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Preface

There has been a rapid increase in the application of computational methods to hu-
manities data in recent years. Numerous workshops, lectures, bootcamps, blogs, and
texts have arisen to provide an introduction to these techniques. Many of these are
very well presented and have enabled humanists with minimal technical background
to quickly produce an impressive array of novel applications and scholarship.

The goal of this text is to complement rather than duplicate this extant body of
work. We aim to address two distinct groups of readers: students in a one- or two-
semester introductory course on digital methods in the humanities and intermediate
users looking for a self-study text to solidify and extend their basic working knowl-
edge of both computational methods and R. While entirely self-contained, the text
moves at a pace that may be difficult for complete beginners without supplemen-
tary materials such as additional R tutorials or the support and structure of a formal
classroom.

A particular challenge of applying computational methods in the humanities is
that data is often unstructured and complex. Typical examples include large text
corpora, archives of digital images, and geospatially enriched databases. Each of
these require customized techniques for visualization and analysis, none of which
are commonly taught in introductory texts in statistics. As such, this text is struc-
tured around the four basic data types commonly encountered in digital humanities:
networks, geospatial data, images, and text. Dedicated chapters present techniques
specific to each of these data types, preceded by an introduction to the general prin-
ciples of exploratory data analysis. The result is a single text that brings together
several disparate methodologies, preparing students and scholars to integrate com-
putational methods into their own work.
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A Note to Instructors

We have made this text as modular as possible without being overly repetitive. An
instructor should be able to teach any permutation or subset of the individual chap-
ters by filling in only small gaps in the material with additional background informa-
tion as the need arises. It is also possible to teach the material with an emphasis on
only the core computational concepts, with the code snippets and specific R syntax
presented at a later point. One particular approach that we recommend for a single
semester course is to start with Chap. 6, a relatively accessible introduction to net-
work analysis, followed by a quick study of the basic syntax and plotting commands
in R presented in Chaps. 2—4, with the remainder of the semester spent on whichever
topics from Chaps. 7-10 are of most relevance and interest. A two-semester course
should allow for sufficient time to work through all of the later chapters, as well as
covering the introductory exploratory data analysis material in more detail.

The modularity of each chapter also allows them to be used as a basis for inde-
pendent workshops. If one is willing to either focus only on the core concepts or
require a basic working knowledge of R as a prerequisite, we have found that each
chapter can be taught in a single day, with 2-3 days being ideal. With a week-long
workshop, it is possible to weave in some additional introductory programming ma-
terial to teach the basics of R alongside the broader computational concepts.

Supplementary Materials

We make extensive use of example datasets through this text. Particular care was
taken to use data in the public domain, or otherwise freely and openly accessible.
Whenever possible, subsets of larger archives were used instead of smaller one-
off datasets. This approach has the dual benefit that these larger sets are often of
independent interest, as well as providing an easy source of additional data for use
in course projects, lectures, and further study. These datasets are available (or linked
to) from the text’s website:

http://humanitiesdata.org/

Complete code snippets from the text, further references, and additional links and
notes are also included in that site and will continue to be updated.

Our Background

Applying computational techniques to humanities data should ultimately yield new
scholarly questions and knowledge. We feel that the best way to accomplish these
tasks is through the interdisciplinary collaboration between technical experts and
humanists. With one of us (Lauren Tilton) a scholar of American Studies and the
other (Taylor Arnold) a statistician, our primary fields of study respond well to this
need.

We came to see the value of interdisciplinary work firsthand in the Fall of 2010.
We had the good fortune of crossing paths and realized we shared mutual interests


http://humanitiesdata.org/
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in data and the humanities. We soon embarked on our first project together, visu-
alizing and analyzing 170,000 photographs from the Great Depression and World
War I1.! To look at each photograph for 5s would take over 200 h. Neither pos-
sible nor desirable, computational techniques offered another set of techniques to
read, explore, and analyze the entire collection. We came to view the methods and
algorithms made possible through computation as a part of our methodological tool-
box just like the theorists such as Judith Butler, Jerome Friedman, Michel Foucault,
and John Tukey who undergird our scholarly inquiry. Visualization and algorithmic
approaches held the potential to reveal latent information about the collection at dif-
ferent scales including at the level of the individual photograph and the collection.?
We also hoped to see new questions and scholarship about the collection surface,
thanks to an interdisciplinary approach.

Accordingly, the book is written in the way we believe some of the best inter-
disciplinary scholarship is approached. It is a merger of expertise in order to find
ways to build a bridge across disciplines while acknowledging that each field is
key to the bridge’s foundation. For those with a background in social science and
science, the idea of collaboration and co-authorship is fundamental. On the other
hand, single author scholarship remains central to the humanities. Therefore, we
see this book as a testament to the need to acknowledge the collaboration necessary
in interdisciplinary work, particularly in digital humanities.
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Chapter 1
Set-Up

Abstract In this chapter, an introduction to the text as a whole and the basics for
getting set-up with the R programming language are given.

1.1 Introduction

Exploratory data analysis (EDA), initially described in John Tukey’s classic text
by the same name, is a general approach to examining data through visualizations
and broad summary statistics [6].! It prioritizes studying data directly in order to
generate hypotheses and ascertain general trends prior to, and often in lieu of, formal
statistical modeling. The growth in both data volume and complexity has further
increased the need for a careful application of these exploratory techniques. In
the intervening 40 years, techniques for EDA have enjoyed great popularity within
statistics, computer science, and many other data-driven fields and professions.
Concurrent with Tukey’s development of EDA, Rick Becker, John Chambers,
and Allan Wilks of Bell Labs began developing software designed specifically for
statistical computing.”> By 1980, the “S” language was released for general dis-
tribution outside Labs. It was followed by a popular series of books and updates,
including “New S” and “S-Plus” [1, 2, 3, 5]. In the early 1990s, Ross Ihaka and
Robert Gentleman produced a fully open-source implementation of S called “R”.?
Their implementation has become the de-facto tool in the field of statistics and is
often cited as being amongst the Top-20 used programming languages in the world.*

! An enjoyable and highly recommended biography of Tukey by David Brillinger (a student of his)
was recently published by the Annals of Statistics [4].

2John Tukey in fact split his time between Bell Labs and Princeton during this time.

31t is called “R” for it is both the “next letter in the alphabet” and the shared initial in the Authors’
names.

4See www . tiobe.com/index.php/tiobe index for one such ranking. Exact rankings of
programming language use are, however, impossible to produce to everyone’s satisfaction, and results
often lead to fairly heated debate. Our point is simply to point out that R is not strictly a tool for a small
niche of academic research, but is in fact used quite broadly.

© Springer International Publishing Switzerland 2015 3
T. Arnold, L. Tilton, Humanities Data in R, Quantitative Methods
in the Humanities and Social Sciences, DOI 10.1007/978-3-319-20702-5_1


www.tiobe.com/index.php/tiobe_index

4 1 Set-Up

There is a clear and strong link between EDA and S/R.> Each owes a great
deal of gratitude to the other for their continued popularity. Without the interactive
console and flexible graphics engine of a language such as R, modern data analysis
techniques would be largely intractable. Conversely, without the tools of EDA, R
would likely still have been a welcome simplification to programming in lower-
level languages, but would have played a far less pivotal role in the development of
applied statistics.

The historical context of these two topics underscores the motivation for study-
ing both concurrently. In addition, we see this book as contributing to efforts to
bring new communities to learn from and to help shape data analysis by offering
other fields of study to engage with. It is an attempt to provide an introduction for
students and scholars in the humanities and the humanistic social sciences to both
EDA and R. It also shows how data analysis with humanities data can be a powerful
method for humanistic inquiry.

1.2 Structure of This Book

The book is written in two parts. The first half is an overview of R and EDA.
Chapter 2 provides a very basic and straightforward introduction to the language
itself. Chapters 3—5 give an introduction to the tools of data analysis by way of
worked examples using the rich demographic data from the United States American
Community Survey and the French 2012 Presidential Election. Since concepts and
analysis build off work in previous chapters, these introductory chapters are meant
to be read sequentially. Chapter 12 provides 100 short programming questions for
further practice, with example solutions in Chap. 13.

The second half introduces key areas of analysis for humanities data. Each
chapter introduces a type of analysis and how it can be applied to humanities data
sets along with practice problems and extensions. While some concepts are refer-
enced between chapters, each is intended to stand on its own (with the exception of
Chaps. 9 and 10, which should be read as a pair).

For those new to the concepts covered in this book, we recommend skimming
the chapters in the second half that interest you before walking through the first half.
The code may look daunting, but do not fret. The second half provides examples and
reasons why these methods and forms of analysis are informative and exciting. We
find it easier to learn how to code and explore data when we know what scholarly
questions and modes of inquiry excite us.

SWe will refer to the language simply as R for the remainder of this text for simplicity and to conform
to the majority of other references; this is meant in no way as a lack of appreciation for the historical
importance of the original “S”.
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1.3 Obtaining R

The majority of readers will eventually want to follow along with the code and
examples given through the text. The first step in doing so is to obtain a working
copy of R. The Comprehensive R Archive Network, or CRAN, is the official home
of the R language and supplies download instructions according to a user’s operating
system (i.e., Mac, Windows, Linux):

http://cran.r-project.org/

A popular alternative, particularly for users with limited to no programming back-
ground, is offered by RStudio:

http://www.rstudio.com/

The company offers commercial support but provides a single-user version of the
software at no cost. Other download options exist for advanced users, up-to and
including a custom build from the source code. We make no assumptions through-
out this text regarding which operating system or method of obtaining or accessing
R readers have chosen. In the rare cases where differences exist based on these
options, they will be explicitly addressed.

A major selling point of R is its extensive collection of user-contributed add-ons,
called packages. The details of these packages and how to install them are described
in detail in Chap. 11.

1.4 Supplemental Materials

In addition to the R software, walking through the examples in this text requires
access to the datasets we explore. Care has been taken to ensure that these are all
contained in the public domain so as to make it easy for us to redistribute to readers.
The materials and download instructions can be found here:

http://humanitiesdata.org/

For convenience, a complete copy of the code from the book is also provided to
make replicating (and extending) our results as easy as possible.

1.5 Getting Help with R

Learning to program is hard and invariably questions and issues will arise in the
process (even the most experienced users require help with surprisingly high fre-
quency). The first source of help should be the internal R help documentation,
which we describe in detail in Chap. 2. When these fail to address a question, a web
search will often turn up the desired result.

When further help is required, the R mailing lists, http://www.r-
project.org/mail.html, and the third-party question and answer site,
stackoverflow.com/, provide mechanisms for submitting questions to a broad
community of R users. Both will also frequently show up as highly ranking results
when running generic web searches for R help.


http://cran.r-project.org/
http://www.rstudio.com/
http://humanitiesdata.org/
http://www.r-project.org/mail.html
http://www.r-project.org/mail.html
http://stackoverflow.com/
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Chapter 2
A Short Introduction to R

Abstract In this chapter, a basic introduction to working with objects in R is given.
We provide the minimal working knowledge to work through the remainder of
Part I. Basic computations on vectors, matrices, and data frames are shown. Particu-
lar attention is given to R’s subsetting mechanism as it is often a source of confusion
for new users.

2.1 Introduction

Here we provide an introduction to the core features of the R programming lan-
guage. It is meant to provide enough of a background to proceed through Part I.
It is not exhaustive, with some important features, such as random variable gen-
eration and control flow functions, presented as they are necessary. This chapter
should provide the right depth for getting started. Practice problems are also given
in Chap. 12 (with solutions in Chap. 13). Anyone comfortable with other scripting
languages will most likely find a quick read sufficient. Accordingly, we assume that
readers have already managed to download and set up R as described in Chap. 1.

For readers looking for a dense and complete introduction, we recommend the
freely available manual “An Introduction to R” [2]. On the other hand, readers
looking for a slower introduction to the language may prefer first working through
Matthew Jockers’s “Text Analysis with R for Students of Literature” [1].

2.2 Calculator and Objects

The R console can be used as a simple calculator. Typing in a mathematical expres-
sion and hitting enter prints out the result.

> 1 + 2
[1] 3

© Springer International Publishing Switzerland 2015 7
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The familiar order of operation rules worked as expected and many mathematical
functions such as the square root, sgrt, can also be applied.

>1/ (2 + 17) - 1.5 + sqgrt(2)
[1]

1] -0.03315486

The result of a mathematical expression can be assigned to an object in R using the
< - operator.

> x <- 1 + 2

When assignment is used, the result is no longer printed in the console window. If
we want to see the result, we type the variable name x to print out its value.

> X
[1] 3

We can apply further manipulations to the constructed objects; for example, here
we divide the value of x by 2.

> x/2
[1] 1.5
> X

[1] 3

The result 1.5 prints to the console; however, notice that the actual value of x has
not changed. If we want to save the output it has to be reassigned to a variable (this
does not have to be a new variable; x <- x/2 is allowed). Here we construct an
object named y.

>y <- X/2
>y
[1] 1.5

At this point the object named x has a value of 3 and the object named y has a value
of 1.5.

Every object in R belongs to a class describing the type of object it represents.
To determine an object’s class, we use a function called class'; this function
has one input parameter named x. Accordingly, this input can be explicitly called
(class (x=y) ) or implicitly (class (y)).

> class (x=y)

[1] "numeric"
> class(y)
[1] "numeric"

Functions are reusable code. Functions have a set of assumptions built in and can be accessed by
placing a ? before the function name. Type ?class () in the R console. Note the usage information.
It provides information about the functions’ inputs. This particular function has one input parameter
named x. Scroll down and inspect the documentation about the function. It may seem overwhelming at
first, but it will be an important tool. Type g to exit and return to coding.
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In the second case, R assumes that since we did not name the input we intended the
variable y to be assigned to the first (and in this case only) input x. The result shows
that y is described as an object of type numeric; this is a generic class that holds any
type of real number.

Everything in R is an object, including functions. Therefore we can even pass
the function class to itself.

> class(x=class)
[1] "function"

We see here that “function” is a type of class. Another useful basic function is 1s
(LiSt objects). It does not require any arguments, and prints out the names of all the
objects we have created.

> 1s()
[1] e nyu

Notice that this list does not include the function class, even though we have
determined that it exists and is a type of object. The reason is that by default only
user-created objects are returned. If we really wanted to see all of the objects created
in the base of R, like class, we need to override one of the default parameters of the
function 1s.2

> ls(envir=baseenv())

[303] "chol.default" "chol2inv"

[305] "choose" "class"

[307] "class<-" "clearPushBack"
[309] "close" "close.connection"

The output is quite long, so we only display the few lines where the function class
is shown. We show this as an example of the power in R’s function syntax; allowing
functions to have default values makes it easy to get simple results while not limiting
the ability of users to customize functions as necessary.

2.3 Numeric Vectors

In R, a vector is a data structure containing a collection of multiple values with the
same type. There are several types of vectors, six to be exact, with one of the most
common being a numeric vector. A special function ¢ (. ..) combines multiple
values into a single vector object. For example, to create an object with the values
1, 10, and 100 run the following.

2We suggest trying this on your machine as well (do not worry about fully understanding the function
call) in order to get an appreciation of the number of functions which are available by default within the
base R language.
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> vecObj <- ¢(1,10,100)
> vecObj

[1] 1 10 100

> class (vecObj)

[1] "numeric"

The resulting object is referred to as a vector. When we determine the object’s class,
we see that it is still a “numeric” object just like the single number objects explored
in the previous section. The reason for this is that in R a single numeric value is
represented as a length one vector rather than a separate type.?

We can conduct mathematical manipulations directly on vectors. Consider the
following two examples:

> vecObj + 10

[1] 11 20 110

> vecObj + vecObj
[1] 2 20 200

In the first, we took a vector of length 3 and added a single number to it. The result
added the single number to each element in the vector. In the second example, we
add together two vectors each of length 3, with a result that adds each element of the
vectors. In general, R evaluates expressions involving vectors of different lengths
by recycling the shorter ones to match the longest one. For instance, if we add a
length 6 vector to a length 2 vector, the first element of the shorter vector is added
to the Ist, 3rd, and Sth elements of the longer one, whereas the second element of
the shorter vector is added to the 2nd, 4th, and 6th elements of the longer one.

> c(1,2,3,4,5,6) + c(100,200)
[1] 101 202 103 204 105 206

The most common case of manipulating vectors involves expressions that mix vec-
tors of a single given length with length-one vectors, but is important to recognize
the more general case.

Constructing vectors by hand can quickly become cumbersome. A shortcut for
building a vector of all the integers between two numbers is the colon operator,
“:”.% For example 1 : 84 returns a vector of all integers between 1 and 84.

> 1:84

[1] 1 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18 19 20 21
[22] 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
[43] 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
[64] 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84

3The lack of a scalar type in R to represent individual objects is a major departure from many other
programming languages such as Python, C, and Java.

4In R there is a formal distinction between integer (“whole” numbers) and numeric objects. How-
ever, for the level of this text, the distinction will not be important. R will silently convert between the
two as necessary and should never cause unexpected behavior due to the distinction. We will use the
term “integer” throughout to describe something which should be a whole number, but may be formally
represented by an object of class numeric.
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Finally, it is often useful to know the length of a given vector. In order to determine
this, the 1ength function is used. For example, length (x=10:42) would re-
turn the number 33.

2.4 Logical Vectors

Another useful and common type of vectors in R are logical vectors, which can be
constructed as the output of using the expressions > (greater than), >= (greater than
or equal), < (less than), <= (less than or equal), == (equal), and ! = (not equal).

> numericVec <- 1:10
> logicalVec <- (numericVec >= 5)
> logicalVec
[1] FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE
> class(logicalVec)
[1] "logical"
> numericVec ==
[1] FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE

In addition to creating logical vectors by manipulating numeric ones, we can also
construct vectors by using the symbols TRUE and FALSE.

> logicalVec <- c(TRUE, TRUE, FALSE, TRUE)
> class(logicalVec)
[1] "logical"

Logical vectors can be manipulated via the ! (not), | (or), and & (and) expressions.

> logicalVecl <- c(FALSE, FALSE, TRUE, TRUE)
> logicalvVec2 <- c(FALSE, TRUE, FALSE, TRUE)
> logicalVecl | logicalVec2

[1] FALSE TRUE TRUE TRUE

> logicalvecl & logicalVec2

[1] FALSE FALSE FALSE TRUE

> !llogicalvecl

[1] TRUE TRUE FALSE FALSE

Finally, logical vectors are converted to numeric ones when appropriate by mapping
TRUE to the number 1 and FALSE to the number 0. Examples include using logical
vectors in mathematical expressions.

> logicalVecl + logicalVec2
[11] 01 1 2

> logicalVecl + 1

[1] 112 2

> class(logicalVecl + 1)

[1] "numeric"

We shall see that logical vectors are useful tools for filtering and manipulating other
R objects.
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2.5 Subsetting

There are four basic methods for accessing a subset of an R vector. We will discuss
the three most common here. Constructing subsets of vectors in R is straightforward
in principle, but it does quickly lead to fairly intricate, and often complex, code.

The syntax for all subsetting commands uses square brackets, [ and ], imme-
diately following the name of the vector. If an integer ¢ is placed in-between the
brackets the element in position 7 is returned.’ Here, for example, we pull out the
20th element of the vector vector0Obj.

> vectorObj <- 101:132
> vectorObj[20]
[1] 120

The integer index notation can also use an assignment. Here is an example of setting
the 17th element to —2:

> vectorObj[17] <- -2
> vectorObj

[1] 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
[17] -2 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132

The integer input inside of the brackets need not be of length one (remember that
“numbers” are just vector of length one). We use the same notation to extract four
elements of the vector; notice the usefulness of the colon operator for accessing a
consecutive sequence of a vector.

> vectorObj[c(6,17,20,30)]
[1] 106 -2 120 130

> vectorObj[5:10]

[1] 105 106 107 108 109 110

Again, the same notation can be used to assign multiple values to a vector.

The integer subsetting mechanism provides some powerful operations that may
not be immediately obvious. There is no restriction on how often an element can be
returned. For example, we can create a length three vector where every element is
equal to element 20 from our vector vectorObj.

> vectorObj[c(20,20,20)]
[1] 120 120 120

Or, by using an index that runs from the length of the vector down to 1, the reverse
of the vector will be returned.

> vectorObj[length(vectorObj) :1]
[1] 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 -2
[17] 116 115 114 113 112 111 110 109 108 107 106 105 104 103 102 101

SNote that R starts indexing at 1 instead of O unlike many other languages (Python, Java, C, etc.).
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The concept of recycling values from vector arithmetic can also be applied to subset
assignment. For example, we can assign the number 1 to the first 10 elements of the
vector.

> vectorObj[1:10] =1
> vectorObj

[1] 1 1 1 1 1 1 1 1 1 1 111 112 113 114 115 116
[17] -2 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132

The single value was recycled to set the first 10 elements to 1.

The second method for subsetting a vector uses a vector of negative integers
between the square brackets resulting in a vector with the corresponding elements
removed.

> vectorObj <- 101:132
> vectorObj[-1]

[1] 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
[17] 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
> vectorObj[-c(1,length(vectorObj))]

[1] 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
[17] 118 119 120 121 122 123 124 125 126 127 128 129 130 131

This method is the least likely to be complex as the result is a true subset of the
original vector without any duplication or permutation of the results.

The final method for subsetting vectors shown here uses a logical vector in bet-
ween the square brackets. Only elements corresponding to TRUE are returned.

> vectorObj <- 1:8
> vectorObj [c (TRUE, TRUE, FALSE, FALSE, FALSE, TRUE, TRUE, FALSE) ]
[1] 1 26 7

Typically the logical vector will have the same length of the original vector; when
this is not the case, elements of the logical index are recycled.

The most common usage of logical subsetting involves constructing the logi-
cal vector by inequalities on the original vector. For example, the following code
snippet returns the elements of vectorObj that have elements greater than 5.

> logicalIndex <- vectorObj > 5

> logicalIndex

[1] FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE
> newVectorObj <- vectorObj[logicalIndex]

> newVectorObj

[1] 6 7 8

As with the previous two subsetting commands, logical indices can be used for
object assignment. Here we take a vector of integers between 1 and 100 and truncate
those values that are less than 25 and greater than 75.
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vectorObj <- 1:100

vectorObj [vectorObj <= 25] <- 25

vectorObj [vectorObj >= 75] <- 75

vectorObj

[1] 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25

vV V VvV Vv

[22] 25 25 25 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
[43] 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
[64] 64 65 66 67 68 69 70 71 72 73 74 75 75 75 75 75 75 75 75 75 75
[85] 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75

Notice that we did not explicitly construct and save a logical vector. Instead the
expressions vectorObj <= 25 and vectorObj >= 75 were directly passed
inside the square brackets; the indexing vector was constructed “on the fly” and
thrown away at the end. This is a common paradigm in R scripts for taking subsets
of numeric vectors.

2.6 Character Vectors

In addition to numeric and logical vectors, R has a class for character vectors.®

> stringVec <- c("pear", "apple", "pineapple")
> class(stringVec)

[1] "character"
> stringVec
[1] "peaxr" "apple" "pineapple"

Many functions are available specifically for working with character vectors. For
example, the paste function combines two or more character vectors. Here we
paste the word “juice” onto the character vector of fruits. Because of the recycling
logic in R, “juice” only needs to be typed once rather than three times. We do need

to make sure to indicate the separator by using sep = "". In this case, a space is
desired.

> paste(stringVec, "juice", sep = " ")

[1] "pear juice" "apple juice" "pineapple juice"

The substr command returns substrings of the inputs by using the character off-
sets. Here we take the second, third, and fourth characters from every element in
the vector:

> > substr(stringVec, start=2, stop=4)
[1] "eagr" ||ppl|| "ine"

The parameters start and stop can be passed inputs, which are the same length
as the string in order to take different subsets of each element. This can be used
together with the nchar function which returns the number of characters in each

6 As mentioned earlier, there are formally six primitive types of vectors, but we will not need to use
raw or complex vectors. As well, we do not need to distinguish between numeric and integer vectors.
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element of the character vector to return a set of substrings that removes just the
first two characters of each string.

> nchar (stringVec)

[1] 4 5 9
> substr (stringVec, 3, nchar(stringVec))
[1] ngr" ||plen ||neapplen

The function grep takes a pattern and returns the indices that have characters con-
taining the given pattern. These indices can be used with the subsetting commands
to return a subset of a character vector corresponding to those elements contain-
ing the particular pattern. For example, if we use the pattern “apple” in the grep
function, the elements “apple” and “pineapple” can be extracted.

> index <- grep(pattern="apple", x=stringVec)
> index

[1] 2 3

> stringVec [index]

[1] "apple" "pineapple"

The pattern element to grep, which stands for global regular expression print, need
not be a fixed string and may contain wildcard characters such as *. The input
can in fact be any pattern corresponding to a regular expression; see the help page
?regexp for a complete description.

We have already seen that logical vector gets converted to numeric ones when
we try to use them in arithmetic. What happens when we try to use a character
vector that contains a number in quotes in addition?

> "in o4 1
Error in "1" + 1 : non-numeric argument to binary operator

An error gets thrown refusing to use character vectors in arithmetic operations.
However, if we try to use a numeric vector in a character operation such as paste,
the command runs without a problem by silently converting the numeric values to
characters.

> paste(4:12, "th", sep = "")
[1] ll4thll |l5th|l ll6thll |I7thll ll8th|l ||9thll llloth" ||11thll l|12th|l

The reason for this is that R has the concept of implicit type coercion. Accordingly,
objects are automatically converted to the appropriate type, but only when this can
be done unambiguously and without any possible errors. Generally, this means that
logical and numeric vectors are converted between one another and into character
vectors whenever needed; however, character vectors must be explicitly cast into
numeric objects because this may cause errors when a string does not actually rep-
resent a number (such as “pear”).

The function as . numeric is used to cast any vector into a numeric one; it can
be used to fix our previous error:
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> as.numeric("1") + 1
[1] 2

Other casting functions such as as.logical and as.character can be used
to explicitly convert vectors into their respective types.

2.7 Matrices and Data Frames

Matrices (plural form of matrix) provide an extension to vectors by providing a
dimensionality to the data. A matrix object can be constructed from a given vector
by providing the desired number of rows and columns. The resulting object, when
printed, displays the data in a grid with the given number of columns and rows.

> mat <- matrix(data=1:12, nrow=3, ncol=4, byrow=FALSE)
> mat

[,11 [,21 [,31 [,4]
[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12
> class (mat)
[1] "matrix"

The option byrow determines whether the vector fills up the matrix over rows or
columns.

> mat <- matrix(data=1:12, nrow=3, ncol=4, byrow=TRUE)
> mat

[,11 [,21 [,31 [,4]
[1,] 1 2 3 4
[2,] 5 6 7 8
[3,1] 9 10 11 12
> class (mat)
[1] "matrix"

To access a given element, the same bracket notation is used except that now two
sets of indices are given and separated by a comma with the first number denoting
the desired rows and the second giving the columns. Any of the subsetting vectors
(integers, negative integers, and logical vectors) can be used.

> mat[2,3]
[11 7
> class(mat[2,3])
[1] "integer"
> mat[1:2,1:2]
[11 [,21]
] 1 2
] 5 6
lass(mat[1:2,1:2])
"matrix"

[1,
(2,
> C
[1]

In the case of only wanting to subset by one dimension, the other dimension’s index
can simply be left blank (understood to mean all rows/columns). For example,
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grabbing all rows from the 2nd and 3rd columns uses [, 2:3] as the subsetting
command.

> mat[,2:3]
[,1]
2
[2,1 6
[3,] 10

Care should be taken when extracting only a single row or column, as by default R
will convert the matrix into a vector. The additional parameter , drop=FALSE can
be passed inside the brackets to stop this behavior.

> class(mat[1,])

[1] "integer"

> class(mat[1l,,drop=FALSE])
[1] "matrix"

The automatic demotion to vectors is a common cause of subtle bugs in R scripts.

It is also possible to use matrices in arithmetic calculations. When used in com-
bination with vectors, the vector values are recycled throughout the length of the
matrix.” Basic operations between matrices require each to have the same dimen-
sions and the operations are applied element-wise.

> matCol <- matrix(data=1:12, nrow=3, ncol=4, byrow=FALSE)
> matCol + 1

[,11 [,21 [,31 [,4]
[1,] 2 5 8 11
[2,] 3 6 9 12
[3,] 4 7 10 13
> mat + matCol

[,11 [,21 [,31 [,4]
[1,] 2 6 10 14
[2,] 7 11 15 19
[3,1] 12 16 20 24
> mat + matColl[,2:3]
Error in mat + matCol[, 2:3] : non-conformable arrays

It is possible to construct matrices from any vector class (such as logical, numeric,
or character), though by far the most common is the numeric case.

In many cases, it is advantageous to have a matrix-like object where each col-
umn has a different data type. The data frame object was created for exactly this
purpose; the prevalence of such an object in the base language of R is a result of
the language’s history as a tool for statistics and data analysis. To construct a data
frame, the function data.frame is used with each desired column of data passed as
a separate argument; these are usually named in order to denote the meaning of
each column. Here we construct a data frame with three columns named “a”, “b”,
and “c”.

7A warning is given if the vector’s length does not divide the length of the matrix; an error is thrown
when the vector is longer than the matrix.
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df <- data.frame(a = 1:5, b=21:25, ¢=1:5 + 0.5)

\%

> df
a b c
1121 1.5
2 2 22 2.5
3 3 23 3.5
4 4 24 4.5
55 25 5.5
> class(df)
[1] "data.frame"

Three useful properties called attributes are attached to every data frame object in
R: the dimension of the data frame, the column names, and the rownames. These
are accessed as follows:

> dim(df)

[1] 5 3

> colnames (df)

[1] ngn nbu nan

> rownames (df)

[1] lllll l|2|| ||3|| "4" "5"

The dimension command returns a vector with the number of rows as the first ele-
ment and number of columns as the second. The vectors resulting from these three
commands can also be changed by assigning to them. For example, the following
changes the second variable name from “b” to “newName”.

> colnames (df) [2] <- "newName"
> df
a newName c
11 21 1.5
2 2 22 2.5
3 3 23 3.5
4 4 24 4.5
55 5.5

25

These three commands also work for matrices. The output of dim for matrices is
in exactly the same format as for data frames; the column names and row names
are slightly different because by default matrices have missing names (data frames
always have these). However, these can be set and manipulated manually in the
same way.

The matrix subsetting commands work the same way on data frames. There is
also an additional (and very useful) way to access a single column of a data frame
by using the $ operator followed by the variable name.

> df$newName
[1] 21 22 23 24 25
> class (df$SnewName)
[1] "integer"
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The dollar sign notation can also be used to construct a new variable attached to a
data frame. Any referenced variable will be constructed at the end of the data frame
when referenced.

df$newColumn <- 5:1

\%

> df

a newName ¢ newColumn
11 21 1.5 5
2 2 22 2.5 4
3 3 23 3.5 3
4 4 24 4.5 2
5 5 25 5.5 1

The dollar sign notation does not work for matrices, even when column names are
manually constructed.

2.8 Datal/O

Beyond typing vectors, matrices, and data frames directly, we can also load external
data into R. As a prelude to this, we will need to interact with the computer’s file
system. At any given point, R has a notion of a current working directory; this is
a location in the file system where it will read and write inputs and outputs. The
default location will depend on your specific operating system and the method by
which you are accessing R (i.e., RStudio, the console, an executable, or the termi-
nal).

The current working directory is displayed with the getwd function and can be
changed via the setwd function. For example, the following code snippet changes
the working directory from a user’s home to their desktop on Mac OSX.

> getwd ()

[1] "/Users/myUserName"

> setwd("/Users/myUserName/Desktop")
> getwd ()

[1] "/Users/myUserName/Desktop"

On Windows, here is an example of the same process changing from a users’ home
directory to their documents directory.

> getwd ()

[1] "C:/Users/myUserName"

> setwd("C:/Users/myUserName/Documents")
> getwd ()

[1] "C:/Users/myUserName/Documents"

Notice that we have used the forward slash / rather than the more typical to Win-
dows backslash \; this is because R recognizes the backslash as an escape character
and would otherwise throw an error.®

81t is also possible to use double backslashes on Windows machines. We recommend the forward
slash as it makes code cross-compatible between operating systems.
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The first step to reading in a dataset is to set the working directory to the location
containing the data. Once there, the dir function displays a character vector of all
the files in the current working directory. Here we have navigated to a directory
containing two small files regarding properties of fruit.

> dir()
[1] "fruitData.csv" "fruitNutrition.csv"

The extensions “csv” indicate that these are comma separated value files; data is
written in a tabular form in plain text with rows separated by newline characters and
columns separated by commas. Files in this format can be exported from various
database and spreadsheet programs. To read one of these files use the read.csv
function and save the result as an R object.” Note that we have set the option
as.is=TRUE. We will do this regularly for loading and manually constructing
data frames. It is necessary in order to stop R from constructing factors as in gen-
eral we will not be using them.!”

> fruitData <- read.csv(file="fruitData.csv", as.is=TRUE)
fruitData

\%

Fruit Color Shape Juice
1 apple red round 1.0
2 banana yellow oblong 0.0
3 pear green pear 0.5
4 orange orange round 1.0
5 kiwi green round 0.0
> class (fruitData)
[1] "data.frame"
> class (fruitDatas$Juice)
[1] "numeric"

The output is a data frame containing five rows and four columns. Notice that in
reading the data, R has detected that the column named “Juice” should be stored as
a numeric variable.!!

An analogous function write.csv exists for saving data in R as a csv file.
Consider saving only the “Juice” variable as a new plain text file.

> write.csv(x=fruitDatasJuice, file="fruitDatadJuice.csv")

The output will be saved in the current working directory. Opening the resulting file
in a text editor shows that more than just the five Juice numbers have been saved.

9The function read . csv is a shortcut to the more general function read . table, which has over
a dozen options for reading in a number of plain text formats.

10Factors are mainly used for statistical modeling. Even in those cases, most avoid them until abso-
lutely necessary. As a result, we too will avoid factors as they are more likely to cause complications
than help with humanities data.

" Juice = 1 indicates fruits commonly sold in juice form in the U.S. and Juice = 0.5 to those sometimes
available in juice form.
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n |l, llxll
|l1|l'l
|l2|l'0
"3,0.5
|l4|l'l
"5",0

The additional data on the first line and the first column are there to represent row
and column names. Prior to saving the fruitDataJuice vector, it was coerced to a
data frame. In the process, default row and column names were attached (recall
that data frames always have these). Reading the data back into R shows that the
fruitDataJuice data is now saved as a data frame object.

> fruitDataduice <- read.csv(file="fruitDataJuice.csv")
> class(fruitDataduice)
[1] "data.frame"

We could have avoided the additional row and column names from existing in the
plain text csv file by specifying additional parameters in the function call, but there
is no way of using read . csv to output anything other than a data frame.

An alternative way of saving R data is to save a serialized object as an R data
file. The extension “.rds” is commonly used for the output.

> saveRDS (object=fruitDatasduice, file="fruitDataduice.rds")

Opening this in a text editor shows an uninterpretable jumble of characters. It will
look different in different text editors, all of which will be unreadable. Below is one
example.

?2?2?2?217?7?>

However, reading it back into R is a simple matter of calling the readRDS function.

> fruitDataduice <- readRDS(file="fruitDataJuice.rds")
> class (fruitDataduice)

[1] "numeric"

> fruitDataduice

[1] 1.0 0.0 0.5 1.0 0.0

In this case, the result was returned exactly as we saved it: a numeric vector.

As a general rule of thumb, plain text files such as csv are best used when sharing
data with others or when storing the final results of an analysis. These files are much
easier to understand when looking at the output and can be easily imported into
other software and programs. On the other hand, R data files are great for storing
intermediate results as they can be saved and written without worrying about losing
details in the conversion process. When dealing with larger datasets, R data files are
beneficial because they take less storage space on the disk and can be loaded back
into R significantly faster.
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2.9 Advanced Subsetting

There are several functions in R written specifically in order to assist with complex
forms of subsetting. Consider the task of taking only those rows in our fruit data
frame with color equal to “red” or “green”. One method based on our current tools
constructs a logical vector using the “or” (| ) operator.

> index <- (fruitData$Color == "red" \ fruitData$Color == "green")
> index
[1] TRUE FALSE TRUE FALSE TRUE
> fruitData[index, ]
Fruit Color Shape Juice
1 apple red round 1.0
3 pear green pear 0.5
5 kiwi green round 0.0

This can quickly become cumbersome when the number of categories becomes
large. The $in% operator provides a convenient shortcut for constructing the logical
index vector.

> fruitData$Color %in% c("red", "green")
[1] TRUE FALSE TRUE FALSE TRUE

Now that we have identified the red and green fruits, we can pull out the corre-
sponding rows. Remember that when we subset a date frame, we need to specify
both rows and columns. Because we want all the columns, we will leave a blank
after the comma inside of the square brackets.

> fruitData[fruitDatasSColor %in% c("red", "green"),]
Fruit Color Shape Juice

1 apple red round 1.0

pear green pear 0.5

5 kiwi green round 0.0

w

Using this, for instance, we can quickly discover that only one fruit in our data has
a corresponding color named after it.

> fruitData[fruitDatas$Color %in% fruitData$SFruit,]
Fruit Color Shape Juice
4 orange orange round 1

Writing without the $in% operator, this would have required a much longer chain
of conditional logic.

Another common task is to order a data frame based on a single column. The
function order returns the ordering of integer indices that would sort the vector. By
default this is done in ascending order, but can be reversed with the decreasing
option. The indices can be used to then reorder a vector, matrix, or data frame.
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> index <- order (fruitDatas$Juice,decreasing=TRUE)
> index
[1] 1 4 3 25
> fruitData[index, ]

Fruit Color Shape Juice
1 apple red round 1.0
4 orange orange round
3 pear green pear
2 banana yellow oblong
5 kiwi green round

o O O K
o O Ul o

When presented with ties, as was the case with the Juice variable, the order func-
tion uses a stable sort so that the relative ordering is preserved. For example, index
1 (“apple”) came before index 4 (“orange”) because they had the same value and 1
is less than 4.

Often data analysis involves combining independent data sets. Consider a data
frame relating fruits to their caloric content.

> fruitNutr <- read.csv("fruitNutrition.csv", as.is=TRUE)
> fruitNutr
Fruit Calories

1 banana 100
2 pear 100
3 mango 200

In order to combine this data to our original data, we need to know how to relate
the two datasets. The function match takes two vectors and, according to the R
help documentation, “returns a vector of the positions of (first) matches of its first
argument in its second”. The result can be used to join the two datasets together.
However, in our case, not all of the fruits in our original set have nutritional data, so
the match function returns the values NA for the other three fruits.

> index <- match(x=fruitData$Fruit, table=fruitNutr$Fruit)
> index
[1] NA 1 2 NA NA

These are missing values, the abbreviation means “not available”. To deal with
these, the function is.na returns a logical vector of the positions with missing
values.'?

> is.na(index)
[1] TRUE FALSE FALSE TRUE TRUE

In order to join these datasets, we need a new column to insert the calories data.
Therefore, we set the calories variable in the original dataset to missing.

> fruitDataS$Calories <- NA

12You may be tempted to try index == NA. It will run without an error but not return the desired
result.
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Then, use a combination of the is . na function and the variable index.

> fruitDataS$Calories([!is.na(index)] <-
+ fruitNutrs$Calories[index[!is.na (index)]]

> fruitData

Fruit Color Shape Juice Calories

1 apple red round 1.
2 banana yellow oblong
3 pear green pear
4 orange orange round
5 kiwi green round

o B O O

0

o O U1 o

NA
100
100

NA

NA

The data frame fruitData now contains the caloric count for the two matching

fruits.
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Chapter 3
EDA I: Continuous and Categorical Data

Abstract In this chapter, basic methods for exploratory data analysis are presented.
The focus is on univariate and bivariate graphical techniques such as histograms,
bar plots, and tables. Control flow using for loops is also introduced.

3.1 Introduction

The R programming language was originally intended as a tool for exploratory data
analysis. In the previous chapter we covered the basic constructs of the language;
here we move into the more data-specific functionality of R. The focus will slowly
shift away from the language itself, which is ultimately just a tool, and towards the
conceptual methods used for exploring data.

Here, and again in Chap. 4, we use the American Community Survey (ACS) as
an example dataset [1]. The ACS is produced annually by the US Census Bureau.
Unlike the decennial census, it is a survey of only approximately 1 % of the popu-
lation, but asks a substantially longer and broader set of questions. This survey is
convenient to work with as it is in the public domain and freely downloadable. The
variables in the survey, such as age, income, and occupation, are all interpretable
without specialized subject domain knowledge. Also, the ACS, and demographic
data in general, is likely to be of direct interest and application within a wide range
of academic disciplines in both the humanities and social sciences. Due to its size,
we have cleaned the data. We will only look at tract-level data from the state of
Oregon. Additional states and tables are provided in the supplementary materials
for further study.
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3.2 Tables

We start by loading the base ACS file into R using the read . csv function.

> geodf <- read.csv("data/ch03/geodf.csv", as.is=TRUE)
> dim(geodf)
[1] 826 6

Printing the first six rows reveals six variables in this dataset.

> geodf <- read.csv("data/ch03/geodf.csv", as.is=TRUE)
> dim(geodf)

[1] 826 6
> geodf[1:6,]

state fips county c¢sa population households
1 or 1950100 Baker None 2725 1225
2 or 1950200 Baker None 3179 1322
3 or 1950300 Baker None 2395 1162
4 or 1950400 Baker None 2975 1397
5 or 1950500 Baker None 2969 1117
6 or 1950600 Baker None 1812 897

Each row represents a census tract, a county subdivision used for aggregating sta-
tistical survey data. They typically correspond to individual towns or small cities,
though in larger metropolitan areas tracts more closely represent specific neighbor-
hoods.

