

SYSTEMVERILOG FOR VERIFICATION
A Guide to Learning the Testbench Language Features

SYSTEMVERILOG FOR VERIFICATION
A Guide to Learning the Testbench Language Features

CHRIS SPEAR
Synopsys, Inc.

1 3

Chris Spear
Synopsys, Inc.
377 Simarano Drive
Marlboro, MA 01752

SystemVerilog for Verification:
A Guide to Learning the Testbench Language Features

Library of Congress Control Number: 2006926262

ISBN-10: 0-387-27036-1 e-ISBN-10: 0-387-27038-8
ISBN-13: 9780387270364 e-ISBN-13: 9780387270388

Printed on acid-free paper.

 2006 Springer Science+Business Media, LLC
All rights reserved. This work may not be translated or copied in whole or in part without
the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring
Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or
scholarly analysis. Use in connection with any form of information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks and similar terms,
even if they are not identified as such, is not to be taken as an expression of opinion as to
whether or not they are subject to proprietary rights.

Printed in the United States of America.

9 8 7 6 5 4 3 2 1

springer.com

This book is dedicated to my wonderful wife Laura,
whose patience during this project was invaluable,

and my children, Allie and Tyler, who kept me laughing.

Contents

List of Examples xi
List of Figures xxi
List of Tables xxiii
Foreword xxv
Preface xxvii
Acknowledgments xxxiii

1. VERIFICATION GUIDELINES 1
1.1 Introduction 1
1.2 The Verification Process 2
1.3 The Verification Plan 4
1.4 The Verification Methodology Manual 4
1.5 Basic Testbench Functionality 5
1.6 Directed Testing 5
1.7 Methodology Basics 7
1.8 Constrained-Random Stimulus 8
1.9 What Should You Randomize? 10
1.10 Functional Coverage 13
1.11 Testbench Components 15
1.12 Layered Testbench 16
1.13 Building a Layered Testbench 22
1.14 Simulation Environment Phases 23
1.15 Maximum Code Reuse 24
1.16 Testbench Performance 24
1.17 Conclusion 25

2. DATA TYPES 27
2.1 Introduction 27
2.2 Built-in Data Types 27

SystemVerilog for Verificationviii

2.3 Fixed-Size Arrays 29
2.4 Dynamic Arrays 34
2.5 Queues 36
2.6 Associative Arrays 37
2.7 Linked Lists 39
2.8 Array Methods 40
2.9 Choosing a Storage Type 42
2.10 Creating New Types with typedef 45
2.11 Creating User-Defined Structures 46
2.12 Enumerated Types 47
2.13 Constants 51
2.14 Strings 51
2.15 Expression Width 52
2.16 Net Types 53
2.17 Conclusion 53

3. PROCEDURAL STATEMENTS AND ROUTINES 55
3.1 Introduction 55
3.2 Procedural Statements 55
3.3 Tasks, Functions, and Void Functions 56
3.4 Task and Function Overview 57
3.5 Routine Arguments 57
3.6 Returning from a Routine 62
3.7 Local Data Storage 62
3.8 Time Values 64
3.9 Conclusion 65

4. BASIC OOP 67
4.1 Introduction 67
4.2 Think of Nouns, not Verbs 67
4.3 Your First Class 68
4.4 Where to Define a Class 69
4.5 OOP Terminology 69
4.6 Creating New Objects 70
4.7 Object Deallocation 74
4.8 Using Objects 76
4.9 Static Variables vs. Global Variables 76
4.10 Class Routines 78
4.11 Defining Routines Outside of the Class 79
4.12 Scoping Rules 81
4.13 Using One Class Inside Another 85
4.14 Understanding Dynamic Objects 87
4.15 Copying Objects 91
4.16 Public vs. Private 95

Contents ix

4.17 Straying Off Course 96
4.18 Building a Testbench 96
4.19 Conclusion 97

5. CONNECTING THE TESTBENCH AND DESIGN 99
5.1 Introduction 99
5.2 Separating the Testbench and Design 99
5.3 The Interface Construct 102
5.4 Stimulus Timing 108
5.5 Interface Driving and Sampling 114
5.6 Connecting It All Together 121
5.7 Top-Level Scope 121
5.8 Program – Module Interactions 123
5.9 SystemVerilog Assertions 124
5.10 The Four-Port ATM Router 126
5.11 Conclusion 134

6. RANDOMIZATION 135
6.1 Introduction 135
6.2 What to Randomize 136
6.3 Randomization in SystemVerilog 138
6.4 Constraint Details 141
6.5 Solution Probabilities 149
6.6 Controlling Multiple Constraint Blocks 154
6.7 Valid Constraints 154
6.8 In-line Constraints 155
6.9 The pre_randomize and post_randomize Functions 156
6.10 Constraints Tips and Techniques 158
6.11 Common Randomization Problems 164
6.12 Iterative and Array Constraints 165
6.13 Atomic Stimulus Generation vs. Scenario Generation 172
6.14 Random Control 175
6.15 Random Generators 177
6.16 Random Device Configuration 180
6.17 Conclusion 182

7. THREADS AND INTERPROCESS COMMUNICATION 183
7.1 Introduction 183
7.2 Working with Threads 184
7.3 Interprocess Communication 194
7.4 Events 195
7.5 Semaphores 199
7.6 Mailboxes 201
7.7 Building a Testbench with Threads and IPC 210

SystemVerilog for Verificationx

7.8 Conclusion 214

8. ADVANCED OOP AND GUIDELINES 215
8.1 Introduction 215
8.2 Introduction to Inheritance 216
8.3 Factory Patterns 221
8.4 Type Casting and Virtual Methods 225
8.5 Composition, Inheritance, and Alternatives 228
8.6 Copying an Object 233
8.7 Callbacks 236
8.8 Conclusion 240

9. FUNCTIONAL COVERAGE 241
9.1 Introduction 241
9.2 Coverage Types 243
9.3 Functional Coverage Strategies 246
9.4 Simple Functional Coverage Example 248
9.5 Anatomy of a Cover Group 251
9.6 Triggering a Cover Group 253
9.7 Data Sampling 256
9.8 Cross Coverage 265
9.9 Coverage Options 272
9.10 Parameterized Cover Groups 274
9.11 Analyzing Coverage Data 275
9.12 Measuring Coverage Statistics During Simulation 276
9.13 Conclusion 277

10. ADVANCED INTERFACES 279
10.1 Introduction 279
10.2 Virtual Interfaces with the ATM Router 279
10.3 Connecting to Multiple Design Configurations 284
10.4 Procedural Code in an Interface 290
10.5 Conclusion 294

References 295
Index 297

xi

List of Examples

Example 1-1 Driving the APB pins 17
Example 1-2 A task to drive the APB pins 18
Example 1-3 Low-level Verilog test 18
Example 1-4 Basic transactor code 22
Example 2-1 Using the logic type 28
Example 2-2 Signed data types 28
Example 2-3 Checking for four-state values 29
Example 2-4 Declaring fixed-size arrays 29
Example 2-5 Declaring and using multidimensional arrays 29
Example 2-6 Unpacked array declarations 30
Example 2-7 Initializing an array 30
Example 2-8 Using arrays with for and foreach loops 31
Example 2-9 Initialize and step through a multidimensional array 31
Example 2-10 Output from printing multidimensional array values 31
Example 2-11 Array copy and compare operations 32
Example 2-12 Using word and bit subscripts together 33
Example 2-13 Packed array declaration and usage 33
Example 2-14 Declaration for mixed packed/unpacked array 34
Example 2-15 Using dynamic arrays 35
Example 2-16 Using a dynamic array for an uncounted list 35
Example 2-17 Queue operations 36
Example 2-18 Declaring, initializing, and using associative arrays 38
Example 2-19 Using an associative array with a string index 39
Example 2-20 Creating the sum of an array 40
Example 2-21 Array locator methods: min, max, unique 41
Example 2-22 Array locator methods: find 41

SystemVerilog for Verificationxii

Example 2-23 Array locator methods 42
Example 2-24 User-defined type-macro in Verilog 45
Example 2-25 User-defined type in SystemVerilog 45
Example 2-26 Definition of uint 45
Example 2-27 Creating a single pixel type 46
Example 2-28 The pixel struct 46
Example 2-29 Using typedef to create a union 47
Example 2-30 Packed structure 47
Example 2-31 A simple enumerated type 48
Example 2-32 Enumerated types 48
Example 2-33 Specifying enumerated values 48
Example 2-34 Incorrectly specifying enumerated values 49
Example 2-35 Correctly specifying enumerated values 49
Example 2-36 Stepping through all enumerated members 50
Example 2-37 Assignments between integers and enumerated types 50
Example 2-38 Declaring a const variable 51
Example 2-39 String methods 52
Example 2-40 Expression width depends on context 53
Example 2-41 Disabling implicit nets with ‘default_nettype none 53
Example 3-1 New procedural statements and operators 55
Example 3-2 Using break and continue while reading a file 56
Example 3-3 Ignoring a function’s return value 56
Example 3-4 Void function for debug 57
Example 3-5 Simple task without begin...end 57
Example 3-6 Verilog-1995 routine arguments 58
Example 3-7 C-style routine arguments 58
Example 3-8 Verbose Verilog-style routine arguments 58
Example 3-9 Routine arguments with sticky types 58
Example 3-10 Passing arrays using ref and const 59
Example 3-11 Using ref across threads 60
Example 3-12 Function with default argument values 61
Example 3-13 Using default argument values 61
Example 3-14 Original task header 61
Example 3-15 Task header with additional array argument 61
Example 3-16 Task header with additional array argument 62
Example 3-17 Return in a task 62
Example 3-18 Return in a function 62
Example 3-19 Specifying automatic storage in program blocks 63
Example 3-20 Static initialization bug 64

xiii

Example 3-21 Static initialization fix: use automatic 64
Example 3-22 Time literals and $timeformat 65
Example 4-1 Simple BusTran class 69
Example 4-2 Declaring and using a handle 71
Example 4-3 Simple use-defined new function 72
Example 4-4 A new function with arguments 72
Example 4-5 Calling the right new function 73
Example 4-6 Allocating multiple objects 74
Example 4-7 Creating multiple objects 75
Example 4-8 Using variables and routines in an object 76
Example 4-9 Class with a static variable 77
Example 4-10 Initializing a static variable in a task 78
Example 4-11 Routines in the class 79
Example 4-12 Out-of-block routine declarations 80
Example 4-13 Out-of-body task missing class name 81
Example 4-14 Name scope 82
Example 4-15 Class uses wrong variable 83
Example 4-16 Using this to refer to class variable 83
Example 4-17 Bug using shared program variable 84
Example 4-18 Statistics class declaration 85
Example 4-19 Encapsulating the Statistics class 86
Example 4-20 Using a typedef class statement 87
Example 4-21 Passing objects 88
Example 4-22 Bad packet creator task, missing ref on handle 89
Example 4-23 Good packet creator task with ref on handle 89
Example 4-24 Bad generator creates only one object 90
Example 4-25 Good generator creates many objects 90
Example 4-26 Using an array of handles 91
Example 4-27 Copying a simple class with new 92
Example 4-28 Copying a complex class with new 92
Example 4-29 Simple class with copy function 93
Example 4-30 Using copy function 94
Example 4-31 Complex class with deep copy function 94
Example 4-32 Basic Transactor 97
Example 5-1 Arbiter model using ports 101
Example 5-2 Testbench using ports 101
Example 5-3 Top-level netlist without an interface 102
Example 5-4 Simple interface for arbiter 103
Example 5-5 Top module using a simple arbiter interface 103

SystemVerilog for Verificationxiv

Example 5-6 Testbench using a simple arbiter interface 104
Example 5-7 Arbiter using a simple interface 104
Example 5-8 Connecting an interface to a module that uses ports 105
Example 5-9 Interface with modports 105
Example 5-10 Arbiter model with interface using modports 106
Example 5-11 Testbench with interface using modports 106
Example 5-12 Arbiter model with interface using modports 107
Example 5-13 Interface with a clocking block 109
Example 5-14 Race condition between testbench and design 111
Example 5-15 Testbench using interface with clocking block 113
Example 5-16 Signal synchronization 115
Example 5-17 Synchronous interface sample and module drive 115
Example 5-18 Testbench using interface with clocking block 116
Example 5-19 Interface signal drive 117
Example 5-20 Driving a synchronous interface 117
Example 5-21 Interface signal drive 118
Example 5-22 Bidirectional signals in a program and interface 119
Example 5-23 Bad clock generator in program block 120
Example 5-24 Good clock generator in module 121
Example 5-25 Top module using a simple arbiter interface 121
Example 5-26 Top-level scope for arbiter design 122
Example 5-27 Cross-module references with $root 123
Example 5-28 Checking a signal with an if-statement 124
Example 5-29 Simple procedural assertion 124
Example 5-30 Error from failed procedural assertion 125
Example 5-31 Creating a custom error message in a procedural assertion 125
Example 5-32 Error from failed procedural assertion 125
Example 5-33 Creating a custom error message 126
Example 5-34 Concurrent assertion to check for X/Z 126
Example 5-35 ATM router model header without an interface 128
Example 5-36 Top-level netlist without an interface 129
Example 5-37 Testbench using ports 130
Example 5-38 Rx interface 132
Example 5-39 Tx interface 132
Example 5-40 ATM router model with interface using modports 133
Example 5-41 Top-level netlist with interface 133
Example 5-42 Testbench using interface with clocking block 134
Example 6-1 Simple random class 139
Example 6-2 Constraint without random variables 141

xv

Example 6-3 Constrained-random class 142
Example 6-4 Constrain variables to be in a fixed order 142
Example 6-5 Random sets of values 143
Example 6-6 Inverted random set constraint 143
Example 6-7 Inverted random set constraint 143
Example 6-8 Choosing from an array of possible values 144
Example 6-9 Using randc to chose array values in random order 145
Example 6-10 Weighted random distribution with dist 146
Example 6-11 Dynamically changing distribution weights 146
Example 6-12 Bidirectional constraint 147
Example 6-13 Constraint block with implication operator 148
Example 6-14 Constraint block with if-else operator 148
Example 6-15 Expensive constraint with mod and unsized variable 149
Example 6-16 Efficient constraint with bit extract 149
Example 6-17 Class Unconstrained 149
Example 6-18 Class with implication 150
Example 6-19 Class with implication and constraint 151
Example 6-20 Class with implication and solve...before 152
Example 6-21 Using constraint_mode 154
Example 6-22 Checking write length with a valid constraint 155
Example 6-23 The randomize() with statement 156
Example 6-24 Building a bathtub distribution 157
Example 6-25 Constraint with a variable bound 159
Example 6-26 dist constraint with variable weights 159
Example 6-27 rand_mode disables randomization of variables 160
Example 6-28 Using the implication constraint as a case statement 161
Example 6-29 Turning constraints on and off with constraint_mode 162
Example 6-30 Class with an external constraint 163
Example 6-31 Program defining external constraint 163
Example 6-32 Signed variables cause randomization problems 164
Example 6-33 Randomizing unsigned 32-bit variables 164
Example 6-34 Randomizing unsigned 8-bit variables 165
Example 6-35 Constraining dynamic array size 165
Example 6-36 Random strobe pattern class 166
Example 6-37 Using random strobe pattern class 167
Example 6-38 First attempt at sum constraint: bad_sum1 167
Example 6-39 Program to try constraint with array sum 168
Example 6-40 Output from bad_sum1 168
Example 6-41 Second attempt at sum constraint: bad_sum2 168

SystemVerilog for Verificationxvi

Example 6-42 Output from bad_sum2 168
Example 6-43 Third attempt at sum constraint: bad_sum3 169
Example 6-44 Output from bad_sum3 169
Example 6-45 Fourth attempt at sum_constraint: bad_sum4 169
Example 6-46 Output from bad_sum4 169
Example 6-47 Simple foreach constraint: good_sum5 170
Example 6-48 Output from good_sum5 170
Example 6-49 Creating ascending array values with foreach 170
Example 6-50 UniqueArray class 171
Example 6-51 Unique value generator 172
Example 6-52 Using the UniqueArray class 172
Example 6-53 Command generator using randsequence 173
Example 6-54 Random control with randcase and $urandom_range 175
Example 6-55 Equivalent constrained class 176
Example 6-56 Creating a decision tree with randcase 177
Example 6-57 Simple pseudorandom number generator 178
Example 6-58 Ethernet switch configuration class 180
Example 6-59 Building environment with random configuration 181
Example 6-60 Simple test using random configuration 182
Example 6-61 Simple test that overrides random configuration 182
Example 7-1 Interaction of begin...end and fork...join 185
Example 7-2 Output from begin...end and fork...join 185
Example 7-3 Fork...join_none code 186
Example 7-4 Fork...join_none output 186
Example 7-5 Fork...join_any code 187
Example 7-6 Output from fork...join_any 187
Example 7-7 Generator class with a run task 188
Example 7-8 Dynamic thread creation 189
Example 7-9 Bad fork...join_none inside a loop 190
Example 7-10 Execution of bad fork...join_none inside a loop 190
Example 7-11 Automatic variables in a fork...join_none 191
Example 7-12 Steps in executing automatic variable code 191
Example 7-13 Disabling a thread 192
Example 7-14 Limiting the scope of a disable fork 193
Example 7-15 Using disable label to stop threads 194
Example 7-16 Using wait fork to wait for child threads 194
Example 7-17 Blocking on an event in Verilog 195
Example 7-18 Output from blocking on an event 196
Example 7-19 Waiting for an event 196

xvii

Example 7-20 Output from waiting for an event 196
Example 7-21 Passing an event into a constructor 197
Example 7-22 Waiting for multiple threads with wait fork 198
Example 7-23 Waiting for multiple threads by counting triggers 198
Example 7-24 Waiting for multiple threads using a thread count 199
Example 7-25 Semaphores controlling access to hardware resource 200
Example 7-26 Exchanging objects using a mailbox: the Generator class 203
Example 7-27 Bounded mailbox 204
Example 7-28 Output from bounded mailbox 205
Example 7-29 Producer–consumer without synchronization, part 1 205
Example 7-30 Producer–consumer without synchronization, continued 206
Example 7-31 Producer–consumer without synchronization output 206
Example 7-32 Producer–consumer synchronized with an event 207
Example 7-33 Producer–consumer synchronized with an event, continued 208
Example 7-34 Output from producer–consumer with event 208
Example 7-35 Producer–consumer synchronized with a mailbox 209
Example 7-36 Output from producer–consumer with mailbox 210
Example 7-37 Basic Transactor 211
Example 7-38 Environment class 212
Example 7-39 Basic test program 213
Example 8-1 Base Transaction class 216
Example 8-2 Extended Transaction class 217
Example 8-3 Constructor with argument in an extended class 219
Example 8-4 Driver class 219
Example 8-5 Generator class 220
Example 8-6 Generator class using factory pattern 222
Example 8-7 Environment class 223
Example 8-8 Simple test program using environment defaults 224
Example 8-9 Injecting extended transaction from test 224
Example 8-10 Base and extended class 225
Example 8-11 Copying extended handle to base handle 226
Example 8-12 Copying a base handle to an extended handle 226
Example 8-13 Using $cast to copy handles 226
Example 8-14 Transaction and BadTr classes 227
Example 8-15 Calling class methods 227
Example 8-16 Building an Ethernet frame with composition 230
Example 8-17 Building an Ethernet frame with inheritance 231
Example 8-18 Building a flat Ethernet frame 232
Example 8-19 Base transaction class with a virtual copy function 233

SystemVerilog for Verificationxviii

Example 8-20 Extended transaction class with virtual copy method 234
Example 8-21 Base transaction class with copy_data function 234
Example 8-22 Extended transaction class with copy_data function 235
Example 8-23 Base transaction class with copy_data function 235
Example 8-24 Base callback class 237
Example 8-25 Driver class with callbacks 237
Example 8-26 Test using a callback for error injection 238
Example 8-27 Test using callback for scoreboard 239
Example 9-1 Incomplete D-flip flop model missing a path 244
Example 9-2 Functional coverage of a simple object 249
Example 9-3 Coverage report for a simple object 250
Example 9-4 Coverage report for a simple object, 100% coverage 251
Example 9-5 Functional coverage inside a class 253
Example 9-6 Test using functional coverage callback 254
Example 9-7 Callback for functional coverage 255
Example 9-8 Cover group with a trigger 255
Example 9-9 Module with SystemVerilog Assertion 255
Example 9-10 Triggering a cover group with an SVA 256
Example 9-11 Using auto_bin_max set to 2 257
Example 9-12 Report with auto_bin_max set to 2 258
Example 9-13 Using auto_bin_max for all cover points 258
Example 9-14 Using an expression in a cover point 259
Example 9-15 Defining bins for transaction length 259
Example 9-16 Coverage report for transaction length 260
Example 9-17 Specifying bin names 261
Example 9-18 Report showing bin names 261
Example 9-19 Conditional coverage — disable during reset 262
Example 9-20 Using stop and start functions 262
Example 9-21 Functional coverage for an enumerated type 262
Example 9-22 Report with auto_bin_max set to 2 263
Example 9-23 Specifying transitions for a cover point 263
Example 9-24 Wildcard bins for a cover point 264
Example 9-25 Cover point with ignore_bins 264
Example 9-26 Cover point with auto_bin_max and ignore_bins 264
Example 9-27 Cover point with illegal_bins 265
Example 9-28 Basic cross coverage 266
Example 9-29 Coverage summary report for basic cross coverage 267
Example 9-30 Specifying cross coverage bin names 268
Example 9-31 Cross coverage report with labeled bins 268

xix

Example 9-32 Excluding bins from cross coverage 269
Example 9-33 Specifying cross coverage weight 270
Example 9-34 Cross coverage with bin names 271
Example 9-35 Cross coverage with binsof 271
Example 9-36 Mimicking cross coverage with concatenation 272
Example 9-37 Specifying comments 272
Example 9-38 Specifying per-instance coverage 273
Example 9-39 Report all bins including empty ones 273
Example 9-40 Specifying the coverage goal 274
Example 9-41 Simple parameter 274
Example 9-42 Pass-by-reference 275
Example 9-43 Original class for transaction length 275
Example 9-44 solve...before constraint for transaction length 276
Example 10-1 Interface with clocking block 280
Example 10-2 Testbench using physical interfaces 281
Example 10-3 Testbench using virtual interfaces 282
Example 10-4 Testbench using virtual interfaces 283
Example 10-5 Interface for 8-bit counter 285
Example 10-6 Counter model using X_if interface 285
Example 10-7 Testbench using an array of virtual interfaces 286
Example 10-8 Counter testbench using virtual interfaces 287
Example 10-9 Driver class using virtual interfaces 288
Example 10-10Testbench using a typedef for virtual interfaces 289
Example 10-11Driver using a typedef for virtual interfaces 289
Example 10-12Testbench using an array of virtual interfaces 290
Example 10-13Testbench passing virtual interfaces with a port 290
Example 10-14Interface with tasks for parallel protocol 292
Example 10-15Interface with tasks for serial protocol 293

List of Figures

Figure 1-1 Directed test progress 6
Figure 1-2 Directed test coverage 6
Figure 1-3 Constrained-random test progress 8
Figure 1-4 Constrained-random test coverage 9
Figure 1-5 Coverage convergence 9
Figure 1-6 Test progress with and without feedback 14
Figure 1-7 The testbench — design environment 15
Figure 1-8 Testbench components 16
Figure 1-9 Signal and command layers 19
Figure 1-10 Testbench with functional layer 19
Figure 1-11 Testbench with scenario layer 20
Figure 1-12 Full testbench with all layers 21
Figure 1-13 Connections for the driver 22
Figure 2-1 Unpacked array storage 30
Figure 2-2 Packed array layout 33
Figure 2-3 Packed arrays 34
Figure 2-4 Associative array 37
Figure 4-1 Handles and objects 74
Figure 4-2 Static variables in a class 77
Figure 4-3 Contained objects 85
Figure 4-4 Handles and objects across routines 88
Figure 4-5 Objects and handles before copy with new 93
Figure 4-6 Objects and handles after copy with new 93
Figure 4-7 Objects and handles after deep copy 95
Figure 4-8 Layered testbench 96
Figure 5-1 The testbench – design environment 99

SystemVerilog for Verificationxxii

Figure 5-2 Testbench – Arbiter without interfaces 100
Figure 5-3 An interface straddles two modules 103
Figure 5-4 Main regions inside a SystemVerilog time step 112
Figure 5-5 A clocking block synchronizes the DUT and testbench 114
Figure 5-6 Sampling a synchronous interface 116
Figure 5-7 Driving a synchronous interface 118
Figure 5-8 Testbench – ATM router diagram without interfaces 127
Figure 5-9 Testbench - router diagram with interfaces 131
Figure 6-1 Building a bathtub distribution 157
Figure 6-2 Random strobe waveforms 166
Figure 6-3 Sharing a single random generator 178
Figure 6-4 First generator uses additional values 179
Figure 6-5 Separate random generators per object 179
Figure 7-1 Testbench environment blocks 183
Figure 7-2 Fork...join blocks 184
Figure 7-3 Fork...join block 185
Figure 7-4 Fork...join block diagram 193
Figure 7-5 A mailbox connecting two transactors 202
Figure 8-1 Simplified layered testbench 216
Figure 8-2 Base Transaction class diagram 217
Figure 8-3 Extended Transaction class diagram 218
Figure 8-4 Factory pattern generator 221
Figure 8-5 Factory generator with new pattern 222
Figure 8-6 Simplified extended transaction 225
Figure 8-7 Multiple inheritance problem 232
Figure 8-8 Callback flow 236
Figure 9-1 Coverage convergence 241
Figure 9-2 Coverage flow 242
Figure 9-3 Bug rate during a project 245
Figure 9-4 Coverage comparison 248
Figure 9-5 Uneven probability for transaction length 276
Figure 9-6 Even probability for transaction length with solve...before 276

List of Tables

Table 1. Book icons xxxi
Table 5-1. Primary SystemVerilog scheduling regions 112
Table 6-1. Solutions for bidirectional constraints 147
Table 6-2. Solutions for Unconstrained class 150
Table 6-3. Solutions for Imp1 class 151
Table 6-4. Solutions for Imp2 class 152
Table 6-5. Solutions for solve x before y constraint 153
Table 6-6. Solutions for solve y before x constraint 153
Table 8-1. Comparing inheritance to composition 229

Foreword

When Verilog was first developed in the mid-1980s the mainstream level
of design abstraction was on the move from the widely popular switch and
gate levels up to the synthesizable RTL. By the late 1980s, RTL synthesis and
simulation had revolutionized the front-end of the EDA industry.

The 1990s saw a tremendous expansion in the verification problem space
and a corresponding growth of EDA tools to fill that space. The dominant lan-
guages that grew in this space were proprietary and specific to verification
such as OpenVera and e, although some of the more advanced users did make
the freely available C++ language their solution. Judging which of these lan-
guages was the best is very difficult, but one thing was clear, not only they
were disjointed from Verilog but verification engineers were expected to
learn multiple complex languages. Although some users of Verilog were
using the language for writing testbenches (sometimes going across the PLI
into the C language) it should be no surprise to anybody if I say that using
Verilog for testbenches ran out of steam even before the 1990s started. Unfor-
tunately, during the 1990s, Verilog stagnated as a language in its struggle to
become an industry standard, and so made the problem worse.

Towards the end of the 1990s, a startup company called Co-Design broke
through this stagnation and started the process of designing and implementing
the language we now know as the SystemVerilog industry standard. The
vision of SystemVerilog was to first expand on the abstract capabilities of
synthesizable code, and then to significantly add all the features known to be
necessary for verification, while keeping the new standard a strict superset of
the previous Verilog standards. The benefits of having a single language and a
single coherent run-time environment cannot be expressed enough. For
instance, the user benefits greatly from ease of use, and the vendor can take

SystemVerilog for Verificationxxvi

many significant new opportunities to achieve much higher levels of simula-
tion performance.

There is no doubt that the powerful enhancements put into SystemVerilog
have also made the overall language quite complex. If you have a working
knowledge of Verilog, and are overwhelmed by the complex verification con-
structs now in SystemVerilog and the books that teach you the advanced
lessons, this is the book for you. The author has spent a large amount of time
making language mistakes that you need not repeat. Through the process of
correcting his mistakes with his vast verification experience, the author has
compiled over three hundred examples showing you the correct ways of cod-
ing and solving problems, so that you can learn by example and be led gently
into the productive world of SystemVerilog.

PHIL MOORBY
New England, 2006

Preface

What is this book about?

This book is the first one you should read to learn the SystemVerilog veri-
fication language constructs. It describes how the language works and
includes many examples on how to build a basic coverage-driven, con-
strained-random layered testbench using Object Oriented Programming
(OOP). The book has many guidelines on building testbenches, which help
show why you want to use classes, randomization, and functional coverage.
Once you have learned the language, pick up some of the methodology books
listed in the References section for more information on building a testbench.

Who should read this book?

If you create testbenches, you need this book. If you have only written
tests using Verilog or VHDL and want to learn SystemVerilog, this book
shows you how to move up to the new language features. Vera and Specman
users can learn how one language can be used for both design and verifica-
tion. You may have tried to read the SystemVerilog Language Reference
Manual (LRM) but found it loaded with syntax but no guidelines on which
construct to choose.

I wrote this book because, like many of my customers, I spent much of my
career using procedural languages such as C and Verilog to write tests, and
had to relearn everything when OOP verification languages came along. I
made all the typical mistakes, and wrote this book so you won’t have to repeat
them.

Before reading this book, you should be comfortable with Verilog-1995.
Knowledge of Verilog-2001, SystemVerilog design constructs, or System-
Verilog Assertions is not required.

SystemVerilog for Verificationxxviii

Why was SystemVerilog created?

In the late 1990s, the Verilog Hardware Description Language (HDL)
became the most widely used language for describing hardware for simulation
and synthesis. However, the first two versions standardized by the IEEE
(1364-1995 and 1364-2001) had only simple constructs for creating tests. As
design sizes outgrew the verification capabilities of the language, commercial
Hardware Verification Languages (HVL) such as OpenVera and e were cre-
ated. Companies that did not want to pay for these tools instead spent
hundreds of man-years creating their own custom tools.

This productivity crisis (along with a similar one on the design side) led to
the creation of Accellera, a consortium of EDA companies and users who
wanted to create the next generation of Verilog. The donation of the Open-
Vera language formed the basis for the HVL features of SystemVerilog.
Accellera’s goal was met in November 2005 with the adoption of the IEEE
standard P1800-2005 for SystemVerilog, IEEE (2005).

Importance of a unified language

Verification is generally viewed as a fundamentally different activity from
design. This split has led to the development of narrowly focused language for
verification and to the bifurcation of engineers into two largely independent
disciplines. This specialization has created substantial bottlenecks in terms of
communication between the two groups. SystemVerilog addresses this issue
with its capabilities for both camps. Neither team has to give up any capabili-
ties it needs to be successful, but the unification of both syntax and semantics
of design and verification tools improves communication. For example, while
a design engineer may not be able to write an object-oriented testbench envi-
ronment, it is fairly straightforward to read such a test and understand what is
happening, enabling both the design and verification engineers to work
together to identify and fix problems. Likewise, a designer understands the
inner workings of his or her block, and is the best person to write assertions
about it, but a verification engineer may have a broader view needed to create
assertions between blocks.

Another advantage of including the design, testbench, and assertion con-
structs in a single language is that the testbench has easy access to all parts of
the environment without requiring specialized APIs. The value of an HVL is
its ability to create high-level, flexible tests, not its loop constructs or declara-
tion style. SystemVerilog is based on the Verilog constructs that engineers
have used for decades.

xxix

Importance of methodology

There is a difference between learning the syntax of a language and learn-
ing how to use a tool. This book focuses on techniques for verification using
constrained-random tests that use functional coverage to measure progress
and direct the verification. As the chapters unfold, language and methodology
features are shown side by side. For more on methodology, see Bergeron et al.
(2006).

The most valuable benefit of SystemVerilog is that it allows the user to
construct reliable, repeatable verification environments, in a consistent syn-
tax, that can be used across multiple projects.

Comparing SystemVerilog and SystemC for high-level design

Now that SystemVerilog incorporates Object Oriented Programming,
dynamic threads, and interprocess communication, it can be used for system
design. When talking about the applications for SystemVerilog, the IEEE
standard mentions architectural modeling before design, assertions, and test.
SystemC can also be used for architectural modeling. There are several major
differences between SystemC and SystemVerilog:

SystemVerilog provides one modeling language. You do not have to
learn C++ and the Standard Template Library to create your models
SystemVerilog simplifies top-down design. You can create your sys-
tem models in SystemVerilog and then refine each block to the next
lower level. The original system-level models can be reused as refer-
ence models.
Software developers want a free or low-cost hardware simulator that
is fast. You can create high-performance transaction-level models in
both SystemC and SystemVerilog. SystemVerilog simulators require
a license that a software developer may not want to pay for. SystemC
can be free, but only if all your models are available in SystemC.

Overview of the book

The SystemVerilog language includes features for design, verification,
assertions, and more. This book focuses on the constructs used to verify a
design. There are many ways to solve a problem using SystemVerilog. This
book explains the trade-offs between alternative solutions.

Chapter 1, Verification Guidelines, presents verification techniques to
serve as a foundation for learning and using the SystemVerilog language.

SystemVerilog for Verificationxxx

These guidelines emphasize coverage-driven random testing in a layered test-
bench environment.

Chapter 2, Data Types, covers the new SystemVerilog data types such as
arrays, structures, enumerated types, and packed variables.

Chapter 3, Procedural Statements and Routines, shows the new proce-
dural statements and improvements for tasks and functions.

Chapter 4, Basic OOP, is an introduction to Object Oriented Program-
ming, explaining how to build classes, construct objects, and use handles.

Chapter 5, Connecting the Testbench and Design, shows the new Sys-
temVerilog verification constructs, such as program blocks, interfaces, and
clocking blocks, and how they are used to build your testbench and connect it
to the design under test.

Chapter 6, Randomization, shows you how to use SystemVerilog’s con-
strained-random stimulus generation, including many techniques and
examples.

Chapter 7, Threads and Interprocess Communication, shows how to
create multiple threads in your testbench, use interprocess communication to
exchange data between these threads and synchronize them.

Chapter 8, Advanced OOP and Guidelines, shows how to build a layered
testbench with OOP’s inheritance so that the components can be shared by all
tests.

Chapter 9, Functional Coverage, explains the different types of coverage
and how you can use functional coverage to measure your progress as you fol-
low a verification plan.

Chapter 10, Advanced Interfaces, shows how to use virtual interfaces to
simplify your testbench code, connect to multiple design configurations, and
create interfaces with procedural code so your testbench and design can work
at a higher level of abstraction.

xxxi

Icons used in this book

Final comments

If you would like more information on SystemVerilog and Verification,
you can find many resources at

http://chris.spear.net/systemverilog

This site has the source code for the examples in this book. All of the
examples have been verified with Synopsys’ Chronologic VCS 2005.06 and
2006.06. The SystemVerilog Language Reference Manual covers hundreds of
new features. I have concentrated on constructs useful for verification and
implemented in VCS. It is better to have verified examples than to show all
language features and thus risk having incorrect code. Speaking of mistakes,
if you think you have found a mistake, please check my web site for the Errata
page. If you are the first to find any mistake in a chapter, I will send you a free
book.

CHRIS SPEAR
Synopsys, Inc.

Table 1. Book icons

Shows verification methodol-
ogy to guide your usage of
SystemVerilog testbench fea-
tures

Shows common coding mis-
takes

Acknowledgments

Few books are the creation of a single person. I want to thank all the peo-
ple who spent countless hours helping me learn SystemVerilog and reviewing
the book that you now hold in your hand. I especially would like to thank all
the people at Synopsys for their help, including all my patient managers.

Janick Bergeron provided inspiration, innumerable verification tech-
niques, and top-quality reviews. Without his guidance, this book would not
exist. But the mistakes are all mine!

Alex Potapov and the VCS R&D team always showed patience with my
questions and provided valuable insight on SystemVerilog features.

Mike Barnaby, Bob Beckwith, Quinn Canfield, James Chang, Cliff
Cummings, Al Czamara, John Girard, Alex Lorgus, Mike Mintz, Brad
Pierce, Arturo Salz, and Kripa Sundar reviewed some very rough drafts
and inspired many improvements.

Hans van der Schoot gave me the confidence to write that one last chap-
ter on functional coverage, and the detailed feedback to make it useful.
Benjamin Chin, Paul Graykowski, David Lee, and Chris Thompson origi-
nated many of the ideas that evolved into the functional coverage chapter.

Dan McGinley and Sam Starfas patiently helped lift me from the depths
of Word up to the heights of FrameMaker.

Ann K. Farmer — Arrigato gozaimasu! You brought sense to my
scribblings.

Will Sherwood inspired me to become a verification engineer, and taught
me new ways to break things.

SystemVerilog for Verificationxxxiv

United Airlines always had a quiet place to work and plenty of snacks.
“Chicken or pasta?”

Lastly, a big thanks to Jay Mcinerney for his brash pronoun usage.

All trademarks and copyrights are the property of their respective owners.

Chapter 1

Verification Guidelines

“Some believed we lacked the programming language to describe your perfect world...”
(The Matrix, 1999)

1.1 Introduction

Imagine that you are given the job of building a house for someone. Where
should you begin? Do you start by choosing doors and windows, picking out
paint and carpet colors, or selecting bathroom fixtures? Of course not! First
you must consider how the owners will use the space, and their budget, so you
can decide what type of house to build. Questions you should consider are; do
they enjoy cooking and want a high-end kitchen, or will they prefer watching
movies in the home theater room and eating takeout pizza? Do they want a
home office or extra bedrooms? Or does their budget limit them to a basic
house?

Before you start to learn details of the SystemVerilog language, you need
to understand how you plan to verify your particular design and how this
influences the testbench structure. Just as all houses have kitchens, bedrooms,
and bathrooms, all testbenches share some common structure of stimulus gen-
eration and response checking. This chapter introduces a set of guidelines and
coding styles for designing and constructing a testbench that meets your par-
ticular needs. These techniques use some of the same concepts as shown in
the Verification Methodology Manual for SystemVerilog (VMM), Bergeron et
al. (2006), but without the base classes.

The most important principle you can learn as a verification engineer is:
“Bugs are good.” Don’t shy away from finding the next bug, do not hesitate to
ring a bell each time you uncover one, and furthermore, always keep track of
each bug found. The entire project team assumes there are bugs in the design,
so each bug found before tape-out is one fewer that ends up in the customer’s
hands. You need to be as devious as possible, twisting and torturing the
design to extract all possible bugs now, while they are still easy to fix. Don’t
let the designers steal all the glory — without your craft and cunning, the
design might never work!

This book assumes you already know the Verilog language and want to
learn the SystemVerilog Hardware Verification Language (HVL). Some of

SystemVerilog for Verification2

the typical features of an HVL that distinguish it from a Hardware Description
Language such as Verilog or VHDL are

Constrained-random stimulus generation
Functional coverage
Higher-level structures, especially Object Oriented Programming
Multi-threading and interprocess communication
Support for HDL types such as Verilog’s 4-state values
Tight integration with event-simulator for control of the design

There are many other useful features, but these allow you to create test-
benches at a higher level of abstraction than you are able to achieve with an
HDL or a programming language such as C.

1.2 The Verification Process

What is the goal of verification? If you answered, “Finding bugs,” you are
only partly correct. The goal of hardware design is to create a device that per-
forms a particular task, such as a DVD player, network router, or radar signal
processor, based on a design specification. Your purpose as a verification
engineer is to make sure the device can accomplish that task successfully —
that is, the design is an accurate representation of the specification. Bugs are
what you get when there is a discrepancy. The behavior of the device when
used outside of its original purpose is not your responsibility although you
want to know where those boundaries lie.

The process of verification parallels the design creation process. A
designer reads the hardware specification for a block, interprets the human
language description, and creates the corresponding logic in a machine-read-
able form, usually RTL code. To do this, he or she needs to understand the
input format, the transformation function, and the format of the output. There
is always ambiguity in this interpretation, perhaps because of ambiguities in
the original document, missing details, or conflicting descriptions. As a verifi-
cation engineer, you must also read the hardware specification, create the
verification plan, and then follow it to build tests showing the RTL code cor-
rectly implements the features.

By having more than one person perform the same interpretation, you
have added redundancy to the design process. As the verification engineer,
your job is to read the same hardware specifications and make an independent
assessment of what they mean. Your tests then exercise the RTL to show that
it matches your interpretation.

Chapter 1: Verification Guidelines 3

What types of bugs are lurking in the design? The easiest ones to detect
are at the block level, in modules created by a single person. Did the ALU
correctly add two numbers? Did every bus transaction successfully complete?
Did all the packets make it through a portion of a network switch? It is almost
trivial to write directed tests to find these bugs as they are contained entirely
within one block of the design.

After the block level, the next place to look for discrepancies is at bound-
aries between blocks. Interesting problems arise when two or more designers
read the same description yet have different interpretations. For a given proto-
col, what signals change and when? The first designer builds a bus driver with
one view of the specification, while a second builds a receiver with a slightly
different view. Your job is to find the disputed areas of logic and maybe even
help reconcile these two different views.

To simulate a single design block, you need to create tests that generate
stimuli from all the surrounding blocks — a difficult chore. The benefit is that
these low-level simulations run very fast. However, you may find bugs in
both the design and testbench as the latter will have a great deal of code to
provide stimuli from the missing blocks. As you start to integrate design
blocks, they can stimulate each other, reducing your workload. These multiple
block simulations may uncover more bugs, but they also run slower.

At the highest level of the DUT, the entire system is tested, but the simula-
tion performance is greatly reduced. Your tests should strive to have all
blocks performing interesting activities concurrently. All I/O ports are active,
processors are crunching data, and caches are being refilled. With all this
action, data alignment and timing bugs are sure to occur.

At this level you are able to run sophisticated tests that have the DUT exe-
cuting multiple operations concurrently so that as many blocks as possible are
active. What happens if an MP3 player is playing music and the user tries to
download new music from the host computer? Then, during the download, the
user presses several of the buttons on the player? You know that when the real
device is being used, someone is going to do all this, so why not try it out
before it is built? This testing makes the difference between a product that is
seen as easy to use and one that locks up over and over.

Once you have verified that the DUT performs its designated functions
correctly, you need to see how it operates when there are errors. Can the
design handle a partial transaction, or one with corrupted data or control
fields? Just trying to enumerate all the possible problems is difficult, not to
mention how the design should recover from them. Error injection and han-
dling can be the most challenging part of verification.

As the design abstraction gets higher, so does the verification challenge.
You can show that individual cells flow through the blocks of an ATM router

SystemVerilog for Verification4

correctly, but what if there are streams of different priority? Which cell should
be chosen next is not always obvious at the highest level. You may have to
analyze the statistics from thousands of cells to see if the aggregate behavior
is correct.

One last point: you can never prove there are no bugs left, so you need to
constantly come up with new verification tactics.

1.3 The Verification Plan

The verification plan is closely tied to the hardware specification and con-
tains a description of what features need to be exercised and the techniques to
be used. These steps may include directed or random testing, assertions, HW/
SW co-verification, emulation, formal proofs, and use of verification IP. For a
more complete discussion on verification see Bergeron (2006).

1.4 The Verification Methodology Manual

This book in your hands draws heavily upon the VMM that has its roots in
a methodology developed by Janick Bergeron and others at Qualis Design.
They started with industry standard practices and refined them based on expe-
rience on many projects. VMM’s techniques were originally developed for
use with the OpenVera language and were extended in 2005 for SystemVer-
ilog. VMM and its predecessor, the Reference Verification Methodology for
Vera, have been used successfully to verify a wide range of hardware designs,
from networking devices to processors. This book uses many of the same
concepts.

So why doesn’t this book teach you VMM? Like any advanced tool,
VMM was designed for use by an expert user, and excels on difficult prob-
lems. Are you in charge of verifying a 10 million gate design with many
communication protocols, complex error handling, and a library of IP? VMM
is the right tool for the job. But if you are working on smaller modules, with a
single protocol, you may not need such a robust methodology. Just remember
that your block is part of a larger system; VMM is still useful to promote
reuse. The cost of verification goes beyond your immediate project.

If you are new to verification, have little experience with Object Oriented
Programming, or are unfamiliar with constrained-random tests, the techniques
in this book might be the right path to choose. Once you are familiar with
them, you will find the VMM to be an easy step up.

The biggest thing missing from this book, when compared with the VMM,
is the set of base classes for data, environment, and utilities for managing log

Chapter 1: Verification Guidelines 5

files and interprocess communication. These are all very useful, but are out-
side the scope of a book on the SystemVerilog language.

1.5 Basic Testbench Functionality

The purpose of a testbench is to determine the correctness of the design
under test (DUT). This is accomplished by the following steps.

Generate stimulus
Apply stimulus to the DUT
Capture the response
Check for correctness
Measure progress against the overall verification goals

Some steps are accomplished automatically by the testbench, while others
are manually determined by you. The methodology you choose determines
how the above steps are carried out.

1.6 Directed Testing

Traditionally, when faced with the task of verifying the correctness of a
design, you may have used directed tests. Using this approach, you look at the
hardware specification and write a verification plan with a list of tests, each of
which concentrated on a set of related features. Armed with this plan, you
write stimulus vectors that exercise these features in the DUT. You then simu-
late the DUT with these vectors and manually review the resulting log files
and waveforms to make sure the design does what you expect. Once the test
works correctly, you check off the test in the verification plan and move to the
next.

This incremental approach makes steady progress, always popular with
managers who want to see a project making headway. It also produces almost
immediate results, since little infrastructure is needed when you are guiding
the creation of every stimulus vector. Given enough time and staffing,
directed testing is sufficient to verify many designs.

Figure 1-1 shows how directed tests incrementally cover the features in the
verification plan. Each test is targeted at a very specific set of design ele-
ments. Given enough time, you can write all the tests need for 100% coverage
of the entire verification plan.

SystemVerilog for Verification6

Figure 1-1 Directed test progress

What if you do not have the necessary time or resources to carry out the
directed testing approach? As you can see, while you may always be making
forward progress, the slope remains the same. When the design complexity
doubles, it takes twice as long to complete or requires twice as many people.
Neither of these situations is desirable. You need a methodology that finds
bugs faster in order to reach the goal of 100% coverage.

Figure 1-2 Directed test coverage

Figure 1-2 shows the total design space and the features that get covered
by directed testcases. In this space are many features, some of which have
bugs. You need to write tests that cover all the features and find the bugs.

Time

C
ov

er
ag

e

100%

Time

C
ov

er
ag

e

100%

Test

Feature

BugTest

Feature

Bug

Chapter 1: Verification Guidelines 7

1.7 Methodology Basics

This book uses the following principles.

Constrained-random stimulus
Functional coverage
Layered testbench using transactors
Common testbench for all tests
Test-specific code kept separate from testbench

All these principles are related. Random stimulus is crucial for exercising
complex designs. A directed test finds the bugs you expect to be in the design,
while a random test can find bugs you never anticipated. When using random
stimulus, you need functional coverage to measure verification progress. Fur-
thermore, once you start using automatically generated stimulus, you need an
automated way to predict the results, generally a scoreboard or reference
model. Building the testbench infrastructure, including self-prediction, takes a
significant amount of work. A layered testbench helps you control the com-
plexity by breaking the problem into manageable pieces. Transactors provide
a useful pattern for building these pieces. With appropriate planning, you can
build a testbench infrastructure that can be shared by all tests and does not
have to be continually modified. You just need to leave “hooks” where the
tests can perform certain actions such as shaping the stimulus and injecting
disturbances. Conversely, code specific to a single test must be kept separate
from the testbench so it does not complicate the infrastructure.

Building this style of testbench takes longer than a traditional directed test-
bench, especially the self-checking portions, causing a delay before the first
test can be run. This gap can cause a manager to panic, so make this effort part
of your schedule. In Figure 1-3, you can see the initial delay before the first
random test runs.

SystemVerilog for Verification8

Figure 1-3 Constrained-random test progress

While this up-front work may seem daunting, the payback is high. Every
test you create shares this common testbench, as opposed to directed tests
where each is written from scratch. Each random test contains a few dozen
lines of code to constrain the stimulus in a certain direction and cause any
desired exceptions, such as creating a protocol violation. The result is that
your single constrained-random testbench is now finding bugs faster than the
many directed ones.

As the rate of discovery begins to drop off, you can create new random
constraints to explore new areas. The last few bugs may only be found with
directed tests, but the vast majority of bugs will be found with random tests.

1.8 Constrained-Random Stimulus

While you want the simulator to generate the stimulus, you don’t want
totally random values. You use the SystemVerilog language to describe the
format of the stimulus (“address is 32-bits, opcode is X, Y, or Z, length < 32
bytes”), and the simulator picks values that meet the constraints. Constraining
the random values to become relevant stimuli is covered in Chapter 6. These
values are sent into the design, and also into a high-level model that predicts
what the result should be. The design’s actual output is compared with the
predicted output.

Figure 1-4 shows the coverage for constrained-random tests over the total
design space. First, notice that a random test often covers a wider space than a
directed one. This extra coverage may overlap other tests, or may explore new
areas that you did not anticipate. If these new areas find a bug, you are in
luck! If the new area is not legal, you need to write more constraints to keep
away. Lastly, you may still have to write a few directed tests to find cases not
covered by any other constrained-random tests.

Time

C
ov

er
ag

e

100%

Random
Test

Directed
Test

Time

C
ov

er
ag

e

100%

Random
Test

Directed
Test

Chapter 1: Verification Guidelines 9

Figure 1-4 Constrained-random test coverage

Figure 1-5 shows the paths to achieve complete coverage. Start at the
upper left with basic constrained-random tests. Run them with many different
seeds. When you look at the functional coverage reports, find the holes, where
there are gaps. Now you make minimal code changes, perhaps with new con-
straints, or injecting errors or delays into the DUT. Spend most of your time in
this outer loop, only writing directed tests for the few features that are very
unlikely to be reached by random tests.

Figure 1-5 Coverage convergence

New area ?

Test
overlap

??Directed
testcase

New area ?

Test
overlap

??Directed
testcase

Constrained
random tests

Functional
Coverage

Many runs,
different seeds

Many runs,
different seeds

Identify
holes

Identify
holes

Add
constraints

Add
constraints

Minimal code
modifications

Directed
testcase

Constrained
random tests

Functional
Coverage

Many runs,
different seeds

Many runs,
different seeds

Identify
holes

Identify
holes

Add
constraints

Add
constraints

Minimal code
modifications

Directed
testcase

SystemVerilog for Verification10

1.9 What Should You Randomize?

When you think of randomizing the stimulus to a design, the first thing
that you might think of is the data fields. This stimulus is the easiest to create
– just call $random. The problem is that this gives a very low payback in
terms of bugs found. The primary types of bugs found with random data are
data path errors, perhaps with bit-level mistakes. You need to find bugs in the
control logic.

You need to think broadly about all design input, such as the following.

Device configuration
Environment configuration
Input data
Protocol exceptions
Delays
Errors and violations

These are discussed in the following sections.

1.9.1 Device and environment configuration

What is the most common reason why bugs are missed during testing of
the RTL design? Not enough different configurations are tried. Most tests just
use the design as it comes out of reset, or apply a fixed set of initialization
vectors to put it into a known state. This is like testing a PC’s operating sys-
tem right after it has been installed, without any applications installed. Of
course the performance is fine, and there aren’t any crashes.

In a real world environment, the DUT’s configuration becomes more ran-
dom the longer it is in use. For example, I helped a company verify a time-
division multiplexor switch that had 2000 input channels and 12 output chan-
nels. The verification engineer said, “These channels could be mapped to
various configurations on the other side. Each input could be used as a single
channel, or further divided into multiple channels. The tricky part is that
although a few standard ways of breaking it down are used most of the time,
any combination of breakdowns is legal, leaving a huge set of possible cus-
tomer configurations.”

To test this device, the engineer had to write several dozen lines of
directed testbench code to configure each channel. As a result, she was never
able to try configurations with more than a handful of channels. Together, we
wrote a testbench that randomized the parameters for a single channel, and

Chapter 1: Verification Guidelines 11

then put this in a loop to configure all the switch’s channels. Now she had
confidence that her tests would uncover configuration-related bugs that would
have been missed before.

In the real world, your device operates in an environment containing other
components. When you are verifying the DUT, it is connected to a testbench
that mimics this environment. You should randomize the entire environment
configuration, including the length of the simulation, number of devices, and
how they are configured. Of course you need to create constraints to make
sure the configuration is legal.

In another Synopsys customer example, a company was creating an I/O
switch chip that connected multiple PCI buses to an internal memory bus. At
the start of simulation they randomly chose the number of PCI buses (1–4),
the number of devices on each bus (1–8) and the parameters for each device
(master or slave, CSR addresses, etc.). They kept track of the tested combina-
tions using functional coverage so that they could be sure that they had
covered almost every possible one.

Other environment parameters include test length, error injection rates,
delay modes, etc. See Bergeron (2006) for more examples.

1.9.2 Input data

When you read about random stimulus, you probably thought of taking a
transaction such as a bus write or ATM cell and filling the data fields with
random values. Actually this approach is fairly straightforward as long as you
carefully prepare your transaction classes as shown in Chapters 4 and 8. You
need to anticipate any layered protocols and error injection, plus scoreboard-
ing and functional coverage.

1.9.3 Protocol exceptions, errors, and violations

There are few things more frustrating than when a device such as a PC or
cell phone locks up. Many times, the only cure is to shut it down and restart.
Chances are that deep inside the product there is a piece of logic that experi-
enced some sort of error condition and could not recover, and thus stopped the
device from working correctly.

How can you prevent this from happening to the hardware you are build-
ing? If something can go wrong in the real hardware, you should try to
simulate it. Look at all the errors that can occur. What happens if a bus trans-
action does not complete? If an invalid operation is encountered? Does the
design specification state that two signals are mutually exclusive? Drive them
both and make sure the device continues to operate.

SystemVerilog for Verification12

Just as you are trying to provoke the hardware with ill-formed commands,
you should also try to catch these occurrences. For example, recall those
mutually exclusive signals. You should add checker code to look for these
violations. Your code should at least print a warning message when this
occurs, and preferably generate an error and wind down the test. It is frustrat-
ing to spend hours tracking back through code trying to find the root of a
malfunction, especially when you could have caught it close to the source
with a simple assertion. See Vijayaraghavan (2005) for more guidelines on
writing assertions in your testbench and design code. Just make sure that you
can disable the code that stops simulation on error so that you can easily test
error handling.

1.9.4 Delays and synchronization

How fast should your testbench send in stimulus? Always use constrained-
random delays to help catch protocol bugs. A test that uses the shortest delays
runs the fastest, but it won’t create all possible stimulus. You can create a test-
bench that talks to another block at the fastest rate, but subtle bugs are often
revealed when intermittent delays are introduced.

A block may function correctly for all possible permutations of stimulus
from a single interface, but subtle errors may occur when data is flowing into
multiple inputs. Try to coordinate the various drivers so they can communi-
cate at different relative timing. What if the inputs arrive at the fastest possible
rate, but the output is being throttled back to a slower rate? What if stimulus
arrives at multiple inputs concurrently? What if it is staggered with different
delays? Use functional coverage as discussed in Chapter 9 to measure what
combinations have been randomly generated.

1.9.5 Parallel random testing

How should you run the tests? A directed test has a testbench that pro-
duces a unique set of stimulus and response vectors. To change the stimulus,
you need to change the test. A random test consists of the testbench code plus
a random seed. If you run the same test 50 times, each with a unique seed, you
will get 50 different sets of stimuli. Running with multiple seeds broadens the
coverage of your test and leverages your work.

