the value of � 2 OG at g 2 G (see Azencott and Dacunha-Castelle [1], Boudou
and Dauxois [7]). Conversely, if Z is a p-random measure defined on B OG then
.
R

OG.:; g/ OGGICp dZ/g2G is a p-dimensional stationary continuous random function.

For G D Z, we have OG D���; �� and .Z.�//�2���;�� is a p-dimensional spectral
process with orthogonal increments, i.e., the spectral representation of stationary
process .Xn/n2Z essentially decompose .Xn/ into a sum of sinusoidal components
with uncorrelated random coefficients. For example, a complex-valued stationary
process has a decomposition as:

Xn D
X

k

Ak cos.�kn C �/

where Ak are random amplitude, and � random phases independent of the Ak.
The spectral tools can be used for estimation and predictive process models for

spatial and spatiotemporal data (see Yalgom [15]), or for the interpolation problem
of stationary sequences (see Boudou [6]), or else to study processes .Tn/n2Z which
may be written multiplicatively with two independent components, .Tn/n2Z D
.XnYn/n2Z, where .Xn/n2Z and .Yn/n2Z are independent stationary multivariate
sequences (see Boudou and Romain [9], Tensor and convolution products of random
measures). The descriptive study (i.e. Principal component analysis in the frequency
domain, see Brillinger [4]) and the simulation of stationary (spatial) processes are
other topics.

Then, it seems useful to study the spectral tools associated to a Banach space-
valued stationary random function.

The spectral theory of operator-valued stationary continuous random function on
abelian locally compact groups G (with dual space OG admitting a countable basis),
is well developed (see Chobanyan and Weron [10]) and is also intensively studied
by various authors. Indeed, given a continuous stationary random function .Kg/g2G

of elements of L .L2;E/, there exists a unique operator-valued random measure Z
defined on the Borel 	-field B OG, and taking values in L .L2;E/, such that .Kg/g2G is
Fourier transform of Z. When E is a Hilbert space, such representations of random
functions were considered in detail by Payen [13], Masani [12], Kallianpur and
Mandrekar [11], Yalgom [15], among others.

In our paper [3], the relationship between a L2E-valued random measures and
continuous second-order E-valued stationary random function on abelian locally
compact groups G of elements L2E has been proved under the previous assumption.
Our approach is based on the technique used in Azencott and Dacunha-Castelle [1]
and after by Boudou and Romain [8].

This results is used (Sect. 4) to approximate a second-order E-valued strictly
stationary random sequence by the Fourier transform of a random measure Z taking
values in L2E. For this purpose, we will introduce the transformation that is present
in the form of a bijective isometry associated with a L2E-valued strictly stationary
sequence.
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2 Notations and Preliminaries

In the whole paper, E is a separable Banach space with topological dual E0, and H
will be a separable complex Hilbert space equipped with scalar product < :; : >.
The topological dual of H is denoted by H0 and the antilinear isomorphism h 2
H 7!< :; h >2 H0 by I . We denote by K .H;E/ the Banach space of compacts
linear operators from H to E. If K 2 L .H;E/, then tK stands for its transposed
operator.

For an operator K of L .H;E/, we put qK D I �1 ı tK. The operator qK, which
will be called the quasi-transpose operator of K, is an antilinear one and, for all
.e0; h/ 2 E0 � H, we have: < h; qKe0 >D .e0;Kh/E0E, where .:; :/E0E denotes the
duality between E and E0.

For any two Banach spaces E and F, L .E;F/ denotes the Banach space of all
continuous linear operators from E to F, a W E ! F, endowed with the norm
kak D sup

kek�1
ka.e/k.

Let .˝;A ;P/ be a fixed probability space such that the complex Banach space
L2E D L2E.˝;A ;P/ is separable. When E D C, we will simply write L2.

When X is an element of L2E , the mapping QX W y 2 L2 7! IE.yX/ 2 E, is a compact
operator. Its quasi-transpose QX is defined by q QX W e0 2 E0 7! e0 ı X 2 L2. Hence, we
can verify that

Proposition 1 For all .';X/ 2 L .E;F/� L2E, ' ı X 2 L2F and thatA' ı X D ' ı QX:
Note that if E is an infinite-dimensional space, then there exists an operator K 2
K .L2;E/ which is not associated with random element X with values in Banach
space E, i.e., there may not exist a random element X 2 L2E such that K D QX
(see Chobanyan et Weron [10]). A sufficient condition for K 2 K .L2;E/ to be
associated with a second-order E-valued random element is given by the following
proposition.

Proposition 2 (cf. [10]) Let K 2 K .L2;E/ be such that it factors through a
Hilbert–Schmidt operator, i.e., admit a factorization K D ' ı  , where H1 is
a complex Hilbert space,  2 L .L2;H1/ is a Hilbert–Schmidt operator, and
' 2 L .H1;E/. Then there is an random element X 2 L2E such that K D QX.

For example, the operator
p
X

iD1
yi ˝ ei, where .yi; ei/ 2 L2 � E is factorized through

an operator of Hilbert–Schmidt.
In [2], we give a sufficient condition for the operator K 2 K .H;E/ to be

factorized through a Hilbert–Schmidt operator.
Let G be an additive locally compact abelian (LCA) group with the dual OG and

let .�; g/ OGG denote the value of � 2 OG at g 2 G. The Borel 	-field of OG is denoted
by B OG. We suppose that OG admits a countable basis.
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A continuous compact operator-valued stationary random function .Kg/g2G on G
is a function K W G ! K .H;E/ such that

• the mapping g 2 G ! .Kg ı qK0e0/.e0/ is continuous for each e0 2 E0, and
• for any pairs .g; g0/ of elements of G � G, we have Kg ı qKg0 D Kg�g0 ı qK0 D

K.g � g0/.

It is well known (see Chobanyan and Weron [10]) that each continuous compact
operator-valued stationary random function .Kg/g2G has the representation Kg D
R

.:; g/ OG;GdZ, for all g 2 G, where Z is a vector measure on B OG with values in
K .H;E/ such that Z.A/ ı q.Z.B// D 0, for any pairs .A;B/ of disjoint elements of
B OG. The measure Z is called the operator-valued random measure associated with
the .Kg/g2G.

For the same properties of the integral with respect to an operator-valued random
measure, we can see [3]. Hence, it can be shown that:

Corollary 1 Two operator-valued random measures Z1 and Z2 are equal if
R

.; g/ OG;GdZ1 D R

.; g/ OG;GdZ2, for all g 2 G.

3 Spectral Representation of Banach-valued Stationary
Random Function

In this section we recall the spectral representation of L2E-valued stationary random
processes (see Benchikh [3]). Adopting the notations of Sect. 2, we can introduce
the following definition.

Definition 1 A Banach space-valued random measure Z is a mapping defined on
B OG and taking values in L2E such that

(i) for all pairs .A;B/ of disjoint elements of B OG, we have Z.A [ B/ D ZA C ZB
and fZA ı q

fZB D 0;
(ii) for each decreasing sequence .An/n2Z of elements of B OG converging to ¿, we

have: lim
n7!1 kZAnkL2E

D 0.

It is easy to show that if Z is a Banach space-valued random measure, then the
mapping QZ W A 2 B 7! fZA 2 K .L2;E/ is an operator-valued random measure
called the operator-valued random measure associated with Z.

Recall now the definition of the continuous second-order Banach-valued station-
ary random function (see Bosq [5]).

Definition 2 We say that a family .Xg/g2G of elements of L2E is a stationary
continuous random function if, for all e0 2 E0, the family .e0 ı Xg/g2G is stationary
continuous random function and, for all pairs .e0; f 0/ of elements of E0, the families
.e0 ı Xg/g2G and . f 0 ı Xg/g2G are stationarily correlated.
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Thus, if .Xg/g2G is a L2E-valued stationary continuous random function, then we have

< e0 ı Xg; f
0 ı Xg0 >D< q

fXg0 f 0; q
eXge0 >D .e0; eXg ı q

fXg0 f 0/E0;E

for all .e0; f 0/ 2 E02, .g; g0/ 2 G2.
It can be said also that a family .Xg/g2G of elements of L2E is a stationary

continuous random function if and only if the family .eXg/g2G is stationary.
We know that for a stationary family .Kg/g2G, there exists one and only one

operator-valued random measure Z, such that Kg D R

.:; g/ OG;GdZ, for all g 2 G.
However, we have seen that when E is an infinite-dimensional space, then there
exist an operator K 2 L .L2;E/ which is not associated with random element X
with values in Banach space E. Then there may exist a stationary continuous random
function .Xg/g2G of elements of L2E for which it cannot be asserted the existence of a
Banach space-valued random measure Z such that Xg D R

.�; g/ OGGdZ for all g 2 G.
Nevertheless, if there is one, it is unique (Corollary 1).

Such a condition is given by the Proposition 2. Consequently, we can give the
following results.

Proposition 4 (cf. [3]) If .Xg/g2G is a stationary continuous random function of
elements of L2E, such that eX0 is factorized through a Hilbert–Schmidt operator, then
there exists a L2E-valued random measure Z such that Xg D R

.:; g/ OGGdZ, for all
g 2 G.

4 Approximation of a Second-order Strictly Stationary
Banach-valued Random Sequence by Banach-valued
Random Measure

The purpose of this section is the study of a particular form of stationarity, the
strictly stationary random sequence. In the following we put G D Z. Then the dual
OG is identified with ˘ D Œ��; �Œ.

Consider the space F D EZ equipped with the smallest 	-algebra F that makes
measurable the coordinate mapping Tn W .em/m2Z 2 F 7! en 2 E, n 2 Z.

On the space F there is the natural shift defined by � W .en/n2Z 2 F 7!
.enC1/n2Z 2 F. Clearly, the mapping � is a measurable map and we have
��1.F / D F .

Any Banach-valued random sequence .Xn/n2Z of elements of L2E induce a
measurable mapping

MX W ! 2 ˝ 7! .Xn.!//n2Z 2 F

called the trajectory (or sample path) random variable associated to .Xn/n2Z. Then,
we can say that a random sequence .Xn/n2Z of elements of L2E is strictly stationary
if �. MX.P// D MX.P/ (the law of associate trajectory r.v. MX is invariant by�).
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Naturally when E D C, we find the classical definition of a strictly stationary
sequence.

4.1 Shift Operator Associated to a Strictly Stationary
Banach-valued Random Sequence

Let .Xn/n2Z be a second-order strictly stationary Banach-valued random sequence.
As the map MX is measurable from˝ into F, then, one can easily show the following
result (see Benchikh et al. [2]):

Proposition 5

.i/ The mapping J W T 2 L2E.F;F ; MX.P// 7! T ı MX 2 L2E.˝; MX�1.F /;P/ is a
bijective linear which preserves the norm (isometry);

.ii/ the mapping J W t 2 L2.F;F ; MX.P// 7! t ı MX 2 L2.˝; MX�1.F /;P/ is an
isometry;

.iii/ for all T 2 L2E.F;F ; MX.P//, we have: eJ T D QT ı J�1 and, for all W 2
L2.˝; MX�1.F /;P/, we have: BJ�1W D QW ı J.

Similarly, given that � is a measurable map from F into itself which checks
��1.F / D F and�. MX.P// D MX.P/, we obtain the following satisfied proposition.

Proposition 6

.i/ The mapping V W T 2 L2E.F;F ; MX.P// 7! T ı � 2 L2E.F;F ; MX.P// is a
bijective linear which preserve the norm (isometry);

.ii/ the mapping V W t 2 L2.F;F ; MX.P// 7! t ı � 2 L2.F;F ; MX.P// is a unitary
operator.

.iii/ for all T 2 L2E.F;F ; MX.P//, we have: AV ı T D QT ı V�1 and AV �1T D QT ı V.

Consequently, we can deduce that the mapping U D J ı V ı J �1 is a bijective
linear operator of L2E.˝; MX�1.F /;P/ which preserves the norm, and U D J ıV ıJ�1
is a unitary operator of L2.˝; MX�1.F /;P/.

The following property enables the establishment of a relationship between the
operators U and U.

Proposition 7 For all Y 2 L2E.˝; MX�1.F /;P/, we have:

eU Y D QY ı U�1andBU �1.Y/ D QY ı U:

By convention, we set K0 D I the identity operator, and, when n is a negative integer,
we write Kn D .K�1/�n. Then, from the last property, we can deduce the following
result
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Proposition 8 Given Y 2 L2E.˝; MX�1.F /;P/, we can affirm thatAU nY D QY ı U�n,
for all n 2 Z, and that .U nY/n2Z is a stationary sequence.

Consequently, the random sequence .Xn/n2Z D .U nX0/n2Z is stationary and eXn D
eX0 ı U�n, for all n 2 Z.

Remark 1 The operatorU is an operator of shift. Indeed, for all .S; n/ of L .E/�Z,
we have: U .S ı Xn/ D S ı XnC1.

4.2 Approximation of a Second-order Strictly Stationary
Banach-valued Random Sequence

Let us suppose that E has a Schauder basis denoted fxkI k 2 Ng, i.e., for all e of E,
there exists a unique sequence of scalars .˛n/n2N 2 C such that e D lim

p!1
Pp

kD0 ˛kxk

(convergence holds in the strong topology of E), and let f fkI k 2 Ng the sequence
of coefficient functionals associated with the basis fxkI k 2 Ng. If we set Sp D
Pp

kD0 fk ˝ xk, the sequence of partial sum operators associated to the basis fxkI k 2
Ng, then we have, for all e of E, e D lim

p
Sp.e/ and kek � supfkSpekI p 2 Ng � Ckek

(see. Singer [14]). So, we can prove the following result:

Proposition 9 For all X of L2E, lim
p

Sp ı X D X.

Proof Indeed, as X.!/ D lim
p

Sp.X.!//, for all ! 2 ˝ , then we have:

lim
p

kX.!/� Sp.X.!//k2 D 0:

Moreover as kX.!/ � Sp.X.!/k2 � .1C C/2kX.!/k2, the dominated convergence
theorem enables us to write that:

lim
p

kX � Sp ı Xk2 D lim
p

Z

kX.!/ � Sp.X.!//k2d P.!/

D
Z

lim
p

kX.!/� Sp.X.!//k2d P.!/ D
Z

0 d P D 0 ;

from which the result. �
According to this, we can approximate a L2E-valued strictly stationary sequence by
a Fourier integral of a L2E-valued random measure.

Proposition 10 Let .Xn/n2Z a strictly stationary sequence of L2E-valued random
variables. Then, for each 
 2 R

�C, we may associate a b.r.m. Z
 such that
kXn � R

ei:ndZ
k � 
, for all n of Z.
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Proof Let us consider a strictly stationary sequence .Xn/n2Z of elements of L2E and
let 
 be a strictly positive real number. As the sequence .Sp ı X0/p2N converge to X0,
thus there exists a number p such that kX0 � Sp ı X0k � 
.

The Propositions 1 and 8 attest that the random sequence .SpıXn/n2Z is stationary

and that the operatorBSp ı X0 D Sp ı eX0 D Pp
kD0.qeX0fk/˝xk is factorized through an

operator of Hilbert–Schmidt. According to the Proposition 4, there exists a Banach
space-valued random measure Z
 such that Sp ı Xn D R

ei:ndZ
 , for all n 2 Z.
Then, for all n of Z, we have:

kXn � R

ei:ndZ
k D kXn � Sp ı Xnk
D kU n.X0/� U n.Sp ı X0/k
D kX0 � Sp ı X0k � 
 :

�
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On the Strong Consistency of the Kernel
Estimator of Extreme Conditional Quantiles

Stéphane Girard and Sana Louhichi

Abstract Nonparametric regression quantiles can be obtained by inverting a kernel
estimator of the conditional distribution. The asymptotic properties of this estimator
are well known in the case of ordinary quantiles of fixed order. The goal of this paper
is to establish the strong consistency of the estimator in case of extreme conditional
quantiles. In such a case, the probability of exceeding the quantile tends to zero as
the sample size increases, and the extreme conditional quantile is thus located in the
distribution tails.

1 Introduction

Quantile regression plays a central role in various statistical studies. In particular,
nonparametric regression quantiles obtained by inverting a kernel estimator of the
conditional distribution function are extensively investigated in the sample case [4,
27, 29, 30]. Extensions to random fields [1], time series [14], functional data [11],
and truncated data [25] are also available. However, all these papers are restricted to
conditional quantiles having a fixed order ˛ 2 .0; 1/. In the following, ˛ denotes the
conditional probability to be larger than the conditional quantile. Consequently, the
above-mentioned asymptotic theories do not apply in the distribution tails, i.e. when
˛ D ˛n ! 0 or ˛n ! 1 as the sample size n goes to infinity. Motivating applications
include, for instance, environmental studies [16, 28], finance [31], assurance [3], and
image analysis [26].

The asymptotics of extreme conditional quantile estimators have been estab-
lished in a number of regression models. Chernozhukov [6] and Jurecková [22]
considered the extreme quantiles in the linear regression model and derived
their asymptotic distributions under various error distributions. Other parametric
models are considered in [10, 28]. A semi-parametric approach to modeling trends
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in extremes has been introduced in [9] basing on local polynomial fitting of
the Generalized extreme value distribution. Hall and Tajvidi [21] suggested a
nonparametric estimation of the temporal trend when fitting parametric models
to extreme-values. Another semi-parametric method has been developed in [2]
using a conditional Pareto-type distribution for the response. Fully nonparametric
estimators of extreme conditional quantiles have been discussed in [2, 5] including
local polynomial maximum likelihood estimation, and spline fitting via maximum
penalized likelihood. Recently, [15, 18] proposed, respectively, a moving-window
based estimator for the tail index and extreme quantiles of heavy-tailed conditional
distributions, and they established their asymptotic properties.

In the kernel-smoothing case, the asymptotic theory for quantile regression in the
tails is still in full development. Girard and Jacob [19] and Girard and Menneteau
[20] have analyzed the case ˛n D 1=n in the particular situation where the response
Y given X D x is uniformly distributed. The asymptotic distribution of the kernel
estimator of extreme conditional quantile is established by [7, 17] for heavy-tailed
conditional distributions. This result is extended to all types of tails in [8].

Here, we focus on the strong consistency of the kernel estimator for extreme
conditional quantiles. Our main result is established in Sect. 2. Some illustrative
examples are provided in Sect. 3. The proofs of the main results are given in Sect. 4
and the proofs of the auxiliary results are given in the Appendix.

2 Main Results

Let .Xi;Yi/1�i�n be independent copies of a random pair .X;Y/ 2 IRd � IRC with
density f.X;Y/. Let g be the density of X that we suppose strictly positive. The
conditional survival function of Y given X D x is denoted by:

NF.yjx/ D IP.Y > yjX D x/ D 1

g.x/

Z C1

y
f.X;Y/.x; z/dz:

The kernel estimator of NF.yjx/ is, for x such that
Pn

iD1 Kh.x � Xi/ ¤ 0:

NFn.yjx/ D
Pn

iD1 Kh.x � Xi/IYi>y
Pn

iD1 Kh.x � Xi/
;

where h D hn ! 0 as n ! 1 and Kh.u/ D 1
hd K. u

h /, the kernel K is a measurable
function which satisfies the conditions:

.K1/K is a continuous probability density.

.K2/K is with compact support: 9 R > 0 such that K.u/ D 0 for any kuk � R.
Define � WD kKk1 D supx2IRd K.x/ < 1.
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Recall that, for a class of function G , N .
;G ; dQ/ denotes the minimal number
of balls fg; dQ.g; g0/ < 
g of dQ-radius 
 needed to cover G , and dQ is the L2.Q/-
metric. Let K be the set of functions K D fK..x � �/=h/; h > 0; x 2 IRdg and
N .
;K / D supQ N .
kKk1;K ; dQ/, where the supremum is taken over all the
probability measure Q on IRd � IR. Suppose that,

.K3/ for some C; � > 1, N .
;K / � C
�� for any 
 2�0; 1Œ.
A number of sufficient conditions for which .K3/ holds are discussed in [13] and
the references therein. Finally suppose that

.A1/ for all ˛ 2 .0; 1/ there exists an unique q.˛jx/ 2 IR such that NF.q.˛jx/jx/ D ˛:

The conditional quantile q.˛jx/ is then the inverse of the function NF.�jx/ at the point
˛. Let .˛n/ be a fixed sequence of levels with values in Œ0; 1�. For any x 2 IRd, define
q.˛njx/ as the unique solution of the equation:

˛n D NF.q.˛njx/jx/; (1)

whose existence is guaranteed by Assumption .A1/. The kernel estimator of the
conditional quantiles q.˛jx/ is:

Oqn.˛jx/ D inffy 2 IR; NFn.yjx/ � ˛g: (2)

Finally, denote by Ogn.x/ the kernel density estimator of the probability density g,
i.e.:

Ogn.x/ D 1

n

n
X

iD1
Kh.x � Xi/:

Our main result is the following.

Theorem 1 Let .Xi;Yi/1�i�n be independent copies of a random pair .X;Y/ 2 IRd�
IRC with density f.X;Y/. Let g be the density of X that we suppose bounded and strictly
positive. Suppose that Assumption .A1/ is satisfied. Let .˛n/ be a sequence of levels
in Œ0; 1� for which

lim sup
n!1

sup
x2IRd

Oqn.˛njx/
q.˛njx/ � Cst; (3)

almost surely. Suppose that the kernel K satisfies Conditions .K1/; .K2/, and .K3/.
Define

A.y; z; x; hn/ D sup
uWd.u;x/�Rhn

ˇ

ˇ

ˇ

ˇ

NF.yju/
NF.zjx/ � 1

ˇ

ˇ

ˇ

ˇ

:
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Suppose that for some fixed positive 
0 and for z 2 fq.˛njx/; .1C 
/q.˛njx/g

lim sup
n!1

sup
x2IRd ;j
j�
0

A..1C 
/q.˛njx/; z; x; hn/ � C < 1: (4)

If, moreover,

lim
n!1 nhd

n˛n D 1 and lim
n!1

ln.˛nhd
n ^ ˛2n/

nhd
n˛n

D 0; (5)

then there exists a positive constant C, not dependent on x, such that one has for n
sufficiently large

ˇ

ˇ

ˇ

ˇ

1� NF.Oqn.˛njx/jx/
NF.q.˛njx/jx/

ˇ

ˇ

ˇ

ˇ

� C sup
j
j�
0

A..1C 
/q.˛njx/; .1C 
/q.˛njx/; x; hn/

C C

Ogn.x/

s

ln.˛�1
n h�d

n / _ ln ln n

n˛nhd
n

; almost surely:

The first term of the last bound can be interpreted as a bias term due to the kernel
smoothing. The second term can be seen as a variance term, n˛nhd

n being the
effective number of points used in the estimation. The following proposition gives
conditions under which (3) is satisfied.

