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v

Meta-analysis (MA) is a prominent statistical tool in many research disciplines. It 
is a statistical method to combine the data of several independent studies, in order 
to draw overall conclusions based on the pooled data. Structural equation modeling 
(SEM) is a technique that tests the relations between a set of variables in one model, 
for example in a path model or a factor model. In a SEM analysis, all hypothesized 
relations between the variables are tested simultaneously. The overall fit of the 
model can be evaluated using several fit indices. SEM does not need raw data, but 
fits structural equation models to covariance (or correlation) matrices directly.

The combination of meta-analysis and structural equation modeling for the 
purpose of testing hypothesized models is called meta-analytic structural equa-
tion modeling (MASEM). MASEM is a new and promising field of research. With 
MASEM, a single model can be tested to explain the relationships between a set 
of variables in several studies. By using MASEM, we can profit from all available 
information from all available studies, even if few or none of the studies report 
about all relationships that feature in the full model of interest.

I use the term MASEM for the process of fitting a structural equation model on 
the combined data from several studies. SEM can also be used to perform ordinary 
meta-analysis (SEM-based meta-analysis), but this falls outside the scope of this 
book.

This book gives an overview of the most prominent methods to perform 
MASEM, with a focus on the two-stage SEM approach. The fixed and the random 
approach to MASEM are illustrated with two applications to real data. All steps 
that have to be taken to perform the analyses are discussed. The data and syntax 
files can be found online (http://suzannejak.nl/masem), so that readers can repli-
cate all analyses.

I would like to thank the editors of the Springer Briefs Series on Research 
Synthesis and Meta-Analysis, Mike Cheung, Michael Bosnjak, and Wolfgang 
Viechtbauer, for inviting me to write this book and providing me with valuable 
comments on earlier versions of the manuscript. Of course, all remaining errors 
are mine. I also thank Mathilde Verdam for providing feedback on the first chapter, 
and Debora Roorda and Huiyong Fan for making their data available.
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I am especially grateful to Mike Cheung, who was willing to share his exten-
sive knowledge of MASEM with me during my stay at the National University of 
Singapore.

September 2015	 Suzanne Jak
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1

Abstract  Meta-analysis is a prominent statistical tool in many research disci-
plines. It is a statistical method to combine the effect sizes of separate independ-
ent studies, in order to draw overall conclusions based on the pooled results. 
Structural equation modeling is a multivariate technique to fit path models, fac-
tor models, and combinations of these to data. By combining meta-analysis and 
structural equation modeling, information from multiple studies can be used to 
test a single model that explains the relationships between a set of variables or to 
compare several models that are supported by different studies or theories. This 
chapter provides a short introduction to meta-analysis and structural equation 
modeling.

Keywords  Meta-analysis  ·  Introduction  ·  Structural equation modeling  ·  Path 
model  ·  Factor model  ·  Model fit

1.1 � What Is Meta-Analysis?

The term “meta-analysis” was introduced by Glass (1976), who differentiated 
between primary analysis, secondary analysis, and meta-analysis. However, the 
techniques on which meta-analysis is based were developed much earlier (see 
Chalmers et al. 2002; O’Rourke 2007). In the terminology of Glass, primary anal-
ysis involves analyzing the data of a study for the first time. Secondary analysis 
involves the analysis of data that have been analyzed before, for example to check 
the results of previous analyses or to test new hypotheses. Meta-analysis then 
involves integration of the findings from several independent studies, by statisti-
cally combining the results of the separate studies. One of the first meta-analyses 
in the social sciences was performed by Smith and Glass (1977), who integrated 
the findings of 375 studies that investigated whether psychotherapy was beneficial 
for patients, a topic that was much debated at the time. By using a quantitative 
approach to standardizing and averaging treatment/control differences across all 
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2 1  Introduction to Meta-Analysis and Structural Equation Modeling

the studies, it appeared that overall, psychotherapy was effective, and that there 
is little difference in effectiveness across the different types of therapy. Around 
the same time as Smith and Glass performed this meta-analysis, other researchers 
developed similar techniques to synthesize research findings (Rosenthal and Rubin 
1978, 1982; Schmidt and Hunter 1977), which are now all referred to as meta-
analysis techniques. Meta-analysis is used to integrate findings in many fields, 
such as psychology, economy, education, medicine, and criminology.

1.1.1 � Issues in Meta-Analysis

Compared with primary analysis, meta-analysis has important advantages. 
Because more data is used in a meta-analysis, the precision and accuracy of esti-
mates can be improved. Increased precision and accuracy also leads to greater sta-
tistical power to detect effects.

Despite the obvious positive contributions of meta-analysis, the technique is 
also criticized. Sharpe (1997) identified the three main validity threats to meta-
analysis: mixing of dissimilar studies, publication bias, and inclusion of poor qual-
ity studies. The mixing of dissimilar studies, also referred to as “mixing apples 
and oranges” problem, entails the issue that average effect sizes are not meaning-
ful if they are aggregated over a very diverse range of studies. Card (2012) coun-
ters this critique by stating that it depends on the inference goal whether it is 
appropriate to include a broad range of studies in the meta-analysis (e.g. if one is 
interested in fruit, it is appropriate to include studies about apples, oranges, straw-
berries, banana’s etc.). Moreover, a meta-analysis does not only entail aggregation 
across the total pool of studies, but can also be used to compare different subsets 
of studies using moderator analysis. The second threat, publication bias, is also 
referred to as the “file drawer” problem, and points to the problem that some stud-
ies that have been conducted may not be published, and are therefore not included 
in the meta-analysis. Publication bias is a real source of bias, because the non-
published studies are probably those that found non-significant or unexpected 
results. Several methods exist that aim at avoiding, detecting and/or correcting for 
publication bias (see Rothstein et al. 2005; van Assen et al. 2014) but there is no 
consensus on the best ways to deal with the problem. The third issue, the inclusion 
of poor quality studies in the meta-analysis is also denoted as the “garbage in, gar-
bage out” problem. Although it may seem logical to leave studies of poor quality 
out of the meta-analysis a priori, it is recommended to code the relevant features 
of the included primary studies that are required for high quality (e.g. randomiza-
tion in an experiment), so that later on one can investigate whether these quality-
conditions are related to the relevant effect sizes (Valentine 2009).

Cooper and Hedges (2009) distinguish six phases of research synthesis: 
Problem formulation, literature search, data evaluation, data analysis, interpreta-
tion of the results and presentation of the results. In this book we focus on the data 
analysis phase, referred to as meta-analysis. The other parts of research synthesis 
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are discussed in for example Borenstein et al. (2009), Card (2012), Cooper et al. 
(2009), and Lipsey and Wilson (2001).

1.1.2 � Statistical Analysis

Usually, the units of analysis in a meta-analysis are not the raw data, but sum-
mary statistics (effect size statistics) that are reported in the individual studies. The 
type of effect size statistic that is investigated depends on the nature of the vari-
ables involved. For example, if the interest is in differences between a treatment 
and control group on some continuous outcome variable, the meta-analysis may 
focus on the standardized mean difference (like Cohen’s d or Hedges’ g). If the 
hypothesis is about the association between two continuous variables, the (z-trans-
formed) product moment correlation coefficient may be the focus of the analysis. 
If the interest is in association between two dichotomous variables, the (logged) 
odds ratio is often an appropriate effect size statistic. Once the effect size statistics 
of interest are gathered or reconstructed from the included studies, the statistical 
analysis can start, using fixed effects or random effects analysis.

The fixed effects approach is useful for conditional inference, which means that 
the conclusions cannot be generalized beyond the studies included in the analysis 
(Hedges and Vevea 1998). In the most common fixed effects model, it is assumed 
that the effect size statistics gathered from the studies are estimates of one popula-
tion effect size, and differences between studies are solely the result of sampling 
error. The analysis focuses on obtaining a weighted mean effect size across stud-
ies. The weights are based on the sampling variance in the studies, so that stud-
ies with larger sampling variance (and smaller sample size) contribute less to the 
weighted mean effect size (which is the estimate of the population effect size).

The random effects approach facilitates inferences to studies beyond the ones 
included in the particular meta-analysis (unconditional inference). The random 
effects approach assumes that the population effect sizes vary from study to study, 
and that the studies in the meta-analysis are a random sample of studies that could 
have been included in the analysis. Differences in effect sizes between studies are 
hypothesized to be due to sampling error and other causes, such as differences in 
characteristics of the respondents or operationalization of the variables in the dif-
ferent studies. The random effects analysis leads to an estimate of the mean and 
variance of the distribution of effect sizes in the population.

Apart from the average effect size, it is often also of interest if and why stud-
ies differ systematically in their effect size statistics. Therefore, researchers often 
code study characteristics (e.g. average age of respondents, measurement instru-
ments used, country in which the study was conducted), and investigate whether 
the effect sizes are associated with these study-level variables. This is called mod-
erator analysis, and is used to investigate whether the association between the vari-
ables of interest is moderated by study characteristics. These moderator variables 
may explain variability in the effect sizes. If all variability is explained, a fixed 
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effects model may hold, implying that conditional on the moderator variables, all 
remaining variability is sampling variability. If effect sizes are regressed on study 
level variables in a random effects approach, reflecting that the moderator vari-
ables do not explain all variability across the studies, this is called mixed effects 
meta-analysis.

To be consistent with recent terminology, I use the term “fixed effects model” 
for all models that do not estimate between-studies variance. This terminology 
is common in meta-analysis, but not in line with the statistical literature, where 
the fixed effects model denotes the model in which heterogeneity is explained by 
study-level variables. The model that assumes homogeneity of effect sizes, without 
study-level variables, is also called the “equal effects model” (Laird and Mosteller 
1990). I use the term “fixed effects model” for both these models, and will explic-
itly state when study-level variables are included in the model.

1.2 � What Is SEM?

Structural equation modeling (SEM) has roots in two very different techniques 
developed in two very different fields. Path analysis with its graphical represen-
tations of effects and effect decomposition comes from genetics research, where 
Wright (1920) proposed a method to predict heritability of the piebald pattern 
of guinea-pigs. Factor analysis is even older, with an early paper by Spearman 
(1904), and was developed in research on intelligence, to explain correlations 
between various ability tests (Spearman 1928). Jöreskog (1973) coined the name 
LISREL (LInear Structural RELations) for the framework that integrates the tech-
niques of path analysis and factor analysis, as well as for the computer program 
that made the technique available to researchers.

1.2.1 � Path Analysis

SEM is a confirmatory technique, which means that a model is formulated based 
on theory, and it is judged whether this model should be rejected by fitting the 
model to data. If multivariate normality of the data holds, the variance covariance 
matrix of the variables of interest and the sample size are sufficient to fit models 
to the data. This is a very convenient aspect of SEM, because it means that as long 
as authors report correlations and standard deviations of their research variables in 
their articles, other researchers are able to replicate the analyses, and to test differ-
ent hypotheses on these data. In order to test hypotheses, these hypotheses have to 
be translated in a statistical model. The statistical model can be formulated in dif-
ferent ways, for example using a graphical display. The graphical displays that are 
used for structural equation models use squares to represent observed variables, 
ellipses to represent latent variables, one-headed arrows to represent regression 
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coefficients, and two-headed arrows to represent covariances. Consider the path 
model in Fig. 1.1, in which the effect of negative and positive relations with teach-
ers is hypothesized to affect student achievement through student engagement.

The four observed variables are depicted in squares. Student engagement 
is regressed on Positive and Negative relations, and Student Achievement is 
regressed on Student Engagement. There are no direct effects of Positive and 
Negative relations on Student Achievement, reflecting the hypothesis that these 
effects are fully mediated by Student Engagement. In this model, Engagement and 
Achievement are called endogenous variables, reflecting that other variables are 
hypothesized to have an effect on them. Variables that are not regressed on other 
variables are called exogenous variables. Positive and Negative relations are exog-
enous variables in this model. The two exogenous variables are assumed to covary, 
indicated by the two-headed arrow between them. There are also two-headed 
arrows pointing from the variable to itself, reflecting the variance of the variable 
(a covariance with itself is equal to a variance). The endogenous variables have a 
latent variable with variance pointing to it. This latent variable is called a residual 
factor, and could be viewed as a container variable representing all other variables 
that also explain variance in the endogenous variable, but that are not included in 
the model. The regression coefficient of the variable on the residual factor is not 
estimated but fixed at 1 for identification of the model. The variance of the resid-
ual factor represents the unexplained variance of the endogenous variable. So, part 
of the variance in Student Engagement is explained by Positive and Negative rela-
tions, and the remaining variance is residual variance (or, unexplained variance). 
Similarly, part of the variance in Student Achievement is explained by Student 
Engagement, and the remaining variance is residual variance. For the exogenous 
variables, actually, all variance is unexplained. So it seems logical to depict two 
more residual factors with variance pointing to Negative and Positive relations, 

Fig.  1.1   Hypothesized path model in which the effects of Positive and Negative relations on 
achievement is fully mediated by engagement

1.2  What Is SEM?
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instead of the double headed arrow pointing to the variables themselves. Indeed, 
this would be correct, but to keep the graphs simple they are often not depicted. 
Actually, the residual factor pointing to an endogenous variables is also often not 
fully depicted, but represented by a small one-sided arrow.

Attached to the arrows in the graphical display, the Greek symbols represent 
the model parameters. In a path model, the direct effects are often denoted by β 
and variances and covariances by ψ. For example, β43 represents the regression 
coefficient of Variable 4 on Variable 3, ψ44 represents the residual variance of 
Variable 4, and ψ21 represents the covariance between Variable 1 and Variable 2. 
The model parameters are collected in matrices. A path model on observed vari-
ables can be formulated using two matrices with parameters, matrix B and matrix 
�, and an identity matrix, I. For the example, these matrices look as follows, 
with rows 1–4 and columns 1–4 corresponding to the variables Positive relations, 
Negative relations, Student Achievement, and Student Engagement, respectively:

Matrix � is a symmetrical matrix, so the covariance between Variables 1 and 2 is 
equal to the covariance between Variable 2 and 1. Using these parameters, a model 
implied covariance matrix (Σmodel) can be formulated. The model implied covari-
ance matrix is a function of the matrices with parameters:

The resulting model implied covariance matrix (Σmodel) for the current example 
can be found in Appendix A. The basic hypothesis that is tested by fitting a struc-
tural equation model to data is:

Note however, that the population covariance matrix, Σ, is generally unavailable to 
the researcher, who only observed a covariance matrix based on a sample, denoted 
S. Suppose that observed covariance matrix of the four variables based on 104 
respondents is as given in Table 1.1.

