


Functional Verification of
Programmable Embedded Architectures

A Top-Down Approach



FUNCTIONAL VERIFICATION OF
PROGRAMMABLE EMBEDDED
ARCHITECTURES

A Top-Down Approach

PRABHAT MISHRA
Department of Computer and Information Science and Engineering
University of Florida, USA

NIKIL D. DUTT
Center for Embedded Computer Systems
Donald Bren School of Information and Computer Sciences
University of California, Irvine, USA

4y Springer



Prabhat Mishra Nikil D. Dutt
University of Florida University of California, Irvine
USA USA

Functional Verification of Programmable Embedded Architectures
A Top-Down Approach

ISBN 0-387-26143-5 e-ISBN 0-387-26399-3 Printed on acid-free paper.
ISBN 978-0387-26143-0

© 2005 Springer Science+Business Media, Inc.
All rights reserved. This work may not be translated or copied in whole or in part without
the written permission of the publisher (Springer Science+Business Media, Inc., 233 Spring
Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or
scholarly analysis. Use in connection with any form of information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks and similar terms,
even if they are not identified as such, is not to be taken as an expression of opinion as to

whether or not they are subject to proprietary rights.

Printed in the United States of America.

9 8 7 6 5 4 3 2 1 SPIN 11430100

springeronline.com



To our families.



Contents

Preface xv

Acknowledgments xix

I Introduction to Functional Verification 1

1 Introduction 3
1.1 Motivation 3

1.1.1 Growth of Design Complexity 3
1.1.2 Functional Verification - A Challenge 4

1.2 Traditional Validation Flow 8
1.3 Top-Down Validation Methodology 10
1.4 Book Organization 12

II Architecture Specification 13

2 Architecture Specification 15
2.1 Architecture Description Languages 16

2.1.1 Behavioral ADLs 18
2.1.2 Structural ADLs 19
2.1.3 Mixed ADLs 19
2.1.4 Partial ADLs 20

2.2 ADLs and Other Specification Languages 20
2.3 Specification using EXPRESSION ADL 21

2.3.1 Processor Specification 24
2.3.2 Coprocessor Specification 25
2.3.3 Memory Subsystem Specification 27

2.4 Chapter Summary 28



viii CONTENTS

3 Validation of Specification 29
3.1 Validation of Static Behavior 30

3.1.1 Graph-based Modeling of Pipelines 31

3.1.2 Validation of Pipeline Specifications 34

3.1.3 Experiments 45

3.2 Validation of Dynamic Behavior 48

3.2.1 FSM-based Modeling of Processor Pipelines 48

3.2.2 Validation of Dynamic Properties 54

3.2.3 A Case Study 59

3.3 Related Work 61

3.4 Chapter Summary 62

III Top-Down Validation 63

4 Executable Model Generation 65
4.1 Survey of Contemporary Architectures 66

4.1.1 Summary of Architectures Studied 66

4.1.2 Similarities and Differences 68

4.2 Functional Abstraction 69

4.2.1 Structure of a Generic Processor 69

4.2.2 Behavior of a Generic Processor 73

4.2.3 Structure of a Generic Memory Subsystem 74

4.2.4 Generic Controller 74

4.2.5 Interrupts and Exceptions 75

4.3 Reference Model Generation 77

4.4 Related Work 80

4.5 Chapter Summary 81

5 Design Validation 83
5.1 Property Checking using Symbolic Simulation 85

5.2 Equivalence Checking 87

5.3 Experiments 88

5.3.1 Property Checking of a Memory Management Unit . . . . 88

5.3.2 Equivalence Checking of the DLX Architecture 91

5.4 Related Work 92

5.5 Chapter Summary 93



CONTENTS ix

6 Functional Test Generation 95
6.1 Test Generation using Model Checking 95

6.1.1 Test Generation Methodology 96
6.1.2 A Case Study 99

6.2 Functional Coverage driven Test Generation 103
6.2.1 Functional Fault Models 103
6.2.2 Functional Coverage Estimation 105
6.2.3 Test Generation Techniques 106
6.2.4 A Case Study 112

6.3 Related Work 116
6.4 Chapter Summary 117

IV Future Directions 119

7 Conclusions 121
7.1 Research Contributions 121
7.2 Future Directions 122

V Appendices 125

A Survey of Contemporary ADLs 127
A.I Structural ADLs 127
A.2 Behavioral ADLs 130
A.3 Mixed ADLs 134
A.4 Partial ADLs 139

B Specification of DLX Processor 141

C Interrupts & Exceptions in ADL 147

D Validation of DLX Specification 151

E Design Space Exploration 155
E.I Simulator Generation and Exploration 156

E.2 Hardware Generation and Exploration 162

References 167

Index 179



List of Figures

1.1 An example embedded system 4
1.2 Exponential growth of number of transistors per integrated circuit 5
1.3 North America re-spin statistics 6
1.4 Complexity matters 7
1.5 Pre-silicon logic bugs per generation 8
1.6 Traditional validation flow 9
1.7 Proposed specification-driven validation methodology 11

2.1 ADL-driven exploration and validation of programmable architec-
tures 16

2.2 Taxonomy of ADLs 17
2.3 Commonality between ADLs and non-ADLs 21
2.4 Block level description of an example architecture 22
2.5 Pipeline level description of the DLX processor shown in Figure 2.4 23
2.6 Specification of the processor structure using EXPRESSION ADL 24
2.7 Specification of the processor behavior using EXPRESSION ADL 25
2.8 Coprocessor specification using EXPRESSION ADL 26
2.9 Memory subsystem specification using EXPRESSION ADL . . . 27

3.1 Validation of pipeline specifications 30
3.2 An example architecture 32
3.3 A fragment of the behavior graph 33
3.4 An example processor with false pipeline paths 36
3.5 An example processor with false data-transfer paths 37
3.6 The DLX architecture 46
3.7 ADL driven validation of pipeline specifications 49
3.8 A fragment of a processor pipeline 50
3.9 The processor pipeline with only instruction registers 51
3.10 Automatic validation framework using SMV 59



xii LIST OF FIGURES

3.11 Automatic validation framework using equation solver 60

4.1 A fetch unit example 70
4.2 Modeling of RenameRegister function using sub-functions . . . . 72
4.3 Modeling of MAC operation 73
4.4 Modeling of associative cache function using sub-functions . . . . 74
4.5 Example of distributed control 75
4.6 Example of centralized control 76
4.7 Mapping between MACcc and generic instructions 78
4.8 Simulation model generation for the DLX architecture 79

5.1 Top-down validation methodology 84
5.2 Test vectors for validation of an AND gate 85
5.3 Compare point matching between reference and implementation

design 87
5.4 TLB block diagram 89

6.1 Test program generation methodology 97
6.2 A fragment of the DLX architecture 100
6.3 Test Generation and Coverage Estimation 112
6.4 Validation of the Implementation 114

C.I Specification of division_by_zero exception 148
C.2 Specification of illegaLslot_instruction exception 148
C.3 Specification of machine_reset exception 149
C.4 Specification of interrupts 149

D.I The DLX processor with pipeline registers 152

E.I Architecture exploration framework 156
E.2 Cycle counts for different graduation styles 158
E.3 Functional unit versus coprocessor 160
E.4 Cycle counts for the memory configurations 162
E.5 The application program 163
E.6 Pipeline path exploration 164
E.7 Pipeline stage exploration 165
E.8 Instruction-set exploration 166



List of Tables

3.1 Specification validation time for different architectures 45
3.2 Summary of property violations during DSE 48
3.3 Validation of in-order execution by two frameworks 61

4.1 Processor-memory features of different architectures. R4K: MIPS
R4000, SA: StrongArm, 56K: Motorola 56K, c5x: TI C5x, c6x:
TIC6x, MA: MAP1000A, SC: Starcore, RIO: MIPS R10000, MP:
Motorola MPC7450, U3: SUN UltraSparc Hi, a64: Alpha 21364,
IA64: Intel IA-64 67

4.2 A list of common sub-functions 71

5.1 Validation of the DLX implementation using equivalence checking 91

6.1 Number of test programs in different categories 99
6.2 Reduced number of test programs 100
6.3 Test programs for validation of DLX architecture 115
6.4 Quality of the proposed functional fault model 115
6.5 Test programs for validation of LEON2 processor 116

E.I The Memory Subsystem Configurations 161
E.2 Synthesis Results: RISC-DLX vs Public-DLX 162



Preface

It is widely acknowledged that the cost of validation and testing comprises a sig-
nificant percentage of the overall development costs for electronic systems today,
and is expected to escalate sharply in the future. Many studies have shown that
up to 70% of the design development time and resources are spent on functional
verification. Functional errors manifest themselves very early in the design flow,
and unless they are detected up front, they can result in severe consequences -
both financially and from a safety viewpoint. Indeed, several recent instances of
high-profile functional errors (e.g., the Pentium FDIV bug) have resulted in in-
creased attention paid to verifying the functional correctness of designs. Recent
efforts have proposed augmenting the traditional RTL simulation-based validation
methodology with formal techniques in an attempt to uncover hard-to-find cor-
ner cases, with the goal of trying to reach RTL functional verification closure.
However, what is often not highlighted is the fact that in spite of the tremendous
time and effort put into such efforts at the RTL and lower levels of abstraction,
the complexity of contemporary embedded systems makes it difficult to guarantee
functional correctness at the system level under all possible operational scenarios.

The problem is exacerbated in current System-on-Chip (SOC) design method-
ologies that employ Intellectual Property (IP) blocks composed of processor cores,
coprocessors, and memory subsystems. Functional verification becomes one of
the major bottlenecks in the design of such systems. A critical challenge in the
validation of such systems is the lack of an initial golden reference model against
which implementations can be verified through the various phases of design refine-
ment, implementation changes, as well as changes in the functional specification
itself. As a result, many existing validation techniques employ a bottom-up ap-
proach to design verification, where the functionality of an existing architecture
is, in essence, reverse-engineered from its implementation. For instance, a func-
tional model of an embedded processor is extracted from its RTL implementation,
and this functional model is then validated in an attempt to verify the functional
correctness of the implemented RTL.



xvi PREFACE

If an initial golden reference model is available, it can be used to generate ref-
erence models at lower levels of abstraction, against which design implementations
can be compared. This "ideal" flow would allow for a consistent set of reference
models to be maintained, through various iterations of specification changes, de-
sign refinement, and implementation changes. Unfortunately such golden refer-
ence models are not available in practice, and thus traditional validation techniques
employ different reference models depending on the abstraction level and verifica-
tion task (e.g., functional simulation or property checking), resulting in potential
inconsistencies between multiple reference models.

In this book we present a top-down validation methodology for programmable
embedded architectures that complements the existing bottom-up approaches. Our
methodology leverages the system architect's knowledge about the behavior of the
design through an architecture specification that serves as the initial golden ref-
erence model. Of course, the model itself should be validated to ensure that it
conforms to the architect's intended behavior; we present validation techniques to
ensure that the static and dynamic behaviors of the specified architecture are well
formed. The validated specification is then used as a golden reference model for
the ensuing phases of the design.

Traditionally, a major challenge in a top-down validation methodology is the
ability to generate executable models from the specification for a wide variety of
programmable architectures. We have developed a functional abstraction technique
that enables specification-driven generation of executable models such as a simu-
lator and synthesizable hardware. The generated simulator and hardware models
are used for functional validation and design space exploration of programmable
architectures.

This book addresses two fundamental challenges in functional verification:
lack of a golden reference model, and lack of a comprehensive functional coverage
metric. First, the top-down validation methodology uses the generated hardware
as a reference model to verify the hand-written implementation using a combina-
tion of symbolic simulation and equivalence checking. Second, we have proposed
a functional coverage metric and the attendant task of coverage-driven test gen-
eration for validation of pipelined processors. The experiments demonstrate the
utility of the specification-driven validation methodology for programmable archi-
tectures.

We begin in Chapter 1 by highlighting the challenges in functional verifica-
tion of programmable architectures, and relating a traditional bottom-up validation
approach against our proposed top-down validation methodology. Chapter 2 in-
troduces the notion of an Architecture Description Language (ADL) that can be
used as a golden reference model for validation and exploration of programmable
architectures. We survey contemporary ADLs and analyze the features required



PREFACE xvii

in ADLs to enable concise descriptions of the wide variety of programmable ar-
chitectures. We also describe the role of ADLs in generating software tools and
hardware models from the specification.

In Chapter 3, we present techniques to validate the ADL specification. In the
context of pipelined programmable architectures, we describe methods to verify
both static and dynamic behaviors embodied in the ADL, with the goal of ensur-
ing that the architecture specified in the ADL conforms to the system designer's
intent, and is consistent and well-formed with respect to the desired architectural
properties.

Chapter 4 focuses on the important notion of functional abstraction that per-
mits the extraction of key parameters from the wide range of contemporary pro-
grammable architectures. Using this functional abstraction technique, we show
how various reference models can be generated for the downstream tasks of com-
pilation, simulation and hardware synthesis. In Chapter 5, we show how the gen-
erated hardware models can be used to verify the correctness of the hand-written
RTL implementation using a combination of symbolic simulation and equivalence
checking.

Chapter 6 introduces the notion of functional fault models and coverage estima-
tion techniques for validation of pipelined programmable architectures. We present
specification-driven functional test-generation techniques based on the functional
coverage metrics described in the chapter. Finally, Chapter 7 concludes the book
with a short discussion of future research directions.

Audience

This book is designed for graduate students, researchers, CAD tool developers,
designers, and managers interested in the development of tools, techniques and
methodologies for system-level design, microprocessor validation, design space
exploration and functional verification of embedded systems.

About the Authors

Prabhat Mishra is an Assistant Professor in the Department of Computer and In-
formation Science and Engineering at the University of Florida. He received his
B.E. from Jadavpur University, India, M.Tech. from Indian Institute of Technol-
ogy, Kharagpur, and Ph.D from University of California, Irvine - all in Computer
Science. He worked in various semiconductor and design automation companies
including Intel, Motorola, Texas Instruments and Synopsys. He received the Out-
standing Dissertation Award from the European Design Automation Association



xviii PREFACE

in 2005 and the CODES+ISSS Best Paper Award in 2003. He has published more
than 25 papers in the embedded systems field. His research interests include design
and verification of embedded systems, reconfigurable computing, VLSI CAD, and
computer architecture.

Nikil Dutt is a Professor in the Donald Bren School of Information and Com-
puter Sciences at the University of California, Irvine. He received a Ph.D. in Com-
puter Science from the University of Illinois at Urbana-Champaign in 1989. He
has been an active researcher in design automation and embedded systems since
1986, with four books, more than 200 publications and several best paper awards.
Currently, he serves as Editor-in-Chief of ACM TODAES and as Associate Editor
of ACM TECS. He has served on the steering, organizing, and program commit-
tees of several premier CAD and embedded system related conferences and work-
shops. He serves on the advisory boards of ACM SIGBED and ACM SIGDA, and
is Vice-Chair of IFIP WG 10.5. His research interests include embedded systems
design automation, computer architecture, optimizing compilers, system specifica-
tion techniques, and distributed embedded systems.



Acknowledgments

This book is the result of many years of academic research work and industrial
collaborations. We would like to acknowledge our sponsors for providing us the
opportunity to perform the research. This work was partially supported by NSF
(CCR-0203813, CCR-0205712, MIP-9708067), DARPA (F33615-00-C-1632), Mo-
torola Inc. and Hitachi Ltd.

This book has the footprints of many collaborations. We would like to acknowl-
edge the contributions of Dr. Magdy Abadir, Jonas Astrom, Dr. Peter Grun, Ashok
Halambi, Arun Kejariwal, Dr. Narayanan Krishnamurthy, Dr. Mahesh Mamidi-
paka, Prof. Alex Nicolau, Dr. Frederic Rousseau, Prof. Sandeep Shukla, and Prof.
Hiroyuki Tomiyama. We are also thankful to all the members of the ACES labora-
tory at the Center for Embedded Computer Systems for interesting discussions and
fruitful collaborations.



Parti

Introduction to Functional
Verification



1
INTRODUCTION

1.1 Motivation

Computing is an integral part of daily life. We encounter two types of computing
devices everyday: desktop based computing devices and embedded systems. Desk-
top based systems encompass traditional computers including personal computers,
notebook computers, workstations and servers. Embedded systems are ubiquitous:
they run the computing devices hidden inside a vast array of everyday products
and appliances such as cell phones, toys, handheld PDAs, cameras, and microwave
ovens. Both types of computing devices use programmable components such as
processors, coprocessors and memories to execute the application programs. In
this book, we refer these programmable components as programmable embedded
architectures (programmable architectures in short). Figure 1.1 shows an example
embedded system that contains programmable components as well as application
specific hardwares, interfaces, controllers and peripherals.

1.1.1 Growth of Design Complexity

The complexity of the programmable architectures is increasing at an exponential
rate. There are two factors that contribute to this complexity growth: technology
and demand. First, there is an exponential growth in the number of transistors per
integrated circuit, as characterized by Moore's Law [32]. Figure 1.2 shows that
Intel processors followed the Moore's law in terms of doubling transistors in every
couple of years. This trend is not limited to only high-end general purpose micro-
processors. Exponential growth in design complexity is also present in application
specific embedded systems. For example, Figure 1.2 also shows the dramatic in-
crease of design complexity for various system-on-chip (SOC) architectures in last
few years.



4 CHAPTER 1. INTRODUCTION

The technology has enabled an exponential increase in computational capacity,
which fuels the second trend: the realization of ever more complex applications in
the domains of communication, multimedia, networking, and entertainment. For
example, the volume of Internet traffic (data movement) is growing exponentially.
This would require increase in computation power to manipulate the data. The
need for computational complexity further fuels the technological advancement in
terms of design complexity.

- i 1 1 1 1 i 1 1 1 i 1 1 1 i 1 1 1 i 1 1 1 i 1 1 1 1 1 1 1 1 i 1 1 1 i 1 1 1 i 1 1 1 1 i 1 1 1 1 1 1 1 i 1 1 1 1 1 1 i i 1 1 1 1 i 1 1 1 i 1 1 1 1 1 1 1 i 1 1 1 i 1 1 1 1 i 1 1 1 i 1 1 1 i 1 1 1 i 1 1 1 1 1 1 1 i i 1 1 1 1 1 1 i I-P

H A2D
Converter

DMA
Controller

Programmable Architectures

Processor
Core

Coprocessor

Coprocessor

Memory
Subsystem

ASIC/
FPGA

{Sensors & 1 [ D2A
y Actuators J [Converter

I Embedded Systems
T I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I i r 11 i I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I"

Figure 1.1: An example embedded system

However, the complexity of designing and verifying such systems is also in-
creasing at an exponential rate. Figure 1.3 shows a recent study on the number
of first silicon re-spins of system-on-chip (SOC) designs in North America [33].
Almost half of the designs fail the very first time. This failure has tremendous
impact on cost for two reasons. First, the delay in getting the working silicon dras-
tically reduces the market share. Second, the manufacturing (fabrication) cost is
extremely high. The same study also concluded that 71% of SOC re-spins are due
to logic bugs (functional errors).

1.1.2 Functional Verification - A Challenge

Functional verification is widely acknowledged as a major bottleneck in design
methodology: up to 70% of the design development time and resources are spent
on functional verification [119]. Recent study highlights the challenges of func-



1.1. MOTIVATION 5

tional verification: Figure 1.4 shows the statistics of the SOC designs in terms
of design complexity (logic gates), design time (engineer years), and verification
complexity (simulation vectors) [33]. The study highlights the tremendous com-
plexity faced by simulation-based validation of complex SOCs: it estimates that by
2007, a complex SOC will need 2000 engineer years to write 25 million lines of
register-transfer level (RTL) code and one trillion simulation vectors for functional
verification.

1,000,000,000

100,000,000

o

I 10,000,000

I
o 1,000,000

I

Z 100,000

10,000

1000

NVIDIA NV40

A/WD/4NV35GPUJ

Sony Graphic Synthesizer*/

Intel Pentium W\jf\
Pentium 4

Intel Pentium IIJ

Intel Pentium m

Intel 486
A Tl Radeon X800

•
1970 1975 1980 1985 1990 1995 2000 2005

Figure 1.2: Exponential growth of number of transistors per integrated circuit

A similar trend can be observed in the high-performance microprocessor space.
Figure 1.5 summarizes a study of the pre-silicon logic bugs found in the Intel IA32
family of microarchitectures. This trend again shows an exponential increase in
the number of logic bugs: a growth rate of 300-400% from one generation to the
next. The bug rate is linearly proportional to the number of lines of structural RTL
code in each design, indicating a roughly constant density [11].

Simple extrapolation indicates that unless a radically new approach is em-
ployed, we can expect to see 20-3OK bugs designed into the next generation and
100K in the subsequent generation. Clearly - in the face of shrinking time-to-
markets - the amount of validation effort rapidly becomes intractable, and will



6 CHAPTER 1. INTRODUCTION

significantly impact product schedules, with the additional risk of shipping prod-
ucts with undetected bugs.

Source: 2002 Collett International Research and Synopsys

100%

ce
ss

o

o

1
48%

— • - • —

44%
" • - 39%

• # - _ _ _ _

1999 2002 2004
Figure 1.3: North America re-spin statistics

The next obvious question is - where do all these bugs come from? An Intel
report summarized the results of a statistical study of the 7855 bugs found in the
Pentium 4 processor design prior to initial tapeout [11]. The major categories,
amounting to over 75% of the bugs analyzed, were [11]:

• Careless coding (12.7%) - this includes typos and cut-and-paste errors.

• Miscommunication (11.4%) - these errors are due to communication gap.

• Microarchitecture (9.3%) - flaws or omissions in the definition.

• Logic/Microcode changes (9.3%) - errors due to design changes to fix bugs.

• Corner cases (8%)

• Power down issues (5.7%) - errors due to extensive clock gating features.

• Documentation (4.4%) - bugs due to incorrect/incomplete documentation.

• Complexity (3.9%) - bugs specifically due to microarchitectural complexity.

• Random initialization (3.4%) - bugs due to incorrect state initialization.



LI. MOTIVATION

• Late definition (2.8%) - bugs due to late addition of new features.

• Incorrect RTL assertions (2.8%)

• Design mistake (2.6%) - incorrect implementation errors.

2000

Source: Synopsys

2007
100B

i
3

10B p
-2

I
100M

10M 100M
Logic Gates

Figure 1.4: Complexity matters

Although "complexity" is ranked eighth on the list of bug causes, it is clear that
it contributes to many of the categories listed above. More complex microarchi-
tectures need more extensive documentation to describe them; they require larger
design teams to implement them, increasing the likelihood of miscommunication
between team members; and they introduce more corner cases, resulting in undis-
covered bugs. Hence, microarchitectural complexity is the major contributor of the
logic bugs.

Typically, there are two fundamental reasons for so many logic bugs: lack of
a golden reference model and lack of a comprehensive functional coverage met-
ric. First, there are multiple specification models above the RTL level (functional
model, timing model, verification model, etc.). The consistency of these models is
a major concern due to lack of a golden reference model. Second, the design ver-
ification problem is further aggravated due to lack of a functional coverage metric



8 CHAPTER 1. INTRODUCTION

that can be used to determine the coverage of the microarchitectural features, as
well as the quality of functional validation. Several coverage measures are com-
monly used during design validation, such as code coverage, finite-state machine
(FSM) coverage, and so on. Unfortunately, these measures do not have any di-
rect relationship to the functionality of the design. For example, in the case of a
pipelined processor, none of these measures determine if all possible interactions
of hazards, stalls and exceptions are verified.

Source: Tom Schubert, Intel (DAC 2003)

7855

2240
800

Pentium Pentium Pro Pentium 4 Next ?

Figure 1.5: Pre-silicon logic bugs per generation

This book presents a top-down validation methodology that addresses the two
fundamental challenges mentioned above. We apply this methodology to ver-
ify programmable architectures consisting of a processor core, coprocessors, and
memory subsystem [110].

1.2 Traditional Validation Flow

Figure 1.6 shows a traditional architecture validation flow. In the current validation
methodology, the architect prepares an informal specification of the programmable
architectures in the form of an English document. The logic designer implements
the modules at the register-transfer level (RTL). The validation effort tries to un-
cover two types of faults: architectural flaws and implementation bugs. Validation
is performed at different levels of abstraction to capture these faults. For example,



1.2. TRADITIONAL VALIDATION FLOW

architecture-level modeling (HLM in Figure 1.6) and instruction-set simulation is
used to estimate performance as well as verify the functional behavior of the archi-
tecture. A combination of simulation techniques and formal methods are used to
uncover implementation bugs in the RTL design.

Architecture Specification
(English Document)

Analysis / Validation

High-Level Models (HLM)] Specification (SPEC)

31

Model Checking

H Abstracted Design (ABST) W AImplementation (IMPL)

Modified Design
(RTL / Gate)

Equivalence !

Checking

Figure 1.6: Traditional validation flow

Simulation using random (or directed-random) testcases [1, 19, 37, 63, 123]
is the most widely used form of microprocessor validation. It is not possible to
apply formal techniques directly on million-gate designs. For example, model
checking is typically applied on the high-level description of the design (ABST
in Figure 1.6) abstracted from the RTL implementation [90, 115]. Traditional for-
mal verification is performed by describing the system using a formal language
[53, 20, 118, 62, 64, 78, 79]. The specification (SPEC in Figure 1.6) for the for-



10 CHAPTER 1. INTRODUCTION

mal verification is derived from the architecture description. The implementation
(IMPL in Figure 1.6) for the formal verification can be derived either from the
architecture specification or from the abstracted design. In current practice, the
validated RTL design is used as a golden reference model for future design modi-
fications. For example, when design transformations (including synthesis) are ap-
plied on the RTL design, the modified design (RTL/gate level) is validated against
the golden RTL design using equivalence checking.

A significant bottleneck in these validation techniques is the lack of a golden
reference model above RTL level. A typical design validation methodology con-
tains multiple reference models depending on the abstraction level and verification
activity. The presence of multiple reference models raises an important question:
how do we maintain consistency between so many reference models?

1.3 Top-Down Validation Methodology

We propose the use of a single specification to automatically generate necessary
reference models. Currently the design methodology for programmable architec-
tures typically starts with an English specification. However, it is not possible to
perform any automated analysis or model synthesis on a design specified using a
natural language. We propose the use of an Architecture Description Language
(ADL) to capture the design specification. Figure 1.7 shows our ADL-driven vali-
dation methodology. The methodology has four important steps: architecture spec-
ification, validation of specification, executable (reference) model generation, and
implementation (RTL design) validation.

1. Architecture Specification: The first step is to capture the programmable archi-
tecture using a specification language. Although any specification language can be
used that captures both structure (components and their connectivity) and behavior
(instruction-set description) of the programmable architectures, we use an ADL in
our methodology.

2. Validation of Specification: The next step is to verify the specification to en-
sure the correctness of the architecture specified. We have developed validation
techniques to ensure that the architectural specification is well formed by analyz-
ing both static and dynamic behaviors of the specified architecture. We present
algorithms to verify several architectural properties, such as connectedness, false
pipeline and data-transfer paths, completeness, and finiteness [99]. The dynamic
behavior is verified by analyzing the instruction flow in the pipeline using a FSM
based model to validate several important architectural properties such as deter-
minism and in-order execution in the presence of hazards and multiple exceptions



1.3. TOP-DOWN VALIDATION METHODOLOGY 11

[105, 96]. The validated ADL specification is used as a golden reference model to
generate various executable models such as simulator and hardware implementa-
tion.

Architecture Specification
(English Document)

Verify Specification

s*~ ^ s
Validation

ADL SPECIFICATION
(Golden Reference Model)

RTL Design
(Implementation)

nquivuience /
_̂ J RTLDesign

Checking V

Figure 1.7: Proposed specification-driven validation methodology

3. Executable Model Generation: A major challenge in a top-down validation
methodology is the ability to generate executable models from the specification for
a wide variety of programmable architectures including RISC (Reduced Instruc-
tion Set Computer), DSP (Digital Signal Processor), VLIW (Very Long Instruction
Word), and superscalar architectures. We have developed a functional abstraction
approach by studying the similarities and differences of each architectural feature
in various architecture domains. Based on our observations we have defined nec-
essary generic functions, sub-functions, and computational environment needed to
capture a wide variety of programmable architectures. Our functional abstraction
technique enables generation of simulators [102], hardware prototypes [93], and
models for property checking [100] from the ADL specification.



12 CHAPTER 1. INTRODUCTION

4. RTL Design Validation: This book explores two validation scenarios using the
generated models: design validation using equivalence checking and test genera-
tion for functional validation. The generated hardware is used as a reference model
for verifying the hand-written implementation (RTL Design) using a combination
of symbolic simulation and equivalence checking [106]. To verify that the imple-
mentation satisfies certain properties, our framework generates the intended prop-
erties and uses a symbolic simulator to perform property checking. Our framework
generates synthesizable RTL description of the architecture to enable equivalence
checking with the hand-written implementation.

The specification is also used to generate functional test programs based on
the functional coverage of pipelined architectures [100]. The generated test pro-
grams are used during simulation of the implementation, and complement the tests
generated by the existing techniques such as a random test pattern generator. The
generated simulator is used to compute the expected outputs for the test programs.
Our experimental results demonstrate that the number of test programs generated
by our approach to obtain a functional coverage is an order of magnitude less than
those generated by random or constrained-random test generation techniques.

1.4 Book Organization

The organization of the book is as follows.
Chapter 2 [Architecture Specification]: Describes necessary features of a

specification language that can be used in a top-down validation methodology. It
uses EXPRESSION ADL as an example to show how to capture processor, copro-
cessor, and memory architectures.

Chapter 3 [Validation of Specification]: Presents the techniques for validat-
ing the architecture specification. These techniques verify both static and dynamic
behaviors of the specified architecture.

Chapter 4 [Model Generation]: Describes automatic generation of models
for simulation, hardware generation, and validation for a wide variety of pro-
grammable architectures.

Chapter 5 [Design Validation]: The generated hardware is used as a reference
model for verifying the hand-written RTL implementation using a combination of
symbolic simulation and equivalence checking.

Chapter 6 [Test Generation]: Presents specification-driven test generation
techniques based on functional coverage of the pipelined processor architectures.

Chapter 7 [Conclusions]: Contains a summary of the book and a discussion
of future research directions.



Part II

Architecture Specification



2
ARCHITECTURE SPECIFICATION

The first step in a top-down validation methodology is to capture the programmable
architectures using a specification language. The language should be powerful
enough to specify the wide spectrum of contemporary processor, coprocessor, and
memory features. On the other hand, the language should be simple enough to
allow correlation of the information between the specification and the architecture
manual. Specifications widely in use today are still written informally in natu-
ral language like English. Since natural language specifications are not amenable
to automated analysis, there are possibilities of ambiguity, incompleteness, and
contradiction: all problems that can lead to different interpretations of the specifi-
cation.

Many formal and semi-formal specification languages for describing software
and hardware designs have been proposed over the years. The languages range in
expressiveness, and their different levels of granularity determine their appropri-
ateness for different applications. This chapter analyzes several types of specifica-
tion languages and evaluates the suitability of Architecture Description Languages
(ADL) in specifying programmable architectures. We use EXPRESSION ADL
[5] to illustrate architecture specification using examples. Within this context, it
is important to note that this book does not propose a new language or endorse an
existing one. The validation techniques presented in this book can use any existing
language that captures both structure and behavior of the programmable architec-
tures.

This chapter is organized as follows. Section 2.1 introduces the notion of an
architecture description language and surveys the existing ADLs in terms of their
specification capabilities. Section 2.2 analyzes different types of languages and
evaluates their suitability in specifying programmable architectures. Section 2.3
describes architecture specification using EXPRESSION ADL [5]. Finally, Sec-
tion 2.4 summarizes the chapter.



16 CHAPTER 2. ARCHITECTURE SPECIFICATION

2.1 Architecture Description Languages

The phrase "Architecture Description Language" (ADL) has been used in context
of designing both software and hardware architectures. Software ADLs are used
for representing and analyzing software architectures ([83], [109]). They capture
the behavioral specifications of the components and their interactions that com-
prises the software architecture. However, hardware ADLs capture the structure
(hardware components and their connectivity), and the behavior (instruction-set)
of processor architectures. In this book the term ADL will refer to hardware archi-
tecture description languages.

Architecture Specification
( English Document)

Validation

Synthesis RTOS
Generator}

•j Implementation I Real—time JTAG interface, i.
Operating Systems Test Programs,... Compiler)- - ^{Simulator

Figure 2.1: ADL-driven exploration and validation of programmable architectures

As embedded systems become ubiquitous, there is an urgent need to facili-
tate rapid design space exploration (DSE) of programmable architectures. ADLs
are used to perform early exploration, synthesis, test generation, and validation of
processor-based designs as shown in Figure 2.1. Programmable architectures are
captured using an ADL. The ADL specification can be used for generation of a
software toolkit including the compiler, assembler, simulator, and debugger. The
application programs are compiled and simulated, and the feedback is used to mod-
ify the ADL specification with the goal of finding the best possible architecture for
the given set of applications. The ADL specification can also be used for gener-



2.1. ARCHITECTURE DESCRIPTION LANGUAGES 17

ating hardware prototypes under design constraints such as area, power, and clock
speed. Several researchers have shown the usefulness of ADL-driven generation
of functional test programs and test interfaces. The specification can also be used
to generate device drivers for real-time operating systems [124].

Although, ADL-driven exploration is extensively used in both academia (nML
[72], ISDL [31], EXPRESSION [5], Valen-C [6], MIMOLA [117], Sim-nML
[132], and LISA [133]), and industry (ARC [10], Axys [42], RADL [15], Target
[49], Tensilica [130], LISATek [17], and MDES [80]), to the best of our knowledge,
there has not been any effort in validating the ADL specification. It is necessary
to validate the ADL specification of the architecture to ensure the correctness of
both the architecture specified, as well as the generated software toolkit. Chapter 3
presents specification validation techniques for programmable architectures.

Figure 2.2 shows the classification of architecture description languages (ADLs)
based on two aspects: content and objective. The content-oriented classification is
based on the nature of the information an ADL can capture, whereas the objective-
oriented classification is based on the purpose of an ADL. Contemporary ADLs
can be classified into six categories based on the objective: simulation-oriented,
synthesis-oriented, test-oriented, compilation-oriented, validation-oriented, and op-
erating system (OS) oriented.

Architecture Description Languages (ADLs)

Structural ADLs
(MIMOLA, UDL/I)

Mixed ADLs
(EXPRESSION, LISA)

Behavioral ADLs
(ISDL, nML)

Partial ADLs
(AIDL)

Synthesis Test Validation Simulation Compilation OS
Oriented Oriented Oriented Oriented Oriented Oriented

Figure 2.2: Taxonomy of ADLs

ADLs can be classified into four categories based on the nature of the informa-
tion: structural, behavioral, mixed, and partial. The structural ADLs capture the



18 CHAPTER 2. ARCHITECTURE SPECIFICATION

structure in terms of architectural components and their connectivity. The behav-
ioral ADLs capture the instruction-set behavior of the processor architecture. The
mixed ADLs capture both structure and behavior of the architecture. These ADLs
capture complete description of the structure or behavior or both. However, the
partial ADLs capture specific information about the architecture for the intended
task. For example, an ADL intended for interface synthesis does not require inter-
nal structure or behavior of the processor.

Traditionally, structural ADLs are suitable for synthesis and test-generation.
Similarly, behavioral ADLs are suitable for simulation and compilation. It is not al-
ways possible to establish a one-to-one correspondence between content-based and
objective-based classification. For example, depending on the nature and amount
of information captured, partial ADLs can represent any one or more classes of
the objective-based ADLs. Recently, many ADLs have been proposed that capture
both the structure and the behavior of the architecture. This section presents a brief
survey using content-based classification of ADLs. A detailed survey is available
in Appendix A.

2.1.1 Behavioral ADLs

nML [72] and ISDL [31] are examples of behavior-centric ADLs. In nML, the pro-
cessor's instruction-set is described as an attributed grammar with the derivations
reflecting the set of legal instructions. nML has been used by the retargetable code
generation environment CHESS [22] to describe DSP and ASIP (Application Spe-
cific Instruction-set Processor) architectures. In ISDL, constraints on parallelism
are explicitly specified through illegal operation groupings. This could be tedious
for complex architectures like DSPs which permit operation parallelism (e.g. Mo-
torola 56K) and VLIW machines with distributed register files (e.g. TI C6X). The
retargetable compiler system by Yasuura et al. [6] produces code for RISC archi-
tectures starting from an instruction-set processor description, and an application
described in Valen-C.

Many behavioral ADLs share one common feature: a hierarchical instruction-
set description based on attribute grammars [60]. This feature greatly simplifies the
instruction-set description by exploiting the common components between opera-
tions. However, the lack of detailed pipeline and timing information prevents the
use of these languages as an extensible architecture model. Information required
by resource-based scheduling algorithms cannot be obtained directly from the de-
scription. Also, it is impossible to generate cycle accurate simulators based on
the behavioral descriptions without some assumptions on the architecture's control
behavior, i.e., an implied architecture template has to be used.



