

New Algorithms, Architectures and Applications for

Reconfigurable Computing

New Algorithms, Architectures

and Applications for

Reconfigurable Computing

Edited by

Patrick Lysaght

Xilinx, San Jose, USA

and

University of Tübingen, Germany

Wolfgang Rosenstiel

A C.I.P. Catalogue record for this book is available from the Library of Congress.

Published by Springer,

P.O. Box 17, 3300 AA Dordrecht, The Netherlands.

Sold and distributed in North, Central and South America

by Springer,

101 Philip Drive, Norwell, MA 02061, U.S.A.

In all other countries, sold and distributed

by Springer,

P.O. Box 322, 3300 AH Dordrecht, The Netherlands.

Printed on acid-free paper

All Rights Reserved

No part of this work may be reproduced, stored in a retrieval system, or transmitted

or otherwise, without written permission from the Publisher, with the exception

of any material supplied specifically for the purpose of being entered

and executed on a computer system, for exclusive use by the purchaser of the work.

Printed in the Netherlands.

© 2005 Springer

ISBN-10 1-4020-3127-0 (HB) Springer Dordrecht, Berlin, Heidelberg, New York
ISBN-10 1-4020-3128-9 (e-book) Springer Dordrecht, Berlin, Heidelberg, New York
ISBN-13 978-1-4020-3127-4 (HB) Springer Dordrecht, Berlin, Heidelberg, New York
ISBN-13 978-1-4020-3128-1 (e-book) Springer Dordrecht, Berlin, Heidelberg, New York

Contents

Introduction ix

About the Editors xv

Acknowledgements xvii

Architectures

Chapter 1
Extra-dimensional Island-Style FPGAs 1
Herman Schmit

Chapter 2
A Tightly Coupled VLIW/Reconfigurable Matrix and its Modulo

Scheduling Technique 15
Bingfeng Mei, Serge Vernalde, Diederik Verkest, and Rudy Lauwereins

Chapter 3
Stream-based XPP Architectures in Adaptive

System-on-Chip Integration 29
Jürgen Becker, Martin Vorbach

Chapter 4
Core-Based Architecture for Data Transfer Control in SoC Design 43
Unai Bidarte, Armando Astarloa, Aitzol Zuloaga, José Luis Martı́n
and Jaime Jiménez

Chapter 5
Customizable and Reduced Hardware Motion Estimation Processors 55
Nuno Roma, Tiago Dias, Leonel Sousa

v

vi

Methodologies and Tools

Chapter 6
Enabling Run-time Task Relocation on Reconfigurable Systems 69
J-Y. Mignolet, V. Nollet, P. Coene, D. Verkest, S. Vernalde,
R. Lauwereins

Chapter 7
A Unified Codesign Environment 81
Theerayod Wiangtong, Peter Y.K Cheung, Wayne Luk

Chapter 8
Mapping Applications to a Coarse Grain Reconfigurable System 93
Yuanqing Guo, Gerard J.M. Smit, Michèl A.J. Rosien,
Paul M. Heysters, Thijs Krol, Hajo Broersma

Chapter 9
Compilation and Temporal Partitioning for a Coarse-grain

Reconfigurable Architecture 105
João M.P. Cardoso, Markus Weinhardt

Chapter 10
Run-time Defragmentation for Dynamically Reconfigurable Hardware 117
Manuel G. Gericota, Gustavo R. Alves, Miguel L. Silva, and
José M. Ferreira

Chapter 11
Virtual Hardware Byte Code as a Design Platform for Reconfigurable

Embedded Systems 131
S. Lange, U. Kebschull

Chapter 12
A Low Energy Data Management for Multi-Context Reconfigurable

Architectures 145
M. Sanchez-Elez, M. Fernandez, R. Hermida, N. Bagherzadeh

Chapter 13
Dynamic and Partial Reconfiguration in FPGA SoCs: Requirements

Tools and a Case Study 157
Fernando Moraes, Ney Calazans, Leandro Möller, Eduardo Brião,
Ewerson Carvalho

Contents vii

Applications

Chapter 14
Design Flow for a Reconfigurable Processor 171

Chapter 15
IPsec-Protected Transport of HDTV over IP 183

Chapter 16
Fast, Large-scale String Match for a 10 Gbps

FPGA-based NIDS 195
Ioannis Sourdis and Dionisios Pnevmatikatos

Chapter 17
Architecture and FPGA Implementation of a Digit-serial

RSA Processor 209
Alessandro Cilardo, Antonino Mazzeo, Luigi Romano,
Giacinto Paolo Saggese

Chapter 18
Division in GF(p) for Application in Elliptic Curve

Cryptosystems on Field Programmable Logic 219
Alan Daly, William Marnane, Tim Kerins, and Emanuel Popovici

Chapter 19
A New Arithmetic Unit in GF(2M) for Reconfigurable

Hardware Implementation 231
Chang Hoon Kim, Chun Pyo Hong, Soonhak Kwon and
Yun Ki Kwon

Chapter 20
Performance Analysis of SHACAL-1 Encryption

Hardware Architectures 251
Máire McLoone, J.V. McCanny

Chapter 21
Security Aspects of FPGAs in Cryptographic Applications 265
Thomas Wollinger and Christof Paar

Peter Bellows, Jaroslav Flidr, Ladan Gharai,
Colin Perkins, Pawel Chodowiec, and Kris Gaj

Alberto La Rosa, Luciano Lavagno, and Claudio Passerone

viii

Chapter 22
Bioinspired Stimulus Encoder for Cortical Visual Neuroprostheses 279
Leonel Sousa, Pedro Tomás, Francisco Pelayo, Antonio Martinez,
Christian A. Morillas and Samuel Romero

Chapter 23
A Smith-Waterman Systolic Cell 291
C.W. Yu, K.H. Kwong, K.H. Lee and P.H.W. Leong

Chapter 24
The Effects of Polynomial Degrees 301
Dong-U Lee and Wayne Luk, John D. Villasenor, Peter Y.K. Cheung

Introduction

In describing the progression of the semiconductor industry over the last several
decades, Dr. Tsugio Makimoto proposed a model that has subsequently come
to be known as Makimoto’s Wave. The model consists of cycles that alternate
between product standardization and customization. According to the model, we
are now firmly in the middle of a field programmable cycle that is characterized
by standardization in manufacturing and customization in application. Field
programmable gate arrays (FPGAs) are the standard bearers of this new age.
At a time when only the largest companies can afford to fully exploit state-
of-the-art silicon, FPGAs bring the benefits of deep submicron and nano-scale
integration to even the smallest teams. It is fitting then that we are witnessing
a huge surge in the amount of research being conducted worldwide into field
programmable logic and its related technologies. This book was inspired by
the desire to compile a selection of the best of the current research efforts and
present it in an accessible way to a wide audience.

The book consists of a collection of invited contributions from the authors
of some of the best papers from the Design, Automation, and Test conference
in Europe (DATE’03) and the Field Programmable Logic conference (FPL’03).
The contributions are organized into twenty-four chapters. In all, eighty-five
authors have described their latest research, making this volume a unique record
of the state-of-the-art in FPGA-related research.

The twenty-four chapters are organized into three main categories. The first
five chapters address hard and soft architectures. Chapters 6 to 13 are concerned
with design methodology and tools. The final eleven chapters are devoted to
applications, of which chapters 14 to 21 focus on networking, encryption and
security. Some of the research reported here defies simple classification so there
is more than one example of work that could appear in more than one category.
Nonetheless, the classification scheme does impose a useful order on the work.

Architectures

In the opening chapter, Schmit presents an insightful analysis of the chal-
lenges facing architects of island-style FPGAs in scaling interconnect to match
increasing netlist complexity. His approach is based on the introduction of

ix

x

additional wiring in the logical third and fourth dimensions and then mapping
these additional routes into the two-dimensional silicon. The benefits the author
claims for this strategy include longer tile life, better evolution of CAD tools
and a unification of the analysis of time-multiplexed FPGAs.

The next two chapters introduce two new coarse-grained architectures. The
motivation for coarse-grained architectures includes better computational and
power efficiency, and improved opportunities for the automatic compilation
of designs from higher-level design representations. Mei and colleagues pro-
pose ADRES (Architecture for Dynamically Reconfigurable Embedded Sys-
tem) which is a novel integration of a VLIW processor and a coarse-grained
reconfigurable matrix that combine to form a single architecture with two vir-
tual, functional views. They also present a novel modulo scheduling technique
which they claim can map kernel loops on to the matrix efficiently by simulta-
neously solving the placement, routing and scheduling problems.

Chapter 3 describes the structures and principles of the stream-based, recon-
figurable PACT/XPP architectures. The status of an adaptive System-on-Chip
(SoC) integration is given, consisting of a SPARC-compatible LEON processor-
core, a coarse-grain XPParray, and an Amba-based communication interfaces.

In chapters 4 and 5 two soft architectures are proposed. Bidarte et al describe
their system on reconfigurable chip (SORC). This is a core based system-on-
chip architecture that they have verified with two industrial control type applica-
tions. They considered a number of interconnection networks before selecting
the Wishbone interconnection architecture for portable IP cores that is available
from OpenCores.org. The second core-based architecture, proposed by Roma
et al, is specialized for motion estimation applications. The authors describe
a customizable core-based architecture for real-time motion estimation in FP-
GAs using a two-dimensional array processor with extensive parallelism and
pipelining. By applying sub-sampling and truncation techniques, the complex-
ity of the architecture can be tailored to provide fast and low cost real-time
motion estimation.

Methodology and Tools

The ability to (re)schedule a task either in hardware or software will be
an important asset in a reconfigurable systems-on-chip. To support this fea-
ture Mignolet et al. have developed an infrastructure that, combined with a
suitable design environment permits the implementation and management of
hardware/software relocatable tasks. The authors present a strategy for hetero-
geneous context switching together with a description of the communication
scheme and the design environment.

In Chapter 7, Wiangtong et al describe a semi-automatic co-design environ-
ment for the UltraSONIC reconfigurable computer. UltraSONIC is targeted at

Introduction xi

real-time video applications and consists of a single multitasking host processor
augmented with multiple reconfigurable coprocessors. Tasks are assumed to be
dataflow intensive with few control flow constructs. By treating hardware and
software tasks uniformly, the authors are able to engineer a common run-time
task manager with support for automatic partitioning and scheduling. They
validate their flow by implementing an 8-point FFT algorithm.

In Chapter 8, Guo et al describe a design method to map applications written
in a high level source language program, like C, to a coarse grain reconfigurable
architecture, called MONTIUM. The source code is first translated into a control
dataflow graph (CDFG). Then after applying graph clustering, scheduling and
allocation on this CDFG, it can be mapped onto the target architecture. High
performance and low power consumption are achieved by exploiting maximum
parallelism and locality of reference respectively. Using a special mapping
method, the flexibility of the MONTIUM architecture can be exploited.

The eXtreme Processing Platform (XPP) is a coarse-grained dynamically re-
configurable architecture which was already introduced in Chapter 3. Chapter
9 presents a compiler aiming to program the XPP using a subset of the C lan-
guage. The compiler, apart from mapping the computational structures onto the
available resources on the device, splits the program in temporal sections when
it needs more resources than the physically available. In addition a scheme to
split the program such that the reconfiguration overheads are minimized, taking
advantage of the overlapping of the execution stages on different configurations
is presented.

A rearrangement of the currently running functions is presented in Chapter
10 to obtain enough contiguous space to implement incoming functions, avoid-
ing the spreading of their components and the resulting degradation of sys-
tem performance. A novel active relocation procedure for Configurable Logic
Blocks (CLBs) is presented, able to carry out online rearrangements and defrag-
menting the available FPGA resources without disturbing functions currently
running.

Chapter 11 shows how the hardware parts of an embedded system can be
implemented in a hardware byte code, which can be interpreted using a virtual
hardware machine running on an arbitrary FPGA. The authors describe how
this approach leads to fast, portable and reconfigurable designs, which run on
any programmable target architecture.

Chapter 12 presents a new technique to improve the efficiency of data
scheduling for multi-context reconfigurable architectures targeting multimedia
and DSP applications. The main goal of this technique is to diminish applica-
tion energy consumption. Two levels of on-chip data storage are assumed in the
reconfigurable architecture. The authors show that a suitable data scheduling
could decrease the energy required to implement the dynamic reconfiguration
of the system.

xii

Chapter 13 focuses on design methods for dynamic reconfiguration targeted
to SoCs implemented on FPGAs. The main distinction between conventional
digital systems design and the methods addressed here is the possibility of
dynamically replacing hardware modules (i.e. IP cores) while the rest of the
system is still working.

Applications

Chapter 14 describes an approach to hardware/software design space explo-
ration for reconfigurable processors. The existing compiler tool-chain, because
of the user-definable instructions, needs to be extended in order to offer devel-
opers an easy way to explore the design space. Such extension often is not easy
to use for developers who have only a software background, and are not familiar
with reconfigurable architecture details or hardware design. The authors illus-
trate their approach by using a real case study, a software implementation of a
UMTS turbo-decoder that achieves a good speed-up of the whole application by
exploiting user-defined instructions on the dynamically reconfigurable portion
of the data path.

The work of Bellows et al. is motivated by the fact that network performance
is doubling every eight months while the processing power of modern CPUs is
failing to keep pace. Faced with handling higher network data rates and more
complex encryption algorithms, the authors describe how they have developed
an accelerator based on FPGAs called GRIP (gigabit-rate IPsec). GRIP is a
network-processing accelerator that uses Xilinx FPGAs and integrates into a
standard Linux-TCP/IP host equipped with IPsec, a set of protocols developed
to support secure exchange of packets at the layer. The accelerator can handle
full end-to-end, AES encrypted HDTV at 1 Gbps line rates on commodity
networks. Meanwhile, Sourdis and Pnevmatikatos describe in Chapter 16 a
network intrusion detection system (NIDS) designed to operate at the 10 Gbps
OC192 line speeds. Using extensive parallelism and fine-grained pipelining,
they have achieved throughput in excess of 11 Gbps with 50 rules from the
open source Snort system.

In Chapter 17 Cilardo et al. present a modification of the popular Mont-
gomery algorithm for modular multiplication through the addition of carry-
save number representation. They evaluate their approach by implementing the
Rivest-Shamir-Adleman (RSA) public-key cryptography algorithm. Their al-
gorithm results in a highly modular, bit-sliced architecture that maps efficiently
on to FPGAs and yields a 32% speed advantage over previously reported im-
plementations.

The relative complexity of the discrete log problem in elliptic curve cryptog-
raphy (ECC) can result in both increased speed and reduced key size for a given
level of security. ECC has potential advantages in applications where bandwidth,

Introduction xiii

power and silicon area are at a premium. Daly et al. propose a new architecture
for modular division using what is essentially a look-ahead strategy. They pre-
compute elements of the algorithm before finalizing the most time-consuming,
magnitude comparison operation to yield circuits that are 40% faster than prior
work. In Chapter 19, Kim and colleagues also focus on ECC. They propose a
new systolic architecture that can perform both multiplication and division. This
is a parameterizable architecture that is regular, modular and is unidirectional
with respect to data flow. Consequently it can handle arbitrary irreducible poly-
nomials and is scalable with respect to the size of the underlying Galois field.

McLoone and McCanny present an algorithm for decryption of the
SHACAL-1 block cipher along with new implementations of the SHACAL-1/2
encryptionand decryption algorithms. SHACAL is a block cipher from Gemplus
International that has its origins in ANSI’s Secure Hashing Algorithm (SHA)
used in encryption mode. The authors describe both compact, iterative imple-
mentations and fast, highly-pipelined implementations. Impressive throughputs
of 23 Gbps for SHACAL-1 and 26 Gbps for SHACAL-2 are reported with Xil-
inx Virtex-II FPGAs.

Our discussion of security closes with a survey performed by Wollinger and
Paar on the issues concerning the use of FPGAs in secure systems. The paper
is noteworthy for the catalogue of methods of attack that it considers. Some of
the more esoteric of these have not yet been applied to FPGAs to the best of
the authors knowledge. While they do not recommend FPGAs in general for
secure applications, the authors do note that physical attacks against FPGAs
are very complex and even more difficult that analogous attacks against mask
programmed ASICs.

Sousa and colleagues report on their use of FPGAs to develop a visual
encoding system that may be used to construct a portable visual neuroprosthesis
for profoundly blind people. The authors are able to exploit time-shared circuit
techniques while still satisfying the real-time response of their system. They
also exploit the FPGA reconfigurability to tailor devices to the requirements of
individual patients.

In Chapter 23, Yu et al describe a new design for a Smith-Waterman systolic
cell. The Smith-Waterman algorithm can be used for sequence alignment when
searching large databases of DNA information. It makes all pair-wise compar-
isons between string pairs thus achieving high sensitivity. However, this is offset
by higher computation costs than more popular techniques, hence the motiva-
tion for faster implementations. The authors design allows the edit distance
between two strings to be computed without the need to use runtime reconfig-
uration as was required with earlier implementations that achieved comparable
performance.

In the final chapter, Lee et al. explore the influence of polynomial degrees
on the calculation of piecewise approximation of mathematical functions using

xiv

hierarchical segmentation. Mathematical functions can be computationally ex-
pensive to evaluate so approximations such as look-up tables are commonly
deployed. However for complex functions, the size of the tables becomes im-
practical. An alternative is to segment the continuous function and perform
piecewise approximation with one or more polynomials of varying degrees
over the closed interval. Another innovation is to use a hierarchy of uniform
segments and segments whose sizes vary by powers of two. Lee reports that hi-
erarchical function segmentation (HFS) is particularly effective for non-linear
regions and that it outperforms optimum uniform segmentation by a factor of
two over a wide range of operand widths and polynomial degrees. Further-
more, second order polynomials start to outperform first order approximations
at operand widths of sixteen bits.

About the Editors

Patrick Lysaght is a Senior Director in Xilinx Research Labs, San Jose,
California where he is responsible for research into reconfigurable and em-
bedded systems and for the Xilinx University Program. Prior to joining Xilinx
in 2001, he was a Senior Lecturer in the Department of Electronic and Electrical
Engineering at the University of Strathclyde in Glasgow and also at the Insti-
tute for System Level Integration in Livingston, Scotland. He has worked for
Hewlett Packard in the UK in a number of roles including research and devel-
opment, marketing, and sales. Patrick received his BSc (Electronic Systems) in
1981 from the University of Limerick, Ireland and his MSc (Digital Techniques)
in 1987 from Heriot Watt University, Edinburgh, Scotland.

Patrick’s research interests include real-time embedded systems, reconfig-
urable computing and system-level design. He is the author of more than forty
technical papers and is active in the organization of several international con-
ferences. He currently serves as chairman of the steering committee of the Field
Programmable Logic Conference (FPL), the world’s foremost conference ded-
icated to field programmable logic.

Wolfgang Rosenstiel is University Professor and holds the Chair for Computer
Engineering at the University of Tübingen. He is also Managing Director of
the Wilhelm Schickard Institute at Tübingen University, and Director for the
Department for System Design in Microelectronics at the Computer Science
Research Centre FZI. He is on the Executive Board of the German edacentrum.

His research areas include electronic design automation, embedded systems,
computer architecture, multimedia, and artificial neural networks. He is mem-
ber of the executive committees of DATE and ICCAD. As topic chair of the
DATE program committee for configurable computing he was in charge of the
contribution from DATE related papers to this book.

xv

Acknowledgements

Several people deserve our most sincere gratitude for making this book possible.
First and foremost among these are the many authors who have contributed
their time and expertise to the project. The technical program committees of
the FPL’03 and DATE’03 conferences also provided considerable help in the
selection of the papers. We were guided by the expertise of their review panels
in determining which papers to include.

We are grateful to the staff of Kluwer Academic Publishers for continuing to
provide a path by which the latest research can be quickly brought to publication.
Mark de Jongh, our commissioning editor, deserves special acknowledgement
for being the champion of this project.

Patrick Lysaght would like to thank his wife, Janette, and his daughters,
Emily, Rebecca and Stephanie, for all their love and support.

Wolfgang Rosenstiel would like to thank his wife, Christel, and his children,
Alexander, Felix and Simone for their love and support.

Finally, we hope that the work compiled here will prove useful to existing
researchers and inspire new ones to enter this exciting field of research for the
first time.

Patrick Lysaght and Wolfgang Rosenstiel

July 2004

xvii

Architectures

Chapter 1

Extra-dimensional Island-Style FPGAs

Herman Schmit

Department of ECE
Carnegie Mellon University
Pittsburgh, PA, 15213 USA
herman schmit@ieee.org

Abstract This paper proposes modifications to standard island-style FPGAs that provide
interconnect capable of scaling at the same rate as typical netlists, unlike tradi-
tionally tiled FPGAs. The proposal uses logical third and fourth dimensions to
create increasing wire density for increasing logic capacity. The additional di-
mensions are mapped to standard two-dimensional silicon. This innovation will
increase the longevity of a given cell architecture, and reduce the cost of hardware,
CAD tool and Intellectual Property (IP) redesign. In addition, extra-dimensional
FPGA architectures provide a conceptual unification of standard FPGAs and
time-multiplexed FPGAs.

Keywords: FPGA Architecture, Interconnect, Rent Exponent

Introduction

Island-style FPGAs consist of mesh interconnection of logic blocks, connec-
tion blocks and switchboxes. Commercial FPGAs from vendors such as Xilinx
are implemented in an island-style. One advantage of island-style FPGAs is
that they are completely tileable. A single optimized hardware tile design can
be used in multiple products all with different capacity, pin count, package, etc.,

small design. The tile also simplifies the CAD tool development effort. The
phases of technology mapping, placement, routing and configuration genera-
tion are all simplified by the regularity and homogeneity of the island-style
FPGA. Finally, these tiled architectures are amenable to a re-use based design
methodology. A design created for embedding in larger designs, often called a

P. Lysaght and W. Rosenstiel (eds.),

© 2005 Springer. Printed in the Netherlands.

3

allowing FPGA vendors to build a whole product line out of a single relatively

New Algorithms, Architectures and Applications for Reconfigurable Computing, 3–13.

4

core, can be placed to any location within the array, while preserving routing
and timing characteristics.

The inherent problem with tiled architectures is that they do not scale to
provide the interconnect typical of digital circuits. The relationship of design
interconnect and design size is called Rent’s rule. This relationship is described
in [12], where it is shown that a partition containing n elements has Cn p pins
either entering or leaving the partition. The quantity p, which is known as
the Rent exponent, has been empirically determined to be in the range from
0.57 to 0.75 in a variety of logic designs. In a tiled architecture, the number
of logic elements in any square bounding box is proportional to the number
of tiles contained in the square, and the number of wires crossing the square
is proportional to the perimeter of the square. Therefore, in a traditional tiled
architecture, the interconnect is a function of the square root of the logic capac-
ity, and the “supplied” Rent exponent is 1/2. Supply therefore can never keep
up with interconnect demand, and at some point a tiled architecture will fail to
have enough interconnect.

Commercial vendors have recognized this phenomenon. Succeeding gener-
ations of FPGAs always have more interconnect per logic block. This has the
effect of keeping up with the Rent exponent by increasing the constant inter-
connect associated with each tile, i.e. increasing the C term in Rent’s formula.
There are several problems with this solution. First, it requires that the tile must
be periodically redesigned, and all the CAD tools developed for that tile must
be updated, tested and optimized. Second, all the cores designed for an early
architecture cannot be trivially mapped to the new architecture.

What would be preferable would be to somehow scale the amount of inter-
connect between cells, while still providing the benefits of a tiled architecture,
such as reduced hardware redesign cost and CAD tool development. This is im-
possible in conventional island-style FPGAs because they are two-dimensional,
which means that the Rent exponent of supplied interconnect is fixed at one
half. This paper proposes a new island-style architecture, based on three- and
four-dimensional tiling of blocks, that can support Rent exponents greater than
0.5 across an entire family of FPGAs.

Three-dimensional FPGAs have been proposed frequently in the literature
[14], [13], [1], [2], [8], but commercial three-dimensional fabrication tech-
niques, where the transistors are present in multiple planes, do not exist. An
optoelectrical coupling for three-dimensional FPGAs has also been proposed
in [6], but there are no instances of such couplings in large commercial de-
signs as yet. Four-dimensional FPGAs face even greater challenges to actual
implementation, at least in this universe. Therefore, this paper proposes ways
to implement three- and four-dimensional FPGAs in planar silicon technology.
Surprisingly, these two-dimensional interconnect structures resemble double

Extra-dimensional Island-Style FPGAs 5

and quad interconnect lines provided in commercial island-style FPGAs, albeit
with different scaling behavior.

1.1 Architecture

Extra-dimensional FPGAs can provide interconnect that matches the inter-
connect required by commercial designs and that scales with design size. This
section describes how these extra dimensions provide scalable interconnect.
Possible architectures for multi-dimensional FPGAs are discussed in the context
of implementation on two-dimensional silicon. Three- and four-dimensional
FPGA architectures are proposed, which will be the subject of placement and
routing experiments performed in subsequent sections.

As discussed previously, a 2-D tiled FPGA provides a Rent exponent of 1/2
because of the relationship of the area and perimeter of a square. In a three-
dimensional FPGA, assuming that all dimensions grow at an equal rate, the
relationship between volume and surface area is governed by an exponent of 2/3.
Therefore in a perfect three-dimensional FPGA, the supplied interconnect has
a Rent exponent of 2/3. By extension, the Rent exponent for a four-dimensional
architecture is 3/4.

There are many ways to construct an extra-dimensional FPGA. A conven-
tional island-style FPGA can be envisioned as an array of CLBs, each of which
is surrounded by a square of interconnect resources. The CLB connects to each
of the edges of the square that surrounds it, as shown in Figure 1.1(a). By exten-
sion, a 3-D FPGA would have a three dimensional interconnection mesh, with
CLBs located in the center of the cubes that make up this mesh. Each CLB would

2D Mesh
4 connections

(a)

3D Mesh
12 connections

(b)

Proposed
Architecture

(c)

Figure 1.1. Two and three dimensional interconnect points: as shown in (a) a CLB in a 2D
mesh must connect to 4 wires. A CLB in a 3D mesh must (b) connect to twelve points. The
proposed architecture has 2D CLBs interconnected to the squares in a 3D mesh.

6

IO

IO

IO

IO

IO

IO

L

L

S

S

L

L

S

S

L

L

S

S

S

S

L

L

S

S

L

L

S

S

L

L

S

S

S

S

L

L

S

S

L

L

S

S

L

L

S

S

S

S

S

S

S

S

S

S

S

S

IO

IO

IO

IO

IO

IO

IO IO IO IO IO IO

IO IO IO IO IO IO

Figure 1.2. Three dimensional FPGA in two dimensions: This particular FPGA is a 3 × 3 ×
2 array of CLBs. There are IOs around the periphery. Switch Blocks are labelled “S” and CLBs
are labelled “L”. Connections between xy planes take place in the diagonal channels between
switch boxes. All lines in this figure are channels containing multiple wires.

have to connect to all twelve edges of the cube, as illustrated in Figure 1.1(b).
This entails a three-fold increase in the number of places that CLB IOs connect,
which either means greater delay, greater area, and perhaps worse placement
and routing. In addition, this “cube” interconnect is very difficult to lay out in
two-dimensional silicon. In a four-dimensional FPGA, the CLB would have to
connect to thirty-two of the wires interconnecting a hypercube in the mesh, and
is even harder to lay out in two dimensions.

An alternative proposal is to allow CLBs to exist only on planes formed by
the x and y dimensions. These CLBs only connect to wires on the same xy
plane. A multi-dimensional FPGA is logically constructed by interconnecting
planes of two-dimensional FPGAs, as illustrated in Figure 1.1(c). This keeps the
the number of IOs per CLB equal to conventional FPGAs, while still providing
the benefits of an extra-dimensional FPGA.

In our proposed architecture, two adjacent xy planes of CLBs are intercon-
nected by the corresponding switch boxes. For example, in a logically three-
dimensional FPGA, the switch box at (x, y) in plane z is connected to the

Extra-dimensional Island-Style FPGAs 7

IO

IO

IO IO

L

L

L

L

S S

SS

S

S

S

SS

No "Local" ConnectionCorresponding Switchboxes
Connected

Figure 1.3. Four dimensional FPGA: This FPGA has dimensions of 2 × 2 × 2 × 2 CLBs.
The connections between dimensions take place on the long lines that go from one switch box
to the corresponding box in another dimension.

switch box at (x, y) in plane z + 1 and plane z − 1. Such a three-dimensional
switchbox architecture was used in [1].

A problem with these extra-dimensional switch boxes is the increased num-
ber of transistors necessary to interconnect any wire coming from three or four
dimensions. When four wires meet within a switch box, coming from all four di-
rections in a two-dimensional plane, six transistors are necessary to provide any
interconnection. With three dimensions, six wires come from every direction,
requiring 15 transistors to provide the same flexibility of interconnect. With
four dimensions, 28 transistors are necessary at each of these switch points. We
will assume that extra-dimensional switch boxes include these extra number of
transistors. We will later show that this overhead is mitigated by the reduction
in channel width due to extra-dimensional interconnect. It is worth noting that
there are only 58 possible configurations of switch point in a 3D switch box,1

and 248 possible configurations of a 4D switch point. Therefore the amount
of configuration for these switch points could potentially be significantly re-
duced to six or eight bits. It is also possible that all 15 or 28 transistors are
not necessary to provide adequate interconnect flexibility. Future work will
explore optimizations of the switch box architectures for extra-dimensional
FPGAs.

Figure 1.2 and Figure 1.3 show feasible layouts for three- and four-
dimensional FPGAs in two-dimensional silicon. The four-dimensional layout
is particularly interesting, because it allows for close interconnections between

8

neighboring CLBs, and because it is symmetric in both x and y dimensions. The
most interesting aspect of the four-dimensional FPGA is how the interconnect
resembles the interconnect structure of commercial island-style FPGAs. Par-
ticularly, the interconnections between different xy planes resemble the double
and quad lines in Xilinx 4000 and Virtex FPGAs. These lines skip across a
number of CLBs, in order to provide faster interconnect over long distance.

The primary difference between the traditional island-style with double and
quad lines and the proposed 4D FPGA is that the length of the long wires in-
creases when the size of the xy plane increases. This is the key to providing scal-
able interconnect. The length of wires in the two-dimensional implementation
of the 4D FPGA increases as the logical size of the device increases. This does
mean that the delay across those long wires is a function of the device size,
which presents an added complication to timing-oriented design tools. Fortu-
nately, interconnection delay in commercial FPGAs is still dominated by the
number of switches in any path and not the length of the net.2

The assumption that the physical channel width is proportional to the num-
ber of wires passing through that channel leads to the conclusion that the
four-dimensional FPGA in Figure 1.3 would be much larger than the two-
dimensional FPGA with the same number of CLBs. In real FPGA layouts how-
ever, the largest contributor to channel width is the number of programmable
interconnect points in the channel, and the width of the switch box. Because
these points require one to six transistors, they are much larger than the mini-
mum metal pitch. Most wires in the channel of the four-dimensional FPGA do
not contact any interconnect points however. These wires can be tightly routed
at a higher level of metal, and may only minimally contribute to total channel
width.

A second substantial difference between the proposed 4D FPGA and the
traditional island-style FPGA is that in the commercial FPGA, the local con-
nections are never interrupted. In the 4D FPGA, there is no local interconnection
from the boundary of one xy plane to the corresponding boundary of the adja-
cent xy plane. The reason for this is to provide for tiling of IP blocks. Suppose
we want to use a four-dimensional core in a four-dimensional FPGA. To guar-
antee that this core will fit in this FPGA, all four dimensions of the core must
be smaller than the four dimensions of the FPGA. If there are local connections
between xy planes, that cannot be guaranteed. A core that was built on a device
with x = 3, and which used local connections between two xy planes would
only fit onto other devices with x = 3.

The next section will describe an experiment that compares the scaling of
interconnect in two- and four-dimensional FPGA. First, Rent’s rule is demon-
strated by measuring how the channel width of a two-dimensional FPGA in-
creases as the size of the design increases. When the same suite of netlists is
placed and routed on an 4D FPGA, the channel width remains nearly constant.

Extra-dimensional Island-Style FPGAs 9

1.2 Experimental Evaluation

In order to demonstrate the effectiveness of extra-dimensional FPGAs, a large
set of netlists have been placed and routed on both two- and four-dimensional
FPGAs. The minimum channel width required in order to route these designs is
compared. In the two-dimensional FPGA, the channel width grows with respect
to the logical size of the design. The four-dimensional FPGA scales to provide
exactly the required amount of interconnect, and channel width remains nearly
constant regardless of the design size.

A significant obstacle to performing this experiment was to acquire a suf-
ficiently large set of netlists in order to make conclusions based on measured
data. Publicly available circuit benchmark suites are small, both in the number
of gates in the designs, and the number of designs in the suites. In this paper
we use synthetic netlists generated by the CIRC and GEN tools [10, 11]. CIRC
measures graph characteristics, and has been run on large sets of commercial
circuits. GEN constructs random netlists that have the same characteristics as
the measured designs. We used the characteristics measured by CIRC on finite
state machines to generate a suite of 820 netlists ranging from 20 to 585 CLBs.

The placement and routing software we will use is an extended version of the
VPR tool [3]. The modifications to this software were relatively simple. The
placement algorithm is extended to use a multi-dimensional placement cost.
The cost function is a straight-forward four-dimensional extension of the two-
dimensional cost, which is based on the RISA cost function [4]. The cost of
routing in the two additional dimensions is scaled by a small factor to encourage
nets to be routed in a single xy plane.

The logic block architecture used for this experiment is the standard ar-
chitecture used in VPR. This architecture consist of a four-input lookup table
(LUT) and a bypassable register. The switch box architecture is the Xilinx-type
(also known as subset or disjoint), where the n-th channel from one direction
connects to the n-th channel in every other direction.

VPR works by first placing the design, and then attempting to find the minimal
channel width that will allow routing of the design. It performs a binary search
in order to find this minimal channel width. The results of routing the netlist
suite on the two-dimensional and four-dimensional architecture are shown in
Figure 1.4, which plots the maximum channel width versus the netlist size in
CLBs. The best-fit power graph has been fit to this data, showing an exponent
of 0.28 for the two-dimensional FPGA. As shown in [7] and [9], this indicates
the Rent exponent of these designs is approximately 0.28 + 0.5 = 0.78, which
is large, but possibly reasonable for the design of an FPGA architecture.

Even a four dimensional FPGA cannot provide interconnect with a Rent
exponent of 0.78. In our experiment, the extra dimensions of the FPGA scale at
one-eight the rate of the x and y dimensions. If the x and y dimensions are less

10

Channel Width vs. CLBs
Four Dimensional FPGA

Channel Width = 2.36(CLBs)
0.0938

0

2

4

6

8

10

12

0 100 200 300 400 500 600

C
h

an
n

el
 W

id
th

Channel Width vs. CLBs
Two Dimensional FPGA

Channel Width = 1.40(CLBs)
0.2812

4

6

8

10

0 100 200 300 400 500 600

C
h

an
n

el
 W

id
th

12

0

CLBs CLBs

Figure 1.4. Two- and Four-Dimensional FPGA Channel Width.

Wire Length vs. CLBs
Four Dimensional FPGA

W = 3.72(CLBs) 1.1247

0

1000

2000

3000

4000

5000

6000

7000

8000

0 200 400 600

CLBs

W
ir

e
L

en
g

th
 (

S
eg

m
en

ts
)

Wire Length vs. CLBs
Two Dimensional FPGA

W = 2.54(CLBs) 1.2194

0

1000

2000

3000

4000

5000

6000

7000

8000

0 200 400 600

CLBs

W
ir

e
L

en
g

th
 (

S
eg

m
en

ts
)

Figure 1.5. Wirelengths for Two- and Four-dimensional FPGAs.

than eight, there is no other extra dimensions to the FPGA (the FPGA is simply
two-dimensional). With x or y in the range of 8 to 16, there are two planes of
CLBs in each of the extra dimensions.

The channel width for the four-dimensional FPGA, as shown in Figure 1.4
is comparatively flat across the suite of netlists. Figure 1.5 demonstrates the ef-
fectiveness of the technique by showing total wire length, in channel segments,
for each design. When fit to a power curve, the two dimensional FPGA ex-
hibits a much larger growth rate than the four dimensional FPGA. Superlinear
growth of wire length was predicted by [7] as a result of Rent’s rule. The four
dimensional FPGA evidences a nearly linear relationship between wire length
and CLBs, indicating that the supply of interconnect is keeping pace with the
demand.

As mentioned in previously, the four dimensional switch box might have
more than four times more bits per channel compared to the two dimen-
sional switch box. Table 1.1 shows the number of configuration bits neces-
sary to program the interconnect for a two- and four-dimensional FPGA with
576 CLBs. Using our data from the previous experiments, we have assumed
a channel width of twelve for the two-dimensional FPGA, and six for the

Extra-dimensional Island-Style FPGAs 11

Table 1.1. Computation of configuration bits required for large two- and four- dimensional
FPGAs. The larger number of bits per switch point the four-dimensional FPGA is countered
by the reduced channel width. If the switch point configuration is encoded with sixteen bits,
there is no configuration overhead.

FPGA Channel Switch Total Total Total
Dimensions Width Point Bits Switchbox Bits Channel Bits Config Bits

24 × 24 12 6 41,472 27,648 69,120
2 × 12 × 12 × 2 6 28 96,768 13,824 110,592
2 × 12 × 12 × 2 6 16 55,296 13,824 69,120

four-dimensional FPGA. Considering both switch box and connection box bits,
the four-dimensional FPGA requires 60% more configuration bits. If we can
control the four-dimensional switch point with just sixteen bits, then the reduc-
tion in channel width completely compensates for the more complex switch
point.

Four-dimensional FPGAs provide scalable interconnect across a wide suite
of netlists. Required channel width can remain constant across a large family
of devices, allowing the hardware and CAD tool development efforts to be
amortized over many devices, and reducing the waste of silicon in smaller
devices.

1.3 Time Multiplexing and Forward-compatiblity

Since their proposal [17, 5, 15], time-multiplexed FPGAs have been thought
of as fundamentally different creatures from standard FPGAs. The Xilinx and
Sanders FPGAs operate by separating every logical cycle into multiple micro-
cycles. Results from a micro-cycle are passed to subsequent micro-cycles
through registers.

Time-multiplexed FPGAs could also be constructed using a three-
dimensional FPGA architecture like that shown in Figure 1.2. Micro-registers
would be inserted on the inter-plane connections that exist between switchboxes.
The number of registers between planes would correspond to the channel width,
which allows it to be designed to provide scalable interconnect.

By viewing time as a third dimension, the scheduling task can be accom-
plished within the scope of a three dimensional placement algorithm. All com-
binational paths must go from a previous configuration, or plane, to a future one,
and not vice-versa. Therefore real logical registers must be placed in a config-
uration that is evaluated after its entire fan-in cone. This is conceptually much
simpler than the separate scheduling and place-and-route phases implemented
in [16].

12

1.4 Conclusions

This paper discussed the benefits of three- and four-dimensional FPGAs, and
their implementation in conventional two-dimensional silicon. Primary among
the benefits is the ability to provide interconnect that scales at the same rate as
typical netlists. Four dimensional FPGAs resemble the double and quad lines
in commercial FPGAs, although the key to providing scalable interconnect is
to increase the length of those lines as the device grows.

Notes

1. This is determined by 1 + (6
2

) + (6
3

) + (6
4

) + (6
5

) + (6
6

) = 58.

2. The increasing “logical length” of these lines may also be counter-acted to some extent
by the scaling of technology.

References

[1] M. J. Alexander, J. P. Cohoon, J. L. Colflesh, J. Karro, and G. Robins. Three-dimensional field-
programmable gate arrays. In Proceedings of the IEEE International ASIC Conference, pages 253–256,
September 1995.

[2] M. J. Alexander, J. P. Cohoon, J. Karro J. L. Colflesh, E. L. Peters, and G. Robins. Placement and routing
for three-dimensional FPGAs. In Fourth Canadian Workshop on Field-Programmable Devices, pages
11–18, Toronto, Canada, May 1996.

[3] V. Betz and J. Rose. Effect of the prefabricated routing track distribution on FPGA area efficiency. IEEE
Transactions on VLSI Systems, 6(3):445–456, September 1998.

[4] C. E. Cheng. RISA: Accurate and efficient placement routability modeling. In Proceedings of IEEE/ACM
International Conference on CAD (ICCAD), pages 690–695, November 1996.

[5] A. DeHon. DPGA-coupled microprocessors: Commodity ICs for the early 21st century. In D. A. Buell
and K. L. Pocek, editors, Proceedings of IEEE Workshop on FPGAs for Custom Computing Machines,
pages 31–39, Napa, CA, April 1994.

[6] J. Depreitere, H. Neefs, H. Van Marck, J. Van Campenhout, R. Baets, B. Dhoedt, H. Thienpont, and
I. Veretennicoff. An optoelectronic 3-D field programmable gate array. In R. Hartenstein and M. Z.
Servit, editors, Field-Programmable Logic: Architectures, Synthesis and Applications. 4th International
Workshop on Field-Programmable Logic and Applications, pages 352–360, Prague, Czech Republic,
September 1994. Springer-Verlag.

[7] W. E. Donath. Placement and average interconnection lengths of computer logic. IEEE Transactions on
Circuits and Systems, pages 272–277, April 1979.

[8] Hongbing Fan, Jiping Liu, and Yu-Liang Wu. General models for optimum arbitrary-dimension fpga
switch box designs. In Proceedings of IEEE/ACM International Conference on CAD (ICCAD), pages
93–98, November 2000.

[9] A. El Gamal. Two-dimensional stochastic model for interconnections in master slice integrated circuits.
IEEE Transactions on Circuits and Systems, 28(2):127–138, February 1981.

[10] M. Hutton, J.P. Grossman, J. Rose, and D. Corneil. Characterization and parameterized random genera-
tion of digital circuits. In Proceedings of the 33rd ACM/SIGDA Design Automation Conference (DAC),
pages 94–99, Las Vegas, NV, June 1996.

[11] M. Hutton, J. Rose, and D. Corneil. Generation of synthetic sequential benchmark circuits. In 5th
ACM/SIGDA International Symposium on Field Programmable Gate Arrays, (FPGA 97), February
1997.

[12] B. S. Landman and R. L. Russo. On pin versus block relationship for partions of logic circuits. IEEE
Transactions on Computers, C-20:1469–1479, 1971.

[13] M. Leeser, W. M. Meleis, M. M. Vai, W. Xu S. Chiricescu, and P. M. Zavracky. Rothko: A three-
dimensional FPGA. IEEE Design and Test of Computers, 15(1):16–23, January 1998.

Extra-dimensional Island-Style FPGAs 13

[14] W. M. Meleis, M. Leeser, P. Zavracky, and M. M. Vai. Architectural design of a three dimensional
FPGA. In Proceedings of the 17th Conference on Advanced Research in VLSI (ARVLSI), pages 256–
268, September 1997.

[15] S. Scalera and J. R. Vazquez. The design and implementation of a context switching FPGA. In D. A.
Buell and K. L. Pocek, editors, Proceedings of IEEE Workshop on FPGAs for Custom Computing
Machines, pages 78–85, Napa, CA, April 1998.

[16] S. Trimberger. Scheduling designs into a time-multiplexed FPGA. In 6th ACM/SIGDA International
Symposium on Field Programmable Gate Arrays, (FPGA 98), pages 153–160, February 1998.

[17] S. Trimberger, D. Carberry, A. Johnson, and J. Wong. A time-multiplexed FPGA. In J. Arnold and K. L.
Pocek, editors, Proceedings of IEEE Workshop on FPGAs for Custom Computing Machines, pages
22–28, Napa, CA, April 1997.

Chapter 2

A Tightly Coupled VLIW/Reconfigurable Matrix
and its Modulo Scheduling Technique

Bingfeng Mei,1,2 Serge Vernalde,2 Diederik Verkest,1,2,3

and Rudy Lauwereins1,2

1 IMEC vzw, Kalpeldreef 75, Leuven, Belgium

2 Department of Electrical Engineering, Katholieke Universiteit Leuven, Belgium

3 Department of Electrical Engineering, Vrije Universiteit Brussel, Belgium

2.1 Introduction

Coarse-grained reconfigurable architectures have become increasingly im-
portant in recent years. Various architectures have been proposed [1–4]. These
architectures often comprise a matrix of functional units (FUs), which are ca-
pable of executing word- or subword-level operations instead of bit-level ones
found in common FPGAs. This coarse granularity greatly reduces the delay,
area, power and configuration time compared with FPGAs. However, these ad-
vantages are achieved at the expense of flexibility. Usually the reconfigurable
matrix alone is not able to execute entire applications. Most coarse-grained ar-
chitectures are coupled with processors, typically RISCs. The computational-
intensive kernels, typically loops, are mapped to the matrix, whereas the re-
maining code is executed by the processor. So far not much attention has been
paid to the integration of these two parts. The coupling between the processor
and the matrix is often loose, consisting essentially of two separate parts con-
nected by a communication channel. This results in programming difficulty and
communication overhead. In addition, the coarse-grained reconfigurable archi-
tecture consists of components which are similar to those used in processors.
This resource-sharing opportunity is not extensively exploited in traditional
coarse-grained architectures.

15

P. Lysaght and W. Rosenstiel (eds.),

New Algorithms, Architectures and Applications for Reconfigurable Computing, 15–28.

© 2005 Springer. Printed in the Netherlands.

16

To address these problems, in this chapter we present an architecture called
ADRES (Architecture for Dynamically Reconfigurable Embedded System),
which tightly couples a VLIW (very long instruction word) processor and a
coarse-grained reconfigurable matrix. The VLIW processor and the coarse-
grained reconfigurable matrix are integrated into one single architecture but
with two virtual functional views. This level of integration has many advan-
tages compared with other coarse-grained architectures, including improved
performance, a simplified programming model, reduced communication costs
and substantial resource sharing.

Any new architecture can hardly be successful without good design method-
ology. Therefore, we developed a compiler for ADRES. The central technology
is a novel modulo scheduling technique, which is able to map kernel loops
to the reconfigurable matrix by solving placement, routing and scheduling
simultaneously in a modulo constrained space. Combined with traditional ILP
(instruction-level parallelism) compilation techniques, our compiler can map
an entire application to the ADRES architecture efficiently and automatically.

This chapter is organized as follows: section 2.2 discusses the architectural
aspects of ADRES; section 2.3 describes the modulo scheduling algorithm in
details; section 2.4 presents the experimental results and section 2.5 concludes
the chapter.

2.2 ADRES Architecture

2.2.1 Architecture Description

The ADRES architecture (Fig 2.1) consists of many basic components, in-
cluding mainly FUs and register files(RFs), which are connected in a certain
topology. The FUs are capable of executing word-level operations selected by a
control signal. The RFs can store intermediate data. The whole ADRES matrix
has two functional views, the VLIW processor and the reconfigurable matrix.
These two functional views share some physical resources because their exe-
cutions will never overlap with each other thanks to the processor/co-processor
model. For the VLIW processor, several FUs are allocated and connected to-
gether through one multi-port register file, which is typical for VLIW archi-
tecture. Some of these FUs are connected to the memory hierarchy, depending
on available ports. Thus the data access to the memory is done through the
load/store operations available on those FUs.

For the reconfigurable matrix part, apart from the FUs and RF shared with
the VLIW processor, there are a number of reconfigurable cells (RC) which
basically comprise FUs and RFs too (Fig. 2.2). The FUs can be heterogeneous
supporting different operation sets. To remove the control flow inside loops,

A Tightly Coupled VLIW 17

Register File

FU FU FU FU FU FU

Reconfigurable Matrix View

VLIW View

Program Fetch
Instruction Dispatch
Instruction Decode

RC RC RC RC RC RC

RC RC RC RC RC RC

RC RC RC RC RC RC

RC RC RC RC RC RC

RC RC RC RC RC RC

Figure 2.1. ADRES core

the FUs support predicated operations. The distributed RFs are small with less
ports. The multiplexors are used to direct data from different sources. The
configuration RAM stores a few configurations locally, which can be loaded on
cycle-by-cycle basis. The configurations can also be loaded from the memory
hierarchy at the cost of extra delay if the local configuration RAM is not big

FU

mux mux mux

reg reg reg

pred src1 src2

dst1pred_dst1 pred_dst2

Conf.
RAM RF

From other RCs

To other RCs

Figure 2.2. Example of a Reconfigurable Cell

18

enough. Like instructions in ISPs, the configurations control the behaviour of the
basic components by selecting operations and multiplexors. The reconfigurable
matrix is used to accelerate the dataflow-like kernels in a highly parallel way.
The access to the memory of the matrix is also performed through the VLIW
processor FUs.

In fact, ADRES is a template of architectures instead of a fixed architec-
ture. An XML-based architecture description language is used to define the
communication topology, supported operation set, resource allocation and tim-
ing of the target architecture [5]. Even the actual organization of the RC is
not fixed. FUs and RFs can be put together in several ways. For example,
two FUs can share one RF. The architecture shown in Fig. 2.1 and Fig. 2.2
is just one possible instance of the template. The specified architecture will
be translated to an internal architecture representation to facilitate compilation
techniques.

2.2.2 Improved Performance with the VLIW Processor

Many coarse-grained architectures consist of a reconfigurable matrix and
a relatively slow RISC processor, e.g. TinyRisc in MorphoSys [1] and ARM
in PACT XPP [3]. These RISC processors execute the unaccelerated part of
the application, which only represents a small portion of execution time. How-
ever, such a system architecture has problems due to the huge performance gap
between the RISC and the matrix. According to Amdahl’s law [6], the perfor-
mance gain that can be obtained by improving some portion of an application
can be calculated according to equation 2.1. Suppose the kernels, represent-
ing 90% of execution time, are mapped to the reconfigurable matrix to obtain
an acceleration of 30 times over the RISC processor, the overall speedup is
merely 7.69. Obviously a high kernel speedup is not translated to a high over-
all speedup. Speeding up the unaccelerated part, which is often irregular and
control-intensive code, is important for the overall performance. Though it is
hard to exploit higher parallelism from it on the reconfigurable matrix, it is still
possible to discover instruction-level parallelism (ILP) using a VLIW proces-
sor, where 2–4 times speedup over the RISC is reasonable. If we recalculate the
speedup with the assumption of 3 times acceleration for the unaccelerated code,
the overall acceleration is now 15.8, much better than the previous scenario.
This simple calculation proves that using VLIW in ADRES can improve the
overall speedup dramatically in certain circumstances.

Speedupoverall = 1

(1 − Fractionenhanced) + Fractionenhanced
Speedupenhanced

(2.1)

A Tightly Coupled VLIW 19

2.2.3 Simplified Programming Model and Reduced
Communication Cost

A simplified programming model and reduced communication cost are two
important advantages of the ADRES architecture. These are achieved by making
the VLIW processor and the reconfigurable matrix share access to the memory
and the register file.

In other reconfigurable architectures, the processor and the matrix are es-
sentially separated. The communication is often through explicit data copying.
Though some techniques are adopted to reduce the data copying, e.g., wider
data bus and DMA controller, the overhead is still considerable in terms of
performance and energy. From the programming point of view, the separated
processor and reconfigurable matrix require significant code rewriting. Starting
from a software implementation, we have to identify the data structures used for
communication and replace them with communication primitives. Data analysis
should be done to make sure as few as possible data are actually copied. In ad-
dition, the kernels and the remaining code have to be cleanly separated in such a
way that no shared access to any data structure remains. These transformations
are often complex and error-prone.

In ADRES, the data communication is performed through the shared RF and
memory. This feature is very helpful to map high-level language code such as C
without major changes. When a high-level language is compiled to a processor,
the local variables are allocated in the RF, while the static variables and arrays are
allocated in the memory space. When the control of the program is transferred
between the VLIW processor and the reconfigurable matrix, those variables
used for communication can stay in the RF or the memory as they were. The
copying is unnecessary because both the VLIW and the reconfigurable matrix
share access to the RF and memory hierarchy. The code doesn’t require any
rewriting and can be handled by the compiler automatically.

2.2.4 Resource Sharing

Since the basic components such as the FUs and RFs of the reconfigurable
matrix and those of the VLIW processor are basically the same, it is natural to
think that resources might be shared to have substantial cost-saving. In other
coarse-grained architectures, the resources cannot be effectively shared because
the processor and the matrix are two separate parts. For example, the FU in the
TinyRisc of MorphoSys cannot work cooperatively with the reconfigurable cells
in the matrix. In ADRES, since the VLIW processor and the reconfigurable ma-
trix are indeed two virtual functional views of the same physical entity, many
resources are shared among these two parts. Due to its processor/co-processor

20

model, only the VLIW processor or the reconfigurable matrix is active at any
time. This fact makes resource sharing possible. Resource sharing of the pow-
erful FUs and the multi-port RF of the VLIW by the matrix can greatly improve
the performance and schedulability of kernels mapped on the matrix.

2.3 Modulo Scheduling

The objective of modulo scheduling is to engineer a schedule for one itera-
tion of the loop such that this same schedule is repeated at regular intervals with
respect to intra- and inter-iteration dependency and resource constraints. This
interval is termed the initiation interval (II), essentially reflecting the perfor-
mance of the scheduled loop. Various effective heuristics have been developed
to solve this problem for both unified and clustered VLIWs [9, 11–13]. How-
ever, they cannot be applied to a coarse-grained reconfigurable architecture
because the nature of the problem becomes more difficult, as illustrated next.

2.3.1 Problem Illustrated

To illustrate the problem, consider a simple dependency graph, representing
a loop body, in Fig. 2.3a and a 2 × 2 matrix in Fig. 2.3b. The scheduled loop is
depicted in Fig. 2.4a, where the 2 × 2 matrix is flattened to 1 × 4 for convenience
of drawing. Nevertheless, the topology remains the same.

Fig 2.4a is a space-time representation of the scheduling space. From
Fig. 2.4a, we see that modulo scheduling on coarse-grained architectures is a
combination of 3 sub-problems: placement, routing and scheduling. Placement
determines on which FU of a 2D matrix to place one operation. Scheduling, in
its literal meaning, determines in which cycle to execute that operation. Routing
connects the placed and scheduled operations according to their data depen-
dencies. If we view time as an axis of 3D space, the modulo scheduling can
be simplified to a placement and routing problem in a modulo-constrained 3D
space, where the routing resources are asymmetric because any data can only

n1

n2 n3

n4

a) b)

fu1 fu2

fu3 fu4

mapping

Figure 2.3. a) A simple dataflow graph; b) A 2 × 2 reconfigurable matrix

A Tightly Coupled VLIW 21

n1

n2 n3

n4

n1

n2 n3

n4

n1

n2 n3

n4

Iteration 1

Iteration 2

Iteration 3

II

II

t = 0

t = 1

t = 2

t = 3

t = 4

n3

fu1 fu3 fu4 fu2

a)

b)

fu1

fu3

fu2

fu4

steady state

n1

n2 n4

Figure 2.4. a) Modulo scheduling example; b) Configuration for 2 × 2 matrix

be routed from smaller time to bigger time, as shown in Fig. 2.4a. Moreover,
all resources are modulo-constrained because the execution of consecutive it-
erations which are in distinct stages is overlapped. The number of stages in one
iteration is termed stage count (SC). In this example, II = 1 and SC = 3. The
schedule on the 2 × 2 matrix is shown in Fig. 2.4b. FU1 to FU4 are configured
to execute n2, n4, n1 and n3 respectively. In this example, there is only one
configuration. In general, the number of configurations that need to be loaded
cyclically is equal to II.

By overlapping different iterations of a loop, we are able to exploit a higher
degree of ILP. In this simple example, the instruction per cycle (IPC) is 4.
As a comparison, it takes 3 cycles to execute one iteration in a non-pipelined
schedule due to the data dependencies, corresponding to an IPC of 1.33, no
matter how many FUs in the matrix.

2.3.2 Modulo Routing Resource Graph

We develop a graph representation, namely modulo routing resource graph
(MRRG), to model the ADRES architecture internally for the modulo schedul-
ing algorithm. MRRG combines features of the modulo reservation ta-
ble(MRT) [7] for software pipelining and the routing resource graph [8] used

22

in FPGA P&R, and only exposes the necessary information to the modulo
scheduling algorithm. An MRRG is a directed graph G = {V, E, I I } which
is constructed by composing sub-graphs representing the different resources
of the ADRES architecture. Because the MRRG is a time-space represen-
tation of the architecture, every subgraph is replicated each cycle along the
time axis. Hence each node v in the set of nodes V is a tuple (r, t) where
r refers to the port of resource and t refers to the time stamp. The edge set
E = {(vm, vn)|t(vm) <= t(vn)} corresponds to switches that connect these
nodes. The restriction t(vm) <= t(vn) models the asymmetric nature of the
MRRG. Finally, II refers to the initiation interval. MRRG has two important
properties. First, it is a modulo graph. If scheduling an operation involves the
use of node (r, t j), then all the nodes {(r, tk)|t j mod I I = tk mod I I } are used
too. Second, it is an asymmetric graph. It is impossible to find a route from node
vi to v j , where t(vi) > t(v j). As we will see in section 2.3.3, this asymmetric
property imposes big constraints on the scheduling algorithm. During schedul-
ing we start with a minimal II and iteratively increase the II until we find a valid
schedule (see section 2.3.3). The MRRG is constructed from the architecture
specification and the II to try. Each component of the ADRES architecture is
converted to a subgraph in MRRG.

Fig. 2.5 shows some examples. Fig. 2.5a is a 2D view of a MRRG sub-
graph corresponding to a FU, which means in the real MRRG graph with time
dimension, all the subgraphs have to be replicated each cycle along the time

FU
pred src1 src2

pred
_dst1

pred
_dst2 dst

source

pred src1 src2

sink

pred_dst1pred_dst2 dst

RF
in

out1 out2

cycle n+1

in

out1 out2

in

out1 out2

internal
(cap)

internal
(cap)cycle n

(a)

(b)

Figure 2.5. MRRG representation of ADRES architecture parts

A Tightly Coupled VLIW 23

axis. For FUs, all the input and output ports have corresponding nodes in the
MRRG graph. Virtual edges are created between src1 and dst, src2 and dst,
etc. to model the fact that a FU can be used as routing resource to directly
connect src1 or src2 to dst, acting just like a multiplexor or demultiplexor.
In addition, two types of artificial nodes are created, namely source and sink.
When a commutative operation, e.g., add, is scheduled on this FU, the source or
sink node are used as routing terminals instead of the nodes representing ports.
Thus the router can freely choose which port to use. This technique improves
the flexibility of the routing algorithm and leads to higher routability. Fig. 2.5b
shows a space-time MRRG subgraph for a register file with one write port and
two read ports. The idea is partly from [10]. Similar to the FU, the subgraph
has nodes corresponding to each input and output port, which are replicated
over each cycle. Additionally, an internal node is created to represent the ca-
pacity of the register file. All internal nodes along the time axis are connected
one by one. The input nodes are connected to the internal node of next cycle,
whereas the output nodes are connected to the internal node of this cycle. In
this way, the routing capability of the register file is effectively modelled via its
write-store-read functionality. Moreover, a cap property is associated with the
internal node which is equal to the capacity of the register file. Therefore, the
register allocation problem is implicitly solved by our scheduling algorithm.
Other types of components such as bus and multiplexor can be modelled in a
similar way. This abstraction, all routing resources, whether physical or virtual,
are modelled in a universal way using nodes and edges. This unified abstract
view of the architecture exposes only necessary information to the scheduler
and greatly reduces the complexity of the scheduling algorithm.

2.3.3 Modulo Scheduling Algorithm

By using MRRG, the three sub-problems (placement, routing and schedul-
ing) are reduced to two sub-problems (placement and routing), and modulo
constraints are enforced automatically. However, it is still more complex than
traditional FPGA P&R problems due to the modulo and asymmetric nature
of the P&R space and scarcity of available routing resources. In FPGA P&R
algorithms, we can comfortably run the placement algorithm first by mini-
mizing a good cost function that measures the quality of placement. After
minimal cost is reached, the routing algorithm connects placed nodes. The
coupling between these two sub-problems is very loose. In our case, we can
hardly separate placement and routing as two independent problems. It is very
hard to find a placement algorithm and a cost function which can foresee the
routability during the routing phase. Therefore, we propose a novel approach to
solve these two sub-problems in one framework. The algorithm is described in
Fig. 2.6.

24

SortOps();
II := MII(DDG);

while not scheduled do
 InitMrrg(II);
 InitTemperature();
 InitPlaceAndRoute(); (1)

while not scheduled do
for each op in sorted operation list

 RipUpOp();

for i := 1 to random_pos_to_try do
 pos := GenRandomPos();
 success := PlaceAndRouteOp(pos); (3)

if success then
 new_cost := ComputeCost(op); (4)
 accepted := EvaluateNewPos(); (5)

if accepted then
 break;

else
 continue;

endif
endfor

if not accepted then
 RestoreOp();

else
 CommitOp();

if get a valid schedule then
 return scheduled;

endfor

if StopCriteria() then (6)
 break;

 UpdateOverusePenalty(); (7)
 UpdateTemperature(); (8)

endwhile
 II++;
endwhile

(2)

Figure 2.6. Modulo scheduling algorithm for coarse-grained reconfigurable architecture

First all operations are ordered by the technique described in [11]. Priority
is given to operations on the critical path and an operation is placed as close as
possible to both its predecessors and successors, which effectively reduces the
routing length between operations. Like other modulo scheduling algorithms,
the outermost loop tries successively larger II, starting with an initial value
equal to the minimal II (MII), until the loop has been scheduled. The MII is
computed using the algorithm in [9].