B =









0 0 0 0

0 0 0 0

β31 β32 0 0

0 0 β43 0









, � =









ψ11

ψ21 ψ22

0 0

0 0

ψ33

0 ψ44









and I =









1 0

0 1

0 0

0 0

0 0

0 0

1 0

0 1









.

(1.1)�model= (I− B)−1
�(I− B)

−1T
.

(1.2)� = �model.

Table 1.1   Variances (on 
diagonal) and covariances 
of four research variables, 
N = 104

Variable 1 2 3 4

1. Positive relations 0.81

2. Negative relations −0.36 1.21

3. Engagement 0.63 −0.60 1.69

4. Achievement 0.14 −0.33 0.50 1.44
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The model parameters that make up Σmodel can be estimated by minimizing a 
discrepancy function. This means that parameters are estimated in order to mini-
mize the difference between the model implied covariance matrix (Σmodel), and 
the observed covariance matrix (S). The more parameters a model has, the easier it 
is to make the Σmodel close to S. The maximum number of parameters that a model 
can have in order to be identified is equal to the number of observed variances 
and covariances in S. In our example with four variables, the number of variances 
and covariances is ten. The number of parameters in the Σmodel equals eight (three 
regression coefficients, one covariance, four variances). The degrees of freedom 
(df) of a model are equal to the difference between these two. This model has 2 
degrees of freedom. The larger the degrees of freedom of a model is, the more 
the model is a simplification of reality. Simple models are generally preferred over 
complicated models. But, the larger the degrees of freedom, the larger the differ-
ence between Σmodel and S will be, meaning that the absolute fit of a model will be 
worse.

Having less parameters than observed variances and covariances is not the 
only requirement for identification of the model. For a model to be identified, all 
parameters in the model need to be identified. See Bollen (1989) for an overview 
of methods to assess the identification of model parameters. If a model is identi-
fied, the parameters can be estimated. The most used estimation method is maxi-
mum likelihood (ML) estimation. The discrepancy function FML that is minimized 
with ML estimation is:

where p is the number of variables in the model. If the model fits the data per-
fectly, the model implied covariance matrix will be equal to S, and FML will 
be zero. If the model does not fit perfectly, FML will be larger than zero. See 
Bollen (1989) for a description of ML and other estimation methods and their 
assumptions.

1.2.2 � Model Fit

An important property of the ML estimator is that it provides a test of overall 
model fit for models with positive degrees of freedom. Under the null hypothesis 
(Σ = Σmodel), the minimum FML multiplied by the sample size minus one (n − 1) 
asymptotically follows a chi-square distribution, with degrees of freedom equal to 
the number of non-redundant elements in S minus the number of model param-
eters. If the chi-square value of a model is considered significant, the null hypoth-
esis is rejected. The chi-square of a model may become significant because the 
discrepancy between S and the estimated Σmodel is large, or because the sample 
is large. With a very large sample, small differences between S and the estimated 
Σmodel may lead to a significant chi-square, and thus rejection of the model. Other 

(1.3)FML = log |�model| − log |S| + trace
(

S�model
−1

)

− p,

1.2  What Is SEM?
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fit measures are available in SEM, which do not test exact fit of the model, but are 
based on the idea that models are simplifications of reality and will never exactly 
hold in the population. The Root Mean Squared Error of Approximation (RMSEA, 
Steiger and Lind 1980) is the most prominent fit measure next to the chi-square. 
The RMSEA is interpreted using suggested cut-off values that should be regarded 
as rules of thumb. RMSEA values smaller than 0.05 are considered to indicate 
close fit, values smaller than 0.08 are considered satisfactory and values over 0.10 
are considered indicative of bad fit (Browne and Cudeck 1992). Another promi-
nent fit measure is the Comparative Fit Index (CFI, Bentler 1990) that is based on 
a comparison of the hypothesized model with the “independence model”, which is 
a model in which all variables are unrelated. CFI values over 0.95 indicate reason-
ably good fit. For an overview of these and other fit indices see Schermelleh-Engel 
et al. (2003).

Fitting the model from Fig. 1.1 to the observed covariance matrix in Table 1.1 
gives the following fit indices: χ2 = 2.54, df = 2, p = 0.28, RMSEA = 0.05 and 
CFI =  0.99. So, exact fit of the model is not rejected, and the model also fitted 
the data according to the rules of thumb for the RMSEA and CFI. If the model 
fits the data, the parameter estimates can be interpreted. If a model does not fit 
the data, the parameter estimates should not be interpreted because they will be 
wrong. Table 1.2 gives an overview of the unstandardized parameter estimates, the 
95 % confidence intervals and the standardized parameter estimates of the model. 
See Appendix B for an example of an OpenMx-script to fit the current model.

All parameters in this model differ significantly from zero, as judged by the 
95 % confidence intervals. For interpretation, it is useful to look at the standard-
ized parameter estimates. For example, the standardized β31, means that 1 standard 
deviation increase in Positive relationships is associated with 0.45 standard devia-
tions increase in Engagement, controlled for the effect of Negative relationships. 
The standardized residual variance is interpreted as the proportion of residual 

Table  1.2   Unstandardized parameter estimates, 95  % confidence intervals and standardized 
parameter estimates of the path model from Fig. 1.1

Parameter Unstandardized estimate 95 % confidence interval Standardized 
estimateLower bound Upper bound

β31 0.64 0.40 0.89 0.45

β32 −0.30 −0.50 −0.10 −0.26

β43 0.30 0.13 0.47 0.32

ψ21 −0.36 −0.60 −0.36 −0.36

ψ11 0.81 0.62 1.08 1.00

ψ22 1.21 0.93 1.61 1.00

ψ33 1.10 0.85 1.47 0.65

ψ44 1.29 0.99 1.72 0.90

β31 × β43 0.19 0.08 0.34 0.14

β32 × β43 −0.09 −0.19 −0.03 −0.08
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variance. This means that in the standardized solution, the proportion of explained 
variance in Student achievement is calculated as 1 − ψ44, =  0.10. The propor-
tion of explained variance in Engagement is 0.35. Indirect effects are calculated 
as the product of the two direct effects that constitute the indirect effect. With 
OpenMx, one can estimate confidence intervals for indirect effects as well. The 
indirect effects of Positive and Negative relationships on Student Achievement are 
both small but significant (see the last two rows in Table 1.2). This shows that as 
expected, there is significant mediation. Whether there is full or partial mediation 
can be investigated by testing the significance of the direct effects of Positive and 
Negative relationships on Student Achievement. This is shown in Chap. 5.

1.2.3 � Factor Analysis

Factor analysis can also be seen as a special case of structural equation modeling. 
Factor models involve latent variables that explain the covariances between the 
observed variables. Consider the two-factor model on five scales measuring chil-
dren’s problem behavior depicted in Fig. 1.2.

In a factor model, each indicator is affected by a common factor that explains 
the covariances between the indicators. The regression coefficients linking the 
factor to an indicator are called factor loadings. The larger a factor loading is, 
the more variance the factor explains in the indicator. Not all indicator variance 
may be common variance, which is reflected by the residual factors that affect 
each indicator. The variance of these residual factors is called residual variance 
(denoted by θ) and is assumed to consist of random error variance and structural 

Fig. 1.2   A two-factor model on the five problem behavior variables

1.2  What Is SEM?

http://dx.doi.org/10.1007/978-3-319-27174-3_5
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variance. For example, there may be a structural component in Somatisation that is 
not correlated with Anxiety or Withdrawn behavior.

With factor analysis, Σmodel is a function of factor loadings, depicted by λ’s, 
factor variances and covariances, depicted by ϕ’s, and residual variances, depicted 
by θ’s. Note that one factor loading for each factor is fixed at 1. This is needed 
to identify the model. As factors are unobserved variables, the scale of the vari-
ables is not known, and a metric has to be given to the factors by fixing one fac-
tor loading per factor. Alternatively, one can fix the factor variances ϕ11 and ϕ22 
at some value (e.g. 1) and estimate all factor loadings. In advanced models (e.g. 
multigroup and longitudinal models) one method of scaling may be preferred over 
the other, but in this example it is arbitrary how the factors are given a metric. The 
unstandardized parameters will differ based on the scaling method, but the model 
fit and the standardized parameter estimates will not. The factor model can be rep-
resented by three matrices with parameters, a full matrix Λ with factor loadings, 
a symmetrical matrix Φ with factor variances and covariances, and a symmetrical 
matrix Θ with residual variances and covariances. For the current model, the three 
matrices look as follows.

The rows of Λ are associated with variables 1 through 5 from Fig. 1.2, as well as 
the rows and columns of Θ. The columns of Λ and the rows and columns of Φ are 
associated with the Internalizing and Externalizing factors respectively.

The factor model is specified using these matrices as:

leading to the model implied covariance matrix given in Appendix C.
Suppose that we observed the covariance matrix of the five variables from a sam-

ple of 155 parents with children suffering from epilepsy that is given in Table 1.3.
Fitting the model from Fig. 1.2 to these data leads to good fit with the following 

fit measures: χ2 = 4.08, df = 4, p = 0.40, RMSEA = 0.01 and CFI = 1.00. The 
unstandardized parameter estimates, 95  % confidence intervals and standardized 

� =













1 0

�21 0

�31 0

0 1

0 �52













, � =

�

ϕ11

ϕ21 ϕ22

�

and � =

�

�

�

�

�

�

�

�

�

�

θ11
0 θ22
0 0 θ33
0 0 0 θ44
0 0 0 0 θ55

�

�

�

�

�

�

�

�

�

�

.

(1.4)�model= ���
T
+�,

Table 1.3   Variances (on 
diagonal) and covariances  
of five research variables

Variable 1 2 3 4 5

1. Withdrawn 12.55

2. Somatization 6.31 10.06

3. Anxiety 11.15 9.64 26.02

4. Delinquency 2.85 2.09 4.84 3.72

5. Aggression 12.44 9.68 22.20 9.96 51.02
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parameter estimates are given in Table 1.4. All standardized factor loadings are larger 
than 0.70, meaning that they are substantially indicative of the common factor on 
which they load. The correlation between the common factors internalizing and exter-
nalizing is significant and quite large, 0.72. The proportion of explained variance is 
largest in indicator 5 (1 − 0.11 = 0.89) and smallest in indicator 2 (1 − 0.51 = 0.49). 
See Appendix D for an annotated OpenMx-script from this example.

In the two examples given in this chapter the input matrix was a covariance 
matrix. Maximum likelihood estimation assumes analysis of the covariance 
matrix, and not of the correlation matrix. However, sometimes only the correlation 
matrix is available. Treating the correlation matrix as a covariance matrix leads 
to incorrect results when estimating confidence intervals or when testing specific 
hypotheses (Cudeck 1989). To obtain correct results, a so-called estimation con-
straint can be added. This constraint enforces the diagonal of the model implied 
correlation matrix to always consist of 1’s during the estimation.

The factor model and path model are the two basic models within the struc-
tural equation modeling framework. Once a factor model has been established, the 
analysis often goes some steps further, for example by including predictor vari-
ables like age to investigate age differences in the latent variables Internalizing and 
Externalizing problems. Another extension is multigroup modeling, in which a 
model is fitted to covariance matrices from different groups of respondents simul-
taneously, giving the opportunity to test the equality of parameters across groups. 
For example, in the path model from Fig.  1.1, it may be hypothesized that the 
effect of Positive and Negative relations on Engagement may be stronger for chil-
dren in elementary school than for children in secondary school.

Some cautions about SEM have to be considered. If a model fits the data 
well, and is accepted by the researcher as the final model, it does not mean that 

Table  1.4   Unstandardized parameter estimates, 95  % confidence intervals and standardized 
parameter estimates of the factor model from Fig. 1.2

Parameter Unstandardized estimate 95 % confidence interval Standardized 
estimateLower bound Upper bound

λ11 1 – – 0.74

λ21 0.85 0.11 8.03 0.70

λ31 1.78 0.18 9.25 0.86

λ42 1 – – 0.77

λ52 4.54 0.50 9.04 0.94

ϕ11 6.78 1.37 4.96 1

ϕ22 2.18 0.43 5.11 1

ϕ21 2.78 0.54 5.16 0.72

θ11 5.69 0.84 6.81 0.46

θ22 5.12 0.707 7.252 0.51

θ33 6.78 1.571 4.314 0.26

θ44 1.52 0.255 5.936 0.41

θ55 5.72 3.945 1.451 0.11

1.2  What Is SEM?



12 1  Introduction to Meta-Analysis and Structural Equation Modeling

the model is the correct model in the population. If the model is not rejected, this 
could be due to lack of statistical power to reject the model. Moreover, there may 
be other models that fit the data just as well as the hypothesized model. Therefore, 
it is important to consider equivalent models (MacCallum et al. 1993). If a model 
is rejected however, the conclusion is that the model does not hold in the popula-
tion. This chapter is far too short to discuss all relevant issues in SEM. Several 
books have been written that can be used to learn about SEM,  see for example 
Bollen (1989), Byrne (e.g. 1998), Geiser (2012), Loehlin (1998), and Kline (2011).

1.3 � Why Should You Combine SEM and MA?

Most research questions are about relations (or differences) between a set of 
variables. The hypothetical model in Fig.  1.1 for example, states that positive 
and negative relations lead to achievement through engagement. Current prac-
tice in meta-analysis is to meta-analyze each effect in this model separately. The 
questions these analyses answer are: What is the pooled effect of positive rela-
tions on engagement? And: What is the pooled effect of engagement on achieve-
ment? However, what the researcher also may want to know is: Is this model a 
good representation of the data? Are the effects of positive and negative relations 
on achievement fully mediated by engagement? Which effects are lacking in this 
model?