2.1. ARCHITECTURE DESCRIPTION LANGUAGES 19

2.1.2 Structural ADLs

MIMOLA [117] and UDL/I [34] are examples of ADLs that primarily capture
the structure of the processor: the net-list of the target processor is described in
a HDL (Hardware Description Language) like language. One advantage of this
approach is that the same description is used for both processor synthesis and code
generation. The target processor has a micro-coded architecture. In MIMOLA, the
net-list description is used to extract the instruction-set [116, 117], and produce
the code generator. UDL/I [34] is used for describing processors at an RT-level on
a per-cycle basis. The instruction-set is automatically extracted from the UDL/I
description [35], and is then used for generation of a compiler and a simulator.

In general, structural ADLs enable flexible and precise micro-architecture de-
scriptions. The same description can be used for hardware synthesis, test genera-
tion, simulation and compilation. However, it is difficult to extract the instruction-
set for retargetable compilation.

2.1.3 Mixed ADLs

More recently, languages that capture both the structure and the behavior of the
processor, as well as detailed pipeline information have been proposed (EXPRES-
SION [5], RADL [15], FLEXWARE [108], MDes [80], and LISA [133]). The
main characteristic of LISA is the operation-level description of the pipeline. RADL
[15] is an extension of the LISA approach that focuses on explicit support of de-
tailed pipeline behavior to enable generation of production quality cycle-accurate
and phase-accurate simulators. FLEXWARE [108] and MDes [80] have a mixed-
level structural/behavioral representation. FLEXWARE contains the CODESYN
code-generator and the Insulin simulator for ASIPs. The simulator uses a VHDL
model of a generic parameterizable machine. The application is translated from
the user-defined target instruction-set to the instruction-set of this generic machine.
The MDes [80] language used in the Trimaran system is a mixed-level ADL, in-
tended for exploration of parameterized VLIW architectures. Information is bro-
ken down into sections (such as format, resource-usage, latency, operation, and
register), based on a high-level classification of the information being represented.

The EXPRESSION ADL also follows a mixed-level approach to facilitate DSE.
Furthermore, it provides support for specification of novel memory subsystems. It
avoids explicit representation of the reservation tables1 by extracting them from
the structural description [88]. The ADL is used to drive the generation of both
compiler [4] and simulator [8].

Reservation Tables (RTs) have been used to detect conflicts between instructions that simultane-
ously access the same architectural resource.



20 CHAPTER 2. ARCHITECTURE SPECIFICATION

2.1.4 Partial ADLs

The ADLs discussed so far captures complete description of the processor's struc-
ture, behavior or both. There are many ADLs that captures partial information
of the architecture needed to perform specific task. For example, AIDL aims at
validation of pipeline behavior such as data-forwarding and out-of-order comple-
tion. AIDL is an ADL developed at University of Tsukuba for design of high-
performance superscalar processors [129]. In AIDL, timing behavior of pipeline
is described using interval temporal logic. AIDL does not support software toolkit
generation. However, AIDL descriptions can be simulated using the AIDL simu-
lator.

2.2 ADLs and Other Specification Languages

There are various types of specification languages including ADLs, programming
languages, hardware description languages, modeling languages, and so on. A nat-
ural question is whether an ADL is more suitable for specification of programmable
architectures than other languages. In other words, how do ADLs differ from non-
ADLs? This section attempts to answer this question. However, it is not always
possible to answer the following question: given a language for describing an ar-
chitecture, what are the criteria for deciding whether it is an ADL or not?

In principle, ADLs differ from programming languages because the latter bind
all architectural abstractions to specific point solutions whereas ADLs intention-
ally suppress or vary such binding. In practice, the architecture is embodied and
recoverable from code by reverse engineering methods. For example, it might be
possible to analyze a piece of code written in C language and figure out if it cor-
responds to a Fetch unit. Many languages provide architecture level views of the
system. For example, C++ language offers the ability to describe the structure of a
processor by instantiating objects for the components of the architecture. However,
C++ offers little or no architecture-level analytical capabilities. Therefore, it is dif-
ficult to describe the architecture at a level of abstraction suitable for early analysis
and exploration. More importantly, traditional programming languages are not nat-
ural choice for describing architectures due to their inability for capturing hardware
features such as parallelism and synchronization.

ADLs differ from modeling languages (such as UML) because the latter are
more concerned with the behaviors of the whole rather than the parts, whereas
ADLs concentrate on representation of components. In practice, many modeling
languages allow the representation of cooperating components and can represent
architectures reasonably well. However, the lack of an abstraction would make it
harder to describe the instruction-set of the architecture.



2.3. SPECIFICATION USING EXPRESSION ADL 21

Programming
Languages

Figure 2.3: Commonality between ADLs and non-ADLs

Traditional hardware description languages (HDL), such as VHDL and Verilog,
do not have sufficient abstraction to describe architectures and explore them at the
system level. It is possible to perform reverse-engineering to extract the structure
of the architecture from the HDL description. However, it is hard to extract the
instruction-set behavior of the architecture. In practice, some variants of HDLs
work reasonably well as ADLs for specific classes of programmable architectures.

There is no clear line between ADLs and non-ADLs. In principle, program-
ming languages, modeling languages, and hardware description languages have
aspects in common with ADLs, as shown in Figure 2.3. Languages can, however,
be discriminated from one another according to how much architectural informa-
tion they can capture and analyze. Languages that were born as ADLs show a
clear advantage in this area over languages built for some other purpose and later
co-opted to represent architectures.

2.3 Specification using EXPRESSION ADL

Our validation framework uses the EXPRESSION ADL [5] to specify processor,
coprocessor, and memory architectures. The EXPRESSION ADL follows a mixed-
level approach to facilitate specification of a wide range of programmable archi-
tectures. We illustrate the use of the EXPRESSION ADL to describe a simple
multi-issue architecture consisting of a processor, a coprocessor and a memory
subsystem.



22 CHAPTER 2. ARCHITECTURE SPECIFICATION

Instruction
Memory

Data
Memory

\ L2
Unified

Main
Memory

MEMORY SUBSYSTEM

- i l l 111111111111111111

i

i

i

f

DMA
Controller

i

i

i

f

i

Til IMIMIII I I I l l I II I l l t l l l l l i n i l l l l l l t l l l lMMMI t l l l t l l l

EMIF1

COPROCESSOR

CoProc

i

EMIF2
i

f

Local
Memory

Figure 2.4: Block level description of an example architecture



2.3. SPECIFICATION USING EXPRESSION ADL 23

Figure 2.4 shows the block level description of a simple architecture. This level
of detail is available in a typical architecture manual. Typically, pipeline level de-
tails are available in a micro-architecture manual. For example, Figure 2.4 shows
the detailed description of the memory subsystem and the coprocessor. The mem-
ory subsystem consists of separate instruction and data memories (LI cache), a
unified L2 memory, and a main memory. The coprocessor consists of three pipeline
stages: EMIF_1 (external memory interface), CoProc, and EMIF_2. The coproces-
sor uses it local memory for computations. The data transfer between coprocessor
local memory and the main memory is handled by the DMA (direct memory ac-
cess) controller shown in Figure 2.4. Similarly, Figure 2.5 shows the pipeline level
description of the DLX processor shown in Figure 2.4. The DLX processor has
five pipeline stages: fetch (IF), decode (ID), execute (EX), memory (MEM), and
write back (WB). We have chosen the DLX processor since it has been well stud-
ied in academia and there are RTL implementations available that can be used for
validation.

Figure 2.5: Pipeline level description of the DLX processor shown in Figure 2.4

The architecture shown in Figure 2.4 can issue up to two operations (an ALU
or memory access operation and a coprocessor operation) per cycle. The copro-
cessor supports vector arithmetic operations. This section briefly describes how to
specify the processor, coprocessor, and memory architectures using the EXPRES-
SION ADL. The detailed ADL specification of the DLX architecture is available
in Appendix B.



24 CHAPTER 2. ARCHITECTURE SPECIFICATION

2.3.1 Processor Specification

This section describes how the EXPRESSION ADL captures the structure and be-
havior of the DLX processor shown in Figure 2.5.

Structure

The structure of a processor can be viewed as a net-list with the components as
nodes and the connectivity as edges. Figure 2.6 shows a portion of the EXPRES-
SION description of the processor. It describes all the components in the structure:
PC, registers, fetch, decode, ALU, MEM, and writeback. Each component has a list
of attributes. For example, the ALU unit has information regarding the number of
instructions executed per cycle, timing of each instruction, supported opcodes, and
so on. The connectivity is established using the description of pipeline and data-
transfer paths. Informally, a pipeline path is used to transfer instruction whereas
a data-transfer path is used to transfer data. For example, {IF —> ID —> EX —>
MEM -^ WB} is a pipeline path, and { WB —• Registers} is a data-transfer path in
Figure 2.5. Section 3.1.1 defines the pipeline and data-transfer paths in detail.

# Components specification
(FetchUnit Fetch

(capacity 2) (timing (all 1))
(opcodes all) (latches . . . ) . . .

)
(ExecUnit ALU

(capacity 1) (timing (add 1) (sub 1 ) . . . )
(opcodes (add sub . . .)) (latches . . . ) . . .

# Pipeline and data-transfer paths
(pipeline Fetch Decode Execute MEM WriteBack)
(dtpaths (WB Registers) (Registers ALU). . . )

Figure 2.6: Specification of the processor structure using EXPRESSION ADL

Figure 2.6 describes the five-stage pipeline as {fetch, decode, execute, memory,
writeback}. In this particular case, the execute stage has only one component. In
general, the execute stage can have multiple execution paths. Furthermore, each
path can contain pipelined or multi-cycle execution units. The ADL specification
also includes the description of all the data-transfer paths.



23. SPECIFICATION USING EXPRESSION ADL 25

Behavior

The EXPRESSION ADL captures the behavior of the architecture as the descrip-
tion of the instruction-set. The behavior is organized into operation groups, with
each group containing a set of operations2 having some common characteristics.
For example, Figure 2.7 shows two operation groups. The aluOps includes all the
operations supported by the ALU\xmt Similarly, the memOps group contains all
the operations supported by the MEM unit. Each instruction is then described in
terms of its opcode, operands, behavior, and instruction format. Each operand is
classified either as source or as destination. Furthermore, each operand is associ-
ated with a type that describes the type and size of the data it contains. The in-
struction format describes the fields of the instruction in both binary and assembly.
Figure 2.7 shows the description of the addend store operations.

# Behavior: description of instruction-set
( opgroup aluOps {add, sub,...) )
( opgroup memOps (load, store,...))

(opcode add
(operands (si reg) (s2 reg/imml6) (dst reg))
(behavior dst = si + s2)
(format 000101 dst(25-21) sl(21-16) s2(15-0))

)
(opcode store

(operands (si reg) (s2 imml6) (s3 reg))
(behavior M[sl + s2] = s3)
(format 001101 s3(25-21) sl(21-16) s2(15-0))

Figure 2.7: Specification of the processor behavior using EXPRESSION ADL

The ADL also captures the mapping between the structure and the behavior
(and vice versa). For example, the add and sub instructions are mapped to the ALU
unit, the load and store instructions are mapped to the MEM unit, and so on.

2.3.2 Coprocessor Specification

The ADL specification of a programmable coprocessor is similar to the specifica-
tion of the processor architecture described in Section 2.3.1. This section describes

2 In this book we use the terms operation and instruction interchangeably.



26 CHAPTER 2. ARCHITECTURE SPECIFICATION

how the ADL captures the structure and behavior of the coprocessor shown in Fig-
ure 2.4. To describe the structure of the coprocessor we specify each pipeline stage
of the coprocessor along with the processor pipeline as shown in Figure 2.8(a).
The coprocessor pipeline has three stages. The EMIFJ stage requests the DMA to
transfer the data from the main memory to the coprocessor local memory. The Co-
Proc stage performs the intended computation using the coprocessor local memory
for accessing input operands. Results are stored back in the coprocessor mem-
ory. Finally, the EMIF_2 requests the DMA to transfer the data from coprocessor
memory to main memory. Figure 2.8(a) shows the description of the CoProc com-
ponent. It supports four-cycle vector arithmetic operations.

# Components specification

(CPunit CoProc
(capacity 1) (timing (vectAdd 4) (vectMul 4))
(opcodes (vectAdd vectMul...)) . . .

)
# Pipeline and data-transfer paths
(pipeline Fetch Decode Execute MEM WriteBack)
(Execute (parallel ALU Coprocessor))
(Coprocessor (pipeline EMIF_1 CoProc EMIF_2))
(dtpaths (EMIF.l DMA) (EMIF.2 DMA). . . )

(a) Structure

# Behavior: description of instruction-set
(opgroup cpOps

{vectAdd, vectMul,...)

(opcode vectMul
(operands (si mem) (s2 mem) (dst mem) (length imm))
(behavior dst = si * s2)

(b) Behavior

Figure 2.8: Coprocessor specification using EXPRESSION ADL



2.3. SPECIFICATION USING EXPRESSION ADL 27

The behavior of the coprocessor is captured in terms of the operations it sup-
ports. For example, Figure 2.8(b) shows the description of a vectMul operation.
Unlike normal instructions whose source and destination operands are of type reg-
ister (except load/store), here source and destination operands are of type mem-
ory. The si and s2 fields refer to the starting addresses of two source operands
for the multiplication. Similarly dst refers to the starting address of the destina-
tion operand. The length field refers to the vector length of the operation that has
immediate data type.

2.3.3 Memory Subsystem Specification

In order to explicitly describe the memory architecture in EXPRESSION, we need
to capture both structure and behavior of the memory subsystem. The memory
structure refers to the organization of the memory subsystem containing memory
modules and the connectivity among them. The behavior refers to the memory
subsystem instruction-set.

# Storage section
(DCache LI Data

(wordsize 64) (linesize 8) (associativity 2)
(numJines 1024) (replacement LRU) (latency 1) . . .

)
(ICache Lllnst (latency 1) . . . )
(DCache L2 (latency 5 ) . . . )
(DRAM MainMemory (latency 50) . . . )
# Pipeline and data-transfer paths
(dtpaths (LIData L2) (Lllnst L2) (L2 MainMemory)...)

(a) Structure

# Behavior: description of instruction-set
(opcode loadjniss

(operands (si L2) (dst LI Data))
(behavior dst = si)

(b) Behavior

Figure 2.9: Memory subsystem specification using EXPRESSION ADL



28 CHAPTER 2. ARCHITECTURE SPECIFICATION

The memory subsystem structure is represented as a netlist of memory com-
ponents connected through ports and connections. The memory components are
described and attributed with their characteristics (such as cache line size, replace-
ment policy, and write policy). For example, Figure 2.9(a) shows the structure
of the memory subsystem shown in Figure 2.4. The specification of the memory
structure also includes the description of the memory pipeline and data-transfer
paths. The memory subsystem instruction-set represents the possible operations
that can occur in the memory subsystem, such as data transfers between different
memory modules or to the processor (e.g., load and store) or explicit cache control
instructions (e.g., prefetch, replace and refill). For example, Figure 2.9(b) shows
an internal memory data transfer operation during a load miss. The load-miss op-
eration represents data refill from L2 cache in the event of a LI data miss.

2.4 Chapter Summary

This chapter surveyed existing ADLs in terms of their capabilities in capturing
programmable architectures. Structural ADLs enable flexible and precise micro-
architecture descriptions. The same description can be used for hardware syn-
thesis, test generation, simulation and compilation. However, it is difficult to ex-
tract instruction-set information for retargetable compilation. Behavioral ADLs
simplify the instruction-set description by exploiting the common components be-
tween operations. However, the lack of a detailed pipeline and timing information
prevents the use of these languages as an extensible architecture model. Mixed
ADLs capture both the structure and the behavior of the architecture.

The second part of this chapter described the use of the EXPRESSION ADL
in our framework to specify programmable architectures. We described how to
capture processor, coprocessor, and memory architectures using the ADL. Ap-
pendix C describes how to specify interrupts and exceptions in an ADL. Chapter 3
will present techniques to validate the ADL specification of the architecture.



3
VALIDATION OF SPECIFICATION

One of the most important requirements in a top-down validation methodology is
to ensure that the specification (reference model) is golden. This chapter presents
techniques to validate the static and dynamic behaviors of the architecture spec-
ified in an ADL. It is necessary to validate the ADL specification to ensure the
correctness of both the architecture specified and the generated executable models
including software toolkit and hardware implementation. The benefits of valida-
tion are two-fold. First, the process of any specification is error-prone and thus
verification techniques can be used to check for correctness and consistency of the
specification. Second, changes made to the processor during exploration may re-
sult in incorrect execution of the system and verification techniques can be used to
ensure correctness of the modified architecture.

One of the major challenges in validating the ADL specification is to verify
the pipeline behavior in the presence of hazards and multiple exceptions. There are
many important properties that need to be verified to validate the pipeline behavior.
For example, it is necessary to verify that each operation in the instruction-set
can execute correctly in the processor pipeline. It is also necessary to ensure that
execution of each operation is completed in a finite amount of time. Similarly, it
is important to verify the execution style of the architecture. These properties are
by no means complete to prove the correctness of the specification. Additional
properties can easily be added and integrated into our validation framework.

The chapter is organized as follows. Section 3.1 describes the validation tech-
niques to ensure that the static behavior of the pipeline is well-formed by analyzing
the structural aspects of the specification using a graph based model. Section 3.2
presents the techniques to verify the dynamic behavior by analyzing the instruction
flow in the pipeline using a FSM based model. Section 3.3 presents related work
on validation of design specification. Finally, Section 3.4 summarizes the chapter.



30 CHAPTER 3. VALIDATION OF SPECIFICATION

3.1 Validation of Static Behavior

This section presents an automatic validation framework driven by an ADL. The
first step (and only manual step) in the flow is to specify the architecture using
an ADL such as EXPRESSION. A novel feature of this approach is the ability
to model the pipeline structure and behavior of the processor, co-processor, and
memory subsystem using a graph-based model. Based on this model, we present
algorithms to ensure that the static behavior of the pipeline is well-formed by an-
alyzing the structural aspects of the specification. Figure 3.1 shows the flow for
validating static behaviors. The designer describes the programmable architec-
ture in an ADL. The graph model of the architecture is generated from this ADL
description. Several properties are applied to ensure that the architecture is well
formed.

Architecture Specification

:"•! ADL Description

Success

Figure 3.1: Validation of pipeline specifications

This section describes three important steps in this methodology. First, it
presents a graph-based modeling of processor, memory, and co-processor pipelines.
Second, it describes several properties that must be satisfied for valid pipeline spec-
ification. Finally, it illustrates validation of pipeline specifications for several real-
istic architectures.



3.1. VALIDATION OF STATIC BEHAVIOR 31

3.1.1 Graph-based Modeling of Pipelines

We present a graph-based modeling of architecture pipelines that captures both the
structure and the behavior. The graph model presented here can be derived from a
pipeline specification of the architecture described in an ADL e.g., EXPRESSION
[5]. This graph model can capture processor, memory, and co-processor pipelines
for a wide variety of architectures including RISC, DSP, VLIW, and superscalar
architectures. In this section, we briefly describe how the graph model captures
the structure and behavior of the processor using the information available in the
architecture manual.

Structure

The structure of an architecture pipeline is based on a block diagram view avail-
able in the processor manual, and is modeled as a graph Gs = (Vs,Es), where
Vs denotes a set of components and Es consists of a set of edges. Vs consists of
two types of components: Vmtt and Vstorage. Vmit is a set of functional units (e.g.,
ALU), and Vstorage is a set of storages (e.g., register files). Es consists of two
types of edges. E^ata_tramfer is a set of data-transfer edges', and Epipeune is a set of
pipeline edges. An edge (pipeline or data-transfer) indicates connectivity between
two components. A data-transfer edge transfers data between units and storages.
A pipeline edge transfers instruction (operation) between two units.

'S = 'unit U vstorage

^S = ^dataJransfer U & pipeline

Ldata-transfer b= x^uniti 'storage) -* X'uniti 'storage}

^pipeline _ 'unit X Vunit

For illustration, we use a simple multi-issue architecture consisting of a pro-
cessor, a co-processor and a memory subsystem. Figure 3.2 shows the graph-based
model of this architecture that can issue up to three operations (an ALU opera-
tion, a floating-point addition operation, and a coprocessor operation) per cycle.
Figure 3.2 is obtained from Figure 2.4 by adding a four-stage floating point adder
(FADD) and a feedback path from the FADD pipeline to the ALU pipeline. In the
figure, oval boxes denote units, dotted ovals are storages, bold edges are pipeline
edges, and dotted edges are data-transfer edges. A path from a root node (e.g.,
Fetch) to a leaf node (e.g, WriteBack) consisting of units and pipeline edges is
called a pipeline path. For example, one of the pipeline paths is {Fetch, Decode,
ALU, MEM, WriteBack}. A path from a unit to main memory or register file con-
sisting of storages and data-transfer edges is called a data-transfer path. For ex-
ample, {MEM, LI Data, L2, MainMemory) is a data-transfer path.



32 CHAPTER 3. VALIDATION OF SPECIFICATION

Unit •> Pipeline edge

*" / Storage ** Data-transfer edge

Figure 3.2: An example architecture

Behavior

The behavior of the architecture is typically captured by the instruction-set archi-
tecture (ISA) description in the processor manual. It consists of a set of operations
that can be executed on the architecture. Each operation in turn consists of a set of
fields (e.g. opcode, arguments) that specify, at an abstract level, the execution se-
mantics of the operation. We model the behavior as a graph Gg = (VB,EB), where
VB is a set of nodes, and EB is a set of edges. The nodes represent the fields of
each operation, while the edges represent orderings between the fields. The be-
havior graph GB is a set of disjointed sub-graphs, and each sub-graph is called an
operation graph (or simply an operation). Figure 3.3 shows a portion of the be-
havior (consisting of two operation graphs) for the example processor shown in
Figure 3.2.

VB = Vo ,uvm"opcode *•

^operation ^ ^ execution

^operation ^n 'opcode ^ 'argument

argument

z=z -t^o Deration^ t^e:

'argument ^ 'argument

Eexecution := 'argument X 'argument U Vargument X Vopcode

Nodes are of two types. Vopcocfe is a set of opcode nodes that represent the
opcode (i.e. mnemonic), and Vargument is a set of argument nodes that represent



3.1. VALIDATION OF STATIC BEHAVIOR 33

„ .A -. ^ ^ ^ ^ ^
ADD J) >^ DEST ) >^ SRCI ) >'s SRC2 )

SRC ) O^ SRCI ) >'s OFFSET )

o
—>
>

Opcode Node

Argument Node

Operation Edge

Execution Edge

Figure 3.3: A fragment of the behavior graph

argument fields (i.e., source and destination arguments). In Figure 3.3, the ADD
and STORE nodes are opcode nodes, while the others are argument nodes. Edges
are also of two types. Eoperation is a set of operation edges that link the fields
of the operation and also specify the syntactical ordering between them. On the
other hand, Eexecution is a set of execution edges that specify the execution ordering
between the fields. In Figure 3.3, the solid edges represent operation edges while
the dotted edges represent execution edges. For the ADD operation, the operation
edges specify that the syntactical ordering is opcode (ADD) followed by DEST,
SRCI and SRC2 arguments (in that order), and the execution edges specify that
the SRCI and SRC2 arguments are executed (i.e., read) before the ADD operation
is performed. Finally, the DEST argument is written.

Mapping between Structure and Behavior

The mapping between the structure and the behavior is captured explicitly in the
ADL. This information is available in the architecture manual as mapping between
the instruction-set and the functional units. It other words, the manual describes
what operations are supported by which functional units in the architecture. We
define a set of mapping functions that map nodes in the structure to nodes in the
behavior (and vice-versa). The unit-to-opcode (opcode-to-unit) mapping is a bi-
directional function that maps unit nodes in the structure to opcode nodes in the
behavior. The unit-to-opcode mappings for the architecture in Figure 3.2 include
mappings from Fetch unit to opcodes {ADD, FADD}, ALU unit to opcode ADD,
FADD1 unit to opcode FADD etc. The argument-to-storage (storage-to-argument)
mapping is a bi-directional function that maps argument nodes in the behavior to
storage nodes in the structure. For example, the argument-storage mappings for
the ADD operation are mappings from {DEST, SRCI, SRC2} to RegisterFile.



34 CHAPTER 3. VALIDATION OF SPECIFICATION

Each functional unit (with read or write ports) supports certain data-transfer
operations. These operations can be derived from the above mapping functions.
For example, the Decode unit of Figure 3.2 supports register read (regRead) for
ADD and LD opcodes; the MEM unit supports data read (dataRead) and data write
(dataWrite) from LI data cache; the Fetch unit supports instruction read (instRead)
from LI instruction cache; the WriteBack unit supports register write (regWrite).
Similarly, each storage supports certain data-transfer operations. For example, the
RegisterFile of Figure 3.2 supports regRead and regWrite; LI data cache supports
dataRead and dataWrite, and so on.

3.1.2 Validation of Pipeline Specifications

Based on the graph model presented in the previous section, the ADL specification
of the architecture pipelines can be validated. In this section, we describe some of
the properties used in our framework for validating pipelined architecture specifi-
cations.

Connectedness Property

The connectedness property ensures that each component is connected to other
component(s). As pipeline and data-transfer paths are connected regions of the
architecture, this property holds if each component belongs to at least one pipeline
or data-transfer path.

Vvcomp e Vs, (3GPp e Gpp, s.t. vcomp e Gpp) v (3GDp e GDP, s.t. vcomp e

where Gpp is a set of pipeline paths and GDP is a set of data-transfer paths.
Algorithm 1 presents the pseudo-code for verifying the connectedness property.

The algorithm requires the graph model G of the architecture as input. It also
requires all the component lists as input. The first step is to unmark the entries
in all the input lists. Each input list contains all the respective components in the
graph. For example, the ListOfUnits contains all the units in the graph G. Next, the
graph is traversed in breadth-first manner and the visited components are marked.
For example, when a unit u is visited during traversal, it is marked in ListOfUnits.
Finally, the algorithm returns true if all the entries are marked in all the input lists.
It returns false if there are any unmarked entries in any of the input lists, and it
reports them. Each node of the graph is visited only once. The time and space
complexity of the algorithm is O(ri), where n is the number of nodes in the graph
G. Each node of the graph can be either unit or storage.



3.1. VALIDATION OF STATIC BEHAVIOR 35

Algorithm 1: Verify Connectedness
Inputs: i. Graph model of the architecture G

ii. ListOfUnits: list of units in the graph G
iii. ListOfStorages: list of storages in the graph G

Outputs: i. True, if the graph model satisfies this property else false.
ii. In case of failure, report the disconnected components.

Begin
Unmark all the entries in all the input lists.
InsertQ(root, Q) /* Put root node of G in queue Q */
while Q is not empty

Node n = DeleteQ(0 /* Remove the front element of Q */
Mark n as visited in G
case type of node n

unit: Mark n in ListOfUnits
storage: Mark n in ListOfStorages

endcase
for each successor node s of n

Us is not visited InsertQ(s, Q)
endfor

endwhile
Return true if all the entries are marked in all of the input lists;

false otherwise, and report the unmarked components.
End

False Pipeline and Data-transfer Paths

According to the definition of pipeline paths, there may exist pipeline paths that
are never activated by any operation. Such pipeline paths are said to be false. For
example, consider the architecture shown in Figure 3.4 that executes two opera-
tions: ALU-shift (alus) and multiply-accumulate (mac). This processor has unit-
to-opcode mappings between ALU unit and opcode alus, between SFT unit and
alus, between MUL unit and mac, and between ACC unit and mac. Also, there are
unit-to-opcode mappings between each of {IFD, RD1, RD2, WB} and alus, and
each of {IFD, RDI, RD2, WB} and mac. This processor has four pipeline paths:
{IFD, RDI, ALU, RD2, SFT, WB}, {IFD, RD1, MUL, RD2, ACC, WB}, {IFD,
RD1, ALU, RD2, ACC, WB}, and {IFD, RDI, MUL, RD2, SFT, WB}. However,
the last two pipeline paths cannot be activated by any operation. Therefore, they
are false pipeline paths. Since these false pipeline paths may become false paths
depending on the detailed structure of RD2, they should be detected at a higher
level of abstraction to ease the later design phases.



36 CHAPTER 3. VALIDATION OF SPECIFICATION

Unit

j Storage

- Pipeline edge
' Data-transfer edge

Figure 3.4: An example processor with false pipeline paths

From the view point of SOC architecture exploration, we can view the false
pipeline paths as an indication of potential behaviors that are not explicitly defined
in the ADL description. These false pipeline paths can be used to perform valid
computations. This opens up avenues for further exploration experiments for cost,
power, and performance by adding new instructions to activate the false pipeline
paths. Formally, a pipeline path Gpp{Vpp,Epp) is false if the intersection of op-
codes supported by the units in the pipeline path is empty.

f I j unit-opcodeiy unit) — 9 (3.1)

Similarly, there may exist data-transfer paths in the specification that are never
activated by any operation. Such data-transfer paths are said to be false. For
example, consider the architecture shown in Figure 3.5 that has seven possible
data-transfer operations: integer-register-read (IregRd), float-register-read (Fre-
gRd), integer-register-write (IregWr), float-register-write (FregWr), load-data-from-
memory (ldData), load-instruction-from-memory (ldlnst), and store-data-in-memory
(stData). The Decode (ID) unit has mappings for IregRd and FregRd. There are



3.1. VALIDATION OF STATIC BEHAVIOR 37

mappings between each of {WB1, WB2} and {IregWr, FregWr}, each of {IF, L1I,
ISB} and Idlnst, each of {LDST, LID, DSB} and {idData, stData}, and each of
{L2, DRAM} and {IdData, stData, Idlnst}. This processor has ten data-transfer
paths: {IRF, ID), {FRF, ID}, {WB1, IRF), {WB1, FRF}, {WB2, IRF}, {WB2,
FRF}, {IF, Lll L2, ISB, DRAM}, {LDST, LID, L2, DSB, DRAM}, {IF, L1I, L2,
DSB, DRAM}, {LDST, LID, L2, ISB, DRAM} . However, the last two data-transfer
paths cannot be activated by any operation. Therefore, they are false data-transfer
paths. If ALU1 supports only floating-point operations, the fourth path ({WB1,
IRF} ) becomes a false data-transfer path.

FRF '
"* ' FltRegFile]

K'~YV

' Lll '
1 InstCache \ I | Unit

! ; Storage

— • Pipeline edge
— • Data-transfer edge

; ISB I
1 Instruction •

V> StreamBuffer X

_:__^ LID ^ L2
! ^DataCache, [

\ DRAM !

\ ! DSB
^DataStream

»L Buffer

Figure 3.5: An example processor with false data-transfer paths

Formally, a data-transfer path GDP{VDP,EDP) is false if the intersection of data-
transfer operations supported by the units and storages (fnode-operation) in the data-
transfer path is empty.

[ I J node—operation\y node) — (3.2)

Algorithm 2 presents the pseudo-code for verifying false pipeline and data-
transfer paths. The algorithm requires the graph model G as input. It traverses
the graph in depth-first manner along each pipeline and data-transfer path. Each
unit u has a list of supported opcodes SuppOpListu. Each node n (unit or storage)
also maintains four temporary lists: OutOpListm OutDTopListn, InOpListn, and
InDTopListfj. The OutOpListn is the list of opcodes produced by unit n and sent to
its children units. The OutDTopListn is the list of data-transfer operations produced
by node (unit or storage) n and sent to its children storages. The InOpListn is the list



38 CHAPTER 3. VALIDATION OF SPECIFICATION

Algorithm 2: Verify False Pipeline and Data-transfer Paths
Input: Graph model of the architecture G.
Outputs: i. True, if the graph model satisfies this property else false.

ii. In case of failure, report the list of false pipeline and data-transfer paths.

{
Push (root, S); FalsePPpathList = {}; FalseDPpathList = {};
while S is not empty

Node n = Pop(-S); Mark n as visited.
case node type of n

unit: if n is the root node
OutOpListn — SuppOpListn II Send supported opcodes to children

else /* p is the recently visited parent */
InOpListn — OutOpListp; OutOpListn — SuppOpListn DlnOpListn

if n has read or write ports
OutD TopL istn = ComputeDataTransferOps (Out OpL istn)
if OutDTopListn is empty

for all the data-transfer paths fDP from n to any leaf nodes
Insert fDP in FalseDPpathList.

else for each children storage node st ofn, Push(st, S)
if OutOpListn is empty

Get path/?/? from n by tracing recently visited parents till root
for all the pipeline paths ppEnd from n to any leaf nodes

Append ppEnd to pp to gQtfPP; Insert fPP in FalsePPpathList.
else for each children unit u ofn, Push(u, S)

storage: InDTopListn = OutDTopListp

OutDTopListn = SuppDTopListn nlnDTopListn

if OutDTopListn is empty
Get path dp from n by tracing recently visited parents till any unit
for all the data-transfer paths dpEnd from n to any leaf nodes

Append dpEnd to dp to generate false data-transfer path fDP.
Insert fDP in FalseDPpathList.

endfor
else for each children storage node st ofn, Push(st, S)

endcase
endwhile
if FalsePPpathList and FalseDPpathList are empty return true',
else return false and report FalsePPpathList and FalseDPpathList.



3.1. VALIDATION OF STATIC BEHAVIOR 39

that is used by unit n to copy the OutOpListp, the output list of the recently visited
parent/?. Similarly, the InDTopListn is the list that is used by storage n to copy the
OutDTopListp, the output list of the recently visited parent/?. Each unit n performs
intersection of InOpListn and SuppOpListn and send the result OutOpListn to its
children units. If OutOpListn is empty, all the pipeline paths that use the path
from n to root (via recently visited parents) are false pipeline paths. A unit with
read or write ports computes data transfer operations using the method described
in Section 3.1.1. A storage computes OutDTopListn by performing intersection of
SuppDTopListn and the input list InDTopListn. If OutDTopListn is empty, all the
data-transfer paths that use the path from storage n to any unit via recently visited
parents are false data-transfer paths. The algorithm returns true if there are no false
pipeline or data-transfer paths. It returns false if there are any false pipeline or
data-transfer paths, and reports them.

If there are n nodes, x pipeline and data-transfer paths, and p operations (op-
codes) supported by the processor, the time complexity of the algorithm is O(x x
n x (x-\-plogp)) and space complexity is O(n x p). The supported opcode list in
each node is a sorted list.

Completeness Property

The completeness property confirms that all operations must be executable. An
operation op is executable if there exists a pipeline path Gpp(Vpp,Epp) on which
op is executable i.e., if both Condition 3.1 and 3.2 hold.

Condition 3.1: All units in Vpp support the operation op. More formally, the
following condition holds where vopcode is the opcode of the operation op.

^vunit G VPP? Vopcode G funit-opcode(Vunit) • (3-3)

Condition 3.2: There are no conflicting partial orderings of operation arguments
and unit ports. Let V be a set of argument nodes of operation op. There are no
conflicting partial orderings of operation arguments and unit ports if, for any two
nodes v\, V2 G V such that (v\, V2) G Eexecution, all the following conditions hold:

• There exists a data-transfer path from a storage farg-storage(y\)t0 a un^ vu\
in Vpp through a port farg-Port (vi).

• There exists a data-transfer path from a unit vU2 in Vpp to a storage farg-storage{vi)
through a port farg-port (V2).

• vu\ and vU2 are the same unit or there is a path consisting of pipeline edges
from vu\ to vU2.



40 CHAPTER 3. VALIDATION OF SPECIFICATION

Algorithm 3: Verify Completeness
Inputs: i. Graph model G of the architecture.

ii. The list of operations OpList supported by the architecture.
Outputs: i. True, if the graph model satisfies this property else false.

ii. In case of failure, report the list of operations that are not executable.

{
for each operation op supported by the architecture /* op G OpList */

opSrcList = list of sources in the operation op.
opDestList = list of destinations in the operation op.
Push(root, S) I* Put root node of G in stack S */
while S is not empty

Node n = Pop(*S); Mark n as visited in G.
if op 6 SuppOpListn /* op is supported by unit n */

for each port p ofn
\ip is a read or read-write port

for each unmarked source src in opSrcList
if src can be read via/?, mark src in opSrcList with (p, n)

ftp is a write or read-write port
for each unmarked destination dest in opDestList

if dest can be written via/?
mark dest in opDestList with (p, n)

endfor
if unit n is a leaf node

if ( ( all sources in opSrcList are marked) and
( all nodes r that read the sources are in expected order) and
( all destinations in opDestList are marked) and
( all nodes w that write the destinations are in expected order) and
( all nodes r & w are in same pipeline path and r appears before w))

Mark op in OpList I* this path supports op */
break /* one pipeline path is sufficient, exit while loop */

endif
else for each children unit u ofn, Push(u, S)

endwhile
endfor
Return true if all the entries in OpList are marked;

false otherwise, and report the unmarked entries in OpList.