Looking closer at the columns, the state variable will not be of much help as
all of the data came from Oregon. The fips code is a unique identifier of each row.
The county and csa, short for Combined Statistical Area, fields give larger-scale
groupings of individual census tracts. The population and household columns are
estimated values from the survey sample. Accordingly, all of the data counts we
will look at are similarly “scaled-up” from the 1 % sample taken during the survey.

The first few tracts represented by rows of the dataset belong to Baker County.
How many counties are there in total in our dataset? Does each county have roughly
the same number of tracts? To answer these question, we use the table function,
which takes a character vector and provides a count for each of the unique values in
the vector.!

> tab <- table(geodf$county)
> class (tab)

[1] "table"
> tab
Baker Benton Clackamas Clatsop Columbia Coos
6 18 80 11 10 13
Crook Curry Deschutes Douglas Gilliam Grant
4 5 24 22 1 2
Harney Hood River Jackson Jefferson Josephine Klamath
2 4 41 6 16 20

Recall that numeric and logical vectors can be coerced to characters when needed; the table function
is able to tabulate numeric variables using this trick.
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Lake Lane Lincoln Linn Malheur Marion

2 86 17 21 7 58
Morrow Multnomah Polk Sherman Tillamook Umatilla
2 171 12 1 8 15
Union Wallowa Wasco Washington Wheeler Yamhill
8 3 8 104 1 17

The output of the table function is a new object type “table”, though it can be ma-
nipulated exactly like any named vector for our purposes. From the results, we see
a set of 36 counties, with some (Grant, Wheeler, Wasco) having only one tract and
others (Multnomah, Washington) having over 100.

By default, a table of a character vector will arrange the results in alphabetical
order. To arrange the results based on the frequency counts, we evoke the same
order function and subsetting commands that were previously used to order nu-
meric vectors. We can also use an additional parameter decreasing=TRUE in
the function to order the table; the result is the county with the most census tracts.

> tablorder (tab, decreasing=TRUE) ]

Multnomah Washington Lane Clackamas Marion Jackson
171 104 86 80 58 41
Deschutes Douglas Linn Klamath Benton Lincoln
24 22 21 20 18 17
Yamhill Josephine Umatilla Coos Polk Clatsop
17 16 15 13 12 11
Columbia Tillamook Union Wasco Malheur Baker
10 8 8 8 7 6
Jefferson Curry Crook Hood River Wallowa Grant
6 5 4 4 3 2
Harney Lake Morrow Gilliam Sherman Wheeler
2 2 2 1 1 1

The rearranged table makes our observations from the original table more obvious;
the advantage becomes more noticeable with larger tables. Notice that the table has
reordered both the names and the counts together. To access just the counts we can
convert the table to a numeric vector via as . numeric. Accessing just a character
vector of names requires calling the function names, a variation of the colnames
and rownames we used when working with data frames and matrices.> In order
to get the names of the five counties with the highest number of tracts, we use the
following code snippet:

> names (tab) [order (tab,decreasing=TRUE) ] [1:5]
[1] "Multnomah" "Washington" "Lane" "Clackamas" "Marion"

We will see that this is a useful way of extracting values from character vectors with
a large number of unique values.

The table function is not restricted to creating univariate tables with just one
input. It can be used to tabulate an arbitrary number of inputs. For example, the

2The names function should not be used with matrices; for data frames it returns the column names.
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number of counties in each combined statistical area (CSA) might be of interest. To
understand the relationship between the CSA and counties within Oregon, we build
a two-way table of these two variables.?

> table (geodfS$county,geodfscsa)

Bend Medford None Portland

Baker 0 0 6 0
Benton 0 0 18 0
Clackamas 0 0 0 80
Clatsop 0 0 11 0
Columbia 0 0 0 10
Coos 0 0 13 0
Crook 4 0 0 0
Curry 0 0 5 0
Deschutes 24 0 0 0
Douglas 0 0 22 0
Gilliam 0 0 1 0
Grant 0 0 2 0
Harney 0 0 2 0
Hood River 0 0 4 0
Jackson 0 41 0 0
Jefferson 0 0 6 0
Josephine 0 16 0 0
Klamath 0 0 20 0
Lake 0 0 2 0
Lane 0 0 86 0
Lincoln 0 0 17 0
Linn 0 0 21 0
Malheur 0 0 7 0
Marion 0 0 58 0
Morrow 0 0 2 0
Multnomah 0 0 0 171
Polk 0 0 12 0
Sherman 0 0 1 0
Tillamook 0 0 8 0
Umatilla 0 0 15 0
Union 0 0 8 0
Wallowa 0 0 3 0
Wasco 0 0 8 0
Washington 0 0 0 104
Wheeler 0 0 1 0
Yamhill 0 0 0 17

The result shows the relationship between Oregon’s three CSA’s and 36 counties
(counties that are not in a specific CSA have coded as the CSA ‘None’ in our data).
For example, CSA Bend consists of only two counties, whereas the Portland CSA
is a collection of five counties. The resulting table object can be manipulated using
the same subsetting commands used with matrices; the column and row names,
similarly, are accessible via rownames and colnames.

3CSAs represent groupings of counties with close social and economic ties; we have coded the
typically verbose CSA names with the name of the largest city contained within each area.
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3.3 Histogram

Tables provide a quick summary of categorical variables. In some cases a numeric
variable may have a small discrete set of potential values, in which case a table can
also be useful for summarizing the data. For example, a variable giving the number
of bedrooms in a dataset of housing units must be a nonnegative integer, typically
between 0 and 5. Many numeric variables are either continuous (where nearly every
value is unique) or take far too many unique values to be represented well by a table.

A histogram is a visualization used to quickly understand the distribution of a
numeric variable. The R function hist produces this visualization from a numeric
vector; the resulting graphic may be displayed in a new window, tab, frame, or
application depending on the installation being used.* For example, the following
code produces a histogram of the people per household by census tract.

> ppPerHH <- geodf$population / geodfs$households
> hist (ppPerHH)

The result is shown in Fig. 3.1a. The height of each bar shows the number of data
points that fall between its ranges. We see that most tracts have between 2 and 3
people per household, with a smaller set in the ranges 1-2 and 3—4. Looking closely
at the small bump all the way to the right, there is at least one tract with as many as
9 people per household. A default labeling of the plot and its axes has been given.

Much of the visual space in the default histogram is taken by representing a few
outliers on the right half of the window. We can remove these by filtering out any
tract with more than five people per household.

> hist (ppPerHH [ppPerHH < 5])

b Histogram of ppPerHH[ppPerHH < 5]
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Figure 3.1: (a) Default histogram of population by household at a census tract level.
(b) Histogram of population by household at a census tract level, truncating house-
holds of five people or more.

4We discuss how to save these as external images in Sect. 5.2.
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The new histogram is shown in Fig. 3.1b, with the scale now ranging from 1 to 5.
The bars have automatically adjusted so that each bucket has length 0.5, compared
to the previous plot that had buckets of length 1. The finer grain shows that the tracts
with between 2 and 3 people are approximately evenly distribution between 2 and
2.5 and 2.5 and 3, with only slightly more in the latter group.

By default, the histogram command automatically tries to pick “nice” intervals
for breaking up the data. We have already seen that the length of a bucket decreases
as the range decreases, so that the number of bars remains relatively constant. Also,
the function attempts to pick interpretable breaks points; in our first example these
are whole integers, and in the second these are half integers. The exact algorithm
comes from a classic paper by Herbert Sturges published in 1926 [2].

As dataset sizes have grown considerably over the past 90 years, it is often
desirable to increase the number of buckets to better understand the fine grain detail
of the data. The buckets can be manipulated by passing an input to the parameter
breaks. A single integer input to breaks indicates that the plotting function should
construct breaks number of (equally sized) intervals. For example, the following
asks for 30 buckets.

> hist (ppPerHH [ppPerHH < 5], breaks=30)

The output, Fig. 3.2a, shows a finer grain plot than our previous version. We now see
that the distribution has an approximately bell-shaped curve, centered somewhere
around 2.6 people per household. If we count the buckets, we see that the hist
function has taken our request for 30 intervals as a suggestion; it ultimately decided
to split at every tenth of a unit resulting in 34 buckets.’ The histogram command,
even when asking for a fixed number of breaks, attempts to find “nice” split points
and uses them instead of exactly producing the desired bucket count. Usually this
behavior is helpful. We can change the coarseness of the plot as needed while
allowing R to construct interpretable break points. Occasionally, it is necessary to
manually set the split points of the histogram. To do this, the breaks parameter takes
a vector of split locations. These are taken verbatim and will not be manipulated by
the plotting function. For example, to recreate the breaks from Fig.3.2a, we can
specify the following:

> hist (ppPerHH [ppPerHH < 5], breaks=(13:47) / 10)

The code (13:47) / 10 is simply a convenient shortcut for specifying a seq-
uence of between 1.3 (where the x-coordinate starts) and 4.7 (where the y-coordinate
ends) in steps of size 0.1. Manually setting histogram breaks can be useful when
creating a collection of plots where it can be helpful to keep the scales consistent.
When the numeric data are from a discrete set of numbers, such as grades on a
0-100 scale, it may also be helpful to construct a histogram where each bucket has
exactly one unique value inside of it.

SWe still count buckets even if they are zero. So, in our case, there are three empty buckets.
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a Histogram of ppPerHH[ppPerHH < 5] b Household Size by Census Tract - Oregon
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Figure 3.2: (a) Histogram of population by household at a census tract level, setting
the number of break points to 30 (which is used only as a suggestion). (b) His-
togram of population by household at a census tract level, with title, axis labels, and
shading.

The hist function allows for a great deal of aesthetic customization. For ex-
ample, the parameter main can be used to set the title of the plot. Similarly, x1ab
and ylab provide means for altering the axes labels. Setting the color parameters
shades the inside of the buckets with the desired color. For a list of available color
names type colors () in the R terminal; most of the standard English color names
are available, along with hundreds of additional shades.

hist (ppPerHH [ppPerHH < 5], breaks=30,
col="gray",
xlab="People per Household",
ylab="Count",
main="Household Size by Census Tract - Oregon")

The result in Fig. 3.2b shows the same core histogram, but with buckets shaded in
grey and the descriptive custom plot labels.

3.4 Quantiles

We now load a separate dataset derived from the ACS describing primary means of
transportation to work. The rows correspond exactly to the original dataset geodf.
As the entire dataset consists of numeric values, we will immediately convert the
result of reading into R as a matrix object.

> meansOfCommute <- read.csv("data/ch03/meansOfCommute.csv",
+ as.is=TRUE)
> meansOfCommute <- as.matrix(meansOfCommute)

ORecall that read . csv will always return a data frame.
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> meansOfCommute[1:5,]
total car public trans bus subway railroad ferry bike walk taxi

[1,] 1242 984 0 0 0 0 0 8 62 40

[2,1] 1199 1036 0 0 0 0 0 34 38 14

[3,1 999 849 0 0 0 0 0 21 16 0

[4,] 1035 954 0 0 0 0 0 4 43 0

[5,] 1123 938 0 0 0 0 0 40 55 21
work at home

[1,1] 148

[2,1 77

[3,1] 113

[4,] 34

[5,1 69

The first column gives a total population count, which may differ slightly from the
population in the original dataset for various technical reasons.” Other columns
count the primary modes of transportation to work. The first few rows indicate that
these are highly skewed, with more common modes of transit such as “car” greatly
preferred to more specialized forms such as “ferry”.

Raw counts of this data are not particularly interesting as the census tracts are not
all the same size. Working with percentages makes an easier comparison between
rows of data. Let us say we want to know the percentage of the population walking
to work. Notice that we can access a column of the matrix by using the column
name as an index inside the square braces.®

> walkPerc <- meansOfCommutel, "walk"] / meansOfCommute[,"total"]
> walkPerc = round(walkPerc x 100)

We round the percentage of walkers to a whole number to make it easier to work
with the output.

To explore the distribution of this variable, we might start by constructing a his-
togram as in the previous section. A popular alternative is the five number summary,
which is returned by default by the quant ile function.’

> quantile (walkPerc)
0% 25% ©50% 75% 100%
0 1 3 5 50

The first and last numbers give the minimum and maximum value of the variable,
respectively. Accordingly, there is at least one tract where no one walks to work and
one tract where half of the people walk to work. The middle number is the median
of the dataset, defined as the value such that half of the input values are less than the

7The Census Bureau will not release counts that might identify an individual. For example, if only
one person takes a ferry to work from a given tract, it will not be included in either the total or ferry
column. As a result, population numbers can vary slightly across the data set.

8This is the fourth and final method for subsetting as referenced in Sect. 2.5.

9There is, mostly for historical reasons, also a function fivenum in base R that returns the same
numbers.
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median and half of the input values are greater than it.'° The second number is the

Ist (or lower) quartile, often represented by the symbol ()1; it is defined similarly
to the median, such that 1/4 of the input values are less than it and 3/4 of the input
values are greater than it. The fourth number is the 3rd (or upper) quartile and is
defined analogously; in other words, this means that in 75 % of the tracts, 5 % or
less of the population walks to work.

The five number summary gives a compact description of a numeric variable. In
this case we know that at least one tract has zero walking commuters, whereas at
least one has one out of every two people commuting by foot. A typical census tract
has roughly 1-5 % of the population commute by walking, with 3 % being the most
typical value. The median being closer to the first quartile compared to the third
quartile, and much closer to the minimum compared to the maximum, indicates that
the data are positive skewed. In other words, there are a sizable number of oddly
large values compared to the oddly small values. Recomputing the five-number
summary for the percentage of people commuting by car gives an example of a
dataset that is negative skewed.

> carPerc <- meansOfCommute[,"car"] / meansOfCommutel[, "total"]
> carPerc <- round(carPerc % 100)
> quantile(carPerc)

0% 25% 50% 75% 100%

22 78 85 89 98

Here there are a sizable number of particularly small values compared to overly
large values.

The five number summary is an example of the more general concept of quan-
tiles. If a numeric dataset is sorted and divided up into g equally sized buckets, the
g-quantiles give the breakpoints for these breaks. The five number summary con-
sists of the 4-quantiles, also known as quartiles (hence the name of the 1st and 3rd).
Another common set of quantiles are the 10-quantiles, or deciles. To calculate these
with the quantile function we pass the set of desired probabilities to the prob
parameter.

> (0:10)/10
[1] 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
> quantile(walkPerc, prob=(0:10)/10)
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
0 0 1 2 2 3 3 5 6 10 50

By setting the prob parameter to a range of values between 0 and 1 in steps of size
0.1, the deciles are returned. These give additional information to the distribution of
the walking as a means of commuting, particularly with the higher deciles. We see
that tracts with more than 10 % of the population walking to work are particularly
rare, indicating that the one value of 50 % is particularly anomalous.

By far the most frequently used quantile in nontechnical work is the 100-
quantile, also known as a percentile. In order to help calculate these, we use the
function seq which constructs a sequence of numbers between a start point and

10Technically, if there are n data points, for odd datasets it is the "TH

datasets it is the average of the 5 th and (5 + 1)th largest variables.

th largest value and for even
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end point using a given step size.!! To simplify the output, we also set the names
parameter in the quantile function so that only the values and not their names
are returned. Additionally, we will round with the round function to three decimal
places.

> cent <- quantile(walkPerc,prob=seq(0,1,length.out=100),
+ names=FALSE)
> round(cent, 1)

[1] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0
[14] 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
[27] 1.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
[40] 2.0 2.0 2.0 2.0 2.0 2.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0
[53] 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 4.0 4.0 4.0 4.0
[66] 4.0 4.0 4.0 4.0 4.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 6.0
[79] 6.0 6.0 6.0 7.0 7.0 7.0 7.0 8.0 8.0 9.0 9.0 10.0 10.0
[92] 11.0 12.0 13.0 15.0 18.0 20.0 22.3 31.7 50.0

The middle values are somewhat hard to parse, but the percentiles do a nice job of
characterizing the extreme ends of the distribution. For instance, we see that about
10 % of the data have almost no walking commuters, whereas 4 % (i.e., the top 4
centiles) have at least one in five people walking to work.

For understanding the entire distribution of a numeric variable, histograms often
give an easier to digest representation of the data’s distribution. Quantiles can be
more useful when looking at the extreme values of skewed data. The five number
summary is also very useful in communicating the results of an analysis because a
single five column matrix can summarize datasets with dozens of variables.

Another powerful application of quantiles is their ability to be used in subse-
quent analyses. For example, the quantile at 10 % can be used to label tracts with
particularly low car usage.'? The resulting categorical variable can be used in con-
junction with the CSA designations, which were loaded in Sect. 3.2, to understand
whether there is any regional trend to the presence of low-car usage.

> coff <- quantile(carPerc, prob=0.10)
> coff
10%

66
> lowCarUsageFlag <- (carPerc < coff)
> table(lowCarUsageFlag, geodf$Scsa)

lowCarUsageFlag Bend Medford None Portland
FALSE 28 54 336 327
TRUE 0 3 23 55

By looking at those tracts where car usage is among the lowest decile (specifically,
66 % or fewer people drive to work), we see that the majority of the low-car us-
ing tracts are located in the Portland metro area. This result is not too surprising
given the increased housing density and prevalence of public transit within Ore-
gon’s largest metropolitan area.

!t is also possible to specify the desired output length and let the function determine the necessary
step size.

12The R function can handle any vector of probabilities in the prob parameter, not just formal g-
quantiles. We make extensive use of this throughout this text.
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3.5 Binning

There is a close conceptual link between histograms and quantiles. Histograms take
evenly size intervals and count the amount of data within each interval, whereas
quantiles take equal proportions of a numeric dataset and calculate where the splits
occur. Histograms are also typically displayed as a graphic and quantiles as a string
of numbers, but both can exist in either tabular or graphical form.'* Binning is
a conceptual cousin to both of these methods and is a generalization of the pre-
vious example where car usage percentages were bifurcated into two categorical
variables. Data samples are placed into groups, the “bins”, according to where one
variable falls in a set of cut-off values. Often these cut-off values come from a set
of quantiles, though they may be any set which spans the range of the variable of
interest.

Consider the deciles of the proportion of people commuting by car by census
tract.

> breakPoints <- quantile(carPerc, prob=seqg(0,1,length.out=11),
+ names=FALSE)
> breakPoints

[1] 22 66 76 80 83 85 87 89 90 92 98

An interesting next step is to assign each data point to one of the ten buckets implied
by the deciles. This can be done by the cut function available in R. It takes a
numeric vector and set of break points and assigns each point to one of the implied
buckets. Two parameters that should be altered from their defaults are 1abels
and include. lowest. Setting these to FALSE and TRUE yield the most useful
results for our purpose.'*

> bin <- cut (carPerc, breakPoints, labels=FALSE, include.lowest=TRUE)
> bin[1:42]

[1] 3 6 5 9 5 3 2 4 4 2 6 2 i1 1 1 7 5 5 4 1
[22] i1 3 3 4 3 3 4 5 6 4 2 7 6 5 4 6 3 6 3 7 5
> table (bin)
bin

1 2 3 4 5 6 7 8 9 10
87 93 86 89 68 94 104 45 88 72

The values returned by cut are integer values assigning each input into one of the
deciles. For example, the fourth row of the dataset is in the ninth decile (the second
highest) of car commuters. A table of the bins shows that the number of samples
in each is similar but not completely uniform. As we used quantiles for the cut
offs, it would be reasonable to assume that the sizes would all be the same. The
discrepancy comes about because we rounded the percentages. Looking at the raw
data, we see 51 tracts with 89 % car commuters, which are all currently placed in
bin 7. If these were moved to bin 8 (the smallest), bin 7 would be left with only 53

13A visualization of two sets of quantiles, a Q-Q plot, is a very popular statistical tool. It is used
mostly in conjunction with inferential statistics, which is outside the scope of this text.
14We encourage readers to try cut with other choices to see why these are needed.
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tracts. In short, there is no way to evenly split the tracts up given the discreteness of
the data; the quantile and cut functions do the best job possible.

We will see many uses for the values from binning data. Typically these consist
of using techniques designed for categorical variables with numeric ones by trans-
forming into bin ids. For example, using methods already covered, we can now
use the bin ids to look at our ten bins in a two-way table showing the relationship
between car ownership and CSA designation.

> table(bin, geodfscsa)

bin Bend Medford None Portland
1 0 3 24 60
2 2 5 28 58
3 4 4 30 48
4 1 3 41 44
5 1 3 34 30
6 1 5 44 44
7 8 15 43 38
8 2 5 22 16
9 6 8 48 26
1 3 6 45 18

We see again that Portland dominates the low end of the distribution; those tracts
not in a CSA (likely to be the most rural) dominate the upper quantiles. Given that
in rural areas automobiles are often the only method of transit, this result confirms
our common assumptions about car usage.

While it is often useful to bin data based on the result of calling the quantile
function, the cut function may be used to create buckets with any set of break
points.”> One option is to use equally spaced cuts for the binning. For example,
consider cutting the people per household data (truncated from above at 5) using a
sequence of breaks based on what we did previously in Sect. 3.3.

> bins <- cut (ppPerHH[ppPerHH < 5], breaks=seq(l1.3,4.7,by=0.1),

+ labels=FALSE, include.lowest=TRUE)

> table (bins)

bins
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
2 3 2 5 4 8 18 26 57 69 83 96 110 90 66 68 29
18 19 20 21 22 23 24 25 26 27 28 29 32 34

34 18 8 5 3 2 2 2 1 3 2 4 1 1

The resulting bins, seen as a table, are the exact heights of the bars shown in the his-
togram from Fig. 3.2a! Likewise, if we used quantiles as the breaks in a histogram,
the resulting histogram will consist of bins with equal area, rather than equal widths.
This is shown in Fig.3.3.1

I51f the break points do not span the data set, missing values will be returned for data outside the
range of breaks.

16We originally described the height of the bins in a histogram as the counts, but this was only because
the widths of the buckets were the same. In reality, it is the area of the buckets that matter; these are not
the same with unequally spaced cuts.
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Figure 3.3: Histogram of the percentage of census tract residents who primarily use
a personal automobile to commute to work. Uneven breaks are used, with splits oc-
curring at the deciles of the data. Each histogram bar, therefore, has approximately
the same area.

> hist (carPerc, breaks=breakPoints)

Clearly these three techniques are closely related. Successful data exploration of a
single continuous variable requires adeptly employing all three to their respective
strengths.

3.6 Control Flow

The next set of data from the ACS we will look at gives counts of household-level
income. As before, we read the csv file into R and convert the result into a numeric
matrix, which has the same number of rows as the data frame dfgeo. We do need
one additional parameter to read . csv called check.names to be manually set
to FALSE to prevent R from changing the column names. !’

> hhIncome <- read.csv("data/ch03/hhIncome.csv",as.is=TRUE,
+ check.names=FALSE)
> hhIncome <- as.matrix(hhIncome)
> hhIncome[1l:5,]
total Ok 10k 15k 20k 25k 30k 35k 40k 45k 50k 60k 75k 100k 125k

1 1225 113 60 42 87 50 27 48 950 77 86 183 94 132 86
2 1322 119 162 93 81 91 15 27 72 43 139 113 160 56 106
3 1162 107 69 107 116 60 127 44 88 92 129 86 94 4 8
4 1397 168 188 89 98 84 89 51 58 83 107 146 140 34 24
5 1117 70 131 93 73 66 60 76 89 112 107 90 93 29 3

17The column names we constructed start with a number, which is technically allowed for column
names but not allowed for object names. This means that, as a data frame, we would not be able to
access the columns of hhIncome using the $ operator. As we are converting into a matrix this is
not a concern, so we instruct R not to try to paste an “X” to the front of all the variable names using
check.names=FALSE.
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150k 200k
1 24 26
2 22 23
3 5 26
4 24 14
5 0 25

We have labeled the columns with short names to make them easier to access and
print. Column “20k” represents a count of the number of households that earned
between 20,000 and 25,000 (the next column name) dollars per year. The final
column denotes the number of households that earns 200,000 or more dollars per
year. The first column represents the total number of households represented by this
analysis.

Consider just one row of data from this set, removing the first column of totals.

> oneRow <- hhIncome[1l,-1]
> oneRow

Ok 10k 15k 20k 25k 30k 35k 40k 45k 50k 60k 75k 100k 125k
113 60 42 87 50 27 48 90 77 86 183 94 132 86
150k 200k

24 26

The raw data are interesting in their own right, but perhaps more insightful would
be to convert this into a cumulative count of the number of households that have an
income below some threshold. We could calculate each of these cumulative values
by hand, but R provides a function called cumsum. The function takes a numeric
input and cumulatively adds each element to the one before it. For our row of data
the result is as follows:

> cumsum (oneRow)

Ok 10k 15k 20k 25k 30k 35k 40k 45k 50k 60k 75k 100k 125k
113 173 215 302 352 379 427 517 594 680 863 957 1089 1175
150k 200k
1199 1225

So 863 of the households in this tract make less than 75k dollars per year. Notice
that we need to look at the number right before the value labeled 75k (the one for
60k) rather than its value directly.

How might we go about computing this cumulative sum for the entire dataset?
Clearly we would not do this manually for each row of data; at worst we would
forgo the cumsum function and manually compute each column using vectorized
notation (there are only 16 columns but hundreds of rows). Fortunately, we do not
have to resort to either method. The R language provides a set of tools for what is
referred to as control-flow constructs. One example of these is a for loop, which
iteratively executes a block of code, with one variable taking on each and every
value in a given vector. That is a mouthful that can be better explained through an
example. Take the set of integers 1 : 5. The for loop in the following code

> for (j in 1:5) {
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+ print(j)

+}

will actually execute the following:

jo<-1
print (j)
j o<- 2
print (j)
j <- 3
print (j)
j <-4
print (j)
j <- 5
print (j)

vV V.V V VvV VvV VvV VvV VvV VvV

So when we run the for loop in R, this is what we see:

> for (j in 1:5) {
+ print(j)

+}

[1] 1

[1] 2

[1] 3

[1] 4

[1] 5

The function print needs to be called explicitly, as inside a for loop printing of
unassigned variables is not done automatically as would otherwise be the case. In all
other respects, the code executed by the for loop is exactly the same as the expanded
version given.

With this new construct, we can now use a for loop to cycle over the rows of our
dataset. As is often the case with such loops, prior to doing that we need to construct
an empty matrix in which we will store the results. Here, we make a matrix filled
with zeros that contain the same number of rows and one fewer column (as we do
not need one for the total) than the raw data.

> cumIncome <- matrix (0, ncol=ncol (hhIncome)-1, nrow=nrow(hhIncome))

We now write a for loop where the index j cycles over a sequence of numbers from
1 to the number of columns in hhIncome. In each iteration, the cumulative sum
function is applied to a given row and the counts are divided by the total of the row.
The calculation is saved in a row of our result matrix cumIncome.

> for (j in 1l:nrow(hhIncome))

+ cumIncome[j,] <- cumsum(hhIncomel[j,-1]) / hhIncome[j, 1]
+ cumIncome[j,] <- round(cumIncomel[j,] * 100)

+ }

> colnames (cumIncome) <- colnames (hhIncome) [-1]

At the end, we assign the correct column names to the outcome vector.
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We see that the desired values have been filled into our matrix.

> cumIncome[1:5,]

0k 10k 15k 20k 25k 30k 35k 40k 45k 50k 60k 75k 100k 125k 150k
[1,] 9 14 18 25 29 31 35 42 48 56 70 78 89 96 98
[2,] 9 21 28 34 41 42 44 50 53 64 72 84 89 97 98
[3,1] 9 15 24 34 40 50 54 62 70 81 88 96 97 97 98
[4,] 12 25 32 39 45 51 55 59 65 73 83 093 96 97 99
[5,] 6 18 26 33 39 44 51 59 69 79 87 95 97 98 98
200k
[1,] 100
[2,1] 100
[3,] 100
[4,] 100
[5,] 100

As a nice check, the entire final column is filled with 100s, which is expected as
100 % of the data for each row should be included when cumulatively summing all
of the columns. We will use this cumulative data later in Chap. 4.

3.7 Combining Plots

Returning to the original household income data, notice that it has 16 numeric
columns. If we were actually fully exploring this data, a first good step would
be to pick a single column and to build exploratory histograms and quantile bins to
first understand it by itself.'® As a second step, it would be nice to automate this
process so that we do not have to manually construct 16 sets of exploratory data
figures. The for loop makes this relatively easy.

R provides a way of adding multiple plots to the same graphics window using
the function par, which sets the parameters of our graph. Prior to any plots being
drawn, the par function is called with the parameter mf row equal to a vector of
two integers; subsequent graphics will be plotted by row in a grid with dimensions
equal to the inputs to the mfrow parameter.!” Drawing all 16 histograms is then
possible through the following.?"

> par (mfrow=c (4,4))

> for(j in 1:16) {

+ hist (hhIncome[,j+1] / hhIncomel[,1],

+ breaks=seq(0,0.7,by=0.05), ylim=c(0,600))
+

To begin adjusting the plots aesthetics, we specified the exact break points and lim-
its on the y-axis so that each of these histograms is on exactly the same scale.

$1n the interest of verbosity, we skip that here but encourage readers working along to try this
themselves.

19 A similar parameter mfcol can be used to plot figures by column.

201t is possible that you will get the error Error in plot.new() : figure margins
too large, which can often be remedied by closing the plot window and running the code from
scratch.
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Figure 3.4: Grid of income band distributions at a census tract level using default
margins and titles. Axes ranges are held constant.

The output is shown in Fig.3.4. As we may have expected, the distribution of
proportions becomes higher for the middle ranges before shrinking towards zero
again for the higher income bands. In other words, there are typically the highest
counts of households making 50-100k dollars per year, compared to the counts of
households making significantly less or significantly more.

The default histograms plotted in our grid does a reasonable job of conveying
the distribution of income throughout the tracts in the state of Oregon. However, it
is not possible to read the income bands off of the plot, and a lot of space is wasted
on uninteresting default labels. How might we fix this? To start, we need a vector
of length 16 giving a nice label for each plot. This can be constructed by pasting
together the column names from our data set. After removing the first name “total”,
the first 15 names are pasted, with a dash in between them, to the last 15 names to
show the ranges given in the buckets. The final bucket label is manually added.

> bands <- colnames (hhIncome) [-1]
> bandNames <- paste (bands[-length (bands) ]
> bandNames <- c(bandNames, "200k+")

,"-",bands[-1], sep="")
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> bandNames

[1] "Ok-10k" "10k-15k" "15k-20k" "20k-25k" "25k-30k"
[6] "30k-35k" "35k-40k" "40k-45k" "45k-50k" "50k-60k"
[11] "60k-75k" "75k-100k" "100k-125k" "125k-150k" "150k-200k"

[16] "200k+"

These can now be plotted over the histograms using the function text that puts
a label at a given set of coordinates.”! As all of the plots have the same x and y
ranges, we can hard code this to be at x = 0.33 and y = 500.

In order to make the plot fill up more of the image with interesting data rather
than repeating titles and axes labels, three steps are needed. Within the hist func-
tion call, we set axes to FALSE, and the labels x1ab, ylab, and main to empty
strings. Secondly, we make another call to the par function, setting the parameter
mar (margin) to a vector of four zeros. These values correspond to the bottom, left,
top, and right margins of the plot; we are setting them all to zero. Finally, because
turning off the axes also turns off the box around the plot, which is visually useful
in a grid of histograms, we make an additional call to the function box in each
iteration.

> par (mfrow=c(4,4))
> par (mar=c(0,0,0,0))
> for(j in 1:16) {

+ hist (cumIncomel[,j], breaks=seq(0,1,length.out=20),axes=FALSE,
+ main="",xlab="",ylab="", ylim=c(0,600), col="grey")
+ box ()
+ text (x=0.33,y=500,
+ label=paste ("Income band:", bandNames[j]))
+
1

The output from this code is shown in Fig. 3.5. It is much more visually pleasing and
conveys additional meaning from the original plot due to the inclusion of readable
band labels.

3.8 Aggregation

Another use of for loops is to aggregate a continuous variable over the unique values
of a categorical one, for example, summing up the tract populations in geodf by
their CSA designation to get a population total for each of the combined statistical
areas in Oregon. As before, we first need to create an empty object in which to store
the output of the for loop. Here we do this with the help of the unique function,
which returns the unique values of a vector, in order to construct a named vector of
population totals.

> csaSet <- unique (geodf$csa)
> popTotal <- rep(0, length(csaSet))
> names (popTotal) <- csaSet

21we will see more advanced uses of this function in Sect. 4.
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Figure 3.5: Grid of income band distributions at a census tract level with repressed
margins and titles. Axes ranges are held constant across the plots. Income ranges
are printed in each box.

The data frame is then looped over by row, with each row assigned to a particu-
lar element of csaSet using the match function and its population added to the

corresponding running total.??
> for (j in 1l:nrow(geodf)) ({
+ index <- match(geodf$csaljl, csaSet)
+ popTotal [index] <- popTotal [index] + geodf$population[j]
+}
> popTotal
None Portland Bend Medford

1582446 1816916 181459 287900

22See Sect. 2.9 for a refresh of the match function, a common point of confusion for new R users.
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The resulting vector shows that 1.8 million people live in the Portland CSA (at least
within Oregon; technically the region spills over the state boundary into Washington
State).

Looping over the rows of the data frame is not the only method of using loops
to aggregate over the four CSA designations. An alternative is to cycle over the
set of CSA values, extracting the matching rows of the data frame and adding them
together in each iteration. As an example, here is an example implementing this
aggregation to count the number of individuals who work at home in each CSA
region.

> csaSet <- unique (geodfS$csa)
> wahTotal <- rep(0, length(csaSet))
> names (wahTotal) <- csaSet
> for (csa in csaSet)
+ index <- which(geodfS$csa == csa)
+ wahTotal [csa] <- wahTotal[csal] +
+ sum (meansOfCommute [index, "work_at home"]) * 100
+
1

Dividing this count by the total population shows the percentage of each CSA who
works from home.

> wahTotal / popTotal
None Portland Bend Medford
2.488805 3.083247 3.177026 2.755818

It is commonly known that R slows down considerably when executing loops; so
this second method will scale better when working with large data sets as it re-
quires fewer iterations. At the scale of data we are working with here, though, the
difference is practically unnoticeable.

3.9 Applying Functions

We have used loops to apply a function over the rows of a matrix. In addition to this
method, R has a special syntax for applying functions over the rows or columns of a
matrix using the apply function. The following code snippet, for example, applies
the function sum over the rows of the matrix meansOfCommute. The parameter
MARGIN determines which dimension to apply the function over, with rows having
a value of 1 and columns having a value of 2.

> apply (meansOfCommute[1:10,-1] ,MARGIN=1, FUN=sum)

[1] 1242 1199 999 1035 1123 729 4080 2042 3608 1315
> meansOfCommute([1:10,1]

[1] 1242 1199 999 1035 1123 719 3932 2042 3559 1275

Looking at the apply function of the first ten rows, notice that the function has
verified that the first column is the total of the other columns. Accordingly, 1242
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is the aggregate of the means of commute such as car and bike. Applying the sum
function over MARGIN=2 shows the total counts of transportation types over the
entire dataset.”

> apply (meansOfCommute, 2, sum)

total car public trans bus subway
1700451 1394475 70714 55784 5119
railroad ferry bike walk taxi
2751 32 39789 69285 17085
work_at home
109103

We see, among other things, that only 32 people claim to take a ferry to work.

The apply function can be used even when the result of applying a function to
a row is a vector rather than a single number. The result, assuming each vector is
the same length, is a new matrix with the results combined together. As a practical
example, consider the process of taking the cumulative sum of each row in the
household income dataset. The following one line of code can replace the previous
code block that used for loops:

> cumIncome <- apply(hhIncomel[,-1]1,1,cumsum)
> dim(cumIncome)
[1] 16 826

The result is a flipped version of our previous code because apply always com-
bines the results by column. In order to exchange the rows and columns of a matrix,
the function t (one letter, standing for transpose) is used.

> cumIncome <- t(cumIncome) / hhIncomel, 1]
> cumIncome <- round(cumIncome x 100)
> cumIncome[1:5,]
0k 10k 15k 20k 25k 30k 35k 40k 45k 50k 60k 75k 100k 125k 150k

[1,] 9 14 18 25 29 31 35 42 48 56 70 78 89 96 98

[2,] 9 21 28 34 41 42 44 50 53 64 72 84 89 97 98

[3,] 9 15 24 34 40 50 54 62 70 81 88 096 97 97 98

[4,] 12 25 32 39 45 51 55 59 65 73 83 93 96 97 99

[5,] 6 18 26 33 39 44 51 59 69 79 87 95 97 98 98
200k

[1,]1 100

[2,] 100

[3,1 100

[4,] 100

[5,1 100

The result being the exact same as constructed in Sect. 3.6.

Another variant of the apply function is the tapply function, which applies
a function over one vector by the unique values of another vector. Among other
things, this allows aggregations to be done in a single function call. The following,
for example, applies the function sum to counts of people who work from home by
the unique values of CSAs.

23The MARGIN and FUN parameters are typically unnamed and set positionally, as they are here.
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> wahTotal <- tapply(X=meansOfCommute[, "work at_ home"],
+ INDEX=geodf$csa,
+ FUN=sum)
> wahTotal
Bend Medford None Portland
5765 7934 39384 56020

The result is exactly the same as derived in Sect. 3.8, but with significantly less code
and without the need to pre-calculate the unique values of the CSA variable.

Other variants of apply functions exist in R: lapply, mapply, eapply,
vapply, sapply, and parApply. These are all well documented in their re-
spective help pages; we will mostly stick to the two previously mentioned variants
throughout this text as they provide the majority of the required functionality.
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Chapter 4
EDA II: Multivariate Analysis

Abstract In this chapter, techniques for exploring the relationship between multiple
continuous variables are shown, using scatter plots as basic building blocks.

4.1 Introduction

In Chap. 3 we presented numerous methods for exploring and visualizing datasets.
These techniques were either restricted to a single variable, such as histograms and
quantiles, or involved categorical variables. Here we investigate methods for exp-
loring the relationship between two (or more) continuous variables. These visu-
alizations allow for a high degree of customization by varying color, shape, sizes,
and other graphical parameters. The power of using a programming language for
creating graphs, rather than a point and click GUI, is shown.

4.2 Scatter Plots

A scatter plot is a visualization of two numeric variables using a two-dimensional
region. For each data point, a mark is placed at the horizontal location value of the
first variable and the vertical position of the second variable. Drawing a basic scatter
plot in R involves calling the plot function with the two vectors of interest. As an
example, we plot the number of households and the population of each census tract:

> plot (geodfshouseholds, geodf$population)

The output in Fig. 4.1a shows the default scatter plot, which roughly resembles simi-
lar plots frequently displayed in newspapers, magazines, television shows, and other
popular media. An impressive amount of information is succinctly displayed in this
plot. We can see the range of the two variables, visually identify outliers (a few
tracts with almost no households, and a few with over 4000), and approximately

© Springer International Publishing Switzerland 2015 47
T. Arnold, L. Tilton, Humanities Data in R, Quantitative Methods
in the Humanities and Social Sciences, DOI 10.1007/978-3-319-20702-5_4



48 4 EDA II: Multivariate Analysis

10000
|
10000

geodf$population
6000
|
geodf$population
6000

0 2000
|
0 2000

0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
geodf$households geodf$households

Figure 4.1: (a) Scatter plot showing number of households against population for
census tracts in Oregon. (b) Scatter plot showing number of households against
population for census tracts in Oregon. Solid lines plot have slopes equal to 1, 2,
and 3 and run through the origin. The dashed lines denote the median of each
component.

identify that most tracts have between 1000 and 2500 households and 2000-6000
people. The roughly linear relationship between the two variables is also seen, with
most tracts having two to three people per household. The small set of outliers from
this relationship are also quickly identifiable.

The flexibility of scatter plots in R comes mostly from the ability to layer add-
itional information over a pre-existing plot. We have seen one example of this alr-
eady when adding income band labels to histograms in Sect. 3.7. For the current
scatter plot, a useful addition would be to add lines to help understand the ratio
between population and the number of households. The function abline takes
two numbers and draws a line using the first as the y-intercept (point where the line
crosses the y-axis) and the second as the slope of the line. Running the following
commands adds lines that run through the origin and have slopes of 1, 2, and 3.
A point lying on the second line would, for example, represent a census tract with
exactly two people per household.

> abline(0,1)
> abline(0,2)
> abline(0,3)

It is also possible to add vertical and horizontal lines using abline, by specify-
ing (by name!) the parameter v or h. Here we add lines denoting the median of
each coordinate through the parameter prob=0 . 5. The additional parameter 1ty
indicates that these lines should be dashed rather than solid.

> abline (v=quantile (geodf$households, prob=0.5), lty="dashed")
> abline (h=quantile (geodf$population,prob=0.5), lty="dashed")
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The output from these adding these lines is shown in Fig. 4.1b. While conveying
the same underlying points, the new plot helps to strengthen and refine our previous
observations. For example, we now see that the majority of tracts have between two
and three people per household and none have fewer than one person per household.

We will now turn to another example and explore household income in Oregon
looking specifically at income in the Portland metro area in relation to the rest of
the state. In particular, we can further customize the outputs through additional
parameters in our plot function to make our graph easier to read. We will use
three of these functions frequently to manipulate the way the points are represented
on the plot: cex, pch, and col. The parameter cex defines the relative size of the
points (with one being the default); pch gives a number code to indicate the shape
of the points; and col determines the color of the points. These can all be provided
as single inputs, in which case they effect every point in the scatter plot. Otherwise,
vectors of the same length as the input can be given, with each element effecting
only the corresponding data value. This provides a mechanism for seeing additional
variables in the scatter plot, differentiated by color, shape, or size.

The values for cex are defined as multipliers to the default point sizes given the
scale of the plot. Generally, we will not want a size smaller than 0.5 or larger than
2. Here we set the size of values corresponding to tracts outside of Portland to be
0.5, with those in the Portland metro area set to 1.