Using MASEM, information from multiple studies is used to test a single 
model that explains the relationships between a set of variables or to compare 
several models that are supported by different studies or theories (Becker 1992; 
Viswesvaran and Ones 1995). MASEM provides the researcher measures of over-
all fit of a model, as well as parameter estimates with confidence intervals and 
standard errors. By combining meta-analysis and SEM, some of the difficulties in 
the separate fields may be overcome.

Structural equation modelling requires large sample sizes. Small samples lead 
to low statistical power, and non-rejection of models. If several (small) stud-
ies investigate the same phenomenon, they may end up with very different final 
models, leading to a wide array of models describing the same phenomena. By 
combining the information from several (possibly underpowered) primary stud-
ies, general conclusions can be reached about which model is most appropriate. 
Norton et al. (2013) for example, used MASEM to investigate the factor structure 
of an anxiety and depression scale, by comparing ten different models that were 
proposed based on different primary studies. Furthermore, MASEM can be used 
to answer research questions that are not addressed in any of the primary stud-
ies. Even about models that include a set of variables that none of the primary 
studies included all in their study. For example, Study 1 may report correlations 
between variable A and variable B. Study 2 may report correlations between varia-
bles B and C, and Study 3 between variable A and C. Although none of the studies 
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included all variables, one model can be fit on these three variables using MASEM 
(Viswesvaran and Ones 1995).

I use the term MASEM for the process of fitting a structural equation model on 
the combined data from several studies. SEM can also be used to perform ordinary 
meta-analysis (SEM-based meta-analysis). SEM-based meta-analysis is outside 
the scope of this book, but see Cheung (2008, 2015) for an explanation.

MASEM is a fairly young field of research, and it seems to be growing in popu-
larity, both in substantive and methodological research. At this moment, a special 
issue about MASEM is being edited for the journal Synthesis Research Methods.
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Abstract  The process of performing meta-analytic structural equation mod-
eling (MASEM) consists of two stages. First, correlation coefficients that have 
been gathered from studies have to be combined to obtain a pooled correlation 
matrix of the variables of interest. Next, a structural equation model can be fit-
ted on this pooled matrix. Several methods are proposed to pool correlation coef-
ficients. In this chapter, the univariate approach, the generalized least squares 
(GLS) approach, and the Two Stage SEM approach are introduced. The univariate 
approaches do not take into account that the correlation coefficients may be cor-
related within studies. The GLS approach has the limitation that the Stage 2 model 
has to be a regression model. Of the available approaches, the Two Stage SEM 
approach is favoured for its flexibility and good statistical performance in com-
parison with the other approaches.

Keywords  Meta-analytic structural equation modeling  ·  Univariate meta-analysis  ·  
Multivariate meta-analysis  ·  GLS-approach  ·  Two-stage structural equation 
modeling  ·  MASEM

2.1 � Introduction

As shown in Chap. 1, a structural equation model can be fitted to the covariance 
or correlation matrix of the variables of interest, without requirement of the raw 
data. Therefore, if articles report the correlations between the research variables 
(or information that can be used to estimate the correlation), the results can be 
used in a meta-analysis. MASEM combines structural equation modeling with 
meta-analysis by fitting a structural equation model on a meta-analyzed covariance 
or correlation matrix. As the primary studies in a meta-analysis often involve vari-
ables that are measured in different scales, MASEM is commonly conducted using 
a pooled correlation rather than covariance matrix. In the remainder of this book 
I will therefore focus on correlation matrices (but see Beretvas and Furlow 2006; 
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Cheung and Chan 2009). MASEM typically consists of two stages (Viswesvaran 
and Ones 1995). In the first stage, correlation coefficients are tested for homoge-
neity across studies and combined together to form a pooled correlation matrix. 
In the second stage, a structural equation model is fitted to the pooled correlation 
matrix. In the next sections I outline the different approaches to pool correlation 
coefficients under the assumption that the correlations are homogenous across 
studies (fixed effects approaches). Heterogeneity of correlation coefficients and 
random effects approaches are discussed in Chap. 3.

2.2 � Univariate Methods

In the univariate approaches, the correlation coefficients are pooled separately 
across studies based on bivariate information only. Dependency of correlation 
coefficients within studies is not taken into account (as opposed to multivariate 
methods, described in the next section). In the univariate approaches, a population 
value is estimated for each correlation coefficient separately. For one correlation 
coefficient, for each study i, the correlation coefficient is weighted by the inverse 
of the estimated sampling variance (the squared standard error), vi. The sampling 
variance of the correlation between variables A and B is given by:

where ni is the sample size in study i, and the observed correlation ri_AB can be 
plugged in for the unknown population correlation ρi_AB. By taking the average of 
the weighted correlation coefficients across the k studies, one obtains the synthe-
sized population correlation estimate:

Weighting by the inverse sampling variance ensures that more weight is given to 
studies with larger sample size (and thus smaller sampling variance). Because the 
sampling variance of a correlation coefficient depends on the absolute value of the 
correlation coefficient, some researchers (e.g. Hedges and Olkin 1985) proposed 
to use Fisher’s z-transformation on the correlation coefficients before synthesizing 
the values. The estimated sampling variance vi of a transformed correlation z in a 
study i is equal to 1/(ni − 3), where ni is the sample size in study i. After obtaining 
the pooled z-value, it can be back-transformed to an r-value for interpretation.

There is no consensus on whether it is better to use the untransformed correla-
tion coefficient r or the transformed coefficient z in meta-analysis (see Corey et al. 
1998). Hunter and Schmidt (1990) argued that averaging r leads to better estimates 
of the population coefficient than averaging z. However, several simulation studies 
(Cheung and Chan 2005; Furlow and Beretvas 2005; Hafdahl and Williams 2009) 
showed that differences between the two methods were generally very small, but 

(2.1)vi_AB = (1−ρi_AB
2)2/ni,

(2.2)ρ̂ =

∑

k

i=1
1

vi_AB
ri_AB

∑

k

i=1
1

vi_AB

.
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17

when differences are present, the z approach tends to do better. If a random effects 
model is assumed however, Schulze (2004) recommends r over z.

If the correlation coefficients are pooled across studies (using the r or z 
method), one pooled correlation matrix can be constructed from the separate coef-
ficients. The hypothesized structural model is then fit to this matrix, as if it was an 
observed matrix in a sample.

Apart from the problem that the correlations are treated as independent from 
each other within a study, the univariate methods have more issues (Cheung and 
Chan 2005). Because not all studies may include all variables, some Stage 1 corre-
lation coefficients will be based on more studies than others. This leads to several 
problems. First, it may lead to non-positive definite correlation matrices (Wothke 
1993), as different elements of the matrix are based on different samples. Non-
positive definite matrices cannot be analysed with structural equation modeling. 
Second, correlation coefficients that are based on less studies are estimated with 
less precision and should get less weight in the analysis, which is ignored in the 
standard approaches. Third, if different sample sizes are associated with different 
correlation coefficients, it is not clear which sample size has to be used in Stage 2. 
One could for example use the mean sample size, the median sample size or the 
total sample size, leading to different results regarding fit indices and statistical 
tests in Stage 2. Due to these difficulties, univariate methods are not recommended 
for MASEM (Becker 2000; Cheung and Chan 2005).

2.3 � Multivariate Methods

The two best known multivariate methods for meta-analysis are the generalized 
least squares (GLS) method (Becker 1992, 1995, 2009) and the Two-Stage SEM 
method (Cheung and Chan 2005). Both will be explained in the next sections.

2.3.1 � The GLS Method

Becker (1992, 1995, 2009) proposed using generalized least squares estimation 
to pool correlation matrices, taking the dependencies between correlations into 
account. This means that not only the sampling variances in each study are used to 
weight the correlation coefficients, but also the sampling covariances. The estimate 
of the population variance of a correlation coefficient was given in Eq. (2.1). The 
population covariance between two correlation coefficients, let’s say between vari-
ables A and B and between the variables C and D, is given by the long expression:

(2.3)

cov (ρi_AB, ρi_CD) = (0.5ρi_ABρi_BC(ρi_AC
2
+ ρi_AD

2
+ ρi_BC

2
+ ρi_BD

2)

+ ρi_ACρi_BD + ρi_ADρi_BC − (ρi_ABρi_ACρi_AD + ρi_ABρi_BCρi_BD

+ ρi_ACρi_BCρi_CD + ρi_ADρi_BDρi_CD))/ni,

2.2  Univariate Methods
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where ρi indicates a population correlation value in study i and ni is the sample size 
in study i (Olkin and Siotani 1976). As the population parameters ρi are unknown, 
the estimates of the covariances between correlations can be obtained by plugging 
in sample correlations for the corresponding ρi’s in Eq. (2.3). However, because the 
estimate from a single study is not very stable, it is recommended to use pooled esti-
mates of ρ, by using the (weighted) mean correlation across samples (Becker and 
Fahrbach 1994; Cheung 2000; Furlow and Beretvas 2005). These pooled estimates 
should then also be used to obtain the variances of the correlation coefficients (by 
plugging in the pooled estimate in Eq. 2.1). This way, a covariance matrix of the cor-
relation coefficients, denoted Vi is available for each study in the meta-analysis. The 
dimensions of Vi may differ across studies. If a study includes three variables, and 
reports the three correlations between the variables, Vi has three rows and three col-
umns. The values of Vi are treated as known (as opposed to estimated) in the GLS 
approach. The Vi matrices for each study are put together in one large matrix, V, 
which is a block diagonal matrix, with the Vi matrix for each study on its diagonal:

V is a symmetrical matrix with numbers of rows and columns equal to the total 
number of observed correlation coefficients across the studies.

For performing the multivariate meta-analysis using the GLS-approach, two 
more matrices are needed: A vector with the observed correlations in all the stud-
ies, r, and a matrix with zeros and ones that is used to indicate which correlation 
coefficients are present in each study. The vector with the observed correlations 
in all studies can be created by stacking the observed correlations in each study 
in a column vector. The length of this vector will be equal to the total number of 
correlations in all studies. If all k studies included all p variables, r will be a pk by 
1 vector. Most often, not all studies include all research variables, in which case 
a selection matrix, X, is needed. For a study i, which for example included vari-
ables A and B but not C (and thus reports ri_AB, but not ri_AC and ri_BC), a selection 
matrix is created by constructing a 3 by 3 identity matrix (a matrix with ones on 
the diagonal and zeros off-diagonal) and removing the row of the missing correla-
tion. In this study the selection matrix will thus look like this:

and in a study which included all three correlations, the selection matrix will be an 
identity matrix:

V =











V1 0 0 0

0 V2 · · · 0

0
...

. . .
...

0 0 · · · VK











.

[

1

0

0

1

0

0

]

,





1 0 0

0 1 0

0 0 1



.
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Doing this for all k studies, leads to k small matrices with three columns and num-
ber of rows equal to the number of present correlations. These matrices are then 
stacked to create matrix X, which has three columns and number of rows equal to 
the sum of all correlation coefficients across studies. That is, it has the same num-
ber of rows as the stacked vector of observed correlations, r. Using matrix algebra 
with these three matrices, the estimates of the pooled correlation coefficients can 
be obtained:

where ρ̂ is a p-dimensional column vector with the estimates of the population 
correlation coefficients, as well as the asymptotic covariance matrix of the param-
eter estimates, VGLS:

The only structural model that can be evaluated directly with the GLS method is 
the regression model. This is done by creating a matrix with the estimated pooled 
correlations of the independent variables, say RINDEP, and a vector with estimated 
pooled correlations of the independent variables with the dependent variables, say 
RDEP, and using the following matrix equation to obtain the vector of regression 
coefficients B:

This approach is very straightforward (if you use a program to do the matrix alge-
bra), but it is a major limitation that regression models are the only models that 
can be estimated this way. In order to fit path models or factor models, one has to 
use a SEM-program and use the pooled correlation coefficients as input to the pro-
gram. Treating the pooled correlation matrix as an observed matrix shares prob-
lems with the univariate methods, it is unclear which sample size has to be used, 
and potential differences in precision of correlation coefficients is not taken into 
account. An alternative way to fit a structural equation model on the pooled cor-
relation matrix is to use the VGLS matrix as a weight matrix in WLS estimation, 
similar to the TSSEM, which is explained in the next section. For a detailed and 
accessible description of the GLS method see Becker (1992) and Card (2012).

2.3.2 � Two Stage Structural Equation Modeling (TSSEM)

The TSSEM method was proposed by Cheung and Chan (2005). With TSSEM, 
multigroup structural equation modeling is used to pool the correlation coeffi-
cients at Stage 1. In Stage 2, the structural model is fitted to the pooled correlation 
matrix, using weighted least squares (WLS) estimation. The weight matrix in the 
WLS procedure is the inversed matrix with asymptotic variances and covariances 
of the pooled correlation coefficients from Stage 1. This ensures that correlation 

(2.4)ρ̂ = (XT
V
−1

X)−1
X
T
V
−1

r),

(2.5)VGLS =

(

X
T
V
−1

X

)

−1

.

(2.6)B = RINDEP
−1

RDEP.
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coefficients that are estimated with more precision (based on more studies) in 
Stage 1 get more weight in the estimation of model parameters in Stage 2. The 
precision of a Stage 1 estimate depends on the number and the size of the studies 
that reported the specific correlation coefficient.

Stage 1: Pooling correlation matrices  Let Ri be the pi × pi sample correlation 
matrix and pi be the number of observed variables in the ith study. Not all studies 
necessarily include all variables. For example, in a meta-analysis of three variables 
A, B and C, the correlation matrices for the first three studies may look like this:

Here, Study 1 contains all variables, Study 2 misses Variable C, and Study 3 
misses Variable A. Similar to the GLS approach, selection matrices are needed to 
indicate which study included which correlation coefficients. Note however, that 
in TSSEM, the selection matrices filter out missing variables as opposed to miss-
ing correlations in the GLS-approach, and is thus less flexible in handling missing 
correlation coefficients (see Chap. 4).

