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Preface

Systemic risk is a key problem of this century. One of the most interesting
methodological solutions to this problem was given in the past century in the work
of Albert Marshall and Ingram Olkin. This book collects advances in this theory
presented at the international conference opening the academic year of the Graduate
Course in Quantitative Finance at the University of Bologna, held in Bologna in
October 2013.

A systemic event is something that affects a set of objects at the same time. With
society and the economy becoming global and with unregulated industrial devel-
opment leading to more extreme kinds of risk, the relevance of systemic risk has
dramatically increased. Air pollution and dangerous industrial waste represent a
common factor affecting life expectancy of individuals, particularly in specific
geographic regions or clusters of population in less developing countries. By the
same token, the developments in medical sciences provide a common factor
responsible for longer expected lives, particularly in the developed world.
Moreover, all of this translates into common risk factors for the insurance sectors,
for financial intermediaries, for firms and the society as a whole.

For these reasons the celebrated Marshall–Olkin model, published in 1967, is
one of the best tools to address the analysis of risk in this century, the concept of
risk being understood in its widest meaning: from that of stopping a machine to that
of ending human lives, from natural catastrophes destroying everything built on a
region of land to financial catastrophes triggering the default of clusters of firms or
banks.

The kernel of the idea is very simple. There is an event that may kill me, one that
may kill you, and one that could kill both of us at the same time. Even this raw idea,
without any more structure, raises important questions, taking us beyond the
technicalities of the model. The only fact that both you and me are exposed to a
common shock induces dependence between our lives, because there are scenarios
with positive probability in which we die together. This is a special kind of
dependence. It is dependence that does not depend on any of us. It is a kind of
dependence of which neither you or I carry the blame. It is a sort of background
dependence that links our lives because we are located in the same region,
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we breathe the same air, we work in the same firm, fly on the same airplane. Our
lives are dependent because we share the same exposure to some act of the Diabolic
Mrs. Nature. For instance, we are exposed to the same catastrophe that may occur in
our common region; we are exposed to the same disease carried by the infectious air
we are breathing around the same chimney; we are exposed to lay-off if the firm in
which we work closes down; we are exposed to die at the same time if the airplane
in which we both travel is going to crash. Therefore, systemic risk is all about a
background risk changing while we move in space and time, but that in general has
moved forward to the front of the scene in the current century.

The structure imposed on the original Marshall–Olkin model was as soft as
possible, and this would highlight even more this kind of irresponsible dependence.
The shocks killing individuals and that killing all of them were assumed to be
independent. They were all assumed to be generated by processes with lack of
memory, which are processes for which the past does not have any impact on the
lifetime expected in the future. Marshall and Olkin found that in their model this
property would carry over to the elements of the cluster. For each of them the
intensity, that is, the instantaneous probability of event occurrence to one element in
the cluster, would be simply decomposed as the sum of the intensity of the systemic
event and that of the idiosyncratic event. While the invariance of the lack of
memory property is an important element of the model, which has raised curiosity
and discussion among mathematicians, the idea of decomposition of the intensity is
also prone to just the opposite need: the possibility to model ageing effects in a
flexible way. In fact, invariance of the intensity of life ending is not common in
nature, and it would be better to say that it is more the exception than the rule.
However, even from the point of view of ageing, the linear decomposition allows
an important range of flexibility. For example, in life insurance, the probability of
death of an individual could be modelled by limiting ageing to the idiosyncratic part
of intensity while keeping invariant the systemic intensity part, or even allowing for
a reverse ageing effect common to all individuals and due to the innovation process
in medical and healthcare sciences.

It is well known that the best way to provide flexibility to a multivariate model is
to extract the dependence function, also known as the copula function, so leaving
full flexibility to design the marginal distributions. Even from this point of view, the
Marshall–Olkin distribution delivered a very particular, and widely used, copula
function. On top of other properties, which we do not discuss here, the main
peculiarity is that it provides a dependence function that has both an absolutely
continuous and a singular part. In plain terms, if we model survival times or any
other set of variables, the Marshall–Olkin copula provides a positive probability
that the event occurred at exactly the same time, or that the two variables that are
being modelled take the same value. So, in a scatter diagram of a copula function
there is a locus on which the points become more concentrated, designing a line
with probability mass. This is obviously due to the idea of modelling an event that
kills all the elements in the cluster, but it also conveys a property that is quite rare in
the realm of copula functions. From the seminal work by Marshall and Olkin, a
massive stream of literature has developed, trying to address the flaws of the model,
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mainly due to its very simple structure. Many of the papers included in this book are
devoted to extensions of the model in several directions.

The main extensions are reviewed in the paper by Bernard, Fernàndez, Mai,
Schenk and Scherer (BFMSS) in this book. This review, starting with the standard
Marshall–Olkin model, describes the main alternative strategies to generate the
same distribution by also providing novel representations. In general, the model can
be extended in three main directions. One of the first issues that were raised about
the model is that all shocks, both specific and systemic, are assumed to be inde-
pendent. We could call this a pure systemic risk model. In the real world, and
particularly in human sciences applications, sometimes disasters, that is failure
of the whole system, are triggered by individual failures. A famous solution,
reported in the BFMSS review, is the Lévy-frailty model. It is well known that
frailty models lead to Archimedean dependence structures. Beyond this benchmark
solution, other contributions in this book provide alternative derivations and
extensions. Mulinacci proposes a power mixture approach that achieves a similar
result of inducing dependence among the shocks in the model. Frostig and Pellerey
suggest a dynamics for the common frailty variable. Augusto and Kolev propose a
model in which the specific shocks are linked by a dependence structure, while the
systemic shock is assumed to be independent.

The model can be extended in a second important direction, with the aim of
embedding it in the standard common factor models that we find in linear statistics.
The question is that in principle the Marshall–Olkin model, in which the observed
variable is the minimum of a idiosyncratic and a systemic variable, is not very
different from the standard factor model in which the observed variable is the sum,
or an affine function of the two components. Of course, the difference stems from
the different variables to which the models are applied. In the Marshall–Olkin
model the variables are usually interpreted as lifetimes, are naturally defined on the
positive line support, and are assigned an exponential distribution. Instead, in the
standard linear factor model application to the stock market the variables are
assumed to be returns, defined on the whole line support, and endowed with an
elliptical distribution. Therefore, an interesting research question is what results are
common to the use of different aggregation functions. This generalization is
employed both in the contributed paper by Frostig and Pellerey and that by Durante,
Girard and Mazo (DGM). Moreover, the paper by Augusto and Kolev explicitly
addresses a natural dual model with respect to the Marshall–Olkin one that arises
when the observed variable is the maximum of the idiosyncratic and the common
component.

A third line of extension is the dimension of the clusters, namely the number of
variables involved. This is the most severe limitation and the most challenging
development in the model. In fact, the Marshall–Olkin model suffers from what is
called the curse of dimensionality. Increasing the scale of the model very soon
induces a degree of combinatorial complexity that is hard to tackle. The solution to
the problem is twofold: either we accept to overlook the differences among the
individuals and settle for an exchangeable approach or we reduce the number of
clusters, by accepting to set to zero some common intensity. In the first case, we
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preserve the entire spectrum of clusters, but within each one of them, we only
consider the average individual. In the second case, we may induce some mis-
specification in the dependence structure, since the degree of dependence induced
by the clusters that are dropped from the analysis may induce a bias in the esti-
mation of dependence in the remaining clusters. Extensions in the direction of non-
exchangeability are recalled in the BFMSS paper, and a specific strategy to build
models in the Marshall–Olkin spirit, with a focus on estimation issues, is addressed
by DGM.

While the contributions in this book are mathematical and statistical in nature,
the questions and the extensions addressed have relevant implications for eco-
nomics, finance and politics. In fact, the economic and financial crisis is the main
reason why the concepts of systemic risk and contagion have become paramount in
this century. The two concepts have not been actually very well distinguished in
public debate. For example, even in the definition of SIFIs, that is systemically
important financial institutions, we actually refer to financial entities whose default
may bring about a general crisis of the whole system: but this is actually contagion.
The effects that followed the default of Lehman Brothers, on 15 September 2008,
and that have persisted for years, represent a case of a systemic crisis that was
actually triggered by the default of a component of the system.

From the point of view of economic policy and regulation, it is very important to
distinguish systemic risk and contagion. Actually, the concept of pure systemic risk
coincides with the original Marshall–Olkin framework, in which the common shock
affecting all the components of the system is independent of the specific components.
It is an act of God of which the components do not take the blame. For this reason,
it is quite natural that the effects of this kind of events should be borne out by the
community. In other words, a pure systemic event in the Marshall–Olkin spirit is like
a natural catastrophe that the community is called to face.

Contagion is different: it is when the collapse of a component of the system
brings about the default of a set of other components. Then, the Marshall–Olkin
model extensions that drop the independence assumption of the shocks introduce an
element of contagion. Each component may play a role in the default of the system
as a whole, namely every component may trigger a systemic crisis. From a regu-
latory point of view, it is quite clear that the natural conclusion is different from that
of a pure systemic risk event. More precisely, the expected cost of a systemic crisis
triggered by one of the components should be borne out by the components
themselves. They must be taxed, instead of the community, to make sure that they
provide insurance for the damage that they may cause to the community. It is the
principle known as “polluter must pay”. Of course, non-exchangeability is also a
paramount feature to allow for the application of the model. Consider again the
problem that is more fashionable in these days, namely what is the impact of default
of a single bank in the rest of the financial system. In addition, what about a major
non-financial corporate entity? How do these events change the dependence
structure of the remaining risks in the system? For some of these questions we have
empirical evidence or at least case studies.
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We have seen how the Lehman case was a disaster, bringing about contagion
both in the US market and overseas, and not only to the rest of the financial system,
but also to the sovereign entities. We also witnessed cases in which a credit event of
a large corporate, such as the downgrading of General Motors below the investment
grade rating line, was associated to a strong decrease in default dependence. In a
pure systemic risk world, all these events should leave the rest of the system, and its
dependence unaffected. In a world of exchangeable risk, the default of each element
of the system would have the same impact both on the default probability of the
other elements in the system and on the dependence structure of the remaining
elements. Therefore, removing exchangeability from the system can be considered
the next step beyond removal of the independence assumption.

Finally, the generalization of aggregation operators applying to idiosyncratic and
systemic unobserved components is also an interesting topic to be discussed in
practical applications. On the one hand, it would be interesting to discuss the
economic meaning of different aggregation functions: when it has to be linear and
which other specific shapes it has to take in other different hidden factor decom-
positions. On the other hand, there is an interesting question about how the
aggregation operators linking hidden factors can be composed with aggregation
operators applied to the observed variables. So, for example in standard statistics
we have linear systems of observed variables that are in turn a linear combination of
unobservable linear factors. In risk management, instead, it also well known that
different aggregation operators applied to the risk measure, such as for example the
Value-at-Risk, responds to different purposes. Therefore, the sum operator leads to
the aggregation of the risk measure: one has to compute the risk measure of the
convolution of the risk exposures. Differently, using the max aggregator provides
an answer to risk capital allocation, and can be applied to studying the trade-off
among different exposures.

In the future, it will be very interesting to address these problems for the
Marshall–Olkin model and its extensions. The interest mainly stems from the
peculiarity of the dependence structure, and the question of how the singularity in it
could affect the results. A first interesting contribution in this direction is provided
by Fernandez, Mai and Scherer in their contribution in this book. It addresses the
computation of the convolution of random variables linked by Marshall–Olkin
dependence, in the simple model of exchangeable risks, finding that in this case one
can recover analytical formulas for systems of dimension up to four.

In conclusion, we hope that the results reported in this book could represent a
step of development in this interesting field of research started by Marshall and
Olkin in the early second half of the past century, and so modern with respect to the
main issues raised by the globalisation of risks.

In the end, we express our gratitude to all the people involved in the realization
of this project. Moving backward, we would like to thank the referees, both internal
and external, for their excellent job in reviewing the papers collected in this book.
We thank the authors of the contributed papers for their patience and their time-
liness to provide the paper. We thank the Graduate Course in Quantitative Finance
for providing the funds for the organization of the international conference where
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the contributed papers were presented, and the students of the course who provided
these funds from their fees. We thank Margherita De Rogatis, the course manager,
for materially organizing the conference. We thank Sabrina Mulinacci and Fabrizio
Durante, who provided the scientific support for the organization of the conference
and the collection of this book. A final warm thanks to all the people who actively
took part in the conference, providing comments and suggestions, from the start
of the tutorial session to the end of the post-processing networking session. It was a
very nice example of how research and learning, presenting and teaching are
concepts that are necessary to each other and are indissolubly bound together.

Bologna Umberto Cherubini
March 2015 Program Director

Graduate Course in Quantitative Finance
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Chapter 1
A Survey of Dynamic Representations
and Generalizations of the Marshall–Olkin
Distribution

German Bernhart, Lexuri Fernández, Jan-Frederik Mai,
Steffen Schenk and Matthias Scherer

Abstract In the classical stochastic representation of the Marshall–Olkin
distribution, the components are interpreted as future failure times which are defined
as the minimum of independent, exponential arrival times of exogenous shocks.
Many applications only require knowledge about the failure times before a given
time horizon, i.e. the model is “truncated” at a fixed maturity. Unfortunately, such a
truncation is infeasiblewith the original exogenous shockmodel, because it is a priori
unknown which arrival times of exogenous shocks are relevant and which ones occur
after the given time horizon. In this sense, the original model lacks a time-dynamic
nature. Fortunately, the characterization in terms of the lack-of-memory property
gives rise to several alternative stochastic representations which are consistent with
a dynamic viewpoint in the sense that a stochastic simulation works along a time
line and can thus be stopped at an arbitrary horizon. Building upon this dynamic
viewpoint, some of the alternative representations lead to interesting generalizations
of the Marshall–Olkin distribution. The present article surveys the literature in this
regard.
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1.1 The Classical Construction of the Marshall–Olkin Law

The motivation behind the seminal paper [38] was to lift the univariate exponential
law to higher dimensions. Nevertheless, such an extension is by no means unique. In
fact, each of the different characterizations of the univariate exponential law might
serve as a plausible starting point for multivariate generalizations. The defining prop-
erty used in [38] is the lack-of-memory property. The authors succeeded to show that
for a d-dimensional survival function F̄ = F̄1,...,d with k-dimensional marginals
F̄i1,...,ik , the functional equation

F̄i1,...,ik (xi1 + y, . . . , xik + y) = F̄i1,...,ik (xi1 , . . . , xik ) F̄i1,...,ik (y, . . . , y), (1.1)

postulated for all 1 ≤ i1 < · · · < ik ≤ d, xi1 ≥ 0, . . . , xik ≥ 0, y > 0, has a
unique solution, and the resulting law is the so-calledMarshall–Olkin law. Intuitively,
(1.1)means that the conditional distribution—given that the subvector (Xi1 , . . . , Xik )

of components has survived y years—of the remaining lifetimes is the same as
the unconditional distribution of this subvector at time zero. Technically speaking,
the multivariate lack-of-memory property (1.1) implies the existence of parameters
λI ≥ 0, ∅ �= I ⊆ {1, . . . , d}, with ∑

I :k∈I λI > 0, k = 1, . . . , d, such that for all
x1, . . . , xd ≥ 0, one has

F̄(x1, . . . , xd) = exp
(

−
∑

∅�=I⊆{1,...,d}
λI max

i∈I
{xi }

)
. (1.2)

Besides this analytical treatment, [38] also presented a stochastic model for a random
vector (X1, . . . , Xd) with survival function F̄ , namely

Xk := min
{

EI
∣
∣∅ �= I ⊆ {1, . . . , d}, k ∈ I

}
, k = 1, . . . , d, (1.3)

where for each subset∅ �= I ⊆ {1, . . . , d}, EI is an exponentially distributed random
variable with mean 1/λI , denoted by EI ∼ E (λI ). These 2d − 1 random variables
are independent. Note that some λI can be 0, in which case one has EI ≡ ∞ with
probability 1. Since one needs to guarantee that

∑
I :k∈I λI > 0 for all k = 1, . . . , d,

this means that for each k = 1, . . . , d, there is at least one subset I ⊆ {1, . . . , d}
containing the index k such that λI > 0. Figure1.1 illustrates the stochastic model
(1.3). In Fig. 1.2, down-right, the three-dimensional scatterplot of a Marshall–Olkin
(survival) copula is shown. The two-dimensional plots reflect the projections of it in
a plane. Note that the upper scatterplots display non-exchangeable situations while
the one, down-left, shows an exchangeable one.

Remark 1.1 (How to define subfamilies?) There is one general problem when work-
ing with the Marshall–Olkin distribution in dimensions larger than, say, d = 3:
one is exposed to the curse of dimensionality, i.e. one faces the challenge to reduce
the complexity of the general model without losing its interpretation. The general
Marshall–Olkin law has 2d − 1 parameters and the original fatal-shock model (1.3)
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t

E{1} E{2} E{3} E{1,2} E{1,3} E{2,3}E{1,2,3}

Fig. 1.1 Illustration of the classical Marshall–Olkin model. Three initially functional components
(symbol �) are hit and destroyed by fatal shocks with arrival times EI (symbol �). In the above
example, we have X1 = E{1} < X2 = X3 = E{1,2,3}

Fig. 1.2 Three-dimensional scatterplot of 750 samples of the Marshall–Olkin (survival) copula
with parameters λ{1} = 1/10, λ{2} = 1/15, λ{3} = 1/10, λ{1,2} = 1/12, λ{1,3} = 1/12, λ{2,3} =
1/5, λ{1,2,3} = 1/20 (down-right) and the projection of its marginals in two-dimensional scatter-
plots
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has precisely the same number of involved random variables EI . The consequence
is that even seemingly simple tasks, like the computation of probabilities from sur-
vival function (1.2) or the simulation of the model via (1.3), become numerically
challenging—the effort increasing exponentially in d.

In many real-world situations, one has the advantage that the problem to be mod-
elled itself suggests a natural simplification. For example, some of the shocks cannot
occur and thus, the respective rates λI can be set to zero, i.e. the random variables
EI ≡ ∞ can be omitted. An example in insurance might be certain natural catastro-
phes that can only cause local damage—say a volcano eruption or a flood. In such
a case, it is a modelling task to decide which shocks can be neglected and how the
intensities of the remaining ones have to be chosen. Another situation where such
a simplification is common practice is portfolio-credit risk, see, [17, 20]. Here, one
often considers groupings of loans according to industries and allows only industry
sector-specific and idiosyncratic shocks. An even simpler model was used in [11],
where only the idiosyncratic shocks E{k} and the global shock E{1,...,d} are allowed.

Other possibilities to define low-parametric, tractable subfamilies of Marshall–
Olkin distributions rely onmore convenient stochastic representations in comparison
to the original shock model representation (1.3) and are sketched in later sections.

1.1.1 The Exogenous Shock Model Is “Static”

The intuitive nature of the exogenous shock model representation (1.3) has been
picked up in numerous applications, e.g. [1, 4, 24, 43], and the EI are interpreted as
future times at which exogenous shocks affect the components of a d-dimensional
system. Thus the components themselves are interpreted as times, namely as the fail-
ure times of the system’s components. In such applications, it is natural to think of the
given system in a timely fashion: all components are working at time t = 0, then we
let the time parameter t run and collect all failure times on the way. Mathematically,
one considers the stochastic process t �→ X t := (min{X1, t}, . . . ,min{Xd , t}),
t ≥ 0, which tends to X∞ = (X1, . . . , Xd) as t → ∞. Indeed, in many applica-
tions one is actually only interested in the distribution of XT for a given modelling
horizon T rather than in the law of X∞. Unfortunately, the exogenous shock model
representation is out of tune with such a dynamic viewpoint in the sense that in order
to simulate X t for an arbitrary t > 0 on the probability space (1.3), there is a priori
no way to circumvent the (time-consuming) simulation of X∞. In other words, the
simulation somehowworks on a reversed timescale in the sense that X∞ is simulated
first and X t is derived as a function of X∞ and t .

The present article surveys alternative stochastic representations of the Marshall–
Olkin law which respect a timely intuition in the aforementioned sense. Some of
these alternative viewpoints naturally lead to the possibility to construct convenient
subfamilies of the Marshall–Olkin law or to generalize the model.
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1.2 Interpretation via Poisson Processes

One may interpret the random variable EI ∼ E (λI ) in (1.3) as the first jump time
of a Poisson process N I = {N I

t }t≥0 with intensity λI , i.e.

EI := inf
{
t ≥ 0 : N I

t = 1
}
,

independently for all non-empty subsets I of {1, . . . , d}. Consequently,

Xk
d= inf

⎧
⎨

⎩
t ≥ 0 :

∑

∅�=I⊆{1,...,d}:k∈I

N I
t = 1

⎫
⎬

⎭
, k = 1, . . . , d,

which introduces a time parameter t into the model and
d= means equal in distribu-

tion. Based on this model, the simulation of X t relies on the simulation of 2d − 1
independent Poisson processes N I until time t . This interpretation was provided in
the original reference [38]. It was used in [28] to model the arrival times of insurance
claims and in [10, 15, 17, 20] to model credit portfolios. Even though this rewriting
into Poisson processes is a little artificial and the simulation of 2d − 1 independent
Poisson processes might still be an inefficient exercise when d 
 2, it serves as a
starting point for generalizations, say by using more general counting processes or
by considering stochastically dependent counting processes. An extension to shocks
that are not immediately fatal is provided in [39].

1.2.1 Generalization to Cox Processes

Replacing the Poisson processes bymore general Cox processes is a popular general-
ization. Sincewe only require the first jump times EI of the respective Cox processes,
we may focus on a redefinition of the latter in the sequel. One might rewrite these
in terms of unit-exponential random variables εI ∼ E (1) via the so-called canonical
construction

EI := εI

λI
= inf

{

t ≥ 0 :
∫ t

0
λI ds ≥ εI

}

. (1.4)

On first view, this looks unnecessarily complicated, but it has the advantage of a
dynamic interpretation: EI might be understood as the first moment in time, at which
the integrated intensity (or cumulative hazard function) exceeds a unit exponential
trigger variable. Equation (1.4) can nowbe generalized by using either a deterministic
intensity t �→ λI (t) or even a stochastic one, i.e. a non-negative stochastic process
{λI,t }t≥0. The latter approach was used in the context of portfolio-credit risk by
[7, 10, 17]. It has to be noted that by using a generalization to non-constant intensities,
the lack-of-memory property of EI and the subsequently defined Xk is lost, i.e. the
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model breaks out of theMarshall–Olkin cosmos. Advantages of such a generalization
consist of, e.g. the possibility to change the marginal laws to other distributions than
the exponential one and to introduce non-stationary innovations.

1.3 The Iterative Construction of Barry Arnold

In [2], an alternative construction of the Marshall–Olkin distribution was given. The
main idea is as follows: in the original fatal-shock model, the arrival time ε1 of the
very first component (or the first group of components) being destroyed is—due to
min-stability—exponentially distributed, i.e.

ε1 = min
{

Xk
∣
∣k ∈ {1, . . . , d}}

= min
{

EI
∣
∣∅ �= I ⊆ {1, . . . , d}} ∼ E

( ∑

∅�=I⊆{1,...,d}
λI

)
.

Thus starting at time zero with a system of d working components, we can simulate
from an E

(∑
∅�=I⊆{1,...,d} λI

)
-distribution to reach the point in time ε1 where the first

(or several) component collapses.However, nowwehave to simulatewhich subset EI

was responsible for this first shock. Again by min-stability, the probability of shock
EI to be the first one among all shocks is given by λI /

∑
∅�=I⊆{1,...,d} λI . Doing so for

all shocks defines a discrete probability law on the power set of {1, . . . , d} that we can
simulate from to decide which components are destroyed. After the first event—by
the lack-of-memory property—we can continue iteratively until all components are
destroyed. In mathematical terms, this observation by [2] implies that the survival
indicator process {H t }t≥0, where H t := (

1{X1>t}, . . . ,1{Xd>t}
)
, satisfies

H t = f
(

Hs,

Nt⋃

k=Ns+1

Yk

)
, 0 ≤ s ≤ t, (1.5)

for a well-known function1 f : [0,∞)d × P ({1, . . . , d}) → [0,∞)d , with
N = {Nt }t≥0 a Poisson process, whose inter-arrival times are ε1, ε2, . . . and
Y1, Y2, . . . ⊆ {1, . . . , d} independent and identically distributed (i.i.d.) set-valued
random variables, independent of the Poisson process N . Figure1.3 illustrates the
model (1.5).

Unlike the original exogenous shock model representation (1.3), the simulation
of the alternative stochastic model (1.5) of [2] can be stopped at any time horizon
T > 0. A simulation of the random vector XT depends only on the path of N
up to time T , as well as a finite list of independent and identically distributed, set-
valued random variables Y1, . . . , YNT . It is clear that the computational effort for this

1P({1, . . . , d}) means the power set of {1, . . . , d}.
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t

Y1 = {2} Y2 = {2,3} Y3 = {3} Y4 = {1,2}

ε1 ε2 ε3 ε4

Fig. 1.3 Illustration ofArnold’s construction. Three initially functional components (symbol �) are
hit and destroyed (symbol �) by shocks Yi that arrive at times {ε1, ε1 +ε2, ε1 +ε2 +ε3, . . .}, where
the inter-arrival times {εi }i∈N are i.i.d. E

( ∑
∅�=I⊆{1,...,d} λI

)
-distributed. In the above example, we

have X2 = ε1 < X3 = ε1 + ε2 < X1 = ε1 + ε2 + ε3 + ε4

increases in T . Consequently, a simulation of XT via this model might be preferred
over a simulation along the exogenous shock model (1.3) for small time horizons T .

Remark 1.2 (Simulation of the exchangeable subfamily) If one is willing to assume
that the parameters λI of the Marshall–Olkin law depend only on the cardinality |I |
of the indexing set I , then one ends up in the exchangeable subfamily, i.e. the law of
(Xπ(1), . . . , Xπ(d)) is invariant with respect to permutations π on {1, . . . , d}. It is a
d-parametric subfamily, since the subsets I can have cardinality within {1, . . . , d}.
The reference [32] shows that exchangeable Marshall–Olkin distributions can be
simulated with computational effort in O(d2 log d), in contrast to the complexity
O(2d) of the original exogenous shock model (1.3). Besides exchangeability, the
idea of this efficient sampling routine depends heavily on the alternative construction
of the Marshall–Olkin distribution of [2].

1.3.1 Generalization to Multivariate Phase-Type Distributions

It is worth mentioning that the stochastic representation (1.5) readily implies that the
associated survival indicator process {H t }t≥0 is a (continuous-time) Markov chain.
[9] even characterized theMarshall–Olkin distribution in terms ofMarkovianity. This
alternative viewpoint gives rise to a generalization ofMarshall–Olkin distributions to
the larger family of multivariate laws associated with random vectors (X1, . . . , Xd)

whose associated stochastic process {H t }t≥0 is a Markov chain. These models were
studied extensively in [7, 22, 23] in the context of credit-risk modelling. One may
even further generalize this family to so-called multivariate phase-type distributions.
These distributions arise as absorption times of a continuous-timeMarkov chain, see
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[3, 12, 21] for details. Due to the great level of flexibility of the latter family they
are difficult to work with and it seems that they are less popular in applications up
to now.

1.4 The Lévy-Frailty Construction

In large dimensions d 
 2, the Marshall–Olkin distribution is challenging to work
with, cf. Remark 1.1. In particular, quantities of interest like the average lifetime
Ad := (X1 + · · · + Xd)/d, cf. [19], or the proportion of components which fail
before a given time t , i.e. Ld(t) := (

1{X1≤t} + · · · + 1{Xd≤t}
)
/d, have a probability

distribution which is very difficult to cope with. Generally speaking, these quantities
become convenient to handle when the components X1, . . . , Xd are conditionally
i.i.d., i.e. X1, . . . , Xd are i.i.d. conditioned on the σ -algebra generated by the paths
of the Lévy subordinator used in construction (1.6) below. In this case, the law of
large numbers or the theorem of Glivenko–Cantelli2 can be applied to compute the
limit distribution of A∞ or L∞(t) explicitly, serving as a valid approximation for the
large dimension d 
 2 under consideration. This raises the natural question: when
is a Marshall–Olkin distribution conditionally i.i.d.?

The answer to this questionwas found in the dissertation [30],whosemainfindings
were summarized in [29, 31, 33]. It was shown that a Marshall–Olkin distribution
is conditionally i.i.d. if and only if there exists a Bernstein function3 Ψ such that its
parameters have a representation via

λI =
|I |−1∑

i=0

(−1)i
(|I | − 1

i

)

[Ψ (d − |I | + i + 1) − Ψ (d − |I | + i)] , ∅ �= I ⊆ {1, . . . , d}.