Proposition 1 Suppose that g is Lipschitzian and bounded above by gmax. Let vd D
R

kvk�1 dv be the volume of the unit sphere. If A.q.˛njx/; q.˛njx/; x; 0; h/ ! 0 as
n ! 1 and there exist " > 0 such that

1
X

nD1
nhd˛n expf�vdgmaxnhd˛n.1C "/g D 1; (6)

then,

lim sup
n!1

sup
x2IRd

Oqn.˛njx/
q.˛njx/ � 1; almost surely:

Some examples of distributions satisfying condition (4) are provided in the next
section.
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3 Examples

Let us first focus on a conditional Pareto distribution defined as:

NF.yjx/ D y��.x/; for all y > 0: (7)

Here, �.x/ > 0 can be read as the inverse of the conditional extreme-value
index. The above distribution belongs to the so-called Fréchet maximum domain of
attraction which encompasses all distributions with heavy tails. As a consequence
of Theorem 1, we have:

Corollary 1 Let us consider a conditional Pareto distribution (7) such that 0 <
�min � �.x/ � �max for all x 2 IRd. Assume that � is Lipschitzian. If the sequences
.˛n/ and .hn/ are such that hn log˛n ! 0 as n ! 1 and (5), (6) hold, then
Oqn.˛njx/=q.˛njx/ ! 1 almost surely as n ! 1.

Let us now consider a conditional exponential distribution defined as:

NF.yjx/ D exp.��.x/y/; for all y > 0; (8)

where �.x/ > 0 is the inverse of the conditional expectation of Y given X D x. This
distribution belongs to the Gumbel maximum domain of attraction which collects
all distributions with a null conditional extreme-value index. These distributions are
often referred to as light-tailed distributions. In such a case, Theorem 1 yields a
stronger convergence result than in the heavy-tail framework:

Corollary 2 Let us consider a conditional exponential distribution (8) with 0 <
�min � �.x/ � �max for all x 2 IRd. Assume that � is Lipschitzian. If the sequences
.˛n/ and .hn/ are such that hn log˛n ! 0 as n ! 1 and (5), (6) hold, then
.Oqn.˛njx/� q.˛njx// ! 0 almost surely as n ! 1.

4 Proofs

4.1 Proof of Theorem 1

Clearly, by (1):

j NF.q.˛njx/jx/� NF.Oqn.˛njx/jx/j
NF.q.˛njx/jx/ � j˛n � NFn.Oqn.˛njx/jx/j

NF.q.˛njx/jx/

Cj NFn.Oqn.˛njx/jx/ � NF.Oqn.˛njx/jx/j
NF.q.˛njx/jx/ :
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First, from (2), j˛n � NFn.Oqn.˛njx/jx/j is bounded above by the maximal jump of
NFn.yjx/ at some observation point .Xj;Yj/:

j˛n � NFn.Oqn.˛njx/jx/j � maxjD1;:::;n Kh.x � Xj/
Pn

iD1 Kh.x � Xi/
:

It follows from .K2/ that

j˛n � NFn.Oqn.˛njx/jx/j
NF.q.˛njx/jx/ � �

nhd˛n Ogn.x/
:

Let us then focus on the second term:

j NFn.Oqn.˛njx/jx/� NF.Oqn.˛njx/jx/j
NF.q.˛njx/jx/ D

NF.Oqn.˛njx/jx/
NF.q.˛njx/jx/

ˇ

ˇ

ˇ

ˇ

NFn.Oqn.˛njx/jx/
NF.Oqn.˛njx/jx/ � 1

ˇ

ˇ

ˇ

ˇ

: (9)

We write Oqn.˛njx/ D .1C 
/ q.˛njx/, with 
 D Oqn.˛njx/
q.˛njx/ � 1. Condition (3) allows

to deduce that there exists, for n sufficiently large, 
0 not dependent on x such that
j
j � 
0. Consequently and taking into account (9) there exists a positive constant 
0
not dependent on x and n such that (for the sake of simplicity, we write q D q.˛njx/):

ˇ

ˇ

ˇ

ˇ

NF.Oqn.˛njx/jx/
NF.q.˛njx/jx/ � 1

ˇ

ˇ

ˇ

ˇ

� �

nhd˛n Ogn.x/

C sup
j
j�
0

� NF.q.1C 
//jx/
NF.qjx/

ˇ

ˇ

ˇ

ˇ

NFn.q.1C 
/jx/
NF.q.1C 
//jx/ � 1

ˇ

ˇ

ˇ

ˇ

�

:

(10)

Our purpose now is to control the term
ˇ

ˇ

ˇ

NFn.q.1C
/jx/NF.q.1C
/jx/ � 1
ˇ

ˇ

ˇ of (10). For this, write:

NFn.yjx/ D
Pn

iD1 Kh.x � Xi/IYi>y
Pn

iD1 Kh.x � Xi/
DW

O n.y; x/

Ogn.x/
;

with

O n.y; x/ D 1

n

n
X

iD1
Kh.x � Xi/IYi>y; Ogn.x/ D 1

n

n
X

iD1
Kh.x � Xi/:

We need the following lemma.
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Lemma 1 Suppose that Condition (K2) holds. Then, for each n, one has for any
y 2 IR and x 2 IRd for which NF.yjx/Ogn.x/ ¤ 0:

ˇ

ˇ

ˇ

ˇ

NFn.yjx/
NF.yjx/ � 1

ˇ

ˇ

ˇ

ˇ

� A.y; y; x; hn/C .1C A.y; y; x; hn//
jOgn.x/� IEOgn.x/j

Ogn.x/

C
ˇ

ˇ

ˇ

O n.y; x/ � IE
� O n.y; x/

�ˇ

ˇ

ˇ

NF.yjx/Ogn.x/
:

The proof is given in the Appendix. According to Lemma 1, we have to control

the two quantities IE jOgn.x/� IEOgn.x/j and
j O n.y;x/�IE. O n.y;x//j

NF.yjx/ . This is the purpose of
Propositions 2 and 3 below.

Proposition 2 (Einmahl–Mason [13]) Suppose that g is a bounded density on IRd,
and that the assumptions .K:i/; : : : ; .K:iv/ of [13] are all satisfied. Then, for any
c > 0:

lim sup
n!1

sup
fc ln n=n�hd

n�1g

s

nhd
n

ln.h�d
n / _ ln ln n

sup
x2IRd

jOgn.x/� IEOgn.x/j DW K.c/ < 1;

almost surely.

Our task now is to control
j O n.y;x/�IE. O n.y;x//j

NF.yjx/ . Let 
 be a fixed real in Œ�
0; 
0� for
some arbitrary positive 
0. The following proposition evaluates the almost sure
asymptotic behavior of:

j O n.q.1C 
/; x/ � IE. O n.q.1C 
/; x//j
NF.qjx/ :

Proposition 3 Let .˛n/ be a sequence in Œ0; 1� and for x 2 IRd, q D q.˛njx/ be the
conditional quantile as defined by (1). Define the set of functions F by:

F D
n

.u; v/ 7�! K
�x � u

h

�

Iv>q.1C
/; n 2 IN; h > 0; x 2 IRd; j
j � 
0

o

(11)

and suppose that N .
;F / � C
�� ; for some C; � > 1 and all 
 2�0; 1Œ. Suppose

also that Condition (4) is satisfied. If nhd
n˛n ! 1 and ln.˛nhd

n^˛2n/
nhd

n˛n
! 0 as n ! 1,

then there exists a positive constant C1 such that:

lim sup
n!1

s

n˛nhd
n

ln.˛�1
n h�d

n / _ ln ln n
sup

x2IRd ;j
j�
0

j O n.q.1C 
/; x/ � IE. O n.q.1C 
/; x//j
NF.qjx/ � C1;

almost surely.
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Proof of Proposition 3 We have,

1

NF.qjx/
� O n.q.1C 
/; x/ � IE

� O n.q.1C 
/; x/
��

D 1

n NF.qjx/
n
X

iD1
ŒKh.x � Xi/IYi>q.1C
/ � IE.Kh.x � Xi/IYi>q.1C
//�

D 1

nhd
n

n
X

iD1
.vh;x;
.Xi;Yi/ � IE.vh;x;
.Xi;Yi/// D 1

hd
n

p
n
ˇn.vh;x;
/;

where,

vh;x;
.u; v/ D K
�x � u

h

� Iv>q.1C
/
NF.qjx/ ; ˇn.g/ D 1p

n

n
X

iD1
.g.Xi;Yi/� IE.g.Xi;Yi///:

Define the class of functions:

G WD Gn;h D fvh;x;
; x 2 IRd; 
 2 Œ�
0; 
0�g (12)

and let kˇnkG D supg2G jˇn.g/j and

�n D sup
x2IRd ;
2Œ�
0 ;
0�

ˇ

ˇ

ˇ

O n.q.1C 
/; x/ � IE
� O n.q.1C 
/; x/

�ˇ

ˇ

ˇ

NF.qjx/ :

Consequently, for any � > 0:

IP .�n > �/ � IP
�p

nkˇnkG > �nhd
� � IP

�

max
1�m�n

p
mkˇmkG > �nhd

�

: (13)

We then have to evaluate max1�m�n
p

mkˇmkG . By Talagrand Inequality (see A.1.
in [12]), we have for any t > 0 and suitable finite constants A1;A2 > 0:

IP

 

max
1�m�n

p
mkˇmkG > A1

 

IEk
n
X

iD1

ig.Xi;Yi/kG C t

!!

� 2 exp.�A2t
2=n	2/C 2 exp.�A2t=M/;

where .
i/i is a sequence of independent Rademacher random variables independent
of the random vectors .Xi;Yi/1�i�n and

sup
g2G

kgk1 � M; sup
g2G

Var.g.X;Y// � 	2:
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Here kgk1 � kKk
1

˛n
DW M, and

Var.v2h;x;
.X;Y// � IE.v2h;x;
.X;Y// D 1

NF2.qjx/ IE
�

K2

�

x � X

h

�

iY>q.1C
/
�

D 1

NF.qjx/
Z

K2
�x � u

h

� NF.q.1C 
/ju/
NF.qjx/ g.u/du

� hd
n

˛n
sup

x2IRd ;
2Œ�
0 ;
0�
.1C A.q.1C 
/; q; x; h//kKk22kgk1

D hd
n

˛n
L DW 	2; (14)

for some positive constant L, since for n sufficiently large

sup
x2IRd ; 
2Œ�
0 ;
0�

A.q.1C 
/; q; x; h/ � cst:

We obtain combining this with the above Talagrand’s Inequality:

IP

 

max
1�m�n

p
mkˇmk1 > A1

 

IE

�

�

�

�

�

n
X

iD1

ig.Xi;Yi/

�

�

�

�

�

G

C t

!!

� 2 exp

�

�A2t
2 ˛n

nhd
nL

�

C 2 exp

�

�A2t
˛n

kKk1

�

: (15)

The last bound together with (13) give

IP

 

�n > A1n
�1h�d

n

 

IE

�

�

�

�

�

n
X

iD1

ig.Xi;Yi/

�

�

�

�

�

G

C t

!!

� 2 exp

�

�A2t
2 ˛n

nhd
nL

�

C 2 exp

�

�A2t
˛n

kKk1

�

: (16)

We now have to evaluate IEkPn
iD1 
ig.Xi;Yi/kG : We will argue as for the proof of

Proposition A.1. in [12]. We have by (6.9) of Proposition 6.8 in [24],

IE

�

�

�

�

�

n
X

iD1

ig.Xi;Yi/

�

�

�

�

�

G

� 6tn C 6IE.max
i�n

k
ig.Xi;Yi/kG / � 6tn C 6
kKk1
˛n

; (17)

where we have defined

tn D inf

(

t > 0; IP

 �

�

�

�

�

n
X

iD1

ig.Xi;Yi/

�

�

�

�

�

G

> t

!

� 1

24

)

:



68 S. Girard and S. Louhichi

Our purpose is then to control tn. Define the event

Fn D
8

<

:

n�1 sup
g2G

n
X

jD1
g2.Xj;Yj/ � 64	2

9

=

;

;

where 	2 is as in (14). Let g0 be a fixed element of G . We have,

IE

ˇ

ˇ

ˇ

ˇ

ˇ

n
X

iD1

ig0.Xi;Yi/IFn

ˇ

ˇ

ˇ

ˇ

ˇ

� 8	
p

n:

By (A8) of Einmahl and Mason [12], we now have to control N .
;G ; dn;2/. Recall
that N .
;G ; dQ/ is the minimal number of balls fg; dQ.g; g0/ < 
g of dQ-radius 

needed to cover G , dQ is the L2.Q/-metric and

dn;2. f ; g/ D dQn. f ; g/ D
Z

. f .x/ � g.x//2dQn.x/;

with Qn D 1
n

Pn
iD1 ı.Xi;Yi/. In other words

dn;2. f ; g/ D 1

n

n
X

iD1
. f .Xi;Yi/ � g.Xi;Yi//

2:

We first note that, on the event Fn,

N .
;G ; dn;2/ D 1; whenever 
 > 16	:

We will suppose then 
 � 16	 . We have

N .
;G ; dn;2/ D N .
;G ; dQn/ � N .
˛n;F ; dQn/;

where F is as defined by (11). Recall that N .
;F / D supQ N .
kKk1;F ; dQ/

where the supremum is taken over all the probability measure Q on IRd � IR. We
have supposed that:

N .
;F / � C
�� :

for some C; � > 1 and all 
 2�0; 1Œ. Consequently,

N .
;G ; dn;2/ � C

�

˛n


kKk1

���
; (18)
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as soon as ˛n
 < kKk1. Hence, we have almost surely on the event Fn,

Z 1

0

p

ln.N .
;G ; dn;2//d
 D
Z 16	

0

p

ln.N .
;G ; dn;2//d


�
1
X

iD0

Z 2�i16	

2�i�116	

s

ln.C/C � ln

�kKk1
˛n


�

d


�
1
X

iD0
2�i�116	

s

ln.C/C � ln

�

2iC1kKk1
˛n16	

�

� C2

1
X

iD0

p
i C 1

2iC1

s

	2 max

�

ln.C1/; ln

�

1

˛2n	
2

��

;

for some positive constants C1;C2 that depend only on C, � and kKk1. We
conclude, using (A8) of [12]:

IE

 �

�

�

�

�

n
X

iD1

ig.Xi;Yi/

�

�

�

�

�

G

iFn

!

� C0
2

s

n	2 max

�

ln.C1/; ln

�

1

˛2n	
2

��

: (19)

We now use Inequality A2 in [12] (which is due to Giné and Zinn), with t D
64

p
n	2. We obtain, for m � 1, since for any g 2 G , kgk1 � kKk

1

˛n
,

IP.Fc
n/ D IP

0

@n�1 sup
g2G

n
X

jD1
g2.Xi;Yi/ > 64	

2

1

A

� 4IP.N .�n�1=4;G ; dn;2/ � m/C 8m exp.�n	2˛2n=kKk21/;

where n�1=4� D n�1=4 min.	n1=4; n1=4/ D min.	; 1/. Hence by (18):

N .�n�1=4;G ; dn;2/ � C

�

˛n min.	; 1/

kKk1

���
;

Consequently, we have for m D Œ2C. ˛n min.	;1/
kKk

1

/���:

IP.Fc
n/ � 16C

�

˛n min.	; 1/

kKk1

���
exp.�n	2˛2n=kKk21/:
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The last bound together with (19) gives:

IP

 �

�

�

�

�

n
X

iD1

ig.Xi;Yi/

�

�

�

�

�

G

> t

!

� IP.Fc
n/C 1

t
IE

 �

�

�

�

�

n
X

iD1

ig.Xi;Yi/

�

�

�

�

�

G

iFn

!

� 16C

� kKk1
˛n min.	; 1/

��

exp.�n	2˛2n=kKk21/

CC0
2

t

s

n	2 max

�

ln.C1/; ln

�

1

˛2n	
2

��

: (20)

Let us control the second term in (20). Recall that by (14), 	2 D L hd
n
˛n

and thus

˛2n	
2 D Lhd

n˛n for some positive constant L. This fact together with hd
n˛n ! 0 as

n ! 1 allows us to deduce that for n sufficiently large:

C0
2

t

s

n	2 max

�

ln.C1/; ln

�

1

˛2n	
2

��

� Cst

t

s

nhd
n

˛n
ln

�

1

˛nhd
n

�

: (21)

Our task now is to control the first term in (20). We have:

16C

� kKk1
˛n min.	; 1/

��

exp.�n	2˛2n=kKk21/

� L�=20 exp

�

�nhd
n˛n

�

L1 C �

2nhd
n˛n

ln.˛nhd
n ^ ˛2n/

��

;

which tends to 0 as n ! 1 as soon as nhd
n˛n ! 0 and ln.˛nhd

n^˛2n/
nhd

n˛n
! 0. Hence for

t � 48Cst
q

nhd
n

˛n
ln. 1

˛nhd
n
/ DW tn, Inequalities (20) and (21) give for n sufficiently large

and for t � tn

IP

 �

�

�

�

�

n
X

iD1

ig.Xi;Yi/

�

�

�

�

�

G

> t

!

� 1

24
:

We conclude using this fact together with Inequality (17):

IE

�

�

�

�

�

n
X

iD1

ig.Xi;Yi/

�

�

�

�

�

G

� c

 

1

˛n
C
s

nhd
n

˛n
ln

�

1

˛nhd
n

�

!

D O

 s

nhd
n

˛n
ln

�

1

˛nhd
n

�

!

:

(22)
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Recalling that

�n D sup
x2IRd ;
2Œ�
0 ;
0�

ˇ

ˇ

ˇ

O n.q.1C 
/; x/ � IE
� O n.q.1C 
/; x/

�ˇ

ˇ

ˇ

NF.qjx/ ;

and collecting (22), (16), yield

IP

 

�n > A1n
�1h�d

n

 

IE

�

�

�

�

�

n
X

iD1

ig.Xi;Yi/

�

�

�

�

�

G

C t

!!

� 2

"

exp

�

�A2 QL2 ln.ln.n//

L

�

C exp

 

� A2 QL
kKk1

q

nhd
n˛n ln.ln n/

!#

; (23)

for any t �
�

Cst
q

nhd
n

˛n
ln. 1

˛nhd
n
/
�

_ QL
q

nhd
n

˛n
ln.ln n/ and some QL > 0. Now,

ln n

n˛nhd
n

C ln.˛nhd
n ^ ˛2n/

n˛nhd
n

� ln.n˛nhd
n/

n˛nhd
n

;

which tends to 0 as n tends to infinity, since limn!1 n˛nhd
n D 1: Hence,

lim
n!1

ln n

n˛nhd
n

D 0;

which proves that for n sufficiently large nhd
n˛n � ln n. We conclude then from (23)

that:

IP

 

�n > A1n
�1h�d

n

 

IE

�

�

�

�

�

n
X

iD1

ig.Xi;Yi/

�

�

�

�

�

G

C t

!!

� 4.ln n/��;

since we have nhd
n˛n � ln n. We choose QL in such a way that � > 1. Proposition 3 is

proved thanks to Borel–Cantelli lemma.

We continue the proof of Theorem 1. Inequality (10), together with Lemma 1
and Condition (4), gives for some universal positive constant C:

ˇ

ˇ

ˇ

ˇ

NF.Oqn.˛njx/jx/
NF.q.˛njx/jx/ � 1

ˇ

ˇ

ˇ

ˇ

� �

nhd˛n Ogn.x/
C C sup

j
j�
0

A.q.1C 
/; q.1C 
/; x; hn/

CC sup
j
j�
0

.1C A.q.1C 
/; q.1C 
/; x; hn//
j Ogn.x/ � IEOgn.x/j

Ogn.x/

CC sup
j
j�
0

ˇ

ˇ

ˇ

O n.q.1C 
/; x/ � IE
� O n.q.1C 
/; x/

�ˇ

ˇ

ˇ

NF.qjx/Ogn.x/
: (24)
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We first use Einmahl and Mason’s result (cf. Proposition 2 above). All the
requirements of Einmahl and Mason’s result are satisfied from that of Theorem 1.
This gives that, for c ln n=n � hd

n � 1:

s

nhd
n

ln.h�d
n / _ ln ln n

sup
x2IRd

jOgn.x/� IEOgn.x/j < C; (25)

almost surely. Our task now is to apply Proposition 3. We first claim that

Lemma 2 Under Condition .K3/, the class of function F defined by (11) satisfies
N .
;F / � C
�� , for C > 0; 
 > 0; � > 1.

Proof of Lemma 2 Define the set of function F D K I , where the set of functions
K is K D ˚

u 7�! K
�

x�u
h

�

; x 2 IRd; h > 0
�

; and I D fv 7�! Iv>q.1C
/; x 2
IRd; n 2 IN; j
j � 
0g: The proof of Lemma 2 follows from Lemma A.1 of [12]
since N .
; fv 7�! Iv>y; y 2 IRg/ � C
�Q� with Q� > 0 and C > 0.

Consequently, all the requirements of Proposition 3 are satisfied from that of
Theorem 1. The conclusion of Proposition 3 together with (25), (24) and the facts
that:

s

ln.h�d
n / _ ln ln n

nhd
n

�
s

ln.˛�1
n h�d

n / _ ln ln n

nhd
n˛n

;

1

nhd
n˛n

�
s

ln.˛�1
n h�d

n / _ ln ln n

n˛nhd
n

complete the proof of Theorem 1.

4.2 Proof of Proposition 1

Let us introduce Z.n/i .x/ for i D 1; : : : ; n a triangular array of i.i.d. random variables

defined by Z.n/i .x/ D Yiikx�Xik�h. Their common survival distribution function can
be expanded as:

N�n.t; x/ D IP.Z.n/1 .x/ > t/ D
Z

kx�uk�h

NF.tju/g.u/du

D hd
Z

kvk�1
NF.tjx � hv/g.x � hv/dv;
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or equivalently,

N�n.t; x/

hd NF.tjx/g.x/ D
Z

kvk�1
dv C

Z

kvk�1

� NF.tjx � hv/
NF.tjx/ � 1

�

g.x � hv/

g.x/
dv

C
Z

kvk�1

�

g.x � hv/

g.x/
� 1

�

dv:

Letting vd D R

kvk�1 dv the volume of the unit sphere, and assuming that g is
Lipschitzian, it follows,

N�n.t; x/

hd NF.tjx/g.x/ D vd C o.1/C O.A.t; t; x; 0; h//

and introducing ˇn.x/ D n N�n.q.˛njx/jx/, we obtain

ˇn.x/ D vdg.x/nhd˛n.1C o.1//

under condition A.q.˛njx/; q.˛njx/; x; 0; h/ ! 0 as n ! 1. We now need the
following lemma (also available to triangular arrays).