3.1. VALIDATION OF STATIC BEHAVIOR 41

For example, let us consider the ADD operation (shown in Figure 3.3) for the
processor described in Figure 3.2. To satisfy Condition 3.1, each of {Fetch, De-
code, ALU, MEM, WriteBack} must have mappings to the ADD opcode. On the
other hand, Condition 3.2 is satisfied because the structure has data-transfer paths
from RegisterFile to Decode and from WriteBack to RegisterFile, and there is a
pipeline path from Decode to WriteBack.

Algorithm 3 presents the pseudo-code for verifying the completeness property.
The algorithm requires the graph model (G) and the list of operations supported by
the architecture {OpList) as inputs. It traverses the graph in depth-first manner for
each operation op and identifies a pipeline path pp that supports op. All the units
n in the pipeline path should have op in their supported opcode list SuppOpListn.
The pipeline path pp must have units that can read the source operands of op and
write the destination operands of op in correct order. If all the conditions are met,
op is executable in pipeline path pp and op is marked in OpList. The algorithm
returns true if all the entries in OpList are marked. It returns false if there are
unmarked entries and reports them.

If there are n nodes, x pipeline and data-transfer paths in the graph and the
number of opcodes supported by the architecture is /?, the time complexity of the
algorithm is O(x xnx px logp) and space complexity is O(n x p). The opcode
list in each unit is a sorted list.

Finiteness Property

The finiteness property guarantees the termination of any operation executed through
the pipeline. The termination is guaranteed if all pipeline and data-transfer paths
except false pipeline and data-transfer paths have finite length and all nodes on the
pipeline or data-transfer paths have finite timing. The length of a pipeline or data-
transfer path is defined as the number of stages required to reach the final (leaf)
nodes from the root node of the graph. Formally,

3K, s.t. \/path e (GPP,GDp), nunustages (path) < K (3.4)

Here, numstages is a function that, given a pipeline or data-transfer path, returns
the number of stages (i.e. clock cycles) required to execute it. In the presence
of cycles in the pipeline path, this function cannot be determined from the struc-
tural graph model alone. However, if there are no cycles in the pipeline paths, the
termination property is satisfied if the number of nodes in Vs is finite, and each
multi-cycle component has finite timing.

Algorithm 4 presents the pseudo-code for verifying finiteness property. The
algorithm requires the graph model G and the list of operations supported by the
architecture {OpList) as inputs. It traverses the graph in depth-first manner for each



42 CHAPTER 3. VALIDATION OF SPECIFICATION

operation op and identifies all the pipeline paths op-pp that support op. For each
operation it marks different pipeline paths op-pp with a different color. A cycle is
detected if the same colored node is visited more than once during traversal.

Algorithm 4: Verify Finiteness
Inputs: i. Graph model G of the architecture.

ii. The list of operations OpList supported by the architecture.
Outputs: i. True, if the graph model satisfies this property else false.

ii. In case of failure, report the list of paths that violates this property.

{
PathList= {};
for each operation op supported by the architecture

PathLength = 0; ColorCode = 0
Push(< root,PathLength >, S); Unmark all the nodes in graph G
while S is not empty

< n, PathLength > = Pop(S)
if op e SuppOpListn /* op is supported by unit n */

PathLength = PathLength + 1; timing = GetExecutionTime(op, n);
if ( ( n is already marked with ColorCode) or

(timing is greater than MaxExecutionTime) or
(PathLength is greater than MaxPathLength ) )

Insert < op, path > pair in PathList; break; /* exit while loop */
else

Mark n with ColorCode
if unit n is a leaf node, ColorCode = ColorCode + 1;
else

for each children node child ofn
Push(< child,PathLength >, S);

endif
endif

else ColorCode = ColorCode + 1;
endwhile

endfor
Return true if PathList is empty

false otherwise, and report PathList.

The pipeline path op-pp with cycle will be stored in PathList. This property
is also violated when there are paths that are longer than MaxPathLength or when



3A. VALIDATION OF STATIC BEHAVIOR 43

the execution time needed by op in any node in that path is greater than MaxExe-
cutionTime. The algorithm returns true if PathList is empty. It returns false if there
are entries in PathList and reports them.

Our finiteness algorithm assumes that there are no cycles in the pipeline. If the
cycles are allowed in the pipeline due to the reuse of the resources, our algorithm
needs to be modified. Let us assume that a resource is reused by an operation op
for nop times. We can modify the algorithm to check for "already marked with
ColorCode for nop times " instead of checking "already marked with ColorCode "
for the operation op. If there are n nodes, x pipeline and data-transfer paths in
the graph and the number of opcodes supported by the architecture is p, the time
complexity of this algorithm is O(x xnxpx logp) and space complexity is O{n x
p). The opcode list in each unit is a sorted list.

Architecture-specific Properties

The architecture must be well-formed based on the original intent of the architec-
ture model. Here we mention some of the architecture specific properties we verify
in our framework.

D The number of operations processed per cycle by a unit can not be smaller
than the total number of operations sent by its parents unless the unit has
a reservation station. This event (fewer output instructions than the input
instructions) is not an error if that specific unit kills certain operations based
on certain conditions e.g., killing no operation (NOP).

• The instruction template should match the available pipeline bandwidth.
However, having instruction template size different than pipeline bandwidth
does not always imply an error because a machine with n operations in an
instruction and m (> n) parallel pipeline paths may have many multicycle
units. Similarly, the architecture may have m (< n) parallel pipeline paths if
it has a reservation station and the instruction fetch timing is large.

• There must be a path from load/store unit to main memory via storage com-
ponents to ensure that every memory operation is complete.

• The address space used by the processor must be equal to the union of the
address spaces covered by memory subsystem (SRAM, cache hierarchies
etc.) to ensure that all the memory accesses can complete.

Algorithm 5 shows how we apply these properties in our framework. We first
verify finiteness property before applying any other properties in our framework. If



44 CHAPTER 3. VALIDATION OF SPECIFICATION

there are paths with infinite length and timing, the finiteness algorithm will display
the paths and exit. Next, we apply the connectedness property followed by the false
pipeline and data-transfer path property. The remaining properties can be applied in
any order. The worst case time complexity of Algorithm 5 is O(x xnx (x+plogp))
and space complexity is O(n x p), where the architecture graph has n nodes, x
pipeline and data-transfer paths, and the number of operations supported by the
processor is p. Typically, the numeric values of these variables are not large: both
n and x are less than 100, and/? is less than 1000. As a result, it requires less than a
second to verily an architecture specification as demonstrated in the next section.

Algorithm 5: Verify Architecture Specification
Input: Graph model G of the architecture.
Output: True, if the graph model satisfies all the properties

else false, and report the error.
Begin

status = VerifyFiniteness (G, G.SupportedOpcodeList);
if (status ==false)

Report the paths that violate this property;
returnfalse;

endif
status = VerifyConnectedness (G, G.ListOfUnits,... );
if (status ==false)

Report the components that are not connected;
return false;

endif
status = VerifyFalsePipelineDataTransferPaths(G);
if (status ==false)

Report the list of false pipeline and data-transfer paths;
return false;

endif
status = VerifyCompleteness (G, G.SupportedOpcodeList);
if (status ==false)

Report the list of operations that are not executable;
return false;

endif
/* Apply other architecture specific properties */

return true;
End



3.1. VALIDATION OF STATIC BEHAVIOR 45

3.1.3 Experiments

In order to demonstrate the applicability and usefulness of our validation approach,
we have described a wide range of architectures using the EXPRESSION ADL:
MIPS R10K [50], TI C6x [131], PowerPC [48], and DLX [55] that are collectively
representative of RISC, DSP, VLIW, and superscalar architectures. Our framework
generates the graph model from the ADL specification. We have implemented each
property as a function that operates on the graph model. Finally, we have applied
these properties on the graph model to verify that the specified architecture is well-
formed. Table 3.1 shows the specification validation time for different architectures
on a 333 MHz Sun Ultra-II with 128M RAM. This includes the time to generate
the graph model from the ADL specification and to apply all the properties on the
graph model. The validation time depends on three aspects: number of properties
applied, complexity of the structure and the number of operations supported by the
architecture. Typically, the validation time is in the order of seconds.

Table 3.1: Specification validation time for different architectures

Architecture
Validation Time (sec)

DLX
0.1

TIC6x

0.2
PowerPC

0.3
MIPS R10K

0.5

In the remainder of this section, we describe our specification validation exper-
iments. First, we describe the validation of the DLX specification in detail. Next,
we summarize the incorrect specification errors captured by our framework during
design space exploration of different architectures.

Validation of the DLX specification

Our framework generated the graph model from the ADL specification of the DLX
architecture. Figure 3.6 shows the simplified graph model of the DLX architecture.
Figure 3.6 is obtained by adding two execution paths (seven-stage multiplier and a
multi-cycle divider) in the processor pipeline shown in Figure 3.2. The oval (unit)
and rectangular (storage) boxes represent nodes. The solid (pipeline) and dotted
(data-transfer) lines represent edges.

We applied all the properties (Algorithm 5) on the graph model. We encoun-
tered two kinds of errors viz., incomplete specification errors and incorrect specifi-
cation errors. An example of an incomplete specification error we uncovered is that
the opcode assignment is not done for the fifth stage of the multiplier pipeline. Sim-
ilarly, an example of an incorrect specification error we found is that only load/store
opcodes were mapped for the memory stage (MEM). Since all the opcodes pass



46 CHAPTER 3. VALIDATION OF SPECIFICATION

through memory stage in DLX, it is necessary to map all the opcodes in memory
stage as well.

Memory

- -•[ Register File \

Data—transfer edge
Pipeline edge
Functional unit
Storage

Figure 3.6: The DLX architecture

We used Algorithm 5 for specification validation. First, the finiteness prop-
erty is applied on the graph model. It detects a violation for the division operation
since the multi-cycle division unit (DIV) has an undefined latency value. Once
the latency for the division operation is defined, the finiteness property is success-
ful. Next, the connectedness property is applied. It detects that the sixth stage of
the multiplier unit (MUL6) is not connected. Once it is connected properly (from
MUL5 to MUL6, and from MUL6 to MUL7), the connectedness property is suc-
cessful. Finally, the completeness property is violated for the multiply operation.
This operation is not defined in the MUL5 unit. As a result, the multiply opera-
tion cannot execute in the pipeline. Once this is fixed, the validation of the DLX
specification is successful.



3.1. VALIDATION OF STATIC BEHAVIOR 47

Violation of Properties during DSE

We have performed many modifications of several architecture specifications. These
are typical changes made by a designer during exploration. It is important to note
that although a designer may think that changes made during exploration may not
introduce errors, it is often the case that several subtle errors may be introduced
during changes to the architecture, which highlights the need for the validation
of the modified specification before proceeding with other design steps. Here we
briefly mention some of the errors that were captured using our approach during
some typical architectural exploration scenarios.

ik We have modified the MIPS Rl OK ADL description to add another load/store
unit that supports only store operations. The false data-transfer path property
is violated since there is a write connection from the load/store unit to the
floating-point register file that will never be used.

ik We have modified the PowerPC ADL description to have a separate L2 cache
for instruction and data. Validation determined that there were no paths from
L2 instruction cache to main memory. The connection between L2 instruc-
tion cache and unified L3 cache was missing.

î r We have modified the C6x architecture's data memory by adding two SRAM
modules to the existing cache hierarchy. The property validation fails due to
the fact that the address ranges specified in the SRAMs and cache hierarchy
are not disjoint, moreover union of these address ranges did not cover the
physical address space specified by the processor description.

Of In the R10K architecture we have decided to use a coprocessor local memory
instead of integer register file for reading operands. We have removed the
read connections that are used to access the integer register file and added
local memory, DMA controller and connections to the main memory. The
connectedness property is violated for two ports in the integer register file.

Table 3.2 summarizes the errors captured during design space exploration of
architectures. Each column represents one architecture and each row represents
one property. An entry in the table presents the number of violations of that prop-
erty for the corresponding architecture1. The number (in parenthesis) below each
architecture represents the number of design space explorations done for that archi-
tecture. Each class of problem is counted only once. For example, the DLX error

1 The error numbers will change depending on the number of design space explorations and the
type of modifications done each time.



48 CHAPTER 3. VALIDATION OF SPECIFICATION

mentioned above (where one of the unit has incorrect specification of the supported
opcodes that led to false pipeline path for most of the opcodes) is counted only once
instead of using the number of opcodes that violated the property.

Table 3.2: Summary of property violations during DSE

Connectedness
False Pipeline/Data-transfer Path

Completeness
Architecture-specific

Finiteness

DLX

(2)
0
5
2
4
0

C6x

(2)
1
3
3
5
0

R10K

(3)
2
4
3
12
1

PowerPC

(2)
1
2
2
6
1

Our experiments have demonstrated the utility of our validation approach across
a wide range of realistic architectures, and the ability to detect errors in the archi-
tecture specification, as well as errors generated through inconsistent modifications
to an architecture during design space exploration.

3.2 Validation of Dynamic Behavior

This section presents novel techniques to verify the dynamic behavior of an ar-
chitecture specified in an ADL by analyzing the instruction flow in the pipeline.
Figure 3.7 shows our modified methodology for validation of static and dynamic
behaviors. The FSM model is generated from the ADL specification. Based on
this model, we propose a method for validating pipelined processor specifications
using two properties: determinism and in-order execution. The remainder of this
section is organized as follows. First, we describe a FSM-based modeling of pro-
cessor pipelines. Next, we present the validation technique followed by a case
study using the DLX architecture.

3.2.1 FSM-based Modeling of Processor Pipelines

In this section we describe how we derive the FSM model of the processor pipeline
from the ADL specification. We first explain how we specify the information
necessary for FSM modeling, then we present the FSM model of the processor
pipelines using the information captured in the ADL.



3.2. VALIDATION OF DYNAMIC BEHAVIOR 49

A. Processor Pipeline Description in ADL

Figure 3.8 shows a fragment of a processor pipeline. The oval boxes represent
units, rectangular boxes represent pipeline latches, and arrows represent pipeline
edges. In this section we briefly describe how we specify pipeline flow conditions
for stalling, normal flow, bubble insertion, exception and squashing in the ADL.

Architecture Specification

Failed V^ " \ S Success

Validation of Dynamic Behavior

Success V ' " ^ y Failed

Validation of Static Behavior

Figure 3.7: ADL driven validation of pipeline specifications

A unit is in normal flow (NF) if it can receive instruction from its parent unit
and can send to its child unit. A unit can be stalled (ST) due to external signals or
due to conditions arising inside the processor pipeline. For example, the external
signal that can stall a fetch unit is cache miss; the internal conditions to stall the
fetch unit can be due to decode stall, hazards, or exceptions. A unit performs
bubble insertion (BI) when it does not receive any instruction from its parent (or
busy computing in case of multicycle unit) and its child unit is not stalled. A unit
can be in exception condition due to internal contribution or due to an exception.
A unit is in bubble/nop squashed (SQ) stage when it has a nop instruction that gets
removed or overwritten by an instruction of the parent unit.

For units with multiple children the flow conditions due to internal contribution
may differ. For example, the unit UNITi-\j in Figure 3.8 with q children can be
stalled when any one of its children is stalled, or when some of its children are
stalled (designer identifies the specific ones), or when all of its children are stalled;
or when none of its children are stalled. During specification, the designer selects
from the set {any, some, all, none} the internal contribution along with any external
signals to specify the stall condition for each unit. Similarly, the designer specifies
the internal contribution for other flow conditions [95].



50 CHAPTER 3. VALIDATION OF SPECIFICATION

The PC unit can be stalled (ST) due to external signals such as cache miss or
when the fetch unit is stalled. When a branch is taken the PC unit is said to be in
branch taken (BT) state. The PC unit is in sequential execution (SE) mode when
the fetch unit is in normal flow, there are no external interrupts, and the current
instruction is not a branch instruction.

Stage M

Stage M

Stage•

Stage,

Stage u - 2

Stage ^

Figure 3.8: A fragment of a processor pipeline

B. FSM Model of Processor Pipelines

This section presents an FSM-based modeling of controllers in pipelined proces-
sors. Intuitively, the FSM captures the information of all the storage elements in



3.2. VALIDATION OF DYNAMIC BEHAVIOR 51

7 a I • • • | I R i+i ,g I

Figure 3.9: The processor pipeline with only instruction registers

the pipeline including program counter and pipeline latches. Let us assume that
there are n such elements. Therefore, a state SJ* in the FSM has the values of all
the n elements at time t. The state transition (next-state) function returns the set
of values of all the n elements at next time step (clock cycle). In other words the
next state of S? is 5^+1. The remainder of this section describes the FSM model in
detail.

Figure 3.9 shows a fragment of the processor pipeline with only instruction
registers2 (IR). We assume a pipelined processor with in-order execution as the
target for modeling and validation. The pipeline consists of n stages. Each stage
can have more than one pipeline register (in case of fragmented pipelines). Each
single-cycle pipeline register takes one cycle if there are no pipeline hazards. A
multi-cycle pipeline register takes m cycles during normal execution (no hazards).
Let Staget denote the z'-th stage where 0 < i < n - 1, and nt is the number of pipeline
registers between Stagei-\ and Staget. Let IRtj denote an instruction register be-
tween Stagei-\ and Staget (1 < i < n, 1 < j < ni). The first stage, i.e., Stagey,
fetches an instruction from the instruction memory pointed by the program counter
PC, and stores the instruction into the first instruction register IR\j (1 < j < n\).
Without loss of generality, let us assume that IRtj hasp parent units and q children
units as shown in Figure 3.9. During execution, the instruction stored in IRtj is ex-
ecuted at Staget and then stored into the next instruction register IRi+i^ (1 < k < q).

In this section, we define a state of the rc-stage pipeline as values of PC and
£?=/ ni instruction registers. Let PC{t) and IRij(t) denote the values of PC and

2 We refer to these pipeline latches (registers) as instruction registers since they are used to transfer
instructions from one pipeline stage to the next.



52 CHAPTER 3. VALIDATION OF SPECIFICATION

IRij at time t, respectively. Then, the state of the pipeline at time t is defined as

S[t) =

We first describe the flow conditions for stalling(ST), normal flow(NF), bubble
insertion(BI), bubble squashing (SQ), sequential execution(SE), and branch taken
(BT) in the FSM model. Next, we describe the state transition functions possible
in the FSM model using the flow conditions.

In this section we use the symbol ' V to denote logical or, and 'A' to denote
logical and. For example, (a V b) implies {a or b), and (a A b) implies (a and b).
We use the symbols \fj and /\j to denote sum and product of symbols respectively.
For example, VJ=o ai implies (#o V ai V ai\ and /\?=o «i implies (ao A a\ A ai).

Modeling Conditions in FSM

Let us assume that every instruction register IRjj has an exception bit XNIR.J9

which is set when the exception condition (cond™) is true. The XNIRU has two

components viz., exception condition when the children are in exception (XNftld),

and exception condition due to exceptions on IRjj (XNf^). More formally the

exception condition at time t in the presence of a set of external signals I(t) on S(t)

is, conaf^XSit),!^)), condf£. in short,

cond*l = XNIRiJ = XNftff VXN%1 (3.6)

For example, if the designer specified that any (see Section 3.2.1 (A)) of the children
is responsible for the exception on IRij i.e., IRij will be in exception condition if
any of its children is in exception, the Equation (3.6) becomes:

Similarly, the conditions for squashing (condj®.), stalling (condj^..), normal

flow (cond^.) and bubble insertion (condf^..) are shown below:

= SQIRlj = NF?™nt AS7$f A ((IRij).opcode == nop) (3.7)

condfl. = (ST$l? V STg') AXN^-A SQ^ (3.8)

cond^. =NFJ^ANF$/AS^AXN^ASQ^j (3-9)

i ^ ^ ^ ^ ^ j (3-10)



3.2. VALIDATION OF DYNAMIC BEHAVIOR 53

Similarly the conditions for PC viz., condp^ (SE: sequential execution), condp!
c

(BI: bubble insertion), and condp^ (BT: branch taken) can be described using the
information available in the ADL. The condpQ is true when a branch is taken or
when an exception is taken. When a branch is taken, the PC is modified with the
target address. When an exception is taken, the PC is updated with the correspond-
ing interrupt service routine address. Let us assume that the BTpc bit is set when the
unit completes execution of a branch instruction and the branch is taken. Formally,

^ ^ (3.11)

condfc = (ST$ldVSTs
Pcf) ABT^AXNj^. (3.12)

condfc = (BTPc VXNIRlJ) (3.13)

Modeling State Transition Functions

In this section, we describe the next-state function of the FSM. Figure 3.9 shows
a fragment of the processor pipeline with only instruction registers. If there are
no pipeline hazards, instructions flow from IR (instruction register) to IR every m
cycles (m = 1 for single-cycle IR). In this case, the instruction in IRj-\j (1 < / <
p) at time t proceeds to IRjj after m cycles i.e., IRjj{t + 1) = IRi-\j(t). In the
presence of pipeline hazards, however, the instruction in IRjj may be stalled, i.e.,
IRij(t + 1) = IRtj(t). Note that, in general, any instruction in the pipeline cannot
skip pipeline stages. For example, IRjj(t + 1) cannot be IRj-2,v(t) (1 < v < rij-i)
if there are no feed-forward paths.

The rest of this section formally describes the next-state function of the FSM.
According to the Equation (3.5), a state of a n—stage pipeline is defined by (M+1)
registers (PC and M instruction registers where, M= £?=/ m). Therefore, the next
state function of the pipeline can also be decomposed into (M+ 1) sub-functions
each of which is dedicated to a specific state register. Let f$g and ffffj. (1 < i <
n — 1, 1 < j <rii) denote next-state functions for PC and IRjj respectively. Note
that in general f^. is a function of not only IRjj but also other state registers and
external signals from outside of the controller. For the program counter, we define
three types of state transitions as follows:

PC(t+l)

PC(t)+L p%
target if condfc = 1 (3.14)
PC{t) if conds

p
T

c=\



54 CHAPTER 3. VALIDATION OF SPECIFICATION

Here, I{t) represents a set of external signals at time t, L represents the instruction
length, and target represents the branch target address. The conditions (condpC,
x e SE,BT,ST) are logic functions ofS{t) and I(t) as described in Equation (3.11)
- Equation (3.13), and return either 0 or 1. For example, \icondSpC is 1, PC keeps
its current value at the next cycle.

For instruction registers, IRij (2 < / < n — 1, 1 < j < nf), we define five types
of state transitions as follows. The state transitions for the first instruction register,
IR\j, will have IM(PC(t)) in place of IR^ij(t)9 where IM(PC(t)) denotes the
instruction pointed by the program counter (PC) in instruction memory (IM).

( IRi-U{t)
if condfl. = 1

nop if condfRj. = 1 (3.15)

IR,-ij(t) if cond$= I
nop if condfl. = 1

The IRij is said to be stalled at time t if condfl is 1, resulting in IRtj{t + 1) =

IRjj(t). Similarly, IRij is said to flow normally at time t if condj^ . is 1. A nop

instruction (bubble) is inserted in IRjj when condfl . or cond™. is 1, resulting

in IRij(t + 1) = nop. Similarly, when condj^ is 1, the bubble in IRtj gets over-

written by the instruction from the parent instruction register, i.e., IRtj(t + 1) =

IRi-ij(t)(l<l<ni-x).
In this FSM model, signals coming from the datapath or the memory subsystem

into the pipeline controller are modeled as primary inputs to the FSM, and control
signals to the datapath or the memory subsystem are modeled as outputs from the
FSM.

3.2.2 Validation of Dynamic Properties

Based on the FSM model presented in Section 3.2.1, we propose a method for val-
idating dynamic behaviors of pipelined processor specifications using two prop-
erties: determinism and in-order execution. We consider validation of dynamic
behavior for architectures with in-order execution. We first describe the properties
needed for validating the specification. Next, we present an automatic property
checking framework driven by the EXPRESSION ADL [5].



3.2. VALIDATION OF DYNAMIC BEHAVIOR 55

A. Properties

This section presents two properties: determinism and in-order execution. Any
pipelined processor with in-order execution must satisfy these properties.

Determinism

To ensure correct execution, there should not be any instruction or data loss in the
pipeline. The bubble squashing and flushing of instructions are permitted. The
flushed instructions are fetched and executed again. The next-state functions for
all state registers must be deterministic. This property is valid if all the following
equations hold for V/,y(l < / < n — 1,1 <j< rtf).

condf^ V cond^l V condfc = \ (3.16)

condf^.. V condf^ . V condfR.. V condf^.. V condj^.. = 1 (3.17)

Vx,y(x,y e {SE,BT,ST} A x ^y), condx
PC Acondy

pc = 0 (3.18)

Vx,y(x,y e {NF,ST,BI,XN,SQ} A x ±y\ condx
IRi^condy

IR.j = 0 (3.19)

The first two equations mean that in the next-state function for each state register,
the five conditions must cover all possible combinations of processor states S(t)
and external signals I(t). The last two guarantee that any two conditions are dis-
joint for each next-state function. Informally, exactly one of the conditions should
be true in a clock cycle for each state register. As a result, at any time t an in-
struction register will have a deterministic instruction. In other words, given an
initial state of the pipelined processor and an input application program consisting
of instruction sequences, it is possible to deterministically decide the instruction in
a given instruction register at a given time t.

In-Order Execution

A pipelined processor with in-order execution is correct if all instructions that are
fetched from instruction memory, flow from the first stage to the last stage, while
maintaining their execution order. In order to guarantee in-order execution, state
transitions of adjacent instruction registers must depend on each other. Illegal com-
bination of state transitions of adjacent stages are described below using Figure 3.9
where 2 < i < n - 1, 1 < j < m, 1 < / < p, and 1 < k < q.

An instruction register can not be in normal flow if all the parent instruction
registers (adjacent ones) are stalled. If such a combination of state transitions are
allowed, the instruction stored in /7?;_ i j at time t will be duplicated, and stored into
both IRi-\j and IRtj in the next cycle. Therefore, the instruction will be executed



56 CHAPTER 3. VALIDATION OF SPECIFICATION

more than once. Formally, the Equation (3.20) should be satisfied. Similarly, the
remaining equations (Equation (3.21) - Equation (3.32)) should be satisfied for
IRij. The detailed explanation is available in [95].

p
( / \ condjft. u) A condf/.. = 0 (3.20)
l=\

cond%.A(/\cond?l+Lk) = 0 (3.21)

q ..,,) = ° (3-22)
k=\

\condfl.=0 (3.23)

condfRiXfAcondfRl.=0 (3.24)

condfR. l { A condlR. = 0 (3.25)

condf^; A cond^.. = 0 (3.26)

0 (3.27)

0 (3.28)

0 (3.29)

0 (3.30)

0 (3.31)

0 (3.32)
0-1,/

The above equations are not sufficient to ensure in-order execution in frag-
mented pipelines. An instruction Ia should not reach join node earlier than an
instruction 4 when Ia is issued by the corresponding fork node later than 4 . For-
mally the following equation should hold:

where, (F, J) is fork-join pair, Ia ^j 4 implies Ia reached join node /before 4>
I> (4) and F/r(4) returns the timestamps when instructions Ia and 4 (respectively)
are issued by the fork node F.

The previous property ensures that instruction does not execute out-of-order.
However, with the current modeling, two instructions with different timestamps
can reach the join node. If join node does not have capacity for more than one



3.2. VALIDATION OF DYNAMIC BEHAVIOR 57

instruction, this may cause instruction loss. We need the following property to
ensure that only one immediate parent of the join node is in normal flow at time t\

Similarly, the state transition of PC must depend on the state transition of IR\ j
(1 < j < «i). The illegal combination of state transitions between PC and IR\j are
described below:

condfc A corutffi. = 0 (3.35)

condpc A ( / \ condf^ .) = 0 (3.36)

condfc A ( A condmx,) = ° (3-37)
7=1

condSpE
c
 A c o ^ j . = 0 (3.38)

= 0 (3.39)

= 0 (3.40)

conds
P

T
c A condj^ . = 0 (3.41)

condpc A condf^. = 0 (3.42)

We have described all possible illegal combination of state transition functions
(Equation (3.20) - Equation (3.42)). However, Equation (3.23), Equation (3.24),
Equation (3.27), and Equation (3.28) are not necessary to prove in-order execution.

B. Automatic Validation Framework

Algorithm 6 describes the specification validation technique. It accepts the proces-
sor specification as input. The FSM model and the properties are generated from
the ADL specification. In case of a failure, it generates counter-examples so that
the designer can modify the ADL specification of the architecture.

We have verified the properties using two different approaches. First, we have
used an SMV [43] based property checking framework as shown in Figure 3.10.
The SMV based approach fits nicely in our validation framework. However, the
SMV is limited by the size of the design it can handle. We have also developed an
equation solver based framework as shown in Figure 3.11 that can handle complex
designs. In this section, we briefly describe these two approaches. The detailed
description is available in [95].



58 CHAPTER 3. VALIDATION OF SPECIFICATION

Validation using Model Checker

The FSM model (SMV description) of the processor is generated from the ADL
specification. The properties are also described using SMV description. The prop-
erties are applied on the FSM model using the SMV model checker as shown in
Figure 3.10. In case of failure, SMV generates counter-examples that can be used
to modify the ADL specification. Each counter-example describes the failed equa-
tion^) and the instruction registers that are involved.

Algorithm 6: Validation of Pipeline Specification
Input: ADL specification of the processor architecture.
Outputs: Success, if the processor model satisfies the properties.

Failure otherwise, and produces the counter-examples.

{
Generate FSM model using Equation (3.5) - Equation (3.15)
Generate properties using Equation (3.16) - Equation (3.42)
Apply the properties on the FSM model.
Return Success if all the properties are verified;

Failure otherwise, and produce the counter-example(s).

We have verified the in-order execution style of the processor specification
in two ways. First, the framework generates properties using Equation (3.20) -
Equation (3.42) to verify in-order execution. This is similar to how other properties
(e.g., determinism) are verified. Second, an auxiliary automata is used instead of
using equations to verify in-order execution.

In the auxiliary automata based approach, we use the same FSM model of the
processor (SMV description) generated from the ADL specification. We have de-
veloped a SMV module that generates two instructions randomly with random de-
lay between them. These two instructions are recorded and fed to the FSM model.
The processor (FSM) model accepts these instructions and performs regular com-
putations. At the completion (e.g., writeback unit) the auxiliary automata analyzes
these two instructions to see whether they completed in the same sequence as gen-
erated. Note that, this auxiliary automata does not need any manual modification
for different architectures. In case of failure, SMV generates counter-examples
containing instruction sequences (instruction pair with NOPs in between them)
that violate in-order execution for the processor model.



3.2. VALIDATION OF DYNAMIC BEHAVIOR 59

Validation using Equation Solver

In the second approach, the framework generates the FSM model and flow equa-
tions for each instruction register and PC using ADL specification and Equation (3.5)
- Equation (3.15). The framework generates the equations necessary for verifying
properties using ADL description and Equation (3.16) - Equation (3.42) as shown
in Figure 3.11.

Processsor Specification
(EXPRESSION) y

2
c
rt
(D

Figure 3.10: Automatic validation framework using SMV

The Eqntott [41] tool converts these equations in two-level representation of a
two-valued Boolean function. This two-level representation is fed to Espresso [40]
tool that produces minimal equivalent representation. Finally, the minimized repre-
sentation is analyzed to determine whether the property is successfully verified or
not. In case of failure, it generates traces explaining the cause of failure. The trace
contains the equation(s) that failed, and the identification of the instruction regis-
ters involved. The designer therefore knows the property that is violated and the
reason for the violation. This information is used to modify the ADL specification.

3.2.3 A Case Study

In a case study we successfully applied the proposed methodology to the single-
issue DLX [55] processor. We used the EXPRESSION ADL [5] to capture the
structure and behavior of the DLX processor shown in Figure 3.6. We captured
the conditions for stalling, normal flow, exception, branch taken, squashing, and



60 CHAPTER 3. VALIDATION OF SPECIFICATION

bubble insertion in the ADL. Using the ADL description, we automatically gener-
ated the equations for flow conditions for all the units. The necessary equations for
verifying the properties such as determinism and in-order execution are generated
automatically from the given ADL specification. The detailed description of the
case study is available in Appendix D.

Processsor Specification
(EXPRESSION) y i

4 Analyze I Failed

§
rt
(D

Success

t
Figure 3.11: Automatic validation framework using equation solver

We have verified the properties using two different methods: using the SMV
model checker and the Espresso equation solver, as described in Section 3.2.2. We
have used a 300 MHz Sun UltraSparc-II with 1024M RAM to run the experiments.
Table 3.3 shows the performance of the two methods for verifying in-order execu-
tion property. We have used the VLIW DLX architecture as the base configuration
and modified the number of opcodes. The first column presents our two methods of
specification validation. The second, third, and fourth columns present the execu-
tion time (in seconds) of the two methods for verifying in-order execution property
for different architecture configurations.



33. RELATED WORK 61

Table 3.3: Validation of in-order execution by two frameworks

SMV based Framework
Espresso based Framework

DLXPr
8 opcodes

302.4 sec
5.4 sec

ocessor Confi
16 opcodes

400.4 sec
6.7 sec

gurations
32 opcodes

740.9 sec
9.4 sec

We have performed experiments by modifying the pipeline structure such as
addition of pipeline paths and pipeline stages. Our SMV based framework could
not verify in-order execution when pipeline path is added to the VLIW DLX ar-
chitecture. However, our equation solver based framework can handle complex
configurations. The SMV based framework performed better for verifying the de-
terminism. This is due to the fact that the properties (equations) that need to be
applied to verify determinism consists of local computations for each state regis-
ter. The SMV based framework took 0.8 seconds to verify determinism property,
whereas the equation solver based framework took 4 seconds for the same DLX
configuration. Although we have not applied this technique on other architectures,
we believe the SMV based framework is suitable for verifying the determinism
property whereas our equation solver based framework can be used for verifying
in-order execution of complex architectures.

3.3 Related Work

The problem of verifying a given specification has been studied extensively for
hardware as well as software designs. Although different specification languages
are used depending on the level of granularity and expressiveness needed to specify
the target design, the specification verification is performed typically in two ways:
property checking and simulation. First, the specification is analyzed to ensure
that it satisfies a set of necessary properties. Second, the executable specification is
simulated using a set of test vectors and the generated outputs are compared with
the expected results. The input test vectors can be generated from the specification
as well [87].

Verification of design specification has two major applications: verification of
requirements specification during software development, and verification of proto-
cols in both software and hardware specifications. The verification activities that
accompany requirements stage of software development ensure the adequacy of the
requirements (including correctness, completeness, and consistency), and generate
the initial testcases with the expected (correct) responses [136].



62 CHAPTER 3. VALIDATION OF SPECIFICATION

There has been a plethora of previous work in the area of protocol verifica-
tion. Bunker et al. [2] surveyed formal hardware specification languages for pro-
tocol compliance verification. A comprehensive survey of various approaches for
the verification of cache coherence protocols based on state enumeration, (sym-
bolic) model checking, and symbolic state models is presented by Pong et al. [29].
Shimizu et al. presented techniques to specify and verify commonly used interface
protocols such as PCI bus protocol and Intel Itanium bus protocol [67].

3.4 Chapter Summary

Validation of the architectural specification is essential to ensure that the reference
model is golden so that it can be used to uncover bugs in the design. This chapter
presented a framework for automatic modeling and validation of pipelined proces-
sor specifications driven by an ADL.

We developed validation techniques to ensure that the static behavior of the
pipeline is well-formed by analyzing the structural aspects of the specification us-
ing a graph based model. We applied these techniques on the graph model of
the MIPS R10K, TI C6x, DLX, and PowerPC architectures to demonstrate the
usefulness of this approach. The dynamic behavior is verified by analyzing the
instruction flow in the pipeline using a FSM-based model to validate several im-
portant architectural properties such as determinism and in-order execution in the
presence of hazards and multiple exceptions. We applied this methodology to the
DLX processor to demonstrate the usefulness of this technique.

These properties are by no means complete to prove the correctness of the
specification. The designer can add new architecture-specific properties and easily
integrate it in our framework. Our validation framework uses two approaches:
SMV based property checking and Espresso based equation minimization. The
validation framework determines whether all the necessary properties are satisfied.
In case of a failure, it generates traces so that a designer can modify the ADL
specification of the architecture.