In this case, there exists a Lévy subordinator4 S = {St }t≥0 whose law is uniquely
determined by the Laplace transform of its one-dimensional marginals satisfying

E

[
e−x St

]
= e−t Ψ (x), t, x ≥ 0,

such that a random vector (X1, . . . , Xd) with the Marshall–Olkin distribution in
concern can be constructed as

Xk := inf{t ≥ 0 : St ≥ εk}, k = 1, . . . , d, (1.6)

2See [25], Chap.5, for these results.
3See [41] for details on Bernstein functions.
4See [40] for background on Lévy subordinators.
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t

St

ε2

X2

ε1

ε3

X1 = X3

Fig. 1.4 The Lévy-frailty construction of [29]. The components get destroyed once the Lévy
subordinator {St }t≥0 crosses their respective trigger levels ε1, . . . , εd . In this example, component
X2 is hit first, followed by a joint failure of X1 and X3. Generalizations of this construction use
other increasing stochastic processes

where ε1, . . . , εd is a list of i.i.d. unit exponentials, independent of S. It is apparent
from (1.6) that the components X1, . . . , Xd are i.i.d. conditioned on (the whole
path of) S. More precisely, conditioned on S, the common univariate distribution
function of the components is given by t �→ 1− exp(−St ), t ≥ 0. It follows that the
aforementioned quantities of interest converge almost surely to

Ad −→ A∞
d=

∫ ∞

0
e−St dt, Ld(t) −→ L∞(t)

d= 1 − e−St , as d → ∞.

Depending on the chosen Lévy subordinator, these limiting distributions are mathe-
matically tractable. The stochastic model (1.6) is visualized in Fig. 1.4.

1.4.1 Generalizations

TheLévy-frailty constructionoffers variousways for generalizations of theMarshall–
Olkin law. Considering the process {Ld(t)}t≥0 representing the proportion of failed
components w.r.t. time, it might be interesting for applications to look at the rela-
tive proportion (Ld(t) − Ld(s))/(1 − Ld(s)) of failures within the interval [s, t],
0 ≤ s < t . This quantity converges almost surely to
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Ld(t) − Ld(s)

1 − Ld(s)
−→ L∞(t) − L∞(s)

1 − L∞(s)
= 1 − exp

( − (St − Ss)
)
, as d → ∞.

(1.7)

Due to the stationary increments of the Lévy subordinator, this limiting distribution
only depends on the length t − s of the interval [s, t] in concern, a feature that can
be undesirable in a dynamic environment.

One possibility to relax the Lévy-frailty set-up in this regard is to proceed similarly
to the modification discussed in Sect. 1.2.1. The random variables Xk in (1.6) can
artificially be rewritten as

Xk := inf{t ≥ 0 : S̃t ≥ Ek}, S̃t := S∫ t
0 λs ds, k ∈ N, (1.8)

for a constant intensity λt ≡ 1. A simple and tractable way to introduce randomness
now is to insert a random intensity {λt }t≥0, e.g. modelling λt = M for all t ≥ 0, with
M > 0 a positive random variable. This construction has the nice property that the
dependence structure can still be computed analytically, it is of the so-called scale
mixture ofMarshall–Olkin type as defined, e.g. in [26]. Such a model was used in [6]
for the pricing of credit derivatives. However, the resulting dynamics (considering,
e.g. (1.7)) are still somewhat artificial.

In contrast, by considering a stochastic process for {λt }t≥0, it becomes possible
to embed the intensity process’ parameters and its path progression in the resulting
limit in (1.7). An example was given in [34], where the intensity {λt }t≥0 in (1.8) is
the well-known CIR process. For a fixed set of parameters, the Markov property of
{λt }t≥0 implies that the relative loss 1−exp

(−(S̃t − S̃s)
)
depends on the current state

λs of the intensity process and, thus, changes randomly over time. By incorporating
the stochastic time change in the Lévy subordinator, the increments of {S̃t }t≥0 neither
feature identically distributed nor independent increments. This comes at the cost
of losing a vivid interpretation of the dependence structure of (X1, . . . , Xd), as the
equivalent Marshall–Olkin shock construction in (1.3) does not apply anymore.

A different generalization of the Lévy-frailty construction that maintains the link
to an alternative stochastic representation was given in [35]. The authors replace
the Lévy subordinator in (1.6) by the more general class of additive processes—the
generalization consisting of processeswith independent but not necessarily stationary
increments. It is shown that the corresponding random vector (X1, . . . , Xd) in (1.6)
has an alternative representation as in (1.3), the difference being that the independent
shocks EI may have non-exponential distribution functions. Relaxations of such kind
can also be found in [16] or [27]. Referring to the dynamic aspect of Eq. (1.7), an
additive process {St }t≥0 induces that the law of St − Ss generally depends on both
the starting time point s and the duration t − s, yet in a deterministic way. Compared
to the generalization involving a stochastic time change, randomness is “lost” while
interpretability is analogous to the original Marshall–Olkin model.

Another generalization is given when replacing the Lévy subordinator in (1.6)
by the superclass of so-called strong IDT subordinators as defined, e.g. in [37]. It
was shown in [36] that this generalization yields min-stable multivariate exponential
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(MSMVE) distributions, sometimes also known as min-stable distributions. In fact,
these MSMVE laws correspond to an alternative multivariate generalization of the
univariate exponential law using min-stability as the defining property, see [18].
These distributions allow for an alternative stochastic representation as well, see,
[14],which, however, is not very helpfulwith respect to simulation as the infimumof a
countable sequence of random variables shows up in the corresponding expressions.
Furthermore, combining strong IDT subordinators with the previously introduced
stochastic time change with the intensity given by a random variable M > 0 yields a
dependence structure of Archimax type, see [13] for a comprehensive description of
this class. Dependence properties of the random vector (X1, . . . , Xd) as well as the
related default indicators, when a quite arbitrary process is assumed in (1.6) instead
of St , were investigated in [5]. One possibility to alter the Lévy-frailty set-up, actually
not a generalization thereof, is to proceed similarly to the modification discussed in
Sect. 1.2.1. For instance, one could consider random variables Xk of the form

Xk := inf
{
t ≥ 0 :

∫ t

0
λk,sds ≥ εI

}
, k = 1, . . . , d,

for dependent processes {λk,s}s≥0. In [8] andmanyof the references therein, {λk,s}s≥0
was modelled as the sum of independent extended CIR processes, where the same
summands appear in the construction of various Xk to introduce dependence.

Remark 1.3 (Non-exchangeable structures/multi-factor models) We have seen that
the (one-factor) Lévy-frailty construction in Eq. (1.6) corresponds to the condition-
ally i.i.d. subfamily of the Marshall–Olkin law. Similarly, when other increasing
processes are used instead of theLévy subordinator, the resulting lawof (X1, . . . , Xd)

is again conditionally i.i.d., so it is in particular exchangeable. In some applications,
however, a richer dependence structure is needed. By starting from a one-factor
model, it is actually quite easy to construct more general multi-factor models that
give rise to non-exchangeable distributions.

For instance, one idea would be to start with a vector of independent increas-
ing processes St := (S(1)

t , . . . , S(n)
t )′ and a matrix A ∈ R

d×n+ . The resulting d-
dimensional process A St =: Λt is increasing in each coordinate and might be used
to generalize construction (1.6) by using the kth coordinate processΛ

(k)
t as stochastic

clock in the definition of Xk instead of St . This construction was used, e.g. in [42].
Alternative ideas to define non-exchangeable structures from exchangeable building
blocks exploit min-stability properties or a convex combination of subordinators,
see [31].
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1.5 Conclusion

We surveyed different stochastic representations of the Marshall–Olkin distribution.
We put an emphasis on those representations with a dynamic interpretation. Finally,
we indicated how different stochastic models served as a basis for different general-
izations of the Marshall–Olkin distribution.
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Chapter 2
Copulas Based on Marshall–Olkin
Machinery

Fabrizio Durante, Stéphane Girard and Gildas Mazo

Abstract We present a general construction principle for copulas that is inspired by
the celebrated Marshall–Olkin exponential model. From this general construction
method, we derive special subclasses of copulas that could be useful in different
situations and recall their main properties. Moreover, we discuss possible estimation
strategy for the proposed copulas. The presented results are expected to be useful in
the construction of stochastic models for lifetimes (e.g., in reliability theory) or in
credit risk models.

2.1 Introduction

The study of multivariate probability distribution function has been one of the clas-
sical topics in the statistical literature once it was recognized at large that the inde-
pendence assumption cannot describe conveniently the behavior of a random system
composed by several components. Since then, different attempts have been done in
order to provide more flexible methods to describe the variety of dependence types
that may occur in practice. Unfortunately, the study of high-dimensional models is
not that simple when the dimension goes beyond 2 and the range of these models is
still not rich enough for the users to choose one that satisfies all the desired properties.

One of the few examples of high-dimensional models that have been used in
an ample spectrum of situations is provided by the Marshall–Olkin distribution,
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introduced in [24] and, hence, developed through various generalizations (as it can
be noticed by reading the other contributions to this volume).

The starting point of the present work is to combine the general idea provided
byMarshall–Olkin distributions with a copula-based approach. Specifically, we pro-
vide a general construction principle, the so-called Marshall–Olkin machinery, that
generates many of the families of copulas that have been recently considered in the
literature. The methodology is discussed in detail by means of several illustrations.
Moreover, possible fitting strategies for the proposed copulas are also presented.

2.2 Marshall–Olkin Machinery

Consider a system composed by d ≥ 2 components with a random lifetime. We are
mainly interested in deriving an interpretable model for the system supposing that
the lifetime of each component may be influenced by adverse factors, commonly
indicated as shocks. Such shocks can be, for instance, events happening in the envi-
ronment where the system is working, or simply can be caused by deterioration of
one ormore components. In a different context, like credit risk, onemay think that the
system is a portfolio of assets, while the shocks represent arrival times of economic
catastrophes influencing the default of one or several assets in the portfolio.

To provide a suitable stochastic model for such situations, let (Ω,F ,P) be a
given probability space.

• For d ≥ 2, consider the r.v.’s X1, . . . , Xd such that each Xi is distributed according
to a d.f. Fi , Xi ∼ Fi . Each Xi can be interpreted as a shock that may effect only
the i th component of the system, i.e., the idiosyncratic shock.

• Let S �= ∅ be a collection of subsets S ⊆ {1, 2, . . . , d} with |S| ≥ 2, i.e.,
S ⊆ 2{1,2,...,d}. For each S ∈ S consider the r.v.’s ZS with probability d.f. GS .
Such a ZS can be interpreted as an (external) shock that may affect the stochastic
behavior of all the system components with index i ∈ S, i.e., the systemic shock.

• Assume a given dependence among the introduced random vectors X and Z, i.e.,
suppose the existence of a given copula C such that, according to Sklar’s Theo-
rem [32], one has

(X, Z) ∼ C((Fi )i=1,...,d , (GS)S∈S ). (2.1)

The copula C describes how the shocks X and Z are related each other.
• For i = 1, . . . , d, assume the existence of a linking function ψi that expresses
how the effects produced by the shock Xi and all the shocks ZS with i ∈ S are
combined together and acts on the i th component.

Given all these assumptions, we call Marshall–Olkin machinery any d–dimensional
stochastic model Y = (Y1, . . . , Yd) that has the stochastic representation:

Yi = ψi (Xi , ZS : i∈S). (2.2)
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Such a general framework includes most of the so-called shock models presented
in the literature. Notably, Marshall–Olkin multivariate (exponential) distribution is
simply derived from the previous framework by assuming that

(X, Z) ∼
(

d∏

i=1

Fi

)

·
⎛

⎝
∏

∅�=S∈2{1,2,...,d}
GS

⎞

⎠ , (2.3)

i.e., all the involved r.v.’s are mutually independent, each Xi and each ZS have
exponential survival distribution, ψi = max.

However, it includes also various Marshall–Olkin type generalized families, for
instance, the family presented in [19] that is obtained by assuming that Xi ’s are not
identically distributed (see also [28]).

By suitable modifications, Marshall–Olkin machinery can be adapted in order to
obtain general construction methods for copulas. In fact, the growing use of copulas
in applied problems requires the introduction of novel families that may underline
special features like tail dependence, asymmetries, etc. Specifically, in order to ensure
that the distribution function of (Y1, . . . , Yd) of Eq. (2.2) is a copula it could be
convenient to select all Xi ’s and all GS’s with support on [0, 1] and, in addition,
ψi with range in [0, 1]. Obviously, one has also to check that each Yi is uniformly
distributed in [0, 1]. We call Marshall–Olkin machinery any construction methods
for copulas that is based on previous arguments. In the following, we are interested
in presenting some specific classes generated by this mechanism.

Provided that the copula C and the marginal d.f.’s of Eq. (2.1) can be easily sim-
ulated, distribution functions (in particular, copulas) generated by Marshall–Olkin
machinery can be easily simulated. However, if no constraints are require on the
choice of S , such distributions are specified by (at least) 2d parameters, namely

• d parameters related to Xi ’s;
• 2d − d − 1 parameters related to ZS’s;
• (at least) one parameter related to the copula C .

Hence, such a kind of model soon becomes unhandy as the dimension increases.
Therefore, we are interested in flexible subclasses generated by Marshall–Olkin
machinery with fewer parameters that are better suited for high-dimensional
applications.

2.3 Copulas Generated by One Independent Shock

To provide a preliminary class generated by Marshall–Olkin mechanism, consider
the case when the system is subjected to individual shocks and one global shock that
is independent of the previous ones. In such a case, copulas may be easily obtained
in view of the following result.
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Theorem 2.1 For d ≥ 2, consider the continuous r.v. X = (X1, . . . , Xd) having
copula C and such that each Xi is distributed according to a d.f. F supported on
[0, 1]. Consider the r.v. Z with probability d.f. G such that Z is independent of X.
For every i = 1, . . . , d, set

Yi := max{Xi , Z}.

If G(t) = t/F(t) for t ∈]0, 1], then the d.f. of (Y1, . . . , Yd) is a copula, given by

C̃(u) = G(u(1)) · C(F(u1), . . . , F(ud)), (2.4)

where u(1) = mini=1,...,d ui .

Proof The expression of C̃ can be obtained by direct calculation. Moreover, since
C̃ is obviously a d.f., the proof consists of showing that the univariate margins of C̃
are uniform on (0, 1). However, this is a straightforward consequence of the equality
F(t)G(t) = t on (0, 1). �

Models of type (2.4) can be also deduced from [29].

Remark 2.1 In the assumption of Theorem 2.1, since G has to be a d.f. it follows
that t ≤ F(t) for all t ∈ [0, 1]. Moreover, the condition t/F(t) being increasing
is equivalent (assuming differentiability of F) to (log(t))′ ≥ (log(F(t)))′ on (0, 1).
Finally, notice that if F is concave, then t 
→ t/F(t) is increasing on (0, 1) (see,
e.g., [25]).

Remark 2.2 It is worth noticing that the copula C̃ in (2.4) can be rewritten as

C̃(u) = min(G(u1), . . . , G(ud)) · C(F(u1), . . . , F(ud)).

Intuitively, it is the product of the comonotonicity copula Md(u) = min
{u1, u2, . . . , ud} and the copula C with some suitable transformation of the respec-
tive arguments. This way of combining copulas was considered, for the bivariate
case, in [4, 12], and for the general case in [20, Theorem 2.1].

As it can be seen fromFig. 2.1, themain feature of copulas of type (2.4) is that they
have a singular component along the main diagonal of the copula domain [0, 1]d .
In general, if the r.v. X has distribution function given by the C̃ of type (2.4), then
P(X1 = X2 = · · · = Xd) > 0. This feature could be of great interest when the
major issue is to model a vector of lifetimes and it is desirable that defaults of two
or more components may occur at the same time with a nonzero probability.

Roughly speaking, amodel of type (2.4) tends to increase the positive dependence.
In fact, since F is a d.f. such that F(t) ≥ t on [0, 1], C̃ ≥ C pointwise, which
corresponds to the positive lower orthant-dependent order between copulas (see,
e.g., [16]). However, C̃ need not be positive dependent, i.e., C ≥ Πd pointwise. For
instance, consider the random sample from the copula described in Fig. 2.2. As can
be noticed, there is no mass probability around the point (0, 0) and, hence, such a
copula cannot be greater than Π2.
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Fig. 2.1 Trivariate Clayton copula (left) and its modification of type (2.4) with F(t) = t1−α ,
α = 0.60 (right)

Fig. 2.2 Copula of type
(2.4) with one shock
generated by F(t) = t1−α ,
α = 0.50, and C equal to
Fréchet lower bound
copula W2
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2.3.1 The Bivariate Case

Now, consider the simple bivariate case related to copulas of Theorem 2.1 by assum-
ing, in addition, that C equals the independence copula Π2. Specifically, we assume
that there exist three independent r.v.’s X1, X2, Z whose support is contained in [0, 1]
such that Xi ∼ F , i = 1, 2, and Z ∼ G(t) = t/F(t). For i = 1, 2, we define the
new stochastic model

Yi = max(Xi , Z).

Then the d.f. of Y is given by

C̃(u1, u2) = min(u1, u2)F(max(u1, u2)), (2.5)

Copulas of this type may be rewritten in the form

C̃(u1, u2) = min(u1, u2)
δ(max(u1, u2))

max(u1, u2)
(2.6)
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where δ(t) = C̃(t, t) is the so-called diagonal section of C̃ (see, for instance, [6]).
We refer to [1] for other re-writings. As known, if (U1, U2) are distributed according
to a copulaC , then the diagonal section ofC contains the information about the order
statistics min(U1, U2) and max(U1, U2). In fact, for every t ∈ [0, 1]

P(max(U1, U2) ≤ t) = δ(t),

P(min(U1, U2) ≤ t) = 2t − δ(t).

Since the d.f. F related to our shock model equals δ(t)/t on (0, 1], it follows that it
determines the behavior of order statistics of (U1, U2). In the case of lifetimesmodels,
this is equivalent to say that the survival of a (bivariate) system is completely driven
by one single shock F .

The equivalence of the formulations (2.5) and (2.6) suggests two possible ways
for constructing a bivariate model of type (2.4) by either assigning F or δ. In both
cases, additional assumptions must be given in order to ensure that the obtained
model describes a bona fide copula. These conditions are illustrated here (for the
proof, see [8]).

Theorem 2.2 Let C̃ be a function of type (2.4). Set δ := F(t)/t on (0, 1]. Then C̃
is a copula if, and only if, the functions ϕδ, ηδ : (0, 1] → [0, 1] given by

ϕδ(t) := δ(t)

t
, ηδ(t) := δ(t)

t2

are increasing and decreasing, respectively.

Notice that both the independence copula Π2(u1, u2) = u1u2 and the comono-
tonicity copula M2(u1, u2) are examples of copulas of type (2.5), generated by
F(t) = t and F(t) = 1, respectively. Moreover, an algorithm for simulating such
copulas is illustrated in [11, Algorithm 1]. Related random samples are depicted
in Fig. 2.3. Another example of copulas of type (2.5) is given by the bivariate Sato
copula of [21], generated by F(t) = (2 − t1/α)−α for every α > 0.

Copulas of type (2.5) can be interpreted as the exchangeable (i.e., invariant under
permutation of their arguments) members of the family proposed in [23, Proposi-
tion 3.1]. Since this latter reference was the first work that has explicitly provided
sufficient conditions to obtain copulas of type (2.5), they can also be referred to as
exchangeable Marshall copulas (shortly, EM copulas), as done in [9]. Notice that
EM copulas are also known under the name semilinear copulas, a term used in [8],
and justified by the fact that these copulas are linear along suitable segments of their
domains (see Fig. 2.4).

EM copulas can model positive quadrant dependence, i.e., each EM copula is
greater than Π2 pointwise. Actually, they even satisfy the stronger positive depen-
dence notion called TP2 (see [5]). Following [7] this implies that, if (X, Y ) is
an exchangeable vector with EM copula, then the vector of residual lifetimes
(X, Y | X > t, Y > t) at time t > 0 is also TP2 and, a fortiori, positive
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Fig. 2.3 Copulas of type (2.4) generated by F(t) = t1−α with α = 0.25 (left) and α = 0.75
(right). These are members of Cuadras–Augé family of copulas

Fig. 2.4 The dotted lines
indicates the typical
segments where the
restriction of the EM copula
to these sets is linear

0

1

1

quadrant dependent. Roughly speaking, the positive dependence between the residual
lifetimes of the system is (qualitatively) preserved at the increase of age.

Another feature of interest in EM copulas is a kind of stability of this class with
respect of certain operation. Usually, risk estimation procedures require the calcula-
tion of risk functions (like Value-at-Risk) with respect to some specific information
about the dependence. In particular, in this respect, upper and lower bounds for cop-
ulas with some specified feature are relevant (see, e.g., [2, 17, 33]). Now, the class
of all EM copulas is both a convex and log-convex set in the class of all bivariate
copulas. Moreover, it is also closed under pointwise suprema and infima operations.
Just to provide an example, notice that the class of bivariate Archimedean copulas is
neither convex nor closed under suprema and infima.
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2.3.2 The Multivariate Case

Copulas of type (2.5) can be easily extended in any dimension. In fact, consider
the general case related to copulas of Theorem 2.1 by assuming, in addition, that C
equals the independence copula Π2. Specifically, we assume that there exist (d + 1)
independent r.v.’s X1, X2, . . . , Xd , Z whose support is contained in [0, 1] such that
Xi ∼ F , i = 1, 2, and Z ∼ G(t) = t/F(t). For i = 1, 2, . . . , d, we define the new
stochastic model Y, where Yi = max(Xi , Z). Then the d.f. of Y is given by

C̃(u) = u[1]
d∏

i=2

F(u[i]), (2.7)

where u[1], . . . , u[d] denote the components of (u1, . . . , ud) rearranged in increas-
ing order. Since Y has uniform univariate marginals, C̃ is a copula. Moreover, the
following characterization holds (see [10]).

Theorem 2.3 Let F : [0, 1] → [0, 1] be a continuous d.f., and, for every d ≥ 2, let
C̃ be the function defined by (2.7). Then C̃ is a d–copula if, and only if, the function
t → F(t)

t is decreasing on (0, 1].
Example 2.1 Let α ∈ [0, 1] and consider Fα(t) = αt + α, with α := 1 − α. Then
C̃Fα of type (2.7) is given by

C̃Fα (u) = u[1]
d∏

i=2

(αu[i] + α).

In particular, for d = 2, we obtain a convex combination of the copulas Π2 and M2.

Example 2.2 Let α ∈ [0, 1] and consider the function Fα(t) = tα . Then C̃Fα of type
(2.7) is given by

C̃Fα (u) = (min(u1, u2, . . . , un))1−α
d∏

i=1

uα
i .

It generalizes the Cuadras–Augé family of bivariate copulas [3]. Further generaliza-
tion of this family is also included in [22].

Copulas of type (2.7) have some distinguished features. First, they are exchange-
able, a fact that could represented a limitation in some applications. Second, their tail
behavior is only driven by the generator function F . To make this statement precise,
consider the following extremal dependence coefficient introduced in [13].

Definition 2.1 Let X be a random vector with univariate margins F1, . . . , Fd . Let
Fmin := mini Fi (Xi ) and Fmax := maxi Fi (Xi ). The lower extremal dependence
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coefficient (LEDC) and the upper extremal dependence coefficient (UEDC) of X are
given, respectively, by

εL := lim
t→0+ P[Fmax ≤ t |Fmin ≤ t], εU := lim

t→1− P[Fmin > t |Fmax > t],

if the limits exist.

Notice that, in the bivariate case, LEDC and UEDC closely related to the lower
and upper tail dependence coefficients (write: LTDCandUTDC, respectively), which
are given by

λL = lim
t→0+

C(t, t)

t
and λU = lim

t→1−
1 − 2t + C(t, t)

1 − t
.

The following result holds [10]. Notice that non–trivial LEDC occurs only when F
is discontinuous at 0.

Theorem 2.4 Let C̃ be a copula of type (2.7) generated by a differentiable F. Then,
the LEDC and UEDC are, respectively, given by

εL = (F(0+))n−1

∑n
i=1(−1)i−1

(n
i

)
(F(0+))i−1

, εU = 1 − F ′(1−)

1 + (n − 1)F ′(1−)
.

Although copulas of type (2.7) seem a quite natural generalization of EM copulas,
for practical purposes their main inconvenience is that only one function F describes
the d–dimensional dependence.

To overcome such oversimplification, a convenient generalization has been pro-
vided in [21]. Basically, copulas of type (2.7) have been extended to the form

C̃(u) = u[1]
d∏

i=2

Fi (u[i]), (2.8)

for suitable functions F2, . . . , Fd . Interestingly, a subclass of the considered copu-
las also can be interpreted in terms of exceedance times of an increasing additive
stochastic process across independent exponential trigger variables.

In order to go beyond exchangeable models, keeping a certain tractability and/or
simplicity of the involved formulas, a possible strategy could be to combine in a
suitable way pairwise copulas of type (2.7) in order to build up a general model.
This is pursued, for instance, in [11, 26], by using as building block Marshall–Olkin
copulas. Both procedures are described in Sect. 2.4.
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2.4 Combining Marshall–Olkin Bivariate Copulas
to Get Flexible Multivariate Models

Motivated by the fact that bivariate dependencies are not difficult to check out, it
may be of interest to construct a multivariate copula such that each of its bivariate
margins depends upon a suitable parameter. For example, following [11], one could
introduce a multivariate (extreme-value) copula such that each bivariate marginal Cij

belongs to the Cuadras–Augé family:

Cij(ui , u j ) = Π2(ui , u j )
1−λij M2(ui , u j )

λij .

To this end, following a Marshall–Olkin machinery, one may consider the following
stochastic representation of r.v.’s whose support is contained in [0, 1]:
• For d ≥ 2, consider the r.v.’s X1, . . . , Xd such that each Xi is distributed according
to a d.f. Fi (t) = t1−

∑
j �=i λij for i = 1, 2, . . . , d.

• For i, j ∈ {1, 2, . . . , d}, i < j , consider the r.v. Zij distributed according to
Gij(t) = tλij .

• We assume independence among all X ’s and all Z ’s.

For i = 1, 2, . . . , d, we define the new r.v. Y whose components are given by

Yi = max
(
Xi , Zi1, . . . , Zi( j−1), Zi( j+1), . . . , Zid

)
.

Basically, Yi is determined by the interplay among the individual shock Xi and all
the pairwise shocks related to the i th component of a system. Then the d.f. of Y is
given by

Cpw(u) =
d∏

i=1

u
1−∑

j �=i λij

i

∏

i< j

(min{ui , u j })λij .

Here, for every i, j ∈ {1, . . . , d} and i < j , λij ∈ [0, 1] and λij = λji. Moreover,
if, for every i ∈ {1, . . . , d},

∑d
j=1, j �=i λij ≤ 1, then Cpw is a multivariate d-copula

(that is also an extreme–value copula). This copula has Cuadras–Augé bivariate
margins and, therefore, may admit nonzero UTDCs. However, even if this model is
nonexchangeable, the constraints given on the parameters are a severe drawback. For
instance, when d = 3, one of the constraint is that λ12 +λ13 ≤ 1. Therefore, the two
pairs (X1, X2) and (X1, X3) cannot have a large UTDC together. In the simplified
case where all the parameters λij’s are equal to a common value λ ∈ [0, 1], the copula
Cpw reduces to

Cpw(u) =
d∏

i=1

u1−λ(i−1)
[i]

with the constraint λ ≤ 1
d−1 .
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Another way of combining Marshall–Olkin bivariate copulas, that does not suffer
from any constraints, and that still yield a flexible model, was hence proposed in [26]
and it is given next.

LetY0, Y1, . . . , Yd be standard uniform randomvariables such that the coordinates
of (Y1, . . . , Yd) are conditionally independent given Y0. The variable Y0 plays the
role of a latent, or unobserved, factor. Let us write C0i the distribution of (Y0, Yi )

and Ci |0(·|u0) the conditional distribution of Yi given Y0 = u0, for i = 1, . . . , d.
The copulas C0i are called the linking copulas because they link the factor Y0 to the
variables of interest Yi . It is easy to see that the distribution of (Y1, . . . , Yd) is given
by the so-called one-factor copula [18]

C(u) =
∫ 1

0
C1|0(u1|u0) . . . Cd|0(ud |u0) du0. (2.9)

When one chooses C0i to be of type (2.5) with generator Fi , the integral (2.9) can
be calculated. This permits to exhibit interesting properties for this class of copulas.
Thus, calculating the integral yields

C(u) = u(1)

⎡

⎣

⎛

⎝
d∏

j=2

u( j)

⎞

⎠
∫ 1

u(d)

d∏

j=1

F ′
j (x)dx + F(1)(u(2))

⎛

⎝
d∏

j=2

F( j)(u( j))

⎞

⎠

(2.10)

+
d∑

k=3

⎛

⎝
k−1∏

j=2

u( j)

⎞

⎠

⎛

⎝
d∏

j=k

F( j)(u( j))

⎞

⎠
∫ u(k)

u(k−1)

k−1∏

j=1

F ′
( j)(x)dx

⎤

⎦ ,

where F(i) := Fσ(i) and σ is the permutation of (1, . . . , d) such that uσ(i) = u(i).
The particularity of this copula lies in the fact that it depends on the generators
through their reordering given by the permutation σ . This feature gives its flexibility
to the model. Observe also that C(u) writes as u(1) multiplied by a functional of
u(2), . . . , u(d), form that is similar to (2.7). Interestingly, all the bivariate copulas
derived from this model have a simple form as stated below.