A Tightly Coupled VLIW 25

For each II, our algorithm first generates an initial schedule which respects
dependency constraints, but may overuse resources (1). For example, more than
one operation may be scheduled on one FU in the same cycle. In the inner loop
(2), the algorithm iteratively reduces resource overuse and tries to come up with
a legal schedule. At every iteration, an operation is ripped up from the existing
schedule, and is placed randomly (3). The connected nets are re-routed accord-
ingly. Next, a cost function is computed to evaluate the new placement and rout-
ing (4). The cost is computed by accumulating the cost of all used MRRG nodes
incurred by the new placement and routing of the operation. The cost function
of each MRRG node is shown in eq. 2.2. It is constructed by taking into account
the penalty of overused resources. In eq. 2.2, there is a basic cost (base cost) as-
sociated with each MRRG node. The occ represents the occupancy of that node.
The cap refers to the capacity of that node. Most MRRG nodes have a capacity of
1, whereas a few types of nodes such as the internal node of a register file have a
capacity larger than one. The penalty factor associated with overused resources
is increased at the end of each iteration (7). Through a higher and higher overuse
penalty, the placer and router will try to find alternatives to avoid congestion.
However, the penalty is increased gradually to avoid abrupt increases in the
overused cost that may trap solutions into local minima. This idea is borrowed
from the Pathfinder algorithm [8], which is used in FPGA P&R problems.

cost = base cost × occ + (occ − cap) × penalty (2.2)

In order to escape from local minima, we use a simulated annealing strategy
to decide whether each move is accepted or not (5). In this strategy, if the
new cost is lower than the old one, the new P&R of this operation will be
accepted. On the other hand, even if the new cost is higher, there is still a
chance that the move may be accepted, depending on the “temperature”. At the
beginning, the temperature is very high so that almost every move is accepted.
The temperature is decreased at the end of the each iteration (8). Therefore, the
operation is increasingly difficult to move around. In the end, if the termination
criteria is met without finding a valid schedule (6), the schedule algorithm starts
with the next II.

2.4 Experimental Results

In the experiments, an architecture resembling the topology of MorphoSys
[1] is instantiated from the ADRES template. In this configuration, a total of
64 FUs are divided into four tiles, each of which consists of 4 × 4 FUs. Each
FU is not only connected to the 4 nearest neighbor FUs, but also to all FUs
within the same row or column in this tile. In addition, there are row buses
and column buses across the matrix. The first row of FUs is also used by the

26

Table 2.1. Scheduling results of kernels

No. of Live-in Live-out Sched.
Loop ops vars vars II IPC density

idct1 93 4 0 3 31 48.4%
idct2 168 4 0 4 42 65.6%
adpcm-d 55 9 2 4 13.8 21.5%
mat mul 20 12 0 1 20 31.3%
fir cpl 23 9 0 1 23 35.9%

VLIW processor, and are connected to a multi-port register file. Only the FUs
in the first row are capable of executing memory operations, i.e., load/store
operations.

The testbench consists of 4 programs, which are derived from C reference
code of TI’s DSP benchmarks and MediaBench [14]. The idct is a 8 × 8 inverse
discrete cosine transformation, which consists two loops. The adpcm-d refers to
an ADPCM decoder. The mat mul computes matrix multiplication. The fir cpl
is a complex FIR filter. They are typical multimedia and digital signal processing
applications with abundant inherent parallelism.

The schedule results are shown in Table 2.1. The second column refers to the
total number of operations within the loop body. The II is initiation interval.
The live-in and live-out variables are allocated in the VLIW register file. The
instructions-per-cycle (IPC) reflects how many operations are executed in one
cycle on average. Scheduling density is equal to IPC/No. of FUs. It reflects the
actual utilization of all FUs for computation. The results show the IPC is pretty
high, ranging from 13.8 to 42. The FU utilization is ranged from 21.5% to 65.6%.
For kernels such as adpcm-d, the results are constrained by achievable minimal
II (MII). The Table 2.2 shows comparisons with the VLIW processor. The tested
VLIW processor has the same configuration as the first row of the tested ADRES
architecture. The compilation and simulation results for VLIW architectures
are obtained from IMPACT, where aggressive optimizations are enabled. The
results for the ADRES architecture are obtained from a developed co-simulator,
which is capable of simulating the mixed VLIW and reconfigurable matrix

Table 2.2. Comparisons with VLIW architecture

Total ops Total cycles Total ops Total cycles
App. (ADRES) (ADRES) (VLIW) (VLIW) Speed-up

idct 211676 6097 181853 38794 6.4
adpcm d 8150329 594676 5760116 1895055 3.2
mat mul 20010518 1001308 13876972 2811011 2.8
fir cpl 69126 3010 91774 18111 6.0

A Tightly Coupled VLIW 27

code. Although these testbenches are small applications, the results already
reflect the impact of integrating the VLIW processor and the reconfigurable
matrix. The speed-up over the VLIW is from 2.8 to 6.4, showing pretty good
performance.

2.5 Conclusions and Future Work

Coarse-grained reconfigurable architectures have been gaining importance
recently. Here we have proposed a new architecture called ADRES, where a
VLIW processor and a reconfigurable matrix are tightly coupled in a single ar-
chitecture. This level of integration brings a lot of benefits, including increased
performance, simplified programming model, reduced communication cost and
substantial resource sharing. We also describe a novel modulo scheduling al-
gorithm, which is the key technology in the ADRES compiler. The scheduling
algorithm is capable of mapping a loop to the reconfigurable matrix to expolit
high parallelism. The experiment results show great performance advantage
over the VLIW processor with comparable design efforts.

However, we have not implemented the ADRES architecture at the circuit
level yet. Therefore, many detailed design problems have not been taken into
account and concrete figures such as area and power are not available. Hence, to
implement the ADRES design is in the scope of our future work. On the other
hand, we believe the compiler is even more important than the architecture. We
will keep developing the compiler to refine the ADRES architecture from the
compiler point of view.

References

[1] H. Singh, et al. MorphoSys: an integrated reconfigurable system for data-parallel and computation-
intensive applications. IEEE Trans. on Computers, 49(5):465–481, 2000

[2] C. Ebeling and D. Cronquist and P. Franklin. RaPiD—Reconfigurable Pipelined Datapath. Proc. of
International Workshop on Field Programmable Logic and Applications (FPL), 1996

[3] PACT XPP Technologies. http://www.pactcorp.com
[4] T. Miyamori and K. Olukotun. REMARC: Reconfigurable Multimedia Array Coprocessor. International

Symposium on Field Programmable Gate Arrays (FPGA), 1998
[5] B. Mei et al. DRESC: A Retargetable Compiler for Coarse-Grained Reconfigurable Architectures.

International Conference on Field Programmable Technology, 2002
[6] D. A. Patterson and J. L. Hennessy. Computer Architecture: A Quantitative Approach. Morgan Kaufmann

Publishers, Inc., 1996
[7] M. S. Lam. Software pipelining: an effecive scheduling technique for VLIW machines. Proc. ACM

SIGPLAN ’88 Conference on Programming Language Design and Implementation, 1988
[8] C. Ebeling et al. Placement and Routing Tools for the Triptych FPGA. IEEE Trans. on VLSI, 3(12):473–

482, 1995
[9] B. Ramakrishna Rau. Iterative Modulo Scheduling. Hewlett-Packard Lab: HPL-94–115, 1995

[10] S. Roos. Scheduling for ReMove and other partially connected architectures. Laboratory of Computer
Enginnering, Delft University of Technology, 2001

[11] J. Llosa et al. Lifetime-Sensitive Modulo Scheduling in a Production Environment. IEEE Trans. on
Computers, 50(3):234–249, 2001

28

[12] C. Akturan and M. F. Jacome. CALiBeR: A Software Pipelining Algorithm for Clustered Embedded
VLIW Processors. Proc. ICCAD, 2001

[13] M. M. Fernandes et al. Distributed Modulo Scheduling. Proc. High Performance Computer Architecture
(HPCA), 1999

[14] C. Lee et al. MediaBench: A Tool for Evaluating and Synthesizing Multimedia and Communicatons
Systems. International Symposium on Microarchitecture, 1997

Chapter 3

Stream-based XPP Architectures in Adaptive
System-on-Chip Integration

Jürgen Becker1, Martin Vorbach2

1 Universitaet Karlsruhe (TH)
Institut fuer Technik der Informationsverarbeitung
D-76128 Karlsruhe, Germany
becker@itiv.uni-karlsruhe.de

2 PACT XPP Technologies AG
Muthmannstr. 1
D-80939 Munich, Germany
martin.vorbach@pactcorp.com

Abstract This chapter describes the structures and principles of stream-based, reconfig-
urable XPP Architectures from PACT XPP Technologies AG (Munich, Germany).
The status of an adaptive System-on-Chip (SoC) integration is given, consisting
of a SPARC-compatible LEON processor-core, a coarse-grain XPP-array of suit-
able size, and efficient multi-layer Amba-based communication interfaces. In
addition PACTs newest XPP architectures are described, realizing a new runtime
reconfigurable data processing technology that replaces the concept of instruction
sequencing by configuration sequencing with high performance application areas
envisioned from embedded signal processing to co-processing in different DSP-
like and mobile application environments. The underlying programming model is
motivated by the fact, that future oriented applications need to process streams of
data decomposed into smaller sequences which are processed in parallel. Finally,
first-time-right commercial chip synthesis were performed successfully onto
0.13 µm STMicro CMOS technology.

3.1 Introduction

Systems-on-Chip (SoCs) has become reality now, driven by fast development
of CMOS VLSI technologies. Complex system integration onto one single die

29

P. Lysaght and W. Rosenstiel (eds.),

New Algorithms, Architectures and Applications for Reconfigurable Computing, 29–42.

© 2005 Springer. Printed in the Netherlands.

30

Figure 3.1. XPP64 Architecture Overview and Structure of one ALU PAE module

introduces a set of various challenges and perspectives for industrial and aca-
demic institutions. Important issues to be addressed here are cost-effective tech-
nologies, efficient and application-tailored hardware/software architectures,
and corresponding IP-based EDA methods. Due to exponential increasing
CMOS mask costs, essential aspects for the industry are now flexibility and
adaptivity of SoCs. Thus, in addition to ASIC-based, one new promising type
of SoC architecture template is recognized by several academic [2] [15] [16]
[17] [18] [19] and first commercial versions [4] [5] [6] [7] [8] [9] [10] [12]: Con-
figurable SoCs (CSoCs), consisting of processor-, memory-, probably ASIC-
cores, and on-chip reconfigurable hardware parts for customization to a particu-
lar application. CSoCs combine the advantages of both: ASIC-based SoCs and
multichip-board development using standard components [3]. This contribution
provides the description of a CSoC project, integrating the dynamically recon-
figurable eXtreme Processing Platform (XPP) from PACT [9] [10], [11] (see
Figure 3.1). The XPP architecture realizes a new runtime re-configurable data
processing technology that replaces the concept of instruction sequencing by
configuration sequencing with high performance application areas envisioned
from embedded signal processing to co-processing in different DSP-like appli-
cation environments. The adaptive reconfigurable data processing architecture
consists of following main components:

� Coarse-grain Processing Array Elements (PAEs), organized as Processing
Arrays (PAs),

� a stream-based self synchronizing communication network,

� a hierarchical Configuration Manager (CM) tree, and

� a set of I/O modules.

Stream-based XPP Architectures in Adaptive System-on-Chip Integration 31

This supports the execution of multiple data flow applications running in
parallel. A PA together with one low level CM is referred as PAC (Processing
Array Cluster). The low level CM is responsible for writing configuration data
into the configurable objects of the PA. Typically, more than one PAC is used
to build a complete XPP device. Doing so, additional CMs are introduced for
configuration data handling. With an increasing number of PACs on a device,
the configuration hardware assumes the structure of a tree of CMs. The root
CM of the tree is called the supervising CM or SCM. This unit is usually con-
nected to an external or global RAM. The basic concept consists of replacing
the Von-Neumann instruction stream by automatic configuration sequencing
and by processing data streams instead of single machine words, similar to [1].
Due to the XPPs high regularity, a high level compiler can extract instruction
level parallelism and pipelining that is implicitly contained in algorithms [11].
The XPP can be used in several fields, e.g. as image/video processing, encryp-
tion, and baseband processing of next generation wireless standards, e.g. to
realize also Software Radio approaches. 3G systems, i.e. based on the UMTS
standard, will be defined to provide a transmission scheme which is highly
flexible and adaptable to new services. Relative to GSM, UMTS and IS-95
will require intensive layer 1 related operations, which cannot be performed
on today’s processors [13] [14]. Thus, an optimized HW/SW partitioning of
these computation-intensive tasks is necessary, whereas the flexibility to adapt
to changing standards and different operation modes (different services, QoS,
BER, etc.) has to be considered. Therefore, selected computation-intensive
signal processing tasks have to be migrated from software to hardware imple-
mentation, e.g. to ASIC or coarse-grain reconfigurable hardware parts, like the
XPP architecture.

3.2 Stream-based XPP Architecture

The XPP (eXtreme Processing Platform) architecture is based on a hierarchi-
cal array of coarse-grain, adaptive computing elements called Processing Array
Elements (PAEs) and a packet-oriented communication network. The strength
of the XPP technology originates from the combination of array processing with
unique, powerful run-time reconfiguration mechanisms. Since configuration
control is distributed over several Configuration Managers (CMs) embedded in
the array, PAEs can be configured rapidly in parallel while neighboring PAEs
are processing data. Entire applications can be configured and run indepen-
dently on different parts of the array. Reconfiguration is triggered externally
or even by special event signals originating within the array, enabling self-
reconfiguring designs. By utilizing protocols implemented in hardware, data
and event packets are used to process, generate, decompose and merge streams
of data. The XPP has some similarities with other coarse-grain reconfigurable

32

architectures like the KressArray [20] or Raw Machines [21] which are specif-
ically for stream-based applications. XPP’s main distinguishing features are its
automatic packet-handling mechanisms and sophisticated hierarchical config-
uration protocols.

3.2.1 Array Concept and Datapath Structure

An XPP device contains one or several Processing Array Clusters (PACs),
i.e. rectangular blocks of PAEs. Each PAC is attached to a CM responsible
for writing configuration data into the configurable objects of the PAC. Multi-
PAC devices contain additional CMs for configuration data handling, form-
ing a hierarchical tree of CMs. The root CM is called the supervising CM
or SCM. The XPP architecture is also designed for cascading multiple de-
vices in a multi-chip. A CM consists of a state machine and internal RAM
for configuration caching. The PAC itself contains a configuration bus which
connects the CM with PAEs and other configurable objects. Horizontal busses
carry data and events. They can be segmented by configurable switch-objects,
and connected to PAEs and special I/O objects at the periphery of the device.
A PAE is a collection of PAE objects. The typical PAE shown in Figure 3.1
contains a BREG object (back registers) and an FREG object (forward reg-
isters) which are used for vertical routing, as well as an ALU object which
performs the actual computations. The ALU implemented performs common
fixed-point arithmetical and logical operations as well as several special three-
input opcodes like multiply-add, sort, and counters. Events generated by ALU
objects depend on ALU results or exceptions, very similar to the state flags
of a classical microprocessor. A counter, e.g., generates a special event only
after it has terminated. The next section explains how these events are used.
Another PAE object implemented in the prototype is a memory object which
can be used in FIFO mode or as RAM for lookup tables, intermediate results
and so on.

3.2.2 Stream Processing and Selfsynchronization

PAE objects as defined above communicate via a stream-based and selfsyn-
chronizing bus and interface network. Two types of packets are sent through
the array: data packets and event packets. Data packets have a uniform bit
width specific to the device type. In normal operation mode, PAE objects are
selfsynchronizing. An operation is performed as soon as all necessary data
input packets are available. The results are forwarded as soon as they are avail-
able, provided the previous results have been consumed. Thus it is possible to
map a signal-flow graph directly to ALU objects, and to pipeline input data
streams through it. The communication system is designed to transmit one

Stream-based XPP Architectures in Adaptive System-on-Chip Integration 33

packet per cycle. Hardware protocols ensure that no packets are lost, even in
the case of pipeline stalls or during the configuration process. Such consis-
tent intra-array data and event transmission is one of the major differences
between fine-grain CLB-based devices and coarse-grain XPP architectures, be-
cause application development is simplified considerably by mapping signal
flow graphs directly onto the array topology. No explicit scheduling of opera-
tions and wire-based electrical signal as well as timing realization is required.
Event packets are one bit wide. They transmit state information which controls
ALU execution and packet generation. For instance, they can be used to con-
trol the merging of data-streams or to deliberately discard data packets. Thus
conditional computations depending on the results of earlier ALU operations
are feasible. Events can even trigger a self-reconfiguration of the device as
explained below.

3.2.3 Configuration Handling

The XPP architecture is optimized for rapid and user transparent configu-
ration. For this purpose, the configuration managers in the CM tree operate
independently, and therefore are able to configure their respective parts of the
array in parallel. Every PAE stores locally its current configuration state, i.e. if
it is part of a configuration or not (states ‘configured’ or ‘free’). If a configu-
ration is requested by the supervising CM, the configuration data traverses the
hierarchical CM tree to the leaf CMs which load the configurations onto the
array. The leaf CM locally synchronizes with the PAEs in the PAC it configures.
Once a PAE is configured, it changes its state to ‘configured’. This prevents
the respective CM from reconfiguring a PAE which is still used by another
application. The CM caches the configuration data in its internal RAM until the
required PAEs become available. Hence the CMs’ cache memory and the dis-
tributed configuration state in the array enables the leaf CMs to configure their
respective PACs independently. No global synchronization is necessary. While
loading a configuration, all PAEs start to compute their part of the application
as soon as they are in state ‘configuredg. Partially configured applications are
able to process data without loss of packets. This concurrency of configura-
tion and computation hides configuration latency. Additionally, a prefetching
mechanism is used. After a configuration is loaded onto the array, the next con-
figuration may be requested and cached in the low-level CMs’ internal RAM.
For more details about the XPP architecture principles see [9], [10], [11].

3.3 Adaptive XPP-based System-on-Chip

The synthesized adaptive System-on-Chip is illustrated in Figure 3.2 and
consists of an XPP-core from PACT, one LEON RISC µcontroller, and several

34

Figure 3.2. XPP-/Leon-based CSoC

SRAM-type memory modules. The main communication bus is chosen to be the
AHB from ARM [22]. The size of the XPP architecture will be either 16 ALU-
PAEs (4×4-array), or 64 ALU-PAEs (8x8-array), dependent on the application
field (see section 3.4). To get an efficient coupling of the XPP architecture to
AHB, we design an AHB-bridge which connects both IO-interfaces on one side
of the XPP, input and output interfaces, to the AHB via one module. The AHB
specification grants only communication between masters and slaves. There is
no option provided for communication between two homogeneous partners,
e.g. master to master. Usually the main controller, a processor or a µcontroller,
on an AHB-based SoC is master, the RAM as a passive component on the bus is
designed as a slave. Thus, if we choose our XPP-AHB-bridge to be a slave, there
is no possibility for a connection between XPP and a RAM-module. Otherwise
if we choose our bridge to be a master, no communication between the main
µcontroller and XPP was allowed. Therefore we choose an unusual method and
combine two ports, one master and one slave port as a dual port in the same
bridge. This combination allows us to be flexible enough to process various
application scenarios. In this way the XPP is able to handle the data from a
RAM-module or gets a stream from another master on the CSoC. The CM unit
implements a separate memory for faster storing and loading the XPP config-
urations. If there isn’t enough memory space for storing the configurations in
the local memory, it is possible to use the global CSoC memory to do that. The
AHB-bridge for CM will be a single ported SLAVE-AHB-bridge. The transfers
of the configurations from the global memory to the Configuration Manager
will be done by the LEON. Therefore the CM has to send a request to LEON
and start new configuration transfer. An overview on the CSoC architecture

Stream-based XPP Architectures in Adaptive System-on-Chip Integration 35

Figure 3.3. Adaptive XPP-based System-on-Chip Integration.

exemplarically integrated is shown in Figure 3.3. The µcontroller on our CSoC
is a LEON processor [26]. This processor is a public domain IP core. The LEON
VHDL model implements a 32-bit processor conforming to the SPARC V8 ar-
chitecture synthesis. It is designed for embedded applications with the following
features on-chip: separate instruction and data caches, hardware multiplier and
divider, interrupt controller, two 24-bit timers, two UARTs, power-down func-
tion, watchdog, 16-bit I/O port and a flexible memory controller. Additional
modules can be easily added using the on-chip AMBA AHB/APB buses. The
VHDL model is fully synthesizable with most synthesis tools and can be im-
plemented on both FPGAs and ASICs. The LEON µprocessor acts as a master
on our CSoC architecture. The program data for LEON will be transferred via
AHB. In this manner there are two options where the main memory for LEON
could be located: internally on die or externally on separate modules. The local
memory module on the integrated CSoC is used to store the LEON programs,
data for XPP computation and XPP configurations. The theoretical bandwidth
of AHB at 100 Mhz and 32bit bit width is 400 MBytes/sec. That’s enough to
serve the XPP-architecture with data and configurations and to handle the pro-
gram data of the LEON efficiently. The interface of the memory module to the
AHB is realized as a slave. That’s because this module is a passive module only
and can not start any kind of transactions on the AHB. Moreover, there will
be an external RAM interface implemented, which allows to connect external
memory to the CSoC. This module is a part of the LEON IP-core. The prior
AHB specification [22] from ARM allows only one transaction per cycle. That
means that if one master and one slave are communicating at a time step, the
other modules on the bus have to wait till this communication is done. This kind
of transactions block completely the whole bus. The solution for this restriction

36

Figure 3.4. XPP ALU Structure and exemplaric Standard Cell Synthesis Layout at Univer-
sitaet Karlsruhe (TH).

is the multi-layer AHB. This concept allows multiple transactions at the same
time. Instead of using simple multiplexers and decoders on the bus, we use now
single decoders and multiplexers per slave to choose the right master for commu-
nication. Thus, the bus is divided in several sub-busses allowing simultaneous
transactions between various masters and slaves. Each of the 4 parallel operating
high-throughput bridges connecting the SRAM-banks to the XPP can achieve
a data throughput of 400 MB/sec operating in 100 MHz, e.g. a complete on-
Chip data throughput of 1600 MB/sec, which is sufficient for multimedia-based
applications like MPEG-4 algorithms applied to video data in PAL-standard for-
mat (see section 3.5). The three SRAM memory modules provide up to 3 MB
on-chip. The complete size is splitted into 2x1,2 MB and 1x0,6 MB modules,
for storing two pictures and code with XPP configurations. Within this flexible
multi-layer AHB interface concept the XPP can operate either as slave (Leon
processor is master) or as master itself. The communication between the CSoC
and the outside world will be realized through a master/slave AHB/PCI host
bridge. The AHB master ability admits the direct transfers from PCI to internal
RAM without involvement of the main µcontroller, or, the slave ability admits
transfers between all masters and PCI-Bridge. Within this industrial/academic
research project different exemplaric standard cell synthesis experiments and
post-layout analysis were performed onto 0.18 and 0.13 µm UMC CMOS tech-
nologies at Universitaet Karlsruhe (TH) [23], [24]. The goal was to evaluate the
trade-offs between CMOS design times for a modular or flattened synthesis
of various application-tailored XPP-versions. Promising trade-offs between

Stream-based XPP Architectures in Adaptive System-on-Chip Integration 37

modularity of XPP hardware components and overall performance/power re-
sults have been obtained by applying so-called semi-hierarchical standard cell
synthesis techniques, whereas only in the final backend place and route steps
the hierarchy and borders of different hardware components were neglected
(see Figure 3.4).

3.4 XPP64A: First-Time-Right-Silicon

The PACT XPP64A is a demonstrator implementation of PACT’s XPP syn-
thesizable cores. XPP cores are high performance reconfigurable processors
for streaming applications in high performance reconfigurable accelerator/co-
processor architecture solutions. Built as a demonstrator and a proof of concept,
the XPP64A is, nevertheless, a complete fully functional product targeted at
applications requiring extreme computational power. Produced in fully static
0.13 µm STMicro CMOS technology the XPP64A operates in speeds up to
64 MHz using standard 3.3V TTL logic compatible I/O pins (see Figure 3.5).
Four independent I/O interfaces can each be configured as a RAM interface
or as a pair of independent bidirectional streaming data channels using a sim-
ple hand-shaking protocol. ALU PAEs are organized in an 8x8 matrix and
provide the majority of the computational capability. The ALU PAE provides
a 24-bit DSP-compliant instruction set, whereas a (12,12)-bit opcode split is

Figure 3.5. Coarse-grain Configurable XPP64A from PACT: STMicro CMOS 0.13 µm
layout

38

Figure 3.6. Coarse-grain Configurable XPP64A from PACT: STMicro CMOS 0.13 µm
layout

available for performing complex addition/multiplication as well as conditional
sign-flips. Single bit event signals allow status and control information such as
carry to be processed. These event signals can also control other ALUs or re-
quest reconfiguration. Two rows of 8 RAM blocks are placed one each on the
left and right of the processing array. Each RAM block is dual ported and or-
ganized as 256 words of 24 bits. The packet oriented nature of the network
ensures that packets are never lost even as objects are reconfigured. Busses
above and below each row of ALUs and RAMs provide for horizontal routing
of data and event signals. Three forward data registers and three forward event
registers colocated with each ALU and RAM block allow downward routing
of signals between busses in successive rows. Three backward data registers
and three backward event registers collocated with each ALU and RAM block
allow upward routing of signals between busses in successive rows. The three
backward event registers can be combined to form a lookup table. Two back-
ward registers may be paired to perform addition or subtraction and aid in the
efficient implementation of FIR cells. A configuration manager handles writ-
ing of configurations into the array. Automatic resource management allows
unconfigured objects to be configured before all needed resources are required
while avoiding deadlock thereby speeding configurations. The XPP64A con-
figuration manager interface is comprised of 3 subgroups of signals: code,
message send and message receive. Each group operates using a similar pro-
tocol. The code group provides a channel over which code can be downloaded
to the XPP64A for caching or execution. The message send group provides a

Stream-based XPP Architectures in Adaptive System-on-Chip Integration 39

channel over which the XPP64A can send messages to a host microprocessor
and the message receive group provides a channel for a host microprocessor
to send messages to the XPP64A. The XPP64A represents a commercial first-
time-right-silicon solution onto 0.13µm STMicro CMOS technology, whereas
backend synthesis and place&route steps were successfully supported by the
STMicroelectrics daughter company ACCENT (Milano, Italy). In addition,
an XXP evaluation board has been developed and fabricated in parallel in
order to evaluate and apply the XPP64A system (see Figure 3.6). For more
details see [9].

3.5 Application Evaluation—Examples

Within the application area of future mobile phones desired and important
functionalities are gaming, video compression for multimedia messaging,
polyphone sound (MIDI), etc. Therefore, a flexible, low cost hardware platform
with low power consumption is needed for realizing necessary computation-
intensive algorithms parts. Actual applications currently mapped and analyzed
onto an 4x4 ALU PAE array (extracted from the XPP64A) are stream-based and
computational intensive algorithm parts from MPEG-4 algorithms, W-LAN
(Hiperlan-2), Software Radio including RAKE-Receiver and Baseband
Filtering. The obtained performance and power efficiency improvements are
compared to a state of the art digital signal processor [25]. Thus, PACT imple-
mented several functionalities onto the cost-efficient 4x4 XPP array size, e.g. a
256-point FFT, a real 16 tap FIR filter, and a video 2D-DCT (8x8) for MPEG-4
systems (see Figure 3.7). The last functionality will be discussed here. The
performance and power consumption benchmarks comparisons between XPP
and a state-of-the-art DSP Processor for the above mentioned functionalities
are given in Figure 3.8. First digital TV application performance results
were obtained by evaluating corresponding MPEG-4 algorithm mappings
onto the introduced XPP64A and based on the 0.13 µm CMOS technology
synthesis results. The Inverse DCT was applied to 8x8 pixel blocks and have
been performed by an 4x4 XPP-Array being sufficient for real-time digital

Figure 3.7. Main MPEG-4 Algorithm Overview and main Modules.

40

Figure 3.8. Application Evaluation Results based on the XPP64A Silicon.

TV application scenarios, from the performance as well as from the power
consumption requirements.

3.6 Conclusions

This chapter described the stream-based and selfsynchronizing XPP ar-
chitecture principles as well as corresponding coarse-grain hardware struc-
tures. The focus was given to its target platform and Configurable System-
on-Chip (CSoC) integration concepts and solutions. An academic/industrial
CSoC project was discussed by exemplaric synthesis experiments performed
at Universitaet Karlsruhe (TH). Here, an overview on the overall system con-
cept, the hardware datapath structures and their integration was provided. Next,
PACTs latest commercial XPP chip and platform variants have been introduced,
synthesized successfully onto 0.13µm STMicro CMOS technologies. Here, the
XPP64A high-performance reconfigurable accelerator solution was presented,
an adaptive 8x8 ALU Array operating as co-processor for applications with
tremendous performance requirements, e.g. mobile communication basesta-
tions, computing fabrics, etc. The XPP64A represents first-time-right-silicon
demonstrating and proofing the feasibility and possibilities of PACTs leading
edge coarse-grain reconfigurable technology. Finally, some evaluated applica-
tion performance results within the area of multimedia and mobile baseband
algorithms have been discussed, e.g. the implementation of a video 2D-DCT
(8x8) in MPEG-4 systems suitable for mobile multimedia messaging. In sum-
mary, PACT offers the first commercially relevant silicon and computing plat-
forms within the promising field of coarse-grain reconfigurable computing. This

Stream-based XPP Architectures in Adaptive System-on-Chip Integration 41

technology provides similar flexibilities as DSPs or other application proces-
sors, with much better performance and power (energy) consumption trade-offs.
Compared to ASICs, XPP-based System-on-Chip solutions are less risky and
much cheaper from the development and mask costs. In addition, a great po-
tential for multi-service and multi-standard application is provided resulting in
multi-purpose adaptivity and higher volumes.

References

[1] R. W. Hartenstein, J. Becker et al.: A Novel Machine Paradigm to Accelerate Scientific Computing;
Special issue on Scientific Computing of Computer Science and Informatics Journal, Computer Society
of India, 1996.

[2] J. Becker, T. Pionteck, C. Habermann, M. Glesner: Design and Implementation of a Coarse-Grained
Dynamically Reconfigurable Hardware Architecture; in: Proc. of IEEE Computer Society Annual Work-
shop on VLSI (WVLSI 2001), Orlando, Florida, USA, April 19-20, 2001.

[3] J. Becker (Invited Tutorial): Configurable Systems-on-Chip (CSoC); in: Proc. of 9th Proc. of XV Brazil-
ian Symposium on Integrated Circuit Design (SBCCI 2002), Porto Alegre, Brazil, September 5-9,
2002.

[4] Xilinx Corp.: http://www.xilinx.com/products/virtex.htm.
[5] Altera Corp.: http://www.altera.com
[6] Triscend Inc.: http://www.triscend.com
[7] Triscend A7 Configurable System-on-Chip Platform—Data Sheet http://www.triscend.com/products/

dsa7csoc summary.pdf
[8] LucentWeb http://www.lucent.com/micro/fpga/
[9] PACT Corporation: http://www.pactcorp.com

[10] The XPP Communication System, PACT Corporation, Technical Report 15, 2000.
[11] V. Baumgarte, F. Mayr, A. Nückel, M. Vorbach, M. Weinhardt: PACT XPP—A Self-Reconfigurable

Data Processing Architecture; The 1st Intl. Conference of Engineering of Reconfigurable Systems and
Algorithms (ERSA01), Las Vegas, NV, June 2001.

[12] Hitachi Semiconductor: http://semiconductor.hitachi.com/news/triscend.html
[13] Peter Jung, Joerg Plechinger.:M-GOLD: a multimode basband platform for future mobile terminals,

CTMC’99, IEEE International Conference on Communications, Vancouver, June 1999.
[14] Jan M. Rabaey: System Design at Universities: Experiences and Challenges; IEEE Computer Society

International Conference on Microelectronic Systems Education (MSE99), July 19–21, Arlington VA,
USA.

[15] S. Copen Goldstein, H. Schmit, M. Moe, M. Budiu, S. Cadambi, R. R. Taylor, R. Laufer:
PipeRench: a Coprocessor for Streaming Multimedia Acceleration in ISCA 1999. http://www.ece.
cmu.edu/research/piperench/

[16] MIT Reinventing Computing: http://www.ai.mit.edu/projects/transit dpga prototype documents.html
[17] N. Bagherzadeh, F. J. Kurdahi, H. Singh, G. Lu, M. Lee: Design and Implementation of the MorphoSys

Reconfigurable Computing Processor; J. of VLSI and Signal Processing-Systems for Signal, Image and
Video Technology, 3/2000.

[18] Hui Zhang, Vandana Prabhu, Varghese George, Marlene Wan, Martin Benes, Arthur Abnous,
A 1V Heterogeneous Reconfigurable Processor IC for Baseband Wireless Applications, Proc. of
ISSCC2000.

[19] Pleiades Group: http://bwrc.eecs.berkeley.edu/Research/Configurable Architectures/
[20] R. Hartenstein, R. Kress, and H. Reinig A new FPGA architecture for word-oriented datapaths In Proc.

FPL’94, Prague, Czech Republic, September 1994. Springer LNCS 849.
[21] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee, J. Kim, M. Frank, and P. Finch: Baring

it all to software: Raw machines IEEE Computer, pages 86-93, September 1997.
[22] ARM Corp.: http://www.arm.com/arm/AMBA
[23] J. Becker, M. Vorbach: Architecture, Memory and Interface Technology Integration of an Indus-

trial/Academic Configurable System-on-Chip (CSoC); IEEE Computer Society Annual Workshop on
VLSI (WVLSI 2003), Tampa, Florida, USA, February, 2003.

42

[24] J. Becker, A. Thomas, M. Vorbach, V. Baumgarte: An Industrial/Academic Configurable System-on-
Chip Project (CSoC): Coarse-grain XPP-/Leon-based Architecture Integration; Design, Automation
and Test in Europe Conference (DATE 2003), Munich, March 2003.

[25] M. Vorbach, J. Becker: Reconfigurable Processor Architectures for Mobile Phones; Reconfigurable
Architectures Workshop (RAW 2003), Nice, France, April, 2003.

[26] Jiri Gaisler: The LEON Processor User’s Manual, http://www.gaisler.com

Chapter 4

Core-Based Architecture for Data Transfer Control
in SoC Design

Unai Bidarte, Armando Astarloa, Aitzol Zuloaga, José Luis Martı́n
and Jaime Jiménez

University of the Basque Country, E.T.S. Ingenieros, Bilbao—SPAIN
{jtpbipeu, jtpascua, jtpzuiza, jtpmagoj, jtpjivej}@bi.ehu.es

Abstract The functionality of many digital circuits is strongly dependent on high speed
data exchange between data source and sink elements. In order to alleviate the
main processor’s work, it is usually interesting to isolate high speed data transfers
from all other control tasks. A generic architecture, based on configurable cores,
has been achieved for circuits communicating with an external system and with
extensive data exchange requirements. Design reuse has been improved by means
of a software application that helps in architectural verification and performance
analysis tasks. Two applications implemented on FPGA technology are presented
to validate the proposed architecture.

4.1 Introduction

When analyzing the data path of a generic digital system, four main elements
can be distinguished:

1. Data source, processor or sink. Any digital system needs some data source,
which can be some kind of sensor or an external system. Process units
transform data and finally data clients or sinks make some use of it.

2. Data buffer blocks or memories. The data units cannot usually be directly
connected and intermediate storage elements are needed.

3. Data transfer control unit. On the other hand, when transferring data from
one device to another, a communication channel and a predefined data
transfer protocol are needed. Data transfer control can be a very time

43

P. Lysaght and W. Rosenstiel (eds.),

New Algorithms, Architectures and Applications for Reconfigurable Computing, 43–54.

© 2005 Springer. Printed in the Netherlands.

44

consuming task. In order to liberate the main control unit, it is often
necessary to to use a dedicated unit to control data transfer.

4. High level control unit. It is the digital system master that generates all
the control signals needed by the previously noted blocks.

This work studies digital systems with much data exchange, that is to say,
circuits with high volume data transfers. The following features summarize the
system under study:

� There is a communication channel with an external system, that is used
to transmit and receive control commands and data. Control commands
are exchanged between main processors (high level control units, one
per system), always through the communication channel. Data goes from
a data source to a data sink and the communication channel is needed
whenever the source and the sink elements are not in the same system.

� Data processing is performed on data terminal units, so, for design pur-
poses, data units are supposed to be sources or sinks. These elements are
not synchronized, so intermediate data storage is needed.

� It is needed to attend several data transfer requirements in parallel.

� Data exchange requires complex and high speed control, which makes
a specific data transfer module necessary. The bus used to perform high
speed data transfers and the bus used by the main processor to perform
high level control tasks work independently but there is a bridge to connect
them, because the main processor receives control commands through the
communication channel.

Figure 4.1 represents the block diagram corresponding to the described cir-
cuit. Several applications match the specifications above: industrial machinery
like filling or milling machines, polyphonic audio, generation of three dimen-
sional images, video servers, and PC equipment like plotters and printers.

The research team’s main objective is to achieve a reusable architecture for
such systems. It must be independent of the implementation technology, so
a standard hardware description language will be used. In order to facilitate
design reuse, a user friendly software application will be programmed to make
the verification and performance analysis easier.

4.2 Digital Systems with Very Time Consuming Data
Exchange Requirements. Design Alternatives

Traditionally, embedded systems like the one under study have been suc-
cessfully developed with complex 16 or 32 bits microcontrollers. These process

Core-Based Architecture for Data Transfer Control 45

EXTERNAL
SYSTEM

DATA
TRANSFER
CONTROL

DATA
SINK

DATA
SOURCE

INTERMEDIATE
MEMORY

..

.

MAIN
PROCESSOR

SoRC

MEMORY, I/O
AND OTHERS

PROCCESSOR BUS

DATA BUS

COM.

BUS

Figure 4.1. Block diagram of the generic circuit.

machines perform millions of instructions per second, and include some com-
munication channels, memory interfaces, and direct memory access controllers.
On the other hand, they present many disadvantages that make impossible to
fulfill our design goals:

� As they are general purpose integrated circuits, no feature can be adapted
to the application. Sometimes software patches will substitute for hard-
ware requirements.

� Although they have different communication interfaces, no frame pro-
tocol encoding or decoding is usually available, so these tasks become
software work.

� No data source or sink interfaces are available, so software and general
purpose input and output ports are used.

� These features force the high level control machine to perform data ex-
change control tasks, so low speed work is seriously limited. An external
circuit dedicated to these tasks can be used to alleviate the data exchange
control bottleneck.

An optimum solution requires an architecture focused on high speed data ex-
change performed in an asynchronous mode between source and sink elements

46

[1]. The complete system has been achieved on one chip [2]. The design is
modular and based on parameterizable cores to facilitate future reuse [3].

There is an intermediate solution between the general purpose microcon-
troller based solution and the System-on-Chip (SoC) solutions. High level and
low speed tasks can be performed by a microcontroller and high speed data
exchange left for an autonomous hardware system. This solution can be ade-
quate when features that are not available on FPGAs but that are common on
microcontrollers are needed. Examples include A/D or D/A data converters,
FLASH and EEPROM storage. This is a less integrated and slower solution
and it is dependent on the chosen microcontroller.

4.3 System on a Reprogrammable Chip Design
Methodology

With today’s deep sub-micron technology, it is possible to deliver over two
million usable system gates in one FPGA. The availability of FPGAs in the one
million system gate range has started a shift of SoC designs towards using repro-
grammable FPGAs, thereby starting a new era of System on a Reprogrammable
Chip (SoRC) [4].

Today’s market expects better and cheaper designs. The only way the elec-
tronics industry can achieve these needs in a reasonable amount of time is with
design reuse. Reusable modules are essential to design complex circuits [5].

So the goal of this work is to achieve a modular, configurable and reusable
architecture that performs very high speed data exchange without compromising
the tasks performed by the main processor. Hardware and software co-design
and co-verification are also important objectives [6].

Traditionally IP cores used non-standard interconnection schemes that made
them difficult to integrate. This required the creation of custom glue logic to
connect each of the cores together. By adopting a standard interconnection
scheme, the cores can be integrated more quickly and easily by the end user.
A standard data exchange protocol is needed in order to facilitate SoRC design
and reuse. Excluding external system buses such as PCI, VME, and USB, there
are many SoC interconnection buses. Most of them are proprietary. Examples
include the Advanced Microcontroller Bus Architecture (AMBA, from ARM)
[7], CoreConnect (from IBM) [8], FISPbus (from Mentor Graphics and Inventra
Business Unit) [9], and the IP interface (from Motorola). [10]. We looked for
an open option, that is to say, a bus which does not need any license agreement
and with no need to pay any kind of royalty.

The solution is the Wishbone SoC interconnection architecture for portable
IP cores. The Wishbone standard defines the data exchange among IP core
modules, and it does not regulate the application specific functions of the IP
core [11]. It offers a flexible integration solution, a variety of bus cycles and

Core-Based Architecture for Data Transfer Control 47

data path widths to solve various system problems, and allows cores to be
designed by a variety of designers. It is based on a master/slave architecture for
very flexible system designs. All Wishbone cycles use a handshaking protocol
between Master and Slave interfaces.

4.4 SoRC Core-Based Architecture

The SoRC architecture shown in Figure 4.2 complies with the specifications
noted. The main objective of the architecture is to isolate high speed data
exchange from any other control tasks in the system. That is why the design
has been divided into three blocks, each one with its own specific bus:

� The “Data Transfer Bus” (DTB) is used to perform all process data
transfers and it uses the Wishbone SoC interconnection architecture for
portable IP cores, which makes possible high speed data exchange. A
shared bus interconnection with only one master has been chosen, which
controls all transfers in the bus.

� The “Main Processor Bus” (MPB) is used to perform high level tasks,
which are controlled by a high level controller or main processor, usually a

COMMUNIC.
PROCESSOR

S
L

A
V

E

MEMORY
CONTROLLER

SLAVE

DATA SOURCE

S
L

A
V

E

DATA SINK

S
L

A
V

E

BRIDGE

S
L

A
V

E

DATA
TRANSFER

CONTROLLER

MASTER

. . .

M
P

B

MPB

DATA
TRANSFER

BUS

COMMUNIC.
INTERFACE F

IF
O

F
IF

O

SoRC

MAIN PROCESSORMEMORY OTHER DEVICES

MPB MPBMPBMAIN
PROCESSOR

BUS

i

i

. . .

COM. BUS

W
IS

H
B

O
N

E

Figure 4.2. SoRC architecture.

48

microcontroller. It uses its specific bus to read from and write to program
memory, input and output blocks and any other devices, as well as to
communicate with the DTB.

� The “Communication Bus” (CB) is used to exchange information with
the external system. It cannot directly access the DTB and it exchanges
information with the communication processor, which is a module on the
DTB.

On the other hand, the SoRC has these connections with the outside: the
communication channel interface, the memory bus, the data source and/or sink
devices interface and the interface to devices on the main processor side.

4.4.1 Communication Bus IP Cores

The communication interface must provide the interface to the communica-
tion channel. After dealing with a number of different communication channels,
the solution we have chosen is:

� If the communication interface needs a very complex controller (Blue-
tooth, USB, etc.) and there is an adequate solution available in ASSP or
ASIC format, it is useful and practical to use it. In those cases only the
channel interface is implemented into the SoRC.

� For non-complex communication protocols (UARTs, parallel port buses
such as IDE or EPP.) both the controller and the interface are embedded
into the SoC architecture leaving only the physical drivers and protection
circuits outside the FPGA.

All the developed cores support full duplex communication. These cores
have a common interface to the communication processor, which consists of
two FIFO memories, one for reception and the other one for transmission. The
communication interface presents two control signals to the communication
processor to show the status of the FIFOs. The communication processor reads
or writes the memories whenever it is needed.

4.4.2 Data Transfer Bus IP Cores

DATA TRANSFER CONTROLLER (DTC): This core allows data transfers
between any two Wishbone compatible modules. It is the unique Wishbone
master module, so it controls all operations on the bus. The system critical
task is high speed data exchange, which must be performed in parallel between
different origin and destination pairs. To complete any transfer, the DTC must
read the data from the origin and then write it to the destination. Many transfer

Core-Based Architecture for Data Transfer Control 49

requests can be activated concurrently, so the DTC must be capable of serving
them. In order to guarantee that no request is blocked by another one, any
pending data transfer request attention is initiated only when the origin and
destination cores are ready. The DTC priories the requests following a round
robin scheme.

The key to the control is to manage the right number of data channels, which
must be exactly the number of concurrent data movements that can be accepted.
Figure 4.3 summarizes the solution adopted for the hypothetical case with one
data source and one data sink. The minimum data channels are as follows:

1. From the communication processor to the main processor bridge, in case
of commands reception (from the external system), or to the memory, if
data for a sink is received.

2. From the main processor bridge to the communication processor, in case
of commands transmission (to the external system), or from the memory
to the communication processor, in case of data transmission.

3. From the memory to a data sink.

4. From a data source to the memory.

DATA SOURCE

DATA SINK

4

3

COMMUNICATION
PROCESSOR

MEMORY
CONTROLLER

BRIDGE

2

2

1

1

DATA
TRANSFER

CONTROLLLER

Data
Transfers

Control
Sequence

DTB
CHANNELS

Figure 4.3. Data Transfer Bus channels.

50

The minimum number of channels is two plus one additional channel for each
data source or sink. Each channel has three control registers: origin, destination
and transfer length. Some of them are fixed and others must be configured
by the main processor before starting data exchange. Additionally, there are
two common registers which contain one bit associated with each channel: the
control register to enable or disable transfers, and the start register, which must
be asserted by the main processor, after correctly configuring the three registers
of the channel, to start the data transfer.

An interrupt register is used to acknowledge the termination of the data ex-
change to the main processor. Once the requested data transfer is accomplished,
the DTC asserts the interrupt register bit associated with the channel. There is
only one interrupt line, so whenever an interrupt occurs, the main processor
must read the interrupt register, process it and deactivate it.

Partial address decoding has been used, so each slave decodes only the range
of addresses that it uses. This is accomplished using an address decoder element,
which generates all chip select signals. The advantages of this method are that it
facilitates high speed address decoding, uses less redundant address decoding
logic, supports variable address sizing and supports variable interconnection
schemes.

COMMUNICATION PROCESSOR: The frame information contains a
header, commands for the main processor, file configuration, data and a check
sequence. The receiver part of this module decodes data frames and sends data to
the correct destination under the DTC control. The transmitter part is responsible
for packaging the outgoing information. This core permits full duplex commu-
nication so the receiver and transmitter parts are completely independent.

The main processor must know about command reception because it con-
figures all transfers. This core generates two interrupts, one when a command
is received and another when a communication error is detected. These are the
two only interruptions not generated by the DTC.

When data intensive communication is performed, some kind of data cor-
rectness check must be performed. The communication processor is able to
perform different kinds of check sequence coding and decoding.

BRIDGE: The main processor cannot access data on the DTB directly, so
an intermediate bridge between the DTB and the MPB is needed. It must adapt
data and control interfaces. Usually the data bus on the DTB is wider than on the
MPB so one data transfer on the DTB corresponds to more than one operation
on the MPB.

MEMORY CONTROLLER: Data exchange between data source and sink
elements is supposed to be performed asynchronously. This is possible using
an intermediate data buffer. Large blocks of RAM memory are needed in data
exchange oriented systems and stand-alone memories provide good design so-
lutions. The design must be capable of buffering several megabytes of data, so
dynamic memory is needed and in order to optimize memory access it must also

Core-Based Architecture for Data Transfer Control 51

be synchronous. Consequently a synchronous and dynamic memory (SDRAM)
controller has been developed [12].

High speed systems like the one presented here must follow synchronous
methodology rules. The generation, synchronization and distribution of clock
signals are essential. FPGAs designed for SoRC provide high speed, low
skew clock distributions through dedicated global routing resources and Delay
Locked Loop (DLL) circuits. A DLL works by inserting delay between the
input clock and the feedback clock until the two rising edges align. It is not
possible to use one DLL to provide both the FPGA and SDRAM clocks. Using
two DLLs with the same clock input and separate feedback signals achieves
zero delay between the input clock, the FPGA clock, and the SDRAM clock.

DATA SOURCE/SINK: Data from a source is written to a sink, using the
intermediate memory and the communication channel when required. The data
source and sink control is performed by application dependent cores.

4.4.3 Main Processor Bus IP Cores

This main processor and all the resources it requires are connected to the
MPB. The MPB can also be implemented using the Wishbone standard. We
have assumed that the circuit is oriented to data exchange, which means that
this task is very time consuming and it justifies a specific data exchange control
unit. All other tasks can be controlled by a general purpose machine, usually a
microcontroller, and it will be chosen in accordance with the application. This
multifunction machine uses its own bus to access memory, input/outputs, user
interface, other devices, and the DTB.

A command reception interrupt from the communication processor tells the
main processor about the request from the external system. The main processor
reads it from the bridge, through the DTC, and processes it. If it is a control
command, it will send back the answer command. If it is a data command, it will
configure the corresponding data channel on the DTC and after this it will send
back the acknowledge or answer command to the external system. The DTC
core will generate the data transfer end interrupt when this operation is finished.

Whenever it is detected that data coming from the external system is cor-
rupted, the communication processor activates the error interrupt. The main
processor will tell back the external system about the failure.

Commands and data information exchange can also be initiated by this cir-
cuit, so the architecture allows information exchange between two systems in
a symmetrical way.

4.5 Verification and Analysis User Interface

In order to improve the reusability and to make it easier to verify and analyze
the proposed architecture, a user interface application has been developed [13].

52

The use of a hardware description language like VHDL has facilitated the
creation of a parameterizable design. The specifications can be kept open and
design alternatives can be evaluated, due to the fact that the design parameters
can be modified. Design modularity and cores parameterization greatly improve
future reuse possibilities.

To do a generic design, the effort needed at the beginning of the project
is bigger than for a fixed design, in which component functionality is fully
determined. But this technique, apart from the advantages mentioned above,
could greatly alleviate the unexpected problems that arise in the final stages of
the design process.

Some hard coded values in the design have been replaced with constants or
generics. In this way, even if the parameter is not going to be changed in the
future, code readability is increased. A global package containing the defini-
tion of all parameters has been used. The designer can configure the applica-
tion specific architecture writing to the global package or using the software
interface.

Once the desired architecture is configured, and after designing the appli-
cation specific cores, the complete system functionality must be validated. All
the cores, as well as the high level control machine code, must be co-simulated
and co-verified. Modelsim from Mentor Graphics is the simulation tool used. It
provides a Tool Command Language and Toolkit (Tcl/Tk) environment offer-
ing script programmability. A custom testbench has been created to facilitate
the visualization of simulation results. A Tcl/Tk program creates a new display
based on the simulator’s output data, where a selection of the signals can be
visualized with data extracted from the simulation results. Some buttons have
been added so that new functionality is accessible. Dataflow can be graphically
analyzed and design debugging is much easier. The external system, commu-
nication channel, SDRAM and data source and sink functionality have been
described using VHDL behavioural architectures. Data transfers on Wishbone
bus are automatically analyzed by a supervisor core, which dramatically sim-
plifies simulation. The supervisor also generates text files with performance
information, including data transfer bit rate and latency.

4.6 Results and Conclusions

This section describes the application of the proposed architecture to the
design of two digital systems.

The first one is a video system connected to a host via an Ethernet commu-
nication channel. The system controls two motors used for camera movement
and processes incoming control commands. The DTC core performs image data
exchange between the analog to digital converter and the host. The SDRAM
is used as a ping-pong memory: while a video frame is being captured, the
previous one is being transmitted to the host. A general purpose evaluation

Core-Based Architecture for Data Transfer Control 53

Table 4.1. Implementation results

Features Video processor Industrial plotter

Equivalent gates 127.000 182.000
Internal RAM bits 16 Kbits 28 Kbits
User I/O pins 85 94
Max. DTC freq. 47 MHz 65 MHz
Main Processor Nios 32 bits MicroBlaze 32 bits

board from Altera containing the 20K200EFC484 device has been used for
prototyping. System features are summarized in Table 4.1.

The second one corresponds to an industrial plotter that provides high effi-
ciency on continuously working environments. The microcontroller manages
one stepping motor, three dc motors, many input/output signals and a simple
user interface. The DTC module is dedicated to high volume data exchange
from the host to the printer device using a parallel communication channel.
Printing information is buffered in the SDRAM. This circuit is based on a Spar-
tan II family device from Xilinx which offers densities up to 200.000 equivalent
gates. System features are summarized in Table 4.1.

The size, speed, and board requirements of today’s state-of-the-art FPGAs
make it nearly impossible to debug designs using traditional logic analysis
methods. Flip-chip and ball grid array packaging do not have exposed leads
that can be physically probed. Embedded logic analysis cores have been used
for system debugging [14].

The results show that our SoRC architecture is suitable for generating hard-
ware/software designs for digital systems with much data exchange. The mul-
ticore architecture with configuration parameters is oriented to reuse and a user
friendly software application has been developed to help with application spe-
cific configuration, system hardware/software co-verification and performance
analysis. The use of a standard and open SoC interconnection architecture im-
proves the portability and reliability of the system and results in faster time to
market.

Acknowledgments

This work has been supported by the Ministerio de Ciencia y Tecnologa of
Spain and FEDER in the framework of the TIC2001-0062 research project.

References

[1] Cesrio, W., and Baghdadi, A. (2002). Component-Based Design Approach for Multicore SoCs. Design
Automation Conference, 39th conference. New Orleans, Louisiana.

[2] Bergamaschi, R., and Lee, W. (2000). Designing Systems on Chip Using Cores. Design Automation
conference, 37th Conference.

54

[3] Gupta, R., and Zorian, Y. (1997). Introducing Core-Based System Design. IEEE Design and Test of
Computers, 14(4): 15–25.

[4] Xilinx. Design Reuse Methodology for ASIC and FPGA Designers. http://www.xilinx.com/
ipcenter/designreuse/docs/ Xilinx-Design-Reuse-Methodology.pdf.

[5] Keating, M., and Bricaud, P. (2002). Reuse Methodology Manual. Kluwer Academic Publishers.
[6] Balarin, F. (1997). Hardware-Software Co-design of Embedded Systems: The POLIS Approach. Kluwer

Academic Publishers.
[7] ARM. (1999). AMBA Specification Revision 2.0. http://www.arm.com/ Pro+Peripherals/AMBA.
[8] IBMCoreConnect Bus Architecture. http://www-3.ibm.com/chips/techlib/techlib.nsf/productfamilies/

CoreConnect- Bus-Architecture.
[9] Mentor Graphics. FISPbus. http://www.mentorg.com.

[10] Motorola. IP Interface, Semiconductor Reuse Standard, v. 2.0. http:// www.motorola.com.
[11] Wishbone System-on-Chip (SoC) Interconnection Architecture for Portable IP Cores (rev. B.2). (2001).

Silicore Corporation, Corcoran (USA).
[12] Gleerup, T. (2000). Memory Architecture for Efficient Utilization of SDRAM: A Case Study of the

Computation/Memory Access Trade Off. Intl Workshop on Hardware-software Codesign, 51–55.
[13] Bergeron, J. (2001). Writing Testbenches. Functional Verification of HDL Models. Kluwer Academic

Publishers.
[14] Zorian, Y., Marinissen, E. J., and Dey, S. (2001). Optimal Test Access Architectures for System-on-a-

Chip. Transactions on Design Automation of Electronic Systems, 26–49.

Chapter 5

Customizable and Reduced Hardware
Motion Estimation Processors

Nuno Roma, Tiago Dias, Leonel Sousa

Instituto Superior Técnico/INESC-ID
Rua Alves Redol, 9—1000-029 Lisboa—PORTUGAL
Nuno.Roma@inesc-id.pt, tdias@sips.inesc-id.pt, las@inesc-id.pt

Abstract New customizable and reduced hardware core-based architectures for motion es-
timation are proposed. These new cores are derived from an efficient and fully
parameterizable 2-D systolic array structure for full-search block-matching mo-
tion estimation and inherit its configurability properties in what concerns the
macroblock and search area dimensions and parallelism level. A significant re-
duction of the hardware resources can be achieved with the proposed architectures
by reducing the spatial and pixel resolutions, rather than by restricting the set of
considered candidate motion vectors. Low-cost and low-power regular architec-
tures suitable for field programmable logic implementation are obtained without
compromising the quality of the coded video sequences. Experimental results
show that despite the significant complexity level presented by motion estima-
tion processors, it is still possible to implement fast and low-cost versions of the
original architecture using general purpose FPGA devices.

Keywords: Motion Estimation, Customizable Architectures, Configurable Structures

5.1 Introduction

Motion estimation is a fundamental operation in motion-compensated video
coding [1], in order to efficiently exploit the temporal redundancy between
consecutive frames. Among the several possible approaches, block-matching is
the most used in practice: the current frame is divided into equally sized N × N
pixel blocks that are displaced within (N + 2p − 1) × (N + 2p − 1) search
windows defined in the previous frame; the motion vectors are obtained by
looking for the best matched blocks in these search windows. In this procedure,

55

P. Lysaght and W. Rosenstiel (eds.),

© 2005 Springer. Printed in the Netherlands.

New Algorithms, Architectures and Applications for Reconfigurable Computing, 55–66.

56

the Sum of the Absolute Differences (SAD) is the matching criteria that is
usually used by most systems, due to its efficiency and simplicity.

Among the several block-matching algorithms, the Full-Search Block-
Matching (FSBM) method is the one that has been used by most VLSI motion
estimation architectures that have been proposed over the last few years. The
main reason for this is not only related to the better performance levels gen-
erally achieved by exhaustively considering all possible candidate blocks, but
is mainly due to the regularity properties that it also offers. In fact, not only
does it lead to much more efficient hardware structures, but it also produces
significantly simpler control units, which is always a fundamental factor to-
wards a real-time operation based on hardware structures. However, it requires
a lot of computational resources. As an example, FSBM motion estimation
can consume up to 80% of the total computational power required by a video
encoder. This fact often prevents its implementation using low cost technolo-
gies with restricted amounts of hardware (such as Field Programmable Logic
(FPL) devices) and usually demands the usage of technologies with higher den-
sities of gates, such as ASIC or Sea-of-Gates. As a consequence, several fast
block-matching motion estimation algorithms have been proposed over the last
years. Most of them restrict the search space to a given search pattern, providing
suboptimal solutions (e.g. [2, 3]). Nevertheless, they usually apply non-regular
processing and require complex control schemes, making their hardware im-
plementation difficult and rather inefficient.

Hence, a tradeoff is frequently explored between the required computational
resources, the implementation complexity and the precision of the obtained mo-
tion vectors. The new VLSI architectures that are proposed allow the design of
array processors based on the FSBM that can be implemented in FPL devices.
These architectures are based on a highly efficient core, that combines both
pipelining and parallel processing techniques to design powerful motion esti-
mators [4]. This original core is used to derive simpler structures with reduced
hardware requirements. The reduction of the complexity of these architectures is
achieved by decreasing the precision of the pixel values and/or the spatial resolu-
tions in the current frame, while maintaining the original resolution in the search
space. The pixel precision is configured by defining the number of bits used to
represent the input data and by masking or truncating the corresponding Least
Significant Bits (LSBs). The spacial resolution is adjusted by sub-sampling the
blocks of the current frame. By doing so, the best candidate block in the pre-
vious frame is still exhaustively searched but the SAD of each candidate block
is computed by using only sparse pixels. Consider a typical setup with 16 × 16
pixels blocks. By applying 2 : 1 or 4 : 1 alternate sub-sampling schemes the
number of considered pixels decreases by 1/4 and 1/16, respectively.

The efficiency of the proposed structures was evaluated by implement-
ing these customizable core-based architectures in Field Programmable Gate

Customizable and Reduced Hardware Motion Estimation Processors 57

Arrays (FPGA). It is shown that the amount of hardware required when
sub-sampling and truncation techniques are applied is considerably reduced.
This fact allows the usage of a common framework for designing a wide range
of motion estimation processors with different characteristics that fit well in cur-
rent FPGAs, being a real alternative to those fast motion estimation techniques
that apply non-regular processing. Moreover, experimental results obtained
with benchmark video sequences show that the application of these techniques
does not introduce a significant degradation in the quality of the coded video
sequences.

5.2 Base FSBM Architecture

Several FSBM structures have been proposed over the last few years (e.g.:
[5, 6, 4]). Very recently, a new class of parameterizable hardware architectures
that is characterized by offering minimum latency, maximum throughput and
a full and efficient utilization of the hardware resources was presented in [4].
This last characteristic is a fundamental requisite in any FPL system, due to
the limited amount of hardware resources. To achieve such performance levels,
a peculiar and innovative processing scheme, based on a cylindrical hardware
structure and on the zig-zag processing sequence proposed by Vos [6], was
adopted (see Fig. 5.1). With such a scheme, not only is it possible to minimize
the processing time, but it also provides the ability to prevent the usage of some

MOTION

VECTOR

SEARCH AREA

REFERENCE
MACROBLOCK

INPUT BUFFER - S

INPUT BUFFER - R

COMPARATOR

PASSIVE BLOCKACTIVE BLOCK

ADDER TREE

- ACTIVE PE

- PASSIVE PE

Figure 5.1. Processor array proposed in [4] based on an innovative cylindrical structure and
adopting the zig-zag processing scheme proposed by Vos [6] (N = 4, p = 2).

58

hardware structures—the so called passive processor elements (PEs), that do
not carry useful information in many clock cycles.

Besides this set of performance and implementation characteristics, this
class of processors features also a scalable and configurable architecture, mak-
ing it possible to easily adapt the processor configuration to fulfill the req-
uisites of a given video coder. By adjusting a small set of implementation
parameters, processing structures with distinct performance and hardware re-
quirements are obtained, providing the ability to adjust the required hardware
resources to the target implementation technology. While high performance
processors, that inevitably require more resources, are more suited for imple-
mentations using technologies such as ASIC or Sea-of-Gates, those low-cost
processors, that are meant to be implemented in FPL devices, with limited
hardware resources, should use configurations requiring reduced amounts of
hardware.