> cexVals <- rep(0.5, nrow(geodf))
> cexVals[geodf$csa == "Portland"] =1

Making the points in Portland larger than the dots is helpful as otherwise the plus
signs we are about to add will get lost in a sea of solid dots.

The two shape codes we use most are 19 (solid dots) and 3 (plus signs); for
a complete list of the codes used in defining the input pch, see the help page by
typing ?pch in the R console. Here we will create vector pch values, first setting
all of the values to 19 and then switching those corresponding to the Portland metro
area to 3.

> pchvVals <- rep(19, nrow(geodf))
> pchvVals[geodf$csa == "Portland"] = 3

Using these values, points from tracts in the Portland area will be plus signs and
other tracts will be solid dots.

Finally, to illustrate the point, we can define a custom vector of colors. We
have already seen how to define color using character vectors as described in the list
colors (). Another approach is through the function grey, which takes a number
between 0 and 1 and returns shades of grey with lower numbers being darker and
higher number lighter. For example, the following will make the Portland points a
light grey and the non-Portland points a darker grey.

colVals <- rep(grey(0.2), nrow(geodf))
colvVals[geodfscsa == "Portland"] <- grey(0.8)
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Figure 4.2: Scatter plot of tract level income band data from Oregon, showing the
proportion of households earning $45-50k per year against those earning $75-100k.
Tracts in the Portland metro area are denoted by silver plus signs; other tracts by
dark circles.

The function grey, and its multi-chromatic version rgb, is useful when needing a
larger set of colors as we can pass it a vector of values in order to get a long vector
of shaded colors.

We now use these three graphical parameters in a scatter plot between the two
income variables used in Sect. 3.6.

> plot (hhIncome [, "50k"] /hhIncome[, "total"],
+ hhIncome[,"200k"] /hhIncome[, "total"],
+ cex=cexVals,
+ pch=pchvals,
+ col=colvals)

The output shown in Fig. 4.2 shows the various differentiations between the Portland
and non-Portland data points. We see that the set of tracts with a high percentage
of households with incomes above $200,000 are almost entirely from the Portland
metro area.

4.3 Text

Using the tapply function introduced in Sect. 3.9, we can quickly calculate the
proportion of households in each county that fall within a given income band.

> county30k <- tapply(hhIncomel[, "30k"], geodf$county, sum)

> county200k <- tapply(hhIncomel[,"200k"], geodf$county, sum)

> countyTotal <- tapply(hhIncome[,"total"], geodf$county, sum)
> county30k <- county30k / countyTotal

> county200k <- county200k / countyTotal
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We could construct a scatter plot of the resulting data to understand the relationship
between these two income buckets. Given that each data point has a well-defined
name (the county) and the relatively small sample size, it would be even better if we
could label these points with the county names.

In order to add labels to a plot, the text function is used. We already saw one
application of this when adding income band labels to a grid of histograms. Here
we give the function two vectors of coordinates and vector of labels in order to plot
all the counties at once. In order to have the labels appear slightly above the points,
rather than awkwardly plotting directly over them, we use an offset of 0.001 to the
horizontal components.

> plot (county30k, county200k)
> text (county30k, county200k+0.001, labels=names (county30k), cex=0.5)

The text command accepts the same cex and col, which can again be a single
number or a vector corresponding to each data point. The pch input is not applica-
ble as text labels do not have a shape. Here we reduced the default sizes by half in
order to keep the plot from becoming too cluttered.! The labeled plot is shown in
Fig. 4.3. We see that there is not a clear linear relationship between these variables.
Grant County has the second highest percentage of households making between
$30,000 and $35,000 per year, and it is also one of the top counties for having top
earners.

With the CSA values, we have a method for further grouping the individual
counties. These groupings can be denoted on the plot using color. We first need to
construct a vector with the same length of county30k and county200Xk, des-
cribing the corresponding CSA to each county. This is done via the match function:

> csaValues <- geodf$csalmatch(names (county30k), geodfS$Scounty)]
> csaValues

[1] "None" "None" "Portland" "None" "Portland" "None"
[7] "Bend" "None" "Bend" "None" "None" "None"
[13] "None" "None" "Medford" "None" "Medford" "None"
[19] "None" "None" "None" "None" "None" "None"
[25] "None" "Portland" "None" "None" "None" "None"
[31] "None" "None" "None" "Portland" "None" "None"

These strings values now need to be converted into numeric levels; one way of doing
this is to construct a set of the unique CSA values and save the raw index output of
the mat ch function.

> csaSet <- unique (geodf$csa)

> index <- match(csavValues, csaSet)

> index
f[1111212131311111414111111112111111
[33] 1 21 2

I Tweaks like this are generally done by trial and error.
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Figure 4.3: Scatter plot of county level income band data from Oregon, showing
proportion of households earning $25-30k against those earning $200k or more.

Finally, we take a vector of four colors (one for each CSA) and construct a vector
of color values matching the points in the scatter plot.

> colVals <- c("orchidl", "navy", "wheat3", "olivedrab")
> colvals[index]

[1] "orchidil" "orchidl" "navy" "orchidl" "navy"

[6] "orchidi" "wheat3" "orchidi" "wheat3" "orchidl"
[11] "orchidi" "orchidl" "orchidl" "orchidl" "olivedrab"
[16] "orchidi" "olivedrab" "orchidli" "orchidl" "orchidl"
[21] "orchidi" "orchidi" "orchidi" "orchidl" "orchidl"
[26] "navy" "orchidl" "orchidl" "orchidl" "orchidl"
[31] "orchidl" "orchidl" "orchidl" "navy" "orchidi™"
[36] "navy"

These colors are then used in both the plot and text functions.

> plot (county30k, county200k, col=colVals[index], pch=19)
> text (county30k, county200k+0.001, names (county30k),
+ col=colVals[index], cex=0.5)

Notice that the points have been set to solid dots using the pch; we will use this
frequently in order to accentuate point colors.

The result of this labeled and colored plot is shown in Fig. 4.4. The mapping
between colors and CSA values is given by the following data frame.

> data.frame (csaSet,colVvals)
csaSet colVals
1 None orchidl
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Figure 4.4: Scatter plot of county level income band data from Oregon, showing
proportion of households earning $25-30k against those earning $200k or more.
Color denotes the CSA of the county, with Portland counties in navy, Bend coun-
ties in wheat (dark yellow), and Medford counties in olive. Counties outside of a
Combined Statistical Area are colored in orchid (purple-pink).

2 Portland navy
3 Bend wheat3
4 Medford olivedrab

For understanding the data, the plot does a good job of showing the relationship be-
tween the two income bands and labeling the points with the various county names
and coloring based on the CSA of the county. The plot clearly has some aesthetic
issues; some of the text labels run into one another, a legend mapping colors to
CSAs should be shown directly on the graph, and the colors may not be ideal. We
will address these and other concerns later in Chap. 5.

4.4 Points

Just as we might add text to an already constructed plot, it is also sometimes useful
to add additional points to an existing scatter plot. Consider a scatter plot of two
income band percentages, here at the basic tract level.

> plot (hhIncome[,"30k"] / hhIncomel[,"total"],
+ hhIncomel[,"200k"] / hhIncomel[,"total"],
+ col="black",

+ pch=19,

+ cex=0.5)
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Figure 4.5: Scatter plot of tract level income band data from Oregon, showing the
proportion of households earning $25-30k per year against those earning $200k+.
Red circles highlight tracts where 30 % or more of the population walk to work.

If we are interested in studying places with a higher number of bike commuters, it
would be helpful to call out where these points exist on the plot. One method would
be to color them differently in the first place; alternatively we can identify them
after the fact and plot red circles around the tracts of interest.

Selecting the tracts with a high proportion of bike commuters, the points
command can then be used similarly to the plot command. However, points
draws on top of the current plot rather than creating a new graphic window; it also
does not accept parameters which describe the plot as a whole such as axes limits
(y1lim) and titles (main).

> index <- which(walkPerc > 0.3)

> points (hhIncome [index, "30k"] / hhIncome [index, "total"],
+ hhIncome [index, "200k"] / hhIncome[index, "total"],
+ col="red")

The resulting Fig. 4.5 now clearly calls out the location of these high-bike commuter
tracts.

4.5 Line Plots

The next, and final, dataset from the American Community Survey that we investi-
gate calculates the time of day in which people typically leave their house for work.
Like the other datasets, we convert this to a matrix; we also immediately convert the
raw counts into proportions using the “total” column.

> timeOfCommute <- read.csv("data/ch03/timeOfCommute.csv",

+ as.1s=TRUE, check.names=FALSE)

> timeOfCommute <- as.matrix(timeOfCommute)

> timeOfCommute[,-1] <- timeOfCommute[,-1] / timeOfCommutel, 1]
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The columns represent time ranges, with the labels giving the end of the time range.
So, the column labeled “Sam” gives the proportion of the population who leave for
work between midnight and “5am”.

> timeOfCommute[1:5,]

total Sam 5:30am 6am 6:30am 7am
[1,] 1094 0.05850091 0.053016453 0.05210238 0.12888483 0.11060329
[2,] 1122 0.03297683 0.070409982 0.04188948 0.08288770 0.14171123
[3,] 886 0.02708804 0.049661400 0.11060948 0.06546275 0.05530474
[4,] 1001 0.07492507 0.006993007 0.02397602 0.04795205 0.06593407
[5,] 1054 0.03036053 0.004743833 0.01612903 0.09392789 0.03415560
7:30am 8am 8:30am 9am 10am llam
[1,] 0.17093236 0.1755027 0.05667276 0.06032907 0.04753199 0.03747715
[2,] 0.11408200 0.2638146 0.06862745 0.02852050 0.03119430 0.03208556
[3,] 0.14785553 0.1591422 0.14672686 0.03611738 0.05079007 0.00000000
[4,] 0.13586414 0.3336663 0.07892108 0.06193806 0.06193806 0.00000000
[5,] 0.09962049 0.1764706 0.16129032 0.06925996 0.01707780 0.10056926
12pm 4pm 12am
[1,] 0.000000000 0.02010969 0.0283363803
[2,] 0.018716578 0.07219251 0.0008912656
[3,] 0.012415350 0.02821670 0.1106094808
[4,] 0.000000000 0.06993007 0.0379620380
[5,] 0.008538899 0.06831120 0.1195445920

In this case, we may want to visualize just a single row of data by creating a scatter
plot of time of day against the proportion of the population departing for work at that
hour. To start with this requires (manually in this case) determining numeric values
which write the column name hours as a numeric variable in hours past midnight.

> numericTimes <- ¢(5,5.5,6,6.5,7,7.5,8,8.5,9,10,11,12,16,24)
> plot (numericTimes, timeOfCommute([l,-11)

The points in this plot would actually be better represented as a single line passing
through each point. To do this in R, the 1ines function is used; the syntax is
similar to text and points.

> lines (numericTimes, timeOfCommutel[l,-11)

The output of this one tract’s data is shown in Fig. 4.6.

One problem with our initial plot is that we are using raw proportions even
though the time buckets are not evenly distributed. For instance, the last column
represents 8 h of the day (4 p.m.-midnight), and it is unfair to compare this count to
a bucket with only half an hour of time. To alleviate this we construct a modified
version of the time data where each bucket is divided by the number of hours it
contains.

timeOfCommuteDens <- timeOfCommutel[, -1]
timeOfCommuteDens[,1] <- timeOfCommuteDens[,1] / 5
timeOfCommuteDens|[,2:9] <- timeOfCommuteDens[,2:9]
timeOfCommuteDens|[,13] <- timeOfCommuteDens[,13]
timeOfCommuteDens|[,14] <- timeOfCommuteDens|[,14]

0.5

/
/ 4
/ 8
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Figure 4.6: Raw values from a particular census tract, showing the proportion of the
population who leave at a given hour (shown as hours from midnight).
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Figure 4.7: Line plot showing the density of people who commute to work at a given
hour, from one particular tract.

Using these densities rather than raw values will allow for a more accurate descrip-
tion of commute times.

The second issue with the original plot is the difficultly in reading the x-axis
labels. This is supposed to represent time, but in converting to a numeric variable
for plotting this is not reflected in the axes. To fix these, we must manually construct
the axis labels. We have already seen how to turn off the default axes using the axes
parameter and manually adding back the box around the plot.

> plot (numericTimes, timeOfCommuteDens[1,], axes=FALSE)
> lines (numericTimes, timeOfCommuteDens[1,])
> box ()

To add custom axes to a plot, the axis function is used. With a single number, the
default axis will be added to the corresponding side.” As the y-axis was fine in the

21: bottom, 2: left, 3: top, 4: right.
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Figure 4.8: Density of time commuters leave for work. The solid line shows the
hourly median and dashed lines indicate the first and third quantiles.

original plot, we use axis (2) to add it back in. For the x-axis, we can specify the
location of the labels by the at parameter and the labels by the 1abel parameter.

> axis(2)
> axis (1, at=numericTimes, label=colnames (timeOfCommuteDens), las=2)

The 1las=2 is added to rotate the labels so that they do not run into one another.
The improved plot is shown in Fig. 4.7; notice how much easier the plot is to read,
and how the densities in the large buckets on the extreme ends have decreased.

Now that we have a nice plot of a single census tract, how might we similarly
represent all of the tracts? A separate plot for each would be difficult to use as there
are over 800 tracts. A better solution is to use a for loop to plot all of the lines in
the same graphics window. If we did this verbatim, the large number of lines would
mostly just form a hard-to-read black mass of points. The trick is to use an opaque
color for the lines by specifying the alpha value in the grey function. This fills
the lines with a see-through color. Setting the alpha to a number close to zero
creatively turns the simple line function into a way to visualize all of the tracts on
the same plot.

> plot (numericTimes, timeOfCommuteDens[1l,], type="n", axes=FALSE,
+ xlab="time", ylab="density", ylim=c(0,0.4))
> for(j in 1l:nrow(timeOfCommuteDens)) {
+ lines (numericTimes, timeOfCommuteDens[j,],col=grey(0,alpha=0.01))
+
}

The output of this is shown in Fig. 4.8, along with the following additional three
lines which plot the median, first, and third quartiles over the plot.

medianTimes <- apply (timeOfCommuteDens, 2,quantile, probs=0.5)
lines (numericTimes, medianTimes)
glTimes <- apply(timeOfCommuteDens, 2,quantile,probs=0.25)

>
>
>
> lines (numericTimes, glTimes, col=rgb(0,0,0), lty="dashed")
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> g3Times <- apply(timeOfCommuteDens,2,quantile, probs=0.75)
> lines (numericTimes, g3Times, col=rgb(0,0,0), lty="dashed")

From this we see that 8 a.m. is the most popular time to leave, followed very closely
by 7:30a.m. The peak drops off sharply at 9 a.m., at which point most commuters
have already left. There is a steadily increasing trickle of early commuters from
5 a.m. to the peak hours.

4.6 Scatter Plot Matrix

We have shown how to construct a scatter plot to visualize the relationship between
two continuous variables. By utilizing shapes, colors, sizes, lines, text, and points,
we have also been able to incorporate additional variables into a single plot. These
are all great techniques, particularly when producing final plots to succinctly present
information in a paper, book, or presentation. When dealing with a large set of data,
particularly when seeing it for the first time, a less clever solution is often best for
understanding the general relationship between the variables. A common tool uses
a matrix of scatter plots, showing the relationships between all pairs of continuous
variables, as an initial visualization tool. The R function pairs creates such a plot
from just a data frame or matrix; in order to illustrate several important concepts,
we will show how to instead construct such a graphic manually.

We start by creating a four column dataset of combining selected variables from
the means of transportation, time of commute, and income datasets.

> tractData <- data.frame(walkPerc, carPerc,
+ inc30k=timeOfCommuteDens [, "7am"],
+ inc200k=hhIncome[, "200k"] /hhIncome[, "total"])

It turns out that one row of this dataset has a missing value in it. In order to remove
this, we combine the is.na function from Sect. 2.9 and apply function from
Sect. 3.9, picking out only rows with no missing values.

> tractData <- tractDatalapply(is.na(tractData),1l,sum) == 0, ]

We have previously had this missing value floating around in our dataset, but up
until now have not needed to remove it because the scatter plot functions handle
missing values by simply ignoring them.

In order to construct the scatter plot of matrices, we need to construct nested
for loops, where one loop is contained inside another. We also need to use a new
control flow function i £, which evaluates its argument, and only if true execute the
remainder of the code. For example, the following code cycles through all combi-
nations of ¢ and 7 in the set 1 to 5, but prints the result only when 7 is strictly less
than j.

> for (1 in 1:5) {
+ for (3 in 1:5) {
+ if (i < j) print(paste(i,":",j))
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+ )

+}

[1] "1 : 2v
[1] "1 : 3"
[1] "1 : 4v
[1] "1 : 5"
[1] "2 : 3"
[1] "2 : 4v
[1] "2 : 5"
[1] "3 : 4v
[1] "3 : 5"
[1] "4 : 5"

These nested loops and control statements can become complex, but should be und-
erstandable by decomposing them into their respective parts.

The matrix of scatter plot requires setting three graphical parameters. We have
already seen how to tell R to put multiple plots on a single image using par and
to change the plot margins using mar. For this plot we want to have small margins
between the plots, but a larger margin around the entire graphic; this is achieved by
manipulating the oma parameter.

> par (mfrow=c(4,4))
> par (mar=c(1,1,1,1))
> par(oma=c(2,2,2,2))

With these in place, we now cycle through all combinations of the variables i and
j to create the matrix of scatter plots. The 1f statement is used to: (1) add a set
of vertical axis labels down the first column, (2) add a set of horizontal axes labels
across the bottom row, and (3) add a title using the t it 1e function to the top row
of the matrix. Opacity has been used to help show overlapping points.

> par (mfrow=c (4,4))

> par(mar=c(1,1,1,1))

> par(oma=c(2,2,2,2))

> for (i in 1:ncol (tractData)) {

+ for (j in 1:ncol (tractData)) {

+ plot (tractbatal,jl,tractbatal,i]l, pch=19,col=grey(0,0.2),
+ axes=FALSE)

+ box ()

+ if (i == 1) title(main=colnames (tractData) [j])

+ if (i == ncol(tractData)) axis(1l)

+ if (J == 1) axis(2)

+ )

+}

This code constructs the graphic shown in Fig. 4.9. It provides a simple way of
visualizing the entire data frame at once. Many useful tweaks can be applied to
our basic plot. The diagonal of the plot is not particularly insightful, for example,
and could be replaced with a histogram of the associated variable. Also, the top and
bottom of the grid are simple mirrors of one another and one copy could be replaced
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Figure 4.9: Manually constructed pairs plot of four derived variables from the Amer-
ican Community Survey for tracts in the state of Oregon.

with alternative information or graphics. For examples of these alternatives, see the
help pages for pairs.

4.7 Correlation Matrix

We have focused on simple tables and graphical methods for exploratory data anal-
ysis, avoiding model-based approaches such as t-tests and qq-plots. One numerical
technique which deserves at least a passing mention are correlation matrices. The
correlation between two variables is a number between —1 and 1 describing the
strength of the linear relationship between them.> A value close to 1 indicates that
one variable is approximately a positive multiple of the other. For example, the
number of households and the population in a census tract have a correlation of

3Technically this is known as the Pearson correlation, but when “correlation” is used without a
qualifier this is generally what is meant.
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0.92. Negative correlations close to —1 indicate a similar relationship, but where
one variable tends to increase as the other decreases. Correlations near zero indicate
the lack of linear relationship between the variables in question.

A correlation matrix calculates all pairs of correlations in a dataset, analogous
to a scatter plot matrix. Calculating a correlation matrix in R is as easy as calling
the function cor on a numeric matrix.

> corMat <- cor(tractData)
> round (corMat, 2)
walkPerc carPerc inc30k inc200k

walkPerc 1.00 -0.71 -0.27 -0.04
carPerc -0.71 1.00 0.30 -0.13
inc30k -0.27 0.30 1.00 0.02
inc200k -0.04 -0.13 0.02 1.00

Unsurprisingly, the percentage of people who walk to work and the percentage who
drive to work are negatively correlated. When one proportion is high, we would
naturally expect the other to (generally) be low. The two income band counts are
relatively uncorrelated, something we saw at the county level in Fig. 4.3. It does
seem that tracts with a higher than typical proportion of car commuters have more
households in the $30,000 income bracket but a decreased number of high earners.




Chapter 5
EDA III: Advanced Graphics

Abstract In this chapter, we show several methods for increasing the usability and
aesthetic quality of graphics in R. Random number generators and color spaces are
also introduced as tools for creating quality graphics.

5.1 Introduction

The graphics we constructed in the previous two chapters have done a nice job of all-
owing us to quickly explore and understand categorical and numeric variables. We
used graphical parameters such as color to represent additional information in scat-
ter plots, while tweaking margins, layouts, and color opacity to fit multiple analyses
into a single graphics window. The resulting visualizations already generally look
clean and professional. The flexibility of the R programming language provides
tools for further increasing the aesthetic value of these plots; this chapter explores
several of these methods. As a by-product, the resulting graphics are also often
better from the standpoint of basic data exploration.

5.2 Output Formats

In order to use R graphics for presentations and publications, we need a way of
saving them as external files. There are often several ways to do this such as right-
clicking the plot or selecting from a drop-down menu depending on the method of
accessing R. These approaches are fine for quickly saving results during an exp-
loratory analysis. It is also possible to save the graphical output to a file by calling a
sequence of R functions. We recommend this approach as it is platform and console
independent. If you have a long script that produces dozens of graphics, updating
all of the graphics is just a matter of copying and pasting the entire script into R.
Finally, parameters such as the width and height of the plot are fixed in the code

© Springer International Publishing Switzerland 2015 63
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and will not change from run to run. When using the menu-based options, these
parameters are usually determined by the current window size (and is very difficult
to replicate).

To save R graphics as a portable document format (pdf) file, the function pd£f
is called prior to calling any of the graphics commands. The filename of the output
as well as width and height of the output in inches should typically all be specified.!

> pdf (file="filename.pdf", width=4, height=4)

After calling this command, functions such as plot and text, which previously
created graphics windows inside of R, will now only plot to the pdf file. If multiple
commands are called that would have overwritten a previous plot, these are placed
in a new page of the pdf file (another benefit of the command over point and click
methods). Once all of the graphics command have been executed, we need to tell R
to close its connection to the pdf file by turning the device off. This is done with the
command dev . of f; it should return a short reference to the device to let us know
that it has been successfully closed.”

> dev.off ()
null device
1

After closing the pdf file, graphics commands will work as normal with results
displayed directly in R windows. The resulting pdf file can be opened using any
external pdf viewer and embedded into e-mails, presentations, websites, and other
media. Do not try to open the file prior to closing the graphics device, as it will
appear corrupted and will not be viewable.

Other output formats can be saved using a similar method. The functions bmp,
jpeg, png, and tiff each save files in formats corresponding to their names.
These differ from the pdf function in that the default height and width are in pixels
(individual points) rather than inches, and they do not support multiple pages. If you
plot more than one graphics window with these, only the last graphic appears in the
final output. The following code illustrates how to save a scatter plot to a png file:

> png(filename="myScatterPlot.png", height=800, width=800)
> plot(1:10,1:10)
> dev.off ()
null device
1

While the pdf command saves vector images, the four functions—bmp, jpeg, png,
and tiff—save raster images (hence the reason behind the slightly different def-
ault values). The distinction between these two file formats, and relative pros and

Otherwise a plot named “Rplots.pdf” will be created in the current working directory with a width
and height of 7 inches.

2The device should also close if you exit the R session entirely, but it is a better practice to manually
close it so as to not risk corrupting the file.
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cons of each, is explored at length throughout Chap. 7 in the context of geospatial
datasets and again in Chap. 8 when exploring image analysis.

When constructing complex plots, such as the large networks in Chap. 6, plot-
ting can become a painfully slow operation. Writing the output to a file rather than
directly to an R windows is often significantly faster; in these cases, it can be adv-
antageous to use these graphics commands even during the initial stages of data
exploration.

5.3 Color

Good use of color is an essential part of creating most statistical graphics. We have
seen how to use colors by name and through the command grey. Here we show
how to easily construct a color palette, a small vector of the colors used in a plot,
for various tasks. To illustrate these palettes, we load a data set of election results
from the 2012 presidential election in France.

> election <- read.csv("../raw data/france election 2012.csv",
+ as.is=TRUE)
> election(1:5,]

department HOLLANDE SARKOZY LE.PEN MELENCHON BAYROU JOLY

1 Paris 34.83 32.19 6.20 11.09 9.34 4.18
2 Seine-et-Marne 27.65 27.27 19.65 11.01 8.55 1.96
3 Yvelines 27.32 34.24 12.44 9.11 11.24 2.50
4 Essonne 30.39 25.46 15.20 12.26 9.33 2.35
5 Hauts-de-Seine 30.16 34.97 8.51 10.35 10.69 2.74
DUPONT.AIGNAN POUTOU ARTHAUD CHEMINADE HOLLANDE 2 SARKOZY 2
1 1.00 0.67 0.27 0.23 55.60 44 .40
2 2.18 1.02 0.46 0.26 49.25 50.75
3 1.73 0.80 0.35 0.28 45.70 54.30
4 3.41 0.94 0.41 0.24 53.43 46.57
5 1.34 0.69 0.30 0.26 49.48 50.52

Each row corresponds to the results from a particular department, an administrative
division. Columns 2—11 give the percentage of votes won in the first round of voting,
with columns 12 and 13 giving the percentage of votes in the second round of voting
(when only two candidates were on the ballot).

One variable of interest from the first round of voting is the total percentage
of votes from each department that went to candidates other than the two finalists,
Frangois Hollande and Nicolas Sarkozy. Using the apply function this is calculated
as follows:

> otherVotes <- apply(election[,4:11],1,sum)

From the binning method developed in Sect. 3.5, these votes can be grouped into
ten buckets.

> cuts <- quantile (otherVotes,probs=seq(0,1,length.out=11))
> bins <- cut (otherVotes, cuts, include.lowest=TRUE, labels=FALSE)
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The vector bins has numbers 1 to 10, matching the otherVotes variable to a
discrete categorization of buckets.

We want to map each of these ten buckets to a set of colors. Specifically, we
need a sequential palette to show a gradual change between two extremes. We use
the R package colorspace to provide this set of colors. For details on installing R
packages, see Chap. 11. The function heat _hc1, provided by the package, returns
a set of colors ranging from a dark red to a light yellow. The number of colors used
to span this set is given as an input parameter, here we use ten to match the number
of buckets.

> library(colorspace)

> heat hcl(n=10)
[1] "#D33F6A" "#DAS65E" "#E06B50" "#ES57E41" "#E89132" "#EAA428"
[7] "#E9B62D" "#E8C842" "H#E5D961" "#E2E6BD"

The colors are represented as hexadecimal codes, which is also the output given by
grey, and can be used directly by the R plotting functions.® As it is more common
to have red by the highest value, and yellow the lowest, we reverse this set before
saving it as our color palette. These colors are then used to construct a vector col
from the bins.

> heatPalette = heat_hcl(10) [10:1]
> cols = heatPalette[bins]

Now the vector cols can be used to encode the percentage of the vote taken by
the remaining parties in a scatter plot showing the percentages given to the top two
candidates.

> plot (election$HOLLANDE, election$SARKOZY, col=cols, pch=19,
+ cex=1.5, xlab="HOLLANDE %", ylab="SARKOZY %")

The result is shown in Fig. 5.1a. As expected, the reddest points occur in the lower
left of the plot (where Hollande and Sarkozy did relatively poorly) and the yellowest
points occur in the upper right half of the plot.*

Given the two stage election method in France, one interesting metric is to look
at how voters for other candidates split their votes in the second round.” For exa-
mple, we can compute the percentage of the remaining votes assigned to Frangois
Hollande as follows:

3Several websites, such as http://www.color-hex.com/, provide a quick way of decoding
these into a thumbnail of the color.

4The coloring is determined entirely by the other two axes, so this works great as an example of what
a sequential palette of heat colors looks like. It does not, however, provide much useful new information
to the scatter plot.

SWe are implicitly assuming that voters for the front-runners are not changing their votes and that
the exact same group of people vote in each round.
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Figure 5.1: (a) Scatter plot of first round 2012 French Presidential Elections data,
illustrating a sequential color palette. (b) Scatter plot of first round 2012 French
Presidential Elections data, illustrating a divergent color palette.

> percRemain <- (election$HOLLANDE 2 - election$HOLLANDE) /

+ (100 - election$HOLLANDE - election$SARKOZY )
> quantile (percRemain)
0% 25% 50% 75% 100%

0.3613821 0.4817990 0.5251723 0.5768840 0.8498641

By symmetry the remainder of the votes were allotted to Sarkozy. Consider ass-
igning these percentages to colors in the same way we did with the percentages
of voters casting votes for candidates not proceeding to the second round. The
basic idea would still be conveyed, but the color scheme from dark red to light
yellow is not particularly accurate because this data has a natural mid-point at 50 %.
Interesting values are not those at one end of the spectrum, but rather values at either
extreme. A better choice would be a palette ranging from a dark color, through
white, and back to an alternative color. White should correspond to an even 50-50
split of the remaining votes.

To construct the bins to be used with such a color palette, we have to calculate
the data cuts separately for values less than and greater than 50. Otherwise there is
no guarantee that both of these sets will have the same number of buckets; we need
this property so that the “white” value in the middle corresponds to an even split.
To calculate these cuts, we use the quantile function on only a subset of the data
to construct upper and lower break points.

index <- percRemain < 0.5
cutsLower <-
quantile (percRemain[index] ,probs=seq(0,1,length.out=11))
index <- percRemain >= 0.5
cutsUpper <-

>
>
+
>
>
+ quantile (percRemain[index] ,probs=seq(0,1,length.out=11))
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These breakpoints are combined together into a single vector and used, as before, to
bin the output data into chunks.

> cuts = c(cutsLower, cutsUpper)

> cuts
0% 10% 20% 30% 40% 50% 60%
0.3613821 0.4161632 0.4340408 0.4527129 0.4627394 0.4721817 0.4772551
70% 80% 90% 100% 0% 10% 20%
0.4818796 0.4859240 0.4926577 0.4978733 0.5001059 0.5125271 0.5231833
30% 40% 50% 60% 70% 80% 90%
0.5351469 0.5482774 0.5606758 0.5760597 0.5874583 0.6174553 0.6376925
100%
0.8498641

> bins = cut (percRemain, cuts, include.lowest=TRUE, labels=FALSE)

The colorspace package provides a function diverge_hcl that gives a divergent
palette of colors. It uses a white value as its mid-point, diverging toward two sep-
arate colors on either end point. Here we add an additional parameter alpha to
make the colors opaque, and assign colors to each data point using the palette and
data bins.

> divPalette <- diverge hcl(20,alpha=0.5)
> cols <- divPalette[bins]

The scatter plot of first round results for the two leading candidates using this new
color scale is shown in Fig. 5.1b. Here the colors do in fact add new information
to the original plot. We see in general that Hollande did a better job of picking up
votes in the second round, largely the reason he ultimately won the election. For the
most part each candidate did better swaying voters in area where they were already
the stronger of the two, though there were two, shown in the upper center, where
Sarkozy won the first round but Hollande gained significant ground in the second
round.

One interesting way of categorizing the various departments is to see which
of the losing first-round candidates had the highest showing. We calculate this by
again using the apply function together with a new function which . max, which
returns the index of the position with the highest value.

> whichOtherParty <- apply(election[,4:11],1,which.max)
> table (whichMaxThirdParty)

whichMaxThirdParty
1 2 3
94 7 6

We see that Front National candidate Marine Le Pen, identified with index 1 by
looking at the candidate names in the original data, dominated over all the other
candidates by taking 94 of the 107 departments. Parti de Gauche candidate Jean-
Luc Mélenchon and the centrist Francois Bayrou managed to split the remaining 13.

In order to color points by these categories, we need a categorical color palette
where each value is highly distinguishable. This final category is a categorical
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Figure 5.2: Scatter plot of first round 2012 French Presidential Elections data, il-
lustrating a categorical color palette based on the runner-up with the best results by
department.

palette and can be calculated by the rainbow_hc1 function. It is possible to con-
struct this type of palette by hand, but this function will typically do a better job
of finding aesthetically pleasing colors which are maximally differentiated.® When
dealing with categorical variables which have many levels, hand selecting colors
also becomes increasingly difficult.

> categoricalPalette <- rainbow_hcl (3, alpha=0.5)
> cols <- categoricalPalette[whichMaxThirdParty]

The plot from this is shown in Fig. 5.2. Pink, being the most dominant, is obviously
Le Pen, with Mélenchonis the greenish one and Bayrou the blue. We see that the
centrist Bayrou performed well when Hollande and Sarkozy captured a high amount
of the initial vote. Mélenchonis on the other hand did well where Hollande was
also strong; this is reasonable given that Parti de Gauche was a recent off-shoot of
Hollande’s Parti Socialiste.

All of these palette creation routines have additional parameters for controlling
the output (e.g., the divergent palette can be made to instead range between red
and green). See the excellent vignette which comes along with the package for
additional details.

SIn this particular case hand constructing colors may be a better alternative as we could pick those
associated with each party. We use the colorspace function to illustrate the more general approach.
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5.4 Legends

The colorspace package has given us great color palettes for various types of binned
and categorical data. A missing element has been a legend for indicating the mean-
ing behind the values. These can be added to R plots via the 1legend command,
which takes the x and y coordinates where it should be plotted and a vector of labels
corresponding to the elements in the legend. Additional graphical parameters affect
the shape, color, and size of the points plotted in the legend. Here is an example of
the legend that would be used in the plot of the runner-ups in the first round of the
2012 French Presidential election:

> legend ("topright", legend=colnames (election) [4:6],
+ col=categoricalPalette,pch=19,cex=1,
+ bg=grey(0.9))

Figure 5.3 shows the much improved plot with the new legend. We used the bg
parameter to place a light grey background on the image.

A more involved legend can be used to display the levels in a sequential palette.
Recomputing the colors for the maximum number of other votes,

otherVotes <- apply(election[,4:11],1, sum)

cuts <- quantile(otherVotes,probs=seq(0,1,length.out=11))

bins <- cut (otherVotes, cuts, include.lowest=TRUE, labels=FALSE)
cols <- heatPalette[bins]

vV VvV VvV VvV
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Figure 5.3: Scatter plot of first round 2012 French Presidential Elections data, show-
ing the use of a categorical legend.
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Figure 5.4: Scatter plot of first round 2012 French Presidential Elections data, show-
ing the use of a legend with a continuous response.

We take a rounded version of the break points and paste them together for the legend
labels.

> cuts <- round(cuts[11:1])
> legendLabels <- paste(cuts[-1],"-",cuts[-length(cuts)], "%",sep="")

The legend of the plot is now just as before with the new labels and colors.

> legend (45,50, legend=1legendLabels, fill=heatPalette, bg=grey(0.9))

The output in Fig. 5.4 displays the plot with a legend, which now allows us to give
scale to the colors.

5.5 Randomness

When looking at the department by which of the remaining parties did the best, we
noticed several interesting patterns but were not able to easily identify the identity
of the interesting data points. Using the text command could alleviate this by
displaying names next to data points. Here we set the points color to “white”, so
that only the text values are displayed.

> cols <- categoricalPalette[whichOtherParty]

> plot (election$SHOLLANDE, election$SARKOZY, col="white",

+ pch=19, cex=2, xlim=c(10,60), ylim=c(10,60)

> text (election$SHOLLANDE, election$SARKOZY, electionS$department,
+ col=cols)
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Figure 5.5: Scatter plot of first round 2012 French Presidential Elections data, giving
department names.

Unfortunately, the resulting Fig. 5.5 has many overlapping text boxes making the
majority of them unreadable. For our own personal use, a simple solution is to
make the text size significantly smaller and they just zoom in on each region. This
solution is neither elegant nor practical when using the image in print media or as a
presentation tool.

As a tool for statistical analysis, the R language has an extensive number of
functions for generating and working with randomly generated values.” We will not
need most of these, but will make use of the function sample, which takes a vector
and returns a randomly chosen subset of the vector of a given length.

> sample(1:10,3)
[1] 8 6 9

Running this command many times will yield new results. By default, the sample
only picks a value from the set once; the ordering of the output is also randomly
generated.

We can use this command to pick out only a random subset of the data to plot.
Due to the importance in our visualization of the 13 departments where Le Pen was
not the best runner-up, we take a subset consisting of those 13 data points and 15
randomly selected others.

"Technically R only has the ability to construct pseudorandom numbers, but conceptually for most
purposes the distinction is unimportant.
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> index <- which(whichOtherParty %in% c(2,3))
> index <- c(index, sample(which(whichOtherParty == 1), 15))

We now create the plot again, but only for the subset of points in index.

> plot (election$SHOLLANDE, election$SARKOZY, col="white",
+ pch=19, cex=2, xlim=c(10,60), ylim=c(10,60),

+ xlab="HOLLANDE %", ylab="SARKOZY %")

> text (election$SHOLLANDE [index], election$SARKOZY [index],

+ election$department [index], col=cols[index], cex=0.6)

As we see in Fig. 5.6, this is only a modest improvement. We have lost many of
the data points which were previously not a problem, but still have over-plotting in
the dense middle of the plot because the randomly selected set is likely to still pick
several data points from that region.

A clever solution to this problem is to assign every data point to a number giving
its approximate location in the plot. Consider the following scheme:
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Figure 5.6: Scatter plot of first round 2012 French Presidential Elections data, giving
department names. Random sampling used to limit overplotting.
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> location <- round(election$SARKOZY/2) +
+ round (election$HOLLANDE/10) x100
> location
[1] 316 314 317 313 317 410 313 313 312 215 215 214 312 213 312 214

[17] 313 312 315 312 314 314 315 314 314 215 314 311 313 214 312 311
[33] 312 213 213 213 217 216 314 213 313 312 313 315 315 313 216 312
[49] 312 313 314 312 314 313 312 311 312 312 313 312 309 313 311 312
[65] 311 310 312 313 411 311 410 215 312 313 312 313 315 214 217 312
[81] 314 312 311 311 212 313 314 313 213 213 219 214 217 214 216 316
[97] 612 513 414 509 309 322 424 519 323 225 319

The first two digits give the approximate number of votes assigned to Sarkozy, to
a precision of 2, and the hundreds digit gives the votes assigned to Hollande to a
precision of 10. Two points now have the same location value only if they gave
similar votes to each candidate. If we allow only one text label to appear for any
given location value, the plot should not have any intersecting labels; we used a
longer box for the horizontal axis because text takes more horizontal than vertical
space.®

Also, this time we plot a very opaque version of all the data as a base layer; this
means that no data points are completely missing, even though some will be lacking
a textual label.

> colsAlpha <- rainbow hcl (3, alpha=0.2) [whichMaxOtherParty]
> plot (election$SHOLLANDE, election$SARKOZY, pch=19, cex=2,
+ x1lim=c(10,60), ylim=c(10,60),

+ xlab="HOLLANDE %", ylab="SARKOZY %")

We now use a for loop to cycle through the data, plotting a text label only if we
have not seen a point with that given location value. Because this would unfairly
prioritize the rows of data near the top of our data frame, we use the sample
command to randomly permute the indices.’

> index <- c()

> for (i in sample(l:nrow(election))) ({

+ 1f (!(location[i] %in% index)) {

+ text (election$SHOLLANDE [i], election$SARKOZY[i]+1,
+ election$department [i], col=cols[i], cex=0.7)
+ index = c(index, location[i])

+ )

+}

Figure 5.7 shows a very professional looking plot with many of the points labeled
and others only have lightly shaded dots. In particular, notice that all of the points
outside the densely populated center are completely labeled as they share a location
value with no other points.

8If this scheme seems confusing, try running the code yourself and tweaking the 2 and 10 values. It
is significantly easy to describe this in code and examples than via a textual description.

91f sample is used without a sample size, it returns a random permutation of the entire input. This is
the same as would occur when the sample size is manually set to the length of the input.
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Figure 5.7: Scatter plot of first round 2012 French Presidential Elections data, giving
department names. A grid-base version of sampling is used to limit overplotting of
the text boxes.

When using the sample command, we expect the results to change with each
call. If this were not the case, the whole purpose of the function would be lost.
Sometimes, however, we want to make sure that a block of R code using a random
sample will pick the same sample each time it is run. For example, in this text we
wanted to make sure that each plot looks the same when we update the code so that
our description of the output does not also need to be updated. In order to fix the
result of subsequent calls, the function set . seed is used and given an arbitrary
integer at which to set itself. The following code should produce the same subsets
every time it is run.

> set.seed(42)

> sample(1:10,3)
[1] 10 9 3

> sample(1:10,3)
[1] 9 6 5
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Notice that we called sample twice and received two different results. We mention
this primarily as it is used throughout the supplementary material so that readers
working along with the code can exactly duplicate our results when they depend on
arandomly chosen subset.

5.6 Additional Parameters

Typing par () in an R session prints out 72 parameters that effect the output of
an R plot. Dozens of other parameters are set directly within the plot function
and the calls to the graphics devices such as pdf and jpeg. We will not take
the time to explain the massive amount of customization that is ultimately possible
from within R.!® We have covered some of the most important and difficult ones
already in this and the proceeding two chapters. Many data type specific plotting
parameters are mentioned throughout the remainder of this text. We touch briefly
on two additional commands which accomplish tasks which are often asked by new
users of R graphics.

The plain white background of R plot windows are nice for print media, but can
be a bit boring for digital uses. Adding a grey background requires only one line of
code, though it is not a particularly intuitive piece of code:

> rect (par ("usr") [1],par ("usr") [3],par("usr") [2] ,par ("usr") [4],
+ col = gray(0.9))

To understand what this is doing look at the examples in the help pages for rect
and usr. It can otherwise be copied and pasted as is to add colorful background to
existing plots. With white freed from being a background color, it can now be used
to provide grid lines for the final plot using the grid command.