You need to choose a unique seed for each simulation. Some people use
the time of day, but that can still cause duplicates. What if you are using a
batch queuing system across a CPU farm and tell it to start 10 jobs at mid-
night? Multiple jobs could start at the same time but on different computers,
and will thus get the same random seed, and run the same stimulus. You

Chapter 1: Verification Guidelines 13

should blend in the processor name to the seed. If your CPU farm includes
multiprocessor machines, you could have two jobs start running at midnight
with the same seed, so you should also throw in the process ID. Now all jobs
get unique seeds.

You need to plan how to organize your files to handle multiple
simulations. Each job creates a set of output files such as log
files and functional coverage data. You can run each job in a
different directory, or you can try to give a unique name to each
file.

1.10 Functional Coverage

The previous sections have shown how to create stimuli that can randomly
walk through the entire space of possible inputs. With this approach, your
testbench visits some areas often, but takes too long to reach all possible
states. Unreachable states will never be visited, even given unlimited simula-
tion time. You need to measure what has been verified in order to check off
items in your verification plan.

The process of measuring and using functional coverage consists of sev-
eral steps. First, you add code to the testbench to monitor the stimulus going
into the device, and its reaction and response, to determine what functionality
has been exercised. Next, the data from one or more simulations is combined
into a report. Lastly, you need to analyze the results and determine how to cre-
ate new stimulus to reach untested conditions and logic. Chapter 9 describes
functional coverage in SystemVerilog.

1.10.1 Feedback from functional coverage to stimulus

A random test evolves using feedback. The initial test can be run with
many different seeds, creating many unique input sequences. Eventually the
test, even with a new seed, is less likely to generate stimulus that reaches
areas of the design space. As the functional coverage asymptotically
approaches its limit, you need to change the test to find new approaches to
reach uncovered areas of the design. This is known as “coverage-driven
verification.”

SystemVerilog for Verification14

Figure 1-6 Test progress with and without feedback

What if your testbench were smart enough to do this for you? In a previous
job, I wrote a test that generated every bus transaction for a processor, and
additionally fired every bus terminator (Success, Parity error, Retry) in every
cycle. This was before HVLs, so I wrote a long set of directed tests and spent
days lining up the terminator code to fire at just the right cycles. After much
hand analysis I declared success – 100% coverage. Then the processor’s tim-
ing changed slightly! Now I had to reanalyze the test and change the stimuli.

A more productive testing strategy uses random transactions and termina-
tors. The longer you run it, the higher the coverage. As a bonus, the test could
be made flexible enough to create valid stimuli even if the design’s timing
changed. You could add a feedback loop that would look at the stimulus cre-
ated so far (generated all write cycles yet?) and change the constraint weights
(drop write weight to zero). This improvement would greatly reduce the time
needed to get to full coverage, with little manual intervention.

However, this is not a typical situation because of the trivial feedback
from functional coverage to the stimulus. In a real design, how should you
change the stimulus to reach a desired design state? There are no easy
answers, so dynamic feedback is rarely used for constrained-random stimulus.
Manual feedback is used in coverage-driven verification.

Feedback is used in formal analysis tools such as Magellan (Synopsys
2003). It analyzes a design to find all the unique, reachable states. Then it runs
a short simulation to see how many states are visited. Lastly, it searches from
the state machine to the design inputs to calculate the stimulus needed to
reach any remaining states and then Magellan applies this to the DUT.

Time

C
ov

er
ag

e

100%

Without
feedback

With
feedback

Time

C
ov

er
ag

e

100%

Without
feedback

With
feedback

Chapter 1: Verification Guidelines 15

1.11 Testbench Components

In simulation, the testbench wraps around the DUT, just as a hardware
tester connects to a physical chip. Both the testbench and tester provide stimu-
lus and capture responses. The difference between them is that your testbench
needs to work over a wide range of levels of abstraction, creating transactions
and sequences, which are eventually transformed into bit vectors. A tester just
works at the bit level.

Figure 1-7 The testbench — design environment

What goes into that testbench block? It is made of many bus functional
models (BFM), that you can think of as testbench components — to the DUT
they look like real components, but are part of the testbench, not RTL. If the
real device connects to AMBA, USB, PCI, and SPI buses, you have to build
equivalent components in your testbench that can generate stimulus and check
the response. These are not detailed, synthesizable models but instead, high-
level transactors that obey the protocol, but execute more quickly. If you are
prototyping using FPGAs or emulation, the BFMs do need to be
synthesizable.

Testbench

Design
Under
Test

inputs outputs

Testbench

Design
Under
Test

inputs outputs

SystemVerilog for Verification16

Figure 1-8 Testbench components

1.12 Layered Testbench

A key concept for any modern verification methodology is the layered
testbench. While this process may seem to make the testbench more complex,
it actually helps to make your task easier by dividing the code into smaller
pieces that can be developed separately. Don’t try to write a single routine that
can randomly generate all types of stimulus, both legal and illegal, plus inject
errors with a multi-layer protocol. The routine quickly becomes complex and
unmaintainable.

1.12.1 Flat testbench

When you first learned Verilog and started writing tests, they probably
looked like the following low-level code that does a simplified APB (AMBA
Peripheral Bus) Write. (VHDL users may have written similar code.)

Testbench AMBA

SPI

Design
Under
Test

PCI

USBTestbench AMBA

SPI

Design
Under
Test

PCI

USB

Chapter 1: Verification Guidelines 17

Example 1-1 Driving the APB pins

module test(PAddr, PWrite, PSel, PRData, Rst, clk);
// Port declarations omitted...

initial begin
 // Drive reset
 Rst <= 0;
 #100 Rst <= 1;

 // Drive Control bus
 @(posedge clk)
 PAddr <= 16’h50;
 PWData <= 32’h50;
 PWrite <= 1'b1;
 PSel <= 1'b1;

 // Toggle PEnable
 @(posedge clk)
 PEnable <= 1'b1;
 @(posedge clk)
 PEnable <= 1'b0;

 // Check the result
 if (top.mem.memory[16’h50] == 32’h50)
 $display("Success");
 else
 $display("Error, wrong value in memory");
 $finish;
 end
endmodule

After a few days of writing code like this, you probably realized that it is
very repetitive, so you created tasks for common operations such as a bus
write, as shown in Example 1-2.

SystemVerilog for Verification18

Example 1-2 A task to drive the APB pins

task write(reg [15:0] addr, reg [31:0] data);
 // Drive Control bus
 @(posedge clk)
 PAddr <= addr;
 PWData <= data;
 PWrite <= 1'b1;
 PSel <= 1'b1;

 // Toggle Penable
 @(posedge clk)
 PEnable <= 1'b1;
 @(posedge clk)
 PEnable <= 1'b0;
endtask

Now your testbench became simpler.

Example 1-3 Low-level Verilog test

module test(PAddr, PWrite, PSel, PRData, Rst, clk);
 // Port declarations omitted...

 initial begin
 reset(); // Reset the device
 write(16’h50, 32’h50); // Write data into memory

 // Check the result
 if (top.mem.memory[16’h50] == 32’h50)
 $display("Success");
 else
 $display("Error, wrong value in memory");
 $finish;
 end
endmodule

By taking the common actions, such as reset, bus reads and writes, and
putting them in a routine, you became more efficient and made fewer mis-
takes. This creation of the physical and command layers is the first step to a
layered testbench.

1.12.2 The signal and command layers

Figure 1-9 shows the lower layers of a testbench.

Chapter 1: Verification Guidelines 19

Figure 1-9 Signal and command layers

At the bottom is the signal layer that contains the design under test and the
signals that connect it to the testbench.

The next level up is the command layer. The DUT’s inputs are driven by
the driver that runs single commands such as bus read or write. The DUT’s
output drives the monitor that takes signal transitions and groups them
together into commands. Assertions also cross the command/signal layer, as
they look at individual signals but look for changes across an entire command.

1.12.3 The functional layer

The functional layer feeds the command layer. The agent block (called the
transactor in the VMM) receives higher-level transactions such as DMA read
or write and breaks them into individual commands. These commands are
also sent to the scoreboard that predicts the results of the transaction. The
checker compares the commands from the monitor with those in the
scoreboard.

Figure 1-10 Testbench with functional layer

DUT

AssertionsDriver MonitorCommand

Signal
DUT

AssertionsDriver MonitorCommand

Signal

DUT

AssertionsDriver Monitor

Scoreboard CheckerAgentFunctional

Signal

Command

DUT

AssertionsDriver Monitor

Scoreboard CheckerAgentFunctional

Signal

Command

SystemVerilog for Verification20

1.12.4 The scenario layer

The functional layer is driven by the generator in the scenario layer. What
is a scenario? Remember that your job as a verification engineer is to make
sure that this device accomplishes its intended task. An example device is an
MP3 player that can concurrently play music from its storage, download new
music from a host, and respond to input from the user, such as volume and
track controls. Each of these operations is a scenario. Downloading a music
file takes several steps, such as control register reads and writes to set up the
operation, multiple DMA writes to transfer the song, and then another group
of reads and writes. The scenario layer of your testbench orchestrates all these
steps with constrained-random values for parameters such as track size and
memory location.

Figure 1-11 Testbench with scenario layer

The blocks in the testbench environment (inside the dashed line) are writ-
ten at the start of development. During the project they may evolve and you
may add functionality, but these blocks should not change for individual tests.
This is done by leaving “hooks” in the code so that a test can change the
behavior of these blocks without having to rewrite them. You create these
hooks with callbacks (section 8.7) and factory patterns (section 8.3).

1.12.5 The test layer and functional coverage

You are now at the top of the testbench, the test layer, as shown in Figure
1-12. Design bugs that occur between DUT blocks are harder to find as they
involve multiple people reading and interpreting multiple specifications.

DUT

AssertionsDriver Monitor

Scoreboard Checker

Generator Environment

Agent

Scenario

Signal

Command

Functional

DUT

AssertionsDriver Monitor

Scoreboard Checker

Generator Environment

Agent

Scenario

Signal

Command

Functional

Chapter 1: Verification Guidelines 21

This top-level test is a conductor who does not play any musical instru-
ment, but instead guides the efforts of others. The test contains the constraints
to create the stimulus.

Functional coverage measures the progress of all tests in fullfilling the
requirements in the verification plan. The functional coverage code changes
through the project as the various criteria complete. Because it is constantly
being modified, it is not part of the environment.

You can create a “directed test” in a constrained-random environment.
Simply insert a section of directed test case into the middle of or in parallel
with a random sequence. The directed code performs the work you want, but
the random “background noise” may cause a bug to become visible, perhaps
in an unanticipated block.

Figure 1-12 Full testbench with all layers

Do you need all these layers in your testbench? The answer depends on
what your DUT looks like. A complicated design requires a sophisticated test-
bench. You always need the test layer. For a simple design, the scenario layer
may be so simple that you can merge it with the agent. When estimating the
effort to test a design, don’t count the number of gates; count the number of
designers. Every time you add another person to the team, you increase the
chance of different interpretations of the specifications.

You may need more layers. If your DUT has several protocol layers, each
should get its own layer in the testbench environment. For example, if you
have TCP traffic that is wrapped in IP and sent in Ethernet packets, consider

DUT

AssertionsDriver Monitor

Test

Scoreboard Checker

Generator

Functional C
overage

Environment

Agent

DUT

AssertionsDriver Monitor

Test

Scoreboard Checker

Generator

Functional C
overage

Environment

Agent

SystemVerilog for Verification22

using three separate layers for generation and checking. Better yet, use exist-
ing verification components.

One last note about the above diagram: It shows some of the possible con-
nections between blocks, but your testbench may have a different set. The test
may need to reach down to the driver layer to force physical errors. These are
just guidelines – let your needs guide what you create.

1.13 Building a Layered Testbench

Now it is time to take the previous diagrams and learn how to map the
components into SystemVerilog constructs.

1.13.1 Creating a simple driver

First, take a closer look at one of the blocks, the driver.

Figure 1-13 Connections for the driver

The driver receives commands from the agent, may inject errors or add
delays, and then breaks the command down into individual signal changes
such as bus requests, handshakes, etc. The general term for such a testbench
block is a “transactor,” which, at its core, is a loop:

Example 1-4 Basic transactor code

task run();
 done = 0;
 while (!done) begin
 // Get the next transaction
 // Make transformations
 // Send out transactions
 end
endtask

DUT

Driver

Agent

DUT

Driver

Agent

Chapter 1: Verification Guidelines 23

Chapter 4 presents basic OOP and how to create an object that includes the
routines and data for a transactor. Another example of a transactor is the
agent. It might break apart a complex transaction such as a DMA read into
multiple bus commands. Also in Chapter 4, you will see how to build an
object that contains the data and routines that make up a command. These
objects are sent between transactors using SystemVerilog mailboxes. In
Chapter 7, you will learn about many ways to exchange data between the dif-
ferent layers and to synchronize the transactors.

1.14 Simulation Environment Phases

Up until now you have been learning what parts make up the environment.
When do these parts execute? You want to clearly define the phases to coordi-
nate the testbench so all the code for a project works together. The three
primary phases are Build, Run, and Wrap-up. Each is divided into smaller
steps.

The Build phase is divided into the following steps:

Generate Configuration: randomize the configuration of the DUT and
the surrounding environment.
Build Environment: Allocate and connect the testbench components
based on the configuration. A testbench component is one that only
exists in the testbench, as opposed to physical components in the
design that are built with RTL code. For example, if the configuration
chose three bus drivers, the testbench would allocate and initialize
them in this step.
Reset the DUT.
Configure the DUT based on generated configuration from the first
step.

The Run phase is where the test actually runs. It has the following steps:

Start environment: run the testbench components such as BFMs and
stimulus generators.
Run the test: start the test and then wait for it to complete. It is easy to
tell when a directed test has completed, but doing so can be complex
for a random test. You can use the testbench layers as a guide. Start-
ing from the top, wait for a layer to drain all the inputs from the previ-
ous layer (if any), wait for the current layer to become idle, and then

SystemVerilog for Verification24

wait for the next lower layer. You should also use time-out checkers
to ensure that the DUT or testbench does not lock up.

The Wrap-up phase has two steps:

Sweep: After the lowest layer completes, you need to wait for the
final transactions to drain out of the DUT.
Report: Once the DUT is idle, sweep the testbench for lost data.
Sometimes the scoreboard holds transactions that never came out,
perhaps because they were dropped by the DUT. With this informa-
tion you can create the final report on whether the test passed or
failed. If it failed, be sure to delete any functional coverage data, as it
may not be correct.

As shown in the layer diagram, Figure 1-12, the test starts the environ-
ment. This runs each of the steps. More details can be found in Chapter 8.

1.15 Maximum Code Reuse

To verify a complex device with hundreds of features, you have to write
hundreds of directed tests. If you use constrained-random stimulus, you will
write far fewer tests. Instead, the real work is put into constructing the test-
bench, which contains all the lower testbench layers, scenario, functional, and
command. This testbench code is used by all the tests, so it should remain
generic.

These guidelines may seem to recommend a sophisticated testbench, but
remember that every line that you put into it can eliminate a line in every sin-
gle test. If you create a few dozen tests, there is a high payback. Keep this in
mind when you read Chapter 8.

1.16 Testbench Performance

If this is the first time you have seen this methodology, you probably have
some qualms about how it works compared to directed testing. A common
objection is testbench performance. A directed test often simulates in less than
a second, while constrained-random tests will wander around through the
state space for minutes or hours. The problem with this argument is that it
ignores a real verification bottleneck – the time required by you to create a
test. You may be able to hand-craft a directed test in a day, and debug it and
manually verify the results by hand in another day or two. The actual simula-
tion run-time is dwarfed by the amount of your time that you invested.

Chapter 1: Verification Guidelines 25

There are several steps to creating a constrained-random test. The most
significant is building the layered testbench, including the self-checking por-
tion. The benefit of this work is shared by all tests, so it is well worth the
effort. The next step is creating the stimulus specific to a goal in the verifica-
tion plan. You may be crafting random constraints, or devious ways of
injecting errors or protocol violations. Building one of these may take more
time than making several directed tests, but the payoff will be much higher. A
constrained-random test that tries thousands of different protocol variations is
worth more than the handful of directed tests that could have been created in
the same amount of time.

The third step in constrained-random testing is functional coverage. This
task starts with the creation of a strong verification plan with clear goals that
can be easily measured. Next you need to create the SystemVerilog code that
instruments the environment and gathers the data. Lastly, and most impor-
tantly, you need to analyze the results to determine if you have met the goals,
and if not, how you should modify the tests.

1.17 Conclusion

The continuous growth in complexity of electronic designs requires a
modern, systematic, and automated approach to creating testbenches. The cost
of fixing a bug grows by 10x as a project moves from each step of specifica-
tion to RTL coding, gate synthesis, fabrication, and finally into the user’s
hands. Directed tests only test one feature at a time and cannot create the com-
plex stimulus and configurations that the device would be subjected to in the
real world. To produce robust designs, you must use constrained-random
stimulus combined with functional coverage to create the widest possible
range of stimulus.

Chapter 2

Data Types

2.1 Introduction
SystemVerilog offers many improved data structures compared with Ver-

ilog. Some of these were created for designers but are also useful for
testbenches. In this chapter you will learn about the data structures most use-
ful for verification.

SystemVerilog introduces new data types with the following benefits.

Two-state: better performance, reduced memory usage
Queues, dynamic and associative arrays and automatic storage:
reduced memory usage, built-in support for searching and sorting
Unions and packed structures: allows multiple views of the same data
Classes and structures: support for abstract data structures
Strings: built-in string support
Enumerated types: code is easier to write and understand

2.2 Built-in Data Types
Verilog-1995 has two basic data types: variables (reg) and nets, that hold

four-state values: 0, 1, Z, and X. RTL code uses variables to store combina-
tional and sequential values. Variables can be unsigned single or multi-bit
(reg [7:0] m), signed 32-bit variables (integer), unsigned 64-bit vari-
ables (time), and floating point numbers (real). Variables can be grouped
together into arrays that have a fixed size. All storage is static, meaning that
all variables are alive for the entire simulation and routines cannot use a stack
to hold arguments and local values. A net is used to connect parts of a design
such as gate primitives and module instances. Nets come in many flavors, but
most designers use scalar and vector wires to connect together the ports of
design blocks.

SystemVerilog adds many new data types to help both hardware designers
and verification engineers.

2.2.1 The logic type

The one thing in Verilog that always leaves new users scratching their
heads is the difference between a reg and a wire. When driving a port,

SystemVerilog for Verification28

which should you use? How about when you are connecting blocks? System-
Verilog improves the classic reg data type so that it can be driven by
continuous assignments, gates and modules, in addition to being a variable. It
is given the new name logic so that it does not look like a register declara-
tion. The one limitation is that a logic variable cannot be driven by multiple
drivers such as when you are modeling a bidirectional bus. In this case, the
variable needs to be a net-type such as wire.

Example 2-1 shows the SystemVerilog logic type.
Example 2-1 Using the logic type

module logic_data_type(input logic rst_h);
 parameter CYCLE = 20;
 logic q, q_l, d, clk, rst_l;
 initial begin
 clk <= 0; // Procedural assignment
 forever #(CYCLE/2) clk = ~clk;
 end

 assign rst_l = ~rst_h; // Continuous assignment
 not n1(q_l, q); // q_l is driven by gate
 my_dff d1(q, d, clk, rst_l); // d is driven by module

endmodule

2.2.2 Two-state types

SystemVerilog introduces several two-state data types to improve simula-
tor performance and reduce memory usage, over four-state types. The
simplest type is the bit, which is always unsigned. There are four signed
types: byte, shortint, int, and longint.
Example 2-2 Signed data types

bit b; // 2-state, single-bit
bit [31:0] b32; // 2-state, 32-bit unsigned integer
int i; // 2-state, 32-bit signed integer
byte b8; // 2-state, 8-bit signed integer
shortint s; // 2-state, 16-bit signed integer
longint l; // 2-state, 64-bit signed integer

You might be tempted to use types such as byte to replace
more verbose declarations such as logic [7:0]. Hardware
designers should be careful as these new types are signed
variables, so a byte variable can only count up to 127, not

Chapter 2: Data Types 29

the 255 you may expect. (It has the range -128 to +127.) You could use byte
unsigned, but that is more verbose than just bit [7:0]. Signed variables
may cause unexpected results with randomization, as discussed in Chapter 6.

Be careful connecting two-state variables to the design under
test, especially its outputs. If the hardware tries to drive an X or
Z, these values are converted to a two-state value, and your
testbench code may never know. Don’t try to remember if they
are converted to 0 or 1; instead, always check for propagation

of unknown values. Use the $isunknown operator that returns 1 if any bit of
the expression is X or Z.
Example 2-3 Checking for four-state values

if ($isunknown(iport)
 $display("@%0d: 4-state value detected on input port",
 $time, iport);

2.3 Fixed-Size Arrays
SystemVerilog offers several flavors of arrays beyond the single-dimen-

sion, fixed-size Verilog-1995 arrays. Many enhancements have been made to
these classic arrays.

2.3.1 Declaring and initializing fixed-size array

Verilog requires that the low and high array limits must be given in the
declaration. Almost all arrays use a low index of 0, so SystemVerilog lets you
use the shortcut of just giving the array size, similar to C:
Example 2-4 Declaring fixed-size arrays

int lo_hi[0:15]; // 16 ints [0]..[15]
int c_style[16]; // 16 ints [0]..[15]

You can create multidimensional fixed-size arrays by specifying the
dimensions after the variable name. This is an unpacked array; packed arrays
are shown later. The following creates several two-dimensional arrays of inte-
gers, 8 entries by 4, and sets the last entry to 1. Multidimensional arrays were
introduced in Verilog-2001, but the compact declarations are new.
Example 2-5 Declaring and using multidimensional arrays

int array2 [0:7][0:3]; // Verbose declaration
int array3 [8][4]; // Compact declaration
array2[7][3] = 1; // Set last array element

SystemVerilog for Verification30

SystemVerilog stores each element on a longword (32-bit) boundary. So a
byte, shortint, and int are all stored in a single longword, while a long-
int is stored in two longwords. (Simulators frequently store four-state types
such as logic and integer in two or more longwords.)
Example 2-6 Unpacked array declarations

bit [7:0] b_unpacked[3]; // Unpacked

The unpacked array of bytes, b_unpacked, is stored in three longwords.
Figure 2-1 Unpacked array storage

2.3.2 The array literal

You can initialize an array using an array literal that is an apostrophe and
curly braces.1 You can set some or all elements at once. You can replicate val-
ues by putting a count before the curly braces.
Example 2-7 Initializing an array

int ascend[4] = ’{0,1,2,3}; // Initialize 4 elements
int decend[5];
int md[2][3] = ’{’{0,1,2}, ’{3,4,5}};

descend = ’{4,3,2,1,0}; // Set 5 elements
descend[0:2] = ’{5,6,7}; // Set first 3 elements
ascend = ’{4{8}}; // Four values of 8

2.3.3 Basic array operations — for and foreach

The most common way to manipulate an array is with a for or foreach
loop. In Example 2-8, the variable i is declared local to the for loop. The
SystemVerilog function $size returns the size of the array. In the foreach
statement, you specify the array name and an index in square brackets, and
SystemVerilog automatically steps through all the elements of the array. The
index variable is local to the loop.

1. VCS X-2005.06 follows the original Accellera standard for array literals and uses just the
curly braces with no leading apostrophe. VCS will change to the IEEE standard in an
upcoming release.

b_array[1]

01234567

01234567

01234567
Unused space

b_array[2]

b_array[0]

b_array[1]

01234567 01234567

01234567 01234567

01234567 01234567
Unused space

b_array[2]

b_array[0]

Chapter 2: Data Types 31

Example 2-8 Using arrays with for and foreach loops

initial begin
 bit [31:0] src[5], dst[5];
 for (int i=0; i<$size(src); i++)
 src[i] = i;
 foreach (dst[j])
 dst[j] = src[j] * 2; // dst doubles src values
end

Note that the syntax of the foreach statement for multidimensional
arrays may not be what you expected! Instead of listing each subscript in sep-
arate square brackets – [i][j] – they are combined with a comma – [i,j].
Example 2-9 Initialize and step through a multidimensional array

initial begin
 $display("Initial value:");
 foreach (md[i,j]) // Yes, this is the right syntax
 $display("md[%0d][%0d] = %0d", i, j, md[i][j]);

 $display("New value:");
 md = ‘{{9, 8, 7}, 3{5}}; // Replicate last 3 values
 foreach (md[i,j]) // Yes, this is the right syntax
 $display("md[%0d][%0d] = %0d", i, j, md[i][j]);
end

Example 2-9 produces the following output:
Example 2-10 Output from printing multidimensional array values

Initial value:
md[0][0] = 0
md[0][1] = 1
md[0][2] = 2
md[1][0] = 3
md[1][1] = 4
md[1][2] = 5

New value:
md[0][0] = 9
md[0][1] = 8
md[0][2] = 7
md[1][0] = 5
md[1][1] = 5
md[1][2] = 5

SystemVerilog for Verification32

2.3.4 Basic array operations – copy and compare

You can perform aggregate compare and copy of arrays without loops.
(An aggregate operation works on the entire array as opposed to working on
just an individual element.) Comparisons are limited to just equality and ine-
quality. Example 2-11 shows several examples of compares. The ? :
operator is a mini if-statement. Here it is choosing between two strings.
Example 2-11 Array copy and compare operations

initial begin
 bit [31:0] src[5] = ’{0,1,2,3,4},
 dst[5] = ’{5,4,3,2,1};

 // Aggregate compare the two arrays
 if (src==dst)
 $display("src == dst");
 else
 $display("src != dst");

 // Aggregate copy all src values to dst
 dst = src;

 // Change just one element
 src[0] = 5;

 // Are all values equal (no!)
 $display("src %s dst", (src == dst) ? "==" : "!=");

 // Are last elements 1-4 equal (yes!)
 $display("src[1:4] %s dst[1:4]",
 (src[1:4] == dst[1:4]) ? "==" : "!=");
end

You cannot perform aggregate arithmetic operations such as addition on
arrays. Instead, you can use loops. For logical operations such as xor, you
have to either use a loop or use packed arrays as described below.

2.3.5 Bit and word subscripts, together at last

A common annoyance in Verilog-1995 is that you cannot use word and bit
subscripts together. Verilog-2001 removes this restriction for fixed-size
arrays. Example 2-12 prints the first array element (binary 101), its lowest bit
(1), and the next two higher bits (binary 10).

Chapter 2: Data Types 33

Example 2-12 Using word and bit subscripts together

initial begin
 bit [31:0] src[5] = `{5{5}};
 $displayb(src[0],, // ’b101 or ’d5
 src[0][0],, // ’b1
 src[0][2:1]); // ’b10
end

While this change is not new to SystemVerilog, many users may not know
about this useful improvement in Verilog-2001.

2.3.6 Packed arrays

For some data types, you may want both to access the entire value and also
divide it into smaller elements. For example, you may have a 32-bit register
that sometimes you want to treat as four 8-bit values and at other times as a
single, unsigned value. A SystemVerilog packed array is treated as both an
array and a single value. It is stored as a contiguous set of bits with no unused
space, unlike an unpacked array.

2.3.7 Packed array examples

The packed bit and word dimensions are specified as part of the type,
before the variable name. These dimensions must be specified in the
[lo:hi] format. The variable bytes is a packed array of four bytes, which
are stored in a single longword.
Example 2-13 Packed array declaration and usage

bit [3:0] [7:0] bytes; // 4 bytes packed into 32-bits
bytes = 32’hdead_beef;
$displayh(bytes,, // Show all 32-bits
 bytes[3], // most significant byte "de"
 bytes[3][7]); // most significant bit "1"

Figure 2-2 Packed array layout

You can mix packed and unpacked dimensions. You may want to make an
array that represents a memory that can be accessed as bits, bytes, or long-

bytes 01234567

bytes[3] bytes[1][6]

012345670123456701234567bytes 01234567 01234567

bytes[3] bytes[1][6]

01234567 0123456701234567 0123456701234567 01234567

SystemVerilog for Verification34

words. In Example 2-14, barray is an unpacked array of three packed
elements.
Example 2-14 Declaration for mixed packed/unpacked array

bit [3:0] [7:0] barray [3]; // Packed: 3x32-bit
barray[0] = 32’h0123_4567;
barray[0][3] = 8’h01;
barray[0][1][6] = 1’b1;

The variable bytes is a packed array of four bytes, which are stored in a
single longword. barray is an array of three of these elements.
Figure 2-3 Packed arrays

With a single subscript, you get a longword of data, barray[2]. With
two subscripts, you get a byte of data, barray[0][3]. With three subscripts,
you can access a single bit, barray[0][1][6]. Note that because one
dimension is specified after the name, barray[3], that dimension is
unpacked, so you always need to use at least one subscript.

2.3.8 Choosing between packed and unpacked arrays

Which should you choose — packed or unpacked array? A packed array is
handy if you need to convert to and from scalars. For example, you might
need to reference a memory as a byte or as a longword. The above array bar-
ray can handle this requirement. Only fixed-size arrays can be packed, not
dynamic arrays, associative arrays, or queues (as shown below).

If you need to wait for a change in an array, you have to use a packed
array. Perhaps your testbench might need to wake up when a memory changes
value, so you want to use the @ operator. But this is only legal with scalar val-
ues and packed arrays. Using the earlier examples, you can block on the
variable lw, and barray[0], but not the entire array barray unless you
expand it: @(barray[0] or barray[1] or barray[2]).

2.4 Dynamic Arrays
The basic Verilog array type shown so far is known as a fixed-size array,

as its size is set at compile time. But what if you do not know the size of the

barray[1]

barray[2]

barray[0] 01234567

barray[0][3] barray[0][1][6]

012345670123456701234567

01234567012345670123456701234567

01234567012345670123456701234567

barray[1]

barray[2]

barray[0] 01234567 01234567

barray[0][3] barray[0][1][6]

01234567 0123456701234567 0123456701234567 01234567

01234567 0123456701234567 0123456701234567 0123456701234567 01234567

01234567 0123456701234567 0123456701234567 0123456701234567 01234567

Chapter 2: Data Types 35

array until run-time? You may choose the number of transactions randomly
between 1000 and 100,000, but you do not want to use a fixed-size array that
would be half empty. SystemVerilog provides a dynamic array that can be
allocated and resized during simulation.

A dynamic array is declared with empty word subscripts []. This means
that you do not want to give an array size at compile time; instead, you specify
it at run-time. The array is initially empty, so you must call the new[] opera-
tor to allocate space, passing in the number of entries in the square brackets. If
you pass the name of an array to the new[] operator, the values are copied
into the new elements.
Example 2-15 Using dynamic arrays

int dyn[], d2[]; // Empty dynamic arrays

initial begin
 dyn = new[5]; // Allocate 5 elements
 foreach (dyn[j])
 dyn[j] = j; // Initialize the elements
 d2 = dyn; // Copy a dynamic array
 d2[0] = 5; // Modify the copy
 $display(dyn[0],d2[0]); // See both values (0 & 5)
 dyn = new[20](dyn); // Expand and copy
 dyn = new[100]; // Allocate 100 new integers
 // Old values are lost
 dyn.delete; // Delete all elements
end

The $size function returns the size of a fixed-size or dynamic array.
Dynamic arrays have several specialized routines, such as delete and size.
The latter function returns the size, but does not work with fixed-size arrays.

If you want to declare a constant array of values but do not want to bother
counting the number of elements, use a dynamic array with an array literal. In
Example 2-16 there are 9 masks for 8 bits, but you should let SystemVerilog
count them, rather than making a fixed-size array and accidently choosing the
wrong size of 8.
Example 2-16 Using a dynamic array for an uncounted list

bit [7:0] mask[] = ’{8’b0000_0000, 8’b0000_0001,
 8’b0000_0011, 8’b0000_0111,
 8’b0000_1111, 8’b0001_1111,
 8’b0011_1111, 8’b0111_1111,
 8’b1111_1111};

SystemVerilog for Verification36

You can make assignments between fixed-size and dynamic arrays as long
as they have the same base type such as int. You can assign a dynamic array
to a fixed array as long as they have the same number of elements.

When you copy a fixed-size array to a dynamic array, SystemVerilog calls
new[] constructor to allocate space, and then copies the values.

2.5 Queues
SystemVerilog introduces a new data type, the queue, which provides easy

searching and sorting in a structure that is as fast as a fixed-size array but as
versatile as a linked list.

Like a dynamic array, queues can grow and shrink, but with a queue you
can easily add and remove elements anywhere. Example 2-17 adds and
removes values from a queue.
Example 2-17 Queue operations

int j = 1,
 b[$] = {3,4},
 q[$] = {0,2,5}; // {0,2,5} Initial queue

initial begin
 q.insert(1, j); // {0,1,2,5} Insert 1 before 2
 q.insert(3, b); // {0,1,2,3,4,5} Insert whole q.
 q.delete(1); // {0,2,3,4,5} Delete elem. #1

 // The rest of these are fast
 q.push_front(6); // {6,0,2,3,4,5} Insert at front
 j = q.pop_back; // {6,0,2,3,4} j = 5
 q.push_back(8); // {6,0,2,3,4,8} Insert at back
 j = q.pop_front; // {0,2,3,4,8} j = 6
 foreach (q[i])
 $display(q[i]);
end

When you create a queue, SystemVerilog actually allocates extra space so
you can quickly add extra elements. Note that you do not need to call the
new[] operator for a queue. If you add enough elements so that the queue
runs out of space, SystemVerilog automatically allocates additional space. As
a result, you can grow and shrink a queue without the performance penalty of
a dynamic array.

It is very efficient to push and pop elements from the front and back of a
queue, taking a fixed amount of time no matter how large the queue. Adding

Chapter 2: Data Types 37

and deleting elements in the middle is slower, especially for larger queues, as
SystemVerilog has to shift up to half of the elements.

You can copy the contents of a fixed or dynamic array into a queue.

2.6 Associative Arrays
Dynamic arrays are good if you want to occasionally create a large array,

but what if you want something really huge? Perhaps you are modeling a pro-
cessor that has a multi-gigabyte address range. During a typical test, the
processor may only touch a few hundred or thousand memory locations con-
taining executable code and data, so allocating and initializing gigabytes of
storage is wasteful.

SystemVerilog offers associative arrays that store entries in a sparse
matrix. This means that while you can address a very large address space,
SystemVerilog only allocates memory for an element when you write to it. In
the following picture, the associative array holds the values 0:3, 42, 1000,
4521, and 200,000. The memory used to store these is far less than would be
needed to store a fixed or dynamic array with 200,000 entries.
Figure 2-4 Associative array

Example 2-18 shows declaring, initializing, and stepping through an asso-
ciative array. These arrays are declared with wildcard syntax [*]. You can
remember the syntax by thinking that the array can be indexed with almost
any integer.

0…..3 42 1000 4521 200,000

data

index 0…..3 42 1000 4521 200,000

data

index

SystemVerilog for Verification38

Example 2-18 Declaring, initializing, and using associative arrays

initial begin
 logic [63:0] assoc[*], idx = 1;

 // Initialize widely scattered values
 repeat (64) begin
 assoc[idx] = idx;
 idx = idx << 1;
 end

 // Step through all index values with foreach
 foreach (assoc[i])
 $display("assoc[%h] = %h", i, assoc[i]);

 // Step through all index values with functions
 if (assoc.first(idx))
 begin // Get first index
 do
 $display("assoc[%h]=%h", idx, assoc[idx]);
 while (assoc.next(idx)); // Get next index
 end

 // Find and delete the first element
 assoc.first(idx);
 assoc.delete(idx);
end

Example 2-18 has the associative array, assoc, with very scattered ele-
ments: 1, 2, 4, 8, 16, etc. A simple for loop cannot step through them; you
need to use a foreach loop, or, if you wanted finer control, you could use the
first and next functions in a do...while loop. These functions modify the
index argument, and return 0 or 1 depending on whether any elements are left
in the array.

Associative arrays can also be addressed with a string index, similar to
Perl’s hash arrays. Example 2-19 reads name/value pairs from a file into an
associative array. If you try to read from an element that has not been allo-
cated yet, SystemVerilog returns a 0 for two-state types or X for 4-state types.
You can use the function exists to check if an element exists, as shown
below. Strings are explained in section 2.14.

Chapter 2: Data Types 39

Example 2-19 Using an associative array with a string index

/*
Input file looks like:
 42 min_address
 1492 max_address
*/

int switch[string], min_address, max_address;
initial begin
 int i, r, file;
 string s;
 file = $fopen("switch.txt", "r");
 while (! $feof(file)) begin
 r = $fscanf(file, "%d %s", i, s);
 switch[s] = i;
 end
 $fclose(file);

 // Get the min address, default is 0
 mid_address = switch["min_address"];

 // Get the max address, default = 1000
 if (switch.exists("max_address"))
 max_address = switch["max_address"];
 else
 max_address = 1000;
end

An associative array can be stored by the simulator as a tree. This addi-
tional overhead is acceptable when you need to store arrays with widely
separated index values, such as packets indexed with 32-bit addresses or 64-
bit data values.

2.7 Linked Lists
SystemVerilog provides a linked list data-structure that is analogous to the

STL (Standard Template Library) List container. The container is defined as a
parameterized class, meaning that it can be customized to hold data of any
type.

Now that you know there is a linked list in SystemVerilog, avoid using it.
C++ programmers might be familiar with the STL version, but SystemVer-
ilog’s queues are more efficient and easier to use.

SystemVerilog for Verification40

2.8 Array Methods
There are many array methods that you can use on any unpacked array

types: fixed, dynamic, queue, and associative. These routines can be as simple
as giving the current array size to sorting the elements.

2.8.1 Array reduction methods

A basic array reduction method takes an array and reduces it to a scalar.
The most common reduction method is sum, which adds together all the val-
ues in an array. Be careful of SystemVerilog’s rules for handling the width of
operations. By default, if you add the values of a single-bit array, the result is
a single bit. But if you store the result in a 32-bit variable or compare it to a
32-bit variable, SystemVerilog uses 32-bits when adding up the values.
Example 2-20 Creating the sum of an array

bit on[10]; // Array of single bits
int summ;

initial begin
 foreach (on[i])
 on[i] = i; // on[i] gets 0 or 1

 // Print the single-bit sum
 $display("on.sum = %0d", on.sum); // on.sum = 1

 // Sum the values using 32-bits as summ is 32-bits
 summ = on.sum;
 $display("summ = %0d", summ); // summ = 5

 // Compare the sum to a 32-bit value
 if (on.sum >=32’d5) // True
 $display("sum has 5 or more 1’s");
 end

Other array reduction methods are product, and, or, and xor.

2.8.2 Array locator methods

What is the largest value in an array? Does an array contain a certain
value? The array locator methods find data in an unpacked array. These meth-
ods always return a queue.

Chapter 2: Data Types 41

Example 2-22 uses a fixed-size array, f[6], a dynamic array, d[], and a
queue, q[$].The min and max functions find the smallest and largest ele-
ments in an array. Note that they return a queue, not a scalar as you might
expect. These methods also work for associative arrays. The unique method
returns a queue of the unique values from the array — duplicate values are not
included.
Example 2-21 Array locator methods: min, max, unique

int f[6] = ‘{1,6,2,6,8,6};
int q[$] = ‘{1,3,5,7}, tq[$];

tq = q.min; // {1}
tq = q.max; // {7}
tq = f.unique; // {1,6,2,8}

You could search through an array using a foreach loop, but SystemVer-
ilog can do this in one operation with a locator method. The with expression
tells SystemVerilog how to perform the search.
Example 2-22 Array locator methods: find

int d[] = ‘{9,1,8,3,4,4}, tq[$];

// Find all elements greater than 3
tq = d.find with (item > 3); // {9,8,4,4}
// Equivalent code
tq.delete;
foreach (d[i])
 if (d[i] > 3)
 tq.push_back(d[i]);

tq = d.find_index with (item > 3); // {0,2,4}
tq = d.find_first with (item > 99); // {} – none found
tq = d.find_first_index with (item==8); // {2} d[2]=8
tq = d.find_last with (item==4); // {4}
tq = d.find_last_index with (item==4); // {6} d[6]=4

When you combine an array reduction such as sum using the with clause,
the results may surprise you. In Example 2-23, the sum operator is adding up
the number of times that the expression is true. For the first statement in
Example 2-23, there are two array elements that are greater than 7 (9 and 8) so
count is set to 2. Note that sum-with is a statement, not an expression, so
you need to store the result in a temporary variable, and cannot use it directly,
as in a $display statement.

SystemVerilog for Verification42

Example 2-23 Array locator methods

int count, d[] = ‘{9,1,8,3,4,4};

count = d.sum with (item > 7); // 2: {9, 8}
count = d.sum with (item < 8); // 4: {1, 3, 4, 4}
count = d.sum with (item == 4); // 2: {4, 4}

2.9 Choosing a Storage Type
Here are some guidelines for choosing the right storage type based on flex-

ibility, memory usage, speed, and sorting. These are just rules of thumb, and
results may vary between simulators.

2.9.1 Flexibility

Use a fixed-size or dynamic array if it is accessed with consecutive posi-
tive integer indices: 0, 1, 2, 3… Choose a fixed-size array if the array size is
known at compile time, or choose a dynamic array if the size is not known
until run-time. For example, variable-size packets can easily be stored in a
dynamic array. If you are writing routines to manipulate arrays, consider
using just dynamic arrays, as one routine will works for any size dynamic
array as long as the element type (int, string, etc.) matches. Likewise, you
can pass a queue of any size into a routine as long as the element type matches
the queue argument. Associative arrays can also be passed regardless of size.
However, a routine with a fixed-size array argument only accepts arrays of the
specified length.

Choose associative arrays for nonstandard indices such as widely sepa-
rated values because of random data values or addresses. Associative arrays
can also be used to model content-addressable memories.

Queues are a good way to store data where the number of elements grows
and shrinks a lot during simulation, such as a scoreboard that holds expected
values. Lastly, queues are great for searching and sorting.

2.9.2 Memory usage

If you want to reduce the simulation memory usage, use two-state ele-
ments. You should chose data sizes that are multiples of 32 bits to avoid
wasted space. Simulators usually store anything smaller in a 32-bit word. For
example, an array of 1024 bytes wastes ¾ of the memory if the simulator puts
each element in a 32-bit word. Packed arrays can also help conserve memory.

For arrays that hold up to a thousand elements, the type of array that you
choose does not make a big difference in memory usage (unless there are

Chapter 2: Data Types 43

many instances of these arrays). For arrays with a thousand to a million active
elements, fixed-size and dynamic arrays are the most memory efficient. You
may want to reconsider your algorithms if you need arrays with more than a
million active elements.

Queues are slightly less efficient to access than fixed-size or dynamic
arrays because of additional pointers. However, if your data set grows and
shrinks often, and you store it in a dynamic memory, you will have to manu-
ally call new[] to allocate memory and copy. This is an expensive operation
and would wipe out any gains from using a dynamic memory.

Modeling memories larger than a few megabytes should be done with an
associative array. Note that each element in an associative array can take sev-
eral times more memory than a fixed-size or dynamic memory because of
pointer overhead.

2.9.3 Speed

Choose your array type based on how many times it is accessed per clock
cycle. For only a few reads and writes, you could use any type, as the over-
head is minor compared with the DUT. As you use an array more often, its
size and type matters.

Fixed-size and dynamic arrays are stored in contiguous memory, so any
element can be found in the same amount of time, regardless of array size.

Queues have almost the same access time as a fixed-size or dynamic array
for reads and writes. The first and last elements can be pushed and popped
with almost no overhead. Inserting or removing elements in the middle
requires many elements to be shifted up or down to make room. If you need to
insert new elements into a large queue, your testbench may slow down, so
consider changing how you store new elements.

When reading and writing associative arrays, the simulator must search for
the element in memory. The LRM does not specify how this is done, but pop-
ular ways are hash tables and trees. These requires more computation than
other arrays, and therefore associative arrays are the slowest.

2.9.4 Sorting

Since SystemVerilog can sort any single-dimension array (fixed-size,
dynamic, and associative arrays plus queues), you should pick based on how
often the data is added to the array. If the data is received all at once, chose a
fixed-size or dynamic array so that you only have to allocate the array once. If
the data slowly dribbles in, chose a queue, as adding new elements to the head
or tail is very efficient.

SystemVerilog for Verification44

If you have values that are noncontiguous such as ‘{1, 10, 11, 50}, and are
also unique, you can store them in an associative array by using them as an
index. Using the routines first, next, and prev, you can search an associa-
tive array for a value and find successive values. Lists are doubly linked, so
you can find values both larger and smaller than the current value. Both of
these support removing a value. However, the associative array is much faster
in accessing any given element given an index.

For example, you can use an associative array of bits to hold expected 32-
bit values. When the value is created, write to that location. When you need to
see if a given value has been written, use the exists function. When done
with an element, use delete to remove it from the associative array.

2.9.5 Choosing the best data structure

Here are some suggestions on choosing a data structure.

Network packets. Properties: fixed size, accessed sequentially. Use a
fixed-size or dynamic array for fixed- or variable-size packets.
Scoreboard of expected values. Properties: variable size, accessed by
value. In general, use a queue, as you are adding and deleting ele-
ments constantly during simulation. If you can give every transaction
a fixed id, such as 1, 2, 3 …, you could use this as an index into the
queue. If your transaction is filled with random values, you can just
push them into a queue and search for unique values. If the score-
board may have hundreds of elements, and you are often inserting and
deleting them from the middle, an associative array may be faster.
Sorted structures. Use a queue if the data comes out in a predictable
order or an associative array if the order is unspecified. If the score-
board never needs to be searched, just store the expected values in a
mailbox, as shown in section 7.6.
Modeling very large memories, greater than a million entries. If you
do not need every location, use an associative array as a sparse mem-
ory. If you do need every location, try a different approach where you
do not need so much live data. Still stuck? Be sure to use 2-state val-
ues packed into 32-bits.
Command names and values from a file. Property: lookup by string.
Read the strings from the file, and then look up the commands in an
associative array using the command as a string index.

Chapter 2: Data Types 45

You can create an array of handles that point to objects, as shown in Chap-
ter 4 on Basic OOP.

2.10 Creating New Types with typedef
You can create new types using the typedef statement. For example, you

may have an ALU that can be configured at compile-time to use on 8, 16, 24,
or 32-bit operands. In Verilog you would define a macro for the operand
width and another for the type.
Example 2-24 User-defined type-macro in Verilog

// Old Verilog style
`define OPSIZE 8
`define OPREG reg [`OPSIZE-1:0]

`OPREG op_a, op_b;

You are not really creating a new type; you are just performing text substi-
tution. In SystemVerilog you create a new type with the following code. This
book uses the convention that user-defined types use the suffix “_t.”
Example 2-25 User-defined type in SystemVerilog

// New SystemVerilog style
parameter OPSIZE = 8;
typedef reg [OPSIZE-1:0] opreg_t;

opreg_t op_a, op_b;

In general, SystemVerilog lets you copy between these basic types with no
warning, either extending or truncating values if there is a width mismatch.

Note that the parameter and typedef statements can be made global by
putting them in $root, as shown in section 5.7.

One of the most useful types you can create is an unsigned, 2-
state, 32-bit integer. Most values in a testbench are positive
integers such as field length or number of transactions received.
Put the following definition of uint in $root so it can be used
anywhere in your simulation.

Example 2-26 Definition of uint

typedef bit [31:0] uint; // 32-bit unsigned 2-state
typedef int unsigned uint; // Equivalent definition

SystemVerilog for Verification46

2.11 Creating User-Defined Structures
One of the biggest limitations of Verilog is the lack of data structures. In

SystemVerilog you can create a structure using the struct statement, similar
to what is available in C. But a struct is a degenerate class, so use a class
instead, as shown in Chapter 4. Just as a Verilog module combines both data
(signals) and code (always/initial blocks plus routines), a class combines data
and routines to make an entity that can be easily debugged and reused. A
typedef just groups data fields together. Without the code that manipulates
the data, you are only creating half of the solution.

There are several places where a typedef is useful: creating simple user-
defined types, unions, and enumerated types and virtual interfaces.

2.11.1 Creating a struct and a new type

You can combine several variables into a structure. Example 2-27 creates
a structure called pixel that has three unsigned bytes for red, green, and blue.
Example 2-27 Creating a single pixel type

struct {bit [7:0] r, g, b;} pixel;

The problem with the above declaration is that it creates a single pixel of
this type. To be able to share pixels using ports and routines, you should cre-
ate a new type instead.
Example 2-28 The pixel struct

typedef struct {bit [7:0] r, g, b;} pixel_s;
pixel_s my_pixel;

Use the suffix “_s” when declaring a struct. This makes it easier for
you to share and reuse code.

2.11.2 Making a union of several types

In hardware, the interpretation of a set of bits in a register may depend on
the value of other bits. For example, a processor instruction may have many
layouts based on the opcode. Immediate-mode operands might store a literal
value in the operand field. This value may be decoded differently for integer
instructions than for floating point instructions. Example 2-29 stores both the
integer i and the real number f in the same location.

Chapter 2: Data Types 47

Example 2-29 Using typedef to create a union

typedef union { int i; real f; } num_u;
num_u un;
un.f = 0.0; // set n in floating point format

Use the suffix “_u” when declaring a union.
Unions are useful when you frequently need to read and write a
register in several different formats. However, don’t go over-
board, especially just to save memory. Unions may help
squeeze a few bytes out of a structure, but at the expense of
having to create and maintain a more complicated data struc-

ture. Instead, make a flat class with a discriminant variable, as shown in
section 8.5.4. This “kind” variable indicates which type of transaction you
have, and thus which fields to read, write, and randomize. If you just need an
array of values, plus all the bits, used a packed array as shown in 2.3.6

2.11.3 Packed structures

SystemVerilog allows you more control in how data is laid out in memory
by using packed structures. A packed structure is stored as a contiguous set of
bits with no unused space. The struct for a pixel, shown above, used three
data values, so it is stored in three longwords, even though it only needs three
bytes. You can specify that it should be packed into the smallest possible
space.
Example 2-30 Packed structure

typedef struct packed {bit [7:0] r, g, b;} pixel_p_s;
pixel_p_s my_pixel;

Packed structures are used when the underlying bits represent a numerical
value, or when you are trying to reduce memory usage. For example, you
could pack together several bit-fields to make a single register. Or you might
pack together the opcode and operand fields to make a value that contains an
entire processor instruction.

2.12 Enumerated Types
An enumeration creates a strong variable type that is limited to a set of

specified names such as the instruction opcodes or state machine values.
Using these names, such as ADD, MOVE, or ROTW, makes your code easier
to write and maintain than using literals such as 8’h01.

SystemVerilog for Verification48

The simplest enumerated type declaration contains a list of constant names
and one or more variables. This creates an anonymous enumerated type.
Example 2-31 A simple enumerated type

enum {RED, BLUE, GREEN} color;

You usually want to create a named enumerated type to easily declare
multiple variables, especially if these are used as routine arguments or module
ports. You first create the enumerated type, and then the variables of this type.
You can get the string representation of an enumerated variable with the func-
tion name.
Example 2-32 Enumerated types

// Create data type for values 0, 1, 2
typedef enum {INIT, DECODE, IDLE} fsmstate_e;
fsmstate_e pstate, nstate; // declare typed variables

initial begin
 case (pstate)
 IDLE: nstate = INIT; // data assignment
 INIT: nstate = DECODE;
 default: nstate = IDLE;
 endcase
 $display("Next state is %0s",
 nstate.name); // Use name function
 end

Use the suffix “_e” when declaring an enumerated type.

2.12.1 Defining enumerated values

The actual values default to integers starting at 0 and then increase. You
can choose your own enumerated values. The following line uses the default
value of 0 for INIT, then 2 for DECODE, and 3 for IDLE.
Example 2-33 Specifying enumerated values

typedef enum {INIT, DECODE=2, IDLE} fsmtype_e;

Enumerated constants, such as INIT above, follow the same scoping rules
as variables. Consequently, if you use the same name in several enumerated
types (such as INIT in different state machines), they have to be declared in
different scopes such as modules, program blocks, routines, or classes.

Chapter 2: Data Types 49

Enumerated types are stored as int unless you specify oth-
erwise. Be careful when assigning values to enumerated
constants, as the default value of an int is 0. In Example 2-
34, position is initialized to 0, which is not a legal
ordinal_e variable. This behavior is not a tool bug – it is

how the language is specified. So always specify an enumerated constant with
the value of 0, just to catch this error.
Example 2-34 Incorrectly specifying enumerated values

typedef enum {FIRST=1, SECOND, THIRD} ordinal_e;
ordinal_e position;

Example 2-35 Correctly specifying enumerated values

typedef enum {ERR_O=0, FIRST=1, SECOND, THIRD} ordinal_e;
ordinal_e position;

2.12.2 Routines for enumerated types

SystemVerilog provides several functions for stepping through enumer-
ated types.

first returns first member of the enumeration.
last returns last member of the enumeration.
next returns the next element of the enumeration.
next(N) returns the Nth next element.
prev returns the previous element of the enumeration.
prev(N) returns the Nth previous element.

The functions next and prev wrap around when they reach the beginning
or end of the enumeration.

Note that there is no easy way to write a for loop that steps through all
members of an enumerated type if you use an enumerated loop variable. You
get the starting member with first and the next member with next. The
problem is creating a comparison for the final iteration through the loop. If
you use the test current!=current.last, the loop ends before using the
last value. If you use current<=current.last, you get an infinite loop, as
next never gives you a value that is greater than the final value.

You can use a do...while loop to step through all the values.

SystemVerilog for Verification50

Example 2-36 Stepping through all enumerated members

enum {RED, BLUE, GREEN} color;
color = color.first;
do
 begin
 $display("Color = %0d/%0s", color, color.name);
 color = color.next;
 end
while (color != color.first); // Done at wrap-around

2.12.3 Converting to and from enumerated types

The default type for an enumerated type is int (2-state). You can take the
value of an enumerated variable and put it in an integer or int with a sim-
ple assignment. But SystemVerilog does not let you store a 4-state integer
in an enum without explicitly changing the type. SystemVerilog requires you
to explicitly cast the value to make you realize that you could be writing an
out-of-bounds value.
Example 2-37 Assignments between integers and enumerated types

typedef enum {RED, BLUE, GREEN} COLOR_E;
COLOR_E color, c2;
integer c;

initial begin
 c = color; // Convert from enum to integer
 c++; // Increment integer
 if (!$cast(color, c)) // Cast integer back to enum
 $display("Cast failed for c=%0d", c);
 $display("Color is %0d / %0s", color, color.name);
 c2 = COLOR_E’(c); // No type checking done
 end

When called as a function as shown in Example 2-37, $cast tried to
assign from the right value to the left. If the assignment succeeds, $cast
returns 1. If the assignment fails because of an out-of-bounds value, no
assignment is made and the function returns 0. If you use $cast as a task and
the operation fails, SystemVerilog prints an error.

You can also cast the value using the type’(val) as shown above, but
this does not do any type checking, so the result may be out of bounds. You
should not use this style.

Chapter 2: Data Types 51

2.13 Constants
There are several types of constants in SystemVerilog. The classic Verilog

way to create a constant is with a text macro. On the plus side, macros have
global scope and can be used for bit field definitions and type definitions. On
the negative side, macros are global, so they can cause conflicts if you just
need a local constant. Lastly, a macro requires the ` character so that it will be
recognized and expanded.

In SystemVerilog, parameters can be declared at the $root level so they
can be global. This approach can replace many Verilog macros that were just
being used as constants. You can use a typedef to replace those clunky mac-
ros. The next choice is a parameter. A Verilog parameter was loosely
typed and was limited in scope to a single module. Verilog-2001 added typed
parameters, but the limited scope kept parameters from being widely used.

SystemVerilog also supports the const modifier that allows you to make
a variable that can be initialized in the declaration but not written by proce-
dural code.
Example 2-38 Declaring a const variable

initial begin
 const byte colon = ":";
 ...
end

In Example 2-38, the value of colon is initialized when the initial
block is entered. Example 3-10 shows a const routine argument.