Proposition 2.1 Let Cij be a bivariate margin of (2.10). Then Cij is a copula of
type (2.5) with generator

Fij(t) = Fi (t)Fj (t) + t
∫ 1

t
F ′

i (x)F ′
j (x)dx .
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Fig. 2.5 Random sample of 1000 points from a 3–copula of type (2.10) with Cuadras–Augé
generators with parameters (α1, α2, α3) = (0.9, 0.9, 0.1). The figure shows the three bivariate
margins

By Proposition 2.1, the class of copulas (2.10) can be viewed as a generalization
in higher dimension of the bivariate copulas of type (2.5). Moreover, the LTDC and
UTDC coefficients are given by

λL ,i j = Fi (0)Fj (0) and λU,i j = (1 − F ′
i (1

−))(1 − F ′
j (1

−)).
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Example 2.3 (Fréchet generators) Let Fi (t) = αi t + 1 − αi , αi ∈ [0, 1]. By
Proposition 2.1, Fij is given by

Fij(t) = (
1 − (1 − αi )(1 − α j )

)
t + (1 − αi )(1 − α j ).

The LTDC and UTDC are, respectively, given by

λL ,i j = λU,i j = (1 − αi )(1 − α j ).

Example 2.4 (Cuadras–Augé generators) Let Fi (t) = tαi , αi ∈ [0, 1]. By Proposi-
tion 2.1, Fij is given by

Fij(t) =
{

tαi +α j

(
1 − αi α j

αi +α j −1

)
+ t

αi α j
αi +α j −1 if αi + α j �= 1

t (1 − (1 − α)α log t) if α = α j = 1 − αi .

The LTDC and UTDC are, respectively, given by

λL ,i j = 0 and λU,i j = (1 − αi )(1 − α j ).

In the case d = 3, Fig. 2.5 depicts a simulated sample of 1000 observations from this
copula with parameter (α1, α2, α3) = (0.9, 0.9, 0.1).

Unlike copulas of type (2.7), the copulas of type (2.10) are not exchangeable.
They are determined by d generators F1, . . . , Fd , which combine together to give a
more flexible dependence structure. Taking various parametric families, as illustrated
in Examples 2.3 and 2.4, allows to obtain various tail dependencies.

2.5 Some Comments About Statistical Inference Procedures

The construction principle presented above provides copulas that are not absolutely
continuous (up to trivial cases) with respect to the restriction of the 2-dimensional
Lebesgue measure to the copula domain. Thus, statistical procedures that requires
density of the related distribution cannot be applied. Moreover, the singular compo-
nent often implies the presence of points where the derivatives do not exist, a fact
that should also be considered for the direct applicability of statistical techniques
based on moments’ method (see, for instance, [14]).

In this section, we present instead a method to estimate the parameters of the
copulas encountered in this paper, which is based on some recent results in [27].

Let
(X (1)

1 , . . . , X (1)
d ), . . . , (X (n)

1 , . . . , X (n)
d )

be a sample of n independent and identically distributed d-variate observations from
(X1, . . . , Xd), a random vector distributed according to F and with copula C , where
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C ≡ Cθ belongs to a parametric family indexed by a parameter vector θ ∈ Θ ∈
R

q , q ≤ d. The estimator is defined as

θ̂ = argmin
θ∈Θ

(
r̂ − r(θ)

)T
Ŵ

(
r̂ − r(θ)

)
, (2.11)

where r̂ = (r̂1,2, . . . , r̂d−1,d), r(θ) = (r1,2(θ), . . . , rd−1,d(θ)) and Ŵ is a positive
definite (weight) matrix with full rank; the coordinate ri, j (θ) is to be replaced by
a dependence coefficient between Xi and X j , and r̂i, j by its empirical estimator—
for instance, the Spearman’s rho or the Kendall’s tau. The approach (2.11) can be
viewed as an extension to the multivariate case of the Spearman’s rho/Kendall’s tau
inversion method [15]. The asymptotic properties of θ̂ have been studied in [27] in
the case where the copulas do not have partial derivatives on the whole domain as it
is the case of the copulas in this article. In particular, it was shown that, under natural
identifiability conditions on the copulas, θ̂ exists, is unique with probability tending
to 1 as n → ∞, and in that case, is consistent and

√
n(θ̂ − θ) tends to a Gaussian

distribution.
For the purpose of illustration, we present here a real-data application of the

method by using a dataset consisting of 3 gauge stations where annual maximum
flood data were recorded in northwestern Apennines and Thyrrhenian Liguria basins
(Italy): Airole, Merelli, and Poggi. The dataset is the same used in [11] to which we
refer for more detailed description.

In order to fit the dependence among these three gauge stations, we use the class
of copulas given by

C(u1, u2, u3) =
(

3∏

i=1

u1−θi
i

)

min
i=1,2,3

(uθi
i ), θi ∈ [0, 1], i = 1, 2, 3.

Such a copula can be also seen as generated byMarshall–Olkinmachinery, by assum-
ing that X and Z are independent r.v.’s of length d whose copula is given by Πd and
Md , respectively, Fi and Gi are power functions, and ψ = max.

The estimator (2.11) coordinates θ̂1, θ̂2 and θ̂3 are given by

θ̂i = 1

2

(

1 + 1

τ̂ i, j
+ 1

τ̂ i,k
− 1

τ̂ j,k

)

,

where the τ̂i, j are the pairwise sample Kendall’s τ coefficients. Notice that, as con-
sequence of [27, Proposition 2], when the number of parameters is equal to the
number of pairs d(d − 1)/2, then the estimator given by (2.11) does not depend on
the weights.

These previous estimates help to quantify the critical levels and return periods
corresponding to this dataset (see, e.g., [30, 31]). In hydrology, a critical level p
corresponding to a return period T is defined through the relationship
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Fig. 2.6 Critical levels for T = 2, . . . , 40 together with 95% confidence intervals

T = 1

1 − P(C(F1(Y1), . . . , Fd(Yd)) ≤ p)
, p ∈ [0, 1],

where Y1, . . . , Yd are the r.v.’s of interest and F1, . . . , Fd their respective univariate
marginals. The return period can be interpreted as the average time elapsing between
two dangerous events. For instance, T = 30 years means that the event happens once
every 30 years in average. Figure2.6 shows the estimated critical levels, along with
confidence intervals, associated to the fitted dataset.

2.6 Conclusions

We have presented a construction principle of copulas that is inspired by the seminal
Marshall–Olkin idea of constructing shock models. The copulas obtained in this way
have some distinguished properties:

• they have an interpretation in terms of (local or global) shocks;
• they enlarge known families of copulas by including asymmetric copula (in the
tails) and/or nonexchangeability;

• they have a natural sampling strategy;
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• they can be used to build models with singular components, a fact that is useful
when modeling joint defaults of different lifetimes (i.e., credit risk).

• they can be fitted to real data with simple novel methodology.

We think that all these properties make these constructions appealing in several
applications.
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Chapter 3
The Mean of Marshall–Olkin-Dependent
Exponential Random Variables

Lexuri Fernández, Jan-Frederik Mai and Matthias Scherer

Abstract The probability distribution of Sd := X1 + · · · + Xd , where the vector
(X1, . . . , Xd) is distributed according to the Marshall–Olkin law, is investigated.
Closed-form solutions are derived in the general bivariate case and for d ∈ {2, 3, 4}
in the exchangeable subfamily. Our computations can, in principle, be extended to
higher dimensions, which, however, becomes cumbersome due to the large num-
ber of involved parameters. For the Marshall–Olkin distributions with conditionally
independent and identically distributed components, however, the limiting distribu-
tion of Sd/d is identified as d tends to infinity. This result might serve as a convenient
approximation in high-dimensional situations. Possible fields of application for the
presented results are reliability theory, insurance, and credit-risk modeling.

3.1 Introduction

The distribution of Sd := X1 + · · · + Xd has been treated considerably in the
literature. For mathematical tractability, the individual random variables Xk are often
considered to be independent, see, e.g., [2], a hypothesis that is hardly ever met in
real-world applications. Another case where the distribution of the sum is known is
when (X1, . . . , Xd) has an elliptical distribution, see [10], a stability result that (at
least partially) explains the popularity of elliptical distributions. Again, it could be
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that this distributional assumption does not hold for the application one has in mind.
In our study, we assume (X1, . . . , Xd) to be distributed according to the Marshall–
Olkin law; a popular assumption for dependent lifetimes in insurance and credit-risk
modeling, see [9, 13]. With this interpretation in mind, Sd/d denotes the average
lifetime of dependent exponential random variables. Applications might be the costs
of an insurance company in the case of a natural catastrophe ([7]) or maintenance
fees that have to be paid as long as some system is working. Related studies on the
probability law of a sum of dependent risks can be found in the literature related to
insurance and risk-management, see, e.g., ([1, 5, 22, 25]).

We derive P(S2 > x) explicitly in the general case. One property of theMarshall–
Olkin law is the large number of parameters, namely 2d −1 in dimension d, rendering
the Marshall–Olkin law challenging to work with as d increases. To account for this,
in Sect. 3.3, we focus on the exchangeable subfamily, which has only d parameters
in dimension d. In our case, we compute P(Sd > x) for d ∈ {2, 3, 4}. We guide
the interested reader to strategies how extensions to higher dimensions might be
achieved. Moreover, we study the asymptotic distribution of Sd/d (when d → ∞)
in the subfamily of Marshall–Olkin distributions with conditionally i.i.d. (CIID)
components. Upper bounds for the sum of exchangeable vectors of CIID variables
are already studied, see [6]. In [25] the asymptotic quantile behavior of a sum of
dependent variables, where the dependence structure is given by an Archimedean
copula, is analyzed. In our situation, the limiting case is related to certain exponential
functionals of Lévy subordinators which are studied, e.g., in [3, 14, 16, 23].

The paper is organized as follows: In Sect. 3.2 the general Marshall–Olkin dis-
tribution is introduced and we compute the distribution of S2. Section3.3 considers
the exchangeable case and computes P(Sd > x) for d ∈ {2, 3, 4}. In Sect. 3.4 we
analyze the asymptotic case d → ∞. Section3.5 concludes.

3.2 The Marshall–Olkin Law

Marshall andOlkin [21] introduce a d-dimensional exponential distribution by lifting
the univariate lack of memory property P(X > x + y|X > y) = P(X > x), for all
x, y > 0, to higher dimensions. If X is supported on [0,∞) and satisfies the univariate
lack of memory property, then X is exponentially distributed. If (X1, . . . , Xd) and
all possible subvectors (Xi1 , . . . , Xik ), where 1 ≤ i1 < · · · < ik ≤ d, satisfy the
multidimensional lack of memory property,

P(Xi1 > xi1 + y, . . . , Xik > xik + y | Xi1 > y, . . . , Xik > y)

= P(Xi1 > xi1 , . . . , Xik > xik ), (3.1)

where xi1 , . . . , xik , y > 0, it is shown in [21] that the only distribution with support
[0,∞)d satisfying condition (3.1) is characterized by the survival function introduced
in Definition 3.1 below.
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Definition 3.1 (Marshall–Olkin distribution) Let (X1, . . . , Xd) represent a system
of residual lifetimes with support [0,∞)d . Assume that the remaining components
in this vector have a joint distribution that is independent of the age of the system, i.e.,
(X1, . . . , Xd) satisfies the multidimensional lack of memory property (3.1). Then,
for x1, . . . , xd ≥ 0,

F̄(x1, . . . , xd ) := P(X1 > x1, . . . , Xd > xd ) = exp

⎛

⎝−
∑

∅�=I⊆{1,...,d}
λI max

i∈I
{xi }

⎞

⎠ (3.2)

for certain parameters λI ≥ 0, ∅ �= I ⊆ {1, . . . , d}, and ∑
I :k∈I λI > 0, k =

1, . . . , d. This multivariate probability law is called Marshall–Olkin distribution.

This distribution has key impact in reliability theory [8, 21], credit-risk management
[13], and insurance [9]. Interpreting Xk as lifetime of component k, λI represents the
intensity of the arrival time of a “shock” influencing the lifetime of all components in
I . This canbe seen from the canonical constructionof theMarshall–Olkin distribution
which is the following fatal-shock model, see [8, 20]. Let EI , ∅ �= I ⊆ {1, . . . , d},
be exponentially distributed random variables with parameters λI ≥ 0. We assume
all EI to be independent and interpret them as the arrival times of exogenous shocks
to the respective components in I and define

Xk := min {EI |∅ �= I ⊆ {1, . . . , d} , k ∈ I } ∈ (0,∞), k = 1, . . . , d, (3.3)

where the variable Xk is the first time a shock hits component1 k. The random vector
(X1, . . . , Xd) as defined in Eq. (3.3) follows the Marshall–Olkin distribution.

Next, we derive the probability distribution of S2 = aX1 + bX2, where a, b
are positive constants. Providing an interpretation, with a = b = 1/2 the quantity
S2/2 is precisely the average lifetime of the two components. To simplify notation,
we write λ1, λ2, λ12 instead of λ{1}, λ{2}, λ{1,2} and we write E1, E2, E12 instead of
E{1}, E{2}, E{1,2}.
Lemma 3.1 (Theweighted sumof two lifetimes)On the probability space (Ω,F ,P)

let (X1, X2) be a random vector constructed as in (3.3) and a, b positive constants.
The survival function of the weighted sum of X1 and X2 is computed as

P(aX1 + bX2 > x)

= λ1

λ1 − (λ2 + λ12)
a
b

e−(λ2+λ12)
x
b

(
1 − e−(λ1−(λ2+λ12)

a
b ) x

a+b

)
(3.4)

+ λ2

λ2 − (λ1 + λ12)
b
a

e−(λ1+λ12)
x
a

(
1 − e−(λ2−(λ1+λ12)

b
a ) x

a+b

)

+ e−(λ1+λ2+λ12)
x

a+b .

1The parameters λI ≥ 0 represent the intensities of the exogenous shocks. Some of these can be
0, in which case EI ≡ ∞. We require

∑
∅�=I :k∈I λI > 0, so for each k = 1, . . . , d there is at least

one subset I ⊆ {1, . . . , d}, containing k, such that λI > 0. Therefore, (3.3) is well-defined.



36 L. Fernández et al.

Proof

P(a X1 + bX2 > x) = P(a X1 + bX2 > x, X1 < X2) + P(a X1 + bX2 > x, X2 < X1)

+P(a X1 + bX2 > x, X1 = X2).

Observe that, X1 < X2 ⇔ E1 < X2, X2 < X1 ⇔ E2 < X1, X1 = X2 ⇔
E12 < min{E1, E2}, and, min{E1, E2} ∼ Exp(λ1 + λ2).

Then,

P(a X1 + bX2 > x, X1 < X2)

= P(a X1 + bX2 > x, E1 < X2) = P

(

X2 > E1 >
x − bX2

a

)

= E

[

P

(

X2 > E1 >
x − bX2

a
|E1

)]

=
∫ ∞
0

P

(

X2 > y1 >
x − bX2

a

)

fE1(y1)dy1

= λ1

λ1 − (λ2 + λ12)
a
b

e−(λ2+λ12)
x
b

(
1 − e−(λ1−(λ2+λ12)

a
b ) x

a+b

)

+ λ1

λ1 + λ2 + λ12
e−(λ1+λ2+λ12)

x
a+b .

P(aX1 + bX2 > x, X2 < X1) and P(aX1 + bX2 > x, X1 = X2) are computed
in the same way.

Figure3.1 plots the survival function (above) and the density function of S2 =
aX1 + bX2, where a = 30% and b = 70%.

Once the survival function of S2 is known, one can further compute the density
and the Laplace transform of S2.

Corollary 3.1 Let (Ω,F ,P) be a probability space, (X1, X2) a random vector
constructed as in (3.3), and a, b positive constants. Then the Laplace transform of
S2 = aX1 + bX2 is given by

ψS2 (t) = E

[
e−t S2

]

= λ1(λ2 + λ12)b

(λ1b − (λ2 + λ12)a) (λ2 + λ12 + tb)
+ λ2(λ1 + λ12)a

(λ2a − (λ1 + λ12)b) (λ1 + λ12 + ta)

−
(

λ1(λ2 + λ12)

λ1b − (λ2 + λ12)a
+ λ2(λ1 + λ12)

λ2a − (λ1 + λ12)b

)
a + b

λ1 + λ2 + λ12 + t (a + b)

+ λ12

λ1 + λ2 + λ12 + t (a + b)
. (3.5)

Proof We first need to compute the probability density function:
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Fig. 3.1 The survival and
density function of
S2 = aX1 + bX2, where
a = 30% and b = 70%
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fS2(x) = d

dx

(
1 − F̄S2(x)

)

= λ1(λ2 + λ12)

λ1b − (λ2 + λ12)a
e−(λ2+λ12)x/b

(
1 − e−(λ1−(λ2+λ12)a/b) x

a+b

)

+ λ2(λ1 + λ12)

λ2a − (λ1 + λ12)b
e−(λ1+λ12)x/a

(
1 − e−(λ2−(λ1+λ12)b/a) x

a+b

)
(3.6)

+ λ12

a + b
e−(λ1+λ2+λ12)

x
a+b .

So, the Laplace transform is computed by evaluating the integral

ψS2(t) =
∫ ∞

0
e−t x fS2(x)dx .

Remark 3.1 Note that when λ1 − (λ2 + λ12)a/b = 0 or λ2 − (λ1 + λ12)b/a = 0,
Eqs. (3.4), (3.5), and (3.6) are not defined. By computing the respective limits (that
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do exist!) when the parameters approach such a constellation, the functions can be
extended continuously.

If one aims at generalizing these results to higher dimensions, one notices that the
number of involved shocks and parameters, i.e., 2d − 1 in dimension d, renders this
problem extremely intractable already for moderate dimensions d. A subclass with
fewer parameters is obtained by considering the Marshall–Olkin law with exchange-
able components. This yields a parametric family with d parameters in dimension d,
allowing us to derive the distribution of Sd in higher dimensions.

3.3 The Exchangeable Marshall–Olkin Law

The aim of this section is to compute the survival function of Sd in the exchange-
able case. We introduce the subfamily of exchangeable Marshall–Olkin laws in
order to deal with the problem of overparameterization. For a deeper background
on exchangeable Marshall–Olkin laws see [18, 19] (Chap.3, Sect. 3.2). A random
vector (X1, . . . , Xd) is said to be exchangeable if for all permutationsπ on {1, . . . , d}
it satisfies

P(X1 > x1, . . . , Xd > xd ) = P(X1 > xπ(1), . . . , Xd > xπ(d)), x1, . . . , xd ∈ R, (3.7)

or, alternatively in the Marshall–Olkin context, if the exchangeability condition

|I | = |J | ⇒ λI = λJ , (3.8)

is met. The proof that (3.8) is equivalent to (X1, . . . , Xd) being exchangeable can
be found in [19], page 124. Condition (3.8) means that two shocks affecting subsets
with identical cardinalities have the same intensity λI . Hence, in this section we
denote by λ1 the intensity of all shocks affecting precisely one component, by λ2 all
shocks affecting two components, and so on.

Let (X1, . . . , Xd) be a random vector following the Marshall–Olkin distribution,
defined as in Eq. (3.3). Then the survival function of the exchangeable Marshall–
Olkin law is given, for x1, . . . , xd ≥ 0, by

F̄(x1, . . . , xd) = exp

(

−
d∑

k=1

x(d+1−k)

d−k∑

i=0

(
d − k

i

)

λi+1

)

, (3.9)

x(1) ≤ · · · ≤ x(d) being the ordered list of x1, . . . , xd .
Observe that now instead of dealing with 2d − 1 parameters λI we just have to

work with d parameters λ1, . . . , λd , which simplifies the process of computing the
required probabilities.
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In the following, we present the survival function of the sum of components of
Marshall–Olkin random vectors in low dimensional exchangeable cases (2, 3, and
4-dimensional).

Lemma 3.2 (The sum of d ∈ {2, 3, 4} lifetimes) On the probability space
(Ω,F ,P) ...

1. ... let (X1, X2) be a two-dimensional exchangeable Marshall–Olkin random vec-
tor. Then, for x ≥ 0,

P(X1 + X2 > x) = 2λ1e−(λ1+λ2)x

λ2

(
eλ2

x
2 − 1

)
+ e−(2λ1+λ2)

x
2 . (3.10)

2. ... let (X1, X2, X3) be a three-dimensional exchangeable Marshall–Olkin ran-
dom vector. Then, for x ≥ 0,

P(X1 + X2 + X3 > x) = e−(3λ1+3λ2+λ3)
x
3 + 6λ1(2λ1 + 3λ2 + λ3)

(3λ2 + λ3)(λ2 + λ3)
×

e−(2λ1+3λ2+λ3)
x
2

(
e

(
3λ2+λ3

2

)
x
3 − 1

)
(3.11)

+3λ2(λ2 + λ3) − 6λ1(λ1 + λ2)

(λ2 + λ3)(3λ2 + 2λ3)
×

e−(λ1+2λ2+λ3)x
(

e(3λ2+2λ3)
x
3 − 1

)
.

3. ... let (X1, X2, X3, X4) be a four-dimensional exchangeable Marshall–Olkin ran-
dom vector. Then, for x ≥ 0,

P(X1 + X2 + X3 + X4 > x) = 24 · P1 + 12 · P2 + 12 · P3 (3.12)

+12 · P4 + 4 · P5 + 4 · P6 + 6 · P7 + P8,

where,

P1 = P(X1 + X2 + X3 + X4 > x |X1 < X2 < X3 < X4)

= λ1(λ1 + λ2) f11
( 32 f10

f1 f2 f4 f5
e− f1

x
4 − 27 f10

f2 f3 f7 f8
e− f3

x
3 + 4 f10

f4 f6 f7 f9
e− f9

x
2

− 1

f5 f6 f8
e− f10x

)
,

P2 = P(X1 + X2 + X3 + X4 > x |X1 < X2 < X3 = X4)

= λ1(λ1 + λ2) f6
( 8

f1 f2 f4
e− f1

x
4 − 9

f2 f3 f7
e− f3

x
3 + 2

f4 f7 f9
e− f9

x
2

)
,
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P3 = P(X1 + X2 + X3 + X4 > x |X1 < X2 = X3 < X4)

= λ1(λ2 + λ3)
[ f10

f2

( 16

f1 f5
e− f1

x
4 − 9

f3 f8
e− f3

x
3

)
+ 1

f5 f8
e− f10x

]
,

P4 = P(X1 + X2 + X3 + X4 > x |X1 = X2 < X3 < X4)

= λ2 f11
[( 2 f10

f4 f6 f9
− 1

f5 f6
+ 1

f1 f9

)
e− f1

x
4 − 2 f10

f4 f6 f9
e− f9

x
2 + 1

f5 f6
e− f10x

]
,

P5 = P(X1 + X2 + X3 + X4 > x |X1 = X2 = X3 < X4)

= λ3

( 4 f10
f1 f5

e− f1
x
4 − 1

f5
e− f10x

)
,

P6 = P(X1 + X2 + X3 + X4 > x |X1 < X2 = X3 = X4)

= λ1

f2
(λ3 + λ4)

( 4

f1
e− f1

x
4 − 3

f3
e− f3

x
3

)
,

P7 = P(X1 + X2 + X3 + X4 > x |X1 = X2 < X3 = X4)

= λ2 f6
f4

( 2

f1
e− f1

x
4 − 1

f9
e− f9

x
2

)
,

P8 = P(X1 + X2 + X3 + X4 > x |X1 = X2 = X3 = X4)

= λ4

f1
e− f1

x
4 ,

and

f1 = 4λ1 + 6λ2 + 4λ3 + λ4, f5 = 6λ2 + 8λ3 + 3λ4, f9 = 2λ1 + 5λ2 + 4λ3 + λ4,

f2 = 6λ2 + 4λ3 + λ4, f6 = λ2 + 2λ3 + λ4, f10 = λ1 + 3λ2 + 3λ3 + λ4,

f3 = 3λ1 + 6λ2 + 4λ3 + λ4, f7 = 3λ2 + 4λ3 + λ4, f11 = λ1 + 2λ2 + λ3.

f4 = 4λ2 + 4λ3 + λ4, f8 = 3λ2 + 5λ3 + 2λ4,

Proof We prove the case d = 2, considering that the proofs for d = 3 and d = 4
are done in the same way.

P(X1 + X2 > x) = 2P(X1 + X2 > x |X1 < X2)P(X1 < X2)

+P(X1 + X2 > x |X1 = X2)P(X1 = X2).

such that E1, E2 ∼ Exp(λ1) and E12 ∼ Exp(λ2) and note that since we are working
on the exchangeable case,

P(X1 + X2 > x |X1 > X2)P(X1 > X2) = P(X1 + X2 > x |X1 < X2)P(X1 < X2).

Taking into account that, X1 < X2 ⇔ E1 < min {E2, E12} and X1 = X2 ⇔
min {E1, E2} > E12,
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P(X1 + X2 > x) = 2P(E1 + min {E2, E12} > x |E1 < min {E2, E12})P(E1 < min {E2, E12})
+ P(E12 + E12 > x |E12 < min {E1, E2})P(E12 < min {E1, E2})

= 2E [P(min {E2, E12} > E1 > x − min {E2, E12} |E1)]

+ E

[
P(min {E1, E2} > E12 >

x

2
|min {E1, E2})

]
.

Then, from the so-calledmin-stability of the exponential distribution,min {E1, E2} ∼
Exp(2λ1) and min {E2, E12} ∼ Exp(λ1 + λ2),

E [P(min {E2, E12} > E1 > x − min {E2, E12} |E1)]

= λ1

λ2
e−(λ1+λ2)x

(
eλ2

x
2 − 1

)
+ λ1

2λ1 + λ2
e−(2λ1+λ2)

x
2 ,

E

[
P(min {E1, E2} > E12 >

x

2
|min {E1, E2})

]
= λ2

2λ1 + λ2
e−(2λ1+λ2)

x
2 .

So,

P(X1 + X2 > x) = 2
(λ1

λ2
e−(λ1+λ2)x

(
eλ2

x
2 − 1

)
+ λ1

2λ1 + λ2
e−(2λ1+λ2)

x
2

)

+ λ2

2λ1 + λ2
e−(2λ1+λ2) x

2

= 2λ1e−(λ1+λ2)x

λ2

(
eλ2

x
2 − 1

)
+ e−(2λ1+λ2)

x
2 .

Note that (from Remark 3.2 below) in the case d = 3:

P(X1 + X2 + X3 > x) = 6P(X1 + X2 + X3 > x |X1 < X2 < X3)×
P(X1 < X2 < X3)

+ 3P(X1 + X2 + X3 > x |X1 = X2 < X3)×
P(X1 = X2 < X3)

+ 3P(X1 + X2 + X3 > x |X1 < X2 = X3)×
P(X1 < X2 = X3)

+ P(X1 + X2 + X3 > x |X1 = X2 = X3)×
P(X1 = X2 = X3)

has to be computed and in d = 4:

P(X1 + X2 + X3 + X4 > x) = 24P(X1 + X2 + X3 + X4 > x |X1 < X2 < X3 < X4)×
P(X1 < X2 < X3 < X4)

+ 12P(X1 + X2 + X3 + X4 > x |X1 < X2 < X3 = X4)×
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P(X1 < X2 < X3 = X4)

+ 12P(X1 + X2 + X3 + X4 > x |X1 < X2 = X3 < X4)×
P(X1 < X2 = X3 < X4)

+ 12P(X1 + X2 + X3 + X4 > x |X1 = X2 < X3 < X4)

P(X1 = X2 < X3 < X4)

+ 4P(X1 + X2 + X3 + X4 > x |X1 = X2 = X3 < X4)×
P(X1 = X2 = X3 < X4)

+ 4P(X1 + X2 + X3 + X4 > x |X1 < X2 = X3 = X4)×
P(X1 < X2 = X3 = X4)

+ 6P(X1 + X2 + X3 + X4 > x |X1 = X2 < X3 = X4)×
P(X1 = X2 < X3 = X4)

+ P(X1 + X2 + X3 + X4 > x |X1 = X2 = X3 = X4)×
P(X1 = X2 = X3 = X4).