> grid(lty="solid", col="white")

The result of adding a background and grid to our French election data is shown in
Fig. 5.8. Note that we had to make a separate call to the points after adding the
background and grid as these had over-writing the initial plot.

In busy plots, it is often useful to put the legend outside of the main graphics
window. In order to make this work, the margin command must first be used to
create additional margin space outside the plot window.

> par(mar=c(5.1, 4.1, 4.1, 10))
> plot (election$SHOLLANDE, election$SARKOZY, col=cols, pch=19,
+ cex=1.5, xlab="HOLLANDE %", ylab="SARKOZY %")

The legend command is then used with the additional parameter xpd=TRUE (which
tells R that it is okay to let it plot outside the main window). The x and y coordinates
are specified assuming they continue outside of the plot window. Here we use z =
60 because it falls just to the right of the plot.

10For a good description to many of these additional parameter, see Paul Murrell’s text R graphics

[1].
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Figure 5.8: Scatter plot of a grey background with white grid lines. Closely mimics
the default style of ggplot2.

> legend(60,50,legend=colnames (election) [4:6],
+ col=rainbow_hcl(3),pch=19, cex=1,

+ xpd=TRUE,

+ bty = "n")

This legend outside the plot is shown in Fig. 5.9. When plots have a large number
of levels, or span the entire region, this trick can be particularly helpful.

5.7 Alternative Methods

The style of visualization we have been using, and will continue to use, are called
base R graphics. We find them to be the easiest to work with for new users, while
allowing for a wide range of customization for more advanced work. Several al-
ternatives with completely different plotting commands and constructs do exist and
are also quite popular. The packages lattice and grid are shipped with the standard
installation of R and each have their own constructs for plotting. The third-party
package ggplot2 has an even further modified set of functions for plotting, built
around Leland Wilkinson’s text Grammar of Graphics [2, 3]. We mention these as
they are frequently mentioned in various help forums and mailing lists.
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Figure 5.9: Example showing a legend outside the main plotting region.
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Chapter 6
Networks

Abstract In this chapter, we introduce the concept of a network (also known as a
graph). Working with a citation network build from United States Supreme Court
opinions, the topics of graph drawing, centrality measures, and community detec-
tion are all explored.

6.1 Introduction

Networks form a very generic data model with extensive applications to the human-
ities. A network consists of a set of objects and a collection of links identifying
some relationship between these pairs of objects. The assumption is that a connec-
tion exists between these objects that will help us better understand what we are
studying. In mathematics, networks are called graphs, the set of objects are known
as vertices, and the links between them are referred to as edges. The study of these
objects constitute a sub-field of mathematics known as graph theory, which is a large
and active area of current research. We will stick to the mathematic terminology, as
it is the most commonly found in software directed at data analysis.

Graphs can be a great way to understand connections and relationships between
a wide range of objects or types of data. For example, one might want to explore
the friendship relationships between people, citations between books, or network
connection between computers. Whenever there exists a set of relationships that
connects the objects to each other, a graph can be a useful tool for visualization and
data exploration.

6.2 A Basic Graph

A simple and well-known example of a graph is a family tree. In a family tree,
the vertices are people and an edge between two people represents a direct familial
relationship. As an example of a family tree that many people are familiar with, we
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will construct a tree for four generations of the British royal family. It will be small
enough to construct this by hand; in the next section we will explore methods for
creating much larger graphs from external datasets.

In order to work with graphs, we make use of custom data structures, domain-
specific algorithms, and customized plotting routines. Several R packages provide
these functionalities; we will use the igraph as it is relatively simple to use and
rich with features [2]. There are also versions of the igraph package for Python,
Ruby, and C++, making it ideal when collaborating with others who may be using
a different set of tools.

Graphs come in two basic varieties: directed and undirected. In the directed
case, edges have a distinction between the “to” vertex and the “from” vertex. Edges
of directed graphs are often visualized by arrows. In undirected graphs, edges are
simply line segments with no such distinction. In the case of a family tree, if
we were to have edges represent that two people are married, it would be natural
to make this relationship undirected. Conversely, if edges were used to represent
parent—child relationships, this would be best represented by a directed graph with
an arrow going from a parent toward their children.

In our family tree example, we want to represent parent—child relationships. We
therefore start by loading the igraph library and constructing an empty directed
graph.

> library(igraph)
> g <- graph.empty(directed=TRUE)

Next, we need to manually add our data. First, each person in the family tree is
added to the set of vertices by literally adding (with the + operator) each vertex
(singular of vertices) to the graph object g. Notice that we must reassign the new
graph back into the variable g.

> g <- g + vertex("Elizabeth II")
> g <- g + vertex("Philip")

> g <- g + vertex("Charles")

> g <- g + vertex("Diana")

> g <- g + vertex("William")

> g <- g + vertex("Harry")

> g <- g + vertex("Catherine")

> g <- g + vertex("George")

Here just first names are used, as dealing with full formal titles becomes quite cum-
bersome when dealing with royalty!

We will also manually add edges to the graph for every parent—child relation-
ship. As the graph g is directed, it is important that each edge is created with
the parent first and their child second. For example, William (Prince William) and
Catherine (Princess Catherine, née Middleton) are the parents of Prince George.

> g <- g + edges("Elizabeth II", "Charles")
> g <- g + edges("Philip", "Charles")
> g <- g + edges("Charles", "William")
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> g <- g + edges("Diana", "William")

> g <- g + edges("Charles", "Harry")

> g <- g + edges("Diana", "Harry")

> g <- g + edges("William", "George")

> g <- g + edges("Catherine", "George")

We now have the complete structure of our family tree inside the R object g. The
process outlined here is fairly verbose to explicitly illustrate the steps in constructing
a basic graph. We could have, for example, skipped the step of manually adding
each vertex, as the R library would silently construct the nodes when adding edges.

What does this graph object actually do for us? Printing it in an R console is
fairly unexciting. It compactly shows that we have a directed (D), named (N), graph
with eight vertices and eight edges, but offers little further insight into the graph we
have constructed.

> g
IGRAPH DN-- 8 8 --
+ attr: name (v/c)

If we plot the graph using plot . igraph (g), we get something a bit more int-
eresting, as shown in Fig. 6.1a. The vertices and edges are plotted and laid out in
an aesthetically pleasing way; none of the edges overlap, the edges are roughly the
same length, and the vertices are spread out over the entire plot. While not bad for
a first pass, this plot still does not look like a traditional family tree. In order to do
this, we need to tell R exactly where we want each point plotted.

In order to create a custom plot of a graph in R, a two-column matrix with a row
for each vertex needs to be passed to the plotting function. The first column gives
the x-coordinate of the vertex and the second column provides the y-coordinate of
the vertex. The vertices in an igraph object have an internal ordering, which can be
seen by using the V () function. The rows in the matrix correspond to the internal
ordering of vertices.

> V(g)

Vertex sequence:

[1] "Elizabeth II" "Philip" "Charles" "Diana" "William"
[6] "Harry" "Catherine" "George"

> lout <- matrix(c(1,3,3,3,2,2,3,2,1,1,3,1,2,1,1,0),8,2,TRUE)
> lout
[1

N
ORRFRENMNDWW—

0 JO0 Ul WwN R
PN WERE WNDWwWR—

In this example, Harry’s vertex will be positioned as coordinates (3,1). We have
defined a layout where the y-coordinate is a proxy for generation. The reigning
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Figure 6.1: A simple graphical depiction of Queen Elizabeth II's family tree.
(a) Generic layout. (b) Family tree format.

monarch is at the top of the plot, her children are slightly lower, her grandchildren
even lower, and the baby Prince George is on the bottom. To turn this layout into
a plot, we simply pass the matrix as an argument to the layout parameter. The
edges will be automatically constructed to connect the relevant nodes.

> plot.igraph(g, layout=lout)

The output shown in Fig. 6.1b shows the same graph structure as the previous plot,
but in a more natural layout expected in a family tree.

6.3 Citation Networks

Consider looking through a repository of articles published in African Studies Rev-
iew, the journal of the African Studies Association. How might one use this infor-
mation to determine which articles and authors have been particularly influential in
the field of African Studies? A common metric used in academia is the number
of citations made to a given article within the first 5 years of publication. Using
citations as a measure of influence is reasonable, but simple counts only tell part
of the story. Peter Uvin’s article “Prejudice, crisis, and genocide in Rwanda” has
97 citations on Google Scholar, compared to Gregory H Maddox’s 18 citations for
“Gender and Famine in Central Tanzania: 1916-1961” [7, 12]. Clearly Uvin’s arti-
cle had, in some sense, a wider reach, but there is potentially a more complex story
to tell. It may be that both articles are equally central within their own sub-fields,
but more scholars are interested in Rwanda or genocide compared to the number
who are interested in famine or Tanzania. Or, perhaps, the 18 citations to Maddox’s
article are of a higher average quality compared to the 97 to Uvin’s. A citation
network is a graph where the vertices are publications and edges represent the rela-
tionship that one publication was cited by the other [8]. Using this more complex
graphical representation helps to discern these, and many more, nuances which may
be obfuscated when using simple counts.
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Citation networks may be constructed from many datasets that may not at first
appear to be a set of citations. For example, one can take a set of course syllabi and
pick out which readings are assigned to each course. In this case, the vertices are
a set consisting of all the course syllabi and all of the unique readings cited within
them. The edges associate each reading to one or more syllabi in which it has
been assigned. A graph where vertices can be split into two groups such that edges
only occur between vertices in different groups is called a bipartite graph. Such
graphs have a myriad of applications and mathematical properties (most of which
are outside the scope of this book). The igraph library even has several functions
and algorithms for efficiently working with bipartite graphs.

For the remainder of this chapter, we will be working with a citation network
built from United States Supreme Court case opinions. It is a convenient dataset to
work with because Supreme Court records are in the public domain and are often
of broad interest. We will start by showing how to build a graph object of court
citations without resorting to adding each citation as in Sect. 6.2.

The citation data we will use comes from Supreme Court Citation Network Data,
developed and provided by James H. Fowler and Sangick Jeon [4, 3]. Their data
have been parsed (and is available in the Supplementary Materials) into a two col-
umn dataset containing about 216,000 citations between majority opinions written
by the US Supreme Court. The first column gives the id of the case which cited the
case in the second column; this structure is called an edge list, as each row repre-
sents an edge in the graph. For instance if we read into R the entire dataset and look
at just the first six rows,

> allCounts <- as.matrix(read.csv("data/ch06/ac.csv", as.is=TRUE))
> head(ac)

to from
[1,] "4USe" "3us320"
[2,] "4USe" "4usi"
[3,] "euUs280" "1us393"
[4,] "eUS280" "1US53"
[5,]1 "eUs280" "3UsS133"
[6,] "14Us179" "5US321"

We see that the majority opinion in 4 U.S. 6 (New York v Connecticut, 1799) cited
only two cases: 3 U.S. 320 (Grayson v. Virginia, 1786) and 4 U.S. 1 (New York
v Connecticut). The full text of the case conveniently shows exactly the same two
citations.!

Constructing a graph object in R from an edge list involves a simple call to a
single igraph function. Rather than having to specify explicitly, the set of vertices
are inferred as the set of all vertices in the edge list. While it certainly is reasonable
to model citation networks as directed graphs (with arrows pointing into the citing
document), in our case it will be simpler and just as interesting to have an undirected
graph.

1https://supreme.justia.com/cases/federal/us/4/6/
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> G <- graph.edgelist (allCounts, directed=FALSE)
> G

IGRAPH UN-- 25417 216738 --

+ attr: name (v/c)

The entire citation graph has over 25,000 nodes. It is possible to work with a graph
of this size R, but it will be far easier for us to take a subset of the graph to work
with instead. If 100 nodes were randomly sampled from this graph, we would likely
be left with a sparse (very few edges) and uninteresting graph. A better approach is
to pick out a subset of cases that deal with similar legal topics. To do this, we will
use the Supreme Court Database from the University of Washington—St. Louis to
assign thematic categorization to all of the cases in our dataset [11]. The data we
need consists of a two-column table mapping each court case to one or more “issue”
codes, which can be subsequently looked up in an accompanying code book.

> themes <- read.csv("data/ch0O6/themes.csv", as.is=TRUE)
head (themes)
usid issue
329US1 80180
329US14 10500
329US29 80250
329US40 20150
329US64 80060
329US69 80100

\%

o Ul W N

In the first row, for example, 329 U.S. 1 Halliburton Oil Well Cementing Co. v.
Walker (1946) is labeled as issue 80180, “patents and copyrights, patents”. In the
second row case 329 U.S. 14 is labeled as 10500, “statutory construction of criminal
laws: Mann Act and related statutes”.

With this metadata, it is now possible to restrict the graph G to only cases dealing
with a few closely related issues. We will choose to use the topics 20040 and 20050,
which deal with “desegregation (other than as pertains to school desegregation,
employment discrimination, and affirmation action)” and “desegregation, schools”,
respectively. The igraph library makes this easy with the induced. subgraph
function, which takes a set of vertex names and returns a graph (the vertex induced
subgraph) which extracts only the edges with endpoints in the specified set.

> rowNumberOfMatchingCases <- which(themes$issue %in% c (20040,
20050))

> usidsOfMatchingCases <- themesSusid[rowNumberOfMatchingCases]

> H <- induced.subgraph(G, usidsOfMatchingCases)

> H

IGRAPH UN-- 132 729 --

+ attr: name (v/c)

Our graph now has only 132 vertices and is certainly small enough to easily plot. It
would still be difficult, however, to hand select where each point should be plotted as
we did in Sect. 6.2. Thankfully an entire area of mathematics and computer science
known as Graph Drawing is dedicated to algorithms for visually arranging graphs
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in a two-dimensional plot. A particularly popular and general purpose example
is the Fruchterman—Reingold algorithm [5, 10]. It consists of running a simulated
physics experiment where edges are modeled as springs and vertices are modeled as
positively charged particles. The algorithm can be run in the igraph library, where it
returns a two-dimensional matrix of coordinates; it is in the same format we created
by hand for the British Royal Family’s family tree.

> set.seed (1)
> lout <- layout.fruchterman.reingold (H)
> head(lout)
[,1] [,2]

] -8.276299 91.980889

] -35.387460 68.329024
,] -88.142586 7.486661

] -32.217773 -28.709860

] -18.855028 -9.418584

] -30.091857 34.827377

Notice that we have called the function set . seed just prior to running the layout
algorithm. We do this because the algorithm is nondeterministic (the result depends
on the random starting points of the vertices) and we want to make sure each call
returns exactly the same graph. Because we set the random seed, if you run this
code on your own machine it should give exactly the same layout displayed here.

We can now use the layout matrix to plot the citation network of our subgraph
H. The exact same code from our previous family tree example would produce a
decent visualization; here we have added two small tweaks to make the vertex sizes
(the default is 10) and labels slightly smaller.

> plot.igraph(H, layout=lout, vertex.size=5, vertex.label.cex=0.5)

The resulting plot is shown in Fig. 6.2. We see that some cases are not connected
to any others, whereas many form two fairly tight clusters in the center of the plot.
In the next two sections we will explore tools for studying and visualizing these
structures. Unfortunately many of the individual labels are hard to see given the
size limitation of a textbook. A digital version of the plot, which uses a smaller font
size and can be zoomed in and out on, provides a better solution to the over-plotting
seen here.

6.4 Graph Centrality

Centrality is a measurement of how important a vertex is within the context of the
entire graph. It is a broad conceptual idea and does not have a single formal defi-
nition. Instead, there are several different forms of centrality that capture different
notions of importance.

Applications of centrality are numerous and depend on both the nature of the
graph being studied and the type of centrality used. Centrality can identify the most
influential people in social networks or the most vulnerable targets in a computer
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Figure 6.2: A citation network of US Supreme Court cases which dealt primarily
with the topic of segregation.

network. The PageRank algorithm used by Google to order search results is a par-
ticular example of a centrality measure over the graph of websites [9]. In our exam-
ple of a citation network, centrality can help identify the most influential opinions
to a particular area of case law.

The simplest centrality measure is degree centrality. Vertices are ranked only on
the number of edges to which it is connected. In citation networks, degree centrality
is analogous to just counting the number of citations a document has. We have
already argued that this is a reasonable first solution, but may miss the larger picture.
A refinement known as eigenvector centrality assigns a higher weight to a vertex for
being connected to vertices which are themselves important. Formally, it assigns a
weight to every vertex such that the weight of a particular vertex is proportional to
the sum of the weights of its neighbors. It may seem that this is very hard to calculate
given that we need to simultaneously calculate all of the weights at the same time.
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It turns out that there is a very efficient way of calculating these weights using the
language of matrices (there is a whole subfield of mathematics called spectral graph
theory that studies the matrix properties of graphs).

Calculating eigenvector centrality for our subgraph H in R is very simple using
the evcent function. A list with many components is returned, though only the el-
ement named “vector” will be useful for us. This element is a named vector relating
each node a numerical score between 0 and 1.

> eigenCent <- evcent (H) $vector

> sgort (eigenCent,decreasing=TRUE) [1:10]

347US483 391US430 349US294 402US1 443US449 413US189 418US717
1.0000000 0.8933058 0.8011224 0.7770846 0.7493045 0.7275929 0.7023205
503US467 407US451 515US70

0.6538141 0.6298709 0.6009171

Sorting the output shows the top ten cases by their eigenvector centrality values. The
top score goes to 347 U.S. 483, Brown v. Board of Education, largely considered the
most pivotal case in school desegregation, in which the court unanimously argued
that racially segregated public schools were unconstitutional [1]. Knowing that the
opinion widely regarded as the most influential can be successfully identified in this
way lends a great deal of credibility to both the general approach of citation methods
and the specific use of eigenvector centrality. This is particularly true after looking
back at the graph in Fig. 6.2. Would you have been able to visually identify the most
important case from the plot?

Centrality measures are useful for identifying a list of the most influential ver-
tices. They can also be useful in adding context to a visualization of the entire graph
by coloring vertices based on their centrality scores. Eigenvalue centrality scores
are known to typically decay very rapidly; in our example over 90 % of the vertices
have a score of less than 0.5 and the median score is only 0.11. It will therefore be
advantageous to convert our centrality scores into quantized buckets.

> bins <- unique(quantile(eigenCent, seqg(0,1,length.out=30)))
> vals <- cut(eigenCent, bins, labels=FALSE, include.lowest=TRUE)
> colorVals <- rev(heat.colors(length(bins))) [vals]

To assign these colors to a plot, the easiest way is to attach a new element named
color to the vertex set V (H) . From this, the plotting function will automatically
pick up these colors and use them to shade the vertices; to reduce clutter we also
turn off the vertex labels, which were already hard to read.

> V(H) $Scolor <- colorVals
> plot.igraph(H, vertex.label=NA, vertex.size=5)

The output of these commands is given in Fig. 6.3a. As we would expect, more
centrally located points are shaded darker (or more red, in color) with the isolated
points the lightest. The eigenvector centrality assigned higher scores to those cases
in the bigger of the two clusters, a known artifact of the method.
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The concept behind eigenvector centrality is that the most important vertices
should be connected to many other well-connected vertices. A slightly different
notion of importance comes from identifying those vertices which connect disjoint
parts of the graph. The betweenness centrality measures this property of a graph by
(approximately) determining the shortest path between every pair of nodes and cal-
culating how many of these run through each vertex; it can also be easily calculated
in the igraph library using a single call to the betweenness function.

> betweenCent <- betweenness (H)

> sort (betweenCent, decreasing=TRUE) [1:10]

347US483 430US482 429US252 403US217 392US409 413US189 391US430
1964.8653 637.3044 591.0348 589.3720 519.2219 476.9320 388.6452
380US202 347US475 396US229

343.9670 333.3813 328.9941

> cor (betweenCent, eigenCent)

[1] 0.5003805

The highest betweenness score comes again from Brown v. Board of Education, but
the next three cases are not in the top ten list from the eigenvector centrality scores.
The correlation between the two measurements is only 0.5; clearly the betweenness
score is significantly distinct from the eigenvector scores. These new values can be
plotted on the graph using the same code as before; the output is shown in Fig. 6.3b.
This new score does seem to favor vertices which connect disjoint parts of the graph,
but many points in the interior of the graph (such as Brown v. Board of Education)
also have high betweenness values. To identify those points which function purely
as links, rather than central hubs, we need to identify points that have borh high
betweenness and low eigenvector centrality. With a bit of trial and error, taking
points with eigenvector centrality less than 0.36 and betweenness greater than 200
results in a set of 9 interesting points.

betweenCent <- betweenness (H)

eigenCent <- evcent (H) Svector

colorvVals <- rep("white", length(betweenCent))
colorVals[which(eigenCent < 0.36 & betweenCent > 200)] <- "red"
V(H) Scolor <- colorVals

vV V. V VvV VvV

Plotting this, as shown in Fig. 6.4a, reveals a more natural categorization of vertices
which serve primarily as bridges between disparate sections of the graph.

6.5 Graph Communities

We have referenced several times that the basic plot of our citation network appears
to roughly have two distinct clusters of points; unsurprisingly, this is a result of the
fact that we have chosen two issues to pull out of the Supreme Court dataset (school
desegregation and “other” desegregation cases). Taking a closer look, it appears that
there may be more precise ways of splitting the graph into even smaller clusters.
Many methods for calculating these smaller clusters, known as communities given
their importance to social networks, exist, several of which are available within the
igraph package.
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Figure 6.3: Graph centrality scores. Darker (more red) nodes have a higher central-
ity score. (a) Eigenvector. (b) Betweenness.

In the previous section we calculated the number of minimal paths running
through each vertex and assigned this as a score for centrality. The same process
can be applied to the edges in a graph to give a score indicating the degree to which
the edge connects various sections of the graph. Repeatably removing edges with
the highest levels of betweenness will eventually result in a disconnected graph; the
disconnected parts, which managed to stay together despite the removal of many
edges, are then identified as the graph’s communities.

Once again, calculating community structures requires only a simple function
call. However, creating a visualization with the result does take a little bit of
data manipulation. Take a look at the membership ids returned from running the
betweenness community detection algorithm.

> w <- edge.betweenness.community (H)
> sort (table (wSmembership) )

2 4 7 8 911 12 13 14 15 16 17 18 20 21 22 23 24 25 27 28 29 30

111111 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
31 32 33 34 351926 3 5 6 110

11 1 1 1 2 2 4 6 22 29 39

There are three large communities with 22, 29, and 39 members and four smaller
communities with no more than six members. The other vertices are contained in
29 isolated singletons. We want to color the nontrivial communities (greater than
three) with different colors, while making the orphaned groups uncolored.

H) Scolor <- rep("white", length (wSmembership))
keepTheseCommunities <- names (sizes(w)) [sizes(w) > 3]
matchIndex <- match(wSmembership, keepTheseCommunities)
colorVals <- rainbow(5) [matchIndex[!is.na(matchIndex)]]

H) Scolor[!is.na(matchIndex)] <- colorVals

vV V.V VvV VvV
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Figure 6.4: Vertices with high betweenness but low centrality (leff) and com-
munities (right) as determined by edge betweenness. (a) Gate-keeper vertices.
(b) Communities.

A plot of the final community structure is given in Fig. 6.4b. The cluster of vertices
corresponding to noneducational segregation are all within one cluster, whereas the
educational segregation cases have been split into two large communities and two
small communities.

6.6 Further Extensions

In this chapter, we have explored some of the major areas of graph theory and net-
work analysis: graph drawing, measures of centrality, spectral graph theory, and
community detection. We have tried to give a general overview; however all of
these areas are far richer than what can be fit into a few pages. For further study,
the igraph documentation is a good place to start; it contains dozens of additional
graph drawing, centrality, and community detection algorithms. Beyond this, Stan-
ley Wasserman’s text on social network analysis gives a lot of depth (in an applicable
way) while remaining fairly accessible [13]. For a more technical treatment, Eric
Kolaczyk’s Statistical analysis of network data provides even more detail, while
still being written from the perspective of conducting applied data analysis [6].

Practice

1. Rerun the graph layout algorithm a few times for the subgraph H, but without
resetting the seed. Plot the graph with these new layouts. In what way does the
randomness of the algorithm seem to affect the outcome?

2. Calculate the closeness centrality of the Supreme Court citation network using
the function closeness. Using plots and correlations, how does it relate to the
two previously mentioned centrality scores?



References 93

3. Include cases under the topic 20070, “affirmative action”, into the analysis. Does
the list of the most central (eigenvector) cases change? Does the community de-
tection algorithm detect the set of affirmative action cases as a unique commu-
nity?

4. Using the communities detected in Sect. 6.5, and metadata contained in the
supplementary materials, can you determine what caused the education des-
egregation cases to be split into two main groups?
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Chapter 7
Geospatial Data

Abstract In this chapter, we will look at how to work with raster and vector spatial
data in R. Particular attention is placed on the process of merging various data types
to create enriched datasets for further analysis.

7.1 Introduction

There is a popular phrase thrown around by those working with spatial data claim-
ing that “80 % of data contains a spatial component”, likely dating to a weaker
statement made by Franklin and Hane specifically regarding data contained in gov-
ernment databases [6]. While actually quantifying the “amount of data” with a
spatial component is likely impossible (and meaningless), the premise that a major-
ity of datasets contain some spatial information is a valid one. Consider a dataset
containing a record for every item held in a particular public library. It may con-
tain explicit geospatial data such as the address of the branch where each item is
housed, but there is a substantial amount of implicit spatial data which could also
be added and explored such as the location of first publication or the birthplaces of
the authors. Given the preponderance of geospatial data in general, and its particular
importance to work in the humanities, this chapter introduces methods for exploring
and visualizing a number of spatial data types within the R language.

Another popular set of tools for working with geospatial data are geographic
information systems (GIS) such as the open source QGIS [12] and the proprietary
ArcGIS [1]. Almost all of the same analytic functionality offered by these systems
is also available within R, though ArcGIS does benefit from coming with a massive
amount of ready to use data. We mention these here because GIS is sometimes
mis-attributed as a type of analysis, rather than a type of tool.
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7.2 From Scatter Plots to Maps

Basic geospatial plots can be thought of as simple scatter plots with an x-coordinate
equal to longitude and a y-coordinate equal to latitude. Consider the following
dataset of major border crossings into West Berlin between 1961 and 1989.!

> berlin <- read.csv(file="data/ch07/berlinBorderCrossing.csv",
+ as.is=TRUE)

> berlin

Crossing Latitude Longitude
1 Bornholmer Strafe 52.55474 13.39766
2 ChausseestraRe 52.54048 13.36966
3 InvalidenstraRe 52.52790 13.37406
4 FriedrichstraRe 52.50762 13.39042
5 Heinrich-Heine-Straf’e 52.50472 13.41161
6 Oberbaumbrlicke 52.50197 13.44587
7 Sonnenallee 52.46167 13.47844
8 Friedrichstrafle station 52.52028 13.38704
9 GrenzUbergangsstelle Drewitz-Dreilinden 52.41547 13.19716
10 Glienicker Brlcke 52.41349 13.09014
11 Heerstrafe 52.52906 13.11922
12 Berlin-Heiligensee 52.62806 13.24160

We will start by just identifying the crossings clustered in the city center, specifically
crossing 1-6 and 8. These could have been determined by an initial plot, though here
we will just take them as known. A simple labeled plot suffices to visually display
these locations, as seen in Fig. 7.1a.

> cityCenterId <- c(1:6,8)
> plot (x=berlinsLongitude [cityCenterId],

+ y=berlins$Latitude [cityCenterId],

+ pch=19,

+ axes=FALSE,

+ xlim=range (berlin$Longitude [cityCenterId]))
> text (x=berlinsLongitude [cityCenterId],

+ y=berlinS$Latitude [cityCenterId],

+ labels=berlin$Crossing[cityCenterId],

+ pos=4,

+ col="blue")

Unless someone has a very good sense of Berlin’s geography, however, this plot
is not particularly interesting. No additional information such as streets, political
borders, parks, and other landmarks is present.

It would be great if we could display a map of the city underneath the points,
similar to the way a web-based platform such as Google or Apple displays a street
map underneath search results. Fortunately, this is easy to do in R using the snippets
package [14].? The function osmap pulls map images from an application known as
a tile map service, a web-based application which stores a set of small map images

1Rough locations are from http://www.berlin.de/mauer/grenzuebergaenge/
index/index.de . php;exact coordinates were determined by hand.
2See Chap. 11 for special installation instructions for this package.
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in a hierarchical fashion [11]. When trying to load a map on a website with a
large amount of tiles or with a slow connection, often square patches of the map
sporadically appear. Each of these patches is a single image served by a tile map
service. By default, the osmap function determines the coordinates of the current
plot, pulls approximately 25 tiles to cover the plot region from OpenStreetMaps
(the namesake of the function) [10], and overlays these map images onto the current
plot.

points (x=berlin$Longitude [cityCenterId],
y=berlins$Latitude[cityCenterId],
pch=19)

> library(snippets)

> plot (x=berlinsLongitude [cityCenterId],

+ y=berlins$Latitude [cityCenterId],

+ pch=19,

+ axes=FALSE,

+ xlim=range (berlin$Longitude [cityCenterId]))
> osmap ()

>

+

+

Notice the need to make a call to the points function due to the original points
being covered up by the map tiles. The output is shown in Fig.7.1b. We have
succeeded in adding a significant amount of additional detail but unfortunately the
resulting maps have come out rather distorted. From a pragmatic standpoint, most
of the features are legible, but on aesthetic grounds it would be better if we could
adjust this distortion. When running the code in an interactive R session, it is easy
to simply resize the window as appropriate. If plotting to a graphics device, a bit of
trial and error will all quickly suffice in producing a reasonable plot.

What if you need the map to fit into a pre-determined image size, or simply do
not want to be bothered with trial and error? There is an additional input parameter
to the default plot function in R that comes to the rescue. When set, the asp
parameter sets the aspect ratio, the ratio of the scale on the y-axis to the scale of the
x-axis, of a plot. If this is set to the ratio of the length of a degree of latitude to the
length of a degree of longitude, the resulting map will be undistorted. Such an effect
is achieved by extending the range of one of the axes. The correct ratio changes
depending on the latitude, with a value of 1 at the equator and 2 at 60°N and 60°S;
the exact value is given by the inverse of absolute value of the cosine of the degree
of latitude (in radians). The parameter is not overly sensitive for small plots; here
it is sufficient to take the exact ratio implied by the first data point (approximately
1.64):

> plot (x=berlinsLongitude [cityCenterId],

+ y=berlins$Latitude [cityCenterId],

+ pch=19,

+ axes=FALSE,

+ asp=1/abs (cos (berlin$Latitude[1] xpi/180)),
+ xlim=range (berlin$Longitude) + c(0,0.2))

Following this command with a call to osmap and re-plotting the points as before
yields Fig.7.1c. Notice that the new plot extends slightly farther in the horizontal
directions in order to maintain our desired aspect ratio.
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Figure 7.1: Location of the primary civilian ground border crossings between West
Berlin and East Germany between 1961 and 1989. (a) Geospatial data as a scatter
plot. (b) Open street map data of the city center. (¢) View of crossings with adjust
aspect ratio.
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We have now constructed a map which is both aesthetically pleasing and useful
in adding a geographical perspective to the West Berlin border crossing dataset. It
highlights, for example, how arbitrarily the city was split in half, adding perspective
to the challenges faced by those living on either side of wall in post-war Berlin. The
tiles we used to construct map are based on modern-day roads and landmarks, not
all of which existed in 1961. Could we use historic data for the maps?

There are no technical limitations to setting up a tile map service based on his-
toric data. Configuring and maintaining a tile map service, however, is quite inv-
olved and outside the scope of this text. Doing so would also require access to a
substantial amount of historic data in order to be able to construct the map tiles;
such data does not typically exist in an easily digestible format (if at all). A solution
to this problem, which should suffice for most uses, is to pull tiles from a server that
is built from modern data but does so in a minimalistic fashion. For example, Sta-
men Design provides high contrast black and white minimalistic tiles for free under
a fairly permissive Creative Commons licence. Using these tiles requires only one
additional parameter to the osmap function.

> osmap(tiles.url="http://c.tile.stamen.com/toner/")

The result of this map, Fig. 7.2a, still labels a few major streets and parks, which
existed well before the 1960s, and removes many of the potentially anachronistic
features. We also think it looks better when printed in black and white, but, of
course, customize to your taste. The map certainly is not perfect, but it does a rea-
sonable job of representing post-war Berlin without the hundreds, if not thousands,
of hours spent curating historical street data and building a tile service. Another
solution for historic locations and areas that have recently undergone rapid devel-
opment is plain terrain maps.® Fortunately, many more open tile map services exist
with varying features and aesthetics.*

Finally, let us briefly consider building a larger plot of the entire border crossing
dataset to include those locations that are not within the city center. Programmati-
cally altering the map region is very easy; the same exact code without the subset-
ting command, [cityCenterId], produces the larger map without any changes
required to the osmap function. The output shown in Fig. 7.2b demonstrates that
the new tiles have been pulled and the aspect ratio handled correctly. Notice that the
larger map has not just pulled more tiles but has instead pulled a different set of tiles.
The same number of images were requested from Stamen Design’s servers in both
versions of the map. Each tile in the larger region plot simply shows a less detailed
version of a larger area (notice the omitted streets). The labeling has also changed
to be appropriate for the lower resolution plot: the Grofler Tiergarten is still shaded
in but now lacks a label, whereas a label has been added to indicate the position of
the city of Berlin (which is over-plotted by our text for Friedrichstra(3e).

3Stamen Design also produces a nice terrain tile map service under the same permissive license at:
http://maps.stamen.com/terrain-background.

4See the links at http://wiki.openstreetmap.org/wiki/Tile servers for a good
starting point.


http://maps.stamen.com/terrain-background
http://wiki.openstreetmap.org/wiki/Tile_servers
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Figure 7.2: Location of the primary civilian ground border crossings between West
Berlin and East Germany between 1961 and 1989. (a) Geospatial data as a scatter
plot. (b) Open street map data of the city center.

7.3 Map Projections and Input Formats

A tile map service is a great way to quickly turn a basic geospatial scatter plot
into a publication ready visualization with a single extra line of code. If we want
to add anything more involved a different approach is required. A map tile has
no information per se about roads, cities, or geographic features. It is simply a
collection of pixels, an example of a raster graphics format, and nothing more than
an image. This is the reason that our previous example of mapping two plots with
slightly different zoom levels required an entirely new set of tiles. In contrast to
raster data, vector graphics are instead content aware, with information regarding
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the shape of every element embedded into the data. Metadata, such as an element
name or classification, is often also attached to each object, such as a road or body
of water, in a vector graphic. Vector graphics often require significantly larger file
sizes, which is why they are not used to send data through web-based mapping
services. However, the additional information they contain allow a wide range of
geospatial visualizations and analyses, which we will explore for the remainder of
this chapter.

Shapefiles are a very popular format for storing vectorized geospatial data. Dev-
eloped by ESRI, the company responsible for the proprietary ArcGIS software sys-
tem, the standards for the format were published as an open data specification in a
1998 white paper [13]. Data are distributed in this format by organizations such as
the United Nations, the European Union, and the United States Census Bureau. The
term shapefile is a misnomer, as the format actually requires a collection of three or
more files with various file extensions to be co-located in the same directory (often
distributed as a zip archive). At a minimum the . shp, .shx, and .dbf files are
required; a . prj is almost always also included.

Two R packages will provide us with the majority of the functionality needed to
work with vectorized geospatial data: sp and maptools [4, 2]. Loading a shapefile
into R can be done with a single function call; the input string should point to the
filenames for the data without specifying the extension (e.g., .shp). To start, we load
a file provided by the US Census Bureau providing basic census data from 2010 at
a state level attached to geospatial vector data defining the shape of all 50 states.

> library(sp)

> library(maptools)

> state <- readShapeSpatial (fn="data/ch07/State 2010Census_DP1")
> class(state)

[1] "SpatialPolygonsDataFrame"

attr (, "package")

[1] "Sp"

> dim(state)

[1] 52 195

> dim(as.data.frame(state))
[1] 52 195

The resulting object is a SpatialPolygonsDataFrame, a special class con-
structed by the sp package. In addition to purely geospatial information, it also has
an internal data frame with metadata for each shape in the shapefile. We were able
to access this internal data frame with the as . data . frame function. In this case,
the data frame has 195 columns, primarily containing raw counts of un-sampled,
self-reported data from the 2010 Census. The 52 rows correspond to the 50 states,
Washington D.C., and Puerto Rico. Unlike many other R packages we have used
that define customized objects, the sp package did not define a way of nicely print-
ing spatial polygon data frames; printing the object simply prints a long unstructured
list of (usually) unintelligible output.

It will be easier to display a map of the United States in the limited space of this
text by first removing Alaska and Hawaii. Taking a subset of the objects in a spatial
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polygon data frame conveniently uses the same notation used for taking a subset of
rows in a standard data frame.

> index <- (as.data.frame(state)$STUSPS10 %in% c("AK", "HI"))
> gstate <- state[!index,]

> dim(state)

[1] 50 195

A basic plot of a spatial polygon object can be generated by calling the plot func-
tion of the object.

> plot (state)

Figure 7.3a shows the output of this command. As a basic plot of spatial data, it
works quite well. As vector data, we can output this plot to a device of any size
without the output becoming grainy, a powerful benefit of this type of data.

The spatial plot we already produced plotted shapes the same way we treated
scatter plots in Sect. 7.2 by treating raw longitude and latitude as the x and y coo-
rdinates of the plot. Such a simplification was fine when dealing with data at the
scale of a city. However, when looking at large scales, it is often advantageous
to plot spatial data in a projection format that accounts for the spherical nature of
the world. Converting between projection formats can be done within R; the first
step involves identifying which projection our current data was originally loaded in
with (here, just longitude and latitude) and assigning it to the proj4string of
the spatial polygon data frame. The notation used to define projections is known
as PROJ 4 [5]. It is very extensive, and rather than explaining it in detail, we will
simply lay out how to use it to describe two of the most useful variants.

> projectionObj <- CRS(projargs="+proj=longlat")
> proj4string(state) <- projectionObj

The process of converting from one projection to another is handled by the R pack-
age rgdal [3]. It takes an existing spatial object and a new projection format and
returns a copy of its input in the new projection format. Here, we will convert to the
Universal Transverse Mercator projection [8, 9]. This projection requires specifying
the desired reference “zone” (a number between 1 and 60), which roughly specifies
where the “middle” of the map should be. For the continental United States, zone
14 works particularly well.

> library(rgdal)
> stateTrans <- spTransform(x=state,
+ CRSobj=CRS ("+proj=utm +zone=14"))
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Calling the plot function directly on the projected object stateTrans produces
the outline of the states shown in Fig. 7.3b. More information will help make the
map legible, so let us add the state names to this plot. A direct call to the text
function using latitude and longitude would not be sufficient because the shapes are
now plotted in a new coordinate system. To determine the location of the new shapes
the gCentroid function is used; it returns the centroid (the geometric center) of
each state in the projected coordinate system. Finally, using the coordinates from
these centroids, a call to the text function produces the final figure.

> centroid <- gCentroid(spgeom=stateTrans, byid=TRUE)
> head(centroid)
SpatialPoints:
X Y
-198256.2 4796062
2289521.4 4749735
1885001.1 4602892
-155119.1 3830282
2444657 .6 4555463
2797519.2 4985976
Coordinate Reference System (CRS) arguments: +proj=utm
+zone=14 +ellps=WGS84
> text (x=centroid$x,

U W N o

+ y=centroidsy,
+ label=as.data.frame (stateTrans) SNAME1O0,
+ cex=0.7)

The resulting map produces a distinctly less distorted representation of the United
States.

Now that we have shown the basics of loading, plotting, and projecting vector
data in R, we finish this section by showing how to visualize the census data on our
map. We will look at housing data from the 2010 US Census.

A researcher might be interested in how housing is used in the United States,
focused on the locations of recreational housing. They are confident that Florida
will be a popular state for snowbirds seeking respite from the snow in the north-
east. To confirm this assumption and to see what other states have a high den-
sity of recreational homes, they turn to the census. First, the proportion of hous-
ing units (DP0180001) declared as being “seasonal, recreational, or occasional”
(DP0180008) for each state is calculated and converted to quantized bin IDs.

> stateTransData <- as.data.frame(state)

> perHouseRec <- stateTransData$DP0180008 / stateTransData$DP0180001
> bins <- quantile (perHouseRec, seqg(0,1,length.out=8))

> binId <- findInterval (perHouseRec, bins)
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Figure 7.3: (a) Geospatial data as a scatter plot. (b) Open street map data of the city
center. (¢) View of additional crossings farther outside the city center.
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These bins are scaled to a factor of 5 (trial and error to achieve a visually pleasing
plot) and simply given as an additional parameter to the plot function.

> densityVals <- seq len(length(bins)) % 5
> plot(stateTrans, density=densityVals[binId])

The output is shown in Fig. 7.3c, with a higher proportion of seasonal or recreational
houses corresponding to darker shaded states. The relatively high values in Florida,
Arizona, South Carolina, and Maine correlate with the commonly held assumption
that these are popular spots for Winter/Summer homes.

7.4 Enriching Tabular Data with Geospatial Data

The power of vectorized geospatial data can be best appreciated by seeing how it is
used to add context to other datasets. In this section, we study a dataset of metadata
corresponding to documentary photographs taken between 1935 and 1945 for the
US Federal Government. For each of the 90,000 geo-locatable records (each record
corresponds to a single photographic negative) information is available regarding
the date, name of the photographer, and the approximate latitude and longitude
where the photograph is believed to have been taken. Given that the photographers
were often given a great deal of leeway regarding where they traveled, and col-
lectively covered a vast proportion of the country, an interesting academic question
arises around comparing and contrasting the subject matter each photographer chose
to capture. Here, we address this question by merging the photographic metadata
with county-level US Census data to help characterize differences in the locales that
were visited.