5.3 Architectures for Limited Resources Devices

Despite the set of configurable properties offered by FSBM architectures
and, in particular, by the class of processors proposed in [4], restricted hard-
ware technologies, such as FPL devices, often do not provide enough hardware
resources to implement such processors. In such cases, sub-optimal motion es-
timation algorithms are usually adopted, which provide faster processing and
require reduced amounts of hardware. Different categories of sub-optimal mo-
tion estimation algorithms have been proposed, based on three main techniques:

� Reduction of the set of considered candidate motion vectors, by restricting
the search procedure in the previous frame to a given search pattern using
hierarchical search strategies [2, 3];

� Decimation at the pixel level, where the considered similarity measure is
computed by using only a subset of the N × N pixels of each reference
macroblock [7–9];

� Reduction of the precision of the pixel values, where the similarity mea-
sure is computed by truncating the LSBs of the input values to reduce the
hardware resources required by the arithmetic units [10, 9].

The main drawback of these solutions is a corresponding increase of the
prediction error that inevitable arises as result of using less accurate estimation.
This tradeoff usually leads to a difficult and non-trivial relationship between
the final picture quality and the prediction accuracy that can not be assumed
to be linear. In general, a larger prediction error will lead to higher bit rates,
which will lead to the usage of greater quantization step sizes to compensate
this increase, thus affecting the quality of the decoded images.

Customizable and Reduced Hardware Motion Estimation Processors 59

Up until now only a few VLSI architectures have been proposed to implement
fast motion estimation algorithms, by restricting the search positions according
to a given search pattern [9]. In general, they imply the usage of non-regular
processing structures and require higher control overheads, which complicates
the design of efficient systolic structures. Consequently, they have been ex-
tensively used in software applications, where such restrictions do not usually
apply so strictly.

The set of architectures proposed here try to combine the advantages offered
by the regular and efficient FSBM structures proposed in [4] with several strate-
gies to reduce the amount of hardware that are usually offered by sub-optimal
motion estimation algorithms. To implement such architectures on FPL devices,
such as FPGAs, the original FSBM architecture will be adapted to apply two of
the three decimation categories described above: decimation at the pixel level
and reduction of the precision of the pixel values.

5.3.1 Decimation at the Pixel Level

By applying decimation at the pixel level, the image data of the current
frame is sub-sampled, by considering alternate pixels in each orthogonal di-
rection. This scheme corresponds to using a lower resolution version of the
reference frame in the search procedure that is carried out within the previ-
ous full-resolution frame. The SAD measure for a configuration using a 2S : 1
sub-sampling in each direction is given by (considering N a power of 2):

SAD(l, c) =
N
2S −1∑
i=0

N
2S −1∑
j=0

∣∣∣xt (i.2
S, j.2S) − xt−1(l + i.2S, c + j.2S)

∣∣∣ (5.1)

The FSBM circuit proposed in [4] can be easily adapted to carry out this type
of sub-sampling. In fact, considering that the computation of the SAD similarity
measure is performed in the active block of the processor, the decimation can be
implemented by replacing the corresponding set of active PEs by passive PEs.
By doing so, only the pixels with coordinates (i.2S, j.2S) will be considered
and significant amounts of hardware resources can be saved.

Two different decimation patterns can be applied to the active block of the
processor: i) an aligned pattern, in which the active PEs are aligned in rows
and columns, as shown in Fig. 5.2a) and ii) a checkerboard pattern, in which
the active PEs are placed as it is shown in Fig. 5.2b). Although this latter
pattern may seem to provide better estimations, since it reduces the correla-
tion degree of the pixel values, experimental results have shown that the us-
age of this pattern may cause a Peak Signal to Noise Ratio (PSNR) reduction
of the coded video of about 0.5–1.0 dB. On the other hand, by adopting the
sub-sampling pattern presented in Fig. 5.2a) the degradation of the PSNR is

60

ADDER TREE

a)

b) c)

Figure 5.2. a) Aligned pattern. b) Checkerboard pattern. c) Modified processing array to
carry out a 2:1 decimation function using the architecture proposed in [4] (N = 8, p = 4).

negligible and significant amounts of hardware resources can be saved. In fact,
not only do the passive PEs require considerably fewer hardware resources,
but also the number of inputs of the adder tree block is reduced by the sub-
sampling factor (S), which further reduces the amount of required hardware
(see Fig. 5.2).

According to the classical signal processing theory, this pixel decimation
approach can be seen as a reduction of the sampling frequency of the image.
Hence, it would be reasonable to expect that the PSNR of the coded video could
be improved if anti-aliasing filtering were applied to the search or/and refer-
ence areas of the image. However, experimental results showed that the usage
of such filters causes the opposite effect. Whether the filter is only applied to
the search area, to the reference area or to both areas, the PSNR of the coded
video always suffers a reduction of 0.5–5.0 dB, depending on the type of video
sequence, i.e., on the amount of movement. Furthermore, since this PSNR re-
duction was obtained using both 3 × 3 and 5 × 5 Gaussian filters, it can be
concluded that the PSNR reduction is independent of the filter type. Moreover,
significant hardware resources would have to be wasted in the implementation
of these 2D filters. As a result, the pixel decimation approach was implemented
using the pattern depicted in Fig. 5.2a) and not using any anti-aliasing fil-
tering. The block diagram of the modified processing array is presented in
Fig. 5.2c).

Customizable and Reduced Hardware Motion Estimation Processors 61

5.3.2 Reduction of the Precision of the Pixel Values

Another strategy to decrease the amount of hardware required by FSBM
processors is to reduce the bit resolution of the pixel values considered in the
computation of the SAD similarity function by truncating the LSBs. By adopting
this strategy alone (S = 0) or in conjunction with the previously described sub-
sampling method (0 < S < log2 N), the SAD measure is given by:

SAD(l, c) =
N
2S −1∑
i=0

N
2S −1∑
j=0

∣∣∣∣∣
⌊

xt (i.2S, j.2S)

2T

⌋
−

⌊
xt−1(l + i.2S, c + j.2S)

2T

⌋∣∣∣∣∣
(5.2)

≡
N
2S −1∑
i=0

N
2S −1∑
j=0

∣∣∣∣∣xt (i.2
S, j.2S)7:T − xt−1(l + i.2S, c + j.2S)7:T

∣∣∣∣∣ (5.3)

where T is the number of truncated bits and xt (i, j)7:T are the (8 − T) most
significant bits of a pixel value of the t th frame.

The adaptation of the original FSBM architecture [4] to apply this bit trun-
cation scheme is straightforward: it is only necessary to reduce the operand
widths of the several arithmetic units implemented in the active PEs, in the
adder tree blocks and in the comparator circuits. Such modifications poten-
tially increase the maximum frequency of the pipeline and will significantly
reduce the amount of required hardware, thus providing the conditions that
will make it possible to implement the motion estimation processors in FPL
devices.

5.4 Implementation and Experimental Results

Several different setups of the proposed customizable core-based architec-
tures for motion estimation were synthesized and implemented in a general pro-
posed VIRTEX XCV3200E-7 FPGA using the Xilinx Synthesis Tool from ISE
5.2.1. The considered set of configurations assumed each macroblock composed
by 16 × 16 pixels (N = 16) and a maximum displacement in each direction of
the search area of p = 16 pixels. These configurations were thoroughly tested
using sub-sampling factors (S) varying between 0 and 2 and a number of trun-
cated bits (T) of 0, 2 and 4. The experimental results of these implementations
are presented in Tables 5.1 and 5.3.

The proposed core-based architectures can provide significant savings in
the required hardware resources. From the set of configurations presented in
Table 5.1, one can observe that reduction factors of about 75% can be obtained
by using a sub-sampling factor S = 2 and by truncating the 4 LSBs. However,
this relation should not be assumed to be linear. By considering only the pixel

62

Table 5.1. Percentage of the CLB slices and LUTs that are required to
implement each configuration of the proposed core-based architecture for fast
motion estimation in a VIRTEX XCV3200E-7 FPGA (N = 16; p = 16).

T = 0 T = 2 T = 4

S CLB Slices LUTs CLB Slices LUTs CLB Slices LUTs

0 90.7% 30.7% 62.6% 23.5% 43.8% 16.3%
1 56.2% 19.0% 38.2% 14.6% 26.6% 10.7%
2 44.7% 14.8% 30.1% 11.4% 21.0% 7.8%

level decimation mechanism (T = 0), it can be shown that a reduction of about
38% is obtained by using a 2 : 1 sub-sampling factor (S = 1), while a 4 : 1
decimation will provide a reduction of about 51%. The same observation can
be made by considering only the reduction of the precision of the pixel values
(S = 0). While using 6 representation bits (T = 2) a reduction of the number of
CLB slices of about 31% is obtained (a reduction of about 23% of the number of
Look-up Tables (LUTs)). If only 4 representation bits are considered (T = 4)
a reduction of about 51% of the CLB slices is achieved (a reduction of about
47% of the number of LUTs). Table 5.2 presents the set of FPGA devices that
should be used by each configuration in order to maximize the efficiency of the
hardware resources used by each processor.

Table 5.3 presents the variation of the maximum operating frequency of the
considered configurations with the number of truncated bits (T). Contrary to
what could be expected, the reduction of the operands width of the several
arithmetic units does not significantly influence the processors performance.
This fact can be explained if one takes into account the synthesis mechanism

Table 5.2. Alternative FPGA devices to
implement each of the considered configurations
(N = 16; p = 16).

S T = 0 T = 2 T = 4

0 XCV3200 XCV2600 XCV1600
1 XCV2000 XCV1600 XCV1000
2 XCV1600 XCV1000 XCV600

Table 5.3. Variation of the maximum
operating frequency with the number of
truncated bits (T) (N = 16; p = 16).

T = 0 T = 2 T = 4

76.1 MHz 77.8 MHz 79.8 MHz

Customizable and Reduced Hardware Motion Estimation Processors 63

that is used by this family of FPGAs to synthesize and map the logic circuits
using built in fast carry logic and LUTs.

To assess and evaluate the efficiency of the synthesized processors in an
implementation based on FPL devices, they were embedded as motion estima-
tion co-processors in the H.263 video encoder provided by Telenor R&D [11],
by transferring the estimated motion vectors to the video coder. Peak signal-to-
noise ratio (PSNR) and bit-rate measures were used to evaluate the performance
of each architecture. These results were also compared with those obtained
with a sub-optimal 4-step logarithmic search algorithm [1], implemented in
software.

The first 300 frames of several QCIF benchmark video sequences with dif-
ferent spatial detail and amount of movement were coded in interframe mode,
by considering a GOP length of 30 frames and a quantization step with inter-
mediate size of � = 30 to keep the quantization error as constant as possible.

Fig. 5.3 presents the PSNR values obtained for the carphone and mobile
video sequences, characterized by the presence of high amounts of movement
and high spatial detail, respectively. Several different setups in what concerns
the number of truncated bits (T) and the sub-sampling factor (S) for the dec-
imation at the pixel level were considered. The PSNR value obtained for the
INTER type frames of the mobile sequence is almost constant (25–26 dB), which
demonstrates that the degradation introduced by using the reduced hardware
architectures is negligible: less than 0.15 dB when the 4 LSBs are truncated and
the sub-sampling factor is 2 : 1. In contrast, it can be seen that the PSNR val-
ues obtained for the carphone sequence varies significantly along the time. The
main reason for this fact is the amount of movement present in this sequence that
is also varying. Even so, the proposed reduced hardware architectures only in-
troduce a slight degradation in the quality of the coded frames, when compared
with the performances of both the reference FSBM architecture (S = T = 0)
and of the 4-steps logarithmic search algorithm. A maximum reduction of about
0.5 dB is observed in a few frames when the PSNR value obtained with the
original (reference) architecture is greater than 30 dB.

As it was previously noted, these video quality results were obtained with a
constant quantization step size. The observed small decrease of the PSNR can
be explained by the slight increase of the quantization error, as a consequence
of the inherent increase of the prediction differences in the motion compensated
block, obtained with these sub-optimal matching processors. The required bit-
rate to store or transfer the two video sequences considered above and two
other additional sequences (Miss America and Silent) is presented in Table
5.4. The relative values presented in Table 5.4 demonstrate the corresponding
increment of the average bit-rate when the number of truncated bits and the sub-
sampling factor increase. This increment reaches its maximum value of 12%
for the carphone sequence and for a processor setup with only 4 representation

64

25.0

25.5

26.0

26.5

27.0

27.5

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280

Frame

P
S

N
R

 (
d

B
)

4 Steps Log. Search S=0; T=0 (Reference) S=0; T=4 S=1; T=0 S=1; T=4

29.0

29.5

30.0

30.5

31.0

31.5

32.0

32.5

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280

Frame

P
S

N
R

 (
d

B
)

4 Steps Log. Search

S=0;T=0 (Reference)

S=0; T=4

S=1; T=0

S=1; T=4

(a) Mobile.

(b) Carphone.

Figure 5.3. Comparison between the PSNR values obtained for three different setups of the
proposed reduced hardware architecture, for the original reference FSBM configuration and
for the 4-steps logarithmic search algorithm.

bits and a pixel decimation of 2 : 1, due to the presence of a lot of movement.
Nevertheless, the values obtained for the remaining three video sequences, with
less amount of movement, are quite smaller and similar to those ones obtained
with the 4-steps logarithmic search algorithm.

Consequently, from these results it can be concluded that the configuration
using a 2 : 1 decimation (S = 1) and 4 representation bits (T = 4) presents
the best tradeoff between hardware cost (a reduction of about 70%) and
video quality. Moreover, this configuration can be implemented by using the

Customizable and Reduced Hardware Motion Estimation Processors 65

Table 5.4. Variation of the output bit rate to encode the considered video sequences by
using different setups of the proposed core-base architecture and the 4-steps logarithmic
search algorithm.

(a) Miss America. (b) Silent.

S T = 0 T = 2 T = 4S T = 0 T = 2 T = 4

0 31.9 kbps −0.8% +3.4% 0 49.9 kbps +0.0% +2.7%
1 +1.7% +3.0% +3.8% 1 +4.5% +4.1% +8.0%
2 +3.9% +3.8% +3.8% 2 +10.7% +8.4% +8.6%

Four-step logarithmic search +0.3% Four-step logarithmic search +0.8%

(c) Mobile. (d) Carphone.

S T = 0 T = 2 T = 4S T = 0 T = 2 T = 4

0 271.4 kbps +0.0% +0.3%0 79.3 kbps −0.8% +4.8%
1 +1.1% +0.3% +0.5%1 +7.3% +5.8% +11.6%
2 +6.7% +0.6% +0.5%2 +14.5% +11.6% +12.0%

Four-step logarithmic search −0.1% Four-step logarithmic search +1.7%

lower-cost XCV1000 FPGA, which has only about 40% of the total number of
system gates provided by the XCV3200 FPGA.

5.5 Conclusion

New customizable core-based architectures are proposed herein to imple-
ment real-time motion estimation processors on FPL devices, such as FPGAs.
The base core of these architectures is a new 2-D array structure for FSBM
motion estimation that leads to an efficient usage of hardware resources, which
is a fundamental requisite in any FPL based system. The proposed architectures
consist of a wide range of processing structures based on the FSBM algorithm
with different hardware requirements. The reduction in the amount of required
hardware is achieved by applying decimation at the pixel and quantization lev-
els, but still searching all candidate blocks of a given search area.

The proposed core-based architectures were implemented on FPGA devices
from Xilinx and their performance was evaluated by including the motion esti-
mation processors on a complete video encoding system. Experimental results
were obtained by sub-sampling the block of the current frame with 2 : 1 and 4 : 1
decimation factors and by truncating 2 or 4 LSBs of the representation. From the
results obtained it can be concluded that a significant reduction of the required
hardware resources can be achieved with these architectures. Moreover, neither
the quality of the coded video is compromised nor the corresponding bit-rate

66

is significantly increased. One can also conclude from the obtained results that
the configuration using a 2 : 1 decimation (S = 1) and 4 representation bits
(T = 4) presents the best tradeoff between hardware cost (a reduction of about
70%) and video quality.

Acknowledgments

This work has been supported by the POSI program and the Portuguese Foun-
dation for Science and for Technology (FCT) under the research project Config-
urable and Optimized Processing Structures for Motion Estimation (COSME)
POSI/CHS/40877/2001.

References

[1] Vasudev Bhaskaran and Konstantinos Konstantinides, Image and Video Compression Standards: Algo-
rithms and Architectures, Kluwer Academic Publishers, second edition, June 1997.

[2] T. Koga, K. Iinuma, A. Hirano, Y. Iijima and T. Ishiguro, “Motion-compensated interframe coding
for video conferencing,” in Proc. Nat. Telecomm. Conference, New Orleans, LA, November 1981,
pp. G5.3.1–G5.3.5.

[3] J. R. Jain and A. K. Jain, “Displacement measurement and its application in interframe image coding,”
IEEE Transactions on Communications, volume COM-29, no. 12, pp. 1799–1808, December 1981.

[4] Nuno Roma and Leonel Sousa, “Efficient and configurable full search block matching processors,”
IEEE Transactions on Circuits and Systems for Video Technology, volume 12, no. 12, pp. 1160–1167,
December 2002.

[5] Y. Ooi, “Motion estimation system design,” in Digital Signal Processing for Multimedia Systems (edited
by Keshab K. Parhi and Takao Nishitani), Marcel Dekker, Inc, chapter 12, pp. 299–327, 1999.

[6] L. Vos and M. Stegherr, “Parameterizable VLSI architectures for the full-search block-matching al-
gorithm,” IEEE Transactions on Circuits and Systems, volume 36, no. 10, pp. 1309–1316, October
1989.

[7] B. Liu and A. Zaccarin, “New fast algorithms for the estimation of block matching vectors,” IEEE
Transactions on Circuits and Systems for Video Technology, volume 3, no. 2, pp. 148–157, April 1993.

[8] E. Ogura, Y. Ikenaga, Y. Iida, Y. Hosoya, M. Takashima and K. Yamash, “A cost effective motion estima-
tion processor LSI using a simple and efficient algorithm,” in Proceedings of International Conference
on Consumer Electronics—ICCE, 1995, pp. 248–249.

[9] Seongsoo Lee, Jeong-Min Kim, and Soo-Ik Chae, “New motion estimation algorithm using
adaptively-quantized low bit resolution image and its vlsi architecture for MPEG2 video coding,” IEEE
Transactions on Circuits and Systems for Video Technology, volume 8, no. 6, pp. 734–744, October 1998.

[10] Z. L. He, K. K. Chan, C. Y. Tsui and M. L. Liou, “Low power motion estimation design using adaptative
pixel truncation,” in Proceedings of the 1997 international symposium on Low power electronics and
design, Monterey—USA, August 1997, pp. 167–171.

[11] Telenor, TMN (Test Model Near Term)—(H.263) encoder/decoder—version 2.0—source code, Telenor
Research and Development, Norway, June 1996.

Methodologies and Tools

Chapter 6

Enabling Run-time Task Relocation
on Reconfigurable Systems

J-Y. Mignolet, V. Nollet, P. Coene, D. Verkest1,2,
S. Vernalde, R. Lauwereins2

IMEC vzw, Kapeldreef 75, 3001 Leuven, BELGIUM
{mignolet, nollet, coene}imec.be

1 also Professor at Vrije Universiteit Brussel

2 also Professor at Katholieke Universiteit Leuven

Abstract The ability to (re)schedule a task either in hardware or software will be an impor-
tant asset in a reconfigurable systems-on-chip. To support this feature we have
developed an infrastructure that, combined with a suitable design environment
permits the implementation and management of hardware/software relocatable
tasks. This paper presents the general scope of our research, and details the com-
munication scheme, the design environment and the hardware/software context
switching issues. The infrastructure proved its feasibility by allowing us to de-
sign a relocatable video decoder. When implemented on an embedded platform,
the decoder performs at 23 frames/s (320 × 240 pixels, 16 bits per pixel) in
reconfigurable hardware and 6 frames/s in software.

Keywords: Run-time task relocation, reconfigurable systems, operating system, network-on-
chip

Introduction

Today, emerging run-time reconfigurable hardware solutions are offering
new perspectives on the use of hardware accelerators. Indeed, a piece of re-
configurable hardware can now be used to run different tasks in a sequential
way. By using an adequate operating system, software-like tasks can be created,
deleted and pre-empted in hardware as it is done in software.

69

P. Lysaght and W. Rosenstiel (eds.),

New Algorithms, Architectures and Applications for Reconfigurable Computing, 69–80.

© 2005 Springer. Printed in the Netherlands.

70

A platform composed of a set of these reconfigurable hardware blocks and of
instruction-set processors (ISP) can be used to combine two important assets:
flexibility (of software) and performance (of hardware). An operating system
can manage the different tasks of an application and spawn them in hardware or
in software, depending on their computational requirements and on the quality
of service that the user expects from these applications.

Design methodology for applications that can be relocated from hardware
to software and vice-versa is a challenging research topic related to these plat-
forms. The application should be developed in a way that ensures an equivalent
behavior for its hardware and software implementations to allow run-time re-
location. Furthermore, equivalence of states between hardware and software
should be studied to efficiently enable heterogeneous context switches.

In the scope of our research on a general-purpose programmable platform
based on reconfigurable hardware, we have developed an infrastructure for
the design and management of relocatable tasks. The combination of a uni-
form communication scheme and OCAPI-xl [8, 9], a C++ library for unified
hardware/software system design, allowed us to develop a relocatable video de-
coder. This was demonstrated on a platform composed of a commercial FPGA
and a general purpose ISP. It is the first time to our knowledge that full hard-
ware/software multitasking is addressed, in such a way that the operating system
is able to spawn and relocate a task either in hardware or software.

The remainder of this paper is organized as follows. Section 6.1 puts the prob-
lem into perspective by positioning it in our general research activity. Section
6.2 describes the communication scheme we developed on the platform and
its impact on the task management. Section 6.3 presents the object oriented
design environment we used to design the application. Section 6.4 discusses
the heterogeneous context switching issues. Section 6.5 gives an overview of
implementation results on a specific case study. Finally some conclusions are
drawn in Section 6.6. Related work [3, 5–7, 10, 12] will be discussed throughout
the paper.

6.1 Hardware/Software Multitasking on a
Reconfigurable Computing Platform

The problem of designing and managing relocatable tasks fits into the more
general research topic of hardware/software multitasking on a reconfigurable
computing platform for networked portable multimedia appliances. The aim is
to increase the computation power of current multimedia portable devices (such
as personal digital assistants or mobile phones) while keeping their flexibility.
Performance should be coupled with low power consumption, since portable de-
vices are battery-operated. Flexibility is required because different applications

Enabling Run-time Task Relocation on Reconfigurable Systems 71

Figure 6.1. Our research activity.

will run on the device, with different architecture requirements. Moreover, it
enables upgrading and downloading of new applications. Reconfigurable hard-
ware meets these two requirements and is therefore a valid solution to this
problem.

Our research activity addresses different parts of the problem, as shown in
Figure 6.1. A complete description is presented in [1].

The bottom part represents the platform activity, which consists in defining
suitable architectures for reconfigurable computing platforms. The selection
of the correct granularity for the reconfigurable hardware blocks and the de-
velopment of the interconnection network that will handle the communication
between the different parts of the system are two of the challenges for this
activity.

The interconnection network plays an important role in our infrastructure,
since it supports the communication of the system. Networks-on-chip provide
a solution for handling communication in complex systems-on-chip (SoC). We
are studying packet-switched interconnection networks for reconfigurable plat-
forms [2]. To assist this research, we develop “soft” interconnection networks
on commercial reconfigurable hardware. They are qualified soft because they
are implemented using the reconfigurable fabric, while future platforms will
use fixed networks implemented using standard ASIC technology. This soft
interconnection network divides the reconfigurable hardware in tiles of equal
size. Every tile can run one task at a given moment.

The middle part of Figure 6.1 represents the operating system for recon-
figurable systems (OS4RS) we have developed to manage the tasks over the
different resources. In order to handle hardware tasks, we have developed ex-
tensions as a complement to the traditional operating system.

72

The OS4RS provides multiple functions. First of all, it implements a hard-
ware abstraction layer (HAL), which provides a clean interface to the recon-
figurable logic. Secondly, the OS4RS is responsible for scheduling tasks, both
on the ISP and on the reconfigurable logic. This implies that the OS4RS ab-
stracts the total computational pool, containing the ISP and the reconfigurable
tiles, in such a way that the application designer should not be aware on which
computing resource the application will run. A critical part of the functionality
is the uniform communication framework, which allows tasks to send/receive
messages, regardless of their execution location.

The upper part of Figure 6.1 represents the middleware layer. This layer
takes the application as input and decides on the partitioning of the tasks. This
decision is driven by quality-of-service considerations.

The application should be designed in such a way that it can be executed on
the platform. In a first approach, we use a uniform HW/SW design environment
to design the application. Although it ensures a common behavior for both HW
and SW version of the task, it still requires both versions of the task to be present
in memory. In future work, we will look at unified code that can be interpreted by
the middleware layer and spawned either in HW or SW. This approach will not
only be platform independent similar to JAVA, it will also reduce the memory
footprint, since the software and the hardware code will be integrated.

6.2 Uniform Communication Scheme

Relocating a task from hardware to software should not affect the way other
tasks are communicating with the relocated task. By providing a uniform com-
munication scheme for hardware and software tasks, the OS4RS we developed
hides this complexity.

In our approach, inter-task communication is based on message passing.
Messages are transferred from one task to another in a common format for
both hardware and software tasks. Both the operating system and the hardware
architecture should therefore support this kind of communication.

Every task is assigned a logical address. Whenever the OS4RS schedules a
task in hardware, an address translation table is updated. This address translation
table allows the operating system to translate a logical address into a physical
address and vice versa. The assigned physical address is based on the location
of the task in the interconnection network (ICN).

The OS4RS provides a message passing API, which uses these logi-
cal/physical addresses to route the messages. In our communication scheme,
three subtypes of message passing between tasks can be distinguished (Figure
6.2).

Messages between two tasks, both scheduled on the ISP (P1 and P2), are
routed solely based on their logical address and do not pass the HAL.

Enabling Run-time Task Relocation on Reconfigurable Systems 73

Figure 6.2. Message passing between tasks.

Communication between an ISP task and a FPGA task (P3 and Pc) does pass
through the hardware abstraction layer. In this case, a translation between the
logical address and the physical address is performed by the communication
API. The task’s physical address allows the HAL to determine on which tile of
the ICN the sending or receiving task is executing.

On the hardware side, the packet-switched interconnection network is pro-
viding the necessary support for message passing. Messages between tasks, both
scheduled in hardware, are routed inside the interconnection network without
passing through the HAL. Nevertheless, since the operating system controls the
task placement, it also controls the way the messages are routed inside the ICN,
by adjusting the hardware task routing tables.

The packet-switched interconnection network, which supports the hardware
communication in our infrastructure, solves some operating system issues re-
lated to hardware management such as task placement, location independence,
routing, and inter-task communication. Diessel and Wigley previously listed
these issues in [3].

Task placement is the problem of positioning a task somewhere in the recon-
figurable hardware fabric. At design time, task placement is realized by using
place and route tools from the reconfigurable hardware vendor. This usually
generates an irregular task footprint. At run-time, the management software is
responsible for arranging all the tasks inside the reconfigurable fabric. When
using irregular task shapes, the management software needs to run a complex
fitting algorithm (e.g. [6, 7]). Executing this placement algorithm considerably
increases run-time overhead. In our infrastructure, the designer constrains the
place and route tool to fit the task in the shape of a tile. Run-time task placement
is therefore greatly facilitated, since every tile has the same size and same shape.
The OS4RS is aware of the tile usage at any moment. As a consequence, it can
spawn a new task without placement overhead by replacing the tile content
through partial reconfiguration of the FPGA.

74

Location independence consists of being able to place any task in any free
location. This is an FPGA-dependent problem, which requires a relocatable
bitstream for every task. Currently, our approach is to have a partial bitstream
for every tile. A better alternative is to manipulate a single bitstream at run-time
(Jbits [4] could be used in the case of Xilinx devices).

The run-time routing problem can be described as providing connectivity
between the newly placed task and the rest of the system. In our case, a commu-
nication infrastructure is implemented at design-time inside the interconnection
network. This infrastructure provides the new task with a fixed communication
interface, based on routing tables. Once again, the OS4RS should not run any
complex algorithm. Its only action is updating the routing tables every time a
new task is inserted/removed from the reconfigurable hardware.

The issue of inter-task communication is handled by the OS4RS, as described
earlier this section.

Our architecture makes a trade-off between area and run-time overhead.
As every tile is identical in size and shape, the area fragmentation (as de-
fined by Wigley and Kearney in [5]) is indeed higher than in a system where
the logic blocks can have different sizes and shapes. However, the OS4RS
will only need a very small execution time to spawn a task on the reconfig-
urable hardware, since the allocation algorithm is limited to the check of tile
availability.

6.3 Unified Design of Hardware and Software
with OCAPI-xl

A challenging step in the design of relocatable tasks is to provide a common
behavior for the HW and the SW implementation of a task. One possibility
to achieve this is to use a unified representation that can be refined to both
hardware and software.

OCAPI-xl [8, 9] provides this ability. OCAPI-xl is a C++ library that allows
unified hardware/software system design. Through the use of the set of objects
from OCAPI-xl, a designer can represent the application as communicating
threads. The objects contain timing information, allowing cycle-true simulation
of the system. Once the system is designed, automatic code generation for both
hardware and software is available. This ensures a uniform behavior for both
implementations in our heterogeneous reconfigurable system.

Through the use of the FLI (Foreign Language Interface) feature of OCAPI-
xl, an interface can be designed that represents the communication with the other
tasks. This interface provides functions like send message and receive message
that will afterwards be expanded to the corresponding hardware or software
implementation code. This ensures a communication scheme that is common
to both implementations.

Enabling Run-time Task Relocation on Reconfigurable Systems 75

6.4 Heterogeneous Context Switch Issues

It is possible for the programmer to know at design time on which of the
heterogeneous processors the tasks preferably should run (as described by Lilja
in [11]). However, our architecture does not guarantee run-time availability of
hardware tiles. Furthermore, the switch latency of hardware tasks (in the range
of 20ms on a FPGA) severely limits the number of time-based context switches.
We therefore prefer spatial multitasking in hardware, in contrast to the time-
based multitasking presented in [10, 12]. Since the number of tiles is limited,
the OS4RS is forced to decide at run-time on the allocation of resources, in
order to achieve maximum performance. Consequently, it should be possible
for the OS4RS to pre-empt and relocate tasks from the reconfigurable logic to
the ISP and vice versa.

The ISP registers and the task memory completely describe the state of any
task running on the ISP. Consequently, the state of a preempted task can be fully
saved by pushing all the ISP registers on the task stack. Whenever the task gets
rescheduled at the ISP, simply popping the register values from its stack and
initializing the registers with these values restores its state.

This approach is not usable for a hardware task, since it depicts its state
in a completely different way: state information is held in several registers,
latches and internal memory, in a way that is very specific for a given task
implementation. There is no simple, universal state representation, as for tasks
executing on the ISP. Nevertheless, the operating system will need a way to
extract and restore the state of a task executing in hardware, since this is a key
issue when enabling heterogeneous context switches.

A way to extract and restore state when dealing with tasks executing on the
reconfigurable logic, is described in [10, 12]. State extraction is achieved by
getting all status information bits out of the read back bitstream. This way,
manipulation of the configuration bitstream allows re-initializing the hardware
task. Adopting this methodology to enable heterogeneous context switches
would require a translation layer in the operating system, allowing it to translate
an ISP type state into FPGA state bits and vice versa. Furthermore, with this
technique, the exact position of all the configuration bits in the bitstream must
be known. It is clear that this kind of approach does not produce a universally
applicable solution for storing/restoring task state.

We propose to use a high level abstraction of the task state information.
This way the OS4RS is able to dynamically reschedule a task from the ISP
to the reconfigurable logic and vice versa. This technique a based on an idea
presented in [13]. Figure 6.3a represents a relocatable task, containing several
states. This task contains 2 switch-point states, at which the operating system
can relocate the task. The entire switch process is described in detail by Figure
6.4. In order to relocate a task, the operating system can signal that task at any

76

Figure 6.3. Relocatable task.

Figure 6.4. Task switching: from software to hardware.

time (1). Whenever the signaled task reaches a switch-point, it goes into the
interrupted state (2) (Figure 6.3b). In this interrupted state all the relevant state
information of the switch-point is transferred to the OS4RS (3). Consequently,
the OS4RS will re-initiate the task on the second heterogeneous processor using
the received state information (4). The task resumes on the second processor,
by continuing to execute in the corresponding switch-point (5). Note that the
task described in Figure 6.3 contains multiple switch-points, which makes it
possible that the state information that needs to be transferred to the OS4RS
can be different for each switch-point. Furthermore, the unified design of both
the ISP and FPGA version of a task, as described in Section 6.3, ensures that
the position of the switch-points and the state information are identical.

The relocatable video decoder, described in Section 6.5, illustrates that the
developed operating system is able to dynamically reschedule a task from the
ISP to the reconfigurable logic and vice versa. At this point in time, this sim-
plified application contains only one switchable state, which contains no state
information.

The insertion of these “low overhead” switch-points will also be strongly
architecture dependent: in case of a shared memory between the ISP and the
reconfigurable logic, transferring state can be as simple as passing a pointer,
while in case of distributed memory, data will have to be copied.

Enabling Run-time Task Relocation on Reconfigurable Systems 77

On a long term, the design tool should be able to create these switch-points
automatically. One of the inputs of the design tool will be the target architecture.
The OS4RS will then use these switch-points to perform the context switches
in a way hidden from the designer.

6.5 Relocatable Video Decoder

As an illustration of our infrastructure a relocatable video decoder is pre-
sented. First the platform on which the decoder was implemented is described.
Then the decoder implementation is detailed. Finally performance and imple-
mentation results are presented.

6.5.1 The T-ReCS Gecko Demonstrator

Based on the concepts presented in Section 6.1, we have developed a first
reconfigurable computing platform for HW/SW multitasking. The Gecko
demonstrator (Figure 6.5) is a platform composed of a Compaq iPAQ 3760 and
a Xilinx Virtex 2 FPGA. The iPAQ is a personal digital assistant (PDA) that fea-
tures a StrongARM SA-1110 ISP and an expansion bus that allows connection
of an external device. The FPGA is a XC2V6000 containing 6000k system gates.

The FPGA is mounted on a generic prototyping board connected to the iPAQ
via the expansion bus. On the FPGA, we developed a soft packet-switched in-
terconnection network composed of two application tiles and one interface tile.

6.5.2 The Video Decoder

Our Gecko platform is showcasing a video decoder that can be executed in
hardware or in software and that can be rescheduled at run-time.

Figure 6.5. The T-ReCS Gecko demonstrator.

78

The video decoder is a motion JPEG frame decoder. A send thread passes the
coded frames one by one to the decoder thread. This thread decodes the frames
and sends them, one macroblock at a time, to a receive thread that reconstructs
the images and displays them. The send thread and the receive thread run in
software on the iPAQ, while the decoder thread can be scheduled in HW or
in SW.

The switch point has been inserted at the end of the frame because, at this
point, no state information has to be transferred from HW to SW or vice-versa.

6.5.3 Results

Two implementations of the JPEG decoder have been designed. The first
one is quality factor and run-length encoding specific (referred as specific here-
after), meaning that the quantization tables and the Huffman tables are fixed,
while the second one can accept any of these tables (referred as general here-
after). Both implementations target the 4:2:0 sampling ratio. The results of the
implementation of the decoders in hardware are 9570 LUTs for the specific
implementation and 15901 LUTs for the general one. (These results are given
by the report file from the Synplicity(r) Synplify Pro(tm) advanced FPGA syn-
thesis tool, targeting the Virtex2 XC2V6000 device, speed grade −4, and for a
required clock frequency of 40 MHz).

The frame rate of the decoder is 6 frames per second (fps) for the software
implementation and 23 fps for the hardware. These results are the same for both
general and specific implementation. The clock runs at 40 MHz, which is the
maximum frequency that can be used for this application on the FPGA. When
achieving 6 fps in software, the CPU load is about 95%. Moving the task to
hardware reduces the computational load of the CPU, but increases the load
generated by the communication. Indeed, the communication between the send
thread and the decoder on the one side, and between the decoder and the receive
thread on the other side, is heavily loading the processor.

The communication between the iPAQ and the FPGA is performed using
BlockRAM internal DPRAMs of the Xilinx Virtex FPGA. While the DPRAM
can be accessed at about 20 MHz, the CPU memory access clock runs at
103 MHz. Since the CPU is using a synchronous RAM scheme to access these
DPRAMs, wait-states have to be inserted. During these wait-states, the CPU is
prevented from doing anything else, which increases the CPU load. Therefore,
the hardware performance is mainly limited by the speed of the CPU-FPGA
interface. This results in the fact that for a performance of 23 fps in hardware,
the CPU is also at 95.

Although the OS4RS overhead for relocating the decoder from software
to hardware is only about 100 ţs, the total latency is about 108 ms. The low
OS4RS overhead can be explained by the absence of a complex task placement

Enabling Run-time Task Relocation on Reconfigurable Systems 79

algorithm. Most of the relocation latency is caused by the actual partial recon-
figuration through the slow CPU-FPGA interface. In theory, the total software
to hardware relocation latency can be reduced to about 11ms, when performing
the partial reconfiguration at full speed. When relocating a task from hardware
to software, the total relocation latency is equal to the OS4RS overhead, since
in this case no partial reconfiguration is required.

Regarding power dissipation, the demo setup cannot show relevant results.
Indeed, the present platform uses an FPGA as reconfigurable hardware. Tra-
ditionally, FPGAs are used for prototyping and are not meant to be power
efficient. The final platform we are targeting will be composed of new, low-
power fine- and coarse-grain reconfigurable hardware that will improve the to-
tal power dissipation of the platform. Power efficiency will be provided by the
ability of spawning highly parallel, computation intensive tasks on this kind of
hardware.

6.6 Conclusions

This paper describes a novel infrastructure for the design and management
of relocatable tasks in a reconfigurable SoC. The infrastructure consists of
a unified HW/SW communication scheme and a common HW/SW behavior.
The uniform communication is ensured by a common message-passing scheme
inside the operating system and a packet switched interconnection network.
The common behavior is guaranteed by use of a design environment for unified
HW/SW system design. The design methodology has been applied to a video
decoder implemented on an embedded platform composed of an instruction-
set processor and a network-on-FPGA. The video decoder is relocatable and
can perform 6 fps in software and 23 fps in hardware. Future work includes
automated switch-point placement and implementation in order to have a low
context switch overhead when heterogeneously rescheduling tasks.

Acknowledgments

We would like to thank Kamesh Rao of Xilinx for carefully reviewing and
commenting this paper.

Part of this research has been funded by the European Commission through
the IST-AMDREL project (IST-2001-34379) and by Xilinx Labs, Xilinx Inc.
R&D group.

References

[1] J-Y. Mignolet, S. Vernalde, D. Verkest, R. Lauwereins: Enabling hardware-software multitasking on
a reconfigurable computing platform for networked portable multimedia appliances. In Proceedings

80

of the International Conference on Engineering Reconfigurable Systems and Architecture 2002, pages
116–122, Las Vegas, June 2002.

[2] Marescaux, T., Bartic, A., Verkest, D., Vernalde, S., and Lauwereins, R.: Interconnection Networks En-
able Fine-Grain Dynamic Multi-Tasking on FPGAs. In Proceedings of the 12th International Conference
on Field-Programmable Logic and Applications (FPL’2002), pages 795–805, Montpellier France.

[3] Diessel, O., Wigley, G.: Opportunities for Operating Systems Research in Reconfigurable Comput-
ing. Technical report ACRC-99–018, Advanced Computing Research Centre, School of Computer and
Information Science, University of South Australia, August, 1999.

[4] Guccione, S., Levi, D., Sundararajan, P.: JBits: A Java-based Interface for Reconfigurable Comput-
ing, 2nd Annual Military and Aerospace Applications of Programmable Devices and Technologies
Conference (MAPLD).

[5] G. Wigley, D. Kearney: The Management of Applications for Reconfigurable Computing using an
Operating System. In Proc. Seventh Asia-Pacific Computer Systems Architecture Conference, January
2002, ACS Press.

[6] J. Burns, A. Donlin, J. Hogg, S. Singh, M. de Wit: A Dynamic Reconfiguration Run-Time System. In
Proceedings of the 5th IEEE Symposium on FPGA-Based Custom Computing Machines (FCCM ’97),
Napa Valley, CA, April 1997.

[7] H. Walder, M. Platzner: Non-preemptive Multitasking on FPGAs: Task Placement and Footprint Trans-
form. In Proceedings of the International Conference on Engineering Reconfigurable Systems and
Architecture 2002, pages 24–30, Las Vegas, June 2002.

[8] www.imec.be/ocapi
[9] G. Vanmeerbeeck, P. Schaumont, S. Vernalde, M. Engels, I. Bolsens: Hardware/Software Partitioning

of embedded system in OCAPI-xl. In Proc. CODES’01, Copenhagen, Denmark, April 2001.
[10] H. Simmler, L. Levinson, R. Männer: Multitasking on FPGA Coprocessors. In Proc. 10th Int’l Conf.

Field Programmable Logic and Applications, pages 121–130, Villach, Austria, August 2000.
[11] D. Lilja: Partitioning Tasks Between a Pair of Interconnected Heterogeneous Processors: A Case Study.

Concurrency: Practice and Experience, Vol. 7, No. 3, May 1995, pp. 209–223.
[12] L. Levinson, R. Männer, M. Sesler, H. Simmler: Preemptive Multitasking on FPGAs. In Proceedings

of the 2000 IEEE Symposium on Field Programmable Custom Computing Machines, Napa Valley, CA,
USA, April 2000.

[13] F. Vermeulen, F. Catthoor, L. Nachtergaele, D. Verkest, H. De Man: Power-efficient flexible processor
architecture for embedded applications. IEEE Transactions on Very Large Scale Integration Systems,
Vol. 11, No. 3, June 2003, pp. 376–385.

Chapter 7

A Unified Codesign Environment
For The UltraSONIC Reconfigurable Computer

Theerayod Wiangtong1, Peter Y.K Cheung1, Wayne Luk2

1 Department of Electrical & Electronic Engineering,
Imperial College, London, UK
{tw1,p.cheung}@imperial.ac.uk

2 Department of Computing, Imperial College, London, UK
wl@imperial.ac.uk

Abstract This paper presents a codesign environment for the UltraSONIC reconfigurable
computing platform which is designed specifically for real-time video applica-
tions. A codesign environment with automatic partitioning and scheduling be-
tween a host processor and a number of reconfigurable coprocessors is described.
A unified runtime environment for both hardware and software tasks under the
control of a task manager is proposed. The practicality of our system is demon-
strated with an FFT application.

Keywords: Codesign, runtime reconfiguration, partitioning and scheduling

Introduction

Reconfigurable hardware has received increasing attention from the research
community in the last decade. FPGA-based designs become popular because
they provide reconfigurability and short design-time whereas ASIC designs
cannot. Instead of using FPGAs simply as ASIC replacements, combining
reconfigurable hardware with conventional processors in a codesign system
provides an even more flexible and powerful approach for implementing com-
putation intensive applications, and this type of codesign system is the focus of
our attention in this paper.

The major concerns in the design process for such codesign systems are syn-
chronization and the integration of hardware and software design [1]. Examples

81

P. Lysaght and W. Rosenstiel (eds.),

© 2005 Springer. Printed in the Netherlands.

New Algorithms, Architectures and Applications for Reconfigurable Computing, 81–91.

82

include the partitioning between hardware and software, the scheduling of tasks
and the communication between hardware and software tasks in order to achieve
the shortest overall runtime. Decisions on partitioning play a major role in the
overall system performance and cost. Scheduling is important to ensure com-
pletion of all tasks in a real-time environment. These decisions are based heavily
on design experience and are difficult to automate. Many design tools leave this
burden to the designer by providing semi-auto interactive design environments.
A fully automatic design approach for codesign systems is generally considered
to be impossible at present. In addition, traditional implementations employ a
hardware model that is very different from that used in software. These distinct
views of hardware and software tasks can cause problems in the design process.
For example, swapping tasks between hardware and software can result in a
totally new structure in the control circuit.

This paper presents a new method of constructing and handling tasks in a
codesign system. We structure both hardware and software tasks in an inter-
changeable way without sacrificing the benefit of concurrency found in con-
ventional hardware implementations. The task model in our system exploits the
advantages of modularity, scalability, and manageability. We further present a
codesign flow containing the partitioning and scheduling algorithms to auto-
mate the process of deciding where and when tasks are implemented and run.
Our codesign system using this unified hardware/software task model is applied
to a reconfigurable computer system known as UltraSONIC [13]. Finally we
demonstrate the practicality of our system by implementing an FFT engine.

The contributions of this paper are: 1) a unified way of structuring and mod-
elling hardware and software tasks in a codesign system; 2) a proposed codesign
flow for a system with one software and multiple programmable hardware re-
sources; 3) a proposed runtime task manager design to exploit the unified model
of tasks; 4) a demonstration of an implementation of a real application using
our model in the UltraSONIC reconfigurable platform.

The rest of this paper is organized as follows. Section 7.1 presents some
work related to codesign development systems. In section 7.2, we explain how
hardware and software tasks are modelled in our codesign system. Section 7.3
describes the codesign flow and the UltraSONIC system used as the realistic
target. The system implementation in UltraSONIC and a case study of an FFT
algorithm are discussed in section 7.4 and 7.5 respectively. Section 7.6 provides
conclusions to this paper.

7.1 Related Work

There are many approaches to hardware/software codesign. Most focus on
some particular stages in the design process such as system specification and
modelling, partitioning and scheduling, compilation, system co-verification,

A Unified Codesign Environment 83

co-simulation, and code generation for hardware and software interfacing. For
example, Ptolemy [2] concentrates on hardware-software co-simulation and
system modelling. Chinook [5] focuses on the synthesis of hardware and soft-
ware interface. MUSIC [6], a multi-language design tool intermediate between
SDL and MATLAB, is applied to mechatronic system. For embedded systems,
CASTLE [7] and COSYMA [8] design environments are developed.

Codesign system specifically targeted for reconfigurable systems include
PAM-Blox [4] and DEFACTO [3]. PAM-Blox is a design environment focus-
ing on hardware synthesis to support PCI Pamette boards that consist of five
XC4000 Xilinx FPGAs. This design framework does not provide a complete
codesign process. DEFACTO is an end-to-end design environment for devel-
oping applications mapped to configurable platforms consisting of FPGAs and
a general-purpose microprocessor. DEFACTO concentrates on raising the level
of abstraction and developing parallelizing compiler techniques to achieve opti-
mizations on loop transformations and memory accesses. Although both PAM-
Blox and DEFACTO are developed specifically for reconfigurable platforms,
they take no account of the existence of tasks in the microprocessor.

In this work, tasks can be implemented interchangeably in software or recon-
figurable hardware resources. We suggest a novel way for task modelling and
task management which will be described later. We also present a novel idea
for building infrastructure for dataflow-based applications implementing in a
codesign system consisting of a single software and multiple reconfigurable
hardware resources. Our approach is inherently modular and is suitable for
implementing runtime reconfigurable designs.

7.2 System Architecture

Fig. 7.1 shows the hardware/software system model adopted in this work. We
assume the use of a single processor capable of multi-tasking, and a number of
concurrent hardware processing elements PE0 to PEn, which are implemented
in FPGAs. We employ a loosely-coupled model with each processing element
(PE) having its own single local memory. All system constraints such as shared
resource conflicts, reconfiguration times (of the FPGAs) and communication
times are taken into account.

The assumptions used in our model are:

� Tasks implemented in this system are coarse grain tasks which may con-
sist of one or more functional tasks (blocks, loops).

� Because each PE has one local memory, only one task can access the local
memory at any given time. Therefore multiple tasks residing in a given
PE must execute sequentially; however, tasks residing across different
PEs can execute concurrently.

84

Local Communication Channel
task

0

task
5

task
12

Mem

Mem

task
1

task
4

task
3

Task
Manager

Global Communication Channel

PE0 PE1 PEnSW

Mem

task
2

task
9

task
7

Mem

task
10

task
8

Local task
controller
& memory
interface

task
10

task
8

Reconfig

Figure 7.1. Codesign system architecture.

� A temporal group of tasks for a PE can be dynamically swapped through
runtime reconfiguration.

� A global communication channel is available for the processor and the
PEs to communicate with each other.

� A local communication channel is available for neighboring PEs to com-
municate with each other.

� There is a well-established mechanism for users to control PEs from the
software processor such as a set of API functions.

Because of the reconfigurable capability of the hardware, we can build
the hardware tasks very much like software tasks. In this way, the manage-
ment of task scheduling, task swapping and task allocation can be done in
a unified manner, no matter whether the task in question is implemented in
hardware or in software. Concurrency is not affected as long as we map con-
current tasks onto separate PEs. Although conceptually different PEs are sep-
arate from each other, multiple PEs may be implemented in a single FPGA
device.

7.2.1 Task Model

We concentrate on applications dominated by dataflow behavior with few
control flow constructs. The applications can be broken down into several coarse
grained tasks and are represented as directed acyclic graphs (DAG). Nodes in
the graphs represent tasks and edges represent data dependency between tasks.
Each task is characterized by its execution time, resource usage, and the cost
of its communication with other tasks.

A Unified Codesign Environment 85

Software and hardware tasks are supposedly encapsulated inside a standard
wrapper able to collaborate with the rest of the system. The software tasks are
initiated to run in background as worker threads by a task manager program.
The hardware tasks are assumed to conform to the following restrictions:

� Tasks are non-preemtive. They are executed once according to their prece-
dence levels and priorities.

� Task execution is done in three consecutive steps: read input data, pro-
cess the data, and write the results. This is done repeatedly until input
data stored in memory are all processed. Thus the communication time
between memory and an executing task is considered to be a part of the
task execution time [9].

� Exactly one task in a given PE is active at any one time. This is a direct
consequence of the single port memory restriction. However, multiple
tasks may run concurrently provided that they are mapped to different
PEs. This is an improvement over the model proposed in [10].

� A task starts executing as soon as all the necessary incoming data from
its sources have arrived. It starts writing outgoing data to destinations
immediately after processing is complete [11].

7.2.2 Task Manager Program

The center of the control process is the task manager (TM) program running
on the processor. This program controls the sequencing of all the tasks, the
transfer of data and the synchronization between them, and the dynamic recon-
figuration of the FPGA in the PEs when required. Fig. 7.2 shows the conceptual
control view of the TM and its operation. The TM communicates with a local
task controller on each PE in order to assert control. A message board is used
in each PE to receive commands from the TM or to flag completion status to
the TM.

In order to properly synchronize the execution of the tasks and the commu-
nication between tasks, our task manager employs a message-passing, event-
triggered protocol when running a process. However, unlike a reactive codesign
system [15], we do not use external real-time events as triggers. Instead, we use
the termination of each task or data transfer as an event-trigger and signaling
of such events is done through dedicated registers. For example, in Fig. 7.2,
messages indicating execution completion from tasks 1 are posted to registers
inside PE0. The task manager program polls these registers, compiles the mes-
sages, and proceeds to the next scheduled operation, in this case running task
3. By using this method, tasks on each PE are run independently because the
program operates asynchronously at the system level.

86

task
0

task
2

The Task Manager

Check operation
messages on each
PE and decide
when to
+ run HW tasks
+ run SW tasks in
 background
 (multithread)
+ reconfig HW
 tasks
+ transfer data
 between PEs
+ transfer data
 between SW&PE

Start (TaskID=3)
task

1

task
3

Finish (TaskID=1)

Message board

Registers

InterPE Data
Transfer

PE0

PE1

IntraPE Data
Transfer

SW

Finish Transfer

Global
variable
for SW
tasks

Task
Controller

task
4

task
5

Task
Controller

Message board

Message board

Registers

Start (TaskID=5)

Finish (TaskID=4)

InterPE Data
Transfer
IntraPE Data
Transfer

Finish Transfer

Figure 7.2. The task manager control view.

With a single CPU model, the software processor must simultaneously run the
task manager and the software tasks. Multi-threaded programming techniques
are then employed to run these two types of processes concurrently.

7.3 Codesign Environment

Fig. 7.3 depicts the codesign environment in our system. The system to be
implemented is assumed to be described in some suitable high level language,
which is then mapped to a DAG. Tasks are represented by nodes and commu-
nications by edges. The nodes are then partitioned into hardware or software
tasks and are scheduled to execute in order to obtain the minimum makespan.
The partitioning and scheduling software used is adapted from tabu search and
list scheduling algorithms reported earlier [12]. The algorithms are, however,
modified to be compatible with this architectural model. A two-phase cluster-
ing algorithm is used as a pre-processing step to modify the granularity of the
tasks in the DAG in order to improve the critical path delay, enable more task
parallelism and provide results the achieve 13%–17% shorter makespan [14].

This group of heuristic algorithms, containing clustering, partitioning and
scheduling, is collectively called the CPS algorithm for short. The CPS al-
gorithm reads textual input files including DAG information and parameter
values for clustering, partitioning and scheduling process. During this input
stage, the user can optionally specify the type of tasks as software-only tasks,
hardware-only tasks, or dummy tasks. A software-only task is a task that the

A Unified Codesign Environment 87

Clustering
(2-phase)

Partitioning
(Tabu search)

Scheduling
(List Scheduling)

parameters
for CPS

dag info

Displaying
graphs

Displaying
graphs

Memory Allocation

mapping and
communication

info

mapping and
scheduling and
final dag info

new dag

HW task temporal groups

target API,
protocol

Target
architecture

(Loosely-coupled
multiprocessors
:buses, memory,

SW, HWs)

SW code
(multithreaded

in C/C++)

Task manager
program generator

(C/C++)

VHDL
Verilog

Standard
Frame

xPEtask
xPEcontrol
xPEregister

Comercial FPGA
Design tools

(Xilinx)

PCI

Configuration files of each
temporal HW group (.ucd)

Target

SW tasks

mapping and
scheduling info

Design specification in
high level language

DAG

Figure 7.3. Codesign environment.

user intentionally implements in software without exception, and similarly for
a hardware-only task. Dummy tasks are either sources or sinks for inputting and
outputting data respectively, and are not involved in any computation. In our
system, we assume that input and output data are initially provided and written
to the host processor memory. Unspecified tasks are then free to be partitioned,
scheduled and bound to either hardware or software resources.

The result of the partitioning and scheduling processes are the physical and
temporal bindings for each task. Note that in the case of hardware tasks, they
may be divided into many temporal groups that can either be statically mapped
to the hardware resource, or dynamically configured during runtime.

We currently assume that software tasks are manually written in C/C++,
while hardware tasks are designed manually in a HDL (such as Verilog in this
work) using a library-based approach. Once all the hardware tasks for a given PE
are available, they are implemented in a standard frame which is a pre-designed

88

circuit consisting of xPEtask, xPEregister and xPEcontrol, and is application-
independent. Commercially available synthesis and place-and-route tools are
then used to produce the final configuration files for each hardware module.
Each task in this implementation method requires some hardware overhead
to implement the task frame wrapper circuit. Therefore our system favours
partitioning algorithms that generate coarse grained tasks.

The results from the partitioning and scheduling process, the memory allo-
cator, the task control protocol, the API functions, and the configuration files of
hardware tasks are used to automatically generate the code for the task manager
program that controls all operations in this system, such as dynamic configura-
tion, task execution and data transfer. The resulting task manager is inherently
multi-threaded to ensure that tasks can run concurrently.

7.4 Implementation in the UltraSONIC Platform

The codesign methodology described above is targeted for the UltraSONIC
System [13]. UltraSONIC (see Fig. 7.4(a)) is a reconfigurable computing sys-
tem designed to cope with the computational power and the high data through-
put demanded by real-time video applications. The system consists of Plug-In
Processing Elements (PIPEs) interconnected by local and global buses. The ar-
chitecture exploits the spatial and the temporal parallelism in video processing
algorithms. It also facilitates design reuse and supports the software plug-in
methodology.

Fig. 7.4(b) shows how our codesign model is implemented in the UltraSONIC
PIPE. xPEcontrol is used to control local operations such as task execution and
local communication with other PEs. To run a task, for example, all necessary

Task A

Task B

Task C

Memory
Interface

Controller

StartXReg

FinishXReg

InterPIPETrfReg

InterPIPETrfCmd

TaskDataInReg0

TaskDataOutReg0

TaskDataInReg3

TaskDataInReg2

TaskDataInReg1

TaskDataOutReg3

TaskDataOutReg2

TaskDataOutReg1

TaskDataCtrlReg0

TaskDataCtrlReg1

Local
Memory
2x4MB

MemControl

Bus Control &
Routing

Page1

Page3
Page2

xPEregisterPIPE Engine

xPEcontrol

TaskReq TaskAckD
at

aI
N

D
at

aO
U

T
P

F
 IN

P
F

 O
U

T

PortA PortB

PF Right (PFC)PF Left (PFC) PFG

Data IN/OUT

Address
PIPEBus

P
F

m
em

IN
P

F
m

em
O

U
T

xPEtask

xPEtask

xPEtask

PIPE
Memory

Pagen

PIPE Router

XCV300

LBC
(Local

BusController)
PIPE

1
PIPE

2
PIPE

3
PIPE
16

PCI Bus
64bit 66MHz

PCI
PipeFlow Chain 32bit + 2bit Ctrl

PIPE Bus - 64bit Address/Data and 2 bit control

Global PipeFlow Bus
32bit + 2bit Ctrl

PIPEengine PE
REG

Vertex Device XCV1000E

PIPErouter

SRAM

Data/Add

PIPEFlow Right 32bit

Global PIPEFlow Bus (Global) 32bit

PIPE Bus (Global) 64bit

PIPEFlow Left 32bit

Data/Add
SRAM

SRAM

SRAM

(b) The hardware design structure in each PIPE(a) The UltraSONIC reconfigurable platform

Figure 7.4. The hardware implementation in the UltraSONIC architecture.

A Unified Codesign Environment 89

information for the task execution is first sent to xPEregister (used as a message
board) by the task manager. After that, the task can be triggered by sending a
unique identification of the task (called TaskID) to the StartXReg register. It is
worth noting that all the hardware tasks in the PIPE engine are wrapped inside
xPEtask. When xPEtask, which is designed to monitor this register all the time,
discovers that the TaskID of the task inside is the same as the register value, the
task execution process is initiated. The task communicates with xPEcontrol to
interface with the local memory. When execution is finished, the task notifies
the task manager program in order to continue the next process by writing the
TaskID to the FinishXReg register.

The total hardware overhead of this infrastructure is modest. xPEcontrol and
xPEregister consume around 6% and 4% of the reconfigurable resource on each
PIPE (Xilinx’s XCV1000E) respectively. The hardware overhead of xPEtask
depends on the size of the I/O buffers required for a task.

7.5 A Case Study of FFT Algorithm

In order to demonstrate the practicality of our system, we chose to implement
the well-known FFT algorithm. Although we can implement the algorithm for
an arbitrary data length, we use an 8-point FFT implementation to illustrate the
results of our codesign system. The DAG of an 8-point FFT can be extracted
as shown in Fig. 7.5(a). Nodes 0, 1, 2 are used for arranging input data and are
implemented as software-only tasks. Tasks 3 to 14 are butterfly computation
nodes which can be implemented in either hardware or software. The number
shown inside the parenthesis (the second number) on each edge is the amount of
data needed for each execution of a task. Each task is executed repeatedly until

0,1,2

3,4 5,6

7,9,
11,13

8,10,
12,14

cluster
A

cluster
B

cluster
C

cluster
D

cluster
E

Sink Sink Sink Sink

Src0

1 2

43 65

87 109

1211 14

Sink Sink Sink

13

Src

10000/(8)

5000/(4)5000/(4)

2500/(2) 2500/(2)

1250/(1)

1250/(1)

2500/(2)

Sink

10000/(8)

5000/(4)

2500/(2)

2500/(2)

(a) 8-point FFT (b) After clustering (c) After partitioning and scheduling

A CFG Task
B,C,D

SRC DST

B

CFG Task
E C

SRC DSTTRF

TRF DST SRC

D

EXE B

TRF
EXE C

EXE E
EXE D

SRCDST TRF
SRCDST TRF

E

SW TM PE0 PE1
EXE A

Figure 7.5. The DAG of 8-point FFT algorithm.

90

all data (shown as the first number on the edge) are processed. Initially in this
DAG, the software execution times are obtained by profiling tasks on the PC,
while the hardware times and areas are obtained by using Xilinx development
tools.

This DAG information is supplied to the CPS algorithm in our design environ-
ment (see Fig. 7.3) to perform automatic clustering, partitioning and scheduling.
Parameters such as reconfiguration time, bus speed, and FPGA size are all based
on the UltraSONIC system. The clustering algorithm produces a new DAG that
contains tasks in higher granularity as shown in Fig. 7.5(b). These new tasks
are then iteratively partitioned and scheduled. The computational part of each
of the hardware tasks is designed manually in Verilog and the software tasks
are written in C. Our tools then combine the results from the partitioning and
scheduling algorithms to automatically generate the task manager program.

Fig. 7.5(c) depicts an example of the scheduling profile of this implemen-
tation. Each column represents activities on the available resources which are
software tasks (SW), and two hardware processing elements (PE0 and PE1). TM
is the task manager program which is also running on the software resource. The
execution of this algorithm proceeds from top to bottom. It shows all the run-
time activities including configuration (CFG), transfer of data (TRF), events
that trigger task executions (EXE), the supply of data (SRC), data reception
(DST) and the executions of the tasks (A to E).

The FFT algorithm for different data window sizes are also tested on the
UltraSONIC system and are shown to work correctly. The method, although it
requires some manual design steps, is very quick. Implementing the FFT algo-
rithm only took a few hours from specification to completion. We also success-
fully implemented the standard baseline method of JPEG compression (CCITT
Recommendation T.81) for colour images by using this codesign environment.
Nonetheless, due to the lack of space, the details cannot be described here.

7.6 Conclusions

This paper presents a semi-automatic codesign environment for a system
consisting of single software and multiple reconfigurable hardware. It proposes
the use of a task manager to combine the runtime support for hardware and
software in order to improve modularity and scalability of the design. Parti-
tioning and scheduling are done automatically. Programs for software tasks
are run in software concurrently (using multi-threaded programming) with the
task manager program which is based on a message-passing, event-triggered
protocol. Implementation of the FFT algorithm on UltraSONIC demonstrates
the practicality of our approach.