In TSSEM the selection matrices are not stacked into one large matrix. For the 
three mentioned studies, the selection matrices are identity matrices with the rows 
of missing variables excluded:

Next, multigroup structural equation modelling is used to estimate the popula-
tion correlation matrix R of all p variables (p is three in the example above). Each 
study is then viewed as a group. The model for each group i (study) is:

In this model, R is the p × p population correlation matrix with fixed 1’s on its 
diagonal, matrix Xi is the pi × p selection matrix that accommodates smaller cor-
relation matrices from studies with missing variables (pi < p), and Di is a pi × pi 
diagonal matrix that accounts for differences in scaling of the variables across the 
studies. Correct parameter estimates can be obtained using maximum likelihood 
estimation, optimizing the sum of the likelihood functions in all the studies:

R1 =





1

r1_AB 1

r1_AC r1_BC 1



, R2 =

�

1

r2_AB 1

�

, and R3 =

�

1

r3_BC 1

�

.

X1 =





1 0 0

0 1 0

0 0 1



, X2 =

�

1 0 0

0 1 0

�

, and X3 =

�

0 1 0

0 0 1

�

.

(2.7)�i = Di

(

XiRX
T
i

)

Di.

(2.8)FML =

k
∑

i=1

Ni

N
FMLi ,
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where Ni is the sample size in study i, N = N1 + N2 + ··· + Nk, and with FMLi for 
each study as given in Eq.  (1.3). Describing the model in Eq.  (2.7) in words, it 
means that a model is fitted to the correlation matrices of all studies, with the 
restriction that the population correlations are equal across studies. The diagonal 
Di matrices do not have a particular meaning, other than that they reflect differ-
ences in variances across the studies. They are needed because the diagonal of R is 
fixed at 1, but the diagonals of Σi don’t necessarily have to equal 1 due to differ-
ences in sample variances.1 Fitting the model from Eq. (2.7) with a SEM program 
leads to estimates of the population correlation coefficients, as well as the associ-
ated asymptotic variance covariance matrix.

A chi-square measure of fit for the model in Eq. (2.7) is available by comparing 
its minimum FML value with the minimum FML value of a saturated model that is 
obtained by relaxing the restriction that all correlation coefficients are equal across 
studies. If a separate Ri is estimated for each study, the selection matrices Xi are 
not needed anymore. The model for a specific study then is:

The difference between the resulting minimum FML values of the models in 
Eqs. (2.9) and (2.7), multiplied by the total sample size minus the number of stud-
ies, has a chi-square distribution with degrees of freedom equal to the difference in 
numbers of free parameters. If the chi-square value of this likelihood ratio test is 
significant then the hypothesis of homogeneity must be rejected (see Chap. 3), and 
the fixed effects Stage 2 model should not be fitted to the pooled Stage 1 matrix. In 
the remainder of this chapter we assume that homogeneity holds.

Stage 2: Fitting structural equation models  Cheung and Chan (2005) proposed 
to use WLS estimation to fit structural equation models to the pooled correlation 
matrix R that is estimated in Stage 1. Fitting the Stage 1 model provides estimates 
of the population correlation coefficients in R as well as the asymptotic variances 
and covariances of these estimates, V. In Stage 2, hypothesized structural equation 
models can be fitted to R by minimizing the weighted least squares fit function 
(also known as the asymptotically distribution free fit function; Browne 1984):

where r is a column vector with the unique elements in R, rMODEL is a col-
umn vector with the unique elements in the model implied correlation matrix 
(RMODEL), and V−1 is the inversed matrix of asymptotic variances and covariances 
that is used as the weight matrix. For example, in order to fit a factor model with q 
factors, one would specify RMODEL as

1I put an example of an analysis with two groups (studies) on my website (http://suzannejak.nl/ 
masem) to illustrate the function of the D-matrices.

(2.9)�i = DiRiDi.

(2.10)FWLS = (r − rMODEL)
T
V
−1(r − rMODEL),

(2.11)RMODEL = ���
T
+�,
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where Φ is a q by q covariance matrix of common factors, Θ is a p by p (diago-
nal) matrix with residual variances, and Λ is a p by q matrix with factor loadings. 
Minimizing the WLS function leads to correct parameter estimates with appropri-
ate standard errors and a WLS based chi-square test statistic TWLS (Cheung and 
Chan 2005; Oort and Jak 2015).

One can also use the pooled correlation matrix and asymptotic covariance 
matrix from the GLS approach to fit the Stage 2 model with WLS estimation. 
Cheung and Chan (2005) compared the TSSEM method with the GLS method and 
the univariate methods. The GLS method in their study was based on Eq. (2.3), so 
they used the individual study correlation coefficients and not the pooled correla-
tion coefficients as recommended by Becker and Fahrbach (1994) to calculate the 
sampling weights. The simulation research showed that the GLS method rejects 
homogeneity of correlation matrices too often and leads to biased parameter esti-
mates at Stage 2. The univariate methods lead to inflated Type 1 errors, while the 
TSSEM method leads to unbiased parameter estimates and false positive rates 
close to the expected rates. The statistical power to reject an underspecified factor 
model was extremely high for all four methods. The TSSEM method overall came 
out as best out of these methods. Software to apply TSSEM is readily available in 
the R-Package metaSEM (Cheung 2015), which relies on the OpenMx package 
(Boker et al. 2011). This package can also be used for the GLS approach and the 
univariate approaches. More information about the software that can be used to 
perform MASEM can be found in Chap. 4.
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Abstract  Fixed effects models assume that all differences between correlation 
coefficients are due to sampling fluctuations, and do not allow inference beyond 
the studies included in the meta-analysis. Random effects models are more appro-
priate when researchers wish to make more general statements. Differences 
between studies’ coefficients may occur for other reasons than sampling, for 
example because other measurement instruments were used or because character-
istics of the samples are different. Random effects meta-analytic structural equa-
tion modeling takes the study level variance into account. This chapter shows how 
one can test for heterogeneity of correlation coefficients, and how to quantify the 
size of the heterogeneity. If heterogeneity is present, the fixed effects model is not 
appropriate. One option is to explain all heterogeneity with study level variables, 
for example using subgroup analysis. Random effects analysis can also be com-
bined with subgroup analysis, by fitting a random effects model to subgroups of 
studies.

Keywords  Meta-analytic structural equation modeling  ·  Heterogeneity  ·  
Q-test  ·  I2  ·  Random effects model  ·  Subgroup analysis  ·  Mixed effects model  ·  
MASEM

3.1 � Introduction

The univariate and multivariate approaches outlined in the previous chapter are 
based on the fixed effects model. This means that they assume that there is one 
true value of the underlying population parameter (correlation coefficient) and 
all differences in the estimates between studies are due to sampling fluctuations. 
The goal of the Stage 1 analysis is to estimate the true population value of the 
correlation coefficient. In the random effects model, it is not assumed that each 
study has the same underlying population parameter. Instead, each study has its 
own population correlation coefficient. The goal of the analysis is not to estimate 
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Heterogeneity

© The Author(s) 2015 
S. Jak, Meta-Analytic Structural Equation Modelling,  
SpringerBriefs in Research Synthesis and Meta-Analysis, 
DOI 10.1007/978-3-319-27174-3_3



26 3  Heterogeneity

one true population value, but the mean and variance of the distribution of popu-
lation values in all the studies. The distribution of the population values is com-
monly assumed to be normal. The choice between one of the two approaches is 
most often based on the differences in interpretation between the two approaches. 
Results from a fixed effects meta-analysis cannot be generalized to studies that 
were not included in the analysis, while results from a random effects analysis can 
(Hedges and Vevea 1998). Random effects analysis may thus often be the most 
appropriate method for researchers who wish to make general statements. Random 
effects models take study heterogeneity (differences due to other sources than 
sampling fluctuations) into account. It may be informative to test whether hetero-
geneity is present and how large the heterogeneity is.

3.2 � Testing the Significance of Heterogeneity

Under a random effects model, the observed effect size (correlation coefficient in 
our case) in study i can be decomposed in three parts:

where ρR indicates the mean of the distribution of correlation coefficients, ui is the 
deviation of study i’s population correlation coefficient from the average correla-
tion coefficient, and εi is the sampling deviation of study i from its study specific 
population correlation coefficient. If ui is zero for all studies, the random effects 
model is equivalent to the fixed effects model. If ui is not zero for all studies, its 
variance gives an idea how much heterogeneity there is. The variance of ui is often 
denoted with τ2. The variance of εi is the sampling variance vi, as described in 
Eq. (2.1).

Whether correlation coefficients can be considered homogenous across studies 
(whether τ2 = 0) is usually tested using the Q-test (Cochran 1954). Viechtbauer 
(2007) found that for the raw correlation coefficient, Type 1 error of the Q-statistic 
was highly inflated. Therefore, it is recommended to perform the Q-test with the 
Fisher transformed correlation coefficient, zi. Other tests than the Q-test exist 
(see Viechtbauer 2007), but for the Fisher transformed correlation coefficient, the 
Q-test is shown to keep the best control of Type 1 errors, given that the sample 
sizes of the included studies are large enough. The Q-statistic for a specific trans-
formed correlation coefficient zi is calculated as:

where wi is 1/vi, zi is the transformed effect size in study i, and ρ̂ is the weighted 
average effect size (see Eq. 2.2). When homogeneity holds, Q approximately fol-
lows a chi-square distribution with degrees of freedom equal to the number of 

(3.1)ri = ρR + ui + εi,

(3.2)Q =

k
∑

i=1

(wi(zi − ρ̂)2),
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studies k minus 1. So, the calculated Q-value may be compared to the critical chi-
square value given degrees of freedom and alpha, to test the significance of the 
Q-statistic. If the Q-statistic is significant, the conclusion is that there is significant 
heterogeneity.

A multivariate version of the Q-test also exists, based on the GLS approach 
(Becker 1992, 1995; Cheung and Chan 2005a). Using the matrices from paragraph 
2.3.1, the QGLS statistic is:

which, if homogeneity holds, theoretically follows a chi-square distribution with 
degrees of freedom equal to the total number of the observed correlation coeffi-
cients in all studies, minus the number of population correlation coefficients to be 
estimated. Simulations by Cheung and Chan (2005a) and Becker and Fahrbach 
(1994) showed that the rejection rate of the QGLS statistic was far above the nomi-
nal alpha level, so homogeneity was rejected too often.

Instead of the multivariate Q-test, one could evaluate the univariate Q-tests for 
all correlation coefficients, using a Bonferroni adjusted alpha level. If one of the 
correlation coefficients shows significant heterogeneity, the hypothesis of homoge-
neity of the correlation matrix should be rejected. This approach was proposed by 
Cheung (2000), and has been found to have acceptable rejection rates.

A more obvious test on the homogeneity of correlation coefficients is based on 
the fit of the Stage 1 model from the TSSEM approach. Stage 1 involves a com-
parison of a model in which all correlation coefficients are set equal across stud-
ies, with a model in which all correlation coefficients are freely estimated across 
studies. If the constrained model fits the data significantly worse, homogeneity 
should be rejected. Because the model in which all correlation coefficients are 
freely estimated is saturated (has zero degrees of freedom), the overall χ2-value 
with the associated degrees of freedom of the constrained model provides a test for 
homogeneity. This χ2-test of the TSSEM approach has been found to perform well 
(Cheung and Chan 2005a).

3.3 � The Size of the Heterogeneity

If significant heterogeneity of the correlation coefficients has been found, it may 
be of interest to quantify the size of the heterogeneity. Higgins and Thompson 
(2002) proposed three suitable measures, of which the I2 measure is most used 
and has the most convenient interpretation. The I2 of a set of effect sizes in dif-
ferent studies is interpreted as the proportion of the total variability that is due to 
differences between studies. In a random effects model, the total variance of a spe-
cific effect size consist of the variance of ui, τ2, and the sampling variance vi. The 
I2 measure is calculated using the “typical” sampling variance (see Higgins and 

(3.3)QGLS = r
T(V−1

− V
−1

X(XT
V
−1

X)−1
X
T
V
−1)r,
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Thompson), that is assumed to be equal across studies (vi = v), and can be esti-
mated using the Q-statistic as:

where Q is defined in Eq.  (3.2). If Q is lower than expected (lower than the 
degrees of freedom k − 1), then I2 is restricted to zero. As can be deduced from 
Eq. (3.4), Q can be seen as a measure of the overall heterogeneity. The expected 
variability due to sampling fluctuations is equal to k − 1. So, I2 gives the propor-
tion of variability in effect sizes other than sampling variability. I2 values of 0.25, 
0.50 and 0.75 are used as rules of thumb to indicate low, medium and high levels 
of heterogeneity (Higgins et al. 2003).

Several other definitions of I2 have been proposed, using different choices of 
the typical sampling variance (see Takkouche et al. 1999, and Xiong et al. 2010). 
The I2 coefficient is most commonly calculated separately for each correlation 
coefficient. Multivariate extensions of I2 are also proposed (Jackson et  al. 2012) 
but still need more evaluation.

3.4 � Random Effects Analysis or Explaining Heterogeneity

If correlation coefficients in MASEM are heterogeneous across studies, two 
options are available to handle the heterogeneity. One option is to use random 
effects modeling, which means that the between-studies variance is estimated, 
and the Stage 1 pooled correlations are estimated as weighed averaged correlation 
coefficients, where the weights involve both between-studies and within-studies 
(sampling) variance. Another approach is to explain all heterogeneity by study-
level variables. These study-level variables are called moderators, because they 
moderate the relations between study variables. If the moderator variables explain 
all differences between studies, the residual between-study variance is zero, and a 
fixed effects model applies.

3.4.1 � Random Effects MASEM

Stage 1 analysis  When random effects MASEM is used, the between-study het-
erogeneity is taken into account by estimating study-level variance of the correla-
tion coefficients in Stage 1. In a random effects model, the correlation matrices 
are not only weighted by the sampling variance (vi), but also by the between-study 
variance (τ2). In univariate analysis it means that a specific correlation coefficient 
ri is weighed with 1/(vi + τ2). Because the between-study variance is equal across 

(3.4)I
2
=

τ 2

τ 2 + v
=

Q− (k − 1)

Q
,
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all studies, the random effects weight is just the fixed effects weight with a con-
stant added to the denominator. One consequence is that the weights the different 
studies get are relatively more equal, so small studies get relatively more weight in 
estimating the average effect size, and very large studies get relatively less weight 
than in the fixed effects model. Another consequence is that the standard errors 
and confidence intervals of parameter estimates in a random effects model will be 
larger, leading to less significant results than the fixed effects model.
With multivariate random effects modelling, the matrix with the weights, V, 
is adjusted to account for the between-studies variance and covariance. For one 
study, it means that a matrix with between-study variance and covariance of the 
correlation coefficients is added to the matrix with sampling variance and covari-
ance. The random effects model for a vector of correlation coefficients for a study 
i decomposes the vector in three parts:

where ρR indicates the vector of means of the correlation coefficients, ui is a vec-
tor of deviations of study i’s population correlation coefficients from the average 
correlation coefficients, and εi is a vector with the sampling deviations of study 
i from its study specific population correlation coefficients. The covariance of ui 
denotes the matrix with study level variance and covariance, T2. The covariance 
of εi denotes the matrix with sampling variance and covariance in study i, Vi. The 
weight matrix in the random effects analysis is the sum of T2 and Vi.