Lemma 3 (Klass [23]) Let Z;Z1;Z2; : : : be a sequence of i.i.d. random vectors and
define Mn D maxfZ1; : : : ;Zng. Suppose that .bn/ is nondecreasing, IP.Z > bn/ ! 0

and nIP.Z > bn/ ! 1 as n ! 1. If, moreover,

1
X

nD1
IP.Z > bn/ expf�nIP.Z > bn/g D 1;

then lim supn!1 Mn=bn < 1 a.s.

From Lemma 3, a sufficient condition for:

lim sup
n!1

max1�i�n Z.n/i .x/

q.˛njx/ < 1 a.s. (26)

is

1
X

nD1

ˇn.x/

n
expf�ˇn.x/g D 1;

which is fulfilled under (6). Finally,

Oqn.˛njx/
q.˛njx/ � max1�i�n Z.n/i .x/

q.˛njx/
and the conclusion follows from (26).
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4.3 Proofs of Corollaries

Proof of Corollary 1 For all � 2 Œ0; 1� and .u; x/ such that d.u; x/ � Rhn, we have

NF.q.˛njx/.1C "/ju/
NF.q.˛njx/.1C "/� jx/ D q.˛njx/�.x/��.u/.1C "/��.x/��.u/

D exp

�

�.u/� �.x/

�.x/
log˛n C .��.x/� �.u// log.1C "/



D exp fO.hn log˛n/C O.��.x/ � �.u//g
D .1C O.hn log˛n// expfO.��.x/� �.u//g: (27)

Assuming that hn log˛n ! 0 as n ! 1, it follows that (27) is bounded above
for all � 2 Œ0; 1� and .u; x/ such that d.u; x/ � Rhn and therefore condition (4) is
fulfilled. If, moreover, � D 1 then O.�.x/ � �.u// D O.hn/, and thus (27) tends
to zero as n goes to infinity. Proposition 1 then entails that assumption (3) holds.
Theorem 1 implies that:

ˇ

ˇ

ˇ

ˇ

1 �
NF.Oqn.˛njx/jx/
NF.q.˛njx/jx/

ˇ

ˇ

ˇ

ˇ

D
ˇ

ˇ

ˇ

ˇ

ˇ

1 �
� Oqn.˛njx/

q.˛njx/
���.x/ˇˇ

ˇ

ˇ

ˇ

! 0

almost surely as n ! 1. The conclusion follows.

Proof of Corollary 2 For all � 2 Œ0; 1� and .u; x/ such that d.u; x/ � Rhn, we have

NF.q.˛njx/.1C "/ju/
NF.q.˛njx/.1C "/� jx/ D exp

�

.1C "/ log.˛n/

�

�.u/� �.x/

�.x/
C 1 � .1C "/��1

�

D exp fO.hn log˛n/g exp
˚

.1C "/ log.˛n/
�

1 � .1C "/��1��

D .1C O.hn log˛n/o.1/ D o.1/: (28)

Assuming that hn log˛n ! 0 as n ! 1, it follows that (28) tends to zero as n goes
to infinity. Assumptions (3) and (4) both hold. Theorem 1 implies that:

ˇ

ˇ

ˇ

ˇ

1 �
NF.Oqn.˛njx/jx/
NF.q.˛njx/jx/

ˇ

ˇ

ˇ

ˇ

D j1 � exp ..q.˛njx/� Oqn.˛njx//�.x//j ! 0

almost surely as n ! 1. The conclusion follows.
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Appendix: Proof of Auxiliary Results

Proof of Lemma 1 Clearly:

ˇ

ˇ

ˇ

ˇ

NFn.yjx/
NF.yjx/ � 1

ˇ

ˇ

ˇ

ˇ

�
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

NFn.yjx/
NF.yjx/ �

IE
� O n.y; x/

�

NF.yjx/IE .Ogn.x//

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

C
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

IE
� O n.y; x/

�

NF.yjx/IE .Ogn.x//
� 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

:

(29)

We have,

IE
� O n.y; x/

�

D 1

n

n
X

iD1

IE.Kh.x � Xi/iYi>y/ D IE.Kh.x � X1/iY1>y/

D IE.Kh.x � X1/IP.Y1 > yjX1// D
Z

Kh.x � z/IP.Y1 > yjX1 D z/g.z/dz

D
Z

Kh.x � z/ NF.yjz/g.z/dz;

and IE .Ogn.x// D 1
n

Pn
iD1 IE.Kh.x � Xi// D IE.Kh.x � X1//. Consequently,

IE
� O n.y; x/

�

NF.yjx/IE .Ogn.x//
� 1 D 1

IE.Kh.x � X1//

�Z

Kh.x � z/

� NF.yjz/
NF.yjx/ � 1

�

g.z/dz

�

D 1

IE.Kh.x � X1//

�Z

Kh.u/

� NF.yjx � u/
NF.yjx/ � 1

�

g.x � u/du

�

:

We conclude, since the kernel K is compactly supported, that for some R > 0,

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

IE
� O n.y; x/

�

NF.yjx/IE .Ogn.x//
� 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

� sup
fx0;d.x;x0/�hRg

ˇ

ˇ

ˇ

ˇ

NF.yjx0/
NF.yjx/ � 1

ˇ

ˇ

ˇ

ˇ

D A.y; y; x; h/: (30)

Now,

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

NFn.yjx/
NF.yjx/ �

IE
� O n.y; x/

�

NF.yjx/IE .Ogn.x//

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

�
ˇ

ˇ

ˇ

O n.y; x/� IE
� O n.y; x/

�ˇ

ˇ

ˇ

NF.yjx/Ogn.x/
C

IE
� O n.y; x/

�

jOgn.x/ � IEOgn.x/j
NF.yjx/Ogn.x/IEOgn.x/
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�
ˇ

ˇ

ˇ

O n.y; x/� IE
� O n.y; x/

�ˇ

ˇ

ˇ

NF.yjx/Ogn.x/
C .1C A.y; y; x; h//

IE jOgn.x/ � IEOgn.x/j
Ogn.x/

;

by (30). The last bound together with (30) and (29) prove Lemma 1.
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Exact Quadratic Error of the Local Linear
Regression Operator Estimator for Functional
Covariates

Amina Naceri, Ali Laksaci, and Mustapha Rachdi

Abstract In this paper, it is studied the asymptotic behavior of the nonparametric
local linear estimation of the regression operator when the covariates are curves.
Under some general conditions we give the exact expression involved in the
leading terms of the quadratic error of this estimator. The obtained results affirm
the superiority of the local linear modeling over the kernel method, in functional
statistics framework.

1 Introduction

This paper deals with the nonparametric regression operator estimation by the
local linear modeling (cf. [1]). This subject is motivated by the fact that the local
polynomial estimation method has various advantages over the kernel method
(cf. [1, 5, 8] and references therein, for finite/infinite dimensional frameworks).
Moreover, the classical Nadaraya–Watson kernel method can be viewed as a
particular case of this procedure.

Notice that, the statistical analysis of infinite dimensional data (FDA) has
become a major topic of research in the last decade, as evidenced by several
special issues of various statistical journals dedicated to this topic (cf. for instance,
[4, 10, 15, 17]). Furthermore, the nonparametric treatment of such data has also
been widely developed in the last few years (cf. [11, 12] for recent advances and
references). Concerning the local linear estimation technique in the functional setup,
the first results were given by Baìllo and Grané [2]. They obtained the local linear
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estimation of the regression function when the explanatory variable takes values in
a Hilbert space. Barrientos et al. [1], meanwhile, established the almost-complete
convergence (with rate) of the proposed estimator. We refer, also, to [1] for another
alternative version of the functional local linear modeling. Elsewhere, El Methni
and Rachdi [6] developed this smoothing local linear estimation of the regression
operator for functional fixed design data in both Hilbert and semi-metric spaces.
More recently, Demongeot et al. [5] considered the local polynomial modeling of
the conditional density function when the explanatory variable is of functional kind.
Among the lot of papers on the local linear modeling in the nonfunctional case, we
refer to the papers by Chu and Marron [3], Fan [7] and Fan and Yao [9], among
others.

The main aim of this paper is then to determine, under general conditions, the
exact rates, in the mean squared error of the local linear estimation of the regression
operator, in the i.i.d. case, as proposed by [1]. Specifically, we give the exact
expression involved in the leading terms of the quadratic error. We point out that
our study highlights the structural axis of this subject, namely the “dimensionality”
of the model. Moreover, our results confirm the superiority of the local linear
smoothing over the kernel method in the bias terms.

This paper is organized as follows. In Sect. 2, we present our model. Then, we
give some notations, hypotheses, and the presentation of the main results in Sect. 3.
The proofs of the results are religated to the last section.

2 Functional Local Linear Modeling: Estimation
and Comments

Consider n pairs of independent random variables .Xi;Yi/ for i D 1; : : : ; n that we
assume drawn from the pair .X;Y/ which is valued in F � IR, where F is a semi-
metric space equipped with a semi-metric d. Our main purpose is to estimate the
regression function m.x/ D IEŒYjX D x�. For this purpose, it is well known that
the main idea, in the local linear smoothing, is based on the fact that the function
m.x/ admits a linear approximation in the neighborhood of the conditioning point.
Recall that, in the non-functional case, this linear approximation is due to a Taylor
expansion of m.�/ but, in the functional setup, such approximation can be expressed,
for any z in the neighborhood of x by:

m.z/ D m.x/C bˇ.z; x/C o.ˇ.z; x//: (1)

Then, the quantities a D m.x/ and b are estimated by minimizing the following
quantity:

min
.a;b/2IR2

n
X

iD1
.Yi � a � bˇ.Xi; x//

2 K.h�1ı.x;Xi//;
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where the function K is a kernel, h D hK;n is a sequence of positive real numbers,
and ı.:; :/ and ˇ.:; :/ are two known bi-functionals defined from F �F into IR such
that:

8� 2 F ; ˇ.�; �/ D 0 and d.:; :/ D jı.:; :/j:

Such fast version of functional local linear estimation has been proposed by
Barrientos et al. [1]. They showed, by a simple algebra, that Om.x/ D Oa can be
explicitly expressed by:

Om.x/ D
Pn

i;jD1 Wij.x/Yj
Pn

i;jD1 Wij.x/
;

where

Wij.x/ D ˇ.Xi; x/
�

ˇ.Xi; x/ � ˇ.Xj; x/
�

K.h�1ı.x;Xi//K.h
�1ı.x;Xj//

with the convention 0=0 D 0.
Obviously, if b D 0, then we obtain the Nadaraya–Watson estimator studied, in

the functional case, in [14] and the references therein. It is worth to noting that,
under the fact that

Pn
i;jD1 ˇjWij D 0, we can reformulate the bias term of the

estimator Om.x/ as follows:

IE Œ Om.x/� � m.x/ D IE

"
Pn

i;jD1 Wij.x/
�

Yj � m.Xj/
�

Pn
i;jD1 Wij.x/

:

#

CIE

"
Pn

i;jD1 Wij.x/
�

m.Xj/ � m.x/C bˇ.Xj; x/
�

Pn
i;jD1 Wij.x/

#

D E

"
Pn

i;jD1 Wij.x/
�

Yj � m.Xj/
�

Pn
i;jD1 Wij.x/

#

CE

"
Pn

i;jD1 Wij.x/
�

o.ˇ.Xj; x//
�

Pn
i;jD1 Wij.x/

#

:

Clearly, under the expansion (1), we obtain a bias term of order o.h/. Undoubtedly,
this bias term is significantly better than in the kernel case, studied in [13], which
is of order O.h/. Thus, we can say that the functional local linear modeling is not a
simple generalization of the kernel method, rather more than that it is an alternative
approach that has important advantages, in particular in the rate of convergence of
the bias term (cf. Theorem 1 and Remark 2 below).
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3 Main Results

In the remainder of this paper, we set:

�x.r1; r2/ D IP.r2 � ı.x;X/ � r1/

and �.s/ D E Œm.X/� m.x/jˇ.x;X/ D s� :

We assume the following hypotheses:

(H1) For any r > 0, �x.r/ WD �x.�r; r/ > 0 and there exists a function �x.�/ such
that:

8t 2 .�1; 1/; lim
h!0

�x.th; h/

�x.h/
D �x.t/:

(H2) The first (resp. the second) derivative of � at 0 exists.
(H3) The bi-functional operator ˇ is such that:

for all z 2 F ; C1 jı.x; z/j � jˇ.x; z/j � C2 jı.x; z/j;

where C1 > 0; C2 > 0

sup
u2B.x;r/

jˇ.u; x/ � ı.x; u/j D o.r/

and h
Z

B.x;h/
ˇ.u; x/dPX.u/ D o

�Z

B.x;h/
ˇ2.u; x/ dPX.u/

�

;

where B.x; r/ D fz 2 F W jı.x; z/j � rg and dPX.x/ is the probability distribu-
tion of X.

(H4) The kernel K is a positive, differentiable function which is supported within
.�1; 1/. Moreover, its derivative K0 satisfies K0.t/ < 0, for �1 � t < 1 and
K.1/ > 0.

(H5) The function m2.�/ D EŒY2jX D �� is continuous in a neighborhood of x.
(H6) The bandwidth h satisfies :

lim
n!1 h D 0; and lim

n!1 n �x.h/ D 1:

Remark 1 Remark that assumptions (H1) and (H2) are an adaptations of conditions
H1 and H3 in [13], when one replaces the semi-metric d by some bi-functional
operator ı. The second part of the assumption (H3) has been introduced and
commented in [1]. Readers would find, in this last, several examples of bi-functional
operators ı and ˇ which satisfy this condition. Finally, conditions (H4)–(H6) are
classically used and are standard in the context of the quadratic error determination
in functional statistics.
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Theorem 1 Under assumptions (H1)–(H6), we have that:

E Œ Om.x/� m.x/�2 D B2K.x/h
4 C VK.x/

n�x.h/
C o.h4/C o

�

1

n �x.h/

�

; (2)

where

BK.x/ D 1

2
� 00.0/

2

6

6

4

K.1/�
Z 1

�1
.u2K.u//0�x.u/du

K.1/�
Z 1

�1
K0.u/�x.u/du

3

7

7

5

and

VK.x/ D �

m2.x/ � m2.x/
�

2

6

6

6

4

K2.1/�
Z 1

�1
.K2.u//0�.u/du

�

K.1/�
Z 1

�1
.K.u//0�.u/du

�2

3

7

7

7

5

:

Remark 2 We point out that Theorem 1 shows that the gain in the bias term is more
important than o.h/ which is obtained under assumption (1) (cf. the discussion in
Sect. 2). Undoubtedly, this gain is due to the additional regularity condition (H2).
However, the variance term is exactly the same as for the classical kernel estimator.

Proof of Theorem 1 It is known that:

E Œ Om.x/� m.x/�2 D ŒE . Om.x//� m.x/�2 C Var Œ Om.x/� :

Then the proof of this Theorem is based on the separate calculations of the bias and
the variance terms of the estimator Om.x/. For both quantities, we put:

Og.x/ D 1

n .n � 1/EW12.x/

n
X

i6Dj;1

Wij.x/Yj

and

Of .x/ D 1

n .n � 1/EW12.x/

n
X

i6Dj;1

Wij.x/:

So

Om.x/ D Og.x/
Of .x/ :
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Elsewhere, we have the following decomposition, for z 6D 0 and p 2 IN�:

1

z
D 1 � .z � 1/C � � � C .�1/p.z � 1/p C .�1/pC1 .z � 1/pC1

z
:

Particularly, for z D Of .x/ and p D 1 we get:

Om.x/� m.x/ D .Og.x/ � m.x// � .Og.x/� EOg.x//
�Of .x/ � 1

�

�EOg.x/
�Of .x/ � 1

�

C
�Of .x/� 1

�2 Om.x/:

Hence,

E Œ Om.x/� � m.x/ D .EOg.x/� m.x//� Cov.Og.x/; Of .x//

CE
�Of .x/ � EOf .x/

�2 Om.x/:

Consequently, the bias term can be expressed by:

E Œ Om.x/� � m.x/ D .EOg.x/� m.x//� Cov.Og.x/; Of .x//C O
�

Var
�Of .x/

��

:

Finally, the proof of Theorem 1 is based on Lemmas 1 and 2, below.

Lemma 1 Under Assumptions (H1)–(H4) and (H6), we have:

E ŒOg.x/� � m.x/ D BK.x; y/h
2 C o.h2/C O

�

1

n�x.h/

�

:

Lemma 2 Under Assumptions (H1) and (H4)–(H6), we have:

Var Œ Om.x/� D VK.x/

2

6

6

6

4

K2.1/�
Z 1

�1
.K2.u//0�.u/du

�

K.1/�
Z 1

�1
.K.u//0�.u/du

�2

3

7

7

7

5

C o

�

1

n�x.h/

�

:

Furthermore,

Cov.Og.x/; Of .x// D O

�

1

n�x.h/

�

and

Var
hOf .x/

i

D O

�

1

n�x.h/

�

:
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Appendix: Proofs

In what follows, when no confusion is possible, we will denote by C and C0 some
strictly positive generic constants. Moreover, we set for all i; j D 1; : : : ; n and for a
fixed .x; y/ 2 F � IR:

Ki D K.h�1ı.x;Xi//; ˇi D ˇ.Xi; x/ and Wij.x/ D Wij:

Proof of Lemma 1 We have:

E ŒOg.x/� D E

2

4

1

n.n � 1/EŒW12�

n
X

j6Di;1

WijYj

3

5

D EŒW12Y2�

EŒW12�
D 1

EŒW12�
E ŒW12EŒY2jX2�� : (3)

Then, it follows from (3) and the definition of the operator m that:

E ŒOg.x/� D 1

EŒW12�
E ŒW12m.X2/� :

Now, by the same arguments as those used in [13], for the regression operator
estimation, we show that:

E ŒW12m.X2/� D m.x/EŒW12�C E ŒW12 .m.X2/� m.x//�

D m.x/EŒW12�C E ŒW12E Œm.X2/� m.x/jˇ.x;X2/��
D m.x/EŒW12�C E ŒW12� .ˇ.x;X2//�

and since E Œˇ.x;X2/W12� D 0 and �.0/ D 0, we obtain:

E ŒW12� .ˇ.x;X2//� D 1

2
� 00.0/E

	

ˇ2.x;X2/W12


C o
�

E
	

ˇ2.x;X2/W12


�

:

Then:

E ŒOg.x/� D m.x/C � 00
0 .0/

E
	

ˇ2.x;X2/W12




2EŒW12�
C o

 

E
	

ˇ2.x;X2/W12




EŒW12�

!

:

Moreover, it is clear that:

E
	

ˇ.x;X2/
2W12


 D �

E
	

K1ˇ
2
1


�2 � EŒK1ˇ1�EŒK1ˇ
3
1�

E ŒW12� D EŒK1ˇ
2
1�EK1 � .EŒK1ˇ1�/2
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and, under the Assumption (H4), we obtain that:

for all a > 0; EŒKa
1ˇ1� � C

Z

B.x;h/
ˇ.u; x/dPX.u/:

So, by using the last part of the Assumption (H3), we get:

hEŒKa
1ˇ1� D o

�Z

B.x;h/
ˇ2.u; x/dPX.u/

�

D o.h2�x.h//

which allows to write:

EŒKa
1ˇ1� D o.h�x.h//: (4)

Moreover, for all b > 1, we can write:

EŒKa
1ˇ

b
1 � D EŒKa

1 ı
b.x;X1/�C E

	

K1.ˇ
b.X1; x/� ıb.x;X1//




:

Then, the second part of the Assumption (H3) implies that:

E
	

Ka
1.ˇ

b.X1; x/ � ıb.x;X1//



D E

"

Ka
1 IB.x;h/.ˇ.X1; x/� ı.x;X1//

b�1
X

lD0
.ˇ.X1; x//

b�1�l.ı.x;X1//
l

#

� sup
u2B.x;h/

jˇ.u; x/� ı.x; u/j
b�1
X

lD0
E
	

Ka
1 IB.x;h/jˇ.X1; x/jb�1�ljı.x;X1/jl/




;

whereas the first part of the Assumption (H3) gives:

IB.x;h/jˇ.X1; x/j � IB.x;h/jı.x;X1/j:

Thus, it follows:

E
	

Ka
1.ˇ

b.X1; x/ � ıb.x;X1//

 � b sup

u2B.x;h/
jˇ.u; x/� ı.x; u/jjEŒKa

1 jıjb�1.x;X1/�

� b sup
u2B.x;h/

jˇ.u; x/� ı.x; u/jhb�1
EŒKa

1 �

� b sup
u2B.x;h/

jˇ.u; x/� ı.x; u/jhb�1�x.h/

which allows to write:

EŒKa
1ˇ

b
1� D EŒKa

1 ı
b.x;X1/�C o.hb�x.h//:
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Concerning the term EŒKa
1 ı

b�, we write:

h�b
EŒKa

1 ı
b� D

Z

vbKa.v/dPh�1ı.x;X1/
X .v/

D
Z 1

�1

�

Ka.1/�
Z 1

v

.ubKa.u//0du

�

dPh�1ı.x;X1/
X .v/

D Ka.1/�x.h/�
Z 1

�1
.ubKa.u//0�x.uh; h/du

D �x.h/

�

Ka.1/�
Z 1

�1
.ubKa.u//0

�x.uh; h/

�x.h/
du

�

:

Finally, under the Assumption (H1), we get:

EŒKa
1ˇ

b
1 � D hb�x.h/

�

Ka.1/�
Z 1

�1
.ubKa.u//0�x.u/du

�

C o.hb�x.h//: (5)

It follows that:

E
	

ˇ2.x;X2/W12




EŒW12�
D h2

2

6

6

4

K.1/�
Z 1

�1
.u2K.u//0�x.u/du

K.1/�
Z 1

�1
K0.u/�x.u/du

3

7

7

5

C o.h2/:

Consequently:

E ŒOg.x/� D m.x/C h2

2
� 00
0 .0/

2

6

6

4

K.1/�
Z 1

�1
.u2K.u//0�x.u/du

K.1/�
Z 1

�1
K0.u/�x.u/du

3

7

7

5

C o.h2/:

Proof of Lemma 2 For this Lemma, we use the same ideas of Sarda and Vieu [16]
to show that

Var Œ Om.x/� D Var ŒOg.x/� � 2.EOg.x//Cov.Og.x/; Of .x//

C.EOg.x//2Var. Of .x//C o

�

1

n�x.h/

�

:
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It is clear that:

Var .Og.x// D 1

.n.n � 1/EŒW12�/2
Var

0

@

n
X

i6Dj D1
WijYj

1

A

D 1

.n.n � 1/.EW12//
2

�

n.n � 1/EŒW2
12Y

2
2 �C n.n � 1/EŒW12W21Y2Y1�

Cn.n � 1/.n � 2/EŒW12W13Y2Y3�C n.n � 1/.n � 2/EŒW12W23Y2Y3�

Cn.n � 1/.n � 2/EŒW12W31Y2Y1�C n.n � 1/.n � 2/EŒW12W32Y
2
2 �

�n.n � 1/.4n � 6/.EŒW12Y2�/
2
�

:

Observe that the terms of the first line are negligible compared to other terms which
are multiplied by n.n � 1/.n � 2/. Furthermore,

EŒW2
12Y

2
2 � D O.h4�2x .h//;

EŒW12W21Y1Y2� D O.h4�2x .h//;

EŒW12W13Y2Y3� D .m.x//2EŒˇ41K2
1 �.EŒK1�/

2 C o.h4�3x .h//;

EŒW12W23Y2Y3� D .m.x//2EŒˇ21K1�.EŒˇ
2
1K2

1 �EŒK1�/C o.h4�3x .h//;

EŒW12W31Y2Y1� D .m.x//2EŒˇ21K1�.EŒˇ
2
1K2

1 �EŒK1�/C o.h4�3x .h//;

EŒW12W32Y
2
2 � D .m2.x//.EŒˇ

2
1K1�/

2.EŒK2
1 �/C o.h4�3x .h//;

EŒW12Y2� D O.h2�2x .h//:

Therefore, the leading term in the expression of Var .Og.x// is:

n.n � 1/.n � 2/

.n.n � 1/EŒW12�/2

�

.m.x//2
�

EŒˇ41K2
1 �.EŒK1�/

2 C 2BBeŒˇ21K1�.EŒˇ
2
1K2

1 �EŒK1�/
�

C.m2.x//.EŒˇ
2
1K1�/

2.EŒK2
1 �/C o.h4�3x .h//

�

:

Concerning the covariance term, we have by the same fashion:

Cov.Og.x/; Of .x// D 1

.n.n � 1/EŒW12�/2
Cov

0

B

B

@

n
X

i;jD1

i6Dj

WijYj;

n
X

i0 ;j0D1

i0 6Dj0

Wi0j0

1

C

C

A

D 1

.n.n � 1/EW12//
2

	

n.n � 1/EŒW2
12Y2�C n.n � 1/EŒW12W21Y2�

Cn.n � 1/.n � 2/EŒW12W13Y2�C n.n � 1/.n � 2/EŒW12W23Y2�

Cn.n � 1/.n � 2/EŒW12W31Y2�C n.n � 1/.n � 2/EŒW12W32Y2�

�n.n � 1/.4n � 6/.EŒW12Y2�EŒW12�/�
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with

EŒW2
12Y2� D O.h4�2x .h//;

EŒW12W21Y2� D O.h4�2x .h//;

EŒW12W13Y2� D .m.x//EŒˇ41K2
1 �.EŒK1�/

2 C o.h4�3x .h//;

EŒW12W23Y2� D .m.x//EŒˇ21K1�.EŒˇ
2
1K2

1 �EŒK1�/C o.h4�3x .h//;

EŒW12W31Y2� D .m.x//EŒˇ21K1�.EŒˇ
2
1K2

1 �EŒK1�/C o.h4�3x .h//;

EŒW12W32Y2� D .m.x//.EŒˇ21K1�/
2.EŒK2

1 �/C o.h4�3x .h//;

EŒW12Y1� D O.h2�2x .h//:

Therefore, the leading term in the expression of Cov.Og.x/; Of .x// is:

n.n � 1/.n � 2/

.n.n � 1/EŒW12�/2

�

m.x/
�

EŒˇ41K2
1 �.EŒK1�/

2 C 2EŒˇ21K1�.EŒˇ
2
1K2

1 �EŒK1�/

C.EŒˇ21K1�/
2.EŒK2

1 �/
�C o.h4�3x .h//

�

:

Finally, for Var
�Of .x/

�

Var
�Of .x/

�

D 1

.n.n � 1/.EW12//
2

h

n.n � 1/EŒŒW2
12�C n.n � 1/EŒŒW12W21�

Cn.n � 1/.n � 2/EŒŒW12W13�C n.n � 1/.n � 2/EŒŒW12W23�

Cn.n � 1/.n � 2/EŒŒW12W31�C n.n � 1/.n � 2/EŒŒW12W32�

�n.n � 1/.4n � 6/.EŒŒW12�/
2
i

and similarly to the previous cases:

EŒW2
12� D O.h4�2x .h//;

EŒŒW12W21� D O.h4�2x .h//;

EŒŒW12W13� D EŒŒˇ41K2
1 �.EŒŒK1�/

2 C o.h4�3x .h//;

EŒŒW12W23� D EŒŒˇ21K1�.EŒŒˇ
2
1K2

1 �EŒŒK1�/C o.h4�3x .h//;

EŒŒW12W31� D EŒŒˇ21K1�.EŒŒˇ
2
1K2

1 �EŒŒK1�/C o.h4�3x .h//;

EŒŒW12W32� D .EŒŒˇ21K1�/
2.EŒŒK2

1 �/C o.h4�3x .h//;

EŒŒW12� D O.h2�2x .h//:
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Therefore,

Var . Om.x// D .m2.x/ � m2.x//

n�x.h/

2

6

4

�

K2.1/� R 1

�1.K
2.u//0�.u/du

�

�

K.1/� R 1

�1.K.u//0�.u/du
�2

3

7

5C o

�

1

n�x.h/

�

:

which completes the proof.
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Estimation of a Loss Function for Spherically
Symmetric Distribution with Constraints
on the Norm

Idir Ouassou

Abstract In this paper, we consider the problem of estimating the quadratic loss of
point estimators of a location parameter � , for a family of symmetric distribution
with known scale parameter, subject to different constraints to be satisfied by the
norm of � and when a residual vector U is available. We compare the robust and
non-robust estimators. Moreover we give sufficient conditions on the distribution
for the domination of competing estimators. In particular this result remains true for
t-distributions when the dimension of the residual vector is sufficiently large. The
upper and lower bounds on the risk are exact at � D 0.

1 Introduction

Consider the problem of estimating the loss incurred using least squares estimators
of a location parameter of a spherically symmetric distribution when the scale
parameter is known, its norm satisfies different constraints and the residual vector
U is available. This problem has been firstly considered by Lehmann and Scheffé
[6] who estimated the power of a statistic test. Later on Fourdrinier and Wells [3] by
Johnstone [5] Lele [7], Ouassou and Rachdi [4, 8, 9] have studied this problem in a
variety of situation.

The present work study a class of estimators which improve an unbiased loss
estimator �u.x/ D pkUk2=k of the usual minimax estimator X. A particular
important class of such estimators is the class �c.X/ D �u � c=kXk2. An alternative
class, when a residual vector U is available, is the class of robust estimators
�c.X;U/ D �u � ckUk2=kXk2.

The paper is organized as follows. In Sect. 2, we give an expression of the risk of
the estimator �c and of the robust estimators �c

R. Section 3 is devoted to upper and
lower bounds on expectations E�

	kUk2q=kXk2
 and E�

	kUk2q=kXk4
. Then we
derive an upper and a lower bound on the risk on non-robust and robust estimators.
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These bounds are similar in spirit to those developed by Casella and Hwang [1] and
by Fourdrinier and Strawderman [2] for the estimation of the location parameter.
Section 4 is devoted to an application of the results of the previous section which
gives sufficient conditions for the domination of the robust estimator over the non-
robust one.

We also give sufficient conditions for domination when � is in a neighborhood
of 0 and in a neighborhood of infinity.

Section 5 gives various examples of distributions illustrating the phenomenon. A
basic example is the t-distribution when the dimension of the residual vector used
for estimating the variance is large enough.

Finally, we present an appendix which contains technical lemmas used to prove
various results and establish important estimates of the risk bounds.

2 Robust and Non-robust Estimators

Given a random vector .X;U/ 2 RpCk which has a spherically symmetric
distribution with location parameter .�; 0/ 2 RpCk such that k�k D  for a known
. The dimension of the sub-vectors X and � is p while that of U and 0 is k. We are
interested in the estimation of the quadratic loss function kX ��k2 of the usual least
square estimator X of � . The estimator X is the orthogonal projector from RpCk onto
Rp. An unbiased estimator of kX � �k2, given by Fourdrinier and Wells [3], is

�u D p

k
kUk2;

a competitive class of estimators are of the form

�c.X/ D �u � c
1

kXk2 (1)

where c is a positive constant. Others competing estimators, improving �u, are those
which take into account the residual vector U, that is,

�c
R.X;U/ D �u � c

kUk4
kXk2 : (2)

We will refer to the estimators of the form (2) as robust estimators, the robust
character here refers to the class of all spherical laws and the presence of U.

For any � , we denote by E� the expectation with respect to the underlying
spherically symmetric distribution with mean � . Hence the risk of any estimator
� is given by

R.�;X; �/ D E�

	

.� � kX � �k2/2
 :
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The risk of the estimators given in (1) and (2) can be calculated simultaneously by
the risk of the following estimator

�c
˛.X;U/ D �u � c

kUk˛
kXk2 : (3)

where ˛ 2 N.
The finiteness of such risks is guaranteed as soon as the second moment of

the spherical distribution exists and E�

	kUk2˛=kXk4
 < 1 and E�

	kUk˛C2=
kXk2
 < 1.

The expression of the risk of �c
˛ is given by the next proposition.

Proposition 2.1 For any � 2 R
p, the risk R.�c

˛;X; �/ of �c
˛ equals to

R.�u;X; �/C c2E�

�kUk2˛
kXk4

�

� 2c
p � 4

.k C ˛/.k C ˛ C 2/
E�

�kUk˛C4

kXk4
�

�2c
p˛

k.k C ˛/
E�

�kUk˛C2

kXk2
�

: (4)

Proof of the Proposition 2.1 Let � be fixed in R
p, we can write

R.�˛c ; �u; �/ D E�

h

�

�˛c � kX � �k2�2
i

D R.�u;X; �/C c2E�

�kUk2˛
kXk4

�

� 2c
p

k
E�

�kUk2C˛
kXk2

�

C2cE�

�

kX � �k2 kUk˛
kXk2

�

:

According to Lemma A.1 in [3] applied with g.x/ D 1=jjxjj2, we have

.k C ˛/ER;�

�

kX � �k2 kUk˛
kXk2

�

D pER;�

�kUk˛C2

kXk2
�

C 1

k C ˛ C 2
ER;�

�

kUk˛C4�
�

1

kXk2
��

D pER;�

�kUk˛C2

kXk2
�

� 2c
p � 4

k C ˛ C 2
E�

�kUk˛C4

kXk4
�

:

Recalling that �
�

1=kXk2� D �.p � 4/=kXk4. Therefore the above risk expression
is proved.
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Remarks

1. As the risk R.�c
˛;X; �/ has a quadratic form then it is easy to deduce from the

risk of �c
˛, that, for any � 2 R

p, the constant c?˛ for which the risk is minimum is

c?˛./ D
p�4

.kC˛/.kC˛C2/E�
h kUk˛C4

kXk4
i

C p˛
k.kC˛/E�

h kUk˛C2

kXk2
i

E�

h kUk2˛
kXk4

i (5)

and the corresponding risk is

R.�u;X; �/�
�

p�4
.kC˛/.kC˛C2/E�

h kUk˛C4

kXk4
i

C p˛
k.kC˛/E�

h kUk˛C2

kXk2
i�2

E�

h kUk2˛
kXk4

i : (6)

2. It is worth noting that, for the non-robust estimator (˛ D 0), the optimal constant
typically depends on � and equals to

c?0./ D p � 4

k.k C 2/

E�

hkUk4
kXk4

i

E�

h

1
kXk4

i (7)

and its risk equals to

R.�u;X; �/�
�

p�4
k.kC2/E�

h kUk4
kXk4

i�2

E�

h

1
kXk4

i : (8)

3. For the robust estimator (˛ D 4), the optimal constant depends on � and is
equal to

c./ D p � 4

.k C 4/.k C 6/
C 4p

k.k C 4/

E�

h kUk6
kXk2

i

E�

h kUk8
kXk4

i (9)

and the corresponding risk is

R.�u;X; �/�
�

p�4
.kC4/.kC6/E�

h kUk8
kXk4

i

C 4p
k.kC4/E�

h kUk6
kXk2

i�2

E�

h kUk8
kXk4

i : (10)

4. However in the normal case N.�; 	IpCk/, the optimal constant c?./ for non-
robust case does not depend on  D k�k and is equal to .p �4/	2. In general, for
the independence of c?./ on , it would be sufficient that kUk2 and 1=kXk2 are
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uncorrelated for all � . While, for the robust estimators �c
4 the optimal constant

c?4 depends also on  D k�k in the normal case. Indeed, a classical calculation
based on the non-centered �2 distribution and the Poisson one leads to

c?4./ D p � 4

.k C 4/.k C 6/
� 4p

k.k C 4/.k C 6/

EL
h

1
pC2L�2

i

EL
h

1
.pC2L�2/.pC2L�4/

i

where L is a Poisson random variable with parameter =2.

3 Bounds for E�

�kUk2q=kXk2
�

and E�

�kUk2q=kXk4
�

The Proposition 1 indicates that the bounds of the risks of the estimators in (1) and
(2) are of the form E�

	kUk2q=kXk2
 and E�

	kUk2q=kXk4
, where q is an integer.
The following propositions yield such upper and lower bounds which are

expressed, for any fixed R � 0 conditionally on the radius R D .kX � �k2 C
kUk2/1=2. Let us denote by ER;� the expectation with respect to the uniform
distribution UR:� on the sphere SR;� D fy 2 R

pCk= ky��k D Rg. Thus we can write
E�

	kUk2q=kXk4
 D E
	

ER;�
�kUk2q=kXk4� =R




, where E denotes the expectation
with respect to the radial distribution.

In this section we give only the bounds of the expectationE�
	kUk2q=kXk4
 since

the bounds of the second expectation are given in [2].
First we give an expression of ER;�

	kUk2q=kXk4
 in terms of integrals with
respect to a Beta distribution. For notational convenience we often use B.˛; ˇ; dv/
for the density of the Beta distribution with parameters ˛ > 0 and ˇ > 0.

Proposition 3.1 For p � 3, any R > 0, any � 2 R
p and any integer q such that

� k
2
< q, the expectation of kUk2q=kXk4 conditionally on the radius R is equal to

ER;�

�kUk2q

kXk4
�

D
�
�

kCp
2

�

�
�

k
2

C q
�

�
�

kCp
2

C q
�

�
�

k
2

�

R2q

�
Z 1

0

Z 1

0

.R2u C k�k2/2 C 4R2k�k2uv
..R2u C k�k2/2 � 4R2k�k2uv/2B

�

1

2
;

p � 1
2

; dv

�

B

�

p

2
;

k

2
C q; du

�

:

At � D 0 this proposition, simplifies greatly in the following corollary.

Corollary 3.1 Under the condition of Proposition 3.1, we have for � D 0 and
p > 4

E0

�kUk2q

kXk4
�

D
B
�

k
2

C q; p�4
2

�

B
�

k
2
;

p
2

� E
	

R2.q�2/
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and in the particular case where q D 0, 2, 4, we have

E0

�

1

kXk4
�

D .p C k � 2/.p C k � 4/

.p � 2/.p � 4/ EŒR4�

E0

�kUk4
kXk4

�

D k.k C 2/

.p � 2/.p � 4/

E0

�kUk8
kXk4

�

D k.k C 2/.k C 4/.k C 6/

.p C k/.p C k C 2/.p � 2/.p � 4/EŒR
4�:

The proposition below gives an upper bound of E�
	kUk2q=kXk4
.

Proposition 3.2 Let q be an integer such that �k
2
< q. If p � 8 then for any � 2 R

p,

E�

� jjujj2q

jjXjj4
�

�
�
�

pCk
2

�

�
�

k
2

C q
�

�
�

pCk
2

C q
�

�
�

k
2

�

.p C k C 2q � 2/.p C k C 2q � 4/
.p � 2/.p � 4/ (11)

�E
2

4

R2q

�

R2 C pCkC2q�2
p�2 k�k2

� �

R2 C .pCkC2q�4/.p�14/
.p�2/.p�4/ k�k2

�

3

5 :

Corollary 3.2 If p � 14, then, for q D 0; 2; 4 and for any � 2 R
p, we have

E�

�

1

kXk4
�

� .p C k � 2/.p C k � 4/

.p � 2/.p � 4/

�E
2

4

1
�

R2 C pCk�2
p�2 k�k2

� �

R2 C .pCk�4/.p�14/
.p�2/.p�4/ k�k2

�

3

5E�

�kUk4
kXk4

�

� k.k C 2/

.p � 2/.p � 4/
E

2

4

R4
�

R2 C pCkC2
p�2 k�k2

� �

R2 C .pCk/.p�14/
.p�2/.p�4/ k�k2

�

3

5

E�

�kUk8
kXk4

�

� k.k C 2/.k C 4/.k C 6/

.p � 4/.p � 2/.p C k/.p C k C 2/

�E
2

4

R8
�

R2 C pCkC6
p�2 k�k2

� �

R2 C .pCkC4/.p�14/
.p�2/.p�4/ k�k2

�

3

5 :

The next proposition gives a lower bound of E�
	kUk2q=kXk4
.
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Proposition 3.3 Let q be an integer such that �k
2
< q. If p � 5, then for any � 2 R

p,

E�

�kUk2q

kXk4
�

�
�
�

pCk
2

�

�
�

k
2

C q
�

�
�

k
2

�

�
�

pCk
2

C q
�

.p C k C 2q � 2/.p C k C 2q � 4/

.p � 2/.p � 4/

�E

2

6

4

R2q

�

R2 C pCKC2q�4
p�4 k�k2

�2

3

7

5 : (12)

Corollary 3.3 If p � 5, then, for q D 0; 2; 4 and for any � 2 R
p, we have

E�

�

1

kXk4
�

�
�

p C k � 4

p � 4
�2

E

2

6

4

1
�

R2 C pCk�4
p�4 k�k2

�2

3

7

5E�

�kUk4
kXk4

�

� p C k

.p � 4/2
k.k C 2/

p C k C 2
E

2

6

4

R4
�

R2 C pCk
p�4k�k2

�2

3

7

5E�

�kUk8
kXk4

�

� k.k C 2/.k C 4/.k C 6/.p C k C 4/

.p � 2/.p � 4/2.p C k/.p C k C 2/.p C k C 6/

E

2

6

4

R8
h

R2 C pCKC4
p�4 k�k2

i2

3

7

5 :

3.1 Bounds for the Risk of �c
R and �c

In this subsection, we give lower and upper bounds for the risk of the estimators
�c (1) and the robust estimator �c

R (2). Their risks correspond respectively to the
case ˛ D 0 and ˛ D 4 in proposition 2.1. See [1] and [2] for similar bounds in the
estimation of the mean � . Thus we have

R.�c;X; �/ D R.�u;X; �/C c2E�

�

1

kXk4
�

� 2c
p � 4

k.k C 2/
E�

�kUk4
kXk4

�

(13)
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and

R.�c
R;X; �/ D R.�u;X; �/C c2E�

�kUk8
kXk4

�

� 2c
p � 4

.k C 4/.k C 6/
E�

�kUk8
kXk4

�

�8c
p

k C 4
E�

�kUk6
kXk2

�

: (14)

In this context, bounds for R.�c;X; �/ and R.�c
R;X; �/ are immediately deduced

from Corollaries 3.1 and 3.3.
In the next proposition, we give a lower and upper bounds of the risk difference

between �c and �c4
R relative to the risk of the unbiased estimator �u. Denote by

�RR.�/ D R.�c4
R ;X; �/ � R.�u;X; �/ and �R.�/ D R.�c;X; �/ � R.�u;X; �/

these differences.

Proposition 3.4 For p � 14 and � 2 R
p, the upper and lower bounds of �R.�/

are respectively

c2C1E

2

6

4

1
�

R2 C pCk�4
p�4 2

�2

3

7

5� 2c

p � 2
E

2

4

R4
�

R2 C pCkC2
p�2 2

� �

R2 C .pCk/.p�14/
.p�2/.p�4/ 2

�

3

5 ;

c2C1E

2

4

1
�

R2 C pCk�2
p�2 2

� �

R2 C .pCk�4/.p�14/
.p�2/.p�4/ 2

�

3

5 � 2c

p � 2
E

2

6

4

R4
�

R2 C pCk
p�4 2

�2

3

7

5

and the upper and lower bounds of �RR.�/ are respectively

c2C2C3E

2

6

4

R8
h

R2 C pCKC4
p�4 2

i2

3

7

5 � 8cC3pE

2

4

R6

R2 C .pCkC4/.p�4/
.p�2/2 2

3

5

�2cC3E

2

4

R8
�

R2 C pCkC6
p�2 2

� �

R2 C .pCkC4/.p�14/
.p�2/.p�4/ 2

�

3

5

c2C2C3E

2

4

R8
�

R2 C pCkC6
p�2 2

� �

R2 C .pCkC4/.p�14/
.p�2/.p�4/ 2

�

3

5

�8cC3pE

"

R6

R2 C pCkC2
p�4 2

#

� 2cC3E

2

6

4

R8
h

R2 C pCKC4
p�4 2

i2

3

7

5

where C1 D .pCk�2/.pCk�4/
.p�2/.p�4/ , C2 D .kC4/.kC6/

p�4 and C3 D k.kC2/
.p�2/.pCk/.pCkC2/ .



Estimation of a Loss Function with Constraints on the Norm 99

Remark All bounds given above are exact at 0 since they are deduced from bounds
of EŒ.U0U/˛=X0X� and EŒ.U0U/˛=.X0X/2� which are also exact at 0.

3.2 Bounds in Terms of Moments of R2

It is often desirable to have bounds in terms of moments of R2. An application of
the Jensen inequality to the function

�

R2q=.R2 C A/.R2 C B/
�

, where q is the fixed
integer and A and B are a fixed non-negative constants, leads to the following lemma.

Lemma 3.1 For any fixed integer q 2 N? and .A;B/ 2 R
2C, we have

E
	

R2.q�2/


.1C AEŒR�2�/ .1C BEŒR�2�/
� E

�

R2q

.R2 C A/.R2 C B/

�

� EŒR2q�
�

EŒR�2�
�2

.1C AEŒR�2�/ .1C BEŒR�2�/
:

and for q D 0

�

EŒR�2�
�4

.EŒR�2�C AEŒR�4�/ .EŒR�2�C BEŒR�4�/
� E

�

1

.R2 C A/.R2 C B/

�

� EŒR�4�.EŒR2�/2

.EŒR2�C A/.EŒR2�C B/
:

Knowing the distribution of radius R we can easily calculate the moments of
any order when they exist. Hence the interest of the following proposition which
provides the bounds of difference in risk �RR.�/ and�R.�/ in terms of moments
of R. In the sequel we will give bounds for the expectations considered in the
Corollaries 3.2 and 3.3 in terms of these moments.