Future work includes applying our codesign system with more com-
plex applications, mapping behavioral or structural descriptions to DAGs

A Unified Codesign Environment 91

automatically, improving the task management environment so that task pipelin-
ing can also be handled, and migrating our codesign system to System-on-a-
Programmable-Chip (SoPC).

Acknowledgments

The authors would like to acknowledge the continuing support of John Stone,
Simon Haynes, Henry Epsom and the rest of the UltraSONIC team at Sony
Broadcast Professional Research Laboratory in UK.

References

[1] R. Ernst “Codesign of embedded systems: status and trends”, IEEE Design & Test of Computers, 1998.
[2] G. Manikutty, and H. Hanson, “Hardware/Software Partitioning of Synchronous Dataflow Graphs in

the ACS domain of Ptolemy”, University of Texas, Literature Survey, Final Report May 12 1999.
[3] M. Hall, P. Diniz, K. Bondalapati, H. Ziegler et al., “DEFACTO:A Design Environment for Adaptive

Computing Technology”, Proceedings of the 6th Reconfigurable Architectures Workshop, 1999.
[4] O. Mencer, M. Morf, and M. J. Flynn, “PAM-Blox: high performance FPGA design for adaptive

computing”, FPGAs for Custom Computing Machines, 1998.
[5] P. H. Chou, R. B. Ortega, and G. Borriello, “The Chinook hardware/software co-synthesis system”,

System Synthesis, 1995.
[6] P. Coste, F. Hessel, P. Le Marrec, Z. Sugar et al., “Multilanguage design of heterogeneous systems”,

Hardware/Software Codesign, 1999.
[7] J. Wilberg, A. Kuth, R. Camposano, W. Rosenstiel et al., “Design Exploration in CASTLE”, Workshop

on High Level Synthesis Algorithms Tools and Design (HILES), 1995.
[8] R. Ernst, “Hardware/Software Co-Design of Embedded Systems”, Asia Pacific Conference on Computer

Hardware Description Languages, 1997.
[9] T. Pop, P. Eles, and Z. Peng, “Holistic scheduling and analysis of mixed time/event-triggered distributed

embedded systems”, Hardware/Softwarw Codesign, 2002.
[10] V. Srinivasan, S. Govindarajan, and R. Vemuri, “Fine-grained and coarse-grained behavioral partitioning

with effective utilization of memory and design space exploration for multi-FPGA architectures”, IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 9, pp. 140–158, 2001.

[11] J. Hou, and W. Wolf, “Process partitioning for distributed embedded systems”, Hardware/Software
Co-Design, 1996.

[12] T. Wiangtong, P. Y. K. Cheung, and W. Luk, “Comparing Three Heuristic Search Methods for Functional
Partitioning in HW-SW Codesign”, International Journal on Design Automation for Embedded Systems,
vol. 6, pp. 425–449, July 2002.

[13] S. D. Haynes et al., “UltraSONIC: A Reconfigurable Architecture for Video Image Processing”, Field-
Programmable Logic and Applications (FPL), 2002.

[14] T. Wiangtong, P. Y. K. Cheung, and W. Luk, “Cluster-Driven Hardware/Software Partitioning and
Scheduling Approach For a Reconfigurable Computer System”, Field-Programmable Logic and Appli-
cations (FPL), 2003.

[15] G. D. Micheli, “Computer-aided hardware-software codesign”, IEEE Micro, Vol 14, pp. 10–16, 1994.

Chapter 8

Mapping Applications to a Coarse Grain
Reconfigurable System

Yuanqing Guo, Gerard J.M. Smit, Michèl A.J. Rosien, Paul M. Heysters,
Thijs Krol, Hajo Broersma

University of Twente, Faculty of Electrical Engineering,
Mathematics and Computer Science, P.O. Box 217, 7500AE Enschede,
The Netherlands
{yguo, smit, rosien, heysters, krol}@cs.utwente.nl; h.j.broersma@utwente.nl

Abstract This paper introduces a design method to map applications written in a high level
source language program, like C, to a coarse grain reconfigurable architecture,
called MONTIUM. The source code is first translated into a control dataflow
graph (CDFG). Then after applying graph clustering, scheduling and allocation
on this CDFG, it can be mapped onto the target architecture. High performance
and low power consumption are achieved by exploiting maximum parallelism
and locality of reference respectively. Using our mapping method, the flexibility
of the MONTIUM architecture can be exploited.

Keywords: Coarse Grain Reconfigurable Architecture, Mapping and Scheduling

8.1 Introduction

In the CHAMELEON/GECKO project we are designing a heterogeneous recon-
figurable System-On-Chip (SoC) [Smit, 2002] for 3G/4G terminals. This SoC
contains a general-purpose processor (ARM core), a bit-level reconfigurable
part (FPGA) and several word-level reconfigurable parts (MONTIUM tiles). We
believe that in future 3G/4G terminals heterogeneous reconfigurable architec-
tures are needed. The main reason is that the efficiency (in terms of performance
or energy) of the system can be improved significantly by mapping application
tasks (or kernels) onto the most suitable processing entity.

The objective of this paper is to present a design method for mapping pro-
cesses, written in a high level language, to a reconfigurable platform. The

93

P. Lysaght and W. Rosenstiel (eds.),

© 2005 Springer. Printed in the Netherlands.

New Algorithms, Architectures and Applications for Reconfigurable Computing, 93–103.

94

method can be used to optimize the system with respect to certain criteria
e.g. energy efficiency or execution speed.

8.2 The Target Architecture: MONTIUM

In this section we give a brief overview of the MONTIUM architecture, because
this architecture led to the research questions and the algorithms presented in
this paper. Figure 8.1 depicts a single MONTIUM processor tile. The hardware
organization within a tile is very regular and resembles a very long instruc-
tion word (VLIW) architecture. The five identical arithmetic and logic units
(ALU1 · · · ALU5) in a tile can exploit spatial concurrency to enhance perfor-
mance. This parallelism demands a very high memory bandwidth, which is
obtained by having 10 local memories (M01 · · · M10) in parallel. The small
local memories are also motivated by the locality of reference principle. The
ALU input registers provide an even more local level of storage. Locality of
reference is one of the guiding principles applied to obtain energy-efficiency in
the MONTIUM. The MONTIUM has a datapath width of 16-bits and supports both
integer and fixed-point arithmetic. Each local SRAM is 16-bit wide and has a
depth of 512 positions, which adds up to a storage capacity of 8 Kbit per local
memory. A memory has only a single address port that is used for both reading
and writing. A reconfigurable address generation unit (AGU) accompanies each
memory. The AGU contains an address register that can be modified using base
and modify registers.

A single ALU has four 16-bit inputs. Each input has a private input register
file that can store up to four operands. The input register file cannot be by-
passed, i.e., an operand is always read from an input register. Input registers
can be written by various sources via a flexible interconnect. An ALU has two
16-bit outputs, which are connected to the interconnect. The ALU is entirely
combinatorial and consequentially there are no pipeline registers within the
ALU. Each MONTIUM ALU contains two different levels. Level 1 contains four

Figure 8.1. MONTIUM processor tile.

Mapping Applications to a Coarse Grain Reconfigurable System 95

function units. A function unit implements the general arithmetic and logic
operations that are available in languages like C (except multiplication and di-
vision). Level 2 contains the MAC unit and is optimised for algorithms such as
FFT and FIR. Levels can be bypassed (in software) when they are not needed.

Neighboring ALUs can also communicate directly on level 2. The West-
output of an ALU connects to the East-input of the ALU neighboring on the
left (the West-output of the leftmost ALU is not connected and the East-input
of the rightmost ALU is always zero). The 32-bit wide East-West connection
makes it possible to accumulate the MAC result of the right neighbor to the
multiplier result (note that this is also a MAC operation). This is particularly
useful for performing a complex multiplication, or for adding up a large amount
of numbers (up to 20 in one clock cycle). The East-West connection does not
introduce pipeline, as it is not registered.

8.3 A Four-Phase Decomposition

The overall aim of our research is to execute DSP programs written in high
level language, such as C, by one MONTIUM tile in as few clock cycles as
possible. There are many related aspects: the limitation of resources; the size
of total configuration space; the ALU structure etc. The main question is to
find an optimal solution under all those constraints. Therefore we propose to
decompose this problem into a number of phases: Based on the two-phased
decomposition of multiprocessor scheduling introduced by [Sarkar, 1989], our
work is built on a four-phase decomposition: translation, clustering, scheduling
and resource allocation:

1 Translating the source code to a CDFG: The input C program is first
translated into a CDFG; and then some transformations and simplifica-
tions are done on the CDFG. The focus of this phase is the input program
and is largely independent of the target architecture.

2 Task clustering and ALU data-path mapping, clustering for short: The
CDFG is partitioned into clusters and mapped to an unbounded number
of fully connected ALUs. The ALU structure is the main concern of this
phase and we do not take the inter-ALU communication into considera-
tion;

3 Scheduling: The graph obtained from the clustering phase is scheduled
taking the maximum number of ALUs (it is 5 in our case) into account. The
algorithm tries to find the minimize number of the distinct configurations
of ALUs of a tile;

4 Resource allocation, allocation for short: The scheduled graph is mapped
to the resources where locality of reference is exploited, which is

96

important for performance and energy reasons. The main challenge in
this phase is the limitation of the size of register banks and memories, the
number of buses of the crossbar and the number of reading and writing
ports of memories and register banks.

Note that when one phase does not give a solution, we have to fall back to a
previous phase and select another solution.

8.4 Translating C to a CDFG

A control data flow graph (CDFG) G = (NG, PG, AG) consists of two finite
non-empty sets of nodes NG and ports PG and a set AG of so-called hydra-
arcs; a hydra-arc a = (ta, Ha) has one tail ta ∈ NG ∪ PG and a non-empty set
of heads Ha ⊂ NG ∪ PG . In our applications, NG represents the operations of a
CDFG, PG represents the inputs and outputs of the CDFG, while the hydra-arc
(ta, Ha) either reflects that an input is used by an operation (if ta ∈ PG), or that
an output of the operation represented by ta ∈ NG is input of the operations
represented by Ha , or that this output is just an output of the CDFG (if Ha

contains a port of PG).
See the example in Figure 8.2: The operation of each node is a basic compu-

tation such as addition (in this case), multiplication, or subtraction. Hydra-arcs
are directed from their tail to their heads. Because an operand might be input for
more than one operation, a hydra-arc is allowed to have multiple heads although
it always has only one tail. The hydra-arc e7 in Figure 8.2, for instance, has
two heads, w and v. The CDFG communicates with external systems through
its ports represented by small grey circles in Figure 8.2.

In general, CDFGs are not acyclic. In the first phase we decompose the
general CDFG into acyclic blocks and cyclic control information. The control

+

+

+x y

u

vw

+

+

e1 e2 e3 e4

e5 e6

e7
e8 e9

e10 e11

Figure 8.2. A small CDFG.

Mapping Applications to a Coarse Grain Reconfigurable System 97

const int n = 4;
float x_re[n] ; float x_im[n] ; float w_re[n/2]; float w_im[n/2];
void main() {
 int xi, xip;
 float u_re, u_im, x_re_tmp_xi, x_re_tmp_xip, x_im_tmp_xi, x_im_tmp_xip;
 for (int le = n / 2; le > 0; le /= 2) {
 for (int j = 0; j < le; j++) {
 int step = n / le;
 for (int i = 0; i < step/2; i++) {
 xi = i + j * step; xip = xi + step/2; u_re = w_re[le * i]; u_im = w_im[le * i];
 x_re_tmp_xi = x_re[xi]; x_re_tmp_xip = x_re[xip];
 x_im_tmp_xi = x_im[xi]; x_im_tmp_xip = x_im[xip];
 x_re[xi] = x_re_tmp_xi + (u_re * x_re_tmp_xip - u_im * x_im_tmp_xip);
 x_re[xip] = x_re_tmp_xi - (u_re *x_re_tmp_xip - u_im * x_im_tmp_xip);
 x_im[xi] = x_im_tmp_xi + (u_re * x_im_tmp_xip + u_im * x_re_tmp_xip);
 x_im[xip] = x_im_tmp_xi - (u_re * x_im_tmp_xip+ u_im * x_re_tmp_xip);
 }
 }
 }
}

Figure 8.3. C code for the n-point FFT algorithm.

information part of the CDFG will be handled by the sequencer of the MONTIUM.
In this paper we only consider acyclic parts of CDFGs. To illustrate our ap-
proach, we use an FFT algorithm. The Fourier transform algorithm transforms
a signal from the time domain to the frequency domain. For digital signal pro-
cessing, we are particularly interested in the discrete Fourier transform. The fast
Fourier transform (FFT) can be used to calculate a DFT efficiently. The source
C code of a n-point FFT algorithm is given in Figure 8.3 and Figure 8.4 shows
the CDFG generated automatically from a piece of 4-point FFT code after C
code translation, simplification and complete loop expansion. This example
will be used throughout this paper.

8.5 Clustering

In the clustering phase the CDFG is partitioned and mapped to an unbounded
number of fully connected ALUs, i.e., the inter-ALU communication is not yet
considered. A cluster corresponds to a possible configuration of an ALU data-
path, which is called one-ALU configuration. Each one-ALU configuration
has fixed input and output ports, fixed function blocks and fixed control signals.
A partition with one or more clusters that can not be mapped to our MONTIUM

ALU data-path is a failed partition. For this reason the procedure of clustering
should be combined with ALU data-path mapping. Goals of clustering are 1)
minimization of the number of ALUs required; 2) minimization of the number
of distinct ALU configurations; and 3) minimization of the length of the critical
path of the dataflow graph.

98

D0r D0iD2r D2i

++

-

-+

+ +

+

- +

W20r W20i D1r D1iD3r D3i

++

-

-+
+ +

+

- +M0r M1r M1i M0i M2r M3r M3i M2i

M0r M0iM2r M2i

++

-

-+

+ +

+

- +

W40r W40i M1r M1iM3r M3i

++

-

-+

+ +

+

- +

O0r O2r O2i O0i O1r O3r O3i O1i

W41r W41i

Figure 8.4. The generated CDFG of a 4-point FFT after complete loop unrolling and full
simplification.

The clustering phase is implemented by a graph-covering algorithm [Guo,
2003]. The procedure of clustering is the procedure of finding a cover for a
CDFG which is implemented in two steps:

Step A: Template Generation Problem
Given a CDFG, generate the complete set of nonisomorphic templates (that
satisfy certain properties, e.g., which can be executed on the ALU-architecture
in one clock cycle), and find all their corresponding matches (instances).

Step B: Template Selection Problem
Given a CDFG G and a set of (matches of) templates, find an ‘optimal’ cover
of G.

See [Guo, 2003] for the details of the graph-covering algorithm.
Each selected match is a cluster that can be mapped onto one MONTIUM

ALU and can be executed in one clock-cycle [Rosien, 2003]. As an example
Figure 8.5 presents the produced cover for the 4-point FFT. The letters inside
the dark circles indicate the templates. The graph is completely covered by
three templates. This result is the same as our manual solution. It appears that
the same templates are chosen for a n-point FFT (n = 2d).

8.6 Scheduling

To facilitate the scheduling of clusters, all clusters get a level number. The
level numbers are assigned to clusters with the following restrictions:

Mapping Applications to a Coarse Grain Reconfigurable System 99

D0r D0iD2r D2i

++

-

-+

+ +

+

- +

W40r W40i D1r D1iD3r D3i

++

-

-+
+ +

+

- +M0r M1r M1i M0i M2r M3r M3i M2i

M0r M0iM2r M2i

++

-

-+

+ +

+

- +

M1r M1iM3r M3i

++

-

-+

+ +

+

- +

O0r O2r O2i O0i O1r O3r O3i O1i

W41r W41i

1 1

1 1

2

2 2

3 3

3 3

2
3

3 3

Figure 8.5. The selected cover for the CDFG in 8.4.

� For a cluster A that is dependent on a cluster B with level number i, cluster
A must get a level number > i if the two clusters cannot be connected by
the west-east connection.

� Clusters that can be executed in parallel may have equal level numbers.

� Clusters that depend only on in-ports have level number one.

The objective of the clustering phase is to minimize the number of different
configurations for separate ALUs, i.e. to minimize the number of different one-
ALU configurations. The configurations for all five ALUs of one clock cycle
form a 5-ALU configuration. Since our MONTIUM tile is a very long instruction
word (VLIW) processor, the number of distinct 5-ALU configurations should
be minimized as well. At the same time, the maximum amount of parallelism is
preferable within the restrictions of the target architecture. In our architecture,
at most 5 clusters can be on the same level.

If there are more than 5 clusters at some level, one or more clusters should
be moved one level down. Sometimes one or more extra clock cycles have to
be inserted. Take Figure 8.5 as an example, where, in level one, the clusters
of type 1 and type 2 are dependent on clusters of type 3. However, by using
the east-west connection, clusters of type 1/2 and type 3 can be executed on the
same level. Because there are too many clusters in level 1 and level 2 of Figure
8.5, we have to split them. Figure 8.6(a) shows a possible scheduling scheme
where not all five ALUs are used. This scheme consists of only one 5-ALU

100

clu0 clu1 clu2clu3

clu4 clu5 clu6clu7

clu8 clu9 clu10clu11

clu12 clu13 clu14clu15

1

1

1

1

3

2

2

2

2

3 3

3

3 3

3 3

ALU0 ALU1 ALU2 ALU3 ALU4

clu0 clu1 clu2clu3

clu4

clu5

clu6clu7

clu8 clu9 clu10clu11

clu12

clu13

clu14clu15

Level2

Level4

1

1

1

1

3

2

2

2

2

3 3 3

3 3 3

3

Level1

Level3

ALU0 ALU1 ALU2 ALU3 ALU4

(a) (b)

Figure 8.6. Schedule the ALUs of Figure 8.5.

configuration: C1 = { 1 23 3 3 }. As a result, with the scheme of 8.6(a), the
configuration of ALUs stays the same during the execution. The scheduling
scheme of Figure 8.6(b) consists of 4 levels as well, but it is not preferable
because it needs two distinct 5-ALU configurations: C2 = { 1 23 3 3 } and
C3 = { 1 2 3 33 }. Switching configurations adds to the energy and control
overhead.

8.7 Allocation

The main architectural issues of the MONTIUM that are relevant for the re-
source allocation phase are summarized as follows:

(1) The size of a memory is 512 words; (2) Each register bank includes 4
registers; (3) Only one word can be read from or written to a memory within
one clock cycle; (4) The crossbar has a limited number of buses (10); (5) The
execution time of the data-path is fixed (one clock cycle); (6) An ALU can only
use the data from its local registers or from the east connection as inputs.

After scheduling, each cluster is assigned an ALU and the relative execut-
ing order of clusters has been determined. In the allocation phase, the other
resources (busses, registers, memories, etc) are assigned, where locality of ref-
erence is exploited, which is important for performance and energy reasons.
The main challenge in this phase is the limitation of the size of register banks
and memories, the number of buses of the crossbar and the number of reading
and writing ports of memories and register banks. The decisions that should be
made during allocation phase are:

� Choose proper storage places (memories or registers) for each interme-
diate value;

Mapping Applications to a Coarse Grain Reconfigurable System 101

� Arrange the resources (crossbar, address generators, etc) such that the
outputs of the ALUs are stored in the right registers and memories;

� Arrange the resources such that the inputs of ALUs are in the proper
register for the next cluster that will execute on that ALU.

Storing an ALU result must be done in the clock cycle within which the
output is computed. When the outputs are not moved to registers or memories
immediately after generated by ALUs, they will be lost. For this reason, in each
clock cycle, storing outputs of the current clock cycle takes priority over using
the resources. Preparing an input should be done at least one clock cycle before
it is used. However, when it is prepared too early, the input will occupy the
register space for a too long time. A proper heuristic is starting to prepare an
input 4 clock cycles before the clock cycle it is actually used by the ALU. If
the inputs are not well prepared before the execution of an ALU, one or more
extra clock cycles need to be inserted to do so. However, this will decrease the
runtime of the algorithm.

When a value is moved from a memory to a register, a check should be done
whether it is necessary to keep the old copy in the memory or not. In most
cases, a memory location can be released after the datum is fed into an ALU.
An exception is when there is another cluster which shares the copy of the
datum and that cluster has not been executed.

We adopt a heuristic resource allocation method, whose pseudocode is listed
in Figure 8.7. The clusters in the scheduled graph are allocated level by level
(lines 0–2). Firstly, for each level, the ALUs are allocated (line 4). Secondly, the
outputs are stored through the crossbar (line 5). As said before, storing outputs
is given highest priority. The locality of reference principle is employed again
to choose a proper storage position (register or memory) for each output. The

//Input: Scheduled Clustered Graph G
//Output: The job of an FPFA tile for each clock cycle
0 function ResourseAllocation(G) {
1 for each level in G do Allocate(level);
2 }
3 function Allocate(currentLevel) {
4 Allocate ALUs of the current clock cycle
5 for each output do store it to a memory;
6 for each input of current level
7 do try to move it to proper register at the clock cycle which is four steps
8 before; If failed, do it three steps before; then two steps before; one
9 step before.
10 if some inputs are not moved successfully
11 then insert one or more clock cycles before the current one to load inputs
12 }

Figure 8.7. Pseudocode of the heuristic allocation algorithm.

102

Table 8.1. The resource allocation result for the 4-point FFT CDFG

Step Actions

1 Load inputs for clusters of level 1 in Figure 8.6.
2 Clu0, Clu1, Clu2 and Clu3 are executed; Save outputs of step 2; Load inputs for

clusters of level 2.
3 Clu4, Clu5, Clu6 and Clu7 are executed; Save outputs of step 3; Load inputs for

clusters of level 3.
4 Clu8, Clu9, Clu10 and Clu11 are executed; Save outputs of step 4; Load inputs for

clusters of level 4.
5 Clu12, Clu13, Clu14 and Clu15 are executed; Save outputs of step 5.

unused resources (busses, registers, memories) of previous steps are used to load
the missing inputs (lines 6–9) for the current step. Finally, extra clock cycles
might be inserted if some inputs could not be put in place by the preceding steps
(lines 10–11).

The resource allocation result for the 4-point FFT CDFG is listed in Table
8.1. Before the execution of Clu0, Clu1, Clu2 and Clu3, an extra step (step 1) is
needed to load their inputs to proper local registers. In all other steps, besides
saving the result of current step, the resources are sufficient to loading the
inputs for the next step, so no extra steps are needed. The 4-point FFT can
be executed within 5 steps by one MONTIUM tile. Note that when a previous
algorithm already left the input data in the right registers, step 1 is not needed
and consequently the algorithm can be executed in 4 clock cycles.

8.8 Conclusion

In this paper we presented a method to map a process written in a high level
language, such as C, to one MONTIUM tile. The mapping procedure is divided
into four steps: translating the source code to a CDFG, clustering, scheduling
and resource allocation. High performance and low power consumption are
achieved by exploiting maximum parallelism and locality of reference respec-
tively. In conclusion, using this mapping scheme the flexibility and efficiency
of the MONTIUM architecture are exploited.

8.9 Related work

High level compilation for reconfigurable architectures has been the focus of
many researchers, see [Callahan, 2000]. Most systems use the SUIF compiler
of Stanford [http://suif.stanford.edu].

Mapping Applications to a Coarse Grain Reconfigurable System 103

The procedure of mapping a task graph to a MONTIUM tile has NP complex-
ity just like the task scheduling problem on multiprocessors systems [Rewini,
1994]. [Kim, 1988] considered linear clustering which is an important special
case of clustering. [Sarkar, 1989] presents a clustering algorithm based on a
scheduling algorithm on unbounded number of processors. In [Yang, 1994] a
fast and accurate heuristic algorithm was proposed, the Dominant Sequence
Clustering. The ALUs within our MONTIUM are interconnected more tightly
than multiprocessors. This difference prevents us from using their solution di-
rectly.

To simplify the problem, we use a four-phased decomposition algorithm
based on the two-phased decomposition of multiprocessor scheduling intro-
duced by [Sarkar, 1989].

Acknowledgments

This research is conducted within the Chameleon project (TES.5004) and
Gecko project (612.064.103) supported by the PROGram for Research on Em-
bedded Systems & Software (PROGRESS) of the Dutch organization for Sci-
entific Research NWO, the Dutch Ministry of Economic Affairs and the tech-
nology foundation STW.

References

T.J. Callahan, J.R. Hauser, and J. Wawryzynek, “The Garp Architecture and C compiler” in IEEE Computer,
33(4), April 2000.

Yuanqing Guo, Gerard Smit, Paul Heysters, Hajo Broersma, “A Graph Covering Algorithm for a Coarse
Grain Reconfigurable System”, 2003 ACM Sigplan Conference on Languages, Compilers, and Tools for
Embedded Systems(LCTES’03), California, USA, June 2003, pp. 199–208.

S.J. Kim and J.C. Browne, A General Approach to Mapping of parallel Computation upon Multiprocessor
Architectures, International Conference on Parallel Processing, vol 3, 1988, pp. 1–8.

Hesham EL-Rewini, Theodore Gyle Lewis, Hesham H. Ali, Task scheduling in parallel and distributed
systems, PTR Prentice Hall, 1994.

Michel A.J. Rosien, Yuanqing Guo, Gerard J.M. Smit, Thijs Krol, “Mapping Applications to an FPFA Tile”,
Proc. of Date 03, Munich, March, 2003.

Vivek Sarkar. Clustering and Scheduling Parallel Programs for Multiprocessors. Research Monographs in
Parallel and Distributed Computing. MIT Press, Cambridge, Massachusetts, 1989.

Gerard J.M. Smit, Paul J.M. Havinga, Lodewijk T. Smit, Paul M. Heysters, Michel A.J. Rosien, “Dynamic
Reconfiguration in Mobile Systems”, Proc. of FPL2002, Montpellier France, pp. 171–181, September
2002.

SUIF Compiler system, http://suif.stanford.edu.
Tao Yang; Apostolos Gerasoulis, “DSC: scheduling parallel tasks on an unbounded number of processors”,

IEEE Transactions on Parallel and Distributed Systems, Volume:5 Issue:9, Sept. 1994 Page(s): 951–967.

Chapter 9

Compilation and Temporal Partitioning for a
Coarse-grain Reconfigurable Architecture

João M.P. Cardoso1, Markus Weinhardt2

1 Faculty of Sciences and Technology, University of Algarve, Campus de Gambelas
8000—117 Faro, Portugal
jmpc@acm.org

2 PACT XPP Technologies AG, Muthmannstr. 1, 80939 München, Germany
m.weinhardt@computer.org

Abstract The eXtreme Processing Platform (XPP) is a coarse-grained dynamically recon-
figurable architecture. Its advanced reconfiguration features make feasible the
configure-execute paradigm, the natural paradigm of dynamically reconfigurable
computing. This chapter presents a compiler aiming to program the XPP using a
subset of the C language. The compiler, apart from mapping the computational
structures onto the available resources on the device, splits the program in tem-
poral sections when it needs more resources than the physically available. In
addition, since the execution of the computational structures in a configuration
needs at least two stages (e.g., configuring and computing), a scheme to split the
program such that the reconfiguration overheads are minimized, taking advantage
of the overlapping of the execution stages on different configurations is presented.

Keywords: Compilation, reconfigurable computing, temporal partitioning

9.1 Introduction

Run-time reconfigurable architectures promise to be efficient solutions when
flexibility, high-performance, and low power consumption are required features.
As Field-Programmable Gate Arrays (FPGAs) require long design cycles, with
low level hardware efforts, and the fine-granularity (bit level) used does not
match many of today’s applications, new reconfigurable processing units are
being introduced [1]. The XPP (eXtreme Processing Platform), a coarse-grained
dynamically reconfigurable architecture, is one of those units [2]. However,

105

P. Lysaght and W. Rosenstiel (eds.),

© 2005 Springer. Printed in the Netherlands.

New Algorithms, Architectures and Applications for Reconfigurable Computing, 105–115.

106

compilation research efforts are still required in order to facilitate programming
of those architectures. Compilers must both reduce the time to program such
units, hide the architecture’s details from the user, and efficiently map algorithms
to the available resources.

This chapter presents techniques to compile programs in a C subset to the
XPP [3], [4]. The techniques include forms to efficiently map algorithms to
the XPP structures (e.g., vectorization techniques [5]) and the use of tempo-
ral partitioning schemes for the efficient generation of multiple configurations.
Temporal partitioning allows to map large programs. Besides, since the ex-
ecution of the computational structures in a configuration needs at least two
stages (configuring and computing), the temporal partitioning techniques try
to split the program such that the reconfiguration overheads are minimized,
taking advantage of the overlapping of the execution stages of different config-
urations.

This chapter is organized as follows. The next section briefly introduces and
explains the XPP architecture and the configure-execute paradigm. Section 3
describes the compilation flow, which includes the mapping of computational
structures to a single configuration, and the generation of multiple configura-
tions. Section 4 shows some experimental results, and section 5 describes the
related work. Finally, section 6 concludes the chapter.

9.2 The XPP Architecture and the
Configure-Execute Paradigm

The XPP architecture (see Fig. 9.1) is based on a 2D array of coarse-grained
adaptive Processing Array Elements (PAEs), I/O ports, and interconnection
resources [2]. A PAE contains three elements: one FREG (forward register),
one BREG (backward register), and one ALU or memory (MEM). The FREG is
used for vertical and registered forward routing, or to perform MERGE, SWAP
or DEMUX operations (for controlled stream manipulations). The BREG is
used for vertical backward routing (registered or not), or to perform some
selected arithmetic operations (e.g., ADD, SUB, SHIFT). The BREGs can also
be used to perform logical operations on events, i.e. one-bit control signals.
Each ALU performs common two-input arithmetic and logical operations, and
comparisons. A MAC (multiply and accumulate) operation can be performed
using the ALU and the BREG of one PAE in a single clock cycle. In each
configuration, each ALU performs one dedicated operation.

The interconnection resources include several segmented busses which can
be configured to connect the output of a PAE with other PAEs’ inputs. Separate
event and data busses are used to communicate 1-bit events and n-bit data
values, respectively. The operator bit-width n is implementation dependent.

Compilation and Temporal Partitioning . . . 107

AM

AM

Configuration
Manager

(CM)

Configuration
Cache CC)

fetch configure

…

CMPort0
CMPort1

A

A

…

FREG ALU BREG

FREG MEM BREG

I/O

PAE

PAE

Figure 9.1. XPP architecture. Note that this abstract view hides many architecture details.

The interface of the array with other units uses the I/O ports. They can be used
to directly stream data to/from external channels or memories. The XPP is a
data-driven architecture where the flow of data is synchronized by a handshake
protocol.

The array is coupled with a Configuration Manager (CM) responsible for
the run-time management of configurations and for loading configuration data
into the configurable resources of the array. The CM has cache memory for
accommodating multiple configurations.

The XPP has some similarities with other coarse-grained reconfigurable
architectures (e.g., KressArray [6]). XPP’s main distinguishing features are its
sophisticated self-synchronization and configuration mechanisms. Although
it is a data-driven architecture, the XPP permits to map computations with
complex imperative control flow (e.g., nested loops) and with irregular data
accesses.

The execution of a configuration in the XPP requires three stages: fetch,
configure, and compute. They are related to loading the configuration data to
the CM cache, programming the array structures, and execution on the array,
respectively. The compute stage includes the release of the used resources after
completion of execution. The self-release of the resources enables the execution
of an application consisting of several configurations without any external con-
trol. When a computation is finished, the PAE detecting the termination (e.g.,
a counter) can generate an event to be broadcast or can send an event to the
CM requesting the next configuration. The stages can be executed in parallel

108

for different configurations (e.g., during the configure or compute stages of one
configuration the fetch of another configuration can be performed). Since only
the array resources actually used have to be configured, the fetch and configure
latencies vary from configuration to configuration. Based on the evaluation of
conditions, different configurations can be called. This mechanism can be used
to implement conditional execution of configurations, which is the main feature
to exploit if-then-else stuctures where each branch is implemented in a different
configuration (used in “loop dissevering” [3], for instance).

9.3 Compilation

The overall compilation flow, implemented in the Vectorizing C Com-
piler, XPP-VC, is shown in Fig. 9.2. The compiler uses the SUIF framework
[7] as the front-end. XPP-VC maps programs in a C subset to the XPP re-
sources. The currently supported C subset excludes struct and floating-point
data types, pointers, irregular control flow, and recursive and system calls. A
compiler options file specifies the parameters of the target XPP and the external
memories connected to it. To access XPP I/O ports specific C functions are
provided.

Compilation is performed using a number of steps. First, architecture-
independent preprocessing passes based on well-known compilation techniques
[8] are performed (e.g., loop unrolling). Then, the compiler performs a data-
dependence analysis and tries to vectorize inner FOR loops. In XPP-VC, vec-
torization means that loop iterations are overlapped and executed in a pipelined,
parallel fashion. The technique is based on the Pipeline Vectorization method
[5]. Next, TempPart splits the C program into several temporal partitions if
required. The MODGen task of the compiler transforms a sequential C de-
scription to an efficient data- and event-driven control/dataflow graph (CDFG)
which can be directly mapped to the structures of the XPP array. MODGen
generates one NML (the native language of the XPP) module for each parti-
tion. Each NML module is placed and routed automatically by PACT’s pro-
prietary xmap tool, which uses an enhanced force-directed placer with short
runtimes.

C program
Preprocessing

+
Dependence

Analysis

TempPart
Temporal

Partitioning

MODGen
Module Generation

(with pipelining)

NML filexmap
XPP

Binary Code
NML

Control Code Generation
(Reconfiguration)

Figure 9.2. XPP-VC compilation flow.

Compilation and Temporal Partitioning . . . 109

Mapping C Code to XPP Resources

To transform C code to NML code a number of steps is performed. First,
program data is allocated to memory resources. Array variables are mapped to
RAMs (internal or external) and some scalar variables to registers in the array.
By default, a distinct internal memory is assigned to each array variable. Arrays
are mapped to external memories, if the size of an array oversizes the size of
each internal memory, or if the programmer explicitly guides the compiler for
such mapping (by using special pragma directives).

Next, the CDFG, which directly reflects the NML structure needed, is gen-
erated. One element of a PAE is allocated for each operator in the CDFG.
Straight-line code without array references is directly mapped to a set of PAE
elements connected according to the dataflow. Because of the data-driven mech-
anism, no explicit control or scheduling is needed. The same is true for condi-
tional execution. Both branches of an IF statement are executed in parallel and
MUX operators select the correct output depending on the condition. Fig. 9.3(a)
shows a simple conditional statement and its CDFG. IF statements containing
array references or loops are implemented with DEMUX operators. They for-
ward data only to the branch selected by the IF condition. The outputs of both
branches are connected to the subsequent PAE elements. With this implemen-
tation, only selected branches receive data and execute and thus no conflict
occurs. Fig. 9.3(b) shows the conditional statement of Fig. 9.3(a) implemented
this way.

Accesses to the same memory have to be controlled explicitly to maintain
the correct execution order. MERGE operators forward addresses and data in
the correct order to the RAM, and DEMUX operators forward values read
to the correct subsequent operator. Finite state machines for generating the
correct sequence of events (to control these operators) are synthesized by the

MUX

<

x 5

I

<

RAM[arr]

+

DEMUX

a 3

+

y

a b

MERGE

READ

yx

I

ax 5

3

y

DEMUX

if (x < 5)

else
 y = a + 3;

 y = a;

(a) (b) (c)

1 10

COUNT

+

DEMUX

x

a
(out)

(i)

(d)

(a)

Figure 9.3. XPP array structures mapped from C programs.

110

compiler. I/O port accesses are handled in a similar way. Fig. 9.3(c) shows the
implementation of the statements x = arr[a]; y = arr[b];. In this example, the
events controlling the MERGE and DEMUX operators are simply generated
by an event register with a feedback cycle. The register is preloaded with “0”
and is configured to invert its output value.

Next, we discuss loops. All scalar variables updated in the loop body are
treated as follows. In all but the last iteration, a DEMUX operator routes the
outputs of the loop body back to the body inputs. Only the results of the last
iteration are routed to the loop output. The events controlling the DEMUX are
generated by the loop counter of FOR loops or by the comparator evaluating
the exit condition of WHILE loops. Note that the internal operators’ outputs
cannot just be connected to subsequent operators since they produce a result in
each loop iteration. The required last value would be hidden by a stream of in-
termediate values. As opposed to registers in FPGAs, the handshaking protocol
requires that values in XPP registers are consumed or explicitly discarded be-
fore new values are accepted. Fig. 9.3(d) shows the (slightly simplified) CDFG
for the following C code: a = x; for (i = 1; i < = 10; i++) a = a + i; Note that
the counter generates ten data values (1.10), but eleven events. After ten loop
iterations a “1” event routes the final value of ‘a’ to the output.

If the loop body contains array or I/O accesses, a loop iteration may only start
after the previous iteration has terminated since the original access order must be
maintained. The compiler generates events enforcing this. For generating more
efficient XPP configurations, MODGen generates pipelined operator networks
for inner loops which have been annotated for vectorization by the preprocessing
phase. In other words, subsequent loop iterations are started before previous
iterations have finished. Data flows continuously through the operator pipelines.
By applying pipelining balancing techniques, maximum throughput is achieved.
Note that registers in interconnection segments or in the FREG and BREG
elements are used for delay registers needed for pipelining balancing and thus
there is no need to waste ALU elements for this purpose.

To reduce the number of memory accesses, the compiler automatically re-
moves some redundant array reads. Inside loops, loads of subsequent array
elements are transformed to a single load and a shift register scheme.

Generating Multiple Configurations

A program too large to fit in an XPP can be handled by splitting it in sev-
eral parts (configurations) such that each one is mappable [3]. Although this
approach enables the mapping of large computational structures, other goals
shall be considered. Our approach also considers a judicious selection of the
set of configurations, such that the overall execution time of the application is
minimized [4]. Such minimization can be mainly achieved by the following

Compilation and Temporal Partitioning . . . 111

strategies: (1) reduction of each partition’s complexity can reduce the intercon-
nection delays (long connections may require more clock cycles); (2) reduction
of the number of references to the same resource, e.g. memory, in each parti-
tion, by distributing the overall references among partitions: (3) reduction of
the overall configuration overhead by overlapping fetching, configuring and
computing of distinct partitions.

In XPP-VC, a C program can be manually mapped to multiple configurations
by using annotations. Otherwise, a temporal partitioning algorithm automati-
cally splits the program into mappable partitions. Apart from generating the
NML representation of each partition, the compiler generates the NML sec-
tion specifying the control flow of configurations. Pre-fetch statements can be
automatically inserted by the compiler. Since internal memories preserve their
state between configurations, they are used to communicate values between
configurations.

Bearing in mind the following goals, we have developed and evaluated two
temporal partitioning schemes: (a) find mappable solutions (i.e., sets of feasible
configurations) [3]; (b) find mappable solutions and try to improve the latency
by exploiting the pipelining among configure-execute stages [4]. In (a), the set
of configurations is constructed by iteratively merging adjacent AST (abstract
syntax tree) nodes, forming larger configurations. The merging is guided by
estimations of the required resources and only depends on the feasibility to
implement the configuration in the given XPP array. In (b), the merge operation
is more selective and besides the feasibility, it is only performed if it leads to
better overall performance.

Both strategies only perform loop partitioning if an entire loop cannot be
mapped to a single configuration. When this occurs, the algorithms are applied
to the body of the loop and the “loop dissevering” technique is used [3]. A
similar approach is used when a top level AST cannot be mapped to a single
configuration.

To furnish feasible partitions, the approach ultimately uses checks with
MODGen and xmap before selecting the final set of partitions. The algo-
rithm avoids intermediate checks with xmap, since it might not be tolerable
to check each performed merge. Each time the estimated resources obtained
from MODGen exceed the size constraint, the algorithm tries another merge.
The approach uses three levels of checks and it iterativelly performs merge
steps decreasing the size constraint until a feasible set is found [3].

9.4 Experimental Results

For evaluating the compiler and the explained temporal partitioning schemes,
a set of benchmarks is used. They have from 18 to 228 lines of C code, be-
tween two and 16 loops, and between two and six array variables. The examples

112

are compiled using temporal partitioning (1) whenever it is required to make
feasible the mapping and (2) to improve the overall performance. The target
platform is a 32-bit XPP array with 16 × 18 PAEs (32 of them with memo-
ries). In the results we show the total number of PAEs of the array used by
a certain configuration despite some cases only use one or two of the PAE
elements.

The first example is an implementation of the 8 × 8 discrete cosine transform
(DCT), based on two matrix multiplications. Splitting the program improves
the overall latency by 14%, requiring 58% fewer PAEs. When considering full
unrolling of each of the innermost loops in the matrix multiplications, splitting
the program improves the overall latency by 41%, requiring 52% fewer PAEs.
For an implementation of the forward 2D Haar wavelet transform, an increase
in performance of 7% and a reduction of 55% in size are achieved with scheme
(2). For the Conway’s Game of Life, a performance increase of 49% and a
reduction of 15% in size are achieved (using 6 instead of 4 configurations).
The results show that approach (2) leads to sets of configurations that reduce
the reconfiguration overhead and thus may lead to performance gains and to
lower requirements as far as the number of resources is concerned.

In order to show the compiler efficiency, achieved speedups with various ex-
amples are presented in Table 9.1. The third column shows the CPU time (using
a PC with a Pentium III at 933 MHz) to compile each example with XPP-VC
(from the C program to the binaries). Columns #Part, #PAEs, and #Max rep-
resent the number of partitions, number of PAEs used (in the cases with more
than one partition, we show the number of PAEs of the largest configuration and
the sum of PAEs for all configurations), and the maximum number of concur-
rently executed PAEs (as an indication of ILP degree), respectively. Column 7
shows the total number of clock cycles (taking into account setup, fetching,
configuring, data communication and computation). The last column shows the
speedup obtained with examples executed on the XPP at 150 MHz over the
same examples compiled with gcc and running on a PIII at 933 MHz. Using
the compiler, speedups from 2.8 to 98 have been achieved. Since, as far as the

Table 9.1. Results obtained with XPP-VC.

Loop unr. Compilation Total
Example (#loops) time (sec) #Part #PAEs #Max (#ccs) Speedup

dct yes (2) 2.2 1 240 26 11,252,333 2.9
fir yes (1) 0.9 1 132 67 16,853 40.0
bpic yes (3) 3.4 1 237 12 1,047,733 2.8
edge det yes (2) 5.6 5 54/225 12 3,541,818 9.3
fdct no 1.8 2 150/299 14 1,240,078 12.7
median yes (3) 1.3 2 201/231 44 28,090 98.0

Compilation and Temporal Partitioning . . . 113

clock frequency is concerned, the PIII’s is 6.2 times faster than the considered
XPP, the results are very promising. Note that there are other advantages to use
the XPP instead of a microprocessor (e.g., lower energy consumption).

For all examples, the compilation from the source program to the binary
configuration file takes only a few seconds. This shows that it is possible,
when targeting coarse-grained reconfigurable architectures, to have compilation
times comparable to the ones achieved by software compilation, and to still
accomplish efficient implementations.

9.5 Related Work

The work on compiling high-level descriptions onto reconfigurable logic has
been the focus of many researchers since the first simple attempts (e.g., [9]).
Not so many compilers have considered the integration of temporal partitioning.
Probably, the first compiler to include temporal partitioning has been the dbC
Napa compiler [10]. In that approach, each function defines a configuration
and the only way to control the generation of configurations is to manually
group program statements in functions. An automatic approach is used in the
Galadriel & Nenya compilers [11].

Other authors compile to architectures, which explicitly support hardware
virtualization (e.g., PipeRench [12]). However, they only support acyclic com-
putations or computations where cyclic structures can be transformed to acyclic
ones.

Most of the current approaches attempt to achieve a minimum number of
configurations (e.g., [13]). Those schemes only consider another partition after
the current one uses as much available resources as possible, and they are not
aware to the optimization that could be applied to reduce the overall execu-
tion by overlapping the fetching, configuring and computing steps. One of the
first attempts to reduce the configuration overhead in the context of temporal
partitioning has been presented in [14].

Although most compilers target fine-grained architectures (e.g., FPGAs),
compilers to coarse-grained reconfigurable architectures are becoming focus
of research work (e.g., the compiler of SA-C programs to Morphosys [15]).
Unlike other compilers, the research efforts on the XPP-VC compiler include
schemes to deal with large programs and to efficiently deal with the configure-
execute paradigm. Loop dissevering, a method for temporally partitioning any
kind of loop, has been also proposed in the context of the XPP-VC [3].

9.6 Conclusions

This chapter has described a compiler to map programs in a C subset to
the XPP architecture. Combined with a fast place and route tool, it provides

114

a complete “push-button” path from algorithms to XPP binaries within short
compilation times. Since the XPP includes a configuration manager, programs
are compiled to a single, self-contained binary file, that can be directly executed
on the XPP. Such file includes data for configurations and the programming code
to control the configuration manager.

Supported by temporal partitioning, the approach enables the mapping of
programs requiring more than the available resources on a particular XPP, and
attempts to furnish implementations with maximum performance by hiding
some of the reconfiguration time. The obtained results prove that a judicious
selection of configurations can reduce the overall execution time, by furnish-
ing solutions that overlap execution stages. Considering the configure-execute
model, the results show that in many cases a smaller array can be used without
sacrificing performance.

Ongoing work focuses on tuning the estimation steps, on optimizations, on
removing the current restrictions for pipelining loops, and on supporting other
loop transformations.

References

[1] R. Hartenstein, “A Decade of Reconfigurable Computing: a Visionary Retrospective,” in Proc. Design,
Automation and Test in Europe (DATE’01), 2001, pp. 642–649.

[2] V. Baumgarte, et al., “PACT XPP—A Self-Reconfigurable Data Processing Architecture,” in The Journal
of Supercomputing, Kluwer Academic Publishers, Sept. 2003, pp. 167–184.

[3] J. M. P. Cardoso, and M. Weinhardt, “XPP-VC: A C Compiler with Temporal Partitioning for the
PACT-XPP Architecture,” in Proc. 12th Int’l Conference on Field Programmable Logic and Applications
(FPL’02), LNCS 2438, Springer-Verlag, 2002, pp. 864–874.

[4] J. M. P. Cardoso, and M. Weinhardt, “From C Programs to the Configure-Execute Model,” in Proc.
Design, Automation and Test in Europe (DATE’03), Munich, Germany, March 3–7, 2003, pp. 576–
581.

[5] M. Weinhardt, and W. Luk, “Pipeline Vectorization,” in IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, Feb. 2001, pp. 234–248.

[6] R. Hartenstein, R. Kress, and H. Reining, “A Dynamically Reconfigurable Wavefront Array Architecture
for Evaluation of Expressions,” in Proc. Int’l Conference on Application-Specific Array Processors
(ASAP’94), 1994.

[7] SUIF Compiler system, “The Stanford SUIF Compiler Group,” http://suif.stanford.edu
[8] S. S. Muchnick, Advanced Compiler Design and Implementation. Morgan Kaufmann Publishers, Inc.,

San Francisco, CA, USA, 1997.
[9] I. Page, and W. Luk, “Compiling occam into FPGAs,” in FPGAs, Will Moore and Wayne Luk, eds.,

Abingdon EE & CS Books, Abingdon, England, UK, 1991, pp. 271–283.
[10] M. Gokhale, and A. Marks, “Automatic Synthesis of Parallel Programs Targeted to Dynamically Re-

configurable Logic Array,” in Proc. 5th Int’l Workshop on Field Programmable Logic and Applications
(FPL’95), LNCS, Springer-Verlag, 1995, pp. 399–408.

[11] J. M. P. Cardoso, and H. C. Neto, “Compilation for FPGA-Based Reconfigurable Hardware,” in IEEE
Design & Test of Computers Magazine, March/April, 2003, vol. 20, no. 2, pp. 65–75.

[12] S. Goldstein, et al., “PipeRench: A Reconfigurable Architecture and Compiler,” in IEEE Computer, Vol.
33, No. 4, April 2000, pp. 70–77.

[13] I. Ouaiss, et al., “An Integrated Partioning and Synthesis System for Dynamically Reconfigurable
Multi-FPGA Architectures,” in Proc. 5th Reconfigurable Architectures Workshop (RAW’98), Orlando,
Florida, USA, March 30, 1998, pp. 31–36.

Compilation and Temporal Partitioning . . . 115

[14] S. Ganesan, and R. Vemuri, “An Integrated Temporal Partitioning and Partial Reconfiguration Technique
for Design Latency Improvement,” in Proc. Design, Automation & Test in Europe (DATE’00), Paris,
France, March 27–30, 2000, pp. 320–325.

[15] G. Venkataramani, et al., “Automatic compilation to a coarse-grained reconfigurable system-on-chip,”
in ACM Transactions on Embedded Computing Systems (TECS), Vol. 2, Issue 4, November 2003,
pp. 560–589.

Chapter 10

Run-time Defragmentation for Dynamically
Reconfigurable Hardware∗

Manuel G. Gericota,1 Gustavo R. Alves,1 Miguel L. Silva,2

and José M. Ferreira2,3

1 Department of Electrical Engineering—ISEP
Rua Dr. António Bernardino de Almeida, 431
4200-072 Porto, Portugal
{mgg, galves}@dee.isep.ipp.pt

2 Department of Electrical and Computer Engineering—FEUP
Rua Dr. Roberto Frias
4200-465 Porto, Portugal
mlms@fe.up.pt

3 Institutt for datateknikk—Høgskolen i Buskerud
Frogsvei 41
3601 Kongsberg, Norway
jmf@fe.up.pt

Abstract Reconfigurable computing experienced a considerable expansion in the last few
years, due in part to the fast run-time partial reconfiguration features offered by
recent SRAM-based Field Programmable Gate Arrays (FPGAs), which allowed
the implementation in real-time of dynamic resource allocation strategies, with
multiple independent functions from different applications sharing the same logic
resources in the space and temporal domains.

However, when the sequence of reconfigurations to be performed is not pre-
dictable, the efficient management of the logic space available becomes the
greatest challenge posed to these systems. Resource allocation decisions have
to be made concurrently with system operation, taking into account function
priorities and optimizing the space currently available. As a consequence of the

∗ This work was supported by Fundação para a Ciência e Tecnologia under contract number POCTI/
33842/ESE/2000

117

P. Lysaght and W. Rosenstiel (eds.),

© 2005 Springer. Printed in the Netherlands.

New Algorithms, Architectures and Applications for Reconfigurable Computing, 117–129.

118

unpredictability of this allocation procedure, the logic space becomes fragmented,
with many small areas of free resources failing to satisfy most requests and so
remaining unused.

A rearrangement of the currently running functions is therefore necessary, so
as to obtain enough contiguous space to implement incoming functions, avoid-
ing the spreading of their components and the resulting degradation of system
performance. A novel active relocation procedure for Configurable Logic Blocks
(CLBs) is herein presented, able to carry out online rearrangements, defragment-
ing the available FPGA resources without disturbing functions currently running.

Keywords: Reconfigurable computing, partial and dynamic reconfiguration, active function,
dynamic relocation, fragmentation, defragmentation

Introduction

The idea of using a reconfigurable device to implement a number of appli-
cations requiring more resources than those currently available emerged in the
beginning of the nineteen-nineties. The concept of virtual hardware, defined
in [Long, 1993], pointed to the use of temporal partitioning as a way to im-
plement those applications whose area requirements exceed the reconfigurable
logic space available, assuming, to a certain extent, the availability of unlimited
hardware resources. The static implementation of a circuit was split up into
two or more independent hardware contexts, which could be swapped during
runtime [Hauck, 1997], [Trimberger, 1998], [Kaul, 1999], [Cardoso, 1999],
[Cantó, 2001]. Extensive work was done to improve the multi-context handling
capability of these devices, by storing several configurations and enabling quick
context switching [Singh, 2000], [Maestre, 2001], [Meiβner, 2001], [Sanchez-
Elez, 2002]. The main goal was to improve the execution time by minimising
external memory transfers, assuming that some amount of on-chip data storage
was available in the reconfigurable architecture. However, this solution was
only feasible if the functions implemented on hardware were mutually exclu-
sive on the temporal domain, e.g. context-switching between coding/decoding
schemes in communication, video or audio systems; otherwise, the length of
the reconfiguration intervals would lead to unacceptable delays in most appli-
cations.

These restrictions have been overtaken by higher levels of integration, due
to the employment of very deep submicron and nanometer scales, and by the
use of higher frequencies of operation. The increasing amount of logic avail-
able in FPGAs and the reduction of the reconfiguration time, partly owing to
the possibility of partial reconfiguration, extended the concept of virtual hard-
ware to the implementation of multiple applications sharing the same logic
resources in the temporal and spatial domains.

The main goal behind the temporal and spatial partitioning of reconfigurable
logic resources is to achieve the maximum efficiency of reconfigurable systems,

Run-time Defragmentation for Dynamically Reconfigurable Hardware 119

pushing up resource usage and taking the maximum advantage of its flexibility
[Diessel, 2000]. This approach is viable because an application is composed of
a set of functions, predominantly executed sequentially, or with a low degree
of parallelism, whose simultaneous availability is not required. On the other
hand, partial reconfiguration times are sufficiently small, in the order of a few
milliseconds or less, depending on the configuration interface and on the com-
plexity of the function being implemented, for those functions to be swapped
in real time. If a proper floorplanning schedule is devised, dynamic function
swapping enables a single device to run a set of applications, which in total
may require more than 100% of the FPGA resources.

Reconfiguration time has decreased consistently from one generation to
the next, but it may still be too long, when compared with the function ex-
ecution period. However, its reduction to virtually zero may be achieved by
employing prefetching techniques, similar to those used in general purpose
computer systems [Li, 2002]. Functions whose availability is about to be re-
quired are configured in advance, filling up unused resources or resources
previously occupied by functions that are no longer needed. This situation
is illustrated in Figure 10.1, where a number of applications share the same
reconfigurable logic space in both the temporal and spatial domains. The ear-
lier execution of the reconfiguration task of a new incoming function during
the float interval (see Figure 10.1) assures its readiness when requested by
the corresponding application flow [Jeong, 2000]. However, this will be true
only if the float interval is greater than or equal to the reconfiguration in-
terval required by the new incoming function. An increase in the degree of
parallelism may retard the reconfiguration of incoming functions, due to lack
of space in the FPGA. Consequently, delays will be introduced in the appli-
cation’s execution time, systematically or not, depending on the application
flow.

A1

A3

B1

B2

C2

C3 C4

A2

Scheduling of functions, from
different applications, to be
executed in the same FPGA

C1

Applications

A B C

TimeInitial
configuration

 - reconfiguration interval
- data transfer between different functions

Appl.C

Appl.B

Available
resource space

Function C1

Function B1

Function A1Appl.A

Function A3

Function B2

Fun cti
on C2 Function C4

Function C3

RtA2

float

RtB2

RtC3

float

RtC4

R tf

Function A2

RtC2 float

Figure 10.1. Temporal scheduling of functions from different applications in the temporal
and spatial domains.

120

The aim of the proposed approach is to allocate to each function as many
resources as it needs to execute independently of all the others, as if it were
part of a single application running on a chip just large enough to support it.
However, several problems have to be solved to achieve this objective.

An incoming function may require the relocation of other functions already
implemented and running, in order to release enough contiguous space for its
configuration (see function C2 in Figure 10.1). Notice also that spreading the
components of an incoming function by the available resources would lead to
a degradation of its performance, delaying tasks from completion and reducing
the utilisation of the FPGA.

Every multiple independent functions that share the logic space have unique
spatial and temporal requirements. Over time, as they are loaded and unloaded,
the spatial distribution of the unoccupied area is likely to become fragmented,
similar to what occurs in memory management systems when RAM is allocated
and deallocated. These portions of unallocated resources tend to become so
small that they fail to satisfy any request and so remain unused [Compton,
2002]. This problem is illustrated in Figure 10.2 in the form of a 3-D floorplan
and function schedule [Vasilko, 1999], where each shadow area corresponds to
the optimal space occupied by the implementation of a single function.

If the requirements of functions and their sequence are known in advance,
suitable arrangements can be designed, and sufficient resources can be pro-
vided to handle them in parallel [Teich, 1999]. However, when placement de-
cisions have to be made online, it is possible that a lack of contiguous free

nth reconfig.

2nd reconfig.

1st reconfig.

Initial config.

Resource
allocation
(spatial)

Reconfiguration
(temporal)

Time

y

x

Figure 10.2. 3-D representation of the fragmentation problem.

Run-time Defragmentation for Dynamically Reconfigurable Hardware 121

resources prevents functions from being implemented, even when the total
number of resources available is sufficient. In these cases, an increase on the
available resources is a poor solution, since it decreases the efficiency of the
system.

The problem described may be solved by an efficient online management of
the available resources. If a new function cannot be implemented immediately
due to a lack of contiguous free resources, a suitable rearrangement of a sub-
set of the functions currently running might solve the problem. Three methods
are proposed in [Diessel, 2000] to find such (partial) rearrangements, so as to
increase the rate at which resources are allocated to waiting functions, while
minimising disruptions on running functions that are to be relocated. However,
the disruption of those functions suspends the execution of their owner applica-
tions and, eventually, of the whole system operation. Therefore, this proposal
is only feasible if the implementation of the rearrangement does not stop the
execution of the functions that are to be moved.

To deal with this problem, a new concept is introduced—the dynamic
relocation—defined as the possibility of performing the partial or total relo-
cation of a function even if it is active, i.e. if the function to be moved is
currently being used by an application [Gericota, 2002]. This concept enables
the defragmentation of the FPGA logic space online, gathering small fragments
of unused resources in areas large enough for new incoming functions to be
set up, without disturbing active functions. Based on new partial and dynami-
cally reconfigurable FPGA features, a procedure to implement this concept is
presented in the next sections.

Dynamic Relocation

Conceptually, an FPGA may be described as an array of uncommitted CLBs,
surrounded by a periphery of IOBs (Input/Output Blocks), which can be inter-
connected through configurable routing resources. The configuration of all these
elements is controlled by an underlying set of memory cells, as illustrated in
Figure 10.3.

Any online management strategy implies the existence of a transparent relo-
cation mechanism, whereby a CLB currently being used by a given function has
its current functionality transferred into another CLB, without disturbing the
system operation. This relocation mechanism does more than just copying the
functional specification of the CLB to be relocated: the corresponding intercon-
nections with the rest of the circuit have also to be reestablished; additionally,
according to its current functionality, it may also be necessary to transfer its in-
ternal state information. This transference is one of the two major issues posed
to the transparent relocation of the functionality of a CLB. The other issue is
related to the organization of the configuration memory.

122

CLBCLBCLBCLBCLB

CLBCLBCLBCLBCLB

CLBCLBCLBCLBCLB

CLBCLBCLBCLBCLB

CLBCLBCLBCLBCLB

I/O
blocks

Routing
resources

Configuration
memory cells

Figure 10.3. Conceptual representation of an FPGA.

The configuration memory may be visualised as a rectangular array of bits,
which are grouped into one-bit wide vertical frames extending from the top
to the bottom of the array. A frame is the smallest unit of configuration that
can be written to or read from the configuration memory. Frames are grouped
together into larger units called columns. To each CLB column corresponds a
configuration column with multiple frames, where internal CLB configuration
and state information are mixed with column routing and interconnect infor-
mation. The partition of the entire FPGA configuration memory into frames
enables its partial reconfiguration, which is carried out sequentially over one
or more CLB configuration columns. The rewriting of the same configuration
data is completely harmless, and does not generate any transient signals.

When the functionality of a given CLB is dynamically relocated, even into
a CLB belonging to the same column, more than one column may be involved,
since the CLB input and output signals (as well as those on its replica) may cross
several columns before reaching its source or destination. Due to the sequential
nature of the configuration mechanism, signals from the original CLB may be
broken before being totally reestablished from its replica, disturbing or even
halting its operation. Moreover, the functionality of the replica CLB must be
perfectly stable before its outputs are connected to the system, preventing output
hazards. A set of experiments performed with a Virtex XCV200 [Xilinx, 2002]
FPGA demonstrated that the only possible solution was to divide the relocation
procedure in two phases [Gericota, 2002], as illustrated in Figure 10.4 (for
reasons of intelligibility, only the relevant interconnections are represented).

In the first phase, the internal configuration of the CLB is copied into its new
location and the inputs of both CLBs are placed in parallel. Due to the slowness
of the reconfiguration procedure, when compared with the speed of operation of
current applications, the outputs of the replica CLB are already perfectly stable

Run-time Defragmentation for Dynamically Reconfigurable Hardware 123

1st phase

2nd phase

CLB CLB CLB CLB

CLB CLB CLB CLB

CLB CLB CLB CLB

CLB

CLB

CLB CLB CLB

CLB CLB CLB CLB

CLB CLB CLB

Figure 10.4. Two-phase CLB relocation procedure.

when they are connected to the circuit in the second phase. To avoid output
instability, both CLBs (the original and its replica) must remain in parallel for
at least one clock cycle. Afterwards, and for the same reason, the original CLB
inputs may only be disconnected after the outputs are disconnected; otherwise,
changes produced in the input signals may extemporaneously be reflected in
the outputs. As the rewriting of the same configuration data does not generate
any transient signals, this procedure does not affect the remaining resources
covered by the rewriting of the configuration frames required to carry out the
relocation procedure of a CLB.

If the current CLB function is purely combinational, this two-phase reloca-
tion procedure will be sufficient. However, in the case of a sequential function,
successful completion of the procedure described also implies the correct trans-
ference of the internal state information. This information must be preserved
and no update operations may be lost while the CLB functionality is being
relocated. The solution to this problem depends on the type of implementation
of the sequential circuit: synchronous free-running clock circuits, synchronous
gated-clock circuits, and asynchronous circuits.

When dealing with synchronous free-running clock circuits, the two-phase
relocation procedure is also effective. Between the first and the second phases,
the replica CLB receives the same input signals as the original CLB, meaning
that all their flip-flops (FFs) acquire the same state information at the active
transition of the clock signal. The experimental replication of CLBs with FFs
driven by a free-running clock confirmed the effectiveness of this method.