The between-studies variance covariance matrix T2 can be estimated using dif-
ferent approaches. The method of moments uses an estimator of T2 that is based 
on the Q-statistic from a fixed effects model (DerSimonian and Laird 1986). Using 
this estimator leads to the multilevel version of the GLS-approach (Becker 1992, 
1995). In the two-stage approach, random effects TSSEM is performed using 
maximum likelihood estimation (Cheung 2013), in which ρR and T2 are estimated 
simultaneously. The random effects TSSEM is presented by Cheung (2014).

Estimating the between-study variances in T2 is relatively simple, but the esti-
mation of the between-study covariance often gives problems, particularly with 
small numbers of studies or small heterogeneity. If this is the case, Becker (2009) 
advises to add the between-studies variances (the diagonal of the covariance 
matrix) to the weight matrix only.

Stage 2 analysis  In random effects TSSEM, fitting the structural model (Stage 2) 
is very similar to the fixed effects approach. The difference is that now the aver-
aged correlation matrix RR from a random effects analysis is used as the input 
matrix for the structural equation model, and the weight matrix VR from a random 
effects model is used in the WLS-fit function:

where rR is a vector with the unique elements of the averaged correlation matrix 
RR from a random effects analysis and VR is the asymptotic variance covariance 

(3.5)ri = ρR + ui + εi,

(3.6)FWLS = (rR−rMODEL)
T
V
−1

R
(rR−rMODEL),
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matrix associated with RR. The between-studies variance does not play a role 
directly in the Stage 2 model, it is filtered out in the Stage 1 analysis. In the GLS 
approach, one can obtain the regression coefficients using Eq.  (2.6), but with an 
RINDEP and RDEP obtained from a random effects Stage 1 analysis. Alternatively, 
one can use the pooled correlation and asymptotic covariance matrix from a ran-
dom effects GLS-analysis in Eq. (3.6).

3.4.2 � Subgroup Analysis

Another solution to heterogeneity in correlation matrices is to explain all het-
erogeneity using study level variables. In MASEM, subgroups of studies are 
created based on values of the (categorical or categorized) study-level variables 
(Cheung and Chan 2005b). Grouping variables may for example include the coun-
try in which the study is conducted, the age of the respondents in the study and 
the population under consideration in the study (e.g. patients vs. non-patients). If 
the moderator variable explains all heterogeneity, the correlation coefficients are 
homogenous within subgroups. With subgroup analysis, each subgroup has its 
own pooled correlation matrix at Stage 1, and the structural model is fit indepen-
dently to the matrices of the subgroups. An advantage of performing subgroup 
analysis is that the effect of study-level moderators is explicitly tested. A disad-
vantage is that it may lead to the investigation of many subgroups containing small 
numbers of studies. Moreover, not all heterogeneity may be explained by the mod-
erators. If the researchers have a substantive interest in the moderators, and do not 
believe that the moderator should explain all heterogeneity, one can also perform 
subgroup analysis and fit a random effects model in each subgroup.

The primary reason to perform a subgroup analysis will often be that the 
researchers have hypotheses about differences between subgroups, and not just 
to explain away heterogeneity. An example of a MASEM analysis in which sub-
group analysis is interesting from a theoretical point of view is performed by 
Roorda et al. (under review). They investigated the influence of positive and nega-
tive teacher-student relations on student engagement and student achievement (see 
the example from Chap. 1). They expected that the path coefficients would be dif-
ferent across samples from primary schools and samples from secondary schools. 
Indeed, it appeared that the effect of positive relations on engagement was signifi-
cantly stronger in samples from secondary schools. Testing the equality of param-
eters across subgroups is not readily implemented in the metaSEM package, but 
can be performed by using a SEM program directly to analyse the Stage 2 model 
with WLS-estimation. Fixed effects and random effects MASEM with subgroup 
analysis using the metaSEM package will be illustrated in Chap. 5.

http://dx.doi.org/10.1007/978-3-319-27174-3_2
http://dx.doi.org/10.1007/978-3-319-27174-3_1
http://dx.doi.org/10.1007/978-3-319-27174-3_5
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Abstract  This chapter provides short overviews of unresolved issues in 
MASEM. The first part of this chapter describes software that can be used to con-
duct MASEM using TSSEM, the GLS-method and the univariate method. The 
metaSEM-package is very useful for MASEM. Analyses using this package are 
shown in the last two chapters of this book. The second issue is about the use of 
different fit-indices to evaluate the homogeneity of correlation matrices at Stage 1 
of TSSEM. The third issue is about handling missing correlations in specific stud-
ies. The basic approach is to delete a variable that is associated with a missing cor-
relation, but more efficient methods are possible. The last issue is about a recent 
adaptation to the existing MASEM approach that may have advantages for han-
dling heterogeneity. The adaptation involves a Stage 2 analysis based on a multi-
group model.

Keywords  Meta-analytic structural equation modeling  ·  Software  ·  MetaSEM  ·  
OpenMx  ·  Fit-indices  ·  Maximum likelihood  ·  Missing correlations

4.1 � Software to Conduct MASEM

In principle, all structural equation modeling software can be used to perform 
meta-analytic structural equation modeling. However, it may involve some com-
plex programming to set up the right model. The easiest way to perform TSSEM 
is to use the dedicated R-package metaSEM (Cheung 2015a). It requires some 
basic knowledge of the R-program (see below), but the package itself is quite user 
friendly. It includes functions to fit the fixed effects Stage 1 model, the random 
effects Stage 1 model, and to fit the Stage 2 model to the pooled correlation matrix 
from Stage 1. The package includes several convenient functions to read in the 
data and to extract parts of the output. It also includes all functions to do standard 
meta-analysis. Cheung (2015b) gives an overview of the many possibilities with 
the metaSEM-package.

Chapter 4
Issues in Meta-Analytic Structural  
Equation Modeling

© The Author(s) 2015 
S. Jak, Meta-Analytic Structural Equation Modelling,  
SpringerBriefs in Research Synthesis and Meta-Analysis, 
DOI 10.1007/978-3-319-27174-3_4



34 4  Issues in Meta-Analytic Structural Equation Modeling

Fixed effects MASEM based on the GLS approach can also be performed 
using the metaSEM-package by constraining the random effects to be zero in 
the random effects function, but the function uses maximum likelihood estima-
tion. I added an example of the original GLS-approach using R on my website 
(http://suzannejak.nl/masem).

As the multivariate methods are found to perform better than the univari-
ate methods (see Chap. 2), it is not recommended to perform MASEM using 
the univariate methods. If one still wants to use them, one could in principle use 
any meta-analysis program to pool the correlation coefficients in Stage 1, and 
use any structural equation modeling program to fit the Stage 2 model. In order 
to pool the correlation coefficients, the R-packages ‘metafor’ (Viechtbauer 2010) 
and ‘metaSEM’ (Cheung 2015a) are very useful. David Wilson (Lipsey and 
Wilson 2001) has written macros for SPSS, SAS, and STATA to carry out uni-
variate meta-analysis. The macro’s are available from his website: (http://
mason.gmu.edu/~dwilsonb/ma.html). Several other commercial software pro-
grams exist. See Bax et al. (2007) for a comparison of several programs.

For Stage 2 you need a SEM-program. Freely available software packages to 
conduct structural equation modeling are the R-packages Lavaan (Rosseel 2012) 
and OpenMx (Boker et al. 2011). In addition there are commercial programs such 
as Mplus (Muthén and Muthén 2012) and Lisrel (Jöreskog and Sörbom 1996). For 
the Stage 2 analysis with WLS-estimation, OpenMx and Lisrel are most suitable, 
as Mplus and Lavaan cannot read in the weight matrix in addition to the pooled 
correlation matrix.

The freely available programs are packages in R. Therefore, in order to conduct 
MASEM it is very convenient to be familiar with the R-program. R is a free software 
environment for statistical computing and graphics. Learning R may be a bit daunt-
ing in the beginning, but soon will pay back the effort. To get started with R, several 
manuals can be found under the contributed documentation on www.r-project.org. 
For example, these two documents provide a short overview of R (and explain how 
to install R), and will provide you with enough R-knowledge to be able to use the 
metaSEM package.

–	 Marthews, D. (2014). The friendly beginners’ R course. http://cran.r-project.org/
other-docs.html. Accessed 08 Jan 2015.

–	 Paradis, E. (2005). R for Beginners. http://cran.r-project.org/other-docs.html. 
Accessed 08 Jan 2015.

The metaSEM-package uses OpenMx in the background to fit all mod-
els. OpenMx is a package in R that can be used for structural equation mod-
eling. OpenMx is very flexible, because the user can use all possibilities of the 
R-programming environment. This makes OpenMx a suitable program to use in 
the specification of meta-analytic structural equation models. Because for the 
MASEM researcher it may be useful to understand OpenMx, I included annotated 
examples of fitting a path model and a factor model in OpenMx in Appendices B 
and D.

http://suzannejak.nl/masem
http://dx.doi.org/10.1007/978-3-319-27174-3_2
http://mason.gmu.edu/%7edwilsonb/ma.html
http://mason.gmu.edu/%7edwilsonb/ma.html
http://www.r-project.org
http://cran.r-project.org/other-docs.html
http://cran.r-project.org/other-docs.html
http://cran.r-project.org/other-docs.html
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4.2 � Fit-Indices in TSSEM

The chi-square measure of fit can be used in Stage 1 to test the homogeneity of 
correlation matrices across samples. The chi-square test has as the null hypoth-
esis that the model holds exactly in the population, so all differences between the 
observed and population matrices are due to sampling. In structural equation mod-
eling it is common to look at measures of approximate or relative fit as well. The 
Root Mean Squared Error or Approximation (RMSEA, Steiger and Lind 1980) for 
example, is a measure of approximate fit. The RMSEA is based on the idea that 
models are approximations to reality and do not have to reflect reality perfectly 
(MacCallum 2003). If a researcher uses the RMSEA to evaluate the fit of a Stage 
1 model in MASEM, he or she implicitly assumes that homogeneity does not have 
to hold exactly but only approximately. However, it is unclear how much devia-
tion from homogeneity is acceptable when fitting the Stage 2 model under a fixed 
effects model. At some point, the parameters in the Stage 2 model will become 
biased and confidence intervals may become too small. Research using simulated 
data, varying for example the amount and type of heterogeneity (heterogeneity in 
one or all correlation coefficients), would be needed to evaluate the RMSEA val-
ues that are associated with unacceptable heterogeneity.

The CFI is based on a comparison of the fit of the specified model with the fit 
of the independence model, which is a model in which all variables are assumed to 
be independent. The CFI strongly depends on the size of the observed correlations. 
The lower the observed correlations, the better the independence model will fit the 
data, the lower CFI will be. Because the size of the correlations should not play a 
role in evaluating heterogeneity, I expect that the CFI is not very useful to evaluate 
the homogeneity of correlation coefficients in MASEM.

The Standardized Root Mean Squared Residual (SRMSR) is based on the dif-
ferences between the observed and model implied correlation coefficients. Larger 
differences between the correlation coefficients will lead to a larger SRMSR, so 
the SRMSR seems to be useful to evaluate homogeneity at Stage 1. However, just 
as with the RMSEA, simulation research is needed to evaluate the critical SRMSR 
values associated with unacceptable heterogeneity.

4.3 � Missing Correlations in TSSEM

In fixed effects two-stage SEM, it is no problem when some studies do not include 
all relevant variables. The missing variables will just be filtered out in the analysis. 
It is a problem if there are missing correlations for variables that are included in 
the study. Ideally, researchers always report the correlations between all variables 
in their study. However, often not all correlations between the research variables 
are given in a paper. Sometimes, the missing correlations can be derived from 
other statistics the authors do provide, such as regression coefficients. This is not 

4.2  Fit-Indices in TSSEM
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always possible, for example when two variables are both outcome variables in 
regression analyses. In the random effects Stage 1 analysis, missing correlations 
are not a problem, but in the fixed effects analysis they are. As a consequence, for 
each missing correlation, one of the two variables associated with the correlation 
has to be treated as missing. Preferably, one would delete the variable with the 
least remaining correlations with other variables.

Methods to handle missing correlation coefficients in TSSEM more efficiently 
have been proposed by Jak et  al. (2013) and Cheung (2014). Both methods are 
based on the idea of fixing the missing correlations at some appropriate value (a 
value that does not lead to a non-positive definite correlation matrix), for example 
at zero, and estimating an extra parameter for each missing correlation. This way, 
the fixed values for the missing correlations do not affect the results, and all cor-
relations that are present are used in the analyses. These methods are not imple-
mented in the metaSEM package yet. So, in order to use these methods one will 
have to specify the needed models in OpenMx directly, or use the program to gen-
erate syntax to conduct fixed effects TSSEM with Lisrel (Cheung 2009). A pos-
sible problem with this approach is that the fit of the independence model may not 
be appropriate anymore due to the fixed zeros in the observed correlation matrices 
(Cheung 2015b). The fit of the independence model is used when calculating some 
fit-indices, like the CFI. However, the problem of the missing correlations plays 
a role in Stage 1 of the analysis, and as discussed earlier, the CFI may not be the 
most appropriate fit measure to evaluate the homogeneity of correlation matrices.