We begin by loading into R the tabular metadata and removing data rows with
missing geospatial data. We further limit the data set to the top 20 photographers
(by count) in the collection because the remaining photographers took a very small
number of photographs, often just one or two.

> z <- read.csv(file="data/ch07/photoDatasetAllRaw.csv", as.is=TRUE)
> z <- z[l!is.na(z$latitude) & !is.na(z$Slongitude) & !is.na(zSpname), ]
> pnameSet <- names (sort (table(z$Spname), TRUE)) [1:20]
> z <- z[z$pname %in% pnameSet, ]
> head(z)
cnumber pname year longitude latitude
1 LC-DIG-fsac-1a33849 Jack Delano 1941 -71.31617 42.63342
2 LC-DIG-fsac-1a33850 Jack Delano 1940 -71.31617 42.63342
3 LC-DIG-fsac-1a33851 Jack Delano 1940 -71.01838 42.08343
4 LC-DIG-fsac-1a33852 Jack Delano 1940 -71.01838 42.08343
5 LC-DIG-fsac-1a33853 Jack Delano 1940 -71.01838 42.08343
6 LC-DIG-fsac-1a33857 Jack Delano 1941 -71.31617 42.63342

We need to convert this data frame into a spatial object in order to manipulate
it with the sp package. Previously we had loaded the state shapes files as a spatial
polygon data frame. Each record in the photographic metadata is a point rather than
a polygon; a method exists for constructing a very similar object called a spatial
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points data frame. It requires a matrix of coordinates and a data frame, with both
having the same number of rows.

> pts <- SpatialPointsDataFrame (coords=cbind(z$longitude,
+ z$latitude),
+ data=z)

Shapefiles at the county level are loaded as before using the readShapeSpatial
function, in order to merge with these spatial points. In this example, we have used
the 2010 census data. It would be more accurate to use information from the 1940
census, which is available; however, it is much more difficult to point users wishing
to follow along to the 1940s version.’

> cnty <- readShapeSpatial("data/ch07/County 2010Census_DP1")

We now have R objects that represent spatial polygons and spatial points, and need
a method for joining the polygons (census) to the points (photographic metadata).
The sp package provides the function over for this purpose. The over function is
fairly complex, taking at least two arguments, x and y, where its behavior depends on
the class of the two objects. We have previously seen many functions such as head,
summary, print, and plot that change depending on the class of their first
input parameter. The over method simply takes this one step further by depending
on two input classes; this language feature is known as multiple dispatch and has
the potential to become quite complex. For our purpose, we will provide the over
function with a spatial points data frame as the first input and a spatial polygons
data frame in the second. This returns a regular data frame with one row for each
element in the first input containing data from the second input over the matching
polygon (NAs are produced when no match is found).

> joinedDataF <- over (x=pts,y=cnty)
> dim(pts)

[1] 81720 21

> dim(cnty)

[1] 3221 195

> dim(joinedDataF)

[1] 81720 195

Finally, we construct the population density for the joined counties using the data
provided by the over function and plot this as a boxplot by photographer.® The
variable DP0010001 denotes the total population and ALANDI10 the total area of
the county.

51t requires logging into a system, downloading each state individually, and running code to join the
shapefiles to the actual census data.

SA boxplot is a graphical representation of the quantiles of a distribution. In particular the thick
black line indicates the median of the distribution. See the help pages, ?boxplot, for more detailed
information.
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Boxplot of Photographer by County Demographics
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Figure 7.4: Boxplot showing the population density of counties where FSA-OWI
staff photographers took photographs.

joinedDataFSpopDen <- joinedDataF$DP0010001 / joinedDataFS$ALAND1O
joinedDataFspopDen <- joinedDataF$popDen * 100072
medianPerc <- tapply(joinedDataF$popDen, zS$Spname, median,
na.rm=TRUE)
index <- order (medianPerc)
joinedDataFspnameFactor <- factor (z$Spname,
levels=names (medianPerc) [index])
boxplot (pnameFactor, log(popDen),
data=joinedDataF, axes=FALSE,
horizontal=TRUE, las=1,
outline=FALSE,
col="grey")

+ + + + Vv + VvV + VvV VYV

These results largely fall in line with scholarship on the photographic collection.
Walker Evans, known for his photographs of the rural south, has the second least
dense median population density. Gordon Parks in the other hand, who largely pho-
tographed in the metro Washington, D.C., area, has the highest median population
density of photograph locations (Fig.7.4).

7.5 Enriching Geospatial Data with Tabular Data

In the previous section we joined county census data to the locations where historic
photographs had been taken. In more general terms, spatial polygons were used to
enhance a tabular dataset. It is possible to also go in the other direction whereby
spatial points enhance spatial polygons. In this final section we illustrate how to add
a new variable to each county in our dataset: the number of photographs that were
taken inside of it.
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The raw data we need is the exact same as was used in the previous section. To
simplify the resulting plots, and illustrate the process for subsetting spatial data, we
will restrict ourselves to only include counties within states found within a bounding
box extending roughly from Virginia to Vermont. We have already seen that spatial
polygon data frames can be subset using the same syntax as a normal data frame.

> centroidS <- gCentroid(state, byid=TRUE)

> state <- state[centroidS$x > -79.3 & centroidSSy > 37 &
+ centroidS$x < -71.0 & centroidSSy < 44,]
> cnty$GEOID10 <- as.character (cnty$GEOID10)

The state object is now properly subset, but we still need to reduce the set of
county polygons to include only those contained in the reduced set of states. To
do this, we need to match each county to a given state; this process requires using
another variant of the over function. When given two spatial polygon objects, the
over function returns a vector of indices indicating which element in the second
input corresponds to the each element in the first input. Here, the function serves as
a spatial analogue to calling match on two vectors.

> matchIndex <- over(cnty, state)
> table (matchIndex,useNA="always")

matchIndex
1 2 3 4 5 7 8 9 11 <NA>
104 35 11 67 8 3 13 13 157 2810

> cnty = cnty[!is.na(matchIndex), ]

Removing counties that do not match (i.e., are not contained inside) the reduced set
of states has the desired effect.

In order to count the number of photographs inside of each county, a third
method of over is evoked. If the first argument to over is a spatial polygons
object and the second argument is of class spatial points data frame, the result will
be a data frame where each county is associated with the (first) point contained
inside of it. That is not the behavior we would like, as we want to count all the
photographs in a county not just learn about the first, so a third argument called £n
is given the value 1ength so that a count of the number of elements in each county
is returned instead.

> cnty$photoCount <- as.numeric(over(cnty,pts, fn=length) [,1])
> head (cntyS$photoCount)
[1] 89 61 NA 2 51 448

With these values in hand, we construct a spatial plot of the desired counties shaded
by the number of photographs taken inside of it. Just as we did for specifying the
density in Fig.7.3c, color can be set by simply specifying the col argument to
plot just as it would be when working with a standard scatter plot.
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Figure 7.5: Choropleth map showing the density of photographs in the FSA-OWI
collection. (a) Raw counts. (b) Normalized by total population.

var0l <- cnty$photoCount

bins <- unique(quantile(var0l, seq(0,1,length.out=30)))
cnty$binId0l <- findInterval (var0l, bins)

colSet01l <- rev(heat.colors(length(bins)))

plot (cntyTrans, col=colSet01l[cntyTranssbinId01l], border=NA)
plot (stateTrans, add=TRUE)

vV V.V VvV VvV V

The resulting visualization, an example of a choropleth map, is shown in Fig.7.5a.”
Notice that many counties bordering against the states of interest are also included;
this an artifact of the fact that the state and county datasets were not provided at
exactly the same resolution, so our code accidentally assigned some counties to
neighboring states. We see that a large number of photographs were taken just
outside of Washington, D.C., and in the vicinity of Boston, New York City, and
Pittsburgh. There are also localized spikes in the middle of New York State and
throughout Vermont.

Raw counts can be a very useful metric to use for visualization, but also have a
tendency to be deceiving when comparing regions of different sizes and populations.
Calculating the percentage of photographs per person,

> var02 <- cntyS$photoCount / cnty$DP0010001

We can recalculate the original figure in terms of counts per person, as in Fig. 7.5b.
Notice that some of the densities have changed drastically. New York City, in par-
ticular, went from very dense in the un-normalized plot to very sparse in the nor-
malized one. While a large number of photographs were taken here, on a photo per
person basis the count is lower compared to other regions.

"Three city names have also been added to guide the discussion for anyone unfamiliar with the
geography of the Eastern United States. Code for this is contained in the supplementary materials.
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7.6 Further Extensions

A natural next step from this chapter is the text Applied Spatial Data Analysis with
R [4]. Tt first extends the methods mentioned here to a wider range input formats,
projections, and applications. In the second half of the text more analytic techniques
for modeling spatial data are explored. The level of presentation is very similar
to this text and, similarly, emphasizes applied data analysis and the “how-to” of
programming in R. The text Spatial statistics and modeling by Carlo Gaetan and
Xavier Guyon provides a far more extensive introduction to spatial statistics but
requires a background in mathematical analysis and theoretical statistics [7].

Practice

1.

Construct a small dataset of important places in your life, possibly including
things such as your home location, work location, and favorite coffee shop. Man-
ually add latitude and longitude to the data (can be extracted from many online
tools such as Google Maps) and create plots using the snippets function. Try
increasing and decreasing the extent of the plot by adding/removing locations.
What features appear and disappear as the map area becomes smaller?

. Replicate the plot shown in Fig.7.3a and save the output in these formats: tiff,

pdf, jpeg, png, bmp. Use the default height and width for the plots. What differ-
ences do you see between the file sizes of the output? Now construct plots with
twice the height and width of the originals. Compare the new and old file sizes.
Do they all scale up the same way? Why or why not? When might you prefer a
jpeg over a pdf (and vice versa)?

. We have already worked with point and polygons in this chapter, but there is one

other data type we did not use: SpatialLines. The US Census Bureau maintains

a shape files (by state) for all primary and secondary streets in the United States,
downloadable here: ftp://ftp2.census.gov/geo/tiger/TIGER2014/
ROADS/. Read in these shapefiles with the command readShapeLines.
What type of object is returned? It can be manipulated almost exactly like its
point and polygon variants; try plotting for instance. Produce a plot with only
the primary roads (indicated in the attached data frame). Now produce a plot
where all of the roads are present, but the primary roads are colored in red.
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Chapter 8
Image Data

Abstract In this chapter, methods for loading, manipulating, and saving image files
in R are presented. Dimension reduction and clustering analysis are developed in
order to visually represent a corpus of images in standard scatter plots.

8.1 Introduction

A large amount of humanities data consists of digitized image data, and there is an
active push to digitize even more. Examples of large corpora include Google Books,
Google Art Project, HathiTrust, the Getty Museum Europeana, Wikimedia, and the
Rijksmuseum. In some cases, these image collections represent scans of mostly tex-
tual data. In others the images represent digitized art works or photographic prints;
in these cases the images serve as direct historical evidence, objects of study in their
own right, or both. Converting images of text into raw text data is an interesting
problem in computer vision. The process of converting, however, is currently best
left to custom proprietary software (and is often run once at the moment of digiti-
zation). We will concentrate in this chapter only on the cases where images directly
represent artwork or other historical documents.

While many digital humanities projects work with image data, few analyze the
actual images themselves. In this chapter we present methods for visualizing an
entire corpus of images in a single scatter plot. As an example, we show how these
methods can be applied to a collection of outdoor photographs and the degree to
which they successfully separate those taken during the day from those taken at
night.

8.2 Basic Image I/0

There are many competing formats for storing image data. Three R packages han-
dle the three most commonly used digital repositories: the tiff package [10], the
jpeg package [11], and the png package [9]. Each handles exactly one file format
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Figure 8.1: Simple examples of manipulating JPEG images within R. (a) Cropped
image. (b) Rotated image.

and provides just two simple functions to read and write their respective formats.
They also return and accept the same types of objects. We concentrate on the jpeg
package here, but keep in mind that png and tiff files can be used in the exact same
fashion.

Loading a jpeg image into R is similar to the process of loading a dataset, by
using the function readJPEG.

> library(jpeg)
> vanGogh <- readJPEG("vanGogh selfPortrait.jpg")

The resulting object is of class array. This object is not specific to the jpeg pack-
age and exists as a base object in the R language. Unlike a matrix or data frame,
arrays may have more than two dimensions.

> class (vanGogh)
[1] "array"

> dim(vanGogh)
[1] 768 608 3
> range (vanGogh)
[1] 01

An array object is an extension of the concept of a matrix to an arbitrary number
of dimensions. We can think of the array vanGogh as a collection of three dis-
tinct 768-by-608 matrices. The matrices represent pixels in the image, with the first
matrix giving the intensity of the red component, the second matrix the green com-
ponent, and the third the blue component. The values are numbers between 0 and
1, with 0 being no intensity in a given color channel and 1 being full intensity. Note
that if all the components are 0 then the pixel will be black (the absence of light),
and when all are 1 then the pixel will be white.
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An array object in R is manipulated in the same way that regular matrices are,
except that when subsetting the expressions inside the square brackets requires (in
this case) three inputs rather than two. As an example, look at the result of taking
the red and green intensities of pixels from the upper left corner of the image.

> vanGogh([1:4,1:3,1:2]

o1

[,1] [,2] [,3]
[1,] 0.6431373 0.5960784 0.5764706
[2,] 0.6117647 0.6509804 0.5176471
[3,] 0.5607843 0.7333333 0.5176471
[4,] 0.7529412 0.8549020 0.6196078
P 2

[,1] [,2] [,3]
[1,] 0.5882353 0.5529412 0.5607843
[2,] 0.5725490 0.6352941 0.5254902
[3,] 0.5333333 0.7254902 0.5411765
[4,] 0.7098039 0.8274510 0.6274510

The subsetting command can be used to produce a cropped version of an image.
In order to view the cropped image, we create a new jpeg file using the function
writeJPEG.

> vanGoghCrop <- vanGogh[100:400,100:400, ]
> writedPEG (vanGoghCrop, "vanGoghCrop.jpg")

The resulting image is shown in Fig. §.1a.

In order to rotate the image, we might consider using the transpose function,
which we have used to flip the dimensions of a matrix. The array analogue to the
transpose function is called aperm; it is available by default in the base language of
R and does not require any special packages. The function exchanges, or permutes,
the order of an array’s dimensions. We will use the permutation ¢ (2,1,3) to
indicate that we want to flip the first two dimensions while keeping the third in
place.

> vanGoghRotate <- aperm(a=vanGogh,perm=c(2,1,3))
> vanGoghRotate <- vanGoghRotate[dim(vanGoghRotate) [1]:1,,]
> writeJPEG (vanGoghRotate, paste0 (OUTDIR, "vanGoghRotate.jpg"))

The permutation alone would result in mirror image of the original, so after tak-
ing the permutation the first dimension was then reversed. The result in Fig. 8.1b
demonstrates that this has resulted in the correct rotation.

It is also possible to manipulate the third dimension of the image array. For
example, creating a copy of the vanGogh object and setting the green and blue
channels to zero result in a representation of the image that is only displayed in red.
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Figure 8.2: Isolated rgb color channels for a single image. From left to right: red
only, green only, blue only, average of three color channels (which results in a black
and white image).

> vanGoghRed <- vanGogh
> vanGoghRed[,,2:3] <- 0

Figure 8.2 shows the red-only image as well as the analogues for green and blue.
Notice that these are not simply tinted versions of one another; different features
are absent in each version. Most notable are the eyes in the portrait, for which the
irises are completely missing in the red channel. It is also possible to construct a
black and white image of the portrait by setting each color channel to the average
pixel intensity across all three channels. Whenever all three channels are equal, the
resulting image will be some shade of gray.

vanGoghBW <- vanGogh

vanGoghBW[,,1] <- (vanGogh[,,1] + vanGoghl[,,2] + vanGoghl[,,b3]) /
vanGoghBW[, ,2] <- (vanGoghl[,,1] + vanGoghl[,,2] + vanGoghl[,,3]) /
vanGoghBW[,,3] <- (vanGogh[,,1] + vanGoghl[,,2] + vanGoghl[,,b3]) /

vV V. VvV Vv
w w w

The black and white image is shown as the right most panel in Fig. 8.2.

How did we create the single image shown in Fig. 8.2?7 We bound together the
four image arrays along their vertical dimensions, similar to the way that matri-
ces can be combined using cbind and rbind. It requires the use of the pack-
age abind, which operates almost exact like the matrix equivalents but requires the
parameter along to indicate which dimension the combining will occur along.

> library(abind)

> vanGoghAll <- abind(vanGoghRed, vanGoghGreen, vanGoghBlue, vanGoghBW,
+ along=2)

> dim(vanGoghaAll)

[1] 768 2432 3

> writeJPEG (vanGoghAll,paste0 (OUTDIR, "vanGoghAll.jpg"))

As an easy to remember rule, the element specified in the parameter along refers
to the element of the output dimension that we expect to grow during the binding.
All of the other dimensions must be consistent among the inputs and will be the
same in the output.
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8.3 Day/Night Photographic Corpus

It will be advantageous to study a small collection of curated images developed for
image analysis. This has the advantage of having pre-determined metadata defining
the underlying image types. It also will help to have images that are all of roughly
the same pixel dimensions. We will use a collection that has outdoor photographs
taken during the day and during the night from the Digital Video Multimedia Lab at
Columbia.'

> files <- dir("../data/ch08/columbialmages", full.names=TRUE)
> meta <- read.csv("../data/ch08/photoMetaData.csv", as.is=TRUE)

We filter out only those images taken outdoors and construct a vector of symbols to
indicate which category each image falls under.

> files <- files[metaScategory %$in% c("outdoor-night", "outdoor-day")]
> meta <- metal[meta$category %in% c("outdoor-night", "outdoor-day"),]
> pchSymb <- rep(19,length(files))
> pchSymb [meta$category == "outdoor-day"] = 3
> table (pchSymb)
pchSymb
3 19
277 34

There are 34 night images and 277 day images in the collection. As a first step to
understanding these data, let us calculate the median of each color channel over the
corpus of images.

> OutputRGB <- matrix(0,nrow=length(files) , ncol=3)
> for (j in 1l:length(files)) {
+ z = readJPEG(files[]j])
+ outputRGB[j,1] = median(z[,,1])
+ outputRGB[j,2] = median(z[,,2])
+ outputRGB[j,3] = median(z[,,3])
+
}

A pair of scatter plots of these values is shown in Fig. 8.3. We already see a decent
separation between the night and day images. As a basic heuristic, night images
have proportionally more red compared to green and blue. The color intensity values
for each channel appear to be positively related; a correlation matrix reveals that the
intensities have correlations ranging from 0.77 to 0.95.

> round (cor (outputRGB) , 3)
[,11] [,2] [,3]
[1,] 1.000 0.883 0.766
[2,] 0.883 1.000 0.947
[3,] 0.766 0.947 1.000

http://www.ee.columbia.edu/~dvmmweb/dvmm/downloads/
PIM PRCG dataset/techreport personal columbia.html.
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Figure 8.3: Scatter plot of red, green, and blue pixel intensity of photographs from
the Digital Video Multimedia Lab at Columbia. Dots (red) are outdoor images taken
at night, and plus signs (blue) are outdoor images taken during the day.

We are representing each image by the median pixel intensity by channel; however,
these values are very highly correlated. If we are going to represent an image with
three numbers, it would be advantageous if these numbers offered richer informa-
tion.

One solution is to use an alternative color representation to the typical red, green,
and blue pixel intensities. A common example is the hue-saturation-value (hsv)
cylindrical coordinate system. It is often considered a more intuitive model for de-
scribing colors as it was devised in the 1970s based on human perception [8]. Here
a particular color is represented by a different triplet of numbers between 0 and 1.
The hue mimics a traditional color wheel, with 0 corresponding to red, % to green,
and % to blue. The value corresponds to the highest pixel intensity and saturation
corresponds to the range of the intensities divided by their maximum. Conceptually,
saturation measures how “grey” the output is (with all true greys having a saturation
of zero) and value describes how bright it is. For an example of these coordinates,
see the decomposition of the Van Gogh portrait in Fig. 8.4. Notice that the various
color channels already seem less correlated than the rgb model.

The function rgb2hsv, available by default within R, makes converting into
the hsv coordinate system straightforward (keeping in mind that maxColorValue
should be set to 1 as the default is 256). The only additional consideration is that the
hue value is circular, so therefore it does not make sense to directly take the median
or mean of the raw values. A hue of 0.1 is a slightly orange variant of red and 0.9 a
slightly purple version of red. The mean of these two values is 0.5, which is the hue
of the color cyan. A more reasonable “average” of the two is the color red. In order
to arrive at this more appropriate value, we will use a circular variant to calculate
values corresponding to hue; these are provided by the package circular [2].2

2The formula for circular median is not too complex; if you want to avoid loading another library,
the following:
atan2 (mean(sin(mat[1,]*2%pi)), mean(cos (mat[1l,]*2%pi))) / (2%pi) can be
used in place of the median.circular (...) call (it is actually much faster).
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Figure 8.4: Hue-saturation-value coordinate decomposition of the Van Gogh por-
trait. Left image has saturation and value both set to 1, leaving only hue to dis-
tinguish the pixels. The center and left image are displayed in grey scale. The
center represented saturation with black a saturation of 0 and white a saturation of
1; the right represents value, with a value of 0 displayed as black and a value of 1
displayed as white.

We can now calculate the medians of the hsv model coordinates over the corpus
of photographs with a variant of the same code we used for the rgb coordinates.

> library(circular)

> oUutputHSV <- matrix(0,nrow=length(files),ncol=3)

> for (j in 1l:length(files)) ({

+ z <- readJPEG(files[j])

mat <- rgb2hsv(as.numeric(z[,,1]),as.numeric(z[,,2]),
as.numeric(z[,,3]),maxColorvValue=1)

outputHSVI[j, 1] <-
median.circular (circular (mat[1,]*360,units="deg"))
outputHSV[j,2] <- median(mat([2,])

outputHSV[j,3] <- median(mat[3,])

+ o+ o+ o+ o+ o+

A correlation matrix indicates again, as we saw in the Van Gogh example, that
the median of these coordinates offer more independent information relative to one
another than raw pixel channel intensities in the rgb system.

> round (cor (outputHSV) , 3)

[,1] [,2] [,3]
[1,] 1.000 -0.108 0.365
[2,] -0.108 1.000 -0.223
[3,] 0.365 -0.223 1.000

A full scatter plot of the image corpus is given in Fig. 8.5. Notice that the scatter
plot is much more evenly distributed across the three dimensions, though blue hues
do seem to have suppressed saturation and value. Almost all of the night images
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Figure 8.5: Scatter plot of photographs from the Digital Video Multimedia Lab at
Columbia in hue-saturation-value coordinates. Dots (red) are outdoor images taken
at night, and plus signs (blue) are outdoor images taken during the day.

have a median hue between red and yellow and median saturation greater than 0.3,
whereas almost none of the daytime images have these two properties. This effect
is likely due to composition of artificial light sources, compared with that of the
sun. Standard tungsten lamps, for example, are known to be biased toward red
wavelengths of light.

8.4 Principal Component Analysis

There are many benefits to being able to represent a dataset in an alternative co-
ordinate system where the correlations between components are smaller. In other
words, we are looking at variation in order to understand the differences between
the photos. Mapping a set of rgb intensities to hsv coordinates is particularly nice
because it was designed with the intention of decomposing color to better capturing
human perception. What if such a transformation did not already exist?

A method known as principal component analysis (PCA) can be used in these
cases. Given a numerical dataset, PCA returns a new set of coordinates such that
each component is completely uncorrelated with the others; these new coordinates
are referred to as principal components. Furthermore, the first component is chosen
such that it explains the maximum amount of variance in the data. Each subsequent
component does the same, with the condition that they are uncorrelated with the
previously defined components. The prcomp function provided by default within
R can be used to compute the principal components of a given matrix. As an illus-
trative example we also turn off centering and scaling; these should almost always
be set to TRUE in practice.
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> pc <- prcomp (outputRGB, center=FALSE, scale.=FALSE)
> pc

Standard deviations:

[1] 0.65734056 0.08510617 0.02810292

Rotation:

PC1 PC2 PC3
[1,] -0.5552056 0.72964807 -0.3991997
[2,] -0.5983264 -0.01700333 0.8010720
[3,] -0.5777130 -0.68361142 -0.4460080

By definition, each PCA component is computed as a linear combination of the
original data components. From the output, we see that the first principal component
is approximately equal to an equal weighting, with a factor of about —0.58, of the
three color channels. Specifically, we can calculate PC1 with the following formula:

PCI = —0.56 * RED — 0.60 «* GREEN — 0.58 * BLUE
~ —0.58 - (RED + GREEN + BLUE)

As the first component is attempting to capture the highest amount of variance, and
we have already observed that the majority of variation in our data comes from the
overall intensity of the three color channels, we should have expected this compo-
nent to largely be an equal weighting of the three channels. The second principal
component consists, again roughly, of the difference between the red and blue pixel
intensities:

PC2 = 0.73 « RED — 0.02 * GREEN — 0.68 « BLUE
~ 0.7 - (RED — BLUE)

Whereas the third and final is approximately the difference between the green in-
tensity and the average of the red and blue intensities:

PC3 = —0.40 « RED + 0.80 * GREEN — 0.45 «* BLUE

~ 0. (orezy - BLUE £ RED)
It is often not possible to directly interpret principal components, particularly when
using a larger number of variables. Here, we were lucky to find a nice and under-
standable decomposition of the three components.

In order to compute the principal components of our dataset, we do not need to
calculate each component by hand. The function predict conveniently handles
the computation for us; this is particularly useful when scaling and centering are
turned on.

> outputPC <- predict (pc)
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Figure 8.6: Scatter plot of photographs from the Digital Video Multimedia Lab
at Columbia using principal components from rgb pixel intensities. The projected
red, green, and blue “axes” show the theoretical projected locations of pixels with
nonzero intensities in only one channel.

A scatter plot of the principal components is shown in Fig. 8.6. Axes labeled as the
three primary colors indicate the locations where pixels having only one nonzero
color intensity would be found; these are helpful in understanding the nature of
the components. For example, all three rgb lines are equally long when viewed
on the PCI axis; the PC2 axis has almost no variation in the green line and equal
but opposite intensities for the other two colors. Notice that as promised, each
successive dimension contains more variance of the data than the previous one. The
PC3 dimension has almost no variation compared to PC1.

Due to the fact that the first two principal components contain the majority of
the variation in the dataset, for many applications it would be possible to use only
the first two components. In many cases, even when the input data has a large
number of variables, the most interesting effects are contained in the first few prin-
cipal components. Collapsing the interesting variation in a set of data is called
dimension reduction and is an important task for both visualization and predictive
modeling. Principal components are popular because they are a fast way to perform
aggressive dimension reduction while minimizing the effect of overfitting to a given
dataset. In other words, PCA should produce similar rotations when used on a sim-
ilar but independently constructed dataset (in this case, that might be another set of
day/night photographs).

To illustrate the use of PCA in a higher-dimensional setting, consider saving
the first and third quartile of the hsv coordinates in addition to the median; this
constructs a nine-dimensional representation of the corpus.

> output9 <- matrix(0,nrow=length(files),ncol=9)
> for (j in 1l:length(files)) {
+ z <- readJPEG(files[j])
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+ mat <- rgb2hsv(as.numeric(z[,,1]),as.numeric(z[,,2]),

+ as.numeric(z[,,3]),maxColorvalue=1)

+

+ output9([j,1:3] <- quantile(mat[1l,],probs=c(0.25,0.5,0.75))
+ output9[j,4:6] <- quantile(mat[2,],probs=c(0.25,0.5,0.75))
+ output9([j,7:9] <- quantile(mat[3,],probs=c(0.25,0.5,0.75))
+}

The principal component rotation for this dataset is now a 9-by-9 matrix. Notice
that in the higher dimensional case it is harder to directly interpret the actions of
each component.

> pc9 <- prcomp (output9, center=TRUE, scale.=TRUE)
> outputPC9 <- predict (pc9)
> round (pc9Srotation, 3)
PC1 PC2 PC3 PC4 PC5 PCe6 PC7 PC8 PCo

[1,] 0.242 0.396 -0.310 -0.633 -0.251 0.006 0.457 -0.125 0.019
[2,] 0.293 0.325 -0.479 0.032 0.012 0.286 -0.701 0.061 0.042
[3,] 0.314 0.061 -0.485 0.541 0.326 -0.352 0.370 -0.058 -0.024
[4,] -0.306 0.484 0.107 -0.025 -0.039 -0.688 -0.233 0.049 0.357
[5,] -0.360 0.459 0.025 0.126 0.051 0.056 0.019 -0.092 -0.793
[6,] -0.386 0.358 -0.028 0.302 0.059 0.554 0.292 -0.030 0.483
[7,1 0.335 0.220 0.446 -0.128 0.580 0.070 -0.071 -0.522 0.070
[8,] 0.373 0.292 0.368 0.046 0.112 0.070 0.137 0.774 -0.056
[9,1] 0.366 0.161 0.304 0.423 -0.688 -0.002 -0.001 -0.307 -0.005

A scatter plot of all nine dimensions is shown in Fig. 8.7, where each component
is shown on the same scale. Notice that the higher components have almost no
variation; conversely, the first component alone provides a very clear separation
between the night and day images. For most applications, the first three components
would be sufficient for capturing the majority of the variation in the data.

8.5 K-Means

When looking at scatter plots of points, an inclination is to try to identify clusters
of points. More precisely, we look for a grouping of the data where the distances
between points within a group are consistently smaller than the distance between
groups. We saw an example of this in the community detection algorithms over a
graph in Sect. 6.5. Algorithmically calculating clusters within a dataset provides a
powerful tool for visualizing high-dimensional data. It can be used either in place
of or in addition to PCA to understand patterns in such datasets.

There are many clustering algorithms available within R. One popular example
available by default is k-means, provided by the function kmeans. We will not
give a detailed description of the algorithm here beyond mentioning that it requires
pre-specifying the number of clusters in the output and is nondeterministic.> When
run within R, a vector of cluster ids is returned; due to the nondeterministic nature
of the algorithm, we will set the random seed prior to continuing in order to make

3For a detailed description and visualization of the underlying algorithm see [1].
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Figure 8.7: Scatter plot of photographs from the Digital Video Multimedia Lab at
Columbia using principal components from the ()1, (J2, and Q)3 summary of the
hue-saturation-value coordinates. All components are plotted on the same scale to
illustrate their relative variance.

sure the results are replicable. Here we take the nine-dimensional output from the
previous section and apply k-means with six clusters.

> set.seed (1)
kmeans <- kmeans (outputPC9,
> cluster$Scluster
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[225] 2 2 4 4 2 4 4 4 4 23 2 4 422 4 4423333426446 22
[257] 2 4 2 4 3 3 4 3 444444 44426442442422233E%6
[289] 366 46 2224624226¢6©6%6%6°%6464

The values returned assign each input to a particular cluster bucket. Unlike the order
of components in PCA, the actual cluster numbers do not mean anything particular:
they are just dumb labels.

We can construct a table to show the degree to which these clusters separate the
day and night outdoor photographs

> table(clusterscluster,meta$category)

outdoor-day outdoor-night

1 32 0
2 74 12
3 34 0
4 66 2
5 1 20
6 70 0

Clusters 1, 3, 4, and 6 hold the outdoor photographs (with 4 containing two outliers).
Cluster 5 contains almost all night images but cluster 2 holds a mixture of both
categories. Figure 8.8 shows a plot of the centers of the clusters over the first two
principal components.

PC2
0

-2

Figure 8.8: Location of k-means clusters over the first two principal components
from Fig. 8.7.
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8.6 Scatter Plot of Raster Graphics

We have so far developed a series of methods for displaying a corpus of images as
points in scatter plots. As a final step we show how to replace the dots with small
thumbnail versions of the images in question. This provides a visualization which
can capture the features of the images in a way that no scatter plot could do on its
own.

As a first step, we convert the principal components into standardized x and y
coordinates between 0 and 1 in order to simplify the process of scaling the output
correctly.

> X <- outputPC9[,1]
> X <- (x - min(x)) / (max(x) - min(x))
> y <- outputPC9[, 2]
>y <- (y - min(y)) / (max(y) - min(y))

In order to plot a jpeg image onto an R plot, rather than saving it as an individual jpeg
image with writeJPEG, we will use the function rasterImage, which is avail-
able within the default installation of R. The function takes an image object, which
can be the direct output of readJPEG, and the locations of the top, bottom, left,
and right corners of the box. By providing these four numbers, the function allows
for maximum customization by end users but does force us to manually calculate
the size of a box needed to maintain the aspect ratio of the original jpeg.

In order to plot a scatter plot of jpegs, the first step is to create an empty canvas
to plot over. Here we also define the parameter rho, which we will use as the length
of the maximum size of the plotted image; the x and y variables previously defined
will be used as the lower left corner of the box and therefore we need to extend the
plot region to contain the range of x and y plus an additional offset of rho.

par (mar=c(0,0,0,0))
rho <- 0.1
plot(0,0,type="n", xlim=c(0,1l+rho), ylim=c(0,1l+rho))

From here, we now use a for loop to cycle over the corpus of images. For each
image the aspect ratio is calculated and the size of the scaled image is determined
based on whether the image has a longer horizontal or vertical dimension. Finally,
the rasterImage function is used to plot the image on the plot.*

set.seed (1)
for (j in sample(l:length(files))) {
z <- readJPEG(files[j])

delta x <- ifelse(rat > 1, 1, rat) = rho
delta y <- ifelse(rat > 1, rat, 1) = rho

>

>

+

+

+ rat <- dim(z) [1] / dim(z) [2]

+

+

+ rasterImage(z, xleft=x[j], ybottom=y[j],

4To improve the final image, we also permute the set 1:1length (files) using the sample
function. The order matters in this case because the later images are overplotted on the first images. The
default order of the files is not as visually pleasing as a random permutation as the original ordering was
sorted by size and category.
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Figure 8.9: Scatter plot of photographs from the Digital Video Multimedia Lab at
Columbia using principal components from the ()1, ()2, and ()3 summary of the
hue-saturation-value coordinates.

+ xright=x[j]l+delta _x, ytop=yl[jl+delta y)
+ rect (x[j],y[j],x[jl+delta_x,yl[jl+delta_y,1lwd=2)

+}

The output from this is shown in Fig. 8.9. Notice that the images fall into the same
pattern as the scatter plot of points in Fig. 8.8. Many patterns which were not ob-
vious in the original plot are now apparent. For example, the upper right corner
is dominated by blue sky and water images. The lower center contains outdoor
images taken in heavy shadows and featuring darker streets and buildings, whereas
the upper left contains images with reddish incandescent bulbs.

When saving the scatter plot of jpeg images, it is best to save the output as a
raster format such as a jpeg. If trying to use a vector graphic format such as pdf, the
file size will be massive as a full complete copy of every image will be saved in the
output. This is very similar to the issue we saw when plotting shape files in Chap. 7.

8.7 Extensions

We have made considerable progress in visualizing a corpus of images using nothing
more than pixel intensities. There are many more features which can be extracted
from images which consider more nuanced aspects of images. Low-level exam-
ples include image texture via co-occurrence matrices [4] and scale-invariant fea-
ture transform (SIFT) [6]. Higher-level algorithms can extract global features such
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as image segmentation [7] and facial recognition algorithms [3]. Not all of these
higher level feature sets are currently supported by R packages; the glem package,
however, provides a good starting point for incorporating grey-scale textural fea-
tures to data [12].

The generic statistical dimension procedures introduced, PCA and k-means clus-
tering, are two of the most popular methods for dimension reduction and clustering.
There are many important alternatives and extensions for dealing with
high-dimensional data. A very popular, and reasonably accessible, reference for
these is given in the text The Elements of Statistical Learning [5]. We will also
explore further applications of these to textual corpora in Chap. 10.

Practice

1. Take a personal photograph, preferably one with bright colors and many fea-
tures, convert it into a jpeg/tiff/png if necessary, and read it into R. Construct a
histogram of the three color channels with ten buckets each. Then, separately
for each color channel truncate the intensities at some reasonable value (the 10th
and 90th percentile work well) and save the three resulting jpeg images. How
different do the three (red truncated, green truncated, and blue truncated) look?
Does truncation in different color channels effect perception differently from the
original?

2. One technique for finding the distinctions between day and night images is look-
ing at only the top pixels in the image, as this will often contain a bright blue
sky or brightly lit buildings. Rerun the basic analysis on the corpus of images
by capturing four numbers from each image: the saturation and value for the
top 50 rows of pixels, and the saturation and value for the bottom 50 rows of
pixels. Try plotting these new dimensions. Use a PCA and plot the images using
the code developed in Sect. 8.6. What differences do you see compared with the
original analysis?

3. The image corpus we have has several other categories. Pick two of them and
reconstruct Figs. 8.6 and 8.7. Do these methods separate the classes as well,
better, or worse than the outdoor day and night classes?

4. Write a loop to calculate the k-means clusters for the day/night photographic
corpus with k£ = 6 over the principal components 25 times (use par (mfrow=
c (5, 5) todisplay them together), without re-setting the random seed. What do
you notice about the clusters? How stable is the output? Try this again with both
k = 3 and k = 10 clusters. How stable are these outputs? How might you use
this information to help choose the number of clusters?
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Chapter 9

Natural Language Processing

Abstract An introduction applying low-level natural language processing is given
in this chapter. Techniques such as tokenization, lemmatization, part of speech
tagging, and coreference detection are described in relationship to text analysis.
The methods are applied to a corpus of short stories by Sir Arthur Conan Doyle
featuring his famous detective, Sherlock Holmes.

9.1 Introduction

The application of computational tools to textual data is a growing area of inquiry
in the humanities. From the culling of “Culturomics” via the 30 million document
Google books collections [15], to the painstakingly detailed process of analyzing
the text of Shakespeare’s plays to ascertain their “true” creator [12, 25], a wide
range of techniques and methods have been employed and developed. Text analysis
in the humanities has also garnered an impressive level of interest in the mainstream
media. For example, a study analyzing the relationship of a professor’s gender to
their teaching reviews [16] and an overview of Franco Moretti’s distant reading [21]
both recently appeared in the New York Times. The Atlantic featured a historical cri-
tique of the language used in the period drama “Mad Men”, where textual analysis
of the script revealed departures from the standard American English spoken in the
1960s [20].

Textual data is also highly unstructured. When working with images we saw
that we could represent a collection by arranging the pixel intensities in a very wide
table. While large and slightly awkward, at least this provided a convenient start-
ing point. Textual data does not offer such a simple representation (at least with-
out losing a substantial amount of information). To address this limitation, textual
sources must undergo a large amount of pre-processing.

The form of pre-processing we will focus on will be natural language pro-
cessing (NLP), which mimics the complex process by which humans parse and
interpret language. The areas we will cover include tokenization and sentence
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splitting (Sect.9.2), lemmatization and part of speech tagging (Sect.9.3), depen-
dencies (Sect. 9.4), named entity recognition (Sect. 9.5), and coreference detection
(Sect.9.6). It is worth noting that these methods are complex and remain a very
active and unsettled area of research.

Given the complexity and importance of textual data, we have decided to split
our treatment into two chapters. Here we cover the low-level data cleaning steps
known as the natural language processing pipeline. We will do this by way of
examples. Our primary focus will be on Arthur Conan Doyle’s 56 short stories
about Sherlock Holmes. We will look at “A Scandal in Bohemia” through the NLP
pipeline and then scale up to analyzing all 56 of Doyle’s stories. We provide in-
teresting direct applications of these methods; the true power of textual analysis
will become even clearer in the next chapter when we show how to apply various
high-level analyses to the cleaned data.

9.2 Tokenization and Sentence Splitting

Consider (an English translation of) the opening lines to Albert Camus’s I’Etranger
[1]." Let us represent this as a length one character vector in R.

> sIn <- "Mother died today. Or, maybe, yesterday; I can’t be sure."

A practical, and seemingly simple, first step in processing this string is to split it into
a longer character vector where each element contains a single word. But what ex-
actly is meant by a word? Are punctuation marks separate words? What about
contractions, hyphens, or compound nouns such as “New York City”? If we split
this string apart using just the presence of spaces the result seems approximately
reasonable, but less than perfect.

> strsplit(sIn, split=" ")

[[1]1]
[1] "Mother" "died" "today." "Or," "maybe, "
[6] "yesterday;" "I" "can’t" "be" "sure."

The process of splitting text into meaningful elements is called tokenization. For
English text the difficult task is catching the myriad of rules and exceptions. Rather
than re-creating and re-implementing these conditions, it is better to use a well-
tested library to tokenize our string. The library we will use throughout this chapter
is the Stanford CoreNLP [14]. It is an open source java software with a large user
base and has support for a range of languages. We have developed an R package
coreNLP for calling the library as well as manipulating and visualizing the output.
In order to use the R package, call the function initCoreNLP.?

ILater, in Sect. 9.8 we explore how to tokenize these lines in the original French.
2More detailed instructions on how to set up this package can be found in Chap. 11 and on CRAN.
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> library (coreNLP)
> initCoreNLP ()

The initialization of the library can take a minute or two as a large amount of linguis-
tic data is loaded and processed into memory; a running list of the models should
be displayed in the R console window.

In order to process a string of text using coreNLP, an annotation object first
needs to be constructed. When the text is passed through annotateString, the
entire suite of CoreNLP functions such as lemmatization and stemming is applied.
We will explore each of these techniques throughout this chapter.

> annotation <- annotateString(sIn)
> annotation

A CoreNLP Annotation:
num. sentences: 2
num. tokens: 16

As the default output shows, this annotation has already (correctly) determined that
the text has two sentences and sixteen fokens, a generalization of the concept of a
word, which includes elements such as punctuation. To see the generated tokeniza-
tion, the function get Token extracts information regarding each lemma detected
in the input. For now we pull out just the word element of the output.