Part III

Top-Down Validation



4
EXECUTABLE MODEL GENERATION

Contemporary processor architectures vary widely in terms of their architectural
features. Program address generation and instruction dispatch features are widely
used in DSP processors. VLIW processors use strong compiler support to ensure
correct execution of long instruction words. Superscalar processors on the other
hand, use hardware scheduling techniques, register renaming, and so on. Multi-
media processors support SIMD operations. Furthermore, each architecture has
different branch prediction schemes, execution style (e.g., in-order, out-of-order),
interrupt handling procedures, and last but not the least different memory subsys-
tems. Emerging architectures have combined features of classical architectures.
For example, the Intel Itanium combines the features of VLIW and superscalar
architectures; the TI C6x family combines the features of DSP and VLIW archi-
tectures. Designers of customized programmable embedded architectures need the
ability to explore and evaluate a variety of heterogeneous processor-memory archi-
tectures, and thus need a framework that can capture a wide range of such archi-
tectural features; such a framework will facilitate rapid design space exploration of
heterogeneous processor-memory architectures.

Moreover, during design space exploration using customized Intellectual Prop-
erty (IP) cores designers may want to add certain architectural features (e.g., some
superscalar features to a VLIW processor core) to see how it impacts the area,
power, performance, and other important design parameters. Similarly, to find the
best match between the application characteristics and the memory organization
features (e.g., caches, stream buffers, access modes, SRAM, DRAM etc.), the de-
signer needs to explore different memory configurations in combination with dif-
ferent processor architectures, and evaluate each such system for cost, power, and
performance. To enable this, designers need (i) a way of specifying a wide variety
of processor-memory features, and (ii) the ability to generate automatically exe-
cutable models of the architecture. Functional abstraction techniques are essential



66 CHAPTER 4. EXECUTABLE MODEL GENERATION

for this purpose: it is necessary to find the common basis among such heteroge-
neous architectures and use that as a building block for defining a set of abstraction
primitives. The abstraction primitives should be simple enough to allow correlation
with the architectural features. On the other hand, the primitives should be generic
enough to be useful across a wide range of architectures. In this chapter we present
a functional abstraction technique that enables automatic generation of executable
models from the ADL specification.

This chapter is organized as follows. Section 4.1 surveys contemporary pro-
grammable architectures. Section 4.2 presents the functional abstraction needed to
capture a wide variety of architectural features and memory configurations. Sec-
tion 4.3 describes the procedure for reference model generation from the ADL
specification using functional abstraction followed by the related work in Sec-
tion 4.4. Finally, Section 4.5 summarizes the chapter.

4.1 Survey of Contemporary Architectures

We have studied contemporary processor and memory architectures from popular
architectural domains [97]. This section summarizes the survey and outlines the
similarities and differences of the architectural features available in a wide a variety
of processor and memory architectures.

4.1.1 Summary of Architectures Studied

In order to understand and characterize the diversity of contemporary architectures,
we have surveyed processors from different architectural domains - RISC (MIPS
R4000 [81] and StrongArm [125]), DSP (Motorola 56000 and TI C5x), VLIW DSP
(TI C6x [131], MAP1000A [16], and Motorola StarCore [47]), superscalar (MIPS
R10000 [50], MPC7450 [48], Sun UltraSparc Hi [126], and DEC Alpha 21364),
and hybrid (Intel IA-64 [138]). The Intel IA-64 architecture has combined features
of VLIW and superscalar processors with out-of-order execution. Table 4.1 sum-
marizes the processor-memory features for different architectures. Each row of the
table corresponds to an architectural feature. Each column represents an architec-
ture. We have shown only the relationship between a feature and an architecture.
In general, an architectural feature may also depend on the type of the instruction.

An entry in Table 4.1, TABfF, A], represents the behavior of an architecture "A "
towards a feature "F". If an entry is marked x, that feature is supported by that ar-
chitecture. If an entry is blank, the feature is either not supported or not applicable
(or not known) for that architecture. An entry containing an integer number, n,
indicates that the feature is supported n times. An entry containing a series, (n-m),



4.1. SURVEY OF CONTEMPORARY ARCHITECTURES 67

Architectures
Processor-Memory

Features
# of fetches/cycle
# of fetch stages

# of decodes/cycle
# entries in decode RS

# of issue units
# of issues/cycle

# entries in issue RS
# operations/instruction
# of parallel exec units

Branch Prediction
Feedback paths
Operand read in
SIMD support

entries in completion Q
Register Renaming

Dynamic Scheduling
Speculation
Predication

# register files
# Coprocessors
# pipeline stages

Levels ofD-Cache
cache prefetch

cache hints
On-chip SRAM

configurable SRAM
Off-chip DRAM
page/burst mode

Write Buffer
Read Buffer
Victim Buffer

Stack
FIFO
DMA

parallel mem transfers
mem pipelining

RISC
R4K

2
2
2

1

D

2
3
8

1-2

X

1

SA

1
1
1

1

X

D

1
1
5
1
X

X

X

X

X

X

X

DSP
56K

1
1
1

1

E

3

3

X

X

2

C5x

1
1
1

1

R

1

4

X

X

VLIW DSP
C6x

8
4
8

8
8

E

3

3
0-2

X

X

X

X

X

2

MA

4

4

4
4

E
X

X

3

1

X

X

X

X

SC

8
3

6

6

E

2

5
0-2

X

X

X

X

2

Superscalar
RIO

4
1
4

3
5

48
1
5

2b

I

32
X

X

2

5-7
2

X

1
X

MP

4
2
3
12
3
6
12
1
11
BT

I
X

16
X

X

3

7
3

X

U3

4
1
4

1
4

1

X

I
X

X

9
2
X

X

X

X

cc64

4
1
4

3
6
35
1
6

MA

R

X

X

X

3

6
2

X

X

X

X

2
X

Hybrid
IA64

6
2

8
3
6

X

I
X

X

X

X

X

5

10
3
X

X

X

2

Table 4.1: Processor-memory features of different architectures. R4K: MIPS
R4000, SA: StrongArm, 56K: Motorola 56K, c5x: TI C5x, c6x: TI C6x, MA:
MAP1000A, SC: Starcore, RIO: MIPS R10000, MP: Motorola MPC7450, US:
SUN UltraSparc Hi, a64: Alpha 21364, IA64: Intel IA-64



68 CHAPTER 4. EXECUTABLE MODEL GENERATION

implies that the feature is supported for i times, where (n <= i < = m). Similarly,
an entry containing a set, {n,rn}, means that the feature is supported either n or m
times. For example, the table entry with memory feature ''Levels ofD-Cache" and
processor name IA64 has value 3; it implies that IA-64 has 3 levels of data cache.
The row corresponding to "operand read in" has four types of values depending on
where the operands are read in the pipeline: (D: Decode stage), (R: Read stage), (I:
Issue stage), and (E: Execute stage). The row corresponding to Branch Prediction
has values that indicate the method of branch prediction employed in the respective
architecture: (2b: 2-bit algorithm using branch history table), (BT: BTB based pre-
diction), and (MA: dynamically choose among multiple algorithms based on local
predictor table, global predictor table and branch history table).

4.1.2 Similarities and Differences

Broadly speaking, the structure of a processor consists of functional units (such as
fetch, decode, issue etc.), connected using ports, connections and pipeline latches.
Similarly, the structure of a memory subsystem consists of SRAM, DRAM, cache
hierarchy, and so on. Although a broad classification makes the architectures look
similar, each architecture differs in terms of the algorithm it employs in branch
prediction, the way it detects hazards, the way it handles exceptions etc. More-
over, each unit has different parameters for different architectures (e.g., number of
fetches per cycle, levels of cache, cache line size etc.).

Depending on the architecture a functional unit may perform the same com-
putation at different stages in the pipeline. For example, read-after-write (RAW)
followed by operand read happen in the decode unit for some architectures (e.g.,
DLX [55]), whereas in some others these operations are performed in the issue
unit (e.g., MIPS R10K [50]). Some architectures even allow operand read in the
execution unit. On the other hand, some architectures do not issue operations if
RAW hazard is detected while others issue the operation in spite of RAW hazard
(e.g., use snooping to read the data at execution stage using feedback paths). In
other words, the same functionality is used at different stages in the pipeline for
different architectures.

Towards obtaining a unifying abstraction, we can observe some fundamental
differences from the study; the architecture may use:

1. the same functional or memory unit with different parameters

2. the same functionality in different functional or memory unit

3. new architectural features



4.2. FUNCTIONAL ABSTRACTION 69

The first difference can be eliminated by defining generic functions with ap-
propriate parameters. The second difference can be eliminated by defining generic
sub-functions that can be used by different architectures at different stages in the
pipeline. The last one is difficult to alleviate since it is new, unless this new func-
tionality can be composed of existing sub-functions. Section 4.2 presents the func-
tional abstraction needed to capture a wide variety of architectural features and
memory configurations.

4.2 Functional Abstraction

Functional abstraction allows the system designer to describe a wide variety of ar-
chitectures. In this section we present functional abstraction by way of illustrative
examples. We first explain the functional abstraction needed to capture the struc-
ture and behavior of the processor and memory subsystem, then we discuss the
issues related to defining a generic controller functionality, and finally we discuss
the issues related to handling interrupts and exceptions.

4.2.1 Structure of a Generic Processor

The structure of each functional unit is captured using parameterized functions.
However, generic functions are not sufficient since each functional unit may per-
form a different set of computations depending on the architecture. Hence, there
is a need for parametric sub-functions. Based on the observations made in Sec-
tion 4.1, we have defined a set of common functions and sub-functions with appro-
priate parameters. First, we describe the generic functions. Next, we describe the
generic sub-functions. Finally, we discuss how these functions and sub-functions
are used to compose a new processor architecture.

Generic functions

We capture the structure of each functional unit using parameterized functions. For
example, a fetch unit functionality contains several parameters, such as number of
operations read per cycle, number of operations written per cycle, reservation sta-
tion size, branch prediction scheme, number of read ports, number of write ports,
and so on. Figure 4.1 shows a specific example of a fetch unit described using
sub-functions. Each sub-function is defined using appropriate parameters. For ex-
ample, ReadlnstMemory reads n operations from instruction cache using current
PC address (returned by ReadPC) and writes them to the reservation station. The
fetch unit reads m operations from the reservation station and writes them to the



70 CHAPTER 4. EXECUTABLE MODEL GENERATION

FetchUnit ( # of read/cycle, res-station size,

{

address = ReadPC () ;

instructions = ReadlnstMemory(address, n) ;

WriteToReservationStation(instructions, n);

outlnst = ReadFromReservationStation (m);

WriteLatch(decode_latch, outlnst);

pred = QueryPredict or (address);

if pred {

nextPC = QueryBTB(address);

SetPC (nextPC) ;

} else

IncrementPC(x) ;

Figure 4.1: A fetch unit example

output latch (fetch to decode latch) and uses BTB based branch prediction mecha-
nism. We have defined parameterized functions for all functional units present in
contemporary programmable architectures [97].

Generic sub-functions

We have defined sub-functions for all the common activities e.g., ReadLatch, Write-
Latch, ReadOperand, and so on. Table 4.2 lists some of the common activities that
we have identified. The first column represents the name of the function, the second
column describes the activity, and the last column describes the input and output
parameters of the function. We have also defined a set of sub-functions including
RenameRegister and GraduateOperation using sub-functions. Figure 4.2 shows a
specific implementation of RenameRegister modeled using sub-functions.

New architecture generation using generic functions and sub-functions

So far we have discussed the generic functions and sub-functions necessary to cap-
ture a wide variety of processor architectures. In this section we briefly describe
how these functions and sub-functions can be used to compose a new architecture
or modify an existing architecture. First, we describe how to compose a simple
RISC architecture. Next, we discuss what generic functions are necessary to mod-
ify the simple RISC architecture into a VLIW or superscalar architecture.



4.2. FUNCTIONAL ABSTRACTION 71

Table 4.2: A list of common sub-functions

Function Name
ReadLatch
WriteLatch

QueryPredictor
QueryBTB
UpdateBTB

UpdatePredictor
BranchOther
IncrementPC

SetPC
ReadPC

RSInsertOperation
RSInsertOperations
RSDeleteOperation
RSReadOperation
RSReadOperand

ReadOperand
WriteResult

MarkDestBusy
ReleaseDest
CheckRAW
CheckWAW
CheckWAR
IsUnitBusy

IsUnitStalled
IsOperandRead

MarkOperandRead
HasUnitRS

SetUnitStalled
SetUnitBusy

ReadPredicate
WritePredicate
CheckPredicate

ExecuteOperation
MarkOperationDone

I sOperationDone
CompletionQInsertOper
CompletionQDeleteOper

FlushCompletionQ
IsOperationValid

SetValidBit
IsBranchAhead

IsBranchOperation
IsStoreOperation

IsMapped
GetPhysicalRegister

GetFreeRegister
MapRegisters

Description
Read a latch for n operations

Write data to a latch
Query prediction status
Query predicted address

Send address to branch unit
Update branch predictor

Other branch address
Increase PC with X
New PC address X

Get PC
Add one operation to RS
Add X operations to RS

Dequeue operation from RS
Read one operation from RS
Read n's operations operands

Read one operand
Write operand

Mark Register busy
Unmark Register busy

Check for RAW
Check for WAW
Check for WAR
Is unit X busy

Is unit X stalled
Is operand X read

Mark the operand as read
Does unit X have RS?
Set Stall bit for unit X
Set Busy Bit for unit X

Check predicate register X
Set predicate register X to Y

Query ID's predicate
Execute an operation

Mark operation done in comp queue
Query if operation done

Insert an entry into comp queue
Delete an entry from comp queue
Remove all operations above ID

Query if operation is valid
Set valid bit to X for operation

Is there a branch ahead?
Is operation a branch?
Is operation a store?

Is X in mapping table
For a logical register

Return a free physical reg
logical to physical

Parameters
Latch X, n, Data

Latch, Data
Branch address, status

Branch and memory address
ID, target address

ID, prediction type
ID, Address
X, New PC
X, New PC
PC address
Operation

Operations, X
ID

Operation
RS, n, RS

Address bus, Reg name, Data
Address bus, Reg name, Data

Register name
Register name

Register name, status
ID, status
ID, status
X, status
X, status

ID, X, status
ID,X

X, status
X, True/False
X, True/False

Pred reg. X, status
Pred reg., value

ID, status
Src 1, Src2, func, Result

ID
ID, status
Operation

ID
ID

ID, status
ID,X

ID, status
ID, status
ID, status

Reg X, status
Logical, physical reg

Register number
Logical, physical reg



72 CHAPTER 4. EXECUTABLE MODEL GENERATION

RenameRegister (Instruction inst)
begin

RenameReg(inst.src 1);
RenameReg(inst.src2);
if (inst.opcode == store)

RenameReg(dest);
else if (inst.opcode != branch)

freeReg = GetFreeRegister();
MapRegisters(freeReg, inst.dest);
MarkDestBusy(freeReg);

endif
end

RenameReg (Register src)
begin

if IsMapped(src)
reg = GetPhysicalRegister(src)

else
reg = GetFreeRegister();

endif
MapRegisters(reg,src)

end

(a) Rename registers in an instruction (b) Rename a register

Figure 4.2: Modeling of RenameRegister function using sub-functions

A RISC architecture typically has four pipeline stages: fetch, decode, execute,
and writeback. Each of these stages requires one generic function. Each function
uses ReadLatch sub-function to read the instruction from the pipeline latch. At the
end of the computation each function uses WriteLatch sub-function to write the
modified instruction into the output latch. The fetch function reads the program
counter (PC) value using ReadPC. If the architecture supports branch prediction,
the fetch function needs to use appropriate sub-functions such as QueryPredic-
tor, QueryBTB, and so on. Depending on the outcome, the fetch function either
invokes IncrementPC or SetPC. Similarly, the decode function uses CheckRAW,
CheckWAR, and CheckWAWsub-functions to perform hazard detection. The source
operands of the instruction are read using ReadOperand sub-function. The execute
function uses ExecuteOperation sub-function to execute an operation. Finally, the
writeback function uses WriteResult sub-function to write the result back into the
register file.

To convert the RISC architecture into a VLIW one that can issue m operations
per cycle to the n pipeline paths, we need to perform the following modifications
to the functions discussed above. The decode function can use a reservation station
(instruction buffer). The instruction buffer can be accessed using sub-functions
such as RSInsertOperation, RSDeleteOperation, and so on. The decode function
needs to use IsUnitBusy and IsUnitStalled sub-functions to detect structural hazard
and decide where to send the next instruction. Each pipeline path needs to have
separate execute functions. In case the architecture supports predicated execution,
a set of sub-functions including ReadPredicate, WritePredicate, and CheckPredi-
cate can be used.



4.2. FUNCTIONAL ABSTRACTION 73

To add superscalar features to the existing VLIW architecture, the following
modifications need to be done. The decode function can invoke RenameRegister
to perform register renaming. Several sub-functions such as GetPhysicalRegister
and GetFreeRegister are also useful in this regard. If the intended execution style
is out-of-order execution, we need to add a completion queue (in-order buffer) in
the architecture. The decode function needs to insert an operation in the queue
using CompletionQInsertOper before issuing it to the child unit. This is to ensure
in-order completion in the presence of out-of-order execution. The writeback func-
tion can delete the front operation(s) of the queue using CompletionQDeleteOper
sub-function. The completion queue can also be used to perform WAW and WAR
checks, to flush necessary instructions in the pipeline, to enforce in-order comple-
tion of branches and memory writes, or to synchronize events such as completion
of all memory writes and pending exceptions.

4.2.2 Behavior of a Generic Processor

The behavior of a generic processor is captured through the definition of opera-
tions. Each operation is defined as a function, with a generic set of parameters,
that performs the intended functionality. The parameter list includes source and
destination operands, and necessary control and data type information. We have
defined common sub-functions (generic set) such as ADD, SUB, MUL, and so on
[97].

ADD (srcl, src2) {

return (srcl + src2);

MUL (srcl, src2) {

return (srcl * src2);

MAC (srcl, src2, src3) {

return ( ADD ( MUL (srcl, src2), src3) );

Figure 4.3: Modeling of MAC operation

Given a new (target) operation and a mapping between the target operation and
the generic operations, the functionality of the new operation can be created using
the functionalities of the existing operations. For example, the MAC (multiply and
accumulate) functionality can be composed of two sub-functions (ADD and MUL)
as shown in Figure 4.3.



74 CHAPTER 4. EXECUTABLE MODEL GENERATION

Cache(cache size, line size,... opType, addr, data)
begin

// It has three storages: tag, cache, valid
// Get row, col, and tag from addr
if<9/?7y/?eisREAD

if ((tag[row] == tag) and valid[raw])
data = cache[row][co/]
return HIT

else
return MISS

endif
else if opType is WRITE

else if opType is REPLACE

else if opType is REFILL

end
endif

AssociativeCache (..., assoc, opType, addr, dataOut)
begin

ifo/?7>/?eisREAD
/** Find the one with data **/
for (c/=0; ci < associativity, ci ++)

stat = Cache(cache_c/,... READ, data)
ifstatisHIT

dataOut = data
return HIT

endif
endfor
// Find the cache to be replaced and refilled
Cache (..., cache,..., REPLACE, addr)
Cache (..., cache,..., REFILL, addr)

else if opType is WRITE

endif
end

(a) Cache function (b) Associative cache function

Figure 4.4: Modeling of associative cache function using sub-functions

4.2.3 Structure of a Generic Memory Subsystem

Each type of memory module, such as SRAM, cache, DRAM, SDRAM, stream
buffer, and victim cache, is modeled using a function with appropriate parame-
ters. For example, the cache function shown in Figure 4.4(a) has many parameters
including cache size, line size, associativity, word size, replacement policy, write
policy, and latency. It performs four operations: read, write, replace, and refill.
These functions can have parameters for specifying pipelining, parallelism, access
modes (normal read, page mode read, and burst read), and so on. Again, each
function is composed of sub-functions. For example, the associative cache func-
tion shown in Figure 4.4(b) is modeled using cache sub-function.

4.2.4 Generic Controller

A major challenge in defining an architectural abstraction is the modeling of con-
trol for a wide range of architectural styles. We define control in both distributed
and centralized manner. The distributed control is transfered through pipeline
latches. While an instruction gets decoded the control information needed to select
the operation, the source and the destination operands are placed in the output latch
as shown in Figure 4.5. These decoded control signals pass through the latches be-
tween two pipeline stages unless they become redundant. For example, when the
value for srcl is read that particular control is not needed any more, instead the



4.2. FUNCTIONAL ABSTRACTION 75

read value will be in the latch. We have shown here only the control information of
the latch. The latch also contains data values and predicate registers (if applicable).

Figure 4.5: Example of distributed control

The centralized control is maintained by using a generic control table. The
number of rows in the table is equal to the number of pipeline stages in the archi-
tecture. The number of columns is equal to the maximum number of parallel units
present in any pipeline stage. Each entry in the control table corresponds to one
particular unit in the architecture. It contains information specific to that unit e.g.,
busy bit (BB), stall bit (SB), list of children, list of parents, opcodes supported,
and so on. For example, Figure 4.6 shows the control table for the DLX processor
shown in Figure 3.6. The control table captures all the necessary details to perform
necessary stalling and flushing of the pipeline.

4.2.5 Interrupts and Exceptions

Another major challenge in defining architectural abstractions is the modeling of
interrupts and exceptions. We briefly describe the abstraction needed to capture
a wide variety of exceptions and interrupts in programmable architectures. Each
exception is captured using an appropriate sub-function. Opcode related excep-
tions (e.g., divide by zero) are captured in the opcode functionality. Functional
unit related exceptions (e.g., illegal slot exception) are captured in functional units.
External interrupts (e.g., reset, debug exceptions) are captured in the control unit



76 CHAPTER 4. EXECUTABLE MODEL GENERATION

functionality. Appendix C describes how to capture exceptions and interrupts in an
ADL.

h*-

3
on

Pipeline Bandwidth (parallelism) -H

IALU
BB:0 SB:0

Fetch
BB:0 SB:0

Decode
BB:0 SB:0

MUL1
BB:O SB:O

MUL2
BB:0 SB:0

MUL3
BB:0 SB:0

MUL4
BB:0 SB:0

MUL5
BB:0 SB:0

MUL6
BB:O SB:O

MUL7
BB:0 SB:0

MEM
BB:0 SB:0

WriteBack
BB:0 SB:0

FADD1
BB:0 SB:0

FADD2
BB:0 SB:O

FADD3
BB:O SB:O

FADD4
BB:0 SB:0

DIV
BB:O SB:0

Figure 4.6: Example of centralized control

We model an interrupt handler unit that services these exceptions. It has in-
formation regarding the priority of interrupts and which exceptions generate what
interrupt. The generic interrupt handler has a parameterized priority table. The
interrupt handler unit generates one particular interrupt based on the priority. Be-
fore execution of an interrupt service routine, context saving and complete/partial
flushing occurs. The specific type of flushing is decided by the semantics of the in-
terrupt: complete flushing clears the entire pipeline; partial flushing means flushing
only the instructions behind the interrupted instruction and allowing the previous
instructions to continue using the program order information available in comple-
tion queue. Again, these actions are part of the parametric sub-functions that allow
a finer grain of microarchitectural exploration.



4.3. REFERENCE MODEL GENERATION 77

4.3 Reference Model Generation

We use the functional abstraction technique to generate executable models (such
as simulator and synthesizable hardware) from the ADL specification. The proce-
dure is same for generating the simulator, hardware (synthesizable RTL), as well
as validation models. The only difference is that the input library (consisting of
generic functions and sub-functions) needs to be implemented using the appropri-
ate language. For example, the generic functions and sub-functions need to be
implemented using programming languages such as C/C++ to enable simulator
generation. Similarly, to enable hardware generation the generic library needs to
be implemented using a synthesizable subset of VHDL/Verilog. The development
of the generic library (consisting of implementation of generic functions and sub-
functions) is a one-time activity and independent of the architecture.

The reference model generation process consists of three steps. First, the ADL
specification is read to gather all the necessary details for the model generation.
Second, the functionality of each component is composed using the generic func-
tions and sub-functions. Finally, the structure of the architecture is composed using
the structural details. In the remainder of this section we describe last two steps
for simulator generation. As mentioned earlier, the procedure remains the same for
generation of hardware and validation models.

Component Generation

To compose the functionality of each component, all necessary details (such as
parameters and functionality) are extracted from the ADL specification. First, we
describe how to generate three major components of the processor: instruction de-
coder, execution unit, and controller, using the generic functions and sub-functions.
Next, we describe how to compose the functionality of new instructions (behavior)
using the generic functions.

A generic instruction decoder uses information regarding individual instruction
format and opcode mapping for each functional unit to decode a given instruction.
The instruction format information is available in the ADL specification. The de-
coder extracts information regarding the opcode and operands from the input in-
struction using the instruction format. The mapping section of the ADL captures
the information regarding the mapping of opcodes to the functional units. The de-
coder uses this information to perform/initiate necessary functions (e.g., operand
read) and decide where to send the instruction.

To compose an execution unit, it is necessary to instantiate all the operation
functionalities (e.g, ADD, SUB etc. for an ALU) supported by that execution unit.
The execution unit invokes the appropriate opcode functionality for an incoming



78 CHAPTER 4. EXECUTABLE MODEL GENERATION

operation based on a simple table look-up technique as shown in Figure 4.8. Also,
if the execution unit is supposed to read the operands, the appropriate number of
operand read functionalities need to be instantiated unless the same read function-
ality can be shared using multiplexers. Similarly, if the execution unit is supposed
to write the data back to register file, the functionality for writing the result needs to
be instantiated. The actual implementation of an execute unit might contain many
more functionalities such as read latch, write latch, modify reservation station (if
applicable), and so on.

The controller is implemented in two parts. First, it generates a centralized con-
troller (using generic controller function with appropriate parameters) that main-
tains the information regarding each functional unit such as busy, stalled etc. It
also computes hazard information based on the list of instructions currently in
the pipeline. Based on these bits and the information available in the ADL, it
stalls/flushes necessary units in the pipeline. Second, a local controller is main-
tained at each functional unit in the pipeline. This local controller generates certain
control signals and sets necessary bits based on the input instruction. For example,
the local controller in an execute unit will activate the add operation if the opcode
is add, or it will set the busy bit in case of a multi-cycle operation.

(TARGET
((MACcc dest srcl src2 src3))

)
(GENERIC

((MUL temp srcl src2) (ADD dest src3 temp) (RESETCR[2]))

Figure 4.7: Mapping between MACcc and generic instructions

So far we have discussed composition of the structural components for an ar-
chitecture. It is also necessary to compose the functionality of new instructions
(behavior) using the functionality of existing instructions. The EXPRESSION
ADL based framework assumes a generic set of instructions (generic architecture).
While describing a new architecture (target architecture) using the ADL, it is nec-
essary to provide the mapping between target instructions and generic instructions.
This instruction mapping information is typically used by a compiler during in-
struction selection. This mapping is also used to generate the functionality for
the target (new) instructions using the functionality of the corresponding generic
instructions. The scheme allows one-to-many, many-to-one, and many-to-many
mappings between generic and target instructions. For example, the MACcc in-
struction shown in Figure 4.7 uses three generic instructions. The first two generic



43. REFERENCE MODEL GENERATION 79

instructions perform the multiply and accumulate. The third instruction clears the
carry bit of the control register.

Processor Model Generation

The final implementation is generated by instantiating the components (e.g., fetch,
decode, ALU, LdSt, writeback, branch, caches, register files, memories etc.) with
appropriate parameters and connecting them using the information available in the
ADL. For example, Figure 4.8 shows a portion of the simulation model for the
DLX architecture shown in Figure 3.6.

(# fetches ) [buffer size ) jinputloutput ports)

DLX {

FetchUnit (4, 0, .T..)

/** No instruction buffer processing **/

DecodeUnit (....) {

/** use binary description and operation mapping
** to decide where to send the instruction **/

ExecuteUnit ( . . . . ) {

<opcode, dst, srcl> src2, ...> = input instruction
result = opTable[ opcode ].execute( srcl, src2, ... )

Controller (....) {

/** Use control table to stall/flush the pipeline */

Figure 4.8: Simulation model generation for the DLX architecture

The generated simulation models combined with the existing simulation ker-
nel creates a cycle-accurate structural simulator that executes the assembly instruc-
tions. In our framework, the assembly instructions generated by the EXPRESS
compiler [4] are loaded into the instruction memory of the simulator.



80 CHAPTER 4. EXECUTABLE MODEL GENERATION

We have used the generated reference models in two top-down validation sce-
narios. Chapter 5 describes design validation using equivalence checking between
the implementation and the generated hardware model. Chapter 6 presents test
generation and functional validation using the generated simulation models. We
have also used the generated simulation and hardware models for design space ex-
ploration (DSE) of programmable architectures. We briefly outline the exploration
methodology in Appendix E.

4.4 Related Work

We discuss related work on executable model generation in two categories: simu-
lator generation and hardware implementation generation.

Simulator Generation

An extensive body of recent work has addressed instruction-set architecture simu-
lation. The wide spectrum of today's instruction-set simulation techniques includes
the most flexible but slowest interpretive simulation and faster compiled simula-
tion. Recent research addresses retargetability of instruction-set simulators using a
machine description language.

Simplescalar [51] is a widely used interpretive simulator. Shade [113], Embra
[25] and FastSim [23] based simulators use dynamic binary translation and result
caching to improve simulation performance. A fast and retargetable simulation
technique is presented in [65]. It improves traditional static compiled simulation
by mapping the target machine registers to the host machine registers through a
low level code generation interface.

Retargetable simulators based on processor description languages have been
proposed within the framework of FACILE [24], Sim-nML [72], ISDL [31], MI-
MOLA [117], ANSI C [27], LISA ([9], [121]), and EXPRESSION ([8], [102]).
The simulator generated from a FACILE description utilizes the Fast Forwarding
technique to achieve reasonably high performance. Recently proposed simulation
techniques combine the flexibility of interpretive simulation with the speed of com-
piled simulation (JIT-CCS [9], IS-CS [77]).

Hardware Generation

There are two major approaches in the literature for synthesizable HDL generation.
The first one is a parameterized processor core based approach. These cores are
bound to a single processor template whose architecture and tools can be modi-



4.5. CHAPTER SUMMARY 81

fied to a certain degree. The second approach is based on processor specification
languages.

Examples of processor template based approaches are Xtensa [130], Jazz [46],
and PEAS [75]. Xtensa [130] is a scalable RISC processor core. Configuration
options include the width of the register set, caches, memories etc. New functional
units and instructions can be added using the Tensilica Instruction Language (TIE).
A synthesizable hardware model along with software toolkit can be generated for
this class of architectures. Improv's Jazz [46] processor is a VLIW processor that
permits the modeling and simulation of a system consisting of multiple proces-
sors, memories, and peripherals. It allows modifications of data width, number
of registers, depth of hardware task queue, and addition of custom functionality in
Verilog. PEAS [75] is a GUI based hardware/software codesign framework. It gen-
erates HDL code along with software toolkit. It has support for several architecture
types and a library of configurable resources.

Processor description language driven HDL generation frameworks can be di-
vided into three categories based on the type of information the languages can
capture. Structure-centric ADLs such as MIMOLA are suitable for hardware gen-
eration. Some of the behavioral languages (such as ISDL and nML) are also used
for hardware generation. For example, the HDL generator HGEN [30] uses ISDL
description, and the synthesis tool GO [49] is based on nML. Itoh et al. [76] have
proposed a micro-operation description based synthesizable HDL generation.

Mixed languages such as LISA and EXPRESSION capture both structure and
behavior of the processor. The synthesizable HDL generation approach based on
LISA language [84] produces an HDL model of the architecture. The designer has
the choice to generate a VHDL, Verilog or SystemC representation of the target ar-
chitecture [85]. The HDL generation technique presented in this chapter combines
the advantages of the processor template based environments and the language
based specifications using the EXPRESSION ADL.

4.5 Chapter Summary

A major challenge in a top-down validation methodology is the development of a
functional abstraction technique that is able to generate executable models from
the specification for a wide variety of programmable architectures including RISC,
DSP, VLIW, and superscalar. We have studied the similarities and differences of
each architectural feature in different architecture domains. Based on our obser-
vations we have defined generic functions, sub-functions, and computational envi-
ronment needed to capture a wide variety of programmable architectures.



82 CHAPTER 4. EXECUTABLE MODEL GENERATION

Our functional abstraction technique enables model generation for simulation,
hardware generation, and property checking from the ADL specification. The gen-
erated models are used for design validation, test generation and design space ex-
ploration of programmable architectures.



5
DESIGN VALIDATION

One of the major challenges in validation of programmable architectures is the
verification of RTL design (implementation). Design validation techniques can be
broadly categorized into simulation-based approaches and formal techniques. Due
to the complexity of modern designs, validation using only traditional scalar sim-
ulation cannot be exhaustive. Formal techniques exhaustively analyze parts of the
design but, because of state space explosion, are not suitable for the complete de-
sign. Equivalence Checking is one of the most widely used formal techniques in
industry today. Typically, the implementation is compared with a set of Boolean
equations, or an optimized circuit is compared with the original circuit. Symbolic
simulation has proven to be an efficient technique, bridging the gap between tradi-
tional simulation and full-fledged formal verification.

Figure 1.6 shows a traditional architecture validation flow. The implementation
design is validated using a combination of simulation techniques and formal meth-
ods. The existing techniques employ a bottom-up approach to validation, where
the functionality of an existing processor is, in essence, reverse-engineered from
its RTL implementation. The validation technique presented in this chapter is com-
plementary to these bottom-up approaches.

Figure 5.1 shows our top-down validation methodology. Our validation frame-
work allows generation of synthesizable RTL description as well as specific prop-
erties. The RTL description can be used for checking equivalence with the given
implementation. However, generation of specific behaviors would enable prop-
erty checking. For example, our framework generates the property: output =
X£=i inputt, for a ft-input adder. The design should satisfy this property irrespective
of the adder implementation, such as ripple-carry adder or carry look-ahead adder.

A major advantage of property checking is that it reduces the complexity of
verification. However, this technique raises an important question: how to choose
the set of properties. A set of properties can be chosen in two different ways. First,



84 CHAPTER 5. DESIGN VALIDATION

the designers can decide what properties are important to be verified for the design
based on their design knowledge and past experience. They can then choose the
properties to uncover otherwise difficult-to-find bugs. Second, a set of behaviors
can be chosen and their effectiveness can be evaluated. For example, to verify
a memory controller in a microprocessor, it is necessary to generate properties
to validate each output of the controller. To measure the effectiveness of these
properties, a set of coverage measures can be used during property checking [36].

Architecture Specification
(English Document)

Validation

- Automatic

- Manual

- Feedback

Reference Model
(Properties)

RTL Design
(Implementation) Reference Model

(Complete Description) j

Failure

Successful Equivalent

Figure 5.1: Top-down validation methodology

This chapter is organized as follows. Section 5.1 describes property check-
ing using symbolic simulation. Section 5.2 describes validation using equivalence
checking. Section 5.3 presents the validation experiments followed by the related
work in Section 5.4. Finally, Section 5.5 summarizes the chapter.



5.1. PROPERTY CHECKING USING SYMBOLIC SIMULATION 85

5.1 Property Checking using Symbolic Simulation

Symbolic simulation combines traditional simulation with formal symbolic manip-
ulation [111]. Each symbolic value represents a signal value for different operating
conditions, parameterized in terms of a set of symbolic Boolean variables. By this
encoding, a single symbolic simulation run can cover many conditions that would
require multiple runs of a traditional simulator.

Figure 5.2(a) shows a simple n-inputAND gate. Exhaustive simulation of the
AND gate requires 2n binary test vectors. However, the ternary simulation uses (ft
1, x) and requires (n + l) test vectors for the AND gate. Figure 5.2(b) shows the
vectors: n vectors with one input set to '0 ' and the remaining inputs set to 'x', and
one vector with all inputs set to T . Finally, symbolic simulation [111] requires
only one vector using n symbols (s\, si,..., sn) as shown in Figure 5.2(c).

h
h
hhh-

Inputs Ix I2 I3 • • • In h h h • • • 4

Vector 1: 0 X X . • • X

Vector 2: x 0 x • • • X
out Vectors: x x 0 . . • x (c) Symbolic Simulation

Vector n: x x x • • • 0

(a) n-input AND gate Vector n+1: 1 1 1 . . . 1

(b) Ternary Simulation

Figure 5.2: Test vectors for validation of an AND gate

Researchers at IBM first introduced symbolic simulation to reason about prop-
erties of circuits described at the register-transfer level. With the advent of Binary
Decision Diagrams (BDDs), the technique became much more practical. Providing
a canonical representation for Boolean functions, BDDs enabled the implementa-
tion of an efficient event-driven logic simulator that operated over a symbolic do-
main. By encoding a model's finite domain using a Boolean encoding, it is possible
to symbolically simulate the model using BDDs. Bryant's formal state transition
model for a ternary system [112], and Seger's work on symbolic trajectory evalua-
tion renewed further interest in symbolic execution [14].