Figure3.2 illustrates the survival (above) and density (below) functions for Sd ,
d = 2, 3, 4, in the exchangeable case.

Remark 3.2 (Generalizing the results to higher dimensions) Marshall–Olkin multi-
variate distributions are not absolutely continuous, i.e., there is a positive probability
that several components take the same value, P(X1 = · · · = Xd) > 0. It is possible
to compute the expression

P(X1 + · · · + Xd > x, X1 = · · · = Xd), (3.13)

for all dimensions d ∈ N, by recalling Pascal’s triangle.

P Md
d := P(X1 + · · · + Xd > x, X1 = · · · = Xd) (3.14)

= λd
∑d

i=0

(d
i

)
λi

e
−

(∑d
i=0 (

d
i )λi

)
x
d , λ0 = 0.

However, the generalization to arbitrary singular events is not that obvious.
Observe that froma sumofd elementswehave to take into account the caseswherewe
have k equalities in the conditions of the conditional probabilities, k ∈ {0, . . . , d−1}.
The number of cases which have to be taken into account is given by the binomial
coefficient (d − 1) choose (k).

Take for example the case d = 4:

1. Number of cases where k = 0, i.e., there is no equality in the condition:
(3
0

) = 1,

P(X1 + · · · + X4 > x, Xi1 < · · · < Xi4), where ik �= i j ∈ {1, 2, 3, 4}.

2. Number of cases where there is one equality (k = 1) in the condition:
(3
1

) = 3,
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Fig. 3.2 Plots of the
survival and density function
for Sd , d = 2, 3, 4, in the
exchangeable case. The
parameters considered are in
the two-dimensional case:
λ1 = 0.6, λ2 = 0.4, in the
three-dimensional case:
λ1 = 0.1, λ2 = 0.2, λ3 =
0.5, and when d = 4:
λ1 = 0.05, λ2 = 0.1, λ3 =
0.15, λ4 = 0.2
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P(X1 + · · · + X4 > x, Xi1 = Xi2 < Xi3 < Xi4),

P(X1 + · · · + X4 > x, Xi1 < Xi2 = Xi3 < Xi4),

P(X1 + · · · + X4 > x, Xi1 < Xi2 < Xi3 = Xi4),

where ik �= i j ∈ {1, 2, 3, 4}.
3. Number of cases where there are 2 equalities (k = 2) in the condition:

(3
2

) = 3,

P(X1 + · · · + X4 > x, Xi1 = Xi2 = Xi3 < Xi4),

P(X1 + · · · + X4 > x, Xi1 < Xi2 = Xi3 = Xi4),

P(X1 + · · · + X4 > x, Xi1 = Xi2 < Xi3 = Xi4),

such that ik �= i j ∈ {1, 2, 3, 4}.
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Since we are in the exchangeable case, we need to calculate how many times
each probability has to be added. For this purpose, let us consider the definition of
permutation of multisets

P Ma1,a2,...,ak−1,ak
d := d!

a1! · a2! · . . . · ak−1! · ak ! , (3.15)

where in our case a1, . . . , ak represent the numbers of elements which are equal and
how they are located in each condition. Note that

∑k
i=1 ai = d. Let us illustrate this

relation with the example of d = 4:

P(X1 + · · · + X4 > x)

= P M1,1,1,1
4 · P(X1 + · · · + X4 > x, X1︸︷︷︸

1

< X2︸︷︷︸
1

< X3︸︷︷︸
1

< X4︸︷︷︸
1

)

+P M2,1,1
4 · P(X1 + · · · + X4 > x, X1 = X2︸ ︷︷ ︸

2

< X3︸︷︷︸
1

< X4︸︷︷︸
1

)

+P M1,2,1
4 · P(X1 + · · · + X4 > x, X1︸︷︷︸

1

< X2 = X3︸ ︷︷ ︸
2

< X4︸︷︷︸
1

)

+P M1,1,2
4 · P(X1 + · · · + X4 > x, X1︸︷︷︸

1

< X2︸︷︷︸
1

< X3 = X4︸ ︷︷ ︸
2

) (3.16)

+P M2,2
4 · P(X1 + · · · + X4 > x, X1 = X2︸ ︷︷ ︸

2

< X3 = X4︸ ︷︷ ︸
2

)

+P M3,1
4 · P(X1 + · · · + X4 > x, X1 = X2 = X3︸ ︷︷ ︸

3

< X4︸︷︷︸
1

)

+P M1,3
4 · P(X1 + · · · + X4 > x, X1︸︷︷︸

1

< X2 = X3 = X4︸ ︷︷ ︸
3

) + P M4
4 ,

the expression for P M4
4 is given in Eq. (3.14).

Example 3.1 (Illustrating the effect of different levels of dependence) In Fig. 3.3,
examples for the survival and density function of S4 for different levels of dependence
are visualized.

(a) Independence case: Shocks arriving to just one element are the only ones present
in the system, i.e., λ1 > 0 and λ2 = λ3 = λ4 = 0. In this case, the probability
distribution of Sd follows the Erlang distribution with rate λ1 and degrees of
freedom 4.

(b) Comonotonic case: The shock arriving to all components at the same time is
the only one influencing the system, i.e., λ1 = λ2 = λ3 = 0 and λ4 > 0, and
the distribution of Sd is exponential with mean 4/λ4.
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Fig. 3.3 P(S4 > x) (above)
and fS4 (x) (below) for
different assumptions
concerning the dependence:
(a) independence, (b)
comonotonicity, (c)
moderate dependence (we
consider λ4 = 0), (d) high
dependence (we consider
λ1 = 0), (e) non-special
case. In all examples, the
marginal laws are considered
to be the same, Xi unit
exponential random
variables, i = 1, . . . , 4
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(c) Moderate dependence case: In this case, the shocks influencing fewer compo-
nents jointly have the strongest influence, i.e., λ1 > λ2 > λ3 > λ4 > 0.

(d) High dependence case: Shocks arriving to most components jointly have the
strongest influence, i.e., λ4 > λ3 > λ2 > λ1 > 0.

(e) Non-special case: λ1, λ2, λ3, λ4 > 0.

One can observe in Fig. 3.3 (above) that the intersection of the survival func-
tion is around the expected value E [S4] = 4. When the dependence between the
components of the system is strong, the probability of the system to collapse before
this intersection is lower than in the cases where the dependence is weak, but once
the system survives till this intersection point, in cases with strong dependence the
probability that the system will last alive longer is higher than in cases where the
dependence is weak. This interpretation can be also seen in the densities (see Fig. 3.3,
below). Inweak dependence cases, themass of the probability is concentrated around
the expected value, which is translated into exhibiting a very steep decline of the sur-
vival function (see Fig. 3.3).
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3.4 The Extendible Marshall–Olkin Law

In this section, we show how the probability distribution of Sd/d behaves in the limit
when the system grows in dimension, i.e., for d → ∞. For this purpose we work
with the extendible subfamily of the Marshall–Olkin law, since we must be able to
extend the dimension of the vector (X1, . . . , Xd) without destroying its distribu-
tional structure. Recall that a random vector is called extendible if there exists an
infinite exchangeable sequence {X̃k}k∈N such that (X1, . . . , Xd)

L= (X̃1, . . . , X̃d).
De Finetti’s Theorem states that this is equivalent to (X̃1, . . . , X̃d) being condition-
ally i.i.d. (see [11]).

For extendible Marshall–Olkin laws there is a canonical construction based on
Lévy subordinators, which are non-decreasing Lévy processes, {Λt , t ≥ 0}, where
the Lévy measure ν(dx) is defined onB((0,∞]) satisfying ∫

(1 ∧ x)ν(dx) < ∞:

Xk = inf{t ≥ 0 : Λt ≥ εk}, k = 1, . . . , d. (3.17)

Component Xk is the first-passage time of Λ across εk and {εk}k∈N is an i.i.d.
sequence of unit exponential random variables. This construction is called the Lévy-
frailty construction (for further information on these distributions we refer the reader
to [17, 19]) and it defines the subclass of extendible Marshall–Olkin distributions.

Let {Ψ (k)}k∈N be a sequence, derived from evaluating the Laplace exponent Ψ

of Λ at the natural numbers. It is shown in [18] that

P(X1 > x1, . . . , Xd > xd) = exp

(

−
d∑

k=1

x(d−k+1) (Ψ (k) − Ψ (k − 1))

)

,

where x(1) ≤ · · · ≤ x(d) is the ordered list of the x1, . . . , xd ≥ 0 (see [17]), is the
survival function of (X1, . . . , Xd) which is completely determined by the sequence
{Ψ (k)}k∈N. Then, (X1, . . . , Xd) follows the Marshall–Olkin distribution with para-
meters

λk =
k−1∑

i=0

(−1)i (Ψ (d − k + i + 1) − Ψ (d − k + i)) , k = 1, . . . , d.

Once we constructed the vector of first-passage times of a Lévy subordinator,
(X1, . . . , Xd), we can prove that when d → ∞, Sd/d and the exponential func-
tional of a Lévy subordinator, I∞ = ∫ ∞

0 e−Λs ds, have the same distribution. The
exponential functional of a Lévy process, {Λt , t ≥ 0}, is defined as
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It =
∫ t

0
e−Λs ds. (3.18)

Lemma 3.3 Let (X1, . . . , Xd) be a random vector following the extendible
Marshall–Olkin distribution. Then,

lim
d↗∞

Sd

d
L= I∞, (3.19)

where I∞ = ∫ ∞
0 e−Λs ds represents the exponential functional of the Lévy subordi-

nator {Λt , t ≥ 0} at its terminal value. We refer the reader to [3] and [4] for detailed
background on exponential functionals of Lévy processes.

Proof Define Xk = inf{t ≥ 0 : Λt ≥ εk} as in Eq. (3.17). Then

lim
d↗∞

1

d

d∑

k=1

Xk
a.s.=

∫ ∞

0
e−Λs ds ⇔ P

(∣
∣
∣
∣
∣
lim

d↗∞
1

d

d∑

k=1

Xk −
∫ ∞

0
e−Λs ds

∣
∣
∣
∣
∣
= 0

)

= 1.

The strong law of large numbers implies that limd↗∞ 1
d

∑d
k=1 Xk = E[X1|Λ]

holds almost surely.
Observe that,

E[X1|Λ] =
∫ ∞

0
xdP(X1 ≤ x |Λ)

=
∫ ∞

0
xdP(ε1 ≤ Λx |Λ)

=
∫ ∞

0
xd(1 − e−Λx )

=
∫ ∞

0
−xd(e−Λx )

=
[

− xe−Λx
]x=∞

x=0
+

∫ ∞

0
e−Λx dx

= 0 +
∫ ∞

0
e−Λx dx .

Remark that convergence almost surely implies convergence in distribution.

Example 3.2 (The limit of Sd/d in a Poisson-frailty model) We want to analyze the
convergence of P (Sd/d > x), d ≥ 2, x ≥ 0, in the limit d → ∞. Considering
the standard Poisson process as an example, Nt = {Nt }t≥0 with intensity β > 0,
which is a Lévy subordinator. Bertoin and Yor [3] investigates the distribution of the
exponential functional of a standard Poisson process,
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Fig. 3.4 Plot of P(Sd/d > x), d = 2, 3, 4 together with P(I∞ > x), x ≥ 0, where β = 1
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Fig. 3.5 Zoom into Fig. 3.4

I∞ =
∫ ∞

0
e−Nt dt, (3.20)

using its Laplace transform:

E[eλ̃I∞] =
⎛

⎝
∞∏

j=0

(1 − λ̃e− j )

⎞

⎠

−1

, λ̃ < 1. (3.21)

Using the Gaver–Stehfest Laplace inversion technique (see [12, 15, 24]), we
numerically compute the survival function of the exponential functional of I∞
(Eq. (3.20)).
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With this example we visualize how P (Sd/d > x), d ∈ N0, converges to
P (I∞ > x) when d → ∞. In this case, the components of the system strongly
depend on each other, i.e., 0 < λ1 < λ2 < λ3 < λ4 (see Figs. 3.4 and 3.5).

3.5 Conclusion

We study the probability distribution of a sum of dependent random variables
Sd = X1 + · · · + Xd when the dependence structure is given by the Marshall–
Olkin distribution. The Marshall–Olkin law possesses interesting properties from
a statistical point of view as well as for applications in different fields like finan-
cial risk-management or insurance. However, during the construction of this type of
dependence structure, we encounter the obstacle of overparameterization. In order
to deal with this drawback and to make the computations more tractable, we work
with the exchangeable subfamily, where the amount of parameters is significantly
decreased from 2d − 1 to d. In low dimensional cases, d = 2, d = 3, and d = 4,
we develop the explicit expressions for the distribution of Sd and we give a sketch
of how these results can be extended to higher dimensions.

However, note that while the number of factors in the sum increases in one unit,
the number of cases into consideration for the calculus of the probabilities increases
in 2d−1. This is the reason why the problem becomes intractable for d > 4 and we
focus on analyzing the behavior of Sd/d in the limiting case, d → ∞. For this aim,
we work with the extendible subfamily, via the Lévy-frailty construction, and we
show how the probability distribution of Sd/d is closely related with the probability
law of the exponential functional of Lévy subordinators.
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Chapter 4
General Marshall–Olkin Models,
Dependence Orders, and Comparisons
of Environmental Processes

Esther Frostig and Franco Pellerey

Abstract In many applicative fields, the behavior of a process Z is assumed to be
subjected to an underlying process Θ that describes evolutions of environmental
conditions. A common way to define the environmental process is by letting the
marginal values of Θ subjected to specific environmental factors (constant along
time) and factors describing the conditions of the environment at the specified time.
In this paper we describe some recent results that can be used to compare two of
such environmental discrete-time processes Θ and Θ̃ in dependence. A sample of
applications of the effects of these comparison results on the corresponding processes
Z and Z̃ in some different applicative contexts are provided.

4.1 Introduction

Assume that the behavior of a process Z is subjected to an underlying process Θ

describing evolutions of environmental conditions. For example, the rate of growth
in a population, or the wear accumulated by an item, or the total claim amount
accumulated by an insurance company, can depend on random parameters describing
the environment that evolves in time according to some process able to take into
account both random factors due to the specific environment and random factors
due to temporary conditions. In the discrete time case, a common way to define
the environmental process Θ = {Θi , i ∈ N

+} by letting Θi = X0 � Xi , where �
is any binary operator, the variable X0 describes the specific environmental factor,
which is constant along the time, while the sequence {Xi , i = 1, 2, . . .}, composed
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by independent and identically distributed variables, gives the additional description
about the conditions of the environment at the fixed times i .

In this setup, it is sometimes of importance to figure out the influence of the com-
mon factor X0 on the strength of positive dependence between the values assumed
by the process Θ along time, which, in turn, reflects on the behavior of the process
Z and on quantities related to this process like hitting times, or maximum reached
values, etc.

One possible tool to make this analysis is by means of dependence orders, provid-
ing results able to evaluate the effects of the environmental factors on the intrinsic
dependence in the evolutions of the environmental process. For this purpose, here
we consider two environmental processes Θ and Θ̃ having the same marginal dis-
tributions and defined by letting

Θi = X0 � Xi and Θ̃i = X̃0 � X̃i for all i ∈ N,

for different environmental factors X0, Xi , X̃0 and X̃i , with i ∈ N, and then we
describe conditions on the factors such that Θ and Θ̃ are comparable in positive
dependence. Such dependence comparisons can be further applied to provide useful
inequalities related to the corresponding processes Z and Z̃, as shown in the last
section.

This is the plan of the paper. Section4.2 is devoted to the descriptions of the
dependence orders that will be used to compare the processes and to recall the
definition of other useful stochastic orders. Also, a brief description of the general
model used to define the environmental processes Θ and Θ̃ is given. The list of the
existing results, useful to compare the two processes, is provided in Sect. 4.3, while
Sect. 4.4 is devoted to applications of these results.

Some conventions and notations that are used throughout the paper are given
below. The notation =st stands for equality in distribution. For any family of para-
meterized random variables {Xθ |θ ∈ T }, such that T ⊆ R is the support of a random
variable Θ , then we denote by X (Θ) the mixture of the family {Xθ |θ ∈ T } with
respect to Θ . For any random variable (or vector) X and an event A, [X |A ] denotes
a random variable whose distribution is the conditional distribution of X given A.
Also, throughout this paper we write “increasing” instead of “non-decreasing” and
“decreasing” instead of “non-increasing”.

4.2 Preliminaries

Useful definitions are recalled in this section. First, we recall the most well-known
orders considered in the literature to compare the degree of positive dependence in
components of random vectors.
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4.2.1 Dependence Orders

Let ≺ denotes the coordinatewise ordering in R
n . Given a function ϕ : R

n → R, we
recall that it is said to be supermodular if for any x, y ∈ R

n it satisfies

ϕ(x) + ϕ(y) ≺ ϕ(x ∧ y) + ϕ(x ∨ y), (4.1)

where the operators ∧ and ∨ denote, respectively, coordinatewise minimum and
maximum.

Definition 4.1 Let T = (T1, T2, . . . , Tn) and T̂ = (T̂1, T̂2, . . . , T̂n) be two n-
dimensional random vectors, then T is said to be smaller than T̂ in the supermodular
order (denoted by T ≺sm T̂) if

E[φ(T)] ≤ E[φ(T̂)],

for every supermodular real-valued function φ defined on R
n for which the expecta-

tions exist.

The supermodular order has been considered in several applied contexts (see [6,
13, 19, 20], or [1], among others). For a complete description of the supermodular
order and its properties see [21].

A dependence order which is implied by the supermodular order (and equivalent
to the supermodular order in the case n = 2) is the well-known positive orthant
dependence order, whose definition is recalled next (see [21] for details).

Definition 4.2 Let T = (T1, T2, . . . , Tn) and T̂ = (T̂1, T̂2, . . . , T̂n) be two n-
dimensional random vectors, then T is said to be smaller than T̂ in the positive
orthant dependence order (denoted by T ≺POD T̂) if

P[T ≤ x] ≤ P[T̂ ≤ x] and P[T > x] ≤ P[T̂ > x]

for every x ∈ R
n .

The supermodular order and the positive orthant dependence order can compare
the dependence only in vectors having the same marginal distributions. Dealing
with dependence in vectors having different marginal distributions, thus in different
Fréchet classes, the comparison which is commonly considered is the concordance
order, whose definition is based on the notion of copula, briefly recalled here.

Given the vector T = (T1, T2, . . . , Tn), having joint distribution FT and marginal
distributions F1, . . . , Fn , the function CT : [0, 1]n → [0, 1] satisfying

FT(x1, . . . , xn) = CT(F1(x1), . . . , Fn(xn)), ∀(x1, . . . , xn) ∈ R
n
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is said to be the copula of T. If the marginal distributions Fi , for i = 1, . . . , n, are
continuous, then the copula CT is unique and it is defined as

CT(u1, . . . , un) = FT(F−1
1 (u1), . . . , F−1

n (un)) = P[F1(T1) ≤ u1, . . . , Fn(Tn) ≤ un],

where F−1
i denotes the right continuous inverse of Fi , i.e., F−1

i (u) = sup{x :
Fi (x) ≤ u}, u ∈ [0, 1].

Copulas entirely describe the dependence between the components of a random
vector; for example, concordance indexes like the Spearman’s ρ or Kendall’s τ of a
vector T can be defined by means of its copula (see [15] for a monograph on copulas
and their properties). In particular, the following dependence order is defined by
comparison of copulas.

Definition 4.3 Let T = (T1, T2, . . . , Tn) and T̂ = (T̂1, T̂2, . . . , T̂n) be two n-
dimensional random vectors having copulas CT and CT̂, respectively. Then T is

said to be smaller than T̂ in the concordance order (denoted by T ≺c T̂) if

CT(u1, . . . , un) ≤ CT̂(u1, . . . , un) ∀(u1, . . . , un) ∈ [0, 1]n .

It is useful to observe that, in order to be comparable in concordance, the vectors
T and T̂ do not need to have the same marginal distributions. However, when they
have the same continuous marginal distributions F1, . . . , Fn , one can consider the
random vectors U and V defined as

U = (F−1
1 (T1), . . . , F−1

n (Tn)) and V = (F−1
1 (T̂1), . . . , F−1

n (T̂n)),

and observe that their distribution functions are the copulas CT and CT̂ of T and T̂,
respectively. Applying Theorem 9.A.9(a) in [21] immediately follows that X ≺sm Y
iff U ≺sm V. Observing that the latter implies U ≺POD V, which in turn is equivalent
to CT(u1, . . . , un) ≤ CT̂(u1, . . . , un), for all (u1, . . . , un) ∈ [0, 1]n , the following
assertion holds.

Proposition 4.1 Assume that T = (T1, . . . , Tn) and T̂ = (T̂1, . . . , T̂n) are two
random vectors having the same continuous marginal distributions. If T ≺sm T̂,
then also T ≺c T̂.

We also recall that comparisons between random pairs based on their intrinsic
degree of dependence can be defined by considering concordance indexes, in partic-
ular, by using the Kendall’s τ concordance coefficient, whose definition is recalled
here. For it, let (T1, T2) be a random vector and consider also a copy (T ′

1, T ′
2) that

is independent of (T1, T2); that is, (T ′
1, T ′

2) =st (T1, T2). Then τ(T1,T2) is defined as
follows:

τ(T1,T2) = 2P{(T1 − T ′
1)(T2 − T ′

2) ≥ 0} − 1.
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It is a well-known fact that

(T1, T2) ≺c (T̂1, T̂2) ⇒ τ(T1,T2) ≤ τ
(T̂1,T̂2)

.

More details about this coefficient can be found, for instance, in [2] or [15].

4.2.2 Some Univariate Stochastic Orders

For the applications, it will be useful to consider some well-known univariate
stochastic orders, whose definitions are recalled here. For it, let X1 and X2 be two
random variables, having cumulative distribution functions F1 and F2, respectively,
and denote with F−1

1 and F−1
2 the respective right continuous inverses.

Definition 4.4 X1 is said to be smaller than X2 in the

(a) usual stochastic order (denoted by X1 ≤st X2) if E[φ(X1)] ≤ E[φ(X2)] for
every increasing function φ such that the expectations exist;

(b) increasing convex order (denoted by X1 ≤icx X2) if E[φ(X1)] ≤ E[φ(X2)] for
every increasing and convex function φ such that the expectations exist;

(c) dispersive order (denoted by X1 ≤d X2) if F−1
1 (β) − F−1

1 (α) ≤ F−1
2 (β) −

F−1
2 (α), for all 0 < α < β < 1.

See [14] or [21] for thorough studies of these orders, and for the well-known
usual stochastic order in particular. Here we just point out that the increasing convex
order, also known as stop-loss order, is a stochastic comparison often considered in
actuarial sciences and reliability. The main reason of its interest in actuarial sciences
is that two risks are ordered in this sense if and only if the corresponding stop-
loss transforms are ordered for every threshold t , i.e., X1 ≤icx X2 if and only if
E[(X1 − t)+] ≤ E[(X2 − t)+], for all t ∈ R, where x+ = max{0, x}. For a
comprehensive discussion on properties and applications of the increasing convex
ordering we refer to [21] or [13].

For what it concerns the dispersive order, it should be pointed out that it is a well-
known comparison of random variables based on their variability (see, again, [21])

4.2.3 The General Model for the Environmental Processes

The model presented here to define the environmental processes is a natural general-
ization, in higher dimensions, of the one defined and studied in the bivariate setting
in [12]. We introduce the model considering vectors with a finite number of compo-
nents; the case of discrete processes is a further generalization for higher numbers
of components.
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Let � denotes any binary increasing, commutative and associative operator
between real numbers, i.e., such that x � y = y � x and (x � y) � z = x � (y � z),
for all x, y, z ∈ R, and denote with

⊙
the repeated application of this operator:⊙

i∈{1,2,...,n} xi = x1 � x2 � · · · � xn . For example, the operator � can be mini-
mum ∧ or the maximum ∨, and in this case

⊙
i∈{1,2,...,n} xi = ∧

i∈{1,2,...,n} xi or⊙
i∈{1,2,...,n} xi = ∨

i∈{1,2,...,n} xi , respectively, or it can be the sum or the product
(restricted to non-negative real numbers, to preserve increasing property), so that in
these cases

⊙
i∈{1,2,...,n} xi stands for

∑
i∈{1,2,...,n} xi or

∏
i∈{1,2,...,n} xi .

Let I = {1, . . . , n} and S = {S j , j ∈ J ⊆ N} be a collection of subsets of I .
Also, let {X j , j ∈ J } be a set of independent random variables describing possible
factors influencing multivariate risks or lifetimes. Define, for i = 1, . . . , n, the set
Λi = {S j : i ∈ S j } and let Ti = ⊙

{ j :S j ∈Λi } X j be the i-th component in the
vector T = (T1, . . . , Tn). For example, given I = {1, 2} and S = {S1, S2, S3} =
{{1}, {2}, {1, 2}}, one can consider the independent variables X1, X2, X3 to define
the vector of lifetimes T = (T1, T2) = (X1 � X3, X2 � X3), modeling the fact that
the first lifetime is influenced by factors X1 and X3, while factors X2 and X3 act
on the second lifetime. In this example X1 and X2 describe individual factors (that
influence the first and the second components, respectively), while X3 is a random
factor acting on both the components of T.

This model has been considered in reliability theory to describe the vector of
lifetimes of a set of components subjected to common and individual shocks. In fact,
one can think at the X j as the waiting time to type j shock, that causes the failure
of components indexed by S j . Defining Λi = {S j : i ∈ S j }, for i = 1, . . . , n, and
letting � to be the minimum, so that Ti = min j :S j ∈Λi {X j } is the time to failure of
component i , the joint distribution ofT = (T1, . . . , Tn) is theGeneralized Marshall–
Olkin (GMO) distribution studied in [9] (see also the references therein). In the
particular case where the X j are exponentially distributed, it reduces to the well-
known multivariate exponential distribution defined by [11]. Similar models have
been considered also in [22] and [23], where applications in queueing systems are
provided.

Also, similar models have been considered in risk theory or in multiple default
problems to describe sets of dependent risks. Indeed, let again S = {S j , j ∈ J ⊆
N} be a collection of subsets of I = {1, . . . , n}, and let {X j , j ∈ J } be a set
of independent random variables. Assume that every X j additively acts on all the
components of index i ∈ S j . Define, for all i = 1, . . . , n, the set Λi = {S j : i ∈
S j }. Then one can consider the vector T = (T1, . . . , Tn) of dependent risks, where
Ti = ∑

j :S j ∈Λi
X j , for all i = 1, . . . , n, thus replacing the operator � with the sum.

4.3 Comparison Results

Let us consider a random vector T = (T1, T2) = (X1 � X3, X2 � X3) defined as
described in Sect. 4.2.3, and consider a new random vector T̃ = (T̃1, T̃2) = (X̃1 �
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X̃3, X̃2� X̃3) defined by means of the same set S = {S1, S2, S3} = {{1}, {2}, {1, 2}},
but considering different common and individual random factors X̃ j , j = 1, 2, 3.

For particular choices of the operator � the following results have been proved
in recent literature.

Proposition 4.2 Let X1 ≤st X̃1, X2 ≤st X̃2 and X3 ≥st X̃3. Then

(X1 ∧ X3, X2 ∧ X3) ≺c (X̃1 ∧ X̃3, X̃2 ∧ X̃3).

This statement, whose proof may be found in [9], essentially says that the
positive dependence among the vector’s components increases, in concordance, as
the common factor X3 stochastically decreases. Further generalizations of this result,
in higher dimensions or considering the maximum instead of the minimum, can be
found in [10] and [3].

When the operator � is the sum, then the positive dependence between the com-
ponents of the vector (evaluated in terms of the Kendall’s τ concordance coefficient)
increases as the variability of the common factor increases. A result in this direction
is the following, whose proof may be found in [17].

Proposition 4.3 Let X1, X2, X̃1 and X̃2 be independent and identically distributed,
and let X3 ≤d X̃3. Then

τ(X1+X3,X2+X3) ≤ τ(X̃1+X̃3,X̃2+X̃3)
.

Other similar results, dealing with the additive model, are provided in [17].
In order to provide comparisons of positive dependence in a more general frame-

work, new results, dealing with the supermodular order, have been proved in [7].
Here we recall the main result contained in that paper.