2.14 Strings
If you have ever tried to use a Verilog reg variable to hold a string of char-

acters, your suffering is over. The SystemVerilog string type holds
variable-length strings. An individual character is of type byte. The elements
of a string of length N are numbered 0 to N-1. Note that, unlike C, there is no
null character at the end of a string, and any attempt to use the character “\0”
is ignored. Strings use dynamic memory allocation, so you do not have to
worry about running out of space to store the string.

Example 2-39 shows various string operations. The function getc(N)
returns the byte at location N, while toupper returns an upper-case copy of
the string and tolower returns a lowercase copy. The curly braces {} are
used for concatenation. The task putc(M) writes a byte into a string at loca-
tion M, that must be between 0 and the length as given by len. The
substr(start,end) function extracts characters from location start to
end.

SystemVerilog for Verification52

Example 2-39 String methods

string s;

initial begin
 s = "SystemVerilog";
 $display(s.getc(0)); // Display: 83 (‘S’)
 $display(s.toupper()); // Display: SYSTEMVERILOG

 s = {s, "3.1b"}; // "SystemVerilog3.1b"
 s.putc(s.len()-1, "a"); // change b-> a

 $display(s.substr(2, 5)); // Display: stem

 // Create temporary string, note format
 my_log($psprintf("%s %5d", s, 42));
end

task my_log(string message);
 // Print a message to a log
 $display("@%0d: %s", $time, message);
endtask

Note how useful dynamic strings can be. In other languages such as C you
have to keep making temporary strings to hold the result from a function. In
Example 2-39, the $psprintf2 function is used instead of $sformat, from
Verilog-2001. This new function returns a formatted temporary string that, as
shown above, can be passed directly to another routine. This saves you from
having to declare a temporary string and passing it between the formatting
statement and the routine call.

2.15 Expression Width
A prime source for unexpected behavior in Verilog has been the width of

expressions. Example 2-40 adds 1 + 1 using four different styles. Addition A
uses two 1-bit variables, so with this precision 1+1=0. Addition B uses 8-bit
precision because there is an 8-bit variable on the right side of an assignment.
In this case, 1+1=2. Addition C uses a dummy constant to force SystemVer-
ilog to use 2-bit precision. Lastly, in addition D, the first value is cast to be a 2-
bit value with the cast operator, so 1+1=2.

2. The function $psprintf is implemented in Synopsys VCS and submitted for the next
version of SystemVerilog. Other simulators may have already implemented it.

Chapter 2: Data Types 53

Example 2-40 Expression width depends on context

bit [7:0] b8;
bit one = 1’b1; // Single bit
$displayb(one + one); // A: 1+1 = 0

b8 = one + one; // B: 1+1 = 2
$displayb(b8);

$displayb(one + one + 2’b0); // C: 1+1 = 2 with constant

$displayb(2’(one) + one); // D: 1+1 = 2 with cast

There are several tricks you can use to avoid this problem. First, avoid sit-
uations where the overflow is lost, as in addition A. Use a temporary, such as
b8, with the desired width. Or, you can add another value to force the mini-
mum precision, such as 2’b0. Lastly, in SystemVerilog, you can cast one of
the variables to the desired precision.

2.16 Net Types
Verilog allows you to use nets without defining them, a feature
called implicit nets. This shortcut helps net-listing tools and
lazy designers, but is guaranteed to cause problems if you ever
misspell a net name. The solution is to disable this language
feature with the Verilog-2001 compile directive:

‘default_nettype none. Put this (without a period) before the first mod-
ule in your Verilog code. Any implicit net will cause a compilation error.
Example 2-41 Disabling implicit nets with ‘default_nettype none

`default_nettype none

module first;
...

2.17 Conclusion
SystemVerilog provides many new data types and structures so that you

can create high-level testbenches without having to worry about the bit-level
representation. Queues work well for creating scoreboards where you con-
stantly need to add and remove data. Dynamic arrays allow you to choose the
array size at run-time for maximum testbench flexibility. Associative arrays
are used for sparse memories and some scoreboards with a single index. Enu-

SystemVerilog for Verification54

merated types make your code easier to read and write by creating groups of
named constants.

But don’t go off and create a procedural testbench with just these con-
structs. Explore the OOP capabilities of SystemVerilog in Chapter 4 to learn
how to design code at an even higher level of abstraction, thus creating robust
and reusable code.

Chapter 3

Procedural Statements and Routines

3.1 Introduction
As you verify your design, you need to write a great deal of code, most of

which is in tasks and functions. SystemVerilog introduces many incremental
improvements to make this easier by making the language look more like C,
especially around argument passing. If you have a background in software
engineering, these additions should be very familiar.

3.2 Procedural Statements
SystemVerilog adopts many operators and statements from C and C++.

You can declare a loop variable inside a for loop that then restricts the scope
of the loop variable and can prevent some coding bugs. The increment ++ and
decrement -- operators are available in both pre- and post- form. If you have
a label on a begin or fork statement, you can put the same label on the
matching end or join statement. This makes it easier to match the start and
finish of a block. You can also put a label on other SystemVerilog end
statements such as endmodule, endtask, endfunction, and others that
you will learn in this book. Example 3-1 demonstrates some of the new
constructs.
Example 3-1 New procedural statements and operators

initial
 begin : example
 integer array[10], sum, j;

 // Declare i in for statement
 for (int i=0; i<10; i++) // Increment i
 array[i] = i;

 // Add up values in the array
 sum = array[9];
 j=8;
 do // do...while loop
 sum += array[j]; // Accumulate
 while (j--); // Test if j=0
 $display("Sum=%4d", sum); // %4d - specify width
end : example // End label

SystemVerilog for Verification56

Two new statements help with loops. First, if you are in a loop, but want to
skip over rest of the statements and do the next iteration, use continue. If
you want to leave the loop immediately, use break.

The following loop reads commands from a file using the amazing file I/O
code that is part of Verilog-2001. If the command is just a blank line, the code
just does a continue and skips any further processing of the command. If the
command is “done,” the code does a break to terminate the loop.
Example 3-2 Using break and continue while reading a file

initial begin
 logic [127:0] cmd;
 integer file, c;

 file = $fopen("commands.txt", "r");
 while (!$feof(file)) begin
 c = $fscanf(file, "%s", cmd);
 case (cmd)
 "": continue; // Blank line - skip to loop end
 "done": break; // Done - leave loop
 // Process other commands here
 ...
 endcase // case(cmd)
 end
 $fclose(file);
end

3.3 Tasks, Functions, and Void Functions
Verilog makes a very clear differentiation between tasks and functions.

The most important difference is that a task can consume time while a
function cannot. A function cannot have a delay, #100, a blocking statement
such as @(posedge clock) or wait(ready), or call a task. Additionally, a
Verilog function must return a value, and the value must be used, as in an
assignment statement.

In SystemVerilog, if you want to call a function and ignore its return
value, cast the result to void. This might be done if you are calling the
function to use a side effect.
Example 3-3 Ignoring a function’s return value

void’(my_func(42));

Some simulators such as VCS allow you to ignore the return value without
using the above void syntax.

Chapter 3: Procedural Statements and Routines 57

If you have a SystemVerilog task that does not consume time,
you should make it a void function that is a function that
does not return a value. Now it can be called from any task or
function. For maximum flexibility, any debug routine should
be a void function rather than a task so that it can be called

from any task or function. Example 3-4 prints values from a state machine.
Example 3-4 Void function for debug

function void print_state(...);
 $display("@%0d: state = %0s", $time, cur_state.name);
endfunction

3.4 Task and Function Overview
SystemVerilog makes several small improvements to tasks and functions

to make them look more like C or C++ routines.3

3.4.1 Routine begin...end removed
The first improvement you may notice in SystemVerilog is that

begin...end blocks are optional, while Verilog-1995 required them on all but
single line routines. The task / endtask and function / endfunction
keywords are enough to define the routine boundaries.
Example 3-5 Simple task without begin...end

task multiple_lines;
 $display("First line");
 $display("Second line");
endtask : multiple_lines

3.5 Routine Arguments
Many of the SystemVerilog improvements for routine make it easier to

declare arguments and expand the ways you can pass values to and from a
routine.

3.5.1 C-style Routine Arguments
SystemVerilog and Verilog-2001 allow you to declare task and function

arguments more cleanly and with less repetition. The following Verilog task

3. In general, a routine definition or call with no arguments does not need the empty parentheses (). This
book leaves them out except as needed for clarity.

SystemVerilog for Verification58

requires you to declare some arguments twice, once for the direction, and
once for the type.
Example 3-6 Verilog-1995 routine arguments

task mytask2;
 output [31:0] x;
 reg [31:0] x;
 input y;
 ...
endtask

With SystemVerilog, you can use the less verbose C-style. Note that you
should use the universal input type of logic.
Example 3-7 C-style routine arguments

task mytask1 (output logic [31:0] x,
 input logic y);
...
endtask

3.5.2 Argument Direction
You can take even more shortcuts with declaring routine arguments. The

direction and type default to “input logic” and are sticky, so you don’t have to
repeat these for similar arguments. Here is a routine header written using the
Verilog-1995 style.
Example 3-8 Verbose Verilog-style routine arguments

task T3;
 input a, b;
 logic a, b;
 output [15:0] u, v;
 bit [15:0] u, v;
 ...
endtask

You could rewrite this as follows.
Example 3-9 Routine arguments with sticky types

task T3(a, b, output bit [15:0] u, v);

The arguments a and b are input logic, 1 bit wide. The arguments u and v
are 16-bit output bit types.

Chapter 3: Procedural Statements and Routines 59

3.5.3 Advanced Argument Types
Verilog had a simple way to handle arguments: an input or inout was

copied to a local variable at the start of the routine, while an output or
inout was copied when the routine exited. No memories could be passed into
a Verilog routine, only scalars.

In SystemVerilog, you can specify that an argument is passed by
reference, rather than copying its value. This argument type, ref, has several
benefits over input, output, and inout. First, you can now pass an array
into a routine.
Example 3-10 Passing arrays using ref and const

function void print_sum (const ref int a[]);
 int sum = 0;
 for (int i=0; i<a.size; i++) begin
 sum += a[i];
 $display("The sum of the arrays is ", sum);
endfunction

SystemVerilog allows you to pass array arguments without the ref
direction, but the array is copied onto the stack, an expensive operation for all
but the smallest arrays.

Example 3-10 also shows the const modifier. As a result, the array a is
initialized when print_sum is called, but cannot be modified in the routine.

Always use ref when passing arrays to a routine. If you don’t
want the routine to change the array values, use the const
ref type. With this, the compiler checks that your routine does
not modify the array.

The second benefit of ref arguments is that a task can modify a variable
and is instantly seen by the calling function. This is useful when you have
several threads executing concurrently and want a simple way to pass
information. See Chapter 7 for more details on using fork-join.

SystemVerilog for Verification60

Example 3-11 Using ref across threads

task bus_read(input logic [31:0] addr,
 ref logic [31:0] data);

 // Request bus and drive address
 bus.request = 1’b1;
 @(posedge bus.grant) bus.addr = addr;

 // Wait for data from memory
 @(posedge bus.enable) data = bus.data;

 // Release bus and wait for grant
 bus.request = 1’b0;
 @(negedge bus.grant);
endtask

logic [31:0] addr, data;
initial
 fork
 bus_read(addr, data);
 begin
 @data; // Trigger on data change
 $display("Read %h from bus", data);
 end
 join

In Example 3-11, the initial block can access the data from memory as
soon as bus.enable is asserted, even though the bus_read task does not
return until the bus transaction completes, which could be several cycles later.
Since the data argument is passed as ref, the @data statement triggers as
soon as data changes in the task. If you had declared data as output, the
@data statement would not trigger until the end of the bus transaction.

3.5.4 Default Argument Values
As your testbench grows in sophistication, you may want to add additional

controls to your code but not break existing code. For the function in Example
3-10, you might want to print a sum of just the middle values of the array.
However, you don’t want to go back and rewrite every call to add extra
arguments. In SystemVerilog you can specify a default value that is used if
you leave out an argument in the call.

Chapter 3: Procedural Statements and Routines 61

Example 3-12 Function with default argument values

function void print_sum (ref int a[],
 input int start = 0,
 input int end = -1);
 int sum = 0, last;
 if (last == -1 || last > a.size)
 last = a.size;
 for (int i=start; i<last; i++) begin
 sum += a[i];
 $display("The sum of the arrays is ", sum);
endtask

You can call this task in the following ways. Note that the first call is
compatible with both versions of the print_sum routine.
Example 3-13 Using default argument values

print_sum(a); // Sum a[0:size-1] – default
print_sum(a, 2, 5); // Sum a[2:5]
print_sum(a, 1); // Start at 1
print_sum(a,, 3); // Sum a[0:3]
print_sum(); // error: a has no default

Using a default value of -1 (or any out-of-range value) is a good way to
see if the call specified a value.

3.5.5 Common Coding Errors
The most common coding mistake that you are likely to
make with a routine is forgetting that the argument type is
sticky with respect to the previous argument, and that the
default type for the first argument is a single-bit input. Start
with the following simple task header.

Example 3-14 Original task header

task sticky(int a, b);

The two arguments are input integers. As you are writing the task, you
realize that you need access to an array, so you add a new array argument, and
use the ref type so it does not have to be copied.
Example 3-15 Task header with additional array argument

task sticky(ref int array[50],
 int a, b); // What direction are these?

SystemVerilog for Verification62

What argument types are a and b? They take the direction of the previous
argument that is a ref. Using ref for a simple variable such as an int is not
usually needed, but you would not get even a warning from the compiler, and
thus would not realize that you were using the wrong type.

If any argument to your routine is something other than the default input
type, specify the direction for all arguments.
Example 3-16 Task header with additional array argument

task sticky(ref int array[50],
 input int a, b); // Be explicit

3.6 Returning from a Routine
SystemVerilog adds the return statement to make it easier for you to

control the flow in your routines. The following task needs to return early
because of error checking. Otherwise, it would have to use an else clause,
that would cause more indentation and be harder to read.
Example 3-17 Return in a task

task load_array(int len, ref int array[]);
 if (len <= 0) begin
 $display("Bad len");
 return;
 end

 // Code for the rest of the task
 ...
endtask

A return statement can simplify your functions.
Example 3-18 Return in a function

function bit transmit(...);
 // Send transaction
 ...
 return ~ifc.cb.error; // Return status: 0=error
endfunction

3.7 Local Data Storage
When Verilog was created in the 1980s, its primary goal was describing

hardware. Because of this, all objects in the language were statically
allocated. In particular, routine arguments and local variables were stored in a
fixed location, rather than pushing them on a stack like other programming

Chapter 3: Procedural Statements and Routines 63

languages. After all, how can you build a silicon representation of a recursive
routine? However, software engineers who were used to the behavior of
stack-based languages such as C were bitten by these subtle bugs, and were
limited in their ability to create complex testbenches with libraries of routines.

3.7.1 Automatic storage
In Verilog-1995, if you tried to call a task from multiple places in your

testbench, the local variables shared common, static storage, and so the
different threads stepped on each other’s values. In Verilog-2001 you can
specify that tasks, functions, and modules use automatic storage, which
causes the simulator to use the stack for local variables.

In SystemVerilog, routines still use static storage by default,
for both modules and program blocks. You should always
make program blocks (and their routines) use automatic storage
by putting the automatic keyword in the program statement.
In Chapter 5 you will learn about program blocks that hold the

testbench code. You should always make programs automatic.
Example 3-19 shows a task to monitor when data is written into memory.

Example 3-19 Specifying automatic storage in program blocks

program automatic test;
 task wait_for_mem(input [31:0] addr, expect_data,
 output success);
 while (bus.addr !== addr)
 @(bus.addr);
 success = (bus.data == expect_data);
 endtask
...
endprogram

You can call this task multiple times concurrently, as the addr and
expect_data arguments are stored separately for each call. Without the
automatic modifier, if you called wait_for_mem a second time while the
first was still waiting, the second call would overwrite the two arguments.

3.7.2 Variable initialization
A similar problem occurs when you try to initialize a local
variable in a declaration, as it is actually initialized at the
start of simulation. The general solution is to avoid
initializing a variable in a declaration to anything other than
a constant. Use a separate assignment statement to give you

better control over when initialization is done.

SystemVerilog for Verification64

The following task looks at the bus after five cycles and then creates a
local variable and attempts to initialize it to the current value of the address
bus.
Example 3-20 Static initialization bug

program initialization; // Buggy version
 task check_bus;
 repeat (5) @(posedge clock);
 if (bus_cmd == ‘READ) begin
 // When is local_addr initialized?
 reg [7:0] local_addr = addr<<2; // Bug
 $display("Local Addr = %h", local_addr);
 end
 endtask
endprogram

The bug is that the variable local_addr is statically allocated, so it is
actually initialized at the start of simulation, not when the begin...end block
is entered. Once again, the solution is to declare the program as automatic.
Example 3-21 Static initialization fix: use automatic

program automatic initialization; // Bug solved
...
endmodule

3.8 Time Values
SystemVerilog has several new constructs to allow you to unambiguously

specify time values in your system.

3.8.1 Time units and precision
When you rely on the ‘timescale compiler directive, you must compile

the files in the proper order to be sure all the delays use the proper scale and
precision. The timeunit and timeprecision declarations eliminate this
ambiguity by precisely specifying the values for every module. Example 3-22
shows these declarations. Note that if you use these instead of ‘timescale,
you must put them in every module that has a delay.

3.8.2 Time literals
SystemVerilog allows you to unambiguously specify a time value plus

units. Your code can use delays such as 0.1ns or 20ps. Just remember to use
timeunit and timeprecision or ‘timescale. You can make your code

Chapter 3: Procedural Statements and Routines 65

even more time aware by using the classic Verilog $timeformat and
$realtime routines.
Example 3-22 Time literals and $timeformat

module timing;
 timeunit 1ns;
 timeprecision 1ps;
 initial begin
 $timeformat(-9, 3, "ns", 8);
 #1 $display("@%t", $realtime); // @1.000ns
 #2ns $display("@%t", $realtime); // @3.000ns
 #0.1ns $display("@%t", $realtime); // @3.100ns
 #41ps $display("@%t, $realtime); // @3.141ns
 end
endmodule

3.9 Conclusion
The new SystemVerilog procedural constructs and task/function features

make it easier for you to create testbenches by making the language look more
like other programming language such as C/C++. But stick with
SystemVerilog for the additional HDL constructs such as timing controls and
four-state logic.

Chapter 4

Basic OOP

4.1 Introduction
With procedural programming languages such as Verilog and C, there is a

strong division between data structures and the code that uses them. The dec-
larations and types of data are often in a different file than the algorithms that
manipulate them. As a result, it can be difficult to understand the functionality
of a program, as the two halves are separate.

Verilog users have it even worse than C users, as there are no structures in
Verilog, only bit vectors and arrays. If you wanted to store information about
a bus transaction, you would need multiple arrays: one for the address, one for
the data, one for the command, and more. Information about transaction N is
spread across all the arrays. Your code to create, transmit, and receive transac-
tions is in a module that may or may not be actually connected to the bus.
Worst of all, the arrays are all static, so if your testbench only allocated 100
array entries, and the current test needed 101, you would have to edit the
source code to change the size and recompile. As a result, the arrays are sized
to hold the greatest conceivable number of transactions, but during a normal
test, most of that memory is wasted.

Object Oriented Programming (OOP) lets you create complex data types
and tie them together with the routines that work with them. You can create
testbenches and system-level models at a more abstract level by calling rou-
tines to perform an action rather than toggling bits. When you work with
transactions instead of signal transitions, you are more productive. As a
bonus, your testbench is decoupled from the design details, making it more
robust and easier to maintain and reuse on future projects.

If you already are familiar with OOP, skim this chapter, as SystemVerilog
follows OOP guidelines fairly closely. Be sure to read section 4.18 to learn
how to build a testbench. Chapter 8 presents advanced OOP concepts such as
inheritance and more testbench techniques; it should be read by everyone.

4.2 Think of Nouns, not Verbs
Grouping data and code together helps you in creating and maintaining

large testbenches. How should data and code be brought together? You can
start by thinking of how you would perform the testbench’s job.

The goal of a testbench is to apply stimulus to a design and then check the
result to see if it is correct. The data that flows into and out of the design is

SystemVerilog for Verification68

grouped together into transactions. So the easiest way to organize the test-
bench is around the transactions, and the operations that you perform. In
OOP, the transaction is the object that is focus of your testbench.

You can think of an analogy with transportation. When you get into a car,
you want to perform discrete actions, such as starting, moving forward, turn-
ing, stopping, and listening to music while you drive. Early cars required
detailed knowledge about their internals to operate. You had to advance or
retard the spark, open and close the choke, keep an eye on the engine speed
and be aware of the traction of the tires if you drove on a slippery surface such
as a wet road. Today your interactions with the car are at a high level. If you
want to start a car, just turn the key in the ignition, and you are done. Get the
car moving by pressing the gas pedal; stop it with the brakes. Are you driving
on snow? Don’t worry: the anti-lock brakes will help you stop safely and in a
straight line.

Your testbench should be structured the same way. Traditional testbenches
were oriented around the operations that had to happen: create a transaction,
transmit it, receive it, check it, and make a report. Instead, you should think
about the structure of the testbench, and what each part does. The generator
creates transactions and passes them to the next level. The driver talks with
the design that responds with transactions that are received by a monitor. The
scoreboard checks these against the expected data. You should divide your
testbench into blocks, and then define how they communicate.

4.3 Your First Class
A class encapsulates the data together with the routines that manipulate it.

Example 4-1 shows a class for a generic packet. The packet contains source
and destination addresses, and an array of data values. There are two routines
in the BusTran class: a function to display the contents of the packet, and
another that computes the CRC (cyclic redundancy check) of the data.

To make it easier to match the beginning and end of a named
block, you can put a label on the end of it. In Example 4-1 these
end labels may look redundant, but in real code with many
nested blocks, the labels help you find the mate for a simple
end or endtask, endfunction, or endclass.

Chapter 4: Basic OOP 69

Example 4-1 Simple BusTran class

class BusTran;
 bit [31:0] addr, crc, data[8];

 function void display;
 $display("BusTran: %h", addr);
 endfunction : display

 function void calc_crc;
 crc = addr ^ data.xor;
 endfunction : calc_crc

endclass : BusTran

Every company has its own naming style. This book uses the
following convention: Class names start with a capital letter
and do not use underscores, as in BusTran or Packet. Con-
stants are all upper case, as in CELL_SIZE, while variables are
lower case, as in count or trans_type. You are free to use

whatever style you want.

4.4 Where to Define a Class
You can define a class in SystemVerilog in a program, module, pack-

age, or outside of any these. Classes can be used in programs and modules.
This book only shows classes that are used in a program block, as introduced
in Chapter 5. Until then, think of a program block as a module that holds your
test code. The program holds a single test and contains the objects that com-
prise the testbench, and the initial blocks to create, initialize, and run the test.

Many verification teams put either a standalone class or a group of closely
related classes in a file. Bundle the group of classes with a SystemVerilog
package. For instance, you might group together all SCSI/ATA transactions
into a single package. Now you can compile the package separately from the
test of the system. Unrelated classes, such as those for transactions, score-
boards, or different protocols, should go into separate files.

See the SystemVerilog LRM for more information on packages.

4.5 OOP Terminology
What separates you, an OOP novice, from an expert? The first thing is the

words you use. You already know some OOP concepts from working with

SystemVerilog for Verification70

Verilog. Here are some OOP terms, definitions, and rough equivalents in Ver-
ilog 2001.

Class – a basic building block containing routines and variables. The
analogue in Verilog is a module.
Object – an instance of a class. In Verilog, you need to instantiate a
module to use it.
Handle – a pointer to an object. In Verilog, you use the name of an
instance when you refer to signals and methods from outside the
module. An OOP handle is like the address of the object, but is stored
in a pointer that can only refer to one type.
Property – a variable that holds data. In Verilog, this is a signal such
as a register or wire.
Method – the procedural code that manipulates variables, contained
in tasks and functions. Verilog modules have tasks and functions plus
initial and always blocks.
Prototype – the header of a routine that shows the name, type, and
argument list. The body of the routine contains the executable code.

This book uses the more traditional terms from Verilog of “variable” and
“routine” rather than OOP’s “property” and “method.” If you are comfortable
with the OOP terms, you can skim this chapter.

In Verilog you build complex designs by creating modules and instantiat-
ing them hierarchically. In OOP you create classes and instantiate them
(creating objects) to create a similar hierarchy.

Here is a brief analogy to explain these OOP terms. Think of a class as the
blueprint for a house. This plans describe how the structure of house, but you
cannot live in a blueprint. An object is the actual house. Just as one set of
blueprints can be used to build a whole subdivision of houses, a single class
can be used to build many objects. The house address is like a handle in that it
uniquely identifies your house. Inside your house you have things such as
lights (on or off), with switches to control them. A class has variables that
hold values, and routines that control the values. A class for the house might
have many lights. A single call to turn_on_porch_light() sets the porch
light variable to ON in a single house.

4.6 Creating New Objects
Both Verilog and OOP have the concept of instantiation, but there are

some differences in the details. A Verilog module, such as a counter, is instan-

Chapter 4: Basic OOP 71

tiated when the netlist is compiled. A SystemVerilog class, such as a network
packet, is instantiated at run-time when needed by the testbench. Verilog
instances are static, as the hardware does not change during simulation; only
signal values change. Stimulus objects are constantly being created and used
to drive the DUT and check the results. Later, the objects may be freed so
their memory can be used by new ones.4

The analogy between OOP and Verilog has a few other exceptions. The
top-level Verilog module is not usually explicitly instantiated. However, a
SystemVerilog class must be instantiated before it can be used. Next, a Ver-
ilog instance name only refers to a single instance, while a SystemVerilog
handle can refer to many objects, though only one at a time.

4.6.1 No news is good news

In Example 4-2, b is a handle that points to an object of type BusTran.
You can simplify this by just calling b a BusTran handle.
Example 4-2 Declaring and using a handle

BusTran b; // Declare a handle
b = new; // Allocate a BusTran object

When you declare the handle b, it is initialized to the special value null.
Next, you call the new function to construct the BusTran object. new allo-
cates space for the BusTran, initializes the variables to their default value (0
for 2-state variables and X for 4-state ones), and returns the address where the
object is stored. For every class, SystemVerilog creates a default new to allo-
cate and initialize an object. See section 4.6.2 for more details on this
function.

4.6.2 Custom Constructor

Sometimes OOP terminology can make a simple concept seem complex.
What does instantiation mean? When you call new to instantiate an object,
you are allocating a new block of memory to store the variables for that
object. For example, the BusTran class has two 32-bit registers (addr and
crc) and an array with eight values (data), for a total of 11 longwords, or 44
bytes. So when you call new, SystemVerilog allocates 44 bytes of storage. If
you have used C, this step is similar to the malloc function. (Note that Sys-

4. Back to the house analogy: the address is normally static, unless your house burns down,
causing you to construct a new one. And garbage collection is never automatic.

SystemVerilog for Verification72

temVerilog uses additional memory for four-state variables and housekeeping
information such as the object’s type.)

The new function does more than allocate memory. It also initializes the
values. By default, it sets variables to their default values – 0 for 2-state vari-
ables, X for 4-state, etc. You can define your own new function so that you
can set the values as you prefer. That is why the new function is also called
the “constructor,” as it builds the object, just as your house is constructed
from wood and nails.

You can write your own new function. Note that it does not have a type, as
it always returns an object of the same type as the class.
Example 4-3 Simple use-defined new function

class BusTran;
 logic [31:0] addr, crc, data[8];

 function new;
 addr = 3;
 foreach (data[i])
 data[i] = 5;
 endfunction
endclass

The above code sets addr and data to fixed values but leaves crc at its
default value of X. (SystemVerilog allocates the space for the object automat-
ically.) You can use the function argument with default values to make a more
flexible constructor.
Example 4-4 A new function with arguments

class BusTran;
 logic [31:0] addr, crc, data[8];

 function new(logic [31:0] addr=3, d=5);
 this.addr = addr;
 foreach (data[i])
 data[i] = d;
 endfunction
endclass

initial begin
 BusTran b;
 b = new(10); // data uses default of 5
end

Chapter 4: Basic OOP 73

How does SystemVerilog know which new function to call? It looks at the
type of the handle on the left side of the assignment. In Example 4-5, the call
to new inside the Driver constructor calls the new function for BusTran,
even though the one for Driver is closer. Since bt is a BusTran handle,
SystemVerilog does the right thing and create an object of type BusTran.
Example 4-5 Calling the right new function

class BusTran;
...
endclass : BusTran

class Driver;
 BusTran bt;
 function new(); // Driver’s new function
 bt = new(); // Call the BusTran new function
 endfunction
endclass : Driver

4.6.3 Separating the declaration and construction

You should avoid declaring a handle and calling the construc-
tor, new, all in one statement. While this is legal syntax, it can
create ordering problems, as the constructor is called before the
first procedural statement. You may want to initialize objects in
a certain order, but if you call new in the declaration, you won’t

have this control. Additionally, if you forget to use automatic storage, the
constructor is called at the start of simulation.

4.6.4 The difference between new() and new[]

You may have noticed that this new() function looks a lot like the new[]
operator, described in section 2.4, used to set the size of dynamic arrays. They
both allocate memory and initialize values. The big difference is that the
new() function is called to construct a single object, while the new[] opera-
tor is building an array with multiple elements. new() can take arguments for
setting object values, while new[] only takes a single value for the array size.

4.6.5 Getting a handle on objects

New OOP users often confuse an object with its handle. The
two are very distinct. You declare a handle and construct
an object. Over the course of a simulation, a handle can

SystemVerilog for Verification74

point to many objects. This is the dynamic nature of OOP and SystemVerilog.
Don’t get the handle confused with the object.

In Example 4-6, b1 first points to one object, then another.
Example 4-6 Allocating multiple objects

BusTran b1, b2; // Declare two handles
b1 = new; // Allocate first BusTran object
b2 = b1; // b1 & b2 point to it
b1 = new; // Allocate second BusTran object

Why would you want to create objects dynamically? During a simulation
you may need to create hundreds or thousands of transactions. SystemVerilog
lets you create new ones automatically, when you need them. In Verilog, you
would have to use a fixed-size array large enough to hold the maximum num-
ber of transactions.
Figure 4-1 Handles and objects

Note that this dynamic creation of objects is different from anything else
offered before in the Verilog language. An instance of a Verilog module and
its name are bound together statically during compilation. Even with auto-
matic variables, which come and go during simulation, the name and storage
are always tied together.

An analogy for handles is people who are attending a conference. Each
person is similar to an object. When you arrive, a badge is “constructed” by
writing your name on it. This badge is a handle that can be used by the orga-
nizers to keep track of each person. When you take a seat for the lecture,
space is allocated. You may have multiple badges for attendee, presenter, or
organizer. When you leave the conference, your badge may be reused by writ-
ing a new name on it, just as a handle can point to different objects through
assignment. Lastly, if you lose your badge and there is nothing to identify
you, you will be asked to leave. The space you take, your seat, is reclaimed
for use by someone else.

4.7 Object Deallocation
Now you know how to create an object – but how do you get rid of it? For

example, your testbench creates and send thousands of transactions such as
transactions into your DUT. Once you know the transaction completed suc-

First
BusTran
object

b2Second
BusTran
object

b1 First
BusTran
object

b2Second
BusTran
object

b1

Chapter 4: Basic OOP 75

cessfully, and you gather statistics, you don’t need to keep it around. You
should reclaim the memory; otherwise, a long simulation might run out of
memory, or at least run more and more slowly.

Garbage collection is the process of automatically freeing objects that are
no longer referenced. One way SystemVerilog can tell if an object is no
longer being used is by keeping track of the number of handles that point to it.
When the last handle no longer references an object, SystemVerilog releases
the memory for it.5

Example 4-7 Creating multiple objects

BusTran b; // Create a handle
b = new; // Allocate a new BusTran
b = new; // Allocate a second one, free the first
b = null; // Deallocate the second

The second line calls new to construct an object and store the address in
the handle b. The next call to new constructs a second object and stores its
address in b, overwriting the previous value. Since there are no handles point-
ing to the first object, SystemVerilog can deallocate it. (SystemVerilog may
delete the object immediately, or wait a while.) The last line explicitly clears
the handle so that now the second object can be deallocated.

If you are familiar with C++, these concepts of objects and handles might
look familiar, but there are some important differences. A SystemVerilog
handle can only point to objects of one type, so they are called “type-safe.” In
C++, a typical untyped pointer is only an address in memory, and you can set
it to any value or modify it with operators such as pre-increment. You cannot
be sure that a pointer really is valid. SystemVerilog does not allow any modi-
fication of a handle or using a handle of one type to refer to an object of
another type. (SystemVerilog’s OOP specification is closer to Java than C++.)

Secondly, since SystemVerilog performs automatic garbage collection
when no more handles refer to an object, you can be sure your code always
uses valid handles. In C / C++, a pointer can refer to an object that no longer
exists. Garbage collection in those languages is manual, so your code can suf-
fer from “memory leaks” when you forget to deallocate objects.

SystemVerilog cannot garbage collect an object that is refer-
enced by a handle. If you create linked lists (especially double-
linked lists) or circular lists, SystemVerilog does not deallocate
the object. You need to manually clear all handles by setting
them to null. If an object contains a routine that forks off a

5. The actual algorithm to find unused objects varies between simulators. This section
describes reference counting, which is the easiest to understand.

SystemVerilog for Verification76

thread, the object is not deallocated while the thread is running. Likewise, any
objects that are used by a spawned thread may not be deallocated until the
thread terminates. See Chapter 7 for more information on threads.

4.8 Using Objects
Now that you have allocated an object, how do you use it? Going back to

the Verilog module analogy, you can refer to variables and routines in an
object with the “.” notation.
Example 4-8 Using variables and routines in an object

BusTran b; // Declare a handle to a BusTran
b = new; // Construct a BusTran object
b.addr = 32’h42; // Set the value of a variable
b.display(); // Call a routine

In strict OOP, the only access to variables in an object should be through
its public methods such as get() and put(). This is because accessing vari-
ables directly limits your ability to change the underlying implementation in
the future. If a better (or simply different) algorithm comes along in the
future, you may not be able to adopt it because you would also need to modify
all of the references to the variables.

The problem with this methodology is that it was written for
large software applications with lifetimes of a decade or more.
With dozens of programmers making modifications, stability is
paramount. But you are creating a testbench, where the goal is
maximum control of all variables to generate the widest range

of stimulus values. One of the ways to accomplish this is with constrained-
random stimulus generation, which cannot be done if a variable is hidden
behind a screen of methods. While the get() and put() methods are fine for
compilers, GUIs, and APIs, you should stick with public variables that can be
directly accessed anywhere in your testbench.

4.9 Static Variables vs. Global Variables
Every object has its own local variables that are not shared with any other

object. If you have two BusTran objects, each has its own addr, crc, and
data variables. But sometimes you need a variable that is shared by all
objects of a certain type. For example, you might want to keep a running
count of the number of transactions that have been created. Without OOP, you
would probably create a global variable. Then you would have a global vari-
able that is used by one small piece of code, but is visible to the entire
testbench.

Chapter 4: Basic OOP 77

4.9.1 Using a static variable

In SystemVerilog you can create a static variable inside a class. This vari-
able is shared between all instances of the class, but its scope is limited to the
class. In Example 4-9, the static variable count holds the number of objects
created so far. It is initialized to 0 in the declaration because there are no
transactions at the beginning of the simulation. Each time a new object is con-
structed, it is tagged with a unique value, and count is incremented.
Example 4-9 Class with a static variable

class BusTran;
 static int count = 0; // Number of objects created
 int id; // Unique instance ID
 function new;
 id = count++; // Set ID, bump count
 endfunction
endclass

BusTran b1, b2;
initial begin
 b1 = new; // First instance, id=0
 b2 = new; // Second instance, id=1
 $display("Second id=%d, count=%b", b2.id, b2.count);
end

In Example 4-9, there is only one copy of the static variable count,
regardless of how many BusTran objects are created. You can think that
count is stored with the class and not the object. The variable id is not static,
so every BusTran has its own copy. Now you don’t need to make a global
variable for the count.
Figure 4-2 Static variables in a class

Using the ID field is a good way to track objects as they flow
through a design. When debugging a testbench, you often need
a unique value. SystemVerilog does not let you print the
address of an object, but you can make an ID field. Whenever
you are tempted to make a global variable, consider making a

class BusTran;
static int count = 0;
int id;

endclass

id: 0
count

id: 1
count

class BusTran;
static int count = 0;
int id;

endclass

id: 0
count

id: 1
count

SystemVerilog for Verification78

class-level static variable. A class should be self-contained, with as few out-
side references as possible.

4.9.2 Initializing static variables

A static variable is usually initialized in the declaration. You can’t easily
initialize it in the class constructor, as this is called for every single new
object. If you have a more elaborate initialization, you can use an initial block.
Just make sure the static variables are initialized before the first object is con-
structed. In Example 4-10, the handle s is still null when the initialize
task is called. This is legal, as the task only uses static variables that are not
created in the constructor.
Example 4-10 Initializing a static variable in a task

class MyStatic;
 static int count;

 task initialize(int val);
 count = val;
 endtask
endclass

MyStatic s;
initial
 s.initialize(42);

4.10 Class Routines
A routine (a.k.a. method) in a class is just a task or function defined

inside the scope of the class. Example 4-11 defines display() routines for
the BusTran and PCI_Tran. SystemVerilog calls the correct one, based on
the handle type.

Chapter 4: Basic OOP 79

Example 4-11 Routines in the class

class BusTran;
 bit [31:0] addr, crc, data[8];
 function void display();
 $display("@%0d: BusTran addr=%h, crc=%h",
 addr, crc);
 $write("\tdata[0-7]=");
 foreach (data[i]) $write(data[i]);
 $display();
 endfunction
endclass

class PCI_Tran;
 bit [31:0] addr, data; // Use realistic names
 function void display();
 $display("@%0d: PCI: addr=%h, data=%h",
 addr, data);
 endfunction
endclass

BusTran b;
PCI_Tran pc;

initial begin
 b = new(); // Construct a BusTran
 b.display(); // Display a BusTran
 pc = new(); // Construct a PCT transaction
 pc.display(); // Display a PCI Transaction
end

A routine in a class always uses automatic storage, so you don’t have to
worry about remembering the automatic modifier.

4.11 Defining Routines Outside of the Class
A good rule of thumb is you should limit a piece of code to one
“page” to keep it understandable. You may be familiar with
this rule for routines, but it also applies to classes. If you can
see everything in a class on the screen at one time, you can
more easily understand it.

But if each routine takes a page, how can the whole class fit on a page? In
SystemVerilog you can break a routine into the prototype (routine name and
arguments) inside the class, and the body (the procedural code) that goes after
the class.

SystemVerilog for Verification80

Here is how you create out-of-block declarations. Copy the first line of the
routine, with the name and arguments, and add the extern keyword at the
beginning. Now take the entire routine and move it after the class body, and
add the class name and two colons (:: the scope operator) before the routine
name.

The above classes could be defined as follows.
Example 4-12 Out-of-block routine declarations

class BusTran;
 bit [31:0] addr, crc, data[8];
 extern function void display();
endclass

function void BusTran::display();
 $display("@%0d: BusTran addr=%h, crc=%h",
 addr, crc);
 $write("\tdata[0-7]=");
 foreach (data[i]) $write(data[i]);
 $display();
endfunction

class PCI_Tran;
 bit [31:0] addr, data; // Use realistic names
 extern function void display();
endclass

function void PCI_Tran::display();
 $display("@%0d: PCI: addr=%h, data=%h",
 addr, data);
endfunction

A common coding mistake is when the routine prototype
does not match the one in the body. SystemVerilog requires
that the prototype be identical to the out-of-block routine
declaration, except for the class name and scope operator.
Additionally, some OOP compilers (g++ and VCS) prohibit

you from specifying the default argument values in both the prototype and the
body. Since default argument values are important to code that calls a method,
not to its implementation, they should only be present in class declaration.

Another common mistake is to leave out the class name when you declare
the method. As a result, it is defined at the next higher scope (probably the
program’s), and the compiler gives an error when the task tries to access
class-level variables and routines.

Chapter 4: Basic OOP 81

Example 4-13 Out-of-body task missing class name

class Broken;
 int id;
 extern function void display;
endclass

function void display; // Missing Broken::
 $display("Broken: id=%0d", id); // Error, id not found
endfunction

4.12 Scoping Rules
When writing your testbench, you need to create and refer to many vari-

ables. SystemVerilog follows the same basic rules as Verilog, with a few
helpful improvements.

A scope is a block of code such as a module, program, task, function,
class, or begin-end block. The for and foreach loops automatically create
a block so that an index variable can be declared or created local to the scope
of the loop.

You can define new variables in a block. New in SystemVerilog is the
ability to declare a variable in an unnamed begin-end block, as shown in the
for loops that declare the index variable.

A name can be relative to the current scope or absolute starting with
$root. For a relative name, SystemVerilog looks up the list of scopes until it
finds a match. If you want to be unambiguous, use $root at the start of a
name.

Example 4-14 uses the same name in several scopes. Note that in real
code, you would use more meaningful names! The name limit is used for a
global variable, a program variable, a class variable, a task variable, and a
local variable in an initial block. The latter is in an unnamed block, so the
label created is tool dependent.

SystemVerilog for Verification82

Example 4-14 Name scope

int limit; // $root.limit

program p;
 int limit; // $root.p.limit

 class Foo;
 int limit, array[]; // $root.p.Foo.limit

 task print (int limit); // $root.p.Foo.print.limit
 for (int i=0; i<limit; i++)
 $display("%m: array[%0d]=%0d", i, array[i]);
 endfunction
 endclass

 initial begin
 int limit = $root.limit; // $root.p.$unnamed.limit
 Foo bar;

 bar = new;
 bar.array = new[limit];
 bar.print (limit);
 end
endprogram

You can declare variables in the program or in the initial block. If a
variable is only used inside a single initial block, such as a counter, you
should declare it there to avoid possible name conflicts with other blocks.

Declare your classes outside of any program or module in a
package. This approach can be shared by all the testbenches,
and you can declare temporary variables at the innermost possi-
ble level. This style also eliminates a common bug that happens
when you forget to declare a variable inside a class. System-

Verilog looks for that variable in higher scopes. If there is a variable with that
name in the program block, the class uses it instead, with no warning. In
Example 4-15, the function Bug::display did not declare the loop variable
i, so SystemVerilog uses the program level i instead. Calling the function
changes the value of test.i, which is probably not what you want!

Chapter 4: Basic OOP 83

Example 4-15 Class uses wrong variable

program test;
 int i; // Program-level variable

 class Bug;
 logic [31:0] data[9];

 // Calling this function changes the program variable
 function void display;
 // Forgot to declare i in next statement
 for (i = 0; i<data.size; i++)
 $display("data[%0d]=%x", i, data[i]);
 endfunction
 endclass
endprogram

4.12.1 What is this?

When you use a variable name, SystemVerilog looks in the current scope
for it, and then in the parent scopes until the variable is found. This is the
same algorithm used by Verilog. But what if you are deep inside a class and
want to unambiguously refer to a class-level object? This style code is most
commonly used in constructors, where the programmer uses the same name
for a class variable and an argument.6 In Example 4-16, the keyword “this”
removes the ambiguity to let SystemVerilog know that you are assigning the
local variable, oname, to the class variable, oname.
Example 4-16 Using this to refer to class variable

class Scoping;
 string oname;

 function new(string oname);
 this.oname = oname; // class oname = local oname
 endfunction

endclass

6. Some people think this makes the code easier to read; others think it is a shortcut by a lazy programmer.

SystemVerilog for Verification84

4.12.2 Referring to a variable out of scope

Inside a class’s routines, you can use local variables, class
variables, or variables defined in the program. If you forget
to declare a variable, SystemVerilog looks up the higher
scopes until it finds a match. This can cause subtle bugs if

two parts of the code are unintentionally sharing the same variable, perhaps
because you forgot to declare it in the innermost scope.

For example, if you like to use the index variable, i, be careful that two
different threads of your testbench don’t concurrently modify this variable by
each using it in a for loop. Or you may forget to declare a local variable in a
class, such as Buggy, shown below. If your program block declares a global
i, the class just uses the global instead of the local that you intended. You
might not even notice this unless two parts of the program try to modify the
shared variable at the same time. (Threads are covered in Chapter 7.)
Example 4-17 Bug using shared program variable

program bug;

 class Buggy;
 int data[10];
 task transmit;
 fork
 for (i=0; i<10; i++) // i is not declared here
 send(data[i]);
 join_none
 endtask
 endclass

 int i; // program-level i
 Buggy b;
 event receive;

 initial begin
 b = new;
 for (i=0; i<10; i++) b.data[i] = i;
 b.transmit;

 for (i=0; i<10; i++)
 @(recieve) $display(data[i]);
 end
endprogram

Chapter 4: Basic OOP 85

The solution is to declare all your variables in the smallest scope that
encloses all uses of the variable. In Example 4-17, declare the index variables
inside the for loops, not at the program or scope level.

4.13 Using One Class Inside Another
A class can contain an instance of another class, using a handle to an

object. This is just like Verilog’s concept of instantiating a module inside
another module to build up the design hierarchy. Common reasons for using
containment are reuse and controlling complexity.

For example, every one of your transactions may have a statistics block,
with timestamps on when the transaction started and ended, and information
about all transactions.
Figure 4-3 Contained objects

Example 4-18 shows the Statistics class.
Example 4-18 Statistics class declaration

class Statistics;
 time startT, stopT; // Transaction time
 static int ntrans = 0; // Transaction count
 static time total_elapsed_time = 0;

 function time how_long;
 how_long = stopT – startT;
 ntrans++;
 total_elapsed_time += how_long;
 endfunction

 function void start;
 startT = $time;
 endfunction
endclass

Now you can use this class inside another.

class BusTran;
bit [31:0] addr, crc, data[8];
Statistics stats;

endclass class Statistics;
time startT, stopT;
static int ntrans = 0;
static time total_elapsed_time;

endclass

class BusTran;
bit [31:0] addr, crc, data[8];
Statistics stats;

endclass class Statistics;
time startT, stopT;
static int ntrans = 0;
static time total_elapsed_time;

endclass

SystemVerilog for Verification86

Example 4-19 Encapsulating the Statistics class

class BusTran;
 bit [31:0] addr, crc, data[8];
 Statistics stats; // Statistics handle

 function new();
 stats = new(); // Make instance of stats
 endfunction

 task create_packet();
 // Fill packet with data
 stats.start();
 // Transmit packet
 endtask
endclass

The outermost class, BusTran, can refer to things in the Statistics
class using the usual hierarchical syntax, such as stats.start.

Remember to instantiate the object; otherwise, the handle stats is null
and the call to start fails. This is best done in the constructor of the outer
class, BusTran.

As your classes become larger, they may become hard to manage. When
your variable declarations and routine prototypes grow larger than a page, you
should see if there is a logical grouping of items in the class so that it can be
split into several smaller ones.

This is also a potential sign that it’s time to refactor your code, i.e., split it
into several smaller, related classes. See Chapter 8 for more details on class
inheritance. Look at what you’re trying to do in the class. Is there something
you could move into one or more base classes, i.e., decompose a single class
into a class hierarchy? A classic indication is similar code appearing at vari-
ous places in the class. You need to factor that code out into a function in the
current class, one of the current class's parent classes, or both.

4.13.1 How big or small should my class be?

Just as you may want to split up classes that are too big, you
should also have a lower limit on how small a class should be.
A class with just one or two members makes the code harder to
understand as it adds an extra layer of hierarchy and forces you
to constantly jump back and forth between the parent class and

all the children to understand what it does. In addition, look at how often it is

Chapter 4: Basic OOP 87

used. If a small class is only instantiated once, you might want to merge it into
the parent class.

One Synopsys customer put each transaction variable into its own class for
fine control of randomization. The transaction had a separate object for the
address, CRC, data, etc. In the end, this approach only made the class hierar-
chy more complex. On the next project they flattened the hierarchy.

See section 8.5 for more ideas on partitioning classes.

4.13.2 Compilation order issue

Sometimes you need to compile a class that includes another class that is
not yet defined. The declaration of the included class’s handle causes an error,
as the compiler does not recognize the new type. Declare the class name with
a typedef statement, as shown below.
Example 4-20 Using a typedef class statement

typedef class Statistics; // Define lower level class

class BusTran;
 Statistics stats; // Use Statistics class
 ...
endclass

class Statistics; // Define Statistics class
...
endclass

4.14 Understanding Dynamic Objects
In a statically allocated language such as Verilog, every piece of data usu-

ally has a variable associated with it. For example, there may be a wire called
grant, the integer count, and a module instance i1. In OOP, there is not the
same one-to-one correspondence. There can be many objects, but only a few
named handles. A testbench may allocate a thousand transaction objects dur-
ing a simulation, but may only have a few handles to manipulate them. This
situation takes some getting used to if you have only written Verilog code.

In reality, there is a handle pointing to every object. Some handles may be
stored in arrays or queues, or in another object, like a linked list. For objects
stored in a mailbox, the handle is in an internal SystemVerilog structure. See
section 7.6 for more information on mailboxes.

SystemVerilog for Verification88

4.14.1 Passing objects to routines

What happens when you pass an object into a routine? Perhaps the routine
only needs to read the values in the object, such as transmit above. Or, your
routine may modify the object, like a routine to create a packet. Either way,
when you call the routine, you pass a handle to the object, not the object itself.
Figure 4-4 Handles and objects across routines

In Figure 4-4, the generator task has just called transmit. There are
two handles, generator.b and transmit.btrans, that both refer to the
same object.

When you call a routine with a scalar variable (nonarray, nonobject) and
use the ref keyword, SystemVerilog passes the address of the scalar, so the
routine can modify it. If you don’t use ref, SystemVerilog copies the scalar’s
value into the argument variable, so any changes to the argument don’t affect
the original value.
Example 4-21 Passing objects

// Transmit a packet onto a 32-bit bus
task transmit(BusTran bt);
 CBbus.rx_data <= bt.data;
 bt.timestamp = $time;
 ...
endtask

BusTran b;
initial begin
 b = new(); // Allocate the object
 b.addr = 42; // Initialize values
 transmit(b); // Pass object to task
end

BusTransaction

task generator;
BusTran b;
b = new;
transmit(b);

endtask

task transmit(BusTran b);
…

endtask

BusTransaction

task generator;
BusTran b;
b = new;
transmit(b);

endtask

task transmit(BusTran b);
…

endtask

Chapter 4: Basic OOP 89

In Example 4-21, the initial block allocates a BusTran object and calls the
transmit task with the handle that points to the object. Using this handle,
transmit can read and write values in the object. However, if transmit
tries to modify the handle, the result won’t be seen in the initial block, as the
bt argument was not declared as ref.

A routine can modify an object, even if the handle argument
does not have a ref modifier. This frequently causes confu-
sion for new users, as they mix up the handle with the object.
As shown above, transmit can write a timestamp into the

object. If you don’t want an object modified in a routine, pass a copy of it so
that the original data is untouched. See section 4.15 for more on copying
objects.

4.14.2 Modifying a handle in a task

A common coding mistake is to forget to use ref on routine
arguments that you want to modify, especially handles. In
the following code, the argument b is not declared as ref, so
any change to it is not be seen by the calling code.

Example 4-22 Bad packet creator task, missing ref on handle

task create_packet(BusTran bt); // Bug, missing ref
 bt = new();
 bt.addr = 42;
 // Initialize other fields
endtask

BusTran b;
initial begin
 create_packet(b); // Call bad routine
 $display(b.addr); // Fails because b=null
 end

Even though create_packet modified the argument bt, the handle b
remains null. You need to declare the argument bt as ref.
Example 4-23 Good packet creator task with ref on handle

task create_packet(ref BusTran bt); // Good
 ...
endtask

SystemVerilog for Verification90

4.14.3 Modifying objects in flight

A very common mistake is forgetting to create a new object
for each transaction in the testbench. In Example 4-24, the
generate_trans task creates a BusTran object with ran-
dom values, and then transmits it into the design, which takes

several cycles.
Example 4-24 Bad generator creates only one object

task generator_bad(int n);
 BusTran b;
 b = new(); // Create one new object
 repeat (n) begin
 b.addr = $random(); // Initialize variables
 $display("Sending addr=%h", b.addr);
 transmit(p); // Send it into the DUT
 end
endtask

What are the symptoms of this mistake? The code above creates only one
BusTran, so every time through the loop, generator_bad changes the
object at the same time it is being transmitted. When you run this, the $dis-
play shows many addr values, but all transmitted BusTrans have the same
value of addr. The bug occurs if transmit stores the object and keeps using
it even after transmit returns. If your transmit task does not keep a refer-
ence to the object, you can recycle the same object over and over.

You need to create a new BusTran during each pass through the loop.
Example 4-25 Good generator creates many objects

task generator_good(int n);
 BusTran b;
 repeat (n) begin
 b = new(); // Create one new object
 b.addr = $random(); // Initialize variables
 $display("Sending addr=%h", b.addr);
 transmit(p); // Send it into the DUT
 end
endtask

Chapter 4: Basic OOP 91

4.14.4 Arrays of handles

As you write testbenches, you need to be able to store and reference many
objects. You can make arrays of handles, each of which refers to an object.
Example 4-26 shows that storing of ten bus transactions in an array.
Example 4-26 Using an array of handles

task generator();
 BusTran barray[10];
 foreach (barray[i])
 begin
 barray[i] = new(); // Construct each object
 transmit(barray[i]);
 end
endtask

The array barray is made of handles, not objects. So you need to con-
struct each object in the array before using it, just as you would for a normal
handle. There is no way to call new on an entire array of handles

4.15 Copying Objects
You may want to make a copy of an object to keep a routine from modify-

ing the original, or in a generator to preserve the constraints. You can either
use the simple, built-in copy available with new, or you can write your own
for more complex classes. Section 8.3 has more on why you should make a
copy method.

4.15.1 Copying an object with new

Using new to copy an object is easy and reliable. A new object is con-
structed and all variables from the existing object are copied.

SystemVerilog for Verification92

Example 4-27 Copying a simple class with new

class BusTran;
 bit [31:0] addr, crc, data[8];
endclass

BusTran src, dst;
initial begin
 src = new; // Create first object
 dst = new src; // Make a copy with new
 end

However, this is a shallow copy, similar to a photocopy of the original,
blindly transcribing values from source to destination. If the class contains a
handle to another class, only the top level object is copied by new, not the
lower level one. In Example 4-28, the BusTran class contains a handle to the
Statistics class, shown in Example 4-18.
Example 4-28 Copying a complex class with new

class BusTran;
 bit [31:0] addr, crc, data[8];
 static int count = 0;
 int id;
 Statistics stats;

 function new;
 stats = new;
 id = count++;
 endfunction
endclass

BusTran src, dst;
initial begin
 src = new; // Create first object
 src.stats.startT = 42;
 dst = new src; // Copy src to dst
 dst.stats.startT = 84; // Changes stats for dst & src
 end

The initial block creates the first BusTran object and modifies a variable
in the contained object Statistics.