The symbolic simulator (used in our framework) uses symbolic trajectory eval-
uation (STE). In this section we informally describe STE. The formal description
of STE is available in [14]. STE is a modified form of symbolic simulation that
operates over the quaternary logic domain 0, 1, X, and T [14]. A state of the circuit



86 CHAPTER 5. DESIGN VALIDATION

is defined as the set of all node values at a particular time instant. The value do-
main is partially ordered and forms a complete lattice, X CO indicates X has less
information than 0, or X is weaker than 0. The information content of 0 and 1 are
not comparable. If r C q and r C t, we can think of r as representing both q and t.
Any property that holds for a state such as r will also hold for all the states above
it in the lattice, for example q and t.

STE provides a mathematically rigorous method for establishing that proper-
ties (assertions) of the form antecedent (A) => consequent (C) hold for a given
simulation model of a circuit. For the test vector shown in Figure 5.2(c), the an-
tecedent is: (/] is s\, h is S2,..., In is sn) from time 0 to 1, and the consequent is: out
is s\Scs2&...8Lsn from time 1 to 2. Circuit state holders are initialized with sym-
bolic values specified by the antecedent. The model is then simulated, typically
for one or two clock cycles, while driving the inputs with symbolic values during
simulation. The resulting values, appear on selected internal nodes and primary
outputs, are compared with the expected values expressed in the consequent. In
general, the values could be functions over a finite set of variables.

A trajectory is a sequence of states such that each state has at least as much
information as the next-state function applied to the previous state. Intuitively, a
trajectory is a state sequence constrained by the system's next-state function. A
successful simulation of assertion A => C establishes that any sequence of assign-
ments of values to circuit nodes that is both consistent with the circuit behavior and
consistent with antecedent A is also consistent with consequent C.

Symbolic trajectory evaluation is used to verify that an implementation satis-
fies its specification (reference model). Necessary assertions are extracted from
the reference model. If the implementation (e.g., RTL design) is correct, these as-
sertions should hold during symbolic simulation of the RTL design. An assertion
(A => C) holds if the weakest antecedent trajectory that the implementation goes
through during simulation (using A) is at least as strong as the weakest sequence
satisfying the consequent C. Informally, the outputs produced during simulation
(using A) should be at least as strong as the expected outputs (given in C).

To verify that the implementation satisfies certain properties, our framework
generates the intended properties instead of generating the complete reference de-
sign. We use Versys2 [82] that uses symbolic trajectory evaluation to perform
property checking. The assertions are automatically generated from the reference
model [69]. Versys2 symbolically simulates the implementation by using the gen-
erated assertions to ensure that the implementation satisfies the reference model.
A counter-example is generated if an assertion fails in the implementation. The
feedback is used to modify the implementation.



5.2. EQUIVALENCE CHECKING 87

5.2 Equivalence Checking

Equivalence Checking is a branch of static verification that employs formal tech-
niques to prove that two versions of a design either are, or are not, functionally
equivalent. The equivalence checking flow consists of four stages: reading, match-
ing, verification and debugging. The matching and verification stages are those
most impacted by design transformations. During the reading stage, both versions
of the design are read by the equivalence checking tool and segmented into man-
ageable sections called logic cones. Logic cones are groups of logic bordered by
registers, ports, or black boxes. Figure 5.3(a) shows the cones for a typical design
block. The output border of a logic cone is referred to as the compare point. For
example, OUT\ is the compare point in Cone\ of Figure 5.3(a).

OUTn

Reference Design

•
•

•

•

• •

Implementation Design

• >
•

•
• >
• •

a) Logic Cones in a Design Block

^ Automatically
matched cones

fes- User specified [
W^ matched cones

b) Compare Point Matching

Unmatched cones

Figure 5.3: Compare point matching between reference and implementation design

In the matching phase, the tool attempts to match, or map, compare points
from the reference design to their corresponding compare point within the imple-
mentation design [18]. Two types of matching techniques are used: name based
(non-function) and function based (signature analysis). Figure 5.3(b) shows com-
pare point matching for a typical reference design and implementation. For better
performance, the majority of the matching should be completed by more efficient
name based methods.

Design transformations can result in fewer cones being matched by the name
based techniques, slowing match performance. Creating compare rules assist name
based techniques, but determination and creation of the rules themselves can be
time consuming. If the implementation is drastically different than the reference
design, design rules cannot be written and compare points have to be manually
matched for better performance or matched using more costly function based tech-
niques. This becomes impractical for design with many unmatched points.



88 CHAPTER 5. DESIGN VALIDATION

During the verification stage, each matched compare point is proven either
functionally equivalent or non-equivalent ([12], [58]). Design transformations can
impact the structure of a logic cone in the implementation design. When logic
cones are very dissimilar, performance suffers. In some cases, such as during re-
timing, the logic cones can change so significantly that additional setup is required
to successfully verify the designs. The debugging phase begins when the tool has
returned a non-equivalent result. Design transformations that have not been ac-
counted for can lead to a false negative result, and valuable time could be spent
debugging designs that are, in reality, equivalent. The solution would be to per-
form additional setup so that the tool is guided for the given designs.

Our framework generates the synthesizable RTL description to enable equiva-
lence checking using Synopsys Formality [128]. The tool reads both the reference
and the implementation designs, and attempts to match the compare points between
them. The unmatched compare points need to be mapped manually. The tool tries
to establish equivalence for each matched compare point. In case of a failure, the
failing compare points are analyzed to verify whether they are actual failures or
not. The feedback is used to perform additional setup (in case of a false negative),
or to modify the implementation.

5.3 Experiments

An important aspect of our methodology is the ability to perform both model (prop-
erty) checking and equivalence checking depending on the generated reference
model. Our validation framework uses the Versys2 [82] symbolic simulator and
the Formality [128] equivalence checker. Section 5.3.1 presents validation of a
memory management unit of a microprocessor that is compliant with the PowerPC
instruction-set using symbolic simulation. Section 5.3.2 presents the validation of
a RISC DLX processor using equivalence checking.

5.3.1 Property Checking of a Memory Management Unit

The memory management unit (MMU) typically supports demand-paged virtual
memory. It consists of blocks such as Segment Registers, Translation Lookaside
Buffers (TLBs), and Block Address Translation (BAT) arrays. Each of these mem-
ory blocks are composed of sub-blocks. For example, a TLB has three sub-blocks:
entry (data information), LRU (least recently used information), and valid (infor-
mation regarding validity of the data) as shown in Figure 5.4. Each of these sub-
blocks is implemented as SRAM. The typical operations in SRAM are read and
write. Therefore, a natural property to verify is to check read and write for each



5.3. EXPERIMENTS 89

SRAM cell. The generated reference model contains the following Verilog code
segment to verify the read and write properties for an SRAM cell.

// Write Property
always @ (wrClk or wrEn or din or wrAddr)
begin

if (wrClk & wrEn) ram[wrAddr] <= din;
end

// Read Property
assign out = (rdClk & rdEn) ? ram[rdAddr] : 32'bOj

The Versys2 symbolic simulator does not have automatic node matching (com-
pare point matching) scheme. Therefore, it is necessary to manually map the nodes
between the reference model and the implementation. We modified the Versys2
configuration file to provide the node mapping between the reference model and
the implementation. For example, the wrClk of the reference model is mapped to
sramWrClk of the implementation. An interesting feature of this validation ap-
proach is that the same set of properties (without any modification) is applied to all
MMU memory blocks. However, in each case, the node mapping must be modi-
fied.

Figure 5.4: TLB block diagram



90 CHAPTER 5. DESIGN VALIDATION

To verify whether the RTL design correctly implements the TLB miss detec-
tion, our framework generated the following Verilog code segment. The informa-
tion needed to build this property is directly available from the specification of the
MMU.

ass ign inp = ( { l ' b l , v s i d [ 0 : 2 3 ] ,ea [4:9] ,ea [10:13] }) ;
ass ign outO= ({vld0,e0 [0:23] , eO [24 :2 9] , eO [54:57] }) ;
ass ign o u t l = ( { v l d l , e l [ 0 : 2 3 ] , e l [24 : 2 9] , e l [54:57] }) ;
ass ign h i t0=( inp == outO);
ass ign h i t l = ( i n p == o u t l ) ;
ass ign miss=~(hitO | h i t l ) ;

This property verifies miss detection for a two-way set-associative TLB. It
would be a simple extension for generating this property for a ̂ -way set-associative
TLB. Here vsid (virtual segment id) and ea (effective address) are inputs, and pa
(physical address) is the output of the TLB block. The e and vld variables are
outputs from the entry and valid blocks respectively as shown in Figure 5.4.

Similarly we have generated and validated the property for the BAT array miss
detection. There are several mismatches found (between the reference model and
the implementation) during property checking. For instance, the architecture spec-
ification document does not provide the value for the else condition (default value
of a signal for example) in most of the cases. As a result the description of the
property does not have the default value for a signal, whereas the signal has a defi-
nite value in its implementation under all possible conditions. Symbolic simulation
produced mismatches in those cases. Consider the following read implementation
of a SRAM cell.

assign out = (rdClk & rdEn) ? ram[rdAddr] : 32'b0;

This implementation assigns 32 'b0 to signal out when condition (rdClk &
rdEn) is false. However, the architecture document does not specify the value
in the default case. As a result, the generated property does not have this value
that caused the mismatch. The architecture document is updated to add the values
in all cases. It is also possible to impose certain constraints in Versys2 to avoid
the detection of such false negatives. For example, we can set the condition (rd-
Clk & rdEn) as true in the Versys2 configuration file to avoid the detection of the
mismatch mentioned above.



5.3. EXPERIMENTS 91

5.3.2 Equivalence Checking of the DLX Architecture

We validated the DLX [55] processor using equivalence checking. We obtained a
VHDL description of the synthesizable 32-bit RISC DLX from eda.org [44] and
used it as the implementation. Our framework generated the VHDL description
from the ADL specification using the method described in Section 4.3. The gener-
ated VHDL description is used as the reference model (specification) for the vali-
dation.

Regardless of the implementation style, the equivalence checker can verify a
design based on the correct behavior in the reference model. For example, our
HDL generation framework generates a 32-bit carry look-ahead (CLA) adder. The
equivalence checker verifies that this design is equivalent to the 32-bit adder imple-
mentation, which uses a ripple-carry adder principle. Equivalence checking took
4 seconds to verify the adder on a 300 MHz Sun Ultra-250 with 1024M RAM.
Similarly, we generated a structural model of a 32x32 register file and used it as
a reference model to verify the behavioral register file implementation [44]. In
this case, equivalence checking took 432 seconds. The majority of this time (347
seconds) was consumed in the elaboration (linking) phase of the behavioral imple-
mentation.

Our framework generated synthesizable RTL for 32-bit RISC DLX that sup-
ports signed operations. To avoid memory explosion during equivalence checking,
we guided the RTL generation process to have a structure similar to the imple-
mentation [44]. The equivalence checking process took 397 seconds. We have
encountered a mismatch in the output data bus at clock cycle 2500. The analysis
revealed that the problem is in the overflow bit of the adder. The ripple-carry adder
implementation of the DLX [44] had an incorrect computation of the overflow bit.

Design analysis in our framework is easy once we figure out the module that
is causing the problem. For example, in this particular case once we know that the
adder is causing the problem, we can verify the adder implementation of the DLX
by generating an adder specification (HDL description) from our framework and
applying equivalence checking.

Table 5.1: Validation of the DLX implementation using equivalence checking

Reference
Implementation
Validation Time

32-bit CLA adder
ripple-carry adder

4 seconds

32x32 register-file
behavioral model

432 seconds

32-bit DLX
DLX [44]

397 seconds

Table 5.1 summarizes the experimental results. Each column in the table presents
the equivalence checking time for the respective reference model and the imple-



92 CHAPTER 5. DESIGN VALIDATION

mentation. As we can see from the table that the validation time is longer for
equivalence checking of the register file than the DLX processor. This is due to the
fact that the models used for verifying the register-file are very different (structural
vs. behavioral). However, we have guided the reference model generation process
of the DLX processor such that the reference model has structure similar to that of
the implementation.

5.4 Related Work

Several approaches for formal or semi-formal verification of programmable archi-
tectures have been developed in the past. Theorem proving techniques, for exam-
ple, have been successfully adapted to verify pipelined processors ([20], [62], [78]).
However, these approaches require a great deal of user intervention, especially for
verifying control intensive designs. Hosabettu [118] proposed an approach to de-
compose and incrementally build the proof of correctness of pipelined micropro-
cessors by constructing the abstraction function using completion functions.

Burch and Dill presented a technique for formally verifying pipelined processor
control circuitry [53]. Their technique verifies the correctness of the implementa-
tion model of a pipelined processor against its instruction-set architecture (ISA)
model based on quantifier-free logic of equality with uninterpreted functions. The
technique has been extended to handle more complex pipelined architectures by
several researchers ([64], [79]). The approach of Velev and Bryant [79] focuses on
efficiently checking the commutative condition for complex microarchitectures by
reducing the problem to checking equivalence of two terms in a logic with equality,
and uninterpreted function symbols.

Huggins and Campenhout verified the ARM2 pipelined processor using ab-
stract state machine [56]. Levitt and Olukotun [57] presented a verification tech-
nique, called unpipelining, which repeatedly merges last two pipeline stages into
one single stage, resulting in a sequential version of the processor. A framework
for microprocessor correctness statements about safety that is independent of im-
plementation representation and verification approach is presented in [71].

Ho et al. [90] extract controlled token nets from a logic design to perform
efficient model checking. Jacobi [13] used a methodology to verify out-of-order
pipelines by combining model checking for the verification of the pipeline control,
and theorem proving for the verification of the pipeline functionality. Composi-
tional model checking is used to verify a processor microarchitecture containing
most of the features of a modern microprocessor [115]. There has been a lot a
work in the area of module level validation such as verification of floating-point



5.5. CHAPTER SUMMARY 93

unit [91], and protocol validation such as verification of cache coherence protocol
[29].

5.5 Chapter Summary

Functional verification is one of the most complex and expensive tasks in the cur-
rent microprocessor design flow. A significant bottleneck in the validation of such
systems is the lack of a golden reference model. Thus, many existing approaches
employ a bottom-up validation methodology by using a combination of simulation
techniques and formal methods.

This chapter presented a top-down validation methodology driven by an ADL.
The reference model (HDL description) is generated from the ADL specification.
An important aspect of our methodology is the ability to perform both model (prop-
erty) checking and equivalence checking depending on the generated reference
model. Our framework generates the intended properties to enable model checking,
and generates the RTL description of the processor to enable equivalence checking.
To verify the properties, the framework uses Versys2 [82] that generates assertions
from the reference model and applies them to the implementation using symbolic
trajectory evaluation. The framework uses Formality [128] to perform equivalence
checking. We have applied our methodology in two validation scenarios: prop-
erty checking of a memory management unit of a microprocessor that is compliant
with the PowerPC instruction-set, and equivalence checking of the DLX architec-
ture. We have identified a functional bug in the ripple-carry adder module of the
DLX implementation [44].

Specification-driven hardware generation and validation of design implemen-
tation using equivalence checking has one limitation: the structure of the generated
hardware model (reference) needs to be similar to that of the implementation. This
requirement is primarily due the limitation of the equivalence checkers available
today. Equivalence checking is not possible using these tools if the reference and
implementation designs are large and drastically different. Property checking can
be useful in such scenarios to ensure that both designs satisfy a set of properties.
However, property checking does not guarantee equivalence between two designs.
As a result, it is also necessary to use other complementary validation techniques
(such as simulation) to verify the implementation.



6
FUNCTIONAL TEST GENERATION

As embedded systems continue to face increasingly higher performance require-
ments, deeply pipelined processor architectures are being employed to meet de-
sired system performance. Functional validation of such programmable proces-
sors is widely acknowledged as a major bottleneck in current design methodology.
Simulation is the most widely used form of microprocessor verification: millions
of cycles are spent during simulation using a combination of random and directed
test cases in traditional design flow. Certain heuristics and design abstractions are
used to generate directed random testcases. However, due to the bottom-up nature
and localized view of these heuristics the generated testcases may not yield a good
coverage. The problem is further aggravated due to the lack of a comprehensive
functional coverage metric.

This chapter presents two specification-driven test generation techniques. Sec-
tion 6.1 describes a model checking based functional test program generation tech-
nique for pipelined processors. Section 6.2 proposes a functional fault model that
is used to define the functional coverage of pipelined architectures. The fault model
is used for coverage-driven test generation. Section 6.3 presents related work ad-
dressing validation of pipelined processors. Finally, Section 6.4 summarizes the
chapter.

6.1 Test Generation using Model Checking

This section presents a specification-driven test generation technique for pipelined
processors. To make ADL-driven test generation applicable to realistic embedded
processors, three important steps must be automated using efficient techniques.
First, the processor model generation from the specification needs to be automated.
Second, there is a need for a comprehensive functional coverage metric that can be



96 CHAPTER 6. FUNCTIONAL TEST GENERATION

used to generate test programs. Finally, an efficient test generation technique is
necessary that can model complex designs and generate functional test programs.

6.1.1 Test Generation Methodology

Figure 6.1 shows our graph based functional test program generation methodol-
ogy. The graph model of the processor is generated from the ADL specification.
The properties are generated based on the graph coverage metric discussed later in
this section. The properties are applied at the module level using the SMV model
checker [43]. The counterexamples are analyzed to generate test programs at the
processor level. We apply these test programs to the simulator of the processor to
ensure that the coverage criteria is met. If necessary, additional properties can be
added manually. This technique reduces the time and space required for generat-
ing test programs by applying properties at the module level and composing the
responses in sequence by traversing the pipeline graph.

Algorithm 7: Test Program Generation
Inputs: ADL specification of the pipelined processor
Outputs: Test programs to verify the pipeline behavior.
Begin

Generate graph model of the architecture.
Generate properties based on the graph coverage
for each property prop for graph node n

inputs = <|)

while (inputs != primary_inputs)
Apply prop on node n using SMV model checker
inputs = Find i/p requirements for n from counterexample
if inputs are not primary .inputs

Extract output requirements for parent of node n
prop = modify prop with new output requirements
n = parent of node n

endif
endwhile
Convert primary input assignments to a test program
Generate the expected output using a simulator.

endfor
return the test programs

End



6.1. TEST GENERATION USING MODEL CHECKING 97

Architecture Specification
(English Document)

ADL Specification
Generic

SMV Models

Additional Properties
Graph Model

(SMV Description)

i _ i Properties
(SMV Description)

SMV Description
(Graph node N)

f Counterexamples j

Extract i/p assignment
(for node N)

Generate o/p requirement
(for parent of N)

Simulator J
• ^ * ^

T Testcases
Coverage Report

Figure 6.1: Test program generation methodology



98 CHAPTER 6. FUNCTIONAL TEST GENERATION

Algorithm 7 presents our specification driven test generation procedure. A
property prop is applied to a module corresponding to node n in the graph model.
The framework actually generates the negation of the properties that we want to
verify. For example, to generate a testcase for assigning a value 5 to a register R 7,
the property states that "R7 != 5". The SMV model checker produces a counterex-
ample for the property. The counterexample is analyzed to find the input require-
ments for the node n. If these inputs are not the primary inputs of the processor, the
output requirements for the parent node of n are computed. The property is modi-
fied based on the output requirements and applied to the parent node. This iteration
continues until primary input assignments are obtained. The primary input assign-
ments are converted into test programs (instruction sequences) by putting random
values in the unassigned inputs. The complexity of the algorithm is O{n x p),
where n is the number of nodes in the graph model and p is the number of proper-
ties.

Graph Coverage

Measuring progress is an important task that enables the designer to decide when
to end the verification effort. We propose a coverage metric based on functional
coverage of the pipeline. We define all possible interactions between operations
(instructions) and pipeline stages (paths) through graph coverage. A comprehen-
sive functional coverage metric is described in Section 6.2.

We define graph coverage using graph node coverage and graph edge coverage.
A node in the graph is called covered if it has been in all of the four states: active,
stalled, exception and flushed. A node is active when it is executing an instruction.
A node can be stalled due to structural or data hazards. A node can be in exception
state if it generates an exception while executing an instruction. It is possible to
have multiple exception scenarios and stall conditions for a node. However, our
current node coverage requires only one scenario in each case. A node is in the
flushed state if an instruction in the node is flushed due to the occurrence of an
exception in any of its successor nodes.

Similarly, an edge in the graph is called covered if it has been in all of the three
states: active, stalled and flushed. An edge is active when it is used to transfer an
operation in a clock cycle. An edge is stalled if it does not transfer an operation in a
clock cycle from a parent node to a child node. An edge is flushed if the parent node
is flushed due to the exception in the child node. The edge coverage conditions are
redundant if a node has only one child. However, if a node has multiple children
(or parents), edge coverage conditions are necessary.

Our test generation algorithm traverses the pipeline graph and generates prop-
erties based on the graph coverage described above. For example, consider the test



6.1. TEST GENERATION USING MODEL CHECKING 99

generation for a feedback path (edge) from MUL7 to IALU for the DLX architec-
ture shown in Figure 3.6. To generate a test for making the feedback path active,
two properties are generated: i) make the node MUL 7 active in clock cycle t, and ii)
make the node IALU active in clock cycle (t+1). This would lead to a test program
that has a multiply operation followed by six NOPs (no operation), and finally an
add operation.

6.1.2 A Case Study

In a case study we successfully applied the proposed methodology to the DLX
processor [55]. Figure 3.6 shows the graph model of the DLX processor. First,
we present the test program generation results for the DLX processor. Next, we
describe a test generation scenario using an illustrative example to demonstrate the
efficiency of our technique.

Test Generation Results

This section describes the number of test cases generated for the DLX processor
using the graph coverage described in Section 6.1.1. The DLX processor shown in
Figure 3.6 has 20 nodes and 24 edges (except feedback paths). We have described
all the 91 instructions of the DLX processor [55].

Table 6.1: Number of test programs in different categories

Node Coverage
Active

91
Stalled

20
Flushed

20
Exception

20

Edge Coverage
Active

24
Stalled

24
Flushed

24

Table 6.1 shows the number of test programs generated for the node and edge
coverage of the DLX processor. Although, 20 testcases would suffice for the active
node coverage, we use 91 test cases in this category to cover all the instructions.
Also, there are many ways of making a node stalled, flushed or in exception con-
dition. We chose one such scenario. If we consider all possible scenarios, the
number of test programs will increase. In this case, our algorithm generated 223
test programs in 91 seconds on a 333 MHz Sun UltraSPARC-II with 128M RAM.

As mentioned earlier, some of the test programs are redundant. For example,
since there are four pipeline paths, we need only four test programs that exercise
the four paths. These four test programs will make all the nodes active. Similarly,
if we assume VLIW DLX, the decode node will be stalled if any one of its four



100 CHAPTER 6. FUNCTIONAL TEST GENERATION

children is stalled. Furthermore, if the MEM node is stalled, all of its four parents
will also be stalled. This implies that we need only 14 testcases for node stalling.
Likewise, if the MEM node is in exception, the instructions in all the predecessor
nodes will be flushed. Hence, we need only 2 testcases for flushing. Finally, some
of the node coverage testcases also satisfies the edge coverage. We need a total of
43 test programs in this case. Table 6.2 shows the number of reduced test programs
in different categories.

Active

4

Table 6

Node
Stalled

14

.2: Reduced number of test programs

Coverage
Flushed

2

Exception

20

Edge Coverage
Active

4t

Stalled

14*+ 3

Flushed

2T

Test Program Generation: An Example

Example 6.1: Consider a fragment of the DLXpipeline containing three internal
registers of the division unit (DIV) as shown in Figure 6.2. The goal is to initialize
two registers Ain and Bin with values 2 and 3 respectively at clock cycle 9.

Fetch ^* 1 InstMemory I

result

Figure 6.2: A fragment of the DLX architecture

In this section we describe our test generation approach using Example 6.1.
The two internal input registers for DIV unit are Ain and Bjn. The internal output
register for DIV unit is Cout. The input instruction is divlnst and the output is

f Same testcases as in the node coverage.



6.1. TEST GENERATION USING MODEL CHECKING 101

result. In this particular scenario, Ain and Bin receive data from the first and second
source operands of the input instruction {divlnst) i.e., Am = divlnst .srcl and B[n =
divlnst.src2; Cout returns the result of the division i.e., Cout = Am H-5/w; finally the
output is generated from Cout i.e., result = Cout.

The following property generates the instruction sequence to initialize Am and
Bin with values 2 and 3 respectively at clock cycle 9. The property is written using
the SMV language [43]. Informally speaking, it implies that if the current clock
cycle is 8, in the next cycle DIV.Ain should not be 2 or DIV.Bin should not be 3:

assert G((cycle = 8) -> X((DIV.Ain ~= 2) | (DIV.Bin ~= 3)));

If this property is applied to the complete description of the processor, SMV
takes 375.98 seconds on a 333 MHz Sun UltraSPARC-II with 128M RAM, and
requires 1928568 BDD nodes to generate the counterexample. In the remainder of
this section, we illustrate how our test generation methodology improves both time
and space requirements for the Example 6.1.

We modify this global property to make it applicable at module level (as shown
below) and apply the property to the division unit (DIV) using SMV:

a s s e r t G ( ( c y c l e = 8 ) - > X ( ( A i n ~ = 2 ) | ( B i n ~ = 3 ) ) ) ;

The next step is to analyze the counterexample produced by SMV to extract the
input requirements for the division unit. For example, in this case the input require-
ments are simple: divlnst.srcl = 2 and divlnst.src2 = 3. These input requirements
are used to generate the expected output assignments for the decode unit (parent
of the division unit). Also, the cycle count requirement is modified for the decode
unit. The modified property (shown below) is applied to the decode unit.

assert G((cycle=7) -> X((divlnst.srcl ~= 2)
(divlnst.src2 ~= 3))

The counterexample is analyzed to extract the input requirements for the de-
code unit. The decode has two inputs: operation and RegFile. For example, in
this case the input requirements are: operation, opcode = DIV, operation.srcl =
1, operation.src2 = 2, RegFileflJ = 2, and RegFile[2J=3. This indicates that the
operation should be a division operation with srcl as Rl and src2 as R2. It also
implies that the register file should have the values 2 and 3 at locations 1 and 2
respectively.



102 CHAPTER 6. FUNCTIONAL TEST GENERATION

There are two tasks to be done here. First, initialize a register file location
with a specific value at a given clock cycle t. It is done using a move-immediate
instruction fetched at (t-5). In this case, the move-immediate operations should be
done at clock cycle 2 and 3 to make the data available at cycle 8. The second task
is to convert the remaining input requirements as the expected outputs for the fetch
unit (parent of the decode). The modified property (shown below) is applied to the
fetch unit.

assert G((cycle=6) -> X((operation.opcode ~= DIV)
(operation.srcl ~= 1)
(operation.src2 ~= 2)));

The counterexample is analyzed to extract the input requirements for the fetch
unit. The fetch unit has two inputs: PC and instruction memory. The expected
value for PC is 5 and InstMemory[5] has instruction: DIV RXR\ R2. These are pri-
mary inputs of the processor. The final test program, shown below, is constructed
by putting random values in the unspecified fields:

Fetch Cycle

1
2
3
4
5
6
7

Opcode

NOP
ADD I
ADD I
NOP
NOP
NOP
DIV

Dest

Rl,
R2,

R3,

Srcl

RO,
RO,

Rl,

Src2

#2
#3

R2

RO
Rl
R2

Comments

is always 0
= 2
= 3

For this example, the system took less than a second to come up with the coun-
terexample on a 333 MHz Sun UltraSPARC-II with 128M RAM. This time in-
cludes the time taken by SMV in verifying three module level properties. It also
includes the time taken by our system in traversing the graph and generating the
new properties with input/output computations using counterexamples. The total
number of BDD nodes allocated is 5600. If the property is applied to the complete
description of the processor, SMV takes 375.98 seconds and requires 1928568
BDD nodes to generate the counterexample. Clearly, our technique reduced the
test generation time and the required BDD size by an order of magnitude.



6.2. FUNCTIONAL COVERAGE DRIVEN TEST GENERATION 103

6.2 Functional Coverage driven Test Generation

Several coverage measures are commonly used during design validation, such as
code coverage, toggle coverage and fault coverage. Unfortunately, these measures
do not have any direct relationship to the functionality of the device. For example,
none of these determine if all possible interactions of hazards, stalls and exceptions
are tested in a processor pipeline. There is a need for a coverage metric based on
the functionality of the design. To define a useful functional coverage metric, we
need to define a fault model of the design that is described at the functional level
and independent of the implementation details.

In this section, we present a functional fault model for pipelined processors.
The fault model should be applicable to a wide variety of today's microprocessors
from various architectural domains. We have developed a graph-theoretic model
(Section 3.1.1) that can capture a wide spectrum of pipelined processors, coproces-
sors, and heterogeneous memory subsystems. We have defined functional coverage
based on the effects of faults in the fault model applied at the level of the graph-
theoretic model. This allows us to compute functional coverage of a pipelined pro-
cessor for a given set of random or constrained-random test sequences. We present
test generation procedures that accept the graph model of the pipelined processor
as input and generate test programs to detect all the faults in the functional fault
model.

6.2.1 Functional Fault Models

The universe of design errors consists of many types of faults including functional
(logical) faults that affect the logic function, and timing faults that effect the operat-
ing speed of the system. We only consider the functional faults. The set of possible
functional faults (bugs) is dependent on the functionality of the design. In this sec-
tion, we present fault models for various functions in a pipelined processor. We
categorize various computations in a pipelined processor into register read/write,
operation execution, execution path and pipeline execution. We outline the under-
lying fault mechanisms for each fault model, and describe the effects of these faults
at the level of the graph-based architecture model presented in Section 3.1.1.

Fault Model for Register Read/Write

To ensure fault-free execution, all registers should be written and read correctly. In
the presence of a fault, reading of a register will not return the previously written
value. The fault could be due to an error in reading, register decoding, register
storage, or prior writing. The outcome is an unexpected value. If VR. is written in



104 CHAPTER 6. FUNCTIONAL TEST GENERATION

register Rj and read back, the output should be VR. in fault-free case. In the presence
of a fault, the output is not equal to VR..

Fault Model for Operation Execution

All operations must execute correctly if there are no faults. In the presence of a
fault, the output of the computation is different from the expected output. The
fault could be due to an error in operation decoding, control generation or final
computation. Erroneous operation decoding might return an incorrect opcode. This
can happen if incorrect bits are decoded for the opcode. Selection of incorrect bits
will also lead to erroneous decoding of source and destination operands. Even if the
decoding is correct, due to an error in control generation an incorrect computation
unit can be enabled. Finally, the computation unit can be faulty. The outcome is an
unexpected result.

Let valt, where valt = fopcodej {src \, src2 ,...)> denote the result of computing the
operation "opcode} dest, src\, src2, ...". In the fault-free case, the destination will
contain the value va//. Under a fault, the content of the destination is not equal to

Fault Model for Execution Path

During execution of an operation in the pipeline, one pipeline path and one or
more data-transfer paths are activated1. We define all these activated paths as the
execution path for that operation. An execution path epopi is faulty if it produces an
incorrect result during execution of operation opt in the pipeline. The fault could
be due to an error in one of the paths (pipeline or data-transfer) in the execution
path. A path is faulty if any one of its nodes or edges are faulty. A node is faulty if
it accepts valid inputs and produces incorrect outputs. An edge is faulty if it does
not transfer the data/instruction correctly.

Without loss of generality, let us assume that the processor has/? pipeline paths
(PP = L)f=iPPi) and q data-transfer paths (DP = lf.=xdpj). Furthermore, each
pipeline path ppi is connected to a set of data-transfer paths DPgrpt (DPgrpt C
DP). During execution of an operation opt in the pipeline path /?/?,-, a set of data-
transfer paths DPop. (DPopj C DPgrpt) are used (activated). Therefore, the execu-
tion path epopi for operation op\ is, epopi = ppi UDPopr Let us assume, operation
opt has one opcode (opcode}), m sources (Uj=1.src/) and n destinations (lfk=xdestk).
Each data-transfer path dpi (dpt e DP0Pi) is activated to read one of the sources or
write one of the destinations of opj in execution path epopr

Pipeline and data-transfer paths are described in Section 3.1.1



6.2. FUNCTIONAL COVERAGE DRIVEN TEST GENERATION 105

Let valj, where va/z = Jcopcode••(Uj=1.s
irc7), denote the result of computing the

operation o/?/ in execution path ept. The va// has n components (U£=1va/f). In
the fault-free case, the destinations will contain correct values, i.e., "ik destk =
va/f. Under a fault, at least one of the destinations will have incorrect value, i.e.,
3k destk ^ valf .

Fault Model for Pipeline Execution

The previous fault models consider only one operation at a time. An implemen-
tation of a pipeline is faulty if it produces incorrect results due to execution of
multiple operations in the pipeline. The fault could be due to incorrect implemen-
tation of the pipeline controller. The faulty controller might have erroneous haz-
ard detection, incorrect stalling, erroneous flushing, or wrong exception handling
schemes.

Let us define stall set for a unit u (SSU) as all possible ways to stall that unit.
Therefore, the stall set for the architecture Stall Set = UyuSSu. Let us also define ex-
ception set for a unit u (ESU) as all possible ways to create an exception in that unit.
We define the set of all possible multiple exception scenarios as MESS. Hence, the
exception set for the architecture ExceptionSet = UyuESu U MESS. We consider
two types of pipeline interactions: stalls and exceptions. Therefore, all possible
pipeline interactions (Pis) can be defined as: Pis = StallSetU ExceptionSet. Let
us assume a sequence of operations opspi causes a pipeline interaction pi (i.e.,
pi e Pis), and updates n storage locations.

Let valpi denote the result of computing the operation sequence opsPj. The valpt
has n components (U^jva/^). In the fault-free case, the destinations will contain
correct values, i.e., \/k destk = val\. Under a fault, at least one of the destinations
will have incorrect value, i.e., 3k destk ^ valf

6.2.2 Functional Coverage Estimation

We define functional coverage based on the fault models described in Section 6.2.1.

• a fault in register read/write is covered if the register is written first and read
later.

• a fault in operation execution is covered if the operation is performed, and
the result of the computation is read.

• a fault in execution path is covered if the execution path is activated, and the
result of the computation is read.



106 CHAPTER 6. FUNCTIONAL TEST GENERATION

• a fault in pipeline execution is covered if the fault is activated due to execu-
tion of multiple operations in the pipeline, and the result of the computation
is read.

We compute functional coverage of a pipelined processor using the traditional
definition of coverage. The functional coverage for a given set of test programs is
computed as the ratio between the number of faults detected by the test programs
and the total number of detectable faults in the fault model.

6.2.3 Test Generation Techniques

In this section, we present test generation procedures for detecting faults covered
by the fault models presented in Section 6.2.1. Different architectures have specific
instructions to observe the contents of the registers and memories. In our frame-
work, we use load and store instructions to make the register and memory contents
observable at the output data bus.

Procedure 1: createTestProgram
Input: An operation list operList.
Output: Modified operation list with initializations.
begin

resOperations = {};
for each operation oper in operList

if there are unspecified fields in oper
assign appropriate opcode/operands;

endif
for each source src of oper

if (src is a register or memory location) then
initOper: initialize src with appropriate value;
resOperations = resOperations U initOper;

endif
endfor
resOperations = resOperations U oper;
readOper. create an operation to read the destination of oper;
resOperations = resOperations U readOper;

endfor
return resOperations.

end



6.2. FUNCTIONAL COVERAGE DRIVEN TEST GENERATION 107

We first describe a procedure createTestProgram (Procedure 1) that is used by
the test generation algorithms. Procedure 1 accepts a list of operations as input
and returns the modified list of operations. First, it assigns appropriate values
to the unspecified locations (opcodes or operands). Next, it creates initialization
instructions for the uninitialized source operands. It also creates instructions to
read the destination operands. Finally, it returns the modified list that contains the
initialization operations, modified input operations, and the read operations (in that
order).

Consider an input list with one operation ADD dest/reg Rl src2/imm. The
operation has two unspecified fields: dest and src2. Procedure 1 assigns a register
R3 to dest field and an immediate value to src2 field. It also creates an initialization
operation for the source Rl. Finally, it creates an operation to read the destination.
The modified list consists of three operations (in that order): MOVIR1 0x5, ADD
R3 Rl 0x23, and STORE R3 R6 0x0.

Test Generation for Register Read/Write

Algorithm 8 presents the procedure for generating test programs for detecting faults
in register read/write functions. The fault model for the register read/write function
is described in Section 6.2.1. For each register in the architecture, the algorithm
generates an instruction sequence consisting of a write followed by a read for that
register. The function GenerateUniqueValue returns unique value for each register
based on the register name. A test program for register Rj will consist of two
assembly instructions: "MOVI Rh #val" and "STORE Rh Rj, 0x0". The move-
immediate (MOVI) instruction writes valj in register Rj. The STORE instruction
reads the content of Rj and writes it in memory addressed by Rj (offset 0).