For it, consider a vector T = (T1, . . . , Tn) defined as described in Sect. 4.2.3.
Then, consider a set I = {I1, . . . , Ik} ⊆ S be such that the Ir , r = 1, . . . , k, are
disjoint subsets of I = {1, . . . , n} and also such that

⋃k
r=1 Ir ∈ S, and let E and

Er , r = 1, . . . , k be independent and identically distributed random variables, inde-
pendent of the X j and X̃ j . Let:

X̃ j =st X j if S j �∈ {I1, . . . , Ik,∪k
r=1 Ir },

X j =st X̃ j � E if S j = ∪k
r=1 Ir ,

X̃ j =st X j � Er if S j ∈ {I1, . . . , Ik}.

Now consider the random vector T̃ = (T̃1, . . . , T̃n), where the T̃i are defined as
T̃i = ⊙

{ j :S j ∈Λi } X̃ j . It is easy to observe that, under relations above, because of

associativity of �, the vectors T = (T1, . . . , Tn) and T̃ = (T̃1, . . . , T̃n) have the
same marginal distributions.

For example, given T = (T1, T2) = (X1 � X3, X2 � X3), a new vector having
the same marginal distributions of T can be defined considering three new indepen-
dent and identically distributed random variables E,E1, and E2, observing that T is
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defined by letting S = {S1, S2, S3} = {{1}, {2}, {1, 2}}, and considering the inde-
pendent variables X̃ j such that X̃1 = X1 � E1, X̃2 = X2 � E2 and X3 = X̃3 � E.
The corresponding vector is T̃ = (T̃1, T̃2) = (X̃1 � X̃3, X̃2 � X̃3), and the two
vectors T and T̃ have the same marginal distributions, being, e.g.,

T1 = X1 � X3 = X1 � E � X̃3 =st X1 � E1 � X̃3 = X̃1 � X̃3 = T̃1.

The following statement provides a comparison of the degree of dependence in the
two vectors.

Proposition 4.4 Let the vectors T and T̃ be defined as above. Then T̃ ≺sm T.

We refer the reader to [7] for the proof and for other similar results.
Note that the previous statements can be restated in terms of concordance order.

Corollary 4.1 Let the vectors T̃ and T be defined as Proposition 4.4. Assume they
have continuous marginal distributions. Then T̃ ≺c T.

4.4 Supermodular Comparison of Environmental Processes

Consider two different environmental processes Θ and Θ̃ having the same marginal
distributions, defined as in Sect. 4.1 by letting

Θi = X0 � Xi and Θ̃i = X̃0 � X̃i for all i ∈ N. (4.2)

Let E and Ei , i ∈ N, be a set of independent and identically distributed random
variables. If

X0 =st X̃0 � E and X̃i =st Xi � Ei for all i = 1, 2, . . . , (4.3)

i.e., if the marginal distributions of the processes are the same, then in the first case
the specific environmental random factor has a higher impact on the dependence than
in the second case. In fact, through Proposition 4.4 one gets

(Θ̃1, . . . , Θ̃n) ≺sm (Θ1, . . . , Θn) ∀n ∈ N
+.

Such a dependence comparison can be further applied to provide useful inequalities,
as shown in the following examples.

4.4.1 An Application in Population Dynamics

Consider a branching process that describes the growth of a population, and assume
that it depends on the environment as follows. LetΘ = {θ0, θ1, . . . , }be a sequence of
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values in a setT describing the evolutions of the environment, and define, recursively,
the stochastic process Z(Θ) = {Zn(θ0, . . . , θn), n ∈ N} by

Z0(θ0) = Y1,0(θ0)

and

Zn(θ0, . . . , θn) =
Zn−1(θ0,...,θn−1)∑

j=1

Y j,n(θn), n ≥ 1.

In order to deal with random evolutions of the environment, consider a sequence
Θ = (Θ0,Θ1, . . . ) of random variables taking on values in T and consider the
stochastic process Z(Θ) = {Zn(Θ0, . . . , Θn), n ∈ N} defined by

Z0(Θ0) = Y1,0(Θ0)

and

Zn(Θ0, . . . , Θn) =
Zn−1(Θ0,...,Θn−1)∑

j=1

Y j,n(Θn), n ≥ 1,

where, for every j, k ∈ N, Y j,k(Θk) is a nonnegative random variable such that

[Y j,k(Θk)|Θk = θ] =st Y j,k(θ).

Assume the Y j,k(θk) to be sequences of independent and identically distributed
variables, for every fixed θk , and assume that they are stochastically increasing in θk .

Now consider two different environmental processes Θ and Θ̃ as defined pre-
viously, letting for example the operator � to be the sum (to describe the fact that
adverse conditions act additively). If X0 =st X̃0 + E and X̃i =st Xi + E for all
i = 1, 2, . . . , i.e., if in the first case, the constant environmental random factor X0
is stochastically greater than the constant environmental random factor X̃0 of the
second case, then Θ̃ ≺sm Θ . Observing that all the assumptions of Proposition 4.2
in [4] are satisfied, and recalling that the supermodular order implies the increasing
directionally convex order, by Corollary 4.2 in [4] immediately follows

Zn(Θ̃1, . . . , Θ̃n) ≤icx Zn(Θ1, . . . , Θn) ∀ n ∈ N
+

(see [4] for details on the increasing directionally convex order). This means that
the numbers of individuals in the two populations can be ordered according to
the increasing convex order at any fixed time n, i.e., the number of individuals in the
population increases in the icx order as the constant random factor describing the
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environment stochastically decreases. It should be pointed out that from this compar-
ison it also follows that the probabilities of extinction (for fixed n) are comparable,
as shown in Corollary 8.6.8 in [18].

4.4.2 An Application in Comparisons of Collective Risks

Consider a portfolio of n risks over a single period of time and assume that during
that period each policyholder i can have a nonnegative claim Yi with probability
θi ∈ [0, 1] ⊆ R. Then, the total claim amount S(θ1, . . . , θn) during that time can be
represented as

S(θ1, . . . , θn) =
n∑

i=1

Ii (θi )Yi ,

where Ii (θi ) denotes a Bernoulli random variable with parameter θi .
In order to remove the assumption of independence among the Bernoulli random

variables, one can replace the vector of real parameters (θ1, . . . , θn) by a random
vector Θ = (Θ1, . . . , Θn), with values in [0, 1]n ⊆ R

n , describing both the ran-
dom environment for occurrences of claims and the dependence among them (see,
e.g., [5]).

Assume that the risks Yi are independent and identically distributed, and assume
that every component Θi of Θ is the maximum among two random parameters X0
and Xi assuming values in [0, 1], describing, respectively, a cause of risk common
to all policyholders and the individual propensity of risk. Thus Θ can be defined
with the model described in Sect. 4.2, letting � be the maximum. Consider now a
different environment Θ̃ similarly defined, with common and individual factors X̃0
and X̃i , and assume that there exist a set of independent and identically distributed
random variables E and Ei , i ∈ N such that

X0 =st X̃0 ∨ E and X̃i =st Xi ∨ Ei for all i = 1, 2, . . . ,

This assumption can model, for example, the fact that the common cause of risk is
stochastically greater in the environment Θ than in Θ̃ .

By applying Proposition 4.4 one immediately gets Θ̃ ≺sm Θ . Now, from Corol-
lary 4.1 in [4], observing that its assumptions are satisfied whenever the risks
Yi are independent and identically distributed, and again recalling that the super-
modular order implies the increasing and directionally convex order, it follows
S(Θ̃) ≤icx S(Θ). Comparisons of stop losses, or premiums, for the collective risks
under the two environments follow from the last stochastic comparison. For example,

E[(S(Θ̃) − α)+] ≤ E[(S(Θ) − α)+] for all α ∈ R.
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4.4.3 An Application in Ruin Theory

Consider the reserve of an insurance company along time, R(t) = u + βt − S(t),
with t ≥ 0, where S(t) is a claim process, β is the rate company get paid per time
unit, and u is the original capital the company owns. In general, it is assumed that
β > E[Zi ], where Zi represents the amount of claims in unit time.

Consider the corresponding probability of ruin P[max(S(t) − βt) ≥ u]. It is a
well-known fact that to evaluate the probability of ruin, the Lundberg approximation

P[ max
s∈(0,t)

(S(s) − βs) ≥ u] t→∞
∼ e−γ u,

where the Lundberg coefficient γ satisfies the equation ln(E[eγ Xi ]) = β.
Let us now consider a discrete time version of this model, letting Sn = �n

i=1Zi ,
where the Zi are non-necessarily independent and identically distributed. It has been
shown in [16], that in this case

P[max
n∈N

(Sn − βn) ≥ u] ∼ e−γ u,

where γ satisfies

lim
n→∞

E[eγ Sn−βn]
n

= 0 or, equivalently, lim
n→∞

E[eγ Sn ]
n

= β,

when the limit exists.
Consider now an environmental process Θ = {Θ1,Θ2, . . .} and a claim process

Z = {Z1(Θ1), Z2(Θ2), . . .} which depends on the environmental process. Assume
the claims Zi (θi ) to be independent for fixed values of the parameters θi , and
stochastically increasing in θi . Consider now a new environmental process Θ̃ =
{Θ̃1, Θ̃2, . . .}, and assume that both the processes depend on a common factor con-
stant along the time, say X0 and X̃0, respectively, and factors describing instantaneous
conditions, say Xi and X̃i . Assume there exists E and Ei , i ∈ N such that Θ and Θ̃

satisfy Eqs. (4.2) and (4.3) for a suitable operator � (like, for example, the sum, to
model the fact that factors act additively. Using the results described in the previous
section we get (Θ̃1, Θ̃2, . . . , Θ̃n) ≺sm (Θ1,Θ2, . . . , Θn), and therefore also, by the
closure under mixture of the supermodular order,

(Z1(Θ̃1), . . . , Zn(Θ̃n)) ≺sm (Z1(Θ1), . . . , Zn(Θn)),

and, as a consequence,

S̃n = �n
i=1Zi (Θ̃i ) ≤icx Sn = �n

i=1Zi (Θi )

(see [21], for details).
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Let γ̃ be the Lundberg coefficient for the second process, i.e., let limn→∞
E[eγ̃ S̃n ]

n= β.
Since S̃n ≤icx Sn , then, by definition of the increasing convex order, E[φ(S̃n)] ≤

E[φ(Sn)] for every increasing and convex function φ (for which the expectations
exist). Thus, in particular,

E[eγ̃ S̃n ]
n

≤ E[eγ̃ Sn ]
n

∀n ∈ N
+

and

β = lim
n→∞

E[eγ̃ S̃n ]
n

≤ lim
n→∞

E[eγ̃ Sn ]
n

.

Since γ should satisfy limn→∞
E[eγ Sn ]

n
= β, it follows that γ ≤ γ̃ .

Thus,

P[max
n∈N

(Sn − βn) ≥ u] ∼ e−γ u ≥ e−γ̃ u ∼ P[max
n∈N

(S̃n − βn) ≥ u] ∀u ∈ R
+,

namely, the second case has a higher ruin probability than that of the first case,
i.e., the probability of ruin increases as the systematic random factor describing the
environment stochastically decreases (whenever the premium rate β is fixed).

4.4.4 An Application in Reliability

Consider a set {N j = {N j (t), t ≥ 0}, j ∈ J } of independent Poisson processes.
Then define a multivariate Poisson process M = (M1, . . . , Mn) like in the additive
model, i.e., assume that every Mi is the superposition of some of the processes N j :

Mi (t) =
∑

j :S j ∈Λi

N j (t), t ≥ 0,

for an appropriate choice of the set S = {S j , j ∈ J ⊆ N}.
This kind of processes are commonly used to count the number of customers

arriving in different lines of service, or the number of claims due to different causes,
or the number of shocks occurring to components, etc.

Consider now a new multivariate Poisson process M̃ = (M̃1, . . . , M̃n) defined
as above by means of the same set S and the new independent Poisson processes
{Ñ j = {Ñ j (t), t ≥ 0}, j ∈ J }. Let λ j and λ̃ j denote the intensity rates of the
processes N j and Ñ j , respectively.
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Let I = {I1, . . . , Ik} ⊆ S, be such that the Ir , r = 1, . . . , k, are disjoint sets
in I and also such that

⋃k
r=1 Ir ∈ S, and consider any fixed δ ∈ R

+ such that
δ ≤ λ j , ∀ j ∈ J . Assume that

λ̃ j =
⎧
⎨

⎩

λ j if S j �∈ {I1, . . . , Ik,∪k
r=1 Ir },

λ j − δ if S j = ∪k
r=1 Ir ,

λ j + δ if S j ∈ {I1, . . . , Ik}.

Observing that M̃ has the same marginal distributions of M, from Proposition 4.4
one immediately gets that, for every fixed time t ,

(M̃1(t), . . . , M̃n(t)) ≤sm (M1(t), . . . , Mn(t)). (4.4)

Consider now a series system, where each component (assume in position i)
dies whenever it collects an amount k + 1 of shocks, arriving according to Poisson
processes as above. Thus, component i is alive at time t if Mi (t) ≤ k, and the whole
system is broken at time t if M(t) = min{Mi (t)} > k. Let Pt denotes the probability
that the system is broken at time t , i.e., let Pt = P[M(t) > k], and similarly define P̃t

Recall now that the minimum is an increasing supermodular function, and that
the composition φ ◦ min is supermodular if the function φ is increasing (see, e.g.,
[8]). Thus, for any increasing function φ by (4.4) we have

E[φ(M̃(t))] = E[φ(min{M̃i (t), i = 1, . . . n})]
≤ E[φ(min{Mi (t), i = 1, . . . n})] = E[φ(M(t))],

i.e., M̃(t) ≤st M(t), for all t . Also, P̃t ≤ Pt , for all t ≥ 0, i.e., the lifetime of the
first system is stochastically greater than those of the second system.
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Chapter 5
Marshall–Olkin Machinery and Power
Mixing: The Mixed Generalized
Marshall–Olkin Distribution

Sabrina Mulinacci

Abstract In this paper, we consider the Marshall–Olkin technique of modeling the
multivariate random lifetimes of the components of a system, as the first arrival times
of some shock affecting part or the whole system and we analyze the possibility to
add more dependence among the shocks and, as a consequence, among the lifetimes,
through the power-mixing technique. This approach is applied to obtain extensions
of the generalized Marshall–Olkin distributions.

5.1 Introduction

Following the Marshall and Olkin [18] seminal paper, the multivariate Marshall–
Olkin distribution can be characterized by the fact that each margin of any dimension
satisfies the lack-of-memory property or by the following construction that we call
Marshall–Olkin machinery (MO-machinery).

Let d > 2, P0 = {S ⊂ {1, . . . , d} : S �= ∅}, and {ES}S∈P0 be a collection of
independent and exponentially distributed random variables with intensity λS ≥ 0.
Assume λ̄ j = ∑

S: j∈S λS > 0, for j = 1, . . . , d. Then if

τ j = min
S: j∈S

ES (5.1)

the survival distribution of (τ1, . . . , τd) defines the Multivariate Marshall–Olkin
distribution (MMO)

F̄M M O(t) = F̄τ (t) = exp

⎛

⎝−
∑

S∈P0

λS max
j∈S

t j

⎞

⎠ . (5.2)
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The corresponding survival marginal distributions are

F̄τ j (t j ) = exp(−λ̄ j t j )

and the corresponding survival copula (see Li [13]) is

ĈM M O(u) =
∏

S∈P0

min
k∈S

uλS/λ̄k
k . (5.3)

For an interpretation of the model, think of a system of d components C1, . . . Cd

(mechanical engines, electronic elements, credit obligors, life-insurance policy hold-
ers, etc.). The random variables ES represent the arrival time of a shock causing the
simultaneous failure (or default, or death, depending on the case) of those compo-
nents C j such that j ∈ S. So the time to failure of each component C j is the random
variable τ j defined in (5.1).

Clearly, the MO-machinery can be applied to any family of random variables
(ES)S∈P0 with support [0,+∞) not necessarily independent and exponentially dis-
tributed, in order to obtain Marshall–Olkin-like distributions and copula functions.
The generalization to the case in which the ES’s are independent but not constrained
to be exponentially distributed has already been widely considered in the literature
and the most general formulation is provided by the Multivariate Marshall–Olkin
distribution in Lin and Li [15].

It is, however, reasonable to consider concrete situations in which some depen-
dence among the shocks causing the failure of the elements in the system considered
exists. A natural way to introduce dependence is to consider some hidden common
factor affecting all the shocks’ arrival times. The idea to assume a common factor
to induce dependence is at the basis of the original construction of the Archimedean
copula function (see Marshall and Olkin [19]). In fact, it is well known that, if
T = (T1, . . . , Td) is a random vector with independent and exponentially distributed
components and Λ > 0 is a positive and independent random variable with Laplace
transform L , the random vector

τ =
(

T1
Λ

, . . . ,
Td

Λ

)

has the joint survival distribution

F̄τ (t1, . . . , td) = E
[
F̄Λ

T (t1, . . . , td
]

where F̄T is the joint survival distribution of the random vector T, and the depen-
dence structure given by anArchimedean copulawith generator L . Hence the survival
distribution of τ is obtained by power-mixing the survival distribution F̄T through
the random variable Λ. The technique of constructing distributions through such a



5 Marshall–Olkin Machinery and Power Mixing … 67

power-mixing technique was introduced in Marshall and Olkin [19] and then
developed by Joe and Hu [12].

In this paper, we investigate the possibility to construct generalizations of the
MMO distribution by inducing dependence among the shocks’ arrival times through
the power-mixing technique. In particular, we will see that the power-mixing tech-
nique is closed under the MO-machinery. More precisely, consider a random vector
E with survival distribution F̄ and another random vector Z whose survival distrib-
ution is obtained as a power-mixture of F̄ : if one applies the MO-machinery to both
vectors, the survival distribution of the random vector generated fromZ is the power-
mixture of the one generated from E. Finally, the power-mixing technique will be
applied to construct generalizations of the Multivariate Generalized Marshall–Olkin
distributions in order to allow for some dependence among the shocks’ arrival times.

The paper is organized as follows.
In Sect. 5.2, the class of multivariate survival distributions to which the power-

mixing technique can be applied is introduced and some relevant properties are
pointed out: it is the class of Min-ID distributions introduced and studied in Joe
and Hu [12] and Joe [11]. In Sect. 5.3, the closure property of the power-mixing
technique under the MO-machinery is shown. Section5.4 is devoted to a review
about the generalized Marshall–Olkin distribution following Li and Pellerey [16]
and Lin and Li [15]. In Sect. 5.5, an extension of the generalized Marshall–Olkin
distribution is built in order to include dependence among the shocks affecting the
system.

Throughout the paper, all vectors will be denoted with bold letters and equalities
and inequalities among vectors will be meant componentwise. Moreover, by the sake
of simplicity, all marginal survival distributions are assumed to be continuous and
strictly decreasing.

5.2 Mixtures of Survival Distributions on [0,+∞)d

In this section, we will briefly recall the well-known concept of mixture of a survival
min-infinitely divisible d-multivariate distribution with support [0,+∞)d and we
will present the main properties. We refer to Marshall and Olkin [19], Joe [10], Joe
[11] and Joe and Hu [12] for a more detailed treatment.

5.2.1 Min-ID Distributions

Here, we summarize the main notions and properties of Min-Id distributions. We
will consider only Min-Id distributions since we are interested in survival distrib-
ution functions and minima of random variables; the symmetric notion of Max-Id
distributions can be trivially derived, replacing survival distribution functions with
cumulative distribution functions and minima with maxima. All these concepts are
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well known and we refer the interested reader to Joe and Hu [12] and Joe [11] for a
more complete presentation of this topic.

Definition 5.1 A min-infinitely divisible multivariate distribution (Min-ID) is a dis-
tribution F for which any positive power of the survival distribution function F̄ is
again a survival distribution function.

Even if positive powers of univariate survival distribution functions are always
again survival distribution functions, for d-variate survival distribution functions,
with d ≥ 2, this is true for powers greater or equal to d − 1.

In case of aMin-Id survival distribution F̄ , ifX ∼ F̄1/n , for n > 0 and considering(
X(n)

i

)

i=1,...,n
, n i.i.d. copies of X, then

(

min
i

Xi,1, . . . ,min
i

Xi,d

)

∼ F̄

and this fact justifies the name. ClearlyMultivariate ExtremeValue distributions with
support [0,+∞) are Min-ID.

Remark 5.1 In Joe [11], several dependence properties of Min-ID distributions are
analyzed. In particular, it is observed that the Min-ID requirement induces positive
dependence; in fact, thanks to Theorems 2.3 and 2.6 in Joe [11], we have that any
bivariate Min-ID distribution F is necessarily PQD (Positive Quadrant Dependent),
that is

Ĉ(u, v) ≥ uv, ∀(u, v) ∈ [0, 1]2

where Ĉ is the survival copula associated to F̄ . As a consequence, a necessary
condition for a multivariate distribution to be Min-ID is that all bivariate margins
are PQD and this fact clearly implies that Min-ID is a strong positive dependence
condition.

As it is well known, in case of a d-variate Extreme Value distribution F̄ , the above
condition generalizes to the positive upper hortant dependence property

Ĉ(u1, . . . , ud) ≥
d∏

j=1

u j , ∀u ∈ [0, 1]d

where Ĉ is the survival copula associated to F̄ .

Conditions for a multivariate distribution function to be Min-Id are given in Joe
and Hu [12] and Joe [11].

An important subfamily of Min-ID distributions (strongly related to Multivariate
Extreme Value distributions since they share the same copulas) is the class of min-
stable multivariate exponential distributions that we now introduce.
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Definition 5.2 Let (Ω,F ,P) be a probability space where a vector T =
(T1, . . . , Td) is defined with support [0,+∞)d . T is said to have a min-stable multi-
variate exponential distribution (MSMVE) if for all k ∈ {1, . . . , d}, 1 ≤ i1 < . . . <

ik ≤ d, c1, . . . , ck > 0, min{c1Xi1 , . . . , ck Xik } is exponentially distributed.

We refer the reader to Joe [10] and, more recently, to Bernhart et al. [1] as further
references on this topic.

The survival distribution function F̄ of an MSMVE distribution is of type

F̄A(x) = exp (−A(x)) , x ∈ [0,+∞)d (5.4)

with A : [0,+∞)d → [0,+∞) homogeneous of order 1 (meaning that A(λx) =
λA(x), for all λ > 0). If we standardize, assuming the marginals to be unit expo-
nential, then A(ei) = 1, for all ei = (0, . . . , 0, 1, 0, . . . , 0): A is called a stable tail
dependence function (see Joe [10] and Theorem6.2 in Joe [11]).
The survival copula of an MSMVE-distributed random variable is of type

ĈA(u) = exp (−A(− ln u1, . . . ,− ln ud)) , ∀u ∈ [0, 1]d (5.5)

It is a well-known fact (see, for example, Sect. 6.2 in Joe [11]) that the family of
copulas of type (5.5) coincides with the family of extreme value multivariate copula
functions.

The MSMVE family is a subclass of Min-ID distributions. In fact, if T is a
MSMVE distributed d-vector with survival distribution function F̄A for a given

A (see (5.4)), then if λ > 0, the d-vector Tλ =
(

T1
λ

, . . . ,
Td
λ

)
has the survival

distribution

F̄Tλ(t) = F̄A(λt) = exp (−A(λt)) = F̄λ
A(t).

Remark 5.2 In Joe andHu [12] it is proved that if one considers survivalMultivariate
ExtremeValue distributionswith all themarginals in the same family, then the closure
property under the minimum characterizing MSMVE distributions is preserved: this
is not the case for general Min-ID distributions.

Starting from the survival copula (5.5) of an MSMVE-distribution, other Min-
ID distributions can be recovered. In fact, applying Sklar’s theorem, we can allow
for different marginal survival distribution functions Ḡ1, . . . , Ḡd all of them hav-
ing [0,+∞) as support. If we consider the cumulative hazard functions Hi (x) =
− ln Ḡi (x), i = 1, . . . , d, we get the survival distribution functions with support
[0,+∞)d of type

Ḡ A(x) = Ḡ A(x; H1, . . . , Hd) =
= ĈA

(
Ḡ1(x1), . . . , Ḡd(xd)

) =
= exp

(−A
(− ln Ḡ1(x1), . . . ,− ln Ḡd(xd)

)) =
= F̄A (H1(x1), . . . , Hd(xd)) .

(5.6)



70 S. Mulinacci

G A is again Min-ID. In fact, for all λ > 0, Ḡλ
A is the survival distribution of the

d-vector
(

H−1
1

(
T1
λ

)
, . . . , H−1

d

(
Td
λ

))
, where T = (T1, . . . , Td) is MSMVE with

standard unit exponential marginals.

5.2.2 Power-Mixtures of Survival Min-ID Distributions

Let us consider a survival Min-ID d-dimensional distribution function F̄ and a posi-
tive random variableΛwith Laplace transform L . The corresponding mixed survival
distribution is defined as

F̄Λ(z) = E
[
F̄Λ(z)

] = L
(− ln F̄(z)

)
. (5.7)

If Ĉ is the survival copula associated to F̄ , then the survival copula associated to the
mixture (5.7) is

ĈΛ(u) = L
(
− ln Ĉ

(
e−L−1(u1), . . . , e−L−1(ud )

))
. (5.8)

Remark 5.3 Notice that F̄Λ (ĈΛ) is exchangeable if and only if F̄ (Ĉ) is.

Remark 5.4 The power-mixing technique preserves the lower orthant ordering. In
fact, if F̄1(z) ≥ F̄2(z), for all z ∈ [0,+∞)d , then F̄1,Λ(z) ≥ F̄2,Λ(z), for all
z ∈ [0,+∞)d .

In Joe and Hu [12], some subfamilies of such distributions are introduced and
their dependence properties analyzed.

As particular cases, here we consider mixtures of survival distributions of type
(5.4) and (5.6). Let Λ be a positive random variable and L its Laplace transform.
The mixed survival distributions corresponding to (5.4) and (5.6), respectively, are

F̄A,Λ(z) = E
[
F̄Λ

A (z)
] =

= L
(− ln

(
F̄A(z)

)) =
= L ◦ A(z)

(5.9)

and

Ḡ A,Λ(z; H1, . . . , Hd) = E
[
ḠΛ

A (z; H1, . . . , Hd)
] =

= L
(− ln

(
Ḡ A(z; H1, . . . , Hd)

)) =
= L

(− ln
(
F̄A (H1(z1), . . . , Hd(zd))

)) =
= L ◦ A (H1(z1), . . . , Hd(zd)) .

(5.10)
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In particular, it follows that

Ḡ A,Λ (z; H1, . . . , Hd) = F̄A,Λ (H1(z1), . . . , Hd(zd)) .

Notice that Ḡ A,Λ (z; H1, . . . , Hd) is the survival distribution functionof the vector

Z =
(

H−1
1

(
T1
Λ

)

, . . . , H−1
d

(
Td

Λ

))

whereT = (T1, . . . , Td)has survival distribution F̄A and thepositive randomvariable

Λ is independent of the d-vectorT. Since F̄A,Λ(z) is the survival distribution function

of W =
(

T1
Λ

, . . . ,
Td
Λ

)
, (5.9) and (5.10) share the same survival copula function

ĈA,Λ(u) = L
(
− ln ĈA

(
e−L−1(u1), . . . , e−L−1(ud )

))
. (5.11)

Remark 5.5 Copulas of type (5.11) are of Archimax type (see Charpentier et al. [4],
for recent results on multivariate Archimax copulas). Multivariate Archimax copulas
are of type

Cψ,D(u) = ψ
(
− ln D

(
e−ψ−1(u1), . . . , e−ψ−1(ud )

))

where D is a d-variate extreme value copula and ψ is the generator of a d-variate
Archimedean copula (see (3) in Charpentier et al. [4]). Since (see (5.5)) ĈA is an
extreme value copula, copulas of type (5.11) coincide with the subset of Archimax
copulaswith a completelymonotone generator (see Sect. 3.1 inCharpentier et al. [4]).

5.2.3 Conditional Mixed Survival Min-ID Distributions

In this subsection we will analyze the conditional distribution of a nonnegative d-
random vector whose survival distribution is a mixture of a survival Min-Id distrib-
ution function.

More precisely, let F̄Λ be defined as in (5.7) and let Z be a d-random vector
accordingly distributed. We are interested in studying, for s ∈ [0,+∞)d

F̄Λ,s(t) = P (Z > t + s| Z > s) ∀t ∈ [0,+∞)d .

We start considering the original unmixed Min-ID survival distribution function F̄
(see (5.7)) and a d-random vector X = (X1, . . . , Xd) accordingly distributed.We set

F̄s(t) = P (X > t + s|X > s) .