4.4 � The ML-Approach to MASEM

A recent alternative to estimating the Stage 2 model in the two-stage approach 
is to use a maximum likelihood (ML) approach (Oort and Jak 2015). In this 
approach, multigroup analysis is used for all models. The test of homogeneity of 
correlation matrices (Stage 1) is identical to TSSEM. The difference lies in fit-
ting the structural model. In the ML-approach, a common RMODEL is fitted to the 
observed matrices or all studies, where RMODEL may have the structure of any 
structural equation model. For example, if one would fit a factor model in Stage 2, 
the model for each study i would be:

Here, Di and Xi are the diagonal and selection matrices defined in Chap. 2, Λ is 
a matrix of factor loadings, Φ is a matrix with factor variances and covariances, 
and Θ is a matrix with residual variances (and covariances). Because RMODEL is 
a restriction of R in the Stage 1 model, the difference between the associated chi-
square values has a chi-square distribution itself with degrees of freedom equal 
to the difference in the numbers of free parameters in R and RMODEL. Oort and 

(4.1)
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)
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Jak (2015) used simulated data to show that using maximum likelihood estima-
tion in both stages of meta-analysis through SEM leads to almost identical results 
as using WLS-estimation in Stage 2 of the analysis. The differences in estimation 
bias, power rate and Type 1 error rates were not consistent and hardly noticeable.

There are some fundamental and practical differences which may guide a 
researcher’s choice between the two methods. Advantages of the ML procedure 
are that the same estimation method is used at both stages, and that the Stage 1 
and Stage 2 models are nested. The ML-procedure may also provide more flex-
ibility in the application of equality constraints across studies in the structural 
model. In principle, some Stage 2 parameters could be set equal across a subset 
of studies, another parameter could be set equal across another subset of stud-
ies and other parameters could be freely estimated in all studies. Disadvantage 
of the ML-approach are that it is currently limited to fixed effects models, and 
that no readily available software package to apply the method exists. The WLS-
procedure has practical advantages. In the WLS procedure, the Stage 2 model is 
not a multi-group model, so that estimation convergence is much faster than in the 
ML-approach. The necessity to calculate a weight matrix (the inverse of the matrix 
of asymptotic variances and covariances of the pooled correlation coefficients) 
may count as a disadvantage of the WLS method, but fortunately the readily avail-
able R package metaSEM takes this burden off the user’s hands. As a result, the 
WLS-approach may actually be easier to take than the ML-approach.
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Abstract  In the first chapter of this book, I presented a path model on four 
variables involving teacher-student interactions, engagement and achievement 
at school. This chapter uses data from 45 studies who reported (a subset of) the 
correlations between these variables and the percentage of students with low 
socio-economic status in the classroom. Using the metaSEM package, it is illus-
trated how the data can be prepared for analysis, how to fit a fixed and random 
effects Stage 1 model to the correlation matrices, and how to specify the hypoth-
esized Stage 2 model. Models are fitted to the overall data and to subgroups with 
low versus high socio-economic status. All steps that have to be taken to perform 
the analyses are discussed, as well as the relevant output.

Keywords  Meta-analytic structural equation modeling  ·  metaSEM  ·  Path model  ·  
Mediation  ·  Teacher-student relations  ·  Engagement  ·  Achievement  ·  SES

5.1 � Introduction

Roorda et  al. (2011) collected data from 99 studies that reported correlations 
between positive teacher-student relations, negative teacher-student, student engage-
ment and student achievement. Correlations between positive teacher-student rela-
tions and negative teacher-student relations were collected afterwards to enable 
MASEM. Of these studies, 45 also provided information on the level of socio-eco-
nomic status (SES) of the students. For the present illustration, I will use these 45 
studies. The data and syntax can be found online on http://suzannejak.nl/masem. 
Based on theory about teacher-student relations (Connell and Wellborn 1991; Pianta 
1999), teacher-student relations were considered predictors of engagement and 
achievement, in which the relation between teacher-student relations and achieve-
ment may be mediated by engagement. The hypothetical model representing full 
mediation of these effects is depicted in Fig. 1.1.

To illustrate the MASEM analysis on these data, I will first fit a fixed effects 
Stage 1 model. If the Stage 1 model does not fit, the correlation matrices cannot 
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be considered homogenous across studies. Study-level heterogeneity can possibly 
be explained by the average socio-economic status (SES) of the students in the 
sample. If SES explains the heterogeneity, the fixed effects Stage 1 model should 
hold within subgroups with high versus low SES. Another approach to account for 
heterogeneity is to fit a random effects Stage 1 model, allowing for study level 
variance of the correlation coefficients. The Stage 2 model will be fit on the pooled 
correlation matrix of the most appropriate Stage 1 analysis.

5.2 � Preparing the Data

Before the analysis can start, the data have to be imported in R. The “metaSEM” 
package in R (Cheung 2014) includes several functions to create a list with cor-
relation matrices for each study. All three functions require the data to be stored in 
some file. The function readFullMat() can be used if the file contains the full 
correlation matrix for each study. The function readLowTriMat() is useful if 
the file contains the lower triangular (the diagonal and all values below the diag-
onal) of the correlation matrix for each study. The function readStackVec() 
can be used if the file contains one row with the unique elements of the correlation 
matrix of each study, and fills the correlation matrices in R by column. The data 
for the present analyses are stored in the file “Roorda_SES.dat”, which is saved in 
the working directory of R. The first few rows of data look like this:

Here, the first column has an identification number for each study, the second col-
umn the sample size, row 3 to 8 have the correlation coefficients and the last row 
shows the percentage of students with low SES in the sample. NA’s represent miss-
ing correlation coefficients. Because the readStackVec() function requires the 
diagonal elements of the matrix to be in the datafile as well, this function is not read-
ily useful for this dataset. Therefore, the data is read in with the read.table() 
function. With head(data) R will show the beginning of the data, which can be 
used to inspect whether the data was read in correctly.
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The next step is to create a list of correlation matrices. First, the number of 
observed variables is stored in the object nvar, and a list with the variable names 
is created.

The correlation matrices will be stored in the object cormatrices. First, 
an empty list is created that will be filled with one correlation matrix for each 
study. Because each row has the information of one study, one correlation matrix 
is created for each row. The coefficients are put in a symmetric matrix using the 
vec2symMat() function. The argument as.matrix(data[i,3:8]) cre-
ates a vector of the elements of row i, column 3 to 8 of the data. The argument 
diag =  FALSE indicates that the diagonal elements (1’s) are not given in the 
data, these will be created by the function. The dimnames() function gives 
names to the rows and columns of each correlation matrix.

The previous code creates a four by four correlation matrix for each study. 
Most studies did not include all variables, and have NA’s in the matrix for correla-
tions associated with one or more of the variables. For the TSSEM analysis, we 
have to put a NA on the corresponding diagonal element of the input matrix if a 
variable is missing. The following code states that for each correlation matrix, for 
each row, if the sum of the elements that are NA in that row equals the number of 
variables minus 1, the diagonal element should be NA.

5.2  Preparing the Data
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Some studies included a variable, but did not report all correlations of the vari-
able with the rest of the variables. For example, the 13th study reported the cor-
relations of Positive interactions with Engagement and Positive interactions with 
Achievement, but not the correlation between Engagement and Achievement:

For each missing correlation, we have to treat one variable as missing. In 
this example we would throw away more information if we deleted the variable 
Positive interactions, than if we deleted Engagement or Achievement. In the fol-
lowing code, for each study, for each missing correlation, the variable that has the 
least remaining correlations with other variables gets NA on the diagonal.

5.3 � Fixed Effects Analysis

The tssem1() function from the metaSEM package can be used to fit 
the Stage 1 model. As its arguments it uses the list of correlation matrices 
(cordat), and a vector of sample sizes of the studies (data$N). The argument 
method  =  “FEM” indicates that we want to fit the fixed effects model. The 
results are saved in the object stage1fixed.
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Asking for a summary of the output gives the following results.

The χ2 of the model with equality constraints on all correlation coefficients 
across studies is significant χ2

(95) = 762.26, p < 0.05, and the RMSEA is larger 
than 0.10, indicating bad fit. Based on these fit indices, homogeneity of correla-
tion coefficients has to be rejected. Therefore, I will not continue to fit the Stage 2 
model on the pooled correlation matrix of the fixed effects approach.

SES may explain some of the heterogeneity of the correlation coefficients. 
Therefore, a next step is to fit the fixed effects Stage 1 model separately to studies 
with less than 50 % students with low SES, and to studies with more than 50 % 
students with low SES separately. The tssem1() function has the argument 
cluster to specify the subgroups of studies. In this example there are 21 studies 
with majority of the sample with high SES, and 24 studies with the majority of the 
sample with low SES.

5.3  Fixed Effects Analysis
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This gives the following output. The first part of the output (beginning with 
$‘FALSE’) is about studies for which the percentage of respondents with low 
SES was not higher than 50. The second part is about studies with more than 50 % 
of the respondents with low SES.
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In the group of studies with high SES (group ‘FALSE’), the χ2 was significant 
(χ2

(41) = 165.53, p < 0.05), indicating that within studies with high SES, the cor-
relation coefficients are not exactly equal. The RMSEA however is 0.06, which is 
below the often used 0.08 threshold of satisfactory approximate fit. So, based on 
the RMSEA it could be concluded that the correlation coefficients are approxi-
mately equal within the group of studies with high SES.

In the group of studies with low SES, homogeneity of correlation matrices has 
to be rejected both based on the significant χ2(χ2

(48) = 485.84, p < 0.05) and an 
RMSEA of 0.136. So, as not all heterogeneity could be explained by SES, the ran-
dom effects approach seems more appropriate.

5.4 � Random Effects Analysis

Stage 1: The random effects Stage 1 model can be fit using the method = “REM” 
argument in the tssem1() function. This should be accompanied by the argument 
RE.type=, which specifies whether study level variance and covariance should be 
estimated for all correlation coefficients (the full T2 matrix from Chap. 3), indicated 
by RE.type = “Symm”. Very often, the amount of observed information is too 
small to obtain stable estimates of all random effects (Becker 2009; Cheung 2015), 

5.3  Fixed Effects Analysis
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leading to an error message when running the model. If this is the case, one may 
only estimate the study level variance by stating RE.type = “Diag”. It is also 
an option not to estimate study level variance by stating RE.type =  “Zero”. 
This would lead to conducting a fixed effects multivariate analysis. In the current 
example, indeed it was not possible to estimate the full random effects covariance 
matrix, so RE.type = “Diag” is used.

Asking for the summary leads to the following output (to save space, I removed two 
columns showing the z-values and p-values associated with the parameter estimates).
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The summary of the result of the random effects analysis shows the Q statistic. 
The Q statistic is significant (Q(95) = 918.63, p < 0.05), indicating that there indeed 
is significant heterogeneity in the correlation matrices. The I2 of the six correlation 
coefficients varies between 0.79 and 0.94, so for all coefficients a large part of the 
variance is at the study level. The averaged correlation coefficients are denoted by 
“Intercept” and the estimated study level variances of the correlation coefficients 
are denoted by “Tau2” in the output. The averaged correlation matrix based on the 
random effects model is shown in Table 5.1.

The tssem1() function also returns the asymptotic variance covariance matrix 
for Stage 1 estimates. This matrix will be used as the weight matrix when estimat-
ing the Stage 2 model using WLS-estimation. The asymptotic variance covariance 
matrix for this example can be viewed using vcov(stage1random).

Stage 2: The structural model that we are going to fit to the pooled correlation matrix 
is the model that was also used as an example in Chap. 1, see Fig. 1.1. The specifi-
cation of any structural model in the metaSEM package is done using three matrices 
(the RAM-formulation, McArdle and McDonald 1984). Matrix A specifies all regres-
sion coefficients in the model, Matrix S specifies all variances and covariances in the 
model, and matrix F indicates which variables are observed and which variables are 
latent. If all variables are observed, which is the case for this path model, the F matrix is 
not needed. The model matrices always have number of rows and number of columns 
equal to the number of (observed + latent) variables in the model. The A-matrix of the 
current example is thus a four by four matrix, in which three regression coefficients are 
specified, β31, β32, and β43. The function create.mxMatrix() facilitates the speci-
fication of the matrices that the program OpenMx (by which the model is really fitted) 
needs. The A-matrix for the current example is created by the following code.

If a number is specified in the A-matrix, it indicates that the corresponding 
parameter is not estimated but fixed (fixed at the given number, zero in this case). 

Table 5.1   Pooled correlation 
matrix based on the random 
effects model

Variable 1 2 3 4

1. Positive relations 1

2. Negative relations −0.24 1

3. Engagement 0.32 −0.31 1

4. Achievement 0.14 −0.18 0.28 1

5.4  Random Effects Analysis
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If it is not a number, but for example “0.1*b31”, the parameter is given a starting 
value of 0.1 and it gets the label b31. A starting value is the value that the program 
will use as a starting point for the iterative estimation procedure. Different start-
ing values should lead to the same parameter estimate, and are thus quite arbi-
trary, although some starting values may lead to problems such as a non-positive 
definite model implied correlation matrix. See Bollen (1989) or Kline (2011) for 
some guidelines on starting values. Note that by default, the information about the 
parameters is read in column wise by the create.mxMatrix() function. This 
can be changed using the byrow = TRUE argument.

The created matrices for the regression coefficients are a matrix indicating the 
labels of the parameters, a matrix with the starting values of the parameters and a 
matrix indicating whether the parameter is freely estimated (indicated by TRUE) or 
not (indicated by FALSE). Each parameter could also be given a lower and upper 
bound for the estimate, but this is not often needed. This is what the object A entails:

The S-matrix contains the information about variances (on the diagonal) and 
covariances (off-diagonal) in the model. In the present model there are two vari-
ances of exogenous variables, one covariance between exogenous variables, and 
two residual variances for endogenous variables. The S-matrix is also a four by 
four matrix, and because it is symmetrical, we only have to provide the lower 
triangular of the matrix (columnwise). Here I gave the labels p11 to p44 for the 
variances, with startvalues of 1, and the label p21 with a startvalue of 0.1 for the 
covariance between the first two variables.
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The resulting object S looks like this:

Using these two matrices, the hypothesized model can be fit to the data using 
the tssem2() function. This function needs as its arguments the object with 
the Stage 1 results (either from a fixed or a random effects analysis), and the 
A- and S-matrices. Two additional arguments are given. The argument diag.
constraints = TRUE ensures that the diagonal of the model implied correla-
tion matrix always consists of 1’s during estimation. This is required because the 
input matrix is a correlation matrix and not a covariance matrix. Another option 
exists (used with diag.constraints  =  FALSE), but is only appropriate 
when there are no mediators in the model, and it has the downside of not provid-
ing estimates of the residual variances of endogenous variables.