124

0

1
D Q

CE

Combinational
logic circuitry

Relocation
control

D Q

CE

Combinational
logic circuitry

1

0Capture
enable
control

Auxiliary relocation circuit

Replica
combinational

output

Original
registered

output

Original CLB

Replica CLB

CLB inputs

Clock enable signal

Clock signal

CLB
output

Figure 10.5. CLB relocation for synchronous gated-clock circuits.

No loss of state information or the presence of output hazards was observed
[Gericota, 2002].

When using synchronous gated-clock circuits, where input acquisition by the
FFs is controlled by the state of the clock enable signal, the previous method does
not ensure that the correct state information is captured by the replica CLB, since
that signal may not be active during the relocation procedure. Besides, to set it
as part of this procedure is incorrect, because the value present at the input of the
replica CLB FFs may change in the meantime, and a coherency problem would
occur. Therefore, it is necessary to use an auxiliary relocation circuit capable
of ensuring the correct transference of the state information from the original
CLB FFs to the replica CLB FFs, while enabling its update by the circuit, at
any moment, without losing new state information or delaying the relocation
procedure. The whole relocation scheme is represented in Figure 10.5. Only
one logic cell is shown (each CLB comprises several of such blocks), not only
for reasons of simplicity, but also because each CLB cell can be considered
individually.

The temporary transfer paths established between the original CLB logic
cells and their replicas do not affect their functionality, since only free routing
resources are used. No changes in the CLB logic cell structure are required to
implement this procedure. The OR gate and the 2:1 multiplexer that are part
of the auxiliary relocation circuit must be implemented during the relocation
procedure in a nearby (free) CLB.

The inputs of the 2:1 multiplexer present in the auxiliary relocation circuit
receive one temporary transfer path from the output of the original CLB FF

Run-time Defragmentation for Dynamically Reconfigurable Hardware 125

and another from the output of the combinational logic circuitry in the replica
CLB (which is normally applied to the input of its own FF). The clock enable
signal of the original CLB FF also controls this multiplexer while the relocation
procedure is carried out. If this signal is not active, the output of the original
CLB FF is applied to the input of the replica CLB FF. The capture enable
control signal, generated by the auxiliary relocation circuit, is activated and
accordingly the replica FF stores the transferred value at the active transition
of the clock signal, acquiring the state information present in the original CLB
FF. If the clock enable signal is active, or is activated during this process, the
multiplexer selects the output of the combinational circuitry of the replica CLB
and applies it to its own FF input, which is updated at the same clock transi-
tion and with the same value as the original CLB FF, therefore guaranteeing
state coherency. The flow diagram of the relocation procedure is presented in
Figure 10.6.

Begin

End

> 2 CLK pulses
No

Yes

>1 CLK pulse
No

Yes

Connect signals to the auxiliary relocation circuit;
place CLB input signals in parallel

Activate relocation and capture enable control signals

Deactivate capture enable control signal

Connect the clock enable inputs of both CLBs

Disconnect all the auxiliary relocation circuit signals

Place CLB outputs in parallel

Disconnect the original CLB outputs

Deactivate relocation control signal

Disconnect the original CLB inputs

Figure 10.6. Relocation procedure flow.

126

The capture enable control signal and the relocation control signal are driven
by configuration memory bits. The latter directs the state information value to
the input of the replica CLB FF, while the capture enable control signal enables
its acquisition. It is therefore possible to control the whole relocation procedure
through the same interface used for normal reconfiguration, and thus no extra
resources are required for this purpose.

The relocation of a CLB is performed individually, between the original CLB
and its replica (more precisely, between each corresponding CLB logic cell),
even if many blocks were relocated simultaneously. Therefore, this approach is
also applicable to multiple clock/multiple phase applications, without requiring
any modification.

This method is also effective when dealing with asynchronous circuits, where
transparent data latches are used instead of FFs. In this case, the control enable
signal is replaced in the latch by the input control signal, with the value present
in the input of the latch being stored when the control signal changes from ‘1’
to ‘0’. The same auxiliary relocation circuit is used and the same relocation
sequence is followed.

The Look-Up Tables (LUTs) in the CLB may also be configured as memory
modules (RAMs) for user applications. However, the extension of this concept
to the relocation of LUT/RAMs is not feasible. The content of the LUT/RAMs
may be read and written through the configuration memory, but there is no
mechanism, other than to stop the system, capable of ensuring the coherency
of the values, if there is a writing attempt during the relocation procedure, as
stated in [Huang, 2001]. Furthermore, since frames span an entire column of
CLBs, the same given bit in all logic cells of the column is written with the
same command. Therefore, it is necessary to ensure that either all the remaining
data in the whole logic cells of the column is constant, or it is also modified
externally through partial reconfiguration. In short, even if not being replicated,
LUT/RAMs should not lie in any column that could be affected by the relocation
procedure.

Rearranging Routing Resources

Due to the scarcity of routing resources, it might also be necessary to perform
a rearrangement of the existent interconnections to optimise the occupancy of
such resources after the relocation of one or more CLBs, and to increase the
availability of routing paths to incoming functions. The relocation of routing
resources does not pose any special problems, since the same concept used in
the two-phase relocation procedure of active CLBs is valid to relocate local and
global interconnections. The interconnections involved must first be duplicated
to establish an alternative path, and then disconnected, becoming available to
be reused, as illustrated in Figure 10.7.

Run-time Defragmentation for Dynamically Reconfigurable Hardware 127

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

- Original path
- Replica path

CLB2

CLB1

Figure 10.7. Relocation of routing resources.

However, since different paths are used while paralleling the original and
replica interconnections, each path will most likely have a different propaga-
tion delay. Consequently, if the signal level at the output of the CLB source
changes, the signal at the input of the CLB destination will exhibit an interval
of fuzziness, as shown in Figure 10.8. Notwithstanding, the impedance of the
routing switches will limit the current flow in the interconnection, and hence this
behaviour does not damage the FPGA. For that reason, the propagation delay
associated to the parallel interconnections shall be the longer of the two paths
[Gericota, 2003].

The dynamic relocation of CLBs and interconnections should have a min-
imum influence (preferably none) in the system operation, as well as reduced
overhead in terms of reconfiguration cost. The placement algorithms (in an at-
tempt to reduce path delays) gather in the same area the logic that is needed
to implement the components of a given function. It is unwise to disperse it,
since it would generate longer paths (and hence, an increase in path delays).
On the other hand, it would also put too much stress upon the limited routing
resources. Therefore, the relocation of the CLBs should be performed between
nearby CLBs. If necessary, the relocation of a complete function may take
place in several stages to avoid an excessive increase in path delays during the
relocation interval.

CLB1 output

time

CLB2 input

V

- Signal propagation
through the original path

- Signal propagation
through the replica path

Figure 10.8. Propagation delay during the relocation of routing resources.

128

The reconfiguration cost depends on the number of reconfiguration frames
needed to relocate each CLB, since a great number of frames would imply a
longer rearrangement time. The impact of the relocation procedure in those
functions currently running is mainly related to the delays imposed by rerouted
paths, because it might lead to longer paths, therefore decreasing the maximum
frequency of operation.

Conclusion

An efficient strategy for the reconfigurable logic space management is
fundamental to achieve maximum performance in a reconfigurable system.
The online rearrangement of currently implemented functions is therefore of
vital importance to enable a proper defragmentation of the logic space and the
prompt implementation of incoming functions.

The proposed procedure allows the dynamic relocation of active functions
and enables the implementation of rearrangement algorithms without producing
any time overhead or disturbing the applications currently running. As a result,
the online dynamic scheduling of tasks in the spatial and temporal domains be-
comes feasible in practice, enabling several applications—that altogether may
require more than 100% of the FPGA resources—to share the same hardware
platform in a completely transparent way.

References

Cantó, E., J. M. Moreno, J. Cabestany, I. Lacadena, and J. M. Insenser. (2001). “A Temporal Bipartitioning
Algorithm for Dynamically Reconfigurable FPGAs,” IEEE Trans. on VLSI Systems, Vol. 9, No. 1,
Feb. 2001, pp. 210–218.

Cardoso, J. M. P., and H. C. Neto. (1999). “An Enhanced Static-List Scheduling Algorithm for Temporal
Partitioning onto RPUs,” Proc. 10th Intl. Conf. on VLSI, pp. 485–496.

Compton, K., Z. Li, J. Cooley, S. Knol, and S. Hauck. (2002). “Configuration, Relocation and Defragmentation
for Run-Time Reconfigurable Computing,” IEEE Trans. on VLSI Systems, Vol. 10, No. 3, June 2002,
pp. 209–220.

Diessel, O., H. El Gindy, M. Middendorf, H. Schmeck, and B. Schmidt. (2000). “Dynamic scheduling of
tasks on partially reconfigurable FPGAs,” IEE Proc.-Computer Digital Technology, Vol. 147, No. 3,
May 2000, pp. 181–188.

Gericota, M. G., G. R. Alves, M. L. Silva, and J. M. Ferreira. (2002). “On-line Defragmentation for
Run-Time Partially Reconfigurable FPGAs.” In Glesner, M., Zipf, P., and Renovell, M., editors,
Proc. 12th Intl. Conf. Field Programmable Logic and Applications: Reconfigurable Computing is
Going Mainstream, Lecture Notes in Computer Science 2438, pp. 302–311. Springer.

Gericota, M. G., G. R. Alves, M. L. Silva, and J. M. Ferreira. (2003). “Run-Time Management of Logic
Resources on Reconfigurable Systems,” Proc. Design, Automation and Test in Europe, pp. 974–979.

Hauck, S., and G. Borriello. (1997). “An Evaluation of Bipartitioning Techniques,” IEEE Trans. on Computer
Aided Design of Integrated Circuits and Systems, Vol. 16, No. 8, Aug. 1997, pp. 849–866.

Huang, W., and E. J. McCluskey. (2001). “A Memory Coherence Technique for Online Transient Error
Recovery of FPGA Configurations,” Proc. 9th ACM Intl. Symp. Field Programmable Gate Arrays,
pp. 183–192.

Jeong, B., S. Yoo, S. Lee, and K. Choi. (2000). “Hardware-Software Cosynthesis for Run-time Incrementally
Reconfigurable FPGAs,” Proc. 2000 Asia South Pacific Design Automation Conf., pp. 169–174.

Run-time Defragmentation for Dynamically Reconfigurable Hardware 129

Kaul, M., and R. Vemuri. (1999). “Temporal Partitioning Combined with Design Space Exploration for
Latency Minimization of Run-Time Reconfigured Designs,” Proc. Design, Automation and Test in
Europe, pp. 202–209.

Li, Z., and S. Hauck. (2002). “Configuration Prefetching Techniques for Partial Reconfigurable Coprocessor
with Relocation and Defragmentation,” Proc. 10th ACM Int. Symp. Field-Programmable Gate Arrays,
pp. 187–195.

Long, X. P., and H. Amano. (1993). “WASMII: a Data Driven Computer on a Virtual Hardware,” Proc. 1st
IEEE Workshop on FPGAs for Custom Computing Machines, pp. 33–42.

Maestre, R., F. J. Kurdahi, R. Hermida, N. Bagherzadeh, and H. Singh. (2001). “A Formal Approach to
Context Scheduling for Multicontext Reconfigurable Architectures,” IEEE Trans. on VLSI Systems,
Vol. 9, No. 1, Feb. 2001, pp. 173–185.

Meiβner, M., S. Grimm, W. Straβer, J. Packer, and D. Latimer. (2001). “Parallel Volume Rendering on
a Single-Chip SIMD Architecture,” Proc. IEEE Symp. on Parallel and Large-data Visualization and
Graphics, pp. 107–113.

Sanchez-Elez, M., M. Fernandez, R. Maestre, R. Hermida, N. Bagherzadeh, and F. J. Kurdahi. (2002). “A
Complete Data Scheduler for Multi-Context Reconfigurable Architectures,” Proc. Design, Automation
and Test in Europe, pp. 547–552.

Singh, H., M.-H. Lee, G. Lu, F. J. Kurdahi, N. Bagherzadeh, and E. M. C. Filho. (2000). “MorphoSys:
An Integrated Reconfigurable System for Data-Parallel and Computation-Intensive Applications,” IEEE
Trans. on Computers, Vol. 49, No. 5, May 2000, pp. 465–481.

Teich, M., S. Fekete, and J. Schepers. (1999). “Compile-time optimization of dynamic hardware recon-
figurations,” Proc. Intl. Conf. on Parallel and Distributed Processing Techniques and Applications,
pp. 1097–1103.

Trimberger, S. (1998). “Scheduling designs into a time-multiplexed FPGA,” Proc. Int. Symp. Field Pro-
grammable Gate Arrays, pp. 153–160.

Vasilko, M. (1999). “DYNASTY: A Temporal Floorplanning Based CAD Framework for Dynamically Re-
configurable Logic Systems,” Proc. 9th Intl. Workshop on Field-Programmable Logic and Applications,
pp. 124–133.

“The Programmable Logic Data Book,” Xilinx, Inc., 2002.

Chapter 11

Virtual Hardware Byte Code as a Design Platform
for Reconfigurable Embedded Systems

S. Lange, U. Kebschull

Department of Computer Science
University of Leipzig
Augustusplatz 10-11, 04109 Leipzig, Germany
langes@informatik.uni-leipzig.de
kebschull@ti-leipzig.de

Abstract Reconfigurable hardware will be used in many future embedded applications.
Since most of these embedded systems will be temporarily or permanently con-
nected to a network, the possibility to reload parts of the application at run time
arises. In the 90ies it was recognized, that a huge variety of processors would
lead to a tremendous amount of binaries for the same piece of software. For the
hardware parts of an embedded system, the situation today is even worse. The java
approach based on a java virtual machine (JVM) was invented to solve the prob-
lem for software. In this paper, we show how the hardware parts of an embedded
system can be implemented in a hardware byte code, which can be interpreted
using a virtual hardware machine running on an arbitrary FPGA. Our results show
that this approach is feasible and that it leads to fast, portable and reconfigurable
designs, which run on any programmable target architecture.

11.1 Introduction

With a widespread use of reconfigurable hardware such as FPGAs and
PLDs in devices as well as the interconnection between them through net-
works new possibilities and demands arise. It is now possible to not only
change software components at runtime, but also the hardware logic itself.
This can be done at the customer site without the need of physical access
to the device, possibly even without an explicit interaction with the user. In
order to allow for a multitude of devices to interact with each other, hard-
ware components should be interchangeable in a way that is abstracting from

131

P. Lysaght and W. Rosenstiel (eds.),

© 2005 Springer. Printed in the Netherlands.

New Algorithms, Architectures and Applications for Reconfigurable Computing, 131–143.

132

the specific design of the underlying hardware architecture. However, due to
the lack of a standardized interface to the FPGAs and other common pro-
grammable devices, it is problematic to define logic in a general and portable
fashion.

Reconfiguration in hardware is synonymous with the incorporation of FPGAs
in the design. Unfortunately, the configuration file formats of different FPGAs,
which represent the very essence of reconfigurable hardware, differ greatly and
prove incompatible. The incompatibilities are not only vendor induced, but
moreover root in the different physical layouts of FPGAs. It is therefore not
foreseeable that a standardized, compatible format will be available in the future,
leaving reconfigurable hardware in the same dilemma, software was in a decade
ago. At that time Java was invented to eliminate the compatibility issues caused
by the variety of incompatible processor platforms. Ever since its introduction
the Java concept has been inarguably successful. Reconfigurable hardware faces
the same principle problem as software did. In consequence the Java approach of
abstracting software from the underlying processor platform should be applied
to reconfigurable hardware. One such solution will be presented in the remainder
of this paper.

The approach of the Virtual Hardware Byte Code (VHBC) as described in
this paper provides a means to combine the virtues of hardware design with
the flexibility inherent in software. Algorithms are designed as hardware but
mapped to a special hardware architecture called the Virtual Hardware Machine
(VHM) by a dedicated hardware byte code compiler. The VHM is designed to
be easily implemented on virtually any underlying hardware substrate and acts
as a mediator between an abstract algorithmic description and the hardware
itself.

Another important aspect of a design platform for embedded systems is the
driving need for low power devices. With the advent of wireless communica-
tion devices and hand-held computers (PDA’s, cellular phones) a new door has
been opened towards computing power in the light of information whenever
and wherever it is needed. Fast execution is paramount to keep up with new
ever more involved algorithms. However, this when solved entirely in soft-
ware on state of the art all-purpose processing elements requires ever higher
clock frequencies which puts a heavy burden on the energy resources of any
hand-held device or embedded system. Using dedicated hardware resources
effectively increases the computational power as well as lowers the power con-
sumption, but this comes at the price of very limited flexibility. The VHBC
is specifically designed to represent hardware. Designs mapped to the VHM
will thus run more effectively than corresponding solutions in pure software
on general purpose processors, yielding higher performance and lower power
consumption.

Virtual Hardware Byte Code as a Design Platform 133

11.1.1 State of the Art

At present, the design of a new embedded system usually leads to the de-
ployment of two coexisting design platforms. On one hand, functionality is
cast into hardware by means of ASIC design. ASICs provide the highest per-
formance and the lowest power consumption. However, they do not account for
later changes in functionality demands making reconfigurability impossible.
Moreover, the cost of designing ASICs is skyrocketing. Furthermore, manu-
facturing techniques have ventured deep into the fields of sub-micron physics,
introducing effects unaccounted for in years passed, such as signal integrity,
power leakage or electromigration, which in itself makes it harder to design
working chips and thus extends the amount of money as well as time spent on
designing ASICs. A detailed discussion of these effects, however, is far beyond
the scope of this paper and is discussed in detail in the literature [1]. The other
design platform mentioned is software. Software, being an abstract descrip-
tion of functionality is inherently exchangeable. It allows not only to account
for changing demands, which greatly shortens design cycles, but provides also
means to transfer functionality among systems. Furthermore, processors are ap-
plied “off the shelf”, thus being cost-effective and thoroughly tested. Yet a lot of
different processor platforms exist, leading towards compatibility problems and
a multitude of equivalent implementations of the same application. Far worse,
processors prove to be very power hungry and very complex devices wasting a
lot of available computing power because they are designed to be general pur-
pose, but usually only perform very specific tasks when employed in embedded
systems.

In conjunction, neither software nor ASIC design can sufficiently solve the
problems of modern design challenges. What is needed, is a way to com-
bine the virtues of both design platforms, namely reconfigurability and short
design cycles coupled with fast execution and low power consumption, thus
making hardware “virtual” [2]. FPGAs were a very important step towards
Virtual Hardware, because they offer close resemblance of the performance of
custom-built circuits, yet still provide for changing functionality through recon-
figuration. However, FPGAs show several disadvantages. Most predominantly,
FPGAs do not share a common, standardized way of describing hardware,
but rather differ greatly in the layout and format of their bit file descriptions.
Furthermore, FPGAs impose harsh limitations towards the size of the Virtual
Hardware designs. Although the number of logical gates that can be fit on a
FPGA is increasing, it is still too small for a lot of real world designs to be
implemented entirely on an FPGA. As another aspect, the time needed to re-
configure a whole FPGA, lies well in the range of several milliseconds to
seconds, proving too long for applications which change dynamically during

134

execution. The introduction of partial reconfiguration has helped alleviate the
problem, but in consequence leads to a coarse grain place and route—process
to bind the partial designs to available resources within the FPGA, which has
to be done at runtime on the chip. This however, adds complexity to the sur-
rounding systems, because they have to accommodate for the place and route
logic.

Several proposals have been made addressing different shortcomings of cur-
rent FPGAs. The “Hardware Virtual Machine” [3] [4] project lead by Hugo de
Man at the K.U. Leuven gives attention to the problem of incompatible bit files,
proposing the definition of an abstract FPGA which provides the essence of
FPGAs. Designs are to be mapped onto an abstract FPGA and placed and routed
into small fractions. The so mapped and routed fragments pose an abstract yet
portable representation of the design. In order to allow specific host FPGAs to
make use of it, a Hardware Virtual Machine (HVM) converts the abstract rep-
resentation to bit files specific to the FPGA and reconfigures it. This approach
has the advantage of running the actual design natively on the FPGAs, thus
providing high performance. The conversion itself, however, involves a placing
of the hardware fragments as well as a routing of signals between them on the
FPGA, which requires considerable computational effort and has to be done at
design loading time. Furthermore, FPGA architectures differ greatly and their
common ground might be too small to account for an efficient representation
of Virtual Hardware and allow for great efficiency in the resulting specific bit
files.

Another project, “PipeRench” [5] at CMU in Pittsburgh, addresses the spa-
cial limitation imposed by FPGA design. The basic idea is to identify pipeline
stages within a given design. Each stage is then treated as a single block of
functionality, that is swapped in and out of the FPGA as needed. The control
over the reconfiguration process is given to a special purpose processor that
transfers the stages from an external memory to the FPGA and vice versa. The
project assumes that the reconfiguration of a single pipeline stage can be done
with great speed, allowing for stages to execute while others are reconfigur-
ing. The results of this project present a possibility to design Virtual Hardware
without the need to consider the spatial extend of the underlying reconfigurable
hardware substrate, while also enabling designers to incorporate dynamic re-
configuration code changes into the design, thus clearing the way towards de-
vices that change the functionality provided within the device ad hoc at user
request. The pitfalls of the PipeRench approach clearly lie within its require-
ment of special FPGAs with extremely small reconfiguration delays, as well
as the use of a control processor which turns out to be very complex [6]. Fur-
thermore the architecture provides only limited support for interstage feed-back
data flow, thus restricting the domain of applications to merely time-pipelinable
tasks.

Virtual Hardware Byte Code as a Design Platform 135

11.1.2 Our Approach

Our approach is different from the aforementioned in that it defines means
of implementing the hardware part of an embedded system as an interme-
diate hardware byte code. This byte code describes the hardware net list on
register transfer or logic level. It is compact and provides means to describe the
parallelism of the underlying hardware. A Virtual Hardware Machine (VHM)
interprets the byte code. The VHM is implemented in VHDL and can therefore
be mapped to any target FPGA or even into a CMOS implementation.

The following sections describe the general concept of the Virtual Hardware
Byte Code and the Virtual Hardware Machine. To this point a first implemen-
tation of the VHM is available, which, however, supports only a subset of all
possible features. The byte code reflects this simplification by providing instruc-
tions only on the logic level. These restrictions were imposed to allow for a first
evaluation of the concept. Nevertheless, it should be evident that the concept is
not limited to the current implementation and will in fact be easily adaptable to
descriptions on register transfer level, yielding even higher performance.

11.2 The Virtual Hardware Byte Code

The definition of a coding scheme for virtual hardware reveals several impor-
tant aspects. The most predominant ones are generality and high performance,
which unfortunately proof to be quite orthogonal in this matter. Generality for
one demands that the vast majority of circuits may be feasible within the exe-
cution model of the code while also calling for the highest level of abstraction
of the code from the underlying hardware substrate. Performance on the other
hand requests the code to be as close to the hardware as possible in order to
minimize the overhead induced by emulation on a hardware implementation.
Another important aspect is that hardware reveals a very high level of paral-
lelism. This inherent parallelism should map to instruction level parallelism in
the code in order to increase performance.

With these goals in mind the Virtual Hardware Byte Code has been defined
with a number of features. In order to support a majority of circuits the available
instructions mimic basic logic operations and simple RT-level constructs such
as adders or multiplexers. This also yields a close resemblance of the code to
traditional hardware concepts and thus allows for great efficiency in the ac-
tual implementation of an interpreting hardware processor (Virtual Hardware
Machine). To account for high performance and alleviate the runtime system
from the involved task of extracting instruction level parallelism at runtime the
virtual byte code image is pre-scheduled into blocks of instructions which are in-
dependent of each other. Hence all instructions belonging to the same block can
be executed in parallel without side effects resulting from data dependencies.

136

Table 11.1. Logic Level Instruction set of the Virtual
Hardware Byte Code

OpCode Mnemonic Mathematical Expression

00002 EOB N/A
00012 NOP c = c
00102 MOV c = a
00112 NOT c = a
01002 AND c = a ∧ b
01012 NAND c = a ∧ b
01102 OR c = a ∨ b
01112 NOR c = a ∨ b
10002 XOR c = (a ∧ b) ∨ (

a ∧ b
)

10012 EQ c = (a ∧ b) ∨ (
a ∧ b

)
10102 IMP c = (a ∧ b) ∨ a
10102 NIMP c = a ∧ b

11002 CMOV c =
{

b if a true
c otherwise

The Virtual Hardware Byte Code uses a register transfer model to represent
functionality. Instructions have a fixed format and consist of an operation code,
two source registers and a destination register. The number of bits addressed
by one register has been held flexible to allow for single bit logic instruction
as well as multi-bit RTL-operations. The instructions, which are available to
manipulate register contents represent basic logic operations as well as data
movement instructions. A short overview of the available instruction set for the
logic level operations is given in Table 11.1.

The byte code is structured hierarchically. At the topmost level it consists of
two major parts, the header section, which provides general information about
the circuit embedded in the image as well as information necessary to adapt it to
the specific implementation of the Virtual Hardware Machine. The Virtual Hard-
ware itself is encoded in the second part and consists of an arbitrary number of
instructions grouped into code blocks. In order to illustrate the rationale behind
the available instruction set the CMOV instruction will be described in detail.

The CMOV operation (short for Conditional MOVe) is, as the name suggests,
a conditional operation. It moves the content of the second source register to
the output register if and only if the value contained in the first source register is
not zero. It thus sets itself apart from all other instructions in the instruction set,
because the condition introduces a certain amount of control flow to the code
and opens the possibility to incorporate a dynamic optimization scheme similar
to branch prediction. Conceptually, the CMOV operation takes two data flows,
the one which led to the content already stored in the output register and the
one which contributes to the second input, and chooses among them according

Virtual Hardware Byte Code as a Design Platform 137

0x0000 0x00020x0001 0x0003 0x0004 0x0005 0x0006

0x0000 0x00020x0001 0x0003 0x0004 0x0005 0x0006

PE

XOR 0, 1

PE

AND 0, 1

PE

NOP

PE

AND 4, 6

PE

OR 2, 4

PE

AND 4, 5

PE

AND 5, 6

Figure 11.1. Instruction Mapping.

to the condition in the first input register, thereby discarding the result of one
data flow. The instructions contained in the data flow which was discarded were
thus superfluously computed. Given that the same condition holds in the next
cycle it is possible to speculatively prune that data path.

The Virtual Hardware Byte Code defines every position in a code block to be
available for every possible type of instruction of the instruction set. Therefore
no special positions or slots exist for certain types of instructions. This leaves a
degree of freedom in the placement of instructions, which is used to implicitly
encode the address of the output register and thereby saves the space otherwise
used to explicitly declare it. The address of the destination register is given by
the position of the instruction in its code block starting to count at 0. If for
example an instruction appears on the third position in the code block its output
register address will be 2. Figure 11.1 illustrates how instructions are mapped
to output register addresses.

11.3 The Byte Code Compiler

The Byte Code Compiler is a very important feature of the VHBC approach,
because it provides the means to compile working hardware designs, coded as
a VHDL description, into a portable and efficient VHBC representation, thus
removing the need for redesigning working hardware projects. The tool flow
within the VHDL compiler can basically be divided into three main stages,
the hardware synthesis, the net list to byte code conversion and the byte code
optimization and scheduling.

In the first stage the VHDL description is compiled into a net list of standard
components and standard logic optimization is performed upon it, resulting in an
optimized net list. The design of the compiler chain can be streamlined through
the use of off-the-shelf hardware synthesis tools. Current implementations of
the VHDL compiler make e.g. use of the FPGAExpress tool from Synopsis.
These tools produce the anticipated code using a fairly standardized component
library, as in the case of FPGA Express the SimPrim library from Xilinx. The

138

resulting output of the first stage is converted to structural VHDL and passed
on to the second stage. Most standard industry VHDL compilers with a support
for FPGAs design readily provide the functionality needed for this step and can
therefore be applied.

In the second stage the components of the net list are substituted by VHBC
fragments to form a VHBC instruction stream. Before, however, the components
are mapped to a VHBC representation, the net list is analyzed and optimized
for VHBC. The optimization is necessary because commercial compilers tar-
geting FPGAs usually output designs which contain large amounts of buffers to
enhance signal integrity otherwise impaired by the routing of the signals. Fur-
thermore, compilers show a tendency towards employing logic representations
based on NAND or NOR gates, which are more efficient when cast into silicon.
However, the resulting logic structure is more complex, revealing higher levels
of logic. The code fragments used for substituting the logic components are
based on predefined, general implementations of the latter in VHBC and are
adjusted according to the data flow found in the structural description from
the first phase, thus registers are allocated and the instructions are sequenced
according to the data dependencies inherent.

In the third stage the byte code sequence is optimized and scheduled into
blocks of independent instructions. First of all the data flow graph of the entire
design is constructed, which is possible due to the lack of control flow instruc-
tions such as jumps. The code fragments introduced in the second stage are
very general, so the resulting code gives a lot of room to code optimization
techniques. One such technique is dead code elimination, which removes un-
necessary instructions. The code is further optimized by applying predefined
code substitution rules along the data paths, such as XOR extraction or double-
negation removal, to reduce the number of instructions and compact the code.

The thus optimized code is scheduled using a list based scheduling
scheme [14]. The objective of the scheduling is to group the instructions into
code blocks such that the number of code blocks is minimal and the number
of instructions per code block is evenly distributed among all code blocks.
Furthermore, the time of data not being used, i.e. the number of clock cycles
between the calculation of a datum and its use in another operation should be
minimal. The scheduled code is then converted to the VHBC image format and
the compiler flow concludes.

11.4 The Virtual Hardware Machine

Our approach assumes that hardware descriptions can be translated into a
portable byte code which can efficiently be interpreted by a special hardware
processor called the Virtual Hardware Machine. The design of the VHM is
greatly influenced by the properties of the byte code, namely simple gate level

Virtual Hardware Byte Code as a Design Platform 139

Register File

FU

0x006

FU

0x0050x0040x0030x0020x001

FUFUFUFU FU

0xXXX

Sequencer

Decoder VHBC image

Figure 11.2. Principle components of the Virtual Hardware Machine.

operations and a high level of available instruction level parallelism, which
suppose a VLIW-like architecture with a very high number of functional units
which possess only very small footprints.

The concept of the VHM is a general one. It aims to be easily adaptable to a
variety of of underlying hardware platforms, ranging from standard hardware
CMOS implementations to different reconfigurable hardware substrates such
as FPGAs. Due to differing platform capabilities VHM implementations differ
in the number of available functional units and registers as well as the extend
of the available external port capabilities. In principle, the virtual hardware
machine consists of five components:

Decoder. The decoder takes the byte aligned instruction input stream and
extracts code blocks from it. The instructions embedded in the code blocks
are adapted to the specific VHM implementation, thus register addresses might
have to be recalculated or the register address sizes possibly need to be en-
larged. The adapted instructions are then sent to the instruction caches of the
functional units. Furthermore, the decoder is also responsible for resolving
problems caused by oversized code blocks, meaning that more instructions are
pre-scheduled into a code block than functional units are available. In this case
the scheduler tries to split the code blocks into smaller units.

Functional Units. Functional units execute the instructions of the VHBC.
In order to allow for an efficient execution, each functional unit contains a pro-
cessing kernel, sequencer and an instruction cache. The size of the instructions
cache differs among implementations.

140

Register File. The register file consists of single addressable memory cells.
In the current implementation they possess the width of one bit. In later versions,
when the VHM will work on register transfer level rather than logic, only
registers holding eight or more bit will be appropriate.

Interconnect. The interconnect between the functional units and the register
file allows read access from every functional unit to every register. Write access
to the registers is restricted to exactly one register per functional unit, thus every
functional unit is associated with a hard-wired output register. The interconnect
between the register file and the external ports is triggered by the sequencer.
The values present at the input ports are read at the very beginning of each
macro cycle, overwriting the corresponding registers, whereas the output port
values are altered after all functional units have finished the execution of the
instructions of the final code block.

Sequencer. The global sequencer synchronizes the functional units and trig-
gers the signal propagation to the external ports. Furthermore, it takes care of the
reconfiguration of the functional units. Whenever new VHBC images or frag-
ments arrive the sequencer allows the decoder to extract the new instructions
and distribute them to the functional units. This can be done, by either stopping
the execution of the current VHBC image and fully reconfiguring all FUs with
new code, or by inserting or replacing only certain hardware instructions in the
instruction caches.

11.5 Results

We have presented the concept of the Virtual Hardware Byte Code in a
first preliminary version. To allow for a first feasibility study, the code only
facilitates logic operations. Up to now, a rudimentary implementation of the
Virtual Hardware Machine in VHDL, a cycle-precise simulation environment
as well as a VHDL to VHBC compiler have been implemented to support first
evaluations of the concept.

The VHM currently uses up to 16 functional units, with 16 instructions deep
I-Caches and 32 registers in the register file. We implemented the VHM using
a high level VHDL description and mapped it onto a Xilinx Virtex XCV800
FPGA. First tests show that the current implementation is capable of running
with a core speed of at least 100 MHz.

Due to the simplicity of the current implementation three basic designs have
been analyzed, a Fulladder (2Add), a 4 bit ripple carry adder (4Add) and a
seven segment decoder (7Seg). Furthermore two more involved designs, a 16 bit
counter (Count16) and a basic general purpose processor (GPP), were compiled

Virtual Hardware Byte Code as a Design Platform 141

Table 11.2. Results for different designs running on the VHM and
the Xilinx Virtex

Delay

Blocks Parallelism VHM Virtex Factor

2Add 3 4 30 ns 15.47 ns 1.9
4Add 12 8 120 ns 22.07 ns 5.5
7Seg 8 31 80 ns 12.7 ns 6.2
Count16 15 16 150 ns 18.4 ns 8.2
GPP 37 358 370 ns 58.3 ns 6.3

and simulated using the VHM simulation environment. All five designs show
that the claimed high levels of available instruction level parallelism were well
grounded. Table 11.2 shows the obtained results. All designs were specified
in VHDL and compiled using the VHDL to VHBC compiler. In the table, the
column Blocks describes the number of code blocks found in the VHBC code
and Parallelism the average number of instruction per block. With the number
of code blocks n, a nominal delay d can be calculated for a given design as
follows: d = n

100 MHz = n × 10 ns. The delay values on the VHM were calcu-
lated using this formula. The delays on the Virtex were approximated using the
timing information available from the Xilinx VHDL compiler.

In a second experiment the scalability of the approach with respect to different
numbers of available FU’s was examined. Because the decoder part of the VHM
is not in the critical path of the VHM implementation it was excluded from the
test design. The design itself was implemented with 2 to 16 functional units and
then mapped onto the Xilinx VirtexII. Table 11.3 shows the estimated maximum
clock speed, the number of lookup tables occupied by the design as well as the
number of slices affected.

The results are quite encouraging to presume further work on the Byte Code,
the Virtual Hardware Machine as well as the compiler. They clearly indicate
that a design description employing the VHBC performs only factor 5 to 10

Table 11.3. Space and Timing results for different
VHMs with different numbers of functional units

#FU #LUT #Slices MAX Clock [MHz]

2 10 5 404
4 36 18 341
8 136 69 283

16 544 272 244

142

times slower than the same design compiled directly for a specific FPGA, while
allowing for portability as well as easy run time reconfiguration without the need
for placing and routing. On top of this, the early stage of implementation should
be taken into consideration. Code optimizations as well as more sophisticated
VHM implementations will definitely show even better performance results.

11.6 Conclusions and Future Work

We have defined a Virtual Hardware Byte Code (VHBC) representation for
hardware components in embedded systems, which carries the concept and
virtues of Java into the world of hardware design. As a result we received a
portable and efficient way to transfer hardware designs via standard network
environments. Consequently, we are working on a specially streamlined hard-
ware processor, the Virtual Hardware Machine (VHM), as well as a host of
software tools such as a VHDL compiler and a cycle accurate hardware sim-
ulator to support VHBC. The first version of the VHM has been implemented
and vindicates the idea of implementing hardware components in VHBC and
interpreting it to be viable and feasible.

The main focus of the current work is devoted to an optimized version of the
VHM, which will be implemented on the Xilinx Virtex chip. It will be able to
provide more functional units and a higher number of registers. In the future
we will try to map the VHM design efficiently onto a variety of FPGAs of
different vendors by using a pure VHDL description of the VHM similar to the
C reference implementation of the Java Virtual Machine (C-Machine).

References

M. Mahadevan, R. M. Bradley, Journal of Applied Physics, Vol 79, 1996
M. Budiu, “Application-Specific Hardware: Computing Without CPUs”, citeseer.nj.nec.com/497138.html
Y. Ha, P. Schaumont, M. Engels, S. Vernalde, F. Potargent, L. Rijnders, H. de Man,“A Hardware Virtual

Machine for the Networked Reconfiguration”, In Proc. of 11th IEEE International Workshop on Rapid
System Prototyping (RSP 2000), 2000

Y. Ha, S. Vernalde, P. Schaumont, M. Engels, H. De Man, “Building a Virtual Framework for Networked
Reconfigurable Hardware and Software Objects”, In Proc. of PDPTA ’00, 2000

S. Goldstein et al., “PipeRench: A Coprocessor for Streaming Multimedia Acceleration”, In Proc. of 24th
International Symposium on Computer Architecture, 1999

Y. Chou, P. Pillai, H. Schmit, and J. P. Shen, “PipeRench Implementation of the Instruction Path Coprocessor”,
In Proc. of MICRO ’00, 2000

B. Mei, P. Schaumont, S. Vernalde, “A Hardware-Software Partitioning and Scheduling Algorithm for Dy-
namically Reconfigurable Embedded Systems”

Y. Ha, B. Mei, P. Schaumont, S. Vernalde, R. Lauwereins, H. De Man, “Development of a Design Framework
for Platform-Independent Networked Reconfiguration of Software and Hardware”, In Proc. of FLP,
2001

R. Kress, A Fast Reconfigurable ALU for Xputers, PhD thesis, Universitaet Kaiserslautern, 1996
R. Hartenstein, M. Merz, T. Hoffmann, U. Nageldinger, “Mapping Applications onto reconfigurable

KressArrays”, In Proc. of FLP, 1999
J. Becker, T. Pionteck, C. Habermann, M. Glesner, “Design and Implementation of a Coarse-Grained Dy-

namically Reconfigurable Hardware Architecture”, In Proc. of Workshop on VLSI (WVLSI), 2001

Virtual Hardware Byte Code as a Design Platform 143

C. Nitsch, U. Kebschull, “The Use of Runtime Configuration Capabilities for Networked Embedded Systems”,
In Proc. of DATE’02, Paris, 2002

S. Guccione, D. Verkest, I. Bolsens, “Design Technology for Networked Reconfigurable FPGA Platforms”,
In Proc. of DATE’02, Paris, 2002

G. De Micheli, “Synthesis and Optimization of Digital Circuits”, McGraw-Hill Higher Education,
1994

Chapter 12

A Low Energy Data Management for Multi-Context
Reconfigurable Architectures

M. Sanchez-Elez1, M. Fernandez1, R. Hermida1, N. Bagherzadeh2

1 Dpto. Arquitectura de Computadores y Automatica
Universidad Complutense de Madrid
marcos@fis.ucm.es

2 Dpt. Electrical Engineering and Computer Science University of California, Irvine

Abstract This paper presents a new technique to improve the efficiency of data schedul-
ing for multi-context reconfigurable architectures targeting multimedia and DSP
applications. The main goal of this technique is to diminish application energy
consumption. Two levels of on-chip data storage are assumed in the reconfigurable
architecture. The Data Scheduler attempts to optimally exploit this storage, by
deciding in which on-chip memory the data have to be stored in order to reduce
energy consumption. We also show that a suitable data scheduling could decrease
the energy required to implement the dynamic reconfiguration of the system.

Keywords: Reconfigurable Computing, Memory Management, Energy Consumption,
Multimedia

12.1 Introduction

The emergence of high capacity reconfigurable devices is igniting a revolu-
tion in general purpose processors. It is now possible to tailor make and dedicate
reconfigurable units to take advantage of application dependent dataflow. The
reconfigurable systems combine reconfigurable hardware units with a software
programmable processor. They generally have wider applicability than applica-
tion specific circuits. In addition, they attain a better performance than a general
purpose processor for a wide range of computationally intensive applications.

FPGAs [Brown and Rose, 1996] are the most common fine-grained de-
vices used for reconfigurable computing. Dynamic reconfiguration [Tau et al.,

145

P. Lysaght and W. Rosenstiel (eds.),

© 2005 Springer. Printed in the Netherlands.

New Algorithms, Architectures and Applications for Reconfigurable Computing, 145–155.

146

1995] has emerged as a particularly attractive technique for minimizing the
reconfiguration time, which has a negative effect on FPGA performance. Multi-
context architectures are an example of dynamic reconfiguration, which can
store a set of different configurations (contexts) in an internal memory; when
a new configuration is needed, it is loaded from this internal memory which
is faster than reconfiguration from the external memory. Examples of such ar-
chitectures are MorphoSys [Singh et al., 2000] or FUZION [Meibner et al.,
2001].

Multimedia applications are fast becoming one of the dominating work-
loads for reconfigurable systems. For these applications the system energy is
clearly dominated by memory accesses. Most of these applications apply block-
partitioning algorithms to the input data; these blocks are relatively small and
can easily fit into reasonably sized on-chip memories. Within these blocks there
is a significant data reuse as well as data spatial locality [Sohoni et al., 2001].
Therefore, data management at this block level significantly reduces the system
energy consumption.

Our previous works [Maestre et al., 1999], [Maestre et al., 2001] and
[Sanchez-Elez et al., 2002] discussed scheduling for multi-context architec-
tures, in particular using MorphoSys. The first approach did not deal with
energy minimization and different on-chip memory levels, but the method pre-
sented in this paper optimizes data storage in different on-chip memory levels,
reducing the energy consumption.

Although previous work was done relating to energy optimizations, this kind
of data management for reconfigurable systems has not been discussed in detail
by other authors. A review of data memory design for embedded systems is
discussed in [Panda et al., 2001], but it does not take into account the recon-
figuration energy consumption. A method to decrease the power consumption
by transforming the initial signal or data processing specifications is suggested
in [Wuytack et al., 1994], but it only deals with fine-granularity problems. In
[Kaul et al., 1999] a data scheduler for reconfigurable architectures was pro-
posed, though it does not optimize memory management. However, regarding
memory organization most efforts were made in cache organization for gen-
eral purpose computers, see [Kamble and Ghose, 1997] and [Wilson et al.,
1995], and not on more custom memory organizations, as needed for example
by multimedia and DSP applications.

This paper begins with a brief overview of MorphoSys and its compilation
framework. Section 3 describes the problem, and Section 4 analyzes data man-
agement in the reconfigurable cells internal memory. A data management in
the internal memory to reduce energy consumption is discussed in Section 5.
Section 6 analyzes the low energy data management for different on-chip mem-
ories. Experimental results are presented in Section 7. Finally we present some
conclusions from our research in Section 8.

A Low Energy Data Management for Multi-Context Architectures 147

12.2 Architecture and Framework Overview

This section describes the targeted system M2, the second implementation
of MorphoSys. We also present the development framework that integrates the
Data Scheduler with other compilation tasks.

MorphoSys (Figure 12.1.a) achieves high performance, compared with other
approaches, on several DSP and multimedia algorithms. It consists of an 8 × 8
Array of Reconfigurable Cells (RC Array). Its functionality and interconnection
network are configured through 32-bit context words which are stored in the
Context Memory (CM). The data and results are stored in the Frame Buffer
(FB) that serves as a data cache (level 1), and it is logically organized into
two sets. Data from one set is processed in the current computation, while
the other set stores results in the external memory and loads data for the next
round of computation. Moreover, each cell has an internal RAM (RC-RAM),
level 0 cache, that can be used to store the most frequently accessed data and
results. The Data Scheduler developed in this paper reduces data and results
transfers, and optimizes their storage to minimize energy consumption. There
is also a DMA controller to establish the bridge that connects the external
memory to either the FB or the CM. A RISC processor controls MorphoSys
operation.

Multimedia and DSP applications typically executed on Morphosys are com-
posed of a group of macro-tasks (kernels), which are characterized by their con-
texts and their data. Application assembly code and contexts are written in terms
of kernels that are available in the kernel library included in the MorphoSys
compilation framework (Figure 12.1.b). The Information Extractor generates
the information needed by the compilation tasks that follow it, including kernel
execution time, data size and the number of contexts for each kernel.

(a) (b)

Figure 12.1. (a) MorphoSys chip (b) Framework overview.

148

The Kernel Scheduler explores the design space to generate a possible se-
quence of kernels that minimizes the execution time. It decides which is the best
sequence of kernels and then creates clusters. The term cluster is used here to
refer to a set of kernels that are assigned to the same FB set and whose compo-
nents are consecutively executed. For example, an application is composed of
kernels k1, k2, k3, k4; the kernel scheduler, estimating context and data transfers,
could assign k1 and k2 to one FB set, and k3 and k4 to the other set. This implies
the existence of two clusters c1 = {k1, k2} and c2 = {k3, k4}. Whilst the first
cluster is being executed using data of one FB set and/or RC-RAMs, meanwhile
the contexts and data of the other cluster kernels are transferred to CM and to
the other FB set respectively.

The Context and Data Schedulers specify when and how each transfer must
be performed to reduce energy consumption. The Code Generator builds the
optimized code that is going to be implemented in M2.

12.3 Problem Overview

We propose a new methodology to perform energy efficient data scheduling
on a given set of clusters. The problem could be defined as: “Given an ordered
set of clusters with a known size of data and results, and a memory hierarchy,
find the data scheduling that minimizes the energy consumption”.

Multimedia applications have a significant data reuse as well as spatial local-
ity at kernel level. The Data Scheduler makes good use of this feature to reduce
energy. The data that have a reasonable reuse can be stored in the lowest energy
memory in order to minimize energy consumption as explained below.

The MorphoSys execution model allows overlapping of context and data
transfers with system computation, but it does not allow simultaneous transfers
of data and contexts. Therefore the execution time [Maestre et al., 1999] for
a cluster is the greatest of either the sum of data, results and context transfer
times or the sum of kernel computation times. In particular for multimedia
applications, the data and results transfers are more time consuming than kernels
computation time.

On the other hand, we consider that access to the memory is the major con-
tributor to overall power consumption [Kamble and Ghose, 1997]. The main
sources of memory power are: the power dissipated in the bit-lines, the power
dissipated in word-lines, and the power used to drive the external buses. The
dominant term in memory power consumption comes from charging and dis-
charging the bit lines, the number of bit lines is proportional to the word length
of the memory, and the length of each bit line is proportional to the number
of words contained in memory, so with small memories a small capacity is
switched and less power is consumed. Though memory access has the highest

A Low Energy Data Management for Multi-Context Architectures 149

power contribution, we also took into account the power dissipated by recon-
figurable hardware elements and RISC processor.

The memory access is the major contributor to the overall energy consump-
tion due to power consumption and data access time. The Data Scheduler re-
duces energy consumption by storing the most frequently used data in the
smallest on-chip data memories. In addition, the Data Scheduler allows RF
consecutive kernel executions, reducing context transfers by a factor RF (Con-
texts Reuse Factor), thus, the energy consumption of context memory is also
diminished. Moreover, the Data Scheduler reduces data and context transfers,
which implies that the energy used to drive the external buses is also reduced.

Although our approach to solve this problem targets one particular reconfig-
urable system, MorphoSys, this approach is quite general in nature and may be
easily applied to other reconfigurable and embedded systems.

12.4 Low Energy RC-RAM Management

Memory design in MorphoSys is hierarchical wherein RC-RAM is the lowest
hierarchy level. In the first version of MorphoSys chip (M1) the RC memory
was only used to store data for special algorithms because data transfers to/from
RC-RAM were very time consuming (7 cycles to transfer one word). These
algorithm data were loaded before the application execution and there was no
transfer between the FB and the RC-RAM during the execution.

In M2 we have developed new instructions and contexts, which makes one cy-
cle transfers between FB and RC-RAM possible. It also lets the Data Scheduler
optimize data storage in on-chip memories. The new instructions and contexts
let these transfers to be carried out through DMA. A new Tiny RISC instruc-
tion loads DMA with the FB start address, number of words, transfer type
(load/store) and RC cell. RC-RAM access is controlled by new contexts, which
contain the address register and the transfer type.

On the other hand, MorphoSys speed is limited by the access time to the
FB. The Tiny RISC makes the instructions, which do not process FB data, run
faster than the dependent ones. As RC-RAMs are within RC, the instructions
dependent on these memories are quicker than the instructions in the FB, and
they are also smaller than the FB, so they consume less energy. It therefore seems
that load data in RC-RAM should reduce energy consumption, but this is not
always true. There is an increase in execution time due to the data transfers from
the FB to the RC-RAMs having to be done within their cluster computation time,
instead of overlapping with previous cluster computation, as occurs in transfers
between the external memory and the FB. And there is also an increase in
power because data from the external memory must be loaded first into the FB
and then into RC-RAM. However, if the data stored in the RC-RAM are read

150

enough times (nmin), the decrease in energy consumption from processed data
stored in RC-RAMs is larger than the energy wasted in transferring data from
FB to RC-RAMs [Sanchez-Elez et al., 2003].

The Data Scheduler attempts to keep the data and results in the RC-RAM
until the last kernel that processes these data is executed. EFRC reflects the
energy reduced if these data or results are kept in RC-RAM:

EFRC(D) = (nacc − nmin(d)) · D(u, v)2 · N 2

EFRC(R) = (nacc − nmin(r)) · R(u, v)2 · N 2

nacc: number of instructions that read those data or results. nmin(): the minimum
number of instructions to improve energy consumption (d: data; r: results).
D(u,v): the size of input data stored in the RC-RAM for cluster u and processed
by cluster v (data shared among clusters). R(u,v): the size of results stored in
the RC-RAM for cluster u and processed by cluster v (results shared among
clusters).

The Data Scheduler stores data and results following the energy factor until
no more data fit into RC-RAM. The data size stored in the RC memories (RCDS)
can be obtained by the sum of all sizes of data and results. It takes into account
that data have to be stored before the first cluster that uses them is executed. The
results are stored while the kernel that produces them is executed and the space
occupied by the results or data that are not going to be used again is released
and can be used to store new data or results.

RCDS = MAX
cε{1,...,N }

{
c,N∑

u=1,v=c

(
MAX

kε{1,...,n}

[
n∑

i=k

d1(u, c) +
k,n∑

i=1, j=k

ri j (c, v)

])

+
c−1,N∑

u=1,v=c+1

(D(u, v) + R(u, v))

}

d j (u,c): input data size for kernel k j of cluster c, these data were stored in
RC-RAM for cluster u execution. ri j (c,v): intermediate results size of kernel k j

of cluster c which are data for kernel k j of cluster v, and not for any kernel
executed after it.

The Data Scheduler sorts the data and results to store in RC-RAM according
to EFRC . It starts checking that the data with the highest EFRC fit in the RC-
RAM. Scheduling continues with data or results with less EFRC. If RCDS >

RC-RAM-size for some data or results, these are not stored. The Data Scheduler
stores the highest possible amount of data or results that minimizes energy
consumption. The Data Scheduler repeats this algorithm for all the 64 RC cells.
However, in most cases, this is not necessary because the 64 RC cells have the
same execution behavior, though on different data.

A Low Energy Data Management for Multi-Context Architectures 151

12.5 Low Energy FB Management

There are also data shared among clusters or results used as data by some
clusters that are not stored in RC-RAMs. The Data Scheduler attempts to keep
these data or results in the FB instead of reloading them in each cluster execution,
to increase energy reduction. This data transfer reduction between the FB and
the external memory was discussed in [Sanchez-Elez et al., 2002]. The main
difference between that scheduling and the scheduling proposed here is the
RC-RAM memory management. The Data Scheduler finds the external data
and intermediate results shared among clusters but not stored in any RC-RAM.
It attempts to keep these in the FB instead of reloading them to increase energy
reduction. EFFB reflects the energy reduced if these data or results are kept in
the FB:

EFRC(D) = D(u, v)2 · (N − 1)2

EFRC(R) = R(u, v)2 · (N + 1)2

The Data Scheduler keeps data and results shared among clusters following the
energy factor until no more data fit into the FB. The data size stored in the FB
for cluster c (FBDS(c)) can be obtained by the sum of the sizes of all data and
results plus the size of the data stored in the FB before transferring them to the
RC-RAMs (DRC) and of the results previously stored in the RC-RAMs loaded
in the FB before transferring them to the external memory (RRC).

FBDS(c) = MAX

{
DRC(c) =

n∑
i=1

di , MAX
kε{1,...,n}

×
[

n∑
i=k

d1 =
k∑

i=1

(
rout1 +

n∑
j=k

ri, j

)]
RRC(c) +

n∑
i=1

rout1

}

+
c−1,N∑

u−1,y=c+1

(D(u, v) + R(u, v))

The Data Scheduler reduces energy because data and results used by cluster
kernels are loaded only once even though more than one kernel uses them.
Memory write and read operations are executed mainly in the RC-RAMs which
consumes less energy than the FB. The Data Scheduler minimizes write and
read to/from the external memory due to the fact that it tries to transfer only the
input data and the output results of the application, keeping the intermediate
results, when possible, in the FB and RC-RAMs.

152

12.6 Low Energy CM Management

The Data Scheduler also reduces energy consumed by the CM by taking into
account multimedia application data characteristics. They are composed of a
sequence of kernels that are consecutively executed over a part of the input data,
until all data are processed. For example, an algorithm would need to process
the total amount of data n times, in this case the contexts of each kernel may be
loaded into the CM n times. However, loop fission can be applied sometimes to
execute a kernel RF consecutive times before executing the next one (loading
kernel data for RF iterations in the FB). In this case kernel contexts are reused
because they have to be loaded only n/RF times, reducing context transfers from
the external memory and thus minimizing energy consumption. The number
of consecutive kernel executions RF (Reuse Factor) is limited by the internal
memory sizes. The Data Scheduler finds the maximum RF value taking into
account memories and data sizes.

As Morphosys architecture has two on-chip memory levels (FB and RC-
RAMs) with different amount of data stored in them, the Data Scheduler can
obtain different RF values, RFRC and RFFB, which stand for the reuse factor
allowed by the RC-RAMS and by the FB respectively. RF may be the same for
all clusters and reconfigurable cells on account of data and results dependencies,
the Data Scheduler finds the RF that minimizes the energy consumption taking
into account the RFRC and RFFB values, and the data reuse among clusters.

The Data Scheduler finds the RF that minimizes energy as follows:

– If RFFB ≤ RFRC then RF = RFFB, because all data have to be stored
beforehand in FB.

– If RFFB > RFRC the Data Scheduler reduces RFFB, if this means energy
reduction, or it increases RFRC reducing data stored in the RC-RAMs if
this implies energy reduction. The Data Scheduler does this till RFFB =
RFRC = RF.

This RF maximizes data reuse, but it does not context reuse. This data and
context scheduling minimizes energy but could not be the minimum one. The
Data Scheduler increases RF, increasing context reuse, till maximum possible
value, and as a consequence reducing data reuse if this implies a reduction in
energy consumption. Thus the final RF value obtained by the Data Scheduler
minimizes energy consumption, although this value could not maximize data
or context reuse (Figure 12.2).

Although the number of memory access could not be minimized, there
are other techniques to minimize energy consumption. For example, reduc-
ing switching activity on the memory address and data buses produces a de-
crease in energy consumption. These energy reductions can be brought about
by the appropriate reorganization of memory data, thus consecutive memory
references exhibit spatial locality. This locality, if correctly exploited, results in

A Low Energy Data Management for Multi-Context Architectures 153

Figure 12.2. Energy consumption for different RF. RF = 0 without scheduling; RF = 1 max-
imum data reuse; RF = 4 maximum contexts reuse; RF = 3 Data Scheduler RF.

a power-efficient implementation because, in general, the Hamming distance
between nearby addresses is less than that between those that are far apart
[Cheng and Pedram, 2001]. During the cycles for which the data-path is idle,
all power consumption can then be easily avoided by any power-down strategy.
A simple way to achieve this is, for example, the cheap gated-clock approach
[Van Oostende and Van Wauve, 1994].

12.7 Experimental Results

In this section we present the experimental results for a group of synthetic and
real experiments, in order to demonstrate the quality of the proposed method-
ology. As a real experiment we have developed a ray-tracing algorithm for
MorphoSys [Du et al., 2003]. The algorithm involves projecting rays into the
computer’s model of the world to determine what color to display at each point
in the image.

The data scheduling depends on kernel scheduling, data size and available
internal memory. We analyze different kernel schedules for different mem-
ory sizes as shown in Table 12.1. We compared the Previous Data scheduler
[Sanchez-Elez et al., 2002] and the Data Scheduler proposed in this paper with
the Basic Scheduler [Maestre et al., 1999]. E1 stands for the relative energy
improvement on the Previous Data Scheduler and E2 stands for the relative
energy improvement of the current Data Scheduler. We also did a comparison
between the Data scheduler and the Previous Data Scheduler (E1-2).

We tested the same kernel schedules for different memory sizes as shown
Table 12.1, A1-A2 or B1-B2 or RT1-RT2. RC-RAM size is always smaller than
FB size because RC-RAM is hierarchically the lowest memory. A1 and A2 have

154

Table 12.1. Experimental results

N n DS RAM FB RF E1(%) E2(%) E1-2(%)

A1 5 4 1.1 0.125 0.5 2 45 53 18
A2 5 4 1.1 0.06 0.25 1 5 20 16
B1 5 5 2.7 0.25 1 5 60 65 15
B2 5 5 2.7 0.5 1 5 60 69 28
C 4 3 2.5 0.25 1 5 55 68 30
RT1 4 2 2 0.25 1 1 6 26 22
RT2 4 2 2 0.5 2 3 55 68 37
RT3 7 2 4 0.5 2 2 55 58 10

N: total number of clusters; n: maximum number of kernel per cluster; DS: total data size per iteration (input
data + intermediate results + final results); RF: reuse context factor; FB: one FB set size in KB; RAM:
RC-RAM size in KB; E1, E2, E1-2: Data Schedulers Relative Improvement.

few data stored in RC-RAM since the majority of data are not read many times.
The increase in FB size achieves a better reduction in energy consumption by
avoiding context transfers.

B1 and B2 have many data stored in RC-RAM. For B1 all the most accessed
data cannot be stored in RC-RAM. Therefore an increase in RC-RAM size,
as B2 shows, achieves a better result. RT1 and RT2 represent simple image
ray-tracing, and for this case an increase in RC-RAM size does not improve
energy performance because most of the accessed data fit into the RC-RAM.
However an increase in FB and RC-RAMs sizes allows context reuse. Although
the increase in memory size is more energy consuming this is worthwhile due
to greater data and context reuse. The experiment C stands for an intermediate
example between A and B. RT3 stands for a more complicated image ray-
tracing, which increases data size and number of kernels. In all cases the Data
Scheduler achieves better energy results than the previous version, as E2 and
E1-2 show, due to the current Data Scheduler improving of FB, RC-RAMs and
CM usage, minimizing energy consumption.

12.8 Conclusions

In this work we have presented a new technique to improve data scheduling
for multi-context reconfigurable architectures. It stores the most frequently
accessed data in the on-chip memories (FB or RC-RAMs) to minimize data
and context transfers, reducing the energy consumption. The Data Scheduler
decides which data or results have to be loaded into these internal memories to
reduce energy consumption.

The Data Scheduler allows data and results reuse within a cluster, minimizing
the memory space required by cluster execution, and enables the reuse of data

A Low Energy Data Management for Multi-Context Architectures 155

and results among clusters if the FB has sufficient free space. It chooses the
shared data or results to be kept within the FB, allowing further reductions in
transfers to/from the external memory.

The Data Scheduler maximizes the available free space in the FB. This
enables the number of consecutive iterations (RF) to increase and as a con-
sequence, kernel contexts are reused during these iterations, reducing context
transfers.

The experimental results demonstrate the effectiveness of this technique in
reducing the energy consumption compared with previous data schedulers.

References

Brown, S. and Rose, J. (1996). Architecture of fpgas and clpds: A tutorial. IEEE Design and Test of Computer,
13(2):42–57.

Cheng, W. and Pedram, M. (2001). Low power techniques for address encoding and memory allocation.
ASP-DAC Proceedings, pages 242–250.

Du, H., M., S.-E., and et al, T. N. (2003). Interactive ray tracing on reconfigurable simd morphosys. ASP-DAC
Proceedings.

Kamble, M. B. and Ghose, K. (1997). Analytical energy dissipation models for low power caches. Proceedings
of the ACM/IEEE International Symposium on Microarchitecture, pages 184–193.

Kaul, M., R., V., S., G., and I., O. (1999). An automated temporal partitioning and loop fission approach for
fpga based reconfigurable synthesis of dsp applications. Proceedings 36th Design Automation Confer-
ence, pages 616–622.

Maestre, M., F., K., M., F., N., B., and H., S. (2001). Configuration management in multi-context reconfig-
urable systems for simultaneous performance and power optimizations. Proceedings of the International
Symposium on System Sinthesys, pages 107–113.

Maestre, M., F., K., N., B., H., S., and M., F. (1999). Kernel scheduling in reconfigurables architectures.
DATE Proceedings, pages 90–96.

Meibner, M., S., G., W., S., J., P., and D., L. (2001). Parallel volume rendering on a single-chip simd
architercture. IEEE Symposium on Parallel and Large-Data Visuallization and Graphics.

Panda, P. R., F., C., K., D. N. D. D., E., B., C., K., A, V., and P., K. (2001). Data and memory optimization
techniques for embedded systems. ACM Transactions on Design Automation of Electronic Systems,
6(2):149–206.

Sanchez-Elez, M., M., F., L., A. M., H., D., N., B., and M., F. (2003). Low energy data management for
different on-chip memory levels in multi-context reconfigurable architectures. DATE Proceedings, pages
36–41.

Sanchez-Elez, M., M., F., R., M., F., K., R., H., and N., B. (2002). A complete data scheduler for multi-context
reconfigurable architectures. DATE Proceedings, pages 547–552.

Singh, H., M., L., G., L., F., K., and N., B. (2000). Morphosys: An integrated reconfigurable system for
data-parallel and computation-intensive applications. IEEE Transactions on Computers, 49(5):465–481.