Let us set,

A D .p C k � 2/.p C k � 4/

.p � 2/.p � 4/ ; B D k.k C 2/

.p � 2/.p � 4/

and

C D k.k C 2/.k C 4/.k C 6/

.p � 2/.p � 4/.p C k/.p C k C 2/
; D D k.k C 2/.k C 4/

.p � 2/.p C k/.p C k C 2/
:

According to Lemma 3.1, we deduce the following result.
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Corollary 3.4 If p � 14, then for any � 2 R
p we have

A
�

EŒR�2�
�4

�

EŒR�2�C pCk�4
p�4 2

�2
� E�

�

1

kXk4
�

� AEŒR�4�.EŒR�2�/2
�

EŒR2�C pCk�2
p�2 2

� �

EŒR2�C .pCk�4/.p�14/
.p�2/.p�4/ 2

�

BEŒR2�
�

1C pCk
p�4 2EŒR�2�

�2
� E�

� jjUjj4
kXk4

�

� BEŒR4�.EŒR�2�/2
�

1C pCkC2
p�2 2EŒR�2�

� �

1C .pCk/.p�14/
.p�2/.p�4/ 2EŒR�2�

�

CEŒR6�
�

1C pCk�4
p�4 2EŒR�2�

�2
� E�

� jjUjj8
kXk4

�

� CEŒR8�.EŒR�2�/2
�

1C pCkC6
p�2 2EŒR�2�

� �

1C .pCkC4/.p�14/
.p�2/.p�4/ 2EŒR�2�

�

and

D.EŒR4�/2

EŒR4�C pCkC2
p�4 2EŒR2�

� E�

� jjUjj6
kXk2

�

� DEŒR6�EŒR4�

EŒR6�C .pCkC4/.p�4/
.p�2/2 2EŒR4�

:

The proof of this corollary is obtained by applying the Corollaries 3.2, 3.3, and
Lemma 6.2. The last double inequality was obtained in [2].

Proposition 3.5 If p � 14, then for any fixed � 2 R
p, we have

k.k C 2/

.p � 2/.p C k/.p C k C 2/

8

<

:

�8p
EŒR6�EŒR4�

EŒR6�C pCkC4

.p�2/2
2EŒR4�

C .k C 4/.k C 6/

p � 4

�
�

c � 2.p � 4/

.k C 4/.k C 6/

�

EŒR8�.EŒR�2�/2
�

1C pCkC6

p�2
2EŒR�2�

��

1C .pCkC4/.p�14/

.p�2/.p�4/
2EŒR�2�

�

9

=

;



Estimation of a Loss Function with Constraints on the Norm 101

� �RR.�/

� k.k C 2/

.p � 2/.p C k/.p C k C 2/

�

.k C 4/.k C 6/

p � 4
�

c � 2.p � 4/

.k C 4/.k C 6/

�

� EŒR6�
�

1C pCk�4

p�4
2EŒR�2�

�2
� 8p

.EŒR4�/2

EŒR4�C pCkC2

p�4
2EŒR2�

9

>

=

>

;

:

4 Comparison Between Robust and Non-robust Estimators

This section gives sufficient conditions for the optimal robust estimator to dominate
any non-robust estimator �c.

From (13) it is easy to see that the optimal constant c which minimizes the risk
of �c

˛ is

c?˛./ D
p�4

.kC˛/.kC˛C2/E�
h kUk˛C4

kXk4
i

C p˛
kC˛E�

h kUk˛C2

kXk2
i

E�

h kUk2˛
kXk4

i (15)

and the corresponding estimator �c?˛
˛ has the risk

R.�u;X; �/�
�

p�4
.kC˛/.kC˛C2/E�

h kUk˛C4

kXk4
i

C p˛
kC˛E�

h kUk˛C2

kXk2
i�2

E�

h kUk2˛
kXk4

i : (16)

The following theorem gives a sufficient condition for the optimal robust estimator
to dominate any non-robust estimator.

Theorem 4.1 The optimal robust estimator �
c?˛
˛ uniformly (in �) dominates all the

non-robust estimator �c
0 provided that for any � 2 R

p and for any p � 5,

E

h kUk2˛
kXk4

i �

E

h kUk4
kXk4

i�2

E

h

1
kXk4

i �

E

h kUk˛C4

kXk4
i

C p˛ kC˛C2
p�4 E

h kUk˛C2

kXk2
i�2

�
�

k.k C 2/

.k C ˛/.k C ˛ C 2/

�2

:

(17)

Proof According to (15) the optimal choice of the constant c leading to a minimum
risk for non-robust estimator �c

0 depend on � and equals to

c?0 D p � 4

k.k C 2/

E�

hkUk4
kXk2

i

E�

h

1
kXk4

i ; (18)
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the corresponding estimator �
c?0
0 has the risk

R.�
c?0
0 ;X; �/ D R.�u;X; �/�

�

p � 4

k.k C 2/

�2

�

E�

h kUk4
kXk4

i�2

E�

h

1
kXk4

i : (19)

According to (18) and (19), the risk difference�R.�/ between �
c?0
0 and �

c?4
4 is

�R.�/ D R.�
c?4
4 ;X; �/� R.�

c?0
0 ;X; �/

D
�

p�4
.k/.kC2/

�2 �

E

h kUk4
kXk4

i�2

E

h

1
kXk4

i

�
�

p�4
.kC˛/.kC˛C2/

�2 �

E

h kUk˛C4

kXk4
i

C p˛.kC˛C2/
p�4 E

h kUk˛C2

kXk2
i�2

E

h kUk2˛
kXk4

i :

Thus �
c?4
4 uniformly dominates all the estimator �c

0 (for the same c), if this last
quantity is negative, that is, if which is the desired result.

The condition (17), may be difficult to verify directly and a convenient way is to
express the upper bound of the left-hand side (17) using the bound obtained in
Sect. 3. This is the main idea of the following corollary.

Corollary 4.1 For p � 14, a sufficient condition for which �
c?˛
˛ dominates uniformly

(in �) all the estimator �c
0 is

E

"

R2˛
�

R2C pCkC2˛�2
p�2

k�k

2
��

R2C .pCkC2˛�4/.p�14/
.p�2/.p�4/

k�k

2
�

# 

E

"

R4
�

R2C pCkC2
p�2

k�k

2
��

R2C .pCk/.p�14/
.p�2/.p�4/

k�k

2
�

#!2

E

"

1
�

R2C pCk�4
p�4 k�k

2
�2

# 

E

"

R˛C4
�

R2C pCkC˛
p�4 k�k

2
�2

#

C p˛E

�

R˛C2

R2C pCkC˛�2
p�4 k�k

2

�

!2

�
�
�

pCk
2

�

�
�

pCk
2

C ˛
�

� 2
�

pCkC2

2

�

.p C k � 2/.p C k � 4/.p C k C ˛/2.k C ˛/2

�
�

k
2

�

�
�

k
2

C ˛
�

� 2

�

pCkC˛C2

2

�

.p C k C 2˛ � 2/.p C k C 2˛ � 4/
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for ˛ D 4

E

"

R8
�

R2C pCkC6
p�2 k�k

2
��

R2C .pCkC4/.p�14/
.p�2/.p�4/ k�k

2
�

# 

E

"

R4
�

R2C pCkC2
p�2 k�k

2
��

R2C .pCk/.p�14/
.p�2/.p�4/ k�k

2
�

#!2

E

"

1
�

R2C pCk�4
p�4 k�k

2
�2

# 

E

"

R8
�

R2C pCkC4
p�4 k�k

2
�2

#

C 4pE

�

R6

R2C pCkC2
p�4 k�k

2

�

!2

� k.k C 2/.p C k � 2/.p C k � 4/

.k C 4/.k C 6/.p C k/.p C k C 2/
: (20)

It is interesting to first consider the condition (20) for � D 0 and for  at infinity.

Corollary 4.2 The optimal robust estimator �
c?4
4 dominates all the estimators �c

0 at
� D 0 if:

E

�

1

R4

�

E
	

R4

 � .k C 4/.k C 6/.p C k/.p C k C 2/

k.k C 2/.4p C 1/2.p C k � 2/.p C k � 4/ : (21)

Proof The result is a straightforward application of Corollary 4.1 for � D 0.

The domination condition of �
c?4
4 over �c

0, for  D k�k at infinity, is deduced by
dividing the numerator and denominator of the left-hand side of (20) by 4.

Corollary 4.3 The optimal robust estimator �
c?4
4 dominates all the estimators �c

0 for
 at infinity if

E
	

R8



E
	

R4

2

�

p�4
.pCkC4/2E ŒR

8�C 4p
pCkC2E ŒR6�

�2

� k.k C 2/.p C k/.p C k C 2/.p C k C 4/.p C k C 6/.p C k � 2/.p � 14/

.p � 2/3.p C k � 4/.k C 4/.k C 6/
:

(22)

5 Examples

As in the case of the point estimate, the class of Student distribution provides a
framework where the condition of domination of Theorem 4.1 is achieved. Suppose
that .X;U/0 has a Student distribution with m degrees of freedom. Straightforward
calculations show that the density of the radial distribution is given by

2�
�

mCpCk
2

�

�
�

m
2

�

�
�

pCk
2

�

m
pCk
2

�

1C R2

m

�� pCkCm
2

RpCk�1
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The key terms in the various proofs of the results are

s.�;A;B/ D E

�

R�

.R2 C A2/ .R2 C B2/

�

where A, B, and � to be positive constant. The following lemma gives an upper
bound of this term and a lower bound in the case where A D B.

Lemma 5.1 For A > 0, B > 0 and � > 0 fixed, we have

s.�;A;B/ � m
pCkC��4

2

2
B

�

m C 4 � �

2
;

p C k C � � 4

2

�

and

m
pCkC��4

2 .p C k C m C 4/2B
�

mC4��
2

;
pCkC�

2

�

2A2.m C 4 � �/2
�

pCkC�
A.mC4��/ C 2

m

�2
� s.�;A;A/

Whenever the dimension k of the residual vector U is large enough, the following
proposition gives a sufficient condition to the dominance.

Proposition 5.1 For p � 14 and for m � 5, there exist k0 > 0 such that for any

k � k0 the optimal robust estimator �
c�

4

R .X;U/ dominates uniformly in � all non-
robust estimators �c.X/.

Proof Notice that the left side of inequality (17) is dominated by I � J where

I D
E

�

R8

.R2CA12/.R2CA22/

�

E

�

R8

.R2CA52/
2

�

and

J D

�

E

�

R4

.R2CA32/.R2CA42/

��2

E

�

1

.R2CA62/
2

�

E

�

R8

.R2CA52/
2

� :

Firstly, we have

I �
�

m � 4
p C k C m C 4

�2 �p C k C 8

m � 4 C A5

2

m

�2
.p C k C m/.p C k C m C 2/

.p C k C 4/.p C k C 6/
:

(23)
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Indeed

I �
m

pCkC4
2 B

�

m�4
2
;

pCkC8
2

�

R 1

0
1
t2

B
�

m�4
2 ;

pCkC8
2 ;dt

�

�

1�t
t CA1

2

m

��

1�t
t CA2

2

m

�

m
pCkC4

2 B
�

m�4
2
;

pCkC8
2

�

R 1

0
1
t2

B
�

m�4
2 ;

pCkC8
2 ;dt

�

�

1�t
t CA5

2

m

�2

�
Z 1

0

1

t2

B
�

m�4
2
;

pCkC8
2

; dt
�

�

1�t
t C A1

2

m

� �

1�t
t C A2

2

m

�

0

B

B

B

@

1

1 � B
�

m�4
2 C1; pCkC8

2

�

B
�

m�4
2 ;

pCkC8
2

�

�

1 � A5
2

m

�

1

C

C

C

A

�2

D
�

m � 4

p C k C m C 4

�2 �p C k C 8

m � 4
C A5

2

m

�2
.p C k C m/.p C k C m C 2/

.p C k C 4/.p C k C 6/
:

On the other hand, we have

J � A 2
5 A

2
6 .m C 4/2.m � 4/2.p C k C m/.p C k C m C 2/.m � 4/.p C k C m/

m.p C k C m C 4/4A 2
3 A

2
4 .m C 2/.p C k/.p C k C 2/.p C k C 4/

� .m � 2/.p C k C m C 2/

.p C k C 6/

�

p C k

A5.m C 4/
C 2

m

�2 �
p C k C 8

A6.m � 4/
C 2

m

�2

(24)

where

A1 D p C k C 6

p � 2
; A2 D .p C k C 4/.p � 14/

.p � 2/.p � 4/
; A3 D p C k C 2

p � 2

A4 D .p C k/.p � 14/

.p � 2/.p � 4/ ; A5 D p C k � 4
p � 4

and A6 D p C k C 4

p � 4
:

Indeed

J �
mpCkB2

�

m
2
; pCkC4

2

�

 

R 1

0
1
t2

B
�

m
2 ;

pCkC4
2 ;dt

�

�

1�t
t CA3

2

m

��

1�t
t CA4

2

m

�

!2

mCpCk.pCkCmC4/4B
�

mC4
2 ;

pCk
2

�

B
�

m�4
2 ;

pCkC8
2

�

A 2
5 A

2
6 .mC4/2.m�4/2

h

pCk
A5.mC4/C 2

m

ih

pCkC8
A6.m�4/C 2

m

i

� A 2
5 A

2
6 .m C 4/2.m � 4/2.p C k C m/.p C k C m C 2/.m � 4/.m � 2/

A 2
3 A

2
4 m.p C k C m C 4/4.m C 2/.p C k/.p C k C 2/.p C k C 4/

� .p C k C m/.p C k C m C 2/

.p C k C 6/

�

p C k

A5.m C 4/
C 2

m

�2 �
p C k C 8

A6.m � 4/ C 2

m

�2

:
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Thus I � J is bounded by

A 2
5 A

2
6 .m C 4/2.m � 4/4.p C k C m/.p C k C m C 2/.m � 4/.m � 2/.p C k C m/2

A 2
3 A

2
4 m.p C k C m C 4/6.m C 2/.p C k/.p C k C 2/.p C k C 4/2

.p C k C m C 2/2

.p C k C 6/2

�

p C k

A5.m C 4/
C 2

m

�2 �
p C k C 8

A6.m � 4/ C 2

m

�2

�

p C k C 8

m � 4 C A5

2

m

�2

: (25)

Remark that when k tends to infinity, the latter term converges to 0 and the right-
hand side of Eq. (25) converges to 1. The proof is complete.
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Appendix

The following lemma can be found in [2] to whom we refer for a proof.

Lemma 6.1 Assume that p � 0. If g and h are two measurable real-valued
functions, then for any R > 0 and any � 2 R

p

ER;�
	

g.X0X/:h.U0U/

 D

Z 1

0

h
�

R2.1 � u/
�

Z 1

0

1

2

h

g
�

R2u C k�k2 � 2k�kRu
1
2 v

1
2

�

C g
�

R2u C k�k2 C 2k�kRu
1
2 v

1
2

�i

� B

�

1

2
;

p � 1
2

; dv

�

B

�

p

2
;

k

2
; du

�

provided these expectations exist.

Lemma 6.2 Let F be a probability distribution on Œ0; 1� and a, b two positive
constants. Then for any x � 0, we have

Z 1

0

1

ts

a C x

b 1�t
t C x

dF.t/ �
Z 0

t1

1

ts
dF.t/C a

b

Z t1

1

t1�s

1 � t
dF.t/ � E

�

1

ts

�

C a

b
E

�

t1�s

1 � t

�

where t1 is such that a
b

t1
1�t1

D 1 (i.e., t1 D �

1C b
a

��1
) and E is the expectation with

respect to F.

Proof Notice that for 0 � t � t1 (respectively t1 � t � 1) the mapping
x 7! .a C x/=.b 1�t

t C x/ is increasing (respectively decreasing). The conclusion
of the lemma follows by bounding this function by its value at infinity (respectively
at 0).



Estimation of a Loss Function with Constraints on the Norm 107

Proof of the Proposition 3.1 According to Lemma 1 given in [2] applied to g.x0x/ D
.x0x/�1 and h.u0u/ D .u0u/q gives, for R � 0 and � 2 Rp,

ER;�

�kUk2q

kXk4
�

D R2q
Z 1

0

Z 1

0

.R2u C k�k2/2 C 4R2k�k2uv
..R2u C k�k2/2 � 4R2k�k2uv/2 .1 � u/q

�B

�

1

2
;

p � 1
2

; dv

�

B

�

p

2
;

k

2
; du

�

:

Inserting .1 � u/q into the beta distribution B.p=2; k=2; du/, the last expectation
becomes

�
�

kCp
2

�

�
�

k
2

C q
�

�
�

kCp
2

C q
�

�
�

k
2

�

R2q

�
Z 1

0

Z 1

0

.R2u C k�k2/2 C 4R2k�k2uv
..R2u C k�k2/2 � 4R2k�k2uv/2 B

�

1

2
;

p � 1
2

; dv

�

B

�

p

2
;

k

2
C q; du

�

:

Proof of the Proposition 3.2 Let R � 0 and � be fixed in Rp. From the expression of
E�

	kUkq=kXk2
 given by Proposition 2.1, it is clear that the integral terms between
brackets is equal to

Z 1

0

1

.R2u C k�k2/2 � 4R2k�k2uv C 8R2k�k2uv
..R2u C k�k2/2 � 4R2k�k2uv/2B

�

1

2
;

p � 1

2
; dv

�

D p � 2
p � 3

Z 1

0

1 � v
.R2u C k�k2/2 � 4R2uk�k2vB

�

1

2
;

p � 3

2
; dv

�

C8R2k�k2u p � 2

p � 3

Z 1

0

v.1 � v/
�

.R2u C k�k2/2 � 4R2uk�k2v
�2

B

�

1

2
;

p � 1

2
; dv

�

:

Since the functions v ! .1 � v/
h

�

R2u C k�k2�2 � 4R2uk�k2v
i�1

is concave and

non-increasing and the function v ! v
h

�

R2u C k�k2�2 � 4R2uk�k2v
i�1

is non-

decreasing then by Jensen’s and covariance inequalities, the first and the second
terms in the least equality are bounded by

p � 2
p � 3

p�2
p�3

.R2u C k�k2/2 � 4R2uk�k2 C 4R2uk�k2 p�3
p�2

C8R2k�k2u p � 2

p � 3

Z 1

0

1 � v

.R2u C k�k2/2 � 4R2uk�k2vB

�

1

2
;

p � 3

2
; dv

�
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�
Z 1

0

v

.R2u C k�k2/2 � 4R2uk�k2vB

�

1

2
;

p � 3

2
; dv

�

:

� 1

.R2u C k�k2/2 � 4
p�2R2uk�k2 C 8R2k�k2u

.R2u C k�k2/2 � 4
p�2R2uk�k2

� 1

p � 2

p � 2

p � 5

p�5
p�2

.R2u C k�k2/2 � 4R2uk�k2 C 4R2uk�k2 p�5
p�2

D 1

.R2u C k�k2/2 � 12
p�2R2uk�k2

Therefore

Z 1

0

Z 1

0

.R2u C k�k2/2 C 4R2k�k2uv
..R2u C k�k2/2 � 4R2k�k2uv/2B

�

1

2
;

p � 1
2

; dv

�

B

�

p

2
;

k

2
C q; du

�

� B
� p
2

� 1; k
2

C q
�

B
� p
2
; k
2

C q
�

Z 1

0

u

R2u C k�k2
1

R2u C p�14
p�2 k�k2B

�

p

2
� 1; k

2
C q; du

�

:

Since the function u 7! u
�

R2u C k�k2��1 and u 7!
�

R2u C p�14
p�2 k�k2

��1
are

respectively non-decreasing and non-increasing then by covariance inequality the
least equality is bounded by

B
� p
2

� 1; k
2

C q
�

B
� p
2
; k
2

C q
�

Z 1

0

u

R2u C k�k2B

�

p

2
� 1; k

2
C q; du

�

�
Z 1

0

1

R2u C p�14
p�2 k�k2B

�

p

2
� 1;

k

2
C q; du

�

D B
� p
2

� 1; k
2

C q
�

B
� p
2
; k
2

C q
�

Z 1

0

u

R2u C k�k2B

�

p

2
� 1;

k

2
C q; du

�

�B
� p
2

� 2; k
2

C q
�

B
� p
2

� 1; k
2

C q
�

Z 1

0

u

R2u C p�14
p�2 k�k2B

�

p

2
� 1; k

2
C q; du

�

:

The mappings u 7! u
�

R2u C k�k2��1 and u 7! u
�

R2u C p�14
p�2 k�k2

��1
are

concave, then by Jensen’s inequality the least equality is bounded by

1

R2 p�2
pCkC2q�2 C k�k2 � 1

R2 p�4
pCkC2q�4 C p�14

p�2 k�k2
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D
.pCkC2q�2/.pCkC2q�4/

.p�2/.p�4/
�

R2 C pCkC2q�2
p�2 k�k2

� �

R2 C .pCkC2q�4/.p�14/
.p�2/.p�4/ k�k2

�

Henceforth
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� jjujj2q
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2

C q
�
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pCk
2

C q
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�
�
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2
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.p C k C 2q � 2/.p C k C 2q � 4/

.p � 2/.p � 4/

R2q
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R2 C pCkC2q�2
p�2 k�k2

� �

R2 C .pCkC2q�4/.p�14/
.p�2/.p�4/ k�k2

�

Proof of the Proposition 3.3 Let R � 0 and � be fixed in Rp, The Proposition 2.1
yields

ER;�

�kUk2q

kXk4
�

D B
� p
2
; k
2

C q
�

B
� p
2
; k
2

� R2q .k1 C k2/ (26)

where

k1 D
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0
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0

B
�

1
2
; p�1

2
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�

B
� p
2
; k
2

C q; du
�

.R2u C k�k2/2 � 4R2k�k2uv :

It is clear that

Z 1

0

B
�

1
2
; p�1

2
; dv

�

.R2u C k�k2/2 � 4R2k�k2uv � 1

.R2u C k�k2/2

hence

k1 �
Z 1

0

1

R2u C k�k2
1

R2u C k�k2B

�

p

2
;

k

2
C q; du

�

:

By covariance inequality we have

k1 �
"

Z 1

0

B
� p
2
; k
2

C q; du
�

R2u C k�k2
#2

:
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Furthermore, by Jensen’s inequality, we obtain

Z 1

0

B
� p
2
; k
2

C q; du
�

R2u C k�k2 �
pCkC2q�4

p�4
R2 C pCkC2q�4

p�4 jj� jj2

since the function u ! �

R2u C jj� jj2��1 is convex. Finally we have obtained the
lower bound of k1.