Algorithm 8: Test Generation for Register Read/Write
Input: Graph model of the architecture G.
Output: Test programs for detecting faults in register read/write.
begin /*** TestProgramList = { } * * * /

for each register reg in architecture G
valuereg = GenerateUniqueValue(reg);
writelnst = an instruction that writes valuereg in register reg.
testprogreg = createTestProgram(wr/fe/flsi0
TestProgramList = TestProgramList U testprogreg;

endfor
return TestProgramList.

end



108 CHAPTER 6. FUNCTIONAL TEST GENERATION

Theorem 6.2.1. The test sequence generated using Algorithm 8 is capable of de-
tecting any detectable fault in the register read/write fault model

Proof Algorithm 8 generates one test program for each register in the architecture.
A test program consists of two instructions - a write followed by a read. Each
register is written with a specific value. If there is a fault in register read/write
function, the value read would be different than the written value. D

Test Generation for Operation Execution

Algorithm 9 presents the procedure for generating test programs for detecting faults
in operation execution. The fault model for the operation execution is described in
Section 6.2.1. The algorithm traverses the behavior graph of the architecture, and
generates one test program for each operation graph using createTestProgram. For
example, a test program for the operation graph with opcode ADD in Figure 3.3
has four operations: two initialization operations ("MOV R3 0x333", "MOV R5
0x212") followed by the ADD operation ("ADD R2 R3 R5"), followed by the
reading of the result ("STORE R2, R7, 0x0").

Algorithm 9: Test Generation for Operation Execution
Input: Graph model of the architecture G.
Output: Test programs for detecting faults in operation execution.
begin /*** TestProgramList = {} ***/

for each operation oper in architecture G
testprogoper = createTestProgram(oper);
TestProgramList = TestProgramList U testprogoper;

endfor
return TestProgramList.

end

Theorem 6.2.2. The test sequence generated using Algorithm 9 is capable of de-
tecting any detectable fault in the operation execution fault model.

Proof Algorithm 9 generates one test program for each operation in the archi-
tecture. If there is a fault in operation execution, the computed result would be
different than the expected output. •



6.2. FUNCTIONAL COVERAGE DRIVEN TEST GENERATION 109

Test Generation for Execution Path

Algorithm 10 presents the procedure for generating test programs for detecting
faults in execution path. The fault model for the execution path is described in Sec-
tion 6.2.1. The algorithm traverses the structure graph of the architecture, and for
each pipeline path it generates a group of operations supported by that path. It ran-
domly selects one operation from each operation group. There are two possibilities.
If all the edges in the execution path (containing the pipeline path) are activated
by the selected operation, the algorithm generates all possible source/destination
assignments for that operation. However, if different operations in the operation
group activate different set of edges in the execution path, it generates all possible
source/destination assignments for each operation in the operation group.

Algorithm 10: Test Generation for Execution Path
Input: Graph model of the architecture G.
Output: Test programs for detecting faults in execution path.
begin /*** TestProgramList = { } * * * /

for each pipeline path path in architecture G
opgrouppath = operations supported in path.
execpath =path and all data-transfer paths connected to it
operpath = randomly select an operation from opgrouppath
if (operpath activates all edges in execpath)

ops Path = operPath
else

OPS path = Opgrouppath
endif
for all operations oper in opspath

for all source/destination operands opnd of oper
for all possible register values val of opnd

newOper = assign val to opnd of oper.
testprogOper = createTestProgram(newOper).
TestProgramList = TestProgramList U testprogoper\

endfor
endfor

endfor
endfor
return TestProgramList.

end



110 CHAPTER 6. FUNCTIONAL TEST GENERATION

Theorem 6.2.3. The test sequence generated using Algorithm 10 is capable of
detecting any detectable fault in the execution path fault model

Proof The proof is by contradiction. The only way a detectable fault will be
missed if a pipeline or data-transfer edge is not activated (used) by the generated
test programs. Let us assume, an edge epp is not activated by any operation. If the
epp is not part of (connected to) any pipeline path, the fault is not detectable. Let
us further assume, epp is part of pipeline path pp. If the pipeline path epp does not
support any operations, the fault is not detectable. If it does support operations,
Algorithm 10 will generate operation sequences that exercises this pipeline path
and all the data-transfer paths connected to it. Since, the edge epp is connected to
pipeline path/7/7, it is activated. •

Test Generation for Pipeline Execution

Algorithm 11 presents the procedure for generating test programs for detecting
faults in pipeline execution. The fault model for the pipeline execution is described
in Section 6.2.1. The first loop (L1) traverses the structure graph of the architecture
in a bottom-up manner, starting at leaf nodes. The second loop (L2) computes test
programs for generating all possible exceptions in each unit using templates. The
third loop (L3) computes test programs for creating stall conditions due to data
and control hazards in each unit using templates. The fourth loop (L4) creates
test programs to generate stall conditions using structural hazards. Finally, the last
loop (L5) computes test sequences for multiple exceptions involving more than one
units. The composeTestProgram function uses ordered2 n-tuple units and combines
their test programs. The function also removes dependencies across test programs
to ensure generation of multiple exceptions during execution of the combined test
program.

Theorem 6.2.4. The test sequence generated using Algorithm 11 is capable of
detecting any detectable fault in the pipeline execution.

Proof Algorithm 11 generates test programs for all possible interactions during
pipeline execution. The first for loop (LI) generates all possible hazard and ex-
ception scenarions for each functional unit in the pipeline. The test programs for
creating all possible exceptions in each node are generated by the seconds/or loop
(L2). The third for loop (L3) generates test programs for creating all possible data
and control hazards in each node. Similarly, the fourths/or loop (L4) generates tests

2The unit closer to completion has higher order.



6.2. FUNCTIONAL COVERAGE DRIVEN TEST GENERATION 111

for creating all possible structural hazards in a node. Finally, the last^or loop (L5)
generates test programs for creating all possible multiple exception scenarios in the
pipeline. •

Algorithm 11: Test Generation for Pipeline Execution
Input: Graph model of the architecture G.
Output: Test programs for detecting faults in pipeline execution.
begin /*** TestProgramList = {} ***/

LI: for each unit node unit in architecture G
L2: for each exception exon possible in unit

templateexon = template for exception exon
testprogunit = createTestProgram^em/j/tfteexow);
TestProgramList = TestProgramList U testprogunu\

endfor
L3: for each hazard haz in {RAW, WAW, WAR, control}

templatehaz = template for hazard haz
if haz is possible in unit

testprogunit = createTestProgram(/em/?toe/jaz);
TestProgramList = TestProgramList U testprogunit;

endif
endfor
L4: for each parent unit parent of unit

operparent = an operation supported by parent
resultOps = createTestProgram(o/?^rparew?);
testprogunit = a test program to stall unit (if exists)
testprogParent = resultOps U testprogmit
TestProgramList = TestProgramList U testprogparent\

endfor
endfor
L5: for each ordered n-tuple (unit\, unit2,..., unitn) in graph G

prog\ = a test program for creating exception in unit\

progn = a test program for creating exception in unitn

testprogtUpie = composeTestProgram(/?rogi U ... U progn);
TestProgramList — TestProgramList U testprogtupie\

endfor
return TestProgramList.

end



112 CHAPTER 6. FUNCTIONAL TEST GENERATION

6.2.4 A Case Study

We have applied our methodology on two pipelined architectures: a VLIW imple-
mentation of the DLX architecture [55], and a RISC implementation of the SPARC
V8 architecture [52].

Architecture Specification
(ADL Description)

ISA Specification
("e" Description)

Coverage
Specification

Pipelined Implementation
("e" Description)

Coverage Estimation

Test Generation
Simulator

Specman Elite
Directed

External Test Programs

Figure 6.3: Test Generation and Coverage Estimation

Experimental Setup

We have developed our test generation and coverage analysis framework using
Verisity's Specman Elite [134] as shown in Figure 6.3. We have captured exe-
cutable specification of the architectures using Verisity's "e" language. This in-
cludes description of 91 instructions for the DLX, and 106 instructions for the
SPARC V8 architecture. We refer these as specifications. We have implemented a
VLIW version of the DLX architecture (shown in Figure 3.6) using Verisity's "e"
language. We have used the LEON2 processor [70] that is a VHDL model of a 32-



6.2. FUNCTIONAL COVERAGE DRIVEN TEST GENERATION 113

bit processor compliant with the SPARC V8 architecture. We refer these models
(VLIW DLX and LEON2) as implementations.

Our framework generates test programs in three different ways: random, con-
strained random, and our approach. Specman Elite [134] is used to generate both
random and constrained-random test programs from the specification. Several con-
straints are used for constrained-random test generation. For example, we have
used the highest probability for choosing register-type operations in DLX to gener-
ate test programs for register read/write. Since, register-type operations have three
register operands, the chances of reading/writing registers are higher than immedi-
ate type (two register operands) or branch type (one register operand) operations.
The test programs generated by our approach uses the algorithms described in Sec-
tion 6.2.3.

To ensure that the generated test programs are executed correctly, our frame-
work applies the test programs on the implementation as well as the specification,
and compares the contents of the program counter, registers and memory locations
after execution of each test program as shown in Figure 6.4.

The Specman Elite framework allows definition of various coverage measures
that enables us to compute the functional coverage described in Section 6.2.2.
We defined each entry in the instruction definition (e.g. opcode, destination and
sources) as a coverage item in Specman Elite. The coverage for the destination
operand gives the measure of which registers are written. Similarly, the coverage
of source operands gives the measure of which registers are read. We have used
a variable for each register to identify a read after a write. Computation of cover-
age for operation execution is done by observing the coverage of the opcode field.
The computation of coverage for execution path is performed by observing if all
the registers are used for computation of all/selected opcodes. This is performed
by using cross coverage of instruction fields in Specman Elite that computes every
combination of values of the fields. Finally, we compute the coverage for pipeline
execution by maintaining variables for stalls and exceptions in each unit. The
coverage for multiple exceptions is obtained by performing cross coverage of the
exception variables (events) that occur simultaneously.

Results

In this section, we compare the test programs generated by our approach against
the random and constrained-random test programs generated by the Specman Elite.

Table 6.3 shows the comparative results for the DLX architecture. The rows
indicate the fault models, and the columns indicate test generation techniques. An
entry in the table has two numbers. The first one represents the number of opera-
tions generated by that test generation technique for that fault model. The second



114 CHAPTER 6. FUNCTIONAL TEST GENERATION

/* Test Program */
ADD Rl, R2, R3

XORI R7, R5, 0x43

Completed Execution Completed Execution

REF.PC==IMP.PC?
REF.RegFile == IMP.RegFile ?
REF.Memory == IMP.Memory ?

Implementation successfully
executed the test program

Incorrect Implementation

Figure 6.4: Validation of the Implementation

number (in parenthesis) represents the functional coverage obtained by the gener-
ated test programs for that fault model. The number 100% implies that the gen-
erated test programs covered all the faults in that fault model. For example, the
Random technique covered all the faults in "Register Read/Write" function using
3900 tests. The number of test programs for operation execution are similar for
both random and constrained-random approaches. This is because the constraint
used in this case (same probability for all opcodes) may be the default option used
in random test generation approach.

We performed an initial study to evaluate the quality of our functional fault
model using existing coverage measures. Table 6.4 compares our functional cov-
erage against HDL code coverage. The first column indicates the functional fault
models. The second column presents the minimum number of test programs gen-



6.2. FUNCTIONAL COVERAGE DRIVEN TEST GENERATION 115

Table 6.3: Test programs for validation of DLX architecture

Fault Models

Register Read/Write
Operation Execution

Execution Path
Pipeline Execution

TestC
Random

3900 (100%)
437 (100%)

12627 (100%)
30000 (25%)

Generation Techt
Constrained

750 (100%)
443 (100%)

1126(100%)
30000 (30%)

liques
Our Approach

130(100%)
182(100%)
320(100%)
626 (100%)

erated by our test generation algorithms to cover all the functional faults in the
corresponding fault model. The last column presents the code coverage obtained
for the DLX implementation [139] using the test programs mentioned in the sec-
ond column. As expected, our fault model performed well - a small number of test
programs generated a high code coverage.

Table 6.4: Quality of the proposed functional fault model

Fault Models

Register Read/Write
Operation Execution

Execution Path
Pipeline Execution

Test Programs

130
182
320
626

HDL Code Coverage

85%
91%
86%
100%

Table 6.5 shows the comparative results for different test generation approaches
for the LEON2 processor. The trend is similar in terms of number of operations
and functional coverage for both the DLX and LEON2 architectures. The random
and constrained-random approaches have obtained 100% functional coverage for
the first three fault models using an order of magnitude more test vectors than our
approach. We have analyzed the cause for the low functional coverage in pipeline
execution for the random and constraint-driven test generation approaches. These
two approaches covered all the stall scenarios and majority of the single exception
faults. However, they could not activate any multiple exception scenarios. Due to
the bigger pipeline structure (larger set of pipeline interactions) in the VLIW DLX,
it has lower fault coverage than the LEON2 architecture (5-stage integer pipeline)
in pipeline execution.

Our test generation and coverage estimation framework for the DLX proces-
sor is available as an eShare (user contributed "e" solutions) in Verisity verification
vault [135]. This includes "e" specifications for both ISA description and pipelined
implementation of the DLX architecture. It also includes components for random



116 CHAPTER 6. FUNCTIONAL TEST GENERATION

Table 6.5: Test programs for validation of LEON2 processor

Fault Models

Register Read/Write
Operation Execution

Execution Path
Pipeline Execution

Test<
Random

1746 (100%)
416(100%)

1500 (100%)
30000 (40%)

Generation Tech
Constrained

654 (100%)
467 (100%)
475 (100%)

30000 (50%)

niques
Our Approach

130 (100%)
212(100%)
192 (100%)
248 (100%)

and constrained-random test generation as well as interface for incorporating exter-
nal tests during simulation. Finally, it includes components for data and temporal
checking, and functional coverage estimation.

6.3 Related Work

Traditionally, validation of a microprocessor has been performed by applying a
combination of random and directed test programs using simulation techniques.
Aharon et al. [1] have proposed a test program generation methodology for func-
tional verification of PowerPC processors in IBM. Miyake et al. [59] have pre-
sented a combined scheme of random test generation and specific sequence gen-
eration. A coverage driven test generation technique is presented by Fine et al.
[119]. Shen et al. [63] have used the processor to generate tests at run-time by
self-modifying code, and performed signature comparison with the one obtained
from emulation.

Ur and Yadin [123] presented a method for generation of assembler test pro-
grams that systematically probe the micro-architecture of a PowerPC processor.
Iwashita et al. [37] use an FSM based processor modeling to automatically gen-
erate test programs. Campenhout et al. [19] have proposed a test generation algo-
rithm that integrates high-level treatment of the datapath with low-level treatment
of the controller. Kohno et al. [66] have presented a tool that generates test pro-
grams for verifying pipeline behavior in the presence of hazards and exceptions.
Ho et al. [114] have presented a technique for generating test vectors for verifying
the corner cases of the design.

Many researchers have proposed techniques for generation of functional test
programs for manufacturing testing of microprocessors ([68], [26], [122]). These
techniques use stuck-at fault coverage to demonstrate the quality of the generated
tests. The applicability of these test programs are not shown for functional valida-
tion of microprocessors.



6A. CHAPTER SUMMARY 111

6.4 Chapter Summary

Specification-driven test program generation is a promising approach for functional
validation of pipelined processors. In this chapter, we presented two test generation
techniques. The first half of the chapter presented a model checking based func-
tional test program generation technique for pipelined processors. Our method-
ology accepts an ADL specification of the processor as input. A graph model of
the pipelined processor is generated from the ADL specification. We defined the
functional coverage of the pipeline behavior in terms of the graph coverage. We
presented a test program generation algorithm that traverses the pipeline graph to
generate test programs based on the coverage metric. Our technique reduced the
test generation time and the required BDD size by an order of magnitude.

The second half of the chapter presented a functional coverage based test gener-
ation technique for pipelined architectures. The methodology made two important
contributions. First, we presented a functional fault model that is used in defining
the functional coverage. Second, we presented test generation procedures that ac-
cept the graph model of the microprocessor as input and generate test programs to
detect all the faults in the functional fault model. We are able to measure the good-
ness of a given set of random test sequences using our functional coverage metric.
We applied this technique on two pipelined architectures: DLX and LEON2. Our
experimental results demonstrate that the required number of test sequences gen-
erated by our algorithms to obtain a given fault (functional) coverage is an order of
magnitude less than the random or constrained-random test programs.



Part IV

Future Directions



7
CONCLUSIONS

Functional validation is one of the most important problems in today's SOC de-
sign methodology. A significant bottleneck in the validation of programmable ar-
chitectures is the lack of a golden reference model. As a result, many existing
approaches employ a bottom-up validation approach by using a combination of
simulation techniques and formal methods. This book presented a top-down vali-
dation methodology for programmable architectures that complements the existing
bottom-up techniques. This chapter draws the conclusions from the research re-
sults obtained, and looks at some future work on top-down validation and related
issues.

7.1 Research Contributions

This book investigated several issues related to top-down validation of programmable
architectures consisting of processor core, coprocessors, and memory subsystem.
There are four important problems to be addressed in a specification-driven valida-
tion methodology:

n Specification: How to capture a wide variety of programmable architectures
using a specification language? The language should be powerful enough
to specify the wide spectrum of contemporary processor, coprocessor, and
memory features. On the other hand, the language should be simple enough
to allow correlation of the information between the specification and the ar-
chitecture manual.

D Specification Validation: How to validate the architecture specification to
ensure it is golden? Specification analysis and validation would be an easier
task if the specification language has formal semantics.



122 CHAPTER 7. CONCLUSIONS

• Model Generation: How to generate hardware, simulation models, and
models for other validation techniques from the given specification?

D Design Validation: What are the bottom-up validation techniques that the
top-down methodology can complement?

This book examined all of the problems mentioned above. We used the EX-
PRESSION ADL [5] to specify the architecture. It can capture the structure and
behavior of a wide variety of programmable architectures including RISC, DSP,
VLIW, and superscalar. The validation techniques we developed are applicable to
any specification language that captures both the structure and the behavior of the
architecture.

We developed validation techniques to ensure that the static behavior of the
pipeline is well-formed by analyzing the structural aspects of the specification
using a graph based model. The dynamic behavior is verified by analyzing the
instruction flow in the pipeline using a FSM-based model to validate several archi-
tectural properties such as determinism and in-order execution in the presence of
hazards and multiple exceptions. These properties are by no means complete to
prove the correctness of the specification. The designer can add new architecture
specific properties and easily integrate it in our validation framework.

A major challenge in top-down validation methodology is the ability to gener-
ate executable models from the specification for a wide variety of programmable
architectures. We defined a functional abstraction technique to enable generation
of models for simulation, hardware generation, and property checking from the
ADL specification. The generated simulation and hardware models are used for
functional validation and design space exploration of programmable architectures.

This book explored two top-down validation scenarios that complement exist-
ing bottom-up techniques: design validation and test generation. The generated
hardware is used as a reference model for verifying the hand-written RTL imple-
mentation using a combination of symbolic simulation and equivalence checking.
We also developed specification-driven test generation techniques based on the
functional coverage of the pipelined architectures.

7.2 Future Directions

Top-down validation of programmable architectures will continue to be a major
problem. There are many challenges remaining to make this approach viable in
practice. The work presented in this book can be extended in the following direc-
tions:



7.2. FUTURE DIRECTIONS 123

• ADLs allow ease of specification for programmable architectures. Formal
languages allow specification in a rigorous form. An interesting direction is
to develop a specification language that combines the benefits of both.

• There are two important problems that needs to be investigated during speci-
fication validation. First, it is necessary to develop architecture specific prop-
erties such as the validation of execution style for an out-of-order superscalar
processor. Second, it is important to develop a completeness criteria (to es-
tablish both necessary and sufficient conditions) for specification validation.

• The functional abstraction based approach we developed in this book al-
lows model generation for uni-processor architectures. There is a need for
a methodology to generate models from the specification of programmable
architectures containing multiple processor cores.

• Specification-driven hardware generation and validation of design imple-
mentation using generated hardware model has one limitation: the generated
hardware model (reference) should have a structure similar to the implemen-
tation. The requirement is primarily due to the limitation of the equivalence
checkers available today. There is a need for new validation techniques that
would enable reference model generation and design validation without any
knowledge of the implementation details.

• The generated test programs are applied to a cycle-accurate simulator. It
would be interesting to perform functional validation of RTL implementation
using the generated test programs. We have investigated the applicability of
our technique on two simple pipelined processors: DLX and LEON2. Appli-
cability of these techniques can be investigated on today's microprocessors.
It is necessary to perform further comparative studies with our functional
coverage metric against existing coverage measures, such as code coverage
and stuck-at coverage.

• This book considered programmable architectures consisting of a processor
core, coprocessor, and memory subsystem. Traditional embedded systems
contain many more components including DMAs, input/output devices, spe-
cific hardware elements, buses, and so on. It is necessary to extend the cur-
rent methodology for specification, model generation, and top-down valida-
tion of heterogeneous embedded systems.



PartV

Appendices



A
SURVEY OF CONTEMPORARY ADLS

Section 2.1 presented an overview of ADLs. Figure 2.2 shows the classification
of ADLs based on two aspects: content and objective. The content-oriented clas-
sification is based on the nature of the information an ADL can capture, whereas
the objective-oriented classification is based on the purpose of an ADL. This ap-
pendix presents a survey using content-based classification of ADLs. There are
many comprehensive ADL surveys available in the literature including ADLs for
retargetable compilation by Qin et al. [137], ADLs for programmable embedded
systems by Mishra et al. [101], and ADLs for SOC design by Tomiyama et al.
[38].

A.I Structural ADLs

The structural ADLs capture the structure in terms of architectural components and
their connectivity. Early ADLs are based on register-transfer level descriptions:
lower abstraction level to enable detailed modeling of digital systems. This section
briefly describes two structural ADLs: MIMOLA [117] and UDL/I [34].

MIMOLA

MIMOLA [117] is a structure-centric ADL developed at the University of Dort-
mund, Germany. It was originally proposed for micro-architecture design. One
of the major advantages of MIMOLA is that the same description can be used for
synthesis, simulation, test generation, and compilation. A tool chain including the
MSSH hardware synthesizer, the MSSQ code generator, the MSST self-test pro-
gram compiler, the MSSB functional simulator, and the MSSU RT-level simulator
were developed based on the MIMOLA language [117]. MIMOLA has also been
used by the RECORD [116] compiler.



128 APPENDIX A. SURVEY OF CONTEMPORARY ADLS

MIMOLA description contains three parts: the algorithm to be compiled, the
target processor model, and additional linkage and transformation rules. The soft-
ware part (algorithm description) describes application programs in a PASCAL-
like syntax. The processor model describes micro-architecture in the form of a
component netlist. The linkage information is used by the compiler in order to
locate important modules such as program counter and instruction memory. The
following code segment specifies the program counter and instruction memory lo-
cations [117]:

LOCATION_FOR_PROGRAMCOUNTER PCReg;
LOCATION FOR INSTRUCTIONS IM[O..1O23];

The algorithmic part of MIMOLA is an extension of PASCAL. Unlike other
high level languages, it allows references to physical registers and memories. It
also allows use of hardware components using procedure calls. For example, if the
processor description contains a component named MAC, programmers can write
the following code segment to use the multiply-accumulate operation performed
by MAC:

r e s := MAC(x, y, z)

The processor is modeled as a net-list of component modules. MIMOLA per-
mits modeling of arbitrary (programmable or non-programmable) hardware struc-
tures. Similar to VHDL, a number of predefined, primitive operators exists. The
basic entities of MIMOLA hardware models are modules and connections. Each
module is specified by its port interface and its behavior. The following example
shows the description of a multi-functional ALU module [117]:

MODULE ALU
(IN inpl
OUT outp:
IN Ctrl

)
CONBEGIN

outp

CONEND;

:

<
0:
1:
2 :
3 :

inp2 :
(31:

(1:0)

(31:0);
0) ;

:- CASE Ctrl OF
inpl
inpl
inpl
inpl

END;

+ inp2 ;
- inp2 ;
AND inp2 ;
;



A.L STRUCTURALADLS 129

The CONBEGIN/CONEND construct includes a set of concurrent assignments.
In the example a conditional assignment to output port outp is specified, which de-
pends on the two-bit control input Ctrl. The netlist structure is formed by connect-
ing ports of module instances. For example, the following MIMOLA description
connects two modules: ALU and accumulator ACC.

CONNECTIONS ALU.outp -> ACC.inp
ACC.outp -> ALU.inp

The MSSQ code generator extracts instruction-set information from the mod-
ule netlist. It uses two internal data structures: connection operation graph (COG)
and instruction tree (I-tree). It is a very difficult task to extract the COG and I-trees
even in the presence of linkage information due to the flexibility of an RT-level
structural description. Extra constraints need to be imposed in order for the MSSQ
code generator to work properly. The constraints limit the architecture scope of
MSSQ to micro-programmable controllers, in which all control signals originate
directly from the instruction word. The lack of explicit description of processor
pipelines or resource conflicts may result in poor code quality for some classes of
VLIW or deeply pipelined processors.

UDL/I

Unified design language, UDL/I is [34] developed as a hardware description lan-
guage for compiler generation in COACH ASIP design environment at Kyushu
University, Japan. UDL/I is used for describing processors at an RT-level on a
per-cycle basis. The instruction-set is automatically extracted from the UDL/I de-
scription [35], and then it is used for generation of a compiler and a simulator.
COACH assumes simple RISC processors and does not explicitly support ILP or
processor pipelines. The processor description is synthesizable with the UDL/I
synthesis system [39]. The major advantage of the COACH system is that it re-
quires a single description for synthesis, simulation, and compilation. Designer
needs to provide hints to locate important machine states such as program counter
and register files. Due to difficulty in instruction-set extraction (ISE), ISE is not
supported for VLIW and superscalar architectures.

Structural ADLs enable flexible and precise micro-architecture descriptions.
The same description can be used for hardware synthesis, test generation, simu-
lation and compilation. However, it is difficult to extract instruction-set without
restrictions on description style and target scope. Structural ADLs are more suit-
able for hardware generation than retargetable compilation.



130 APPENDIX A. SURVEY OF CONTEMPORARY ADLS

A.2 Behavioral ADLs

The difficulty of instruction-set extraction can be avoided by abstracting behavioral
information from the structural details. Behavioral ADLs explicitly specify the
instruction semantics and ignore detailed hardware structures. Typically, there is a
one-to-one correspondence between behavioral ADLs and instruction-set reference
manual. This section briefly describes three behavioral ADLs: nML [72], ISDL
[31]andValen-C[6].

nML

nML is an instruction-set oriented ADL proposed at Technical University of Berlin.
nML has been used by code generators CBC [3] and CHESS [22], and instruction-
set simulators Sigh/Sim [28] and CHECKERS. Currently, CHESS/CHECKERS
environment is used for automatic and efficient software compilation and instruction-
set simulation [49].

nML developers recognized the fact that several instructions share common
properties. The final nML description would be compact and simple if the com-
mon properties are exploited. Consequently, nML designers used a hierarchical
scheme to describe instruction-set. The instructions are the topmost elements in
the hierarchy. The intermediate elements of the hierarchy are partial instructions
(PI). The relationship between elements can be established using two composition
rules: AND-rule and OR-rule. The AND-rule groups several Pis into a larger PI
and the OR-rule enumerates a set of alternatives for one PI. Therefore instruction
definitions in nML can be in the form of an and-or tree. Each possible derivation
of the tree corresponds to an actual instruction.

To achieve the goal of sharing instruction descriptions, the instruction-set is
enumerated by an attribute grammar [60]. Each element in the hierarchy has a
few attributes. A non-leaf element's attribute values can be computed based on its
children's attribute values. Attribute grammar is also adopted by other ADLs such
as ISDL [31] and TDL [21].

The following nML description shows an example of instruction specification
[72]: The definition of numeric-instruction combines three partial instructions (PI)
with the AND-rule: nunuaction, SRC, and DST. The first PI, num_action, uses
OR-rule to describe the valid options for actions: add or sub. The number of all
possible derivations ofnumeric-instruction is the product of the size oinumMction,
SRC and DST. The common behavior of all these options is defined in the action
attribute of numeric-instruction. Each option for num-action should have its own
action attribute defined as its specific behavior, which is referred by the a.action
line. For example, the following code segment has action description for add op-



A.2. BEHAVIORAL ADLS 131

eration. Object code image and assembly syntax can also be specified in the same
hierarchical manner.

op numericonstruction (a:num_action/ src:SRC, dst:DST)
action {

temp_src = src;
temp_dst = dst;
a.action;
dst = temp_dst;

}
op num_action = add | sub
op add()
action = {

temp_dst = temp_dst + temp_src
}

nML also captures the structural information used by instruction-set architec-
ture (ISA). For example, storage units should be declared since they are visible to
the instruction-set. nML supports three types of storages: RAM, register, and tran-
sitory storage. Transitory storage refers to machine states that are retained only for
a limited number of cycles e.g., values on buses and latches. Computations have
no delay in nML timing model - only storage units have delay. Instruction delay
slots are modeled by introducing storage units as pipeline registers. The result of
the computation is propagated through the registers in the behavior specification.

nML models constraints between operations by enumerating all valid com-
binations. The enumeration of valid cases can make nML descriptions lengthy.
More complicated constraints, which often appear in DSPs with irregular instruc-
tion level parallelism (ILP) constraints or VLIW processors with multiple issue
slots, are hard to model with nML. For example, nML cannot model the constraint
that operation II cannot directly follow operation 10. nML explicitly supports sev-
eral addressing modes. However, it implicitly assumes an architecture model which
restricts its generality. As a result it is hard to model multi-cycle or pipelined units
and multi-word instructions explicitly. A good critique of nML is given in [73].

ISDL

Instruction Set Description Language (ISDL) was developed at MIT and used by
the Aviv compiler [120] and GENSIM simulator generator [30]. The problem of
constraint modeling is avoided by ISDL with explicit specification. ISDL is mainly
targeted towards VLIW processors. Similar to nML, ISDL primarily describes the
instruction-set of processor architectures. ISDL consists of mainly five sections:



132 APPENDIX A. SURVEY OF CONTEMPORARY ADLS

instruction word format, global definitions, storage resources, assembly syntax,
and constraints. It also contains an optimization information section that can be
used to provide certain architecture specific hints for the compiler to make better
machine dependent code optimizations.

The instruction word format section defines fields of the instruction word. The
instruction word is separated into multiple fields each containing one or more
subfields. The global definition section describes four main types: tokens, non-
terminals, split functions and macro definitions. Tokens are the primitive operands
of instructions. For each token, assembly format and binary encoding information
must be defined. An example token definition of a binary operand is:

Token X[O..l] X_R ival {yylval.ival = yytext[1] - '0';}

In this example, following the keyword Token is the assembly format of the
operand. X_R is the symbolic name of the token used for reference. The ival is
used to describe the value returned by the token. Finally, the last field describes
the computation of the value. In this example, the assembly syntax allowed for the
token X-R is X0 or XI, and the values returned are 0 or 1 respectively.

The value (last) field is to be used for behavioral definition and binary encod-
ing assignment by non-terminals or instructions. Non-terminal is a mechanism
provided to exploit commonalities among operations. The following code segment
describes a non-terminal named XYSRC:

Nonterminal ival XYSRC: X_D {$$ = 0;} |
Y_D {$$ = Y_D + 1;};

The definition of XYSRC consists of the keyword Nonterminal, the type of
the returned value, a symbolic name as it appears in the assembly, and an action
that describes the possible token or non-terminal combinations and the return value
associated with each of them. In this example, XYSRC refers to tokens XJ) and
YS> as its two options. The second field (ival) describes the returned value type. It
returns 0 fovXJ) or incremented value for YJD.

Similar to nML, storage resources are the only structural information modeled
by ISDL. The storage section lists all storage resources visible to the programmer.
It lists the names and sizes of the memory, register files, and special registers. This
information is used by the compiler to determine the available resources and how
they should be used.

The assembly syntax section is divided into fields corresponding to the separate
operations that can be performed in parallel within a single instruction. For each



A.2. BEHAVIORAL ADLS 133

field, a list of alternative operations can be described. Each operation description
consists of a name, a list of tokens or non-terminals as parameters, a set of com-
mands that manipulate the bitfields, RTL description, timing details, and costs.
RTL description captures the effect of the operation on the storage resources. Mul-
tiple costs are allowed including operation execution time, code size, and costs due
to resource conflicts. The timing model of ISDL describes when the various effects
of the operation take place.

In contrast to nML, which enumerates all valid combinations, ISDL defines in-
valid combinations in the form of Boolean expressions. This often leads to a simple
constraint specification. It also enables ISDL to capture irregular ILP constraints.
The following example shows how to describe the constraint that instruction II
cannot directly follow instruction 10. The "[1]" indicates a time shift of one in-
struction fetch for the 10 instruction. The '~' is a symbol for NOT and '&' is for
logical AND.

| ~ ( i i *) & ( [ l ] io *, * ) |

ISDL provides the means for compact and hierarchical instruction-set specifi-
cation. However, it may not be possible to describe a instruction-set with multiple
encoding formats using simple tree-like instruction structure of ISDL.

Valen-C

Valen-C is an embedded software programming language proposed at Kyushu
University, Japan [6, 7]. Valen-C is an extended C language which supports ex-
plicit and exact bit-width for integer type declarations. A retargetable compiler
(called Valen-CC) has been developed that accepts C or Valen-C programs as an
input and generates the optimized assembly code. Although Valen-CC assumes
simple RISC architectures, it has retargetability to some extent. The most interest-
ing feature of Valen-CC is that the processor can have any datapath bit-width (e.g.,
14 bits or 29 bits). The Valen-C system aims at optimization of datapath width.
The target processor description for Valen-CC includes the instruction-set consist-
ing of behavior and assembly syntax of each instruction as well as the processor
datapath width. Valen-CC does not explicitly support processor pipelines or ILP.

In general, the behavioral languages have one feature in common: hierarchical
instruction-set description based on attribute grammar [60]. This feature simplifies
the instruction-set description by sharing the common components between oper-
ations. However, the capabilities of these models are limited due to the lack of
detailed pipeline and timing information. It is not possible to generate cycle ac-
curate simulators without certain assumptions regarding control behavior. Due to



134 APPENDIX A. SURVEY OF CONTEMPORARY ADLS

lack of structural details, it is also not possible to perform resource-based schedul-
ing using behavioral ADLs.

A.3 Mixed ADLs

Mixed languages captures both structural and behavioral details of the architecture.
This section briefly describes four mixed ADLs: Flex Ware, HMDES, EXPRES-
SION, and LISA.

FlexWare

Flex Ware is a CAD system for DSP or ASIP design [108]. The FlexWare system
includes the CodeSyn code generator and the Insulin simulator. Both behavior and
structure are captured in the target processor description. The machine description
for CodeSyn consists of three components: instruction-set, available resources (and
their classification), and an interconnect graph representing the datapath structure.
The instruction-set description is a list of generic processor macro instructions to
execute each target processor instruction. The simulator uses a VHDL model of
a generic parameterizable machine. The parameters include bit-width, number of
registers, ALUs, and so on. The application is translated from the user-defined
target instruction-set to the instruction-set of the generic machine. Then, the code
is executed on the generic machine.

HMDES

Machine description language HMDES was developed at University of Illinois at
Urbana-Champaign for the IMPACT research compiler [54]. C-like preprocess-
ing capabilities such as file inclusion, macro expansion and conditional inclusion
are supported in HMDES. An HMDES description is the input to the MDES ma-
chine description system of the Trimaran compiler infrastructure, which contains
IMPACT as well as the Elcor research compiler from HP Labs. The description
is first pre-processed, then optimized and translated to a low-level representation
file. A machine database reads the low level files and supplies information for the
compiler back end through a predefined query interface.

MDES captures both structure and behavior of target processors. Information
is broken down into sections such as format, resource usage, latency, operation, and
register. For example, the following code segment describes register and register
file. It describes 64 registers. The register file describes the width of each register
and other optional fields such as generic register type (virtual field), speculative,



A3. MIXED ADLS 135

static and rotating registers. The value T implies speculative and '0 ' implies non-
speculative.

SECTION Register {
R0() ; Rl() ; ... R63() ;
'R[0] ' 0 ; ... 'R[63] ' (

SECTION Register_ File {
RF_i(width(32) virtual(i) speculative(1)

static(R0. . .R63) rotating('R[0] ' . . .'R [63] ')) ;

MDES allows only a restricted retargetability of the cycle-accurate simulator to
the HPL-PD processor family [80]. MDES permits description of memory systems,
but limited to the traditional hierarchy, i.e., register files, caches, and main memory.