Sohoni, S., R., M., Z., X., and Y., H. (2001). A study of memory system performance of multimedia appli-
cations. SIGMETRICS Performance 2001, pages 206–215.

Tau, E., D., C., I., E., J., B., and A., D. H. (1995). A first generation dpga implementation. Canadian Workshop
of Field-Programmable Devices.

Van Oostende, P. and Van Wauve, G. (1994). Low power design: a gated-clock strategy. Proceedings of the
Low Power Workshop.

Wilson, P. R., S., J. M., M., N., and D., B. (1995). Dynamic storage application a survey and critical review.
Proceedings of the International Workshop on Memory Management, pages 1–116.

Wuytack, S., F., C., F., F., L., N., and H, D. M. (1994). Global communication and memory optimizing
transformations for low power design. Proceedings of the International Workshop on Low Power Design
IWLPD’94, pages 203–208.

Chapter 13

Dynamic and Partial Reconfiguration in FPGA
SoCs: Requirements Tools and a Case Study

Fernando Moraes, Ney Calazans, Leandro Möller,
Eduardo Brião, Ewerson Carvalho∗

∗
Pontifı́cia Universidade Católica do Rio Grande do Sul (PUCRS)

Av. Ipiranga, 6681—Prédio 30/BLOCO 4—90619—900—Porto Alegre—RS-BRASIL
moraes@inf.pucrs.br

13.1 Introduction

Current technology allows building integrated circuits (ICs) complex enough
to contain all major elements of a complete end product, which are accordingly
called Systems-on-Chip (SoCs) [1]. A SoC usually contains one or more pro-
grammable processors, on-chip memory, peripheral devices, and specifically
designed complex hardware modules. SoCs are most often implemented as a
collection of reusable components named intellectual property cores (IP cores
or cores). An IP core is a complex hardware module, created for reuse and that
fulfills some specific task.

Field Programmable Gate Arrays (FPGAs1) have revolutionized the digital
systems business after their introduction, almost 20 years ago. The first FPGAs
were fairly simple, being able to house a circuit with no more than a few
thousand equivalent gates. They were launched in the mid eighties, at the same
time when rather complex microprocessors like Intel 80386, Motorola 68020
and the first MIPS were already in the market or were about to be launched.
Today, state-of-the-art FPGAs allow accommodating digital systems with more
than 10 million equivalent gates in its reconfiguration fabric alone. Such devices
can clearly be seen as a platform to implement SoCs. IP cores in such a platform
may be implemented using the reconfigurable fabric or hard blocks, available
all in the same device. In addition to the reconfigurable fabric, current FPGAs
may contain one or a few microprocessors, up to hundreds of integer multipliers
and memory blocks, and other specific modules.

157

P. Lysaght and W. Rosenstiel (eds.),

© 2005 Springer. Printed in the Netherlands.

New Algorithms, Architectures and Applications for Reconfigurable Computing, 157–168.

158

FPGAs are extensively employed today for rapid system prototyping, and
in countless finished products. The main FPGA distinguishing feature is the
possibility of changing the system hardware structure in the field, a process
known as reconfiguration. Device reconfiguration enables the incremental de-
velopment of systems, the correction of design errors after implementation,
and the addition of new hardware functions. Systems built with FPGAs can
be statically or dynamically reconfigured. A static reconfigurable system is one
where it is necessary to completely reconfigure it each time any change of the
hardware is required. In this case, system execution stops during reconfigura-
tion. A dynamic reconfigurable system (DRS) allows that part of the system be
modified, while the rest of it continues to operate.

This Chapter focus on the development of DRS design methods targeted
to SoCs implemented on FPGAs. The main distinction between conventional
digital systems design and the methods addressed here is the possibility of
dynamically replacing hardware modules (i.e. IP cores) while the rest of the
system is still working.

Current digital system development tools do not present all the features
required to adequately design DRSs. Some tools were proposed in the past to
allow core parameterization. For example, Luk et al. [2] describe cores using a
proprietary language and translate these automatically to VHDL. FPGA vendors
offer similar tools to allow core parameterization in their design environment.
These are examples of core manipulation early in the design flow, not developed
for DRS.

James-Roxby et al. [3] describe a tool called JBitsDiff, based on the JBits
API [4]. The user generates a core using a standard design flow, defining its
bounding-box with a floorplanning tool. The method presented by Dyer et al. [5]
implements the routing between cores using a structure called virtual socket,
which defines an interface between static and reconfigurable parts of the device.
This interface is built from feed-through routed FPGA logic blocks. The virtual
socket is manually placed and routed to guarantee correct connection between
reconfigurable cores. The PARBIT tool [6] has been developed to transform and
restructure bitstreams to implement dynamically loadable hardware modules.
PARBIT employs a complete bitstream, a target partial bitstream and parameters
provided by the user. PARBIT relies on a modified version of the standard
Xilinx FPGA router to achieve predictable routing. The JPG tool [7] is a Java-
based partial bitstream generator. JPG, based on the Xilinx JBits API, is able
to generate partial bitstreams for Virtex devices based on data extracted from
the standard Xilinx CAD physical design flow. Recently, Xilinx proposed a
DRS technique using its Modular Design flow to allow a limited form of partial
reconfiguration in Virtex devices [8]. To enable the technique, Xilinx made
available the bus macro component, which must be used to create IP core
communication interfaces.

Dynamic and Partial Reconfiguration in FPGA SoCs 159

All these works have as common feature the ability for partial bitstream
generation. To allow generic reuse of cores by partial bitstream replacement, a
more structured approach to provide reconfigurable cores with a communication
interface is required. The most relevant contribution of this Chapter is to present
and compare two such approaches, one developed by the authors, and another
based on the Xilinx DRS technique.

The rest of this work is organized as follows. Section 13.2 presents require-
ments for FPGA SoC DRSs. Section 13.3 describes a set of tools, proposed
to enable the creation of DRSs. Section 13.4 presents a DRS implementation
case study, while Section 13.5 draws some conclusions and directions for future
work.

13.2 Requirements for FPGA SoC DRSs

DRSs can contain at the same time static IP cores and dynamic IP cores, the
latter loaded according to an execution schedule. To achieve partial reconfigu-
ration targeted to core reuse, it is possible to identify six requirements that have
to be fulfilled [9].

FPGAs supporting partial and dynamic reconfiguration. Two FPGA vendors
currently offer support to partial and dynamic reconfiguration in their devices:
Atmel and Xilinx. Atmel produces the AT40K and AT6000 device families.
Atmel devices are not considered further, since their small capacity makes
them inadequate to support FPGA SoCs. Xilinx offers the Virtex, Virtex-II, and
Virtex-II Pro families. The atomic reconfigurable unit in Xilinx devices is a
frame, a vertical section extending from top to bottom of the device. An IP core
is physically implemented in such devices as a set of consecutive frames.

Tools to determine the IP core position and shape. Placement restrictions
must be attached to reconfigurable IPs during DRS design to define their size,
shape and position. The Xilinx Floorplanner is an example of a tool that can be
used to generate such restrictions.

Support for partial bitstream generation and download. The total and partial
reconfiguration protocols are distinct. Thus, special features must be present in
tools used to partially reconfigure FPGAs.

Communication interface between cores. A communication structure among
IP cores is necessary to allow both, the exchange of data and control signals
during normal operation, and insulation during reconfiguration. In a conven-
tional SoC design, standard on-chip bus architectures, such as AMBA and
CoreConnect may be used to provide IP core communication. However, these
architectures do not provide features needed in DRSs like core insulation dur-
ing reconfiguration. To enable dynamic insertion or removal of cores into an
operating FPGA, a communication interface to connect and insulate cores at
different moments must be available. This interface should provide several

160

functions such as arbitration, communication between modules, input/output
pins virtualization and configuration control.

SoC input/output pins virtualization. Most SoCs present a fixed interface
to the external world, even if internally they are reconfigurable. This is done
to restrict the hardware reconfiguration complexity to the intra-chip environ-
ment. Thus, an internally reconfigurable SoC needs to provide I/O capability
to every reconfigurable IP it may possibly lodge. I/O pins virtualization is a
generic feature allowing IP cores to exchange data only with their communi-
cation interface, while extra-chip communication is handled by the SoC fixed
interfaces.

Dynamic reconfiguration control. A method to control or execute the dy-
namic reconfiguration process must be available. This can be implemented in
software, in hardware or using a mix of both.

The first three requirements can be satisfied with existing devices and tools.
To the authors’ knowledge, works fulfilling the last three requirements do not
exist ready for use in commercial devices. In addition, related academic works
do not address communication structures.

13.3 Tools for DRS

This Section presents two approaches to achieve DRS. The first was devel-
oped by the authors, and is based on a tool called CoreUnifier, while the second
is based on a DRS technique proposed by Xilinx.

CoreUnifier

The method based on this tool relies on the usage of a shared global bus,
which is the communication media to interconnect IP cores. It is possible to
dynamically insert and/or remove cores using this communication structure.

The method is divided into three main phases. First, the designer generates a
complete bitstream for each core, using any conventional CAD tool flow. Each
core must have virtual pins, implemented with tristate buffers connected to a
shared bus. In addition, area constraints must be generated for each IP core,
using e.g. floorplanning tools. The second step is the use of the CoreUnifier
tool itself. This tool accepts as input a set of complete bitstreams, one of which,
called master bitstream, comprises static modules responsible for control and
communication. Each of the other complete bitstreams contains one or more
reconfigurable cores of the final system. The CoreUnifier extracts from each of
these bitstreams the area segment corresponding to the specific IP core descrip-
tion and merges it with the appropriate area segment of the master bitstream.
This produces every partial bitstream corresponding to one reconfigurable IP
core. The third phase is the DRS operation that starts when the user downloads

Dynamic and Partial Reconfiguration in FPGA SoCs 161

Shared Bus

Core 1 Core 2

(a) (b) (c)

Shared Bus

Core 2

Figure 13.1. CoreUnifier usage: (a)-(b) complete bitstreams showing the communication
interface and a reconfigurable core; (c) the partial bitstream generated by the CoreUnifier tool.

the master bitstream. Dynamic reconfiguration then proceeds according to some
scheduling scheme. A simple tool, called BitScheduler was also developed as
a proof-of-concept to help validating the method.

Figure 13.1 illustrates the CoreUnifier usage. Figure 13.1(a) and
Figure 13.1(b) shows two distinct cores connected to the shared bus. Assume
that Figure 13.1(a) is the master bitstream. It is important to emphasize that
the physical implementation of the area below Core 1 and Core 2 may be
different, since each one was obtained with different synthesis steps using
non-deterministic placement and routing algorithms. Figure 13.1(c) shows the
replacement of Core 1 by Core 2 into the master bitstream and the partial
bitstream generation. The CoreUnifier replaces only the area above the shared
bus, keeping the previous physical implementation. This was the challenge to
implement this tool, since FPGA vendors do not distribute complete internal
information regarding their devices physical structure.

Xilinx Modular Design based DRS Technique

The DRS technique proposed by Xilinx is based on the Modular Design flow,
a method originally proposed to support team-based system development [8].
The Modular Design flow is divided in three phases: Initial Budgeting, Ac-
tive Module Implementation and Final Assembly. The first phase corresponds
to design partitioning, while the second is related to individual IP cores im-
plementation, and the third regards IP cores integration. The DRS technique
based on Modular Design assumes that each reconfigurable or fixed module
is implemented as a contiguous set of FPGA logic block columns. Also, the
technique requires that intra-chip dynamic module communication be strictly
point-to-point.

The Initial Budgeting phase starts with the generation of a top module de-
scribed in a hardware description language (HDL). This top module instantiates
each IP core of the SoC, but do not contain any IP core internal description. All
reconfigurable modules are connected among them or to fixed modules with

162

the bus macro provided by Xilinx. A bus macro is a pre-defined, pre-routed
component, made up by eight tristate buffers, providing a 4-bit point-to-point
bi-directional communication channel. Bus macros are one way to guarantee
interface insulation for regions under reconfiguration. The FPGA region to be
occupied by each IP core is defined by floorplanning.

The Active Modules Implementation phase starts with the logic synthesis of
each IP core from its HDL description, generating EDIF netlists. Each netlist
is then combined with the appropriate bus macro and floorplanning informa-
tion from the previous phase to produce each reconfigurable module partial
bitstream.

The Final Assembly phase is where system level information about IP core
interfaces, external pins and floorplanning are combined with the fixed and re-
configurable IP cores physical design information, to produce the initial com-
plete bitstream. This bitstream must then be used to configure the FPGA, after
what partial bitstreams obtained in the second phase can be used to perform
partial and dynamic SoC reconfiguration.

To allow partial automation of the Modular Design flow, a tool called MD-
Launcher has been proposed and implemented by the authors [10] to decrease
the amount of manual errors made during implementation. Using the tool, the
user is expected to create the top module and the module files only, using these
as input to the tool, which then automatically performs all phases of the Modular
Design flow.

The capital difference between the CoreUnifier based and the Xilinx DRS
techniques is the communication interface definition. The CoreUnifier is tar-
geted to core reuse, since a shared bus is employed to provide data exchange
between cores, while the Xilinx DRS technique provides only point-to-point
communication using bus macro components. Another difference is that the
CoreUnifier-based technique needs that physical design tools be enhanced be-
fore it can be fully deployed for automated execution. The current available
version of these tools do not allow the required finer control of the positioning
and wiring of elements composing the interface between any reconfigurable IP
core and the rest of the device.

13.4 A DRS Case Study: Design and Experimental
Results

Possibly, the most intuitive form of DRS is one where the instruction set
of a processor is dynamically incremented through the use of reconfigurable
hardware. Such components are generically known as reconfigurable proces-
sors. The first choice that has to be made when implementing a reconfigurable
processor regards the degree of coupling between the basic processor struc-
ture (datapath and control unit) and the reconfigurable units. Tightly coupled

Dynamic and Partial Reconfiguration in FPGA SoCs 163

&")

&")

FPGA

R8R

CCM

Fixed Region

Reconfigurable Region
1

Reconfigurable Region
N

Local
Memory

Serial
Interface

Host
Computer

Configuration
Memory

Physical
Configuration

Interface
(ICAP)

remove

reconf
ack

a
r
b
i
t
e
r

IOce

IOdata_in

IOaddress

IOdata_out

IOrack

IOreset

IOrw

Reconfigurable
Coprocessor

1

Reconfigurable
Coprocessor

N

B
us

 M
ac

ro
s

B
us

 M
ac

ro
s

B
us

 M
ac

ro
s

Figure 13.2. General structure of the R8R system implementation.

reconfigurable processors rely upon the dynamic modification of the datapath
and/or the control unit to provide extension to the native Instruction Set Ar-
chitecture (ISA). Loosely coupled reconfigurable processors usually provide a
standard interface to reconfigurable units and employ specialized instructions
to allow communication between these and the processor units. Examples of
tightly coupled approaches are the classical DISC [11] and the Altera Nios [12].
The latter approach can be exemplified by the Garp architecture [13] and the
case study described herein (R8R).

Figure 13.2 displays the conceptual organization of the R8R system imple-
mentation. The system is composed by three main modules: (i) a host computer,
providing an interface to the system user; (ii) a configuration memory, contain-
ing all partial bitstream files used during the system execution; (iii) the FPGA,
containing fixed and reconfigurable regions of the R8R system.

The fixed part in the FPGA is a complete computational system, comprising
the R8R processor, its local memory containing instructions and data, a system
bus controlled by an arbiter and peripherals (serial interface and CCM). The
serial interface peripheral provide capabilities for communication with the host
computer (an RS232-like serial interface). The Configuration Control Manager
(CCM) peripheral is a specialized hardware, designed for acting as a slave of
the R8R processor or the host computer. The host computer typically fills or
alters the configuration memory before system execution starts.

The normal operation of the CCM module is to wait for the R8R processor
to produce coprocessor reconfiguration requests using the reconf signal, while

164

informing the specific coprocessor identifier in the IOaddress lines. If the co-
processor is already in place (an information stored in CCM internal tables), the
ack signal is immediately asserted, which releases the processor to resume in-
struction execution. If the coprocessor is not configured in some reconfigurable
region, the reconfiguration process is fired. The CCM is responsible to locate the
configuration memory area where lies the adequate bitstream from the copro-
cessor identifier. This bitstream is read from memory and sent, word by word,
to the Physical Configuration Interface. For Virtex-II devices this corresponds
to the ICAP FPGA module. In this case, only after the reconfiguration process
is over the ack signal is asserted. The remove signal exists to allow the R8R
processor to invalidate some reconfigurable coprocessor. This is useful to help
the CCM to better choose which is the most adequate region to reconfigure next.

The R8R processor is based on the R8 processor, a 16-bit load-store 40-
instruction RISC-like processor [14]. R8 is a von Neumann machine, whose
logic and arithmetic operations are executed among registers only. The register
bank contains 16 general-purpose registers. Each instruction requires at most
4 clock cycles to execute. The processor is a RISC-like machine, but still missing
some characteristics so common in most RISC processors, such as pipelines.
The original R8 processor was transformed into the R8R processor by the
addition of five new instructions, intended to give support to the use of partially
reconfigurable coprocessors. The added instructions are defined and described
in Table 13.1. The R8R processor was wrapped to provide communication with
the (i) local memory; (ii) the system bus; (iii) the CCM; (iv) the reconfigurable

Table 13.1. Instructions added to the R8 processor in order to produce the R8R processor.

Reconfigurable
instruction Semantics description

SELR address Selects the coprocessor identified by address for communication with the
processor, using the reconf signal. If the coprocessor is not currently
loaded into the FPGA, the CCM automatically reconfigures some
region of the FPGA with it.

INITR address Resets the coprocessor specified by address, using the IOreset signal.
The coprocessor must have been previously configured.

WRR RS1 RS2 Sends the data stored in RS1 and RS2 to the coprocessor selected by
the last selr instruction. RS1 can be used for passing a command
while RS2 passes data. The coprocessor must have been previously
configured.

RDR RS1 RT2 Sends the data stored in RS1 to the coprocessor (typically a command or
an address). Next, reads data from the coprocessor, storing it into the
RT2 register. The coprocessor must have been previously configured.

DISR address Informs the CCM, using the remove signal, that the coprocessor specified
by address can be removed if needed.

Dynamic and Partial Reconfiguration in FPGA SoCs 165

regions. The interface to the reconfigurable regions comprises a set of signals
connected to bus macros. Partial bitstreams for the R8R system are generated
using the previously described Xilinx DRS design flow.

The processor-coprocessor communication protocol is based on read/write
operations. Write operations are used by the processor to send data to some
coprocessor. A write operation uses IOce, IOrw, IOdata out and IOaddress
signals, broadcasting these to all reconfigurable regions. The reconfigurable re-
gion containing the address specified by the IOaddress signal gets the data. The
read operation works similarly, with the difference that data flows from a copro-
cessor to the processor. The IOreset is asserted by the processor to initialize one
of the coprocessors. The communication among processor and coprocessors is
achieved by using bus macros. In this communication scheme the processor is
the system master, starting all read/write operations. The next version of this
system will include the use of interrupt controlled communication, which will
allow to implement non blocking operations and coprocessor-initiated commu-
nication.

The above described system has been completely prototyped and is opera-
tional in two versions, with one and two reconfigurable regions, respectively. A
V2MB1000 prototyping platform from Insight-Memec was used. This platform
contains a million-gate XC2V1000 Xilinx FPGA, memory and I/O resources.
For validation purposes, the whole system was partitioned in two blocks: one
comprising the CCM and the Physical Configuration Interface modules, and
another with the rest of the system. Each block was validated separately. The
merging of the blocks is currently under way.

In order to evaluate the relative performance of the implemented recon-
figurable system, a set of experiments was conducted. For each experiment, a
functionality was implemented in both software and hardware, as a coprocessor.
Each implementation was executed in a system version with one reconfigurable
region, and their execution times were compared. The execution time for the
hardware version in each experiment includes not only the coprocessor execu-
tion time, but also the time to load the coprocessor into the FPGA by reconfig-
uration. Figure 13.3 shows the comparison between the number of operations
executed and the time to execute hardware and in software versions of three
16/32-bit arithmetic nodules: multiplication, division and square root. Note that
for each module, the execution time grows linearly but with different slopes for
software and hardware implementations. Also, the reconfiguration time adds a
fixed latency (10 ms) to the hardware implementations. The break even point
for each functionality determines when a given hardware implementation starts
to be advantageous with regard to a plain software implementation, based on
the number of times this hardware is employed before it is reconfigured. The
multiplier, division and square root coprocessors are advantageous from 750,
260 and 200 executions, respectively. This simple experiment highlights how in

166

0

250

500

750

1000

1250

1500

1750

2000

0 5 10 15 20 25

N
um

be
r

of
 o

pe
ra

tio
ns

Execution Time (ms)

sqrt_sw
sqrt_hd

mult_sw
mult_hw

div_sw
div_hd

Figure 13.3. Execution time versus the number of operations for three arithmetic modules,
multiplication, division and square root, implemented in hardware (hw suffix) and software
(sw suffix). The hardware reconfiguration latency, 10ms, is dependent on the size of the
reconfigurable region partial bitstream and on the performance of the CCM module. This
graph was plotted for a CCM working at 24 MHz frequency and for reconfigurable bitstreams
of 46 Kbytes, corresponding to a reconfigurable region with an area of roughly one tenth of
the employed million-gate device. With more design effort it is estimated that this latency can
be reduced by at least one order of magnitude, for the same bitstream size [10].

practice it is possible to take advantage of DRSs, achieving performance gains,
flexibility and system area savings.

13.5 Conclusions

A DRS potentially reduces the final system cost, since the user can employ
smaller FPGAs, downloading partial bitstreams on demand. In addition, partial
reconfiguration makes possible for systems to benefit from a virtual hardware
approach, in the same manner that e. g. computers benefit from the use of virtual
memory.

It should be clear after the above discussion that partial and dynamic recon-
figurable FPGA SoCs are viable to be implemented. However, there are several
open issues that must be addressed in order to allow the technology to become
mainstream.

First, the lack of tools to deal with the differences between a static SoC design
flow and a DRS SoC design flow is acute and crucial. It is acute, since available
tools are only incremental additions to static flows and most of them address

Dynamic and Partial Reconfiguration in FPGA SoCs 167

only lower level tasks automation. It is crucial since, unless an automated flow
exists to support DRS, no industrial adoption of DRS can be expected. Second,
just one vendor really gives device support to FPGA SoCs. Even these devices
are not ideal for a seamless DRS design flow. For example, there is a relatively
small number of tristate components available in Virtex FPGAs, limiting the
development of complex communication interfaces for DRS.

However, it is already possible to devise some trends arising in the DRS
horizon. There is a trend to incrementally add hardware and software support
for DRS. For example, Xilinx recently introduced the JBits 3.0 API to manip-
ulate partial bitstreams in its Virtex-II family of FPGAs. In the hardware side,
an internal module in Virtex-II FPGAs provides access to the configuration
interface from inside the device, a feature absent in previous FPGA families.
As enhancements are made available, a boost in the DRS use can be expected,
providing positive feedback to work in the area.

The DRS application area is another crucial point. Unless sound applications
are developed to show real advantage of a DRS design solution over conven-
tional solutions, DRS will remain no more than an academic exercise on an
interesting subject area.

Notes

1. Any reference to FPGAs here concerns RAM based FPGAs, where configuration and
reconfiguration are synonyms.

References

[1] R. Bergamaschi; et al. Automating the Design of SOCs using Cores. IEEE Design & Test of Computers,
vol 18(5), 2001. pp. 32–45.

[2] W. Luk; S. McKeever. Pebble: a Language for Parametrised and Reconfigurable Hardware Design. In:
Field Programmable Logic and Applications (FPL), pp. 9–18, 1998.

[3] P. James-Roxby; S. Guccione. Automated Extraction of Run-time Parameterisable Cores from Pro-
grammable Device Configurations. In: Field-Programmable Custom Computing Machines (FCCMt’00),
pp. 153–161, 2000.

[4] Xilinx, Inc. The JBits 2.8 SDK for Virtex, 2001.
[5] M. Dyer; C. Plessl; M. Platzner. Partially Reconfigurable Cores for Xilinx Virtex. In: Field Pro-

grammable Logic and Applications (FPL), pp. 292–301, 2002.
[6] E. Horta; J. Lockwood; S. Kofuji. Using PARBIT to implement Partial Run-time Reconfigurable Sys-

tems. In: Field Programmable Logic and Applications (FPL), pp. 182–191, 2002.
[7] A. Raghavan; P. Sutton. JPG—a Partial Bitstream Generation Tool to Support Partial Reconfiguration in

Virtex FPGAs. In: International Parallel and Distributed Processing Symposium (IPDPS), pp. 155–160,
2002.

[8] Xilinx, Inc. Two Flows for Partial Reconfiguration: Module Based or Difference Based. Application
Note XAPP290, Version 1.1. http://www.xilinx.com/xapp/xapp290.pdf, November, 2003.

[9] D. Mesquita; F. Moraes; J. Palma; L. Mller; N. Calazans. Remote and Partial Reconfiguration of FPGAs:
Tools and Trends. In: 10th Reconfigurable Architectures Workshop (RAW), 2003.

[10] E. Brião. Partial and Dynamic Reconfiguration for Intellectual Property Cores. MSc Dissertation,
PUCRS, Faculty of Informatics. 110 p. January, 2004. (In Portuguese)

168

[11] M. Wirthlin and B. Hutchings. A Dynamic Instruction Set Computer. In: Field-Programmable Custom
Computing Machines (FCCM’95), pp. 99–107, 1995.

[12] Altera Corp. Nios Embedded Processor System Development. http://www. altera.com/products/ip/
processors/nios/nios-index.html, 2003.

[13] T. Callahan; J. Hauser, J. Wawrzynek. The Garp Architecture and C Compiler. IEEE Computer, vol
33(4), pp. 62–69, 2000.

[14] F. Moraes; N. Calazans. R8 Processor—Architecture and Organization Specification and Design Guide-
lines. http://www.inf.pucrs.br/∼ gaph/Projects/R8/public/R8 arq spec eng.pdf, 2003.

Applications

Chapter 14

Design Flow for a Reconfigurable Processor
Implementation of a Turbo-decoder

Politecnico di Torino
Dipartimento di Elettronica
corso Duca degli Abruzzi 24
10129 Torino—Italy
{larosa,lavagno,passerone}@polito.it

Abstract This paper describes an approach to hardware/software design space exploration
for reconfigurable processors. The existing compiler tool-chain, because of the
user-definable instructions, needs to be extended in order to offer developers an
easy way to explore the design space. Such extension often is not easy to use
for developers who have only a software background, and are not familiar with
reconfigurable architecture details or hardware design. Our approach differs from
others because it is based on a simple extension of the standard programming
model well known to software developers. We illustrate it by using a real case
study, a software implementation of a UMTS turbo-decoder that achieves a 11×
speed-up of the whole application, by exploiting user-defined instructions on the
dynamically reconfigurable portion of the datapath.

Keywords: FPGA, Reconfigurable Hardware, Design Flow, Software Development, Turbo-
decoding

14.1 Introduction

Reconfigurable computing is emerging as a promising means to tackle the

cuits. Adding a reconfigurable portion to a Commercial Off The Shelf IC en-
ables it to potentially support a much broader range of applications than a
more traditional ASIC or microcontroller or DSP would. Moreover, run-time
reconfigurability even allows one to adapt the hardware to changing needs and
evolving standards, thus sharing the advantages of embedded software, but still

171

P. Lysaght and W. Rosenstiel (eds.),

© 2005 Springer. Printed in the Netherlands.

ever-rising cost of design and masks for Application-Specific Integrated Cir-

New Algorithms, Architectures and Applications for Reconfigurable Computing, 171–181.

Alberto La Rosa, Luciano Lavagno, and Claudio Passerone

172

achieve higher performance and lower power than a traditional processor, thus
partially sharing the advantages of custom hardware.

A key problem with dynamically reconfigurable hardware is the inherent dif-
ficulty of programming it, since neither the traditional synthesis, placement and
routing-based hardware design flow, nor the traditional compile, execute, debug
software design flow directly support it. In a way, dynamic reconfiguration can
be viewed as a hybrid between:

� software, where the CPU is “reconfigured” at every instruction execution,
while memory is abundant but has limited access bandwidth, and

� hardware, where reconfiguration occurs seldom and very partially, while
memory is relatively scarce but has potentially a very high access band-
width.

Several approaches, some of which are summarized in the next section, have
been proposed to tackle this problem, both at the architecture and at the CAD
level.

In this case study, we consider the XiRisc architecture [3], in which a re-
configurable unit called pGA has been added as one of the function units of a
RISC processor. This approach has the huge advantage, over the co-processor-
based alternatives, that it can exploit, as discussed in the rest of this paper, a
standard software development flow. The pGA can be managed directly by the
compiler, so today the designer just needs to tag portions of the source code that
must be implemented as single pGA-based instructions. The disadvantage of
the approach is that the reconfigurable hardware accesses its main data memory
via the normal processor pipeline (load and store instructions), thus it partially
suffers from the traditional processor bottleneck. Without a direct connection to
main memory, however, we avoid to face memory consistency problems [6, 2],
thus simplifying the software programming model.

In this paper we show that, by efficiently organizing the layout of data in
memory, and by exploiting the dynamic reconfiguration capabilities of the pro-
cessor, one can obtain an impressive speed-up (better than 11×) for a very
compute-intensive task, like turbo-decoding.

The goal thus is to bridge the huge distance between software and hard-
ware, currently at several orders of magnitude, in terms of cost, speed and
power. The result is a piece of hardware that is reconfigured every 100 or so
clock cycles (at least in the application described in this paper; other trade-offs
are possible for applications with a more static control pattern), and within
that interval is devoted to a single computation task. Ideally, we would like
to bring a traditional, hardware-bound task, that of decoding complex ro-
bust codes for wireless communication, within the “software” computation
domain.

Design Flow for a Reconfigurable Processor 173

14.2 Related Work

Coupling a general purpose processor with a reconfigurable unit generally
requires to embed them on the same chip, otherwise communication bandwidth
limitations may severely impact the performance of the entire system. There are
several ways of designing the interaction between them, but they can be grouped
into two main categories: (i) the reconfigurable array is a function unit of the
processor pipeline; (ii) the reconfigurable array is a co-processor communicat-
ing with the main processor. In both cases, the unit can be reprogrammed on the
fly during execution to accommodate new kernels, if the available space does
not permit to have all of them at the same time. Often, a cache of configurations
is maintained close to the array to speed up this process.

In the first category we find designs such as PRISC [8], Chimaera [5, 10]
and ConCISe [7]. In these examples the reconfigurable array is limited to com-
binational logic only, and data is read and written directly from/to the register
file of the processor.

The second category includes the GARP processor [2]. Since the reconfig-
urable array is external, there is an overhead due to the explicit communication
using dedicated instructions that are needed to move data to and from the array.
But because of the explicit communication, the control hardware is less compli-
cated with respect to the other case, since almost no interlock is needed to avoid
hazards. If the number of clock cycles per execution of the array is relatively
high, then the overhead of communication may be considered negligible.

In all the cited examples a modified C compiler is used to program the
processor and to extract candidate kernels to be downloaded on the array. In
particular, the GARP compiler [2] and the related Nimble compiler [9] identify
loops and find a pipelined implementation, using profiling-based techniques
borrowed from VLIW compilers and other software optimizations.

Tensilica offers a configurable processor, called Xtensa, where new instruc-
tions can be easily added at design time within the pipeline. Selection of the
new instructions is performed manually by using a simulator and a profiler.
When the Xtensa processor is synthesized, a dedicated development tool-
set is also generated that supports the newly added instruction as function
intrinsics.

A Tensilica processor is specialized for a given algorithm at fabrication
time. On the other hand, a reconfigurable processor can be customized directly
by the software designer. Of course, this added flexibility has a cost: a pGA-
based implementation of the specialized functional unit has area, delay and
power cost that is about 10 times larger than an ASIC implementation, such as
Xtensa.

The architecture we are considering falls in the first of the above categories,
but it allows sequential logic within the array, thus permitting loops to be

174

executed entirely in hardware. The software development flow, on the other
hand, is similar to the Tensilica one, in that we rely on manual identification of
the extracted computational kernels. However, we do not require re-generation
of the complete tool chain whenever a new instruction is added.

14.3 Design Flow for the Reconfigurable Processor

We are targeting a reconfigurable processor, called XiRisc, that is being
developed by the University of Bologna and is described in [3]. Here we will
briefly outline the main characteristics, that are useful to understand the rest of
the paper.

The processor is based on a 32-bit RISC (DLX) reference architecture. How-
ever, both the instructions set and the architecture have been extended to support:

� Dedicated hardware logic to perform multiply-accumulate calculation
and end-of-loop condition verification.

� A double data-path, with concurrent VLIW execution of two instructions.
The added data-path is limited to only arithmetic and logic instructions,
and cannot directly access the external memory subsystem.

� A dynamically reconfigurable array called pGA (for pico Gate Array) to
implement in hardware special kernels and instructions. The pGA can be
dynamically reconfigured at run-time and can store up to 4 configurations
that can be switched every clock cycle by the instruction decoder. Each
pGA row is composed of 16 4-input, 2-output Look-Up-Tables and 32
register bits and includes a fast carry chain. Different configuration share
the state of the registers inside the array.

Comparing reconfigurable processors with traditional ones, software devel-
opers have to adopt an extended programming model that includes reconfig-
urable units besides their standard instruction set architecture.

Such kind of extensions often require developers to provide architecture-
specific information and to execute user-defined instructions directly through
assembler code or compiler intrinsics (pseudo-function calls), thus lowering
the abstraction level provided by generic programming languages like C or
C++. As consequence, the main drawback of such approaches is that software
developers need to master reconfigurable processor details and hardware de-
scription languages before being productive in writing software for such kind
of computer architectures.

The main goal of compiler tools is that to hide architecture details, by pro-
viding a standardized programming model (variables, arithmetic and logical
operators, control constructs and functions and procedure calls) that permits
code reuse among different computer architectures.

Design Flow for a Reconfigurable Processor 175

Kernel identification
Reconf. scheduling

HW Synthesis
Mapping

HDL C source

Compilation
Simulation

Hardware/Software Synthesis

Design Space Exploration

Application source

Profiling

Figure 14.1. The proposed design flow.

Our approach to reconfigurable computing tries to extend the standard pro-
gramming model to include easy and transparent use of the reconfigurable
instruction set.

The design flow, shown in Figure 14.1, is divided in two main phases:

� Design space exploration: here software developers analyze existing
source code (often written without specific knowledge of the target pro-
cessor), and identify groups of statements that may be implemented as
user-defined instructions on the pGA. Each new instruction is character-
ized by cost figures (latency, power, number of required CLBs) and a soft-
ware functional model, later used in ISS simulation for performance esti-
mation and functional verification. In this way several hardware/software
partitions can be explored and compared.

� Software and hardware synthesis: this phase represents the final link
to the target architecture, when the binary code and the bit-stream for
the pGA are generated through software and hardware compiler tools.
Starting from the functional model of each user-defined instruction, a
netlist of gates is synthesized and mapped on pGA CLBs. In this step real
cost figures are computed. Then the software compilation chain can be
used again, this time with real instruction latency information to optimize
instruction scheduling and register allocation.

The design exploration methodology that we propose is primarily aimed
at optimizing performance in term of speed, making use of a limited number
of pGA cells. The reduction in number of executed instructions and memory
accesses also has a very beneficial effect on energy consumption.

176

The first step consists of identifying which statements within the application,
if implemented in hardware, may improve performance. We use common pro-
filing tools (like gprof), analyzing the timing and the number of executions
of each function. After selecting the most time consuming functions, a further
profiling step annotates each line of source code with the number of cycles spent
executing it. Thus we identify which statements need further investigation and
are possible candidates to become user-defined instructions.

In most cases, the chosen group of statements is a computation kernel inside
a loop. Such kernels are surrounded by code fragments that access data memory
to read input values and to store results. Among memory access statements, we
distinguished those that read input values and write output data, from those
which read and write intermediate values during kernel computation. The first
set of accesses depends on the application and on its memory data structure,
while the second set depends on the computation kernel and its implementation.

At this point one can perform two partially orthogonal kinds of design space
exploration:

� optimize memory data structures in order to minimize memory accesses
for input, output and intermediate values [4].

� implement in hardware the entire computation kernel (or part of it) using
the pGA.

After extracting the control-data flow graph (CDFG) of each identified kernel,
we decompose it into non overlapping subgraphs that can be implemented in
hardware as a set of pGA instructions. In our target architecture the pGA unit
can read up to four input operands from the register file and write up to two
results to it, with a maximum of four register accesses per instruction due to
instruction encoding constraints. Thus we looked for subgraphs having up to
four input edges and up to two output edges, for a total of at most four.

By exploring various splittings of the CDFG, different possible implemen-
tations of the computation kernel on our reconfigurable processor can be tried.
Then a trade-off analysis between cost and performance will help in selecting
the optimal implementation.

In order to evaluate cost and performance, in the case of hardware imple-
mentation, we characterize each subgraph according to the estimated latency
and number of required CLBs. These numbers can be derived manually if the
developer has enough knowledge of digital hardware design, or through an
automated estimator available in our software development chain.

After partitioning, we recompile the source code with our compiler, which
schedules instructions so as to best exploit both the standard data-paths and
the pGA, by using the latency assigned to each pGA instruction. Then we use
an instruction set simulator to analyze system performance. Once the optimal

Design Flow for a Reconfigurable Processor 177

implementation is selected, a finer analysis of performance and functionality is
possible through RTL simulation of the entire system (core and pGA). We first
synthesize hardware starting from an HDL translation of each CFDG subgraph
and then we place and route the pGA. Information extracted from reports will
help in refining user-defined instruction latencies and costs, that were previously
only estimated.

14.4 Design Tools for the Reconfigurable Processor

We implemented a prototype of the design flow described above to support
the reconfigurable processor. It starts from a fully C initial specification, where
sections that must be moved to the pGA are manually annotated, and auto-
matically generates the assembler code, the simulation model, and a hardware
model useful for instruction latency and datapath cost estimation. A key char-
acteristic is that it supports compilation and simulation of software including
user-definable instructions, without the need to recompile the tool chain every
time a new instruction is added.

The design flow is based on the gcc tool chain, which was modified to
meet our requirements. We re-targeted the compiler by changing the machine
description files found in the gcc distribution, to describe the extensions to the
DLX architecture and ISA, such as the second data-path and the reconfigurable
unit.

We had to modify both the scheduling and the generation of the object code of
the gcc assembler to support the XiRisc processor architecture. The scheduler
needs to handle the second data-path, and some static scheduling to avoid the
parallel issue of two instructions that read and write the same register is required.
We also modified both the assembler instruction mnemonics and their binary
encodings to add two classes of instructions: one for the DSP instructions and
another for the pGA instructions.

We finally modified gdb for simulation and debugging: the simulation mod-
els for DSP instructions were permanently added to the simulator, since they
are a fixed part of the architecture. On the other hand, pGA instructions depend
on the application, and thus cannot be statically linked.

To simulate a pGA instruction, we use a C model of its behavior, which is
called at simulation time when the instruction is encountered. The latency of
the instruction is also specified by the model, and it is used when computing
the performance. A pGA instruction is identified in the source code using a
pragma directive. Figure 14.2-(a) shows an example of annotated source code
and Figure 14.2-(b) shows the code automatically generated by the modified
tool chain. If macro PGA is defined, the generated code is compiled for the
target processor. If the macro is not defined, the generated code is compiled for
simulation; in this case, function shift add is used as the simulation model.

178

int bar (int a, int b) {
int c;

#pragma pga shift add 0x12 5 1 2 c a b
c = (a << 2) + b;

#pragma end
return c + a;

}

int bar (int a, int b) {
int c;

#if defined(PGA)
asm(“fpga5 0x12, %0,%1,%2”: “=r”(c): “r”(a),

“r”(b));
#else

asm(“tofpga %1,%2,$0”: :“r”(a), “r”(b));
asm(“jal shift add”);
asm(“fmfpga %0,$0,$0”: “=r”(c));

#endif
return c + a;

}
#if !defined(PGA)
void shift add () {

int c, a, b;
asm(”move %0,$2;move %1,$3”: “=r”(a),

“=r”(b));
c = (a << 2) + b;
/* delay by 5 cycles */
asm(“move $2,%0; li $4,5”: : “r”(c));

}
#endif

(a) (b)

Figure 14.2.

Simulating the VLIW architecture is fairly straightforward: since the target
architecture is almost fully bypassed, and since the assembler already prevents
possible structural hazards by inserting nop instructions, it is sufficient to sim-
ulate instructions sequentially even though they are executed in parallel on the
processor.

Performance information is computed during simulation. We assume that
the processor never stalls for non-pGA instructions, since all such hazards are
resolved at compilation time. Therefore, it is sufficient to increment the cycle
count at each instruction that is simulated, with two notable exceptions:

1. pGA instructions should increment the clock cycle count by a possibly
variable amount (which is actually computed by the simulation code).

2. Two parallel VLIW instructions are executed in the same clock cycle.
Therefore, only one of them should increment the clock cycle count.

We also developed a simple profiler which takes a trace as input and generates
the total number of clock cycles of the simulation run, the total number of clock
cycles spent for each different instruction (opcode), and the total number of
clock cycles spent in each line of the source code.

Design Flow for a Reconfigurable Processor 179

14.5 Case Study: Turbo Decoding

We consider the specification of a turbo-decoder that follows the 3GPP rec-
ommendations for UMTS cellular phone systems [1]. The turbo-decoder algo-
rithm has many advantages over other encoding/decoding mechanisms when
the transmission channels has very low signal to noise ratios. However, it has a
high computational complexity, which has limited its application until recently,
when enough computational power has become available.

A very important aspect of the optimization was a re-organization of the
memory layout, and a conversion of floating point values to fixed point for
the target processor, which does not have a floating point unit. By appro-
priately pairing short ints into a single memory word, the memory ac-
cess bandwidth, one of the bottlenecks of the DLX-based architecture that we
are using, can be doubled. We also re-arranged the code so that accesses to
arrays in main memory was minimized. Since these are standard transforma-
tions, that have little to do with the reconfigurable nature of the processor,
we refer the interested reader to [4] for more details. All comparisons be-
tween reconfigurable and non-reconfigurable processor below are given based
on the memory-optimized version of the source code, for both processors.
Thus they consider only the effects of the pGA, not of any other optimiza-
tion.

The decoder implements an iterative algorithm, repeated until convergence.
Each iteration consists of several components, among which the most compu-
tationally intensive ones are: (1) trellis metrics computation (γ); (2) forward
probabilities computation (α); (3) backward probabilities computation (β); (4)
maximum likelihood ratio computation (LLR).

We analyzed the CDFG of the above kernels, and extracted candidate pGA
instructions that were then mapped on the reconfigurable array. Some of the
kernels, such as determining forward and backward probabilities, share similar
configurations (in this case a butterfly computation) that differ only due to the
order in which memory data are read and written. Therefore we implemented
two pGA instructions, one for the butterfly, and another for reordering. In the
case of the LLR computation, we also explored different approximations of
the max* operator, which is used to reduce multiplications to additions in the
logarithmic domain.

In most cases, a single pGA instruction was not sufficient to cover the entire
kernel. Thus we extensively exploited both the ability to store four different
configurations in the pGA, thus supporting four different user-defined instruc-
tions at any given point in time, and the fact that those instructions share the
values of the registers in every row of the pGA. This is mostly due to the lim-
itation in the number of inputs and outputs that can be concurrently read and
written in the same clock cycle.

180

Table 14.1. Experimental results on 40-bit messages

Step Speed-up Exec. cycles Saved cycles

Original 1× 177834 –

Gamma 1.02× 173706 4128
LLR 1.83× 96913 80921
Butterfly 1.53× 115816 62018
Reorder 1.10× 161826 15972

Final 11.73× 15157 162677

We performed several simulations of the turbo-decoder, with different ob-
jectives. The first ones were aimed at analyzing the algorithm to find the best
implementation and to drive the selection of dynamic instructions. In particular,
we wanted to:

� determine the best performance for different implementations of themax*
operator;

� determine the minimum bit-widths for input, output and intermediate
data, that still yield satisfactory results;

� determine the best threshold to stop the iterative process and declare
convergence.

After selecting and mapping dynamic instructions, we performed several
simulations to determine the performance of the turbo-decoder, comparing it to
a similarly optimized pure software implementation on the same architecture,
but without the pGA. Table 14.1 shows the experimental results that we ob-
tained when different combinations of dynamic instructions are used. Column
Speed-up indicates the improvement in performance for the entire algorithm,
including also portions that were not implemented with dynamic instructions.
Exec. cycles shows the total number of clock cycles needed to complete the
decoding, and Saved cycles is the difference with respect to the original pure
software implementation.

We first simulated the algorithm without any dynamic instructions, and then
re-simulated it using only one type of dynamic instruction at a time. Computa-
tion of the butterfly operator and of the maximum likelihood ratio proved to be
the most expensive functions, and thus benefitted most from hardware acceler-
ation. When all dynamic instructions are used at the same time, the speed-up is
a remarkable 11×. Although the two instructions of metrics computation and
reordering show modest speed-ups when compared with the software-only im-
plementation, their effect on the final result is very important. In fact, while their
contribution to the total latency of the algorithm is low at the beginning, they
become the bottlenecks when the other more complex operations are moved

Design Flow for a Reconfigurable Processor 181

into hardware. For instance, if reordering were not implemented as a dynamic
instruction, the total number of clock cycles would be around 31.000, corre-
sponding to a speed-up of only 5.7×.

14.6 Conclusions

In this paper we showed how a reconfigurable processor can be used to
dramatically speed up the execution of a highly data and control intensive task,
the decoding of turbo-codes. We used a design flow that enables a software
designer, who is mostly unaware of hardware design subtleties, to quickly
assess the costs and gains due to executing selected pieces of C code as single
instructions on a pGA-based reconfigurable DLX functional unit.

The result is a factor of 11× speed-up on the whole decoding algorithm. It
was achieved, while simultaneously optimizing the memory layout, with only
about 1 month of work by a software designer, who did not have any previous
exposure to hardware design, synthesis, or reconfigurable computing.

References

[1] 3GPP. Technical specification group radio access network; multiplexing and channel coding. Technical
Specification TS 25.212 v5.1.0, 2002.

[2] T. Callahan and J. Wawrzynek. Adapting software pipelining for reconfigurable computing. In Proceed-
ings of the International Conference on Compilers, Architecture, and Synthesis for Embedded Systems
(CASES), 2000.

[3] F. Campi, R. Canegallo, and R. Guerrieri. IP-reusable 32-bit VLIW Risc core. In Proceedings of the
European Solid-State Circuits Conference, September 2001.

[4] F. Catthoor, S. Wuytack, E. De Greef, F. Balasa, L. Nachtergaele, and A. Vandecapelle, editors. Custom
Memory Management Methodology: Exploration of Memory Organisation for Embedded Multimedia
System Design. Kluwer Academic Publishers, 1998.

[5] S. Hauck, T. Fry, M. Hosler, and J. Kao. The Chimaera reconfigurable functional unit. In Proceedings
of the IEEE Symposium on FPGAs for Custom Computing Machines, April 1997.

[6] J. Jacob and P. Chow. Memory Interfacing and Instruction Specification for Reconfigurable Processors.
In Proc. ACM Intl. Symp. on FPGAs, 1999.

[7] B. Kastrup, A. Bink, and J. Hoogerbrugge. ConCISe: A compiler-driven CPLD-based instruction set
accelerator. In Proceedings of the Seventh Annual IEEE Symposium on Field-Programmable Custom
Computing Machines, April 1999.

[8] R. Razdan and M. Smith. A high-performance microarchitecture with hardware-programmable func-
tional units. In Proceedings of the 27th Annual International Symposium on Microarchitecture, Novem-
ber 1994.

[9] L. Yanbing, T. Callahan, R. Harr, and U. Kurkure. Hardware-software co-design of embedded recon-
figurable architectures. In Proceedings of the Design Automation Conference, June 2000.

[10] Z.A. Ye, N. Shenoy, and P. Banerjee. A C compiler for a processor with a reconfigurable functional
unit. In Proceedings of the ACM/SIGDA International Symposium on Field Programmable Gate Arrays,
February 2000.

Chapter 15

IPsec-Protected Transport of HDTV over IP∗

1 1 1

1 2

1 USC Information Sciences Institute, 3811 N. Fairfax Dr. #200,
Arlington VA 22203, USA;
{pbellows|jflidr|ladan|csp}@isi.edu

2 Dept. of Electrical and Computer Engineering, George Mason University,
4400 University Drive, Fairfax VA 22030, USA;
{pchodow1|kgaj}@gmu.edu

Abstract Bandwidth-intensive applications compete directly with the operating system’s
network stack for CPU cycles. This is particularly true when the stack performs
security protocols such as IPsec; the additional load of complex cryptographic
transforms overwhelms modern CPUs when data rates exceed 100 Mbps. This
paper describes a network-processing accelerator which overcomes these bottle-
necks by offloading packet processing and cryptographic transforms to an intelli-
gent interface card. The system achieves sustained 1 Gbps host-to-host bandwidth
of encrypted IPsec traffic on commodity CPUs and networks. It appears to the
application developer as a normal network interface, because the hardware ac-
celeration is transparent to the user. The system is highly programmable and can
support a variety of offload functions. A sample application is described, wherein
production-quality HDTV is transported over IP at nearly 900 Mbps, fully secured
using IPsec with AES encryption.

15.1 Introduction

As available network bandwidth scales faster than CPU power [Calvin,
2001], the overhead of network protocol processing is becoming increasingly
dominant. This means that high-bandwidth applications receive diminishing

∗This work is supported by the DARPA Information Technology Office (ITO) as part of the Next Generation
Internet program under Grants F30602-00-1-0541 and MDA972-99-C-0022, and by the National Science
Foundation under grant 0230738.

183

P. Lysaght and W. Rosenstiel (eds.),

New Algorithms, Architectures and Applications for Reconfigurable Computing, 183–194.

© 2005 Springer. Printed in the Netherlands.

Colin Perkins , Pawel Chodowiec, and Kris Gaj
Peter Bellows , Jaroslav Flidr , Ladan Gharai ,

184

marginal returns from increases in network performance. The problem is greatly
compounded when security is added to the protocol stack. For example, the IP
security protocol (IPsec) [ips, 2003] requires complex cryptographic trans-
forms which overwhelm modern CPUs. IPsec benchmarks on current CPUs
show maximum throughput of 40–90 Mbps, depending on the encryption used
[Fre, 2002]. With 1 Gbps networks now standard and 10 Gbps networks well on
their way, the sequential CPU clearly cannot keep up with the load of protocol
and security processing. By contrast, application-specific parallel computers
such as FPGAs are much better suited to cryptography and other streaming
operations. This naturally leads us to consider using dedicated hardware to of-
fload network processing (especially cryptography), so more CPU cycles can
be dedicated to the applications which use the data.

This paper describes a prototype of such an offload system, known as “GRIP”
(Gigabit-Rate IPsec). The system is a network-processing accelerator card based
on Xilinx Virtex FPGAs. GRIP integrates seamlessly into a standard Linux im-
plementation of the TCP/IP/IPsec protocols. It provides full-duplex gigabit-rate
acceleration of a variety of operations such as AES, 3DES, SHA-1, SHA-512,
and application-specific kernels. To the application developer, all acceleration
is completely transparent, and GRIP appears as just another network interface.
The hardware is very open and programmable, and can offload processing from
various levels of the network stack, while still requiring only a single trans-
fer across the PCI bus. This paper focuses primarily on our efforts to offload
the complex cryptographic transforms of IPsec, which, when utilized, are the
dominant performance bottleneck of the stack.

As a demonstration of the power of hardware offloading, we have success-
fully transmitted an encrypted stream of live, production-quality HDTV across
a commodity IP network. Video is captured in an HDTV frame-grabber at 890
Mbps, packetized and sent AES-encrypted across the network via a GRIP card.
A GRIP card on a receiving machine decrypts the incoming stream, and the
video frames are displayed on an HDTV monitor. All video processing is done
on the GRIP-enabled machines. In other words, the offloading of the crypto-
graphic transforms frees enough CPU time for substantial video processing
with no packet loss on ordinary CPUs (1.3 GHz Pentium III).

This paper describes the hardware, device driver and operating system issues
for building the GRIP system and HDTV testbed. We analyze the processing
bottlenecks in the accelerated system, and propose enhancements to both the
hardware and protocol layers to take the system to the next levels of performance
(10 Gbps and beyond).

15.2 GRIP System Architecture

The overall GRIP system is shown in Figure 15.1. It is a combination of
an accelerated network interface card, a high-performance device driver, and

IPsec-Protected Transport of HDTV over IP 185

Figure 15.1. GRIP system architecture.

special interactions with the operating system. The interface card is the SLAAC-
1V FPGA coprocessor board [Schott et al., 2003] combined with a custom
Gigabit Ethernet mezzanine card. The card has a total of four FPGAs which
are programmed with network processing functions as follows. One device
(X0) acts as a dedicated packet mover/PCI interface, while another (GRIP)
provides the interface to the Gigabit Ethernet chipset and common offload
functions such as IP checksumming. The remaining two devices (X1 and X2)
act as independent transmit and receive processing pipelines, and are fully
programmable with any acceleration function. For the HDTV demonstration,
X1 and X2 are programmed with AES-128 encryption cores.

The GRIP card interfaces with a normal network stack. The device driver
indicates its offload capabilities to the stack, based on the modules that are
loaded into X1 and X2. For example in the HDTV application, the driver tells
the IPsec layer that accelerated AES encryption is available. This causes IPsec
to defer the complex cryptographic transforms to the hardware, passing raw
IP/IPsec packets down to the driver with all the appropriate header information
but no encryption. The GRIP driver looks up security parameters (key, IV, algo-
rithm, etc.) for the corresponding IPsec session, and prefixes these parameters
to each packet before handing it off to the hardware. The X0 device fetches
the packet across the PCI bus and passes it to the transmit pipeline (X1). X1
analyzes the packet headers and security prefix, encrypting or providing other
security services as specified by the driver. The packet, now completed, is
sent to the Ethernet interface on the daughter card. The receive pipeline is

186

just the inverse, passing through the X2 FPGA for decryption. Bottlenecks in
other layers of the stack can also be offloaded with this “deferred processing”
approach.

15.3 GRIP Hardware

15.3.1 Basic platform

The GRIP hardware platform provides an open, extensible development en-
vironment for experimenting with 1 Gbps hardware offload functions. It is based
on the SLAAC-1V FPGA board, which was designed for use in a variety of mil-
itary signal processing applications. SLAAC-1V has three user-programmable
Xilinx Virtex 1000 FPGAs (named X0, X1 and X2) connected by separate 72-
bit systolic and shared busses. Each FPGA has an estimated 1 million equivalent
programmable gates with 32 embedded SRAM banks, and is capable of clock
speeds of up to 150 MHz. The FPGAs are connected to 10 independent banks of
1 MB ZBT SRAM, which are independently accessible by the host through pas-
sive bus switches. SLAAC-1V also has an on-board flash/SRAM cache for stor-
ing FPGA bitstreams, allowing for rapid run-time reconfiguration of the devices.
For the GRIP project, we have added a custom Gigabit Ethernet mezzanine card
to SLAAC-1V. It has a Vitesse 8840 Media Access Controller (MAC), and a
Xilinx Virtex 300 FPGA which interfaces to the X0 chip through a 72-bit con-
nector. The Virtex 300 uses 1 MB of external ZBT SRAM for packet buffering,
and performs common offload functions such as filtering and checksumming.

The GRIP platform defines a standard partitioning for packet processing, as
described in section 15.2. As described, the X0 and GRIP FPGAs provide a
static framework that manages basic packet movement, including the MAC and
PCI interfaces. The X0 FPGA contains a packet switch for shuttling packets
back and forth between the other FPGAs on the card, and uses a 2-bit framing
protocol (“start-of-frame”/“end-of-frame”) to ensure robust synchronization of
the data streams. By default, SLAAC-1V has a high-performance DMA engine
for mastering the PCI bus. However, PCI transfers for a network interface
are small compared to those required for the signal processing applications
targeted by SLAAC-1V. Therefore the DMA engine was specially tuned with
key features needed for high-rate network-oriented traffic, such as dynamic load
balancing, 255-deep scatter-gather tables, programmable interrupt mitigation,
and support for misaligned transfers.

With this static framework in place, the X1 and X2 FPGAs are free to be
programmed with any packet-processing function desired. To interoperate with
the static framework, a packet-processing function simply needs to incorporate
a common I/O module and adhere to the 2-bit framing protocol. SLAAC-1V’s
ZBT SRAMs are not required by the GRIP infrastructure, leaving them free to

IPsec-Protected Transport of HDTV over IP 187

be used by packet-processing modules. Note that this partitioning scheme is not
ideal in terms of resource utilization—less than half of the circuit resources in
X0 and GRIP are currently used. This scheme was chosen because it provides
a clean and easily programmable platform for network research. The GRIP
hardware platform is further documented in [Bellows et al., 2002].

15.3.2 X1/X2 IPsec Accelerator Cores

A number of packet-processing cores have been developed on the SLAAC-
1V/GRIP platform, including AES (Rijndael), 3DES, SHA-1, SHA-512,
SNORT-based traffic analysis, rules-based packet filtering (firewall), and in-
trusion detection [Chodowiec et al., 2001, Grembowski et al., 2002, Hutchings
et al., 2002]. For the secure HDTV application, X1 and X2 were loaded with 1
Gb/s AES encryption cores. We chose a space-efficient AES design, which uses
a single-stage iterative datapath with inner-round pipelining. The cores support
all defined key sizes (128, 192 and 256-bit) and operate in either CBC or counter
mode. Because of the non-cyclic nature of counter mode, the counter-mode
circuit can maintain maximum throughput for a single stream of data, whereas
the CBC-mode circuit requires two interleaved streams for full throughput.
For this reason, counter mode was used in the demonstration system.

The AES cores are encapsulated by state machines that read each packet
header and any tags prefixed by the device driver, and separate the headers
from the payload to be encrypted/decrypted. The details of our AES designs
are given in [Chodowiec et al., 2001]. We present FPGA implementation results
for the GRIP system in section 15.7.

15.4 Integrating GRIP with the Operating System

The integration of the hardware presented in the section 15.3 is a fairly
complex task because, unlike ordinary network cards or crypto-accelerators,
GRIP offers potential services to all layers of the OSI architecture. Offloading
IPsec—the main focus of current GRIP research—is particularly problematic,
as the IPsec stack does not properly reside in any one layer; rather, it could be
described as a link-layer component “wrapped” in the IP stack (Figure 15.2).
Care must be taken to provide a continuation of services even though parts of
higher layers have been offloaded.

For this study we used FreeSWAN, a standard implementation of IPsec for
Linux [fre, 2003]. FreeSWAN consists of two main parts: KLIPS and Pluto.
KLIPS (KerneL IP Security) contains the Linux kernel patches that imple-
ment the IPsec protocols for encryption and authentication. Pluto negotiates
the Security Association (SA) parameters for IPsec-protected sockets using the
ISAKMP protocol. Figure 15.2 illustrates the integration of FreeSWAN into

188

IP

udp,
tcp...

IPsec

IP

udp,
tcp...

IPsec

GRIP board

user space

kernel space

pluto

pf_key

data Tx data Rx

SAD cache

socket interface

network

transport layer

layer

link
layer

key, policy management...

S
A

D
 m

an
ag

em
en

t

physical interface

GRIP driver

Figure 15.2. The IPsec (FreeSWAN) stack in the kernel architecture.

the system architecture. When Pluto establishes a new SA, it is sent to the
IPsec stack via the pf key socket, where it is stored in the Security Associa-
tion Database (SAD). At this point, the secure channel is open and ready to
go. Any time a packet is sent to an IPsec-protected socket, the IPsec transmit
function finds the appropriate SA in the database based on the target IP address,
and performs the required cryptographic transforms. After this processing, the
packet is returned to the IP layer, which passes it on to the physical interface.
The receive mode is the inverse but somewhat less complex. When there are
recursive IPsec tunnels, the above process can repeat many times.

In order to accommodate GRIP acceleration we made three modifications
to the FreeSWAN IPsec implementation. First, we modified Pluto so that AES
Counter mode is the preferred encryption algorithm for negotiating new SA’s.
Second, we added the ability for the Security Association Database to echo new
SA parameters to the appropriate physical interface, using the private space of
the corresponding driver. When the GRIP driver receives new SA parameters,
it caches encryption keys and other information on the GRIP card for use by
the accelerator circuits. Finally, the IPsec transmit and receive functions were
slightly modified to support AES counter mode. Any packet associated with an
AES SA gets processed as usual—IPsec headers inserted, initialization vectors

IPsec-Protected Transport of HDTV over IP 189

generated, etc. The only difference is that the packet is passed back to the stack
without encrypting the payload. The GRIP driver recognizes these partially-
processed packets and tags them with a special prefix that instructs the card to
perform the encryption.

15.5 Example Application: Encrypted Transport
of HDTV over IP

15.5.1 Background

To demonstrate the performance of the GRIP system, we chose a demand-
ing real-time multimedia application: transport of High Definition Television
(HDTV) over IP. Studios and production houses need to transport uncompressed
video through various cycles of production, avoiding the artifacts that are an in-
evitable result of multiple compression cycles. Local transport of uncompressed
HDTV between equipment is typically done with the SMPTE-292M standard
format for universal exchange [Society of Motion Picture and Television En-
gineers, 1998]. When production facilities are distributed, the SMPTE-292M
signal is typically transported across dedicated fiber connections between sites,
but a more economical alternative is desirable. We consider the use of IP net-
works for this purpose.

15.5.2 Design and Implementation

In previous work [Perkins et al., 2002] we have implemented a system that
delivers HDTV over IP networks. The Real-time Transport Protocol (RTP)
[Schulzrinne et al., 1996] was chosen as the delivery service. RTP provides me-
dia framing, timing recovery and loss detection, to compensate for the inherent
unreliability of UDP transport. HDTV capture and playout was via DVS HD-
station cards [HDs, 2003], which are connected via SMPTE-292M links to an
HDTV camera on the transmitter and an HDTV plasma display on the receiver.
These cards were inserted into workstations with standard Gigabit Ethernet
cards and dual PCI busses (to reduce contention with the capture/display
cards).