By same argument we get a lower bound of k2

k2 D
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0
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0

8R2k�k2uv
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2
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2

2

4

B
�

p�2
2
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2

C q
�

B
�

pC2
2
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2

C q
�
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0
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�
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2
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k
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�

3

5

4

� 8R2k�k2
p C k C 2q

"

1
p�2

pCkC2q�2R2 C k�k2
#4

:

Consequently, we obtain a lower bound of ER;�
	kUk2q=kXk4


ER;�

�kUk2q

kXk4
�

�
�
�

pCk
2

�

�
�

k
2

C q
�

�
�

k
2

�

�
�

pCk
2

C q
�

2

6

4

R2q

h

p�4
pCKC2q�4R2 C k�k2

i2

3

7

5 :

We obtain the desired result by unconditional.

Proof of the Lemma 3.1 Let A � 0 and B � 0 fixed. For q � 1, the function
R2q=.R2 C A/ is non-decreasing in R and 1=.R2 C B/ is decreasing in R. The
covariance inequality gives

E

�

R2q

.R2 C A/.R2 C B/

�

� E

�

R2q

R2 C A

�

E

�

1

R2 C B

�

� EŒR2q�
�

EŒR�2�
�2

.1C AEŒR�2�/ .1C BEŒR�2�/
:

Furthermore it is easy to show by same argument that

E

�

R2q

.R2 C A/.R2 C B/

�

E
	

R2.q�2/


.1C AEŒR�2�/ .1C AEŒR�2�/
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For q D 0, we have

E

�

1

.R2 C A/.R2 C B/

�

EŒR�4�E

�

R2

R2 C A

�

E

�

R2

R2 C B

�

� EŒR�4�.EŒR2�/2

.EŒR2�C A/.EŒR2�C B/

and that

E

�

1

.R2 C A/.R2 C B/

�

�
�

EŒR�2�
�4

.EŒR�2�C AEŒR�4�/ .EŒR�2�C BEŒR�4�/
:

Prof of the Lemma 5.1 Let A and B two fixed positive constants, then

s.�;A;B/ D
Z 1

0

�

1C R2

m

�� pCkCm
2

RpCkC��1

.R2 C A2/.R2 C B2/
dR

making a change of variable t D
�

1C R2

m

��1
, we get R2 D m. 1t � 1/ and dR D

� m1=2

2
t�3=2.1 � t/�1=2. Therefore s.�;A;B/ is equal to

m
pCkC��4

2

2
B

�

m C 4 � �

2
;

p C k C �

2

�Z 1

0

B
�

mC4��
2

;
pCkC�

2
; dt
�

h

1 � t
�

1 � A2

m

�i h

1 � t
�

1 � B2

m

�i :

(27)

For A D B, we have by Jensen’s inequality

Z 1

0

B
�

mC4��
2

;
pCkC�

2
; dt
�

h

1 � t
�

1 � A2

m

�i2
�
2

41 �
B
�

mC4��
2

C 1;
pCkC�

2

�

B
�

mC4��
2

;
pCkC�

2

�

�

1 � A2

m

�

3

5

�2

the last inequalities were derived from the convexity of the functions t ! t2 and
t ! .1 � zt/�1. Noticing that

B
�

mC4��
2

C 1;
pCkC�

2

�

B
�

mC4��
2

;
pCkC�

2

� D m C 4 � �
p C k C m C 4
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we obtain a lower bound of the last term of the equality (27), let

m
pCkC��4

2 .p C k C m C 4/2B
�

mC4��
2

;
pCkC�

2

�

2E2.m C 4 � �/2
�

pCkC�
E.mC4��/ C 2

m

�2

which gives the first inequality of the lemma.
For the second inequality, notice that, from Eq. (27), s.�;A;B/ can also be

expressed as

s.�;A;B/ D m
pCkC��4

2

2
B

�

m C 4 � �

2
;

p C k C � � 4
2

�

�
Z 1

0

1�t
t

�

1�t
t C A 2

m

�

1�t
t

�

1�t
t C B 2

m

�B

�

m C 4 � �
2

;
p C k C � � 4

2
; dt

�

� m
pCkC��4

2

2
B

�

m C 4 � �

2
;

p C k C � � 4
2

�

:

since, for all x 2 RC, the function t ! �

1�t
t

�

=
�

1�t
t C x

�

is positive and decreasing,
then we get this bound for t tends to zero.
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Impact of Nonparametric Density Estimation
on the Approximation of the G=G=1 Queue
by the M=G=1 One

Aïcha Bareche and Djamil Aïssani

Abstract In this paper, we show the interest of nonparametric boundary density
estimation to evaluate a numerical approximation of G=G=1 and M=G=1 queueing
systems using the strong stability approach when the general arrivals law G in the
G=G=1 system is unknown. A numerical example is provided to support the results.
We give a proximity error between the arrival distributions and an approximation
error on the stationary distributions of the quoted systems.

1 Introduction

Because of the complexity of some queueing models, analytic results are generally
difficult to obtain or are not very exploitable in practice. That is the case, for
example, in the G=G=1 queueing system, where the Laplace transform or the
generating function of the waiting time distribution is not available in a closed form
[20]. Indeed, when a practical study is performed in queueing theory, one often
replaces a real system by another one which is close to it in some sense but simpler
in structure and/or components. The queueing model so constructed represents an
idealization of the real queueing one, and hence the “stability” problem arises.

One of the stability methods is the strong stability approach [2, 19] which
has been developed in the beginning of the 1980s. It can be used to investigate
the ergodicity and stability of the stationary and non-stationary characteristics of
Markov chains. In contrast to other methods, the strong stability approach supposes
that the perturbation of the transition kernel is small with respect to a certain norm.
Such a stringent condition allows us to obtain better estimates on the characteristics
of the perturbed chain. Besides the ability to make qualitative analysis of some
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complex systems, one importance particularity of the strong stability method is the
possibility to obtain stability inequalities with an exact computation of the constants.

The applicability of this approach is well proved and documented in various
situations and for different proposals. In particular, it has been applied to several
queueing models [1, 10, 15, 17, 23] and inventory models [22].

Note that the first attempt to “measure” the performance of the strong stability
method has been used in practice, and has been particularly applied to a simple
system of queues [12, 13]. The approach proposed is based on the classical
approximation method where the authors perform the numerical proximity of the
stationary distribution of an Hyp=M=1 (respectively M=Cox2=1) system by the
one of an M=M=1 system when applying the strong stability method. For the first
time, Bareche and Aïssani [5] specify an approximation error on the stationary
distributions of the G=M=1 (resp. M=G=1) and M=M=1 systems when the general
law of arrivals (resp. service times) G is unknown and its density function is
estimated by using the kernel density method. In [11], the authors use the discrete
event simulation approach and the Student test to measure the performance of the
strong stability method through simple numerical examples for a concrete case of
queueing systems (the G=M=1 queue after perturbation of the service law [9], and
the M=G=1 limit model for high retrial intensities (which is the classical M=G=1
system) after perturbation of the retrials parameter [10]). The same idea has been
already investigated for an approximation analysis of the classical G=G=1 queue
when the general law of service is unknown and must be estimated by different
statistical methods, pointing out particularly to the impact of those taking into
account the correction of boundary effects [6], see also the recent work of [7]
and [8]. For example, in the latter work [8], besides of showing the interest of
combining nonparametric methods with the strong stability principle for the study
of the M=G=1 system, we also pointed out the importance of using the Student
test to provide confidence intervals for the difference between the corresponding
characteristics of the two considered queueing systems for the aim of comparing
them (i.e., comparison of their characteristics).

Indeed, note that in practice all model parameters are imprecisely known because
they are obtained by means of statistical methods. In this sense, our contribution
concerns one aspect which is of some practical interest and has not been sufficiently
studied in the literature; for instance, when a distribution governing a queueing
system is unknown and we resort to nonparametric methods to estimate its density
function. Besides, as the strong stability method assumes that the perturbation is
small, then we suppose that the arrivals law of the G=G=1 system is close to the
exponential one with parameter �. This permits us to consider the problem of
boundary bias correction [14, 16, 25] when performing nonparametric estimation
of the unknown density of the law G, since the exponential law is defined on the
positive real line.

It is why we use, in this paper, the tools of nonparametric density estimation to
approximate the complex G=G=1 system by the simpler M=G=1 one, on the basis of
the theoretical results addressed in [3] involving the strong stability of the M=G=1
system. When the distribution of arrivals is general but close to the exponential



Nonparametric Estimation for Approximating G=G=1 Queue 117

distribution, it is possible to approximate the characteristics of the G=G=1 system by
those of the M=G=1 one, if we prove the fact of stability (see [2]). This substitution
of characteristics is not justified without a prior estimation of the corresponding
approximation error. This gives rise to the following question: Is it possible to
precise the error of the proximity between the two systems?

Note that unlike [5] where kernel density estimation was used for the study of the
strong stability of M=M=1 system, we consider here two new aspects. The first one
concerns the model motivation: in queueing theory, there exist explicit formulas
to determine some performance measures of the M=G=1 system. Unfortunately,
for the G=G=1 system, these exact formulas are not known. So, if we suppose
that the G=G=1 system is close to the M=G=1 one, then we can use the formulas
obtained for the M=G=1 system to approximate the G=G=1 system characteristics.
The second point deals with the use of a new class of nonparametric density
estimation to remove boundary effects. This is the class of flexible estimators, for
instance asymmetric kernels and smoothed histograms. Note also that unlike [6]
where the perturbation concerns the service duration, we perturb the arrival flux.

This article is organized as follows: In Sect. 2, we describe the considered
queueing models and we present briefly the strong stability of the M=G=1 system.
In Sect. 3, we first provide a short review of boundary bias correction techniques in
nonparametric density estimation, then we give the main results of this paper which
are illustrated by a numerical case study based on simulation results.

2 Approximating G=G=1 Queue by the M=G=1 One Using
Strong Stability Approach

2.1 Description of the Models

Consider a G=G=1 .FIFO;1/ queueing system with general service times distri-
bution H and general inter-arrival times probability distribution G. The following
notations are used: Tn (the arrival time of the nth customer), �n (the departure time
of the nth customer), and �n (the time till the arrival of the following customer
after �n). Let us designate by �n D �.�n C 0/ the number of customers in the
system immediately after �n. �n represents the service time of the nth customer
arriving at the system. It is proved that Xn D .�n; �n/ forms a homogeneous Markov
chain with state space IN � IRC and transition operator Q D .Qij/i;j�0, where
Qij.x; dy/ D P.�nC1 D j; �nC1 2 dy=�n D i; �n D x/ is defined by (see [3]):

Qij D

8

ˆ

ˆ

<

ˆ

ˆ

:

qj.dy/; if i D 0;
qj�i.x; dy/; if i � 1; j � i;
p.x; dy/; if j D i � 1; i � 1;
0; otherwise;

(1)
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where

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

qj.dy/ D R

P.Tj � u < TjC1;TjC1 � u 2 dy/dH.u/I
qj.x; dy/ D

1
R

x
P.Tj � u � x < TjC1;TjC1 � .u � x/ 2 dy/dH.u/I

p.x; dy/ D
x
R

0

P.x � u 2 dy/dH.u/:

Let us also consider an M=G=1 .FIFO;1/ system with exponential inter-arrivals
distribution, E�, with parameter � and take the same service times distribution than
the G=G=1 one. We introduce the corresponding following notations: NTn, N�n, N�n,
N�n D N�. N�n �0/ and �n defined as above. The transition operator NQ D � NQij

�

i;j>0
of the

corresponding Markov chain NXn in the M=G=1 system has the same form as in (1),
where

8

ˆ

<

ˆ

:

qj.dy/ D pjE�.dy/; qj.x; dy/ D pj.x/E�.dy/; p.x; dy/ D p.x; dy/I
pj D R

exp.��u/ .�u/j

jŠ dH.u/I
pj.x/ D R1

x exp.��.u � x// .�.u�x//j

jŠ dH.u/:

Let us suppose that the arrival flow of the G=G=1 system is close to the Poisson
one. This proximity is then characterized by the metric:

w� D w�.G;E�/ D
Z

'�.t/jG � E�j.dt/; (2)

where '� is a weight function and jaj designates the variation of the measure a. We
take '�.t/ D eıt, with ı > 0. In addition, we use the following notations:

�

E� D R

'�.t/E�.dt/;
G� D R

'�.t/G.dt/;

w0 D w0.G;E�/ D
Z

jG � E�j.dt/: (3)

2.2 Strong Stability Criterion

For a general framework on the strong stability method, the reader is referred to
[2, 19]. However, it is interesting to recall the following basic definition.

Definition 1 (See [2, 19]) The Markov chain X with transition kernel P and
invariant measure � is said to be �-strongly stable with respect to the norm k:k�
(defined for each measure ˛ as follows: k˛k� D P

j�0
�.j/j˛jj), if kPk� < 1 and
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each stochastic kernel Q in some neighborhood fQ W kQ � Pk� < 
g has a unique
invariant measure � D �.Q/ and k� � �k� ! 0 as kQ � Pk� ! 0.

2.3 Strong Stability Bounds

The following theorem determines the v-strong stability conditions of the M=G=1
system after a small perturbation of the arrivals law. It also gives the estimates of
the deviations of both the transition kernels and the stationary distributions.

Theorem 1 ([3]) Suppose that in the M=G=1 system, the following ergodicity
condition holds:

(a) � E.�/ < 1I (b) 9a > 0 W E.ea� / D R

eaudH.u/ < 1:

Suppose also that E� < 1 and ˇ0 D sup.ˇ W H�.� � �ˇ/ < ˇ/, where H� is
the Laplace transform of the probability density of the service times. Then, for all
ˇ such that 1 < ˇ < ˇ0, the Markov chain Xn is v-strongly stable for the function
v.n; t/ D ˇnŒexp.�˛t/C c�1'�.t/�, where:

˛ > 0; c D ˇE�

1 � �
; and � D H�.� � �ˇ/C ˇ

2ˇ
< 1:

In addition, if G� < 1, and w0 � .ˇ0�ˇ/
ˇ20

, then we have the margin between the

transition operators:

kQ � Qkv � w�.1C ˇ/C w0G
�.1C �ˇ/

ˇ40
.ˇ0 � ˇ/2

:

Moreover, if the general distribution of arrivals G is such that:

w�.G;E�/ � 1 � �
2c0.1C c/

.1C ˇ C c1/
�1;

w0.G;E�/ � .ˇ0 � ˇ/
ˇ20

;

we obtain the deviation between the stationary distributions � and N� associated,
respectively, to the Markov chains Xn and NXn, given by:

Er WD k� � �k � 2Œ.1C ˇ/w� C c1w0�c0c2.1C c/; (4)

where c0; c1; c2 are defined as follows:

c
0

0 � c0;
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where

c
0

0 D 1C .1 � �m/.ˇ � 1/.2� �/E�

2.1� �/2
and m D E.�/;

c1 D G�.1C �ˇ/
ˇ40

.ˇ0 � ˇ/2
;

c2 D .1 � �m/.ˇ � 1/.2� �/

2.1� �/ˇ
:

Note that the bound in formula (4) of Theorem 1 involves the computation of w�
and w0 and methods to do so will be discussed in the following.

3 Nonparametric Estimation for Approximating the G=G=1

System by the M=G=1 One

We want to apply nonparametric density estimation methods to determine the
variation distances w0 and w� defined, respectively, in (2) and (3), together with
the proximity error Er defined in (4) between the stationary distributions of the
G=G=1 and M=G=1 systems. We first give an overview of nonparametric estimation
methods which are required to compute w0 and w� measures, then we perform a
simulation study.

3.1 Nonparametric Density Estimation Methods

The most known and used nonparametric estimation method is the kernel density
estimation. If X1; : : : ;Xn is a sample coming from a random variable X with
probability density function f and distribution F, then the Parzen–Rosenblatt kernel
estimator [21, 24] of the density f .x/ for each point x 2 IR is given by:

fn.x/ D 1

nhn

n
X

jD1
K

�

x � Xj

hn

�

; (5)

where K is a symmetric density function called the kernel and hn is the bandwidth.
The classical symmetric kernel estimate works well when estimating densities

with unbounded support. However, when these latter are defined on the positive real
line Œ0;1Œ, without correction, the kernel estimates suffer from boundary effects
since they have a boundary bias (the expected value of the standard kernel estimate
at x D 0 converges to the half value of the underlying density when f is twice
continuously differentiable on its support Œ0;C1/ [14, 25]). In fact, using a fixed
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symmetric kernel is not appropriate for fitting densities with bounded supports as a
weight is given outside the support.

Several approaches for handling the boundary effects in nonparametric density
estimation have been introduced. They propose the use of estimators based on
flexible kernels (asymmetric kernels [14, 16] and smoothed histograms [14]). They
are very simple in implementation, free of boundary bias, always nonnegative, their
support matches the support of the probability density function to be estimated, and
their rate of convergence for the mean integrated squared error is O.n�4=5/.

Below, are briefly discussed the estimators which we will use in the context of
this paper.

Reflection Method

Schuster [25] suggests creating the mirror image of the data on the other side of the
boundary and then applying the estimator (5) for the set of the initial data and their
reflection. f .x/ is then estimated, for x � 0, as follows:

Qfn.x/ D 1

nhn

n
X

jD1

�

K

�

x � Xj

hn

�

C K

�

x C Xj

hn

��

: (6)

Asymmetric Gamma Kernel Estimator

Asymmetric kernels [14, 16] are defined by the form

Ofb.x/ D 1

n

n
X

iD1
K.x; b/.Xi/; (7)

where b is the bandwidth and the asymmetric kernel K can be taken as a Gamma
density KG with the parameters .x=b C 1; b/ given by

KG

� x

b
C 1; b

�

.t/ D tx=be�t=b

bx=bC1� .x=b C 1/
: (8)

Smoothed Histograms

Smoothed histograms [14] are defined by the form

Ofk.x/ D k
C1
X

iD0
!i;kpki.x/; (9)
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where the random weights !i;k are given by

!i;k D Fn

�

i C 1

k

�

� Fn

�

i

k

�

;

where Fn is the empiric distribution, k is the smoothing parameter, and pki.:/ can be
taken as a Poisson distribution with parameter kx,

pki.x/ D e�kx .kx/i

iŠ
; i D 0; 1; : : : (10)

3.2 Algorithm

To realize this work, we use the discrete event simulation approach [4] to simulate
the according systems and we elaborate an algorithm which follows the following
steps:

(1) Generation of a sample of size n of general arrivals distribution G with
theoretical density g.x/.

(2) Use of a nonparametric estimation method to estimate the theoretical density
function g.x/ by a function denoted in general g�

n .x/.
(3) Calculation of the mean arrival rate given by:

� D 1=
R

xdG.x/ D 1=
R

xg.x/dx D 1=
R

xg�
n .x/dx.

(4) Verification, in this case, of the strong stability conditions given in Sect. 2.3.
For calculation considerations, the variation distances w0 and w� are given,
respectively, by: w0 D R jG � E�j.dx/ D R jg�

n � e�j.x/dx and w� D
R

eıxjG � E�j.dx/ D R

eıxjg�
n � e�j.x/dx, where ı > 0.

(5) Computation of the minimal error on the stationary distributions of the consid-
ered systems according to (4).

Simulation studies were performed under Matlab 7.1 environment. The Epanech-
nikov kernel [26] is used throughout for estimators involving symmetric kernels.
The bandwidth hn is chosen to minimize the criterion of the “least squares cross-
validation” [18]. The smoothing parameters b and k are chosen according to a
bandwidth selection method which leads to an asymptotically optimal window in
the sense of minimizing L1 distance [14].

3.3 Numerical Example

We consider a G=G=1 system such that the general inter-arrivals distribution G is
assumed to be a Gamma distribution with parameters ˛ D 0:7; ˇ D 2, denoted
� .0:7; 2/, with a theoretical density g.x/ and the service times distribution is Cox2
with parameters: �1 D 3, �2 D 10, a D 0:005.
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Fig. 1 Theoretical density g.x/ D �.0:7; 2/.x/ and estimated densities. (a) Gamma kernel and
smoothed histogram estimates; (b) Parzen-Rosenblatt and Mirror image estimates. Taken from [8].
Published with the kind permission of ©SCITEPRESS 2014. All rights reserved

Table 1 Performance measures with different estimators

g.x/ gn.x/ Qgn.x/ Ogb.x/ Ogk.x/

Mean arrival rate � 1.6874 1.5392 1.6503 1.6851 1.6840

Traffic intensity of the system �
�

0.1562 0.1578 0.1570 0.1564 0.1567

Variation distance w0 0.0096 0.1287 0.0114 0.0102 0.0105

Variation distance w� 0.0183 0.2536 0.0311 0.0206 0.0224

Error on stationary distributions Er 0.0356 0.0452 0.0378 0.0377

Taken from [8]. Published with the kind permission of ©SCITEPRESS 2014. All rights reserved

By generating a sample coming from the � .0:7; 2/ distribution, we use the
different nonparametric estimators given, respectively, in (5)–(10) to estimate the
theoretical density g.x/.

For these estimators, we take the sample size n D 200 and the number of
simulations R D 100.

Curves of the theoretical and estimated densities are illustrated in Fig. 1 (taken
from [8]). Different performance measures are listed in Table 1 (taken from [8]).

Interpretation of Results

Figure 1 shows that the use of nonparametric density estimation methods taking into
account the correction of boundary effects improves the quality of the estimation
(compared to the curve of the Parzen–Rosenblatt estimator, those of mirror image,
asymmetric Gamma kernel, and smoothed histogram estimators are closer to the
curve of the theoretical density).

We note in Table 1 that the approximation error on the stationary distributions
of the G=G=1 and M=G=1 systems was given when applying nonparametric density
estimation methods by considering the correction of boundary effects such in the
cases of using the mirror image estimator (Er D 0:0452), asymmetric Gamma
kernel estimator (Er D 0:0378), and smoothed histogram (Er D 0:0377).
In addition, these two last errors are close to the one given when using the
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theoretical density g.x/ (Er D 0:0356). But, when applying the Parzen–Rosenblatt
estimator which does not take into account the correction of boundary effects, the
approximation error Er on the stationary distributions of the quoted systems could
not be given. This shows the importance of the smallness of the proximity error of
the two corresponding arrival distributions of the considered systems, characterized
by the variation distances w0 and w�.