EXPRESSION

The above mixed ADLs require explicit description of Reservation Tables (RT).
Processors that contain complex pipelines, large amounts of parallelism, and com-
plex storage sub-systems, typically contain a large number of operations and re-
sources (and hence RTs). Manual specification of RTs on a per-operation basis
thus becomes cumbersome and error-prone. The manual specification of RTs (for
each configuration) becomes impractical during rapid architectural exploration.
The EXPRESSION ADL [5] describes a processor as a netlist of units and stor-
ages to automatically generate RTs based on the netlist [88]. Unlike MIMOLA,
the netlist representation of EXPRESSION is coarse grain. It uses a higher level of
abstraction similar to block-diagram level description in architecture manual.

EXPRESSION ADL was developed at University of California, Irvine. The
ADL has been used by the retargetable compiler (EXPRESS [4]) and simulator
(SIMPRESS [8]) generation framework. The framework also supports a graphical
user interface (GUI) and can be used for design space exploration of programmable
architectures consisting of processor cores, coprocessors and memories [45].

An EXPRESSION description is composed of two main sections: behavior
(instruction-set), and structure. The behavior section has three subsections: opera-
tions, instruction, and operation mappings. Similarly, the structure section consists
of three subsections: components, pipeline/data-transfer paths, and memory sub-
system.



136 APPENDIX A. SURVEY OF CONTEMPORARY ADLS

The operation subsection describes the instruction-set of the processor. Each
operation of the processor is described in terms of its opcode and operands. The
types and possible destinations of each operand are also specified. A useful feature
of EXPRESSION is operation group that groups similar operations together for
the ease of later reference. For example, the following code segment shows an
operation group {alu-ops) containing two ALU operations: add and sub.

(OP_GROUP alu_ops
(OPCODE add

(OPERANDS
(BEHAVIOR

(OPCODE sub
(OPERANDS
(BEHAVIOR

(SRC1
DEST

(SRC1
DEST

reg)
= SRC1

reg)
= SRC1

(SRC2 reg/imm)
+ SRC2)

(SRC2 reg/imm)
- SRC2)

(DEST

(DEST

reg) )

reg) )

The instruction subsection captures the parallelism available in the architecture.
Each instruction contains a list of slots (to be filled with operations), with each slot
corresponding to a functional unit. The operation mapping subsection is used to
specify the information needed by instruction selection and architecture-specific
optimizations of the compiler. For example, it contains mapping between generic
and target instructions.

The component subsection describes each RT-level component in the architec-
ture. The components can be pipeline units, functional units, storage elements,
ports, and connections. For multi-cycle or pipelined units, the timing behavior is
also specified.

The pipeline/data-transfer path subsection describes the netlist of the proces-
sor. The pipeline path description provides a mechanism to specify the units which
comprise the pipeline stages, while the data-transfer path description provides a
mechanism for specifying the valid data-transfers. This information is used to both
retarget the simulator, and to generate reservation tables needed by the scheduler
[88]. An example path declaration for the DLX architecture [55] (Figure 3.6) is
shown below. It describes that the processor has five pipeline stages. It also de-
scribes that the Execute stage has four parallel paths. Finally, it describes each path
e.g., it describes that the FADD path has four pipeline stages.



A3. MIXED ADLS 137

(PIPELINE Fetch Decode Execute MEM WriteBack)
(Execute (ALTERNATE IALU MULT FADD DIV))
(MULT (PIPELINE MUL1 MUL2 ... MUL7))
(FADD (PIPELINE FADD1 FADD2 FADD3 FADD4))

The memory subsection describes the types and attributes of various storage
components (such as register files, SRAMs, DRAMs, and caches). The memory
netlist information can be used to generate memory aware compilers and simulators
[98, 107]. Memory aware compilers can exploit the detailed information to hide
the latency of the lengthy memory operations [89].

In general, EXPRESSION captures the data path information in the processor.
The control path is not explicitly modeled. Also, the VLIW instruction composi-
tion model is simple. The instruction model requires extension to capture inter-
operation constraints such as sharing of common fields. Such constraints can be
modeled by I SDL through cross-field encoding assignment. Appendix B includes a
sample description of the DLX processor shown in Figure 3.6 using EXPRESSION
ADL.

LISA

LISA (Language for Instruction Set Architecture) [133] was developed at Aachen
University of Technology, Germany with a simulator centric view. The language
has been used to produce production quality simulators [121]. An important aspect
of LISA language is its ability to capture control path explicitly. Explicit modeling
of both datapath and control is necessary for cycle-accurate simulation. LISA has
also been used to generate retargetable C compilers [74, 86].

LISA descriptions are composed of two types of declarations: resource and
operation. The resource declarations cover hardware resources such as registers,
pipelines, and memories. The pipeline model defines all possible pipeline paths
that operations can go through. An example pipeline description for the architec-
ture shown in Figure 3.6 is as follows:

PIPELINE
PIPELINE

PIPELINE

PIPELINE

int =
fit =

mul =

div =

{Fetch;
{Fetch;
FADD3;
{Fetch;
MUL 5 ;
{Fetch;

Decode;
Decode;
FADD4;
Decode;

IALU; MEM; WriteBack}
FADD1; FADD2;

MEM; WriteBack}
MUL1; MUL2; MUL3; MUL4;

MUL6; MUL7; MEM; WriteBack}
Decode; DIV; MEM; WriteBack}

Operations are the basic objects in LISA. They represent the designer's view
of the behavior, the structure, and the instruction-set of the programmable archi-



138 APPENDIX A. SURVEY OF CONTEMPORARY ADLS

tecture. Operation definitions capture the description of different properties of the
system such as operation behavior, instruction-set information, and timing. These
operation attributes are defined in several sections:

• The CODING section describes the binary image of the instruction word.

• The SYNTAX section describes the assembly syntax of instructions.

• The SEMANTICS section specifies the instruction-set semantics.

• The BEHAVIOR section describes components of the behavioral model.

• The ACTIVATION section describes the timing of other operations relative
to the current operation.

• The DECLARE section contains local declarations of identifiers.

LISA exploits the commonality of similar operations by grouping them into
one. The following code segment describes the decoding behavior of two immediate-
type (Ltype) operations (ADDI and SUBI) in the DLX Decode stage. The complete
behavior of an operation can be obtained by combining its behavior definitions in
all the pipeline stages.

OPERATION i_type IN pipe_int.Decode {
DECLARE {

GROUP opcode={ADDI || SUBl}
GROUP rsl, rd = {fix_register};

}
CODING {opcode rsl rd immediate}
SYNTAX {opcode rd y\" rsl x \ " immediate}
BEHAVIOR { reg_a = rsl; imm = immediate; cond = 0;
}
ACTIVATION {opcode, writeback}

A language similar to LISA is RADL. RADL [15] was developed at Rockwell,
Inc. as an extension of the LISA approach that focuses on explicit support of de-
tailed pipeline behavior to enable generation of production quality cycle-accurate
and phase-accurate simulators.



A A. PARTIAL ADLS 139

A.4 Partial ADLs

The ADLs discussed so far captures complete description of the processor's struc-
ture, behavior or both. There are many description languages that captures partial
information of the architecture needed to perform a specific task. This section
describes two such ADLs.

AIDL

AIDL is an ADL developed at University of Tsukuba for design of high-performance
superscalar processors [129]. AIDL aims at validation of the pipeline behavior
such as data-forwarding and out-of-order completion. In AIDL, timing behavior
of pipeline is described using interval temporal logic. AIDL does not support soft-
ware toolkit generation. However, AIDL descriptions can be simulated using the
AIDL simulator.

PEAS-I

PEAS-I is a CAD system for ASIP design supporting automatic instruction-set op-
timization, compiler generation, and instruction level simulator generation [61]. In
the PEAS-I system, the GNU C compiler is used, and the machine description of
GCC is automatically generated. Inputs to PEAS-I include an application program
written in C and input data to the program. Then, the instruction-set is automati-
cally selected in such a way that the performance is maximized or the gate count
is minimized. Based on the instruction-set, GNU CC and an instruction level sim-
ulator is automatically retargeted.



B
SPECIFICATION OF DLX PROCESSOR

This appendix includes a sample description of the DLX processor shown in Fig-
ure 3.6 using EXPRESSION ADL.

This machine description is copyrighted by the Regents of the *
University of California, Irvine. This is a simplified version*
of the EXPRESSION description for the DLX processor. It only *
includes the features that are required for the validation *
steps discussed in this book. No Warranty of any kind. *

*************** Section 1: Specific Operations ***•

(OPERATIONS_SECTION

(OP_GROUP all
(OPCODE IADD

(OP_TYPE DATA_OP)
(OPERANDS (DEST reg) (SRC1 reg) (SRC2 reg/imm))
(BEHAVIOR DEST = SRC1 + SRC2)

(OPCODE ISUB
(OP_TYPE DATA_OP)
(OPERANDS (DEST reg) (SRC1 reg) (SRC2 reg/imm)]
(BEHAVIOR DEST = SRC1 - SRC2)

(OPCODE IMUL
(OP_TYPE DATA_OP)
(OPERANDS (DEST reg) (SRC1 reg) (SRC2 reg/imm) ;
(BEHAVIOR DEST = SRC1 * SRC2)



142 APPENDIX B. SPECIFICATION OF DLX PROCESSOR

(OPCODE IDIV
(OP_TYPE DATA_OP)
(OPERANDS (DEST reg) (SRC1 reg) (SRC2 reg/imm))
(BEHAVIOR DEST = SRC1 / SRC2)

(OPCODE ILSH
(OP_TYPE DATA_OP)
(OPERANDS (DEST reg) (SRC1 reg) (SRC2 imm);
(BEHAVIOR DEST = SRC1 << SRC2)

(OPCODE ILT
(OP_TYPE DATA_OP)
(OPERANDS (DEST reg) (SRC1 reg) (SRC2 reg/imm))
(BEHAVIOR DEST = (SRC1 < SRC2) ? 1 : 0)

(OPCODE IVLOAD
(OP_TYPE DATA_OP)
(OPERANDS (DEST reg) (SRC1 reg) (SRC2 imm)
(BEHAVIOR DEST = MEMORY[SRC1 + SRC2])

(OPCODE IVSTORE
(OP_TYPE DATA_OP)
(OPERANDS (SRC reg) (SRC1 reg) (SRC2 imm))
(BEHAVIOR MEMORY[SRC1 + SRC2] = SRC)

(OPCODE BEQZ
(OP_TYPE CONTROL_OP)
(OPERANDS (SRC1 reg) (SRC2 imm))
(BEHAVIOR PC = (SRC1 == 0) ? SRC2 : PC + 4)

(OPCODE J
(OP_TYPE CONTROL_OP)
(OPERANDS (SRC reg/imm))
(BEHAVIOR PC = SRC)



143

(OP_GROUP ALU_instr
(OPCODE ICONSTANT IASSIGN ASSIGN IADD ISUB ILSH IASH IVLOAD

DVLOAD FVLOAD IVSTORE DVSTORE FVSTORE ILAND IEQ INE
ILE IGE ILT IGT J BEQZ BNEZ NOP

(OP_GROUP MUL_instr
(OPCODE IMUL DMUL FMUL NOP)

(OP_GROUP FADD_instr
(OPCODE DCONSTANT FCONSTANT DASSIGN FASSIGN DADD FADD DSUB FSUB

DEQ FEQ DNE FNE DLE FLE DGE FGE DLT FLT DGT FGT CVTDI CVTSI
CVTSD CVTDS DMTC1 DMFC1 DNEG MFC1 MTC1 TRUNCID TRUNCIS NOP

(OP_GROUP FDIV_instr
(OPCODE IDIV DDIV FDIV NOP)

(OP_GROUP LDST_instr
(OPCODE IVLOAD DVLOAD FVLOAD IVSTORE DVSTORE FVSTORE)

Section 2: Instruction template

(INSTRUCTION_SECTION
(WORDLEN 32)
(SLOTS
((TYPE DATA)
( (TYPE DATA)
((TYPE DATA)
( (TYPE DATA)

(BITWIDTH 8)
(BITWIDTH 8)
(BITWIDTH 8)
(BITWIDTH 8)

(UNIT IALU) !
(UNIT MUL))
(UNIT FADD) ;
(UNIT FDIV) ;

; (TYPE CONTROL) (BITWIDTH 8) (UNIT DECODE))

Section 3: Operation Mappings

(OPMAPPING SECTION

(GENERIC ((IMUL tmpDest SRC1 SRC2) (IADD DEST tmpDest SRC3)))
(TARGET (MAC DEST SRC1 SRC2 SRC3))



144 APPENDIX B. SPECIFICATION OF DLX PROCESSOR

Section 4: Components Specification

(ARCHITECTURE_SECTION
(SUBTYPE UNIT FetchUnit DecodeUnit IAluUnit FMulUnit FAddUnit

FDivUnit MemoryUnit WriteBackUnit)
(SUBTYPE PORT UnitPort Port)
(SUBTYPE CONNECTION MemoryConnection RegConnection)
(SUBTYPE STORAGE VirtualRegFile VirtualMemory)
(SUBTYPE LATCH PipelineLatch MemoryLatch)

(FetchUnit FETCH
(CAPACITY 1) (TIMING (all 1)) (OPCODES all)
(LATCHES (OUT FetDecLatch) (IN PCLatch))

(DecodeUnit DECODE
(CAPACITY 1) (TIMING (all 1)) (OPCODES all)
(LATCHES (IN FetDecLatch) (OUT DecALULatch DecMlLatch

DecAlLatch DecFDivLatch))
(PORTS DecRdPortl DecRdPort2)

(IntAluUnit IALU
(CAPACITY 1) (TIMING (all 1)) (OPCODES ALU_instr)
(LATCHES (IN DecIALULatch) (OUT ExMemLatch))

(FMultUnit Ml
(CAPACITY 1) (TIMING (all 1)) (OPCODES MUL_instr)
(LATCHES (IN DecMlLatch) (OUT MlM2Latch))

(FAddUnit Al
(CAPACITY 1) (TIMING (all 1)) (OPCODES FADD_instr)
(LATCHES (IN DecAlLatch) (OUT AlA2Latch))

(FDivUnit FDIV
(CAPACITY 1) (OPCODES FDIV_instr)
(TIMING (IDIV 25) (FDIV 25) (DDIV 25) (NOP 1))
(LATCHES (IN DecFDivLatch) (OUT ExMemLatch))

(FMultUnit M2
(CAPACITY 1) (TIMING (all 1)) (OPCODES MUL_instr)
(LATCHES (IN MlM2Latch) (OUT M2M3Latch))



145

(FMultUnit M3
(CAPACITY 1) (TIMING (all 1)) (OPCODES MUL_instr)
(LATCHES (IN M2M3Latch) (OUT M3M4Latch))

(FMultUnit M4
(CAPACITY 1) (TIMING (all 1)) (OPCODES MUL_instr)
(LATCHES (IN M3M4Latch) (OUT M4M5Latch))

(FMultUnit M5
(CAPACITY 1) (TIMING (all 1)) (OPCODES MUL_instr)
(LATCHES (IN M4M5Latch) (OUT M5M6Latch))

(FMultUnit M6
(CAPACITY 1) (TIMING (all 1)) (OPCODES MUL_instr)
(LATCHES (IN M5M6Latch) (OUT M6M7Latch))

(FMultUnit M7
(CAPACITY 1) (TIMING (all 1)) (OPCODES MUL_instr)
(LATCHES (IN M6M7Latch) (OUT ExMemLatch))

(FAddUnit A2
(CAPACITY 1) (TIMING (all 1)) (OPCODES FADD_instr)
(LATCHES (IN AlA2Latch) (OUT A2A3Latch))

(FAddUnit A3
(CAPACITY 1) (TIMING (all 1)) (OPCODES FADD_instr)
(LATCHES (IN A2A3Latch) (OUT A3A4Latch))

(FAddUnit A4
(CAPACITY 1) (TIMING (all 1)) (OPCODES FADD_instr)
(LATCHES (IN A3A4Latch) (OUT ExMemLatch))

(MemoryUnit MEM
(CAPACITY 1) (TIMING (all 1)) (OPCODES LDST_instr)
(LATCHES (IN ExMemLatch) (OUT MemWbLatch))
(PORTS MemUnitPort)



146 APPENDIXB. SPECIFICATION OFDLXPROCESSOR

(WriteBackUnit WRITEBACK
(CAPACITY 1) (TIMING (all 1)) (OPCODES all)
(LATCHES (IN MemWbLatch)) (PORTS WbRegWrPort)

(PipelineLatch MlM2Latch M2M3Latch M3M4Latch M4M5Latch M5M6Latch
M6M7Latch AlA2Latch A2A3Latch A3A4Latch ExMemLatch MemWbLatch
FetDecLatch DecALULatch DecMlLatch DecAlLatch DecFDivLatch

)
(MemoryLatch InstLatch)
(UnitPort DecRdPortl DecRdPort2 MemUnitPort)
(RegConnection DecRegCxnl DecRegCxn2 WbRegCxn, MemoryCxn

FetMemoryCxn
)
(Port RegRdPortl RegRdPort2 RegWrPort MemRdPort MemRdWrPort)
(VirtualRegFile REGFILE)
(VirtualMemory MEMORY)

.**** Section 5: Pipeline and Data-transfer paths ****

(PIPELINE_SECTION
(PIPELINE FETCH DECODE EXECUTE MEM WRITEBACK)
(EXECUTE (PARALLEL IALU FMUL FADD FDIV))
(FMUL (PIPELINE Ml M2 M3 M4 M5 M6 M7))
(FADD (PIPELINE Al A2 A3 A4))

(DTPATHS
(REGFILE DECODE RegRdPortl DecRegCxnl DecRdPortl)
(REGFILE DECODE RegRdPort2 DecRegCxn2 DecRdPort2)
(WRITEBACK REGFILE WbRegWrPort WbRegCxn RegWrPort)
(MEM MEMORY MemUnitPort MemoryCxn MemoryRdWrPort)
(FETCH MEMORY FetchRdPort FetMemoryCxn MemoryRdPort)

Section 6: Memory Hierarchy

(STORAGE_SECTION
(REGFILE
(TYPE REGFILE) (WIDTH 32) (SIZE 32)

(MEMORY
(TYPE RAM) (WIDTH 8) (SIZE 1024) (ACCESSJTIMES 1)
(ADDRESS_RANGE (0 1023))



c
INTERRUPTS & EXCEPTIONS IN ADL

Section 2.3 described how to specify programmable architectures including a pro-
cessor core, coprocessors, and memory subsystem using EXPRESSION ADL. This
appendix describes how to capture exceptions and interrupts using the ADL. It is
necessary to capture exceptions and interrupts explicitly in the ADL for various
reasons. First, the simulator and hardware generators require this information to
accurately generate and handle exceptions. Second, the specification validation
techniques use this information to analyze pipeline interactions in the presence of
multiple exceptions. For example, we have used this information in Section 3.2
to verify in-order execution of pipelined processor specifications. We classify ex-
ceptions into three categories: opcode related exceptions, exceptions related to
functional units, and external exceptions. The motivation behind this classification
is to enable ease of specification.

Opcode related exceptions

It is appropriate to describe opcode related exceptions and their actions inside the
opcode specification. For example, the modified div operation contains the excep-
tion information as shown in Figure C.I.

Exceptions Related to Functional Units

Functional unit related exceptions are defined in ADL's component specification
section. For example, the Decode unit shown in Figure 3.2 can issue up to three
instructions per cycle. The first one is for the ALU pipeline, the second one is
for the FADD pipeline and the last one is for the coprocessor pipeline. It is an



148 APPENDIX C. INTERRUPTS & EXCEPTIONS IN ADL

# Behavior: description of instruction-set

(opcode div
(operands (si reg) (s2 reg) (dst reg)) (behavior dst = si / s2) . . .
(exceptions (if (s2 == 0) throw div-byjzero)...)

Figure C.I: Specification of division_by_zero exception

exception if the last instruction is not a coprocessor instruction. The specification
of such an exception is described in the Decode unit as shown in Figure C.2.

# Components specification

(DecodeUnit Decode
(capacity 2) (timing (all 1)) (opcodes a l l ) . . .
( e x c e p t i o n s ( i f ( s lo t3 o p c o d e != c o p r o c e s s o r J y p e ) t h r o w illegal s l o t - i n s t r u c t i o n ) . . . )

Figure C.2: Specification of illegal_slot_instruction exception

External Exceptions

External interrupts can be specified at the processor level. We model a control
unit that performs the task of a controller. The control unit is also used to perform
stalling and flushing of the processor pipelines as described in Section 4.2.4. We
describe external interrupts in the control unit. For example, a machine reset ex-
ception can be described in the control unit as shown in Figure C.3. We assume
that the reset is an external interrupt that is used to generate the internal exception
machine-reset.

Specification of Interrupts

The mapping between exceptions and interrupts is a many-to-one mapping func-
tion. A class of exceptions may give rise to one interrupt. In such cases the ar-
chitecture implementation should ensure that only one exception from that class
occurs at a time. In general, one interrupt corresponds to more than one excep-
tion. We specify the interrupts and exceptions in the control unit specification. For



149

# Components specification

(ControlUnit control

(exceptions (if reset throw machine.reset)...)

Figure C.3: Specification of machine_reset exception

example, the interrupt intl is described in Figure C.4. The interrupt intl gets gen-
erated due to failures during memory operation, for example, ITLB miss or DTLB
miss. It can mask several lower priority interrupts such as int2 and intl.

# Components specification

(ControlUnit control

(interrupt intl

(exceptions ITLB_miss DTLB_miss . . . )
(masks int2 intl...) (behavior . . . ) . . .

Figure C.4: Specification of interrupts

We model the interrupt handler using a priority table that can accept n exception
requests and generate only one interrupt per cycle. The multiple exceptions are
handled in a simple and uniform manner using interrupt service register (ISR). The
length of the ISR is equal to the number of interrupts possible in that architecture.
One entry in the ISR corresponds to an interrupt. Control unit defines the class of
exceptions that generates a particular interrupt. Each exception sets one particular
bit in the ISR of the interrupt handler. Interrupt handler decides the highest priority
interrupt using the interrupt priority table. Depending on the masking information
the highest priority interrupt masks the appropriate bits in ISR. The process of
selecting highest priority interrupt continues until there are no bits set in ISR. The
details on specification of exceptions and interrupts are available in [103].



D
VALIDATION OF DLX SPECIFICATION

Chapter 3 presented a framework for validation of both static and dynamic proper-
ties in architecture specification. This appendix presents a case study for validation
of dynamic properties including determinism and in-order execution in DLX pro-
cessor specification. Figure D. 1 shows the DLX processor pipeline that is obtained
from Figure 3.6 by adding pipeline registers (latches).

The structure and behavior of the processor is captured using the EXPRES-
SION ADL [5]. Based on the discussion in Section 3.2.1, we captured the condi-
tions for stalling, normal flow, branch taken and bubble insertion in the ADL. For
example, we captured CacheMiss as the external signal for PC unit. For all other
units we assumed all contribution from children units for stall condition. While
capturing normal flow condition for each unit we selected any for parent units and
any for children units. Similarly, for each unit we specified all as contribution from
parent units and any as contribution for children units for bubble insertion. The
condition specification for the decode unit (no self contribution) is shown below.

(DecodeUnit DECODE

(CONDITIONS
(NF ANY ANY)
(ST ALL)
(BI ALL ANY)
(SELF "")

Using the ADL description, we automatically generated the equations for flow
conditions for all the units [95]. For example, the equation for the stall condition
for the decode latch is shown below (using Equation (3.8), and the description of
the decode unit shown above):



152 APPENDIX D. VALIDATION OF DLX SPECIFICATION

r-^ REGISTER FILE

Instruction Register

1 Functional Unit

WB
Pipeline Path

- #•• Data-transfer Path

Figure D.I: The DLX processor with pipeline registers



153

condfRxx = (STIR2A . STIRl2 . STIR23 . STIR24)XNIRlA.SQIRlA (D.I)

IR2.4 represents latch for the multicycle unit. So we assumed a signal busy
internal to IR2.4 which remained set for n cycles. The busy can be treated as STjR^
as shown in Equation (3.8).

The necessary equations for verifying the properties such as determinism and
in-order execution are generated from the given ADL description. We show here a
small trace of the property checking to demonstrate the simplicity and elegance of
the underlying model. We show that the determinism property is satisfied for IR\\
using the modeling above:

+ STIR2A) . XNIRlA . SQIR

= (STIRll +STIR2a +STIRl3

(5*7/̂ 2̂  . STIRl2 . 57/^2^ . STm2A) . XNIRxx . SQIRlA +XNIRlA +SQIRlA

= (XNjRlA . SQiR{A) . ((STjR2A +STjRl2 +ST/R2J +STJR2A)

(STIR2A .ST1R22.'STIR23 . STIR2A)) +XNIRxA +SQIRlA

= (XNIRlA . SQIRltl) + (XNIRlA +SQIRltl)
= 1

We have used Espresso to minimize the equations. The minimized equations
are analyzed to verify whether the properties are violated or not. The complete
verification took 41 seconds on a 333 MHz Sun Ultra-5 with 128M RAM. Our
framework determined that the Equation (3.33) is violated and generated a sim-
ple instruction sequence which violates in-order execution: floating-point addition
followed by integer addition. The decode unit issued floating point addition Ifadd
operation in cycle n to floating-point adder pipeline (Al - A4) and an integer addi-
tion operation / / ^ to integer ALU (EX) at cycle n+1. The instruction Iiadd reached
join node (MEM unit) prior to I/add-

We modified the ADL description to change the stall condition depending on
current instruction in decode unit and the instructions active in the integer ALU,
MUL, FADD, and DIV pipelines. The current instruction will not be issued (de-
code stalls) if it leads to out-of-order execution. Our framework generated equa-
tions for processor model and the properties. The only difference is STj^\ for
decode unit (Equation (3.8)) becomes:



154 APPENDIX D. VALIDATION OF DLX SPECIFICATION

where, the numbers 1,2, 3, and 4 correspond to the integer ALU, MUL, FADD
and DIV pipelines respectively. The signal SXy is 1 if the latest instruction in
pipeline x is active for less than (T(X) - x(y)) cycles. Here, i(x) returns the to-
tal number of clock cycles needed by pipeline x (T(1) = 1,T(2) = 7, T(3) = 4,
x(4) = 25). The instructions I\, h, h, and I4 represent the instructions supported
by the pipelines 1, 2, 3, and 4 respectively. For example, if current instruction is
h (multiply) and there is a instruction in DIV unit which is active for less than 18
cycles (x(4) — x(2) = 25 - 7 = 18), then the decode should stall. Otherwise, it leads
to out-of-order execution. Note that, the equation does not have any term for I4.
This is because Sx^ can never be 1 since (x(x) — T (4) ) is always negative. For the
same reason, all the components in the equation does not have four SXly terms.

The Equation (3.34) is violated for this modeling for /i?9}i. The instruction
sequence generated by our framework for this failure consists of a multiply opera-
tion (issued by decode unit in cycle n) followed by a floating-point add operation
(issued by decode unit in cycle (n + 3)). As a result both the operations reach /ifyi
at cycle (n+7). We modified the ADL description to redefine SX)y signal: it is 1 if
the latest instruction in pipeline x is active for less than or equal to (x(x) —%{y))
cycles. The in-order execution was successful for this modeling. In such a simple
situation this kind of specification mistakes might appear as trivial, but when the
architecture gets complicated and exploration iterations and varieties increase, the
potential for introducing bugs also increases.



E
DESIGN SPACE EXPLORATION

An architect needs to explore the possible design alternatives and consider the ap-
plication scenarios before finalizing the design decisions. Each design alternative
needs to be prototyped and evaluated under typical user environment (using appli-
cation programs or synthetic benchmarks) to gather necessary estimates including
area, power, and performance values. It may be necessary to generate both sim-
ulator and hardware (synthesizable HDL) models. The simulator produces profil-
ing data and thus may answer questions concerning the instruction-set, the perfor-
mance of an algorithm and the required size of memory and registers. However,
the hardware prototype is necessary to estimate the required silicon area, clock
frequency, and power consumption.

Manual or semi-automatic generation of prototypes is a time consuming pro-
cess. This can be done only by a set of skilled designers. Furthermore, the interac-
tion among the different teams, such as specification developers, HDL designers,
and simulator developers makes rapid architectural exploration infeasible. As a
result, system architects rarely have tools or the time to explore architecture alter-
natives to find the best possible design. This situation is very expensive in both
time and engineering resources, and has a substantial impact on time-to-market.
Without automation and a unified development environment, the design process
is prone to error and may lead to inconsistencies between hardware and software
representations.

Figure E. 1 shows our ADL-driven architectural exploration framework. The
application programs are compiled using the compiler1 [4] and simulated using the
generated simulator. The feedback (performance and code size) is used to mod-
ify the ADL specification of the architecture. Similarly, the generated hardware is
used to obtain the area, clock frequency, power and performance estimates. The

^ h e compiler is also generated from the architecture specification.



156 APPENDIX E. DESIGN SPACE EXPLORATION

goal is to find the best possible processor, coprocessor, and memory architecture
for the given set of application programs. The techniques for generating simulators
and hardware models are described in Chapter 4. Section E. 1 presents exploration
experiments using the generated simulator. The exploration experiments using gen-
erated hardware models are described in Section E.2.

Architecture Specification
( English Document)

1

Compiler
Generator

Simulator
Generator

Hardware
Model

I
8

- -(Synthesis
• Automatic
• Manual
• Feedback

Figure E. 1: Architecture exploration framework

E.I Simulator Generation and Exploration

We have performed extensive exploration experiments by varying different archi-
tectural features: exploration varying MIPS R10K processor features [104], co-
processor based exploration [94], and memory subsystem exploration using TI C6x
architecture [98].



E.I. SIMULATOR GENERATION AND EXPLORATION 157

Exploration varying Processor Features

Contemporary superscalar processors use in-order completion (graduation) to en-
sure sequential execution behavior in the presence of out-of-order execution. Here,
we explore the MIPS R10K processor in the presence of out-of-order graduation
without violating functional correctness. The MIPS R10000 [50] is a dynamic,
superscalar microprocessor that implements the 64-bit Mips-4 instruction-set ar-
chitecture. It fetches and decodes four instructions per cycle and dynamically is-
sues them to five fully-pipelined, low-latency execution units. Instructions can be
fetched and executed speculatively beyond branches. Instructions graduate in order
upon completion.

We have described the MIPS R10K architecture using functional abstraction.
The fetch unit function is invoked with the appropriate parameter values. For ex-
ample, the number of instructions fetched per cycle and the number of instructions
sent to decode stage per cycle are set to four. The decode functionality is instan-
tiated with read connection from fetch latch and write connections to Memlssue,
Intlssue and Floatlssue units. The decoded instruction is added in the completion
queue (ActiveList) which maintains the program order. The decode logic decides
where to dispatch (Memlssue, Intlssue or Floatlssue) a particular instruction based
on the supported opcodes information available in the control table.

The Intlssue, Floatlssue and Memlssue functions are instantiated with a reser-
vation station size of 16 entries. Each issue unit performs operand read and RAW
hazard detection (using appropriate sub-functions) before performing out-of-order
issue. Execution units are instantiated using appropriate opcode functionalities.
The Address Queue (Memlssue unit) reads data and tag using virtual address while
the physical address is computed. It checks whether the load is a hit or miss once
the physical address is available. This is different from conventional way of hit or
miss detection. In conventional architectures the load request is done using phys-
ical address and hit or miss detection is done inside the memory subsystem. This
illustrates our ability to reuse the hit or miss detection sub-functions in the proces-
sor side (that remains conventionally in the memory side). Similarly, we capture
register files and memory hierarchy by instantiating components using appropriate
parameters.

We have described the MIPS R10K architecture (with in-order graduation and
8 entry Active List) and generated the software toolkit. We have modified the
description to perform out-of-order graduation and generated the simulator. We
have used a set of benchmarks from the multimedia and DSP domains.

Figure E.2 presents a subset of the experiments we ran to study the performance
improvement due to out-of-order graduation. The light bar presents the number of
execution cycles when in-order graduation is used whereas the dark bar presents



158 APPENDIX E. DESIGN SPACE EXPLORATION

the number of execution cycles when out-of-order graduation is used. We observe
an average performance improvement of 10%. During in-order graduation certain
instructions (independent of the instructions above in the Active List) complete
execution but are not allowed to graduate since some long latency operations are
on top of the Active List and yet to complete. As a result, the Active List becomes
full soon and the decode stalls. This situation becomes more prominent when
the top instruction is a load and the load misses. We have modified the memory
subsystem to study the impact of cache misses along with out-of-order graduation
and observed up to 27% performance improvement (in benchmark StateExcerpt
when hit ratio is zero). The complete study of the out-of-order graduation for the
MIPS R10K processor can be found in [104].

3000 -.

2500-

2000 -

1500 -

1000 -

500 -

1 In-order graduation

S Out-of-order graduation

Hydro StateExcerpt Linear Integrate Lowpass

Figure E.2: Cycle counts for different graduation styles

Due to the high modeling efficiency of functional abstraction, the original de-
scription and toolkit generation took less than a week; the graduation style mod-
ification and toolkit generation took less than a day; the experiments and analy-
sis took few hours; the complete exploration experiment took approximately one
week.



El. SIMULATOR GENERATION AND EXPLORATION 159

Co-processor based Exploration

In the context of co-processor codesign for programmable architectures we have
explored the performance impact using a co-processor for the TI C6x environment.
TI C6x [131] is an 8-way VLIW DSP processor with a novel memory subsystem
(cache hierarchy, configurable SRAM, partitioned register file). TI C6x processor
has a deep pipeline, composed of 4 fetch stages (PG, PS, PR, PW), 2 decode stages
(DP, DC), followed by the 8 functional units.

We have described the TI C6x architecture using functional abstraction. The
fetch functionality consists of four stages viz., program address generation, address
send, wait, and receive. Each of the four stages is modeled using respective sub-
functions with appropriate parameters. The architecture fetches one VLIW instruc-
tion (eight parallel operations) per cycle. The decode function decodes the VLIW
word and dispatches up to eight operations per cycle to eight execution units. Each
execution unit performs operand read and hazard checks (using sub-functions). At
the end of computation each execution unit writes back (using sub-functions) the
result to register file.

The functional units, LI, SI, Ml and Dl are connected to the "A" part of the
partitioned register file whereas the remaining functional units viz., L2, S2, M2, D2
are connected to the "B" of the register file. Two cross paths, viz., IX and 2X, are
used for transferring data from the other part of the partitioned register file. Each
register file is instantiated using generic register file with 16 32-bit registers. Simi-
larly, the memory subsystem consisting of scratch-pad SRAM and cache hierarchy
is captured by instantiating components using appropriate parameters.

We have described the TI C6x architecture (where multiplication is done in
the functional unit) using functional abstraction and generated the software toolkit.
We have modified the description by adding a co-processor (with DMA controller
and local memory) that supports multiplication and generated the simulator. This
co-processor has its own local memory and uses DMA to transfer data from main
memory. We then used a set of DSPStone fixed point benchmarks to explore and
evaluate the effects of adding a coprocessor.

Figure E.3 presents a subset of the experiments we ran to study the perfor-
mance improvement due to the co-processor. The light bar presents the number
of execution cycles when the functional unit is used for the multiplication whereas
the dark bar presents the number of execution cycles when the co-processor is
used. We observe an average performance improvement of 22%. The performance
improvement is due to the fact that the co-processor is able to exploit the vector
multiplications available in these benchmarks using its local memory. Moreover,
functional units operate in register-to-register mode whereas co-processor operates
in memory-memory mode. As a result the register pressure and thereby spilling



160 APPENDIX E. DESIGN SPACE EXPLORATION

gets reduced in the presence of the co-processor. However, the functional unit per-
forms better when there are mostly scalar multiplications. The complete study of
the co-processor based design space exploration can be found in [94].

8000 -,

6000-

4000 -

2000-

! Functional Unit 1 Coprocessor

Convolution DotProduct Fir2dim MatrixMultiply nRealUpdates

Figure E.3: Functional unit versus coprocessor

Memory Subsystem Exploration

Another important dimension for architectural exploration is the investigation of
different memory configurations for a programmable architecture. We explored
different memory configurations for the TI C6x architecture with the goal of study-
ing the trade-off between cost and performance. We used a set of benchmarks from
the multimedia and DSP domains.