5.4  Random Effects Analysis
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The argument intervals = “LB” is used to ask for likelihood based confi-
dence intervals (Neale and Miller 1997). Using likelihood based confidence intervals 
for significance testing is not only sometimes better than using standard error based 
confidence intervals, for example when testing indirect effects (Cheung 2009), but 
they are also the only option when diag.constraints = TRUE is used.

Asking for a summary gives the following output (again, I removed the 
columns for the z- and p-values).

The χ2 of the hypothesized path model is significant (χ2

(2) = 11.13, p < 0.05, so 
exact fit is rejected. However, the RMSEA of 0.013 indicated close approximate fit, 
and the CFI of 0.97 also indicates satisfactory fit of the model. The parameter esti-
mates from the A- and S-matrix are all significantly different from zero, as zero is 
not included in the 95 % confidence intervals. Figure 5.1 shows the path model with 
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the parameter estimates and 95 % confidence intervals. This figure is created manu-
ally, but the metaSEM package also includes a function to create a graphical display 
of a model. The following code generates a graph with the parameter estimates.

Besides the direct effects, the indirect effects may be of interest. The indirect effect 
is equal to the product of the direct effects that constitute the indirect effect. For exam-
ple, the indirect effect of positive relations to achievement in this example is equal to 
0.27 * 0.35 = 0.10. The significance of indirect effects can also be tested using likeli-
hood based confidence intervals. The following code can be used to fit the Stage 2 
model and estimate the likelihood based confidence intervals for the indirect effects.

Fig. 5.1   Path model with parameter estimates and 95 % confidence intervals

5.4  Random Effects Analysis
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The summary of the stage2 object then provides the estimates of the indi-
rect effects with the 95  % likelihood based confidence intervals. As zero is not 
included in both intervals, both indirect effects can be considered significant.

Significant indirect effects indicate that there is at least partial mediation. If 
there are no significant direct effects, there is full mediation. The two direct effects 
from positive and negative relations to achievement are estimated by specifying 
the A-matrix as follows:

The resulting model is a saturated model, which means that degrees of free-
dom are zero, and the fit of the model cannot be evaluated. However, we can still 
evaluate the significance of the parameters. The direct effect of positive relations 
on achievement is estimated as β = 0.044, with 95 % confidence interval running 
from −0.013 to 0.098. The direct effect is not significant, so as expected, the effect 
of positive relations on achievement is said to be fully mediated by engagement. 
For negative relations, the direct effect is estimated as −0.097 with 95 % CI run-
ning between −0.160 and −0.031, so the effect of negative relations is said to be 
partially mediated by engagement.



53

5.5 � Random Effects Subgroup Analysis

It may be of substantive interest to compare the parameter estimates of the Stage 
2 model across subgroups of studies. For example, one might want to investigate 
whether and how the regression coefficients of the structural model differ across 
studies with a majority of the sample defined as having low SES, and studies with 
a majority of the sample defined as having high SES. As we already know from 
the fixed effects analysis that not all heterogeneity is explained by SES, a random 
effects model in each subgroup seems suitable. A potential problem with subgroup 
analysis is that the number of studies within each subgroup may become quite 
small. Indeed, in this example there are respectively 24 and 21 studies included in 
the two groups, so the results should be interpreted with caution.

In the Stage 1 function tssem1(), the cluster option is not available for 
random effects analysis. Therefore, we will create two separate lists of correlation 
matrices and sample sizes for the two subgroups of studies. Using the following 
code, we create these lists, by selecting the studies with a value on SES that is 
higher than 50 (a higher value indicates more children with low SES). Then, we 
run the Stage 1 model separately in the two groups of studies.

Then, using the A- and S-matrices we already created, we can fit the structural 
model to the averaged correlation matrices in the two subgroups separately.

5.5  Random Effects Subgroup Analysis
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The (truncated) output of the summary is given below.
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The path model shows acceptable fit according to the RMSEA and CFI in the 
low-SES studies, χ2

(2) = 6.27, p < 0.05, RMSEA = 0.013, CFI = 0.98 as well as 
in the high-SES studies, χ2

(2) = 9.48, p < 0.05, RMSEA  =  0.015, CFI  =  0.94. 
The parameter estimates for both groups are shown in Table 5.2. Some estimates 
seem to be different across the two groups. For example, the effect of Negative 
interactions on Engagement (β32) seems to be stronger for students with low 
SES, and the effect of Engagement on Achievement (β43) seems to be stronger 
for students with high SES. As the confidence intervals of these estimates in the 
two groups overlap, we cannot be certain that the effects are significantly dif-
ferent across samples with high and low SES. This could be tested by fitting a 
multigroup Stage 2 model, and constraining the parameters to be equal across 
groups. If the χ2 increases significantly when adding equality constraints across 
groups, the parameters are significantly different across groups. These analy-
ses cannot be performed using the functions in the metaSEM-package, but need 
specification of the model in openMx directly. Doing the analyses in OpenMx 
showed that only the effect of Engagement of Achievement is significantly 

5.5  Random Effects Subgroup Analysis
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different across groups (χ2

(1) = 4.51, p < 0.05). So, apparently, the effect of 
Engagement on Achievement is higher for children with high SES. The code that 
was used to test the difference in effects across groups can be found online at 
http://suzannejak.nl/masem.
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Abstract  In this chapter I will illustrate fitting a factor model within a MASEM 
analysis using the metaSEM package. The data come from a meta-analysis per-
formed by Fan et  al. (Personality and Individual Differences 48(7):781–785, 
2010), who collected correlation matrices of the 8 subscales of a test to measure 
“Emotional intelligence” from 19 studies. The preparation of the data, and the 
fixed and random effects Stage 1 analyses are explained step by step. Next, the 
Stage 2 factor model is fit to the pooled correlation matrix from the random effects 
Stage 1 analysis. All steps that have to be taken to perform the analyses are dis-
cussed, as well as the relevant output.

Keywords  Meta-analytic structural equation modeling  ·  MetaSEM  ·  Factor 
model  ·  Emotional intelligence  ·  MSCEIT  ·  Fixed effects  ·  Random effects

6.1 � Introduction

Fan et al. (2010) used meta-analytic factor analysis to investigate the factor struc-
ture of a measurement instrument of emotional intelligence, the Mayer-Salovey-
Caruso Emotional Intelligence Test Version 2.0 (MSCEIT). Emotional intelligence 
is defined as a set of skills hypothesized to contribute to the accurate appraisal 
and expression of emotion, the effective regulation of emotion, and the use of feel-
ings to motivate, plan, and achieve in one’s life (Salovey and Mayer 1989). The 
MSCEIT consists of 8 subscales. Previous research on the factor structure of the 
MSCEIT lead to contradictory results, and a MASEM made it possible to compare 
the fit of several proposed factor models on the aggregated data across 19 studies. 
Based on these analyses, a three-factor model was found to have the best fit. In 
this section I will replicate the fixed effects analysis of Fan et al. and additionally 
run a random effects MASEM. The data and script to replicate the analyses can be 
found on my website (http://suzannejak.nl/masem).

Chapter 6
Fitting a Factor Model with the Two-Stage 
Approach
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6.2 � Preparing the Data

Fan et  al. collected 19 correlation matrices from different studies. Most of the 
studies reported all correlations between the 8 scales of the MSCEIT, for some 
studies the correlation had to be deduced from other information (see Fan et al.) 
and for two studies one and two variables were missing. The correlation matrices 
are collected in a text file, “fan_msceit.dat”, which contains the lower triangular of 
the matrix in each study. This is a part of the file:

The function readLowTriMat() can be used to store these matrices in a 
list that can serve as input for the analysis. The function takes the filename and 
the number of variables per study as arguments, and then creates a list of correla-
tion matrices. If variables are missing in some studies, this should be indicated by 
NA on the diagonal. The second matrix shown above does not contain information 
about the sixth variable, the NA on the diagonal ensures that the associated rows 
and columns will be filtered out during the analysis (so it does not matter what 
values are given for the missing correlations). The next two lines of code create 
the list of matrices and a vector with the associated sample sizes. The argument 
skip = 1 is needed because the first line of the file contains copyright information, 
and should be skipped by the function.
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6.3 � Fixed Effects Analysis

The tssem() function is used to estimate the pooled correlation matrix under the 
fixed effects model.

Leading to this output:

6.3  Fixed Effects Analysis
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The degrees of freedom are equal to the number of observed correlation coef-
ficients minus the number of estimated correlation coefficients. There are 17 
observed complete correlation matrices with 8 * 7/2 = 28 correlation coefficients 
each. One study missed one variable, and has 7 * 6/2 = 21 coefficients, and one 
study missed 2 variables and has 6 * 5/2 = 15 observed coefficients. So, in total 
there are 17 * 28 + 21 + 15 = 512 observed correlation coefficients. The model 
has 28 parameters, which are the correlation coefficients that are assumed to be 
equal across studies. Hence, degrees of freedom are 512 − 28 = 484. This calcu-
lation leads to the correct number of degrees of freedom, but in reality the diag-
onal elements of the observed correlation matrices are also counted as observed 
statistics, and a diagonal matrix is also estimated for each observed matrix (see 
Eq. 2.7 in Chap. 2). Because the number of observed diagonal elements is equal to 
the number of estimated diagonal elements, degrees of freedom do not change by 
evaluating the diagonal elements.

The chi-square is significant (χ2(484) =  1818.87, p  <  0.05), exact fit of the 
Stage 1 model does not hold, indicating that exact homogeneity of the correlation 
coefficients across studies is rejected. The RMSEA of 0.07 however shows accept-
able approximate fit, which could serve as an indication that homogeneity holds 

Table 6.1   Pooled correlation matrix of the research variables from the fixed effects analysis

1 2 3 4 5 6 7 8

1. Faces 1

2. Pictures 0.37 1

3. Facilitation 0.32 0.36 1

4. Sensations 0.33 0.33 0.37 1

5. Changes 0.19 0.23 0.33 0.25 1

6. Blends 0.19 0.20 0.28 0.26 0.49 1

7. Emotional management 0.21 0.24 0.34 0.32 0.36 0.32 1

8. Emotional relations 0.22 0.22 0.32 0.32 0.33 0.35 0.51 1

http://dx.doi.org/10.1007/978-3-319-27174-3_2
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approximately, and the pooled correlation matrix from the fixed effects analysis 
could be used to fit the structural model. Table 6.1 shows the rounded parameter 
estimates in matrix form. These coefficients can be extracted from the output with 
coef(stage1fixed).

6.4 � Random Effects Analysis

Stage 1: A random effects analysis also seems appropriate for these data. If the 
heterogeneity of the correlation coefficients is not substantial, the results will not 
be very different from the fixed effects analysis. The following code will run the 
random effects Stage 1 analysis. As it was not possible to estimate the study-level 
covariance, the random effects type “Diag” is used.

To save space, the raw output is not shown here. The Q-statistic is significant 
(Q(484) =  2061.08), so homogeneity is rejected based on this test. The I2 of the 
correlation coefficients range between 0.19 and 0.88 indicating substantial hetero-
geneity. Table  6.2 shows the pooled correlation matrix from the random effects 
analysis (with the I2 values above the diagonal).

The correlation coefficients are somewhat different from the fixed effects esti-
mates. Another difference is in the asymptotic variance covariance matrix of these 
correlation coefficients that will be used as a weight matrix in the Stage 2 analysis. 
The asymptotic variance from the random effects analysis will be larger, leading to 
larger confidence intervals around the Stage 2 estimates.

Stage 2: I am going to fit the structural model to the pooled random effects 
matrix from Stage 1. Figure  6.1 shows the 3-factor structure that will be fitted 
to these data. The specification of the parameter matrices for the Stage 2 model 
does not differ between the random or fixed approach. In the illustration of the 
path model in Chap. 5, I already introduced the A-matrix with regression coef-
ficients and the S-matrix with variances and covariances. These matrices feature 
in the factor model as well. The A-matrix contains the factor loadings (λ’s in 
Fig. 6.1), and matrix S contains the residual variances (θ’s in Fig. 6.1) as well as 
the factor variances and covariances (ϕ’s in Fig. 6.1). For factor analysis, a third 
matrix is needed, which is a matrix that indicates which variables are observed 
and which variables are latent. This is matrix F. In the current example, we have 
8 observed variables and 3 factors. Therefore both the A-matrix and the S-matrix 
will have 11 rows and 11 columns. The F-matrix will have 8 rows and 11 columns. 
Matrix F is a selection matrix that filters out the latent variables, it is an identity 
matrix with the rows associated with the latent variables removed. In the current 

6.3  Fixed Effects Analysis
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example, we put the observed variables first, the F matrix can be created using the 
create.Fmatrix() function directly:

Next, we need the A-matrix. I am going to create the A-matrix in steps. First I 
will create a 8 by 3 matrix lambda, which has the factor loadings.

Table 6.2   Pooled correlations (below diagonal) and I2 (above the diagonal) of the research vari-
ables from the random effects analysis

Fig. 6.1   Three factor model on the subscales of the MSCEIT
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Like the matrices in the path model, if a number is specified in the lambda 
matrix, it indicates that the factor loading is not estimated but fixed (fixed at the 
given number, zero in this case). If it is not a number, but for example “0.3 * L11”, 
the parameter is given a starting value of 0.3 and it gets the label “L11”. To cor-
rectly fix and free elements it may help to think of the columns of lambda as 
being associated with the common factors and the rows as being associated with 
the indicators. For example, if indicator number three loads on the first factor 
(or, the third indicator variable regresses on the first factor), we specify a free 
parameter for the element in the third row, first column (“0.3 * L31”). Note that 
the matrix() function fills in the values column wise by default, so we use the 
argument byrow = TRUE. The object lambda looks like shown below.