F̄s is clearly again Min-ID since F̄λ
s (t) = F̄λ(t+s)

F̄λ(s)
, for any λ > 0.
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Proposition 5.1 F̄Λ,s is the power-mixture of F̄s. More precisely,

F̄Λ,s(t) = Ls
(− ln F̄s(t)

)
(5.12)

where Ls is the Laplace transform of the positive random variable Λs with cumulative
distribution function

FΛs(y) = 1

L
(− ln F̄(s)

)

∫ y

0
F̄w(s)d FΛ(w), y ∈ [0,+∞)

where FΛ and L are, respectively, the cumulative distribution function and the
Laplace transform of Λ.

Proof

F̄Λ,s(t) = F̄Λ(t + s)

F̄Λ(s)
= L

(− ln F̄(t + s)
)

L
(− ln F̄(s)

) =
L

(
− ln F̄(s) − ln F̄(t+s)

F̄(s)

)

L
(− ln F̄(s)

) .

Set

Ls(x) = L
(− ln F̄(s) + x

)

L
(− ln F̄(s)

) .

It can be easily verified that Ls is the Laplace transform of the positive random
variable Λs with cumulative distribution function

FΛs(y) = 1

L
(− ln F̄(s)

)

∫ y

0
F̄w(s)d FΛ(w), y ∈ [0,+∞).

Hence

F̄Λ,s(t) = Ls
(− ln F̄s(t)

)
.

By (5.12), for every s ∈ [0,+∞)d , the conditional survival distribution F̄Λ,s is
again a mixture of the survival Min-ID conditional distribution F̄s through a suitable
positive randomvariableΛs. As a consequence, if Ĉs is the survival copula associated
to F̄s, then

ĈΛ,s(u) = Ls

(
− ln Ĉs

(
e−L−1

s (u1), . . . , e−L−1
s (ud )

))

is the survival copula associated to F̄Λ,s (see also [3]).
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5.3 Power-Mixture Closure Under the MO-machinery

In this section, we will show that, starting from a survival multivariate distribution
that is the mixture of a survival Min-ID through a positive random variable Λ and
applying the MO-machinery, then the obtained survival distribution is again the
mixture through the same Λ of the survival distribution obtained by applying the
MO-machinery to the unmixed original survival Min-ID distribution. In particular,
we will show that the Min-ID property is closed under the MO-machinery.

5.3.1 The General MO-machinery

In this subsection, we formalize a general version of the MO-machinery model in
order to allow for shocks whose arrival times are not necessarily independent and
exponentially distributed.

Let d > 2, P0 = {S ⊂ {1, . . . , d} : S �= ∅} and π : P0 → {1, . . . , 2d − 1} be
some ordering on P0. We consider a random vector E = (E1, . . . , E2d−1) whose
components have support [0,+∞) or {+∞}. We denote with F̄E the corresponding
survival distribution function.

The idea behind the above model is the following: let us consider a system with d
components C1, . . . Cd ; each Ei is the time-arrival of a shock causing the simultane-
ous default of those components C j such that j ∈ π−1(i): if Ei ≡ +∞, then there is
no common shock involving simultaneously all the componentsC j with j ∈ π−1(i).

Assumption In order to exclude the case of a component with perpetual life, we
assume that for every j ∈ {1, . . . , d}, there exists at least one i with j ∈ π−1(i) such
that Ei has the whole positive half-line as support.

If

M j = min
i : j∈π−1(i)

Ei , j = 1, . . . , d,

the survival distribution function of the random vector M = (M1, . . . , Md) is

F̄M(t) = P
(
M j > t j , j = 1, . . . , d

) =
= P

(
min

(
Ei : j ∈ π−1(i)

)
> t j , j = 1, . . . , d

)
=

= P

(
Ei > max(t j : j ∈ π−1(i)), i = 1, . . . , 2d − 1

)
=

= F̄E(s1, . . . , s2d−1)

(5.13)

where si = max
(
t j : j ∈ π−1(i)

)
.
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The marginal survival distributions are

F̄M j (t) = P

(
Ei > t,∀i : j ∈ π−1(i)

)
= exp

(−W j (t)
)
.

and the associated survival copula is

ĈM(u) = F̄E

(

max
j∈π−1(1)

(
W −1

j (− ln u j )
)

, . . . , max
j∈π−1(2d−1)

(
W −1

j (− ln u j )
))

(5.14)

Remark 5.6 TheMO-machinery considered in this paper is a particular specification
of the more general concept of MO-machinery considered in Durante et al. [6] and
of the generalizations of theMarshall–Olkin model presented in Frostig and Pellerey
[9]: here the effect of the random variables affecting the system (or portions of it) is
given by the minimum of their time arrivals.

Example 5.1 If F̄E is of type (5.6) for some homogeneous A : [0,+∞)2
d−1 →

[0,+∞), then

F̄M(t) = F̄A(H1(s1), . . . , H2d−1(s2d−1)) =
= exp

(

−A

(

max
j∈π−1(1)

H1(t j ), . . . , max
j∈π−1(2d−1)

H2d−1(t j )

))

and

F̄M j (t) = exp
(−K j (t)

)

with K j (t) = A
(
h j (t)

)
where h j (t) is a 2d −1-vector whose i th component is Hi (t)

if j ∈ π−1(i) and 0 otherwise. The associated survival copula is

ĈM(u) = e
−A

(

max
j∈π−1(1)

(
H1◦K −1

j (− ln u j )
)
,..., max

j∈π−1(2d −1)

(
H2d −1◦K −1

j (− ln u j )
)
)

.

Example 5.2 The bivariate case. Let d = 2, π({1}) = 1, π({2}) = 2, and
π({1, 2}) = 3 andE = (E1, E2, E3). ThenM = (M1, M2)with M1 = min(E1, E3)

and M2 = min(E2, E3).
We have that

F̄M(t1, t2) = F̄E(t1, t2,max(t1, t2)),

the marginal survival distributions are

F̄M j (t) = F̄E j ,E3(t, t)
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and, if W j (t) = − ln F̄E j ,E3(t), the associated copula function is

ĈM(u) = F̄E

(
W−1
1 (− ln u1), W−1

2 (− ln u2),max
(

W−1
1 (− ln u1), W−1

2 (− ln u2)
))

.

If, in particular, the survival distribution F̄E is of type (5.6), we have

F̄M(t1, t2) = exp (−A (H1(t1), H2(t2), H3(max(t1, t2))))

with marginal survival distributions

F̄M j (t) = exp
(−K j (t)

)
, j = 1, 2

where K1(x) = A (H1(x), 0, H3(x)) and K2(x) = A (H2(x), 0, H3(x)), and sur-
vival copula

ĈM(u) = e
−A

(
H1◦K −1

1 (− ln u1),H2◦K −1
2 (− ln u2),max

(
H3◦K −1

1 (− ln u1),H3◦K −1
2 (− ln u2)

))

.

5.3.2 Min-ID Closure Under the MO-machinery

Proposition 5.2 If FE is Min-ID, then FM is Min-ID as well.

Proof Given λ > 0, let us consider a probability space (Ω,F ,P) and a 2d −1-vector
Eλ whose survival distribution is F̄λ

E . Applying to Eλ the MO-machinery described
in the previous subsection, we have that

W (t1, . . . , td) = F̄λ
E(s1, . . . , s2d−1)

(with si = max
(
t j : j ∈ π−1(i)

)
) is a d-variate survival distribution function and

(see (5.13))

W (t1, . . . , td) = F̄λ
M (t1, . . . , td).

Hence FM is again Min-ID.

As we saw in Sect. 5.2, MSMVE distributions are Min-ID and this fact is a conse-
quence of the closure property under themin operator. Similarly, the closure property
under the min operator is preserved by the MO-machinery.

Proposition 5.3 If FE is MSMVE, then FM is MSMVE as well.

Proof F̄M is the survival distribution of M = (M1, . . . , Md) with

M j = min
(

Ei : j ∈ π−1(i)
)

, j = 1, . . . , d,
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and, if k ∈ {1, . . . , d} and 1 ≤ i1 < i2 < · · · < ik ≤ d and ci j > 0 for j = 1, . . . , k

min{ci1 Mi1, . . . , cik Mik } = min
j∈J

{d j E j }

where J = {i : ∃ρ ∈ {1, . . . , k} : iρ ∈ π−1(i)} and d j = min{ciρ : ρ ∈
{1, . . . , k}, iρ ∈ π−1( j)}. It follows that min j∈J {d j E j } is again exponentially dis-
tributed being FE MSMVE. Hence FM is MSMVE.

Remark 5.7 Notice that if FE is MSMVE, then F̄λ
M is the survival distribution of(

M1
λ

, . . . ,
Md
λ

)
.

5.3.3 Power-Mixture Closure Under the MO-machinery

Let us assume that FE is Min-ID and let F̄Λ be the mixed transform of F̄E through
Λ > 0 with Laplace transform L . Let (Ω,F ,P) be a probability space and Z =
(Z1, . . . , Z2d−1) be a random vector distributed according to F̄Λ.

Proposition 5.4 The mixture of the survival Min-ID distribution F̄M is the survival
distribution of the vector τ = (τ1, . . . , τd) with

τk = min
i :k∈π−1(i)

Zi , k = 1, . . . , d.

Proof Setting again si = maxk∈π−1(i) tk ,

F̄τ (t) = P (τk > tk : k = 1, . . . , d) =
= P

(
min

(
Zi : k ∈ π−1(i)

)
> tk, k = 1, . . . , d

)
=

= P

(
Zi > max

(
tk : k ∈ π−1(i)

)
, i = 1, . . . , 2d − 1

)
=

= F̄Λ(s1, . . . , s2d−1) =
= E

[
F̄Λ

E
(
s1, . . . , s2d−1

)] =
= E

[
F̄Λ

M(t)
]

that is, F̄τ is the mixture of F̄M through Λ and

F̄τ (t) = L
(− ln F̄M(t)

)
. (5.15)

As a consequence, the associated survival copula function Ĉτ is

Ĉτ (u) = L
(
− ln ĈM

(
e−L−1(u1), . . . , e−L−1(ud )

))
(5.16)
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where ĈM is the survival copula function associated to F̄M given in (5.14).

Example 5.3 The scale-mixtures of Marshall–Olkin distributions
In Li [14] the scale-mixing technique is applied to multivariate extreme value
distributions and the tail behavior of the obtained distributions is analyzed. In par-
ticular, the scale-mixture of the Marshall–Olkin distribution (SMMO distribution) is
obtained from the multivariate Marshall–Olkin distribution. These distributions and
copulas have also been considered in Bernhart et al. [2] and in Mai et al. [17].

SMMO distributions represent a particular example of the construction presented
in this section. In fact, the multidimensional Marshall–Olkin distribution is of type
(5.13) with the underlying random vector E having independent and exponentially
distributed components: since obviously FE is a MSMVE distribution, according to
Remark5.7, power-mixing is equivalent to scale mixing.

More precisely, the SMMO distribution and the SMMO copula can be recovered
from (5.15) and (5.2) and from (5.16) and (5.3), respectively. In fact, since here E
has independent components, F̄E is the product of the survival marginal distributions
and so there is no need of the ordering function π onP0: hence we can simplify the
notation denoting with ES the random variable Ei such that π(S) = i . The formulas
we get are:

F̄SMMO(t) = L
(− ln F̄M M O(t)

) = L

⎛

⎝
∑

S∈P0

λS max
j∈S

t j

⎞

⎠

and

ĈSMMO(u) = L
(
− ln ĈM O

(
e−L−1(u1), . . . , e−L−1(ud )

))
=

= L

⎛

⎝
∑

S∈P0

max
k∈S

(

L−1(uk)
λS

∑
V ∈P0:k∈V λV

)⎞

⎠ .

5.4 The Generalized Marshall–Olkin Type Distributions

In this section, we describe the Generalized Marshall–Olkin distributions and the
Generalized Marshall–Olkin copula functions introduced in the bivariate case in Li
and Pellerey [16] and in the multivariate case on Lin and Li [15]. These distributions
can be obtained by applying theMO-machinery to a random vector E whose compo-
nents, even if again independent, are not constrained to be exponentially distributed.
The distribution of E is Min-ID and so all the results of Sect. 5.3 apply.

More precisely, let us consider the setting of Example5.1which A(x) = x1+· · ·+
x2d−1. Since such a function A is exchangeable, we can simplify the notation, being
the induced survival distribution independent of the ordering function π . Hence we
will denote the elements of E with ES for S ∈ P0.
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So, following Example5.1, we get the Multivariate Generalized Marshall–Olkin
distribution with generating functions (MGMO) (HS)S∈P0

F̄MGMO(t) = F̄MGMO
(
t; (HS)S∈P0

) = exp

⎛

⎝−
∑

S∈P0

max
j∈S

HS(t j )

⎞

⎠ . (5.17)

The j th marginal survival distribution is

F̄MGMO, j (t) = exp
(−K j (t)

)

with

K j (t) =
∑

S: j∈S

HS(t)

and the associated survival copula is

ĈMGMO(u) = ĈMGMO
(
u; (HS)S∈P0

) =

= exp

⎛

⎝−
∑

S∈P0

max
j∈S

HS ◦ K −1
j (− ln u j )

⎞

⎠
(5.18)

Thanks to Proposition5.2, the MGMO distribution is Min-ID.

Example 5.4 The bivariate case: Li and Pellerey [16]
Let us consider d = 2 and E1 = E{1}, E1 = E{2} and E3 = E{1,2}. Then, from
(5.17) we get theGeneralized Marshall–Olkin distribution with generating functions
(Hi )i=1,2,3

F̄GMO(x1, x2) = F̄GMO(x1, x2; (Hi )i=1,2,3)(x1, x2) =
= exp(−H1(x1) − H2(x2) − H3(max(x1, x2))).

If Ki = Hi + H3, for i = 1, 2, then the corresponding marginal survival distributions
are

F̄GMO, j (x) = exp(−K j (x)), j = 1, 2

while the associated survival copula function is, by (5.18),

ĈGMO(u, v) = ĈGMO(x1, x2; (Hi )i=1,2,3)(u, v) =
= exp

(
−H1 ◦ K −1

1 (− ln u) − H2 ◦ K −1
2 (− ln v)+

−H3

(
max(K −1

1 (− ln u), K −1
2 (− ln v))

))
=
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= uv exp
(

H3 ◦ K −1
1 (− ln u) + H3 ◦ K −1

2 (− ln v)+
−H3

(
max(K −1

1 (− ln u), K −1
2 (− ln v))

))
=

= uv exp
(

H3

(
min

(
K −1
1 (− ln u), K −1

2 (− ln v)
)))

.

Since, thanks to Proposition5.2, the Generalized Marshall–Olkin distributions are
Min-ID, they are PQD (see Remark5.1), as stated in Proposition2.1 in Li and
Pellerey [16].

Example 5.5 If HS(x) = λS H(x) for λS ≥ 0, we recover from (5.17) the Muliere
and Scarsini distribution (see Muliere and Scarsini [21])

F̄M S(t) = exp

⎛

⎝−
∑

S∈P0

max
j∈S

λS H(t j )

⎞

⎠

and from (5.18) the multivariate Marshall–Olkin copula in (5.3).

In Lin and Li [15], several results are proved that generalize those shown in Li
and Pellerey [16] in the bivariate case. In particular, it is shown that

• an MGMO-distributed d-vector M is always positively associated, that is

Cov (φ(M1, . . . , Md), ψ(M1, . . . , Md)) ≥ 0

for any increasing functions φ and ψ with finite covariance;
• an MGMO copula is positively upper orthant dependent, that is

ĈMGMO(u) ≥
d∏

i=1

ui , u ∈ [0, 1]d . (5.19)

Moreover, the authors present some comparison results among different MGMO
distributions and among different MGMO copulas.

More precisely, let us consider two d-dimensional MGMO distributions with
generating functions {HS : S ∈ P0} and {VS : S ∈ P0}, respectively. Some
sufficient conditions are given to guarantee the dominance relation

ĈMGMO

(
u; (

Hj
)

j=1,...,2d−1

)
≥ ĈMGMO

(
u; (

Vj
)

j=1,...,2d−1

)
(5.20)

for all u ∈ [0, 1]d .
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In particular (5.20) is satisfied if one of the following conditions holds:

1. C1:

HI ◦
(

∑

S:i∈S

HS

)−1

(x) ≥ VI ◦
(

∑

S:i∈S

VS

)−1

(x), ∀x ≥ 0

for all I ∈ P0 such that |S| ≥ 21 and for all i ∈ S (see Theorem4 in Lin and
Li [15]);

2. C2: the twod-dimensionalMGMOdistributions have commonunivariatemargins
and HS ≥ VS for all S ∈ P0 with |S| ≥ 2 (see Corollary2 in Lin and Li [15]);

3. C3:

a.
HS ◦ H−1

I (x) = VS ◦ V −1
I (x), ∀x ≥ 0

for all S, I ∈ P0 such that |S| ≥ 2, |I | ≥ 2 and S ∩ I �= ∅ and
b. for all S ∈ P0, with |S| ≥ 2, and for all i ∈ S,

H{i} ◦ H−1
S (x) ≤ V{i} ◦ V −1

S (x), ∀x ≥ 0

(see Proposition8 in Lin and Li [15]).

In Frostig and Pellerey [9] other conditions for (5.20) are provided. In particular,
it is straightforward to write sufficient conditions on the generating functions so that
their Corollary 3.1 applies.

In Sect. 4 of Lin and Li [15] the residual life

Xt = [X1 − t, . . . , Xd − t |X1 > t, . . . , Xd > t], t > 0

of a vector X distributed according to an MGMO distribution is considered and the
dynamic behavior of the corresponding survival copula is studied.

The survival distribution of the residual life is

F̄Xt (t) = exp

⎛

⎝−
∑

S∈P0

WS,t

(

max
i∈S

ti

)
⎞

⎠ (5.21)

where

WS,t (x) = HS(x + t) − HS(t)

1Here and in the sequel, given a finite set A, with |A| we denote the number of elements in A.
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while the associated copula is (see Proposition 4 in Lin and Li [15])

ĈXt (u) = exp

⎛

⎝−
∑

S∈P0

max
i∈S

WS,t ◦
(

∑

I :i∈I

WI,t

)−1

(− ln ui )

⎞

⎠ (5.22)

(5.21) and (5.22) generalize the bivariate analogous ones in Sect. 4 of Li and
Pellerey [16].

5.5 The Mixed Generalized Marshall–Olkin Distribution

Since MGMO distributions are Min-ID, we can consider power-mixtures of their
survival versions. More precisely, in this section, we will apply (5.7) and (5.8) to
obtain new distributions and copula functions.

More precisely, if Λ > 0 is a positive random variable with Laplace transform
L , we call Mixed Multidimensional Generalized Marshall–Olkin distribution (Mix-
MGMO) with generating functions (HS)S∈P0 the distribution

F̄MGMO,Λ(t) = F̄MGMO,Λ

(
t; (HS)S∈P0

) =
= L

(− ln F̄MGMO(t)
) =

= L

⎛

⎝
∑

S∈P0

max
j∈S

HS(t j )

⎞

⎠ .

(5.23)

We recall that, as stated in Proposition5.4, this is the distribution of the random
vector τ = (τ1, . . . , τd) such that τi = minS:i∈S ZS where (ZS)S∈P0 is distributed
according to the survival distribution function

F̄Λ(x) = L

⎛

⎝
∑

S∈P0

HS(xS)

⎞

⎠ . (5.24)

where x = (xS)S∈P0 .
Equality (5.24) can be rewritten as

F̄Λ(x) = L

⎛

⎝
∑

S∈P0

L−1(F̄S(xS))

⎞

⎠

where F̄S(x) = L ◦ HS(x), meaning that, thanks to Sklar’s theorem, the depen-
dence structure of the family of random variables (ZS)S∈P0 is of Archimedean type
with generator L . Hence, unlike the Multivariate Generalized Marshall–Olkin case,
where independence is assumed among the original random variables (ES)S∈P0 ,
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here a dependence of Archimedean type is considered. Since here the generator is the
Laplace transform of a positive random variable, we set in the case of Archimedean
copulas with completely monotone generator (see McNeil and Nešlehová [20]).

The corresponding marginal survival distributions are

F̄MGMO,Λ, j (t) = L
(− ln F̄MGMO, j (t)

) =
= L ◦ K j (t)

where

K j (t) =
∑

S: j∈S

HS(t)

and the associated survival copula function is

ĈMGMO,Λ(u) = ĈMGMO,Λ

(
u; (HS)S∈P0

) =
= L

(
− ln ĈMGMO

(
e−L−1(u1), . . . , e−L−1(ud )

))
=

= L

⎛

⎝
∑

S∈P0

max
j∈S

HS ◦ K −1
j (L−1(u j ))

⎞

⎠ =

= L

⎛

⎝
∑

S∈P0

HS

(

max
j∈S

K −1
j ◦ L−1(u j )

)
⎞

⎠

Remark 5.8 The bivariate case Let d = 2. If as in Example5.4 H1 = H{1}, H2 =
H{2} and H3 = H{1,2} we have that (5.23) takes the form

F̄GMO,Λ(x1, x2) = L(H1(x1) + H2(x2) + H3(max(x1, x2))) (5.25)

and the associated survival copula function is

ĈGMO,Λ(u, v) = L
(

L−1(u) + L−1(v) − H3

(
min

(
K −1
1 ◦ L−1(u), K −1

2 ◦ L−1(v)
)))

(5.26)
where Ki = Hi + H3, i = 1, 2.
Survival distribution functions of type (5.25) and copulas of type (5.26) repre-

sent a subset of the family of Archimedean-based Marshall–Olkin distributions and
copulas, introduced in Mulinacci [22]: on the contrary to the case here considered,
any Archimedean generator in (5.25) and (5.26) is there allowed. In that paper, some
statistical properties (such as the Kendall’s function and the Kendall’s tau) of distri-
butions and copulas of type (5.25) and (5.26) are studied.

An algorithm to build simulations of copulas of type (5.26) can be found in
Durante [7].
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Inheriting this property from the generalizedMarshall–Olkin case, distributions of
type (5.25) and copulas of type (5.26), are exchangeable if and only if H1 = H2 = H .
In particular we get

ĈGMO,Λ(u, v; H, H, H3) = L
(
L−1(u) + L−1(v) − H3 ◦ K −1 ◦ L−1 (max (u, v))

)

where K = H + H3.
Copulas of this type represent a particular specification of the copulas introduced

in Durante et al. [8], defined as

Cφ,ψ(u, v) = φ[−1](φ(u ∧ v) + ψ(u ∨ v))

withφ : [0, 1] → [0,+∞], continuous, convex and strictly decreasing,ψ : [0, 1] →
[0,+∞], continuous, decreasing and such that ψ(1) = 0 and ψ − φ increasing in
[0, 1]. TheMix-GMOexchangeable copula is recovered by settingφ(1) = L−1(1) =
0 and ψ(t) = H ◦ K −1 ◦ L−1(t).

Remark 5.9 TheMix-MGMOcopulas family contains the SMMOfamily as a proper
subset. In fact, we recover the copula functions of Example5.3 considering, for
S ∈ P0, HS = λS H for some H and λS ≥ 0 with

λ̄ j =
∑

S: j∈S

λS > 0.

In fact, in this case,

F̄MGMO,Λ(t) = L

⎛

⎝
∑

S∈P0

λS H

(

max
j∈S

t j

)
⎞

⎠ ,

and, since K j (x) = λ̄ j H(t),

F̄MGMO,Λ, j (t) = L
(
λ̄ j H(t)

)

and

ĈMGMO,Λ(u) = L

⎛

⎝
∑

S∈P0

λS max
j∈S

L−1(u j )

λ̄ j

⎞

⎠

Notice that this copula does not depend on H and coincides with the SMMO copula
of Example5.3.

A subclass of SMMOdistributions and copula functions is considered inCherubini
and Mulinacci [5] where the model is applied to study the systemic risk and the
contagion effects among the banks in a country.
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The subclass of exchangeable SMMO copulas can be obtained alternatively as a
frailty model as shown in Mai et al. [17]. Their approach works as follows: let p(t)
be a given distribution function on [0,+∞) ε1, ε2, . . . , εd be i.i.d. unit exponentially
distributed random variables, Y > 0 be a random variable with Laplace transform
L(x) and Λt �= 0 be a Lévy subordinator with Laplace exponent Ψ ; assuming that
all the involved random variables and the Lévy subordinator are mutually indepen-
dent, set

Yt = ΛY L−1(1−p(t))/Ψ (1)

and define

τk = inf{t ≥ 0 : Yt ≥ εk}.

The survival copula associated to (τ1, τ2, . . . , τd) is

C(u) = L

(
d∑

i=1

L−1(u(i))
Ψ (i) − Ψ (i − 1)

Ψ (1)

)

where u(1) ≤ · · · ≤ u(d) denotes the ordered list of u1, . . . , ud .

Since according to Remark5.4 the power-mixing technique preserves the lower
orthant order, we have that from (5.19)

ĈMGMO,Λ(u) ≥ L

(
d∑

i=1

L−1(ui )

)

.

Moreover, if, given two sets of generating functions (HS)S∈P0 and (VS)S∈P0 , one
of the conditions C1, C2 or C3 of Sect. 5.4 is satisfied then

ĈMGMO,Λ

(
u, (HS)S∈P0

) ≥ ĈMGMO,Λ

(
u, (VS)S∈P0

)

According to the results presented in Sect. 5.2.3, the residual life of a vector
τ = (τ1, . . . , τd), whose survival joint distribution is Mix-MGMO,

τs = [τ1 − s, . . . , τd − s|τ1 > s, . . . , τd > s] for s > 0

has a distribution that is again a mixture. More precisely, by Proposition5.1 and
(5.21), assuming s = (s, . . . , s)

F̄τs (t) = Ls

⎛

⎝
∑

S∈P0

WS,s

(

max
j∈S

t j

)
⎞

⎠
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and by (5.22)

Ĉτs (u) = Ls

⎛

⎜
⎝

∑

S∈P0

max
j∈S

WS,s ◦
⎛

⎝
∑

J : j∈J

WJ,s

⎞

⎠

−1

(L−1
s (u j ))

⎞

⎟
⎠ .

Example 5.6 If Λ is 1
θ
-stable with θ ≥ 1, its Laplace transform is L(x) = e−x1/θ

which is the generator of the Gumbel copula. In this case,

F̄MGMO,θ (t) = exp

⎛

⎜
⎝−

⎛

⎝
∑

S∈P0

HS

(

max
j∈S

t j

)
⎞

⎠

1/θ
⎞

⎟
⎠

and

ĈMGMO,θ (u) = exp

⎛

⎜
⎝−

⎛

⎝
∑

S∈P0

HS

(

max
j∈S

K −1
j ((− ln u j )

θ )

)
⎞

⎠

1/θ
⎞

⎟
⎠ .

If, in particular, HS = λS H for some H and λS ≥ 0 with

λ̄S =
∑

S: j∈S

λS > 0,

then

F̄MGMO,θ (t) = exp

⎛

⎜
⎝−

⎛

⎝
∑

S∈P0

λS H

(

max
j∈S

t j

)
⎞

⎠

1/θ
⎞

⎟
⎠ ,

F̄MGMO,θ, j (t) = exp
(
−λ̄

1/θ
j H1/θ (t)

)

and

ĈMGMO,θ (u) = exp

⎛

⎜
⎝−

⎛

⎝
∑

S∈P0

λS max
j∈S

(− ln u j )
θ

λ̄ j

⎞

⎠

1/θ
⎞

⎟
⎠ .
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Chapter 6
Extended Marshall–Olkin Model
and Its Dual Version

Jayme Pinto and Nikolai Kolev

Abstract We propose an extension of the generalized bivariate Marshall–Olkin
model assuming dependence between the random variables involved. Probabilis-
tic, aging properties, and survival copula representation of the extended model are
obtained and illustrated by examples. Bayesian analysis is performed and possible
applications are discussed. A dual version of extended Marshall–Olkin model is
introduced and related stochastic order comparisons are presented.

6.1 Introduction

A variety of bivariate (multivariate) extensions of the univariate exponential dis-
tribution have been considered in the literature. These include the distributions of
[6, 10, 11, 24], see a full review in [2].

The vector (X1, X2) meets the Marshall–Olkin model (MO hereafter) whenever
it admits the stochastic representation

(X1, X2) = [min(T1, T3),min(T2, T3)], (6.1)

where the random variables Ti are independent and exponentially distributed with
parameters λi > 0, respectively, i = 1, 2, 3.

The random variables T1 and T2 in (6.1) can be interpreted as the arrival time
of individual shocks for two different components, while T3 represents the time of
arrival of a shock common to both components. Several applications of (6.1) can
be mentioned. In reliability theory it can describe the lifetime of a system of two
components operating in a random environment and subject to three independent
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sources of damage; in actuarial science (6.1) can model the survival function of a
married couple in a contract of joint life with last-survivor annuity, see [39].