> getToken (annotation) $token

[1] "Mother" ndiedn "today" non norn w,on
[7] nmaybeu n,n "yesterday" nn nwgn negh
[13] nnren "he "gure" non

Notice that the punctuation symbols have been assigned to their own elements and
the contraction “can’t” has been split into two words. (Note: In the next step, “ca”
and “n’t” will be addressed.) However, the input text has not been modified with
the exception of removing spaces. In addition to the process of tokenizing the in-
put, the annotation also calculated how to split the input into sentences. As the
documentation states:

Sentence splitting is a deterministic consequence of tokenization: a
sentence ends when a sentence-ending character (., !, or ?) is found
which is not grouped with other characters into a token (such as for an
abbreviation or number), though it may still include a few tokens that
can follow a sentence ending character as part of the same sentence
(such as quotes and brackets).?

To see the assignment of sentences, pull the sentence element out of the tokenization.

> getToken (annotation) $sentence
[1] 111 1222222222222

3http://nlp.stanford.edu/software/tokenizer.shtml
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The algorithm has assigned the first four tokens to the first sentence, and the remain-
der to the second sentence.

Can we learn anything useful directly from the output of this process of tok-
enization? In our short 16 lemma example probably not, but consider applying the
algorithm to a longer sample of text. The coreNLP provides a function for annotat-
ing an entire file in one step. It is straightforward to apply but can take a nontrivial
amount of time to process a file of text. Reading in the short story “A Scandal in
Bohemia”, the first of Sir Arthur Conan Doyle’s short stories featuring Sherlock
Holmes, for example, takes about 4 min on a moderately powerful machine.*

> anno <- annotateFile(
"data/ch09/01 a scandal in bohemia.txt")
> anno

A CoreNLP Annotation:
num. sentences: 668
num. tokens: 10448

The output object is of exactly the same structure as our short example. In this case
668 sentences and 10,448 tokens have been processed. We can use the tokenization
and sentence splitting to determine the length of every sentence in the text.

> gentLen <- table(getToken (anno) $sentence)
> hist (sentLen, breaks=30)

A histogram of these lengths is shown in Fig.9.1.> The distribution shows a sharp
peak of sentences less than ten tokens longer; this is fairly short, particularly when
considering that punctuation is included in this count. It is likely a product of the
heavy use of dialogue in the text. A very small set of sentences top 60 or more
tokens. A close analysis of the original text reveals most of these to be part of a
long deductive speech given by Sherlock Holmes towards the end of the story.

9.3 Lemmatization and Part of Speech Tagging

While tokenizing simply splits the raw character input into groups, lemmatization
goes further by converting each token into a representative lemma. For example,
“g0” is the English lemma for words such as “gone”, “going”, and “went”.® Nouns
have their own process of lemmatization, such as converting all words into their
singular form; for example, “dogs” becomes “dog” and “mice” becomes “mouse”.
Notice that lemmatization changes depending on the part of speech. Therefore,
much like tokenization and sentence splitting, the task of tagging tokens with parts
of speech and lemmatization is often accomplished in tandem. To demonstrate how

both work in the coreNLP package, we again turn to our annotation of “A Scandal

4All texts of the short Sherlock Holmes stories were downloaded from Project Gutenberg [9].

5 A detailed statistical analysis of sentence length distributions is given by Sichel [23].

SIn the technical terminology of linguistics, a lexeme denotes a word meaning along with its ortho-
graphic or phonological form; a lemma is then a collection of the lexemes with the same meaning.
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Figure 9.1: Distribution of sentence length in “A Scandal in Bohemia”.

in Bohemia” and the getToken function [24]. Pulling out the second sentence
(and obscuring some of the columns so as not to overwhelm ourselves with the rest
of the output) reveals the following data frame.

> token <- getToken (anno)
> token|[token$sentence==2,c(1:4,7)]
sentence id token lemma POS

10 2 1 I I PRP
11 2 2 have have VBP
12 2 3 seldom seldom RB
13 2 4 heard hear VBN
14 2 5 him he PRP
15 2 6 mention mention VB
16 2 7 her she PRPS
17 2 8 under under IN
18 2 9 any any DT
19 2 10 other other JJ
20 2 11 name name NN
21 2 12

The lemmatization process should seem straightforward. The verb “heard” is now
represented by the infinitive “hear”, and the pronouns “him” and “her” are changed
to their nominative forms “he” and “she”. Otherwise, the words remain unchanged
in their lemma form. The part of speech codes, on the other hand, may at first seem
confusing; for example, there are three different codes for the verbs “have”, “heard”,
and “mention”.

The part of speech codes used by the Stanford CoreNLP library come from
the Penn Treebank Project and contain many more categories compared to those
typically taught in primary school grammar courses. For example, VBN is the past
participle form of a verb, whereas VB is the base form of a verb. A table from our
annotation shows the entire set of possibilities.
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> table (token$POS)

-LRB- -RRB- , : . r A cc CD DT EX

1 1 573 42 668 294 299 338 87 841 31

IN JJ JJR JJs MD NN NNP NNS PDT POS PRP

1031 500 14 9 161 1101 322 245 11 18 896

PRPS RB RBR RBS RP TO UH VB VBD VBG VBN

289 525 15 11 61 245 16 367 560 117 220
VBP VBZ WDT WP WPS WRB
183 158 60 70 1 67

We see that JJS, superlative adjectives, are relatively uncommon, and IN tags,
prepositions or subordinating conjunction, occur quiet frequently. For a complete
description of these tags see the technical report and justification from the Penn
Treebank Project [19].

The extended set of parts of speech are quite useful, but many times a smaller
set of more familiar options can better serve a particular purpose. The universal
tag-set has been created and is a language-agnostic part of speech classifier [17].
A mapping from Penn Treebank codes into this smaller tag-set is provided in the
coreNLP package. A table using the universal tag-set reveals a smaller and more
familiar list of parts of speech.

> ut <- universalTagset (token$POS)
> table (ut)
ut
ADJ ADP ADV CONJ DET NOUN NUM PRON PRT VERB X
1878 523 1031 618 338 943 1668 87 1256 324 1766 16

> unique (token$POS[ut == "NOUN"])

[1] "NNP" "NN" TNNS"

> unique (token$POS[ut == "VERB"])

[1] "VBZ" "VBP" "VBN" "VB" "yBD" "VBG" "MD"

The three subtypes of nouns correspond to plural nouns (NNS), proper nouns (NNS),
and singular nouns (NN); there is also a plural proper noun code not seen in this text
(NNPS). The verb subtypes refer to various broad categories of verb conjugations.

With these universal part of speech codes, we can run some basic analysis on
the sentences in our text. First, we count the number of nouns, pronouns, adjectives,
and verbs in each sentence using the tapply function.

> nounCnt <- tapply(ut == "NOUN", token$sentence, sum)
> pronCnt <- tapply(ut == "PRON", token$sentence, sum)
> adjCnt <- tapply(ut == "ADJ", tokenS$sentence, sum)
> verbCnt <- tapply(ut == "VERB", token$sentence, sum)
> posDf <- data.frame (nounCnt, pronCnt,adjCnt, verbCnt)
> head (posDf)

nounCnt pronCnt adjCnt verbCnt
1 3 1 0 1
2 1 3 1 3
3 3 3 0 2
4 3 2 1 3
5 2 1 4 1
6 5 5 2 8
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Figure 9.2: Within sentence distribution of universal part of speech tags for “A Scan-
dal in Bohemia”.

An interesting stylistic question would be to see the within-sentence distribution
of nouns (including pronouns), verbs, and adjectives. Due to the discrete nature
of count data, a simple scatter plot will not work well. Instead we take advantage of
over-plotting and color opacity to produce an interpretable visual description of this
distribution.

> plot (nounCnt+pronCnt,adjCnt,pch=19, cex=2,
+ col=rgb(0,0,1,0.02))

The output is shown in Fig. 9.2. We see that verbs and nouns are well correlated and
roughly appear in equal numbers for short sentences, whereas longer sentences tend
to increase in terms of nouns faster than the number of verbs. Adjectives do not fol-
low such a smooth relationship with nouns; regardless of the number of nouns they
rarely occur more than two times in a sentence, despite occurring once in almost
half of sentences with only one noun.

Part of speech tagging also has the benefit of isolating function words, those
with primarily grammatical usage such as prepositions and conjunctions, from those
words with lexical meaning. Along with the use of lemmatization to collapse var-
ious word forms together, we can now gain potentially important contextual infor-
mation from a text by identifying the most frequently used lemmas from a particular
part of speech. The top 25 noun lemmas from our sample text, for example, identify
some of the key characters and objects of interest in the story.
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> index <- which (ut=="NOUN")
> tab <- table(token$Slemma [index])
> head(sort (tab,decreasing=TRUE) , 25)

Holmes man photograph Majesty hand woman

47 31 21 18 17 17

King matter house door Irene minute

16 15 14 13 13 13

room street Adler fire window Briony

13 13 12 12 12 11

eye Lodge nothing time face lady

11 11 11 11 10 10
Sherlock
10

The third most common word, “photograph”, comes from the main objective
presented in the story: the recovery of a scandalous photograph. References to the
main characters are also present: “Sherlock Holmes” of course, “Majesty” being
the royal client wishing to recover the photograph, and “Irene Adler” the subject of
the photograph in question.

Knowing beforehand the text in question, we were able to extract the character
names from a table of the most common nouns. Identifying facts we already know
however is not particularly useful. How might we have better accomplished this
using the methods at hand? One option is to use the original Penn Treebank tags to
tabulate only the proper nouns.

> index <- which(token$POS == "NNP")
> tab <- table(token$Slemma [index])
> head(sort (tab,decreasing=TRUE) , 25)

Holmes Majesty King Irene Adler Briony

47 18 16 13 12 11

Lodge Sherlock Mr. Bohemia Street Baker

11 10 8 7 7 6

Norton Watson Godfrey John St. Temple

6 6 5 4 4 4

Avenue Church Europe London Miss Monica

3 3 3 3 3 3
Serpentine

3

The reduced list includes an increased set of characters, while removing many of
the non-name nouns from the list. The results are still lacking as the titles and first
and last names are not linked together. Some non-names are also present, such as
the proper place names “Europe” and “London”. In order to resolve these issues
we need to discern relationships between pairs of words, rather than working with
lemmas individually.

9.4 Dependencies

To this point, we have primarily worked with individual words, tokens, and lem-
mas. We now approach the subject of sentence parsing, where the words within
a sentence are assigned a complete linguistic structure linking together all of the
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individual parts. The result of this, known as a parse tree, has a nice graphical
structure. In the coreNLP package it can be accessed via the get Parse function,
where a character vector with one element per sentence is returned [3]. (We have
run all of these code snippets with version 3.5.1 of the Stanford CoreNLP. We know
that the next version will use a different names for dependency tags, so the exact
output may differ but the general ideas will remain the same.)

> parseTree <- getParse (anno)
> length(parseTree)

[1] 668
> cat (parseTree[1])
(ROOT
(S
(PP (TO To)

(NP (NNP Sherlock) (NNP Holmes)))
(NP (PRP she))
(VP (VBZ 1is)

(ADVP (RB always))

(NP (DT THE) (NN woman)))
(. .)))

The nice graphical description of a particular element requires the function cat; it
is a base function in R that handles embedded newline characters differently than
the more commonly seen print function. The resulting graphic combines parsing
information with part of speech tags in a pleasing way. However, as just a string,
there is little that can be done directly for further analysis.

Fortunately, an alternative representation of the parse structure is also provided
in the form of a set of dependencies. These dependencies give the relationships be-
tween the pairs of lemmas that when taken together can reconstruct the entire parse
tree, much the same way that sets of edges were used to construct larger graphs in
Chap. 6. Additionally, dependencies attach each relationship with a code indicating
the nature of the relationship. These have the potential to be a powerful tool when
cleaning textual data. To access the set of dependencies, the coreNLP package
provides the getDependency function that returns a data frame of relationship
pairs.

\%

dep <- getDependency (anno)

> dep[depSsentence == 1,]

sentence governor dependent type governorIdx dependentIdx
1 1 ROOT woman root 0 8
2 1 Holmes Sherlock nn 3 2
3 1 woman Holmes prep to 8 3
4 1 woman she nsubj 8 4
5 1 woman is cop 8 5
6 1 woman always advmod 8 6
7 1 woman THE det 8 7

govIndex depIndex

NA 8

U w N
o 0 o W
U WwN
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As with the part of speech codes, the dependency type codes can be difficult to
interpret without a code book. For a complete list see the Stanford Typed Depen-
dencies Manual [4]; the two that we will make explicit use of are nn, noun com-
pound modifiers, and nsubj, which identifies “a noun phrase, which is syntactic
subject of a clause”. The latter typically relates a noun and its verb, but may link a
noun to another noun (as above) or adjective in the presence of a copular verb. The
govIndex and depIndex point back to rows in the tokens data frame, making
linking between the two data types possible.

An alternative visualization of the dependency structure is also provided in the
coreNLP R package. The syntax takes an annotation object and the id for the sen-
tence of interest as inputs to the plot function.

> plot (anno, 5)

The output, shown in Fig. 9.3, shows a compact representation of the sentence’s
grammatical structure. It is very useful for testing and exploring the output of the
part of speech and dependency tagging done by the CoreNLP library.

For another example of how dependency information can be used to understand
a textual source, consider identifying the most frequently used verbs that take the
action from the pronoun “I”” used as the subject of a sentence.

> index <- which(tokenS$lemma [depSdepIndex] == "I")

> depSelf <- deplindex,]

> depSelf <- depSelf [depSelfS$type == "nsubj",]

> sort (table (depSelf$governor) ,decreasing=TRUE) [1:10]

heard know found have saw am think call had made

8 8 7 7 6 5 5 4 4 4

The analysis here is slightly difficult because “I”’ may represent the narrator or could
be present in a quotation.

Returning to the issue of detecting character names, we can look for depen-
dencies of type nn, representing a noun modifying another noun. We extract all
dependencies of this type where both related words are proper nouns. Because our
story has a small amount of text written in all upper case and the Stanford CoreNLP
part of speech tagger labels all of these as proper nouns even when they should not
be, we also remove these all upper case words at the same time.

> index <- which(depS$Stype == "nn" &

+ tokens$POS [depSgovIndex] == "NNP" &

+ tokens$POS [depSdepIndex] == "NNP" &

+ (toupper (tokens$token) != tokenS$Stoken) [dep$SgovIndex] &
+ (toupper (tokenStoken) != tokensStoken) [deps$SdepIndex])
> nnDep <- dep[index,]
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Putting this together with the part of speech tags that detect proper nouns, we can
pull out pairs of modifying proper nouns. When pasted together, these give a much
improved set of character names.

> pname <- startIndex = endIndex = NULL
> for (g in unique (nnDep$govIndex)) {

+ these <- c¢(which(nnDep$depIndex == g),

+ which (nnDep$govIndex == g)

+ these <- range (c (nnDep$depIndex[these] ,nnDep$govIndex[these]))
+ out <- paste(tokenS$Stoken|[these[1l] :these[2]],collapse=" ")
+ pname <- c(pname, out)

+ startIndex <- c(startIndex, these[l])

+ endIndex <- c¢(endIndex, thesel[2])

+}

> pnames <- data.frame (pname, startIndex, endIndex,
+ stringsAsFactors=FALSE)

> unique (pnames$pname)

"Sherlock Holmes"

"Irene Adler"

"Baker Street"

"Mary Jane"

"Continental Gazetteer"

"Eglow , Eglonitz"

"Dr. Watson"

"Count Von Kramm"

"Wilhelm Gottsreich Sigismond von Ormstein"
"Grand Duke"

"New Jersey"

"La Scala"

"Prima donna Imperial Opera"

"Crown Prince"

"Clotilde Lothman"

"Briony Lodge"

"Serpentine Avenue"

"St. John"

"Miss Irene Adler"

"Miss Adler"

"Mr. Godfrey Norton"

"Inner Temple"

"Godfrey Norton"

"Regent Street"

"St. Monica"

"Edgeware Road"

"Mrs. Turner"

"Miss Irene"

"Mr. John Hare"

"Mister Sherlock Holmes"

"Mr. Sherlock Holmes"

"Mr. Holmes"

"Charing Cross"
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One continued deficiency comes from character names with more than two parts,
such as “Wilhelm Gottsreich Sigismond von Ormstein”. It is possible to determine
these from the dependency structure already presented with the incorporation of a
slightly more complicated set of code for pasting together proper nouns. Another
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issue, which cannot be fixed with the tools at hand, is the inclusion of non-person
names such as “New Jersey”. We will explore how to fix this in the next section,
where the more complex logic for longer names will no longer be necessary.

9.5 Named Entity Recognition

The task of automatically detecting and classifying elements of a text into broad
semantic categories is known as named entity recognition. The named entities rec-
ognized by the CoreNLP library are contained in the previously dropped columns
of the output from the get Token function [6]. Taking our sample text, we see the
following 11 categories picked up by the algorithm (“O” is used for a non-hit).

> token <- getToken (anno)
> table (token$SNER)

DATE DURATION LOCATION MISC MONEY
69 42 60 21 3
NUMBER 0 ORDINAL ORGANIZATION PERSON
64 9967 3 29 140

SET TIME

3 47

Which kinds of tags were identified as locations? Thankfully, many of the false
positives in our character set are picked up by the location tag. See for instance
New Jersey and Baker Street.

> unique (token$lemma [tokenSNER=="LOCATION"])

[1] "Bakerxr" "Street" "Odessa" "Trincomalee™"
[5] "Holland" "scarlet" "London" "Europe"

[9] "Egria" "Bohemia" "Carlsbad" "Wallenstein"
[13] "England" "Prague" "Warsaw" "New"

[17] "Jersey" "Scandinavia" "Langham" "Briony"

[21] "Lodge" "Regent" "gt.m "Monica"

[25] "Edgeware" "Road" "Serpentine" "Avenue"

[29] "Darlington" "Arnsworth" "Castle" "Charing"

[33] "Cross" "Esqg."

These can be helpful in determining the location or topic of a given story.

Named entity recognition also does an excellent job of identifying, and repre-
senting dates and times in a common format. See for instance the parsing of “the
twentieth of March, 1888 into the standard ISO 8601 format “1888-03-20".

> token[485:490,]

sentence id word lemma CharacterOffsetBegin
485 18 7 the the 2471
486 18 8 twentieth twentieth 2475
487 18 9 of of 2485
488 18 10 March March 2488
489 18 11 , , 2493
490 18 12 1888 1888 2495

CharacterOffsetEnd POS NER Speaker NormalizedNER Timex
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485 2474 DT DATE PERO 1888-03-20 1888-03-20
486 2484 NN DATE PERO 1888-03-20 1888-03-20
487 2487 IN DATE PERO 1888-03-20 1888-03-20
488 2493 NNP DATE PERO 1888-03-20 1888-03-20
489 2494 , DATE PERO 1888-03-20 1888-03-20
490 2499 CD DATE PERO 1888-03-20 1888-03-20

Or the string “a quarter past six” into the standardized “T06:15”.

> token[6991:6994,]

sentence id word lemma CharacterOffsetBegin
6991 435 3 a a 31136
6992 435 4 quarter quarter 31138
6993 435 5 past past 31146
6994 435 6 six six 31151
CharacterOffsetEnd POS NER Speaker NormalizedNER Timex
6991 31137 DT TIME PERO T06:15 T06:15
6992 31145 NN TIME PERO T06:15 T06:15
6993 31150 1IN TIME PERO T06:15 T06:15
6994 31154 CD TIME PERO T06:15 T06:15

Parsing dates and times into a common format is interesting in many contexts. For
example, when dealing with non-fiction corpora this method could be used to extract
factual information such as dates of birth in an obituary, the time of a recent event
in a newspaper article, or the people written about in a set of letters.

The named entity tag that will help the most with our goal of identifying the
main characters in our short story, unsurprisingly, is the one indicating persons.

> these <- which(token$NER == "PERSON")

> pnames <- pnames [which (pnames$endIndex %in% these),]
> these <- these[-which(these %in% pnamesS$endIndex) ]

> newPnames <- data.frame (pname=tokenstoken[these],

+ startIndex=these,

+ endIndex=these,

+ stringsAsFactors=FALSE)

> pnames <- rbind(pnames,newPnames)

> pnames <- pnames [toupper (pnames$pname) != pnamesS$pname, ]
> length (unique (pnames$pname) )

[1] 48

The resulting list of characters is a significant improvement over our last attempt,
with many false positives removed and longer names reconstructed.

We could also clean up the duplicated names, such as “Holmes”. This often
occurs when a character is mentioned at some point with only part of their name.
We do this by cycling through the list of names and replacing the text of any one
that is a strict subset of another.

> pnames$pname <- gsub ("Mister", "Mr.", pnamesS$pname)
> for (j in 1l:nrow(pnames)) {
matchString = gsub(" ", ".x", pnamesSpname[j])

+ these <- grep(matchString, pnamesS$Spname)
+ pnamesSet <- pnamesS$pname [these]
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pnamesS$pname [j] <- pnamesSet [which.max (nchar (pnamesSet) )]
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nigue (pnamess$pname)
"Mr. Sherlock Holmes"
"Miss Irene Adler"
"Mary Jane"

"Dr. Watson"

"Count Von Kramm"
"Wilhelm Gottsreich Sigismond von Ormstein"
"Grand Duke"

"La Scala"

"Crown Prince"
"Clotilde Lothman"
"St. John"

"Mr. Godfrey Norton"
"St. Monica"

"Mrs. Turner"

"Mr. John Hare"
"Atkinson"

"EglOW"

"Boswell"

n Of n
"Cassel-Felstein"
"Saxe-Meningen"
"Mademoiselle"
"Hankey"
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The sole remaining error is the inclusion of “La Scala”, the famous Milanese opera
house. Looking in the original text reveals the name is used in the exclamation
“La Scala, hum!”. There seems to be no hope of quantitatively removing it with a
generic NLP parser without explicitly hard coding the fact that “La Scala” refers to
a location rather than a person.

9.6 Coreference

We now have a method for calculating a list of the major characters in a given
annotated short story. Our final task is to quantify the relative importance of each
of these characters. As a rough measurement, we detect how often each character is
directly referenced in the text. It would be possible to simply tabulate and sort the
vector pnames. In many cases, this approach would be fine, but it can be improved
upon by using one final element of the CoreNLP pipeline called coreferences [13].

While the dependency table gives grammatical relationships between words
within a sentence, coreferences give semantic relationships between tokens, that
may be far away within a given corpus. Specifically, they detect when multiple
words refer to the same person or object. For example, in the sentence “Jane was
tired. She took a nap.”, a coreference algorithm should detect that “Jane” in the first
sentence and the pronoun “she” refer to the same person.

Extracting a coreference involves calling the getCoreference function on
an annotation object. Note that when no coreferences are detected, this function
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simply returns a NULL object. The resulting data frame gives all known instances,
marked by a unique corefId, of every person or object that has at least two
references.

> coref <- getCoreference (anno)
> head(coref)
corefId sentence start end head startIndex endIndex

1 1 620 17 22 21 9668 9672
2 1 1 2 4 3 2 3
3 1 2 5 6 5 14 14
4 1 3 2 3 2 23 23
5 1 4 5 6 5 39 39
6 1 5 12 13 12 61 61

Unlike parts of speech or dependencies, the coreference data does not have any spe-
cific classification for the type of coreference. The startIndex and endIndex
fields refer to rows in the token data frame for convenient mapping to the raw data.
Looking at the words associated with corefId equal to 1 reveals the identity of
the first entity; it is Sherlock Holmes.

> table (tokenS$token[coref$startIndex[coref$corefId == 11])

dear he He him himself his His
2 34 7 8 1 29 1
Holmes I me Mister Mr. my MY
32 29 6 1 4 5 1
myself Sherlock SHERLOCK the The We you
1 8 1 10 3 1 1

You your

5 1

A more methodical method is needed in general to identify the character associated
with each id number. To do this we match the endIndex from the coreference
data frame to the endIndex from the data frame of character names constructed
in the prior section

> index <- match(as.numeric(coref$endIndex), pnamess$endIndex)
> head (index)
[1] NA 1 NA NA NA NA

We then look at which character names are associated with a given coreference id.

In the case of multiple matches, we take the most frequently used variant of the

name.’

> temp <- tapply(pnamesSpname[index[!is.na(index)]1],

+ coref [!is.na(index), 1],

+ function(v) {names(rev(sort(table(v)))) [1]1} )
> perMap <- data.frame (corefId=names (temp) ,perName=temp)

> perMap

"In this case, coreference id also matched Irene Norton, but our method picked out her more com-
monly used name variant.
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corefId perName
1 1 Mr. Sherlock Holmes
6 6 Miss Irene Adler
21 21 Mr. Sherlock Holmes
26 26 Mr. Sherlock Holmes
46 46 Mr. Sherlock Holmes
65 65 Dr. Watson
79 79 Mary Jane
171 171 Dr. Watson
195 195 Count Von Kramm
197 197 Count Von Kramm
260 260 Dr. Watson
286 286 Mr. Godfrey Norton
304 304 St. Monica
306 306 St. Monica
315 315 Mr. John Hare

Most of the coreference ids are linked to named entities in our list. Upon looking
closer at the coreference table, it should not be surprising that the majority of ids
consist of only 2-3 references with little context. Also notice that four of the coref-
erence ids (1, 21, 26, and 46) all point to Sherlock Holmes. We have actually been
able to improve on the results of the coreference algorithm by merging three of the
entity ids! Had we accomplished this using external knowledge or hand tuning it
would not be very surprising, but the fact that we were able to improve the coref-
erence detection using purely computational methods is quite exciting. It is also
scalable, particularly for those interested in working with a large amount of text.

The final step in determining the number of references to each character comes
by summing the number of references in each corefld and merging the three group-
ings we discovered by character names.

> tab <- table(coref[,1])
> index <- match(perMap$ScorefId, names (tab))
> perMap$count <- tab[index]
> charImport <- sort (tapply(perMap$count, perMapS$perName, sum), TRUE)
> charImport
Mr. Sherlock Holmes Miss Irene Adler Mr. Godfrey Norton
248 38 23
St. Monica Dr. Watson Mr. John Hare
23 19 9
Count Von Kramm Mary Jane
5 2

Unsurprisingly, as we suspected all along, the most important character by reference
is Sherlock Holmes. The second and third most important characters on the other
hand are quite interesting. One might have expected Watson, but it is Irene Adler
and Godfrey Norton. Irene Adler drives the majority of the plot via a scandalous
photograph; Godfrey Norton helps to provide the story’s ending by marrying Irene
and convincing her to no longer hold the King under blackmail.
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9.7 Case Study: Sherlock Holmes Main Characters

We have now built an algorithm for extracting character names using the CoreNLP
library and verified that the results were reasonable on a single short story. Here
we loop over the text from the entire corpus of the 56 short stories featuring Sher-
lock Holmes. The code may seem a bit daunting, but it consists of the pieces we
have already developed (it is by far the longest in the entire text). Note that it may
take several hours for this code to run as-is due to the long length of time the an-
notation process requires; a method that pre-caches the annotations is given in the
supplementary materials and may be better for directly following along.

output <- c()
outputGraphics <- list()
iter <- 1
for (f in dir("data/ch09/holmes anno", full.names=TRUE)) {
anno <- readRDS(f)
token <- getToken (anno)
dep <- getDependency (anno)
coref <- getCoreference (anno)

index <- which(depS$type == "nn" &
token$POS [depsgovIndex] == "NNP" &
tokens$POS [depSdepIndex] == "NNP" &

nnDep <- dep[index, ]

pname <- startIndex <- endIndex <- NULL

for (g in unique (nnDep$govIndex)) {
these <- c(which(nnDep$depIndex == g),
which (nnDep$SgovIndex == g))

these <- range (c (nnDep$depIndex[these] ,nnDep$govIndex[these]))
index <- these[l] :these[2]
words <- tokenstoken[index] [token$POS[index] != "." &
tokenS$NER [index] %in%
c ( non , "PERSON") ]
out <- paste(words,collapse=" ")
pname <- c(pname, out)
startIndex <- c(startIndex, these[l])
endIndex <- c¢(endIndex, thesel[2])
1
pnames <-
data.frame (pname, startIndex, endIndex, stringsAsFactors=FALSE)

these <- which(tokenSNER == "PERSON")
pnames <- pnames [which (pnames$endIndex %$in% these),]
these <- these[-which(these %in% pnames$endIndex) ]
newPnames <- data.frame (pname=tokensword|[these],
startIndex=these,
endIndex=these,
stringsAsFactors=FALSE)
pnames <- rbind(pnames,newPnames)
pnames <- pnames [toupper (pnamesS$pname) != pnamesS$Spname, ]
length (unique (pnamessSpname) )
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pnamesS$pname <- gsub("Mister", "Mr.", pnames$pname)
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for (j in 1:nrow(pnames)) {
matchString <- gsub(" ", ".x", pnamesSpname[]j])
these <- grep(matchString, pnamesS$pname)
pnamesSet <- pnamesS$pname [these]
pnamesS$pname [j] <- pnamesSet [which.max (nchar (pnamesSet) )]

}

index <- match(as.numeric(coref$endIndex), pnamesS$SendIndex)
temp <- tapply(pnamesS$pname[index[!is.na(index)]],
coref[!is.na(index), 1],
function(v) {names(rev(sort(table(v))))I[1]1} )
perMap <- data.frame (corefId=names (temp) ,h perName=temp)

tab <- table(coref[,1])
index <- match(perMap$corefId, names(tab))
perMapS$Scount <- tab[index]
charImport <- sort (tapply(perMapS$Scount, perMapS$SperName,
sum) , TRUE)
removeThese <- c(grep("Sherlock", names (charImport)),
grep ("Holmes", names (charImport)),
grep ("Watson", names (charImport)))
if (length(removeThese)) charImport <- charImport [-removeThese]
output <- c(output, names (charImport) [1])

crefIds <- perMap$ScorefId[perMap$perName == names (charImport) [1]]
places <- coref$startIndex[coref$ScorefId %in% creflds]
outputGraphics[[iter]] <- places / nrow(token)

iter <- iter + 1

}

output <- gsub(" ,", ",", output)

Which gives the following set of 56 characters.

BB W W W W W NDNNDNNDMNMNNNRERERERR

output

1] "Irene Adler" "Mr. Jabez Wilson"

3] "Mr. James Windibank" "Mr. Charles McCarthy"
5] "Lee" "Mr. Neville St. Clair"
7] "James Ryder" "Dr. Grimesby Roylott™"
9] "Mr. Victor Hatherley" "Lord Robert St. Simon"
1] "Miss Mary Holder" "Mr. Rucastle"

3] "Mr. John Straker" "Effie"

5] "Mr. Hall Pycroft" "James Armitage"

7] "Richard Brunton" "Mr. Alec Cunningham"

9] "Mrs. Barclay" "Mr. Blessington"

1] "Mr. Melas, Harold" "Mr. Percy Phelps"

3] "ex-Professor Moriarty" "Colonel Sebastian Moran"
5] "Mr. Jonas Oldacre" "Mr. Abe Slaney"

7] "Mr. Carruthers" "Mr. James Wilder"

9] "Inspector Stanley Hopkins" "Charles Augustus Milverton"
1] "Mr. Lestrade" "Mr. Hilton Soames"

3] "Stanley Hopkins" "Mr. Godfrey Staunton"
5] "Sir Eustace Brackenstall" "Mr. Eduardo Lucas"

7] "Miss Sarah" "Mr. John Scott Eccles"
9] "Arthur Cadogan West" "Mr. Mortimer Tregennis"
1] "Mrs. Warren" "Lady Frances Carfax"

3] "Inspector, Mr. Culverton Smith" "Mr. Von Bork"
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[45] "Baron Adelbert Gruner" "Mr. James M. Dodd"
[47] "Billy™" "Douglas Maberley"
[49] "Mr. Robert Ferguson" "Mr. Nathan Garrideb"
[51] "™Mr. Neil Gibson" "Mr. Trevor Bennett"
[53] "Mr. Ian Murdoch" "Leonardo, Griggs"
[55] "Sir Robert Norberton" "Mr. Josiah Amberley"

The results are encouraging and reveal an interesting list of characters (none of
which are repeated). Pulling out any particular story tends to reveal a good match
between our algorithm and a synopsis of the story. Take, for example, #23 and its
introduction of the criminal mastermind Prof. Moriarty from “The Final Problem”.

Other than just looking at this list of characters, there is substantial analysis
that can also be done with our parsed data. The saved list outputGraphics
contains the positions within each story that the given character is mentioned; these
are normalized to a scale where position 0 is the first word in the story and position
1 is the last. The entire set of these can be visualized for a representation of when
and how often the main character (other than Sherlock Holmes) is referenced in a
story.

> plot(0,0,col="white",ylim=c(1,56),x1lim=c(0,1),axes=FALSE)

> for (j in 1:length(outputGraphics)) ({

+ points (outputGraphics[[j]],rep(57-j,length(outputGraphics([[j]1])),
+ pch=19, cex=0.4)

+ abline (h=j)

+}

> text(-.015,1:56,sprintf ("%02d",56:1),cex=0.5)

> box ()

The output is shown in Fig. 9.4. For instance, notice that Irene Adler has relatively
few mentions in the first story compared to other characters in later installments. We
see various ways of grouping stories based on the character mention patterns; for
example, numbers 1-3, 8—10, 22-23, 30-32, and 4450 all have this main character
appearing at the very beginning of the text.

9.8 Other Languages

The Stanford CoreNLP has support for parsing text in languages other than English.
Alternative models are currently provided by the Stanford group for Chinese [2],
Spanish, German [18], Arabic [7], and French [8]. Other groups have helped to fill
in even more languages such as Finnish [10] and Persian [22]. Most of these require
an additional download of one or more “.jar” files, that should be downloaded and
placed in the same directory where the Stanford CoreNLP files were downloaded.
Not all annotators are available for every language, but the tokenizer, sentence split-
ter, part of speech tagger, and dependency parser are all available for the afore-
mentioned languages. For more details on the ever-expanding set of models see
the referenced papers and websites, as well as the documentation in the coreNLP
package.
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Figure 9.4: References to the detected main character in the 56 Sherlock Holmes
short stories. Stories run horizontally, with the start of the text on the far left and the
end of the text on the far right.
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The tokenizer and sentence splitter for French (as well as German and Span-
ish) are included in the base installation of the CoreNLP library. To use the French
variant in place of the default English version, a properties file needs to be writ-
ten specifying the desired annotators and models. For example, we might save the
following as “french.properties” as a minimal properties file for tokenizing and sen-
tence splitting on French text:

annotators = tokenize, ssplit

tokenize.language = fr

With this file in place, we make a call to initCoreNLP with an additional
parameterFile argument indicating the location of the java properties file pre-
viously constructed.

> initCoreNLP(libLoc="path/to/stanford-corenlp-full-2015-01-29",
+ parameterFile="path/to/french.properties")

The functions annotateString and annotateFile will now use rules based
on French for tokenizing input text.

As an example, we have calculated annotations of the French version of Albert
Camus’s I’Etranger using both the default English tokenizer and a French tokenizer
as previously described.

> getToken (annoEnglish) Stoken

[1] "Auj ourd" nmyn "hlli n n S n "maman"
[6] llest" llmorte" n . n lloull llpeut_étre"
[11] nhieru n' n njen ne "sais"
[16] "pas" non nJrgin "req:u" nyun"
[21] "télégramme" "de" "l’asile" nen
> getToken (annoFrench) $Stokens
[1] "Aujourd’huim" ", " "maman" "est"
[5] "morte" non mou" "peut-&tre"
n 1 n n n "4 n n n
[9] "hier , je ne
n 1 n n n n n n rn
[13] "sais pas . J
[17] main "regu" "un" "télégramme"
n n nyrn n 1 n non
[21] "de 1 asile

Notice that the English version incorrectly separates Aujourd’hui into two tokens,
despite it being a single lemma in modern French, but fails to split the contrac-
tions J’ai and I’asile into separate tokens. The French variant, however, correctly
addresses both of these concerns.

9.9 Conclusions and Extensions

In this section we have quickly covered the majority of the NLP pipeline available
from the Stanford CoreNLP library and the primary functions for accessing these
from the coreNLP. The manuals available from the Stanford NLP website and ref-
erenced throughout this chapter provide additional information regarding options
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and alternative models for fitting various aspects of the pipeline. For example, mod-
els exist for extending to a host of other languages such as Chinese and Spanish.
We did not touch on the underlying algorithms and theory for how each step in the
pipeline is actually being handled. For this, the go-to reference is Jurafsky and Mar-
tin’s Speech & Language Processing, the former being a core member of the group
that produced the Stanford CoreNLP library [11]. The text is thorough and quite
dense, but requires little in the way of prerequisites and is very accessible.

There are other open source NLP libraries that offer similar functionality to
Stanford CoreNLP. Apache OpenNLP, for example, is available and also has a con-
venient set of wrapper functions available in the package openNLP [5]. It is often
favored by businesses looking to tweak an existing pipeline and redistribute it due
to the less-restrictive licensing of Apache software.

Practice

1. Construct a set of sentences and produce a dependency graph for each. Display
all of the parts of speech referenced in the Penn TreeBank part of speech codes.

2. Write a 5-6 sentence paragraph describing, in the first person, one of your best
friends. Run an annotation of the paragraph and inspect the coreference data
frame. How well did it group all references to your friend to the same id? What
minor changes to the text, without changing its meaning to a third party unfa-
miliar with your friend, might you think would decrease the accuracy of this
grouping? Test your hypotheses and evaluate how well you were able to fool the
annotator.

3. Using the dependency data frame for each of the 56 short stories, find the most
frequently used verb and adjective (make sure to grab the lemmatized version)
associated with each main character. Which dependency tags did you use and
why for these two tasks?

4. From the named entity recognition tags, calculate the main location or locations
where each story takes place. As we did with the character detection algorithm,
start with “A Scandal in Bohemia” and work out a general algorithm before
cycling over the other 55 texts.
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Chapter 10
Text Analysis

Abstract In this chapter, several methods for extracting meaning from a collection
of parsed textual documents are presented. Examples include information retrieval,
topic modeling, and stylometrics. Particular focus is placed on how to use these
methods for constructing visualizations of textual corpora and a high-level catego-
rization of some narrative trends.

10.1 Introduction

In the previous chapter we explored methods for converting raw textual data into
a sequence of tokens and associating these tokens with various metadata and re-
lationships. The parsed information has already been shown to be effective in the
retrieval of factual information (e.g., character names) and a high-level categoriza-
tion of some narrative trends. We continue with this approach by presenting several
techniques for utilizing the output of NLP annotations to explore and visualize a
corpus of textual documents.

10.2 Term Frequency: Inverse Document Frequency

A basic task in the field of information retrieval consists of determining the relative
importance of each uniquely observed lemma to the context of a given document.
Typically, the assessment of importance is done relative to a larger corpus of inter-
est. For example, in a collection of biographical entries, the term “Senator” may
be of high importance as one of the primary terms indicating the career of a given
individual; it will likely be used frequently in a small set of biographies and very
sparingly in the remaining set. However, in a collection of domestic political blogs,
the term “Senator” will be used frequently throughout the corpus and (in isolation)
offers relatively little important information by which to uniquely categorize a par-
ticular blog post. In other words, tf-idf helps us find the lemmas that best uniquely
characterize a document.
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Determining the relative importance of a lemma to a given document has two
distinct use cases. Looking at the most important lemmas to a given document
provides an automated way of summarizing the contents of the given document.
This can be used for tasks such as document clustering and automated title genera-
tion. On the other hand, looking at the documents for which a given lemma is most
important provides a simple method for text retrieval and is the basis for many web
search engines.

In this section, we present the numerical statistics known as the term frequency-
inverse document frequency (often shortened to tf-idf) associated with any document
and lemma pair from a given text corpus. In order to demonstrate the use of this
statistic, we will investigate a collection of 179 Wikipedia articles from pages tagged
as coming from philosophers from the sixteenth to the twentieth centuries. Because
annotating the corpus takes several hours, we have saved the coreNLP annotation
objects as serialized R data objects for quick recall.

> wikiFiles <- dir("data/chl0/wiki annotations/", full.names=TRUE)
> wikiNames <- gsub("\\.Rds", "", basename (wikiFiles))

With these annotations provided, the first step in determining lemma importance
is to pass through the entire corpus of data and construct a table of all the unique
lemmas. As the most important meanings, for us, will come from (non-proper)
nouns, we tabulate only those lemmas that have Penn TreeBank part of speech codes
NN and NNS. Most of the very common terms, such as pronouns and conjunctions,
would be automatically filtered by the tf-idf algorithm, but filtering by part of speech
helps to focus the analysis and avoid mostly uninteresting adjectives and verbs from
cluttering the results.

> lemmas <- c()

> for (f in wikiFiles) {

+ anno <- readRDS(f)

+ token <- getToken (anno)

+ theseLemma <- token$lemma [token$POS %in% c ("NNS", "NN")]
+ lemmas <- append(lemmas, theseLemma)

+

}

Looking at the 50 most frequently occurring lemmas from the encyclopedia entries
of our philosophers reveals an unsurprising list. Terms such as “philosophy”, “gov-
ernment”, “principle”, and “theory” appear a high number of times. In the interest

of space, we will limit our analysis to these 50 lemmas.