Chapter 4: Basic OOP 93

Figure 4-5 Objects and handles before copy with new

When you call new to make a copy, the BusTran object is copied, but not
the Statistics one. This is because when you use new to copy an object, it
does not call your own new function. Instead, the values of variables and han-
dles are copied. So now both BusTran objects point to the same
Statistics object and both have the same id.
Figure 4-6 Objects and handles after copy with new

4.15.2 Writing your own simple copy function

If you have a simple class that does not contain any references to other
classes, writing a copy function is easy.
Example 4-29 Simple class with copy function

class BusTran;
 bit [31:0] addr, crc, data[8];

 function BusTran copy;
 copy = new; // Construct destination
 copy.addr = addr; // Fill in data values
 copy.crc = crc;
 copy.data = data; // Array copy
 endfunction
endclass

id=3
stats

dst

src
startT=42

id=3
stats

dst

src
startT=42

id=3
stats

dst

src
startT=42

id=3
stats

id=3
stats

dst

src
startT=42

id=3
stats

SystemVerilog for Verification94

Example 4-30 Using copy function

BusTran src, dst;
initial begin
 src = new; // Create first object
 dst = src.copy;
end

4.15.3 Writing your own deep copy function

For nontrivial classes, you should always create your own copy function.
You can make it a deep copy by calling the copy functions of all the contained
objects. Your own copy function makes sure all your user fields (such as an
ID) remain consistent. The downside of making your own copy function is
that you need to keep it up to date as you add new variables – forget one and
you could spend hours debugging to find the missing value.7

Example 4-31 Complex class with deep copy function

class BusTran;
 bit [31:0] addr, crc, data[8];
 Statistics stats;
 static int count = 0;
 int id;

 function new;
 stats = new;
 id = count++;
 endfunction

 function BusTran copy;
 copy = new; // Construct destination
 copy.addr = addr; // Fill in data values
 copy.crc = crc;
 copy.data = data;
 copy.stats = stats.copy; // Call copy for stats
 id = count++;
 endfunction
endclass

7. Perhaps the next version of SystemVerilog may include a deep object copy. However, this still does just
a copy, so your constructor (new function) won’t be called, and fields such as ID will not be updated.

Chapter 4: Basic OOP 95

Note that you also need to write a copy for the Statistics class, and
every other class in the hierarchy.
Figure 4-7 Objects and handles after deep copy

4.16 Public vs. Private
The core of OOP is to encapsulate data and related routines into a class.

Data is kept private by default to keep one class from poking around inside
another. A class provides a set of accessor routines to access and modify the
data. This would also allow you to change the class’s implementation without
needing to let the users of the class know. For instance, a graphics package
could change its internal representation from Cartesian coordinates to polar as
long as the user interface (accessor routines) have the same functionality.

Consider the BusTran class that has a payload and a CRC so that the
hardware can detect errors. In conventional OOP, you would make a routine
to set the payload also set the CRC so they would stay synchronized. Thus
your objects would always be filled with correct values.

However, testbenches are not like other programs, such as a web browser
or word processor. A testbench needs to create errors. You want to have a bad
CRC so you can test how the hardware reacts to errors.

OOP languages such as C++ and Java allow you to specify the visibility of
variables and routines. By default, everything is private unless labeled
otherwise.

In SystemVerilog, everything is public unless labeled private.
You should stick with this default so you have the greatest con-
trol over the operation of the DUT, which is more important
than long-term software stability. For example, making the
CRC visible allows you to easily inject errors into the DUT. If

the CRC was private, you would have to write extra code to bypass the data-
hiding mechanisms, resulting in a larger and more complex testbench.

id=3
stats

dst

src

startT=96
id=4
stats

startT=42
id=3
stats

dst

src

startT=96
id=4
stats

startT=42

SystemVerilog for Verification96

4.17 Straying Off Course
As a new OOP student, you may be tempted to skip the extra thought

needed to group items into a class, and just store data in a few variables.
Avoid the temptation! A basic DUT monitor samples several values from an
interface. Don’t just store them in some integers and pass them to the next
stage. This saves you a few minutes at first, but eventually you need to group
these values together to form a complete transaction. Several of these transac-
tions may need to be grouped to create a higher-level transaction such as a
DMA transfer. Instead, immediately put those interface values into a transac-
tion class. Now you can store related information (port number, receive time)
along with the data, and easily pass this object to the rest of your testbench.

4.18 Building a Testbench
You are closer to creating a simple testbench from classes. Here is the dia-

gram from Chapter 1. Obviously, the transactions in Example 4-8 are objects,
but each block is represented as a class also.
Figure 4-8 Layered testbench

The Generator, Agent, Driver, Monitor, Checker, and Score-
board are all classes, modeled as transactors (described below). They are
instantiated inside the Environment class. For simplicity, the test is at the top
of the hierarchy, as is the program that instantiates the Environment class. The
Functional coverage definitions can be put inside or outside the Environment
class.

DUT

AssertionsDriver Monitor

Test

Scoreboard Checker

Generator
Fu

nc
tio

na
l C

ov
er

ag
e

Environment

Agent

DUT

AssertionsDriver Monitor

Test

Scoreboard Checker

Generator
Fu

nc
tio

na
l C

ov
er

ag
e

Environment

Agent

Chapter 4: Basic OOP 97

A transactor is made of a simple loop that receives a transaction object
from a previous block, makes some transformations, and sends it to the fol-
lowing one. Some, such as the Generator, have no upstream block, so this
transactor constructs and randomizes every transaction, while others, such as
the Driver, receive a transaction and send it into the DUT as signal
transitions.
Example 4-32 Basic Transactor

class Transactor; // Generic class
 Transaction tr;

 task run;
 forever begin
 // Get transaction from upstream block
 ...
 // Do some processing
 ...
 // Send it to downstream block
 ...
 end
 endtask

endclass

How do you exchange transactions between blocks? With procedural code
you could have one object call the next, or you could use a data structure such
as a FIFO to hold transactions in flight between blocks. In Chapter 7, you will
learn how to use mailboxes, which are FIFOs with the ability to stall a thread
until there is data available.

4.19 Conclusion
Using Object Oriented Programming is a big step, especially if your first

computer language was Verilog. The payoff is that your testbenches are more
modular and thus easier to develop, debug, and reuse.

Have patience — your first OOP testbench may look more like Verilog
with a few classes added. But as you get the hang of this new way of thinking,
you begin to create and manipulate classes for both transactions and the trans-
actors in the testbench that manipulate them.

In Chapter 8 you will learn more OOP techniques so your test can change
the behavior of the underlying testbench without having to change any of the
existing code.

Chapter 5

Connecting the Testbench and Design

5.1 Introduction
There are several steps needed to verify a design: generate stimulus, cap-

ture responses, determine correctness, and measure progress. But first, you
need the proper testbench, connected to the design.

Your testbench wraps around the design, sending in stimulus and captur-
ing the design’s response. The testbench forms the “real world” around the
design, mimicking the entire environment. For example, a processor model
needs to connect to various busses and devices, which are modeled in the test-
bench as bus functional models. A networking device connects to multiple
input and output data streams that are modeled based on standard protocols. A
video chip connects to buses that send in commands, and then forms images
that are written into memory models. The key concept is that the testbench
simulates everything not in the design under test.
Figure 5-1 The testbench – design environment

Your testbench needs a higher-level way to communicate with the design
than Verilog’s ports and the error-prone pages of connections. You need a
robust way to describe the timing so that synchronous signals are always
driven and sampled at the correct time and all interactions are free of the race
conditions so common to Verilog models.

5.2 Separating the Testbench and Design
In an ideal world, all projects have two separate groups: one to create the

design and one to verify it. In the real world, limited budgets may require you
to wear both hats. Each team has its own set of specialized skills, such as cre-
ating synthesizable RTL code, or figuring out new ways to find bugs in the
design. These two groups each read the original design specification and
make their own interpretations. The designer has to create code that meets that

Testbench

Design
Under
Test

inputs outputs

Testbench

Design
Under
Test

inputs outputs

SystemVerilog for Verification100

spec, while you, the verification engineer, have to find ways to prove the
design does not match the spec.

Likewise, your testbench code is in a separate block from design code. In
classic Verilog, each goes in a separate module. However, using a module to
hold the testbench often causes timing problems around driving and sampling,
so SystemVerilog introduces the program block to separate the testbench,
both logically and temporally. For more details, see section 5.4.

As designs grow in complexity, the connections between the blocks
increase. Two RTL blocks may share dozens of signals, which must be listed
in the correct order for them to communicate properly. One mismatched or
misplaced connection and the design will not work. If it is a subtle bug, such
as swapping pins that only toggle occasionally, you may not notice the prob-
lem for some time. Worse yet is when you add a new signal between two
blocks. You have to edit not only the blocks to add the new port but also the
higher-level netlists that wire up the devices. Again, one wrong connection at
any level and the design stops working. Or worse, the system only works
intermittently!

The solution is the interface, the SystemVerilog construct that represents a
bundle of wires, with intelligence such as synchronization, and functional
code. An interface can be instantiated like a module but also connected to
ports like a signal.

5.2.1 Communication between the testbench and DUT
The next few sections show a testbench connected to an arbiter, using indi-

vidual signals and again using interfaces. Here is a diagram of the top level
design including a testbench, arbiter, clock generator, and the signals that con-
nect them. This is a trivial design, so you can concentrate on the
SystemVerilog concepts and not get bogged down in the design. At the end of
the chapter, an ATM router is shown.
Figure 5-2 Testbench – Arbiter without interfaces

Arbiter

Testbench

clk

grant[1:0]request[1:0]

reset Arbiter

Testbench

clk

grant[1:0]request[1:0]

reset

Chapter 5: Connecting the Testbench and Design 101

5.2.2 Communication with ports
The following code fragments show the elements of connecting an RTL

block to a testbench. First is the header for the arbiter model. This uses the
Verilog-2001 style port declarations where the type and direction are in the
header. Most of the code and declarations have been left out for clarity.

As discussed in section 2.2.1, SystemVerilog has expanded the classic reg
type so that you can use it like a wire to connect blocks. In recognition of its
new capabilities, the reg type has the new name of logic. The only place
where you cannot use a logic variable is a net with multiple drivers, where
you must use a net such as wire.
Example 5-1 Arbiter model using ports

module arb_port (output logic [1:0] grant,
 input logic [1:0] request,
 input logic reset,
 input logic clk);
...
 always @(posedge clk or posedge reset) begin
 if (reset)
 grant <= 2'b00;
 else
 ...
 end
endmodule

The testbench is a module with ports. A small piece of the test is shown.
Example 5-2 Testbench using ports

module test (input logic [1:0] grant,
 output logic [1:0] request,
 output logic reset,
 input logic clk);

 initial begin
 @(posedge clk) request <= 2'b01;
 $display("@%0d: Drove req=01", $time);
 repeat (2) @(posedge clk);
 if (grant != 2'b01)
 $display("@%0d: a1: grant != 2'b01", $time);
 ...
 $finish;
 end
endmodule

SystemVerilog for Verification102

The top netlist connects the testbench and DUT.
Example 5-3 Top-level netlist without an interface

module top;
 logic [1:0] grant, request;
 logic clk=0, reset;
 always #5 clk = ~clk;

 arb_port a1 (grant, request, reset, clk);
 test t1(grant, request, reset, clk);
endmodule

In Example 5-3, the netlists are simple, but real designs with hundreds of
pins require pages of signal and port declarations. All these connections can
be error prone. As a signal moves through several layers of hierarchy, it has to
be declared and connected over and over. Worst of all, if you just want to add
a new signal, it has to be declared and connected in multiple files. SystemVer-
ilog interfaces can help in each of these cases.

5.3 The Interface Construct
Designs are so complex that even the communication between them may

need to be separated out into separate entities. To model this, SystemVerilog
uses the interface construct that you can think of as an intelligent bundle of
wires. They contain the connectivity, synchronization, and optionally, the
functionality of the communication between two or more blocks. They con-
nect design blocks and/or testbenches.

Basic, design-level interfaces are covered in Sutherland (2004). This book
covers interfaces to connect design blocks to testbenches.

5.3.1 Using an interface to simplify connections
The first improvement is to bundle the wires together into an interface

block. Figure 5-3 shows the testbench and arbiter, communicating using a
interface. Note how the interface extends into the two blocks, representing the
drivers and receivers that are functionally part of both the test and the DUT.
The clock can be part of the interface or a separate port.

Chapter 5: Connecting the Testbench and Design 103

Figure 5-3 An interface straddles two modules

The simplest interface is just a bundle of nondirectional signals. Use
logic so you can drive the signals from procedural statements.
Example 5-4 Simple interface for arbiter

interface arb_if(input bit clk);
 logic [1:0] grant, request;
 logic reset;
endinterface

This is instantiated in the top module and connected as follows.
Example 5-5 Top module using a simple arbiter interface

module top;
 bit clk;
 always #5 clk = ~clk;

 arb_if arbif(clk);
 arb a1 (arbif);
 test t1(arbif);
endmodule : top

Example 5-6 shows the testbench. You refer to a signal in an interface by
making a hierarchical reference using the instance name: arbif.request.
Interface signals should always be driven using nonblocking assignments.
This is explained in more detail in section 5.5.3.

Testbench ArbiterInterfaceTestbench ArbiterInterface

SystemVerilog for Verification104

Example 5-6 Testbench using a simple arbiter interface

module test (arb_if arbif);
...
 initial begin
 // reset code left out

 @(posedge arbif.clk);
 arbif.request <= 2'b01;
 $display("@%0d: Drove req=01", $time);
 repeat (2) @(posedge arbif.clk);
 if (arbif.grant != 2'b01)
 $display("@%0d: a1: grant != 2'b01", $time);

 $finish;
 end
endmodule : test

Lastly is the device under test, the arbiter, that uses an interface instead of
ports.
Example 5-7 Arbiter using a simple interface

module arb (arb_if arbif);
...
 always @(posedge arbif.clk or posedge arbif.reset)
 begin
 if (arbif.reset)
 arbif.grant <= 2'b00;
 else
 arbif.grant <= next_grant;
 ...
 end
endmodule

You can see an immediate benefit, even on this small device: the connec-
tions become cleaner and less prone to mistakes. If you wanted to put a new
signal in an interface, you would just have to add it to the interface definition
and the modules that actually used it. You would not have to change any mod-
ule such as top that just pass the interface through. This language feature
greatly reduces the chance for wiring errors.

5.3.2 Connecting interfaces and ports
If you have a legacy design with ports that cannot be changed to use an

interface, you can just connect the interfaces’s signals to the individual ports.

Chapter 5: Connecting the Testbench and Design 105

Example 5-8 connects the original arbiter from Example 5-1 to the interface
in Example 5-4.
Example 5-8 Connecting an interface to a module that uses ports

module top;
 bit clk;
 always #5 clk = ~clk;

 arb_if arbif(clk);
 arb_port a1 (.grant (arbif.grant),
 .request (arbif.request),
 .reset (arbif.reset),
 .clk (arbif.clk));
 test t1(arbif);
endmodule : top

5.3.3 Grouping signals in an interface using modports
Example 5-7 uses a point-to-point connection scheme with no signal direc-

tions in the interface. The original netlists using ports had this information
that the compiler uses to check for wiring mistakes. The modport construct
in an interface lets you group signals and specify directions. The MONITOR
modport allows you to connect a monitor module.
Example 5-9 Interface with modports

interface arb_if(input bit clk);
 logic [1:0] grant, request;
 logic reset;

 modport TEST (output request, reset,
 input grant, clk);

 modport DUT (input request, reset, clk,
 output grant);

 modport MONITOR (input request, grant, reset, clk);

endinterface

Here are the arbiter model and testbench, which need to specify the mod-
port in their port connection list. Note that you put the modport name, DUT or
TEST, after the interface name, arb_if. Other than the modport name, these
are identical to the previous examples.

SystemVerilog for Verification106

Example 5-10 Arbiter model with interface using modports

module arb (arb_if.DUT arbif);
...
endmodule

Example 5-11 Testbench with interface using modports

module test (arb_if.TEST arbif);
...
endmodule

The top model does not change from Example 5-5, as modports are speci-
fied in the module header, not when the module is instantiated.

While the code didn’t change much (except that the interface grew larger),
this interface more accurately represents the real design, especially the signal
direction.

5.3.4 Using modports with a bus design
Not every signal needs to go in every interface. Consider a CPU – memory

bus modeled with an interface. The CPU is the bus master and drives a
subset of the signals, such as request, command, and address. The mem-
ory is a slave and receives those signals and drives ready. Both master and
slave drive data. The bus arbiter only looks at request and grant, and
ignores all other signals. So your interface would have three modports for
master, slave, and arbiter, plus an optional monitor modport.

5.3.5 Creating an interface monitor
You can create a bus monitor using the MONITOR modport. The following

is a trivial monitor for the arbiter. For a real bus, you could decode the com-
mands and print the status: completed, failed, etc.

Chapter 5: Connecting the Testbench and Design 107

Example 5-12 Arbiter model with interface using modports

module monitor (arb_if.MONITOR arbif);

 always @(posedge arbif.request[0]) begin
 $display("@%0d: request[0] asserted", $time);
 @(posedge arbif.grant[0]);
 $display("@%0d: grant[0] asserted", $time);
 end

 always @(posedge arbif.request[1]) begin
 $display("@%0d: request[1] asserted", $time);
 @(posedge arbif.grant[1]);
 $display("@%0d: grant[1] asserted", $time);
 end
endmodule

5.3.6 Interface trade-offs
An interface cannot contain any instances such as modules or other inter-

faces. There are trade-offs in using interfaces with modports as compared
with traditional port connects with signals.

The advantages to using an interface are as follows.

An interface is ideal for design reuse. When two blocks communicate
with a specified protocol using two or more signals, use an interface.
If signals are repeated over and over, as in a networking switch, use a
virtual interface as described in Chapter 10.
The interface takes the jumble of signals that you declare over and
over in every module or program and puts it in a central location,
reducing the possibility of misconnecting signals.
To add a new signal, you just have to declare it once in the interface,
not in higher-level modules, once again reducing errors.
Modports allow a module to easily tap a subset of signals from an
interface. You can specify signal direction for additional checking.

The disadvantages of using an interface are as follows.

For point-to-point connections, interfaces with modports are almost
as verbose as using ports with lists of signals. But all the declarations

SystemVerilog for Verification108

are still in one central location, reducing the chance for making an
error.
You must now use the interface name in addition to the signal name,
possibly making the modules more verbose.
If you are connecting two design blocks with a unique protocol that
will not be reused, interfaces may be more work than just wiring
together the ports.
It is difficult to connect two different interfaces. A new interface
(bus_if) may contain all the signals of an existing one (arb_if),
plus new signals (address, data, etc.). But since interfaces cannot be
hierarchical, you have to break out the individual signals and drive
them appropriately.

5.3.7 More information and examples
All these examples use SystemVerilog constructs. The SystemVerilog

LRM specifies many other ways for you to use interfaces. See Sutherland
(2004) for more examples of using interfaces for design.

5.4 Stimulus Timing
The timing between the testbench and the design must be carefully orches-

trated. At a cycle level, you need to drive and receive the synchronous signals
at the proper time in relation to the clock. Drive too late or sample too early,
and your testbench is off a cycle. Even within a single time slot (for example,
everything that happens at time 100ns), mixing design and testbench events
can cause a race condition, such as when a signal is both read and written at
the same time. Do you read the old value, or the one just written? In Verilog,
nonblocking assignments helped when a test module drove the DUT, but the
test could not always be sure it sampled the last value driven by the design.
SystemVerilog has several constructs to help you control the timing of the
communication.

5.4.1 Controlling timing of synchronous signals with a clocking block
An interface block uses a clocking block to specify the timing of synchro-

nous signals relative to the clocks. Any signal in a clocking block is now
driven or sampled synchronously, ensuring that your testbench interacts with
the signals at the right time. Clocking blocks are mainly used by testbenches
but also allow you to create abstract synchronous models.

Chapter 5: Connecting the Testbench and Design 109

An interface can contain multiple clocking blocks, one per clock domain,
as there is single clock expression in each block. Typical clock expressions
are @(posedge clk) or @(posedge clk1 or negedge clk2).

You can specify a clock skew in the clocking block using the default-
statement, but the default behavior is that input signals are sampled just before
the design executes, and the outputs are driven back into the design during the
current time slot. The next section provides more details on the timing
between the design and testbench.

Once you have defined a clocking block, your testbench can wait for the
clocking expression with @my_interface.cb rather than having to spell out
the exact clock and edge. Now if you change the clock or edge in the clocking
block, you do not have to change your testbench.

In Example 5-13, the clocking block cb declares that the signals in the
block are active on the positive edge of the clock. The signal directions are
relative to the modport where they are used. So request is an output of the
TEST modport, and grant is an input to the modport.
Example 5-13 Interface with a clocking block

interface arb_if(input bit clk);
 logic [1:0] grant, request;
 logic reset;

 clocking cb @(posedge clk); // Declare cb
 output request;
 input grant;
 endclocking

 modport TEST (clocking cb, // Use cb
 output reset);

 modport DUT (input request, reset, output grant);
endinterface

5.4.2 Timing problems in Verilog
Your testbench needs to be separate from the design, not just logically but

also temporally. Consider how a hardware tester interacts with a chip for syn-
chronous signals. In a real hardware design, the storage elements latch their
inputs at the active clock edge. These values propagate to the storage outputs,
and then through the logic clouds to the inputs of the next storage elements.
The time from the input of the first storage to the next must be less than a
clock cycle. So a hardware tester needs to drive the chip's input just after the
clock edge, and read the outputs just before the following edge.

SystemVerilog for Verification110

A testbench has to mimic this behavior, as if it were another storage ele-
ment plus logic. It should drive after the active clock edge, and should sample
as late as possible as allowed by the protocol timing specification, just before
the active clock edge.

If the DUT and testbench are made of Verilog modules only, this outcome
is nearly impossible to achieve. If the testbench drives the DUT at the clock
edge, there could be race conditions. What if the clock propagates to some
DUT inputs before the TB stimulus, but is a little later to other inputs? From
the outside, the clock edges all arrive at the same simulation time, but in the
design, some inputs get the value driven during the last cycle, while other
inputs get values from the current cycle.

One way around this problem is to add small delays to the system, such as
#0. This forces the thread of Verilog code to stop and be rescheduled after all
other code. But, invariably, a large design has several sections that all want to
execute last. Whose #0 wins out? It could vary from run to run and be unpre-
dictable between simulators. Multiple threads using #0 delays cause
indeterministic behavior.

The next solution is to use a larger delay, #1. RTL code has no timing,
other than clock edges, so one time unit after the clock, the logic has settled.
But what if one module uses a time precision of 1ns, while another used a res-
olution of just 10ps? Does that #1 mean 1ns, 10ps, or something else? You
want to drive as soon as possible after the clock cycle with the active clock
edge, but not during that time, and before anything else can happen. Worse
yet, your DUT may contain a mix of RTL code with no delays and gate code
with delays.

5.4.3 Testbench – design race condition
Example 5-14 shows a potential race condition between the testbench and

design. The race condition occurs when the test drives the start signal and
then the other ports. The memory is waiting on the start signal and could
wake up immediately, while the write, addr, and data signals still have
their old values. You could delay all these signals slightly by using nonblock-
ing assignments, as recommended by Cummings (2000), but remember that
the testbench and the design are both using these assignments. It is still possi-
ble to get a race condition between the testbench and design.

Sampling the design outputs has a similar problem. You want to grab the
values at the last possible moment, just before the active clock edge. Perhaps
you know the next clock edge is at 100ns. You can’t sample right at the clock
edge at 100ns, as some design values may have already changed. You should
sample at Tsetup just before the clock edge.

Chapter 5: Connecting the Testbench and Design 111

Example 5-14 Race condition between testbench and design

module memory(input wire start, write,
 input wire [7:0] addr, data);
 logic [7:0] mem[256];
 always @(posedge start) begin
 if (write)
 mem[addr] = data;
 ...
 end
endmodule

module test(output logic start, write,
 output logic [7:0] addr, data);
 initial begin
 start = 0; // Initialize signals
 write = 0;
 #10; // Short delay
 start = 1; // Start first command
 write = 1;
 addr = 8’h42;
 data = 8’h5a;
 ...
 end
endmodule

5.4.4 The program block and timing regions
The root of the problem is the mixing of design and testbench events dur-

ing the same time slot (though even in pure RTL the same problem can
happen). What if there were a way you could separate these events tempo-
rally, just as you separated the code? At 100ns, your testbench could sample
the design outputs before the clock has had a chance to change and any design
activity has occurred. By definition, these values would be the last possible
ones from the previous time slot. Then, after all the design events are done,
your testbench would start.

How does SystemVerilog know to schedule the testbench events sepa-
rately from the design events? In SystemVerilog, your testbench code is in a
program block, which is similar to a module in that it can contain code and
variables and be instantiated in other modules. However, a program cannot
have any hierarchy such as instances of modules, interfaces, or other
programs.

This new division of the time slot was introduced in SystemVerilog. In
Verilog, most events executed in the Active region. There are other regions

SystemVerilog for Verification112

for nonblocking assignments, PLI execution, etc., but they can be ignored for
the purposes of this book. See the IEEE 1800-2005 Language Reference Man-
ual for more details.
Figure 5-4 Main regions inside a SystemVerilog time step

In SystemVerilog, several new regions were introduced. First to execute
during a time slot is the Prepone region, which samples signals before any
design activity. These samples are used by the testbench. Next is the Active
region, where design events run. These include your RTL and gate code plus
the clock generator. The third region is the Observed region, where assertions
are evaluated. Following that is the Reactive region where the testbench exe-
cutes. Note that time does not strictly flow forwards — events in the Observed
and Reactive regions can trigger further design events in the Active region in
the current cycle.

Table 5-1. Primary SystemVerilog scheduling regions

Name Activity

Prepone Sampling signals before design activity. For testbench
input

Active Simulation of design code in modules

To next
time slot

From previous
time slot

Prepone
(sample)

Active
(design)

Observed
(assertions)

Reactive
(testbench)

Loop back
if more events

To next
time slot

From previous
time slot

Prepone
(sample)

Active
(design)

Observed
(assertions)

Reactive
(testbench)

Loop back
if more events

Chapter 5: Connecting the Testbench and Design 113

In Verilog, simulation continues while there are scheduled events, or until
a $finish is executed. In SystemVerilog there is an implicit $exit when the
program block terminates — that is, when the all initial-blocks complete.
An $exit just terminates the current program block, while $finish termi-
nates the entire simulation. When all program blocks end, your simulation
ends, even if there are events pending on the design side or if spawned threads
in the testbench are still running.

Example 5-15 shows part of the testbench code for the arbiter. Note that
the statement @arbif.cb waits for the active edge of the clocking block,
@(posedge clk), as shown in Example 5-13.
Example 5-15 Testbench using interface with clocking block

program automatic test (arb_if.TEST arbif);
...
 initial begin
 arbif.cb.request <= 2'b01;
 $display("@%0d: Drove req=01", $time);
 repeat (2) @arbif.cb;
 if (arbif.cb.grant != 2'b01)
 $display("@%0d: a1: grant != 2'b01", $time);
 end

endprogram : test

Section 5.5 explains more about the driving and sampling of interface
signals.

As discussed in section 3.7.1, you should always declare your
program block as automatic so that it behaves more like the
routines in stack-based languages you may have worked with,
such as C.

5.4.5 Specifying delays between the design and testbench
The default timing of the clocking block is to sample inputs with a delay

of #1step and to drive the outputs with a delay of #0. The 1step delay spec-
ifies that signals are sampled in the Prepone region, before any design

Observed Evaluation of SystemVerilog Assertions

Reactive Execution of testbench code in programs

Table 5-1. Primary SystemVerilog scheduling regions

Name Activity

SystemVerilog for Verification114

activity. So you get the output values just before the clock changes. The test-
bench outputs are synchronous by virtue of the clocking block, so they flow
directly into the design. The program block, running in the Reactive region,
retriggers the Active region during the same time slot. If you have a design
background, you can remember this by imagining that the clocking block
inserts a synchronizer between the design and testbench.
Figure 5-5 A clocking block synchronizes the DUT and testbench

5.5 Interface Driving and Sampling
Your testbench needs to drive and sample signals from the design, prima-

rily through interfaces with clocking blocks. The following section uses the
arbiter interface from Example 5-13.

Asynchronous signals such as reset pass through the interface with no
delays. The signals in the clocking block get synchronized as shown below.

5.5.1 Interface synchronization
You can use the Verilog @ and wait constructs to synchronize with the

signals in a testbench. The following code does not do anything useful except
to show the various constructs.

Design
Under Test

Testbench

out
test
out d q

clk

test
inin Design

Under Test

Testbench

out
test
out d q

clk

d q

clk

test
inin

Chapter 5: Connecting the Testbench and Design 115

Example 5-16 Signal synchronization

program automatic test(bus_if.TB bus);
 initial begin
 @bus.cb; // Continue on active edge
 // in clocking block
 repeat (3) @bus.cb; // Wait for 3 active edges
 @bus.cb.grant; // Continue on any edge
 @(posedge bus.cb.grant); // Continue on posedge
 @(negedge bus.cb.grant); // Continue on negedge
 wait (bus.cb.grant==1); // Wait for expression
 // No delay if already true
 @(posedge bus.cb.grant or
 negedge bus.reset); // Wait for several signals
 end
endprogram

5.5.2 Interface signal sample
When you read a signal from a clocking block, you get the sample from

just before the last clock edge, i.e., from the Prepone region. The following
code shows a program block that reads the synchronous grant signal from the
DUT. The arb module drives grant to 1 in the middle of a cycle, and then to
2 at the clock edge.
Example 5-17 Synchronous interface sample and module drive

program test(arb_if.TEST arbif);
 initial begin
 $monitor("@%0d: grant=%h", $time, arbif.cb.grant);
 #50;
 end
endprogram

module arb(arb_if.DUT arbif);
 initial begin
 arbif.grant = 1; // @ 0ns
 #12 arbif.grant = 2; // @ 12ns
 #18 arbif.grant = 2; // @ 30ns
 end
endmodule

The waveforms show that in the program, arbif.cb.grant gets the
value from just before the clock edge. When the interface input changes right

SystemVerilog for Verification116

at a clock edge (time 30ns), that value does not propagate to the testbench for
another cycle (time 40ns).
Figure 5-6 Sampling a synchronous interface

5.5.3 Interface signal drive
Here is a short version of the arbiter test program.

Example 5-18 Testbench using interface with clocking block

program automatic test (arb_if.TEST arbif);

 initial begin
 arbif.cb.request <= 2'b01;
 $display("@%0d: Drove req=01", $time);
 repeat (2) @arbif.cb;
 if (arbif.cb.grant != 2'b01)
 $display("@%0d: a1: grant != 2'b01", $time);
 end

endprogram : test

Any synchronous signal such as request must be prefixed
with both the interface name (arbif) and the clocking
block name (cb) in case the signal is used in more than one
clocking block. So arbif.cb.grant is legal, but

arbif.grant is not. This is a very common coding mistake and is caught by
any SystemVerilog compiler.

You should always drive interface signals with a nonblocking assignment,
namely the <= operator.8 This is because the design signal does not change
immediately after your assignment – remember that your testbench executes

8. There are some cases where you could use a blocking assignment, such as the force
statement. The LRM is not clear about how a program block can force an interface signal or
a signal in the design. Additionally, if an interface signal is passed through a ref argument
into a routine, should the routine use a blocking or nonblocking assignment? SystemVerilog
is an evolving language.

clk

DUT arb.grant

TEST arbif.cb.grant

21 2 3

1 2 32
20 30 4010

clk

DUT arb.grant

TEST arbif.cb.grant

21 2 3

1 2 32
20 30 4010

Chapter 5: Connecting the Testbench and Design 117

in the Reactive region while design code is in the Active region. If your test-
bench drives arbif.cb.request at 100ns, the same time as arbif.cb
(which is @(posedge clk) according to the clocking block), request
changes in the design at 100ns. But if your testbench tries to drive
arbif.cb.request at time 101ns, between clock edges, the change does
not propagate until the next clock edge. In this way, your drives are always
synchronous. In Example 5-17, arbif.grant is driven by a module and can
use a blocking assignment.

If the testbench drives the synchronous interface signal at the active edge
of the clock, the value propagates immediately to the design. This is because
the default output delay is #0 for a clocking block. If the testbench drives the
output just after the active edge, the value is not seen in the design until the
next active edge of the clock.
Example 5-19 Interface signal drive

busif.cb.request <= 1; // Nonblocking sync drive
busif.cb.cmd <= cmd_buf; // Nonblocking sync drive

Example 5-20 shows what happens if you drive a synchronous interface
signal at various points during a clock cycle.
Example 5-20 Driving a synchronous interface

program test(arb_if.TEST arbif);
 initial begin
 # 2 arbif.cb.request <= 3; // @ 2ns
 #10 arbif.cb.request <= 2; // @ 12ns
 #18 arbif.cb.request <= 1; // @ 30ns
 #50 finish;
 end
endprogram

module arb(arb_if.DUT arbif);
 initial
 $monitor("@%0d: req=%h", $time, arbif.request);
endmodule

SystemVerilog for Verification118

Figure 5-7 Driving a synchronous interface

If you want to wait for two clock cycles before driving a signal, you can
either use “repeat (2) @bus.cb;” or use the cycle delay ##2. This delay
only works as a prefix to a drive of a signal in a clocking block, as it need to
know which clock to use for the delay.
Example 5-21 Interface signal drive

##2 arbif.cb.request <= 0; // Wait 2 cycles then assign
##3; // Illegal - must be used with an assignment

5.5.4 Bidirectional signals in the interface
In Verilog, if you want to drive a bidirectional signal such as a port from

procedural code, you need a continuous assignment to connect the reg to the
wire. In SystemVerilog, synchronous bidirectional signals in interfaces are
easier to use as the continuous assignment is added for you. When you write
to the net from a program, SystemVerilog actually writes to a temporary vari-
able that drives the net. Your program reads directly from the wire, seeing the
value that is resolved from all the drivers. Design code in a module still uses
the classic register plus continuous assignment statement.

clk

TEST arb.cb.request

DUT arbif.request

23 2 1

3 1 2
20 30 4010

1

clk

TEST arb.cb.request

DUT arbif.request

23 2 1

3 1 2
20 30 4010

1

Chapter 5: Connecting the Testbench and Design 119

Example 5-22 Bidirectional signals in a program and interface

interface master_if (input bit clk);
 wire [7:0] data; // Bidirectional signal

 clocking cb @(posedge clk);
 inout data;
 endclocking

 modport TEST (clocking cb);
endinterface

program test(master_if mif);

 initial begin
 mif.cb.data <= 'z; // Tri-state the bus
 @mif.cb;
 $displayh(mif.cb.data); // Read from the bus
 @mif.cb;
 mif.cb.data <= 7’h5a; // Drive the bus
 @mif.cb;
 mif.cb.data <= 'z; // Release the bus
 end

endprogram

The SystemVerilog LRM is not clear on driving an asynchronous bidirec-
tional signal using an interface. Two possible solutions are to use a cross-
module reference and continuous assignment or to use a virtual interface as
shown in Chapter 10.

5.5.5 Why are always blocks not allowed in a program?
In SystemVerilog you can put tasks, functions, classes, and initial

blocks in a program, but not always blocks. This may seem odd if you are
used to Verilog modules, but there are several reasons. SystemVerilog pro-
grams are closer to a program in C, with one (or more) entry points, than
Verilog’s many small blocks of concurrently executing hardware. In a design,
an always block might trigger on every positive edge of a clock from the
start of simulation. A testbench, on the other hand, goes through initialization,
drive and respond to design activity, and then completes. When the last
initial block completes, simulation implicitly ends just as if you had exe-
cuted $finish. If you had an always block, it would never stop, so you

SystemVerilog for Verification120

would have to explicitly call $exit to signal that the program block
completed.

But don’t despair. If you really need an always block, you can use
“initial forever” to accomplish the same thing.

5.5.6 The clock generator
Now that you have seen the program block, you may wonder if the clock

generator should be in a module. The clock is more closely tied to the design
than the testbench, and so the clock generator should remain in a module. As
you refine the design, you create clock trees, and you have to carefully control
the skews as the clocks enter the system and propagate through the blocks.

The testbench is much less picky. It just wants a clock edge to know when
to drive and sample signals. Functional verification is concerned with provid-
ing the right values at the right cycle, not with fractional nanosecond delays
and relative clock skews.
Example 5-23 Bad clock generator in program block

program bad_generator (output bit clk, out_sig);
 bit clk=0, out_sig=0;
 initial
 forever #5 clk <= ~clk ;

 initial
 forever @(posedge clk)
 out_sig <= ~out_sig;
endprogram

 The program block is not the place to put a clock generator. Example 5-23
tries to put the generator in a program block but just causes a race condition.
The clk and out_sig signals both propagate from the Reactive region to the
design in the Active region and could cause a race condition depending on
which one arrived first.

Avoid race conditions by always putting the clock generator in a module.
If you want to randomize the generator’s properties, create a class with

random variables for skew, frequency, and other characteristics. You can use
this class in the generator module, or in the testbench.

Chapter 5: Connecting the Testbench and Design 121

Example 5-24 Good clock generator in module

module clock_generator (output bit clk);
 bit clk = 1;
 always #5 clk = ~clk; // Use blocking assignment
endmodule

Lastly, don’t try to verify the low-level timing with functional
verification. The testbenches described in this book check the
behavior of the DUT but not the timing, which is better done
with a static timing analysis tool.

5.6 Connecting It All Together
Now you have a design described in a module, a testbench in a program

block, and interfaces that connect them together. Here is the top-level module
that instantiates and connects all the pieces.
Example 5-25 Top module using a simple arbiter interface

module top;
 bit clk;
 always #5 clk = ~clk;

 arb_if arbif(.*);
 arb a1 (.*);
 test t1(.*);
endmodule : top

This is almost identical to Example 5-5. It uses a shortcut notation .*
(implicit port connection) that automatically connects module instance ports
to signals at the current level if they have the same name and data type.

5.7 Top-Level Scope
Sometimes you need to create things in your simulation that are outside of

a program or module so that they are seen by all parts of the simulation. In
Verilog, only macros extend across module boundaries, and are often used for
creating global constants. SystemVerilog introduces the compilation unit, that
is a group of source files that are compiled together. The scope outside the
boundaries of any module, macromodule, interface, program,
package, or primitive is known as the compilation-unit scope, also
referred to as $unit. Anything such as a parameter defined in this scope is
similar to a global because it can be seen by all lower-level blocks. But it is

SystemVerilog for Verification122

not truly global as the parameter cannot be seen during compilation of other
files.

This leads to some confusion. Some tools, such as Synopsys VCS, com-
pile all the SystemVerilog code together, so $unit is global. But Synopsys
Design Compiler compiles a single module or group of modules at a time, so
$unit may be just the contents of one or a few files. Tools from other ven-
dors may compile all files or just a subset at once. As a result, $unit is not
portable.

This book calls the scope outside blocks the “top-level scope.” You can
define variables, parameters, data types and even routines in this space.
Example 5-26 declares a top-level parameter, TIMEOUT, that can be used any-
where in the hierarchy. This example also has a const string that holds an
error message. You can declare top-level constants either way.
Example 5-26 Top-level scope for arbiter design

// root.sv
`timescale 1ns/1ns
parameter int TIMEOUT = 1_000_000;
const string time_out_msg = "ERROR: Time out";
module top;
 test t1(.*);
endmodule

program automatic test;
 ...
 initial begin
 #TIMEOUT;
 $display("%s", time_out_msg);
 $finish;
 end
endprogram

The instance name $root allows you to unambiguously refer to names in
the system, starting with the top-level scope. In this respect, $root is similar
to “/” in the Unix file system. For tools such as VCS that compile all files at
once, $root and $unit are equivalent. The name $root also solves an old
Verilog problem. When your code refers to a name in another module, such as
i1.var, the compiler first looks in the local scope, then looks up to the next
higher scope, and so on until it reaches the top. You may have wanted to use
i1.var in the top module, but an instance named i1 in an intermediate scope
may have sidetracked the search, giving you the wrong variable. You use
$root to make unambiguous cross-module references by specifying the
absolute path.

Chapter 5: Connecting the Testbench and Design 123

Example 5-27 shows a program that is instantiated in a module that is
explicitly instantiated in the top-level scope. The program can use a relative or
absolute reference to the clk signal in the module. Note that if the module
were implicitly instantiated, that is, if you took out the line top t1();, the
absolute reference in the program would change to $root.top.clk. Use
explicit instantiation of the top module if you plan on making cross-module
references.
Example 5-27 Cross-module references with $root

// root.sv
`timescale 1ns/1ns
parameter TIMEOUT = 1_000_000;
top t1(); // Explicitly instantiate top-level module

module top;
 bit clk;
 test t1(.*);
endmodule

program automatic test;
 ...
 initial begin
 // Absolute reference
 $display("clk=%b", $root.t1.clk)

 // Relative reference
 $display("clk=%b", t1.clk)
endprogram

5.8 Program – Module Interactions
The program block can read and write all signals in modules, and can call

routines in modules, but a module has no visibility into a program. This is
because your testbench needs to see and control the design, but the design
should not depend on anything in the testbench.

A program can call a routine in a module to perform various
actions. The routine can set values on internal signals, also
known as “backdoor load.” Next, because the current System-
Verilog standard does not define how to force signals from a
program block, you need to write a task in the design to do the

force, and then call from the program.

SystemVerilog for Verification124

Lastly, it is a good practice for your testbench to use a function to get
information from the DUT. Reading signal values can work most of the time,
but if the design code changes, your testbench may interpret the values incor-
rectly. A function in the module can encapsulate the communication between
the two and make it easier for your testbench to stay synchronized with the
design.

5.9 SystemVerilog Assertions
You can create temporal assertions about signals in your design using Sys-

temVerilog Assertions (SVA). The assertions are instantiated similarly to
other design blocks and are active for the entire simulation. The simulator
keeps track of what assertions have triggered, so you can gather functional
coverage data on them.

5.9.1 Procedural assertions
Your testbench procedural code can check the values of design signals and

testbench variables and take action if there is a problem. For example, if you
have asserted the bus request, you expect that grant will be asserted two
cycles later. You could use an if-statement.
Example 5-28 Checking a signal with an if-statement

bus.cb.request <= 1;
@bus.cb;
if (bus.cb.grant != 2’b01)
 $display("Error, grant != 1");
// rest of the test

An assertion is more compact than an if-statement. However, note that
the logic is reversed compared to the if-statement above. You want the
expression inside the parentheses to be true; otherwise, print an error.
Example 5-29 Simple procedural assertion

bus.cb.request <= 1;
@bus.cb;
a1: assert (bus.cb.grant == 2’b01);
// rest of the test

If the grant signal is asserted correctly, the test continues. If the signal
does not have the expected value, the simulator produces a message similar to
the following.

Chapter 5: Connecting the Testbench and Design 125

Example 5-30 Error from failed procedural assertion

"test.sv", 7: top.t1.a1: started at 55ns failed at 55ns
Offending '(bus.cb.grant == 2’b1)‘

This message says that on line 7 of the file test.sv, the assertion
top.t1.a1 started at 55ns to check the signal bus.cb.grant, but it failed
immediately.

You may be tempted to use the full SystemVerilog Assertion
syntax to check an elaborate sequence over a range of time, but
use care. Assertions are declarative code, and execute very dif-
ferently than the surrounding procedural code. In just a few
lines of assertions, you can verify complex code; the equivalent

procedural code would be far more complicated and verbose.

5.9.2 Customizing the assertion actions
A procedural assertion has optional then- and else-clauses. If you want to

augment the default message, you can add your own.
Example 5-31 Creating a custom error message in a procedural assertion

a1: assert (bus.cb.grant == 2’b01)
else $error("Grant not asserted");

If grant does not have the expected value, you’ll see an error message.
Example 5-32 Error from failed procedural assertion

 "test.sv", 7: top.t1.a1: started at 55ns failed at 55ns
Offending '(bus.cb.grant == 2’b1)‘

"test.sv", 76: top.t1.a1: started at 55ns failed at 55ns
Offending '(arbif.cb.grant == 2'b1)'
Error: "test.sv", 76: top.t1.a1: at time 55 ns
Grant not asserted

SystemVerilog has four functions to print messages: $info, $warning,
$error, and $fatal. These are allowed only inside an assertion, not in pro-
cedural code, though future versions of SystemVerilog may allow this.

You can use the then-clause to record when an assertion completed
successfully.

SystemVerilog for Verification126

Example 5-33 Creating a custom error message

a1: assert (bus.cb.grant == 2’b01)
 grants_received++; // Another succesful result
else
 $error("Grant not asserted");

5.9.3 Concurrent assertions
The other type of assertion is the concurrent assertion that you can think of

as a small model that runs continuously, checking the values of signals for the
entire simulation. You need to specify a sampling clock in the assertion. Here
is a small assertion to check that the arbiter signals are do not have X or Z val-
ues except during reset.
Example 5-34 Concurrent assertion to check for X/Z

interface arb_if(input bit clk);
 logic [1:0] grant, request;
 logic reset;

 property request_2state;
 @(posedge clk) disable iff (reset);
 $isunknown(request) == 0;
 endproperty
 assert_request_2state: assert property request_2state

endinterface

5.9.4 Exploring assertions
There are many other uses for assertions. For example, you can put asser-

tions in an interface. Now your interface not only transmits signal values but
also checks the protocol.

This section provides a brief introduction to assertions. For more informa-
tion on SystemVerilog Assertions, see Vijayaraghhavan (2005).

5.10 The Four-Port ATM Router
The arbiter example is a good introduction to interfaces, but real designs

have more than a single input and output. This section shows a four-port ATM
router.

Chapter 5: Connecting the Testbench and Design 127

Figure 5-8 Testbench – ATM router diagram without interfaces

5.10.1 ATM router with ports
The following code fragments show the tangle of wires you would have to

endure to connect an RTL block to a testbench. First is the header for the
ATM router model. This uses the Verilog-1995 style port declarations, where
the type and direction are separate from the header.

The actual code for the router is crowded out by nearly a page of port
declarations.

4x4
ATM

router

Testbench

Tx0

Tx1

Tx2

Tx3

Rx0

Rx1

Rx2

Rx3

4x4
ATM

router

Testbench

Tx0

Tx1

Tx2

Tx3

Rx0

Rx1

Rx2

Rx3

SystemVerilog for Verification128

Example 5-35 ATM router model header without an interface

module atm_router(
 // 4 x Level 1 Utopia ATM layer Rx Interfaces
 Rx_clk_0, Rx_clk_1, Rx_clk_2, Rx_clk_3,
 Rx_data_0, Rx_data_1, Rx_data_2, Rx_data_3,
 Rx_soc_0, Rx_soc_1, Rx_soc_2, Rx_soc_3,
 Rx_en_0, Rx_en_1, Rx_en_2, Rx_en_3,
 Rx_clav_0, Rx_clav_1, Rx_clav_2, Rx_clav_3,

 // 4 x Level 1 Utopia ATM layer Tx Interfaces
 Tx_clk_0, Tx_clk_1, Tx_clk_2, Tx_clk_3,
 Tx_data_0, Tx_data_1, Tx_data_2, Tx_data_3,
 Tx_soc_0, Tx_soc_1, Tx_soc_2, Tx_soc_3,
 Tx_en_0, Tx_en_1, Tx_en_2, Tx_en_3,
 Tx_clav_0, Tx_clav_1, Tx_clav_2, Tx_clav_3,

 // Miscellaneous control interfaces
 rst, clk);

// 4 x Level 1 Utopia Rx Interfaces
 output Rx_clk_0, Rx_clk_1, Rx_clk_2, Rx_clk_3;
 input [7:0] Rx_data_0,Rx_data_1,Rx_data_2,Rx_data_3;
 input Rx_soc_0, Rx_soc_1, Rx_soc_2, Rx_soc_3;
 output Rx_en_0, Rx_en_1, Rx_en_2, Rx_en_3;
 input Rx_clav_0,Rx_clav_1,Rx_clav_2,Rx_clav_3;

// 4 x Level 1 Utopia Tx Interfaces
 output Tx_clk_0, Tx_clk_1, Tx_clk_2, Tx_clk_3;
 output [7:0] Tx_data_0,Tx_data_1,Tx_data_2,Tx_data_3;
 output Tx_soc_0, Tx_soc_1, Tx_soc_2, Tx_soc_3;
 output Tx_en_0, Tx_en_1, Tx_en_2, Tx_en_3;
 input Tx_clav_0,Tx_clav_1,Tx_clav_2,Tx_clav_3;

// Miscellaneous control interfaces
 input rst, clk;
...
endmodule

5.10.2 ATM top-level netlist with ports
Shown next is the top-level netlist.

Chapter 5: Connecting the Testbench and Design 129

Example 5-36 Top-level netlist without an interface

module top;
 bit clk;
 always #5 clk = !clk;
 wire Rx_clk_0, Rx_clk_1, Rx_clk_2, Rx_clk_3,
 Rx_soc_0, Rx_soc_1, Rx_soc_2, Rx_soc_3,
 Rx_en_0, Rx_en_1, Rx_en_2, Rx_en_3,
 Rx_clav_0, Rx_clav_1, Rx_clav_2, Rx_clav_3,
 Tx_clk_0, Tx_clk_1, Tx_clk_2, Tx_clk_3,
 Tx_soc_0, Tx_soc_1, Tx_soc_2, Tx_soc_3,
 Tx_en_0, Tx_en_1, Tx_en_2, Tx_en_3,
 Tx_clav_0, Tx_clav_1, Tx_clav_2, Tx_clav_3, rst;

 wire [7:0] Rx_data_0, Rx_data_1, Rx_data_2, Rx_data_3,
 Tx_data_0, Tx_data_1, Tx_data_2, Tx_data_3;

 atm_router a1(Rx_clk_0, Rx_clk_1, Rx_clk_2, Rx_clk_3,
 Rx_data_0,Rx_data_1,Rx_data_2,Rx_data_3,
 Rx_soc_0, Rx_soc_1, Rx_soc_2, Rx_soc_3,
 Rx_en_0, Rx_en_1, Rx_en_2, Rx_en_3,
 Rx_clav_0,Rx_clav_1,Rx_clav_2,Rx_clav_3,
 Tx_clk_0, Tx_clk_1, Tx_clk_2, Tx_clk_3,
 Tx_data_0,Tx_data_1,Tx_data_2,Tx_data_3,
 Tx_soc_0, Tx_soc_1, Tx_soc_2, Tx_soc_3,
 Tx_en_0, Tx_en_1, Tx_en_2, Tx_en_3,
 Tx_clav_0,Tx_clav_1,Tx_clav_2,Tx_clav_3,
 rst, clk);

 test t1 (Rx_clk_0, Rx_clk_1, Rx_clk_2, Rx_clk_3,
 Rx_data_0,Rx_data_1,Rx_data_2,Rx_data_3,
 Rx_soc_0, Rx_soc_1, Rx_soc_2, Rx_soc_3,
 Rx_en_0, Rx_en_1, Rx_en_2, Rx_en_3,
 Rx_clav_0,Rx_clav_1,Rx_clav_2,Rx_clav_3,
 Tx_clk_0, Tx_clk_1, Tx_clk_2, Tx_clk_3,
 Tx_data_0,Tx_data_1,Tx_data_2,Tx_data_3,
 Tx_soc_0, Tx_soc_1, Tx_soc_2, Tx_soc_3,
 Tx_en_0, Tx_en_1, Tx_en_2, Tx_en_3,
 Tx_clav_0,Tx_clav_1,Tx_clav_2,Tx_clav_3,
 rst, clk);
endmodule

Example 5-37 shows the top of the testbench module. Once again, note
that the ports and wires take up the majority of the netlist.

SystemVerilog for Verification130

Example 5-37 Testbench using ports

module test(
 // 4 x Level 1 Utopia ATM layer Rx Interfaces
 Rx_clk_0, Rx_clk_1, Rx_clk_2, Rx_clk_3,
 Rx_data_0, Rx_data_1, Rx_data_2, Rx_data_3,
 Rx_soc_0, Rx_soc_1, Rx_soc_2, Rx_soc_3,
 Rx_en_0, Rx_en_1, Rx_en_2, Rx_en_3,
 Rx_clav_0, Rx_clav_1, Rx_clav_2, Rx_clav_3,

 // 4 x Level 1 Utopia ATM layer Tx Interfaces
 Tx_clk_0, Tx_clk_1, Tx_clk_2, Tx_clk_3,
 Tx_data_0, Tx_data_1, Tx_data_2, Tx_data_3,
 Tx_soc_0, Tx_soc_1, Tx_soc_2, Tx_soc_3,
 Tx_en_0, Tx_en_1, Tx_en_2, Tx_en_3,
 Tx_clav_0, Tx_clav_1, Tx_clav_2, Tx_clav_3,

 // Miscellaneous control interfaces
 rst, clk);

// 4 x Level 1 Utopia Rx Interfaces
 input Rx_clk_0, Rx_clk_1, Rx_clk_2, Rx_clk_3;
 output [7:0] Rx_data_0,Rx_data_1,Rx_data_2,Rx_data_3;
 reg [7:0] Rx_data_0,Rx_data_1,Rx_data_2,Rx_data_3;
 output Rx_soc_0, Rx_soc_1, Rx_soc_2, Rx_soc_3;
 reg Rx_soc_0, Rx_soc_1, Rx_soc_2, Rx_soc_3;
 input Rx_en_0, Rx_en_1, Rx_en_2, Rx_en_3;
 output Rx_clav_0,Rx_clav_1,Rx_clav_2,Rx_clav_3;
 reg Rx_clav_0,Rx_clav_1,Rx_clav_2,Rx_clav_3;

// 4 x Level 1 Utopia Tx Interfaces
 input Tx_clk_0, Tx_clk_1, Tx_clk_2, Tx_clk_3;
 input [7:0] Tx_data_0, Tx_data_1,Tx_data_2,Tx_data_3;
 input Tx_soc_0, Tx_soc_1, Tx_soc_2, Tx_soc_3;
 input Tx_en_0, Tx_en_1, Tx_en_2, Tx_en_3;
 output Tx_clav_0, Tx_clav_1,Tx_clav_2,Tx_clav_3;
 reg Tx_clav_0, Tx_clav_1,Tx_clav_2,Tx_clav_3;

// Miscellaneous control interfaces
 output rst;
 reg rst;
 input clk;

 initial begin
 // Reset the device

Chapter 5: Connecting the Testbench and Design 131

 rst <= 1;
 Rx_data_0 <= 0;
 ...
 end
endmodule

You just saw three pages of code, and it was all just connectivity — no
testbench, no design! Interfaces provide a better way to organize all this infor-
mation and eliminate the repetitive parts that are so error prone.

5.10.3 Using interfaces to simplify connections
Here is a diagram for the ATM router connected to the testbench, with the

signals grouped into interfaces.
Figure 5-9 Testbench - router diagram with interfaces

5.10.4 ATM interfaces
Here are the Rx and Tx interfaces with modports and clocking blocks.

4x4 ATM
router

Testbench

Rx Tx

4x4 ATM
router

Testbench

Rx Tx

SystemVerilog for Verification132

Example 5-38 Rx interface

// Rx interface with modports and clocking block
interface Rx_if (input logic clk);
 logic [7:0] data;
 logic soc, en, clav, rclk;

 clocking cb @(posedge clk);
 output data, soc, clav; // Directions are relative
 input en; // to the testbench
 endclocking : cb

 modport DUT (output en, rclk,
 input data, soc, clav);

 modport TB (clocking cb);
endinterface : Rx_if

Example 5-39 Tx interface

// Tx interface with modports and clocking block
interface Tx_if (input logic clk);
 logic [7:0] data;
 logic soc, en, clav, tclk;

 clocking cb @(posedge clk);
 input data, soc, en;
 output clav;
 endclocking : cb

 modport DUT (output data, soc, en, tclk,
 input clk, clav);

 modport TB (clocking cb);
endinterface : Tx_if

5.10.5 ATM router model using an interface
Here are the ATM router model and testbench, which need to specify the

modport in their port connection list. Note that you put the modport name
after the interface name, Rx_if.