Let us consider a vector (X1, X2) of nonnegative continuous random variables
with joint survival function SX1,X2(x1, x2) = P(X1 > x1, X2 > x2). The bivariate
survival function of (X1, X2) corresponding to (6.1) is

SX1,X2(x1, x2) = exp{−λ1x1 − λ2x2 − λ3 max(x1, x2)}, x1, x2 ≥ 0 (6.2)

and defines the MO bivariate exponential distribution, see [24].
Among the different bivariate lifetime models, the MO bivariate exponential dis-

tribution (6.2) is the most popular one. Since P(X1 = X2) = λ3
λ1 + λ2 + λ3

> 0, it
contains a singular component and has been used to model datasets with ties. In
addition, (6.2) possesses the bivariate lack-of-memory property. The MO bivariate
exponential distribution is widely used in risk management, see [25] and Chap.3
in [23].

TheMO distribution (6.2) is the only bivariate exponential distribution with expo-
nential marginals, i.e., having decreasing density and constant hazard functions. If
one of the marginal empirical density is not decreasing, one could not use (6.2) as a
correct model. For this reason, in [24]Weibull distribution is suggested for T1 and T2.
Many generalizations of MO-type distributions have been proposed. For example,
consult [30] and several very recent contributions by [17, 18, 27, 28, 37] and ref-
erences therein. Usually the authors assume various kinds of distribution for T1, T2,
and T3 in (6.1), but always keep them independent.

To overcome the restriction of exponential marginals assumed in [24], it was pro-
posed in [21] the Generalized Marshall–Olkin distribution (to be abbreviated GMO)
assuming only independence among the nonnegative continuous random variables
T1, T2, and T3 in (6.1).

Let the lifetimes Ti have survival function STi (xi ) = P(Ti > xi ), density fTi (xi ),

and failure (hazard) rate rTi (xi ) = fTi (xi )

STi (xi )
. Denote by HTi (x) = ∫ x

0 rTi (t)dt their

right continuous cumulative failure rate functions satisfying

HTi (0) = 0, HTi (∞) = ∞ and HTi (xi ) < ∞ for xi > 0, i = 1, 2, 3.

In [21] the GMO model is defined by

SX1,X2(x1, x2) = ST1(x1)ST2(x2)ST3(max(x1, x2))
= exp{−HT1(x1) − HT2(x2) − HT3(max(x1, x2))}. (6.3)

The second representation is a consequence of the well-known relation STi (x) =
exp{−HTi (x)}, see [3]. Despite bringing more flexibility and enlarging the range of
applications of MO-type models, the independence assumption in GMOmodel may
not be satisfied in the following situations:

1. Two electric machines operating in the same factory and sharing the same main-
tenance policy, both subject to blackouts;



6 Extended Marshall–Olkin Model and Its Dual Version 89

2. Two components in the structure of the same building sharing reverse load or
reverse set of stresses, both subject to earthquakes.

One can easily identify dependence between the individual “shocks” in the
preceding examples: it is positive in case 1 and negative in case 2. Taking into
account this real possibility, our aim is to define a MO-type model that incorporates
dependence between the random variables T1 and T2 while preserving the stochastic
representation (6.1).

In Sect. 6.2 we describe our proposal for a possible extension of the MO and
GMO models (6.1) and (6.3), and analyze related basic properties. We derive the
copula expression for the extended MO model, provide examples, and analyze the
distribution of the residual lifetimes.

Extensive work has been done in developing inference procedures for MO-type
models, see [14, 16] in this respect. Similar approach can be applied for the extended
MO model, but our choice is to perform a Bayesian data analysis in Sect. 6.3 to
demonstrate its advantage. We introduce a dual version of the extended MO model
in Sect. 6.4 based on max instead of min operation in (6.1) and outline its proper-
ties. Related stochastic order comparisons are presented as well. We finish with a
discussion, including admissible-related research and applied directions.

6.2 Extended Marshall–Olkin Model

Let us consider a pair (T1, T2) of nonnegative continuous random variables with a
joint survival function of the form

ST1,T2(x1, x2) = P(T1 > x1, T2 > x2) having marginals ST1(x1) and ST2(x2).

In addition, assume that the random variable T3 with survival function ST3(x) =
P(T3 > x) is independent of T1 and T2 in stochastic representation (6.1). Hence, we
arrive to the following

Definition 6.1 The extended MO (EMO) model is defined by its survival function

SX1,X2(x1, x2) = P(T1 > x1, T2 > x2, T3 > max{x1, x2})
= ST1,T2(x1, x2)ST3(max{x1, x2}). (6.4)

Observe that GMO model (6.3) is a particular case of the EMO model (6.4)
when T1 and T2 are independent. If in addition the random variables T1, T2, and T3
are exponentially distributed with parameters λ1, λ2, and λ3, respectively, one gets
the classical MO bivariate exponential distribution (6.2). Figure6.1 illustrates the
relationship among the three models.
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MO

T1,T2,T3 independent and

exponentially distributed

GMO

T1,T2,T3 independent

and nonnegative

EMO

(T1,T2) independent of T3,

T1,T2,T3 are nonnegative

Fig. 6.1 MO, GMO, and EMO models compared

6.2.1 Alternative Representation of the EMO Model

In order to investigate the properties of the EMO model, the exponential representa-
tion of a bivariate survival function turns out to be useful. Recall that any bivariate
survival function can be specified by

ST1,T2(x1, x2) = exp{−HT1(x1) − HT2(x2) + HT1,T2(x1, x2)}, (6.5)

see Sect. 2.2 in [7]. In the last relation HTi (xi ) is the cumulative hazard of Ti , i = 1, 2
and the function HT1,T2(x1, x2) is defined by

HT1,T2(x1, x2) = ln

{
ST1,T2(x1, x2)

ST1(x1)ST2(x2)

}

, (6.6)

satisfying the boundary conditions HT1,T2(0, x2) = HT1,T2(x1, 0) = 0 for all
x1, x2 ≥ 0. Equation (6.5) can be viewed as a bivariate version of the univariate expo-
nential representation of survival function, e.g., STi (x) = exp{−HTi (x)}, i = 1, 2.

According to [38], any bivariate survival function can be decomposed as a product
of marginal survival functions and a function Ω(x1, x2) via

ST1,T2(x1, x2) = ST1(x1)ST2(x2)Ω(x1, x2).



6 Extended Marshall–Olkin Model and Its Dual Version 91

The multiplier Ω(x1, x2) is known as Sibuya’s dependence function of the random
vector (T1, T2) and obviously

Ω(x1, x2) = SX1,X2(x1, x2)

SX1(x1)SX2(x2)
= exp{HT1,T2(x1, x2)}.

The last relation shows that HT1,T2(x1, x2) can be interpreted as the free of marginal
influence contribution to the genuine dependence between T1 and T2.

Taking into account (6.4) and (6.5), one can equivalently define the EMO model
in terms of cumulative failure rates HTi , i = 1, 2, 3 and the function HT1,T2 as

SX1,X2(x1, x2) = exp{−HT1(x1)−HT2(x2)−HT3(max(x1, x2))+HT1,T2(x1, x2)}.
(6.7)

It is direct to check that the marginal survival functions of SX1,X2(x1, x2) are given
by SXi (xi ) = exp{−HTi (xi ) − HT3(xi )}, i = 1, 2.

Remark 6.1 Note that the only difference between GMO and EMO models, given
in (6.3) and (6.7), is the presence of the function HT1,T2(x1, x2) in (6.7). In fact,
the equation HT1,T2(x1, x2) = 0 (satisfied for all x1, x2 ≥ 0) characterizes the
independence between random variables T1 and T2.

6.2.2 Probabilistic Properties

We mention several probabilistic properties of the EMO model (6.7) formalized in
Definition6.1.

6.2.2.1 Positive and Negative Quadrant Dependence

Recall that a nonnegative random vector (X1, X2) is positive quadrant dependent
(PQD) if P(X1 ≤ x1, X2 ≤ x2) ≥ P(X1 ≤ x1)P(X2 ≤ x2), or equivalently, one
gets P(X1 > x1, X2 > x2) ≥ P(X1 > x1)P(X2 > x2), for all x1, x2 ≥ 0. The
vector (X1, X2) is negative quadrant dependent (NQD) when the last two relations
are valid with the inequality sign reversed, see [19].

Remark 6.2 Note that X1 and X2 defined by stochastic representation (6.1) are asso-
ciated random variables since they are increasing functions (e.g., min) of random
variables T1, T2, and T3. Hence, X1 and X2 are PQD in the MO and GMO models
(6.2) and (6.3), according to Theorem 2.2 and Property P3 given on page 30 in [3].
Thus, the statement of Proposition2.1 in [21] follows without the need of obtaining
the copula corresponding to the GMO distribution (6.3). The same conclusion can-
not be handled for the EMO model since the vector (T1, T2) may be NQD and not
associated, therefore.
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The next statement characterizes the NQD property of the EMO model.

Theorem 6.1 The vector (X1, X2) following the EMO model is NQD if and only if

ST1,T2(x1, x2) ≤ ST1(x1)ST2(x2)ST3(min{x1, x2}), (6.8)

or equivalently,
HT1,T2(x1, x2) + HT3 (min(x1, x2)) ≤ 0

for all x1, x2 ≥ 0.

Proof The vector (X1, X2) is NQD if and only if SX1,X2(x1, x2) ≤ SX1(x1)SX2(x2),
for all x1, x2 ≥ 0. The necessary and sufficient condition given by relation (6.8) can
be obtained using (6.7), relations SXi (xi ) = exp{−HTi (xi ) − HT3(xi )}, i = 1, 2,
and the fact that min(x1, x2) = x1 + x2 − max(x1, x2).

The second inequality is a direct consequence of (6.8). ��
Remark 6.3 Note that the EMO model (6.7) may be not PQD or not NQD, for all
x1, x2 ≥ 0, conditional on the distributional parameters involved. Such a case (with
a “local” PQD and “local” NQD property) is illustrated in Example6.2.

6.2.2.2 Symmetry, Asymmetry, and Bounds for the Joint Survival
Function

The MO model (6.2) may be exchangeable or not, depending on the parameters λ1
and λ2. If T1 and T2 are exponentially distributed with the same parameter then the
MO model is always symmetric. The same happens with the GMO model (6.3): if
T1 and T2 are identically distributed then the GMO model is exchangeable. Both
cases are analogous because the copula that joins T1 and T2 is the independence one,
which is symmetric.

Interestingly, if one starts with identically distributed random variables T1 and T2
in the EMO model (6.7), but (T1, T2) are connected by a nonexchangeable copula,
then the resulting EMO model will be nonexchangeable. Thus, the EMO model is
not necessarily exchangeable as demonstrated in the next example.

Example 6.1 (Nonexchangeable EMO model with identically distributed marginals)
Consider the stochastic representation (6.1) and let Ti be exponentially distributed
with parameter λi = 1, i.e., HTi (xi ) = xi , i = 1, 2, 3. Then X1 and X2 are expo-
nentially distributed with a common parameter λ = 2, i.e., HXi (xi ) = 2xi , i = 1, 2.
Let the asymmetric copula that joins (T1, T2) be given by

CT1,T2(u, v) = uv + uv(1 − u)(1 − v)[(a − b)v(1 − u) + b],
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where |b| ≤ 1, b − 3−√
9+ 6b − 3b2
2 ≤ a ≤ 1 and a �= b, see Example3.16 in [31].

As a result, the corresponding EMO joint survival function is given by

SX1,X2(x1, x2) = [
exp{−x1 − x2 − max(x1, x2)}

]

×[
1 + (1 − exp{−x1})(1 − exp{−x2})[(a − b)(1 − exp{−x2}) exp{−x1} + b]],

being asymmetric.

Besides the knowledge of the distributions of T1, T2, and T3, a key aspect for
deriving EMO models is the knowledge of the joint survival function of T1 and
T2 given by (6.5). An important component in (6.5) is the function HT1,T2(x1, x2)
defined by (6.6), which may serve as a measure of dependence between random
variables T1 and T2.

In the case of incomplete information, it is still possible to obtain bounds for the
survival function of the EMO model (6.7) based on the knowledge of the marginal
survival functions STi or their cumulative failure rate functions HTi , i = 1, 2, 3. The
following statement holds.

Lemma 6.1 The lower and upper bounds for the survival function of the EMO model
(6.7), are given by

L(x1, x2) ≤ SX1,X2(x1, x2) ≤ U (x1, x2),

where

L(x1, x2) = max
{[
exp{−HT1 (x1)} + exp{−HT2 (x2)} − 1

]
, 0

}
exp{−HT3(max(x1, x2))}

and

U (x1, x2) = min
{
exp{−HT1(x1)}, exp{−HT2(x2)}

}
exp{−HT3(max(x1, x2))}.

Remark 6.4 Since L(x1, x2) > max(SX1(x1)+SX2(x2)−1, 0), as well asU (x1, x2)
< min(SX1(x1), SX2(x2)), the bounds obtained in Lemma6.1 are sharper than the
usual Fréchet–Hoeffding bounds.

6.2.3 Survival Copula of the EMO Model

By Sklar’s theorem, the dependence structure of a random vector (X1, X2)with joint
survival function SX1,X2(x1, x2) and continuous marginal survival functions SX1(x1)
and SX2(x2) has unique survival copula

C X1,X2(u, v) = SX1,X2(S−1
X1

(u), S−1
X2

(v)), (u, v) ∈ [0, 1],
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where S−1
Xi

is the right continuous inverse of SXi , i = 1, 2, see [31]. The triplet

(SX1 , SX2 , C X1,X2) allows to analyze the dependence properties between X1 and
X2.

Recall that the marginal survival functions of SX1,X2(x1, x2) from (6.7) are given
by SXi (xi ) = exp{−HTi (xi ) − HT3(xi )}. The following statement holds.

Lemma 6.2 Set Gi (xi ) = HTi (xi ) + HT3(xi ), i = 1, 2. The survival copula
C X1,X2(u, v) of the EMO model is given by

C X1,X2 (u, v) =
{

uv exp{HT3(G
−1
2 (− ln v)) + G(u, v)}, if G−1

1 (− ln u) > G−1
2 (− ln v);

uv exp{HT3(G
−1
1 (− ln u)) + G(u, v)}, if G−1

1 (− ln u) ≤ G−1
2 (− ln v),

(6.9)
where u, v ∈ (0, 1) and G(u, v) = HT1,T2(S−1

X1
(u), S−1

X2
(v)).

Proof First observe that SX1(x1) = exp{−HT1(x1) − HT3(x1)} = exp{−G1(x1)}.
Solving SX1(x1) = u we get S−1

X1
(u) = x1. By analogy, from exp{−G1(x1)} = u we

obtain x1 = G−1
1 (− ln u) and therefore

S−1
X1

(u) = G−1
1 (− ln u), i.e., G1(S−1

X1
(u)) = − ln u.

In a similar way we obtain

S−1
X2

(v) = G−1
2 (− ln v), i.e., G2(S−1

X2
(v)) = − ln v. (6.10)

If x1 > x2 ≥ 0, i.e., S−1
X1

(u) > S−1
X2

(v), then G−1
1 (− ln u) > G−1

2 (− ln v).

Let C X1,X2(u, v) be the survival copula corresponding to SX1,X2(x1, x2), i.e.,

ln[C X1,X2(u, v)] = ln[SX1,X2(S−1
X1

(u), S−1
X2

(v))], u, v ∈ (0, 1).

Therefore, using relation (6.7) we have

ln[C X1,X2 (u, v)] = ln[exp{−HT1(S−1
X1

(u)) − HT2 (S−1
X2

(v)) − HT3(S−1
X1

(u)) + G(u, v)}],

with G(u, v) = HT1,T2(S−1
X1

(u), S−1
X2

(v)), which is equivalent to

ln[C X1,X2(u, v)] = ln u − HT2(S−1
X2

(v)) + G(u, v).

Due to (6.10) we get

lnC X1,X2(u, v) = ln(uv) + HT3(S−1
X2

(v)) + G(u, v).

Finally, C X1,X2(u, v) = uv exp{HT3(G
−1
2 (− ln v)) + G(u, v)} if S−1

X1
(u) > S−1

X2
(v).
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By analogy, when 0 ≤ x1 ≤ x2, i.e., G−1
1 (− ln u) ≤ G−1

2 (− ln v), one obtains

C X1,X2(u, v) = uv exp{HT3(G
−1
2 (− ln v)) + G(u, v)}

and representation (6.9) is established. ��
Remark 6.5 The function exp{G(u, v)} is the only product extra multiplier in (6.9)
in addition to the copula expression corresponding to GMO distribution (compare
with Remark6.1) and (2.3) by [21]. This extra term permits “local” NQD modeling
of (X1, X2), as shown in Example6.2.

The following example illustrates how the survival copula given in (6.9) can be
obtained. We offer quadrant dependence analysis as well.

Example 6.2 (Survival copula of the EMO model and quadrant dependence analy-
sis) Assume that (T1, T2) is Gumbel’s type I bivariate exponentially distributed with
unit exponential marginals, see [11]. The corresponding survival function is given
by

ST1,T2(x1, x2) = exp(−x1 − x2 − θx1x2),

where x1, x2 ≥ 0 and θ ∈ [0, 1] . Let T3 be independent of (T1, T2) with survival
function ST3(x) = exp(−λx), λ > 0. Following the above notations, we have
HT1(x) = HT2(x) = x, HT3(x) = λx and HT1,T2(x1, x2) = −θx1x2. Therefore,

G1(x1) = HT1(x1)+ HT3(x1) = (1+λ)x1 and G2(x2) = HT2 (x2)+ HT3(x2) = (1+λ)x2.

The inverse functions are given by

G−1
1 (u) = u

1 + λ
and G−1

2 (v) = v

1 + λ
.

Since ln(x) is an increasing function and 1 + λ > 0, we have the following set of
equivalent inequalities when 0 < u < v ≤ 1:

G−1
1 (− ln(u)) > G−1

2 (− ln(v)) ⇔ − ln(u)

1 + λ
>

− ln(v)

1 + λ
⇔ ln(u)

1 + λ
<

ln(v)

1 + λ
.

But G(u, v) = HT1,T2

(
G−1

1 (− ln(u)), G−1
2 (− ln(v))

)
= −θ

ln(u) ln(v)
(1+ λ)2

and we obtain

the survival copula of the corresponding EMO model

C X1,X2(u, v) =

⎧
⎪⎨

⎪⎩

uv exp
{
−λ

ln(v)
1+ λ

− θ
ln(u) ln(v)
(1+ λ)2

}
, if 0 < u < v ≤ 1;

uv exp
{
−λ

ln(u)
1+ λ

− θ
ln(u) ln(v)
(1+ λ)2

}
, if 1 ≥ u ≥ v > 0.
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Fig. 6.2 Dependence
analysis of the EMO model
in Example6.2
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When 0 < u < v ≤ 1, we have C X1,X2(u, v) ≤ uv if

exp

{

−λ
ln(v)

1 + λ
− θ

ln(u) ln(v)

(1 + λ)2

}

≤ 1, i.e., 0 < u ≤ u0 = exp

{

−λ(1 + λ)

θ

}

.

By analogy, when 0 < v ≤ u ≤ 1 and C X1,X2(u, v) ≤ uv we get the inequality

0 < v ≤ v0 = exp
{
−λ(1+ λ)

θ

}
.

Therefore, as illustrated in Fig. 6.2, when (u, v) ∈
[
exp{−λ(1+ λ)

θ
}, 1

]2
we have

the “local”PQDproperty.Outside this set in the unit square, the “local”NQDproperty
is valid.

6.2.4 Distributional Property for Residual Lifetimes

Many authors have studied the monotonicity in x1 and x2 of

P(X1 > x1 + t, X2 > x2 + t | X1 > t, X2 > t) = SX1,X2(x1 + t, x2 + t)

SX1,X2(t, t)

with respect to t ≥ 0. Under the bivariate lack-of-memory property the last relation
only depends on x1 and x2. In general, this conditional probability is a nonincreasing
function and represents the joint survival function of the residual lifetime vector

Xt = (X1t , X2t ) = [(X1 − t, X2 − t) | X1 > t, X2 > t] (6.11)

corresponding to (X1, X2), where X1t and X2t are the marginal residual lifetimes at
time t ≥ 0. The problem has important applications in industry, medicine, finance,
economics, insurance, see [25, 39].

The aging performance of the residual lifetime vector Xt is well studied when the
dependence structure between X1 and X2 is described by the family of Archimedean
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copulas, for details see [5, 29]. Thus, the results obtained are valid for exchangeable
random vectors, i.e., for the class of bivariate distributions with same marginal dis-
tributions, which is a limitation for practical needs and applications.

The GMO type distributions given by (6.3) do not possess the bivariate lack-
of-memory property and for this reason [21] investigated the aging behavior and
dependence properties of Xt . In particular, the authors show that if (X1, X2) has a
GMO distribution, then so does Xt .

We are now interested to examine the properties of the residual lifetime vector Xt

corresponding to (X1, X2) satisfying (6.7), i.e., under the EMO model. The result is
given in the following theorem.

Theorem 6.2 If (X1, X2) follows an EMO model, then so does its residual lifetime
vector Xt for any t ≥ 0.

Proof The survival function of the residual lifetime vector (6.11) is

P(Xt > (x1, x2)) = P(X1 − t > x1, X2 − t > x2 | X1 > t, X2 > t)

= P(min{T1 − t, T3 − t} > x1,min{T2 − t, T3 − t} > x2 | min{T1, T3} > t,min{T2, T3} > t).

Taking into account that in the EMO model (6.7) the random variable T3 is inde-
pendent of the vector (T1, T2) we get

P(Xt > (x1, x2)) = P(T1 > t + x1, T2 > t + x2)P(T3 > t + max{x1, x2})
P(T1 > t, T2 > t)P(T3 > t)

,

i.e.,

P(Xt > (x1, x2)) = ST1,T2(t + x1, t + x2)

ST1,T2(t, t)
× ST3(t + max{x1, x2})

ST3(t)
.

The last relation means that

P(Xt > (x1, x2)) = P(T1t > x1, T2t > x2)P(T3t > max{x1, x2}),

where Tit = [Ti − t | T1 > t, T2 > t], i = 1, 2, and T3t = [T3 − t | T3 > t]. Thus,
for any t ≥ 0 the residual lifetime vector Xt in the EMO model has a stochastic
representation

Xt = (X1t , X2t ) = [min{T1t , T3t },min{T2t , T3t }],

e.g., being in the form (6.1). This means that if the random vector (X1, X2) follows
an EMOmodel with survival function given by (6.7) then the corresponding residual
lifetime vector Xt also follows an EMO model. ��
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As a consequence of the Theorem 6.B.16(b) in [36], we conclude that (X1, X2)

and Xt = (X1t , X2t ) have the same type of copula (i.e., given by relation (6.9)) even
if they are generated by different triples (T1, T2, T3) and (T1t , T2t , T3t ), t ≥ 0 of
random variables satisfying (6.1).

Remark 6.6 If T3 is exponentially distributed and (T1, T2) possesses the bivariate
lack-of-memory property, ST1,T2(x1 + t, x2 + t) = ST1,T2(x1, x2)ST1,T2(t, t), for
all x1, x2, t > 0, (e.g., the bivariate exponential distribution in [6]), then (X1, X2)

following (6.1)will exhibit the bivariate lack-of-memory property aswell. Therefore,
Xt and (X1, X2) will have the same distribution and copula, which are independent
of t , being time invariant.

6.3 Bayesian Data Analysis with EMO Models

As we noted, the EMO-type bivariate distributions exhibit a singular component
along the line x1 = x2. Therefore, EMO model can serve as a good candi-
date to fit datasets with ties. In general, such a fit would be better than the cor-
responding results obtained if one uses some absolutely continuous model. We
perform here a Bayesian analysis applying OpenBugs software (free available
on www.openbugs.net/w/Downloads) for a soccer data with ties analyzed
by [26].

If the bivariate random vector (X1, X2) satisfies the EMOmodel (6.4), its survival
function has no discrete component and admits the Lebesgue decomposition

SX1,X2(x1, x2) = (1 − α)Sac
X1,X2

(x1, x2) + αSsi
X1,X2

(max{x1, x2}),

where Sac
X1,X2

(x1, x2) is an absolutely continuous survival function, Ssi
X1,X2

(max{x1, x2}) is the singular component with support on the set Γ = {(x1, x2) ∈
R2 |x1 = x2 = x} and α = P(X1 = X2) ∈ [0, 1].

If α = 0 then the joint distribution of the random vector (X1, X2) is absolutely
continuous. Let

(1 − α) f ac
X1,X2

(x1, x2) = ∂2

∂x1∂x2
SX1,X2(x1, x2).

The value of α can be obtained integrating both sides of last relation to get

1 − α =
∫ ∞

0

∫ ∞

0

∂2

∂x1∂x2
SX1,X2(x1, x2)dx1dx2.

By its turn, the survival function of EMO models can be decomposed in terms of
the survival functions of (T1, T2) and T3 as
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SX1,X2(x1, x2) =
{

ST1,T2(x1, x2)ST3(x1), if x1 ≥ x2 ≥ 0,

ST1,T2(x1, x2)ST3(x2), if 0 ≤ x1 < x2,

and

(1 − α) f ac
X1,X2

(x1, x2)

=
{

ST3(x1)
∂2

∂x1∂x2
ST1,T2(x1, x2) + ∂

∂x2
ST1,T2(x1, x2)

d
dx1

ST3(x1), if x1 > x2 ≥ 0,

ST3(x2)
∂2

∂x1∂x2
ST1,T2(x1, x2) + ∂

∂x1
ST1,T2(x1, x2)

d
dx2

ST3(x2), if 0 ≤ x1 < x2,

which is calculated where the derivatives exist, and depends on the densities of
(T1, T2) and T3.

The total mass of the singular component (when x1 = x2 = x) is given by

α =
∫ ∞

x=0
ST1,T2(x, x) fT3(x)dx .

First of all, we need to obtain an expression for the joint density fX1,X2(x1, x2)
of the EMO model. It is given in the following

Lemma 6.3 Let (X1, X2) follows the EMO model (6.4). Denote by fT1,T2(x1, x2)
the joint density of (T1, T2) and by fT3(x) the density of T3. The joint density of EMO
model is given by

fX1,X2(x1, x2) =

⎧
⎪⎨

⎪⎩

g1(x1, x2) if x1 > x2 ≥ 0;
g0(x) if x1 = x2 = x ≥ 0;
g2(x1, x2) if 0 ≤ x1 < x2,

where

g1(x1, x2) = fT1,T2(x1, x2)ST3(x1) − ∂

∂x2
ST1,T2(x1, x2) fT3(x1),

g0(x) = fT3(x)ST1,T2(x, x)

and

g2(x1, x2) = fT1,T2(x1, x2)ST3(x2) − ∂

∂x1
ST1,T2(x1, x2) fT3(x2).

Proof The expressions for g1(x1, x2) and g2(x1, x2) can be obtained by taking partial
derivatives ∂2

∂x1∂x2
ST1,T2(x1, x2) for x1 > x2 and x1 < x2, respectively. We cannot

get g0(x, x) analogously, but from the equation

∫ ∞

0

∫ ∞

x2
g1(x1, x2)dx1dx2 +

∫ ∞

0

∫ ∞

x1
g2(x1, x2)dx2dx1 +

∫ ∞

0
g0(x)dx = 1.
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Following the same steps as in Theorem2.2 in [17], one can explicitly obtain the first
two terms in last equation and after some algebra get g0(x) expression. ��

Thus, the general form of the joint density of EMO models is specified by

fX1,X2 (x1, x2) =

⎧
⎪⎨

⎪⎩

fT1,T2 (x1, x2)ST3 (x1) − ∂
∂x2

ST1,T2 (x1, x2) fT3 (x1) if x1 > x2 ≥ 0;
fT3 (x)ST1,T2 (x, x) if x1 = x2 = x ≥ 0;
fT1,T2 (x1, x2)ST3 (x2) − ∂

∂x1
ST1,T2 (x1, x2) fT3 (x2) if 0 ≤ x1 < x2.

(6.12)

Note that joint density (6.12) can be written as follows:

fX1,X2(x1, x2) = (1 − α) f ac
X1,X2

(x1, x2) + α f si
X1,X2

(x1, x2),

where α = P(X1 = X2) = P(T3 < min(T1, T2)) is a constant depending on
the parameters of random variables T1, T2, and T3. If α ∈ (0, 1), the absolutely
continuous part is given by

f ac
X1,X2

(x1, x2) =
{

g1(x1,x2)
1−α

if x1 > x2 ≥ 0;
g2(x1,x2)
1−α

if 0 ≤ x1 < x2,

and the singular part is

f si
X1,X2

(x1, x2) =
{

g0(x)
α

if x1 = x2 = x;
0 otherwise.