The A-matrix should be an 11 by 11 matrix, in which the factor loadings are 
in rows 1–8 (associated with the observed variables) and columns 9–11 (associ-
ated with the factors). The rest of the matrix should consist of zeros, as there are 
no other regression coefficients than factor loadings in the model. The zeros can 
be added to the A matrix by adding a 8 by 8 matrix to the left of lambda and con-
sequently a 3 by 11 matrix with zeros below using the cbind() and rbind() 
functions. Next, the as.mxMatrix() function is used to create the matrices 
that are used by OpenMx, which are a matrix indicating the labels of the param-
eters, a matrix with the starting values of the parameters and a matrix indicating 
whether the parameter is freely estimated (indicated by TRUE) or not (indicated by 
FALSE).

6.4  Random Effects Analysis
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The resulting A-matrices look as follows.
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The S-matrix with variances and covariances will also be created in steps. It 
actually consists of a variance covariance matrix of the observed variables and a 
variance covariance matrix of the factors. First, I am going to create the matrix 
with the residual variances of the observed variables. These are represented by θ’s 
in Fig. 6.1. The matrix theta is an 8 by 8 matrix, with freely estimated parameters 
on its diagonal. As there are no residual covariances in the model, all off-diagonal 
elements are fixed at zero. First, I create an 8 by 8 matrix with zero’s, and then I 
add the vector with the information about the residual variance on its diagonal.

The phi matrix contains the variances and covariances of the factors. For iden-
tification, the factor variances are fixed at 1. The correlations between the factors 
are specified off-diagonal.

The function bdiagMat() creates the larger S-matrix from the theta and phi 
matrices. By using the as.MxMatrix() function on this S-matrix, the matri-
ces with labels, starting values and free/fixed elements to be used by OpenMx are 
created.

6.4  Random Effects Analysis
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The resulting S-matrices look like below.

Now the required matrices for the Stage 2 analysis are created, the model can 
be fit to the pooled matrix from Stage 1. As the heterogeneity seems to be substan-
tial, I will fit the model to the Stage 1 matrix from the random effects analysis. 
The tssem() function distils the averaged correlation matrix and the asymptotic 
variance covariance matrix from the Stage 1 object stage1random. As with the 
path model I used the diag.constraints = TRUE and I asked for likelihood 
based confidence intervals around the parameter estimates.
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The output can be viewed using the summary() function.

The 8 by 8 pooled correlation matrix on which the model is fitted contains 28 
correlation coefficients. The model contains 8 factor loadings, 8 residual variances, 
and 3 factor covariances (factor variances were fixed at 1), which sums up to 19 
parameters. However, because during estimation the 8 diagonal elements of the esti-
mated covariance are constrained to be 1, this reduces the number of parameters 
by 8. Degrees of freedom are therefore equal to 28 −  19 +  8 =  17. The model 
does not fit exactly, as the chi-square is significant (χ2

(17)  =  42.20, p  <  0.05).  

6.4  Random Effects Analysis
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The RMSEA value of 0.012 indicates close approximate fit, and the CFI of 0.99 
also indicated satisfactory fit of the model. The parameter estimates with the confi-
dence intervals could therefore be interpreted. All factor loadings are positive, larger 
than 0.50, and significantly larger than zero. The correlations between the three fac-
tors is substantial (0.62, 0.64 and 0.67), but not so large that some factors may be 
redundant. Figure 6.2 shows the graphical model with the parameter estimates.

As long as there are no mediating variables in the model, an alternative to 
using the argument diag.constraints = TRUE in the tssem2() function 
is to use diag.constraints = FALSE (or to leave out this argument). This 
will lead to the same fit results and parameter estimates, but the way the analy-
sis is performed is different. Without the diagonal constraints, the diagonals are 
totally left out of the analysis (the diagonal entries are not counted as observa-
tions), and no residual variances (Θ) are estimated. Because a correlation matrix is 
analyzed, we know that the total variance of each indicator equals 1. The residual 
variances can therefore be calculated from the matrix with estimated factor load-
ings (Λ) and matrix with estimated factor variances and covariances (Φ) using 
Θ = I − diag(ΛΦΛT), where I is an 8 by 8 identity matrix.
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And the model implied variance of Variable 4 (didn’t fit in the matrix above)
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In this appendix I explain how to fit the path model from Chap. 1 to a covari-
ance matrix. I assume that you understand the basics of R. There exist different 
approaches to fit models using OpenMx. I will use the matrix based approach. 
Another way would be to use the “path model specification”.

To get started with OpenMx you first download the package ‘OpenMx’. With 
the command:

the latest version of the package ‘OpenMx’ will be downloaded from the OpenMx 
website. You have to do this only the first time you use OpenMx (on a specific 
computer), to add the package to the R library. To activate the package into the 
current R workspace, you type

A script to fit a path model with OpenMx consists of four steps. First, the 
observed covariance matrix has to be specified in R. Second, the model has to be 
specified. Third, we fit the model to the observed covariance matrix, by submit-
ting both model and covariance matrix to OpenMx. Finally, the output needs to be 
retrieved from the object where all results are stored.

The script below fits the path model from Chap. 1 to a covariance matrix. All 
commands will be explained afterwards.

Appendix B  
Fitting a Path Model to a Covariance  
Matrix with OpenMx

http://dx.doi.org/10.1007/978-3-319-27174-3_1
http://dx.doi.org/10.1007/978-3-319-27174-3_1
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We start by defining the observed covariance matrix and the labels (names) of 
the associated observed variables. It is required to provide these labels with the 
input matrix. The labels are given as a list with two elements, one vector of row 
names and one vector of column names. First we created the object obsnames 
with the names of the variables.

The observed covariance matrix is stored in the object obscov, by creating a 
matrix with the values of the elements, number of rows, number of columns, and 
the name vectors of the two dimensions.

To check whether you successfully specified the observed covariance matrix, 
check the results by typing obscov in the R console. And check, for example, 
whether the matrix is indeed symmetrical by typing obscov == t(obscov).

The next step is to specify the model that has to be fitted to the observed data. 
The OpenMx package has several functions that we will use. The main func-
tions are mxModel() and mxRun(). mxModel() is a ‘container-function’ that 
results in an object that contains all the information needed to fit the model. The 
model is actually fitted with the mxRun() function. All parts of the model fitting 
process are first created as separate objects, and then stored in another object using 
the mxModel() function. The different objects are:

–	 A title
–	 The data (e.g. observed covariance matrix)
–	 The matrices containing the model parameters
–	 The expected (model implied) covariance matrix and fit-function

The code

defines an object with the title, do not forget the " " to make the object of the type 
character (i.e., so R knows that title is a line of text, not a number).

This line creates the object obs to store the outcome of the function 
mxData(). The function mxData() has three arguments: (1) observed = 
for the observed matrix (that you specified previously), (2) type = for the type 
of the matrix ("cor" for correlation matrix, and "cov" for covariance matrix), 
and (3) numObs = for the number of observations, the sample size.
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The model implied covariance matrix of a path model is as follows:

where Σ is the matrix with the resulting model implied variances and covariances, 
I is an identity matrix, Β is a matrix containing the direct effects, and Ψ is a matrix 
containing variances and covariances. In openMx we will denote Σ, Β, Ψ and I 
with respectively Sigma, B, P and I.

Matrix B contains the parameters for the direct effects. Matrix B is constructed 
using the function mxMatrix() with several arguments. B is a full matrix 
(type = "Full"), with numbers of rows and columns equal to the number of 
observed variables. The argument

is a vector (in matrix shape) specifying which elements in matrix B should be 
estimated (TRUE) and which should not be estimated (FALSE). Both the rows and 
the columns of the B matrix are associated with the (four) observed variables.

You need to be careful to specify these direct effects correctly. It may help to 
realize that the columns are associated with the independent variables, and the 
rows with the dependent variables. Another way to think about it is to formulate in 

(B.1)� = (I− B)−1

∗� ∗ (I− B)−1t
,
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terms of regression: when Variable 4 is regressed on Variable 1, you specify TRUE 
in element B 4 1. The diagonal of B is always FALSE, as a variable cannot be 
regressed on itself. The argument

is a vector of values. These values are fixed values for the fixed (FALSE) elements 
(usually zero), or start values for the parameters to be estimated (TRUE). To spec-
ify a start value for the direct effect of Variable 1 on Variable 4, or regression of 
Variable 4 on Variable 1 (β41), we put a 1 (or some other value) in row 4, col-
umn 1 of the B matrix. The parameters can be given labels, which are for example 
needed if you want to calculate indirect effects or add equality constraints later on, 
by adding:

The argument:

should not be forgotten, because the matrix should be filled with elements by row 
and not by column (which is the default). The matrix is given a name (“B”) that 
can be used within other parts of the mxModel. The last argument provides labels 
to the rows and columns of the matrix.
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Matrix P is also an mxMatrix and contains the variances and covariances 
between variables (or between disturbances for endogenous variables). P is a sym-
metrical matrix (type = "Symm") with the same dimensions as the B matrix 
(i.e., the number of observed variables). The free elements in the P matrix are pro-
vided in a symmetrical matrix with FALSE for fixed elements, and TRUE for free 
to be estimated elements. In this example there are TRUE’s on the diagonal, mean-
ing that the variances of the exogenous variables and the disturbance variances 
of the endogenous variables are free to be estimated. Off diagonal there is only 
one TRUE, for the covariance between the two exogenous variables (The double 
headed arrow between “Positive relations” and “Negative relations” in Chap. 1).

Matrix I is an identity matrix (type = “Iden”), with the same dimensions 
as the B and P matrices (i.e., the number of observed variables). It needs fewer 
arguments, because all elements of an identity matrix are fixed.

The indirect effects from Negative and Positive interactions on Achievement, 
through Engagement, are calculated in an mxAlgebra() function, by referring 
to the labels of the two direct effects that make up the indirect effect.

With the mxCI() function we ask for 95 % likelihood based confidence inter-
vals for all elements in the B and P matrices, and the indirect effects.

The model implied covariance matrix is defined in algebraS, with the mxAl-
gebra() function, using the matrices that have been defined before in the 
expression of the path model. We name this model implied matrix “Sigma”. The 
model implied covariance matrix is given the same labels as the observed covari-
ance matrix through dimnames = obslabels.

http://dx.doi.org/10.1007/978-3-319-27174-3_1
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The mxMLObjective() function has as arguments the model implied 
covariance matrix. The mxFitFunctionML() function does not need argu-
ments, but has to be added to the mxModel to indicate that we want to use the 
maximum likelihood fit function. Now, all separate elements of an mxModel are 
created, and we can build the actual mxModel, calling it ‘pathmodel’:

We actually fit (“run”) the model by specifying mxRun(pathmodel)and 
store the output in ‘pathmodelOut’:

The intervals = TRUE argument can be used to specify whether the con-
fidence intervals should be estimated or not. For very large models it may take a 
long time to estimate the intervals so the argument may be set to FALSE in some 
cases.

In order to get information about the model fit and parameter estimates, we can 
ask for a summary of the output:

In the summary, one will see the observed covariance matrix, the parameter 
estimates with standard errors and some of the fit results. This model has 2 degrees 
of freedom, and a chi-square of 2.538.

Information about the parameter estimates only, in matrix shape can be 
obtained with:
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The openMx script for fitting a factor model resembles the script for fitting a path 
model. The biggest difference is that the model of Σ is now a factor model:

where Λ is a full matrix with factor loadings, Φ is a symmetric matrix with vari-
ances and covariances of the common factors, and Θ is a diagonal matrix with 
variances (or sometimes a symmetric matrix with covariances) of the residual 
factors.

The script below fits the two-factor model depicted in Chap. 1, to the observed 
covariance matrix.

(D.1)� = ���
′

+�,

Appendix D  
Fitting a Factor Model to a Covariance  
Matrix with OpenMx
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The first part of the script, where the observed covariance matrix is created, is 
not different from when fitting a path model. Differences are present in the matri-
ces that are used. The matrices involved in a factor model are Λ, Φ and Θ. In 
openMx we will use L, F, and Q to denote Λ, Φ, and Θ, respectively.

To facilitates reading the results in the L, F and Q matrix, we now need both the 
names of the observed variables and the common factors. Therefore, we also cre-
ated an object with the names of the common factors:
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And we create the lists with the labels for the matrices in the factormodel:

The labels of the Lambda matrix involve both the names of the observed vari-
ables (the rows) and the names of the common factors (the columns).

Matrix L contains the factor loadings. Factor loadings are the regression coef-
ficients for the regressions of the indicator variables on the common factors (i.e., 
the effects of the factors on the indicator variables). L is always a full matrix, with 
the number of rows equal to the number of indicators and the number of columns 
equal to the number of common factors.

The argument

specifies which factor loadings should be estimated and which are fixed. To cor-
rectly fix and free elements, it may help to think of the columns as being associ-
ated with the common factors and the rows as being associated with the indicators. 
For example if indicator number three loads on the first factor (or, the third indica-
tor variable regresses on the first factor), we specify TRUE for element (3,1). Start 
values and fixed values are provided in the same way as with a path model. In this 
example, the first factor loading per factor is fixed to 1 to give the factors a scale. 
The alternative would be to fix the variances of the factors to 1.

For start values of the free loadings, we used 1.
Matrix F contains the variances and covariances of the common factors. As it 

is a covariance matrix, it is always a symmetric matrix. Its dimensions are equal 
to the number of common factors. Because we fixed one factor loading per factor 
at 1 in this example, the factor variances can be estimated. The TRUE at the off 
diagonal indicates that the covariance between the common factors is free to be 
estimated. So there is a TRUE for all elements in F. Start values for the elements in 
F are also given.
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Matrix T contains the variances of the residual factors. As there are no covari-
ances between the residual factors, matrix T is a diagonal matrix, with dimensions 
equal to the number of indicators. In this example, all residual variance should be 
estimated, so we provided all TRUE’s in the “free” argument.

We ask for likelihood based confidence intervals for all parameter estimates:

The expression for the expected covariance matrix is now a factor model:

Finally, all the elements of the model are collected in the mxModel function, 
and run with the mxRun function.
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The results of the analyses, and the estimates of the L, F and T matrices can be 
obtained with:
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