Chapter 5: Connecting the Testbench and Design 133

Example 5-40 ATM router model with interface using modports

module atm_router(Rx_if.DUT Rx0, Rx1, Rx2, Rx3,
 Tx_if.DUT Tx0, Tx1, Tx2, Tx3,
 input logic clk, rst);
...
endmodule

5.10.6 ATM top level netlist with interfaces
The top netlist has shrunk considerably, along with the chances of making

a mistake.
Example 5-41 Top-level netlist with interface

module top;
 bit clk, rst;
 always #5 clk = !clk;

 Rx_if Rx0 (clk), Rx1 (clk), Rx2 (clk), Rx3 (clk);
 Tx_if Tx0 (clk), Tx1 (clk), Tx2 (clk), Tx3 (clk);

 atm_router a1 (Rx0, Rx1, Rx2, Rx3,
 Tx0, Tx1, Tx2, Tx3, clk, rst);

 test t1 (Rx0, Rx1, Rx2, Rx3,
 Tx0, Tx1, Tx2, Tx3, clk, rst);
endmodule : top

5.10.7 ATM testbench with interface
Example 5-42 shows the part of the testbench that captures cells coming in

from the TX port of the router. Note that the interface names are hard-coded,
so you have to duplicate the same code four times for the 4x4 ATM switch.
Chapter 10 shows how to simplify the code by using virtual interfaces.

SystemVerilog for Verification134

Example 5-42 Testbench using interface with clocking block

program test(Rx_if.TB Rx0, Rx1, Rx2, Rx3,
 Tx_if.TB Tx0, Tx1, Tx2, Tx3,
 input logic clk, output logic rst);

 bit [7:0] bytes[ATM_CELL_SIZE];

 initial begin
 // Reset the device
 rst <= 1;
 Rx0.cb.data <= 0;
 ...
 receive_cell0();
 ...
 end

 task receive_cell0();
 @(Tx0.cb);
 Tx0.cb.clav <= 1; // Assert ready to receive
 wait (Tx0.cb.soc == 1); // Wait for Start of Cell

 for (int i=0; i<ATM_CELL_SIZE; i++) begin
 wait (Tx0.cb.en == 0); // Wait for enable
 @(Tx0.cb);

 bytes[i] = Tx0.cb.data;
 @(Tx0.cb);
 Tx0.cb.clav <= 0; // Deassert flow control
 end
 endtask : receive_cell0

endprogram : test

5.11 Conclusion
In this chapter you have learned how to use SystemVerilog’s interfaces to

organize the communication between design blocks and your testbench. With
this design construct, you can replace dozens of signal connections with a sin-
gle interface, making your code easier to maintain and improve, and reducing
the number of wiring mistakes.

SystemVerilog also introduces the program block to hold your testbench
and to reduce race conditions between the device under test and the testbench.
With a clocking block in an interface, your testbenches will drive and sample
design signals correctly relative to the clock.

Chapter 6

Randomization

6.1 Introduction

As designs grow larger, it becomes more difficult to create a complete set
of stimuli needed to check their functionality. You can write a directed
testcase to check a certain set of features, but you cannot write enough
directed testcases when the number of features keeps doubling on each
project. Worse yet, the interactions between all these features are the source
for the most devious bugs and are the least likely to be caught by going
through a laundry list of features.

The solution is to create testcases automatically using constrained-random
tests (CRT). A directed test finds the bugs you think are there, but a CRT
finds bugs you never thought about, by using random stimulus. You restrict
the test scenarios to those that are both valid and of interest by using
constraints.

Creating a CRT environment takes more work than creating one for
directed tests. A simple directed test just applies stimulus, and then you man-
ually check the result. These results are captured as a golden log file and
compared with future simulations to see whether the test passes or fails. A
CRT environment needs not only to create the stimulus but also to predict the
result, using a reference model, transfer function, or other techniques. How-
ever, once this environment is in place, you can run hundreds of tests without
having to hand-check the results, thereby improving your productivity. This
trade-off of test-authoring time (your work) for CPU time (machine work) is
what makes CRT so valuable.

A CRT is made of two parts: the test code that uses a stream of random
values to create input to the DUT, and a seed to the pseudo-random number
generator (PRNG), shown in section 6.15.1. You can make a CRT behave dif-
ferently just by using a new seed. This feature allows you to leverage each test
so each is the functional equivalent of many directed tests, just by changing
seeds. You are able to create more equivalent tests using these techniques than
with directed testing.

You may feel that these random tests are like throwing darts. How do you
know when you have covered all aspects of the design? The stimulus space is
too large to generate every possible input by using for-loops, so you need to
generate a useful subset. In Chapter 9 you will learn how to measure verifica-
tion progress by using functional coverage.

SystemVerilog for Verification136

There are many ways to use randomization, and this chapter gives a wide
range of examples. It highlights the most useful techniques, but you should
choose what works best for you.

6.2 What to Randomize

When you think of randomizing the stimulus to a design, the first thing
you may think of are the data fields. These are the easiest to create – just call
$random. The problem is that this approach has a very low payback in terms
of bugs found: you only find data-path bugs, perhaps with bit-level mistakes.
The test is still inherently directed. The challenging bugs are in the control
logic. As a result, you need to randomize all decision points in your DUT.
Everywhere control paths diverge, randomization increases the probability
that you’ll take a different path in each test case.

You need to think broadly about all design input such as the following.

Device configuration
Environment configuration
Primary input data
Encapsulated input data
Protocol exceptions
Delays
Transaction status
Errors and violations

6.2.1 Device configuration

What is the most common reason why bugs are missed during testing of
the RTL design? Not enough different configurations have been tried! Most
tests just use the design as it comes out of reset, or apply a fixed set of initial-
ization vectors to put it into a known state. This is like testing a PC’s
operating system right after it has been installed, and without any applica-
tions; of course the performance is fine, and there are no crashes.

Over time, in a real world environment, the DUT’s configuration becomes
more and more random. For example, a Synopsys customer had to verify a
time-division multiplexor switch that had 600 input channels and 12 output
channels. When the device was installed in the end-customer’s system, chan-
nels would be allocated and deallocated over and over, so at any point in time,

Chapter 6: Randomization 137

there would be little correlation between adjacent channels. In other words,
the configuration would seem to be random.

To test this device, the verification engineer had to write several dozen
lines of Tcl code to configure each channel. As a result, she was never able to
try configurations with more than a handful of channels enabled. Using a CRT
methodology, she wrote a testbench that randomized the parameters for a sin-
gle channel, and then put this in a loop to configure the whole device. Now
she had confidence that her tests would uncover bugs that previously would
have been missed.

6.2.2 Environment configuration

The device that you are designing operates in an environment containing
other devices. When you are verifying the DUT, it is connected to a testbench
that mimics this environment. You should randomize the entire environment,
including the number of objects and how they are configured.

Another company was creating an I/O switch chip that connected multiple
PCI buses to an internal memory bus. At the start of simulation the customer
used randomization to choose the number of PCI buses (1–4), the number of
devices on each bus (1–8), and the parameters for each device (master or
slave, CSR addresses, etc.). Even though there were many possible combina-
tions, this company knew all had been covered.

6.2.3 Primary input data

This is what you probably thought of first when you read about random
stimulus: take a transaction such as a bus write or ATM cell and fill it with
some random values. How hard can that be? Actually it is fairly straightfor-
ward as long as you carefully prepare your transaction classes. You should
anticipate any layered protocols and error injection.

6.2.4 Encapsulated input data

Many devices process multiple layers of stimulus. For example, a device
may create TCP traffic that is then encoded in the IP protocol, and finally sent
out inside Ethernet packets. Each level has its own control fields that can be
randomized to try new combinations. So you are randomizing the data and the
layers that surround it. You need to write constraints that create valid control
fields but that also allow injecting errors.

SystemVerilog for Verification138

6.2.5 Protocol exceptions, errors, and violations

Anything that can go wrong, will, eventually. The most challenging part of
design and verification is how to handle errors in the system. You need to
anticipate all the cases where things can go wrong, inject them into the sys-
tem, and make sure the design handles them gracefully, without locking up or
going into an illegal state. A good verification engineer tests the behavior of
the design to the edge of the functional specification and sometimes even
beyond

When two devices communicate, what happens if the transfer stops part-
way through? Can your testbench simulate these breaks? If there are error
detection and correction fields, you must make sure all combinations are tried.

The random component of these errors is that your testbench should be
able to send functionally correct stimuli and then, with the flip of a configura-
tion bit, start injecting random types of errors at random intervals.

6.2.6 Delays

Many communication protocols specify ranges of delays. The bus grant
comes one to three cycles after request. Data from the memory is valid in the
fourth to tenth bus cycle. However, many directed tests, optimized for the
fastest simulation, use the shortest latency, except for that one test that only
tries various delays. Your testbench should always use random, legal delays
during every test to try to find that (hopefully) one combination that exposes a
design bug.

Below the cycle level, some designs are sensitive to clock jitter. By sliding
the clock edges back and forth by small amounts, you can make sure your
design is not overly sensitive to small changes in the clock cycle.

The clock generator should be in a module outside the testbench so that it
creates events in the Active region along with other design events. However,
the generator should have parameters such as frequency and offset that can be
set by the testbench during the configuration phase.

(Note that you are looking for functional errors, not timing errors. Your
testbench should not try to violate setup and hold requirements. These are bet-
ter validated using timing analysis tools.)

6.3 Randomization in SystemVerilog

The random stimulus generation in SystemVerilog is most useful when
used with OOP. You first create a class to hold a group of related random
variables, and then have the random-solver fill them with random values. You

Chapter 6: Randomization 139

can create constraints to limit the random values to legal values, or to test spe-
cific features.

Note that you can randomize individual variables, but this case is the least
interesting. True constrained-random stimuli is created at the transaction
level, not one value at a time.

6.3.1 Simple class with random variables

Example 6-1 shows a class with random variables, constraints, plus test-
bench code to use this class.
Example 6-1 Simple random class

class Packet;
 // The random variables
 rand bit [31:0] src, dst, data[8];
 randc bit [7:0] kind;
 // Limit the values for src
 constraint c {src > 10;
 src < 15;}
endclass

Packet p;
initial begin
 p = new; // Create a packet
 assert (p.randomize());
 transmit(p);
end

This class has four random variables. The first three use the rand modi-
fier, so that every time you randomize the class, the variables are assigned a
value. Think of rolling dice: each roll could be a new value or repeat the cur-
rent one. The kind variable is randc, which means random cyclic, so that the
random solver does not repeat a random value until every possible value has
been assigned. Think of dealing cards from a deck: you deal out every card in
the deck in random order, then shuffle the deck, and deal out the cards in a
different order.

Note that the constraint expression is grouped using curly braces: {}. This
is because this code is declarative, not procedural, which uses begin...end.

The randomize function returns 0 if a problem is found with the con-
straints. The procedural assertion is used to check the result, as shown in
section 5.9. You need find the tool-specific switches to cause the assertion to
terminate simulation. This book uses assert to test the result from
randomize, but you may want to test the result and then call your special

SystemVerilog for Verification140

routine that prints any useful information and then gracefully shuts down then
simulation.

The constraint in Example 6-1 is an expression that limits the values for
the src variable. In this case, SystemVerilog chooses between the values of
11, 12, 13, or 14.

All variables in your classes should be random and public. This
gives your test the maximum control over the DUT’s stimulus
and control. You can always turn off a random variable, as
show in section 6.10.2. If you forget to make a variable ran-
dom, you must edit the environment, which you want to avoid.

6.3.2 Checking the result from randomize

randomize assigns random values to any variable in the class
that has been labeled as rand or randc, and also makes sure
that all active constraints are obeyed. Randomization can fail if
your code has conflicting constraints (see next section), so you
should always check the status. If you don’t check, the vari-

ables may get unexpected values, causing your simulation to fail.
Example 6-1 checks the status from randomize by using a procedural

assertion. If randomization succeeds, the function returns 1. If it fails,
randomize returns 0. The assertion checks the result and prints an error if
there was a failure. You should set your simulator’s switches to terminate
when an error is found. Alternatively, you might want to call a special routine
to end simulation, after doing some housekeeping chores like printing a sum-
mary report.

6.3.3 The constraint solver

The process of solving constraint expressions is handled by the System-
Verilog constraint solver. The solver chooses values that satisfy the
constraints. The values come from SystemVerilog’s PRNG, that is started
with an initial seed. If you give a SystemVerilog simulator the same seed and
the same testbench, it always produces the same results.

The solver is specific to the simulation vendor, and a constrained-random
test may not give the same results when run on different simulators, or even
on different versions of the same tool. The SystemVerilog standard specifies
the meaning of the expressions, and the legal values that are created, but does
not detail the precise order in which the solver should operate. See section
6.15 for more details on random number generators.

Chapter 6: Randomization 141

6.4 Constraint Details

Useful stimulus is more than just random values — there are relationships
between the variables. Otherwise, it may take too long to generate interesting
stimulus values, or the stimulus might contain illegal values. You define these
interactions in SystemVerilog using constraint blocks that contain one or
more constraint expressions. SystemVerilog solves these expressions concur-
rently, choosing random values that satisfy all the expressions.

At least one variable in each expression should be random,
either rand or randc. The following class fails when ran-
domized. The solution is to add the modifier rand or randc
to the variable son.

Example 6-2 Constraint without random variables

class bad;
 bit [31:0] son; // Error – should be rand or randc
 constraint c_teenager {son > 12;
 son < 20;}
endclass

The randomize function tries to assign new values to random variables
and to make sure all constraints are satisfied. In Example 6-2, since there are
no random variables, randomize just checks the value of son to see if it is in
the bounds specified by the constraint c_teenager. Unless the variable hap-
pens to fall in the range of 13:19, randomize fails.

6.4.1 Constraint introduction

The following sections use this example of a random class with con-
straints. The specific constructs are explained later in this section.

SystemVerilog for Verification142

Example 6-3 Constrained-random class

class Stim;
 const bit [31:0] SRC_CONGEST_ADDR = 42;
 typedef enum {READ, WRITE, CONTROL} stim_t;
 randc stim_t type; // Enumerated var
 rand bit [31:0] len, src, dst;
 bit congestion_test;

 constraint c_stim {
 len < 1000;
 len > 0;
 src inside {0, [2:10], [100:107]};
 if (congestion_test) {
 dst inside {[CONGEST_ADDR-100:CONGEST_ADDR+100]};
 }
 }
endclass

6.4.2 Simple expressions

Example 6-3 shows a class with a constraint block, with several expres-
sions. The first two control the values for the len variable. As shown above, a
variable can be used in multiple expressions.

There can be a maximum of only one relational operator (<,
<=, ==, >=, or >) in an expression. If you want to put multi-
ple variables in a fixed order, such as a, b, and c, use
multiple expressions.

Example 6-4 Constrain variables to be in a fixed order

class bad;
 rand bit [15:0] a, b, c;
 constraint good {0 < a; // Correct way
 a < b;
 b < c;}
 constraint bad {0 < a < b < c;} // Error, won’t work!
endclass

6.4.3 Equivalence expressions

You cannot make assignments in a constraint block as it only contains
expressions. Instead, use the equivalence operator to set a random variable to
a value, e.g., len==42, or to build more complex relationships between one

Chapter 6: Randomization 143

or more random variables, e.g., len == header.addr_mode * 4 +
payload.size.

6.4.4 Set membership and the inside operator

You can create sets of values with the inside operator. SystemVerilog
gathers all the values and chooses between the values with equal probability,
unless you have other constraints on the variable. As always, you can use
variables in the sets. In Example 6-3, the first two expressions could be
replaced with len inside {[1:999]}.
Example 6-5 Random sets of values

rand int c; // Random variable
int lo, hi; // Nonrandom variables used as limits
constraint c_range {
 c inside {[lo:hi]}; // lo <= c and c <= hi
}

In Example 6-5, SystemVerilog uses the values for lo and hi to determine
the range of possible values. You can use this to parameterize your constraints
so that the testbench can alter the behavior of the stimulus generator without
rewriting the constraints. A set can contain multiple values and ranges as
shown in Example 6-3. Note that if lo > hi, an empty set is formed, and the
constraint fails.

If you want any value, as long as it is not inside a set, invert the constraint.
Example 6-6 Inverted random set constraint

constraint c_range {
 !(c inside {[lo:hi]}); // c < lo or c > hi
}

All values in the set are chosen equally, even if they appear multiple times.
Example 6-7 Inverted random set constraint

constraint c_even_weight {
 (c inside {0,1,1,1,1,1}); // 0 or 1, equal probability
}

If you need to weight some values more than others, use the dist opera-
tor, shown in section 6.4.6.

SystemVerilog for Verification144

6.4.5 Using an array in a set

You can choose from a set of values by storing them in an array. Example
6-8 chooses a day of the week from a list of enumerated values. You can
change the list of choices on the fly. If you make choice a randc variable,
the simulator tries every possible value before repeating.

The name function returns a string with the name of an enumerated value.
Example 6-8 Choosing from an array of possible values

class Days;
 typedef enum {SUN, MON, TUE, WED,
 THU, FRI, SAT} DAYS_E;
 DAYS_E choices[$];
 rand DAYS_E choice;
 constraint cday {choice inside choices;}
endclass

Days days;

initial begin
 days = new;

 days.choices = ‘{Days::SUN, Days::SAT};
 assert (days.randomize());
 $display("Random weekend day %s\n", days.choice.name);

 days.choices = ‘{Days::MON, Days::TUE, Days::WED,
 Days::THU, Days::FRI};
 assert (days.randomize());
 $display("Random week day %s", days.choice.name);
end

If you want to dynamically add or remove values from a set, think twice
before using the inside operator because of its performance. For example,
perhaps you have a set of values that you want to be chosen just once. You
could use inside to choose values from a queue, and delete them to slowly
shrink the queue. This requires the solver to solve N constraints, where N is
the number of elements left in the queue. Instead, use a randc variable that
points into an array of choices. Choosing a randc value takes a short, con-
stant time, while solving a large number of constraints is very expensive,
especially for more than a few dozen values.

Chapter 6: Randomization 145

Example 6-9 Using randc to chose array values in random order

class RandcInside;
 int array[]; // Values to choose
 randc bit [15:0] index; // Index into array

 function new(input int a[]); // Construct & initialize
 array = a;
 endfunction

 function int pick; // Return most recent pick
 return array[index];
 endfunction

 constraint c_size {index < array.size;}
endclass

 initial begin
 RandcInside ri;

 ri = new(’{1,3,5,7,9,11,13});
 repeat (ri.array.size) begin
 assert(ri.randomize());
 $display("Picked %2d [%0d]", ri.pick(), ri.index);
 end
 end

Note that constraints and routines can be mixed in any order.

6.4.6 Weighted Distributions

The dist operator allows you to create weighted distributions so that
some values are chosen more often than others. A dist operator takes a list
of values and weights, separated by the := or the :/ operator. The values and
weights can be constants or variables. The values can be a single value or a
range such as [lo:hi]. The weights are not percentages and do not have to
add up to 100. The := operator specifies that the weight is the same for every
specified value in the range, while the :/ operator specifies that the weight is
to be equally divided between all the values.

SystemVerilog for Verification146

Example 6-10 Weighted random distribution with dist

rand int src, dst;
constraint c_dist {
 src dist {0:=40, [1:3]:=60};
 // src = 0, weight = 40/220
 // src = 1, weight = 60/220
 // src = 2, weight = 60/220
 // src = 3, weight = 60/220

 dst dist {0:/40, [1:3]:/60};
 // dst = 0, weight = 40/100
 // dst = 1, weight = 20/100
 // dst = 2, weight = 20/100
 // dst = 3, weight = 20/100
}

In Example 6-10, src gets the value 0, 1, 2, or 3. The weight of 0 is 40,
while 1, 2, and 3 have weights of 60, for a total of 220. The probability of
choosing 0 is 40/220, and the probability of choosing 1, 2, or 3 is 60/220 each.

Next, dst gets the value 0, 1, 2, or 3. The weight of 0 is 40, while 1, 2, and
3 share a total weight of 60, for a total of 100. The probability of choosing 0 is
40/100, while the probability of choosing 1, 2, or 3 is only 20/100 each.

Once again, the values and weights can be constants or variables. You can
use variable weights to change distributions on the fly or even to eliminate
choices by setting the weight to zero.
Example 6-11 Dynamically changing distribution weights

// Bus operation, byte, word, or longword
class BusOp;
 // Operand length
 typedef enum {BYTE, WORD, LWRD } length_t;
 rand length_t len;

 // Random weights for dist constraint
 bit [31:0] w_byte=1, w_word=3, w_lwrd=5;

 constraint c_len {
 len dist {BYTE := w_byte, // Choose a random
 WORD := w_word, // length using
 LWRD := w_lwrd}; // variable weights
 }
endclass

Chapter 6: Randomization 147

In Example 6-11, the len enumerated variable has three values. The con-
straint defaults to choosing longword lengths, as w_lwrd has the largest
value.

6.4.7 Bidirectional Constraints

By now you may have realized that constraint blocks are not procedural
code, executing from top to bottom. They are declarative code, all active at
the same time. If you constrain a variable with the inside operator with the
set [10:50] and have another expression that constrains the variable to be
greater than 20, SystemVerilog only chooses values between 21 and 50.

SystemVerilog constraints are bidirectional, which means that the solver
looks at the constraints on both side of an expression. Consider the following
constraint:
Example 6-12 Bidirectional constraint

rand logic [15:0] b, c, d;
constraint c_bidir {
 b < d;
 c == b;
 d < 30;
 c > 25;
}

The SystemVerilog solver looks at all four constraints simultaneously. b
has to be less than d, which has to be less than 30. But b is constrained to be
equal to c, which is greater than 25. Even though there is no direct constraint
on the lower value of d, the constraint on c restricts the choices.

6.4.8 Conditional constraints

Normally, all constraint expressions are active in a block. What if you
want to have an expression active only some of the time? For example, a bus

Table 6-1. Solutions for bidirectional constraints

Solution b c d

1 26 26 27

2 27 27 28

3 28 28 29

SystemVerilog for Verification148

supports byte, word, and longword reads, but only longword writes. System-
Verilog supports two implication operators, -> and if-else.

When you are choosing from a list of expressions, such as an enumerated
type, the implication operator, ->, lets you create a case-like block. The
parentheses around the expression are not required, but do make the code eas-
ier to read.
Example 6-13 Constraint block with implication operator

class BusOp;
 ...
 constraint c_io {
 (io_space_mode) ->
 addr[31] == 1’b1;
 }

If you have a true-false expression, the if-else operator may be better.
Example 6-14 Constraint block with if-else operator

class BusOp;
 ...
 constraint c_len_rw {
 if (op == READ)
 len inside {[BYTE:LWRD]};
 else
 len == LWRD;
 }

In constraint blocks, you use curly braces, { }, to group multiple expres-
sions. The begin...end keywords are for procedural code.

6.4.9 Choose the right arithmetic operator to boost efficiency

Simple arithmetic operators such as addition and subtraction, bit extracts,
and shifts are handled very efficiently by the solver in a constraint. However,
multiplication, division, and modulo are very expensive with 32-bit values.
Remember that any constant without an explicit size, such as 42, is treated as
a 32-bit value.

If you want to generate random addresses that are near a page boundary,
where a page is 4096 bytes, you could write the following code, but the solver
may take a long time to find suitable values for addr.

Chapter 6: Randomization 149

Example 6-15 Expensive constraint with mod and unsized variable

rand bit [31:0] addr;
constraint slow_near_page_boundary {
 addr % 4096 inside {[0:20], [4075:4095]};
}

Many constants in hardware are powers of 2, so take advantage of this by
using bit extraction rather than division and modulo. Likewise, multiplication
by a power of two can be replaced by a shift.
Example 6-16 Efficient constraint with bit extract

rand bit [31:0] addr;
constraint near_page_boundry {
 addr[11:0] inside {[0:20], [4075:4095]};
}

6.5 Solution Probabilities

Whenever you deal with random values, you need to understand the prob-
ability of the outcome. SystemVerilog does not guarantee the exact solution
found by the random constraint solver, but you can influence the distribution.
Any time you work with random numbers, you have to look at thousands or
millions of values to average out the noise. Changing the tool version or ran-
dom seed can cause different results. Some simulators, such as Synopsys
VCS, have multiple solvers to allow you to trade memory usage vs.
performance.

6.5.1 Unconstrained

Start with two variables with no constraints.
Example 6-17 Class Unconstrained

class Unconstrained;
 rand bit x; // 0 or 1
 rand bit [1:0] y; // 0, 1, 2, or 3
endclass

There are eight possible solutions. Because there are no constraints, each
has the same probability. You have to run thousands of randomizations to see
the actual results approach the listed probabilities.9

SystemVerilog for Verification150

6.5.2 Implication

In Example 6-18, the value of y depends on the value of x. This is indi-
cated with the implication operator in the following constraint. This example
and the rest in this section also behave in the way same with the if implica-
tion operator.
Example 6-18 Class with implication

class Imp1;
 rand bit x; // 0 or 1
 rand bit [1:0] y; // 0, 1, 2, or 3
 constraint c_xy {
 (x==0) -> y==0;
 }
endclass

Here are the possible solutions and probability. You can see that the ran-
dom solver recognizes that there are eight combinations of x and y, but all the
solutions where x==0 (A–D) have been merged together.

9. The tables were generated with Synopsys VCS 2005.06 using the run-time switch
+ntb_solver_mode=1.

Table 6-2. Solutions for Unconstrained class

Solution x y Probability

A 0 0 1/8

B 0 1 1/8

C 0 2 1/8

D 0 3 1/8

E 1 0 1/8

F 1 1 1/8

G 1 2 1/8

H 1 3 1/8

Chapter 6: Randomization 151

6.5.3 Implication and bidirectional constraints

Note that the implication operator says that when x==0, y is forced to 0,
but when y==0, there is no constraint on x. However, implication is bidirec-
tional in that if y were forced to a nonzero value, x would have to be 1.
Example 6-19 has the constraint y>0, so x can never be 0.
Example 6-19 Class with implication and constraint

class Imp2;
 rand bit x; // 0 or 1
 rand bit [1:0] y; // 0, 1, 2, or 3
 constraint c_xy {
 y > 0;
 (x==0) -> y==0;
 }
endclass

Table 6-3. Solutions for Imp1 class

Solution x y Probability

A 0 0 1/2

B 0 1 0

C 0 2 0

D 0 3 0

E 1 0 1/8

F 1 1 1/8

G 1 2 1/8

H 1 3 1/8

SystemVerilog for Verification152

6.5.4 Guiding distribution with solve...before

You can guide the SystemVerilog solver using the “solve...before”
constraint as seen in Example 6-20.
Example 6-20 Class with implication and solve...before

class SolveBefore;
 rand bit x; // 0 or 1
 rand bit [1:0] y; // 0, 1, 2, or 3
 constraint c_xy {
 (x==0) -> y==0;
 solve x before y;
 }
endclass

The solve...before constraint does not change the solution space, just
the probability of the results. The solver chooses values of x (0, 1) with equal
probability. In 1000 calls to randomize, x is 0 about 500 times, and 1 about
500 times. When x is 0, y must be 0. When x is 1, y can be 0, 1, 2, or 3 with
equal probability.

Table 6-4. Solutions for Imp2 class

Solution x y Probability

A 0 0 0

B 0 1 0

C 0 2 0

D 0 3 0

E 1 0 0

F 1 1 1/3

G 1 2 1/3

H 1 3 1/3

Chapter 6: Randomization 153

But, if you use the constraint solve y before x, you get a very differ-
ent distribution.

Only use solve...before if you are dissatisfied with how
often some values occur. Excessive use can slow the con-
straint solver and make your constraints difficult for others to
understand.

Table 6-5. Solutions for solve x before y constraint

Solution x y Probability

A 0 0 1/2

B 0 1 0

C 0 2 0

D 0 3 0

E 1 0 1/8

F 1 1 1/8

G 1 2 1/8

H 1 3 1/8

Table 6-6. Solutions for solve y before x constraint

Solution x y Probability

A 0 0 1/8

B 0 1 0

C 0 2 0

D 0 3 0

E 1 0 1/8

F 1 1 1/4

G 1 2 1/4

H 1 3 1/4

SystemVerilog for Verification154

6.6 Controlling Multiple Constraint Blocks

A class can contain multiple constraint blocks. Your class might naturally
divide into two sets of variables, such as data vs. control, so you may want to
constrain them separately. Or you might want to have a separate constraint for
each test. Perhaps one constraint would restrict the data length to create small
transactions (great for testing congestion), while another would make long
transactions.

At run-time, you can use the constraint_mode() routine to turn con-
straints on and off. When used with handle.constraint, this method
controls a single constraint. When used with just handle, it controls all con-
straints for an object.
Example 6-21 Using constraint_mode

class Packet;
 rand int length;
 constraint c_short {length inside {[1:32]}; }
 constraint c_long {length inside {[1000:1023]}; }
endclass

Packet p;
initial begin
 p = new;

 // Create a long packet by disabling short constraint
 p.c_short.constraint_mode(0);
 assert (p.randomize());

 transmit(p);

 // Create a short packet by disabling all constraints
 // then enabling only the short constraint
 p.constraint_mode(0);
 p.c_short.constraint_mode(1);
 assert (p.randomize());
 transmit(p);
end

6.7 Valid Constraints

A good randomization technique is to create several constraints to ensure
the correctness of your random stimulus, known as “valid constraints.” For

Chapter 6: Randomization 155

example, a bus read-modify-write command might only be allowed for a
longword data length.
Example 6-22 Checking write length with a valid constraint

class BusTrans;
 rand enum {BYTE, WORD, LWRD, QWRD} length;
 rand enum {READ, WRITE, RMW, INTR} opc;

 constraint valid_RMW_LWRD {
 (opc == RMW) -> length == LWRD;
 }
endclass

Now you know the bus transaction obeys the rule. Later, if you want to
violate the rule, use constraint_mode to turn off this one constraint. You
should have a naming convention to make these constraints stand out, such as
using the prefix valid as shown above.

6.8 In-line Constraints

As you write more tests, you can end up with many constraints. They can
interact with each other in unexpected ways, and the extra code to enable and
disable them adds to the test complexity. Additionally, constantly adding and
editing constraints to a class could cause problems in a team environment.

Many tests only randomize objects at one place in the code. SystemVer-
ilog allows you to add an extra constraint using randomize() with. This is
equivalent to adding an extra constraint to any existing ones in effect. Exam-
ple 6-23 shows a base class with constraints, then two randomize() with
statements.

SystemVerilog for Verification156

Example 6-23 The randomize() with statement

class Transaction;
 rand bit [31:0] addr, data;
 constraint c1 {addr inside{[0:100],[1000:2000]};}
endclass

Transaction t = new();

initial begin
 int s;
 t = new();

 // addr is 50-100, 1000-1500, data < 10
 assert(t.randomize() with {addr >= 50; addr <= 1500;
 data < 10;});

 driveBus(t);

 // force addr to a specific value, data > 10
 assert(t.randomize() with {addr == 2000; data > 10;});

 driveBus(t);
 end

The extra constraints are added to the existing ones in effect. Use
constraint_mode if you need to disable a conflicting constraint. Note that
inside the with{} statement, SystemVerilog uses the scope of the class. That
is why Example 6-23 used just addr, not t.addr.

A common mistake is to surround your in-line constraints
with parenthesis instead of curly braces {}. Just remember
that constraint blocks use curly braces, so your in-line con-
straint must use them too. Braces are for declarative code.

6.9 The pre_randomize and post_randomize
Functions

Sometimes you need to perform an action immediately before every
randomize call or immediately afterwards. For example, you may want to
set some nonrandom class variables (such as limits) before randomization
starts, or you may need to calculate the error correction bits for random data.

SystemVerilog lets you do this with two special void functions,
pre_randomize and post_randomize. Section 3.3 showed that a void

Chapter 6: Randomization 157

function does not return a value, but, because it is not a task, does not con-
sume time. If you want to call a debug routine from pre_randomize or
post_randomize, it must be a function.

6.9.1 Building a bathtub distribution

For some applications, you want a nonlinear random distribution. For
instance, small and large packets are more likely to find a design bug such as
buffer overflow than medium-sized packets. So you want a bathtub shaped
distribution; high on both ends, and low in the middle. You could build an
elaborate dist constraint, but it might require lots of tweaking to get the
shape you want. Verilog has several functions for nonlinear distribution such
as $dist_exponential but none for a bathtub. However, you can build one
by using the exponential function twice.
Figure 6-1 Building a bathtub distribution

Example 6-24 Building a bathtub distribution

class Bathtub;
 int value; // Random variable with bathtub dist
 int WIDTH = 50, DEPTH=4, seed=1;

 function void pre_randomize();
 // Calculate the left curve of the tub
 value = $dist_exponential(seed, DEPTH);
 if (value > WIDTH) value = WIDTH;

 // Randomly put this point on the left or right curve
 if ($urandom_range(1))
 value = WIDTH - value;
 endfunction

endclass

Left
Exponential

Right
Exponential

Sum is a
bathtub

Pr
ob

ab
ili

ty

Values WIDTH0

Left
Exponential

Right
Exponential

Sum is a
bathtub

Pr
ob

ab
ili

ty

Values WIDTH0

SystemVerilog for Verification158

Every time this object is randomized, the variable value gets updated.
Across many randomizations, you will see the desired nonlinear distribution.

You can use all the Verilog-1995 distribution functions this way, plus sev-
eral that are new for SystemVerilog. Some of the useful functions include the
following.

$dist_exponential — Exponential decay, as shown in Figure 6-1
$dist_normal — Bell-shaped distribution
$dist_poisson — Bell-shaped distribution
$dist_uniform — Flat distribution
$random — Flat distribution, returning signed 32-bit random
$urandom — Flat distribution, returning unsigned 32-bit random
$urandom_range — Flat distribution over a range

Consult a statistics book for more details on these functions.

6.9.2 Note on void functions

The functions pre_randomize and post_randomize can
only call other functions, not tasks that could consume time.
After all, you cannot have a delay in the middle of a call to
randomize. When you are debugging a randomization
problem, you can call your display routines if you planned

ahead and made them void functions.

6.10 Constraints Tips and Techniques

How can you create constrained-random tests that can be easily modified?
There are several tricks you can use.

6.10.1 Constraints with variables

Most constraint examples in this book use constants to make them more
readable. In Example 6-25, size is randomized over a range that uses a vari-
able for the upper bound.

Chapter 6: Randomization 159

Example 6-25 Constraint with a variable bound

class bounds;
 rand int size;
 int max_size = 100;
 constraint c_size {
 size inside {[1:max_size]};
 }
endclass

By default, this class creates random sizes between 1 and 100, but by
changing the variable max_size, you can vary the upper limit.

You can use variables in the dist constraint to turn on and off values and
ranges. In Example 6-26, each bus command has a different weight variable.
Example 6-26 dist constraint with variable weights

typedef enum (READ8, READ16, READ32) read_t;
class ReadCommands;
 rand read_t read_cmd;
 int read8_wt=1, read16_wt=1, read32_wt=1;
 constraint c_read {
 read_cmd dist {READ8 := read8_wt,
 READ16 := read16_wt,
 READ32 := read32_wt};
 }
endclass

By default, this constraint produces each command with equal probability.
If you want to have a greater number of READ8 commands, increase the
read8_wt weight variable. Most importantly, you can turn off generation of
some commands by dropping their weight to 0.

6.10.2 Using nonrandom values

If you have a set of constraints that produces stimulus that is almost what
you want, but not quite, you could call randomize, and then set a variable to
the value you want – you don’t have to use the random one. However, your
stimulus values may not be correct according to the constraints you created to
check validity.

If there are just a few variables that you want to override, use rand_mode
to make them nonrandom.

SystemVerilog for Verification160

Example 6-27 rand_mode disables randomization of variables

// Packet with variable length payload
class Packet;
 rand bit [7:0] length;
 rand bit [7:0] payload[];
 constraint c_valid {length > 0;
 payload.size == length;}

 function void display(string msg);
 $write("Packet len=%0d, payload size=%0d, bytes = ",
 length, payload.size);
 for(int i=0; (i<4 && i<payload.size); i++)
 $write(" %0d", payload[i]);
 $display;
 endfunction
endclass

Packet p;
initial begin
 p = new();

 // Randomize all variables
 assert (p.randomize());
 p.display("Simple randomize");

 // Make length nonrandom then randomize packet
 p.length.rand_mode(0);
 p.length = 42;
 assert (p.randomize());
 p.display("Randomize with rand_mode");
end

In Example 6-27, the packet length is stored in one variable, while
payload is a dynamic array. The first half of the test randomizes both the
length variable and the contents of the payload array. The second half calls
rand_mode to make length a nonrandom variable, sets it to 42, then calls
randomize. The constraint sets the payload size at the constant 42, but the
array is still filled with random values.

6.10.3 Checking values using constraints

If you randomize an object and then modify some variables, you can check
that the object is still valid by checking if all constraints are still obeyed. Call

Chapter 6: Randomization 161

handle.randomize(null) and SystemVerilog treats all variables as non-
random (“state variables”) and just ensures that all constraints are satisfied.

6.10.4 Turn constraints off and on

A simple testbench may use a data class with just a few constraints. What
if you want to have two tests with very different flavors of data? You could
use the implication operators (-> or if-else) to build a single, elaborate
constraint controlled by nonrandom variables.
Example 6-28 Using the implication constraint as a case statement

class Instruction;
 typedef enum {NOP, HALT, CLR, NOT} OPCODE_T;
 rand OPCODE_T opcode;
 bit [1:0] n_operands;
 ...
 constraint c_operands {
 if (n_operands == 0)
 opcode == NOP || opcode == HALT;
 else if (n_operands == 1)
 opcode == CLR || opcode == NOT;
 ...
 }
endclass

You can see that having one large constraint can quickly get out of control
as you add further expressions for each operand, addressing modes, etc. A
more modular approach is to use a separate constraint for each flavor of
instruction, and then disable all but the one you need.

While the constraints are simpler with this approach, the process of turn-
ing them on and off is more complex. For example, when you turn off all
constraints that create data, you are also disabling all the ones that check the
data’s validity.

SystemVerilog for Verification162

Example 6-29 Turning constraints on and off with constraint_mode

class Instruction;
 rand OPCODE_T opcode;
 …
 constraint c_no_operands {
 opcode == NOP || opcode == HALT;}
 constraint c_one_operand {
 opcode == CLR || opcode == NOT;}
endclass

Instruction instr;
initial begin
 instr = new;

 // Generate an instruction with no operands
 instr.constraint_mode(0); // Turn off all constraints
 instr.c_no_operands.constraint_mode(1);
 assert (instr.randomize());

 // Generate an instruction with one operand
 instr.constraint_mode(0); // Turn off all constraints
 instr.c_one_operand.constraint_mode(1);
 assert (instr.randomize());
 end

6.10.5 Specifying a constraint in a test using in-line constraints

If you keep adding constraints to a class, it becomes hard to manage and
control. Soon, everyone is checking out the same file from your source con-
trol system. Many times a constraint is only used by a single test, so why have
it visible to every test? One way to localize the effects of a constraint is to use
in-line constraints, randomize() with, shown in section 6.8. This works
well if your new constraint is additive to the default constraints. For the worst
case, you can disable any constraint that conflicts with what you are trying to
do. For example, if only one test injects a particular flavor of corrupted data, it
could first turn off the particular validity constraint that checks for that error.

There are several problems with using in-line constraints. The first is that
now your constraints are in multiple locations. If you add a new constraint to
the original class, it may conflict with the in-line constraint. The second is that
it can be very hard for you to reuse an in-line constraint across multiple tests.
By definition, an in-line constraint only exists in one piece of code. You could

Chapter 6: Randomization 163

put it in a routine in a separate file and then call it as needed. But at that point
it has become nearly the same as an external constraint.

6.10.6 Specifying a constraint in a test with external constraints

The body of a constraint does not have to be defined within the class, just
as a routine body can be defined externally, as shown in section 4.11. Your
data class could be defined in one file, with one empty constraint. Then each
test could define its own version of this constraint to generate its own flavors
of stimulus.
Example 6-30 Class with an external constraint

// packet.sv
class Packet;
 rand bit [7:0] length;
 rand bit [7:0] payload[];
 constraint c_valid {length > 0;
 payload.size == length;}
 constraint c_external;
endclass

Example 6-31 Program defining external constraint

// test.sv
program test;
constraint Packet::c_external {length == 1;}
...
endprogram

External constraints have several advantages over in-line constraints. They
can be put in a file and thus reused between tests. An external constraint
applies to all instances of the class, while an in-line constraint only affects the
single call to randomize. Consequently, an external constraint provides a
primitive way to change a class without having to learn advanced OOP tech-
niques. But you can only add constraints, not alter existing ones, and you need
to define the external constraint prototype in the original class.

Like in-line constraints, external constraints can cause problems, as the
constraints are spread across multiple files.

A final consideration is what happens when the body for an external con-
straint is never defined. The SystemVerilog LRM does not currently specify
what should happen in this case. Before you build a testbench with many
external constraints, find out how your simulator handles missing definitions.
Is this an error that prevents simulation, just a warning, or no message at all?

SystemVerilog for Verification164

6.10.7 Extending a class

In Chapter 8, you will learn how to extend a class. With this, you can take
a testbench that uses a given class, and swap in an extended class that has
additional or redefined constraints, routines, and variables. Learning OOP
techniques requires a little more study, but the flexibility of this new approach
repays with great rewards.

6.11 Common Randomization Problems

You may be comfortable with procedural code, but writing constraints and
understanding random distributions requires a new way of thinking. Here are
some issues you may encounter when trying to create random stimulus.

6.11.1 Use care with signed variables

When creating a testbench, you may be tempted to use the int, byte, or
other signed types for counters and other simple variables. Don’t use them in
random constraints unless you really want signed values. What values are pro-
duced when the class in Example 6-32 is randomized? It has two random
variables and wants to make the sum of them 64.
Example 6-32 Signed variables cause randomization problems

class SignedVars;
 rand byte pkt1_len, pk2_len;
 constraint total_len {
 pkt1_len + pk2_len == 64;
 }
endclass

Obviously, you could get pairs of values such as (32, 32) and (2, 62). But
you could also see (-64, 128), as this is a legitimate solution of the equation,
even though it may not be what you wanted. To avoid meaningless values
such as negative lengths, use only unsigned random variables.
Example 6-33 Randomizing unsigned 32-bit variables

class Vars32;
 rand logic [31:0] pkt1_len, pk2_len; // unsigned type
 constraint total_len {
 pkt1_len + pk2_len == 64;
 }
endclass

Chapter 6: Randomization 165

Even this version causes problems, as large values of pkt1_len and
pkt2_len, such as 32’h80000040 and 32’h80000000, wrap around when
added together and give 32’d64 / 32’h40. You might think of adding
another pair of constraints to restrict the values of these two variables, but the
best approach is to make them only as wide as needed, and to avoid using 32-
bit variables in constraints.
Example 6-34 Randomizing unsigned 8-bit variables

class Vars8;
 rand logic [7:0] pkt1_len, pk2_len; // 8-bits wide
 constraint total_len {
 pkt1_len + pk2_len == 8’d64; // 8-bits wide
 }
endclass

6.12 Iterative and Array Constraints

The constraints presented so far allow you to specify limits on scalar vari-
ables. What if you want to randomize an array? The foreach statement and
several array functions let you shape the distribution of the values.

Using the foreach constraint creates many constraints and
slow down simulation. A good solver can quickly solve hun-
dreds of constraints but may slow down with thousands.
Especially slow are nested foreach constraints, as they pro-
duce N2 constraints for an array of size N. See section 6.12.5

for an algorithm that used randc variables instead of nested foreach.

6.12.1 Array size

The easiest array constraint to understand is the size function. You are
specifying the number of elements in a dynamic array or queue.
Example 6-35 Constraining dynamic array size

class dyn_size;
 rand reg [31:0] d[];
 constraint d_size {d.size inside {[1:10]}; }
endclass

Using the inside constraint lets you set a lower and upper boundary on
the array size. In many cases you may not want an empty array, that is,
size==0. Remember to specify an upper limit; otherwise, you can end up

SystemVerilog for Verification166

with thousands or millions of elements, which can cause the random solver to
take an excessive amount of time.

6.12.2 Sum of elements

You can send a random array of data into a design, but you can also use it
to control the flow. Perhaps you have an interface that has to transfer four data
words. The words can be sent consecutively or over many cycles. A strobe
signal tells when the data is valid. Here are some legitimate strobe patterns,
sending four values over ten cycles.
Figure 6-2 Random strobe waveforms

You can create these patterns using a random array. Constrain it to have
four bits enabled out of the entire range using the sum function.
Example 6-36 Random strobe pattern class

parameter MAX_TRANSFER_LEN = 10;

class StrobePat;
 rand bit strobe[MAX_TRANSFER_LEN];
 constraint c_set_four { strobe.sum == 3’h4; }
endclass

Chapter 6: Randomization 167

Example 6-37 Using random strobe pattern class

initial begin
 StrobePat sp;
 int count = 0; // Index into data array

 sp = new();
 assert (sp.randomize);

 foreach (sp.strobe[i]) begin
 bus.cb.strobe = sp.strobe[i];
 // If strobe is enabled, drive out next data word
 if (sp.strobe[i])
 bus.cb.data = data[count++];
 end
end

As you remember from Chapter 2, the sum of single-bit variables would
normally be a single bit, e.g., 0 or 1. Example 6-36 compares strobe.sum to
a 3-bit value (3’h4), so the sum is calculated with 3-bit precision.

6.12.3 Issues with array constraints

The sum function looks simple but can cause several problems because of
Verilog’s arithmetic rules.

Start with a simple concept. You want to generate from one to eight trans-
actions, such that the total length of all of them is less than 1024 bytes. Here is
a first attempt. The len field is a byte in the original transaction.
Example 6-38 First attempt at sum constraint: bad_sum1

class bad_sum1;
 rand byte len[];
 constraint c_len {len.sum < 1024;
 len.size inside {[1:8]};}
 function void display;
 $write("size=%d, sum=%4d ", len.size, len.sum);
 foreach(len[i]) $write("%4d ", len[i]);
 $display;
 endfunction
endclass

SystemVerilog for Verification168

Example 6-39 Program to try constraint with array sum

program automatic test;
 bad_sum1 c;
 initial begin
 c = new;
 repeat (10) begin
 assert (c.randomize());
 c.display;
 end
 end
endprogram

Example 6-40 Output from bad_sum1

len: sum= 81, val= 62 -20 39
len: sum= 39, val= -27 67 1 76 -97 -58 77
len: sum= 38, val= 60 -22
len: sum= 72, val=-120 29 123 102 -41 -21
len: sum= -53, val= -58 -85-115 112-101 -62

This generates some smaller lengths, but the sum is sometimes negative
and is always less than 127 — definitely not what you wanted! Try again, this
time with an unsigned field. (The display function is unchanged.)
Example 6-41 Second attempt at sum constraint: bad_sum2

class bad_sum2;
 rand bit [7:0] len[]; // 8 bits
 constraint c_len {len.sum < 1024;
 len.size inside {[1:8]};}
endclass

Example 6-42 Output from bad_sum2

len: sum= 79, val= 88 100 246 2 14 228 169
len: sum= 120, val= 74 75 141 86
len: sum= 39, val= 39
len: sum= 193, val= 31 156 172 33 57
len: sum= 173, val= 59 150 25 101 138 212

Example 6-42 has a subtle problem: the sum of all transaction lengths is
always less than 256, even though you constrained the array sum to be less
than 1024. The problem here is that in Verilog, the sum of many 8-bit values
is computed using an 8-bit result. Bump the len field up to 32 bits using the
uint type from Chapter 2.

Chapter 6: Randomization 169

Example 6-43 Third attempt at sum constraint: bad_sum3

class bad_sum3;
 rand uint len[]; // 32 bits
 constraint c_len {len.sum < 1024;
 len.size inside {[1:8]};}
endclass

Example 6-44 Output from bad_sum3

len: sum= 245, val=1348956995 3748256598 985546882
2507174362
len: sum= 600, val=2072193829 315191491 484497976
3050698208 2300168220 3988671456 3998079060 970369544
len: sum= 17, val=1924767007 3550820640 4149215303
3260098955
len: sum= 440, val=3192781444 624830067 1300652226
4072252356 3694386235
len: sum= 864, val=3561488468 733479692

Wow – what happened here? This is similar to the signed problem in sec-
tion 6.11.1, in that the sum of two very large numbers can wrap around to a
small number. You need to limit the size based on the comparison in the
constraint.
Example 6-45 Fourth attempt at sum_constraint: bad_sum4

class bad_sum4;
 rand bit [9:0] len[]; // 10 bits
 constraint c_len {len.sum < 1024;
 len.size inside {[1:8]};}
endclass

Example 6-46 Output from bad_sum4

len: sum= 989, val= 787 202
len: sum=1021, val= 564 76 132 235 0 8 6
len: sum= 872, val= 624 101 136 11
len: sum= 978, val= 890 88
len: sum= 905, val= 663 242

This does not work either as the individual len field fields are more than 8
bits, so the len values are often greater than 255. You need to specify that
each len field is between 1 and 255, but use a 9-bit field so they sum cor-
rectly. This requires constraining every element of the array.

SystemVerilog for Verification170

6.12.4 Constraining individual array and queue elements

SystemVerilog lets you constrain individual elements of an array using
foreach. While you might be able to write constraints for a fixed-size array
by listing every element, the foreach style is more compact. The only practi-
cal way to constrain a dynamic array or queue is with foreach.
Example 6-47 Simple foreach constraint: good_sum5

class good_sum5;
 rand uint len[];
 constraint c_len {foreach (len[i])
 len[i] inside {[1:255]};
 len.sum < 1024;
 len.size inside {[1:8]};}
endclass

Example 6-48 Output from good_sum5

len: sum=1011, val= 83 249 197 187 152 95 40 8
len: sum=1012, val= 213 252 213 44 196 20 20 54
len: sum= 370, val= 118 76 176
len: sum= 976, val= 233 187 44 157 201 81 73
len: sum= 412, val= 172 167 73

The addition of the constraint for individual elements fixed the example.
Note that the len array can be 10 or more bits wide, but must be unsigned.

You can specify constraints between array elements as long as you are
careful about the endpoints. The following class creates an ascending list of
values by comparing each element to the previous, except for the first.
Example 6-49 Creating ascending array values with foreach

class Ascend;
 rand uint d[10];
 constraint c {
 foreach (d[i]) // For every element
 if (i>0) // except the first
 d[i] > d[i-1]; // compare with previous element
 }
endclass

How complex can these constraints become? Constraints have been writ-
ten to solve Einstein’s problem (a logic puzzle with five people, each with
five separate attributes), the Eight Queens problem (place eight queens on a
chess board so that none can capture each other), and Sudoku.

Chapter 6: Randomization 171

6.12.5 Generating an array of unique values

How can you create an array of random values that is unique? For exam-
ple, you may need to assign ID numbers to N bus drivers, which are in the
range of 0 to MAX-1 where MAX >=N.

Your may be tempted to use a constraint with nested foreach specifying
a[i] != a[j]. The SystemVerilog solver expands out these equations, so
an array of 30 values creates almost 1000 constraints.

Instead, try procedural code in a post_randomize function that uses a
randc variable. You have to put the randc variable in a helper class so that
you can randomize the same variable over and over.
Example 6-50 UniqueArray class

// Generate a random array of unique values
class UniqueArray;
 int max_array_size, max_value;
 rand bit [7:0] a[]; // Array of unique values
 constraint c_size {a.size inside {[1:max_array_size]};}

 function new(int max_array_size=2, max_value=1);
 this.max_array_size = max_array_size;
 if (max_value < max_array_size)
 this.max_value = max_array_size;
 else
 this.max_value = max_value;
 endfunction

 // At this point array is allocated, fill w/unique vals
 function void post_randomize;
 RandcRange rr = new(max_value);
 foreach (a[i]) begin
 assert (rr.randomize());
 a[i] = rr.value;
 end
 endfunction

 function void display;
 $write("Size: %3d:", a.size());
 foreach (a[i]) $write("%4d", a[i]);
 $display;
 endfunction
endclass

SystemVerilog for Verification172

Example 6-51 Unique value generator

// Create unique random values in a range 0:max
class RandcRange;
 randc bit [15:0] value;
 int max_value; // Maximum possible value

 function new(int max_value = 10);
 this.max_value = max_value;
 endfunction

 constraint c_max_value {value < max_value;}
endclass

Here is a program using the UniqueArray class.
Example 6-52 Using the UniqueArray class

program automatic test;
 UniqueArray ua;
 initial begin
 ua = new(50); // Array size = 50

 repeat (10) begin
 assert(ua.randomize()); // Create random array
 ua.display; // Display values
 end
 end
endprogram

6.13 Atomic Stimulus Generation vs. Scenario Generation

Up until now, you have seen atomic random transactions. You have
learned how to make a single random bus transaction, a single network
packet, or a single processor instruction. But your job is to verify that the
design works with real-world stimuli. A bus may have long sequences of
transactions such as DMA transfers or cache fills. Network traffic consists of
extended sequences of packets as you simultaneously read e-mail, browse a
web page, and download music from the net, all in parallel. Processors have
deep pipelines that are filled with the code for routine calls, for loops, and
interrupt handlers. Generating transactions one at a time is unlikely to mimic
any of these scenarios.

Chapter 6: Randomization 173

6.13.1 An atomic generator with history

The easiest way to create a stream of related transactions is to have an
atomic generator base some of its random values on ones from previous trans-
actions. The class might constrain a bus transaction to repeat the previous
command, such as a write, 80% of the time, and also use the previous destina-
tion address plus an increment. You can use the post_randomize function
to make a copy of the generated transaction for use by the next call to
randomize.

This scheme works well for smaller cases but gets into trouble when you
need information about the entire sequence ahead of time. For example, the
DUT may need to know the length of a sequence of network transactions
before it starts.

6.13.2 Randsequence

The next way to generate a sequence of transactions is by using the randse-
quence construct in SystemVerilog. With randsequence you describe the
grammar of the transaction, using a syntax similar to BNF (Backus-Naur
Form).
Example 6-53 Command generator using randsequence

initial begin
 for (int i=0; i<15; i++) begin
 randsequence (stream)
 stream : cfg_read := 1 |
 io_read := 2 |
 mem_read := 5;
 cfg_read : { cfg_read_task; } |
 { cfg_read_task; } cfg_read;
 mem_read : { mem_read_task; } |
 { mem_read_task; } mem_read;
 io_read : { io_read_task; } |
 { io_read_task; } io_read;

 endsequence
 end // for
end

task cfg_read_task;
 ...
endtask

SystemVerilog for Verification174

Example 6-53 generates a sequence called stream. A stream can be
either cfg_read, io_read, or mem_read. The random sequence engine ran-
domly picks one. The cfg_read label has a weight of 1, while io_read is
twice as likely to be chosen and mem_read is most likely to be chosen, with a
weight of 5.

A cfg_read can be either a single call to the cfg_read_task, or a call
to the task followed by another cfg_read. As a result, the task is always
called at least once, and possibly many times.

One big advantage of randsequence is that it is procedural code and you
can debug it by stepping though the execution, or adding $display state-
ments. When you call randomize for an object, it either all works or all fails,
but you can’t see the steps taken to get to a result.

There are several problems with using randsequence. The code to gen-
erate the sequence is separate and a very different style from the classes with
data and constraints used by the sequence. So if you use both randomize()
and randsequence, you have to master two different forms of randomiza-
tion. More seriously, if you want to modify a sequence, perhaps to add a new
branch or action, you have to modify the original sequence code. You can’t
just make an extension. As you will see in Chapter 8, you can extend a class to
add new code, data, and constraints without having to edit the original class.

6.13.3 Random array of objects

The last form of generating random sequences is to randomize an entire
array of objects. You can create constraints that refer to the previous and next
objects in the array, and the SystemVerilog solver solves all constraints simul-
taneously. Since the entire sequence is generated at once, you can then extract
information such as the total number of transactions or a checksum of all data
values before the first transaction is sent. Alternatively, you can build a
sequence for a DMA transfer that is constrained to be exactly 1024 bytes, and
let the solver pick the right number of transactions to reach that goal.

6.13.4 Combining sequences

You can combine multiple sequences together to make a more realistic
flow of transactions. For example, for a network device, you could make one
sequence that resembles downloading e-mail, a second that is viewing a web
page, and a third that is entering single characters into web-based form.The
techniques to combine these flows is beyond the scope of this book, but you
can learn more from the VMM, as described in Bergeron, et al. (2005).