The transmitter captures the video data, fragments it to match the network
MTU, and adds RTP protocol headers. The native data rate of the video capture
is slightly above that of Gigabit Ethernet, so the video capture hardware is
programmed to perform color sub-sampling from 10 to 8 bits per component,
for a video rate of 890 Mbps. The receiver code takes packets from the network,
reassembles video frames, corrects for the effects of network timing jitter,
conceals lost packets, and renders the video.

190

Each video frame is 1.8 million octets in size. To fit within the 9000 octet
Gigabit Ethernet MTU, frames are fragmented into approximately 200 RTP
packets for transmission. The high packet rates are such that a naive implemen-
tation can saturate the memory bandwidth; accordingly, a key design goal is
to avoid data copies. We implement scatter send and receive (implemented us-
ing the recvfrom() system call with MSG PEEK to read the RTP header, followed
by a second call to recvfrom() to read the data) to eliminate data marshalling
overheads. Throughput of the system is limited by the interrupt processing and
DMA overheads. We observe a linear increase in throughput as the MTU is
increased, and require larger than normal MTU to successfully support the full
data rate. It is clear that the system operates close to the limit, and that adding
IPsec encryption is not feasible without hardware offload.

This HDTV-over-IP testbed served as the benchmark for GRIP performance.
The goal was to add line-rate AES cryptography to the system, without any
degradation in video throughput and with no special optimizations to the appli-
cation. Since the GRIP card appears to the system as a standard Ethernet card,
it was possible to transparently substitute a GRIP card in place of the normal
Ethernet, and run the HDTV application unmodified. The performance results
of this test are given in section 15.7.

15.6 Related Work

Two common commercial implementations of cryptographic acceleration
are VPN gateways and crypto-accelerators. The former approach is limited in
that it only provides security between LANs with matching hardware (datalink
layer security), not end-to-end (network layer) security. The host-based crypto-
accelerator reduces the CPU overhead by offloading cryptography, but over-
whelms the PCI bus at high data rates. GRIP differs from these approaches in
that it is a reprogrammable, full system solution, integrating accelerator hard-
ware into the core operation of the TCP/IP network stack.

A number of other efforts have demonstrated the usefulness of dedicated net-
work processing for accelerating protocol processing or distributed algorithms.
Examples of these efforts include HARP [Mummert et al., 1996], Typhoon
[Reinhardt et al., 1994], RWCP’s GigaE PM project [Sumimoto et al., 1999],
and EMP [Shivam et al., 2001]. These efforts rely on embedded processor(s)
which do not have sufficient processing power for full-rate offload of complex
operations such as AES, and are primarily primarily focused on unidirectional
traffic. Other research efforts have integrated FPGAs onto NICs for specific
applications such as routing [Lockwood et al., 1997], ATM firewall [McHenry
et al., 1997], and distributed FFT [Underwood et al., 2002]. These systems
accelerate end applications instead of the network stack, and often lacked the
processing power of the GRIP card.

IPsec-Protected Transport of HDTV over IP 191

15.7 Results

15.7.1 System Performance

The HDTV demonstration system was built as described in section 15.5.2,
with symmetric multiprocessor (SMP) Dell PowerEdge 2500 servers (2x1.3
GHz) running Linux 2.4.18, substituting a GRIP card in place of the standard
Ethernet. The full, 890 Mbps HDTV stream was sent with GRIP-accelerated
AES encryption and no compression. In addition, we tested for maximum en-
crypted bandwidth using iperf [ipe, 2003]. Application and operating system
bottlenecks were analyzed by running precision profiling tools for 120 second
intervals on both the transmitter and receiver. Transmitter and receiver profiling
results are comparable, therefore only the transmitter results are presented for
brevity. The profiling results are given in Figure 15.3.

The HDTV application achieved full-rate transmission with no packets
dropped. Even though the CPU was clearly not overloaded (idle time > 60%!),
stress tests such as running other applications simultaneously showed that the
system was at the limits of its capabilities. Comparing the SMP and UP cases
under iperf, we can see that the only change (after taking into account the 2X
factor of available CPU time under SMP) is the amount of idle time. Yet in
essence, the performance of the system was unchanged.

To explain these observations, we consider system memory bandwidth. We
measured the peak main memory bandwidth of the test system to be 8 Gbps
with standard benchmarking tools. This means that in order to sustain gigabit
network traffic, each packet can be transferred at most 8 times to/from main
memory. We estimate that standard packet-processing will require three mem-
ory copies per packet: from the video driver’s buffer to the hdtv application
buffer, from the application buffer to the network stack, and a copy within
the stack to allow IPsec headers to be inserted. The large size of the video
buffer inhibits effective caching of the first copy and the read-access of the
second copy. This means these copies consume 3 Gbps of main memory band-
width for 1 Gbps network streams. Three more main memory transfers occur
in writing the video frame from the capture card to the system buffer, flushing
ready-to-transmit packets from the cache, and reading packets from memory
to the GRIP card. In all, we estimate that a 1 Gbps network stream consumes
6 Gbps of main memory bandwidth on this system. Considering that other

Library/Function bandwidth idle kernel IPsec grip driver appplication libc
HDTV-SMP 893 Mbps 62% 28% 4% 3% <1% < 1%
iperf-SMP 989 Mbps 47% 35% 4% 4% 2% 8%
iperf-UP 989 Mbps 0% 70% 9% 4% 3% 12%

Figure 15.3. Transmitter profiling results running the HTDV and iperf applications, showing
percentage of CPU time spent in various functions.

192

Design CLB Util. BRAM Util Pred. Perf. Measured Perf.
(MHz / Gbps) (MHz / Gbps)

X0 47% 30% PCI: 35 / 2.24 33 / 2.11
I/O: 54 / 1.73 33 / 1.06

X1 / X2 (AES) 17% 65% CORE: 90 / 1.06 90 / 1.06
I/O: 47 / 1.50 33 / 1.06

GRIP 35% 43% 41 / 1.33 33 / 1.06

Other modules:

3DES 31% 0% 77 / 1.57 83 / 1.69
SHA-1 16% 0% 64 / 1.00 75 / 1.14
SHA-512 23% 6% 50 / 0.62 56 / 0.67

Figure 15.4. Summary of FPGA performance and utilization on Virtex 1000 FPGAs.

system processes are also executing and consuming bandwidth, and that the
random nature of network streams likely reduces memory efficiency from the
ideal peak performance, we conclude that main memory is indeed the system
bottleneck.

15.7.2 Evaluating Hardware Implementations

Results from FPGA circuit implementations are shown in Figure 15.4. As
shown in the figure, the static packet-processing infrastructure easily achieves
1 Gbps throughput. Only the AES and SHA cores have low timing margins.
Note that there are more than enough resources on SLAAC-1V to combine both
AES encryption and a secure hash function at gigabit speeds. Also note that
the target technology, the Virtex FPGA family, is five years old; much higher
performance could be realized with today’s technology.

15.8 Conclusions and Future Work

Network performance is currently doubling every eight months [Calvin,
2001]. Modern CPUs, advancing at the relatively sluggish pace of Moore’s Law,
are fully consumed by full-rate data at modern line speeds, and completely over-
whelmed by full-rate cryptography. This disparity between network bandwidth
and CPU power will only worsen as these trends continue. In this paper we have
proposed an accelerator architecture that attempts to resolve these bottlenecks
now and can scale to higher performance in the future. The unique contributions
of this work are not the individual processing modules themselves; for exam-
ple, 1 Gbps AES encryption has been demonstrated by many others. Rather,
we believe the key result is the full system approach to integrating accelerator
hardware directly to the network stack itself. The GRIP card is capable of com-
pleting packet processing for multiple layers of the stack. This gives a highly

IPsec-Protected Transport of HDTV over IP 193

efficient coupling to the operating system, with only one pass across the system
bus per packet. We have demonstrated this system running at full 1 Gbps line
speed with end-to-end encryption on commodity PCs. This provides significant
performance improvements over existing implementations of end-to-end IPsec
security.

As demonstrated by the HDTV system, this technology is very applicable to
signal processing and rich multimedia applications. It could be applied to sev-
eral new domains of secure applications, such as immersive media (e.g. the col-
laborative virtual operating room), commercial media distribution, distributed
military signal processing, or basic VPNs for high-bandwidth networks.

We would like to investigate other general-purpose offload capabilities on the
current platform. A 1 Gbps secure hash core could easily be added to the process-
ing pipelines to give accelerated encryption and authentication simultaneously.
More functions could be combined by using the rapid reconfiguration capabil-
ities of SLAAC-1V to switch between a large number of accelerator functions
on-demand. Packet sizes obviously make a big difference—larger packets mean
less-frequent interrupts. The GRIP system could leverage this by incorporating
TCP/IP fragmentation and reassembly, such that PCI bus transfers are larger
than what is supported by the physical medium. Finally, several application-
specific kernels could be made specifically for accelerating the HDTV system,
such as RTP processing and video codecs.

Our results suggest that as we look towards the future and consider ways to
scale this technology to multi-gigabit speeds, we must address the limitations
of system memory bandwidth. At these speeds, CPU-level caches are of limited
use because of the large and random nature of the data streams. While chipset
technology improvements help by increasing available bandwidth, performance
can also greatly improve by reducing the number of memory copies in the
network stack. For a system such as GRIP, three significant improvements are
readily available. The first and most beneficial is a direct DMA transfer between
the grabber/display card and the GRIP board. The second is the elimination of
the extra copy induced by IPsec, by modifying the kernel’s network buffer
allocation function so that the IPsec headers are accommodated. The third
approach is to implement the zero-copy socket interface.

FPGA technology is already capable of multi-gigabit network acceleration.
10-Gbps AES counter mode implementations are straightforward using loop-
unrolling [Jarvinen et al., 2003]. Cyclic transforms such as AES CBC mode
and SHA will require more aggressive techniques such as more inner-round
pipelining, interleaving of data streams, or even multiple units in parallel. We
believe that 10 Gbps end-to-end security is possible with emerging commodity
system bus (e.g. PCI Express), CPU, and network technologies, using the offload
techniques discussed.

194

References

[Fre, 2002] (2002). IPsec Performance Benchmarking, http://www.freeswan.org/freeswan trees/
freeswan-1.99/doc/performance.html. FreeS/WAN.

[HDs, 2003] (2003). http://www.dvs.de/. DVS Digital Video Systems.
[fre, 2003] (2003). http://www.freeswan.org/. FreeS/Wan.
[ips, 2003] (2003). Latest RFCs and Internet Drafts for IPsec, http://ietf.org/html.charters/ipsec-charter.html.

IP Security Protocol (IPsec) Charter.
[ipe, 2003] (2003). Network performance measuring tool, http://dast.nlanr.net/Projects/Iperf/. National Lab-

oratory for Applied Network Research.
Bellows, P., Flidr, J., Lehman, T., Schott, B., and Underwood, K. D. (2002). GRIP: A reconfigurable ar-

chitecture for host-based gigabit-rate packet processing. In Proc. of the IEEE Symposium on Field-
Programmable Custom Computing Machines, Napa Valley, CA.

Calvin, J. (2001). Digital convergence. In Proceedings of the Workshop on New Visions ofr Large-Scale
Networks: Research and Applications, Vienna, Virginia.

Chodowiec, P., Gaj, K., Bellows, P., and Schott, B. (2001). Experimental testing of the gigabit IPsec-compliant
implementations of Rijndael and Triple-DES using SLAAC-1V FPGA accelerator board. In Proc. of the
4th Int’l Information Security Conf., Malaga, Spain.

Grembowski, T., Lien, R., Gaj, K., Nguyen, N., Bellows, P., Flidr, J., Lehman, T., and Schott, B. (2002).
Comparative analysis of the hardware implementations of hash functions SHA-1 and SHA-512. In Proc.
of the 5th Int’l Information Security Conf., Sao Paulo, Brazil.

Hutchings, B. L., Franklin, R., and Carver, D. (2002). Assisting network intrusion detection with reconfig-
urable hardware. In Proc. of the IEEE Symposium on Field-Programmable Custom Computing Machines,
Napa Valley, CA.

Jarvinen, K., Tommiska, M., and Skytta, J. (2003). Fully pipelined memoryless 17.8 Gbps AES-128 encryp-
tor. In Eleventh ACM International Symposium on Field- Programmable Gate Arrays (FPGA 2003),
Monterey, California.

Lockwood, J. W., Turner, J. S., and Taylor, D. E. (1997). Field programmable port extender (FPX) for
distributed routing and queueing. In Proc. of the ACM International Symposium on Field Programmable
Gate Arrays, pages 30–39, Napa Valley, CA.

McHenry, J. T., Dowd, P. W., Pellegrino, F. A., Carrozzi, T. M., and Cocks, W. B. (1997). An FPGA-based
coprocessor for ATM firewalls. In Proc. of the IEEE Symposium on FPGAs for Custom Computing
Machines, pages 30–39, Napa Valley, CA.

Mummert, T., Kosak, C., Steenkiste, P., and Fisher, A. (1996). Fine grain parallel communication on general
purpose LANs. In In Proceedings of 1996 International Conference on Supercomputing (ICS96), pages
341–349, Philadelphia, PA, USA.

Perkins, C. S., Gharai, L., Lehman, T., and Mankin, A. (2002). Experiments with delivery of HDTV over IP
networks. Proc. of the 12th International Packet Video Workshop.

Reinhardt, S. K., Larus, J. R., and Wood, D. A. (1994). Tempest and typhoon: User-level shared memory. In
International Conference on Computer Architecture, Chicago, Illinois, USA.

Schott, B., Bellows, P., French, M., and Parker, R. (2003). Applications of adaptive computing systems for
signal processing challenges. In Proceedings of the Asia South Pacific Design Automation Conference,
Kitakyushu, Japan.

Schulzrinne, H., Casner, S., Frederick, R., and Jacobson, V. (1996). RTP: A transport protocol for real-time
applications. RFC 1889.

Shivam, P., Wyckoff, P., and Panda, D. (2001). EMP: Zero-copy OS-bypass NIC-driven Gigabit Ethernet
message passing. In Proc. of the 2001 Conference on Supercomputing.

Society of Motion Picture and Television Engineers (1998). Bit-serial digital interface for high-definition
television systems. SMPTE-292M.

Sumimoto, S., Tezuka, H., Hori, A., Harada, H., Takahashi, T., and Ishikawa, Y. (1999). The design and
evaluation of high performance communication using a Gigabit Ethernet. In International Conference
on Supercomputing, Rhodes, Greece.

Underwood, K. D., Sass, R. R., and Ligon, W. B. (2002). Analysis of a prototype intelligent network interface.
Concurrency and Computing: Practice and Experience.

Chapter 16

Fast, Large-scale String Match for a 10 Gbps
FPGA-based NIDS

Ioannis Sourdis1 and Dionisios Pnevmatikatos2

1 Microprocessor and Hardware Laboratory, Electronic and Computer Engineering Depart-
ment, Technical University of Crete, Chania, GR 73 100, Greece
{sourdis,pnevmati}@mhl.tuc.gr

2 Institute of Computer Science (ICS), Foundation for Research and Technology-Hellas (FORTH),
Vasilika Vouton, Heraklion, GR 71110, Greece
pnevmati@ics.forth.gr

Abstract Intrusion Detection Systems such as Snort scan incoming packets for evidence of
security threats. The computation-intensive part of these systems is a text search
of packet data against hundreds of patterns, and must be performed at wire-speed.
FPGAs are particularly well suited for this task and several such systems have been
proposed. In this paper we expand on previous work, in order to achieve and exceed
OC192 processing bandwidth (10 Gbps). We employ a scalable architecture, and
use extensive fine-grained pipelining to tackle the fan-out, match, and encode
bottlenecks and achieve operating frequencies in excess of 340 MHz for fast
Virtex devices. To increase throughput, we use multiple comparators and allow
for parallel matching of multiple search strings. We evaluate the area and latency
cost of our approach and find that the match cost per search pattern character is
between 4 and 5 logic cells.

Keywords: String matching, FPGA-based Network Intrusion Detection Systems, Network
security

16.1 Introduction

The proliferation of Internet and networking applications, coupled with the
widespread availability of system hacks and viruses have increased the need
for network security. Firewalls have been used extensively to prevent access

195

P. Lysaght and W. Rosenstiel (eds.),

© 2005 Springer. Printed in the Netherlands.

New Algorithms, Architectures and Applications for Reconfigurable Computing, 195–207.

196

to systems from all but a few, well defined access points (ports), but firewalls
cannot eliminate all security threats, nor can they detect attacks when they
happen.

Network Intrusion Detection Systems (NIDS) attempt to detect such at-
tempts by monitoring incoming traffic for suspicious contents. They use sim-
ple rules (or search patterns) to identify possible security threats, much like
virus detection software, and report offending packets to the administrators
for further actions. Snort is an open source NIDS that has been extensively
used and studied in the literature [1, 2, 3, 4]. Based on a rule database, Snort
monitors network traffic and detect intrusion events. An example of a Snort
rule is: alert tcp any any ->192.168.1.0/24 111(content:
“idc}3a3a}”; msg: “mountd access”;)

A rule contains fields that can specify a suspicious packet’s protocol, IP
address, Port, content and others. The “content” (idc|3a3a|) field contains the
pattern that is to be matched, written in ascii, hex or mixed format, where hex
parts are between vertical bar symbols “|”. Patterns of Snort V1.9.x distribu-
tion contain between one and 107 characters with an average length of 12.6
characters.

NIDS rules may refer to the header as well as to the payload of a packet.
Header rules check for equality (or range) in numerical fields and are straight-
forward to implement. More computation-intensive is the text search of the
packet payload against hundreds of patterns that must be performed at wire-
speed [3, 4]. FPGAs are very well suited for this task and many such systems
have been proposed [5, 6, 7]. In this paper we expand on previous work, in
order to achieve and exceed a processing bandwidth of 10 Gbps, focusing on
the string-matching module.

Most proposed FPGA-based NIDS systems use finite automata (either de-
terministic or non-deterministic) [8, 9, 6] to perform the text search. These
approaches are employed mainly for their low cost, which is reported to be is
between 1 and 1.5 logic elements per search pattern character. However, this
cost increases when other system components are included. Also, the operation
of finite automata is limited to one character per cycle operation. To achieve
higher bandwidth researchers have proposed the use of packet-level parallelism
[6], whereby multiple copies of the automata work on different packets at lower
rate. This approach however may not work very well for IP networks due to
variability of the packet size and the additional storage to hold these (possi-
bly large) packets. Instead, in this work we employ full-width comparators for
the search. Since all comparators work on the same input (one packet), it is
straightforward to increase the processing bandwidth of the system by adding
more resources (comparators) that operate in parallel. We evaluate the imple-
mentation cost of this approach and suggest ways to remedy the higher cost as
compared to (N)DFA. We use extensive pipelining to achieve higher operating

Fast, Large-scale String Match for a 10 Gbps FPGA-based NIDS 197

frequencies, and we address directly the fan-out of the packet to the multi-
ple search engines, one of limiting factors identified in related work [8]. We
employ a pipelined fan-out tree and achieve operating frequencies exceeding
245 MHz for VirtexE and 340 MHz for Virtex2 devices (post place & route
results).

In the following section we present the architecture of our FPGA imple-
mentation, and in section 16.3 we evaluate the performance and cost of our
proposed architecture. In section 16.4 we give an overview of FPGA-based
string matching and compare our architecture against other proposed designs,
and in section 16.5 we summarize our findings and present our conclusions.

16.2 Architecture of Pattern Matching Subsystem

The architecture of an FPGA-based NIDS system includes blocks that match
the rules of the header fields and blocks that perform text matching against the
entire packet payload. Of the two, the computationally expensive module is
the text match. In this work we assume that it it relatively straightforward to
implement the first module(s) at high speed since they involve a comparison of
a few numerical fields only, and focus on making the pattern match module as
fast as possible.

If the text match operates at one (input) character per cycle, the total through-
put is limited by the operating frequency. To alleviate this bottleneck, other
researchers suggested using packet parallelism where multiple copies of the
match module scan concurrently different packets [6]. However, due to the
variable size of the IP packets, this approach may not offer the guaranteed
processing bandwidth. Instead, we use discrete comparators to implement a
CAM-like functionality. Since each of these comparators is independent, we
can use multiple instances to search for a pattern in a wider datapath. A similar
approach has been used in [7].

The results of the system are (i) an indication that there was indeed a match,
and (ii) the number of the rule that did match. Our architecture uses fine-grained
pipelining for all sub-modules: fan-out of packet data to comparators, the com-
parators themselves, and for the encoder of the matching rule. Furthermore to
achieve higher processing throughput, we utilize N parallel comparators per
search rule, so as to process N packet bytes at the same time. In the rest of
this section we expand on our design in each of these sub-modules. The overall
architecture we assume is depicted in Figure 16.1. In the rest of the paper we
concentrate on the text match portion of the architecture, and omit the shaded
part that performs the header numerical field matching. We believe that previ-
ous work in the literature has fully covered the efficient implementation of such
functions [6, 7]. Next we describe the details of the three main sub-systems:
the comparators, the encoder and the fan-out tree.

198

Packet

Packet body

Packet header

Shift Register
0

1

3

CMP

CMP
CMP2

CMP

E
n
c
o
d
e
rPacket body

Packet header

Shift Register

Fan-out
Tree

0

1

3

CMP

CMP
CMP2

CMP

Figure 16.1. Envisioned FPGA NIDS system: Packets arrive and are fanned-out to the match-
ing engines. N parallel comparators process N characters per cycle (four in this case), and
the matching results are encoded to determine the action for this packet. The header matching
logic that involves numerical field matching is shaded.

16.2.1 Pipelined Comparator

Our pipelined comparator is based on the observation that the minimum
amount of logic in each pipeline stage can fit in a 4-input LUT and its cor-
responding register. This decision was made based on the structure of Xilinx
CLBs, but the structure of recent Altera devices is very similar so our design
should be applicable to Altera devices as well. In the resulting pipeline, the
clock period is the sum of wire delay (routing) plus the delay of a single logic
cell (one 4-input LUT + 1 flip-flop). The area overhead cost of this pipeline is
zero since each logic cell used for combinational logic also includes a flip-flop.
The only drawback of this deep pipeline is a longer total delay (in clock cycles)
of the result. However, since the correct operation of NIDS systems does not
depend heavily on the actual latency of the results, this is not a critical restric-
tion for our system architecture. In section 16.3 we evaluate the latency of our
pipelines to show that indeed they are within reasonable limits.

Figure 16.2(a) shows a pipelined comparator that matches the pattern “ABC”.
In the first stage comparator matches the 6 half bytes of the incoming packet
data, using six 4-input LUTs. In the following two stages the partial matches are
AND-ed to produce the overall match signal. Figure 16.2(b) depicts the con-
nection of four comparators that match the same pattern shifted by zero, one,
two and three characters (indicated by the numerical suffix in the comparator la-
bel). Comparator comparator ABC+0 checks bytes 0 to 2, comparator ABC+1
checks bytes 1 to 3 and so on. Notice that the choice of four comparators is
only indicative; in general we can use N comparators, allowing the processing
of N bytes per cycle.

Fast, Large-scale String Match for a 10 Gbps FPGA-based NIDS 199

24S
h
i
f
t

R
e
g

3
4
5

24
2
3
4

24
1
2
3

24
0
1
2

(b)(a)

A0

A1

B0

B1

C0

C14

4

4

4

4

4 m
atch

Char
"C”

Char
"A”

Char
"B”

S
t
a
g
e

1

CompareABC

W

A

B

C

X

{

{

{

Compare
ABC+3

Y Compare
ABC+0

Compare
ABC+1

Compare
ABC+2

S
t
a
g
e

2

S
t
a
g
e

3

m
atch

Figure 16.2. (a) Pipelined comparator, which matches pattern “ABC”. (b) Pipelined com-
parator, which matches pattern “ABC” starting at four different offsets (+0 . . . +3).

16.2.2 Pipelined Encoder

After the individual matches have been determined, the matching rule has to
be encoded and reported to the rest of the system (most likely software). We
use a hierarchical pipelined encoder. In every stage, the combinational logic is
described by at most 4-input, 1-output logic functions, which is permitted in
our architecture.

The described encoder assumes that at most one match will occur in order
to operate correctly (i.e. it is not a priority encoder). While in general multiple
matches can occur in a single cycle, in practice we can determine by examining
the search strings whether this situation can occur in practice. If all the search
patterns have distinct suffixes, then we are ensured that we will not have multiple
matches in a single cycle. However, this guarantee becomes more difficult as we
increase the number of concurrent comparators. To this end we are currently
working on a pipelined version of a priority encoder, which will be able to
correctly handle any search string combination.

16.2.3 Packet Data Fan-out

The fan-out delay is major slow-down factor that designers must take into
account. While it involves no logic, signals must traverse long distances and
potentially suffer significant latencies. To address this bottleneck we created a
register tree to “feed” the comparators with the incoming data. The leaves of
this tree are the shift registers that feed the comparators, while the intermediate
nodes of the tree serve as buffers and pipeline registers at the same time. To
determine the best fan-out factor for the tree, we experimented with the Xilinx
tools, and we determined that for best results, the optimal fan-out factor changes
from level to level. In our design we used small fan-out for the first tree levels
and increased the fan-out in the later levels of the tree up to 15 in the last tree

200

level. Intuitively, that is because the first levels of the tree feed large blocks and
the distance between the fed nodes is much larger than in last levels. We also
experimented and found that the optimal fan-out from the shift-registers is 16
(15 wires to feed comparators and 1 to the next register of shift register).

16.2.4 VHDL Generator

Deriving a VHDL representation of a string matching module starting from
a Snort rule is very tedious; to handle tens or hundreds of rules is not only
tedious but extremely error prone. Since the architecture of our system is very
regular, we developed a C program that automatically generates the desired
VHDL representation directly from Snort pattern matching expressions, and
we used a simple PERL script to extract all the patterns from a Snort rule file.

16.3 Evaluation Results

The quality of an FPGA-based intrusion detection system can be measured
mainly using performance and area metrics. We measure performance in terms
of operating frequency (to indicate the efficiency of our fine-grained pipelining)
and total throughput that can be serviced, and area in terms of total area needed,
as well as area cost per search pattern character.

To evaluate our proposed architecture we used four sets of rules. The first
two are artificial sets that cannot be optimized (i.e. at every position all search
characters are distinct), and contain 10 rules matching 10 characters each
(Synth10), and 16 rules of 16 characters each (Synth16). We also used the
“web-attacks.rules” from the Snort distribution, a set of 47 rules to show per-
formance and cost for a medium size rule set, and we used the entire set of
web rules (a total of 210 rules) to test the scalability of our approach for larger
rule sets. The average search pattern length for these sets was 10.4 and 11.7
characters for the Web-attack and all the Web rules respectively.

We synthesized each of these rule sets using the Xilinx tools (ISE 4.2i) for
several devices (the −N suffix indicates speed grade): Virtex 1000–6, VirtexE
1000–8, Virtex2 1000–5, VirtexE 2600-8 and Virtex2 6000–5. The structure of
these devices is similar and the area cost of our design is expected (and turns out)
to be almost identical for all devices, with the main difference in performance.

16.3.1 Performance

Table 16.1 summarizes our performance results. It lists the number of rules,
and the average size of the search patterns for our rule sets. It also lists the
frequency we achieved using the Xilinx tools (ISE 4.2i), the percentage of
wiring delay in the total delay of the critical path and the throughput (in Gbps)

Fast, Large-scale String Match for a 10 Gbps FPGA-based NIDS 201

Table 16.1. Performance Results: operating frequency, processing throughput, and
percentage of wiring delay in the critical path.

Rule Set Synth10 Synth16 Web attacks Web-all
Patterns (rules) 10 16 47 210

Average Pattern Size 10 16 10.4 11.7
(characters)

Virtex MHz 193 193 171
1000 Wire delay 56.7% 45.2% 61.9%
−6 Gbps 6.176 6.176 5.472

VirtexE MHz 272 254 245
1000 Wire delay 54.6% 57.5% 49.8%
−8 Gbps 8.707 8.144 7.840

Virtex2 MHz 396 383 344
1000 Wire delay 37.4% 54.1% 58.7%
−5 Gbps 12.672 12.256 11.008

VirtexE MHz 204
2600 Wire delay 70.2%
−8 Gbps 6.528

Virtex2 MHz 252
6000 Wire delay 69.7%
−5 Gbps 8.064

achieved for the design with four parallel comparators. For brevity we only list
results for four parallel comparators, i.e. for processing 32 bits of data per cycle.
The reported operating frequency gives a lower bound on the performance using
a single (or fewer) comparators.

For our smaller synthetic rule set (labelled Synth10) we are able to achieve
throughput in excess of 6 Gbps for the simplest devices and over 12 Gbps for the
advanced devices. For the actual Web attack rule set (labelled 47 × 10.4), we
are able to sustain over 5 Gbps for the simplest Virtex 1000 device (at 171 MHz),
and about 11 Gbps for a Virtex2 device (at 344 MHz). The performance with
a VirtexE device is almost 8 Gbps at 245 MHz. Since the architecture allows a
single logic cell at each pipeline stage, and the percentage of the wire delay in
the critical path is around 50%, it is unlikely that these results can be improved
significantly.

However the results for larger rule sets are more conservative. The complete
set of web rules (labelled 210 × 11.7) operates at 204 MHz and achieves a
throughput of 6.5 Gbps on a VirtexE, and at 252 MHz having 8 Gbps through-
put on a Virtex2 device. Since the entire design is larger, the wiring latency
contribution to the critical path has increased to 70% of the cycle time. The
total throughput is still substantial, and can be improved by using more parallel
comparators, or possibly by splitting the design into sub-modules that can be

202

placed and routed in smaller area, minimizing the wire distances and hence
latency.

16.3.2 Cost: Area and Latency

Table 16.2 lists the total area and the area required per search pattern character
(in logic cells) of rules, the corresponding device utilization, as well as the
dimensions of the rule set (number of rules and average size of the search
patterns). In terms of implementation cost of our proposed architecture, we see
that each of the search pattern characters costs between 15 and 20 logic cells
depending on the rule set. However, this cost includes four parallel comparators,
so the actual cost of each search pattern character is roughly 4–5 logic cells
multiplied by N for N times larger throughput.

We compute the latency of our design taking into account the three compo-
nents of our pipeline: fan-out, match and encode. Since the branching factor is
not fixed in the fan-out tree, we cannot offer a closed form for the number of
stages. Table 16.3 summarizes the pipeline depths for the designs we have imple-
mented: 3 + 5 + 4 = 12 for the Synth10 and Synth16 rule set, 3 + 6 + 5 = 14
for the Web Attacks rule set, and 5 + 6 + 7 = 18 for the Web-all rule set. For
1,000 patterns and pattern lengths of 128 characters, we estimate the total delay
of the system to be between 20 and 25 clock cycles.

We also evaluated resource sharing to reduce the implementation cost. We
sorted the 47 web attack rules, and we allowed two adjacent patterns to share
comparator i if their i th characters were the same, and found that the number of

Table 16.2. Area Cost Analysis.

Synth10 Synth16 Web attacks Web-all
Patterns 10 16 47 210
Average Pat. Size 10 16 10.4 11.7

Virtex 1000–6 1,728 LC1 3,896 LC 8,132 LC
7% 15% 33%

VirtexE 1000–8 1,728 LC 3,896 LC 7,982 LC
7% 15% 33%

Virtex2 1000–5 1,728 LC 3,896 LC 8,132 LC
16% 38% 80%

VirtexE 2600–8 47,686 LC
95%

Virtex2 6000–5 47,686 LC
71%

Average (LC per character) 17.28 15.21 16.9 19.40

1LC stands for Logic Cell, i.e. of a Slice).

Fast, Large-scale String Match for a 10 Gbps FPGA-based NIDS 203

Table 16.3. Pipeline Depth.

Synth10/

Rule set Synth16 Web attacks Web-all Future
Patterns (rules) 10/16 47 210 1,000

Average Pattern Size (char) 10/16 10.4 11.7
Max Pattern Size (char) 10/16 40 62 128

Pipeline Fan-out 3 3 5 5–10
Depth Comparators 5 6 6 6

Clock Encoder 4 5 7 9
Cycles Total 12 14 18 20–25

logic cells required to implement the system was reduced by about 30%. This
is a very promising approach that reduces the implementation cost and allows
more rules to be packed in a given device.

16.4 Comparison with Previous Work

In this section we attempt a fair comparison with previously reported re-
search. While we have done our best to report these results with the most
objective way, we caution the reader that this task is difficult since each system
has its own assumptions and parameters, occasionally in ways that are hard to
quantify.

One of the first attempts in string matching using FPGAs, presented in 1993
by Pryor, Thistle and Shirazi [11]. Their algorithm, implemented on Splash 2,
succeeded in performing a dictionary search, without case sensitivity patterns,
that consisted of English alphabet characters (26 characters). Pryor et al man-
aged to achieve great performance with a low overhead AND-reduction of the
match indicators using hashing.

Sidhu and Prassanna [9] used Regular Expressions and Nondeterministic
Finite Automata (NFAs) for finding matches to a given regular expression.
They focused on minimizing the space -O(n2)- required to perform the
matching, and their automata matched 1 text character per clock cycle. For a
single regular expression, the NFAs and the associated FPGA circuitry were
able to process each text character in 17.42-10.70ns (57.5–93.5 MHz) using a
Virtex XCV100 FPGA.

Franklin, Carver and Hutchings [8] also used regular expressions to describe
patterns. The operating frequency of the synthesized modules was about 30–100
MHz on a Virtex XCV1000 and 50–127 MHz on a Virtex XCV2000E, and in
the order of 63.5 MHz and 86 MHz respectively on XCV1000 and XCV2000E
for a few tens of rules.

204

Moscola, Lockwood, Loui, and Pachos used the Field Programmable Port
Extender (FPX) platform, to perform string matching. They used regular
expressions (DFAs) and were able to achieve operation of 37 MHz on a Virtex
XCV2000E [6]. Lockwood also implemented a sample application on FPX us-
ing a single regular expression and were able to achieve an operating speed of
119 MHz on a Virtex V1000E-7 device [10].

Gokhale, et al [5] used CAMs to implement Snort rules NIDS on a Virtex
XCV1000E. Their hardware runs at 68MHz with 32-bit data every clock cycle,
giving a throughput of 2.2 Gbps, and reported a 25-fold improvement on the
speed of Snort v1.8 on a 733 MHz PIII and an almost 9-fold improvement on
a 1 GHz PowerPC G4.

Clark and Schimmel [12] developed a pattern matching coprocessor that
supports the entire SNORT ruleset using NFAs. In order to reduce design area
they used centralized decoders instead of character comparators for the NFA
state transitions. They stored over 1,500 patterns (17,537 characters) in a Virtex-
1000. Their design required about 1.1 logic cells per matched character, ran
at 100 MHz and processed one character per clock cycle, with a throughput
0.8 Gbps.

The recent work by Cho, Navab and Mangione-Smith [7] is closer to our
work. They designed a deep packet filtering firewall on a FPGA and auto-
matically translated each pattern-matching component into structural VHDL.
The micro-architecture of the content pattern match unit used 4 parallel com-
parators for every pattern so that the system advances 4 bytes of input packet
every clock cycle. The design implemented in an Altera EP20K device runs at
90 MHz, achieving 2.88 Gbps throughput. They require about 10 logic cells per
search pattern character. However, they do not include the fan-out logic that we
have, and do not encode the matching rule. Instead they just OR all the match
signals to indicate that some rule matched.

The results of these works are summarized in the bottom portion of Table 1,
and we can see that most previous works implement a few tens of rules at
most, and achieve throughput less than 4 Gbps. Our architecture on the same
or equivalent devices achieves roughly twice the operating frequency and
throughput. In terms of best performance, we achieve 3.3 times better pro-
cessing throughput compared with the fastest published design which imple-
ments a single search pattern. Our 210-rule implementation achieves at least a
70% improvement in throughput compared to the fastest existing implementa-
tion.

16.5 Conclusions and Future Work

We have presented an architecture for Snort rule match in FPGAs. We pro-
pose the use of extensive fine-grained pipelining in order to achieve high

Fast, Large-scale String Match for a 10 Gbps FPGA-based NIDS 205

Table 16.4. Detailed comparison of string matching FPGA designs.

Input Logic
Bits/ Freq. Throughput Logic Cells #Patterns ×

Description c.c. Device MHz (Gbps) Cells1 /char #Characters

Sourdis- 32 Virtex 193 6.176 1,728 17.28 10 × 10
Pnevmatikatos 1000 171 5.472 8,132 16.64 47 × 10.4
Discrete VirtexE 272 8.707 1,728 17.28 10 × 10
Comparators 1000 245 7.840 7,982 16.33 47 × 10.4

Virtex2 396 12.672 1,728 17.28 10 × 10
1000 344 11.008 8,132 16.64 47 × 10.4

VirtexE 204 6.524 47,686 19.40 210 × 11.7
2600

Virtex2 252 8.064 47,686 19.40 210 × 11.7
6000

Sidhu et al.[9] 8 Virtex 93.5 0.748 280 ∼31 (1×) 94

NFAs 100 57.5 0.460 1,920 ∼66 (1×) 294

Franklin et al.[8] 8 Virtex 31 0.248 20,618 2.57 8,0035

Regular 1000 99 0.792 314 3.17 99
Expressions 63.5 0.508 1726 3.41 506

VirtexE 50 0.400 20,618 2.57 8,003
2000 127 1.008 314 3.17 99

86 0.686 1726 3.41 506

Moscola et al.[6] 32 VirtexE 37 1.184 8,1342 19.4 21 × 203

DFAs7 2000

Lockwood[10] 32 VirtexE 119 3.808 98 8.9 1 × 11
FSM+counter 1000

Gokhale et al.[5] 32 VirtexE 68 2.176 9,722 15.2 32 × 20
Dis. Comparators 1000

Cho et al.[7] 32 Altera 90 2.880 ∼17,000 10.55 105 × 15.3
Dis. Comparators EP20K

Clark et al.[12] 8 Virtex 100 0.800 ∼19,660 ∼1.1 1, 500 × 11, 76

NFAs 1000
Shared Decoders

1Two Logic Cells form one Slice and:

� 2 Slices form one CLB (Virtex-VirtexE devices).
� 4 Slices form one CLB (in Virtex2-Virtex2 Pro Devices).

2These results do not include the cost/area of infrastructure and protocol wrappers.
3 21 regular expressions,with 20 characters on average, (about 420 character).
4One regular expression of the form (a | b)∗a(a | b)k for k = 8 and 28. Because of the ∗ operator the regular
expression can match more than 9 or 29 characters.
5Sizes refer to Non-meta characters and are roughly equivalent to 800, 10, and 50 patterns of 10 characters
each.
6Over 1,500 patterns that contain 17,537 characters.
74 Parallel FSMs on different Packets.

206

operating frequencies, and parallel comparators to increase the processing
throughput. This combination proves very successful, and the throughput of
our design exceeded 11 Gbps for about 50 Snort rules. These results offer a
distinct step forward compared to previously published research. If latency
is not critical to the application, fine-grained pipelining is very attractive in
FPGA-based designs: every logic cell contains one LUT and one flip-flop,
hence the pipeline area overhead is zero. The current collection of Snort rules
contains fewer than 1500 patterns, with an average size of 12.6 characters.
Using the area cost as computed earlier, we need about 3 devices of 120,000
logic cells to include the entire Snort pattern matching and about 4 devices
to include the entire snort rule set including header matching. These calcula-
tions do not include area optimizations, which can lead to further significant
improvements.

Throughout this paper we used four parallel comparators. However, a dif-
ferent level of parallelism can also be used depending on the bandwidth de-
mands. Reducing the processing width leads to a smaller, possibly higher fre-
quency design, while increasing the processing width leads to a bigger and
probably lower frequency design. Throughput depends on both frequency and
processing width, so we need to seek the cost effective tradeoff of these two
factors.

Despite the significant body of research in this area, there are still improve-
ments that we can use to seek better solutions. Our immediate goals are to use
hierarchical decomposition of large rule set designs and attempt to use multiple
clock domains. The idea is to use a slow clock to drive long but wide busses to
distribute data and a fast clock for local processing that only uses local wiring.
The target would be to retain the frequency advantage of our medium-sized
design (47 rules) for a much larger rule set. This technique is feasible since all
the devices we used in this paper as well as their placement and routing tools
support multiple clock domains.

Furthermore, the use of decoding before the actual character matching,
an approach similar to the one used by Clark and Schimmel [12], would be
useful to reduce area cost. In this approach the characters are decoded be-
fore the comparators that perform the matching function. Then the compar-
ison consists simply of selecting the proper decoded signal and matching a
N character string is achieved simply with a N -input AND gate. Accord-
ing to our preliminary results, shared decoders can lower our design’s area
cost to one quarter of the original. When combined with the use of multi-
ple clock domains for data distribution and processing it can achieve a per-
formance similar to the one we achieved in our full comparator architec-
ture.

Fast, Large-scale String Match for a 10 Gbps FPGA-based NIDS 207

Acknowledgments

This work was supported in part by the IST project SCAMPI (IST-2001-
32404) funded by the European Union.

References

[1] SNORT official web site: (http://www.snort.org)
[2] Roesch, M.: Snort—lightweight intrusion detection for networks. In: Proceedings of LISA’99: 13th

Administration Conference. (1999) Seattle Washington, USA.
[3] Desai, N.: Increasing performance in high speed NIDS. In: www.linuxsecurity.com. (2002)
[4] Coit, C.J., Staniford, S., McAlerney, J.: Towards faster string matching for intrusion detection or exceed-

ing the speed of snort. In: DISCEXII, DAPRA Information Survivability conference and Exposition.
(2001) Anaheim, California, USA.

[5] Gokhale, M., Dubois, D., Dubois, A., Boorman, M., Poole, S., Hogsett, V.: Granidt: Towards gigabit
rate network intrusion detection technology. In: Proceedings of 12th International Conference on Field
Programmable Logic and Applications. (2002) France.

[6] Moscola, J., Lockwood, J., Loui, R.P., Pachos, M.: Implementation of a content-scanning module for
an internet firewall. In: Proceedings of IEEE Workshop on FPGAs for Custom Computing Machines.
(2003) Napa, CA, USA.

[7] Young, H. Cho, S.N., Mangione-Smith, W.: Specialized hardware for deep network packet filtering. In:
Proceedings of 12th International Conference on Field Programmable Logic and Applications. (2002)
France.

[8] Franklin, R., Carver, D., Hutchings, B.: Assisting network intrusion detection with reconfigurable hard-
ware. In: IEEE Symposium on Field-Programmable Custom Computing Machines. (2002)

[9] Sidhu, R., Prasanna, V.K.: Fast regular expression matching using fpgas. In: IEEE Symposium on
Field-Programmable Custom Computing Machines. (2001) Rohnert Park, CA, USA.

[10] Lockwood, J.W.: An open platform for development of network processing modules in reconfigurable
hardware. In: IEC DesignCon ’01. (2001) Santa Clara, CA, USA.

[11] Pryor, D.V., Thistle, M.R., Shirazi, N.: Text searching on splash 2. In: Proceedings of IEEE Workshop
on FPGAs for Custom Computing Machines. (1993) 172–177.

[12] Clark, C.R., Schimmel, D.E.: Efficient Reconfigurable Logic Circuit for Matching Complex Network
Intrusion Detection Patterns. In: Proceedings of 13th International Conference on Field Programmable
Logic and Applications (Short Paper). (2003), Lisbon, Portugal.

Chapter 17

Architecture and FPGA Implementation
of a Digit-serial RSA Processor

Alessandro Cilardo1, Antonino Mazzeo2, Luigi Romano3,
Giacinto Paolo Saggese4

1 Dipartimento di Informatica e Sistemistica, Universita’ degli Studi di Napoli
acilardo@unina.it

2 Dipartimento di Informatica e Sistemistica, Universita’ degli Studi di Napoli
mazzeo@unina.it

3 Dipartimento di Informatica e Sistemistica, Universita’ degli Studi di Napoli
lrom@unina.it

4 Dipartimento di Informatica e Sistemistica, Universita’ degli Studi di Napoli
saggese@unina.it

Keywords: Field-Programmable Gate Array (FPGA), RSA cryptosystem, Modular Multipli-
cation, Modular Exponentiation

Introduction

In the recent years, we have witnessed an increasing deployment of hardware
devices for providing security functions via cryptographic algorithms. In fact,
hardware devices provide both high performance and considerable resistance to
tampering attacks, and are thus ideally suited for implementing computationally
intensive cryptographic routines which operates on sensitive data.

Among the various techniques found in the cryptography realm, the Rivest-
Shamir-Adleman (RSA) algorithm [1] constitutes the most widely adopted
public-key scheme. In particular, it is useful for security applications which
need confidentiality, authentication, integrity, and non-repudiation [2]. The ba-
sic operation of this algorithm is modular exponentiation on large integers,

209

P. Lysaght and W. Rosenstiel (eds.),

New Algorithms, Architectures and Applications for Reconfigurable Computing, 209–218.

© 2005 Springer. Printed in the Netherlands.

210

i.e. Y = X E mod N, which is used for both decryption/signature and encryp-
tion/verification.

The security level of an RSA cryptosystem is tied to the length of the modulus
N. Typical values of the modulus size range from 768 to 4096 bits, depending
on the security level required. All operands involved in the computation of
modular exponentiation have normally the same size as the modulus.

All existing techniques for computing X E mod N reduce modular exponenti-
ation to a sequence of modular multiplications. Several sub-optimal algorithms
have been presented in the literature to compute the sequence of multiplica-
tions leading to the Eth power of X, such as binary methods (RL-algorithm
and LR-algorithm), M-ary methods, Power Tree, and more [3, 4]. In particular,
the method known as Binary Right-to-Left Algorithm [4] consists of repeated
squaring and multiplication operations and is well-suited for simple and effi-
cient hardware implementations.

Since modular multiplication is the core computation of all modular expo-
nentiation algorithms, the efficiency of its execution is crucial for any imple-
mentation of the RSA algorithm. Unfortunately, modular multiplication is a
complex arithmetic operation because of the inherent multiplication and modu-
lar reduction operations. Several techniques have been proposed in the last years
for achieving efficient implementations of modular multiplication. In particular,
Blakley’s method [5] and Montgomery’s method [6] are the most studied tech-
niques. Actually, they are the only algorithms suitable for practical hardware
implementation [3].

Both Blakley’s method and Montgomery’s method perform the modular re-
duction during the multiplication process. No division operation is needed at
any point in the process. However, Blakley’s method needs a comparison of
two large integers at each step of the modular multiplication process, while the
Montgomery’s method does not, by means of a representation of the operands
as a residue class modulo N. Furthermore, the Montgomery’s technique requires
some preprocessing and postprocessing steps, which are needed to convert the
numbers to and from the residue based representation. However, the cost of
these steps is negligible when many consecutive modular multiplications are to
be executed, as in the case of RSA. This is the reason why the Montgomery’s
method is considered the most efficient algorithm for implementing RSA oper-
ations. There exist several versions of the Montgomery’s algorithm, depending
on the number r used as the radix for the representation of numbers. In hardware
implementations r is always a power of 2.

The Montgomery’s algorithm is in turn based on repeated additions on in-
teger numbers. Since the size of operands is as large as the modulus, the
addition operation turns out to be the critical step from the implementation
viewpoint.

Architecture and FPGA Implementationof a Digit-serial RSA Processor 211

In this paper we present an innovative hardware architecture and an FPGA-
based implementation of the Montgomery’s algorithm based on a digit-serial
approach, which allows the basic arithmetic operations to be broken into words
and processed in a serialized fashion. As a consequence, the architecture imple-
mentation takes advantage of a short critical path and low area requirements.
In fact, as compared to other solutions in the literature, the proposed imple-
mentation of the RSA processor has smaller area requirements and comparable
performance. The serialization factor S of our serial architecture is taken as a
parameter and the final performance level is given as a function of this factor.
We thoroughly explore the design tradeoffs, in terms of area requirements vs
time performance, for different values of the key length and the serialization
factor.

17.1 Algorithm Used for the RSA Processor

This section describes the algorithms we have used in our RSA processor.
For implementation of modular multiplication we exploit some optimizations
of the Montgomery Product first described by Walter [7]. We assume that N
can be represented with K bits, and we take R = 2K+2. The N-residue of A
with respect to R is defined as the positive integer Ā = A · R mod N. The
Montgomery Product [6] of residues of A and B, MonPro(Ā, B̄), is defined
as (Ā · B̄ · R−1) mod N , that is the N-residue of the desired A · B mod N . If
A, B < 2N , combining [7] and [3], the following radix-2 binary add-shift al-
gorithm can be employed to calculate MonPro:

Algorithm 17.1.1— Montgomery Product MonPro(A,B) radix-2.
Given A = ∑K+2

i=0 Ai · 2i , B = ∑K
i=0 Bi · 2i , N = ∑K−1

i=0 Ni · 2i , where Ai , Bi ,
Ni ∈ {0, 1}, AK+1, AK+2 = 0, computes a number falling in [0, 2N] which is mod-
ulo N congruent with desired (A · B · 2−(K+2)) mod N
1. U = 0
2. For j = 0 to K + 2 do
3. if (U0 = 1) then U = U + N
4. U = (U/2) + A j · B
5. end for

We report the exponentiation algorithm for computing X E mod N known as
Right-To-Left binary method [4], modified here in order to take advantage of
the Montgomery Product.

Algorithm 17.1.2— Right-To-Left Modular Exponentiation using Montgomery
Product.

Given X, N, and E = ∑H−1
i=0 Ei · 2i , Ei ∈ {0, 1}, computes P = X E mod N .

212

1. P0 = MonPro(1, R2 mod N)
2. Z0 = MonPro(X, R2 mod N)
3. For i = 0 to H − 1 do
4. Zi+1 = MonPro(Zi , Zi)
5. if (Ei = 1) then Pi+1 = MonPro(Pi , Zi)
6. else Pi+1 = Pi

7. end for
8. P = MonPro(PH , 1)
9. if (P ≥ N) then return P − N
10. else return P

The first phase (lines 1–2) calculates the residues of the initial values 1 and X. For
a given key value, the factor R2 mod N remains unchanged. It is thus possible
to use a precomputed value for such a factor and reduce residue calculation to
a MonPro. The core of the computation is a loop in which modular squares
are performed, and the previous partial result Pi is multiplied by Zi , based
on a test performed on the value of i-th bit of E (H is the number of the bits
composing E). It is worth noting that, because of the absence of dependencies
between instructions 4 and 5–6, these can be executed concurrently. Instruction
8 allows to switch back from the residue domain to the normal representation
of numbers. After line 8 is executed, a further check is needed (lines 9–10)
to ensure that the obtained value of P is actually X E mod N . In fact, while
it is acceptable in intermediate loop executions that the MonPro temporary
result (line 4 and line 5) be in the range [0, 2N], this cannot be in the last
iteration. Thus, if the final value of P is greater than N, it must be diminished
by N.

17.2 Architecture of the RSA Processor

As shown in Algorithm 17.1.2, the modular multiplication constitutes the
basic operation of the RSA exponentiation, which basically consists of repeated
multiplication operations. Thus, the RSA processor must be able to properly
sequence modular products on data and store intermediate results in a register
file according to the control flow of Algorithm 17.1.2. In turn, the MonPro
operation (see Algorithm 17.1.1) is composed of different micro-operations
consisting of load/store on registers, shifts and additions. All operands are
(K + 3)-bit long at most, where K is the modulus length. In our implementation,
each arithmetic operation is broken up into a number of steps and executed in
a serialized fashion on S-bit words.

At a high level of abstraction, the RSA processor is composed of two modules
(see Figure 17.1): a Data-path Unit performing data-processing operations, and
a Control Unit which determines the sequence of operations.

Architecture and FPGA Implementationof a Digit-serial RSA Processor 213

POUT

BusIN

MemOUT,1

MemOUT,2

S

Memory
Section

P-processorZ-processor

ZOUT

S

Control
Unit

Control
signals

Data-Path
Unit

Result

RSA
Processor

Figure 17.1. Overall architecture of RSA processor.

The Control Unit reflects the structure of Algorithm 17.1.2, in that it is
composed of two hierarchical blocks corresponding to the main modular
exponentiation routine of Algorithm 17.1.2 and the MonPro subroutine of
Algorithm 17.1.1, respectively.

More precisely, a block named MonExp Controller is in charge of generating
the control flow signals (for loops, conditional and unconditional jumps), acti-
vating a second block (the MonPro Controller block) when a modular product
is met, and waiting until this has finished. The MonPro Controller supervises
modular product execution, i.e. it sequences long integer operations, which are
performed serially on S-bit words.

The Data-path has a data width of S bits. Thus, S represents the serialization
factor or, in other terms, S is the digit-size in multiprecision arithmetic. Data-
path is composed of three macro blocks (see Figure 17.2): a Memory Section
block storing intermediate data inherent in Algorithm 17.1.2, and two process-
ing units named P-processor and Z-processor, executing concurrently modular
products and modular squaring operations, respectively.

The data-path is organized as a 3-stage pipeline. The first stage fetches the
operands. Data are read from the register file in the Memory Section and from

P-processor

S
AddrA

2
P

Z

2B+N

N
clk

AddrB

weaA

Di

DoB

DoA

S

S

Mem1

Mem2

Mem3

Mem4
clk

weaA

Di

DoC

00

01

10

SelDI

2

POUT

ZOUT

BusIN

Memory Section

2

AddrA

2

SelMEM

0

1

S

MemOUT,1

E
LengthE

loadE shiftE enE

EJ

S

SBusIN

S

S

U
clk

S

Adder

S

Reset
carryZ

ZOUT

Reg Reg

S S

Z-processor

MemOUT,2

S

2

SelOP,Z

S

U0signum

ShiftREG,Z

loadFIFO,Z

AI,Z

clk

loadREG,Z

S

2

A

To Control
Unit

From
Memory
Section

MemOUT,2

RAM0

RAM1

U0

signum

From
Memory
Section

S S

UShiftREG,P

clk

Add/Sub

0 1

loadFIFO,P

S

AI,P

Reset
carryP

SS

Set
carryP

POUT

Shift SelADD2

Reg Reg

S

0 1SelA,P

loadREG,P

BusIN

shiftSresetS

S

2

A

MemOUT,1

MemOUT,2

S

2
SelOP,P

To
Control

Unit

S S

Figure 17.2. Structure of the Data-path.

214

scratchpad registers, containing the current partial result U for squaring and
multiplication. The second stage (Adder/Sub block) operates on the fetched
data. The last stage writes results back into Registers U. More details about the
presented architecture are provided in [9].

P-processor. The P-processor implements several operations in distinct
phases of the RSA algorithm: 1) along with the Memory Section, it acts as
a serial Montgomery multiplier implementing Algorithm 17.1.1; 2) it carries
out a simple preprocessing phase to accelerate modular multiplication (i.e. 2B
and 2B + N computation); 3) finally, it performs the reduction step (a com-
parison and a conditional subtraction) to ensure that the result is actually the
modulus of the requested exponentiation.

MonPro(A, B) of Algorithm 17.1.1 is a sequence of K+ 3 conditional sums,
in which the operands depend on both the least significant bit U0 of the par-
tial result U, and the ith bit of the operand A. The (K + 2)-bit additions are
performed serially with an S-bit adder in M = �(K + 2)/S� clock cycles. This
has two fundamental advantages. First, it allows area saving, provided that the
area-overhead due to serial to parallel data formatting and the subsequent in-
verse conversion does not frustrate area-saving deriving from smaller operands
and a narrower data-path. Second, a serial approach avoids long carry chains,
which are difficult to implement in technologies such as FPGA, and result in
larger net delays. These advantages come at the price of the time-area overhead
due to serial-to-parallel (and vice versa) conversions. By addressing the RAM
as a set of register files and accessing directly the required portion of operands,
we can get rid of multiplexer/demultiplexer blocks. This results in a dramatic
reduction of time-area overhead.

The computational core of the P-processor corresponds to Steps 3–4 of
Algorithm 17.1.1 and is actually implemented as:

3. U = (U + Ai · 2B + U0 · N)/2 = (U + V)/2

where V ∈ {0, 2B, 2B + N , N } depending on Ai and U0. It can be proved
that U + V before division by two is always even, and so a simple shift can
yield the correct result. In the proposed implementation, the modular product
is composed by a preprocessing phase for computing (once for all) the value
2B + N [8]. This saves time, because 2B + N is added to U (K + 3)/4 times
in average (assuming Ai and U0 independent and equally distributed). Hence,
at the price of one register of K+3 bit, we can save M · ((K + 3)/4 − 1) clock
cycles, and also save hardware, since a two word adder can be used instead of
a three word adder.

The circuit implementing the Shift block (see the P-processor structure in
Figure 17.2), computes a multiplication by two when required. The S-bit

Architecture and FPGA Implementationof a Digit-serial RSA Processor 215

registers Reg are pipelining registers. The Adder/Subtracter sums operands,
or subtracts the operand on the right input from the one on the left input. Note
that the Adder/Subtracter performs multiprecision operations. Register U stores
the value of U prior to shifting, as required by the modular product algorithm.
It shows its contents shifted down by 1 bit. It also outputs the least significant
bit of U, necessary for the Controller to choose which is the next operand that
is to be added to U. Register A holds the (K + 3)-bit value of the A operand
of modular product, which can be loaded serially from the Memory Section. It
can shift down one bit at a time, showing the Ai bit to the controller.

Memory Section. The Memory Section schematics is reported in
Figure 17.2. Memory Section supplies P and Z processors with the contents of
the register file, in a serial fashion, S bits at a time. It receives output data from
processors or from external through BusI N . Memory R AM0 stores (K + 3)-
bit numbers that can be added to the partial sum U of Algorithm 17.1.1 (P , Z ,
2B + N , N), while R AM1 stores K-bit constants that are useful for calculating
an N-residue, or returning to normal number representation. Each operand is
stored as an array of S-bit words, in order to avoid the use of area-consuming
multiplexers for selecting the correct part of the operand to be summed. The
Memory Section also contains Register E, which stores the exponent E.

Z-Processor. The Z-processor (see Figure 17.2) is a simplified version of
the P-Processor, intended to perform a MonPro operation concurrently with
the P-Processor. Note that, strictly speaking, we only need a P-processor and
a Memory-Section to implement modular product and squaring. Hence, the
Z-processor could be discarded (at the cost of doubling the time for modular
exponentiation). This simplification however scales down the overall required
area by a factor smaller than 2 (area of Memory Section is constant), so the
version of the RSA processor with both the P and the Z processors is character-
ized by a better value of the product A · T. When the available area is reduced
and performance is not critical, the design option which relies solely on the
P-processor can gain interest.

17.3 FPGA Implementation and Performance Analysis

We have used a Xilinx Virtex-E 2000-8bg560 for implementing the proposed
architecture. Xilinx XCV2000E has 19200 slices and 19520 tristate buffers. For
synthesis we used Synplicity Synplify Pro 7.1, integrated in Xilinx ISE 4.1.

We implemented our design in RTL VHDL for K = 1024 and evaluated
it for values of the widths S ranging from 32 to 256. First we verified the
correctness of the design. We then performed synthesis, place&route step, and

216

S Stage Tck

[ns]
Total
Slices

FF/LUT
slices

Lut for
Dual-port

RAM/Single-
port RAM

Lut for
Shift
Reg

Tristate
buffers

Mux
implemen-

tation
Memory 8,7 627 44 / 486 512 / 256 0 0 LUTs
Adder 7,4 32 2 / 64 0 / 0 0 032
Write 8,6 336 385 / 143 256 / 0 128 448 Tristates

Memory 10,7 563 44 / 108 512 / 256 0 960 Tristates
Adder 11,6 64 2 / 128 0 / 0 0 064
Write 11,5 561 577 / 209 512 / 0 128 1152 Tristates

Memory 17,5 688 44 / 34 512 / 256 0 1344 Tristates
Adder 18,6 132 2 / 264 0 / 0 0 0128
Write 17,8 1050 1025 / 278 1024 / 0 256 2816 Tristates

Memory 30,5 553 44 / 30 512 / 256 0 2122 Tristates
Adder 30,9 264 2 /528 0 / 0 0 0256
Write 30,2 2085 2049 / 543 2048 / 0 512 4608 Tristates

Figure 17.3. Hardware resources and clock periods for each pipeline stage varying S.

timing verification. A partial manually floorplan of individual blocks was carried
out occasionally, upon need.

Figure 17.3 reports the minimum clock period and the total number of slices
required for different values of S and for each stage of the pipeline. Results show
that the stage which limits the clock frequency is the Adder. Hence, for a fixed
S, we determined the maximum sustainable clock rate from the Adder, and used
that as the target clock for other stages. We exploited the capability of Virtex
devices to implement multiplexers using tristate buffers instead of LUTs. From
a detailed analysis of the architecture, it follows that the number of clock cycles
for each modular product is given by (2M + 2) + (K + 3) · M . The number of
sequential modular products is H + 2 (where H is the number of bits composing
the exponent E) because squarings and products of the modular exponentiation
loop are executed in parallel, and a product is necessary for residue calculation
and for turning the residue of the result in normal representation. Finally, M
clock cycles are needed for subtraction, and M + 1 clock cycles are needed for
the last S bits of the result to appear on the output Pout . The number of clock
cycles (NCK), the total area, and the total time for the exponent E = 216 + 1 are
reported in Figure 17.4 as functions of parameter S. These results are contrasted
against other implementations in the following section.

S Tck

[ns]
Area

[Slices] NCK

Total
Time
[ms]

A.T
[Slices.ms]

32 8,74 995 645288 5,64 5612
64 11,6 1188 176016 3,86 4586

128 18,6 1870 332440 3,27 6115
256 30,9 2902 97804 2,99 8677

Figure 17.4. RSA encryption with 1024 bit key.