> lemmas <- names (sort (table(lemmas),h decreasing=TRUE) [1:50])
> lemmas

[1] "work™" "philosophy" "time" "year"

[5] "theory" "life" "book" "idea"

[9] "world" "man" "society" "state"
[13] "philosopher" "law" "view" "people"
[17] "history™" "way" "part" "science"
[21] "form" "death" "thought" "study"
[25] "concept™" "child" "language" "religion"
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[29] "nature" "family" "power" "government"
[33] "example" "system" "term" "thing"

[37] "influence" "essay" "experience" '"order"

[41] "father" "principle" "interest™" "position"
[45] "object" "friend" "other" "student"
[49] "fact" "war"

We now need to construct a term frequency matrix from these 50 terms. Each docu-
ment is associated with a single row of the matrix whereas each lemma is associated
with a column of matrix. The entries of the matrix give the number of times each
document (row) used each lemma (column). We construct an empty matrix to hold
these results.!

tf <- matrix(0,nrow=length(wikiFiles) ,ncol=1length(lemmas))

colnames (tf) <- lemmas

rownames (tf) <- substr(wikiNames,nchar (wikiNames) -10,
nchar (wikiNames) )

+ v v Vv

The documents are cycled over and the counts are filled into the term frequency
matrix.

for (j in 1l:length(wikiFiles)) {
anno <- readRDS (wikiFiles[j])
token <- getToken (anno)
theseLemma <- token$lemma[token$POS %in% c ("NNS", "NN")]
theseLemma <- theselLemma[theselLemma %$in% lemmas]
tab <- table(theseLemma)
index <- match(lemmas,names (tab))
tf[j,!is.na(index)] <- tab[index[!is.na(index)]]

Y T T SRV

The output reveals, for example, that Machiavelli’s page has 29 lemmas equal to
“work”, whereas Francis Bacon does not have a single reference to the lemma
“child”.

> tf£[1:10,seq(1,45,by=5)]
work life society people form child power thing father

Acyutananda 1 2 0 3 3 1 1 1 2
rdano_Bruno 16 5 0 0 0 1 3 4 0
_Jean_Bodin 27 6 2 4 8 0 8 2 0
Machiavelli 29 8 4 9 4 2 10 6 3
rnon_Sidney 2 2 0 1 1 0 2 1 5
uch_Spinoza 14 12 1 5 0 3 2 8 9
aise Pascal 19 5 1 2 3 6 1 1 10
_Palatinate 2 4 0 9 0 4 0 0 3
ancis_ Bacon 7 5 2 1 1 0 1 1 5
elm Leibniz 18 11 3 4 6 1 5 2 9

A table of the most used terms by document shows the number of documents that
reference each word.

IFor the row names of the matrix t £, we have used the last ten characters of the Wikipedia filename
in order to make the output print better in the width of this book. On your own machine, you may wish
to use the entire filename.
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> sort (table(lemmas [apply(tf,1,which.max)]),decreasing=TRUE) [1:18]
work philosophy theory year book life

45 28 15 9 8 7
society government language state child law

7 5 5 5 4 4

time world man war death form

4 4 3 3 2 2

Accordingly, a large number of documents have the most references to “work”,
“philosophy”, and “theory”. The latter category may be marginally helpful by indi-
cating those philosophers most theory-oriented. Smaller categories such as “child”
and “law” give even more contextual information regarding each document, but for
the most part these raw counts are of limited use on their own as they fail to account
for the relative frequency of each lemma in the corpus as a whole.

To assess how common a lemma is in an entire corpus, we calculate a count of
the number of documents that contain the lemma. Note that this is not the number
of times the lemma is used in the corpus; it is just the number of documents contain-
ing the lemma. It does not distinguish between a document using the lemma 1 or
100 times. Unsurprisingly though, the highest document counts roughly correspond
to those lemmas that had the highest counts in the term frequency matrix.

> dc <- apply(tf!=0,2,sum)
> sort (dc,decreasing=TRUE) [1:20]

work time year philosophy book
178 175 175 169 169
life philosopher idea view part
167 164 162 161 161
theory world study form way
159 158 156 153 152
family man other history death
149 148 148 147 146

Because we want to simultaneously work with the term frequency and document
counts, it will be helpful to have these quantities in R objects of the same dimen-
sions. At the moment, dc is only a vector so we use the rep function to construct a
larger matrix where every row is the same. We also want to convert raw counts into
a document frequency matrix, so the matrix elements are also divided by the total
number of documents.

> df <- matrix(rep(dc,length(wikiFiles)) ,ncol=length(lemmas),
+ byrow=TRUE)
> head(df[,1:10])

[,11 [,21 [,31 [,41 [,5]1 [,6]1 [,71 [,8]1 [,9] [,10]
[1,] 178 169 175 175 159 167 169 162 158 148
[2,1] 178 169 175 175 159 167 169 162 158 148
[3,] 178 169 175 175 159 167 169 162 158 148
[4,] 178 169 175 175 159 167 169 162 158 148
[5,] 178 169 175 175 159 167 169 162 158 148
[6,1] 178 169 175 175 159 167 169 162 158 148
> df = df / length(wikiFiles)
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In order to calculate a matrix of lemma importance scores, the term frequency
and inverse of the document frequency scores are multiplied together. Often some
weighting scheme is also used to help balance the effects of the term and document
effects. Here we use a logarithm to transform the document frequency term; this
helps to eliminate the appearance of rare words in the output.

> impScore <- tf x log(l / df)

Now that we have our importance score, let us look at the first ten philosophers.?

> impScore[l1:10,seq(1l,45,by=5)]
work 1life society people form child power thing father

Acyutananda 0.006 0.139 0.000 0.824 0.471 0.359 0.343 0.297 0.549
rdano_Bruno 0.090 0.347 0.000 0.000 0.000 0.359 1.030 1.188 0.000
_Jean_Bodin 0.151 0.416 0.609 1.099 1.256 0.000 2.746 0.594 0.000
Machiavelli 0.162 0.555 1.218 2.473 0.628 0.718 3.432 1.782 0.824
rnon_Sidney 0.011 0.139 0.000 0.275 0.157 0.000 0.686 0.297 1.374
uch Spinoza 0.078 0.833 0.305 1.374 0.000 1.077 0.686 2.376 2.473
aise Pascal 0.106 0.347 0.305 0.549 0.471 2.154 0.343 0.297 2.747
_Palatinate 0.011 0.278 0.000 2.473 0.000 1.436 0.000 0.000 0.824
ancis Bacon 0.039 0.347 0.609 0.275 0.157 0.000 0.343 0.297 1.374
elm Leibniz 0.101 0.763 0.914 1.099 0.942 0.359 1.716 0.594 2.473

For example, Machiavelli’s page has an importance score of 3.432 for “power” but
only a score 0.162 for “work™, despite the fact that there are almost three times
as many references to the “work” lemma. We can see further the effect of tf-idf
by looking at the importance scores compared to the raw term frequency counts in
our previous table. The two tables further highlight that some very common terms
(within the corpus) have decreased in favor of less commonly used terms.

With these importance scores now calculated, we can look at the lemmas with
the highest score for each article. A sample from a few prominent pages shows that
the tf-idf method has successfully picked up reasonable lemmas to represent some
of the major article themes.

> sort (impScore["Machiavelli", ], decreasing=TRUE) [1:6]
government power influence example religion people
4.984 3.432 3.185 2.949 2.707 2.473

> sort (impScore["oam Chomsky",],decreasing=TRUE) [1:6]
language child science society interest government
15.440 3.591 2.514 2.132 1.872 1.869

> sort (impScore["ohn Paul II",],decreasing=TRUE) [1:6]
people death war religion government man
7.692 6.725 5.528 4.963 4.361 3.803

> sort (impScore["Jean Piaget",],decreasing=TRUE) [1:6]

child object concept theory thought example
47.398 16.860 5.078 3.673 3.473 2.703

The entry for Machiavelli reveals lemmas commonly associated with his work:
“government”, “power”, and “influence”. Noam Chomsky’s work as a linguist

2We have rounded to three decimal points for readability.
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and Jean Piaget’s as a developmental psychologist are both highlighted in the sel-
ected lemmas. John Paul II is characterized by the events he was involved in
(war & government), his area of work (religion), and his death. The reason for
the high score for the lemma “people” is slightly less obvious; looking at the orig-
inal text, this lemma has a high occurrence count due to phrases such as ‘“Polish
people” and “200 thousand people attended”.

10.3 Topic Models

We have now identified those lemmas within each Wikipedia article that are of par-
ticular importance for distinguishing a given document from the bulk of the other
articles. The resulting lemmas typically correspond to the topics most closely related
to each philosopher’s work or life. For example, consider the lemmas “language”,
“grammar”, and “syntax”, all of which fall under a broader topic of linguistics. Top-
ics also tend to co-exist in multiple documents. Noam Chomsky, John Searle, and
Hilary Putnam may all have articles that fall within a single linguistics category.

A statistical representation of topics within a textual corpus of documents is
referred to as topic models. Typically, each topic is represented by a set of related
lemmas; these are often accompanied by weights to indicate the relative prominence
of each lemma within a topic. Each document, in turn, is proportionally assigned
to each topic. For example, the article about Noam Chomsky may be 90 % in the
linguistics category and 10 % in a psychology topic, whereas Hilary Putnam might
be split evenly between the linguistics and mathematics topics.

Before discussing the specifics of applying topic models to our corpus of philoso-
pher biographies, it is helpful to roughly sort our collection by the year of birth
of each philosopher. Given the named entity recognition algorithm discussed in
Sect. 9.5 and that each article mentions the date of birth in the opening sentence,
this is a rather manageable task. Cycling through the documents, extracting the first
recognized date, and pulling out the year yields a vector dateSet of birth years
for the corpus.

> dateSet <- rep(0L,length(wikiFiles)
> for (j in 1:length(wikiFiles)) {

+ anno <- readRDS (wikiFiles[j])

+ tx <- getToken (anno) STimex

+ tx <- substr(tx[!is.na(tx)],1,4)
+ tx <- as.numeric (tx)

+ tx <- tx[!is.na(tx)]

+ dateSet [j] <- tx[1]

+

}

The set of years can be ordered, and the list of files and names permuted based on
them.

> wikiFiles <- wikiFiles[order (dateSet)]
> wikiNames <- wikiNames[order (dateSet)]
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The result is that our collection is now sorted from oldest to newest philosophers.
Clearly this is only a rough proxy for historicizing the data, as the years in which a
given person was active in the field may not exactly correspond to their birthdate.
However, it does a decent job of sorting the nearly four centuries of philosophers
into approximate time buckets.

The majority of topic models assumes that documents are generated according to
a bag of words model. Here, documents are considered as being simply a collection
of words without any additional elements such as word order or grammar. This is the
same model we used when building the term frequency matrix in Sect. 10.2. It may
seem that the simplicity of this model makes the complex parsing developed in
Chap. 9 unnecessary; only the tokenization step seems relevant. However, by using
the tags developed by the NLP pipeline, we can selectively decide which lemmas
to include in the bag of words. As we did in the term frequency matrix, the bag of
words used in our topic model will consist only of lemmas identified as non-proper
nouns (Penn TreeBank codes NNS and NN).

> bagOfWords <- rep("",length(wikiFiles))

> for (j in 1:length(wikiFiles)) {

+ anno <- readRDS (wikiFiles[j])

+ token <- getToken (anno)

+ theseLemma <- tokenSlemma[token$POS %in% c ("NNS","NN")]
+ bagOfWords[j] <- paste(theseLemma,collapse=" ")

+

}

Topic models are very sensitive to common words such as pronouns, conjunctions,
and auxiliary verbs (e.g., be, can have). As we have constructed an entire annotation
of our text and conducted part of speech filtering, this will not be an issue in our
application. A cruder method for avoiding this without part of speech filtering uses
a predefined list of stop words, which are automatically filtered out of the topic
modeling algorithm. For an example of such a list, see the set of English language
stop words built into the open source database software MySql.> We mention stop
words here, because the R package we are using to fit topic models requires a list of
stop words. We construct a temporary file and fill it with the upper and lower case
Latin alphabet; every line contains a unique character.

> tf <- tempfile()
> writeLines(c(letters, LETTERS), tf)

Our make-shift stop word list will help remove a few mis-parsed initials which were
incorrectly labeled as non-proper nouns. The temporary file will exist only while
the R session is running and will be automatically deleted afterward.

With our list of documents sorted by time, bag of words vector filled, and a
temporary file of stop words built, we can now proceed to actually fitting a topic
model to our corpus of Wikipedia articles. The model we will use is latent Dirichlet

Shttp://dev.mysql.com/doc/refman/5.5/en/fulltext - stopwords.html.
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allocation (LDA); the R package used to fit this model is called mallet (a wrapper
around a Java library by the same name).*

To fit a topic model with the mallet package, both a mallet instance object and
an LDA topic model object must be created [5]. Notice that the LDA object requires
prespecifying the number of desired topics; this is a particular feature of the LDA
algorithm. Also note that we do not need to construct a term frequency matrix by
hand as this step is handled automatically by the R package.

> library(mallet)

> instance <- mallet.import (id.array=wikiNames,

+ text.array=bagOfWords, stoplist.file=tf)
> tm <- MalletLDA(num.topics=9)

Apr 08, 2015 8:20:55 PM cc.mallet.topics.ParallelTopicModel <init>
INFO: Coded LDA: 9 topics, 4 topic bits, 1111 topic mask

With these two objects in existence, the instance must then be loaded into the object
tm. From here, various tuning parameters may be set (here we use alpha optimiza-
tion) and the model itself trained and maximized.

tm$SloadDocuments (instance)
tm$setAlphaOptimization(30,50)
tmStrain (200)

tm$maximize (10)

vV V VvV Vv

The number of options and their uses when applying a topic model to a corpus of
text using the mallet package is quite extensive. The original documentation should
be consulted for more specific details; the options shown in the code snippet above
should be a good starting point for a reasonable size corpus of text.

With the topic model fit to the corpus of data, we now extract three separate
result objects: a matrix of topics, a matrix of words, and a vector of the topic
vocabulary.

> topics <- mallet.doc.topics(tm, smoothed=TRUE, normalized=TRUE)
> words <- mallet.topic.words(tm, smoothed=TRUE, normalized=TRUE)
> vocab <- tm$getVocabulary ()

We have chosen to receive smoothed and normalized versions of the data. Smooth-
ing is typically preferred for most applications as it helps to eliminate extreme or
noisy values from words with low counts. Normalization turns the topic values into
percentages; adding together the normalized topic values for every document will
always equal 1. We recommend normalized counts for exploratory data analysis
tasks such as ours. Un-normalized counts, which give the raw number of word fre-
quencies, may be useful for predictive modeling tasks. Looking at the dimensions
of these objects gives a clue as to the exact information contained in the output.

4The precise mathematic formulation of LDA is fairly involved and we will not give a full specifi-
cation here. For a more detailed description, see the original LDA paper [1].




10.3 Topic Models 165

> dim(topics)
[1] 179 9

> dim(words)

[1] 9 12123
> length (vocab)
[1] 12123

The matrix topics contains a row for each document and column for the nine top-
ics. The entries give the topic distribution for each document as a percentage; each
row sums to exactly 1. The matrix words contains a column for each unique lemma
in the bag of words model and the nine rows to each topic. The entries correspond
to the probability of a randomly selected lemma from a given topic being equal to
the corresponding word; again, all of the rows sum to 1. Finally, the vector vocab
is a character vector indicating the lemmas which correspond to the columns in the
matrix words.

With these results in hand, a natural first step is to look at the top few words
within each of the nine topics. The top five words in each topic can be displayed by
ordering the elements of the matrix words over each row.>

> t(apply(words, 1, function(v) vocab[order (v,decreasing=TRUE) [1:5]]))

[,1] [,2] [,3] [,4] [,5]

[1,] "government" "time" "man" "nation" "law"

[2,] "year" "life" "time" "death" "family™"

[3,] "society" "state" "power" "idea" "class"

[4,] "world" "lifer "man" "idea" "self"

[5,]1 "work" "philosophy" "book" "theory" "philosopher"
[6,] "theory" "mathematics" "logic" "set™" "number"

[7,1] "culture" "poem" "poet" "critic" "writer"

[8,] "man" "race" "time" "religion" "life"

[9,] "object" "meaning" "language" "word" "world"

The interpretation of the output from an LDA model is left to the user and this is
where familiarity with your corpus is key. Some of the categories here seem fairly
easy to understand in terms of broad interpretable categories. The sixth topic applies
to any of the philosophers working in mathematics where the sub-fields of logic and
set theory are prevalent, while the first topic appears to capture political philoso-
phy and politics. In the second topic, generic terms of a biographical nature are
presented, and the third topic is a collection of terms relating to the social sciences
(sociology, mostly). It will be helpful to construct a labeling of these topics for use
in visualizations. One approach is to paste together the top three to five words in
each topic. We will instead hand-construct the labels as follows:

> topicNames <- c("politics", "biography", "social-science",
+ "existentialism", "philosophy", "logic",
+ "poetry","culture", "language")

SNote that the output of each topic model will be slightly different, even if using the same text and
parameters. The supplementary materials has a copy of the object tm, which exactly replicates the results
in this text.
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It is important to keep in mind that these were determined by hand and should not
be considered a definitive description of the topics.

One way to visualize the structure of the topics constructed in a LDA algorithm
is to graphically represent the matrix words. As this matrix has a large number of
columns, it is best to consider a subset of these. We will pick out the top 50 most
prevalent lemmas in the bag of words model.

> index <- order (apply (words, 2,max) ,decreasing=TRUE) [1:50]
> set <- unique (as.character (apply(words, 1, function(v)

+ vocab [order (v,decreasing=TRUE) [1:5]1])))
> index <- match(set,vocab)

> mat <- round(t (words([, index]), 3)

> mat <- mat / max(mat)

The resulting matrix can be visualized by using circle of various sizes to represent
the probability of the word in a document from one of the nine topics. We will be
looking at the probability of the top-50 words in each topic.

plot (0,0,col="white",ylim=c(-1,nrow(mat)),xlim=c(-2,ncol (mat)))
for(i in l:nrow(mat)) lines(x=c(1l,ncol(mat)),y=c(i,i))
for(i in 1l:ncol(mat)) lines(x=c(i,i),y=c(1l,nrow(mat)))

points (col (mat), nrow(mat) w(mat) + 1, pch=19,cex=mat*3,
col=rainbow (ncol (mat),alpha=0.33) [col (mat)])

text (0.5, nrow(mat) :1, vocabl[index], adj=c(1,0.5),cex=0.7)

text (1:ncol (mat), -0.75, topicNames, adj=c(0.5,0),cex=0.7,srt=60)

VvV V. + VvV VvV VvV V

The result is shown in Fig. 10.1. Notice that most of the top words are concentrated
in only a single topic. Some of the more common terms such as “idea” and “estate”
are spread across multiple topics. Interestingly, there does not seem to be two topics
that share a large number of lemmas; this indicates that the LDA algorithm did a
decent job of finding distinct topics within the text corpus.

A similar diagram can be constructed for the matrix topics to visualize the
topic distribution across the corpus.® The resulting plot is shown in Fig. 10.2.

mat = topics / max(topics)
plot(0,0,col="white",ylim=c

( nrow (mat) ) ,xlim=c(-2,ncol (mat)))
for(i in l:nrow(mat)) lines(
(

-1,

x=c (1,ncol (mat)),y=c(i,1i))

for(i in 1l:ncol(mat)) lines(x=c(i,i),y=c(1l,nrow(mat)))

points(col (mat), nrow(mat) row(mat) + 1, pch=19,cex=mat*3,
col=rainbow (ncol (mat) ,alpha=0.33) [col (mat)])

text (0.5, nrow(mat) :1, vocab[index], adj=c(1,0.5),cex=0.7)

text (1:ncol(mat), -0.75, topicNames, adj=c(0.5,0),cex=0.7,srt=60)

V V. + V V V V Vv

In contrast to the distribution of words over topics, the distribution of topics over
documents is not nearly as parsimonious. Nearly every document has a noticeable
distribution over at least two topics; some have as many as five detectable topics.
Many of the distributions confirm our prior knowledge of the corpus—the classifi-

%The code snippet here will produce a single plot with all of the documents in one column. Running
it selectively over rows of the matrix mat (i.e., 1:60, 61:120, and 121:179) was used to produce the
actual figure shown in the text.
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cation of the poet Fondane in the poetry topic, Mao into the biography and politics
topics, and John Searle into linguistics. In contrast, the grouping of the nineteenth
century biologist Ernst Haeckel, Italian philosopher Julius Evola, and Romanian
historian Mircea Eliade into the topic “culture” may not have been easily picked out
based on prior knowledge. Reading their pages after the fact shows many interest-
ing similarities between these men. It is these latent connections that are often an
exciting new area of scholarly inquiry.

As a result of sorting the documents by time, we also see that the distribution
of topics slowly changes over time. This phenomenon, known as topic drift, is
well known to occur in many corpora [3, 8]. For example, the “politics” topic is
prominent in the few dozen articles but drops off significantly over the remainder of
the corpus. Why this shift? The drop off of this category may represent a changing
focus away from political philosophy in the nineteenth and twentieth centuries. It
may also have been caused by the rise of a separate field of political science in the
late nineteenth century. These are all just speculation but importantly show some
forms of inquiry made possible by topic modeling.

Another method for visualizing the output of a topic model is by conducting
dimensionality reduction on the matrix topics. Taking the first three principal
components of the matrix (as covered in Sect. 8.4) allows up to explore the distribu-
tion of the corpus over all of the topics.

> pc <- prcomp(topics,scale.=TRUE)

> docsSC <- scale(topics,center=pcscenter, scale=pc$scale)

> topicSC <-
scale(diag(ncol (topics) ) ,center=pc$Scenter, scale=pcS$Sscale)

> docsPC <- docsSC %$x% pcSrotation

> topicPC <- topicSC %*% pcSrotation

Notice that we also manually determined the location of documents that are ent-
irely contained in each of the nine topics. The location of these are stored in the
matrix topicPC and shown together with the actual documents in Fig. 10.3. A sel-
ected set of documents are labeled with the corresponding philosopher’s names.
For example, Kierkegaard is shown as being in-between existentialism and generic
philosophy, whereas Godel is pulled toward the logic topic. The figure is useful for
understanding the correlation structure of the topic themselves. The mathematical
fields of logic and language are close in all three principal components; a similar
relationship holds between social science and politics.

10.4 Stylometric Analysis

Term frequency matrices and topic models seek to systematically represent the
content of textual documents. Stylometry compliments these approaches by charac-
terizing writing style. It is often employed to study persistent patterns in a particular
author’s writing over time and, for example, plays a major role in authorship detec-
tion. Stylometrics may also study more localized elements of style pertaining to a
particular work.
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Figure 10.1: Distribution of lemma frequencies within topics learned via LDA on
the Wikipedia corpus of philosophers from the sixteenth to the twentieth centuries.
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Figure 10.2: Distribution of topics within documents learned via LDA on the
Wikipedia corpus of philosophers from the sixteenth to the twentieth centuries.

Topic modeling has as a small set of canonical methods (PLSI, LSA, LDA), by
which most analyses start, all of which generally employ a bag of words model of
text. There is no corresponding feature set for stylometric analysis; a large set of
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features and methods employed depend on the application and goals of the analysis.
We will explore two examples of stylometric feature sets (part of speech bigrams
and function words), both by way of a principal component analysis that was cov-
ered in Sect.8.4. The first example uses document-level characteristics and the
second uses block-wise characteristics.

The Wikipedia corpus we used for topic modeling does not make a good cor-
pus for stylometric analysis as the tone is intentionally uniform and the number of
authors (and their exact contribution) is hard to discern. We instead use a collec-
tion of 26 novels from Project Gutenberg from 4 authors: Mark Twain, Charles
Dickens, Nathaniel Hawthorne, and Sir Arthur Conan Doyle. As before, we have
pre-annotated these documents in this corpus using the coreNLP package in order
to speed up the process of analyzing the documents.

The distribution of parts of speech, such as what proportion of words are verbs,
is a well-known stylistic feature. On its own, however, the part of speech distribution
is not typically variant enough across authors to differentiate style. A solution to
this is to look at subsequent pairs of parts of speech; for example, how often verbs
immediately follow nouns. Known as part of speech bigrams, these features often
have far more fluctuation between various writers.” In order to explore bigrams, a
set of speech tags must be applied. One could use the raw Penn TreeBank part of
speech codes, though this results in a total set of about 402 = 1600 possible bigrams
(many of which are fairly rare). We instead use the universal tag-set mappings
covered in Sect. 9.3 to reduce the number of part of speech pairs to 122 = 144.

existentialism social-science
politics logic
. Y Machiavelli
social-scienceémith Kierkegaard
Durkheirneﬁ_ell h
John Paul Il philosophy olitics
R Godellanguage
Smith  Durkheim
Mao Alcott Heidegger Mao n n
ilosoj
biograBhy 72! Machiaveli P phy
Godel Heidegger
Alcott
Hegel
biography logic
culture
poetry
language Kierkegaard
culture
poetry existentialism

Figure 10.3: Principal components of the topic distribution in the Wikipedia cor-
pus of philosophers from the sixteenth to the twentieth centuries. The larger topic
data points correspond to the theoretical location of a document which was entirely
contained in one topic.

7 Generally, the term bigram can refer to a sequence of any two object types such as words, letters,
or morpheme. More generally, the term N-gram refers to a sequence of IV objects.
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The first step in applying part of speech bigrams to the Gutenberg corpus involves
constructing a 26 by 144 matrix of counts, with one row per text and one column per
part of speech pair. We use the expand.grid function to conveniently construct
all combinations of the 12 parts of speech in the universal tag-set.

> gutenFiles = c("pg76.Rds", "pg74.Rds", "pgl837.Rds", "pglO2.Rds",
+ "pg7193.Rds", "pg98.Rds", "pgl400.Rds", "pg730.Rds",

+ '"pg766.Rds", "pg883.Rds", "pgl9337.Rds", "pg653.Rds",

+ "pg33.Rds", "pgl3707.Rds", "pg77.Rds", "pg2081l.Rds",

+ "pg976.Rds", "pg9255.Rds", "pg513.Rds", "pg2852.Rds",

+ '"pg244.Rds", "pg2097.Rds", "pg3289.Rds", "pgl39.Rds",

+ "pgl26.Rds", "pg7964.Rds")

> gutenFiles = pasteO("../data/chl0/gutenbergClean annotations/",

+ gutenFiles)

> gutenNames = c(rep("Mark Twain",5),rep("Charles Dickens",7),

+ rep ("Nathaniel Hawthorne",7),rep("Sir Arthur Conan Doyle",7))
> cols = c(rep("#DB9D85",5) ,rep("#86B875",7),

+ rep ("#4CB9CC",7), rep ("#CD99D8",7))

We now loop over the corpus of documents extracting the counts of the part of
speech bigrams and saving the counts in the matrix pos2gram.?

for (j in 1l:length(gutenFiles)) {
anno <- readRDS(gutenFiles[j])
ut <- universalTagset (getToken (anno) $POS)
ut <- paste(ut[-length(ut)],ut[-1],sep="-")
tab <- table(ut)
index <- match(colnames (pos2gram) ,names (tab))
count <- tab[index[!is.na(index)]]
total <- sum(tab[index[!is.na(index)]])
pos2gram[j, !is.na(index)] <- count / total

o+ o+ o+ o+ v

The resulting matrix can be decomposed into its principal components in order to
visualize the resulting data in a small number of dimensions.

> pc <- prcomp (pos2gram)

> pos2gramPC <- scale (pos2gram, center=pcS$Scenter, scale=pc$scale)
+ %$+% pcSrotation

> centroid <- apply(pos2gramPC, 2,

+ function(v) tapply(v, gutenNames, mean))

The author centroids are also calculated in order to plot the author’s names on the
resulting visualization. A scatter plot of the results are shown in Fig. 10.4. The first
three principal components do a very good job of separating the four authors. In
fact, the first component separates Nathaniel Hawthorne from the others, the second
separates Sir Arthur Conan Doyle, and the third separates Mark Twain from Charles
Dickens.

While it is often difficult to determine a lot of interpretable information from
principal components, it still sometimes reveals interesting information. In our case,
notice, for example, the prominence of bigrams involving punctuation.

8We normalize these counts by the total number of bigrams in order to not inflate the counts in the
longer texts.
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Figure 10.4: Scatter plot of the principal components from an analysis of part of
speech bigrams from 26 novels from 4 different authors. The first three principal
components are plotted.

Figure 10.5: Scatter plot of the principal components from an analysis of the top 50
lemmas from 26 novels from 4 different authors. The first three principal compo-
nents are plotted against 5000 word blocks of text.

> pc$rotation <- round(pcS$Srotation, 3)
> head(pcsrotation[, 1] [order (abs (pcSrotation[,1]),decreasing=TRUE)])

PRON-VERB ADJ-NOUN NN ADP-DET NOUN-ADP DET-ADJ
-0.529 0.404 -0.293 0.282 0.266 0.231

> head(pcSrotation[, 2] [order (abs (pcSrotation([,2]) ,decreasing=TRUE)])
NOUN- . .-CONJ PRON-VERB .-VERB NOUN-ADP ADP-DET

-0.425 -0.324 0.289 -0.278 0.273 0.260



10.4 Stylometric Analysis 173

> head(pcSrotation[, 3] [order (abs (pcSrotation([,3]) ,decreasing=TRUE)])
N .-VERB ADP-PRON NOUN-VERB NOUN-. CONJ-VERB
-0.610 -0.329 -0.252 0.243 -0.240 0.216

The double punctuation bigram, “.-.”, may for instance occur when a quotation mark
ends a sentence. It is not surprising that this would distinguish between authors
writing various works of fiction.

It is also possible to build stylometric features by looking at the actual words,
rather than parts of speech, used within a corpus. However, unlike with topic mod-
eling, we will use raw counts of the most common lemmas (such as conjunctions,
punctuation, and pronouns). There is evidence that the frequency of these is fairly
consistent across mediums and over time for a given author [7].

Rather than studying the 26 texts individually, we split each text into 5000 word-
blocks.? To start, we fill a matrix of lemmas with 5000 rows and a column for each
block by cycling over the corpus of texts.

> lemma <- auth <- NULL

> for (j in 1:length(gutenFiles)) {

+ anno <- readRDS(gutenFiles[j])

+ temp <- getToken (anno) $token

+ temp <- matrix(temp,nrow=5000)

+ temp <- templ[, -ncol (temp) , drop=FALSE]

+ lemma <- cbind(lemma, temp)

+ auth <- c(auth, rep(gutenNames[j],ncol (temp)))
+

We then determine the top 50 lemmas from this entire set, which will make up the
final feature set.

> lemmaSet <- names (sort (table(lemma) ,decreasing=TRUE) ) [1:50]
> lemmaSet

[1] n,n "the" "o het ngnd" then nofn ngn

[9] nyn "ton nin" "have" nign "that" "you" nrn
[17] "she" wrorn A "with" "not" nan nggn "they"
[25] m;n "say" nforn "my" wyn ngtn el n__n
[33] "do" "hut" non" non nrgn ngon "thig" "which"
[41] nbyn "glln "there" "would" "if" "no" "from" "what"
[49] "when" "go"

Notice the prevalence of punctuation, conjunctions, articles, pronouns, and deter-
miners in this list. As one particular side-effect, the average number of sentences in
a block can be calculated by counting the number of periods, question marks, and
exclamation marks.'’

Using the set of top words contained in 1emmaSet, we build a matrix of word
counts from the 571 equally sized blocks of words.

9The final, incomplete block is ignored.

101t may seem that these counts would incorrectly include other uses of these marks, such as abbre-
viations like “Dr.” and “Mr.”. However, in these cases the tokenizer will not separate the period from the
remainder of the word. These symbols are only defined as separate lemmas when they define sentence
boundaries (the one caveat being that this would include sentences found within long embedded quotes).
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> mat <- cbind(match(lemma, lemmaSet),as.numeric(col (lemmaSet)))
> mat <- mat[!is.na(mat[,1]),]
> tab <- table(mat[,2],mat[,1])

A scatter plot based on the first three principal components of the matrix auth is
shown in Fig. 10.5. The separation between blocks of text from Charles Dickens
and the remainder of the set is very good; Nathaniel Hawthorne is also fairly well
separated. Mark Twain and Sir Arthur Conan Doyle overlap considerably and on
the whole are difficult to distinguish with this particular feature set. However, com-
paring to the previous analysis with part of speech bigrams is not entirely fair as it
is easier to separate the entire text compared to just a smaller segment.

Overall, stylometrics offers an approach to exploring writing styles. We have
shown just a few ways this form of analysis can be applied. Depending on the object
of study and interests, the way one approaches stylometrics changes and is also why
it is a powerful method for representing and interpreting textual documents.

10.5 Further Methods and Extensions

We have briefly looked at three applications of the text annotations developed in
Chap. 9. Many extensions and tweaks exist for these methods. A hierarchical vari-
ant to the standard LDA algorithm that adaptively learns the number of topics has
been developed [10]. It has become fairly popular and often yields better results
than the fixed topic model, particularly for large copora. There is also great deal of
mathematical depth in the LDA algorithm that was glossed over here. A good intro-
duction to this and the importance of properly tuning the model and understanding
the output is given by Kurt Hornik and Bettina Griin [2].

There are also many other examples of tasks in text analysis, several of which
are popular in humanities applications. Examples include sentiment analysis [6],
concept mining [4], and document clustering [9]. A good text for exploring these
and other applications is Fundamentals of Predictive Text Mining [11]. Text min-
ing is a very active field in computer science, with recent journal articles a great
reference for the latest techniques. The Transactions on Speech and Language Pro-
cessing jointly published by the IEEE and ACM is a good starting point.'!

Practice

1. We started tf-idf analysis by filtering on the non-proper nouns. What happens
when all the unique lemmas are included in the importance matrix? In particular,
how are very common terms such as conjunctions handled?

2. Try using an unfiltered input to the LDA analysis. What happens in this case?
Try again where part of speech tagging is still used, but both verbs and nouns are
included.

llhttp://tslp.acm.org/.
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3. Using the original set of filtered lemmas, run the LDA algorithm with just four
topics. Can you determine good names for these topics? Try running the algo-
rithm multiple times; do the topics remain constant after each run?

4. Run the bigram part of speech analysis as 5000 word chunks. How well does
this analysis separate the four authors?

5. Using the block-wise method, construct a feature set that counts the number of
tokens (raw words, not their lemmas) with 1, 2, 3, ... characters (you can cap it
at 16). Run another analysis using the counts of words that are used only once
in the block of text, twice, thrice, ... (this can be capped at 16 as well; hint: use
table (table(...))). How well do these separate the authors?
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Chapter 11
R Packages

Abstract In this chapter, methods for installing the R packages and third-party li-
braries needed for the examples in this text are given. Several common issues are
addressed and resources for additional help are supplied.

11.1 Installing from Within R

One of the R programming language’s greatest strengths is the large set of open
source user-contributed packages. These add additional functionality to the base
language ranging from one off implementations of new cutting edge methods, to
large general purpose suites of functions for various application domains. R pack-
ages are available on a number of sites, GitHub, for example, being a popular first
stop of those under active development. The majority of stable packages are even-
tually published in The Comprehensive R Archive Network (CRAN), located at
cran.r-project.org. As of mid-2015 nearly 7000 packages were available
for download through CRAN.

The R language provides a method for automatically downloading and installing
user-contributed packages.! For example, the following downloads the package
RColorBrewer from CRAN and installs it onto a user’s machine:

> install.packages ("RColorBrewer")

Because the CRAN repository is mirrored across the world, this command may
(depending on your operating system and default settings) open a pop-up window or
terminal dialogue asking users to choose which mirror they would like to download
from. The choice should not effect the results, though picking a relatively proximal
location will help to reduce download speeds and network load.

IDepending on your installation, such as RStudio or the R console, other methods may also be
available. We will stick to the one method which should be available on all R setups.
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When installing the first package, the following question may pop up in the R
session:

Would you like to use a personal library instead? (y/n)

This message implies that the user does not have the correct permissions to install
packages into the same location where R itself is installed. By typing “y” (yes), R
will setup a separate user-writable location in which to install packages; this should
not require any additional steps, and the installed packages can be loaded exactly as
if they were installed into the same location as the base R.

One useful option to the install.packages command is the type param-
eter. It can be set to source, mac.binary, mac.binary.mavericks, and
win.binary.? Attempting to install packages with the default value of type is
the best first choice, but manually switching to a binary version (if not the default)
may fix any problems that initially result from the default. For example, the jpeg
package is known to cause problems when installing from source. On Mac OSX
10.9, this can be avoided by the following:

> install.packages ("jpeg", type="mac.binary.mavericks")

Windows users will find that the type is generally set to the binary version by default,
so this is unlikely to be a source of problems. For Mac Users the default depends
on the method of installation. Binaries are not supplied for Linux, though many
distributions provide packages with difficult installations as binaries through their
individual repositories.>

We have tried to keep the number of package required within this text to a mini-
mum. The following ten packages can be installed directly via from CRAN without
any additional dependencies or system requirements.

RColorBrewer png (%)
igraph sp

maptools jpeg (*)
abind rgdal (*)
colorspace rgeos ()

Stars denote packages which may require manually setting type to binary. Add-
itionally, the package snippets can be downloaded with a slightly modified version
of the command:

> install.packages ("snippets",, "http://rforge.net/")

It also has no external system dependencies, and only requires special treatment as
it is currently not loaded onto CRAN from the alternative repository RForge.

Three additional packages are used in the text, and the process for setting them
up is described in the following sections.

2These may change slightly over time with new versions of Windows and/or Mac OSX. Check with
?install.packages for those available within your version of R.
3Typically via commands such as: apt -get, yum, or rpm.
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11.2 rJava

The rJava package provides an essential link between R and the Java programming
language. It is required in order to run the packages coreNLP and mallet, which
are central to the text parsing and analysis shown in Chaps.9 and 10. It requires
having the Java language installed and accessible from within R, but otherwise is
downloadable via CRAN by the typical install.packages command. For
details on how to install Java, see https://java.com/download.

Two common issues that seem to arise when installing or loading rJava are the
following:

¢ On Windows, both R and Java should either both be 32-bit or both be 64-bit.
Mixing the two types can cause errors.

* Sometimes rJava package cannot find the Java program.

> Sys.setenv (JAVA HOME='C:\\Program Files\\Java\\jre7’)

* In other cases, a number of issues have been solved by first clearing the
JAVA_HOME variable prior to loading the library.

Sys.setenv (JAVA HOME="")

This seems to fix a number of cross-platform issues, so we suggest it before
asking for additional help.

If problems persist following this solution, try searching for your problem on
http://stackoverflow.com/ or via the R help mailing list.

After successfully installing rJava, the packages mallet and coreNLP can be
installed from CRAN without any additional dependencies.

11.3 coreNLP

The coreNLP package provides wrappers and helper functions for calling the Stan-
ford CoreNLP library. Its usage is described in detail throughout Chap. 9 and used as
text preprocessor in Chap. 10. Once rJava has been installed, the coreNLP package
can also be installed from CRAN as usual. However, due to the size of the Stan-
ford CoreNLP library the required Java files must be downloaded separately. This
can be done manually by visiting http://nlp.stanford.edu/software/
corenlp.shtml, or by calling the following from the package:

> library(coreNLP)
> downloadCoreNLP ()

The downloadCoreNLP function also provides methods for grabbing language-
specific models for parsing non-English text.



https://java.com/download
http://stackoverflow.com/
http://nlp.stanford.edu/software/corenlp.shtml
http://nlp.stanford.edu/software/corenlp.shtml
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11.4 sessionInfo

For the purpose of debugging problems, the following is the session info command
for the version of R and contributed packages used to create all of the output and
graphics within this book.

> sessionInfol()

R version 3.2.0 (2015-04-16)

Platform: x86_ 64-apple-darwinl4.3.0 (64-bit)
Running under: OS X 10.10.3 (Yosemite)

locale:
[1] en US .UTF—S/eniUS .UTF—S/enﬁUS .UTF—S/C/enﬁUS .UTF—S/eniUS .UTF-8

attached base packages:
[1] stats graphics grDevices utils datasets methods

[7] base

other attached packages:

[1] mallet_1.0 rJava_0.9-6 abind 1.4-3

[4] jpeg 0.1-8 rgeos_0.3-8 rgdal _0.9-3

[7] snippets 0.1-0 maptools 0.8-36 sp_1.1-0

[10] RColorBrewer 1.1-2 igraph 0.7.1 colorspace 1.2-6
[13] coreNLP 0.3

loaded via a namespace (and not attached) :

[1] Repp 0.11.6 lattice 0.20-31 XML 3.98-1.1
[4] png 0.1-7 grid 3.2.0 plyr 1.8.2
[7] foreign 0.8-63 plotrix 3.5-12

There is no need to exactly mimic this setup; it is provided only as a guide for
assistance in any troubleshooting when issues arise following along with the code
snippets in this text.




Chapter 12

100 Basic Programming Exercises

Abstract In this chapter, short programming exercises based on the material from
Chaps. 2 to 5 are presented.

The following questions should be solvable using material directly presented in the
respective chapters, with two notable exceptions. We did not introduce the concept
of user-generated functions or how to capture answers to questions from the termi-
nal. These were not directly applicable to the flow of the introductory chapters, but
make for great building blocks for interesting programming questions. The follow-
ing code snippet can be used as a template for how to do both:

> ask <- function() {

> z <- readline("enter your name: ")

> print (paste ("Hello ", z, "I", sep=""))
>

> ask()

When running the last line, R will ask for your name. After hitting “enter”, the
message will be displayed. Notice that the result from readline is always a
character vector. If the result should be a number it must be explicitly converted.

> ask <- function() {

> z <- readline("enter a number: ")

> z <- as.numeric(z)

> return(z + 1)

> }

> ask ()
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The other expectation is the use of the i £ statement throughout questions in Chaps. 2
and 3, even though it was not formally introduced until Sect. 4.6. The i f statement
evaluates the statement after it only if the argument is true. For example, the fol-
lowing prints only one of the two statement:

> 1if (1 > 2) print("one is larger than two")
> if (1 < 2) print("one is less than two")
[1] "one is less than two"

Using this construct for questions the earlier chapters allowed us to significantly
widen their scope and extent without overly complicating the material.