We will analyze a football (soccer) dataset of UEFA Champion’s League consid-
ered by [26], where (i) there was at least one goal scored by the home team, and (ii)
there was at least one goal scored directly from a kick (penalty kick, foul kick, or
other kick) by any team. Let X1 be the time (in minutes) of the first kick goal scored
by any team, and X2 be the time of the first goal of any type scored by the home
team. With this kind of nonnegative continuous data, one may have three options:
{X1 < X2}, {X1 > X2}, or {X1 = X2}, see Fig. 6.3.

We consider five models to analyze UEFA Champion’s League dataset: two of
them are absolutely continuous and the last three belong to the EMO class.

The absolutely continuous distributions selected for (X1, X2) are the Gumbel’s
(1960) type I bivariate exponential distribution introduced in [11] and the bivariate
exponential distribution of Block and Basu (1974), see [6]. The corresponding joint
survival functions are given in the third column of Table6.1, where λ1, λ2, λ12 > 0
and θ ∈ [0, 1].

To specify the corresponding EMO models, we will assume further that T3 is
exponentially distributed with parameter λ > 0, i.e., ST3(x) = exp{−λx} and
fT3(x) = λ exp{−λx}. Hence, from (6.4) we obtain

SX1,X2(x1, x2) = ST1,T2(x1, x2) exp{−λmax(x1, x2)}.
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Fig. 6.3 UEFA Champion’s
League data—Meintanis [26]

X
2

X1

Table 6.1 Absolutely continuous models for (X1, X2)

Model Description SX1,X2 (x1, x2)

(M1) Gumbel [11] type I exp{−[λ1x1 + λ2x2 + θλ1λ2x1x2]}
(M2) Block and Basu [6]

λ1 + λ2 + λ12
λ1 + λ2

exp{−[λ1x1 + λ2x2 + λ12 max(x1, x2)]}
− λ12

λ1 + λ2
exp{−[(λ1 + λ2 + λ12)max(x1, x2)]}

Table 6.2 EMO models

Model EMO models ST1,T2 (x1, x2) ST3 (max(x1, x2))

(M3) MO bivariate model (6.2) exp{−[λ1x1 + λ2x2]} exp{−λmax(x1, x2)}
(M4) EMO-1 model Gumbel [11] type I exp{−λmax(x1, x2)}
(M5) EMO-2 model Block and Basu [6] exp{−λmax(x1, x2)}

We choose three versions for ST1,T2(x1, x2). The corresponding joint survival
functions are given in the third column of Table6.2.

The Bayesian estimation of parameters involved is performed by using OpenBugs
software (an updated version of WinBugs, consult [22, 41]), which requires the
expression for the joint density. In each of our three cases, one can obtain applying
(6.12) the joint density fX1,X2(x1, x2) of EMO models (M3), (M4), and (M5) with
fT3(max(x1, x2)) = λ exp{−λmax(x1, x2)}.
We have to specify the prior distributions for the parameters of the five models in

order to start OpenBugs procedure. Our choices are given in Table6.3.
We generated 55,000 samples for the joint posterior distribution of the considered

parameters, where the first 5,000 samples are discarded (burn-in sample). Thus we

Table 6.3 Prior distributions
of parameters

Parameter Prior

λ1, λ2 and λ12 Gamma (0.1, 0.1)

λ Gamma (1, 1)

θ Uniform [0, 1]
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eliminated the effect of the initial values for the parameters of the model. Selecting
every 10th simulated Gibbs sample, we obtained a final sample of size 5,000 to get
the posterior summaries of interest.

The posterior summaries obtained for the five models considered are listed in
Tables6.4, 6.5, 6.6, 6.7, and 6.8, where Sd in the third column gives the estimated
standard deviation.

The five models to be compared have different number of parameters. To select
the “best” model we apply the DIC (Deviance Information Criterion) defined in [40]
by

DIC = D(θ̂) + 2nD = 2D − D(θ̂).

In the last relation D(θ̂) is the deviance evaluated at the posteriormean θ̂ = E[θ |data]
and D = E[D(θ)|data] is the posterior deviance measuring the quality of the data
fit for the model. Note that nD is the effective number of parameters of the model
given by nD = D − D(θ̂). Smaller values of DIC indicate better models.

In Table6.9 we present the resulting models ordered by increasing DIC value
criteria. It can be noticed that EMO models (which take into account singularity
along themain diagonal) provided a better fit than the absolutely continuous bivariate
exponential distributions of [6, 11]. Particularly, the model EMO-2 (considering
Block and Basu [6] bivariate exponential distribution for (T1, T2)) presented the best
fit according toDIC criteria, followed bymodel EMO-1 (Gumbel [11] type I bivariate
exponential distribution for (T1, T2)).

We finish this section with a comparison. A Bayesian analysis of the same
UEFAChampion’s League dataset has been provided bymany authors. For example,
[18] applied their Marshall–Olkin bivariate Weibull distribution, to be denoted as
MOBWD, given by

SX1,X2(x1, x2) =
{
exp {−(λ0 + λ1)xα

1 − λ2xα
2 }, if x1 ≥ x2

exp {−(λ0 + λ2)xα
2 − λ1xα

1 }, if x2 > x1.

Table 6.4 Model (M1): Gumbel [11] type I bivariate exponential for (X1, X2)

Parameter Mean Sd 95% Credible Interval

λ1 0.0238 0.003964 (0.01663, 0.03216)

λ2 0.02935 0.004974 (0.02038, 0.03982)

θ 0.1734 0.1588 (0.00450, 0.5925)

Table 6.5 Model (M2): Block and Basu [6] bivariate exponential for (X1, X2)

Parameter Mean Sd 95% Credible Interval

λ1 0.000094 0.000209 (4.42E-08, 0.000669)

λ2 0.000727 0.001383 (1.06E-06, 0.004847)

λ12 0.045470 0.005589 (0.03553, 0.05784)
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Table 6.6 Model (M3): MO bivariate exponential (6.2) for (T1, T2) + T3 ∼ Exp(λ)

Parameter Mean Sd 95% Credible Interval

λ1 0.005507 0.002521 (0.00164, 0.01134)

λ2 0.0172 0.00383 (0.01049, 0.02547)

λ 0.01926 0.003882 (0.01224, 0.02749)

Table 6.7 Model (M4): EMO-1 (Gumbel [11] type I for (T1, T2) + T3 ∼ Exp(λ))

Parameter Mean Sd 95% Credible Interval

λ1 0.01315 0.003003 (0.007974, 0.01966)

λ2 0.004985 0.002501 (0.001329, 0.01094)

θ 0.02985 0.005555 (0.01984, 0.02952)

λ 0.3959 0.2801 (0.01376, 0.9522)

Table 6.8 Model (M5): EMO-2 (Block and Basu [6] for (T1, T2) + T3 ∼ Exp(λ))

Parameter Mean Sd 95% Credible Interval

λ1 2.20E-04 4.96E-04 (2.04E-03, 0.001639)

λ2 4.83E-05 1.27E-04 (2.39E-04, 3.75E-01)

λ12 0.0332 0.005764 (0.02273, 0.0448)

λ 0.02034 0.004648 (0.01269, 0.03013)

Table 6.9 Monte Carlo
estimates for DIC

Model Description DIC

(M5) EMO-2 (Block and Basu [6] for (T1, T2)) 546.8

(M4) EMO-1 (Gumbel [11] type I for (T1, T2)) 584.0

(M3) MO bivariate model (6.2) 600.1

(M2) Block and Basu [6] 633.9

(M1) Gumbel [11] type I 687.0

In [18] the maximum likelihood estimates (MLE) of parameters α, λ0, λ1, and λ2
in MOBWD and corresponding 95% confidence intervals (to be abbreviated CI) are
reported, see page 279 in their paper. TheMLE and their CI can be seen in Table6.10.

OurMLE and corresponding CI (for the same dataset fitted by the sameMarshall–
Olkin bivariate Weibull distribution) are listed as well. One can observe a significant
difference between results in columns headed “MOBWD” and “Our fits”.

In addition, assuming the same Gamma priors with parameters (0.1, 0.1) consid-
ered by [18], the correspondingDIC criterion assigns a value 597.1 for theMOBWD.
This value is greater in comparison with DIC values of EMO-2 and EMO-1 models
being 546.8 and 584.0, respectively. Just consult the last column of Table6.9.
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Table 6.10 MLE and 95% Credible Interval

Parameter MOBWD Our fits

MLE 95% CI MLE 95% CI

α 1.6954 (1.3284, 2.0623) 1.6460 (1.0080, 1.8880)

λ0 2.1927 (1.5001, 2.8754) 0.0081 (0.0008, 0.0285)

λ1 1.1192 (0.5411, 16973) 0.0042 (0.0004, 0.0125)

λ2 2.8852 (1.3023, 4.4681) 0.0022 (0.0001, 0.0055)

6.4 A Dual Version of EMO Model

In [9] a dual version of the GMO model (6.3) is introduced and its properties are
studied, motivated by its potential applications in risk analysis, financial engineering,
and economics. The dual GMO model admits the stochastic representation

(Y1, Y2) = [max(D1, D3),max(D2, D3)], (6.13)

where the continuous random variables Di , i = 1, 2, 3, with support in R =
(−∞,∞) are assumed to be independent.

Denote by FY1,Y2(y1, y2) = P(Y1 ≤ y1, Y2 ≤ y2) the joint distribution function
of the random vector (Y1, Y2) and by FDi (y) = P(Di ≤ y) the distribution function
of random variables Di , i = 1, 2, 3, where y ∈ R. Thus, the joint distribution
function of the dual GMO model (6.13) is given by

FY1,Y2(y1, y2) = P(D1 ≤ y1, D2 ≤ y2, D3 ≤ min{y1, y2})
= FD1(y1)FD2(y2)FD3(min{y1, y2}). (6.14)

The model (6.14) is named “dual” in [9] because it is the counterpart of the GMO
model based on max instead of min operation in the stochastic representation (6.1).
Another difference between GMO model and its dual version is that in the former
the random variables Ti , i = 1, 2, 3, are assumed to be nonnegative in (6.3).

It happens that the independence assumption between the individual shocks,
although adequate in some situations, may not hold in others, as illustrated in the
following examples:

1. An insurance company assigns by (6.13) the loss vector of two insured apartments
located in the same building. Each insurance policy covers only the largest loss
incurred. Both apartments are subject to common disasters, such as earthquakes or
tornados, as well as to individual casualties. The common loss can be considered
to have the same value for both apartments. Since they are located in the same
neighborhood, some individual casualties, such as thefts, are not supposed to be
independent;

2. Let (6.13) represents the time to failure vector of two machines operating in the
same factory. Each machine can be fed by two different sources of energy: an
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individual source and an external one, able to feed both equipment. The machines
operate whenever at least one of the sources is properly working. If the two
individual sources of energy share some facilities in the factory, their failure
times may be dependent random variables.

We extend the dual GMOmodel assuming dependence between the random vari-
ables D1 and D2 in (6.13). First, we formalize the dual extended model. After that
we list its basic probabilistic properties, obtain the corresponding copula and the dis-
tribution of the inactivity times. Several stochastic order comparisons are presented
at the end.

6.4.1 Model Specification and Basic Probabilistic Properties

One can define the dual Extended Marshall–Olkin model as follows. Let Di , i =
1, 2, 3, be continuous random variables with support in R satisfying the stochastic
representation (6.13). Assume that the joint distribution function of (D1, D2) is given
by FD1,D2(y1, y2) = P(D1 ≤ y1, D2 ≤ y2) and suppose that the continuous random
variable D3 is independent of D1 and D2. Following (6.13) we obtain the relation

FY1,Y2(y1, y2) = P(D1 ≤ y1, D2 ≤ y2, D3 ≤ min{y1, y2}).

Thus, we have the following

Definition 6.2 The dual Extended Marshall–Olkin model (to be abbreviated d-
EMO) is specified by its joint distribution function

FY1,Y2(y1, y2) = FD1,D2(y1, y2)FD3(min{y1, y2}). (6.15)

Observe that the dual GMO model (6.14) can be obtained from (6.15) when D1
and D2 are independent random variables.

When the random variables Di are absolutely continuous with density fDi (y),

[4, 15] define the reversed failure rate m Di (y) and the remaining reversed failure rate
MDi (y) as

m Di (y) = fDi (y)

FDi (y)
= d

dx
[ln FDi (y)] and MDi (y) =

∫ ∞

y
m Di (u) du

respectively, i = 1, 2, 3. Notice that the distribution functions FDi admit the
representation

FDi (y) = exp{−MDi (y)}, i = 1, 2, 3. (6.16)

The bivariate version of (6.16) for the joint distribution function is given by

FD1,D2(y1, y2) = exp{−MD1(y1) − MD2(y2) + AD1,D2(y1, y2)}, (6.17)
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where the function AD1,D2(y1, y2) is defined by

AD1,D2(y1, y2) = ln
FD1,D2(y1, y2)

FD1(y1)FD2(y2)
, (6.18)

see [35]. In particular, AD1,D2(y1, y2) = 0 if and only if D1 and D2 are independent
random variables. As an interpretation, AD1,D2(y1, y2) postulates (describes) the
association between randomvariables D1 and D2 free of (i.e., excluding) themarginal
contribution into their mutual (genuine) dependence.

The d-EMO model can be equivalently introduced by expression

FY1,Y2 (y1, y2) = exp
{ − MD1(y1) − MD2 (y2) − MD3

(
min(y1, y2)

) + AD1,D2 (y1, y2)
}
.

(6.19)

Therefore, the knowledge of the distribution of D3 and joint distribution of D1 and
D2 given by (6.17) are necessary to obtain the corresponding d-EMO distribution.
An important component in (6.17) is the dependence function AD1,D2(y1, y2), given
by (6.18), representing the dependence structure between D1 and D2 in addition to
the marginal influence.

Using the abovenotations and relations,we list properties of d-EMOmodelswhich
are not necessarily exchangeable. The statements are analogous to the corresponding
properties of EMO models obtained in Sect. 6.2 and address bounds of joint distrib-
ution function, positive and negative dependence properties, corresponding copula,
and an aging result.

Lemma 6.4 The lower and upper bounds for the distribution function of the d-EMO
distribution (6.19), are given by

L(y1, y2) ≤ FY1,Y2(y1, y2) ≤ U (y1, y2),

where

L(y1, y2) = max
{
exp

{−MD1 (y1)
} + exp

{−MD2 (y2)
} − 1, 0

}
exp

{−MD3

(
min(y1, y2)

)}

and

U (y1, y2) = min
{
exp{−MD1(y1)}, exp{−MD2(y2)}

}
exp

{− MD3

(
min(y1, y2)

)}
.

Note that the bounds L(y1, y2) and U (y1, y2) in Lemma6.4 are sharper than
the usual Fréchet–Hoeffding bounds, because of the multiplier exp

{ − MD3

(
min

(y1, y2)
)}

.

The next statement characterizes the NQD property of the d-EMO model.

Lemma 6.5 The d-EMO model (6.15) is NQD if and only if

FD1,D2(y1, y2) ≤ FD1(y1)FD2(y2)FD3(max{y1, y2}), (6.20)
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or equivalently,
AD1,D2(y1, y2) + MD3

(
max(y1, y2)

) ≤ 0

for all y1, y2 ∈ R.

In the sequel we obtain the copula of the d-EMO distribution. By Sklar’s theo-
rem, the dependence structure of a bivariate random vector (Y1, Y2) with continuous
marginal distributions FY1 and FY2 can be described by unique copula

CY1,Y2(u, v) = FY1,Y2

(
F−1

Y1
(u), F−1

Y2
(v)

)
, (u, v) ∈ [0, 1],

where F−1
Yi

(u) is the (generalized) inverse of FYi (y), i = 1, 2. Observe, that the
marginal distribution functions of FY1,Y2(y1, y2) from (6.19) are given by FYi (yi ) =
exp{−MDi (yi ) − MD3(yi )}. Denote by Gi (yi ) = MDi (yi ) + MD3(yi ), i = 1, 2.
Therefore, we have

Lemma 6.6 The copula CY1,Y2(u, v) of the d-EMO distribution is given by

CY1,Y2 (u, v) =
{

uv exp
{

MD3

(
G

−1
1 (− ln u)

) + G(u, v)
}
, if G

−1
1 (− ln u) > G

−1
2 (− ln v);

uv exp
{

MD3

(
G

−1
2 (− ln v)

) + G(u, v)
}
, if G

−1
1 (− ln u) ≤ G

−1
2 (− ln v),

(6.21)
where u, v ∈ (0, 1] and G(u, v) = AD1,D2

(
F−1

Y1
(u), F−1

Y2
(v)

)
.

Remark 6.7 The function exp{G(u, v)} is the only product extra multiplier in (6.21)
in addition to the copula expression corresponding to dual GMO distribution and
numbered (4) by [9]. This extra term permits NQD modeling on (Y1, Y2).

Example 6.3 (Copula of d-EMO distribution under proportional reversed failure
rate marginals) Consider a baseline remaining reversed failure rate function M(y)

and suppose FDi (y) = [exp{−M(y)}]λi , λi > 0, i = 1, 2, 3, see [12]. After some
algebra relation (6.21) simplifies to

CY1,Y2(u, v) =
⎧
⎨

⎩

u
λ1

λ1 + λ3 v exp{G(u, v)}, if G
−1
1 (− ln u) > G

−1
2 (− ln v);

uv
λ2

λ2 + λ3 exp{G(u, v)}, if G
−1
1 (− ln u) ≤ G

−1
2 (− ln v),

where u, v ∈ (0, 1].Notice that when D1 and D2 are independent we have G(u, v) =
0 for all u, v ∈ (0, 1] and we obtain the survival copula of the Marshall–Olkin
bivariate exponential distribution, see the corresponding comments in [20].

Let us mention a specific aging property of a bivariate random vector (Y1, Y2) that
follows the d-EMO model (6.19). Denote by

Y(t) = [
(t − Y1, t − Y2) | Y1 ≤ t, Y2 ≤ t

]
, t ≥ 0
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the corresponding inactivity times vector which has nonnegative marginals. Consider
the vector

− Y(t) = [
(Y1 − t, Y2 − t) | Y1 ≤ t, Y2 ≤ t

]
, (6.22)

which is the symmetric image ofY(t) with respect to the point (0, 0).We are interested
to examine the distribution of the random vector −Y(t). The result is given in the
following

Lemma 6.7 If the vector (Y1, Y2) follows a d-EMO distribution, then so does −Y(t)

for any t ≥ 0.

As a consequence, we have the following

Corollary 6.1 If the vector (Y1, Y2) follows a d-EMO distribution, then (Y1, Y2) and
−Y(t) have the same type of copula, given by relation (6.21).

6.4.2 Stochastic Order Comparisons

We present several stochastic order comparisons between bivariate random vec-
tors that follow a d-EMO model. The first result is related to the usual sto-
chastic order between random vectors (Y1, Y2) and (Z1, Z2), to be denoted by
(Y1, Y2) ≤st (Z1, Z2). This means that E[ψ(Y1, Y2)] ≤ E[ψ(Z1, Z2)] for every
increasing function ψ such that the expectation exists, see [36].

Lemma 6.8 Consider continuous random variables Vi and Di , i = 1, 2, 3, and
suppose (V1, V2) ≤st (D1, D2) and V3 ≤st D3. Then (Y1, Y2) ≤st (Z1, Z2), where

(Y1, Y2) = [max(V1, V3),max(V2, V3)] and (Z1, Z2)

= [max(D1, D3),max(D2, D3)]

follow d-EMO distribution.

Proof Since V3 is independent of (V1, V2) and D3 is independent of (D1, D2), we
have (V1, V2, V3) ≤st (D1, D2, D3).Taking into account thatmax(y, z) is increasing
in y and z, the result follows from Theorem 6.B.16(a) from [36]. ��
Remark 6.8 Notice that the function g(v1, v2, v3) = [max(v1, v3),max(v2, v3)] is
increasing and convex in its arguments. Thus, Lemma6.8 remains valid if we replace
the usual stochastic order by the increasing convex order, as a direct application of
Theorem7.A.5(a) from [36].

The concordance order for copulas of d-EMO distributions is considered in the
sequel. In Lemma6.9 we compare the copulas of d-EMO distributions obtained from
the same pair of random variables (V1, V2) but considering two different common
shocks represented by random variables V3 and D.
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Lemma 6.9 Suppose Vi , i = 1, 2, 3, and D are continuous random variables and

AV1,V2(y1, y2) = ln
FV1,V2 (y1,y2)

FV1 (y1)FV2 (y2)
is nondecreasing in y1 and y2. If V3 ≥st D, then

CY1,Y2(u, v) ≥ CZ1,Z2(u, v), for all u, v ∈ [0, 1], where

(Y1, Y2) = [max(V1, V3),max(V2, V3)] and (Z1, Z2)

= [max(V1, D),max(V2, D)]

follow d-EMO distributions.

In Lemma6.10 we consider the case where two d-EMO distributions are com-
posed by the same common shock (represented by a random variable V3) and dif-
ferent individual shocks, represented by the pairs of random variables (V1, V2) and
(D1, D2).

Lemma 6.10 Suppose Vi , i = 1, 2, 3, and Di , i = 1, 2, are continuous ran-

dom variables and let AV1,V2(y1, y2) = ln
FV1,V2 (y1,y2)

FV1 (y1)FV2 (y2)
≥ AD1,D2(z1, z2) =

ln
FD1,D2 (z1,z2)

FD1 (z1)FD2 (z2)
for yi ≤ zi , i = 1, 2. Define the d-EMO distributions

(Y1, Y2) = [max(V1, V3),max(V2, V3)] and (Z1, Z2)

= [max(D1, V3),max(D2, V3)].

If V1 ≤st D1, V2 ≤st D2, then CY1,Y2(u, v) ≥ CZ1,Z2(u, v), for all u, v ∈ [0, 1]. In
addition we have (Y1, Y2) ≤st (Z1, Z2).

Example 6.4 (Insurance application) Consider an insurance company offering two
policies. The first policy covers a pair of random losses (Y1, Y2) which are subject to
dependent individual risks (with potential losses V1 and V2). The second one covers
the random losses (Z1, Z2), also exposed to dependent individual risks denoted by
D1 and D2.Moreover, there exists a common risk, with random loss V . If the policies
cover only the largest loss, we have

(Y1, Y2) = [max(V1, V ),max(V2, V )] and (Z1, Z2)

= [max(D1, V ),max(D2, V )].

Suppose that for each of these two policies, the retained loss of the insurance com-
pany is some nondecreasing function hi (.) of the random losses, i = 1, 2. For the
first policy its expected retained loss is given by E[h1(Y1) + h2(Y2)]. Analogously,
E[h1(Z1) + h2(Z2)] is the expected retained loss for the second policy.
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Let the joint distribution of (V1, V2) and (D1, D2) be given by

FV1,V2(y1, y2) = (1 − exp{−λ1y1})(1 − exp{−λ1y2})
1 − θ1 exp{−λ1y1 − λ1y2} , θ1 ∈ [0, 1]

and

FD1,D2(y1, y2) = (1 − exp{−λ2y1})(1 − exp{−λ2y2})
1 − θ2 exp{−λ2y1 − λ2y2} , θ2 ∈ [−1, 0],

where λ1 ≥ λ2 > 0 and yi ≥ 0, i = 1, 2. Then the conditions of Lemma6.10 hold
true and we conclude that (Y1, Y2) ≤st (Z1, Z2). Thus, we have

E[h1(Y1) + h2(Y2)] ≤ E[h1(Z1) + h2(Z2)],

provided the expectations exist. Therefore, the expected retained loss is smaller in
the first insurance policy than in the second one.

With additional assumptions in Lemma6.10, we can obtain another related con-
cordance order result for copulas of d-EMO distributions, see Chap.4 in [32].

6.5 Concluding Remarks

The classical bivariate exponential MO distribution (6.2) finds applications in relia-
bility, survival analysis, finance and life insurance, among other fields. Hence, any
extension of this model has its theoretical and practical relevance. We extended the
classical MO model by assuming dependence between the individual shocks repre-
sented by the random variables T1 and T2 in the stochastic representation (6.1). The
dependence structure in EMO model defined by (6.4) or (6.7) enlarges the field of
applications of MO and GMO distributions.

In Sect. 6.2 we examined some probabilistic properties of EMO model. We
obtained its survival copula representation and investigated the distributional prop-
erty of residual lifetimes. In spite of the bivariate lack-of-memory property (LMP)
does not hold true for all EMO models, it was shown that the original vector
(min(T1, T3),min(T2, T3)) and the corresponding vector of residual lifetimes Xt

have the same type of survival copula given by (6.9). In [8] a similar relation is
established for the so-called almost bivariate LMP survival copula.

A deep study of EMO models is presented in [32], Chap. 3. An absolutely con-
tinuous version of EMOmodel that preserves the stochastic representation (6.1) was
obtained. Weak bivariate aging properties were analyzed for the absolutely continu-
ous version of the EMOmodel. In addition, the bivariate LMP of EMOmodels were
investigated and only EMO models with singular component have this property. It
was shown that if ST1,T2(x1, x2) is absolutely continuous then (X1, X2) possesses
the bivariate LMP with exponential marginals if and only if (T1, T2) possess the
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bivariate LMP and Ti are exponentially distributed, i = 1, 2, 3. Extreme value
analysis ofEMOmodels is presented in [32] aswell. Itwas shown that if ST1,T2(x1, x2)
is absolutely continuous then extreme value EMOmodelswith exponentialmarginals
can be obtained if and only if the survival copula that joins (T1, T2) is an extreme
value copula and Ti are exponentially distributed, i = 1, 2, 3.

In Sect. 6.3 we provided a Bayesian analysis of a dataset which displays a sin-
gular component along the line (x1 = x2 = x ≥ 0). Due to this singularity, EMO
distributions are suitable and, as expected, exhibited a better performance than the
two absolutely continuous models considered. For comparison purposes, in the three
EMO distributions used in the analysis we fixed the independent common shock T3
to be exponentially distributed. Notice that in the MO bivariate exponential distribu-
tion (6.2) the only source of dependence between the observed random variables X1
and X2 comes from this common shock. From Table6.9 it can be seen that among
the models with singular component, the MO distribution (6.2) has the weakest
performance. The additional dependence between the individual shocks T1 and T2
introduced in EMO-1 and EMO-2 models has the effect of providing a better fit to
the data. It is worth noting that the parameters of EMOmodels can be also estimated
by the classical maximum likelihood procedure using the density function (6.12).
Meanwhile, the complexity of the maximization procedure heavily depends on the
functional form of the survival function ST1,T2(x1, x2).

In Sect. 6.4 we extended the model introduced in [9] relaxing authors assump-
tion of independence between the individual shocks. In the proposed dual extended
Marshall–Olkin distribution (6.19), the dependence structure between its two com-
ponents is explained not only by the common shock, but also by the joint distribution
of the individual shocks. Probabilistic properties, copula representation, distribution
of the inactivity times, and stochastic order comparisons are presented for the dual
extended model.

A possible application of EMO-type distributions is related to the following
finance scenario. Let us consider financial institutions holding notes and Treasury
bonds, issued by governments, as part of their investment and risk management poli-
cies. Governments, by their turn, concerned with defaults in financial system and
their negative impact in the economy, implicitly or explicitly provide insurance to
banking sector, at the cost of weakening their own balance sheets. This relation-
ship makes default of government and financial system-dependent events, whose
probability of occurrence is particularly important to be assessed during financial
crisis. Unfortunately, since it is possible to observe a joint default (for instance, the
one observed in the recent Iceland crisis), the use of conventional MO-type models
should be avoided.

The extension of the Marshall–Olkin framework to allow for dependence in the
shocks specific to the issuers (identified by the dependence between T1 and T2 in
(6.1)), and between each of these and the common factor representing systemic risk
(e.g., by T3) is paramount from the point of view of applications. In fact, there is
a crucial econometric problem that these models can resolve. On one side it is not
reasonable to assume that issuer specific shocks are fully independent, so that all
the dependence in the system could be attributed to the common factor. On the other
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side, ignoring these relationships may induce a substantial bias in the estimates of the
common factor itself. This problem is recognized by [1], who propose an estimator
based on a model with standard bivariate Marshall–Olkin margins.

We find a potential application of EMO and d-EMO classes in commodity and
energy markets modeling as well, by assuming a dependent structure between error
terms of individual time series (identified by T1 and T2), see a related discussion
in [13].

We do believe that EMO and d-EMO models will be both of further theoretical
and practical interests. Several recent investigations related to the newly introduced
concept of Sibuya-type bivariate LMP and its invariant copula representation can be
found in [33, 34]. Multivariate extensions, related statistical inference and appropri-
ate applications are possible objects of future research.
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