4 Conclusion

We use statistical techniques, for instance, nonparametric density estimation with
boundary effects considerations to measure the performance of the strong stability
method in a M=G=1 queueing system after perturbation of the arrival flow.

The obtained results show particularly the interest of nonparametric estimation
methods and the techniques of correction of boundary effects to determine the
approximation error of the stationary distributions between two queueing systems
when applying the strong stability method in order to substitute the characteristics
of a complex real system by another simpler ideal one.

Note that, in practice, all model parameters are imprecisely known because
they are obtained by means of statistical methods. That is why the strong stability
inequalities will allow us to numerically estimate the uncertainty shown during this
analysis. In our case, if one had real data, then one could apply the kernel density
method to estimate the density function. By combining the techniques of correction
of boundary effects with the calculation of the variation distance characterizing
the proximity of the quoted systems, one will be able to check if this density is
sufficiently close to that of the Poisson law (or that of the exponential law), and
apply then the strong stability method to approximate the characteristics of the real
system by those of a classical one.

A close field of some practical interest is networks of queues. Indeed, for
modeling some complex physical systems, a simple queue is not sufficient, so we
may resort to networks of queues. However, few among them have simple analytic
solutions. This is mainly due to the difficulty of studying the properties of inter-
stations fluxes. In fact, the only known exact results are those of networks having
the product form property, such as the Jackson networks. There comes the interest of
analyzing such networks by combining the strong stability aspect and the boundary
correction techniques.
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Stochastic Analysis of an M/G/1 Retrial Queue
with FCFS

Mohamed Boualem, Mouloud Cherfaoui, Natalia Djellab, and Djamil Aïssani

Abstract The main goal of this paper is to investigate stochastic analysis of a
single server retrial queue with a First-Come-First-Served (FCFS) orbit and non-
exponential retrial times using the monotonicity and comparability methods. We
establish various results for the comparison and monotonicity of the underlying
embedded Markov chain when the parameters vary. Moreover, we prove stochastic
inequalities for the stationary distribution and some simple bounds for the mean
characteristics of the system. We validate stochastic comparison method by present-
ing some numerical results illustrating the interest of the approach.

1 Introduction

Queueing systems with repeated attempts have been widely used to model many
problems in telecommunication and computer systems [1, 4, 19]. The essential
feature of a retrial queue is that arriving customers who find all servers busy are
obliged to abandon the service area and join a retrial group, called orbit, in order to
try their luck again after some random time. For a detailed review of the main results
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and the literature on this topic the reader is referred to the monographs [2, 11]. In
recent years, there has been an increasing interest in the investigation of the retrial
phenomenon in cellular mobile network, see [3, 10, 15, 16, 24] and the references
therein, and in many other telecommunication systems including star-like local area
networks [14], wavelength-routed optical networks [26], circuit-switched systems
with hybrid fiber-coax architecture [13], wireless sensor networks [25], etc.

It is well known that for the retrial queues we need to establish how the customers
in orbit access to the server. The time between successive repeated attempts is
important in telephony, where a call receiving a busy signal does not wait the
termination of the busy condition. The most usual protocol described in the classical
theory of retrial queues is the so-called classical retrial policy in which each source
in orbit repeats its call after an exponentially distributed time with parameter � . So,
there is a probability n�dt C o.dt/ of a new retrial in the next interval .t; t C dt/
given that n customers are in orbit at time t. Such a policy has been motivated
by applications in modeling subscriber’s behavior in telephone networks since
the 1940s. In past years, technology has considerably evolved. The literature on
retrial queues describes several retrial protocols specific to some modern computer
and communication networks in which the time between two successive repeated
attempts is controlled by an electronic device and consequently, is independent of
the number of units applying for service. In this case, the probability of a repeated
attempt during .t; tCdt/, given the orbit is not empty, is .1�ı0;n/˛ dtCo.dt/where
ı0;n denotes Kronecker’s delta and n is the number of repeated customers. This type
of retrial discipline is called the constant retrial policy.

An examination of the literature on the retrial queues reveals the remarkable fact
that the non-homogeneity caused by the flow of repeated attempts is the key to
understand most analytical difficulties arising in the study of retrial queues. Many
efforts have been devoted to deriving performance measures such as queue length,
waiting time, busy period distributions, and so on. However, these performance
characteristics have been provided through transform methods which have made
the expressions cumbersome and the obtained results cannot be put into practice. In
the last decade there has been a trend towards the research of approximations and
bounds. Qualitative properties of stochastic models constitute a basic theoretical
basis for approximation methods. Some important approaches are monotonicity and
comparability which can be investigated using the stochastic comparison method
based on the general theory of stochastic orderings. Stochastic orders represent an
important tool for many problems in probability and statistics [18, 20–23].

Stochastic comparison is a mathematical tool used in the performance study
of systems modeled by continuous or discrete-time Markov chains. The general
idea of this method is to bound a complex system by a new system, easier to
solve and providing performance measures bounds. Many papers treat stochastic
comparison methods of queueing systems with repeated attempts. Boualem et al.
[6] investigate some monotonicity properties of an M=G=1 queue with constant
retrial policy in which the server operates under a general exhaustive service and
multiple vacation policy relative to strong stochastic ordering and convex ordering.
These results imply in particular simple insensitive bounds for the stationary
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queue length distribution. Boualem et al. [7] use the tools of a qualitative analysis
to investigate various monotonicity properties for an M=G=1 retrial queue with
classical retrial policy and Bernoulli feedback. The obtained results allow to place in
a prominent position the insensitive bounds for both the stationary distribution and
the conditional distribution of the stationary queue of the considered model. Mokdad
and Castel-Taleb [17] propose to use a mathematical method based on stochastic
comparisons of Markov chains in order to derive bounds on performance indices
of fixed and mobile networks. Their main objective consists in finding Markovian
bounding models with reduced state spaces, which are easier to solve. They apply
the methodology to performance evaluation of complex telecommunication systems
modeled by large size Markov chains which cannot be solved by exact methods.
They propose to define intuitively bounding systems in order to compute bounds
on performance measures. Using stochastic comparison methods, they prove that
the new systems represent bounds for the exact ones. To validate their approach
and illustrate its interest, they present some numerical results. Bušić and Fourneau
[9] illustrate through examples how monotonicity may help for performance
evaluation of mobile networks, by considering two different applications. In the
first application, they assume that a Markov chain of the model depends on a
parameter that can be estimated only up to a certain level and they have only
an interval that contains the exact value of the parameter. Instead of taking an
approximated value for the unknown parameter, they show how monotonicity
properties of the Markov chain can be used to take into account the error bound
from the measurements. In the second application, they consider a well-known
approximation method: the decomposition into Markovian submodels. They show
that the monotonicity property may help to derive bounds for Markovian submodels
and are sufficient conditions for convergence of iterative algorithms which are often
designed to give approximations. More recently, Boualem et al. [8] investigate
various monotonicity properties of a single server retrial queue with general retrial
times using the mathematical method based on stochastic comparisons of Markov
chains in order to derive bounds on performance indices. Bounds are derived for the
mean characteristics of the busy period, number of customers served during a busy
period, number of orbit busy periods, and waiting times. Boualem [5] addresses
monotonicity properties of the single server retrial queue with no waiting room and
server subject to active breakdowns, that is, the service station can fail only during
the service period. The obtained results give insensitive bounds for the stationary
distribution of the considered embedded Markov chain related to the model in the
study. Numerical illustrations are provided to support the results.

In this paper we consider an M=G=1 retrial queue with non-exponential retrial
times under the special assumption that only the customer at the head of the orbit
queue is allowed to occupy the server. The performance characteristics of such
a system are available in the literature (see [12]). The author obtains relevant
performance characteristics expressed in terms of generating functions and Laplace
transforms. However, there still remains the issue that numerical inversion is
required for actually computing numbers and derive useable results. Indeed, it is
sometimes possible to obtain the generating function and/or Laplace transforms of
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an unknown probability distribution but not to invert the generating function or the
Laplace transforms to obtain an explicit form of the distribution. Moreover, the
error for numerical inversion is difficult to control. For example, if we compare
two systems which are “close” then it might be that due to the numerical error
in the inversion, we may take the wrong system to perform better. Based on the
relevant performance characteristics obtained by Gómez-Corral [12], we consider
in our paper a qualitative analysis which is another field of own right to establish
insensitive bounds on some performance measures by using the stochastic analysis
approach relative to the theory of stochastic orderings . Finally, the effects of various
parameters on the performance of the system have been examined numerically.

This paper is arranged as follows. In the next section, we describe the considered
mathematical model. In Sect. 3, we introduce some pertinent definitions and notions
of the three most important orderings. Section 4 focusses on monotonicity of the
transition operator and gives comparability conditions of two transition operators.
Stochastic inequalities for the stationary number of customers in the system are
discussed in Sect. 5. The last section is devoted to the practical applications.

2 Mathematical Model

Primary customers arrive in a Poisson process with rate �. If the server is free,
the primary customer is served immediately and leaves the system after service
completion. Otherwise, the customer leaves the service area and enters the retrial
group in accordance with an FCFS discipline. We assume that only the customer
at the head of the orbit is allowed for access to the server. If the server is busy
upon retrial, the customer joins the orbit again. Such a process is repeated until the
customer finds the server idle and gets the requested service at the time of a retrial.
Successive inter-retrial times of any customer follow an arbitrary law with common
probability distribution function A.x/, Laplace-Stieltjes transform LA.s/ and first
moment ˛1. The service times are independently and identically distributed with
probability distribution function B.x/, Laplace-Stieltjes transform LB.s/ and first
two moments ˇ1, ˇ2. We suppose that inter-arrival times, retrial times, and service
times are mutually independent.

The main characteristic of this queue is that, at any service completion, a
competition between an exponential law and a general retrial time distribution
determines the next customer who accesses the service facility. Thus, the retrial
discipline does not depend on the orbit length.

Let �n be the time of the n-th departure and Zn the number of customers in the
orbit just after the time �n. We have the following fundamental recursive equation:

ZnC1 D Zn C vnC1 � ıZnC1
;
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where vnC1 is the number of primary customers arriving at the system during the
service time which ends at �nC1. Its distribution is given by:

bj D P.vnC1 D j/ D
Z 1

0

.�x/j. jŠ/�1e��xdB.x/; j � 0;

with generating function b.z/ D P

j�0
bjzj D LB.�.1 � z//.

The Bernoulli random variable ıZnC1
is equal to 1 or 0 depending on whether the

customer who leaves the system at time �nC1 proceeds from the orbit or otherwise.
The sequence of random variables fZn; n � 1g forms an embedded Markov chain

for our queueing system which is irreducible and aperiodic on the state-space N. The
stability condition is given in [12] as follows: � < LA.�/, where � D �ˇ1 is the load
of the system.

3 Stochastic Orders

Stochastic orders are useful in comparing random variables measuring certain
characteristics in many areas. Such areas include insurance, operations research,
queueing theory, survival analysis, and reliability theory (see [22]). The simplest
comparison is through comparing the expected value of the two comparable random
variables. First, we define some notions on stochastic ordering which will be used
in the context of the paper. For more details see [20–23].

Definition 1 Let F.x/ and G.x/ be two distribution functions of nonnegative
random variables X and Y, respectively. Then:

(a) F �st G iff F.x/ � G.x/ or F.x/ D 1 � F.x/ � G.x/, 8x � 0.

(b) F �icx G iff
C1
R

x
F.u/d.u/ �

C1
R

x
G.u/d.u/, 8x � 0.

(c) F �L G iff
C1
R

0

exp.�sx/dF.x/ �
C1
R

0

exp.�sx/dG.x/, 8s � 0.

Definition 2 If the random variables of interest are of discrete type and ˛ D
.˛n/n�0, ˇ D .ˇn/n�0 are the corresponding distributions, then the above definitions
can be given in the following form:

(a) ˛ �st ˇ iff ˛m D P

n�m
˛n � ˇm D P

n�m
ˇn, for all m.

(b) ˛ �icx ˇ iff ˛m D P

n�m

P

k�n
˛k � ˇm D P

n�m

P

k�n
ˇk, for all m.

(c) ˛ �L ˇ iff
P

n�0
˛nzn � P

n�0
ˇnzn, for all z 2 Œ0; 1�.
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Definition 3 Let X be a positive random variable with distribution function F:

1. F is HNBUE (Harmonically New Better than Used in Expectation) iff F �icx F�,
2. F is of class L iff F �L F�,

where F� is the exponential distribution function with the same mean as F.

The ageing classes are linked by the inclusion chain:

NBU (New Better than Used) � NBUE (New Better than Used in Expectation)

� HNBUE � L :

4 Monotonicity and Comparability of the Transition
Operator

The one-step transition probabilities of fZn; n � 1g are defined by

pnm D
�

.1 � LA.�//bm�n C LA.�/bm�nC1; for n ¤ 0 and m � 0;

bm; for n D 0 and m � 0:
(1)

Let � be the transition operator of an embedded Markov chain which associates
to every distribution ˛ D f˛mgm�0 a distribution�˛ D fˇmgm�0 such that

ˇm D
X

n�0
˛npnm:

Theorem 1 The operator � is monotone with respect to the orders �st and �icx.

Proof The operator � is monotone with respect to �st if and only if pn�1m �
pnm, and is monotone with respect to �icx if and only if 2pnm � pn�1m C
pnC1m for all n; m, where

pnm D P

l�m
pnl and pnm D P

k�m
pnk D P

k�m

P

l�k
pnl:

In our case:

pnm � pn�1m D .1 � LA.�//bm�n C LA.�/bm�nC1 > 0:

pn�1m C pnC1m � 2pnm D .1 � LA.�//bm�n�1 C LA.�/bm�n > 0:

ut
Theorems 2 till 4, we give comparability conditions of two transition operators.

Consider two M=G=1 retrial queues with non-exponential retrial times with param-
eters �.i/, A.i/, B.i/. Let�i be the transition operator of the embedded Markov chain,
in the i-th system, i D 1; 2.
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Theorem 2 If �.1/ � �.2/, B.1/ �st B.2/ and A.1/ �L A.2/, then �1 �st �
2, i.e., for

any distribution ˛, we have �1˛ �st �
2˛.

Proof From Stoyan [23], it is well known that to prove�1 �st �
2, we have to show

the following inequality:

p.1/nm � p.2/nm; 8 n;m:

We have

p.1/nm D .1 � LA.1/ .�
.1///b.1/m�n C b

.1/

m�nC1:

Since �.1/ � �.2/ and A.1/ �L A.2/, then

LA.1/ .�
.1// � LA.2/ .�

.2//;

and

p.1/nm � .1 � LA.2/ .�
.2///b.1/m�n C b

.1/

m�nC1:

But

.1 � LA.2/ .�
.2///b.1/m�n C b

.1/

m�nC1 D .1 � LA.2/ .�
.2///b

.1/

m�n C LA.2/ .�
.2//b

.1/

m�nC1:

Using these inequalities we get:

p.1/nm � .1 � LA.2/ .�
.2///b

.2/

m�n C LA.2/ .�
.2//b

.2/

m�nC1 D p.2/nm:

ut
Theorem 3 If �.1/ � �.2/, B.1/ �icx B.2/ and A.1/ �L A.2/, then�1 �icx �

2.

Proof The proof is similar to that of Theorem 2. ut
Theorem 4 If �.1/ � �.2/, B.1/ �L B.2/ and A.1/ �L A.2/, then �1 �L �

2:

Proof Let ˛ be a distribution and �˛ D ˇ, where

ˇm D
X

n�0
˛npnm D ˛0bm C

X

n�1
˛npnm; for all m � 0:

The generating function of ˇ is given by

G.z/ D
X

m�0
ˇmzm D ˛0b.z/C 1

z
b.z/.˛.z/ � ˛0/.z C .1 � z/LA.�//:
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If the conditions of Theorem 4 are fulfilled, then

b.1/.z/ � b.2/.z/ and .1 � z/LA.1/ .�
.1// � .1 � z/LA.2/ .�

.2//; 8 z 2 Œ0; 1�:

Hence G.1/.z/ � G.2/.z/. ut

5 Stochastic Inequalities for the Stationary Distribution

Consider two M=G=1 retrial queues with non-exponential retrial times. Let �.1/n ,
�
.2/
n be the corresponding stationary distributions of the number of customers in the

system.

Theorem 5 If �.1/ � �.2/, B.1/ �s B.2/ and A.1/ �L A.2/, then f�.1/n g �s f�.2/n g,
where �s represents one of the symbols �st or �icx.

Proof Using Theorems 1–3 which state that �i are monotone with respect to the
order �s and �1 �s �

2, we have by induction�1;n˛ �s �
2;n˛ for any distribution

˛, where �i;n D �i.�i;n�1˛/. Taking the limit, we obtain the stated result. Indeed,
�1˛1n D PŒZ1k D n� �s PŒZ2k D n� D �2˛2n , when k ! 1, we have f�.1/n g �s

f�.2/n g. ut
Theorem 6 If in the M=G=1 retrial queue with general retrial times the service time
distribution B.x/ is HNBUE (Harmonically New Better than Used in Expectation)
and the retrial time distribution is L , then f�ng �icx f��

n g, where f��
n g is the

stationary distribution of the number of customers in the M=M=1 retrial queue with
exponential retrial with the same parameters.

Proof Consider an auxiliary M=M=1 retrial queue with exponentially distributed
retrial time A�.x/ and service time B�.x/. If B.x/ is HNBUE and A.x/ is L , then
B.x/ �icx B�.x/ and A.x/ �L A�.x/. Therefore, by using Theorem 5, we deduce the
statement of this theorem. ut

6 Practical Aspect

Assume that we have two M=G=1 retrial queues with non-exponential retrial times
with parameters �.1/, A.1/, B.1/ and �.2/, A.2/, B.2/, respectively. Let L.i/, I.i/, N.i/

b
and W.i/ be the busy period length, the number of customers served during a busy
period, the number of orbit busy periods which take place in �0;L.i/� and the waiting
time , respectively, in the i-th system, i D 1; 2:

Theorem 7 If �.1/ � �.2/, B.1/ �s B.2/ and A.1/ �L A.2/, then E.L.1// � E.L.2//
and E.I.1// � E.I.2//; where �s is one of the symbols �st, �icx, �L.
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Proof Gómez-Corral [12] shows that

E.L/ D ˇ1

LA.�/ � �ˇ1 and E.I/ D LA.�/

LA.�/� �ˇ1
;

which are increasing with respect to � and ˇ1, decreasing with respect to LA.:/.
Under conditions of Theorem 7, we obtain the desired inequalities. ut
Theorem 8 For any M=G=1 retrial queue,

E.L/ � E.L/Upper D ˇ1

e��˛1 � �ˇ1 ;

E.I/ � E.I/Upper D e��˛1
e��˛1 � �ˇ1

:

If A and B are of class L , then

E.L/ � E.L/Lower D ˇ1.1C �˛1/

1 � �ˇ1.1C �˛1/
;

E.I/ � E.I/Lower D 1

1 � �ˇ1.1C �˛1/
:

Proof We consider auxiliary M=D=1 and M=M=1 retrial queues with the same
arrival rates �, mean service times ˇ1 and mean retrial times ˛1. A represents Dirac
distribution at ˛1 for the M=D=1 system, and represents the exponential distribution
for the M=M=1 system. Using the theorem above we obtain the stated results. ut
Theorem 9 If �.1/ � �.2/, B.1/ �st B.2/ and A.1/ �L A.2/, then E.N.1/

b / � E.N.2/
b /

and E.W.1// � E.W.2//.

Proof Gómez-Corral [12] shows that

E.Nb/ D 1 � LB.�/

LB.�/
and E.W/ D �ˇ2 C 2ˇ1.1 � LA.�//

2.LA.�/� �ˇ1/
:

These quantities are increasing with respect to �, ˇ1 and ˇ2, decreasing with respect
to LB.:/ and LA.:/. Under the conditions of Theorem 9, we obtain the desired
inequalities. ut
Theorem 10 For any M=G=1 retrial queue,

E.Nb/ � E.Nb/Upper D e�ˇ1 � 1;

E.W/ � E.W/Upper D �ˇ2 C 2ˇ1.1� e��˛1 /
2.e��˛1 � �ˇ1/

:
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If A and B are of class L , then

E.Nb/ � E.Nb/Lower D �ˇ1;

E.W/ � E.W/Lower D �ˇ2.1C �˛1/C 2�ˇ1˛1

2.1� �ˇ1.1C �˛1//
:

Proof The proof is similar to that of Theorem 8. ut

6.1 Numerical Application

We give a numerical illustration concerning the mean busy period length E.L/A.x/
and the mean waiting time E.W/A.x/ in the M=M=1 retrial queue with general retrial
times given respectively in Theorems 8 and 10. To this end, for the retrial time
distributions A.x/, we have considered the most representative distributions which
are:

1. Exponential .exp/: A.x/ D 1 � e�˛1x.
2. Two-Stage Erlang (E2): A.x/ D 1 � .1 � 2�x/e�2�x.
3. Gamma (� ): A.x/ D 1

ba� .a/

R x
0

ta�1e�t=bdt.
4. Two-Stage Hyper-Exponential (H2): A.x/ D 1 � pe��1x � .1� p/e��2x.

In Table 1 we present the values of the system parameters according the above
cases.

The obtained results are presented in Figs. 1 and 2. From these results, we note
that:

• The lower bound E.L/Lower (respectively, E.W/Lower) is nothing else than the
mean length of the busy period E.L/ (respectively, the mean waiting time E.W/)
in the M=M=1 retrial queue with exponential retrial times.

• The inequality E.L/A.x/ � E.L/Upper (respectively, E.W/A.x/ � E.W/Upper)
always holds. In addition, if the law A 2 L , then the inequality E.L/Lower �
E.L/A.x/ (respectively, E.W/Lower � E.W/A.x/) holds.

• If ˛1 and � are small enough then the mean length of the busy period (respec-
tively, the mean waiting time) in the system is closer to the E.L/A.x/ (respectively,
E.W/), in other words, closer to the E.L/Lower (respectively, E.W/Lower).

Table 1 Different values of the system parameters

� � ˇ1 ˛1 � .a; b/ .p; �1; �2/

0.3 0.3 Œ0:500; 0:400; 0:333; 0:286; 0:250� a D 3:5 p D 0:3

0.6 1 0.6 Œ0:125; 0:143; 0:167; 0:200; 0:250� 2
˛1

�1 D 4

0.8 0.8 Œ0:083; 0:091; 0:100; 0:111; 0:125� b D ˛1
3:5

�2 D .1�p/˛1�1
.�1�˛p/
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Fig. 1 Comparison of the E.L/ in M=M=1 queue with general retrial times versus ˛1
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• If the distribution of the retrial time is close to the exponential distribution in
the Laplace transform, then the exact value E.L/A.x/ (respectively, E.W/A.x/) is
closer to the lower bound E.L/Lower (respectively, E.W/Lower) (see the case of
E.L/E2 and E.W/E2 ).