Chapter 2

1. Ask for a positive number and return a vector of all the numbers between 1
and the input.

2. Ask for a number and return a vector of all the even numbers between 1 and
the input.

3. Ask for a positive integer n. Return the sum: 14+1/2+1/3+1/44---+1/n.

4. Ask for the total of a bill and return the amount of a 15 % tip. The round
function is useful for cleaning up the result to an even penny.

5. Ask for a user’s birth year and print the age they will turn this year. You can
write the current year directly without trying to determine it externally (it is
possible to determine the current year, but was not covered in Chap. 2).

6. Write a function which asks for a number and determines if it is a whole
number (or not). Print a message displaying the result using print.

7. The factorial of an integer is the product of all the positive integers less than
or equal to it. For example, the factorial of 4 is equal to 4 * 3 x 2 % 1 = 24.
There is a function factorial in base R for calculating these. Ask for
a number and return the factorial, without using the R function. Hint: The
function prod may be helpful.

8. Ask the user for a number between 1 and 10 and return the corresponding
simple ordinal number. For example, 1 should be 1st, 2 should be 2nd, and 4
should be 4th. Hint: You should not write 10 separate if statements. Notice
that the numbers 410 all have the same ending of “th”.

9. Repeat the previous question, but allow the user to input any whole, positive
number. Hint: Keep the input as a character vector and make use of the
nchar and substr functions.
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

There is a character vector available in base R called state . abb giving the
two digit postal abbreviations for the 50 US States. Write a function which
asks for an abbreviation and returns TRUE if it is an abbreviation and FALSE
otherwise.

Repeat the previous question, but allow for cases where the user inputs a
different capitalization. For example, “CA”, “Ca”, and ‘“ca” should all return
as TRUE.

R provides another vector of state names as a vector called state.name.
The elements line up with the abbreviations; for example, element 33 of
the abbreviations is “NC” and element 33 of the names is “North Carolina”.
Write a function which asks for an abbreviation and returns the corresponding
state name. If there is none, return the string “error”.

Finally, write a function which asks for either a state name or state abbrevia-
tion. When given an abbreviation, it returns the state name, and when given a
name it returns the state abbreviation. If there is no match to either it returns
the string “error”.

The object state.x77 is a matrix that gives several summary statistics for
each of the 50 US States from 1977. Calculate the number of high school
graduates in each state, and sort from highest to lowest.

Calculate the number of high school graduate per square mile in each state.

Ask the user to provide a state abbreviation, and return the number of high
school graduates in that state in 1977.

Now, print a vector of the state names from the highest illiteracy rate to the
lowest illiteracy rate. Hint: The state names are given as rownames.

Construct a data frame with ten rows and three columns: Illiteracy,
Life_expectancy,Murder, and HS_grad. Each column gives the names
of the worst 10 state names. Hint: some measures are good when they are high
and others are good when the are low. You will need to take account of these.

Using vector notation, print the state names which are in both the top 10 for
illiteracy and top 10 for murder rates in 1977.

There are several other small datasets contained within the base installation
of R. One of these is the Titanic dataset, accessed by the object Titanic.
The format is a bit strange at first, but can be converted to a data frame with
the following code:

ti <- as.data.frame(Titanic)
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21.

22.

23.

24.

25.
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It has a row for each combination of Class, Sex, Age, and Survival flag, along
with a frequency count (see ? Titanic for more information). Write a func-
tion which asks the user to input a Class category (either “1st”, “2nd”, “3rd”,
or “Crew”) and prints the total survival and death counts for that category.

Take the titanic dataset and again ask the user to select a class. Write the
subset of the data from this class and save it as a comma separated value file
named “titanicOutput.csv” in the current working directory. Print to the user
the full path of the created file.

Ask the user for the working directory where the previous command was run.
Set the working directory to this location, read the titanic dataset into R and
return it.

Repeat the previous question, but instead print the passenger Class for which
the file “titanicOutput.csv” was saved.

R provides another dataset called Wor1dPhones giving the number of tele-
phones in seven world regions, in thousands, for the years 1951, 1956, 1957,
1958, 1959, 1960, and 1961. Calculate the percentage change in number
of phones for each region between 1951 and 1961. Use vector notation, do
not do each region by hand! Hint: Percentage change is (new value — old
value)/old value.

Ask the user for a year between 1951 and 1961. Return the number of phones
in Europe for the year closest, but not after, the input year.

Chapter 3

26.

217.

28.

29.

30.

31.

The dataset iris is a very well-known statistical data from the 1930s. It
gives several measurements of iris sepal and petal lengths (in centimeters)
for three species. Construct a table of sepal length rounded to the nearest
centimeter versus Species.

Construct the same table, but rounded to the nearest half centimeter.
Plot a histogram of the sepal length for the entire iris dataset.

Replicate the previous histogram, but manually specify the break points for
the histogram and add a custom title and axis labels.

Plot three histograms showing the sepal length separately for each species.
Make sure the histograms use the same break points for each plot (Hint: use
the same as manually set in the previous question). Add helpful titles for the
plots, and make sure to set R to display three plots at once.

Calculate the deciles of the petal length for the entire iris dataset.
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32.

33.

34.

35.

36.
37.
38.

39.

40.

41.

42.
43.

44.

45.

46.

Construct a table showing the number of samples from each species with petal
length in the top 30 % of the dataset. How well does this help categorize the
dataset by species?

Now bin the iris dataset into deciles based on the petal length. Produce a table
by species. How well does this categorize the dataset by species?

We can get a very rough estimate of the petal area by multiplying the petal
length and width. Calculate this area, bin the dataset into deciles on area, and
compute table of the petal length deciles against the area deciles. How similar
do these measurements seem?

Without using a for loop, construct a vector with the median petal length for
each species. Add appropriate names to the output.

Repeat the previous question using a for loop.
Finally, repeat again using tapply.

As in a previous question, write a function which asks the user for a state
abbreviation and returns the state name. However, this time, put the question
in a for loop so the user can decode three straight state abbreviations.

The command break immediately exits a for loop; it is often used inside
of an if statement. Redo the previous question, but break out of the loop
when a non-matching abbreviation is given. You can increase the number of
iterations to something large (say, 100), as a user can always get out of the
function by giving a non-abbreviation.

Now, reverse the process so that the function returns when an abbreviation is
found but asks again if it is not.

Using a for loop, print the sum 1 +1/2 +1/3+1/4+ --- + 1/n foralln
equal to 1 through 100.

Now calculate the sum for all 100 values of n using a single function call.

Ask the user for their year of birth and print out the age they turned for every
year between then and now.

The dataset Insect Sprays shows the count of insects after applying one of
six different insect repellents. Construct a two-row three-column grid of his-
tograms, on the same scale, showing the number of insects from each spray.
Do this using a for loop rather than coding each plot by hand.

Repeat the same two by three plot, but now remove the margins, axes, and
labels. Replace these by adding the spray identifier (a single letter) to the plot
with the text command.

Calculate the median insect count for each spray.
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47.

48.

49.

50.
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Using the WorldPhones dataset, calculate the total number of phones used
in each year using a for loop.

Calculate the total number of phones used in each year using a single apply
function.

Calculate the percentage of phones that were in Europe over the years in
question.

Convert the entire WorldPhones matrix to percentages; in other words, each
row should sum to 100.

Chapter 4

51
52

53.

54.

55.

56.

57.

58.

59.

Produce a scatter plot of sepal length versus petal length in the iris dataset.

Add color to the scatter plot of sepal length versus petal length to distinguish
the three iris species. Use solid dots to highlight the colors.

Using the previous plot as a starting point, change the size of the points based
on the sepal width. Hint: A good way to get nice sizes is to divide the sepal
width by the median width.

Change the plot to use the text of the species type instead of dots. You can
remove the sizing based on sepal width so that all of the text is of the same
size; however, it may help to make all the text points smaller than the default
to reduce overplotting.

Add a vertical and horizontal median to the scatter plot of sepal length versus
petal length.

Add by group vertical and horizontal medians to the scatter plot of sepal
length versus petal length. There should be three vertical and three horizontal
lines. Color the lines and points based on species, and make the lines dashed
rather than solid.

Reconstruct the scatter plot of sepal length versus petal length with species
colors. Add text to show the medians of the three groups. Test out different
sizes for the points and text to make nice looking plot.

Construct a plot of petal length versus sepal width. The plot has two large
clusters of points (in the upper left and lower right) and one outlier in the
bottom left. Construct a coloring for these three groups. Produce a side by
side plot showing petal length versus sepal width next to sepal length versus
petal length. Use the new color scheme for both.

Create a scatter plot matrix (pairs plot) from the four numerical variables in
the iris dataset. You should reduce the margins to fit the entire plot on the
screen but do not need to directly replicate all of the tweaks from Sect. 4.6.
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60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

Change the custom scatter plot matrix to have a histogram on the diagonal
axis.

Take the InsectRepelant dataset and produce a single line plot of the
data. It will be easiest going forward to do this by (1) plotting the data with a
white color, and (2) making a single call to the 1ines function.

The first row of the InsectRepelant dataset has a count of 10. Add to
the plot a stack of solid points to represent this count between the coordinates
(1,1) and (1,10).

Now, replicate this for every row of data on a plot. Do not include the line as
it will no longer be needed. You can do this in several ways, though the most
straightforward is as a loop over the rows of the dataset. Hint: You may need
to create a special case for the two rows with a count of zero.

Duplicate the previous plot, but use the spray type as a text object (it is a
single letter between A and F) in place of the dots).

Add vertical bars to separate the groups. Do not do this manually, but use
vectors to plot all the lines at once.

Using dots again instead of letters replicate the plot such that one dot repre-
sents three counts. Do not plot any remainder, so a count of 5 should have
only one dot. Hint: The £1oor function will be helpful; it removes the frac-
tional part of a number.

Now, redo the plot such that the fractional part of the remainder is represented
by a smaller dot. So a remainder of 0.33 gets a dot with cex=0.33 and a
remainder of 0.66 gets a dot with cex=0.66.

The object AirPassengers is a dataset which gives the number of interna-
tional airline passengers by month for 12 years of data. It is stored by default
in an atypical format but can be converted to a matrix easily:

ap <- matrix(as.numeric (AirPassengers),ncol=12)
rownames (ap) <- month.abb
colnames (ap) <- 1949:1960

Calculate the total flyers for each year, and then calculate the total number of
flyers over each month. Are there any noticeable patterns?

Construct a line plot of the number of fliers for 1949. Use custom axes to
label the months.

Construct a graphic with line plots for every year. Add a text label to the data
point for July to label the years. Hint: Use range (ap) to determine the
limits of the y-axis to capture all of the data.
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72.

73.

74.

75.
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Produce a scatter plot of the 1949 data against the 1950 data. Use text to
label the points. Remember to offset the labels from the points.

Produce a new dataset which shows the month percentage of flights for each
year. In other words, each column should sum to 100. Save this as scaledAp.

Create a new line chart showing these standardized values for each year over
the months.

Create an empty plot with x and y ranges from 1 to 12. Create a dot at each
coordinate (i, j) to represent the value in the 12 by 12 matrix ap. Use relative
sizes to show the value. Construct useful custom axes (use the option las=2
to make the axes look nicer).

Recreate the plot using the scaledAp data. Color points blue if they are less
than 100/12 and red if they are greater than 100/12 (we use this cut-off as it
represents a typical month).

Chapter 5

76.

77.

78.

79.

80.

8l1.

82.

83.

&4.

The dataset ChickWeight contains several time series showing the weight
of young chickens feed one of four different diets. Produce a series of line
plots using categorical colors. Use the colorspace package for the colors.

Remove the five chicks with incomplete data. Normalize the weights of each
chick such that each weighs 0 on the first day and 1 on the last day.

Construct a matrix with one row for each chick showing the growth rate, (new
weight—old weight/old weight) for each day. This will have 11 columns and
a row for each chick.

Plot the chick ids against the growth rates.

Change labels from the previous plot into text commands giving the day in
time for a random sample set of 3 days selected for each chick.

Repeat the previous plot with solid dots, where a sequential palette is used to
indicate time.

Create and place a legend decoding the colors from the previous plot. You
will have to increase the size of the plot and perhaps make the legend smaller
than the default to fit everything. What do you notice about typical growth
rates from this plot now?

Take AirPassengers dataset and plot the 1949 counts against the 1950
counts, using a categorical palette to distinguish the four seasons of the data.

Redo the previous plot using a sequential heat palette to show the months and
include a legend to explain the colors.
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85
86

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

Plot two randomly chosen numeric variables from the iris dataset.

A previous question asked to plot the sepal length versus petal length for the
iris data, where each point is labeled with text giving the plant species. Redo
this plot using subsampling to reduce the over plotting. Use a color palette to
select the colors for the plot.

Now, redo the plot of sepal length versus petal length using a sequential color
palette to display sepal width, using five buckets for the bins.

Add a helpful legend for the colors in the previous plot to describe the color-
ing of the points.

Reconstruct the scaledAp data, but this time subtract the 100/12 from ev-
ery entry. Create a histogram of the results. The average value should be zero,
but the median of the scaled results will be negative.

Create a divergent palette with 21 bins from the scaledAp. Recall that this
requires two sets of bins. Use this to plot the entire dataset as a single time
series; add a line through the data points to improve readability.

Edit the previous line plot to have a legend off to the right of the entire plot,
and add custom x-axis labels showing the years.

Write a for loop that cycles over the numbers 1-100. For each iteration of the
loop, if the number is divisible by 3, print “fizz” to the console, and if divisible
by 5, print “buzz”. Otherwise print the number itself. (This is a well-known
intro interview question for new programmers called FizzBuzz).

Repeat FizzBuzz using a vector in place of a loop. The return value will be a
character vector.

Create a function which asks the user for how many letters they would like
their password to be and then generates a random string of letters/numbers
of that length as a random password. Hint: R has the objects letter and
LETTERS built in a default object.

Sample 1000 points from the set containing just 1 and —1. Calculate the cum-
ulative sum of this sample. This simulates a mathematical model known as a
random walk.

Plot the cumulative sum of the random walk over time as a line plot. Run
it several times to see different random outputs. What does the plot remind
you of?

R provides the function Sys . sleep, which causes the program to wait for
a given number of seconds before proceeding. Combine this with a short
time period (0.1 seconds is a good first guess) to animate the previous plot by
waiting in-between drawing each line segment.
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99.

100.
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Calculate 10,000 separate random walks, saving the 500th and 1000th step
from each. Take the result and create a scatter plot of the results; use a color
with an alpha channel to reduce the effects of over plotting. What patterns do
you see in the plot?

Calculate side-by-side histograms of the 500th and 1000th positions from the
previous simulation. What patterns do you notice here?

Write a function to simulate the game “rock-scissors-paper”. You should ask
the user to select one of these by name, generate a random response, and
indicate who won.



Chapter 13

100 Basic Programming Solutions

Abstract Code snippets showing possible solutions to the exercises presented in
Chap. 12 are presented in this chapter.

These are examples of how to solve the problems presented in Chap. 12, but
they are by no means the only way of solving them. These snippets were written to
use as limited a set of functions as possible, and more elegant solutions often exist.
They should by no means be studied as the “right” way to solve the problems; in
many cases, they are far from that.

Chapter 2

Solution to Question #1

ask <- function() {
num <- readline("enter a number: ")
num <- as.numeric (num)
return (1:num)

}

Solution to Question #2

ask <- function() {
num <- readline("enter a number: ")
num <- as.numeric (num)
ans <- seqg(2, num, by=2)
return (ans)

}

Solution to Question #3

ask <- function() {
num <- readline("enter a number: ")
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num <- as.numeric (num)
ans <- sum(l / (1l:num))
return (ans)

}

Solution to Question #4

ask <- function() {
num <- readline("bill amount: ")
num <- as.numeric (num)
num <- round(num % 0.15,2)
return (num)

Solution to Question #5

ask <- function() {
num <- readline("birth year: ")
num <- as.numeric (num)
ans <- 2015 - num # change 2015 to the current year
print ("You turned (or are turning)" ans, "years old this year")

}

Solution to Question #6

ask <- function() {
num <- readline("enter a number: ")
num <- as.numeric (num)
if (num == round(num)) print ("Whole number")
if (num != round(num)) print("Not a whole number")

Solution to Question #7

ask <- function() {
num <- as.numeric(readline("enter a number: "))
return (prod (num:1) )

}

Solution to Question #8

ask <- function() {
num = as.numeric(readline ("enter a number between 1 and 10: "))

if (num == 1) ans <- paste(num, "st", sep="")
if (num == 2) ans <- paste(num, "nd", sep="")
if (num == 3) ans <- paste(num, "rd", sep="")
if (num > 3) ans <- paste(num, "th", sep="")

return (ans)
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Solution to Question #9

ask <- function() {
num <- readline("enter a number between 1 and 10: ")
lastNum <- as.numeric (substr (num, nchar (num), nchar (num)))

if (lastNum == 1) ans <- paste(num, "st", sep="")
if (lastNum == 2) ans <- paste(num, "nd", sep="")
if (lastNum == 3) ans <- paste(num, "rd", sep="")
if (lastNum > 3) ans <- paste(num, "th", sep="")

return (ans)

Solution to Question #10

ask <- function() {
abb <- as.numeric(readline("enter an abbreviation: "))
ans <- abb %$in% state.abb
return (ans)

}

Solution to Question #11

ask <- function() {
abb <- readline("enter an abbreviation: ")
abb <- toupper (abb) # because state.abb is all upper case
ans <- abb %in% state.abb
return (ans)

}

Solution to Question #12

ask <- function() {
abb <- readline("enter an abbreviation: ")

ans <- state.name[abb == state.abb]
if (length(ans) == 0) ans = "error"
return (ans)

Solution to Question #13

ask <- function() {
abb = readline("enter an abbreviation or state name: ")

if (any(abb == state.abb)) ({

ans <- state.name[abb == state.abb]
} else if (any(abb == state.name)) {

ans <- state.abbl[abb == state.name]
} else {

ans <- "error"

return (ans)

}
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Solution to Question #14

|ans <- sort(state.x77[,1] * state.x77[,6])

Solution to Question #15

|ans <- sort(state.x77[,6] / state.x77[,8])

Solution to Question #16

ask <- function() {
abb <- readline("enter an abbreviation: ")
index = which(abb == state.abb)

ans <- state.x77[index,1l] % state.x77[index, 6]
return (ans)

}

Solution to Question #17

ansl <- rownames (state.x77) [order (state.x77[,3], decreasing=TRUE) ]
ansl <- rownames (state.x77) [order (state.x77[,"Illiteracy"],
decreasing=TRUE) ]

Solution to Question #18

index <- order (state.x77[,3], decreasing=TRUE) [1:10]
Illiteracy <- rownames (state.x77) [index]

index <- order(state.x77[,4]1)[1:10]
Life expectancy <- rownames (state.x77) [index]

index <- order (state.x77[,5], decreasing=TRUE) [1:10]
Murder <- rownames (state.x77) [index]

index <- order(state.x77[,6])[1:10]
HS grad <- rownames (state.x77) [index]

ans = data.frame(Illiteracy, Life expectancy, Murder, HS_grad,
stringsAsFactors=FALSE)

Solution to Question #19

oldAns <- ans # from previous question
ans <- oldAns$Illiteracy[which(oldAns$Illiteracy %in% oldAns$SMurder) ]

Solution to Question #20

ti <- as.data.frame(Titanic)

ask <- function() {
cl <- readline("enter Class (‘1lst’, ‘2nd’, ‘3rd’ or ‘Crew’): ")
tiSubset <- ti[ti$Class == cl,]

deaths <- sum(tiSubset$Freqg[tiSubset$Survived == "No"])
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survived <- sum(tiSubsets$SFreqg[tiSubset$Survived == "Yes"])

print (paste("Total deaths", deaths))
print (paste ("Total survived", survived))

}

Solution to Question #21

ti <- as.data.frame(Titanic)

ask <- function() {
cl <- readline("enter Class (‘lst’, ‘2nd’, ‘3rd’ or ‘Crew’): ")
tiSubset <- ti[ti$Class == cl,]

write.csv(tiSubset, "titanicOutput.csv")

print (paste("Saved output to ", getwd(), "/titanicOutput.csv",
sep="" ))

Solution to Question #22

ask <- function() {
wd <- readline("directory of saved titanic data: ")

setwd (wd)
tiInput <- read.csv("titanicOutput.csv", as.is=TRUE)

return (tiInput)

}

Solution to Question #23

ask <- function() {
wd <- readline("directory of saved titanic data: ")

setwd (wd)
tiInput <- read.csv("titanicOutput.csv", as.is=TRUE)

print (paste("You saved data from the Class:", tiInput$Class[1]))

}

Solution to Question #24

ans <- (WorldPhones[7,] - WorldPhones[1l,]) / WorldPhones[1,]

Solution to Question #25

ask <- function() {
year <- as.numeric(readline("enter a year between 1951 and 1961:
ll))
allYears <- as.numeric (rownames (WorldPhones))
index <- which(allYears <= year)
index <- index[length (index) ]
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ans <- WorldPhones[index,2] % 1000
return (ans)

}

Chapter 3

Solution to Question #26

|ans <- table(round(iriss$Sepal.Length), irisS$Species)

Solution to Question #27

|ans <- table(round(iris$Sepal.Lengthx2) /2, iris$Species)

Solution to Question #28

|hist(iris$Sepal.Length)

Solution to Question #29

hist (iriss$Sepal.Length, breaks=seq(4,8,by=0.5),
xlab="Sepal Length",
ylab="Count",
main="Distribution of Sepal Length for the Iris Dataset")

Solution to Question #30

par (mfrow=c(1,3))
hist (iriss$Sepal.Length[iris$Species == "setosa"l,
breaks=seqg(4,8,by=0.5),
xlab="Sepal Length",
ylab="Count",
main="Sepal Length for species setosa")
hist (iriss$Sepal.Length[iris$Species == "versicolor"],
breaks=seq(4,8,by=0.5),
xlab="Sepal Length",
ylab="Count",
main="Sepal Length for species versicolor")
hist (iriss$Sepal.Length[iris$Species == "virginica"],
breaks=seq(4,8,by=0.5),
xlab="Sepal Length",
ylab="Count",
main="Sepal Length for species virginica")

Solution to Question #31

ans <- quantile(iris$Petal.Length,prob=seqg(0,1,length.out=11))

Solution to Question #32

breakPoints <- quantile(iris$Petal.Length,prob=0.7)
ans <- table(iris$Species, breakPoints > irissPetal.Length)
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Solution to Question #33

breakPoints <- quantile(iris$Petal.Length,
prob=seqg(0,1,length.out=11),
names=FALSE)
bin <- cut(iris$Petal.Length, breakPoints, labels=FALSE,
include.lowest=TRUE)
ans <- table(iris$Species, bin)

Solution to Question #34

breakPoints <- quantile(iris$Petal.Length,
prob=seqg(0,1,length.out=11),
names=FALSE)
binLength <- cut(iris$Petal.Length, breakPoints, labels=FALSE,
include.lowest=TRUE)

area <- irissPetal.Length x irissSPetal.Width
breakPoints <- quantile(area,
prob=seqg(0,1,length.out=11),
names=FALSE)
binArea <- cut(area, breakPoints, labels=FALSE,
include.lowest=TRUE)

table (binLength, binArea)

Solution to Question #35

ans <- rep(0, length=3)

ans[1l] <- quantile(irissPetal.Lengthl[iris$Species == "setosa"l,
probs=0.5)

ans[2] <- quantile(iris$Petal.Length[irisS$Species == "versicolor"],
probs=0.5)

ans[3] <- quantile(irissPetal.Length[iris$Species == "virginica"],
probs=0.5)

names (ans) <- c("setosa", "versicolor", "virginica")

Solution to Question #36

species <- unique (iriss$Species)
ans <- rep(0, length=3)
for (i in 1:3) {

ans[i] <- quantile(iris$Petal.Length[iris$Species == species[i]],
probs=0.5)
}
names (ans) <- c("setosa", "versicolor", "virginica")

Solution to Question #37

tapply(irissPetal.Length, iris$Species, quantile, probs=0.5)
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Solution to Question #38

ask <- function() {
for (i in 1:3) {
abb = readline("enter an abbreviation: ")
ans <- state.name[abb == state.abb]
if (length(ans) == 0) ans = "error"
print (ans)
1
}

Solution to Question #39

ask <- function() {
for (i in 1:100) {
abb = readline("enter an abbreviation: ")
ans <- state.name[abb == state.abb]
if (length(ans) == 0) break
print (ans)
1
}

Solution to Question #40

ask <- function() {
for (i in 1:100) {
abb = readline("enter an abbreviation: ")
ans <- state.name[abb == state.abb]
if (length(ans) != 0) break
print ("No match found!")

}

return (ans)

}

Solution to Question #41

for (i in 1:100) {
print (sum(1l / (1:1)))
}

Solution to Question #42

ans <- cumsum(l / (1:100))

Solution to Question #43

ask <- function() {
num <- readline("birth year: ")
num <- as.numeric (num)
age <- 2015 - num # change 2015 to the current year

for (i in 1l:age) {
print (paste ("You turned", i, "years old in", 2015-age+i))
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Solution to Question #44
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sprays <- unique (InsectSprays$spray)
par (mfrow=c (2,3))
for (j in 1:length(sprays)) {
hist (InsectSprays$count, breaks=seqg(0,30,by=5))
}

Solution to Question #45

sprays <- unique (InsectSprays$spray)
par (mfrow=c(2,3))
par (mar=c(0,0,0,0))
for (j in 1:length(sprays)) {
hist (InsectSprays$count, breaks=seq(0,30,by=5),
axes=FALSE, xlab="",ylab="",main="")
box ()
text (20,25,paste("Spray="'",sprays([j],"'",sep=""))

}

Solution to Question #46

ans <- tapply(InsectSprayss$count, InsectSpraysS$spray,
quantile, probs=0.5)

Solution to Question #47

ans <- rep(NA, nrow(WorldPhones))

for (i in 1l:nrow(WorldPhones)) {
ans[i] = sum(WorldPhones[i,])

}

Solution to Question #48

|ans <- apply(WorldPhones, 1, sum)

Solution to Question #49

|ans <- 100 % WorldPhones[,2] / apply(WorldPhones, 1, sum)

Solution to Question #50

|ans <- 100 % WorldPhones / apply(WorldPhones, 1, sum)
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Chapter 4

Solution to Question #51

plot (iris$Sepal.Length,iriss$Petal.Length)

Solution to Question #52

species <- unique(iris$Species)

colvals <- c("red", "green", "blue")

cols <- colVals[match(iris$Species, species)]

plot (iris$Sepal.Length,irissPetal.Length, col=cols, pch=19)

Solution to Question #53

species <- unique (iriss$Species)
colVals <- c("red", "green", "blue")
cols <- colVals[match(iriss$Species, species)]
sizes <- iris$Sepal.Width / quantile(iris$Sepal.Width, probs=0.5)
plot (iris$Sepal.Length,iris$Petal.Length, col=cols,
pch=19, cex=sizes)

Solution to Question #54

species <- unique (iriss$Species)

colvals <- c("red", "green", "blue")

cols <- colVals[match(iris$Species, species)]

plot (iris$Sepal.Length,iris$Petal.Length, col="white",
pch=19, cex=sizes)

text (irissSepal.Length,iris$Petal.Length, iris$Species,
col=cols, cex=0.5)

Solution to Question #55

plot (iris$Sepal.Length,iris$Petal.Length)
abline (v=quantile(iris$Sepal.Length,probs=0.5))
abline (h=quantile(iris$Petal.Length,probs=0.5))

Solution to Question #56

colvals <- c("red", "green", "blue")

cols <- colVals[match(iris$Species, species)]

plot (iris$Sepal.Length,iris$Petal.Length,
col=cols, pch=19, cex=sizes)

vals <- tapply(iris$Sepal.Length, iris$Species, quantile,probs=0.5)
abline(v=vals, col=colVals, lty="dashed")
vals <- tapply(iris$Petal.Length, iris$Species, quantile,probs=0.5)
abline (h=vals, col=colVals, lty="dashed")
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Solution to Question #57

species <- unique (iriss$Species)

colVals <- c("red", "green", "blue")

cols <- colVals[match(iriss$Species, species)]

plot (iris$Sepal.Length,irissPetal.Length, col=cols, pch=19)

xval <- tapply(iriss$Sepal.Length, iriss$Species, quantile,probs=0.5)
yval <- tapply(iris$Petal.Length, iriss$Species, quantile,probs=0.5)

text (xval, yval, species, cex=1.5)

Solution to Question #58

plot (iris$Petal.Length,iriss$Sepal.Width)

groups = rep (2L,nrow(iris))

groups [iris$Petal.Length < 2] = 1L

groups [iris$Petal.Length < 2 & iris$Sepal.Width < 2.5] = 3L

par (mfrow=c(1,2))

colvals <- c("red", "green", "blue")

plot (iris$Petal.Length,irissSepal.Width, col=colVals[groups], pch=19)

plot (iris$Sepal.Length,iris$Petal.Length, col=colVals[groups],
pch=19)

Solution to Question #59

par (mfrow=c (4,4))
par (mar=c(1,1,1,1))
par (oma=c(2,2,2,2))

for (i in 1:4) {
for (j in 1:4) {
plot (iris([,i], iris[,jl, pch=19, cex=0.5)
1
}

Solution to Question #60

par (mfrow=c (4,4))
par (mar=c(1,1,1,1))
par (oma=c(2,2,2,2))

for (i in 1:4) {
for (j in 1:4) {
if (i != j) plot(iris[,i], iris[,j], pch=19, cex=0.5)
if (i == j) hist(iris[,i], main="")

Solution to Question #61

plot (InsectSprays$count, col="white")
lines (InsectSprayssScount)
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Solution to Question #62

plot (InsectSpraysS$count,col="white")
lines (InsectSprayss$count)
points(rep(1,10),1:10,pch=19)

Solution to Question #63

plot (InsectSprays$count, col="white")

for (i in 1l:nrow(InsectSprays))
thisCount = InsectSpraysS$count [i]
if (thisCount > 0) points(rep(i,thisCount),l:thisCount,pch=19)

Solution to Question #64

plot (InsectSpraysS$count,col="white")

for (i in l:nrow(InsectSprays)) {
thisCount = InsectSprays$count [1i]
thisSpray = InsectSpraysS$sprayl[il
if (thisCount > 0) text(rep(i,thisCount),1l:thisCount,thisSpray)

Solution to Question #65

plot (InsectSpraysS$count,col="white")

for (i in l:nrow(InsectSprays)) {
thisCount = InsectSprays$count [1i]
thisSpray = InsectSpraysS$sprayl[il
if (thisCount > 0) text(rep(i,thisCount),1l:thisCount,thisSpray)

}

abline(v=seqg(0.5,72.5,by=12))

Solution to Question #66

plot (floor (InsectSprays$count/3),col="white")

for (i in l:nrow(InsectSprays)) {
thisCount = floor (InsectSprays$count/3) [i]
thisSpray = InsectSpraysS$sprayl[il
if (thisCount > 0) points(rep(i,thisCount),1l:thisCount,pch=19)
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Solution to Question #67

plot (floor (InsectSprays$count/3),col="white")

for (i in l:nrow(InsectSprays)) {
thisCount = floor (InsectSprays$count/3) [i]
thisSpray = InsectSpraysS$sprayl[il
if (thisCount > 0) points(rep(i,thisCount),1l:thisCount,pch=19)
fracPart = (InsectSprays$count/3) [i] -
floor (InsectSprays$count/3) [1i]
points (i, thisCount+1l,pch=19,cex=fracbPart)

Solution to Question #68

ans <- apply(ap, 1, sum)
ans <- apply(ap, 2, sum)

Solution to Question #69

plot(1:12, apl,1], col="white", axes=FALSE)
axis(2)

axis (1, at=1:12, rownames (ap))

lines(1:12, apl,11)

Solution to Question #70

plot(1:12, apl[,1], col="white", axes=FALSE, ylim=range(ap))
axis(2)
axis(1l, at=1:12, rownames (ap))
for (j in l:nrow(ap))
lines(1:12, apl,jl)

text (rep(7,12),apl7,],colnames(ap), cex=0.5)

Solution to Question #71

plot(apl[,1], apl,2], pch=19, ylim=c(100,180))
text (ap[,1], apl,2]+5, rownames(ap))

Solution to Question #72

# As a for loop
scaledAp <- ap
for (j in 1:12) {
scaledAp(,j] <- 100 % scaledaApl[,j] / sum(scaledApl(,j])
}

# Matrix math version
scaledAp <- t(t(ap) / apply(ap,2,sum)) = 100
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Solution to Question #73

plot(1:12, scaledaApl[,1l], col="white", axes=FALSE,
ylim=range (scaledAp))
axis(2)
axis(1l, at=1:12, rownames (scaledAp))
for (j in l:nrow(scaledAp))
lines(1:12, scaledapl[,jl)

text (rep(7,12),scaledAp[7,],colnames (scaledAp), cex=0.5)

Solution to Question #74

plot(0,0,xlim=c(1,12),ylim=c(1,12), col="white",
axes=FALSE, main="", xlab="", ylab="")

box ()

axis(1l,at=1:12,colnames(ap), las=2)

axis(2,at=1:12, rownames(ap), las=2)

for (i in 1:12) {
points(rep(i,12), 1:12, cex = apl[,i] / mean(ap), pch=19)
1

Solution to Question #75

plot(0,0,x1lim=c(1,12),ylim=c(1,12), col="white",
axes=FALSE, main="", xlab="", ylab="")

box ()

axis(1l,at=1:12,colnames(scaledAp), las=2)

axis(2,at=1:12, rownames (scaledAp), las=2)

cols = matrix("blue", nrow=12, ncol=12)
cols[scaledAp > 1/12 % 100] <- "red"

for (i in 1:12) {
points(rep(i,12), 1:12, cex = scaledApl[,i] / mean(scaledAp),
pch=19,col=cols[,1i])

Chapter 5

Solution to Question #76

library (colorspace)

cols <- rainbow hcl (4)

plot (0,0,col="white",xlim=range (ChickWeight$Time),
ylim=range (ChickWeightS$weight), xlab="Time",
ylab="Weight")

for (j in unique(ChickWeight$Chick)) ({
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index <- which(ChickWeight$Chick == j)

lines (ChickWeight$Time [index],
ChickWeight$weight [index],
col=cols[ChickWeights$Diet [index] [1]],
lwd=3)

Solution to Question #77

cw <- ChickWeight[-which (ChickWeightsSChick %in% c(44,8,18,16,15)),]

for (j in unique(cw$Chick)) {
index <- which(cw$Chick == j)
cwSweight [index] = cwSweight [index] - cwSweight [index] [1]
cw$weight [index] = cwSweight [index] / cw$weight [index] [12]

}

cols <- rainbow hcl (4)

plot(0,0,col="white",xlim=range (cw$Time) ,
ylim=range (cwSweight), xlab="Time",
ylab="Weight")

for (j in unique(cw$Chick)) {
index <- which(cw$Chick == j)
lines (cw$Time [index],
cwSweight [index] ,
col=cols[cw$Diet [index] [1]1],
lwd=3)

Solution to Question #78

cw <- ChickWeight[-which(ChickWeight$Chick %in% c(44,8,18,16,15)),]
ans <- matrix(NA, ncol=11, nrow=length(unique (cw$Chick)))

for (j in 1:nrow(ans)) {
index <- which(cw$Chick == unique (cw$Chick) [j])
ans[j,] <- (cwSweight[index] [-1] - cwSweight [index] [-12]) /

cwSweight [index] [-12]

Solution to Question #79

cols <- rainbow hcl (4)

plot(0,0,col="white",xlim=c (1,nrow (ans

for (j in 1l:length(unique(cw$Chick)))
points(rep(j,11), ans([j,])

)), ylim=range (ans))
{
1
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Solution to Question #80

cols <- rainbow hcl (4)
plot(0,0,col="white",xlim=c (1,nrow (ans)
for (j in 1:length(unique (cw$Chick))) {

index <- sample(1:11,3)

text (rep(j,3), ans[j,index], seqg(0,20,by=2) [index])

), ylim=range (ans))

}

Solution to Question #81

cols <- sequential hcl(11)

plot(0,0,col="white",xlim=c(1,nrow(ans)), ylim=range (ans))
for (j in 1:length(unique(cw$Chick))) {

points(rep(j,11), ans[j,], pch=19, col=cols)
1

Solution to Question #82

cols <- rev(sequential hcl(11))

plot (0,0,col="white",xlim=c(1,nrow(ans)), ylim=c(-0.15,0.7))
for (j in 1:length(unique (cw$Chick))) {
points(rep(j,11), ans([j,], pch=19, col=cols)
}
legendText <- paste("growth between days ", seq(0,20,by=2), " to ",

c(seqg(2,20,by=2),21),sep="")
legend("topright", legend=legendText, col=cols, pch=19, cex=0.6,
bg=grey (0.9))

Solution to Question #83

cols <- rainbow hcl (4)
cols <- rep(cols, each=3)
plot(apl[,1], apl,2], col=cols, pch=19)

Solution to Question #84

cols <- heat hcl(12)
plot(apl[,1], apl,2], col=cols, pch=19)
legend ("topleft", legend=rownames (ap), col=cols, pch=19)

Solution to Question #85

plot (iris[, sample(1:4,2)1)

Solution to Question #86

species <- unique (iriss$Species)

colvals <- rainbow hcl (3, alpha=0.2)

cols <- colVals[match(iriss$Species, species)]
colvals <- rainbow hcl (3, alpha=0.8)

colsText <- colvVals[match(iris$Species, species)]
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index <- sample(l:nrow(iris), 45)

plot (iris$Sepal.Length,irissPetal.Length, col=cols,
pch=19)

text (iris$Sepal.Length[index] ,iris$Petal.Length[index],
iris$Species[index], col=colsText [index], cex=0.5)

Solution to Question #87

breakPoints <- quantile(iris$Sepal.Width,
prob=seq(0,1,length.out=6),
names=FALSE)
bin <- cut(iris$Sepal.Width, breakPoints, labels=FALSE,
include.lowest=TRUE)
colVals <- rev(sequential hcl(6))
cols <- colvVals[bin]

plot (iris$Sepal.Length,iris$Petal.Length, col=cols,
pch=19)

Solution to Question #88

legendText <- paste(breakPoints[-6], " to ", breakPoints[-1],sep="")
legend ("bottomright", legend=legendText, col=colVals, pch=19,
cex=0.6,

bg=grey (0.9))

Solution to Question #89

scaledAp <- t(t(ap) / apply(ap,2,sum)) x 100
scaledAp <- scaledAp - 100/12
hist (scaledAp)

Solution to Question #90

bpUpper <- quantile(scaledAp[scaledAp > 0], seq(0,1,by=0.1))
bpLower <- quantile(scaledAp[scaledAp < 0], seqg(0,1,by=0.1))
breakPoints <- c(bpLower, bpUpper)

colvals <- diverge hsv(21)

bin <- cut(scaledAp, breakPoints, labels=FALSE,
include.lowest=TRUE)

plot (as.numeric(scaledAp), col=colVals[bin], pch=19)

lines (as.numeric(scaledAp),col=grey(0.2))

Solution to Question #91

par (mar=c(5.1, 4.1, 4.1, 10))

plot (as.numeric(scaledAp), col=colVals[bin], pch=19,
axes=FALSE, xlab="", ylab="")

lines (as.numeric(scaledAp) ,col=grey(0.2))

box ()

axis(1l, at=seqg(0,12%12,by=12), 1949:1961)
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legendText <- paste(round(breakPoints[-22],2), " to ",
round (breakPoints[-1],2),sep="")
legend (160, 2, cex=0.5, legend=rev(legendText), pch=19,
col=rev(colVals), xpd=TRUE)

Solution to Question #92

for (i in 1:100) {
if (i %% 3 0) print("fizz")
else if (i 5 == 0) print("buzz")
else print

o0 ||
o° |l

(1

}

Solution to Question #93

input <- 1:100

ans <- as.character (input)
ans[input %% 3 == 0] <- "fizz"
ans [input %% 5 0] <- "buzz"

Solution to Question #94

ask <- function() {
z <- readline("how long should the password be: ")
z <- as.numeric(z)
z <- sample(c(letters,LETTERS,0:9), z, replace=TRUE)
return (paste(z, collapse=""))

Solution to Question #95

X <- sample(c(-1,1), 1000, replace=TRUE)
ans <- cumsum(x)

Solution to Question #96

X <- sample(c(-1,1), 1000, replace=TRUE)
ans <- cumsum(x)
plot (ans, type="1")

Solution to Question #97

X <- sample(c(-1,1), 1000, replace=TRUE)
ans <- cumsum(x)

plot (ans, type="1", col="white")

for (j in 1:999) {
lines(c(j,j+1), c(ans([j], ans[jl+1))
Sys.sleep(0.1)

}
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Solution to Question #98

211

N <- 10000
x500 <- rep(NA, N)
x1000 <- rep(NA, N)
for (i in 1:N) {
X <- sample(c(-1,1), 1000, replace=TRUE)
X <- cumsum(x)
x500[1] = x[500]
x1000[1] = x[1000]

}

Solution to Question #99

par (mfrow=c(1,2))

breaks <- seg(-150, 150, by=10)
hist (x500, breaks=breaks)

hist (x1000, breaks=breaks)

Solution to Question #100

opts <- c("rock", "scissors", "paper")

ask <- function() {
user <- readline("rock, scissors, or paper: ")
index <- which(opts == user)

if (length(index) == 0) return("invalid response")

computer <- sample(opts, 1L)

if (computer == "rock") {
if (user == "rock") return("you tie")
if (user == "scissors") return("you lose")
if (user == "paper") return("you win")

}

if (computer == "scissors") ({
if (user == "rock") return("you win")
if (user == "scissors") return("you tie")
if (user == "paper") return("you lose")

}

if (computer == "paper") {
if (user == "rock") return("you lose")
if (user == "scissors") return("you win")
if (user == "paper") return("you tie")
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