Chapter 6: Randomization 175

6.14 Random Control

At this point you may be thinking that this process is a great way to create
long streams of random input into your design. Or you may think that this is a
lot of work if all you want to do is occasionally to make a random decision in
your code. You may prefer a set of procedural statements that you can step
through using a debugger.

6.14.1 Introduction to randcase

You can use randcase to make a weighted choice between several
actions, without having to create a class and instance. Example 6-54 chooses
one of the three branches based on the weight. SystemVerilog adds up the
weights (1+8+1 = 10), chooses a value in this range, and then picks the appro-
priate branch. The branches are not order dependent, the weights can be
variables, and they do not have to add up to 100%.
Example 6-54 Random control with randcase and $urandom_range

initial begin
 int len;
 randcase
 1: len = $urandom_range(0, 2); // 10%: 0, 1, or 2
 8: len = $urandom_range(3, 5); // 80%: 3, 4, or 5
 1: len = $urandom_range(6, 7); // 10%: 6 or 7
 endcase
 $display("len=%0d", len);
 end

The $urandom_range function returns a random number in the specified
range.

You can write Example 6-54 using a class and the randomize function.
For this small case, the OOP version is a little larger. However, if this were
part of a larger class, the constraint would be more compact than the equiva-
lent randcase statement.

SystemVerilog for Verification176

Example 6-55 Equivalent constrained class

class LenDist;
 rand int len;
 constraint c
 {len dist {[0:2] := 1, [3:5] := 8, [6:7] := 1}; }
endclass

LenDist lenD;

initial begin
 lenD = new;
 assert (lenD.randomize());
 $display("Chose len=%0d", lenD.len);
 end

Code using randcase is more difficult to override and modify than ran-
dom constraints. The only way to modify the random results is to rewrite the
code or use variable weights.

Be careful using randcase, as it does not leave any tracks behind. For
example, you could use it to decide whether or not to inject an error in a trans-
action. The problem is that the downstream transactors and scoreboard need
to know of this choice. The best way to inform them would be to use a vari-
able in the transaction or environment. But if you are going to create a
variable that is part of these classes, you could have made it a random variable
and used constraints to change its behavior in different tests.

6.14.2 Building a decision tree with randcase

You can use randcase when you need to create a decision tree. Example
6-56 has just two levels of procedural code, but you can see how it can be
extended to use more.

Chapter 6: Randomization 177

Example 6-56 Creating a decision tree with randcase

initial begin
 // Level 1
 randcase
 one_write_wt: do_one_write();
 one_read_wt: do_one_read();
 seq_write_wt: do_seq_write();
 seq_read_wt: do_seq_read();
 endcase
 end

// Level 2
task do_one_write;
 randcase
 mem_write_wt: do_mem_write();
 io_write_wt: do_io_write();
 cfg_write_wt: do_cfg_write();
 endcase
endtask

task do_one_read;
 randcase
 mem_read_wt: do_mem_read();
 io_read_wt: do_io_read();
 cfg_read_wt: do_cfg_read();
 endcase
endtask

6.15 Random Generators

How random is SystemVerilog? On the one hand, your testbench depends
on an uncorrelated stream of random values to create stimulus patterns that go
beyond any directed test. On the other hand, you need to repeat the patterns
over and over during debug of a particular test, even if the design and test-
bench make minor changes.

6.15.1 Pseudorandom number generators

Verilog uses a simple PRNG that you could access with the $random
function. The generator has an internal state that you can set by providing a
seed to $random. All IEEE-1364-compliant Verilog simulators use the same
algorithm to calculate values.

SystemVerilog for Verification178

Example 6-57 shows a simple PRNG, not the one used by SystemVerilog.
The PRNG has a 32-bit state. To calculate the next random value, square the
state to produce a 64-bit value, take the middle 32 bits, then add the original
value.
Example 6-57 Simple pseudorandom number generator

reg [31:0] state = 32’h12345678;
function reg [31:0] my_random;
 reg [63:0] s64;
 s64 = state * state;
 state = (s64 >> 16) + state;
 my_random = state;
endfunction

You can see how this simple code produces a stream of values that seem
random, but can be repeated by using the same seed value. SystemVerilog
calls its PRNG for a new values for randomize and randcase.

6.15.2 Random Stability — multiple generators

Verilog has a single PRNG that is used for the entire simulation. What
would happen if SystemVerilog kept this approach? Testbenches often have
several stimulus generators running in parallel, creating data for the design
under test. If two streams share the same PRNG, they each get a subset of the
random values.

Figure 6-3 Sharing a single random generator

In Figure 6-3, there are two stimulus generators and a single PRNG pro-
ducing values a, b, c, etc. Gen2 has two random objects, so during every
cycle, it uses twice as many random values as Gen1. A problem can occur

class Gen1;
Transaction tr;

forever @(int1.cb)
tr.randomize()

endclass

class Gen2;
Transaction tr1, tr2;

forever @(int2.cb)
tr1.randomize();
tr2.randomize();
endclass

a
d
g

b,c
e,f
h,i

PRNG

class Gen1;
Transaction tr;

forever @(int1.cb)
tr.randomize()

endclass

class Gen2;
Transaction tr1, tr2;

forever @(int2.cb)
tr1.randomize();
tr2.randomize();
endclass

a
d
g

b,c
e,f
h,i

PRNG

Chapter 6: Randomization 179

when one of the classes changes. Gen1 gets an additional random variable,
and so consumes two random values every time it is called.

Figure 6-4 First generator uses additional values

This approach changes the values used not only by Gen1, but also by
Gen2.

In SystemVerilog, there is a separate PRNG for every object and thread.
Changes to one object don’t affect the random values seen by others.

Figure 6-5 Separate random generators per object

6.15.3 Random Stability — hierarchical seeding

Every object and thread have its own PRNG and unique seed. When a new
object or thread is started, its PRNG is seeded from its parent’s PRNG. Thus a

class Gen1;
Transaction tra, trb;

forever @(int1.cb)
tra.randomize();
trb.randomize();

endclass

class Gen2;
Transaction tr1, tr2;

forever @(int2.cb)
tr1.randomize();
tr2.randomize();

endclass

a,b
e,f
i,j

c,d
g,h
k,l

PRNG

class Gen1;
Transaction tra, trb;

forever @(int1.cb)
tra.randomize();
trb.randomize();

endclass

class Gen2;
Transaction tr1, tr2;

forever @(int2.cb)
tr1.randomize();
tr2.randomize();

endclass

a,b
e,f
i,j

c,d
g,h
k,l

PRNG

class Gen1;
Transaction tra, trb;

forever @(int1.cb)
tra.randomize();
trb.randomize();

endclass

class Gen2;
Transaction tr1, tr2;

forever @(int2.cb)
tr1.randomize();
tr2.randomize();

endclass

a,b
c,d
e,f

m,n
o,p
q,r

PRNG 1 PRNG 2

class Gen1;
Transaction tra, trb;

forever @(int1.cb)
tra.randomize();
trb.randomize();

endclass

class Gen2;
Transaction tr1, tr2;

forever @(int2.cb)
tr1.randomize();
tr2.randomize();

endclass

a,b
c,d
e,f

m,n
o,p
q,r

PRNG 1 PRNG 2

SystemVerilog for Verification180

single seed specified at the start of simulation can create many streams of ran-
dom stimulus, each distinct.

6.16 Random Device Configuration

An important part of your DUT to test is the configuration of
both the internal DUT settings and the system that surrounds it.
As described in section 6.2.1, your tests should randomize the
environment so that you can be confident it has been tested in
as many modes as possible.

Example 6-58 shows how to create a random testbench configuration and
modify its results as needed at the test level. The eth_cfg class describes the
configuration for a 4-port Ethernet switch. It is instantiated in an environment
class, which in turn is used in the test. The test overrides one of the configura-
tion values, enabling all 4 ports.
Example 6-58 Ethernet switch configuration class

class eth_cfg;
 rand bit [3:0] in_use; // Ports used in test
 rand bit [47:0] mac_addr[4]; // MAC addresses
 rand bit [3:0] is_100; // 100mb mode
 rand int run_for_n_frames; // # frames in test

 // Force some addr bits when running in unicast mode
 constraint local_unicast {
 foreach (mac_addr[i])
 mac_addr[i][41:40] == 2'b00;
 }

 constraint reasonable { // Limit test length
 run_for_n_frames inside {[1:100]};
 }
endclass : eth_cfg

The configuration class is used in the Environment class during several
phases. The configuration is constructed in the Environment constructor,
but not randomized until the gen_cfg phase. This allows you to turn con-
straints on and off before randomize is called. Afterwards, you can override
the generated values before the build phase creates the virtual components
around the DUT.

Chapter 6: Randomization 181

Example 6-59 Building environment with random configuration

class Environment;
 eth_cfg cfg;
 eth_src gen[4];
 eth_mii drv[4];

 function new;
 cfg = new; // Construct the cfg
 endfunction

 function vid gen_cfg;
 assert(cfg.randomize()); // Randomize the cfg
 endfunction

 // Use random configuration to build the environment
 function void build;
 foreach (src[i])
 if (cfg.in_use[i]) begin
 gen[i] = new(...);
 drv[i] = new(...);
 if (cfg.is_100[i])
 mii[i].set_speed(100);
 end
 endfunction

 task run;
 // Start the testbench transactors
 endtask

 task wrapup;
 // Not currently used
 endtask
enclass : Environment

Now you have all the components to build a test, which is described in a
program block. The test instantiates the environment class and then runs each
step.

SystemVerilog for Verification182

Example 6-60 Simple test using random configuration

program test;
 Environment env;

 initial begin
 env = new; // Construct environment
 env.gen_cfg; // Create random configuration
 env.build; // Build the testbench environment
 env.run; // Run the test
 env.wrapup; // Clean up after test & report
 end
endprogram

You may want to override the random configuration, perhaps to reach a
corner case. The following test randomizes the configuration class and then
enables all the ports.
Example 6-61 Simple test that overrides random configuration

program test;
 Environment env;

 initial begin
 env = new; // Construct environment
 env.gen_cfg; // Create random configuration

 // Override random in-use – turn all 4 ports on
 env.cfg.in_use = 4’b1111;

 env.build; // Build the testbench environment
 env.run; // Run the test
 env.wrapup; // Clean up after test & report
 end
endprogram

6.17 Conclusion

Constrained-random tests are the only practical way to generate the stimu-
lus needed to verify a complex design. SystemVerilog offers many ways to
create a random stimulus and this chapter presents many of the alternatives.

A test needs to be flexible, allowing you either to use the values generated
by default or to constrain or override the values so that you can reach your
goals. Always plan ahead when creating your testbench by leaving sufficient
“hooks” so that you can steer the testbench from the test without modifying
existing code.

Chapter 7

Threads and Interprocess Communication

7.1 Introduction
In real hardware, the sequential logic is activated on clock edges, while

combinational logic is constantly changing when any inputs change. All this
parallel activity is simulated in Verilog RTL using initial and always
blocks, plus the occasional gate and continuous assignment statement. To
stimulate and check these blocks, your testbench uses many threads of
execution, all running in parallel. Most blocks in your testbench environment
are modeled with a transactor and run in their own thread.
Figure 7-1 Testbench environment blocks

 The SystemVerilog scheduler is the traffic cop that chooses which thread
runs next. You can use the techniques in this chapter to control the threads and
thus your testbench.

Each of these threads communicates with its neighbors. In Figure 7-1, the
generator passes the stimulus to the agent. The environment class needs to
know when the generator completes and then tell the rest of the testbench
threads to terminate. This is done with interprocess communication constructs
such as the standard Verilog events, event control and wait constructs, and
the SystemVerilog mailboxes and semaphores.10

DUT

AssertionsDriver Monitor

Scoreboard Checker

Generator Environment

Agent

DUT

AssertionsDriver Monitor

Scoreboard Checker

Generator Environment

Agent

SystemVerilog for Verification184

7.2 Working with Threads
While all the thread constructs can be used in both modules and program

blocks, your testbenches belong in program blocks. As a result, your code
always starts with initial blocks that start executing at time 0, when the
simulator starts. You cannot put an always block in a program. However,
you can easily get around this by using a forever loop in an initial block.

Classic Verilog has two ways of grouping statements — with a
begin...end or fork...join. Statements in a begin...end run sequentially,
while those in a fork...join execute in parallel. The latter is very limited in
that all statements inside the fork...join have to finish before the rest of the
block can continue. As a result, it is rare for Verilog testbenches to use this
feature.

SystemVerilog introduces two new ways to create threads — with the
fork...join_none and fork...join_any statements.
Figure 7-2 Fork...join blocks

Your testbench communicates, synchronizes, and controls these threads
with existing constructs such as events, @ event control, the wait and
disable statements, plus new language elements such as semaphores and
mailboxes.

7.2.1 Using fork...join and begin...end
Example 7-1 has a fork...join parallel block with an enclosed

begin...end sequential block, and shows the difference between the two.

10. The SystemVerilog LRM uses “thread” and “process” interchangeably. The term “process” is most com-
monly associated with Unix processes, in which each contains a program running in its own memory
space. Threads are lightweight processes that may share common code and memory, and consume far
less resources than a typical process. This book uses the term “thread.” However, “interprocess commu-
nication” is such a common term that it is used in this book.

join_any join_nonejoin

forkfork fork

join_any join_nonejoin

forkfork fork

Chapter 7: Threads and Interprocesses Communication 185

Example 7-1 Interaction of begin...end and fork...join

initial begin
 $display("@%0d: start fork...join example", $time);
 #10 $display("@%0d: sequential after #10", $time);
 fork
 $display("@%0d: parallel start", $time);
 #50 $display("@%0d: parallel after #50", $time);
 #10 $display("@%0d: parallel after #10", $time);
 begin
 #30 $display("@%0d: sequential after #20", $time);
 #10 $display("@%0d: sequential after #10", $time);
 end
 join
 $display("@%0d: after join", $time);
 #80 $display("@%0d: final after #80", $time);
end

Figure 7-3 Fork...join block

Note in the output below that code in the fork...join executes in parallel,
so statements with shorter delays execute before those with longer delays. The
fork...join completes after the last statement, which starts with #50.
Example 7-2 Output from begin...end and fork...join

@0: start fork...join example
@10: sequential after #10
@10: parallel start
@20: parallel after #10
@40: sequential after #30
@50: sequential after #10
@60: parallel after #50
@60: after join
@140: final after #80

initial
$display
#10 $display
fork
.
join
$display
#80 $display

$display

#30 $display
#10 $display

#50 $display

#10 $display

Parent
Child
threads

initial
$display
#10 $display
fork
.
join
$display
#80 $display

$display

#30 $display
#10 $display

#50 $display

#10 $display

Parent
Child
threads

SystemVerilog for Verification186

7.2.2 Spawning threads with fork...join_none
A fork...join_none block schedules each statement in the block, but

execution continues in the parent thread. The following code is identical to
Example 7-1 except that the join has been converted to join_none.
Example 7-3 Fork...join_none code

initial begin
 $display("@%0d: start fork...join_none example",$time);
 #10 $display("@%0d: sequential after #10", $time);
 fork
 $display("@%0d: parallel start", $time);
 #50 $display("@%0d: parallel after #50", $time);
 #10 $display("@%0d: parallel after #10", $time);
 begin
 #30 $display("@%0d: sequential after #20", $time);
 #10 $display("@%0d: sequential after #10", $time);
 end
 join_none
 $display("@%0d: after join_none", $time);
 #80 $display("@%0d: final after #80", $time);
end

The diagram for this block is similar to Figure 7-3. Note that the statement
after the join_none block executes before any statement inside the
fork...join_none.
Example 7-4 Fork...join_none output

@0: start fork...join_none example
@10: sequential after #10
@10: after join_none
@10: parallel start
@20: parallel after #10
@40: sequential after #30
@50: sequential after #10
@60: parallel after #50
@90: final after #80

7.2.3 Synchronizing threads with fork...join_any
A fork...join_any block schedules each statement in the block. Then,

when the first statement completes, execution continues in the parent thread.
All other remaining threads continue. The following code is identical to the
previous examples, except that the join has been converted to join_any.

Chapter 7: Threads and Interprocesses Communication 187

Example 7-5 Fork...join_any code

initial begin
 $display("@%0d: start fork...join_any example",$time);
 #10 $display("@%0d: sequential after #10", $time);
 fork
 $display("@%0d: parallel start", $time);
 #50 $display("@%0d: parallel after #50", $time);
 #10 $display("@%0d: parallel after #10", $time);
 begin
 #30 $display("@%0d: sequential after #20", $time);
 #10 $display("@%0d: sequential after #10", $time);
 end
 join_any
 $display("@%0d: after join_any", $time);
 #80 $display("@%0d: final after #80", $time);
end

Note in the results, the statement $display("after join_any")
completes after the first statement in the parallel block.
Example 7-6 Output from fork...join_any

@0: start fork...join_any example
@10: sequential after #10
@10: parallel start
@10: after join_none
@20: parallel after #10
@40: sequential after #30
@50: sequential after #10
@60: parallel after #50
@90: final after #80

7.2.4 Creating threads in a class
You can use a fork...join_none to start a thread, such as the code for a

random transactor generator. Example 7-7 shows a generator class with a run
task that creates N packets. The full testbench has classes for the driver,
monitor, checker, and more, all with transactors that need to run in parallel.

SystemVerilog for Verification188

Example 7-7 Generator class with a run task

class Generator;

 // Transactor that creates N packets
 task run(int n);
 Packet p;

 fork
 repeat (n) begin
 p = new;
 if (!p.randomize) begin
 $display("Packet randomize failed");
 $finish;
 end
 transmit(p);
 end
 join_none
 endtask
endclass

Generator gen;

initial begin
 gen = new;
 gen.run(10);
 // Start the checker, monitor, and other threads
end

There are several points you should notice with Example 7-7.
First, the transactor is not started in the new task. The
constructor should just initialize values, not start any threads.
Separating the constructor from the code that does the real
work allows you to change any variables before you start

executing the code in the object. This allows you to inject errors, modify the
defaults, and alter the behavior of the object.

Next, the run task starts a thread in a fork...join_none block. The thread
is an implementation detail of the transactor and should be spawned there, not
in the parent class.

7.2.5 Dynamic threads
Verilog’s threads are very predictable. You can read the source code and

count the initial, always, and fork...join blocks to know how many

Chapter 7: Threads and Interprocesses Communication 189

threads were in a module. SystemVerilog lets you create threads dynamically,
and does not require you to wait for them to finish.

In Example 7-8, the testbench generates random transactions and sends
them to a DUT that stores them for some predetermined time, and then returns
them. The testbench has to wait for the transaction to complete, but does not
want to stop the generator.
Example 7-8 Dynamic thread creation

program automatic test(busif.TB bus);
 // Code for interface not shown
 task wait_for_tr(Transaction tr);
 fork
 begin
 wait (bus.cb.addr != tr.addr);
 $display("@%0d: Addr match %d", $time, tr.addr);
 end
 join_none
 endtask

 Transaction tr;

 initial
 repeat (10)
 begin
 // Create a random transaction
 tr = new;
 if (!tr.randomize) $finish;

 // Send it into the DUT
 transmit(tr); // Task not shown

 // Wait for reply from DUT
 wait_for_tr(tr);
 end
endprogram

When the wait_for_tr task is called, it spawns off a thread to watch the
bus for the matching transaction address. During a normal simulation, many
of these threads run concurrently. In this simple example, the thread just
prints a message, but you could add more elaborate controls.

SystemVerilog for Verification190

7.2.6 Automatic variables in threads
A common but subtle bug occurs when you have a loop that
spawns threads and you don’t save variable values before the
next iteration. Example 7-8 only works in a program or
module with automatic storage. If wait_for_tr used static

storage, each thread would share the same variable tr, so later calls would
overwrite the value set by earlier ones. Likewise, if the example had the
fork...join_none inside the repeat loop, it would try to match incoming
transactions using tr, but its value would change the next time through the
loop. Always use automatic variables to hold values in concurrent threads.

Example 7-9 has a fork...join_none inside a for loop. SystemVerilog
schedules the threads inside a fork...join_none but they are not executed
until after the original code blocks, here because of the #0 delay. So Example
7-9 prints “3 3 3” which are the values of the index variable j when the loop
terminates.
Example 7-9 Bad fork...join_none inside a loop

initial begin
 for (int j=0; j<3; j++)
 fork
 $write(j); // Bug – gets final value of index
 join_none
 #0 $display("\n");
end

Example 7-10 Execution of bad fork...join_none inside a loop

j Statement
0 for (j=0; ...
0 Spawn $write(j) [thread 0]
1 j++
1 Spawn $write(j) [thread 1]
2 j++
2 Spawn $write(j) [thread 2]
3 j++
3 join_none
3 #0
3 $write(j) [thread 0]
3 $write(j) [thread 1]
3 $write(j) [thread 2]
3 $display(“\n”)

The #0 delay blocks the current thread and reschedules it to start later
during the current time slot. In Example 7-10, the delay makes the current

Chapter 7: Threads and Interprocesses Communication 191

thread run after the threads spawned in the fork...join statement. This delay
is useful for blocking a thread, but you should be careful, as excessive use
causes race conditions and unexpected results.

You should use automatic variables inside a fork...join statement to
save a copy of a variable as shown in Example 7-11.
Example 7-11 Automatic variables in a fork...join_none

initial begin
 for (int j=0; j<3; j++)
 fork
 automatic int k = j; // Make copy of index
 $write(k); // Print copy
 join_none
 #0 $display;
end

The fork...join_none block is split into two parts. The automatic
variable declaration with initialization runs in the thread inside the for loop.
During each loop, a copy of k is created and set to the current value of j. Then
the body of the fork...join_none ($write) is scheduled, including a copy
of k. After the loop finishes, #0 blocks the current thread, so the three threads
run, printing the value of their copy of k. When the threads complete, and
there is nothing else left during the current time-slot region, SystemVerilog
advances to the next statement and the $display executes.

Example 7-12 traces the code and variables from Example 7-11. The three
copies of the automatic variable k are called k0, k1, and k2.

Example 7-12 Steps in executing automatic variable code

j k0 k1 k2 Statement
0 for (j=0; ...
0 0 Create k0, spawn $write(k) [thread 0]
1 0 j++
1 0 1 Create k1, spawn $write(k) [thread 1]
2 0 1 j++
2 0 1 2 Create k2, spawn $write(k) [thread 2]
3 0 1 2 j<3
3 0 1 2 join_none
3 0 1 2 #0
3 0 1 2 $write(k0) [thread 0]
3 0 1 2 $write(k1) [thread 1]
3 0 1 2 $write(k2) [thread 2]
3 0 1 2 $display(“\n”)

SystemVerilog for Verification192

7.2.7 Disabling a single thread
Just as you may need to create threads in the testbench, you may also need

to stop them. The Verilog disable statement works on SystemVerilog
threads. Here is the wait_for_tr task, this time using a fork...join_any
plus a disable to create a watch with a time-out.
Example 7-13 Disabling a thread

parameter TIME_OUT = 1000;

task wait_for_tr(Transaction tr);
 fork

 begin
 // Wait for response, or some maximum delay
 fork : timeout_block
 wait (bus.cb.addr != tr.addr);
 #TIME_OUT $display("@%0d: Error: timeout", $time);
 join_any
 disable timeout_block;

 $display("@%0d: Addr match %d", $time, tr.addr);
 end

 join_none
endtask

The task and outermost fork...join_none are identical to Example 7-8.
This version has two threads inside a fork...join_any such that the simple
wait is done in parallel with a delayed display. If the correct bus address
comes back quickly enough, the wait construct completes, the join_any
executes, and then the disable kills off the remaining thread. However, if
the bus address does not get the right value before the TIME_OUT delay
completes, the error message is printed, the join_any executes, and the
disable kills the thread with the wait.

7.2.8 Disabling multiple threads
Example 7-13 used the classic Verilog disable statement to stop the

threads in a named block. SystemVerilog introduces the disable fork
statement so you can stop all child threads that have been spawned from the
current thread. Watch out, as you might unintentionally stop too many
threads, such as those created from routine calls. You should always surround
the target code with a fork...join to limit the scope of a disable fork

Chapter 7: Threads and Interprocesses Communication 193

statement. Example 7-14 has an additional begin...end block inside the
fork...join to make the statements sequential.

The following sections show how you can asynchronously disable
multiple threads. This can cause unexpected behavior, so you should watch
out for side effects when a thread is stopped midstream. You may instead
want to design your algorithm to check for interrupts at stable points, then
gracefully give up its resources.

The next few examples use the wait_for_tr task from Example 7-13.
You can just think of this task as doing a #TIME_OUT.
Example 7-14 Limiting the scope of a disable fork

initial begin
 wait_for_tr(tr0); // Spawn thread 0

 // Create a thread to limit scope of disable
 fork
 begin
 wait_for_tr(tr1); // Spawn thread 2
 fork // Spawn thread 3
 wait_for_tr(tr2); // Spawn thread 4
 join

 // Stop threads 1 & 2, but leave 0 alone
 #(TIME_OUT/2) disable fork;
 end
 join
end

Figure 7-4 Fork...join block diagram

The code calls wait_for_tr that starts thread 0. Next a fork...join
creates thread 1. Inside this thread, one is spawned by the wait_for_tr task
and one by the innermost fork...join, which spawns thread 4 by calling the
task. After a delay, a disable fork stops the child threads. Only threads 2,
3, and 4 are below thread 1, so they are the only ones stopped. Thread 0 is
outside the fork...join block that has the disable, so it is unaffected.

initial
wait_for_tr(tr0)
fork
...
join_none

thread 1
wait_for_tr(tr1)
fork
...
join
#TIME_OUT/2

disable fork

thread 0
thread 2

thread 3
wait_for_tr(tr2)

thread 4

initial
wait_for_tr(tr0)
fork
...
join_none

thread 1
wait_for_tr(tr1)
fork
...
join
#TIME_OUT/2

disable fork

thread 0
thread 2

thread 3
wait_for_tr(tr2)

thread 4

SystemVerilog for Verification194

Example 7-15 is the more robust version of Example 7-14, with disable
with a label that explicitly names the threads that you want to stop.
Example 7-15 Using disable label to stop threads

initial begin
 wait_for_tr(tr0); // Spawn thread 0
 begin : threads_1_2
 wait_for_tr(tr1); // Spawn thread 1
 wait_for_tr(tr2); // Spawn thread 2
 end

 // Stop threads 1 & 2, but leave 0 alone
 #(TIME_OUT/2) disable threads_1_2;
 join
end

7.2.9 Waiting for all spawned threads
In SystemVerilog, when all the initial blocks in the program are done, the

simulator exits. However, you can spawn many threads, which might still be
running. Use the wait fork statement to wait for all child threads.
Example 7-16 Using wait fork to wait for child threads

task run_threads;
 ... // Create some transactions

 wait_for_tr(tr1); // Spawn first thread
 wait_for_tr(tr2); // Spawn second thread
 wait_for_tr(tr3); // Spawn third thread

 ... // Do some other work

 // Now wait for the above threads to complete
 wait fork;
endtask

7.3 Interprocess Communication
All these threads in your testbench need to synchronize and exchange data.

At the most basic level, one thread waits for another, such as the environment
object waiting for the generator to complete. Multiple threads might try to
access a single resource such as bus in the DUT, so the testbench needs to
ensure that one and only one thread is granted access. At the highest level,
threads need to exchange data such as transaction objects that are passed from
the generator to the agent.

Chapter 7: Threads and Interprocesses Communication 195

7.4 Events
A Verilog event synchronizes threads. It is similar to a phone, where one

person waits for a call from another person. In Verilog a thread waits for an
event with the @ operator. This operator is edge sensitive, so it always blocks,
waiting for the event to change. Another thread triggers the event with the ->
operator, unblocking the first thread. SystemVerilog enhances the Verilog
event in several ways.

First, an event is now a handle to a synchronization object that can be
passed around to routines. This feature allows you to share events across
objects without having to make the events global. So you can give a phone
number to an object to be called later.

There is always the possibility of a race condition in Verilog where one
thread blocks on an event at the same time another triggers it. If the triggering
thread executes before the blocking thread, the trigger is missed.
SystemVerilog introduces the triggered function that lets you check
whether an event has been triggered, including during the current time-slot. A
thread can wait on this function instead of blocking with the @ operator.

7.4.1 Blocking on the edge of an event
When you run this code, one initial block starts, triggers its event, and then

blocks on the other event. The second block starts, triggers its event (waking
up the first), and then blocks on the first event. But the second thread locks up
because it missed the first event, which is a zero-width pulse.
Example 7-17 Blocking on an event in Verilog

event e1, e2;
initial begin
 $display("@%0d: 1: before trigger", $time);
 -> e1;
 @e2;
 $display("@%0d: 1: after trigger", $time);
end

initial begin
 $display("@%0d: 2: before trigger", $time);
 -> e2;
 @e1;
 $display("@%0d: 2: after trigger", $time);
 end

SystemVerilog for Verification196

Example 7-18 Output from blocking on an event

@0: 1: before trigger
@0: 2: before trigger
@0: 1: after trigger

7.4.2 Waiting for an event trigger
Instead of the edge-sensitive block @e1, use the level-sensitive

wait(e1.triggered). This does not block if the event has been triggered
during this time step. Otherwise, it waits until the event is triggered.
Example 7-19 Waiting for an event

event e1, e2;

initial begin
 $display("\n@%0d: 1: before trigger", $time);
 -> e1;
 wait (e2.triggered);
 $display("@%0d: 1: after trigger", $time);
end

initial begin
 $display("@%0d: 2: before trigger", $time);
 -> e2;
 wait (e1.triggered);
 $display("@%0d: 2: after trigger", $time);
end

When you run this code, one initial block starts, triggers its event, and then
blocks on the other event. The second block starts, triggers its event (waking
up the first) and then blocks on the first event.
Example 7-20 Output from waiting for an event

@0: 1: before trigger
@0: 2: before trigger
@0: 1: after trigger
@0: 2: after trigger

7.4.3 Passing events
As described above, an event in SystemVerilog can be passed as an

argument to a routine. In Example 7-21, an event is used by a transactor to
signal when it has completed.

Chapter 7: Threads and Interprocesses Communication 197

Example 7-21 Passing an event into a constructor

class Generator;
 event done;
 function new (event done); // Pass event from TB
 this.done = done
 endfunction

 task run;
 fork
 begin
 ... // Create transactions
 -> done; // Tell the test we are done
 end
 join_none
 endtask
endclass

program automatic test;
 event gen_done;
 Generator gen;

 initial begin
 gen = new(gen_done); // Instantiate testbench
 gen.run; // Run transactor
 wait(gen_done.triggered); // Wait for finish
 end
endprogram

7.4.4 Waiting for multiple events
In Example 7-21, you had a single generator that fired a single event. What

if your testbench environment class must wait for multiple child processes to
finish, such as N generators? The easiest way is to use wait fork, that waits
for all child processes to end. The problem is that this also waits for all the
transactors, drivers, and any other threads that were spawned by the
environment. You need to be more selective. You still want to use events to
synchronize between the parent and child threads.

You could use a for loop in the parent to wait for each event, but that
would only work if thread 0 finished before thread 1, which finished before
thread 2, etc. If the threads finish out of order, you could be waiting for an
event that triggered many cycles ago.

The solution is to make a new thread and then spawn children from there
that each block on an event for each generator. Now you can do a wait fork
because you are being more selective.

SystemVerilog for Verification198

Example 7-22 Waiting for multiple threads with wait fork

event done[N_GENERATORS];

initial begin
 foreach (gen[i]) begin
 gen[i] = new; // Create N generators
 gen[i].run; // Start them running
 end

 // Wait for all gen to finish by waiting for each event
 foreach (gen[i])
 fork
 automatic int k = i;
 wait (done[k].triggered);
 join_none

 wait fork; // Wait for all those triggers to finish
end

Another way to solve this problem is to keep track of the number of events
that have triggered.
Example 7-23 Waiting for multiple threads by counting triggers

event done[N_GENERATORS];

initial begin
 foreach (gen[i]) begin
 gen[i] = new; // Create N generators
 gen[i].run; // Start them running
 end

 // Wait for all generators to finish
 foreach (gen[i])
 fork
 automatic int k = i;
 begin
 wait (done[k].triggered);
 done_count++;
 end
 join_none

 wait fork; // Wait for all the triggers to finish
end

Chapter 7: Threads and Interprocesses Communication 199

That was slightly less complicated. Why not get rid of all the events and
just wait on a count of the number of running generators? This count can be a
static variable in the Generator class. Note that most of the thread
manipulation code has been replaced with a single wait construct.

The last block in Example 7-24 waits for the count using the handle
gen[0]. Any handle to an object gives you access to the static variables.
Example 7-24 Waiting for multiple threads using a thread count

class Generator;
 static int thread_count = 0;

 task run;
 thread_count++; // Start another thread
 fork
 begin
 // Do the real work in here
 // And when done, decrement the thread count
 thread_count--;
 end
 join_none
 endtask
endclass

Generator gen[N_GENERATORS];

initial begin
 // Create N generators
 foreach (gen[i])
 gen[i] = new;

 // Start them running
 foreach (gen[i])
 gen[i].run;

 // Wait for the generators to complete
 wait (gen[0].thread_count == 0);
end

7.5 Semaphores
A semaphore allows you to control access to a resource. Imagine that you

and your spouse share a car. Obviously, only one person can drive it at a time.
You can manage this situation by agreeing that whoever has the key can drive
it. When you are done with the car, you will give up the car so that the other

SystemVerilog for Verification200

person can use it. The key is the semaphore that makes sure only one person
has access to the car. In operating system terminology, this is known as
“mutually exclusive access,” so a semaphore is known as a mutex and is used
to control access to a resource.

Semaphores can be used in a testbench when you have a resource, such as
a bus, that may have multiple requestors from inside the testbench but, as part
of the physical design, can only have one driver. In SystemVerilog, a thread
that requests a key when one is not available always blocks. Multiple blocking
threads are queued in FIFO order.

7.5.1 Semaphore operations
There are three operations for a semaphore. You create a semaphore with

one or more keys using the new method, get one or more keys with get, and
return one or more keys with put. If you want to try to get a semaphore, but
not block, use the try_get function. It returns 1 if there are enough keys, and
0 if there are insufficient keys.
Example 7-25 Semaphores controlling access to hardware resource

program automatic test;
 semaphore sem; // Create a semaphore
 initial begin
 sem = new(1); // Allocate with 1 key
 fork
 sequencer; // Spawn two threads that both
 sequencer; // do bus transactions
 join
 end

 task sequencer;
 repeat($urandom%10) // Random wait, 0-9 cycles
 @bus.cb;
 sendTrans; // Execute the transaction
 endtask

 task sendTrans;
 sem.get(1); // Get the key to the bus
 @bus.cb; // Drive signals onto bus
 bus.cb.addr <= t.addr;
 ...
 sem.put(1); // Put it back when done
 endtask
endprogram

Chapter 7: Threads and Interprocesses Communication 201

7.5.2 Semaphores with multiple keys
There are two things you should watch out for with semaphores. First, you

can put more keys back than you took out. Suddenly you may have two keys
but only one car! Secondly, be very careful if your testbench needs to get and
put multiple keys. Perhaps you have one key left, and a thread requests two,
causing it to block. Now a second thread requests a single semaphore – what
should happen? In SystemVerilog the second request is blocked because of
the FIFO ordering, even though there are enough keys.

If you need to let smaller requests jump in before larger ones, you can
always write your own class. Perhaps your hardware resembles a restaurant
and you have a queue of people waiting for tables. A party of two should be
able to jump ahead of groups of four in the line if there is space available.

7.6 Mailboxes
How do you pass information between two threads? Perhaps your

generator needs to create many transactions and pass them to a driver. You
might be tempted to just have the generator thread call a task in the driver. But
then the generator needs to know the hierarchical path to the driver task,
making your code less reusable. Additionally, this style forces the generator
to run at the same speed as the driver, that can cause synchronization
problems if one generator needs to control multiple drivers.

Think of your generator and driver as transactors that are
autonomous objects that communicate through a channel. Each
object gets a transaction from an upstream object (or creates it,
as in the case of a generator), does some processing, and then
passes it to a downstream object. The channel must allow its

driver and receiver to operate asynchronously. You may be tempted to just
use a shared array or queue, but it can be difficult to create code that reads,
writes, and blocks between threads.

The solution is a SystemVerilog mailbox. From a hardware point of view,
the easiest way to think about a mailbox is that it is just a FIFO, with a source
and sink. The source puts data into the mailbox, and the sink gets values from
the mailbox. Mailboxes can have a maximum size or can be unlimited. When
the source puts a value into a sized mailbox that is full, it blocks until data is
removed. Likewise, if a sink tries to remove data from a mailbox that is
empty, it blocks until data is put into the mailbox.

SystemVerilog for Verification202

Figure 7-5 A mailbox connecting two transactors

A mailbox is an object and thus has to be instantiated by calling the new
function. This takes an optional size argument to limit the number of entries
in the mailbox. If the size is 0 or not specified, the mailbox is unbounded and
can hold an unlimited number of entries.

You put data into a mailbox with the put task, and remove it with the get
task. A put can block if the mailbox is full and a get blocks if it is empty.
The peek task gets a copy of the data in the mailbox but does not remove it.

The data can be a single value, such as an integer, or logic of
any size. You can put a handle into a mailbox, not an object. By
default, a mailbox does not have a type, so you can put any mix
of data into it. Don’t do it! Stick to one type per mailbox.

A classic bug is a loop that randomizes objects and puts them
in a mailbox, but the object is only constructed once, outside
the loop. Since there is only one object, it is randomized over
and over. A mailbox only holds handles, not objects, so you

end up with a mailbox containing multiple handles that all point to the single
object. The code that gets the handles from the mailbox just sees the last set of
random values. The solution is to make sure your loop has all three steps of
constructing the object, randomizing it, and putting it in the mailbox. This bug
is so common that it is also mentioned in section 4.14.3. This type of loop is
known as the Factory Pattern and described in section 8.3.

If you don’t want your code to block, use the try_get and try_peek
functions. If they are successful, they return a nonzero value; otherwise, they
return 0. These are more reliable than the num function, as the number of
entries can change between when you measure it and when you next access
the mailbox.

7.6.1 Mailbox in a testbench
Example 7-26 shows a Generator and Driver exchanging transactions

using a mailbox.

generator

driver

mailbox

generator

driver

mailbox

Chapter 7: Threads and Interprocesses Communication 203

Example 7-26 Exchanging objects using a mailbox: the Generator class

program mailbox_example(bus_if.TB bus, ...);

 class Generator;
 Transaction tr;
 mailbox mbx;

 function new(mailbox mbx);
 this.mbx = mbx;
 endfunction

 task run;
 repeat (10) begin
 tr = new;
 assert(tr.randomize);
 mbx.put(tr); // Send out transaction
 end
 endtask
 endclass

 class Driver;
 Transaction tr;
 mailbox mbx;

 function new(mailbox mbx);
 this.mbx = mbx;
 endfunction

 task run;
 repeat (10) begin
 mbx.get(tr); // Fetch next transaction
 @(posedge busif.cb.ack);
 bus.cb.kind <= tr.kind;
 ...
 end
 endtask
 endclass

 mailbox mbx; // Mailbox connecting gen & drv
 Generator gen;
 Driver drv;
 initial begin
 mbx = new;
 gen = new(mbx);

SystemVerilog for Verification204

 drv = new(mbx);
 fork
 gen.run(); // Spawn the generator
 drv.run(); // Spawn the driver
 join
 end
endprogram

7.6.2 Bounded mailboxes
By default, mailboxes are similar to an unlimited FIFO — a producer can

put any number of objects into a mailbox before the consumer gets the objects
out. However, you may want the two threads to operate in lockstep so that the
producer blocks until the consumer is done with the object.

You can specify a maximum size for the mailbox when you construct it.
The default mailbox size is 0 which creates an unbounded mailbox. Any size
greater than 0 creates a “bounded mailbox.” If you attempt to put more objects
than this limit and put will block until you get an object, creating more room.
Example 7-27 Bounded mailbox

program automatic bounded;
 mailbox mbx;

 initial begin
 mbx = new(1); // Size = 1
 fork

 // Producer
 for (int i=1; i<4; i++) begin
 $display("@%0d: Producer: putting %0d", $time, i);
 mbx.put(i);
 $display("@%0d: Producer: put(%0d) done %0d",
 $time, i);
 end

 // Consumer
 repeat(3) begin
 int j;
 #1ns mbx.get(j);
 $display("@%0d: Consumer: got %0d", $time, j);
 end
 join_any
 end
endprogram

Chapter 7: Threads and Interprocesses Communication 205

Example 7-27 creates the smallest mailbox which stores a single message.
The Producer thread tries to put three messages (integers) in the mailbox,
while the Consumer thread slowly gets messages every 1ns. As Example 7-28
shows, the first put succeeds, then the Producer tries put(2) which blocks.
The Consumer wakes up, gets a message 1 from the mailbox, so now the
Producer can finish putting the message 2.
Example 7-28 Output from bounded mailbox

@0: Producer: before put(1)
@0: Producer: put(1) done
@0: Producer: before put(2)
@1: Consumer: got 1
@1: Producer: put(2) done
@1: Producer: before put(3)
@2: Consumer: got 2
@2: Producer: put(3) done

The bounded mailbox acts as a buffer between the two processes. You can
see how the Producer gets ahead of the Consumer.

7.6.3 Unsynchronized threads communicating with a mailbox
If you want the producer and consumer threads to run in lockstep, you

need an additional handshake. In Example 7-29 the Producer and Consumer
are now classes that exchange integers using a mailbox, with no explicit
synchronization between the two objects.
Example 7-29 Producer–consumer without synchronization, part 1

program automatic unsynchronized;
 class Producer;
 task run;
 for (int i=1; i<4; i++) begin
 $display("Producer: before put(%0d)", i);
 mbx.put(i);
 end
 endtask
 endclass

SystemVerilog for Verification206

Example 7-30 Producer–consumer without synchronization, continued

 class Consumer;
 task run;
 int i;
 repeat (3) begin
 mbx.get(i); // Get integer from mbx
 $display("Consumer: after get(%0d)", i);
 end
 endtask
 endclass

 mailbox mbx;
 Producer p;
 Consumer c;

 initial begin
 // Construct mailbox, producer, consumer
 mbx = new;
 p = new;
 c = new;

 // Run the producer and consumer in parallel
 fork
 p.run;
 c.run;
 join
 end
endprogram

Example 7-31 has no synchronization so the Producer puts all three
integers into the mailbox before the Consumer can get the first one. This is
because a thread continues running until there is a blocking statement, and the
Producer has none. The Consumer thread blocks on the first call to mbx.get.
Example 7-31 Producer–consumer without synchronization output

Producer: before put(1)
Producer: before put(2)
Producer: before put(3)
Consumer: after get(1)
Consumer: after get(2)
Consumer: after get(3)

Chapter 7: Threads and Interprocesses Communication 207

7.6.4 Synchronized threads using a mailbox and events
You may want the two threads to use a handshake so that the Producer

does not get ahead of the Consumer. The Consumer already blocks, waiting
for the Producer using a mailbox. The Producer needs to block, waiting for
the Consumer to finish the transaction. This is done by adding a blocking
statement to the Producer such as an event, a semaphore, or a second mailbox.

Example 7-32 uses an event to block the Producer after it puts data in the
mailbox. The Consumer triggers the event after it consumes the data.

If you use wait(handshake.triggered) in a loop, be
sure to advance the time before waiting again. This wait
blocks only once in a given time slot, so you need move into
another. Example 7-32 uses the edge-sensitive blocking

statement @handshake instead to ensure that the Producer stops after sending
the transaction. The edge-sensitive statement works multiple times in a time
slot but may have ordering problems if the trigger and block happen in the
same time slot.
Example 7-32 Producer–consumer synchronized with an event

program automatic mbx_evt;

 event handshake;

 class Producer;
 task run;
 for (int i=1; i<4; i++) begin
 $display("Producer: before put(%0d)", i);
 mbx.put(i);
 @handshake;
 $display("Producer: after put(%0d)", i);
 end
 endtask
 endclass

SystemVerilog for Verification208

Example 7-33 Producer–consumer synchronized with an event, continued

 class Consumer;
 task run;
 int i;
 repeat (3) begin
 mbx.get(i);
 $display("Consumer: after get(%0d)", i);
 ->handshake;
 end
 endtask
 endclass
...
endprogram

Now the Producer does not advance until the Consumer triggers the event.
Example 7-34 Output from producer–consumer with event

Producer: before put(1)
Consumer: after get(1)
Producer: after put(1)
Producer: before put(2)
Consumer: after get(2)
Producer: after put(2)
Producer: before put(3)
Consumer: after get(3)
Producer: after put(3)

You can see that the Producer and Consumer are in lockstep.

7.6.5 Synchronized threads using two mailboxes
Another way to synchronize the two threads is to use a second mailbox

that sends a completion message from the Consumer back to the Producer.

Chapter 7: Threads and Interprocesses Communication 209

Example 7-35 Producer–consumer synchronized with a mailbox

program automatic mbx_mbx2;
 mailbox mbx, rtn;
 class Producer;
 task run;
 int k;
 for (int i=1; i<4; i++) begin
 $display("Producer: before put(%0d)", i);
 mbx.put(i);
 $display("Producer: after put(%0d)", i);
 rtn.get(k);
 $display("Producer: after get(%0d)", k);
 end
 endtask
 endclass

 class Consumer;
 task run;
 int i;
 repeat (3) begin
 $display("Consumer: before get");
 mbx.get(i);
 $display("Consumer: after get(%0d)", i);
 rtn.put(-i);
 end
 endtask
 endclass
endprogram

The return message in the rtn mailbox is just a negative version of the
original integer.

SystemVerilog for Verification210

Example 7-36 Output from producer–consumer with mailbox

Producer: before put(1)
Producer: after put(1)
Consumer: before get
Consumer: after get(1)
Consumer: before get
Producer: after get(-1)
Producer: before put(2)
Producer: after put(2)
Consumer: after get(2)
Consumer: before get
Producer: after get(-2)
Producer: before put(3)
Producer: after put(3)
Consumer: after get(3)
Producer: after get(-3)

7.6.6 Other synchronization techniques
You can also complete the handshake with blocking on a variable or a

semaphore. An event is the simplest construct, followed by blocking on a
variable. A semaphore is comparable to using a second mailbox, but no
information is exchanged.

7.7 Building a Testbench with Threads and IPC
Now that you know how to use threads and IPC, you can construct a basic

testbench with transactors.

7.7.1 Basic transactor
The following is the transactor for the agent that sits between the

Generator and the Driver.

Chapter 7: Threads and Interprocesses Communication 211

Example 7-37 Basic Transactor

class Agent;

 mailbox gen2agt, agt2drv;
 Transaction tr;

 function new(mailbox gen2agt, agt2drv);
 this.gen2agt = gen2agt;
 this.agt2drv = agt2drv;
 endfunction

 function build;
 // Empty for now
 endfunction

 task run;
 forever begin
 // Get transaction from upstream block
 gen2agt.get(tr);

 // Do some processing

 // Send it to downstream block
 agt2drv.put(tr);
 end
 endfunction

 task wrapup;
 // Empty for now
 endtask

endclass

7.7.2 Environment class
The Generator, Agent, Driver, Monitor, Checker, and Scoreboard classes

are instantiated in the Environment class.

SystemVerilog for Verification212

Example 7-38 Environment class

class Environment;

 Generator gen;
 Agent agt;
 Driver drv;
 Monitor mon;
 Checker chk;
 Scoreboard scb;
 Config cfg;
 mailbox gen2agt, agt2drv, mon2chk;

 extern function new;
 extern function void gen_cfg;
 extern function void build;
 extern task run;
 extern task wrapup;
endclass

function Environment::new;
 // Initialize mailboxes
 gen2agt = new;
 agt2drv = new;
 mon2chk = new;

 // Initialize transactors
 gen = new(gen2agt);
 agt = new(gen2agt, agt2drv);
 drv = new(agt2drv);
 mon = new(mon2chk);
 chk = new(mon2chk);
 scb = new;
 cfg = new;
endfunction

function void Environment::gen_cfg;
 assert(cfg.randomize);
endfunction

function void Environment::build;
 gen.build;
 agt.build;
 drv.build;
 mon.build;

Chapter 7: Threads and Interprocesses Communication 213

 chk.build;
 scb.build;
endfunction

task Environment::run;
 fork
 gen.run(run_for_n_trans);
 agt.run;
 drv.run;
 mon.run;
 chk.run;
 scb.run(run_for_n_trans);
 join
endtask

task Environment::wrapup;
 fork
 gen.wrapup;
 agt.wrapup;
 drv.wrapup;
 mon.wrapup;
 chk.wrapup;
 scb.wrapup;
 join
endtask

7.7.3 Test program
The main test goes in the top-level program.

Example 7-39 Basic test program

program automatic test;

 Environment env;

 initial begin
 env = new;
 env.gen_cfg;
 env.build;
 env.run;
 env.wrapup;
 end
endprogram

SystemVerilog for Verification214

7.8 Conclusion
Your design is modeled as many independent blocks running in parallel,

so your testbench must also generate multiple stimulus streams and check the
responses using parallel threads. These are organized into a layered testbench,
orchestrated by the top-level environment. SystemVerilog introduces
powerful constructs such as fork...join_none and fork...join_any for
dynamically creating new threads, in addition to the standard fork...join.
These threads communicate and synchronize using events, semaphore,
mailboxes, and the classic @ event control and wait statement. Lastly, the
disable command is used to terminate threads.

These threads and the related control constructs complement the dynamic
nature of OOP. As objects are created and destroyed, they can run in
independent threads, allowing you to build a powerful and flexible testbench
environment.

Chapter 8

Advanced OOP and Guidelines

8.1 Introduction
How would you create a complex class for a bus transaction that also

includes performs error injection and variable delays? The first approach is to
put everything in a large, flat class. This approach is simple to build, easy to
understand (all the code is right there in one class) but can be slow to develop
and debug. Additionally, such a large class is a maintenance burden, as
anyone who wants to make a new transaction behavior has to edit the same
file. Just as you would never create a complex RTL design using just one
Verilog module, you should break classes down into smaller, reusable blocks.

The next choice is composition. As you learned in Chapter 4, you can
instantiate one class inside another, just as you instantiate modules inside
another, building up a hierarchical testbench. You write and debug your
classes from the top down or bottom up. Look for natural partitions when
deciding what variables and methods go into the various classes.

Sometimes it is difficult to divide the functionality into separate parts.
Take the example of a bus transaction with error injection. When you write
the original class for the transaction, you may not think of all the possible
error cases. Ideally, you would like to make a class for a good transaction, and
later add different error injectors. The transaction may have data fields and an
error-checking CRC field generated from the data. One form of error injection
is corruption of the CRC field. If you use composition, you need separate
classes for a good transaction, and an error transaction. Testbench code that
used good objects would have to be rewritten to process the new error objects.
What you need is something that resembles the original class but adds a few
new variables and methods. This result is accomplished through inheritance.

Inheritance allows a new class to be derived from an existing one in order
to share its variables and routines. The original class is known as the base or
super class, while the new one, since it extends the capability of the base
class, is called the extended class. Inheritance provides reusability by adding
features, such as error injection, to an existing class, the basic transaction,
without modifying the base class.

The real power of OOP is that it gives you the ability to take an existing
class, such as a transaction, and selectively change parts of its behavior by
replacing routines, but without having to change the surrounding
infrastructure. With some planning, you can create a testbench solid enough

SystemVerilog for Verification216

to send basic transactions, but able to accommodate any extensions needed by
the test.

8.2 Introduction to Inheritance
Figure 8-1 shows a simple testbench. A generator creates a transaction,

randomizes it, and sends it to the driver. The rest of the testbench is left out.
Figure 8-1 Simplified layered testbench

8.2.1 Base transaction
The base transaction class has variables for the source and destination

addresses, eight data words, and a CRC for error checking, plus routines for
displaying the contents and calculating the CRC. The calc_crc function is
tagged as virtual so that it can be redefined if needed, as shown in the next
section. Virtual routines are explained in more detail later in this chapter.
Example 8-1 Base Transaction class

class Transaction;
 rand bit [31:0] src, dst, data[8]; // Variables
 bit [31:0] crc;

 virtual function void calc_crc;
 crc = src ^ dst ^ data.xor;
 endfunction

 virtual function void display;
 $display("Tr: src=%h, dst=%h, crc=%h", src,dst,crc);
 endfunction
endclass

DUT

Driver

Test

Environment
Generator

DUT

Driver

Test

Environment
Generator

Chapter 8: Advanced OOP and Guidelines 217

A diagram for the class shows both the variables and routines.
Figure 8-2 Base Transaction class diagram

8.2.2 Extending the Transaction class
Suppose you have a testbench that sends good transactions through the

DUT and now want to inject errors. Take an existing transaction class and
extend it to create a new class. Following the guidelines from Chapter 1, you
want to make as few code changes as possible to your existing testbench. So
how can you reuse the existing Transaction class? This is done by
declaring the new class, BadTr, as an extension of the current class.
Transaction is called the base class, while BadTr is known as the extended
class.
Example 8-2 Extended Transaction class

class BadTr extends Transaction;
 rand bit bad_crc;
 virtual function void calc_crc;
 super.calc_crc(); // Compute good CRC
 if (bad_crc) crc = ~crc; // Corrupt the CRC bits
 endfunction

 virtual function void display;
 $write("BadTr: bad_crc:%b, ");
 super.display();
 endfunction

endclass : BadTr

Note that in Example 8-2, the variable crc is used without a hierarchical
identifier. The BadTr class can see all the variables from the original
Transaction plus its own variables such as bad_crc. The calc_crc
function in the extended class calls calc_crc in the base class using the
super prefix. You can call one level up, but going across multiple levels such

Transaction src data[0]

dst

crc data[7]

display()data[1]

calc_crc()Transaction src data[0]

dst

crc data[7]

display()data[1]

calc_crc()

SystemVerilog for Verification218

as super.super.new is not allowed in SystemVerilog. Not to mention that
this style, since it reaches across multiple levels, violates the rules of
encapsulation by reaching across multiple boundaries.
Figure 8-3 Extended Transaction class diagram

Always declare routines inside a class as virtual so that they
can be redefined in an extended class. This applies to all tasks
and functions, except the new function, which is called when
the object is constructed, so there is no way to extend it.
SystemVerilog always calls the new function based on the

handle’s type.

8.2.3 Quick OOP glossary
Here is a quick glossary of terms. As explained in Chapter 4, the OOP

term for a variable in a class is “property,” and a task or function is called a
“method.” When you extend a class, the original class (such as
Transaction) is called the parent class or super class. The extended class
(BadTr) is known as the derived class or sub class. A base class is one that is
not derived from any other class. The “prototype” for a routine is just the first
line that shows the argument list and return type, if any. The prototype is used
when you move the body of the routine outside the class, but is needed to
describe how the routine communicated with others, as shown in section 4.11.

8.2.4 Constructors in extended classes
When you start extending classes, there is one rule about constructors

(new function) to keep in mind. If your base class constructor has any
arguments, the extend constructor must have a constructor and must call the
base’s constructor on its first line.

bad_crcBadTr calc_crc()

Transaction src data[0]

dst

crc data[7]

display()data[1]

calc_crc()

display()

bad_crcBadTr calc_crc()

Transaction src data[0]

dst

crc data[7]

display()data[1]

calc_crc()

display()

Chapter 8: Advanced OOP and Guidelines 219

Example 8-3 Constructor with argument in an extended class

class Base1;
 int var;
 function new(int var); // Constructor with an argument
 this.var = var;
 endfunction
endclass

class Extended extends Base1;
 function new(int var);
 super.new(var); // Must be first line of new
 // Other constructor actions
 endfunction
endclass

8.2.5 Driver class
The following driver class receives transactions from the generator and

drives them into the DUT.
Example 8-4 Driver class

class Driver;
 mailbox gen2drv;

 function new(mailbox gen2drv);
 this.gen2drv = gen2drv;
 endfunction

 task main;
 Transaction tr;
 forever begin
 // Get transaction from upstream generator
 gen2drv.get(tr);

 // Process the transation
 tr.calc_crc;

 // Drive the interface signals to send transaction
 @ifc.cb.src = src;
 ...
 end
 endtask
endclass

SystemVerilog for Verification220

This class stimulates the DUT with Transaction objects. OOP rules say
that if you have a handle of the base type (Transaction), it can also point to
an object of an extended type (BadTr). This is because the handle tr can only
reference the variables src, dst, crc, and data, and the routine calc_crc.
So you can send BadTr objects into the driver without changing it.