The configurations we experimented with are presented in Table E. 1. The num-
bers in Table E. 1 represent: the size of the memory module, the cache/stream buffer
organizations: numJines x numjways x line size x word size, the latency (in num-
ber of processor cycles), and the replacement policy (LRU or FIFO). Note that for
the stream buffer, num_ways represents the number of FIFO queues present. The
configurations are presented in the increasing order of cost in terms of area.
The first configuration contains an LI cache and a small stream buffer (256 bytes)
to capitalize on the stream nature of the benchmarks. The second configuration
contains the LI cache and an on-chip direct mapped SRAM of 2K. A part of the



E. 1. SIMULATOR GENERATION AND EXPLORATION 161

arrays in the application are mapped to the SRAM. Due to the reduced control nec-
essary for the SRAM, it has a small latency (of 1 cycle), and the area requirements
are small. The third configuration contains LI and L2 caches with FIFO replace-
ment policy. Due to the control necessary for the L2 cache (of size 2K), the cost
of this configuration is larger than the configuration 2. Configuration 4 contains
an LI cache, an L2 cache of size IK and a direct mapped SRAM of size IK. Due
to the extra busses to route the data to the caches and SRAM, this configuration
has a larger cost than the previous one. The last configuration contains a large
SRAM and has the largest area requirement. All the configurations contain the
same off-chip DRAM module with a latency of 20 cycles.

Table E. 1: The Memory Subsystem Configurations

Config

1

2

3

4

5

LI
Cache

4x2x4x4
latency=l (LRU)

4x2x4x4
latency=l (LRU)

4x2x4x4
latency=l (FIFO)

4x2x4x4
latency=l (FIFO)

L2
Cache

-

16x4x8x4
latency=4 (FIFO)

32x1x8x4
latency=4 (FIFO)

-

SRAM

2K
latency=l

-

IK
latency=l

8K
latency=l

Stream
Buffer

4x4x4x4
latency=4

-

-

-

-

DRAM

latency=20

latency=20

latency=20

latency=20

latency=20

Figure E.4 presents a subset of the experiments we ran, showing the total cycle
counts (including the time spent in the processor) for the set of benchmarks for
different memory configurations. Even though these benchmarks are kernels, we
observed a significant variation in the trends shown by the different applications.

For instance, in tridiag and stateeq, the first configuration (even though has the
lowest cost) performs better (lower cycle count means higher performance), due
to the capability of the stream buffer to exploit the stream nature of the access
patterns. Moreover, in these applications the most expensive configuration (con-
figuration 5), containing the large SRAM behaves poorly, due to the fact that not
all the arrays fit in the SRAM, and the lack of LI cache to compensate the large
latency of the DRAM creates its toll on the performance.

The expected trend of higher cost - higher performance was apparent in the
applications integrate and lowpass, While the stream buffer in configuration 1 has
a comparable performance to the other configurations, the configuration 5 has the



162 APPENDIX E. DESIGN SPACE EXPLORATION

best behavior due to the low latency of the direct mapped on-chip SRAM. The
complete study of the memory subsystem exploration can be found in [98].

90000 -i

75000 -

60000 -

45000 -

30000 -

15000 -

BConfigi BConfig2 DConfig3 •Config4 BConfig5

Tridiag Stateeq Integrate Compress Lowpass

Figure E.4: Cycle counts for the memory configurations

E.2 Hardware Generation and Exploration

We have performed various exploration experiments using the generated hardware
models for DLX processor based on silicon area, power, and clock frequency [92,
93]. We have used Synopsys Design Compiler [127] to synthesize the generated
HDL description using LSI 10K technology libraries and obtained area, power and
clock frequency values.

Table E.2: Synthesis Results: RISC-DLX vs Public-DLX

RISC-DLX
Public-DLX

HDL Code
(lines)
7758
6529

Area
(gates)
208 K
159 K

Speed
(MHz)

35
44

Power
(mW)
32.6
27.4

To ensure the functional correctness, the generated HDL model is validated
against the generated simulator using Livermoore loops (LL1 - LL24) and mul-



R2. HARDWARE GENERATION AND EXPLORATION 163

timedia kernels (compress, GSR, laplace, linear, lowpass, SOR and wavelet). To
ensure the fidelity of the generated area, power, and performance numbers, we
have compared our generated HDL (RISC version of the DLX) with the hand-
written HDL model publicly available from eda.org [44]. Table E.2 presents the
comparative results between the generated DLX model (RISC-DLX) and the hand
written DLX model (Public-DLX). Our generated design (RISC-DLX) is 20-30%
off in terms of area, power and clock speed. We believe these are reasonable ranges
for early rapid system prototyping and exploration.

arg — th2 * piovn
cl = cos(arg)
si = sin(arg)
c2 = cl * cl - si '
s2 — cl * si + cl
c3 = cl * c2 - si '
s3 = c2*sl + s2

ksl;
*sl;
ks2;
*cl;

int4 = in * 4;
jO =jr * int4 +1;

kO =ji * int4 +1;
jlast =jO + in - / ;

Figure E.5: The application program

Figure E.5 shows one of the most frequently executed code segment from FFT
benchmark that we have used as an application program during micro-architectural
exploration.

In this section we present three exploration experiments: pipeline path explo-
ration, pipeline stage exploration and instruction-set exploration. The reported
area, power, and clock frequency numbers are for the execution units only. The
numbers do not include the contributions from others components such as Fetch,
Decode, MEM and WriteBack.

Addition of Functional Units (Pipeline Paths)

Figure E.6 shows the exploration results due to addition of pipeline paths using
the application program shown in Figure E.5. The first configuration has only
one pipeline path consisting of Fetch, Decode, one execution unit (Exl), MEM
and WriteBack. The Exl unit supports five operations: sin, cos, +, - and x. The
second configuration is exactly same as the first configuration except it has one
more execution unit (Ex2) parallel to Exl. The Ex2 unit supports three operations:
+, - and x. Similarly, the third configuration has three parallel execution units:
Exl (+, -, x), Ex2 (+, -, x) and Ex3 (sin, cos, +, - and x). Finally, the fourth
configuration has four parallel execution units: Exl (sin, cos), Ex2 (+, -, MAC2),

2 MAC performs multiply-and-accumulate of the form ax b + c



164 APPENDIX E. DESIGN SPACE EXPLORATION

Ex3 and Ex4, where Ex3 and Ex4 are customized functional units that perform
ax b + cxd.

75 -,

60 -

45 -

Schedule Length DArea (K gates)

30 -

15 -

1 2 3 4
Pipeline Paths

Figure E.6: Pipeline path exploration

The application program requires fewer number of cycles (schedule length)
due to the addition of pipeline paths whereas the area and power requirement in-
creases. The fourth configuration is interesting since both area and schedule length
decrease due to addition of specialized hardware and removal of operations from
other execution units.

Addition of Pipeline Stages

Figure E.7 presents exploration experiments due to addition of pipeline stages in
the multiplier unit. The first configuration is a one-stage multi-cycle multiplier.
The second, third and fourth configurations use multipliers with two, three and
four stages respectively. The clock frequency (speed) is improved due to addition
of pipeline stages. The fourth configuration generated 30% speed improvement at
the cost of 13% area increase over the third configuration.



E.2. HARDWARE GENERATION AND EXPLORATION 165

Addition of Operations

Figure E.8 presents exploration results for addition of opcodes using three proces-
sor configurations. The three configurations are shown in Figure E.8. The first
configuration has four parallel execution units: FU1, FU2, FU3 and FU4. The
FU1 supports three operations: +, -, and x. The FU2, FU3 and FU4 supports (+,
-, x), {and, or) and (sin, cos) respectively. The second configuration is obtained by
adding a cos operation in the FU3 of the first configuration. This generated reduc-
tion of schedule length of the application program at the cost of increase in area.
The third configuration is obtained by adding multipliers both in FU3 and FU4 of
the second configuration. This generated best possible (using +, -, x, sin and cos)
schedule length for the application program shown in Figure E.5.

Clock Frequency (MHz) • Area (K gates)

1 2 3 4
Pipeline Stages

Figure E.7: Pipeline stage exploration

Each iteration in our exploration framework is in the order of hours to days
depending on the amount of modification needed in the ADL and the synthesis
time. However, each iteration will be in the order of weeks to months for manual
or semi-automatic development of HDL models. The reduction of exploration time
is at least an order of magnitude.

We have also performed various micro-architectural explorations of the MIPS
4000 processor. A public release of the exploration framework is available from
http://www.cecs.uci.edu/~express. This release also supports graphical user inter-



166 APPENDIX E. DESIGN SPACE EXPLORATION

30 n

20 -

Schedule Length H Area (K gates)

10 -

Confjg 1 Confjg 2 Confjg 3

Figure E.8: Instruction-set exploration

face (GUI). The architecture can be described (or modified) using the GUI. The
ADL specification as well as the software toolkit are automatically generated from
the graphical description to enable rapid design space exploration of programmable
architectures.



References

[1] A. Aharon and D. Goodman and M. Levinger and Y. Lichtenstein and Y.
Malka and C. Metzger and M. Molcho and G. Shurek. Test program gen-
eration for functional verification of PowerPC processors in IBM. In Pro-
ceedings of Design Automation Conference (DAC), pages 279-285, 1995.

[2] A. Bunker and G. Gopalakrishnan and S. Mckee. Validation, verification,
and testing of computer software. ACM Computing Surveys, 9(1): 1-32, Jan-
uary 2004.

[3] A. Fauth and A. Knoll. Automatic generation of DSP program development
tools. In Proceedings oflnt'l Conf Acoustics, Speech and Signal Processing
(ICASSP), pages 457-460, 1993.

[4] A. Halambi and A. Shrivastava and N. Dutt and A. Nicolau. A customizable
compiler framework for embedded systems. In Proceedings of Software and
Compilers for Embedded Systems (SCOPES), 2001.

[5] A. Halambi and P. Grun and V. Ganesh and A. Khare and N. Dutt and A.
Nicolau. EXPRESSION: A language for architecture exploration through
compiler/simulator retargetability. In Proceedings of Design Automation
and Test in Europe (DATE), pages 485^90, 1999.

[6] A. Inoue and H. Tomiyama and F. Eko and H. Kanbara and H. Yasuura.
A programming language for processor based embedded systems. In Pro-
ceedings of Asia Pacific Conference on Hardware Description Languages
(APCHDL), pages 89-94, 1998.

[7] A. Inoue and H. Tomiyama and H. Okuma and H. Kanbara and H. Yasuura.
Language and compiler for optimizing datapath widths of embedded sys-
tems. IEICE Trans. Fundamentals, E81-A(12):2595-2604, 1998.



168 REFERENCES

[8] A. Khare and N. Savoiu and A. Halambi and P. Grun and N. Dutt and A.
Nicolau. V-SAT: A visual specification and analysis tool for system-on-
chip exploration. In Proceedings ofEUROMICRO Conference, pages 1196—
1203, 1999.

[9] A. Nohl and G. Braun and O. Schliebusch and R. Leupers and H. Meyr
and A. Hoffmann. A universal technique for fast and flexible instruction-set
architecture simulation. In Proceedings of Design Automation Conference
(DAC), pages 22-27, 2002.

[10] ARC Cores, http://www.arccores.com.

[11] Bob Bentley. High level validation of next-generation microprocessors. In
Proceedings of High Level Design Validation and Test (HLDVT), 2002.

[12] C. Ejik. Sequential equivalence checking without state space traversal. In
Proceedings of Design Automation and Test in Europe (DATE), pages 618—
623, 1998.

[13] C. Jacobi. Formal verification of complex out-of-order pipelines by combin-
ing model-checking and theorem-proving. In E. Brinksma and K. Larsen,
editor, Proceedings of Computer Aided Verification (CAV), volume 2404 of
LNCS, pages 309-323. Springer-Verlag, 2002.

[14] C. Seger and R. Bryant. Formal verification by symbolic evaluation of
partially-ordered trajectories. In Formal Methods in System Design, vol-
ume 6, pages 147-189, March 1995.

[15] C. Siska. A processor description language supporting retargetable multi-
pipeline DSP program development tools. In Proceedings of International
Symposium on System Synthesis (ISSS), pages 31-36, 1998.

[16] Chris Basoglu and Woobin Lee and John Setel O'Donnell. TheMAPlOOOA
VLIW Mediaprocessor, 2000.

[17] CoWare LISATek Products, http://www.coware.com.

[18] D. Anastasakis and R. Damiano and H. Ma and T. Stanion. A practical
and efficient method for compare-point matching. In Proceedings of Design
Automation Conference (DAC), pages 305-310, 2002.

[19] D. Campenhout and T. Mudge and J. Hayes. High-level test generation for
design verification of pipelined microprocessors. In Proceedings of Design
Automation Conference (DAC), pages 185-188, 1999.



REFERENCES 169

[20] D. Cyrluk. Microprocessor verification in PVS: A methodology and simple
example. Technical report, SRI-CSL-93-12, 1993.

[21] D. Kastner. TDL: A hardware and assembly description languages. Techni-
cal Report TDL 1.4, Saarland University, Germany, 2000.

[22] D. Lanneer and J. Praet and A. Kifli and K. Schoofs and W. Geurts and F.
Thoen and G. Goossens. CHESS: Retargetable code generation for embed-
ded DSP processors. In Code Generation for Embedded Processors., pages
85-102. Kluwer Academic Publishers, 1995.

[23] E. Schnarr and J. Larus. Fast out-of-order processor simulation using mem-
oization. In Architectural Support for Programming Languages and Oper-
ating Systems (ASPLOS), pages 283-294, 1998.

[24] E. Schnarr and M. Hill and J. Larus. Facile: A language and compiler for
high-performance processor simulators. In Programming Language Design
and Implementation (PLDI), pages 321-331, 2001.

[25] E. Witchel and M. Rosenblum. Embra: Fast and flexible machine simula-
tion. In Measurement and Modeling of Computer Systems, pages 68-79,
1996.

[26] F. Corno and G. Cumani and M. Reorda and G. Squillero. Fully automatic
test program generation for microprocessor cores. In Proceedings of Design
Automation and Test in Europe (DATE), pages 1006-1011, 2003.

[27] F. Engel and J. Nuhrenberg and G. Fettweis. A generic tool set for ap-
plication specific processor architectures. In Proceedings of International
Symposium on Hardware/Software Codesign (CODES), 2000.

[28] F. Lohr and A. Fauth and M. Freericks. Sigh/sim: An environment for retar-
getable instruction set simulation. Technical Report 1993/43, Dept. Com-
puter Science, Tech. Univ. Berlin, Germany, 1993.

[29] F. Pong and M. Dubois. Verification techniques for cache coherence proto-
cols. ACM Computing Surveys, 29(1):82-126, 1997.

[30] G. Hadjiyiannis and P. Russo and S. Devadas. A methodology for accu-
rate performance evaluation in architecture exploration. In Proceedings of
Design Automation Conference (DAC), pages 927-932, 1999.

[31] G. Hadjiyiannis and S. Hanono and S. Devadas. ISDL: An instruction set de-
scription language for retargetability. In Proceedings of Design Automation
Conference (DAC), pages 299-302, 1997.



170 REFERENCES

[32] Gordon Moore. Cramming more components onto integrated circuits. Elec-
tronics, 38(8), 1965.

[33] Gregory S Spirakis. Designing for 65nm and Beyond. Keynote Address at
Design Automation and Test in Europe (DATE), 2004.

[34] H. Akaboshi. A Study on Design Support for Computer Architecture Design.
PhD thesis, Dept. of Information Systems, Kyushu University, Japan, Jan
1996.

[35] H. Akaboshi and H. Yasuura. Behavior extraction of MPU from HDL de-
scription. In Proceedings of Asia Pacific Conference on Hardware Descrip-
tion Languages (APCHDL), 1994.

[36] H. Chockler and O. Kupferman and R. Kurshan and M. Vardi. A practical
approach to coverage in model checking. In Proceedings of Computer Aided
Verification (CAV), volume 2102 of LNCS, pages 66-78. Springer-Verlag,
2001.

[37] H. Iwashita and S. Kowatari and T. Nakata and F. Hirose. Automatic test
pattern generation for pipelined processors. In Proceedings of International
Conference on Computer-Aided Design (ICCAD), pages 580-583, 1994.

[38] H. Tomiyama and A. Halambi and P. Grun and N. Dutt and A. Nicolau.
Architecture description languages for systems-on-chip design. In Proceed-
ings of Asia Pacific Conference on Chip Design Language, pages 109-116,
1999.

[39] http://pjro.metsa.astem.or.jp/udli. UDL/ISimulation/Synthesis Environment,
1997.

[40] http://www-cad.eecs.berkeley.edu/Software/software.html. Espresso.

[41 ] http://www-ee.engr.ccny.cuny.edu/notes/ee210/eqntott_man.html. Eqntott.

[42] http://www.axysdesign.com. Axys Design Automation.

[43] http://www.es.cmu.edu/~modelcheck. Symbolic Model Verifier.

[44] http://www.eda.org/rassp/vhdl/models/processor.html. Synthesizable DLX.

[45] http://www.ics.uci.edu/~express. Exploration framework using EXPRES-
SION.

[46] http://www.improvsys.com. Improv Inc.



REFERENCES 111

[47] http://www.lucent.com/micro/Starcore. Starcore, Next Generation DSPs.

[48] http://www.motorola.com. MPC7450 Microprocessor.

[49] http://www.retarget.com. Target Compiler Technologies.

[50] http://www.sgi.com. MIPS Rl0000 Microprocessor.

[51] http://www.simplescalar.com. Simplescalar

[52] http://www.sparc.com/resource.htm#V8. The SPARC Architecture Manual,
Version 8.

[53] J. Burch and D. Dill. Automatic verification of pipelined microprocessor
control. In D. Dill, editor, Proceedings of Computer Aided Verification
(CAV), volume 818 of LNCS, pages 68-80. Springer-Verlag, 1994.

[54] J. Gyllenhaal and B. Rau and W. Hwu. HMDES version 2.0 specification.
Technical Report IMPACT-96-3, IMPACT Research Group, Univ. of Illi-
nois, Urbana. IL, 1996.

[55] J. Hennessy and D. Patterson. Computer Architecture: A Quantitative Ap-
proach. Morgan Kaufmann Publishers Inc, San Mateo, CA, 1990.

[56] J. Huggins and D. Campenhout. Specification and verification of pipelining
in the arm2 rise microprocessor. ACM Transactions on Design Automation
of Electronic Systems (TODAES), 3(4):563-580, October 1998.

[57] J. Levitt and K. Olukotun. Verifying correct pipeline implementation for
microprocessors. In Proceedings of International Conference on Computer-
AidedDesign (ICCAD), pages 162-169, 1997.

[58] J. Marques-Silva and T. Glass. Combinational equivalence checking using
satisfiability and recursive learning. In Proceedings of Design Automation
and Test in Europe (DATE), pages 145-149, 1999.

[59] J. Miyake and G. Brown and M. Ueda and T. Nishiyama. Automatic test
generation for functional verification of microprocessors. In Proceedings of
Asian Test Symposium (ATS), pages 292-297, 1994.

[60] J. Paakki. Attribute grammar paradigms - a high level methodology in
language implementation. ACM Computing Surveys, 27(2): 196-256, June
1995.



172 REFERENCES

[61] J. Sato and A. Alomary and Y. Honma and T. Nakata and A. Shiomi and N.
Hikichi and M. Imai. PEAS-I: A hardware/software codesign systems for
ASIP development. IEICE Trans. Fundamentals, E77-A(3):483-491, 1994.

[62] J. Sawada and W. D. Hunt. Processor verification with precise exceptions
and speculative execution. In A. Hu and M. Vardi, editor, Proceedings of
Computer Aided Verification (CAV), volume 1427 of LNCS, pages 135-146.
Springer-Verlag, 1998.

[63] J. Shen and J. Abraham and D. Baker and T. Hurson and M. Kinkade and
G. Gervasio and C. Chu and G. Hu. Functional verification of the equator
MAP 1000 microprocessor. In Proceedings of Design Automation Confer-
ence (DAC), pages 169-174, 1999.

[64] J. Skakkebaek and R. Jones and D. Dill. Formal verification of out-of-
order execution using incremental flushing. In A. Hu and M. Vardi, editor,
Proceedings of Computer Aided Verification (CAV), volume 1427 of LNCS,
pages 98-109. Springer-Verlag, 1998.

[65] J. Zhu and D. Gajski. A retargetable, ultra-fast, instruction set simulator. In
Proceedings of Design Automation and Test in Europe (DATE), 1999.

[66] K. Kohno and N. Matsumoto. A new verification methodology for complex
pipeline behavior. In Proceedings of Design Automation Conference (DAC),
pages 816-821, 2001.

[67] Kanna Shimizu. Writing, Verifying, and Exploiting Formal Specifications
for Hardware Designs. PhD thesis, Stanford University, 2002.

[68] L. Chen and S. Ravi and A. Raghunathan and S. Dey. A scalable software-
based self-test methodology for programmable processors. In Proceedings
of Design Automation Conference (DAC), pages 548-553, 2003.

[69] L. Wang and M. Abadir and N. Krishnamurthy. Automatic generation of
assertions for formal verification of PowerPC microprocessor arrays using
symbolic trajectory evaluation. In Proceedings of Design Automation Con-
ference (DAC), pages 534-537, 1998.

[70] LEON2 Processor, http://www.gaisler.com/leon.html.

[71] M. Aagaard and B. Cook and N. Day and R. Jones. A framework for mi-
croprocessor correctness statements. In T. Margaria and T. Melham, ed-
itor, Proceedings of Correct Hardware Design and Verification Methods
(CHARME), volume 2144 of 'LNCS, pages 433-448. Springer-Verlag, 2001.



REFERENCES 173

[72] M. Freericks. The nML machine description formalism. Technical Report
TR SM-IMP/DIST/08, TU Berlin CS Dept., 1993.

[73] M. Hartoog and J. Rowson and P. Reddy and S. Desai and D. Dunlop and
E. Harcourt and N. Khullar. Generation of software tools from processor
descriptions for hardware/software codesign. In Proceedings of Design Au-
tomation Conference (DAC), pages 303-306, 1997.

[74] M. Hohenauer and H. Scharwaechter and K. Karuri and O. Wahlen and T.
Kogel and R. Leupers and G. Ascheid and H. Meyr and G. Braun and H.
Someren. A methodology and tool suite for c compiler generation from
ADL processor models. In Proceedings of Design Automation and Test in
Europe (DATE), pages 1276-1283, 2004.

[75] M. Itoh and S. Higaki and Y. Takeuchi and A. Kitajima and M. Imai and J.
Sato and A. Shiomi. PEAS-III: An ASIP design environment. In Proceed-
ings of International Conference on Computer Design (ICCD), 2000.

[76] M. Itoh and Y. Takeuchi and M. Imai and A. Shiomi. Synthesizable HDL
generation for pipelined processors from a micro-operation description. IE-
ICE Trans. Fundamentals, E00-A(3), March 2000.

[77] M. Reshadi and P. Mishra and N. Dutt. Instruction set compiled simulation:
A technique for fast and flexible instruction set simulation. In Proceedings
of Design Automation Conference (DAC), pages 758-763, 2003.

[78] M. Srivas and M. Bickford. Formal verification of a pipelined microproces-
sor. In IEEE Software, volume 7(5), pages 52-64, 1990.

[79] M. Velev and R. Bryant. Formal verification of superscalar microprocessors
with multicycle functional units, exceptions, and branch prediction. In Pro-
ceedings of Design Automation Conference (DAC), pages 112-117, 2000.

[80] The MDES User Manual, http://www.trimaran.org, 1997.

[81] MIPS Technologies, Inc. MIPS R4000 Microprocessor User's Manual,
1994.

[82] N. Krishnamurthy and M. Abadir and A. Martin and J. Abraham. Design
and development paradigm for industrial formal verification tools. IEEE
Design & Test of Computers, 18(4):26-35, July-August 2001.

[83] N. Medvidovic and R. Taylor. A framework for classifying and comparing
architecture description languages. In M. Jazayeri and H. Schauer, editor,



174 REFERENCES

Proceedings of European Software Engineering Conference (ESEC), pages
60-76. Springer-Verlag, 1997.

[84] O. Schliebusch and A. Chattopadhyay and M. Steinert and G. Braun and A.
Nohl and R. Leupers and G. Ascheid and H. Meyr. RTL processor synthesis
for architecture exploration and implementation. In Proceedings of Design
Automation and Test in Europe (DATE), pages 156-160, 2004.

[85] O. Schliebusch and A. Hoffmann and A. Nohl and G. Braun and H. Meyr.
Architecture implementation using the machine description language LISA.
In Proceedings of Asia South Pacific Design Automation Conference (ASP-
DAC) /International Conference on VLSI Design, pages 239-244, 2002.

[86] O. Wahlen and M. Hohenauer and R. Leupers and H. Meyr. Instruction
scheduler generation for retragetable compilation. IEEE Design & Test of
Computers, 20(l):34-41, Jan-Feb 2003.

[87] P. Ammann and P. Black and W. Majurski. Using model checking to gener-
ate tests from specifications. In Proceedings of International Conference on
Formal Engineering Methods (ICFEM), pages 46-54, 1998.

[88] P. Grun and A. Halambi and N. Dutt and A. Nicolau. RTGEN: An algorithm
for automatic generation of reservation tables from architectural descrip-
tions. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
11(4):731-737, August 2003.

[89] P. Grun and N. Dutt and A. Nicolau. Memory aware compilation through ac-
curate timing extraction. In Proceedings of Design Automation Conference
(DAC), pages 316-321, 2000.

[90] P. Ho and A. Isles and T. Kam. Formal verification of pipeline control using
controlled token nets and abstract interpretation. In Proceedings of Inter-
national Conference on Computer-Aided Design (ICCAD), pages 529-536,
1998.

[91] P. Ho and Y. Hoskote and T. Kam and M. Khaira and J. O'Leary and X.
Zhao and Y. Chen and E. Clarke. Verification of a complete floating-point
unit using word-level model checking. In M. Srivas and A. Camilleri, edi-
tor, Proceedings of Formal Methods in Computer-Aided Design (FMCAD),
volume 1166 of LNCS, pages 19-33. Springer-Verlag, 1996.

[92] P. Mishra and A. Kejariwal and N. Dutt. Rapid exploration of pipelined
processors through automatic generation of synthesizable RTL models. In
Proceedings of Rapid System Prototyping (RSP), pages 226-232, 2003.



REFERENCES 175

[93] P. Mishra and A. Kejariwal and N. Dutt. Synthesis-driven exploration of
pipelined embedded processors. In Proceedings of International Conference
on VLSI Design, 2004.

[94] P. Mishra and F. Rousseau and N. Dutt and A. Nicolau. Architecture de-
scription language driven design space exploration in the presence of co-
processors. In Proceedings of Synthesis and System Integration of Mixed
Technologies (SASIM), 2001.

[95] P. Mishra and H. Tomiyama and N. Dutt and A. Nicolau. Architecture de-
scription language driven verification of in-order execution in pipelined pro-
cessors. Technical Report UCI-ICS 01-20, University of California, Irvine,
2000.

[96] P. Mishra and H. Tomiyama and N. Dutt and A. Nicolau. Automatic veri-
fication of in-order execution in microprocessors with fragmented pipelines
and multicycle functional units. In Proceedings of Design Automation and
Test in Europe (DATE), pages 36-43, 2002.

[97] P. Mishra and J. Astrom and N. Dutt and A. Nicolau. Functional abstraction
of programmable embedded systems. Technical Report UCI-ICS 01-04,
University of California, Irvine, January 2001.

[98] P. Mishra and M. Mamidipaka and N. Dutt. Processor-memory co-
exploration using an architecture description language. ACM Transactions
on Embedded Computing Systems (TECS), 3(1): 140-162, 2004.

[99] P. Mishra and N. Dutt. Automatic modeling and validation of pipeline spec-
ifications. ACM Transactions on Embedded Computing Systems (TECS),
3(1):114-139, 2004.

[100] P. Mishra and N. Dutt. Graph-based functional test program generation for
pipelined processors. In Proceedings of Design Automation and Test in Eu-
rope (DATE), pages 182-187, 2004.

[101] P. Mishra and N. Dutt. Architecture description languages for programmable
embedded systems. IEE Proceedings on Computers and Digital Techniques,
2005.

[102] P. Mishra and N. Dutt and A. Nicolau. Functional abstraction driven de-
sign space exploration of heterogeneous programmable architectures. In
Proceedings of International Symposium on System Synthesis (ISSS), pages
256-261,2001.



176 REFERENCES

[103] P. Mishra and N. Dutt and A. Nicolau. Specification of hazards, stalls, inter-
rupts, and exceptions in EXPRESSION. Technical Report UCI-ICS 01-05,
University of California, Irvine, 2001.

[104] P. Mishra and N. Dutt and A. Nicolau. A study of out-of-order completion
for the MIPS R10K superscalar processor. Technical Report UCI-ICS 01-
06, University of California, Irvine, January 2001.

[105] P. Mishra and N. Dutt and H. Tomiyama. Towards automatic validation of
dynamic behavior in pipelined processor specifications. Kluwer Design Au-
tomation for Embedded Systems(DAES), 8(2-3):249-265, June-September
2003.

[106] P. Mishra and N. Dutt and N. Krishnamurthy and M. Abadir. A top-down
methodology for validation of microprocessors. IEEE Design & Test of
Computers, 21(2): 122-131, 2004.

[107] P. Mishra and P. Grun and N. Dutt and A. Nicolau. Processor-memory co-
exploration driven by an architectural description language. In Proceedings
of International Conference on VLSI Design, pages 70—75, 2001.

[108] P. Paulin and C. Liem and T. May and S. Sutarwala. FlexWare: A flexi-
ble firmware development environment for embedded systems. In Prof of
Dagstuhl Workshop on Code Generation for Embedded Processors, pages
67-84, 1994.

[109] Paul C. Clements. A survey of architecture description languages. In Pro-
ceedings of International Workshop on Software Specification and Design
(IWSSD), pages 16-25, 1996.

[110] Prabhat Mishra. Specification-driven Validation of Programmable Embed-
ded Systems. PhD thesis, University of California, Irvine, March 2004.

[ I l l ] R.Bryant. Symbolic simulation - techniques and applications. In Proceed-
ings of Design Automation Conference (DAC), pages 517-521, 1990.

[112] R. Bryant and C. Seger. Formal verification of digital circuits using sym-
bolic ternary system models. In Proceedings of Computer Aided Verification
(CAV), pages 121-146, 1990.

[113] R. Cmelik and D. Keppel. Shade: A fast instruction-set simulator for ex-
ecution profiling. ACM SIGMETRICS Performance Evaluation Review,
22(1): 128-137, May 1994.



REFERENCES 111

[114] R. Ho and C. Yang and Mark A. Horowitz and D. Dill. Architecture vali-
dation for processors. In Proceedings of International Symposium on Com-
puter Architecture (ISCA), 1995.

[115] R. Jhala and K. L. McMillan. Microarchitecture verification by composi-
tional model checking. In G. Berry et al., editor, Proceedings of Computer
Aided Verification (CAV), volume 2102 of LNCS, pages 396-410. Springer-
Verlag,2001.

[116] R. Leupers and P. Marwedel. Retargetable generation of code selectors from
HDL processor models. In Proceedings of European Design and Test Con-
ference (EDTC), pages 140-144, 1997.

[117] R. Leupers and P. Marwedel. Retargetable code generation based on struc-
tural processor descriptions. Design Automation for Embedded Systems,
3(l):75-108, 1998.

[118] R. M. Hosabettu. Systematic Verification Of Pipelined Microprocessors.
PhD thesis, Department of Computer Science, University of Utah, 2000.

[119] S. Fine and A. Ziv. Coverage directed test generation for functional ver-
ification using bayesian networks. In Proceedings of Design Automation
Conference (DAC), pages 286-291, 2003.

[120] S. Hanono and S. Devadas. Instruction selection, resource allocation, and
scheduling in the AVIV retargetable code generator. In Proceedings of De-
sign Automation Conference (DAC), pages 510-515, 1998.

[121] S. Pees and A. Hoffmann and H. Meyr. Retargetable compiled simulation
of embedded processors using a machine description language. ACM Trans-
actions on Design Automation of Electronic Systems, 5 (4): 815-834, Oct.
2000.

[122] S. Thatte and J. Abraham. Test generation for microprocessors. IEEE Trans-
actions on Computers, C-29(6):429-441, June 1980.

[123] S. Ur and Y. Yadin. Micro architecture coverage directed generation of test
programs. In Proceedings of Design Automation Conference (DAC), pages
175-180, 1999.

[124] S. Wang and S. Malik. Synthesizing operating system based device drivers
in embedded systems. In Proceedings of International Symposium on Hard-
ware/Software Codesign and System Synthesis (CODES+ISSS), pages 37-
44, 2003.



178 REFERENCES

[125] StrongArm. StrongARMProcessors, http://developer.intel.com, 2000.

[126] SUN Microsystems. UltraSPARC Hi User's Manual, 1997.

[127] Synopsys. http://www.synopsys.com.

[128] Synopsys Formality, http://www.synopsys.com.

[129] T. Morimoto and K. Yamazaki and H. Nakamura and T. Boku and K.
Nakazawa. Superscalar processor design with hardware description lan-
guage aidl. In Proceedings of Asia Pacific Conference on Hardware De-
scription Languages (APCHDL), 1994.

[130] Tensilica Inc. http://www.tensilica.com.

[131] Texas Instruments. TMS320C6201 CPU and Instruction Set Reference
Guide, 1998.

[132] V. Rajesh and Rajat Moona. Processor modeling for hardware software
codesign. In Proceedings of International Conference on VLSI Design,
pages 132-137, 1999.

[133] V. Zivojnovic and S. Pees and H. Meyr. LISA - machine description lan-
guage and generic machine model for HW/SW co-design. In IEEE Work-
shop on VLSI Signal Processing, pages 127-136, 1996.

[134] Verisity Design, Inc. http://www.verisity.com.

[135] Verisity Verification Vault, https://www.verificationvault.com.

[136] W. Adrion and M. Branstad and J. Cherniavsky. Validation, verification,
and testing of computer software. ACM Computing Surveys, 14(2): 159—192,
June 1982.

[137] W. Qin and S. Malik. Architecture Description Languages for Retargetable
Compilation, in The Compiler Design Handbook: Optimizations & Machine
Code Generation. CRC Press, 2002.

[138] www.intel.com. IA-64 Architecture.

[139] www.rs.e-technik.tu-darmstadt.de/TUD/res/dlxdocu/SuperscalarDLX.html.
A Superscalar Version of the DLX Processor.



Index

ADL, 10, 16
antecedent, 86
application programs, 3
architectural exploration, 155
architectural flaws, 8
Architecture Description Language, 16
architecture manual, 15
architecture validation, 83
assembler, 16
attribute grammar, 18

BDD, 85
behavior, 16, 25
behavioral ADL, 18, 130
Boolean, 83
branch taken, 52
bubble insertion, 49

code coverage, 8
compiler, 16
completeness, 10, 39
connectedness, 10, 34
consequent, 86
constrained-random, 113
coprocessor, 8, 15
counterexample, 98

data-transfer edge, 31
data-transfer path, 24, 31
debugger, 16
design complexity, 3
design space exploration, 16
determinism, 10, 55, 151

DMA, 23
DSE, 16
DSP, 11
dynamic behavior, 48

embedded systems, 3
equivalence checking, 10, 87
exception, 147
execution edge, 33
execution path, 103
exploration, 16
EXPRESSION, 17

false data-transfer path, 37
false pipeline path, 35
fault model, 103
finiteness, 10, 41
formal techniques, 83
formal verification, 9, 83
FSM, 8
functional abstraction, 11, 69
functional coverage, 7, 95, 103, 105
functional errors, 4
functional verification, 4

golden reference model, 7
graph coverage, 98
graph model, 96

hardware ADL, 16
hardware description language, 21
HDL, 19

implementation, 83



180 INDEX

implementation bugs, 8
in-order execution, 10, 55, 151
instruction register, 51
instruction-set, 16
instruction-set simulation, 9
interface synthesis, 18
interrupt, 147
interrupt handler, 149
ISDL, 17

LISA, 17
logic bugs, 4
LRU, 88

MDES, 17
memory, 15
memory subsystem, 8
MIMOLA, 17
mixed ADL, 18, 134
MMU, 88
model checker, 96
modeling language, 20

nML, 17
normal flow, 49

operation edge, 33
operation execution, 103

partial ADL, 18
pipeline behavior, 29
pipeline edge, 31
pipeline execution, 103
pipeline latch, 51
pipeline path, 24, 31
processor, 15
processor core, 8
programmable architectures, 3
programmable components, 3
programming language, 20
property checking, 83

RADL, 17
reference model, 77
register read/write, 103
register-transfer level, 5
RISC, 11
RTL, 5
RTL design, 83

sequential execution, 52
Sim-nML, 17
simulation, 83
simulation vectors, 5
simulator, 16
SMV, 57
SOC,4
Software ADL, 16
software toolkit, 16
specification, 15
specification language, 15
squash, 49
stall, 49
state space explosion, 83
static behavior, 30
static verification, 87
STE, 85
structural ADL, 19, 127
structure, 16,24,31
superscalar, 11
symbolic simulation, 85
synthesis, 16
system-on-chip, 3

ternary simulation, 85
test generation, 16, 95, 106
test programs, 99
top-down validation, 8

Valen-C, 17
validation, 16
VLIW, 11