• Both considered characteristics depend closely on the inter-retrial times distribu-
tion and its first moment ˛1. In addition, this dependence appears clearly in the
case of heavy traffic , i.e., when � ! 1.

7 Conclusion

The main result of this paper consists to give insensitive bounds for the stationary
distribution and some performance measures of the considered embedded Markov
chain by using the theory of stochastic orderings. The result is confirmed by
numerical illustrations.

In conclusion, the monotonicity approach holds promise for the solution of
several systems with repeated attempts. Hence, it is worth noting that our approach
can be further extended to more complex systems.
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Dynalets: A New Tool for Biological Signal
Processing

Jacques Demongeot, Ali Hamie, Olivier Hansen, and Mustapha Rachdi

Abstract The biological information coming from electro-physiologic signal sen-
sors needs compression for an efficient medical use or for retaining only the
pertinent explanatory information about the mechanisms at the origin of the
recorded signal. When the signal is periodic in time and/or space, classical
compression procedures like Fourier and wavelets transforms give good results
concerning the compression rate, but provide in general no additional information
about the interactions between the elements of the living system producing the
studied signal. Here, we define a new transform called Dynalets based on Liénard
differential equations susceptible to model the mechanism at the source of the signal
and we propose to apply this new technique to real signals like ECG.

1 Introduction

There are different manners to represent a biological signal aiming to both (a)
explain the mechanisms having produced it and (b) facilitate its use in medical
applications. The biological signals come from electro-physiologic signal sensors
like ECG and have to be compressed for an efficient medical use by clinicians
or to retain only the pertinent explanatory information about the mechanisms at
the origin of the recorded signal for the researchers in life sciences. When the
signal is periodic in time and/or space, the classical compression processes like
Fourier and wavelets transforms give good results concerning the compression rate,
but bring in general no supplementary information about the interactions between
elements of the living system producing the studied signal. Here, we define a new
transform called Dynalets based on Liénard differential equations, susceptible to
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model the mechanism that is the source of the signal and we propose to apply this
new technique to real signals like ECG.

2 Fourier and Haley Wavelet Transforms

The Fourier transform comes from the aim by J. Fourier to represent in a simple way
the functions used in physics, notably in the heat propagation (in 1807, cf. [10]). He
used a base of functions made of the solutions of the simple pendulum differential
equation (cf. a trajectory in Fig. 1):

dx

dt
D y;

dy

dt
D �!2x; (1)

its general solution being:

x.t/ D k cos!t;

y.t/ D �k! sin!t:

By using the polar coordinates � and � defined from the variables x and z D �y=!,
we get the new differential system:

d�

dt
D !;

d�

dt
D 0; (2)

with � D arctan.z=x/ and �2 D x2 C z2.
The polar system is conservative, its Hamiltonian function being defined by:

H.�; �/ D !�:

The solutions:

x.t/ D k cos!t;

z.t/ D k sin!t

have 2 degrees of freedom, k and !, respectively the amplitude and the frequency
of the signal, and they constitute an orthogonal base, when we choose for ! the
multiples (called harmonics) of a fundamental frequency !0.

After the seminal theoretical works by Y. Meyer [12, 17], I. Daubechies [2], and
S. Mallat [15], J. Haley defined a simple wavelet transform for representing signals
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in astrophysics (in 1997, cf. [9]). He used a base of functions made of the solutions
of the damped pendulum differential equation (cf. a trajectory in Fig. 1):

dx

dt
D y;

dy

dt
D �.!2 C �2/x � 2�y;

its general solution being:

x.t/ D ke�� t cos!t;

y.t/ D �ke�� t.! sin!t C � cos!t/;

by using the polar coordinates � and � defined from the variables x and z D �y=!�
�x=!, we get the differential system:

d�

dt
D !;

d�

dt
D ���:

This polar system is a potential function being defined by:

P.�; �/ D �!� C ��2

2
:

The solutions:

x.t/ D ke�� t cos!t;

z.t/ D ke�� t sin!t

have 3 degrees of freedom, k, !, and � , the last parameter being the exponential
time constant responsible for pendulum damping.

3 The Van der Pol System

For Dynalets transform, we propose to use a base of functions made of the solutions
of the relaxation pendulum differential equation (cf. a trajectory in Fig. 1 Top),
which is a particular example of the most general Liénard differential equation:

dx

dt
D y;
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Fig. 1 Figure 1 Top left: a simple pendulum trajectory. Top middle: a damped pendulum trajectory.
Top right: Van der Pol limit cycle. Middle: relaxation oscillation of Van der Pol oscillator without
external forcing. Bottom: representation of the harmonic contour lines H.x; y/ D 2:024

dy

dt
D �R.x/x C Q.x/y;

which is specified in Van der Pol case by choosing:

R.x/ D !2 and Q.x/ D �

�

1 � x2

b2

�

:

Its general solution is not algebraic, but approximated by a family of polynomials
[4, 5, 9, 14].
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The Van der Pol system is a potential-Hamiltonian system, with P and H
functions (Fig. 2 Top left), H being for example approximated at order 4, when
! D b D 1, by [4, 5]:

H.x; y/ D .x2 C y2/

2
� �xy

2
C �yx3

8
� �xy3

8
;

which allows to obtain the equation of its limit cycle (cf. Fig. 1 Bottom): H.x; y/ 

2:024. The Van der Pol system has 3 degrees of freedom, b, !, and �, the last an-
harmonic parameter being responsible of the asymptotic stability of the pendulum
limit cycle, which is symmetrical with respect to the origin, but not revolution
symmetrical. These parameters receive different interpretations:

– � appears as an-harmonic reaction term: when � D 0, the equation is that of
the simple pendulum, i.e., a sine wave oscillator, whose amplitude depends on
initial conditions and relaxation oscillations are observed even with small initial
conditions (Figs. 1 and 2 Middle), whose period T near the bifurcation value
� D 0 equals 2�=Imˇ; ˇ is the eigenvalue of the Jacobian matrix J of the Van
der Pol equation at the origin and for ! D b D 1:

J D
�

0 1

�1 �
�

;

whose characteristic polynomial is equal to: ˇ2 � �ˇ C 1 D 0, hence:

ˇ D �˙p

�2 � 4
2

and T 
 2� C ��2

4
:

– b looks as a term of control: when x > b, the derivative of y is negative, acting
as a moderator on the velocity. The maximum of the oscillations amplitude of x
is about 2b whatever initial conditions and values of the other parameters. More
precisely, the amplitude ax.�/ of x is estimated by 2b < ax.�/ < 2:024b, for
every � > 0, and when � is small, ax.�/ is estimated by:

ax.�/ 

�

2C �2

6

�

b

1C 7�2

96

; (cf. [9, 14]):

The half-amplitude of y ay.�/ is obtained for dy=dt D 0, that is approximately for
x D b if !b is small. Then ay.�/ is the dominant root of the following algebraic
equation: H.b; ay.�// D 2:024.

– ! is a frequency parameter, when � is small and the period is about 2�=!. When
� � 1, the period T of the limit cycle is determined mainly by the time during
which the system stays around the states where y is O.1=�/. The oscillations
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Fig. 2 Top: original ECG signal (V1 derivation). Bottom: representation of different waves from
Van der Pol oscillator simulations, from the symmetric type (left, for � D 0:4; b D 4; ! D 1)
to the relaxation type (right, for � D 4; b D 4; ! D 1) showing the progressive relaxation
phenomenon (simulations done using [1])

period T is roughly estimated to be T 
 �.3� 2 log.2// (cf. [1]), and the system
can be rewritten as:

d�

dt
D �;

d�

dt
D �!2�C �

�

1 � �2

�2

�

� 
 �!2�C ��;

with change of variables: � D �x=b; � D �y=b.

4 The Dynalets Transform

The Dynalets transform consists in identifying a Liénard system-based interactions
mechanism between its variables (well expressed by its Jacobian matrix) analogue
to those of the experimentally studied system, whose limit cycle is the nearest (in the
sense of the� set distance, to the signal in the phase plane .xOy/, where y D dx=dt.
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For example, the Jacobian interaction graph of the Van der Pol system contains
a couple of positive and negative tangent circuits. Practically, for performing the
Dynalets transform it is necessary to choose: (a) the parameter � such as the period
of the Van der Pol signal equals the mean empirical (the same value for the Van
der Pol and for the signal referential, chosen as the ECG signal in Fig. 2), (b) a
translation of the origin of axes, then a homothetic change of variables to match the
first Van der Pol. The whole approximation procedure can be done for the ECG
signal (see Fig. 3 and http://www.sciences.univnantes.fr/sites/genevieve_tulloue/
Meca/Oscillateurs/vdp_phase.html, http://wikimedia.org/wikipedia/commons/7/70/
ECG_12derivations and [6, 8, 13, 16, 18]) involving the following steps:

1. To perform a symmetrizing of x axis in the case of derivation V1 in order to get a
signal similar the ECG V5 (cf. Fig. 2 Top) and a transformation scaling with the
same homothetic coefficient the x and y axes of the ECG signal, so as to adjust
them to the maximum and minimum x and y of the vdP (Van der Pol) signal.

2. To perform a translation of the origin of axes of the ECG signal by adjusting the
base line to a selected phase of a vdP limit cycle of same period T (called pitch
period) as the ECG period.

3. To finish the approximation matching the ECG points set to the vdP limit-cycle,
by minimizing the difference set distance� between the interiors of the ECG and
vdP cycles (denoted respectively ECG and VDP, with interiors ECGo and VDPo)
in the phase plane:�.ECGo;VDPo/ D AreaŒ.ECGo nVDPo/[ .VDPo nECGo/�,
by using a Monte-Carlo method for estimating the area of the sets interior to the
linear approximation of the ECG and vdP cycles, calculated from point samples
fXigiD1;100 and fYigiD1;100.

4. To repeat the procedure for getting after the fundamental, the successive harmon-
ics (cf. Fig. 3).

The reconstruction with the fundamental and the first harmonics gives for the� set
distance a relative error of 8% in the example of Fig. 3, and the reconstruction of the
second harmonics just allows passing under the 5% threshold, even by considering
3 cycles instead 4 (cf. Fig. 4).

5 The Problem of the Baseline

The Dynalet approximation [6] (and more generally the Tailored to the Prob-
lem Specificity Mathematical Transforms, or TPSMT transforms [11]) implies
to be efficient the identification and removal of the baseline and we propose
two new methods, one based on the expectile regression and the other on the
Levy time distribution, alternative to the classical approaches of baseline filtering
[3, 7, 19–23].

http://www.sciences.univnantes.fr/sites/genevieve_tulloue/Meca/Oscillateurs/vdp_phase.html
http://www.sciences.univnantes.fr/sites/genevieve_tulloue/Meca/Oscillateurs/vdp_phase.html
http://wikimedia.org/wikipedia/commons/7/70/ECG_12derivations
http://wikimedia.org/wikipedia/commons/7/70/ECG_12derivations
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Fig. 3 Top left: Initial position in the phase plane xOy of the Van der Pol limit cycle (in green
clear) and ECG signal (in red) and final fit between Van der Pol (in dark green) and EEG signal
after transformation on X and Y axes (translation and scaling). Top right: experimental ECG with
the evolution of the Lévy time �.
/ corresponding to the duration of the signal passed between
0 and 
 and the baseline obtained by averaging the signal under the threshold corresponding to
the plateau value of the Léy time curve. Middle left: extraction of the fundamental component X1
(in red) and of the first harmonic X2 (in green) from the original experimental ECG signal (in
blue). Middle right: start of the calculation of the second harmonics (in blue) by subtracting the
fundamental plus the first harmonic component X1 C X2 (in violet on the Middle left) from the
sampled original ECG signal. Bottom: comparison between the original ECG signal (in blue) to the
reconstructed signal (in red) made of the fundamental plus the first harmonic (Color figure online)
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Fig. 4 Top: continuation of
the calculation of the second
harmonics (in dark blue) by
comparing the subtracted
signal of Fig. 3 to a Van der
Pol signal of period T=4.
Bottom: comparison between
the subtracted signal of Fig. 3
to a Van der Pol signal of
period T=3 (Color figure
online)

6 Conclusion

Generalizing compression tools like Fourier or wavelets transforms is possible, if we
consider that non symmetrical biological signals are often produced by mechanisms
based on interactions of regulon type (i.e., possessing at least one couple of positive
and negative tangent circuits inside their Jacobian interaction graph). In this case, we
can replace the differential systems giving birth to biological signals by a Liénard-
type equation, like the Van der Pol system classically used to model relaxation
waves. The corresponding new transform, called Dynalets transform, has been built
in the same spirit as the wavelets transform.

Acknowledgements We indebted to Campus France CMCU for supporting us with the grant PHC
Maghreb SCIM.
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Demography in Epidemics Modelling:
The Copula Approach

Jacques Demongeot, Mohamad Ghassani, Hana Hazgui,
and Mustapha Rachdi

Abstract Classical models of epidemics by Ross and McKendrick have to be
revisited in order to take into account the demography (fecundity and migration)
both of host and vector populations and also diffusion and mutation of infectious
agents. We will study three models along different age classes of human, with and
without mosquitoes by using the copula function, and we will conduct a simulation
study for two of these models.

1 Introduction

The practical use of epidemic models must rely heavily on the realism put into
the models. This doesn’t mean that a reasonable model can include all possible
effects but rather incorporate the mechanisms in the simplest possible fashion so
as to maintain major components that influence disease propagation. Great care
should be taken before epidemic models are used for prediction of real phenomena.
However, even simple models should, and often do, pose important questions about
the underlying mechanisms of infection spread and possible means of control of
the endemic or epidemic. We will study as example a human epidemic disease
transmitted by vectors like mosquitoes and also by humans. Both mosquitoes and
human are supposed to be hosts of an infectious agent. We will take into account
the demography and immunity of the human. The immunologic, genetic as well as
demographic evolution of the vector and agent will be neglected.
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2 Model 1: Model with Three Age Classes

By introducing age classes in the classical Ross–McKendrick epidemic model [1–
6], we add new demographic parameters as the fecundity rate (fi for the susceptible
humans and f 0

i for the infected humans), which is equal to the mean number of off-
springs a person in class i is sending to the class 1 between times t and tCdt, and the
relative (i.e., accounting for the disease) survival (resp. death) rate bi (resp.�i) equal
to the probability to survive from age i to age i C 1 (resp. to die at age i) between
times t and t C dt. The equations of the Ross–McKendrick model [7] corresponding
to three age classes with two compartments of mosquitoes (cf. Fig. 1) are:

@Sm

@t
D ��1SmI2

NH
C jIm

@Im

@t
D �1SmI2

NH
� jIm

@S1
@t

D .�1 � ˇ11/E1 � ˇ12S1E2 � .b1 C �1/.1� ˇ11 � ˇ12/S1 C f1S2 C f 0
1�2E2

Cf 00
1 K2I2 � �2S1Im

NH

μ

μ μ

μ μ μ

β β β

Fig. 1 Interaction graph of the model with three age classes for each of the three populations
of susceptible S (top), infected not infectious E (middle) and infectious I (bottom) and two
compartments of mosquitoes
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where the Ss are the sizes of the three age classes for the susceptible humans, the Es
their analogs for the infected humans, and Is for infectious humans. Sm (resp. Im)
denotes the number of susceptible (resp. infectious) mosquitos.

3 Model 2: Model with Two Age Classes

By taking the model (1) and removing one class of ages and the corresponding
passage speeds, then we find a model with only two age classes as in Fig. 2.
Equations of this model are as given in the following system, in which the f ,
l and h parameters represent with index 1 the fecundity and with index 2 the
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Fig. 2 Interaction graph of the model with two age classes and two compartments of mosquitoes
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Fig. 3 Interaction graph of
the model with three age
classes and without
mosquitoes, for the
susceptible (top), infected not
infectious (middle) and
infectious (bottom)
populations

4 Model 3: Three Age Classes Without Mosquitoes

By taking the model 1 and by eliminating the compartments of mosquitoes, we find
the model illustrated in Fig. 3. The equations corresponding to this model are as
follows:
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5 The Copula Approach

We propose now to introduce the statistical notion of copula in order to check
rapidly the nature of the distribution of the sizes of the subpopulations involved
in the epidemic process as well as the stochastic dependency between these sizes
considered as random variables.

Proposition 1 Assume that there exist three age classes into the host subpopula-
tions whose sojourn times Ti for i D 1; 2; 3, are independent random variables
defined on the probabilized space .˝;F;P/, then we can relate the survival
functions Sj for j D 1; 2; 3, by:

P .Ti > ti for i D 1; 2; 3/ D exp

2

4 �
0

@

X

jD1;2;3

�

� ln
�

Sj.tj/
� 1
˛

�

1

A

˛ 3

5

for t1; t2; t3 > 0

where ˛ is a parameter of dependence.

Proof We define the mean survival function, expectation of the survival function
S.t; q/, i.e., the probability to survive until the age t within a random risk q, by:

S.t/ D Eq ŒB.t/
q�

where B is a decreasing function (e.g., B.t/ D exp.�t/ if T is an exponential random
variable) and Eq denotes the conditional expectation relatively to q.

Recall that the Laplace transform of a positive random variable q is defined by:

Lq.s/ D Eq Œexp .�sq/� D
Z

RC
exp .�st/ dGq.t/

where Gq is the distribution function of q. It is also the generating function evaluated
at ln.�s/; thus, the knowledge of Lq.s/ determines entirely the distribution of q.

Using the Laplace transformation, we obtain:

Eq .exp.�sq// D exp .�s˛/ (4)
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On the other hand, we have that:
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From the Eq. (4), we have:

P .Ti > ti for i D 1; 2; 3/ D exp
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We have indeed:
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Therefore:

P .Ti > ti for i D 1; 2; 3/ D exp
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On another side, we defined the Archimedean copula as follows:

C.u1; : : : ; un/ D
8

<

:

��1 .�.u1/C � � � C �.un// if �.u1/C � � � C �.un/ � 0

0 otherwise
(5)
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where the generator of the copula � is a twice continuously differentiable function
which satisfies:

�.1/ D 0; �.1/.u/ < 0 and �.2/.u/ > 0 for all u 2 Œ0; 1�n

where �.i/ denotes the i-th order derivative of �.
Notice that a popular Archimedean copula is the Gumbel–Hougaard copula that

is defined as follows:

C.u1; : : : ; un/ D exp
n

� Œ.� ln.u1//
˛ C � � � C .� ln.un//

˛�
1
˛

o

(6)

where ˛ � 1 and �.t/ D .� ln t/˛ .
So from Proposition 1 and the Eq. (6), we obtain:

P .Ti > ti for i D 1; 2; 3/ D exp

2

4�
0

@

X

jD1;2;3

�

� ln
�

Sj.tj/
� 1
˛

�

1

A

˛3

5

D C.S1; S2; S3/ (7)

where C is a Gumbel–Hougaard copula.

6 Results

The theoretical study of the dynamics of the differential systems presented in the
previous sections can be found in [8–10]. We will focus here only on simulation
results. We have used the classical Gillespie IBM (Individual-Based Modelling)
approach for simulating the stochastic version [8–11] of the above differential
systems and we focus on the use of the copula approach in the study of the stochastic
dependency between various sizes of subpopulations presented above, considered as
random variables.

The Figs. 4 and 5 represent respectively the evolution of the sizes of different
compartments of the models (2) and (3) and the joined distribution of some couples
of these variables. We can notice that as expected the young subjects infected have
less influence on the adults susceptible than the adults infected on the young subjects
susceptible. The parameters used for obtaining this result are:

f1 D 75k; f2 D 25k; ı1 D 2k=3; ı2 D 4k=5; b D 98k=96; l1 D 30k; l2 D 101k;

v D 70k=96; e1 D k; e2 D 6k=5; h1 D 15k; h2 D 3k; u D 50k=96; c1 D 4k=3; c2 D 2k;

ˇ1 D 4k=100; ˇ2 D k=10;K D 9k=10; r D 2k=5; k D 1:
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Fig. 4 Simulation of the variables of the stochastic version of the model (3) in case of demo-
graphic increase (top) and of the model (2) in case of demographic decrease (bottom), using the
Gillespie R-package http://www.inside-r.org/node/46167
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Fig. 5 Distribution function of the couple .S2; I1/ (left) and of the couple .S1; I2/ (right) in
model (3). Taken from [11]. Published with the kind permission of © American Institute of
Mathematical Sciences 2013. All rights reserved

If C denotes the Gumbel copula, we recall that the value of the p-quantile of the
distribution of the expectation of E2 conditionally to S2 D s is given by the following
formula [11]:

p D C. f .s/; gs.p//.ln. f .s//= lnŒC. f .s/; gs.p//�/˛�1=f .s/

http://www.inside-r.org/node/46167
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Fig. 6 Study of the interaction between the sizes S2 and E2 in model (3), by using the Gumbel
copula with ˛ D 3 for representing the p-quantile regression curves of E2 conditionally to S2, for
different values of p (from 5 to 95), superimposed on the scatter plot of the joined distribution of
the couple .S2;E2/. Taken from [11]. Published with the kind permission of © American Institute
of Mathematical Sciences 2013. All rights reserved

where f and gs are respectively the distribution functions of S2 and of E2 condition-
ally to S2 D s.

We have superimposed in Fig. 6 the quantile regression curves for different val-
ues of p on the scatter plot of the two distribution functions S2 and E2. These curves
permit to divide the population into several parts where the individuals in each
part are dependent. Then we can analyze each part to make explicit dependencies
between all individuals in the population. It is important for the justification of
the derivation of the Ross–McKendrick modelling from an underlying stochastic
process simulated by IBM approach, because it asks in principle the absence
of correlation between susceptible and infected in order to get the contagious
quadratic term in the differential equations [8–11]. We see on the given example
that this hypothesis is roughly available only for the week values of the conditional
quantile p.

7 Conclusion

We have considered some natural extensions of the classical Ross–McKendrick–
Macdonald approaches, adding the age classes of the human host. Two examples
have been presented, which show the interest of the introduction of age classes into
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the classical equation, by presenting the interaction graph for each model. In the
future, we will study several demographic and risk models like the Usher model and
the Cox model, in order to perform the copula approach with the various presented
epidemic model. This copula approach allows us to find the relationships between
the different classes, in order to see how we can reduce the infectious contacts.

Acknowledgements We indebted to Campus France CMCU for supporting us with the grant PHC
Maghreb SCIM.
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