When the driver calls tr.calc_crc, SystemVerilog looks at the type of
object stored in tr, because the task was declared as virtual. If the object is of
type Transaction, SystemVerilog calls Transaction::calc_crc. If it is
of type BadTr, SystemVerilog calls BadTr::calc_crc.

8.2.6 Simple generator class
The generator for this testbench creates a random transaction and puts it in

the mailbox to the driver. The following example shows how you might create
the class from what you have learned so far. Note that this avoids a very
common testbench bug by constructing the transaction inside the loop instead
of outside.
Example 8-5 Generator class

// Generator class that uses Transaction objects
// First attempt... too limited
class Generator;
 mailbox gen2drv;
 Transaction tr;

 function new(mailbox gen2drv);
 this.gen2drv = gen2drv; // this-> class-level var
 endfunction

 function build; // Empty for now
 endfunction

 task run;
 forever begin
 tr = new; // Construct transaction
 assert(tr.randomize); // Randomize it
 gen2drv.put(tr); // Send to driver
 end
 endtask

 task wrapup; // Empty for now
 endtask
endclass

Chapter 8: Advanced OOP and Guidelines 221

There is a problem with this generator. The run task constructs a
transaction and immediately randomizes it. This means that the transaction
uses whatever constraints are turned on by default. The only way you can
change these would be to edit the Transaction class, which goes against the
verification guidelines. Worse yet, the generator only uses Transaction
objects — there is no way to use an extended object such as BadTr. The fix is
to separate the construction of tr from its randomization as shown below.

As you can see, the Generator and Driver classes have a common
structure. You can enforce this by having both of them be extensions of a
Transactor class, with virtual methods for gen_cfg, build, run, and
wrapup. The VMM has an extensive set of base classes for transactors, data,
the and much more.

8.3 Factory Patterns
A useful OOP technique is the “factory pattern.” If you build a
factory to make signs, you don’t need to know the shape of
every possible sign in advance. You just need a stamping
machine and then change the die to cut different shapes.
Likewise, when you want to build a transactor generator, you

don’t have to know how to build every type of transaction; you just need to be
able to stamp new ones that are similar to a given transaction.

Instead of constructing and then immediately using an object, as in
Example 8-5, instead construct a blueprint object (the cutting die), and then
modify its constraints, or even replace it with an extended object. Now when
you randomize this blueprint, it will have the random values that you want.
Make a copy of this object and send the copy to the downstream transactor.
Figure 8-4 Factory pattern generator

The beauty of this technique is that if you change the blueprint object,
your factory creates a different-type object. Using the sign analogy, you
change the cutting die from a square to a triangle to make Yield signs.

Generator
BlueprintBlueprint
(from test)(from test)

CopyCopy

GeneratedGenerated
streamstream

Generator
BlueprintBlueprint
(from test)(from test)

CopyCopy

GeneratedGenerated
streamstream

SystemVerilog for Verification222

Figure 8-5 Factory generator with new pattern

The blueprint is the “hook” that allows you to change the behavior of the
generator class without having to change the class’s code.

Here is the generator class using the factory pattern. The important thing
to notice is that the blueprint object is constructed in one place (the build
task) and used in another (the run task). Previous coding guidelines said to
separate the declaration and construction; similarly, you need to separate the
construction and randomization of the blueprint object.
Example 8-6 Generator class using factory pattern

class Generator;
 mailbox gen2drv;
 Transaction blueprint;

 function new(mailbox gen2drv);
 this.gen2drv = gen2drv;
 endfunction

 function build;
 blueprint = new;
 endfunction

 task run;
 Transaction tr;
 forever begin
 assert(blueprint.randomize);
 tr = blueprint.copy; // * see below
 gen2drv.put(tr); // Send to driver
 end
 endtask
endclass

The copy function is discussed again in section 8.6. For now, remember
that you must add it to the Transaction and BadTr classes.

Generator
BlueprintBlueprint

(from test)(from test)
CopyCopy

GeneratedGenerated
streamstream

Generator
BlueprintBlueprint

(from test)(from test)
CopyCopy

GeneratedGenerated
streamstream

Chapter 8: Advanced OOP and Guidelines 223

8.3.1 The Environment class
Chapter 1 discussed the three phases of execution: Build, Run, and Wrap-

up. Example 8-7 shows the environment class that instantiates all the
testbench components, and runs these three phases.
Example 8-7 Environment class

// Testbench environment class
class Environment;
 Generator gen;
 Driver drv;
 mailbox gen2drv;

 function new;
 gen = new(gen2drv);
 drv = new(gen2drv);
 endfunction

 function build;
 gen.build;
 drv.build;
 endfunction

 task run;
 fork
 gen.run;
 drv.run;
 join_none
 endtask

 task wrapup;
 gen.wrapup;
 drv.wrapup;
 endtask

endclass

8.3.2 A simple testbench
The test is contained in the top-level program. The basic test just lets the

environment run with all the defaults.

SystemVerilog for Verification224

Example 8-8 Simple test program using environment defaults

program automatic test;

 Environment env;
 initial begin
 env = new; // Construct the environment
 env.build; // Build testbench objects
 env.run; // Run the test
 env.wrap_up; // Clean up afterwards
 end
endprogram

8.3.3 Using the extended Transaction class
To inject an error, you need to change the blueprint object from
a Transaction object to a BadTr. You do this between the
build and run phases in the environment. The top-level
testbench runs each phase of the environment and changes the
blueprint. Note how all the references to BadTr are in this one

file, so you don’t have to change the Environment or Generator classes.
You want to restrict the scope of where BadTr is used, so a standalone
begin...end block is used in the middle of the initial block.
Example 8-9 Injecting extended transaction from test

program automatic test;

 Environment env;
 initial begin
 env = new;
 env.build; // Construct a blueprint

 begin
 BadTr bad; // Create a bad transaction
 bad = new; // Replace blueprint with
 env.drv.tr = bad; // the "bad" one
 end

 env.run; // Run the test
 env.wrap_up; // Clean up afterwards
 end
endprogram

Chapter 8: Advanced OOP and Guidelines 225

8.4 Type Casting and Virtual Methods
As you start to use inheritance to extend the functionality of classes, you

need a few OOP techniques to control the objects and their functionality. In
particular, a handle can refer to an object for a certain class, or any extended
class. So what happens when a base handle points to a extended object? What
happens when you call a method that exists in both the base and extended
classes? This section explains what happens using several examples.

8.4.1 Type casting with $cast
Type casting or conversion refers to changing an entity of one data type

into another. Outside of OOP, you can convert an integer to a real or visa
versa. In OOP, the easiest way to think about type casting is to consider a base
class and an extended class.
Example 8-10 Base and extended class

class Transaction;
 rand bit [31:0] src;
 virtual function void display;
 $display("Transaction: src=%0d", src);
 endfunction
endclass

class BadTr extends Transaction;
 bit bad_crc;
 virtual function void display;
 $display("BadTr: bad_crc=%0d", bad_crc);
 endfunction
endclass

Transaction tr;
BadTr bad, b2;

Figure 8-6 Simplified extended transaction

If you assign an extended handle to a base handle, nothing special is
needed.

srcTransaction

bad_crcBadTr display()

display()srcTransaction

bad_crcBadTr display()

display()

SystemVerilog for Verification226

Example 8-11 Copying extended handle to base handle

bad = new; // Construct BadTr extended object
tr = br; // Base handle points to extended obj
$display(tr.src); // Display base variable
tr.display; // Calls BadTr::display

When a class is extended, all the variables and routines are inherited, so
the integer src exists in the extended object. The assignment on the second
line is permitted, as any reference using the base handle tr is valid, such as
tr.src and tr.display.

But what if you try going in the opposite direction, copying a base object
into an extended handle, as shown in Example 8-12? This fails because the
base object is missing properties that only exist in the extended class, such as
bad_crc. The SystemVerilog compiler does a static check of the handle
types and will not compile the second line.
Example 8-12 Copying a base handle to an extended handle

tr = new; // Construct base object
bad = tr; // ERROR: WILL NOT COMPILE
$display(bad.bad_crc); // bad_crc is not in base object

It is not always illegal to assign a base handle to an extended handle. It is
allowed when the base handle actually points to an extended object. The
$cast routine checks the type of object, not just the handle. Now you can
copy the address of the extended object from the base handle, tr, into the
extended handle, b2.
Example 8-13 Using $cast to copy handles

bad = new; // Construct BadTr extended object
tr = bad; // Base handle points to extended obj

// Check object type & copy. Simulation error if mismatch
$cast(b2, tr);

// User check for mismatch, no simulation error
if(!$cast(b2, tr))
 $display("cannot assign tr to b2");

$dislay(b2.bad_crc); // bad_crc exists in original obj

When you use $cast as a task, SystemVerilog checks the type of the
source object at run-time and gives an error if it is not compatible. You can

Chapter 8: Advanced OOP and Guidelines 227

eliminate this error by using $cast as a function and checking the result - 0
for incompatible types, and non-0 for compatible types.

8.4.2 Virtual methods
By now you should be comfortable using handles with extended classes.

What happens if you try to call a routine using one of these handles?
Example 8-14 Transaction and BadTr classes

class Transaction;
 rand bit [31:0] src, dst, data[8]; // Variables
 bit [31:0] crc;

 virtual function void calc_crc; // XOR all fields
 crc = src ^ dst ^ data.xor;
 endfunction
endclass : Transaction

class BadTr extends Transaction;
 rand bit bad_crc;
 virtual function void calc_crc;
 super.calc_crc(); // Compute good CRC
 if (bad_crc) crc = ~crc; // Corrupt the CRC bits
 endfunction
endclass : BadTr

Here is a block of code that uses handles of different types.
Example 8-15 Calling class methods

Transaction tr;
BadTr bad;

initial begin
 tr = new;
 tr.calc_crc; // Calls Transaction::calc_crc

 bad = new;
 bad.calc_crc; // Calls BadTr::calc_crc

 tr = bad; // Base handle points to ext obj
 tr.calc_crc; // Calls BadTr::calc_crc
end

SystemVerilog for Verification228

When you use virtual methods, SystemVerilog uses the type of the object,
not the handle to decide which routine to call. In the final statement, tr points
to an extended object (BadTr) and so BadTr::calc_crc is called.

 If you left out the virtual modifier on calc_crc, SystemVerilog
would use the type of the handle (Transaction), not the object. That last
statement would call Transaction::calc_crc – probably not what you
wanted.

The OOP term for multiple routines sharing a common name is
“polymorphism.” It solves a problem similar to what computer architects
faced when trying to make a processor that could address a large address
space but had only a small amount of physical memory. They created the
concept of virtual memory, where the code and data for a program could
reside in memory or on a disk. At compile time, the program didn’t know
where its parts resided — that was all taken care of by the hardware plus
operating system at run-time. A virtual address could be mapped to some
RAM chips, or the swap file on the disk. Programmers no longer needed to
worry about this virtual memory mapping when they wrote code — they just
knew that the processor would find the code and data at run-time. See also
Denning (2005).

8.4.3 Signatures
There is one downside to using virtual routines – once you define one, all

extended classes that define the same virtual routine must use the same
“signature,” i.e., the same number and type of arguments. You cannot add or
remove an argument in an extended virtual routine. This just means you need
to plan ahead.

8.5 Composition, Inheritance, and Alternatives
As you build up your testbench, you have to decide how to group related

variables and routines together into classes. In Chapter 4 you learned how to
build basic classes and include one class inside another. Previously in this
chapter, you saw the basics of inheritance. This section shows you how to
decide between the two styles, and also shows an alternative.

8.5.1 Deciding between composition and inheritance
How should you tie together two related classes? Composition uses a “has-

a” relationship. A packet has a header and a body. Inheritance uses an “is-a”
relationship. A BadTr is a Transaction, just with more information. The
following table is a quick guide, with more detail below.

Chapter 8: Advanced OOP and Guidelines 229

1. Are there several small classes that you want to combine into a larger
class? For example, you may have a data class and header class and
now want to make a packet class. SystemVerilog does not support
multiple inheritance, where one class derives from several classes at
once. Instead you have to use composition. Alternatively, you could
extend one of the classes to be the new class, and manually add the
information from the others.

2. In Example 8-14, the Transaction and BadTr classes are both bus
transactions that are created in a generator and driven into the DUT.
Thus inheritance makes sense.

3. The lower-level information such as src, dst, and data must
always be present for the Driver to send a transaction.

4. In Example 8-14, the new BadTr class has a new field bad_crc and
the extended calc_crc function. The Generator class just trans-
mits a transaction and does not care about the additional information.
If you use composition to create the error bus transaction, the
Generator class would have to be rewritten to handle the new type.

If two objects seem to be related by both “is-a” and “has-a,” you may need
to break them down into smaller components.

8.5.2 Problems with composition
The classical OOP approach to building a class hierarchy partitions

functionality into small blocks that are easy to understand. But as discussed in

Table 8-1. Comparing inheritance to composition

Question Inheritance Composition

1. Do you need to group multiple subclasses
together? (SystemVerilog does not support mul-
tiple inheritance)

No Yes

2. Does the higher-level class represent objects
at a similar level of abstraction?

Yes No

3. Is the lower-level information always present
or required?

Yes No

4. Does the additional data need to remain
attached to the original class while it is being
processed by pre-existing code?

Yes No

SystemVerilog for Verification230

section 4.16 on public vs. private attributes, testbenches are not standard
software development projects. Concepts such as information hiding (using
private variables) conflict with building a testbench that needs maximum
visibility and controllability. Similarly, dividing a transaction into smaller
pieces may cause more problems than it solves.

When you are creating a class to represent a transaction, you may want to
partition it to keep the code more manageable. For example, you may have an
Ethernet MAC frame and your testbench uses two flavors, normal (II) and
Virtual LAN (VLAN). Using composition, you could create a basic cell
EthMacFrame with all the common fields such as da and sa and a
discriminant variable, kind, to indicate the type. There is a second class to
hold the VLAN information, which is included in EthMacFrame.
Example 8-16 Building an Ethernet frame with composition

// Not recommended
class EthMacFrame;
 typedef enum {II, IEEE} kind_t;
 rand kind_t kind;
 rand bit [47:0] da, sa;
 rand bit [15:0] len;

 ...
 rand Vlan vlan_h;
endclass

class Vlan;
 rand bit [15:0] vlan;
endclass

There are several problems with composition. First, it adds an extra layer
of hierarchy, so you are constantly having to add an extra name to every
reference. The VLAN information is called eth_h.vlan_h.vlan. If you
start adding more layers, the hierarchical names become a burden.

A more subtle issue occurs when you want to instantiate and randomize
the classes. What does the EthMacFrame constructor create? Because kind
is random, you don’t know whether to construct a Vlan object when new is
called. When you randomize the class, the constraints set variables in both the
EthMacFrame and Vlan objects based on the random kind field. However,
randomization only works on objects that have been instantiated. But you
can’t instantiate this object until kind has been chosen.

The only solution to the construction and randomization problems is to
always instantiate all object in EthMacFrame::new. But if you are always
using all alternatives, why divide the Ethernet cell into two different classes?

Chapter 8: Advanced OOP and Guidelines 231

8.5.3 Problems with inheritance
Inheritance can solve some of these issues. Variables in the extended

classes can be referenced without the extra hierarchy as in eth_h.vlan. You
don’t need a discriminant, but you may find it easier to have one variable to
test rather than doing type-checking.
Example 8-17 Building an Ethernet frame with inheritance

// Not recommended
class EthMacFrame;
 typedef enum {II, IEEE} kind_t;
 rand kind_t kind;
 rand bit [47:0] da, sa;
 rand bit [15:0] len;
 ...
endclass

class Vlan extends EthMacFrame;
 rand bit [15:0] vlan;
endclass

On the downside, a set of classes that use inheritance always requires more
effort to design, build, and debug than a set of classes without inheritance.
Your code must use $cast whenever you have an assignment from a base
handle to an extended. Building a set of virtual routines can be challenging, as
they all have to have the same prototype. If you need an extra argument, you
need to go back and edit the entire set, and possibly the routine calls too.

There are also problems with randomization. How do you make a
constraint that randomly chooses between the two kinds of frame and sets the
proper variables? You can’t put a constraint in EthMacFrame that references
the vlan field.

The final issue is with multiple inheritance. In Figure 8-7, you can see how
the VLAN frame is derived from normal MAC frame. The problem is that
these different standards reconverged. SystemVerilog does not support
multiple inheritance, so you could not create the VLAN / Snap / Control
frame through inheritance.

SystemVerilog for Verification232

Figure 8-7 Multiple inheritance problem

8.5.4 A real-world alternative
If composition leads to large hierarchies, but inheritance requires extra

code and planning to deal with all the different classes, and both have difficult
construction and randomization, what can you do? You can instead make a
single, flat class that has all the variables and routines. This approach leads to
a very large class, but it handles all the variants cleanly. You have to use the
discriminant variable often to tell which variables are valid, as shown in
Example 8-18. It contains several conditional constraints, which apply in
different cases, depending on the value of kind.
Example 8-18 Building a flat Ethernet frame

class eth_mac_frame;
 typedef enum {II, IEEE} kind_t;
 rand kind_t kind;
 rand bit [47:0] da, sa;
 rand bit [15:0] len, vlan;
 ...
 constraint eth_mac_frame_II {
 if (kind == II) {
 data.size() inside {[46:1500]};
 len == data.size();
 }}
 constraint eth_mac_frame_ieee {
 if (kind == IEEE) {
 data.size() inside {[46:1500]};
 len < 1522;
 }}
endclass

Ethernet MAC Frame

Ethernet IIc FrameEthernet VLAN Frame Ethernet Control Frame

Ethernet Snap Frame

Ethernet VLAN Snap Control Frame

Ethernet MAC Frame

Ethernet IIc FrameEthernet VLAN Frame Ethernet Control Frame

Ethernet Snap Frame

Ethernet VLAN Snap Control Frame

Chapter 8: Advanced OOP and Guidelines 233

Define the typical behavior and constraints in the class, and then use
inheritance to inject new behavior at the test level.

8.6 Copying an Object
In Example 8-6, the generator first randomized, and then copied the

blueprint to make a new transaction. Take a closer look at your copy
function.
Example 8-19 Base transaction class with a virtual copy function

class Transaction;
 rand bit [31:0] src, dst, data[8]; // Variables
 bit [31:0] crc;

 virtual function Transaction copy;
 copy = new;
 copy.src = src; // Copy data fields
 copy.dst = dst;
 copy.data = data;
 copy.crc = crc;
 endfunction
endclass

When you extend the Transaction class to make the class BadTr, the
copy function still has to return a Transaction object. This is because the
extended virtual function must match the base Transaction::copy,
including all arguments and return type.

SystemVerilog for Verification234

Example 8-20 Extended transaction class with virtual copy method

class BadTr extends Transaction;
 rand bit bad_crc;

 virtual function Transaction copy;
 BadTr bad;
 bad = new;
 bad.src = src; // Copy data fields
 bad.dst = dst;
 bad.data = data;
 bad.crc = crc;
 bad.bad_crc = bad_crc;
 return bad;
 endfunction

endclass : BadTr

8.6.1 The copy_data routine
One optimization is to break the copy function in two, creating a separate

function, copy_data. Now each class is responsible for copying its local
data. This makes the copy function more robust and reusable. Here is the
function for the base class.
Example 8-21 Base transaction class with copy_data function

class Transaction;
 rand bit [31:0] src, dst, data[8]; // Variables
 bit [31:0] crc;

 virtual function void copy_data(Transaction copy);
 copy.src = src; // Copy the data fields
 copy.dst = dst;
 copy.data = data;
 copy.crc = crc;
 endfunction

 virtual function Transaction copy;
 copy = new;
 copy_data(copy);
 endfunction
endclass

Chapter 8: Advanced OOP and Guidelines 235

In the extended class, copy_data is a little more complicated. Because it
extends the original copy_data routine, its argument is a Transaction
handle. The routine can use this when calling Transaction::copy_data
but when it needs to copy bad_crc, it needs a BadTr handle, so it has to first
cast the base handle to the extended type.
Example 8-22 Extended transaction class with copy_data function

class BadTr extends Transaction;
 rand bit bad_crc;

 virtual function void copy_data(Transaction tr);
 BadTr bad;
 super.copy_data(tr); // Copy base data
 $cast(bad, tr); // Cast base handle to ext’d
 bad.bad_crc = bad_crc; // Copy extended data
 endfunction

 virtual function Transaction copy;
 BadTr bad;
 bad = new; // Construct BadTr
 copy_data(bad); // Copy data fields
 return bad;
 endfunction

endclass : BadTr

8.6.2 Specifying a destination for copy
The existing copy routine always constructs a new object. An

improvement for copy is to specify the location where the copy should be
put. This technique is useful when you want to reuse an existing object, and
not allocate a new one.
Example 8-23 Base transaction class with copy_data function

class Transaction;

 virtual function Transaction copy(Transaction to=null);
 if (to == null) copy = new; // Construct object
 else copy = to; // Use exisiting
 copy_data(copy);
 endfunction
endclass

SystemVerilog for Verification236

The only difference is the additional argument to specify the destination,
and the code to test that a destination object was passed to this routine. If
nothing was passed (the default), construct a new object, or else use the
existing one.

8.7 Callbacks
One of the main guidelines of this book is to create a verification

environment that you can use for all tests with no changes. The key
requirement is that this testbench must provide a “hook” where the test
program can inject new code without modifying the original classes. Your
driver may want to do the following.

Inject errors
Drop the transaction
Delay the transaction
Synchronize this transaction with others
Put the transaction in the scoreboard
Gather functional coverage data

Rather than try to anticipate every possible error, delay, or disturbance in
the flow of transactions, the driver just needs to “call back” a routine defined
in the top-level test. The beauty of this technique is that the callback11 routine
can be defined differently in every test. As a result, the test can add new
functionality to the driver using callbacks without editing the Driver class.
Figure 8-8 Callback flow

11. This OOP-based callback technique is not related to Verilog PLI callbacks or SVA callbacks.

task Driver::run;
forever begin

...
<pre_callback>
transmit(tr);
<post_callback>
...

end
endtask

task pre_callback;
...

endtask

task post_callback;
...

endtask

task Driver::run;
forever begin

...
<pre_callback>
transmit(tr);
<post_callback>
...

end
endtask

task pre_callback;
...

endtask

task post_callback;
...

endtask

Chapter 8: Advanced OOP and Guidelines 237

In Figure 8-8, the Driver::run task loops forever with a call to a
transmit task. Before sending the transaction, run calls the pre-transmit
callback. After sending the transaction, it calls the post-callback task.

8.7.1 Creating a callback
A callback task is created in the top-level test and called from the driver,

the lowest level of the environment. However, the driver does not have to
have any knowledge of the test – it just has to use a generic class that the test
can extend. The driver uses a queue to hold the callback objects, which
simplifies adding new objects.
Example 8-24 Base callback class

class Driver_cbs; // Driver callbacks
 virtual task pre_tx(Transaction tr, ref bit drop);
 // By default, callback does nothing
 endtask

 virtual task post_tx(Transaction tr);
 // By default, callback does nothing
 endtask
endclass

Example 8-25 Driver class with callbacks

class Driver;
 Driver_cbs cbs[$];

 task run;
 bit drop;
 Transaction tr;

 forever begin
 agt2drv.get(tr);
 foreach (cbs[i]) cbs.pre_tx(tr, drop);

 if (!drop) transmit(tr);

 foreach (cbs[i]) cbs.post_tx(tr);
 end
 endtask
endclass

SystemVerilog for Verification238

8.7.2 Using a callback to inject disturbances
A common use for a callback is to inject some disturbance such as causing

an error or delay. The following testbench randomly drops packets using a
callback object. Callbacks can also be used to send data to the scoreboard or
to gather functional coverage values. Note that you can use push_back() or
push_front() depending on the order in which you want these to be called.
For example, you probably want the scoreboard called after any tasks that
may delay, corrupt, or drop a transaction. Only gather coverage after a
transaction has been successfully transmitted.
Example 8-26 Test using a callback for error injection

class Driver_cbs_drop extends Driver_cbs;

 virtual task pre_tx(Transaction tr, ref bit drop);
 // Randomly drop 1 out of every 100 transactions
 drop = ($urandom_range(0,99) == 0);
 endtask

endclass

program automatic test;

 Environment env;

 initial begin
 env = new;
 env.gen_cfg;
 env.build;

 // Callback injection
 begin
 Driver_cbs_drop dcd;
 dcd = new; // Create scb callback
 env.drv.cbs.push_back(dcd); // Put into driver’s Q
 end

 env.run;
 env.wrapup;
 end

endprogram

Chapter 8: Advanced OOP and Guidelines 239

8.7.3 Connecting to the scoreboard with a callback
The following testbench creates its own extension of the driver’s callback

class and adds a reference to the driver’s callback queue.
Example 8-27 Test using callback for scoreboard

class Driver_cbs_scoreboard extends Driver_cbs;

 virtual task pre_tx(Transaction tr, ref bit drop);
 // Put transaction in the scoreboard
 ...
 endtask

endclass

program automatic test;

 Environment env;

 initial begin
 env = new;
 env.gen_cfg;
 env.build;

 begin
 Driver_cbs_scoreboard dcs;
 dcs = new; // Create scb callback
 env.drv.cbs.push_back(dcs); // Put into driver’s Q
 end

 env.run;
 env.wrapup;
 end

endprogram

Always use callbacks for scoreboards and functional coverage. The
monitor transactor can use a callback to compare received transactions with
expected ones. The monitor callback is also the perfect place to gather
functional coverage on transactions that are actually sent by the DUT.

You may have thought of using a separate transactor for functional
coverage that is connected to the testbench using a mailbox. This is a poor
solution for both coverage and scoreboards, as these are passive testbench
components that only wake up when the testbench has data for them, and they

SystemVerilog for Verification240

never pass information to a downstream transactor. Additionally, you may
sample data from several points in your testbench, but a transactor is designed
for a single source. Instead, make the scoreboard and coverage interface
passive, and the rest of the testbench can access them with callbacks.

8.7.4 Using a callback to debug a transactor
If a transactor with callbacks is not working as you expect, you can use an

additional callback to debug it. You can start by adding a callback to display
the transaction. If there are multiple instances, display the hierarchical path,
using $display("%m ..."). Then move the debug before and after the
other callbacks to locate the one that is causing the problem. Even for debug,
you want to avoid making changes to the testbench environment.

8.8 Conclusion
The software concept of inheritance, where new functionality is added to

an existing class, parallels the hardware practice of extending the design’s
features for each generation, while still maintaining backwards compatibility.

For example, you can upgrade your PC by adding a larger capacity disk.
As long as it uses the same interface as the old one, you do not have to replace
any other part of the system, yet the overall functionality is improved.

Likewise, you can create a new test by “upgrading” the existing driver
class to inject errors. If you use an existing callback in the driver, you do not
have to change any of the testbench infrastructure.

You need to plan ahead if you want use these OOP techniques. By using
virtual routines and providing sufficient callback points, your test can modify
the behavior of the testbench without changing its code. The result is a robust
testbench that does not need to anticipate every type of disturbance (error-
injection, delays, synchronization) that you may want as long as you leave a
hook where the test can inject its own behavior. The tests become smaller and
easier to write as the testbench does the hard work of sending stimulus and
checking responses, so the test only has to make small tweaks to cause
specialized behavior.

Chapter 9

Functional Coverage

9.1 Introduction
As designs become more complex, the only effective way to verify them

thoroughly is with constrained-random testing (CRT). This approach elevates
you above the tedium of writing individual directed tests, one for each feature
in the design. However, if your testbench is taking a random walk through the
space of all design states, how do you know if you have reached your destina-
tion? Whether you are using random or directed stimulus, you can gauge
progress using coverage.

Functional coverage is a measure of which design features have been exer-
cised by the tests. Start with the design specification and create a verification
plan with a detailed list of what to test and how. For example, if your design
connects to a bus, your tests need to exercise all the possible interactions
between the design and bus, including relevant design states, delays, and error
modes. The verification plan is a map to show you where to go. For more
information on creating a verification plan, see Bergeron (2006).
Figure 9-1 Coverage convergence

Use a feedback loop to analyze the coverage results and decide on which
actions to take in order to converge on 100% coverage. Your first choice is to
run existing tests with more seeds; the second is to build new constraints.
Only resort to creating directed tests if absolutely necessary.

Back when you exclusively wrote directed tests, the verification planning
was limited. If the design specification listed 100 features, all you had to do
was write 100 tests. Coverage was implicit in the tests — the “register move”
test moved all combinations of registers back and forth. Measuring progress

Constrained
random tests

Functional
Coverage

Many runs,
different seeds

Many runs,
different seeds

Identify
holes

Identify
holes

Add
constraints

Add
constraints

Minimal code
modifications

Directed
testcase

Constrained
random tests

Functional
Coverage

Many runs,
different seeds

Many runs,
different seeds

Identify
holes

Identify
holes

Add
constraints

Add
constraints

Minimal code
modifications

Directed
testcase

SystemVerilog for Verification242

was easy: if you had completed 50 tests, you were halfway done. This chapter
uses “explicit” and “implicit” to describe how coverage is specified. Explicit
coverage is described directly in the test environment using SystemVerilog
features. Implicit coverage is implied by a test — when the “register move”
directed test passes, you have hopefully covered all register transactions.

With CRT, you are freed from hand crafting every line of input stimulus,
but now you need to write code that tracks the effectiveness of the test with
respect to the verification plan. You are still more productive, as you are
working at a higher level of abstraction. You have moved from tweaking indi-
vidual bits to describing the interesting design states. Reaching for 100%
functional coverage forces you to think more about what you want to observe
and how you can direct the design into those states.

9.1.1 Gathering coverage data
You can run the same random testbench over and over, simply by chang-

ing the random seed, to generate new stimulus. Each individual simulation
generates a database of functional coverage information, the trail of footprints
from the random walk. You can then merge all this information together to
measure your overall progress using functional coverage.
Figure 9-2 Coverage flow

You then analyze the coverage data to decide how to modify your tests. If
the coverage levels are steadily growing, you may just need to run existing
tests with new random seeds, or even just run longer tests. If the coverage
growth has started to slow, you can add additional constraints to generate
more “interesting” stimuli. When you reach a plateau, some parts of the
design are not being exercised, so you need to create more tests. Lastly, when
your functional coverage values near 100%, check the bug rate. If bugs are

Design
Specification

Verification
Plan

Coverage
Database

No Yes

Debug
Coverage
Analysis

Design Tests

Pass?

Design
Specification

Verification
Plan

Coverage
Database

No Yes

Debug
Coverage
Analysis

Design Tests

Pass?

Chapter 9: Functional Coverage 243

still being found, you may not be measuring true coverage for some areas of
your design.

Each simulation vendor has its own format for storing coverage data and
as well as its own analysis tools. You need to perform the following actions
with those tools.

– Run a test with multiple seeds. For a given set of constraints (and cov-
erage groups), compile the testbench and design into a single execute-
able. Now you need to run this constraint set over and over with
different random seeds. You can use the Unix system clock as a seed,
but be careful, as your batch system may start multiple jobs simulta-
neously. These jobs may run on different servers or may start on a
single server with multiple processors.

– Check for pass/fail. Functional coverage information is only valid for
a successful simulation. When a simulation fails because there is a
design bug, the coverage information must be discarded. The cover-
age data measures how many items in the verification plan are com-
plete, and this plan is based on the design specification. If the design
does not match the specification, the coverage data is useless. Some
verification teams periodically measure all functional coverage from
scratch so that it reflects the current state of the design.

– Analyze coverage across multiple runs. You need to measure how
successful each constraint set is, over time. If you are not yet getting
100% coverage for the areas that are targeted by the constraints, but
the amount is still growing, run more seeds. If the coverage level has
plateaued, with no recent progress, it is time to modify the con-
straints. Only if you think that reaching the last few test cases for one
particular section may take too long for constrained-random simula-
tion should you consider writing a directed test. Even then, continue
to use random stimulus for the other sections of the design, in case
this “background noise” finds a bug.

9.2 Coverage Types
Coverage is a generic term for measuring progress to complete design ver-

ification. Your simulations slowly paint the canvas of the design, as you try to
cover all of the legal combinations. The coverage tools gather information
during a simulation and then post-process it to produce a coverage report. You
can use this report to look for coverage holes and then modify existing tests or
create new ones to fill the holes. This iterative process continues until you are
satisfied with the coverage level.

SystemVerilog for Verification244

9.2.1 Code coverage
The easiest way to measure verification progress is with code coverage.

Here you are measuring how many lines of code have been executed (line
coverage), which paths through the code and expressions have been executed
(path coverage), which single-bit variables have had the values 0 or 1 (toggle
coverage), and which states and transitions in a state machine have been vis-
ited (FSM coverage). You don’t have to write any extra HDL code. The tool
instruments your design automatically by analyzing the source code and add-
ing hidden code to gather statistics. You then run all your tests, and the code
coverage tool creates a database.

Many simulators include a code coverage tool. A post-processing tool
converts the database into a readable form. The end result is a measure of how
much your tests exercise the design code. Note that you are primarily con-
cerned with analyzing the design code, not the testbench. Untested design
code could conceal a hardware bug, or may be just redundant code.

Code coverage measures how thoroughly your tests exercised the “imple-
mentation” of the design specification, and not the verification plan. Just
because your tests have reached 100% code coverage, your job is not done.
What if you made a mistake that your test didn’t catch? Worse yet, what if
your implementation is missing a feature? The following module is for a D-
flip flop. Can you see the mistake?
Example 9-1 Incomplete D-flip flop model missing a path

module dff(output logic q, q_l,
 input logic clk, d, reset_l);

 always @(posedge clk or negedge reset_l) begin
 q <= d;
 q_l <= !d;
 end
endmodule

The reset logic was accidently left out. A code coverage tool would report
that every line had been exercised, yet the model was not implemented
correctly.

9.2.2 Functional coverage
The goal of verification is to ensure that a design behaves correctly in its

real environment, be that an MP3 player, network router, or cell phone. The
design specification details how the device should operate, while the verifica-
tion plan lists how that functionality is to be stimulated, verified, and
measured. When you gather measurements on what functions were covered,

Chapter 9: Functional Coverage 245

you are performing “design” coverage. For example, the verification plan for
a D-flip flop would mention not only its data storage but also how it resets to
a known state. Until your test checks both these design features, you will not
have 100% functional coverage.

Functional coverage is tied to the design intent and is sometimes called
“specification coverage,” while code coverage measures the design imple-
mentation. Consider what happens if a block of code is missing from the
design. Code coverage cannot catch this mistake, but functional coverage can.

9.2.3 Bug rate
An indirect way to measure coverage is to look at the rate at which fresh

bugs are found. You should keep track of how many bugs you found each
week, over the life of a project. At the start, you may find many bugs through
inspection as you create the testbench. As you read the design spec, you may
find inconsistencies, which hopefully are fixed before the RTL is written.
Once the testbench is up and running, a torrent of bugs is found as you check
each module in the system. The bug rate drops, hopefully to zero, as the
design nears tape-out. However, just because the bug rates approaches zero,
you are not yet done. Every time the rate sags, it is time to find different ways
to create corner cases.
Figure 9-3 Bug rate during a project

The bug rate can vary per week based on many factors such as project
phases, recent design changes, blocks being integrated, personnel changes,
and even vacation schedules. Unexpected changes in the rate could signal a
potential problem. As shown in Figure 9-3, it is not uncommon to keep find-
ing bugs even after tape-out, and even after the design ships to customers.

9.2.4 Assertion Coverage
Assertions are pieces of declarative code that check the relationships

between design signals, either once or over a period of time. These can be

B
ug

s/
w

ee
k

Time

Tape-out

Integration
New DUT code

Design
review

New verif.
engineer

B
ug

s/
w

ee
k

Time

Tape-out

Integration
New DUT code

Design
review

New verif.
engineer

SystemVerilog for Verification246

simulated along with the design and testbench, or proven by formal tools.
Sometimes you can write the equivalent check using SystemVerilog proce-
dural code, but many assertions are more easily expressed using
SystemVerilog Assertions (SVA).

Assertions can have local variables and perform simple data checking. If
you need to check a more complex protocol, such as determining whether a
packet successfully went through a router, procedural code is often better
suited for the job. There is a large overlap between sequences that are coded
procedurally or using SVA. See Vijayaraghavan (2005), Cohen (2005), and
Chapters 3 and 7 in the VMM book, Bergeron et al. (2006) for more informa-
tion on SVA.

The most familiar assertions look for errors such as two signals that should
be mutually exclusive or a request that was never followed by a grant. These
error checks should stop the simulation as soon as they detect a problem.
Assertions can also check arbitration algorithms, FIFOs, and other hardware.
These are coded with the assert property statement.

Some assertions might look for interesting signal values or design states,
such as a successful bus transaction. These are coded with the cover
property statement. You can measure how often these assertions are trig-
gered during a test by using assertion coverage. A cover property observes
sequences of signals, while a cover group (described below) samples data val-
ues and transactions during the simulation. These two constructs overlap in
that a cover group can trigger when a sequence completes. Additionally, a
sequence can collect information that can be used by a cover group.

9.3 Functional Coverage Strategies
Before you write the first line of test code, you need to anticipate what are

the key design features, corner cases, and possible failure modes. This is how
you write your verification plan. Don’t think in terms of data values only;
instead, think about what information is encoded in the design. The plan
should spell out the significant design states.

9.3.1 Gather information, not data
A classic example is a FIFO. How can you be sure you have thoroughly

tested a 1K FIFO memory? You could measure the values in the read and
write indices, but there are over a million possible combinations. Even if you
were able to simulate that many cycles, you would not want to read the cover-
age report.

At a more abstract level, a FIFO can hold from 0 to N-1 possible values.
So what if you just compare the read and write indices to measure how full or

Chapter 9: Functional Coverage 247

empty the FIFO is? You would still have 1K coverage values. If your test-
bench pushed 100 entries into the FIFO, then pushed in 100 more, do you
really need to know if the FIFO ever had 150 values? Not as long as you can
successfully read out all values.

The corner cases for a FIFO are Full and Empty. If you can make the FIFO
go from Empty (the state after reset) through Full and back down to Empty,
you have covered all the levels in between. Other interesting states involve the
indices as they pass between all 1’s and all 0’s. A coverage report for these
cases is easy to understand.

You may have noticed that the interesting states are independent of the
FIFO size. Once again, look at the information, not the data values.

Design signals with a large range (more than a few dozen possible values)
should be broken down into smaller ranges, plus corner cases. For example,
your DUT may have a 32-bit address bus, but you certainly don’t need to col-
lect 4 billion samples. Check for natural divisions such as memory and IO
space. For a counter, pick a few interesting values, and always try to rollover
counter values from all 1’s back to 0.

9.3.2 Only measure what you are going to use
Gathering functional coverage data can be expensive, so only measure

what you will analyze and use to improve your tests. Your simulations may
run slower as the simulator monitors signals for functional coverage, but this
approach has lower overhead than gathering waveform traces and measuring
code coverage. Once a simulation completes, the database is saved to disk.
With multiple testcases and multiple seeds, you can fill disk drives with func-
tional coverage information. But if you never look at the final coverage
reports, don’t perform the initial measurements.

There are several ways to control cover data: at compilation, instantiation,
or triggering. You could use switches provided by the simulation vendor, con-
ditional compilation, or suppression of the gathering of coverage data. The
last of these is less desirable because the post-processing report is filled with
sections with 0% coverage, making it harder to find the few enabled ones.

9.3.3 Measuring completeness
Like your kids in the backseat on a family vacation, your manager con-

stantly asks you, “Are we there yet?” How can you tell if you have fully tested
a design? You need to look at all coverage measurements and consider the
bug rate to see if you have reached your destination.

At the start of a project, both code and functional coverage are low. As
you develop tests, run them over and over with different random seeds until
you no longer see increasing values of functional coverage. Create additional

SystemVerilog for Verification248

constraints and tests to explore new areas. Save test/seed combinations that
give high coverage, so that you can use them in regression testing.
Figure 9-4 Coverage comparison

What if the functional coverage is high but the code coverage is low? Your
tests are not exercising the full design, and you need to revise your verifica-
tion plan and add more functional coverage points to locate untested
functionality.

A more difficult situation is high code coverage but low functional cover-
age. Even though your testbench is giving the design a good workout, you are
unable to put it in all the interesting states. First, see if the design implements
all the specified functionality. If the functionality is there, but your tests can’t
reach it, you might need a formal verification tool that can extract the design’s
states and create appropriate stimulus.

The goal is both high code and functional coverage. But don’t plan your
vacation yet. What is the trend of the bug rate? Are significant bugs still pop-
ping up? Worse yet, are they being found deliberately, or did your testbench
happen to stumble across a particular combination of states that no one had
anticipated? On the other hand, a low bug rate may mean that your existing
strategies have run out of steam, and you should look into different
approaches. Try different approaches such as new combinations of design
blocks and error generators.

9.4 Simple Functional Coverage Example
To measure functional coverage, you begin with the verification plan and

write an executable version of it for simulation. In your SystemVerilog test-

Fu
nc

tio
na

l C
ov

er
ag

e

Code Coverage

Start of
project

Need more FC
points, including

corner casesH
ig

h
Lo

w

Low High

Is design complete?
Perhaps try
formal tools

Good coverage:
check bug rate

Fu
nc

tio
na

l C
ov

er
ag

e

Code Coverage

Start of
project

Need more FC
points, including

corner casesH
ig

h
Lo

w

Low High

Is design complete?
Perhaps try
formal tools

Good coverage:
check bug rate

Chapter 9: Functional Coverage 249

bench, sample the values of variables and expressions. These sample
locations are known as cover points. Multiple cover points that are sampled at
the same time (such as when a transaction completes) are place together in a
cover group.

The following design has a transaction that comes in eight flavors. The
testbench generates the port variable randomly, and the verification plan
requires that every value be tried.
Example 9-2 Functional coverage of a simple object

program automatic test(busifc.TB ifc);

 class Transaction;
 rand bit [31:0] data;
 rand bit [2:0] port; // Eight port numbers
 endclass

 covergroup CovPort;
 coverpoint tr.port; // Measure coverage
 endgroup

 Transaction tr = new;

 initial begin
 CovPort ck = new; // Instantiate group

 repeat (32) begin // Run a few cycles
 assert(tr.randomize); // Create a transaction
 ifc.cb.port <= tr.port; // and transmit
 ifc.cb.data <= tr.data; // onto interface
 ck.sample(); // Gather coverage
 @ifc.cb; // Wait a cycle
 end
 end
endprogram

Example 9-2 creates a random transaction and drives it out to an interface.
The testbench samples the value of the port field using the CovPort cover
group. Eight possible values, 32 random transactions — did your testbench
generate them all? Here is part of a coverage report from VCS.

SystemVerilog for Verification250

Example 9-3 Coverage report for a simple object

Coverpoint Coverage report
CoverageGroup: CovPort
 Coverpoint: tr.port
Summary
 Coverage: 87.50
 Goal: 100
 Number of Expected auto-bins: 8
 Number of User Defined Bins: 0
 Number of Automatically Generated Bins: 7
 Number of User Defined Transitions: 0

 Automatically Generated Bins

 Bin # hits at least
 ================================
 auto[1] 7 1
 auto[2] 7 1
 auto[3] 1 1
 auto[4] 5 1
 auto[5] 4 1
 auto[6] 2 1
 auto[7] 6 1
 ================================

As you can see, the testbench generated the values 1, 2, 3, 4, 5, 6, and 7,
but never generated a port of 0. The at least column specifies how many
hits are needed before a bin is considered covered. See section 9.9.3 for the
at_least option.

To improve your functional coverage, the easiest strategy is to
just run more simulation cycles, or to try new random seeds.
Look at the coverage report for items with two or more hits.
Chances are that you just need to make the simulation run
longer or to try new seed values. If a cover point had zero or

one hit, you probably have to try a new strategy, as the testbench is not creat-
ing the proper stimulus. For this example, the very next random transaction
(#33) has a port value of 0, giving 100% coverage.

Chapter 9: Functional Coverage 251

Example 9-4 Coverage report for a simple object, 100% coverage

Coverpoint Coverage report
CoverageGroup: CovPort
 Coverpoint: tr.port
Summary
 Coverage: 100
 Goal: 100
 Number of Expected auto-bins: 8
 Number of User Defined Bins: 0
 Number of Automatically Generated Bins: 8
 Number of User Defined Transitions: 0

 Automatically Generated Bins

 Bin # hits at least
 ================================
 auto[0] 1 1
 auto[1] 7 1
 auto[2] 7 1
 auto[3] 1 1
 auto[4] 5 1
 auto[5] 4 1
 auto[6] 2 1
 auto[7] 6 1
 ================================

9.5 Anatomy of a Cover Group
A cover group is similar to a class — you define it once and then instanti-

ate it one or more times. It contains cover points, options, formal arguments,
and an optional trigger. A cover group encompasses one or more data points,
all of which are sampled at the same time.

You should create very clear cover group names that explicitly indicate
what you are measuring and, if possible, reference to the verification plan.
The name Parity_Errors_In_Hexaword_Cache_Fills may seem ver-
bose, but when you are trying to read a coverage report that has dozens of
cover groups, you will appreciate the extra detail. You can also use the com-
ment option for additional descriptive information, as shown in section 9.9.1.

A cover group can be defined in a class or at the program or module level.
It can sample any visible variable such as program/module variables, signals
from an interface, or any signal in the design (using a hierarchical reference).

SystemVerilog for Verification252

A cover group inside a class can sample variables in that class, as well as data
values from embedded classes.

Don’t define the cover group in a data class, such as a transac-
tion, as doing so can cause additional overhead when gathering
coverage data. Imagine you are trying to track how many beers
were consumed by patrons in a pub. Would you try to follow
every bottle as it flowed from the loading dock, over the bar,

and into each person? No, instead you could just have each patron check off
the type and number of beers consumed, as shown in van der Schoot (2006).

 In SystemVerilog, you should define cover groups at the appropriate level
of abstraction. This level can be at the boundary between your testbench and
the design, in the transactors that read and write data, in the environment con-
figuration class, or wherever is needed. The sampling of any transaction must
wait until it is actually received by the DUT. If you inject an error in the mid-
dle of a transaction, causing it to be aborted in transmission, you need to
change how you treat it for functional coverage. You need to use a different
cover point that has been created just for error handling.

A class can contain multiple cover groups. This approach allows you to
have separate groups that can be enabled and disabled as needed. Addition-
ally, each group may have a separate trigger, allowing you to gather data from
many sources.

A cover group must be instantiated for it to collect data. If
you forget, no error message about null handles is printed at
run-time, but the coverage report will not contain any men-
tion of the cover group. This rule applies for cover groups
defined either inside or outside of classes.

9.5.1 Defining a cover group in a class
A cover group can be defined in a program, module, or class. In all cases,

you must explicitly instantiate it to start sampling. If the cover group is
defined in a class, you do not make a separate name when you instance it; you
just use the original cover group name.

Example 9-5 is very similar to the first example of this chapter except that
it embeds a cover group in a transactor class, and thus does not need a sepa-
rate instance name.

Chapter 9: Functional Coverage 253

Example 9-5 Functional coverage inside a class

class Transactor;
 Transaction tr;
 mailbox mbx_in;
 covergroup CovPort;
 coverpoint tr.port;
 endgroup

 function new(mailbox mbx_in);
 CovPort = new; // Instantiate covergroup
 this.mbx_in = mbx_in;
 endfunction

 task main;
 forever begin
 tr = mbx_in.get; // Get next transaction
 ifc.cb.port <= tr.port; // Send into DUT
 ifc.cb.data <= tr.data;
 CovPort.sample(); // Gather coverage
 end
 endtask

endclass

9.6 Triggering a Cover Group
The two major parts of functional coverage are the sampled data values

and the time when they are sampled. When new values are ready (such as
when a transaction has completed), your testbench triggers the cover group.
This can be done directly with the sample task, as shown in Example 9-5, or
by using a blocking expression in the covergroup definition. The blocking
expression can use a wait or @ to block on signals or events.

Use the sample method if you want to explicitly trigger coverage from
procedural code, if there is no existing signal or event that tells when to sam-
ple, or if there are multiple instances of a cover group that trigger separately.

Use the blocking statement in the covergroup declaration if you want to
tap into existing events or signals to trigger coverage.

9.6.1 Sampling using a callback
One of the better ways to integrate functional coverage into your testbench

is to use callbacks, as originally shown in section 8.7. This technique allows
you to build a flexible testbench without restricting when coverage is col-
lected. You can decide for every point in the verification plan where and when

SystemVerilog for Verification254

data is sampled. And if you need an extra “hook” in the environment for a
callback, you can always add one in an unobtrusive manner, as a callback
only “fires” when the test registers a callback object. You can create many
separate callbacks for each cover group, with little overhead. As explained in
section 8.7.3, callbacks are superior to using a mailbox to connect the test-
bench to the coverage objects. You might need multiple mailboxes to collect
transactions from different points in your testbench. A mailbox requires a
transactor to receive transactions, and multiple mailboxes cause you to juggle
multiple threads. Instead of an active transactor, use a passive callback.

Example 8-25 shows a driver class that has two callback points, before and
after the transaction is transmitted. Example 8-24 shows the base callback
class, and Example 8-26 has a test with an extended callback class that sends
data to a scoreboard. Make your own extension, Driver_cbs_coverage,
of the base callback class, Driver_cbs, to call the sample task for your
cover group in post_tx. Push an instance of the coverage callback class into
the driver’s callback queue, and your coverage code triggers the cover group
at the right time. The following two examples define and use the callback
Driver_cs_coverage.
Example 9-6 Test using functional coverage callback

program automatic test;
 Environment env;

 initial begin
 Driver_cbs_coverage dcc;

 env = new;
 env.gen_cfg;
 env.build;

 // Create and register the coverage callback
 dcc = new;
 env.drv.cbs.push_back(dcc); // Put into driver’s Q

 env.run;
 env.wrapup.
 end

endprogram

Chapter 9: Functional Coverage 255

Example 9-7 Callback for functional coverage

class Driver_cbs_coverage extends Driver_cbs;
 covergroup CovPort;
 ...
 endgroup

 virtual task post_tx(Transaction tr);
 CovPort.sample(); // Sample coverage values
 endtask
endclass

9.6.2 Cover group with an event trigger
In Example 9-8, the cover group CovPort is sampled when the testbench

triggers the trans_ready event.
Example 9-8 Cover group with a trigger

event trans_ready;
covergroup CovPort @(trans_ready);
 coverpoint ifc.cb.port; // Measure coverage
endgroup

The advantage of using an event over calling the sample routine directly
is that you may be able to use an existing event such as one triggered by an
assertion, as shown in Example 9-10.

9.6.3 Triggering on a SystemVerilog Assertion
If you already have a SVA that looks for useful events like a complete

transaction, you can add an event trigger to wake up the cover group.
Example 9-9 Module with SystemVerilog Assertion

module mem(simple_bus sb);
 bit [7:0] data, addr;
 event write_event;

 cover property
 (@(posedge sb.clock) sb.write_ena==1)
 -> write_event;
endmodule

SystemVerilog for Verification256

Example 9-10 Triggering a cover group with an SVA

program automatic test(simple_bus sb);

 covergroup Write_cg @($root.top.m1.write_event);
 coverpoint $root.top.m1.data;
 coverpoint $root.top.m1.addr;
 endgroup

 Write_cg wcg;

 initial begin
 wcg = new;
 // Apply stimulus here
 sb.write_ena <= 1;
 ...
 #10000 $finish;
 end
endprogram

9.7 Data Sampling
How is coverage information gathered? When you specify a variable or

expression in a cover point, SystemVerilog creates a number of “bins” to
record how many times each value has been seen. These bins are the basic
units of measurement for functional coverage. If you sample a one-bit vari-
able, a maximum of two bins are created. You can imagine that
SystemVerilog drops a token in one or the other bin every time the cover
group is triggered. At the end of each simulation, a database is created with all
bins that have a token in them. You then run an analysis tool that reads all
databases and generates a report with the coverage for each part of the design
and for the total coverage.

9.7.1 Individual bins and total coverage
To calculate the coverage for a point, you first have to determine the total

number of possible values, also known as the domain. There may be one
value per bin or multiple values. Coverage is the number of sampled values
divided by the number of bins in the domain.

A cover point that is a 3-bit variable has the domain 0:7 and is normally
divided into eight bins. If, during simulation, values belonging to seven bins
are sampled, the report will show 7/8 or 87.5% coverage for this point. All
these points are combined to show the coverage for the entire group, and then

Chapter 9: Functional Coverage 257

all the groups are combined to give a coverage percentage for all the simula-
tion databases.

This is the status for a single simulation. You need to track coverage over
time. Look for trends so you can see where to run more simulations or add
new constraints or tests. Now you can better predict when verification of the
design will be completed.

9.7.2 Creating bins automatically
As you saw in the report in Example 9-3, SystemVerilog automatically

creates bins for cover points. It looks at the domain of the sampled expression
to determine the range of possible values. For an expression that is N bits
wide, there are 2N possible values. For the 3-bit port in that example, there
are eight possible values. The range of an enumerated type is shown in section
9.7.8. The domain for enumerated data types is the number of named values
You can also explicitly define bins as shown in section 9.7.5.

9.7.3 Limiting the number of automatic bins created
The cover group option auto_bin_max specifies the maximum number

of bins to automatically create, with a default of 64 bins. If the domain of val-
ues in the cover point variable or expression is greater than this option,
SystemVerilog divides the range into auto_bin_max bins. For example, a
16-bit variable has 65,536 possible values, so each of the 64 bins covers 1024
values.

In reality, you may find this approach impractical, as it is very difficult to
find the needle of missing coverage in a haystack of auto-generated bins.
Lower this limit to 8 or 16, or better yet, explicitly define the bins as shown in
section 9.7.5.

The following code takes the chapter’s first example and adds a cover
point option that sets auto_bin_max to two bins. The sampled variable is
still port, which is three bits wide, for a domain of eight possible values. The
first bin holds the lower half of the range, 0–3, and the other hold the upper
values, 4–7.
Example 9-11 Using auto_bin_max set to 2

covergroup CovPort;
 coverpoint tr.port
 { options.auto_bin_max = 2; } // Divide into 2 bins
endgroup

SystemVerilog for Verification258

The coverage report from VCS shows the two bins. This simulation
achieved 100% coverage because the eight port values were mapped to two
bins. Since both bins have sampled values, your coverage is 100%.
Example 9-12 Report with auto_bin_max set to 2

Bin # hits at least
==================================
auto[0:3] 15 1
auto[4:7] 17 1
==================================

Example 9-11 used auto_bin_max as an option for the cover point only.
You can also use it as an option for the entire group.
Example 9-13 Using auto_bin_max for all cover points

covergroup CovPort;
 options.auto_bin_max = 2; // Affects port & data
 coverpoint tr.port;
 coverpoint tr.data;
endgroup

9.7.4 Sampling expressions
You can sample expressions, but always check the coverage report to be

sure you are getting the values you expect. You may have to adjust the width
of the computed expression, as shown in section 2.15. For example, sampling
a 3-bit header length (0:7) plus a 4-bit payload length (0:15) creates only 24 or
16 bins, which may not be enough if your transactions can actually be 0:23
bytes long.

Example 9-14 has a cover group that samples the total transaction length.
The cover point has a label to make it easier to read the coverage report. Also,
the expression has an additional dummy constant so that the transaction
length is computed with 5-bit precision, for a maximum of 32 auto-generated
bins.

Chapter 9: Functional Coverage 259

Example 9-14 Using an expression in a cover point

class Transaction;
 rand bit [2:0] hdr_len; // range: 0:7
 rand bit [3:0] payload_len; // range: 0:15
 ...
endclass

Transaction tr;

covergroup CovLen;
 len16: coverpoint (tr.hdr_len + tr.payload_len);
 len32: coverpoint (tr.hdr_len + tr.payload_len + 5’b0);
endgroup

A quick run with 200 transactions showed that the len16 had 100% cov-
erage, but this is across only 16 bins. The cover point len32 had 68%
coverage across 32 bins. Neither of these cover points are correct, as the max-
imum length has a domain of 0:23. The auto-generated bins just don’t work,
as the maximum length is not a power of 2.

9.7.5 User-defined bins find a bug
Automatically generated bins are okay for anonymous data values, such as

counter values, addresses, or values that are a power of 2. For other values,
you should explicitly name the bins to improve accuracy and ease coverage
report analysis. SystemVerilog automatically creates bin names for enumer-
ated types, but for other variables you need to give names to the interesting
states.

The easiest way to specify bins is with the [] syntax.
Example 9-15 Defining bins for transaction length

covergroup CovLen;
 len: coverpoint (tr.hdr_len + tr.payload_len + 5’b0)
 {bins len[] = {[0:23]}; }
endgroup

After sampling 2000 random transactions, the group has 95.83% coverage.

SystemVerilog for Verification260

Example 9-16 Coverage report for transaction length

Bin # hits at least
============================
len_00 13 1
len_01 36 1
len_02 51 1
len_03 60 1
len_04 72 1
len_05 88 1
len_06 127 1
len_07 122 1
len_08 133 1
len_09 138 1
len_0a 115 1
len_0b 128 1
len_0c 125 1
len_0d 111 1
len_0e 115 1
len_0f 134 1
len_10 107 1
len_11 102 1
len_12 70 1
len_13 65 1
len_14 39 1
len_15 30 1
len_16 19 1
len_17 0 1
============================

A quick look at the report shows the problem — the length of 23 (17 hex)
was never seen. The longest header is 7, and the longest payload is 15, for a
total of 22, not 23! If you change to the bins declaration to use 0:22, the cov-
erage jumps to 100%. The user-defined bins found a bug in the test.

9.7.6 Naming the cover point bins
Example 9-17 samples a 4-bit variable, kind, that has 16 possible values.

The first bin is called zero and counts the number of times that kind is 0
when sampled. The next three values, 1–3, are all grouped into a single bin,
lo. The upper eight values, 8–15, are kept in separate bins, hi_8, hi_9,
hi_a, hi_b, hi_c, hi_d, hi_e, and hi_f. Note how $ in the hi bin expres-
sion is used as a shorthand notation for the largest value for the sampled
variable. Lastly, misc holds all values that were not previously chosen,
namely 4–7.

Chapter 9: Functional Coverage 261

Example 9-17 Specifying bin names

covergroup CovKind;
 coverpoint tr.kind {
 bins zero = {0}; // A bin for kind==0
 bins lo = {[1:3]}; // 1 bin for values 1:3
 bins hi[] = {[8:$]}; // 8 separate bins
 bins misc = default; // 1 bin for all the rest
 }
endgroup // CoverKind

Note that the additional information about the coverpoint is grouped
using curly braces: {}. This is because the bin specification is declarative
code, not procedural code that would be grouped with begin...end. Lastly,
the final curly brace is NOT followed by a semicolon, just as an end never is.

Now you can easily see which bins have no hits — hi_8 in this case.
Example 9-18 Report showing bin names

Bin # hits at least
=============================
hi_8 0 1
hi_9 5 1
hi_a 3 1
hi_b 4 1
hi_c 2 1
hi_d 2 1
hi_e 9 1
hi_f 4 1
lo 16 1
misc 15 1
zero 1 1
=============================

When you define the bins, you are restricting the values used for coverage
to those that are interesting to you. SystemVerilog no longer automatically
creates bins, and it ignores values that do not fall into a predefined bin. More
importantly, only the bins you create are used to calculate functional cover-
age. You get 100% coverage only as long as you get a hit in every specified
bin.

Values that do not fall into any specified bin are ignored. This
rule is useful if the sampled value, such as transaction length, is
not a power of 2. In general, if you are specifying bins, always
use the default bin specifier to catch values that you may
have forgotten.

SystemVerilog for Verification262

9.7.7 Conditional coverage
You can use the iff keyword to add a condition to a cover point. The

most common reason for doing so is to turn off coverage during reset so that
stray triggers are ignored. Example 9-19 gathers only values of port when
reset is 0, where reset is active-high.
Example 9-19 Conditional coverage — disable during reset

covergroup CoverPort;
 // Don’t gather coverage when reset==1
 coverpoint port iff (!bus_if.reset);
endgroup

Alternately, you can use the start and stop functions to control individ-
ual instances of cover groups.
Example 9-20 Using stop and start functions

initial begin
 CovPort ck = new; // Instantiate cover group

 // Reset sequence stops collection of coverage data
 #1ns bus_if.reset = 1;
 ck.stop();
 #100ns bus_if.reset = 0; // End of reset
 ck.start();
 ...
end

9.7.8 Creating bins for enumerated types
For enumerated types, SystemVerilog creates one bin for each possible

value.
Example 9-21 Functional coverage for an enumerated type

typedef enum {INIT, DECODE, IDLE} fsmstate_t;
fsmstate_t pstate, nstate; // declare typed variables
covergroup cg_fsm;
 coverpoint pstate;
endgroup

Here is part of the coverage report from VCS, showing the bins for the
enumerated types.

Chapter 9: Functional Coverage 263

Example 9-22 Report with auto_bin_max set to 2

Bin # hits at least
==================================
auto_DECODE 11 1
auto_IDLE 11 1
auto_INIT 10 1
==================================

If you want to group multiple values into a single bin, you have to define
your own bins. Any bins outside the enumerated values are ignored unless
you define a bin with the default specifier. When you gather coverage on enu-
merated types, auto_bin_max does not apply.

9.7.9 Transition coverage
You can specify state transitions for a cover point. In this way, you can tell

not only what interesting values were seen but also the sequences. For exam-
ple, you can check if port ever went from 0 to 1, 2, or 3.
Example 9-23 Specifying transitions for a cover point

covergroup CoverPort;
 coverpoint port {
 bins t1 = (0 => 1), (0 => 2), (0 => 3);
 }
endgroup

You can quickly specify multiple transitions using ranges. The expression
(1,2 => 3,4) creates the four transitions (1=>3), (1=>4), (2=>3), and
(2=>4).

You can specify transitions of any length. Note that you have to sample
once for each state in the transition. So (0 => 1 => 2) is different from (0
=> 1 => 1 => 2) or (0 => 1 => 1 => 1 => 2). If you need to repeat
values, as in the last sequence, you can use the shorthand form:(0 => 1[*3]
=> 2). To repeat the value 1 for 3, 4, or 5 times, use 1[*3:5].

9.7.10 Wildcard states and transitions
You use the wildcard keyword to create multiple states and transitions.

Any X, Z, or ? in the expression is treated as a wildcard for 0 or 1. The follow-
ing creates a cover point with a bin for even values and one for odd.

SystemVerilog for Verification264

Example 9-24 Wildcard bins for a cover point

bit [2:0] port;
covergroup CoverPort;
 coverpoint port {
 wildcard bins even = {3’b??0};
 wildcard bins odd = {3’b??1};
 }
endgroup

9.7.11 Ignoring values
With some cover points, you never get all possible values. For instance, a

3-bit variable may be used to store just six values, 0–5. If you use automatic
bin creation, you never get beyond 75% coverage. There are two ways to
solve this problem. You can explicitly define the bins that you want to cover
as show in section 9.7.5. Alternatively, you can let SystemVerilog automati-
cally create bins, and then use ignore_bins to tell which values to exclude
from functional coverage calculation.
Example 9-25 Cover point with ignore_bins

bit [2:0] low_ports_0_5; // Only uses values 0-5
covergroup CoverPort;
 coverpoint low_ports_0_5 {
 ignore_bins hi = {[6,7]}; // Ignore upper 2 bins
 }
endgroup

The original range of low_ports_0_5, a three-bit variable is 0:7. The
ignore_bins excludes the last two bins, which reduces the range to 0:5. So
total coverage for this group is the number of bins with samples, divided by
the total number of bins, which is 5 in this case.
Example 9-26 Cover point with auto_bin_max and ignore_bins

bit [2:0] low_ports_0_5; // Only uses values 0-5
covergroup CoverPort;
 coverpoint low_ports_0_5 {
 options.auto_bin_max = 4; // 0:1, 2:3, 4:5, 6:7
 ignore_bins hi = {[6,7]}; // Ignore upper 2 values
 }
endgroup

If you define bins either explicitly or by using the auto_bin_max option,
and then ignore them, the ignored bins do not contribute to the calculation of
coverage. In Example 9-26, initially four bins are created using

Chapter 9: Functional Coverage 265

auto_bin_max: 0:1, 2:3, 4:5, and 6:7. But then the uppermost bin is elimi-
nated by ignore_bins, so in the end only three bins are created. This cover
point can have coverage of 0%, 33%, 66%, or 100%

9.7.12 Illegal bins
Some sampled values not only should be ignored, but also should cause an

error if they are seen. This is best done in the testbench’s monitor code, but
can also be done by labeling a bin with illegal_bins. Use illegal_bins
to catch states that were missed by the test’s error checking. This also double-
checks the accuracy of your bin creation: if an illegal value is found by the
cover group, it is a problem either with the testbench or with your bin
definitions.
Example 9-27 Cover point with illegal_bins

bit [2:0] low_ports_0_5; // Only uses values 0-5
covergroup CoverPort;
 coverpoint low_ports_0_5 {
 illegal_bins hi = {[6,7]}; // Give error if seen
 }
endgroup

9.7.13 State machine coverage
You should have noticed that if a cover group is used on a state machine,

you can use bins to list the specific states, and transitions for the arcs. But this
does not mean you should use SystemVerilog’s functional coverage to mea-
sure state machine coverage. You would have to extract the states and arcs
manually. Even if you did this correctly the first time, you might miss future
changes to the design code. Instead, use a code coverage tool that extracts the
state register, states, and arcs automatically, saving you from possible
mistakes.

However, an automatic tool extracts the information exactly as coded,
mistakes and all. You may want to monitor small, critical state machines man-
ually using functional coverage.

9.8 Cross Coverage
A cover point records the observed values of a single variable or expres-

sion. You may want to know not only what bus transactions occurred but also
what errors happened during those transactions, and their source and destina-
tion. For this you need cross coverage that measures what values were seen
for two or more cover points at the same time. Note that when you measure

SystemVerilog for Verification266

cross coverage of a variable with N values, and of another with M values, Sys-
temVerilog needs NxM cross bins to store all the combinations.

9.8.1 Basic cross coverage example
Previous examples have measured coverage of the transaction kind, and

port number, but what about the two combined? Did you try every kind of
transaction into every port? The cross construct in SystemVerilog records
the combined values of two or more cover points in a group. The cross state-
ment takes only cover points or a simple variable name. If you want to use
expressions, hierarchical names or variables in an object such as
handle.variable, you must first specify the expression in a coverpoint
with a label and then use the label in the cross statement.

Example 9-28 creates cover points for tr.kind and tr.port. Then the
two points are crossed to show all combinations. SystemVerilog creates a
total of 128 (8 x 16) bins. Even a simple cross can result in a very large num-
ber of bins.
Example 9-28 Basic cross coverage

class Transaction;
 rand bit [3:0] kind;
 rand bit [2:0] port;
endclass

Transaction tr;

covergroup CovPort;
 kind: coverpoint tr.kind; // Create cover point kind
 port: coverpoint tr.port // Create cover point port
 cross kind, port; // Cross kind and port
endgroup

A random testbench created 200 transactions and produced the coverage
report in Example 9-29. Note that even though all possible kind and port
values were generated, about 1/8 of the cross combinations were not seen.

Chapter 9: Functional Coverage 267

Example 9-29 Coverage summary report for basic cross coverage

Cumulative report for Transaction::CovPort
Summary:
 Coverage: 95.83
 Goal: 100

Coverpoint Coverage Goal Weight
==
kind 100.00 100 1
port 100.00 100 1
==
Cross Coverage Goal Weight
==
Transaction::CovPort 87.50 100 1

Cross Coverage report
CoverageGroup: Transaction::CovPort
 Cross: Transaction::CovPort
Summary
 Coverage: 87.50
 Goal: 100
 Coverpoints Crossed: kind port
 Number of Expected Cross Bins: 128
 Number of User Defined Cross Bins: 0
 Number of Automatically Generated Cross Bins: 112

 Automatically Generated Cross Bins

 kind port # hits at least
 ==
 auto[0] auto[0] 1 1
 auto[0] auto[1] 4 1
 auto[0] auto[2] 3 1
 auto[0] auto[5] 1 1
...

9.8.2 Labeling cross coverage bins
If you want more readable cross coverage bin names, you can label the

individual cover point bins, and SystemVerilog will use these names when
creating the cross bins.

SystemVerilog for Verification268

Example 9-30 Specifying cross coverage bin names

covergroup CovPortKind;
 port: coverpoint tr.port
 {bins port[] = {[0:$]};
 }
 kind: coverpoint tr.kind
 {bins zero = {0}; // A bin for kind==0
 bins lo = {[1:3]}; // 1 bin for values 1:3
 bins hi[] = {[8:$]}; // 8 separate bins
 bins misc = default; // 1 bin for all the rest
 }
 cross kind, port;
endgroup

If you define bins that contain multiple values, the coverage statistics
change. In the report below, the number of bins has dropped from 128 to 88.
This is because kind has 11 bins: zero, lo, hi_8, hi_9, hi_a, hi_b, hi_c,
hi_d, hi_e, hi_f, and misc. The percentage of coverage jumped from
87.5% to 90.91% because any single value in the lo bin, such as 2, allows
that bin to be marked as covered, even if the other values, 0 or 3, are not seen.
Example 9-31 Cross coverage report with labeled bins

Summary
 Coverage: 90.91
 Number of Coverpoints Crossed: 2
 Coverpoints Crossed: kind port
 Number of Expected Cross Bins: 88
 Number of Automatically Generated Cross Bins: 80
 Automatically Generated Cross Bins

 port kind # hits at least
 ==
 port_0 hi_8 3 1
 port_0 hi_a 1 1
 port_0 hi_b 4 1
 port_0 hi_c 4 1
 port_0 hi_d 4 1
 port_0 hi_e 1 1
 port_0 lo 7 1
 port_0 misc 6 1
 port_0 zero 1 1
 port_1 hi_8 3 1
...

Chapter 9: Functional Coverage 269

9.8.3 Excluding cross coverage bins
To reduce the number of bins, use ignore_bins. With cross coverage,

you specify the cover point with binsof and the set of values with
intersect so that a single ignore_bins construct can sweep out many
individual bins.
Example 9-32 Excluding bins from cross coverage

covergroup CovCovport;
 port: coverpoint tr.port
 {bins port[] = {[0:$]};
 }
 kind: coverpoint tr.kind
 {
 bins zero = {0}; // A bin for kind==0
 bins lo = {[1:3]}; // 1 bin for values 1:3
 bins hi[] = {[8:$]}; // 8 separate bins
 bins misc = default; // 1 bin for all the rest
 }
 cross kind, port {
 ignore_bins hi = binsof(port) intersect {7};
 ignore_bins md = binsof(port) intersect {0} &&
 binsof(kind) intersect {[9:10]};
 ignore_bins lo = binsof(kind.lo);
 }
endgroup

The first ignore_bins just excludes bins where port is 7 and any value
of kind. Since kind is a 4-bit value, this statement excludes 16 bins. The sec-
ond ignore_bins is more selective, ignoring bins where port is 0 and
kind is 9, 10, or 11, for a total of 3 bins.

The ignore_bins can use the bins defined in the individual cover points.
The ignore_bins lo uses bin names to exclude kind.lo that is 1, 2, or 3.
The bins must be names defined at compile-time, such as zero and lo. The
bins hi_8, hi_a,... hi_f, and any automatically generated bins do not have
names that can be used at compile-time in other statements such as
ignore_bins; these names are created at run-time or during the report
generation.

Note that binsof uses parentheses () while intersect specifies a range
and therefore uses curly braces {}.

SystemVerilog for Verification270

9.8.4 Excluding cover points from the total coverage metric
The total coverage for a group is based on all simple cover points and

cross coverage. If you are only sampling a variable or expression in a
coverpoint to be used in a cross statement, you should set its weight to 0
so that it does not contribute to the total coverage.
Example 9-33 Specifying cross coverage weight

covergroup CovPort;
 kind: coverpoint tr.kind
 {bins kind[] = {[0:$]};
 weight = 0; // Don’t count towards total
 }
 port: coverpoint tr.port
 {bins zero = {0};
 bins lo = {[1:3]};
 bins hi[] = {[8:$]};
 bins misc = default;
 weight = 5; // Count in total
 }
 cross kind, port
 {weight = 10;} // Give cross extra weight
endgroup

9.8.5 Merging data from multiple domains
One problem with cross coverage is that you may need to sample values

from different timing domains. You might want to know if your processor
ever received an interrupt in the middle of a cache fill. The interrupt hardware
is probably very distinct and may use different clocks than the cache hard-
ware. But a previous design had a bug of this very sort, so you want to make
sure you have tested this case.

The solution is to create a timing domain separate from the cache or inter-
rupt hardware. Make copies of the signals into temporary variables and then
sample them in a new coverage group that measures the cross coverage.

9.8.6 Cross coverage alternatives
As your cross coverage definition becomes more elaborate, you may

spend considerable time specifying which bins should be used and which
should be ignored. You may have two random bits, a and b with three inter-
esting states, {a==0, b==0}, {a==1, b==0}, and {b==1}.

Example 9-34 shows how you can name bins in the cover points and then
gather cross coverage using those bins.

Chapter 9: Functional Coverage 271

Example 9-34 Cross coverage with bin names

class Transaction;
 rand bit a, b;
endclass

covergroup CrossBinNames;
 a: coverpoint tr.a
 { bins a0 = {0};
 bins a1 = {1};
 option.weight=0;} // Only count cross
 b: coverpoint tr.b
 { bins b0 = {0};
 bins b1 = {1};
 option.weight=0;} // Only count cross
 ab: cross a, b
 { bins a0b0 = binsof(a.a0) && binsof(b.b0);
 bins a1b0 = binsof(a.a1) && binsof(b.b0);
 bins b0 = binsof(b.b0); }
endgroup

Example 9-35 gathers the same cross coverage, but now uses binsof to
specify the cross coverage values.
Example 9-35 Cross coverage with binsof

class Transaction;
 rand bit a, b;
endclass

covergroup CrossBinsofIntersect;
 a: coverpoint tr.a
 { option.weight=0; } // Only count cross
 b: coverpoint tr.b
 { option.weight=0; } // Only count cross
 ab: cross a, b
 { bins a0b0 = binsof(a) intersect {0} &&
 binsof(b) intersect {0};
 bins a1b0 = binsof(a) intersect {1} &&
 binsof(b) intersect {0};
 bins b1 = binsof(b) intersect {1}; }
endgroup

Alternatively, you can make a cover point that samples a concatenation of
values. Then you only have to define bins using the less complex cover point
syntax.

SystemVerilog for Verification272

Example 9-36 Mimicking cross coverage with concatenation

covergroup CrossManual;
 ab: coverpoint {tr.a, tr.b}
 { bins a0b0 = {2'b00};
 bins a1b0 = {2'b10};
 wildcard bins b1 = {2'b?1};
 }
endgroup

Use the style in Example 9-34 if you already have bins defined for the
individual cover points and want to use them to build the cross coverage bins.
Use Example 9-35 if you need to build cross coverage bins but have no pre-
defined cover point bins. Use Example 9-36 if you want the tersest format.

9.9 Coverage Options
You can specify additional information in the cover group using options.

Options can be placed in the cover group so that they apply to all cover points
in the group, or they can be put inside a single cover point for finer control.
You have already seen the auto_bin_max option. Here are several more.

9.9.1 Cover group comment
You can add a comment into coverage reports to make them easier to ana-

lyze. A comment could be as simple as the section number from the
verification plan to tags used by a report parser to automatically extract rele-
vant information from the sea of data.
Example 9-37 Specifying comments

covergroup CoverPort;
 option.comment = "Section 3.2.14 Port numbers";
 coverpoint port;
endgroup

9.9.2 Per-instance coverage
If your testbench instantiates a coverage group multiple times, by default

SystemVerilog groups together all the coverage data from all the instances.
But you may have several generators, each creating very different streams of
transactions, so you may want to see separate reports. For example, one gen-
erator may be creating long transactions while another makes short ones. The
following cover group can be instantiated in each separate generator. It keeps
track of coverage for each instance.

Chapter 9: Functional Coverage 273

Example 9-38 Specifying per-instance coverage

covergroup CoverLength;
 coverpoint tr.length;
 option.per_instance = 1;
endgroup

9.9.3 Coverage threshold using at_least
You may not have sufficient visibility into the design to gather robust cov-

erage information. Suppose you are verifying that a DMA state machine can
handle bus errors. You don’t have access to its current state, but you know the
range of cycles that are needed for a transfer. So if you repeatedly cause errors
during that range, you have probably covered all the states. So you could set
option.at_least to 8 or more to specify that after 8 hits on a bin, you are
confident that you have exercised that combination.

If you define option.at_least at the cover group level, it applies to all
cover points. If you define it inside a point, it only applies to that single point.

However, as Example 9-2 showed, even after 32 attempts, the random
kind variable still did not hit all possible values. So only use at_least if
there is no direct way to measure coverage.

9.9.4 Printing the empty bins
By default, the coverage report shows only the bins with samples. Your

job is to verify all that is listed in the verification plan, so you are actually
more interested in the bins without samples. Use the option
cross_num_print_missing to tell the simulation and report tools to show
you all bins, especially the ones with no hits. Set it to a large value, as shown
in Example 9-39, but no larger than you are willing to read.
Example 9-39 Report all bins including empty ones

covergroup CovPort;
 kind: coverpoint tr.kind;
 port: coverpoint tr.port
 cross kind, port;
 option.cross_num_print_missing = 1_000;
endgroup

This option affects only the report, and may be deprecated in a future ver-
sion of the SystemVerilog IEEE standard.

SystemVerilog for Verification274

9.9.5 Coverage goal
The goal for a cover group or point is the level at which the group or point

is considered fully covered. The default is 100% coverage.12 If you set this
level below 100%, you are requesting less than complete coverage, which is
probably not desirable. This option affects only the coverage report.
Example 9-40 Specifying the coverage goal

covergroup CoverPort;
 coverpoint port;
 option.goal = 90; // Settle for partial coverage
endgroup

9.10 Parameterized Cover Groups
As you start writing cover groups, you will find that some are very close to

one another. SystemVerilog allows you to parameterize a cover group so that
you can create a generic definition and then specify a few unique details when
you instantiate it. You cannot pass the trigger into a coverage group instance.
Instead, you can put a coverage group into a class and pass the trigger into the
constructor.

9.10.1 Pass cover group parameters by value
Example 9-41 shows a cover group that uses a parameter to split the range

into two halves. Just pass the midpoint value to the cover groups’ new
function.
Example 9-41 Simple parameter

bit [2:0] port; // Values: 0:7

covergroup CoverPort (int mid);
 coverpoint port
 {bins lo = {[0:mid-1]};
 bins hi = {[mid:$]};
 }
endgroup

CoverPort cp;
initial
 cp = new(5); // lo=0:4, hi=5:7

12. The 12/2005 SystemVerilog LRM mentions a default of both 100% and 90%, but the latter is an error.

Chapter 9: Functional Coverage 275

9.10.2 Pass cover group parameters by reference
You can specify a variable to be sampled with pass-by-reference. Here

you want the cover group to sample the value during the entire simulation, not
just to use the value when the constructor is called.
Example 9-42 Pass-by-reference

bit [2:0] port_a, port_b;

covergroup CoverPort (ref bit [2:0] port, int mid);
 coverpoint port {
 bins lo = {[0:mid-1]};
 bins hi = {[mid:$]};
 }
endgroup

CoverPort cpa, cpb;
initial
 begin
 cpa = new(port_a, 4); // port_a, lo=0:4, hi=5:7
 cpb = new(port_b, 2); // port_b, lo=0:1, hi=3:7
 end

9.11 Analyzing Coverage Data
In general, assume you need more seeds and fewer constraints. After all, it

is easier to run more tests than to construct new constraints. If you are not
careful, new constraints can easily restrict the search space.

If your cover point has only zero or one sample, your constraints are prob-
ably not targeting these areas at all. You need to add constraints that “pull” the
solver into new areas. In Example 9-15, the transaction length had an uneven
distribution. This situation is similar to the distribution seen when you roll
two dice and look at the total value.
Example 9-43 Original class for transaction length

class Transaction;
 rand bit [2:0] hdr_len;
 rand bit [3:0] payload_len;
 rand bit [4:0] len;
 constraint ct {len == hdr_len + payload_len; }
endclass

The problem with this class is that len is not evenly weighted.

SystemVerilog for Verification276

Figure 9-5 Uneven probability for transaction length

If you want to make total length be evenly distributed, use a
solve...before constraint.
Example 9-44 solve...before constraint for transaction length

constraint sb {solve len before hdr_len, payload_len;}

Figure 9-6 Even probability for transaction length with solve...before

The alternative to solve...before is the dist constraint. But it is not
effective, as len is also being constrained by the sum of the two lengths.

9.12 Measuring Coverage Statistics During Simulation
You can query the level of functional coverage on the fly during simula-

tion by using the get_coverage and get_coverage_inst functions. This

0

200

400

600

800

1000

1200

1400

0 5 10 15 20 25
Transaction length

C
ou

nt

0
100
200
300
400
500
600
700
800
900

1000

0 5 10 15 20 25
Transaction length

C
ou

nt

Chapter 9: Functional Coverage 277

approach allows you to check whether you have reached your coverage goals,
and possibly to control a random test.

The most practical use for these functions is to monitor coverage over a
long test. If the coverage level does not advance after a given number of trans-
actions or cycles, the test should stop. Hopefully, another seed or test will
increase the coverage.

While it would be nice to have a test that can perform some sophisticated
actions based on functional coverage results, it is very hard to write this sort
of test. Each test / random seed pair may uncover new functionality, but it
may take many runs to reach a goal. If a test finds that it has not reached 100%
coverage, what should it do? Run for more cycles? How many more? Should
it change the stimulus being generated? How can you correlate a change in the
input with the level of functional coverage? The one reliable thing to change
is the random seed, which you should only do once per simulation. Otherwise,
how can you reproduce a design bug if the stimulus depends on multiple ran-
dom seeds?

You can query the functional coverage statistics if you want to create your
own coverage database. Verification teams have built their own SQL data-
bases that are fed functional coverage data from simulation. This setup allows
them greater control over the data, but requires a lot of work outside of creat-
ing tests.

Some formal verification tools can extract the state of a design and then
create input stimulus to reach all possible states. Don’t try to duplicate this in
your testbench!

9.13 Conclusion
When you switch from writing directed tests, hand-crafting every bit of

stimulus, to constrained-random testing, you might worry that the tests are no
longer under your command. By measuring coverage, especially functional
coverage, you regain control by knowing what features have been tested.

Using functional coverage requires a detailed verification plan and much
time creating the cover groups, analyzing the results, and modifying tests to
create the proper stimulus. But this effort is less than would be required to
write the equivalent directed tests, and the coverage work helps you better
track your progress in verifying your design.

Chapter 10

Advanced Interfaces

10.1 Introduction
In Chapter 5 you learned how to use interfaces to connect the design and

testbench. These physical interfaces represent real signals, similar to the wires
that connected ports in Verilog-1995. The testbench uses these interfaces by
statically connecting to them through ports. However, for many designs, the
testbench needs to connect dynamically to the design.

In a network switch, a single Driver class may connect to many interfaces,
one for each input channel of the DUT. You wouldn’t want to write a unique
Driver for each channel — instead you want to write a generic Driver, instan-
tiate it N times, and have it connect each of the N physical interfaces. You can
do this in SystemVerilog by using a virtual interface that is merely a handle to
a physical interface.

You may need to write a testbench that attaches to several different config-
urations of your design. In one configuration, the pins of the chip may drive a
USB bus, while in another the same pins may drive an I2C serial bus. Once
again, you can use a virtual interface in the testbench so you can decide at run-
time which drivers to use.

A SystemVerilog interface is more than just signals — you can put execut-
able code inside. This might include routines to read and write to the
interface, initial and always blocks that run code inside the interface, and
assertions to constantly check the status of the signals. However, do not put
testbench code in an interface. Program blocks have been created expressly
for building a testbench, including scheduling their execution in the Reactive
region, as described in the LRM.

10.2 Virtual Interfaces with the ATM Router
The most common use for a virtual interface is to allow objects in a test-

bench to refer to items in a replicated interface using a generic handle rather
than the actual name. Virtual interfaces are the only mechanism that can
bridge the dynamic world of objects with the static world of modules and
interfaces.

SystemVerilog for Verification280

10.2.1 The testbench with just physical interfaces
Chapter 5 showed how to build an interface to connect a 4x4 ATM router

to a testbench. Here are the ATM interfaces (with the DUT modport
removed for clarity).
Example 10-1 Interface with clocking block

// Rx interface with modports and clocking block
interface Rx_if (input logic clk);
 logic [7:0] data;
 logic soc, en, clav, rclk;

 clocking cb @(posedge clk);
 output data, soc, clav; // Directions are relative
 input en; // to the testbench
 endclocking : cb

 modport TB (clocking cb);
endinterface : Rx_if

// Tx interface with modports and clocking block
interface Tx_if (input logic clk);
 logic [7:0] data;
 logic soc, en, clav, tclk;

 clocking cb @(posedge clk);
 input data, soc, en;
 output clav;
 endclocking : cb

 modport TB (clocking cb);
endinterface : Tx_if

These interfaces can be used in a program block as follows. This proce-
dural code is hard coded with interface names such as Rx0 and Tx0.

Chapter 10: Advanced Interfaces 281

Example 10-2 Testbench using physical interfaces

program automatic test(Rx_if.TB Rx0, Rx1, Rx2, Rx3,
 Tx_if.TB Tx0, Tx1, Tx2, Tx3,
 input logic clk, output logic rst);

 bit [7:0] bytes[`ATM_SIZE];

 initial begin
 // Reset the device
 rst <= 1;
 Rx0.cb.data <= 0;
 ...
 receive_cell0;
 ...
 end

 task receive_cell0;
 @(Tx0.cb);
 Tx0.cb.clav <= 1; // Assert ready to receive
 wait (Tx0.cb.soc == 1); // Wait for Start of Cell

 for (int i=0; i<`ATM_SIZE; i++) begin
 wait (Tx0.cb.en == 0); // Wait for enable
 @(Tx0.cb);

 bytes[i] = Tx0.cb.data;
 @(Tx0.cb);
 Tx0.cb.clav <= 0; // Deassert flow control
 end
 endtask

endprogram

10.2.2 Testbench with virtual interfaces
A good OOP technique is to create a class that uses a handle to reference

an object, rather than a hard-coded object name. In this case, you can make a
single Driver class and a single Monitor class, have them operate on a handle
to the data, and then pass in the handle at run-time.

The following program block is still passed the 4 Rx and 4 Tx interfaces as
ports, as in Example 10-2, but it creates an array of virtual interfaces, vRx and
vTx. These can now be passed into the constructors for the drivers and
monitors.

SystemVerilog for Verification282

Example 10-3 Testbench using virtual interfaces

program automatic test(Rx_if.TB Rx0, Rx1, Rx2, Rx3,
 Tx_if.TB Tx0, Tx1, Tx2, Tx3,
 output logic rst);

 Driver drv[4];
 Monitor mon[4];
 Scoreboard scb[4];

 virtual Rx_if.TB vRx[4] = ’{Rx0, Rx1, Rx2, Rx3};
 virtual Tx_if.TB vTx[4] = ’{Tx0, Tx1, Tx2, Tx3};

 initial begin
 foreach (scb[i]) begin
 scb[i] = new(i);
 drv[i] = new(scb[i].exp_mbx, i, vRx[i]);
 mon[i] = new(scb[i].rcv_mbx, i, vTx[i]);
 end
 ...
 end

endprogram

The driver class looks similar to the code in Example 10-2, except it uses
the virtual interface name Rx instead of the physical interface Rx0.

Chapter 10: Advanced Interfaces 283

Example 10-4 Testbench using virtual interfaces

class Driver;
 int stream_id;
 bit done = 0;
 mailbox exp_mbx;
 virtual Rx_if.TB Rx;

 function new(mailbox exp_mbx,
 int stream_id,
 virtual Rx_if.TB Rx);
 this.exp_mbx = exp_mbx;
 this.stream_id = stream_id;
 this.Rx = Rx;
 endfunction

 task run(int ncells, event driver_done);
 ATM_Cell ac;

 fork // Spawn this as a separate thread
 begin
 // Initialize output signals
 Rx.cb.clav <= 0;
 Rx.cb.soc <= 0;
 @Rx.cb;

 // Drive cells until the last one is sent
 repeat (ncells) begin
 ac = new
 assert(ac.randomize);
 if (ac.eot_cell) break; // End of transmission
 drive_cell(ac);
 end

 $display("@%0d: Driver::run Driver[%0d] is done",
 $time, stream_id);
 -> driver_done;
 end
 join_none
 endtask // run

 task drive_cell(ATM_Cell ac);
 bit [7:0] bytes[];

 #ac.delay;

SystemVerilog for Verification284

 ac.byte_pack(bytes);

 $display("@%0d: Driver::drive_cell(%0d) vci=%h",
 $time, stream_id, ac.vci);

 // Wait to start on a new cycle
 @Rx.cb;
 Rx.cb.clav <= 1; // Assert ready to xfr
 do
 @Rx.cb;
 while (Rx.cb.en != 0) // Wait for enable low

 Rx.cb.soc <= 1; // Start of cell
 Rx.cb.data <= bytes[0]; // Drive first byte
 @Rx.cb;
 Rx.cb.soc <= 0; // Start of cell done
 Rx.cb.data <= bytes[1]; // Drive first byte

 for (int i=2; i<`ATM_SIZE; i++) begin
 @Rx.cb;
 Rx.cb.data <= bytes[i];
 end

 @Rx.cb;
 Rx.cb.soc <= 1'bz; // Tristate SOC at end
 Rx.cb.clav <= 0;
 Rx.cb.data <= 8'bz; // Clear data lines
 $display("@%0d: Driver::drive_cell(%0d) finish",
 $time, stream_id);

 // Send cell to scoreboard
 exp_mbx.put(ac);

 endtask // drive_cell_t

endclass // Driver

10.3 Connecting to Multiple Design Configurations
A common challenge to verifying a design is that it may have several con-

figurations. You could make a separate testbench for each configuration, but
this could lead to a combinatorial explosion as you explore every alternative.
Instead, you can use virtual interfaces to dynamically connect to the optional
interfaces.

Chapter 10: Advanced Interfaces 285

10.3.1 A mesh design
Example 10-5 is built of a simple replicated component, an 8-bit counter.

This resembles a DUT that has a device such as network chip or processor
that is instantiated repeatedly in a mesh configuration. The key idea is that the
top-level netlist creates an array of interfaces and counters. Now the testbench
can connect its array of virtual interfaces to the physical ones.

Here is the code for the counter’s interface, X_if.
Example 10-5 Interface for 8-bit counter

interface X_if (input logic clk);
 logic [7:0] din, dout;
 logic reset_l, load;

 clocking cb @(posedge clk);
 output din, load;
 input dout;
 endclocking

 always @cb
 $strobe("@%0d:%m: out=%0d, in=%0d, ld=%0d, r=%0d",
 $time, dout, din, load, reset_l);

 modport DUT (input clk, din, reset_l, load,
 output dout);

 modport TB (clocking cb, output reset_l);
endinterface

The counter is simple.
Example 10-6 Counter model using X_if interface

// Simple 8-bit counter with load and active-low reset
module DUT(X_if.DUT xi);
 logic [7:0] count;
 assign xi.dout = count;

 always @(posedge xi.clk or negedge xi.reset_l)
 begin
 if (!xi.reset_l) count = 0;
 else if (xi.load) count = xi.din;
 else count++;
 end
endmodule

SystemVerilog for Verification286

The top-level netlist uses a generate statement to instantiate NUM_XI inter-
faces and counters, but only one testbench.
Example 10-7 Testbench using an array of virtual interfaces

parameter NUM_XI = 2; // Number of design instances

module top;
 // Clock generator
 bit clk;
 initial forever #20 clk = ~clk;

 // Instantiate N interfaces
 X_if xi [NUM_XI] (clk);

 // Instantiate the testbench
 test tb();

 // Generate N DUT instances
 generate
 for (genvar i=0; i<NUM_XI; i++)
 begin : dut
 DUT d (xi[i]);
 end
 endgenerate

endmodule : top

The key line in the testbench is where the local virtual interface array,
vxi, is assigned to point to the array of physical interfaces in the top module,
top.xi. To simplify Example 10-7, the environment class has been merged
with the test, while the generator, agent, and driver layers have been com-
pressed into the driver.

The testbench assumes there is at least one counter and thus at least one X
interface. If your design could have zero counters, you would have to use
dynamic arrays, as fixed-size arrays cannot have a size of zero.

Chapter 10: Advanced Interfaces 287

Example 10-8 Counter testbench using virtual interfaces

program automatic test;

 virtual X_if.TB vxi[NUM_XI]; // Virtual ifc array
 Driver driver[];

 initial begin
 // Connect local virtual interface to top
 vxi = top.xi;

 // Create N drivers
 driver = new[NUM_XI];
 foreach (driver[i]) begin
 driver[i] = new(vxi[i], i);
 driver[i].reset;
 end

 foreach (driver[i])
 driver[i].load;

 repeat (10) @(vxi[0].cb);
 end

endprogram

The Driver class uses a single virtual interface to drive and sample sig-
nals from the counter.

SystemVerilog for Verification288

Example 10-9 Driver class using virtual interfaces

class Driver;
 virtual X_if xi;
 int id;

 function new(virtual X_if.TB xi, int id);
 this.xi = xi;
 this.id = id;
 endfunction

 task reset;
 fork
 begin
 $display("@%0d: %m: Start reset [%0d]",
 $time, id);
 // Reset the device
 xi.reset_l <= 1;
 xi.cb.load <= 0;
 xi.cb.din <= 0;
 @(xi.cb)
 xi.reset_l <= 0;
 @(xi.cb)
 xi.reset_l <= 1;
 $display("@%0d: %m: End reset [%0d]",
 $time, id);
 end
 join_none
 endtask

 task load;
 fork
 begin
 $display("@%0d: %m: Start load [%0d]",
 $time, id);
 ##1 xi.cb.load <= 1;
 xi.cb.din <= id + 10;

 ##1 xi.cb.load <= 0;
 repeat (5) @(xi.cb);
 $display("@%0d: %m: End load [%0d]",
 $time, id);
 end
 join_none
 endtask

Chapter 10: Advanced Interfaces 289

endclass

10.3.2 Using typedefs with virtual interfaces
The type “virtual X_if.TB” can be replaced with a typedef, as

shown in the following code snippets of the testbench and driver.
Example 10-10 Testbench using a typedef for virtual interfaces

typedef virtual X_if.TB vX_t;

program automatic test;
 vX_t vxi[NUM_XI]; // Virtual interface array
 Driver driver[];
...
endprogram

Example 10-11 Driver using a typedef for virtual interfaces

class Driver;
 vX_t xi;
 int id;

 function new(vX_t xi, int id);
 this.xi = xi;
 this.id = id;
 endfunction
...
endclass // Driver

10.3.3 Passing virtual interface array using a port
The previous examples passed the array of virtual interfaces using a cross

module reference (XMR). An alternative is to pass the array in a port. Since
the array in the top netlist is static and so only needs to be referenced once, the
XMR style makes more sense than using a port that normally is used to pass
changing values.

The port style is cleaner in that the testbench does not need to know the
hierarchical path to the top netlist. But this code needs to be replicated for
each testbench, all of which must be modified if the DUT interface changes,
and in real life can be quite large. Additionally, you must provide an argument
for ALL possible interfaces you’ll be using and attach only to those that the
selected configuration uses.

Example 10-12 uses a global parameter to define the number of X inter-
faces. Here is a snippet of the top netlist.

SystemVerilog for Verification290

Example 10-12 Testbench using an array of virtual interfaces

parameter NUM_XI = 2; // Number of instances
module top;

 // Instantiate N interfaces
 X_if xi [NUM_XI] (clk);

 ...
 // Instantiate the testbench
 test tb(xi);

endmodule : top

Here is the testbench. It still needs to create an array of virtual interfaces
so that it can pass them into the constructor for the driver class.
Example 10-13 Testbench passing virtual interfaces with a port

program automatic test(X_if xi [NUM_XI]);

 Driver driver[];
 virtual X_if vxi[NUM_XI];

 initial begin
 // Connect the local virtual interfaces to the top
 if (NUM_XI <= 0) $finish;

 driver = new[NUM_XI];
 vxi = xi; // Assign the interface array

 for (int i=0; i<NUM_XI; i++) begin
 driver[i] = new(vxi[i], i);
 driver[i].reset;
 end
 ...
 end

endprogram

10.4 Procedural Code in an Interface
Just as a class contains both variables and routines, an interface can con-

tain code such as routines, assertions, and initial and always blocks.
Recall that an interface includes the signals and functionality of the communi-
cation between two blocks. So the interface block for a bus can contain the

Chapter 10: Advanced Interfaces 291

signals and also routines to perform commands such as a read or write. The
inner workings of these routines are hidden from the external blocks, allowing
you to defer the actual implementation. Access to these routines is controlled
using the modport statement, just as with signals. A task or function is
imported into a modport so that it is then visible to any block that uses the
modport.

These routines can be used by both the design and the testbench. This
approach ensures that both are using the same protocol, eliminating a com-
mon source of testbench bugs.

Assertions in an interface are used to verify the protocol. An assertion can
check for illegal combinations, such as protocol violations and unknown val-
ues. These can display state information and stop simulation immediately so
that you can easily debug the problem. An assertion can also fire when good
transactions occur. Functional coverage code will uses this type of assertion to
trigger the gathering of coverage information.

10.4.1 Interface with parallel protocol
When creating your system, you may not know whether to choose a paral-

lel or serial protocol. The interface in Example 10-14 has two tasks,
initiatorSend and targetRcv, that send a transaction between two
blocks using the interface signals. It sends the address and data in parallel
across two 8-bit buses.

SystemVerilog for Verification292

Example 10-14 Interface with tasks for parallel protocol

interface simple_if(input logic clk);
 logic [7:0] addr;
 logic [7:0] data;
 bus_cmd_e cmd;
 modport TARGET
 (input addr, cmd, data,
 import task targetRcv (output bus_cmd_e c,
 logic [7:0] a, d));
 modport INITIATOR
 (output addr, cmd, data,
 import task initiatorSend(input bus_cmd_e c,
 logic [7:0] a, d)
);

 // Parallel send
 task initiatorSend(input bus_cmd_e c,
 logic [7:0] a, d);
 @(posedge clk);
 cmd <= c;
 addr <= a;
 data <= d;
 endtask

 // Parallel receive
 task targetRcv(output bus_cmd_e c, logic [7:0] a, d);
 @(posedge clk);
 a = addr;
 d = data;
 c = cmd;
 endtask

endinterface: simple_if

10.4.2 Interface with serial protocol
The interface in Example 10-15 implements a serial interface for sending

and receiving the address and data values. It has the same interface and rou-
tine names as Example 10-14, so you can swap between the two without
having to change any design or testbench code.

Chapter 10: Advanced Interfaces 293

Example 10-15 Interface with tasks for serial protocol

interface simple_if(input logic clk);
 logic addr;
 logic data;
 logic start = 0;
 bus_cmd_e cmd;

modport TARGET
 (input addr, cmd, data,
 import task targetRcv (output bus_cmd_e c,
 logic [7:0] a, d));
modport INITIATOR
 (output addr, cmd, data,
 import task initiatorSend(input bus_cmd_e c,
 logic [7:0] a, d)
);

 // Serial send
 task initiatorSend(input bus_cmd_e c,
 logic [7:0] a, d);
 @(posedge clk);
 start <= 1;
 cmd <= c;
 foreach (a[i]) begin
 addr <= a[i];
 data <= d[i];
 @(posedge clk);
 start <= 0;
 end
 cmd <= IDLE;
 endtask

 // Serial receive
 task targetRcv(output bus_cmd_e c, logic [7:0] a, d);
 @(posedge start);
 c = cmd;
 foreach (a[i]) begin
 @(posedge clk);
 a[i] = addr;
 d[i] = data;
 end
 endtask

endinterface: simple_if

SystemVerilog for Verification294

10.4.3 Limitations of interface code
Tasks in interfaces are fine for RTL, where the functionality is strictly

defined. But these tasks are a poor choice for any type of verification IP.
Interfaces and their code cannot be extended, overloaded, or dynamically
instantiated based on configuration. Any code for verification needs maxi-
mum flexibility and configurability, and so should go in classes in a program
block.

10.5 Conclusion
The interface construct in SystemVerilog provides a powerful technique to

group together the connectivity, timing, and functionality for the communica-
tion between blocks. In this chapter you saw how you can create a single
testbench that connects to many different design configurations containing
multiple interfaces. Your signal layer code can connect to a variable number
of physical interfaces at run-time with virtual interfaces. Additionally, an
interface can contain the procedural code that drives the signals and assertions
to check the protocol.

In many ways, an interface can resemble a class with pointers, encapsula-
tion, and abstraction. This lets you create an interface to model your system at
a higher level than Verilog’s traditional ports and wires. Just remember to
keep the testbench in the program block.

References

Bergeron, Janick. Writing Testbenches Using SystemVerilog. Norwell,
MA: Springer, 2006

Bergeron, Janick, Cerny, Eduard, Hunter, Alan, and Nightingale, Andrew.
Verification Methodology Manual for SystemVerilog. Norwell, MA: Springer,
2005

Cohen, Ben, Venkataramanan, Srinivasan, and Kumari, Ajeetha. System-
Verilog Assertions Handbook for Formal and Dynamic Verification:
VhdlCohen Publishing 2005

Cummings, Cliff. Nonblocking Assignments in Verilog Synthesis, Coding
Styles That Kill! Synopsys User Group, San Jose, CA, 2000

Denning, Peter. The Locality Principle, Communications of the ACM,
48(7), July 2005, pp. 19–24

Gamma, Erich, Helm, Richard, Johnson, Ralph, and Vissides, John.
Design Patterns: Elements of Reusable Object-Oriented Software. Reading,
MA: Addison-Wesley 1995

IEEE IEEE Standard for SystemVerilog — Unified Hardware Design,
Specification, and Verification Language. New York: IEEE 2005 (a.k.a. Sys-
temVerilog Language Reference Manual, or LRM.)

IEEE IEEE Standard Verilog Hardware Design, Description Language.
New York: IEEE 2001

Sutherland, Stuart, Davidmann, Simon, and Flake, Peter. SystemVerilog
for Design. Norwell, MA: Kluwer Academic Publishers, 2004

Synopsys, Inc., Hybrid RTL Formal Verification Ensures Early Detection
of Corner-Case Bugs, http://synopsys.com/products/magellan/
magellan_wp.html, 2003

van der Schoot, Hans, and Bergeron, Janick Transaction-Level Functional
Coverage in SystemVerilog. San Jose, CA: DVCon, February 2006

SystemVerilog for Verification296

Vijayaraghavan, Srikanth, and Ramanathan, Meyyappan. A Practical
Guide for SystemVerilog Assertions. Norwell, MA: Springer, 2005

Wachowski Andy, and Wachowski Larry. The Matrix. Hollywood, CA:
Warner Brothers Studios, 1999

Index

Symbols
$cast 50, 225–226, 231
$dist_exponential 158
$dist_normal 158
$dist_poisson 158
$dist_uniform 158
$error 125
$fatal 125
$feof 56
$fopen 56
$fscanf 56
$info 125
$isunknown 29
$psprintf 52
$random 158
$realtime 65
$root 45, 122–123
$sformat 52
$size 30–31, 35
$timeformat 65
$unit 122
$urandom 158
$urandom_range 158
$warning 125
+= 55
? : operator 32
`default_nettype 53
`define 45

Numerics
2-state types 28–29
4-state types 29

A
Accellera xxviii
accumulate operator 55
Active region 111–112, 114, 117
Agent class 96
always blocks in programs 119
anonymous enumerated type 48
arguments

default value 60–61
sticky 58
task and function 57
type 59

array
assignment 36
associative 37–39, 41, 43–44
compare 32
constraint 165
copy 32
dynamic 34, 36–37, 41–43
fixed-size 29, 36–37, 41–43
handle 91
linked list 39
literal 30
locator methods 40
methods 40
multidimensional 29, 31
packed 33–34
queue 36–37, 42–43
reduction methods 40
unpacked 30, 34

assertion
concurrent 126
coverage 245

SystemVerilog for Verification298

procedural 124–125, 139–140
associative array 37–39, 41, 43–44
ATM router 126
atomic stimulus generation 172
auto_bin_max 257
automatic 63–64, 73–74, 79, 113, 191

in threads 190

B
backdoor load 123
Backus-Naur Form 173
base class 218
begin...end 57, 184

optional in tasks and functions 57
bidirectional signal 118
bit data type 28–29
BNF 173
bounded mailbox 204–205
break 56
byte data type 28–29

C
callback

coverage 253
scoreboard 239

cast 50, 53, 56, 225, 231
$cast 226, 235
function return value 56

Checker class 96
class 68, 70
class constructor 71
clock generator 120
clocking block 108–109, 113–118, 131–

132
comment

covergroup 272
composition 215, 228–230, 232
concatenation

string 51
concurrent assertion 126
const type 51, 59, 122, 142
constrained 8
constrained-random test 8–9, 135, 158,

241
constraint

array 165
block 139
dist 145–146

inside 142–144, 147
constraint_mode 154–156, 162
constructor 71, 73, 218–219
containment 85
continue 56
copy

deep 94
object 91, 233
shallow 93

copy function 222, 233
covergroup

comment 272
trigger 253

CRC 68
CRT 135, 158, 241
cyclic random 139
cyclic redundancy check 68

D
data type

bit 28–29
byte 28–29
int 28
integer 27
logic 27–28
longint 28
real 27
reg 27
shortint 28
time 27
wire 27–28

deallocation 74
decrement 55
default value 60–61

2-state and 4-state 72
delete method 35–36, 38, 44
derived class 218
disable 184, 192, 194
disable fork 192–193
disable label 194
dist 145–146, 159, 276
do...while loop 38, 49, 55
domain 256
Driver class 96
dynamic array 34, 36–37, 41–43
dynamic threads 188–189

Index 299

E
enumerated types 47–48
enumerated values 48
enumeration 47
Environment class 96
event 195
event triggered 196
expression width 52
extended class 218
external constraints 163
external routine declaration 80–81, 212

F
file I/O 56
find_first method 41
find_index method 41
find_last method 41
find_last_index method 41
first 38
first method 38, 44, 49–50
fixed-size array 29, 36–37, 41–43
for loop 30–31, 38, 49, 55
force design signals 116, 123
foreach constraint 165, 170–171
foreach loop 30–31, 35–36, 38
fork...join 184–185
fork...join_any 184, 186–187
fork...join_none 184, 186–188, 191
four-state types 29
function 56

arguments 57
functional coverage 295

using callbacks 239

G
garbage collection 75
Generator class 96, 187, 199
getc method 51–52

H
handle 70–71

array 91
Hardware Description Language xxviii
Hardware Verification Language xxviii, 1
HDL xxviii
hook 222, 236
HVL xxviii, 1–2, 14

I
implicit nets 53
implicit port connection 121
increment 55
inheritance 215–216, 228
initialization in declaration 63
in-line constraint 162
inout argument type 59
input argument type 59
insert queue 36
inside 142–144, 147, 149
inside constraint 165
instantiate 71
int data type 28
integer data type 27
interface 102, 121

procedural code 290
virtual 279

interprocess communication 183

L
last method 49
linked list 39
logic data type 27–28
longint data type 28
LRM SystemVerilog 43, 69, 116, 119,

163, 184, 274, 279, 295

M
macro 45
macromodule 121
Magellan 295
mailbox 201, 205, 208

bounded 204–205
unbounded 204

makes Jack a dull boy xxxi
malloc 71
max method 41
method 70, 218
min method 41
modport 105, 131
module 69
Monitor class 96
multidimensional array 29, 31

N
name function 48, 144

SystemVerilog for Verification300

new
constructor 71–73
copying objects 91

new function 72
new[] operator 35, 73
next method 38, 44, 49
nonblocking assignment 103, 108, 110,

112, 116, 295
null 71, 75, 78, 161

O
object 70

copy 91, 233
deallocation 74
instantiation 71

Object Oriented Programming 67
Observed region 112
OOP 67
OOP analogy

badge 74
car 68
house 70

OpenVera xxviii
or method 40
output argument type 59

P
package 69, 121
packed array 33–34
parameter 45, 51, 121
parent class 218
pass by reference 59
Perl hash array 38
physical interfaces 279
polymorphism 228
pop_back 36
post_randomize 156–158, 171, 173
post-decrement 55
post-increment 55
pre_randomize 156–158
pre-decrement 55
pre-increment 55
Prepone region 112–113, 115
prev method 44, 49
primitive 121
private 95
PRNG 135, 140, 177–179
procedural assertion 124–125, 139–140

process 184
product method 40
program 63, 69, 121
property 70, 218
prototype 70, 218
pseudo-random number generator 135,

140, 177–178
public 95
push_back method 41
push_front 36
putc method 52

Q
queue 36–37, 41–43

R
rand 139
rand_mode 159–160
randc 139, 165
randcase 175–176
random seed 12–13, 135, 140, 177, 179
random stability 178
randomize function 139, 141
randomize() with 155–156, 162
randomize(null) 161
randsequence 173
Reactive region 112, 114, 117
real data type 27
ref argument type 59–62, 88–89, 116,

237–238, 275
reference counting 75
reg data type 27
return 62
routine arguments 57

S
scenario generation 172
scoreboard 19, 42, 96

using callbacks 236, 239
semaphore 199, 210
shortint data type 28
size function 35, 158, 165
solve...before 152–153, 276
sparse matrix 37
static 63
static variable 77–78
string concatenation 51

Index 301

string data type 51
string type 52
struct 46–47
sub class 218
substr method 51–52
sum method 40–42, 166
super class 218
SVA 126, 246, 295–296
SystemVerilog Assertion 126, 246, 255,

295–296

T
task 56

arguments 57
The Matrix 1, 296
this 83
thread 183
time data type 27
time literals 64
timeprecision 64
timescale 64, 122–123
timeunit 64
tolower method 51
toupper method 51–52
transactor 96
triggered 207
triggered function 196
two-state types 28–29
typedef 45

class 87
enum 48
struct 46–47
union 47
virtual interface 289

U
uint data type 45, 168
uint user-defined type 45
unbounded mailbox 204
union 46–47
unique method 41
unpacked array 30, 34

V
Verification Methodology Manual for

SystemVerilog 1, 295
Verilog-1995 xxvii–xxviii, 27, 29, 32,

57–58, 63, 127, 158, 279
Verilog-2001 xxvii–xxviii, 29, 32–33,

51–53, 56–57, 63, 101, 295
virtual interface 279
virtual memory 228
virtual methods 228
VMM 1, 295
void 56
void function 56–57, 158

W
wait 199
wire data type 27–28

X
xor method 40

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