Architecture and FPGA Implementationof a Digit-serial RSA Processor 217

17.4 Related Work

Most hardware implementations of modular exponentiation are either dated
or they rely on an ASIC implementation. As a consequence, a fair comparison
is difficult. In [7] the Montgomery technique and the systolic multiplication
were combined for the first time, resulting in a bidimensional systolic array
architecture which gave a throughput of one modular multiplication per clock
cycle and a latency of 2K + 2 cycles. The great area requirements consti-
tuted the major drawback of this structure, deriving from its inherent high-
parallelism.

A unidimensional systolic architecture was proposed in [8]. This work imple-
ments the same algorithm as ours (radix-2 Montgomery algorithm for modular
product Algorithm 17.1.1), on top of a Xilinx device with the same basic ar-
chitecture, but with a different technology, namely a XC40250XV-09 device.
In a successive study [10], Blum and Paar improved their architecture using
a high-radix formulation of Algorithm 17.1.1. To output the entire result, [8]
requires 2(H + 2)(K + 4) + K/U clock cycles, where U is the dimension of
the processing elements. The fastest design (U = 4) of [8] requires 0.75 ms
for the same encryption of Figure 17.4 and requires 4865 XC4000 CLBs that
are equivalent to 4865 Virtex slices. Our fastest design (S = 256) requires 2.99
ms (4 times slower), but it requires 2902 slices (with a saving of area equal to
40%). Our design requiring the least area (S = 32) occupies only 995 slices,
while the smallest one in [8] requires 3786 slices. Finally, our design with the
best A · T product (S = 64) presents A · T = 4586, while the corresponding
design of [8], presents A · T = 3511.

In summary, the solution presented in [8] exhibits better performance, as
compared to ours. This was made possible by the improved parallelism due to
pipelining, inherent in the systolic paradigm of computation. On the other hand,
our implementation is slower, but it has lower area requirements. This would
allow the RSA processor to be replicated on the same physical device and more
modular exponentiation operations to be performed in parallel.

17.5 Conclusions

We presented a novel serial architecture for RSA encryption/decryption op-
eration. The design is targeted for implementation on reconfigurable logic,
and exploits the inherent characteristics of the typical FPGA devices. The de-
sign allows to tradeoff area for performance, by modifying the value of the
serialization factor S. Quantitative evaluation of this tradeoff was conducted
via simulation. The results obtained showed that the presented architecture
achieves good performance with low area requirements, as compared to other
architectures.

218

Acknowledgements

This work was partially funded by Regione Campania within the framework
of the Telemedicina and Centri di Competenza Projects.

References

[1] R. L. Rivest et al., “A Method for Obtaining Digital Signatures”, Commun. ACM, vol. 21, pp. 120–126,
1978.

[2] A. Menezes, P. van Oorschot, and S. Vanstone, Handbook of Applied Cryptography, CRC Press, 1996.
[3] Ç. K. Koç, “High-speed RSA Implementation”, Technical Report TR 201, RSA Laboratories, November

1994.
[4] D. E. Knuth, “The Art of Computer Programming: Seminumerical Algorithms”, vol. 2, Addison-Wesley,

1981.
[5] G. R. Blakley, “A computer algorithm for the product . . . ”, IEEE Trans. on Computers, Vol. 32, No. 5,

pp. 497–500, May 1983.
[6] P. L. Montgomery, “Modular multiplication without trial division”, Math. of Computation, 44(170):519–

521, April 1985.
[7] C. D. Walter, “Systolic Modular Multiplication”, IEEE Trans. on Computers, Vol. 42, No. 3, pp. 376–

378, March 1993.
[8] T. Blum, and C. Paar, “Montgomery Modular Exponentiation . . . ”, Proc. 14th Symp. Comp. Arith.,

pp. 70–77, 1999.
[9] A. Mazzeo, N. Mazzocca, L. Romano, and G. P. Saggese, “FPGA-based Implementation of a Serial

RSA processor”, Proceedings of the Design And Test Europe (DATE) Conference 2003, pp. 582–587.
[10] T. Blum, and C. Paar, “High-Radix Montgomery Modular . . . ”, IEEE Trans. on Comp., Vol. 50, No. 7,

pp. 759–764, July 2001.

Chapter 18

Division in GF(p) for Application in Elliptic Curve
Cryptosystems on Field Programmable Logic

Alan Daly1, William Marnane1, Tim Kerins1, and Emanuel Popovici2

1 Department of Electrical & Electronic Engineering, University College Cork, Ireland
Email: {aland,liam,timk}@rennes.ucc.ie

2 Department of Microelectronic Engineering, University College Cork, Ireland
Email: e.popovici@ucc.ie

Abstract Elliptic Curve Cryptosystems (ECC) are becoming increasingly popular for use in
mobile devices and applications where bandwidth and chip area are limited. They
provide much higher levels of security per key bit than established public key sys-
tems such as RSA. The core ECC operation of point scalar multiplication in GF(p)
requires modular multiplication, division/inversion and addition/subtraction. Di-
vision is the most costly operation in terms of speed and is often avoided by
performing many extra multiplications. This paper proposes a new divider archi-
tecture and FPGA implementations for use in an ECC processor.

18.1 Introduction

Elliptic Curve Cryptosystems (ECC) were independently proposed in the
mid-eighties by Victor Miller [Miller, 1985] and Neil Koblitz [Koblitz, 1987]
as an alternative to existing public key systems such as RSA and DSA. No
sub-exponential algorithm is known to solve the discrete logarithm problem on
a suitably chosen elliptic curve, meaning that smaller parameters can be used
in ECC with equivalent security to other public key systems. It is estimated that
an elliptic curve group with 160-bit key length has security equivalent to RSA
with a key length of 1024-bit [Blake et al., 2000].

Two types of finite field are popular for use in elliptic curve public key cryp-
tography: GF(p) with p prime, and GF(2n) with n a positive integer. Many im-
plementations focus on using the field GF(2n) due to the underlying arithmetic

219

P. Lysaght and W. Rosenstiel (eds.),

© 2005 Springer. Printed in the Netherlands.

New Algorithms, Architectures and Applications for Reconfigurable Computing, 219–229.

220

which is well suited to binary numbers [Ernst et al., 2002]. However, most
GF(2n) processors are limited to operation on specified curves and key sizes.
An FPGA implementation of a GF(2n) processor which can operate on differ-
ent curves and key sizes without reconfiguration has previously been presented
in [Kerins et al., 2002]. ECC standards define different elliptic curves and key
sizes which ECC implementations must be capable of utilising [IEEE, 2000].
With a GF(p) processor, any curve or key length up to the maximum size p,
can be used without reconfiguration.

Few implementations of ECC processors over GF(p) have been implemented
in hardware to date due to the more complicated arithmetic required [Orlando
and Paar, 2001].

The modular division operation has been implemented in the past by modular
inversion followed by modular multiplication. No implementations to date have
implemented a dedicated modular division component in an ECC application.

This paper proposes a modular divider for use in an ECC processor targeted
to FPGA which avoids carry chain overflow routing. The results presented
include divider bitlengths of up to 256-bits, which would provide security well
in excess of RSA-1024 when used in an ECC processor.

18.2 Elliptic Curve Cryptography over GF(p)

An elliptic curve over the finite field GF(p) is defined as the set of points
(x, y), which satisfy the elliptic curve equation

y2 = x3 + ax + b

where x, y, a and b are elements of the field and 4a3 + 27b2
= 0.
To encrypt data, it is represented as a point on the chosen curve over the finite

field. The fundamental encryption operation is point scalar multiplication, i.e.
a point P (xP , yP) is added to itself k times, to get point Q (xQ, yQ).

Q = k P

= P + P + · · · + P︸ ︷︷ ︸
k times

Recovery of k, through knowledge of the Elliptic Curve equation, base point
P , and end point Q, is called the Elliptic Curve Discrete Logarithm Problem
(ECDLP) and takes fully exponential time to achieve. The Elliptic Curve Diffie-
Hellman Key Exchange protocol uses this fact to generate shared secret keys
used for bulk data encryption.

In order to compute k P , a double and add method is used and k is represented
in binary form and scanned right to left from LSB to MSB, performing a double

Division in GF(p) for Application in Elliptic Curve Cryptosystems 221

P1

P2

P =P +P3 1 2

Figure 18.1. Point Addition.

P1

2P1

Figure 18.2. Point Doubling.

at each step and an addition if ki is 1. Therefore the multiplier will require
(m − 1) point doublings and an average of (m−1

2) point additions, where m is
the bitlength of the field prime p.

The operations of elliptic curve point addition and point doubling are best
explained graphically as shown in Fig. 18.1 and Fig. 18.2. To add two distinct
points, P1 and P2, a chord is drawn between them. This chord will intersect
the curve at exactly one other point, and the reflection of that point through the
x-axis is defined to be the point P3 = P1 + P2.

In the case of adding point P1 to itself (doubling P1), the tangent to the curve
at P1 is drawn and found to intersect the curve again at exactly one other point.
The reflection of this point through the x-axis is defined to be the point 2P1.
(Note: The point at infinity, O is taken to exist infinitely far on the y-axis, and
is the identity of the elliptic curve group.)

The point addition/doubling formulae in affine coordinates are given below.
Let P1 = (x1, y1) and P2 = (x2, y2), then P3 = (x3, y3) = P1 + P2 is given by:

x3 = λ2 − x1 − x2

y3 = λ(x1 − x3) − y1

λ =

⎧⎪⎨
⎪⎩

y2 − y1

x2 − x1
if P1
= P2

3x2
1 + a
2y1

if P1 = P2

Different coordinate systems can be used to represent the points on an elliptic
curve, and it is possible to reduce the number of inversions by representing the
points in projective coordinates. However, this results in a large increase in the
number of multiplications required per point operation (16 for addition, 10 for
doubling) [Blake et al., 2000].

222

Processors using affine coordinates require far fewer clock cycles and hence
less power than processors based on projective coordinates [Orlando and
Paar, 2001]. Point addition requires 2 multiplications, 1 division and 6 ad-
dition/subtraction operations. Point doubling requires 3 multiplications, 1 divi-
sion and 7 additions/subtractions. The overall speed of an affine coordinate-
based ECC processor will hence rely on an efficient modular division
operation.

18.3 Modular Inversion

A common method to perform the division operation is to perform an inver-
sion followed by a multiplication.

The multiplicative inverse of an integer a (mod M) exists if and only if a
and M are relatively prime. There are two common methods to calculate this
inverse. One is based on Fermat’s theorem which states that aM−1(mod M) = 1
and therefore aM−2(mod M) = a−1 (mod M). Using this fact, the inverse may be
calculated by modular exponentiation. However this is an expensive operation
requiring on average 1.5 log2 m multiplications.

Kaliski proposed a variation of the extended Euclidean algorithm to compute
the Montgomery inverse, a−12m (mod M) of an integer a [Kaliski, 1995]. The
output of this algorithm is in the Montgomery domain, which is useful when
performing further Montgomery multiplications. The Montgomery multiplica-
tion algorithm is an efficient method to perform modular multiplication without
the need for trial division. When many multiplications are necessary, its benefits
are fully exploited by mapping inputs into the “Montgomery Domain” before
multiplication, and re-mapping to the integer domain before output. This is
especially useful in applications such as the RSA cryptosystem where modular
exponentiation is the underlying operation. Efficient Montgomery multipliers
for implementation on FPGA have previously been presented in [Daly and
Marnane, 2002].

Kaliski’s method requires a maximum of (3m + 2) clock cycles to perform an
m-bit Montgomery inversion, or (4m + 2) cycles to perform a regular integer
inversion. Montgomery inverters have previously been presented in [Gutub
et al., 2002][Daly et al., 2003][Savas and Koc, 2000].

18.4 Modular Division

A new binary add-and-shift algorithm to perform modular division was pre-
sented recently by S.C. Shantz in [Shantz, 2001]. This provides an alternative
to division by inversion followed by multiplication. The algorithm is given here
in algorithm 1. It computes U = y

x (mod M) in a maximum of 2(m − 1) clock
cycles where m is the bitlength of the modulus, M .

Division in GF(p) for Application in Elliptic Curve Cryptosystems 223

Algorithm 1 : Modular Division

Input : y, x ∈ [1, M − 1] and M
Output : U , where y = U * x (mod M)

01. A := x , B := M , U := y, V := 0
02. while (A
= B) do
03. if (A even) then
04. A := A/2;
05. if (U even) then U := U/2 else U := (U + M)/2;
06. else if (B even) then
07. B := B/2;
08. if (V even) then V := V/2 else V := (V + M)/2;
09. else if (A > B) then
10. A := (A − B)/2;
11. U := (U − V);
12. if (U < 0) then U := (U + M);
13. if (U even) then U := U/2 else U := (U + M)/2;
14. else
15. B := (B − A)/2;
16. V := (V − U);
17. if (V < 0) then V := (V + M);
18. if (V even) then V := V/2 else V := (V + M)/2;
19. end while
20. return U ;

18.5 Basic Division Architecture

As can be seen from algorithm 1, the divider makes decisions based on the
parity and magnitude comparisons of m-bit registers A and B. To determine the
parity of a number, only the Least Significant Bit (LSB) needs be examined (0
implies even, 1 implies odd). However, true magnitude comparisons can only
be achieved through full m-bit subtractions, and thus introduce significant delay
before decisions regarding the next computation can be made.

The first design presented here uses m-bit carry propagation adders to per-
form the additions/subtractions. At each iteration of the while loop in algorithm
1, Unew is assigned one of the following values, depending on the parity and
relative magnitude of A and B: U , U

2 , (U+M)
2 , (U−V)

2 , (U−V +M)
2 or (U−V +2M)

2 .
The basis for the proposed designs is to calculate all 6 possible values con-

currently, and use multiplexors to select the final value of Unew . This eliminates
the time required to perform a full magnitude comparison of A and B before
calculation of U and V can even commence. These architectures are illustrated
in Fig. 18.3 and Fig. 18.4.

224

0 1

1

0 1 0 1

0 1

LSB LSB

U V

0 0

2MM

Ao

V>U

A V>Uo .

Unew

div2

m-bit

m-bit m-bit

Figure 18.3. Determination of Unew .

0 1

1

0 1 0 1

0 1

LSB LSB

V U

0

2MM

Bo

U>V

B U>Vo .

Vnew

div2

m-bit

m-bit m-bit 0

Figure 18.4. Determination of Vnew .

1

Ao

B>A

Anew

div2

0 10 1

1

B AA B

Bo

A>B

Bnew

div2

m-bit m-bit

Figure 18.5. Determination of Anew and Bnew .

The architecture for the determination of Anew and Bnew is simpler as illus-
trated in Fig. 18.5. The U , V , A and B registers are also controlled by the parity
and relative magnitudes of A and B, and are not clocked on every cycle.

18.6 Proposed Carry-Select Division Architecture

The clock speed is dependent on the bitlength of the divider since the carry
chain of the adders contributes significantly to the overall critical path of the
design. When the carry chain length exceeds the column height of the FPGA,
the carry must be routed from the top of the column to the bottom of the next.
This causes a significant decrease in the overall clock speed. The carry-select

Division in GF(p) for Application in Elliptic Curve Cryptosystems 225

0 1

1

0 1 0 1

0 1

LSBU1 LSBU2

UL VL

0 0

2MLML

Ao

V >UL L

A V>Uo .

UnewL

div2

Cu2Cu1

m
2 -bit

m
2 -bitm

2 -bit

Figure 18.6. Carry-Select Architecture: Determination of Unew L .

design proposed here halves this adder carry chain at the expense of extra
adders, multiplexors and control, but in doing so improves the performance of
the divider.

This architecture is similar to a carry-select inverter design proposed in [Daly
et al., 2003]. The values of (U − V) and (A − B) are determined by splitting
the four m-bit registers U , V , A and B into eight (m

2)-bit registers UL , UH ,
VL , VH , AL , AH , BL and BH . The values of (U − V)L and (U − V)H are then
determined concurrently to produce (U − V) as illustrated in Fig. 18.6 and
Fig. 18.7.

When calculating (U − V), if the least significant (m
2) bits of V are greater

than the (m
2) least significant bits of U (i.e. VL > UL), then one extra bit must

be “borrowed” from UH to correctly determine the value of (U − V)H . There-
fore, the value of (U − V)H will actually be (UH − VH − 1). It is observed that
(UH − VH − 1) is equivalent to (VH − UH) in two’s complement representa-
tion. Since the value of (VH − UH) has been calculated in the determination
of Vnew , only a bitwise inverter is needed to produce (U − V)H as seen in Fig.
18.7. However, it is also possible that a carry from the addition of ML or 2ML

will affect the final value of Unew H . Therefore carries of −1, 0 and 1 must be
accounted for in the determination of Unew H . To allow for this, an extra (m

2)-bit
adder with a carry-in of 1 is required to calculate (UH − VH + MH + 1).

226

1 0

0 1 0 1

1 0 0 1

0 1

1 0

1 1

0 10

U >VH H V >UH H

0 1 0 1

1 0

0 10

0 1

Ao AoMH MH MH 2MH 2MH 2MH

UH UHVH VH

Cu1Cu1

A V >Uo . L L

Cu2 Cu2

V >UL L V >UL L

A V>Uo .

LSBU1 LSBU2

UnewH

div2

m
2 -bit

m
2 -bit

m
2 -bitm

2 -bit m
2 -bit m

2 -bit m
2 -bit m

2 -bit

Figure 18.7. Carry-Select Architecture: Determination of Unew H .

0 1

1

AL BL

Ao

B >AL L

AnewL

div2

0 1

1

BL AL

Bo

A >BL L

BnewL

div20 1

1

AH BH

B >AH H

0 1

1

BH AH

A >BH H

A >BL LB >AL L

0 1 0 1

BnewH

div2

AnewH

div2

Ao Ao

m
2 -bitm

2 -bitm
2 -bit m

2 -bit

Figure 18.8. Carry-Select Architecture: Determination of Anew and Bnew .

The determination of Vnew is similar to that of Unew . The values of Anew and
Bnew are determined as illustrated in Fig. 18.8.

18.7 Results

Speed and area results for the two divider architectures are given in Tables
18.1 and 18.2. In each table the area and speed of each design are listed for
32, 64, 128 and 256-bit dividers, indicating the percentage increase in area and
speed of the carry-select architecture over the basic architecture.

Table 18.1 lists the results targeted to the Xilinx VirtexE xcv2000e-6bg560
FPGA. This device has a maximum unbroken carry chain length of 160 bits
(due to 80 Configurable Logic Blocks per column).

Division in GF(p) for Application in Elliptic Curve Cryptosystems 227

Table 18.1. Area and speed results for the two designs on xcv2000e-6bg560

Area % of Area Max. Freq. Speed
Size Design (Slices) xcv2000e Increase (MHz) Increase

32-bit Basic 561 2.9 63.16
Carry-Select 724 3.8 29.1% 57.25 −9.4%

64-bit Basic 1,057 5.5 47.42
Carry-Select 1,351 7.0 27.8% 46.48 −2.0%

128-bit Basic 1,992 10.4 30.90
Carry-Select 2,718 14.2 36.4% 35.18 13.9%

256-bit Basic 4,353 22.7 19.85
Carry-Select 5,560 28.9 27.7% 26.23 32.1%

Table 18.2. Area and speed results for the two designs on xc2v1500-6bg575

Area % of Area Max. Freq. Speed
Size Design (Slices) xc2v1500 Increase (MHz) Increase

32-bit Basic 551 7.2 103.39
Carry-Select 709 9.2 28.7% 91.62 −11.4%

64-bit Basic 1,102 14.3 86.45
Carry-Select 1,398 18.2 26.9% 80.35 − 7.1%

128-bit Basic 2,003 26.1 58.01
Carry-Select 2,622 34.1 30.9% 61.38 5.8%

256-bit Basic 4,163 54.2 35.84
Carry-Select 5,268 68.6 26.5% 50.68 41.4%

Table 18.2 gives results targeted to the Xilinx Virtex2 xc2v1500-6bg575
FPGA. This device has a maximum unbroken carry chain length of 192 bits
(due to 96 CLB’s per column).

VHDL synthesis and place and route were performed on Xilinx ISE 5.1. The
results are post place and route with a top level architecture to load the data in
32-bit words.

For 32-bit and 64-bit designs, the increased delay due to the extra level of
multiplexors and control masks the reduction in the critical carry path of the
adders. The delay introduced by the multiplexors is approximately 60 times
that of a 1-bit carry propagation. This results in a decrease in speed for these
designs.

For the 128-bit designs, the reduction of the carry chain from 128 bits to
64 bits in the carry-select design gives a slight speed improvement over the basic
design. However, once the maximum carry chain length of the device has been
exceeded, the basic architecture suffers a greater degradation in performance

228

due to the routing of the carry from the top of one column to the bottom of
the next. The 256-bit results show a much greater increase in speed for the
carry-select design where the carry chain remains unbroken.

In all cases, the increase in area remains reasonably constant at approximately
30%.

Comparing these results to the inversion architecture results presented [Daly
et al., 2003], it is observed that both inverter and divider have comparable
operating clock frequencies.

The divider requires half the number of clock cycles to perform the operation,
however it requires significantly more area. It is estimated that using this new
architecture, division can be performed twice as fast as the alternative invert
and multiply architecture.

18.8 Conclusions

Modular division is an important operation in elliptic curve cryptography.
In this paper, two new FPGA architectures, based on a recently published di-
vision algorithm [Shantz, 2001] have been presented and implemented. The
basic design computes all possible outcomes from each iteration and uses mul-
tiplexors to select the correct answer. This avoids the necessity to await the
outcome of a full m-bit magnitude comparison before computation can begin.
The second, carry-select divider design splits the critical carry chain into two,
and again performs all calculations before the magnitude comparison has been
completed. The 256-bit carry-select divider achieved a 40% increase in speed
over the basic design at the cost of a 30% increase in area. The operating speed
of the proposed divider is comparable to that of previously presented inverters
on similar devices, but needs only half the number of clock cycles. Since divi-
sion by inversion followed by multiplication requires many extra clock cycles,
and hence more power, the proposed carry-select divider architecture seems
better suited for implementation in an ECC processor.

Acknowledgments

This work is funded by the research innovation fund from Enterprise Ireland.

References

Blake, I., Seroussi, G., and Smart, N. (2000). “Elliptic Curves in Cryptography”. London Mathematical
Society Lecture Note Series 265. Cambridge University Press.

Daly, A. and Marnane, W. (2002). “Efficient Architectures for Implementing Montgomery Modular Multi-
plication and RSA Modular Exponentiation on Reconfigurable Logic”. 10th Intl Symposium on FPGA
(FPGA 2002), pages 40–49.

Division in GF(p) for Application in Elliptic Curve Cryptosystems 229

Daly, A., Marnane, W., and Popovici, E. (2003). “Fast Modular Inversion in the Montgomery Domain on
Reconfigurable Logic”. Irish Signals and Systems Conference ISSC2003, pages 362–367.

Ernst, M., Jung, M., Madlener, F., Huss, S., and Blümel, R. (2002). “A Reconfigurable System on Chip
Implementation for Elliptic Curve Cryptography over GF(2n)”. Cryptographic Hardware and Embedded
Systems—CHES 2002, (LNCS 2523):381–398.

Gutub, A., Tenca, A. F., Savas, E., and Koc, C. K. (2002). “Scalable and unified hardware to compute
Montgomery inverse in GF(p) and GF(2n)”. Cryptographic Hardware and Embedded Systems - CHES
2002, (LNCS 2523):484–499.

IEEE (2000). IEEE 1363/D13 Standard Specifications for Public Key Cryptography.
Kaliski, B. S. (1995). “The Montgomery Inverse and it’s applications”. IEEE Trans. on Computers,

44(8):1064–1065.
Kerins, T., Popovici, E., Marnane, W., and Fitzpatrick, P. (2002). “Fully Parameterizable Elliptic Curve Cryp-

tography Processor over GF(2m)”. 12th Intl Conference on Field-Programmable Logic and Applications
FPL2002, pages 750–759.

Koblitz, N. (1987). “Elliptic Curve Cryptosystems”. Math Comp, 48:203–209.
Miller, V. S. (1985). “Use of Elliptic Curves in Cryptography”. Advances in Cryptography Crypto’85,

(218):417–426.
Orlando, G. and Paar, C. (2001). “A Scalable GF(p) Elliptic Curve Processor Architecture for Programmable

Hardware”. Cryptographic Hardware and Embedded Systems - CHES 2001, (LNCS 2162):348–363.
Savas, E. and Koc, C. K. (2000). “The Montgomery Modular Inverse—Revisited”. IEEE Trans. on Computers,

49(7):763–766.
Shantz, S. C. (2001). “From Euclid’s GCD to Montgomery Multiplication to the Great Divide”. Technical

Report TR-2001-95, Sun Microsystems Laboratories.

Chapter 19

A New Arithmetic Unit in GF(2M) for
Reconfigurable Hardware Implementation

Chang Hoon Kim1, Chun Pyo Hong1, Soonhak Kwon2 and
Yun Ki Kwon2

1 Dept. of Computer and Information Engineering, Daegu University, Korea
chkim@dsp.daegu.ac.kr, cphong@daegu.ac.kr

2 Dept. of Mathematics and Inst. of Basic Science, Sungkyunkwan University, Korea
shkwon@math.skku.ac.kr, drmath@galois10.skku.ac.kr

Abstract In order to overcome the well-known drawback of reduced flexibility that is
associated with traditional ASIC solutions, this paper proposes a new arithmetic
unit (AU) in GF(2m) for reconfigurable hardware implementation such as FPGAs.
The proposed AU performs both division and multiplication in GF(2m). These
operations are at the heart of elliptic curve cryptosystems (ECC). Analysis shows
that the proposed AU has significantly less area complexity and has roughly
the same or lower latency compared with some related circuits. In addition, we
show that the proposed architecture preserves a high clock rate for large m (up
to 571), when it is implemented on Altera’s EP2A70F1508C-7 FPGA device.
Furthermore, since the new architecture does not restrict the choice of irreducible
polynomials and has the features of regularity, modularity, and unidirectional data
flow, it provides a high flexibility and scalability with respect to the field size m.
Therefore, the proposed architecture is well suited for implementing both the
division and multiplication units of ECC on FPGAs.

Keywords: Finite Field Division, Finite Field Multiplication, ECC, VLSI

19.1 Introduction

Information security has recently become an important subject due to the
explosive growth of the Internet, mobile computing, and the migration of com-
merce practices to the electronic medium. The deployment of information se-
curity procedures requires the implementation of cryptosystems.

231

P. Lysaght and W. Rosenstiel (eds.),

© 2005 Springer. Printed in the Netherlands.

New Algorithms, Architectures and Applications for Reconfigurable Computing, 231–249.

232

Among these cryptosystems, ECC have recently gained a lot of attention
in industry and academia. The main reason for the attractiveness of ECC is
the fact that there is no sub-exponential algorithm known to solve the discrete
logarithm problem on a properly chosen elliptic curve [1–3]. This means that
significantly smaller parameters can be used in ECC relative to other competi-
tive systems such as RSA and ElGamal with equivalent levels of security [2–3].
Some benefits of having smaller key sizes include faster computations, reduc-
tions in processing power, storage space, and bandwidth. Another advantage to
be gained by using ECC is that each user may select a different elliptic curve,
even though all users use the same underlying finite field. Consequently, all
users require the same hardware for performing the field arithmetic, and the
elliptic curve can be changed periodically for extra security [2].

Due to these many advantages of ECC, a number of software [4–5] and
hardware [6–10] implementations have been documented. In those implemen-
tations, GF(p), GF(pm), and GF(2m) have been used, where p is a prime. In
particular, GF(2m), which is an m-dimensional extension field of GF(2), is suit-
able for hardware implementation because there are no carry propagations in
arithmetic operations. As is well known, software implementations can easily
be achieved on a general-purpose microprocessor. However, they would be too
slow for time critical applications and have weakness for side channel attacks
such as timing and memory attacks [14]. Therefore, for performance as well as
for physical security reasons, it is often required to realize ECC in hardware.

Although traditional ASIC solutions have significant advantages in area,
speed, and power consumption, they have the well-known drawback of reduced
flexibility compared to software solutions. Since modern security protocols are
increasingly defined to be algorithm independent, a high degree of flexibility
with respect to the cryptographic algorithms is desirable. A promising solu-
tion which combines high flexibility with the speed and physical security of
traditional hardware is the implementation of cryptographic algorithms on re-
configurable devices such as FPGAs [6–8], [17].

One of the most important design rules in FPGA implementation is the
elimination of the broadcasting of global signals. This is because global signals
in FPGAs are not simple wires but buses. i.e., they are connected by routing
resources (switching matrices) having propagation delays [20], [23]. In general,
since ECC require large field size (at least 163) to support sufficient security,
when global signals are used, the critical path delay increases significantly
[18]. Due to this problem, systolic array based designs, where each basic cell
is connected with its neighboring cells through pipelining, are desirable to
provide a higher clock rate and maximum throughput performance on fine-
grained FPGAs [17–19].

In this paper, we propose a new AU, which performs both division and
multiplication in GF(2m) and has a systolic architecture for implementing of
ECC on FPGAs. The new design is achieved by using substructure sharing

A New Arithmetic Unit in GF(2M) 233

between the binary extended GCD algorithm [24] and the most significant bit
(MSB)-first multiplication scheme [16]. When input data come in continuously,
the proposed architecture produces division results at a rate of one per m clock
cycles after an initial delay of 5m − 2 in division mode and multiplication results
at a rate of one per m clock cycles after an initial delay of 3m in multiplication
mode respectively.

Analysis shows that the proposed AU has significantly less area complexity
and has roughly the same or lower latency compared with some related systolic
arrays for GF(2m). In addition, we show that the proposed architecture preserves
a high clock rate for large m (up to 571), when it is implemented on Altera’s
EP2A70F1508C-7 FPGA device. Furthermore, since the new architecture does
not restrict the choice of irreducible polynomials and has the features of regu-
larity, modularity, and unidirectional data flow, it provides a high flexibility and
scalability with respect to the field size m. Therefore, the proposed architecture
is well suited for both division and multiplication unit of ECC implemented on
fine-grained FPGAs.

19.2 Mathematical Background

19.2.1 GF(2m) Field Arithmetic for ECC

In ECC, computing kP is the most important arithmetic operation, where k is
an integer and p is a point on elliptic curve. This operation can be computed using
the addition of two points k times. Let GF(2m) be a finite field of characteristic
2. Then any non-supersingular elliptic curve E over GF(2m) can be written as

E : y2 + xy = x3 + a1x2 + a2 (19.1)

where a1, a2 ∈ GF(2m), a2
= 0, together with a special point called the point
at infinity O. Let P1 = (x1, y1) and P2 = (x2, y2) be points in E(GF(2m))
given in affine coordinates. Assume P1, P2
= O , and P1
= −P2. The sum
P3 = (x3, y3) = P1 + P2 is computed as follows [3]:

If P1
= P2 If P1 = P2 (called point doubling)
λ = (y1 + y2)/(x1 + x2) λ = y1/x1 + x1

x3 = λ2 + λ + x1 + x2 + a1 x3 = λ2 + λ + a1

y3 = (x1 + x3)λ + x3 + y1 y3 = (x1 + x3)λ + x3 + y1

As described above, the addition of two different elliptic curve points in
E(GF(2m)) requires one division, one multiplication, one squaring and eight
additions in GF(2m). Doubling a point in E(GF(2m)) requires one division, one
multiplication, one squaring, and six additions respectively. Since the addition
in GF(2m) is simply a bit-wise XOR operation, it can be implemented in fast and
inexpensive ways. The squaring can be substituted by multiplication. Therefore,
we will consider the multiplication and division in GF(2m). From the point

234

addition formulae, it should be noted that any computation except for addition
cannot be performed at the same time due to the data dependency. Therefore,
sharing hardware between division and multiplication is more desirable than
separate implementation of them.

19.2.2 GF(2m) Field Arithmetic for ECC

GF(2m) contains 2m elements and is an extension field of GF(2). All GF(2m)
contain a zero element, a unit element, a primitive element, and have at
least one irreducible polynomial G(x) = xm + gm−1xm−1 + gm−2xm−2 + · · · +
g1x + g0 over GF(2) associated with it. The primitive element α is a root of the
irreducible polynomial G(x) and generates all non-zero elements of GF(2m).
The non-zero elements of GF(2m) can be represented as powers of the primi-
tive element α, i.e., GF(2m) = {1, α1, α2, · · · , α2m−2}. Since α is a root of the
irreducible polynomial G(x), i.e., G(α) = 0, we have

αm = gm−1α
m−1 + gm−2α

m−2 + · · · + g1α + g0 (19.2)

Therefore, the elements of GF(2m) can also be represented as polynomials
of α with a degree less than m by performing a modulo G(α) operation on
αt , where 0 ≤ t ≤ 2m − 2. This type of representation of the field elements is
referred to as the standard basis (or the polynomial basis) representation. For
example, the set {1, α1, α2, · · · , αm−1} forms the standard basis of GF(2m).

For the standard basis representation, the operations over GF(2m) are quite
different from the usual binary arithmetic operations. The addition and sub-
traction of two field elements of GF(2m) are simply bit-wise XOR opera-
tion. For example, let A(x) and B(x) be two elements in GF(2m), then A(x)
+ B(x) = ∑m−1

i=0 (ai + bi)xi , where the addition in the parenthesis indicates an
XOR or modulo 2 addition operation. On the other hand, the multiplication and
division operations are much more complicated. In particular, the division is the
most time and area consuming operation. These operations can be performed
by first multiplying A(x) with B(x) or B(x)−1 and then taking modulo G(x).

19.3 A New Dependence Graph for Both Division and
Multiplication in GF(2m)

19.3.1 Dependence Graph for Division in GF(2m)

Let A(x) and B(x) be two elements in GF(2m), G(x) be the irreducible poly-
nomial used to generate the field GF(2m) ∼= GF(2)[x]/G(x), and P(x) be the
result of the division A(x)/B(x) mod G(x). Then we may write

A(x) = am−1xm−1 + am−2xm−2 + · · · + a1x + a0 (19.3)

B(x) = bm−1xm−1 + bm−2xm−2 + · · · + b1x + b0 (19.4)

A New Arithmetic Unit in GF(2M) 235

G(x) = xm + gm−1xm−1 + gm−2xm−2 + · · · + g1x + g0 (19.5)

P(x) = pm−1xm−1 + pm−2xm−2 + · · · + p1x + p0 (19.6)

where the coefficients of each polynomial is binary digits 0 or 1. To compute
the division A(x)/B(x) mod G(x), Algorithm I can be used [24].

[Algorithm I] The Binary Extended GCD for Division
in GF(2m) [24]

Input: G(x), A(x), B(x)
Output: U has P(x) = A(x)/B(x) mod G(x)
Initialize: R = B(x), S = G = G(x), U = A(x), V = 0,

count = 0, state = 0
1. for i=1 to 2m−1 do
2. if state ==0 then
3. count = count + 1;
4. if r0 == 1 then
5. (R, S) = (R + S, R);(U, V) = (U + V, U);
6. state = 1;
7. end if
8. else
9. count = count−1;

10. if r0 == 1 then
11. (R, S) = (R + S, S); (U, V) = (U + V, V);
12. end if
13. if count == 0 then
14. state = 0;
15. end if
16. end if
17. R = R/x;
18. U = U/x;
19. end for

Before deriving a new dependence graph (DG) corresponding to the Algo-
rithm I for division in GF(2m), we consider its main operations. Since R is a
polynomial with degree of at most m and S is a polynomial with degree m, and
U and V are polynomials with degree of at most m − 1, they can be expressed
as follows:

R = rm xm + rm−1xm−1 + · · · + r1x + r0 (19.7)

S = sm xm + sm−1xm−1 + · · · + s1x + s0 (19.8)

U = um−1xm−1 + um−2xm−2 + · · · + u1x + u0 (19.9)

V = vm−1xm−1 + vm−2xm−2 + · · · + v1x + v0 (19.10)

As described in the Algorithm I, S and V are simple exchange operations
with R and U respectively, depending on the value of state and r0. On the other

236

hand, R and U have two operational parts respectively. First, we consider the
operations of R. Depending on the value of r0, (R/x) or ((R + S)/x) is executed.
Therefore, we can get the intermediate result of R as follows:
Let

R′ = r ′
m xm + r ′

m−1xm−1 + · · · + r ′
1x + r ′

0 = (R + r0S)/x (19.11)

From r0, (7), and (8), we get

r ′
m = 0 (19.12)

r ′
m−1 = r0sm = r0sm + 0 (19.13)

r ′
i = r0si+1 + ri+1, 0 ≤ i ≤ m − 2 (19.14)

Second, we consider the operations of U. To get the intermediate result of
U, we must compute the two operations of U = (U + V) and U = U/x .
Let

U ′′ = u′′
m−1xm−1 + · · · + u′′

1x + u′′
0 = U + V (19.15)

From r0, (9), and (10), we have

u′′
i = r0vi + ui , 0 ≤ i ≤ m − 1 (19.16)

Since g0 = 1, we can rewrite (2) follows:

1 = (xm−1 + gm−1xm−2 + gm−2xm−3 + · · · + g2x + g1)x (19.17)

From (17), we have

x−1 = xm−1 + gm−1xm−2 + gm−2xm−3 + · · · + g2x + g1 (19.18)

Let

U ′′′ = u′′′
m−1xm−1 + · · · + u′′′

1 x + u′′′
0 = U/x (19.19)

By substituting (9) and (18) into (19), the following equations can be derived:

u′′′
m−1 = u0 (19.20)

u′′′
i = ui+1 + u0gi+1, 0 ≤ i ≤ m − 2 (19.21)

Let

U ′ = u′
m−1xm−1 + · · · + u′

1x + u′
0 = U ′′/x (19.22)

We can derive the following (23) and (24).

u′
m−1 = r0v0 + u0 = (r0v0 + u0)gm + r00 + 0 (19.23)

u′
i = (r0vi+1 + ui+1) + (r0v0 + u0)gi+1, 0 ≤ i ≤ m − 2 (19.24)

In addition, the corresponding control functions of the Algorithm I are given as
follows:

A New Arithmetic Unit in GF(2M) 237

Ctrl1 = (r0 == 1) (19.25)

Ctrl2 = u0 XOR (v0 & r0) (19.26)

Ctrl3 = (state == 0)&(r0 == 1) (19.27)

count
′ =

{
count + 1, if state == 0
count − 1, if state == 1

(19.28)

state = state, if

{
((r0 == 1) & (state == 0)) or
((count == 0) & (state == 1))

(19.29)

Based on the main operations and the control functions, we can derive a new
DG for division in GF(2m) as shown in Fig. 19.1.

The DG corresponding to the Algorithm I consists of (2m − 1) Type-1 cells
and (2m − 1) × m Type-2 cells. In particular, we assumed m = 3 in the DG of
Fig. 19.1, where the functions of two basic cells are depicted in Fig. 19.2 and
Fig. 19.3 respectively. Note that, since rm is always 0 and s0 is always 1 in all

Figure 19.1. DG for division in GF(23).

238

Figure 19.2. The circuit of Type-1 cell in Fig. 19.1.

Figure 19.3. The circuit of Type-2 cell in Fig. 19.1.

the iterations of the Algorithm I, we do not need to process them. The input
polynomials R(x), U(x), and G(x) enter the DG from the top in parallel form.
The i-th row of the array realizes the i-th iteration of the Algorithm I and the
division result V(x) emerge from the bottom row of the DG in parallel form
after 2m − 1 iterations. Before describing the functions of Type-1 and Type-2
cells, we consider the implementation of count. From the Algorithm I, since
count increases to m, we can trace the value of count by putting log2(m + 1)-bit
adders (subtractors) in each Type-1 cell. In addition, we can obtain a one-
dimensional signal flow graph (SFG) array by projecting the DG in Fig. 19.1
along the east direction. In this case, since each basic cell of the SFG should
contain one log2(m + 1)-bit adder (subtractor) circuit, the SFG array will have

A New Arithmetic Unit in GF(2M) 239

an area complexity of O(log2m). If m is very large such as ECC, it would
be inefficient. To prevent such a problem, we adopt the method presented in
[15]. In other words, we use m-bit bi-directional shift registers (BSR) instead
of log2(m + 1)-bit adders (subtractors) to compute count. The BSR is also used
for multiplication, as will be explained in section 3.3.

In what follows, we add one 2-to-1 multipliexer, and up and down signals
to each Type-2 cell. As shown in Fig. 19.1, in the first row, only the (1, 1)-th
Type-2 cell receive 1, while the others receive 0 for up, and all the cells receive
0 for down. In the i-th iteration, m-bit BSR is shifted to the left or to the right
according to state. When cntn in Fig. 19.3 is 1, it indicates that count becomes
n(1 ≤ n ≤ m). In addition, when count reduces to 0, down in Fig. 19.2 becomes
1. As a result, all the cntn of Type-2 cells in the same row become 0, and c-zero
and state in Fig. 19.2 are updated to 1 and 0 respectively. This is the same
condition as for the first computation.

With the count implementation results, we summarize the functions of Type-
1 and Type-2 cells as follows:

(1) Type-1 cell: As depicted in Fig. 19.2, the Type-1 cell generates the control
signals Ctrl1 and Ctrl2 for the present iteration, and updates state for the next
iteration.

(2) Type-2 cell: the Type-2 cells in the i-th row generate the control signal
Ctrl3 and perform the main operations of Algorithm I for the present iteration,
and update count for the next iteration.

19.3.2 DG for MSB-first Multiplication in GF(2m)

Let A(x) and B(x) be two elements in GF(2m), G(x) be the irreducible poly-
nomial, and P(x) be the result of the multiplication A(x)B(x) mod G(x). We
can perform the multiplication using the following Algorithm II [16].

[Algorithm II] The MSB-first Multiplication Algorithm
in GF(2m) [16]

Input: G(x), A(x), B(x)
Output: P(x) = A(x) B(x) mod G(x)

1. p(0)
k = 0, for 0 ≤ k ≤ m − 1

2. p(i)
−1 = 0, for 1 ≤ i ≤ m

3. for i = 1 to m do
4. for k = m − 1 down to 0 do
5. p(i)

k = p(i−1)
m−1 gk + bm−1ak + p(i−1)

k−1 ,
6. end
7. end
8. P(x) = p(m)(x)

240

Based on the MSB-first multiplication algorithm in GF(2m), a DG can be
derived as shown in Fig. 19.4 [16]. The DG corresponding to the multiplication
algorithm consists of m × m basic cells. In particular, m = 3 in the DG of
Fig. 19.4, and Fig. 19.5 represents the architecture of basic cells. The cells in
the i-th row of the array perform the i-th iteration of the multiplication algorithm.
The coefficients of the result P(x) emerge from the bottom row of the array after
m iterations.

Figure 19.4. DG for multiplication in GF(23) [16].

Figure 19.5. The basic cell of Fig. 19.4 [16].

A New Arithmetic Unit in GF(2M) 241

19.3.3 A New DG for Both Division and Multiplication
in GF(2m)

By observing the DG in Fig. 19.1 and the DG in Fig. 19.4, we can find
that the U operation of the division is identical with the p operation of the
multiplication except for the input values. In addition, there are two differences
between the DG for division and the DG for multiplication. First, in the DG for
multiplication, the input polynomial B(x) enters from the left, while, in the DG
for division, all the input polynomials enter from the top. Second, the positions
of the coefficients of each input polynomial are changed in two DGs. In this
case, by modifying the circuit of each basic cell, both division and multiplication
can be performed using the same hardware.

For the first case, by putting the m-bit BSR in each row of the DG for division,
we can make the DG perform both division and multiplication depending on
whether B(x) enters from the left or from the top. In other words, after feeding
B(x) into m-bit BSR, it is enough to shift it to the left until the multiplication
is finished. For the second case, we can use the same hardware by permuting
the coefficients of each input polynomial. In summary, the DG in Fig. 19.1
with appropriate modification can perform both division and multiplication.
The resulting DG is shown in Fig. 19.6, and the corresponding Modified Type-
1 and Modified Type-2 cells in Fig. 19.6 are shown in Fig. 19.7 and Fig. 19.8
respectively.

As described in Fig. 19.6, the DG consists of m Modified Type-1 cells, m × m
Modified Type-2 cells, m − 1 Type-1 cells, and (m − 1) × m Type-2 cells. The
polynomials A(x), B(x), and G(x) enter the DG for multiplication, and the
polynomials R(x), U(x), and G(x) enter the DG for division. The multiplication
result P(x) emerges from the bottom row of Part-A after m iterations, and
the division result V(x) emerge from the bottom row of Part-B after 2m − 1
iterations. In Fig. 19.6, Part-A is used for both division and multiplication and
Part-B is only used for division. The modification procedures from Type-1, 2
to Modified Type-1, 2 are summarized as follows:

(a) Modification of Type-1 cell: As described in Fig. 19.7, we have added a
mult/div signal, a 2-to-1 AND gate (numbered by 1) and a 2-to-1 multiplexer
when compared to a Type-1 cell. For multiplication mode, mult/div is set to
0 and for division mode, mult/div is set to 1. As a result, for multiplication,
bm−i /Ctrl1 has bm−i and pm−1/Ctrl2 has pm−1 respectively. For division, it has
the same function as the Type-1 cell in Fig. 19.2.

(b) Modification of Type-2 cell: As described in Fig. 19.8, we have added a
mult/div signal, a 2-to-1 AND gate (numbered by 1), a 2-to-1 OR gate (numbered
by 2) and a 2-to-1 multiplexer when compared to a Type-2 cell. In Fig. 19.8,
since Ctrl3 generates 0 for multiplication mode, am−i/vi−1 is always selected.
For multiplication mode, the m-bit BSR is only shifted to the left direction due
to the OR gate numbered by 2. In addition, the multiplexer numbered by 4 in

Figure 19.6. New DG for both division and multiplication in GF(23).

Figure 19.7. The circuit of Modified Type-1 cell in Fig. 19.6.

242

A New Arithmetic Unit in GF(2M) 243

Figure 19.8. The circuit of Modified Type-2 cell in Fig. 19.6.

Fig. 19.8 is also added due to the fact that, for multiplication mode, the AND
gate number by 3 must receive am−i/vm−1 instead of am−i−1/vi . As a result,
when mult/div is set to 0, the Modified Type-2 cell in Fig. 19.8 performs as the
basic cell in Fig. 19.5. In addition, when mult/div is set to 1, it performs as the
Type-2 cell in Fig. 19.3.

19.4 A New AU for Both Division and Multiplication
in GF(2m)

By projecting the DG in Fig. 19.6 along the east direction according to the
projection procedure [21], we derive a one-dimensional SFG array as shown
in Fig. 19.9, where the circuit of each processing element (PE-A and PE-B) is
described in Fig. 19.10 and Fig. 19.11 respectively. In Fig. 19.9, “ • ” denotes
a 1-bit 1-cycle delay element. The SFG array of Fig. 19.9 is controlled by a
sequence 011 · · · 11 of length m. As described in Fig. 19.9, two different data
set are feed into the array depending on whether division or multiplication is
selected.

As described in Fig. 19.10, the PE-A contains the circuitry of Modified Type-
1 (Fig. 19.7) and Type-2 (Fig. 19.8) cells. In addition, as described in Fig. 19.11,
the PE-B contains the circuitry of Type-1 (Fig. 19.2) and Type-2 (Fig. 19.3)

244

Figure 19.9. A one-dimensional SFG array for both division and multiplication in GF(23).

Figure 19.10. The circuit of PE-A in Fig. 19.9.

A New Arithmetic Unit in GF(2M) 245

Figure 19.11. The circuit of PE-B in Fig. 19.9.

tcells. Since two control signals Ctrl1 and Ctrl2, and the state of the i-th iteration
must be broadcast to all the Modified Type-1 and Type-2 cells in the i-th row of
the DG, three 2-to-1 multiplexers and three 1-bit latches are added to each PE-A
and PE-B. This result is depicted in Fig. 19.10 and Fig. 19.11. Four 2-input AND
gates are also added to each PE-A and PE-B due to the fact that four signals (i.e.,
bm−i−1/down, ri , pm−i−1/ui , and am−i−1/vi in Fig. 19.6) must be fed to each
row of the DG from the rightmost cell. When the control signal is at logic 1,
these AND gates generate four zeros.

The SFG array in Fig. 19.9 can be easily retimed by using the cut-set sys-
tolization techniques [21] to derive a serial-in serial-out systolic array and the
resulting structure is shown in Fig. 19.12. When the input data come in con-
tinuously, this array can produce division results at a rate of one per m clock
cycles after an initial delay of 5m − 2 with the least significant coefficient first
in division mode. It can produce multiplication results at a rate of one per m
clock cycles after an initial delay of 3m with the most significant coefficient
first in multiplication mode.

246

Figure 19.12. A new bit-serial systolic array for division and multiplication in GF(23).

19.5 Results and Conclusions

To verify the functionality of the proposed array in Fig. 19.12, it was devel-
oped in VHDL and was synthesized using the Synopsis FPGA-Express (version
2000,11-FE3.5 tools. The target device was an Altera EP2A70F1508C-7. After
synthesizing the circuits successfully, we extracted netlist files from the FPGA-
Express and simulated with the netlist files using the Mentor Graphics design
view software (VHDL-ChipSim). The placement and route process and tim-
ing analysis of the synthesized designs were accomplished using the Altera’s
Quartus II (version 2.0).

We summarize theoretical comparison results in Table 19.1 with some related
systolic arrays having the same I/O format. It should be mentioned that there
is no circuit for both division and multiplication in GF(2m) at this moment
to the authors knowledge. In addition, FPGA implementation results of our
architecture are given in Table 19.2. As described in Table 19.1, all the bit-serial
approaches including the proposed array achieve the same time complexity
of O(m). However, the proposed systolic array reduces the area complexity
from O(m2) or O(m · log2m) to O(m), and has lower maximum cell delay and
latency than the architecture in [13]. Although the circuits in [11–12] have lower
maximum cell delay than the proposed array, they cannot be applied to ECC due
to their high area complexity of O(m2). In addition, since the proposed array
performs both division and multiplication, we do not need additional hardware
components described in Table 19.3 to achieve multiplication.

From Table 19.2, it is noted that the proposed architecture preserves a high
clock rate for large field size m because there is no broadcasting of global
signals. As a reference, 571 in Table 19.2 is the largest field size recommended
by NIST [22]. Furthermore, since the proposed architecture does not restrict the
choice of irreducible polynomials and has the features of regularity, modularity,
and unidirectional data flow, it provides a high flexibility and scalability with

A New Arithmetic Unit in GF(2M) 247

Table 19.1. Comparison with bit-serial systolic arrays

[11] [12] [13] Proposed AU

Throughput
(1/cycles)

1/(2m-1) 1/m 1/m Division : 1/m
Mult. : 1/m

atency
(cycles)

7m-3 5m-1 8m-1 Division : 5m-2
Mult. : 3m

Maximum cell
delay

TAND2+TXOR2

+TMUX2

TAND2+TXOR2

+TMUX2

2TAND2+2TXOR2

+2TMUX2

2TAND2+TXOR2

+TMUX2

Basic
components
and their
numbers

AND2 :
3m2+3m-2
XOR2 :
1.5m2+1.5m-
1 MUX2 :
3m2+m-2
Latch :
6m2+8m-4

AND2 : 2m-1
OR2 : 3m
XOR2 :
0.5m2+1.5m-1
MUX2 :
1.5m2+4.5m-2
Latch :
2.5m2+14.5m-6

Inverter : 2m
AND2 : 26m
XOR2 : 11m
MUX2 : 35m+2
FILO (m-bit) : 4
Latch : 46m +
4m · log2(m + 1)
zero-check
(log2(m + 1)-bit)
: 2m
adder/subtractor
(log2(m + 1)-bit)
: 2m

Inverter : 7m-2
AND2 : 26m-
12 OR2 : 3m-1
XOR2 : 8m-4
MUX2 : 15m-7
Latch : 44m-24

Operation Division Division Division Division and
Multiplication

Area O(m2) O(m2) O(m · log2m) O(m)

ANDi : i-input AND gate
XORi : i-input XOR gate
ORi : i-input OR gate
MUXi : i-to-1 multiplexer
TANDi: the propagation delay through one ANDi gate
TXORi: the propagation delay through one XORi gate
TMUXi: the propagation delay through one MUXi gate

Table 19.2. FPGA Implementation results of the propose AU

163 233 409 571

of LE 9920 14209 24926 34950
Clock(MHz) 138.87 127.99 141.8 121.11
Chip Utilization(%) 14.76 21.21 37.09 52.01

LE consists of one 4-to-1 LUT, one flip-flop, fast carry logic, and pro-
grammable multiplexers [23]

respect to the field size m. All these advantages of our design suggest that if ECC
is implemented on FPGAs to overcome the well-known drawback of ASIC,
we can obtain maximum throughput performance with minimum hardware
requirement by using the proposed AU.

248

Table 19.3. Area-time complexity of the bit-serial systolic array for multiplication in
GF(2m) [16]

Througput Latency Maximum cell delay Basic components and their numbers

AND2 : 3m, XOR2 : 2m
1/m 3m TAND2 + 2TXOR2 MUX2 : 2m, Latch : 10m

Acknowledgments

This work was supported by grant No. R05-2003-000-11573-0 from the
Basic Research Program of the Korea Science & Engineering Foundation

References

[1] IEEE P1363, Standard Specifications for Publickey Cryptography, 2000.
[2] A. Menezes, Elliptic Curve Public Key Cryptosystems, Kluwer Academic Publishers, 1993.
[3] I. F. Blake, G. Seroussi, and N. P. Smart, Elliptic Curves in Cryptography, Cambridge University Press,

1999.
[4] D. Hankerson, J. L. Hernandez, and A. Menezes, “Implementation of Elliptic Curve Cryptography Over

Binary Fields,” CHES 2000, LNCS 1965, Springer-Verlag, 2000.
[5] D. Bailey and C. Paar, “Efficient Arithmetic in Finite Field Extensions with Application in Elliptic

Curve Cryptography,” J. of Cryptology, vol. 14, no. 3, pp. 153–176, 2001.
[6] L. Gao, S. Shrivastava and G. E. Solbelman, “Elliptic Curve Scalar Multiplier Design Using FPGAs,”

CHES 2000, LNCS 1717, Springer-Verlag, 1999.
[7] G. Orlando and C. Parr, “A High-Performance Reconfigurable Elliptic Curve Processor for GF(2m),”

CHES 2000, LNCS 1965, Springer-Verlag, 2000.
[8] M. Bednara, M. Daldrup, J. von zur Gathen, J. Shokrollahi, and J. Teich, “Reconfigurable Implementation

of Elliptic Curve Crypto Algorithms,” Proc. of the International Parallel and Distributed Processing
Symposium (IPDPS’02), pp. 157–164, 2002.

[9] G. B. Agnew, R. C. Mullin, and S. A. Vanstone, “An Implementation for Elliptic Curve Cryptosystems
Over F155

2 ,” IEEE J. Selected Areas in Comm., vol. 11, no. 5, pp. 804–813, June 1993.
[10] M.A. Hasan and A.G. Wassal, “VLSI Algorithms, Architectures, and Implementation of a Versatile

GF(2m) Processor”, IEEE Trans. Computers, vol. 49, no. 10, pp. 1064–1073, Oct. 2000.
[11] C.-L. Wang and J. -L. Lin, “A Systolic Architecture for Computing Inverses and Divisions in Finite

Fields GF(2m),” IEEE Trans. Computers., vol. 42, no. 9, pp. 1141–1146, Sep. 1993.
[12] M.A. Hasan and V.K. Bhargava, “Bit-Level Systolic Divider and Multiplier for Finite Fields GF(2m),”

IEEE Trans. Computers, vol. 41, no. 8, pp. 972–980, Aug. 1992.
[13] J.-H. Guo and C.-L. Wang, “Systolic Array Implementation of Euclid’s Algorithm for Inversion and

Division in GF(2m),” IEEE Trans. Computers., vol. 47, no. 10, pp. 1161–1167, Oct. 1998.
[14] J.R. Goodman, “Energy Scalable Reconfigurable Cryptographic Hardware for Portable Applications,”

PhD thesis, MIT, 2000.
[15] J.-H. Guo and C.-L. Wang, “Bit-serial Systolic Array Implementation of Euclid’s Algorithm for Inversion

and Division in GF(2m)”, Proc. 1997 Int. Symp. VLSI Tech., Systems and Applications, pp. 113–117,
1997.

[16] C. L. Wang and J. L. Lin, “Systolic Array Implementation of Multipliers for Finite Field GF(2m),” IEEE
Trans. Circuits and Syst., vol. 38, no. 7, pp. 796–800, July 1991.

[17] T. Blum and C. Paar, “High Radix Montgomery Modular Exponentiation on Reconfigurable Hardware”,
IEEE Trans. Computers., vol. 50, no. 7, pp. 759–764, July 2001.

[18] S.D. Han, C.H. Kim, and C.P. Hong, “Characteristic Analysis of Modular Multiplier for GF(2m),” Proc.
of IEEK Summer Conference 2002, vol. 25, no. 1, pp. 277–280, 2002.

[19] R. Tessier and W. Burleson, “Reconfigurable Computing for Digital Signal Processing: A Survey”, J.
VLSI Signal Processing, vol. 28, no. 1, pp. 7–27, May 1998.

A New Arithmetic Unit in GF(2M) 249

[20] K. Compton and S. Hauck, “Reconfigurable Computing: A Survey of Systems and Software”, ACM
Computing Surveys, vol. 34, no. 2, pp. 171–210, June 2002.

[21] S. Y. Kung, VLSI Array Processors, Englewood Cliffs, NJ: Prentice Hall, 1988.
[22] NIST, Recommended elliptic curves for federal government use, May 1999. http://csrc.nist.gov/ en-

cryption.
[23] Altera, APEXT M I I Programable Logic Device Family Data Sheet, Aug. 2000. http://www.altera.com/

literature/lit-ap2.html.
[24] C.H. Kim and C.P. Hong, “High Speed Division Architecture for GF(2m)”, Electronics Letters, vol. 38,

no. 15, pp. 835–836, July 2002.

Chapter 20

Performance Analysis of SHACAL-1 Encryption
Hardware Architectures

Máire McLoone1, J.V. McCanny2

1 Institute for Electronics, Communications and Information Technology (ECIT),
Queen’s University Belfast, Stranmillis Road, Belfast BT9 5AH, Northern Ireland
maire.mcloone@ee.qub.ac.uk

2Institute for Electronics, Communications and Information Technology (ECIT),
Queen’s University Belfast, Stranmillis Road, Belfast BT9 5AH, Northern Ireland
j.mccanny@ee.qub.ac.uk

Abstract Very high-speed and low-area hardware architectures of the SHACAL-1 encryp-
tion algorithm are presented in this paper. The SHACAL algorithm was a sub-
mission to the New European Schemes for Signatures, Integrity and Encryption
(NESSIE) project and it is based on the SHA-1 hash algorithm. Sub-pipelined
SHACAL-1 encryption and decryption architectures are described and when im-
plemented on Virtex-II XC2V4000 FPGA devices, run at a throughput of 23 Gbps.
In addition, fully pipelined and iterative architectures of the algorithm are pre-
sented. The SHACAL-1 decryption algorithm is derived and also presented in the
paper, since it was not provided in the submission to NESSIE.

Keywords: NESSIE, SHACAL

20.1 Introduction

New European Schemes for Signatures, Integrity and Encryption (NESSIE)
was a three-year research project, which formed part of the Information Soci-
eties Technology (IST) programme run by the European Commission. The main
aim of NESSIE is to present strong cryptographic primitives covering confi-
dentiality, data integrity and authentication, which have been open to a rigorous
evaluation and cryptoanalytical process. Therefore, submissions not only in-
cluded private key block ciphers, as with the Advanced Encryption Standard

251

P. Lysaght and W. Rosenstiel (eds.),

New Algorithms, Architectures and Applications for Reconfigurable Computing, 251–264.

© 2005 Springer. Printed in the Netherlands.

252

(AES) project [1], but also hash algorithms, digital signatures, stream ciphers
and public key algorithms. The first call for submissions was in March 2000
and resulted in 42 submissions. The first phase of the project involved conduct-
ing a security and performance evaluation of all the submitted algorithms. The
performance evaluation hoped to achieve performance estimates for software,
hardware and smartcard implementations of each algorithm. 24 algorithms were
selected for further scrutiny in the second phase, which began in July 2001.
The National Institute for Standards and Technology’s (NIST) Triple-DES and
Rijndael private key algorithms and SHA-1 and SHA-2 hash algorithms were
also considered for evaluation. The following 7 block cipher algorithms were
chosen for further investigation in phase two of the NESSIE project: IDEA,
SHACAL, SAFER++, MISTY1, Khazad, RC6 and Camellia. The final selec-
tion of the NESSIE cryptographic primitives took place on 27 February 2003.
MISTY1, Camellia, SHACAL-2 and Rijndael are the block ciphers chosen to
be included in the NESSIE portfolio of cryptographic primitives. Overall, 12 of
the original submissions are included along with 5 existing standard algorithms.

Currently, the fastest known FPGA implementations of the NESSIE finalist
algorithms are as follows: Pan et al [2] estimate that their IDEA architecture
can achieve a throughput of 6 Gbps on a Virtex-II XC2V1000 FPGA device.
Rouvroy et al [3] report a MISTY1 algorithm implementation which runs at
19.4 Gbps on Virtex-II XC2V2000 device. Standaert et al.’s [4] Khazad archi-
tecture runs at 9.5 Gbps on the XCV1000 FPGA. A pipelined Camellia imple-
mentation by Ichikawa et al [5] on a Virtex-E XCV1000E device performs at 6.7
Gbps. The fastest FPGA implementation of the RC6 algorithm is the 15.2 Gbps
implementation by Beuchat [6] on the Virtex-II XC2V3000 device. Finally, an
iterative architecture of the SAFER++ algorithm by Ichikawa et al [7] achieves
a data-rate of 403 Mbps on a Virtex-E XCV1000E FPGA. In this paper, a perfor-
mance evaluation of SHACAL-1 hardware architectures is provided which im-
proves on results previously published by the authors [8]. Prior to this research,
only published work on SHACAL-1 software implementations was available.

Section 2 of the paper provides a description of the SHACAL-1 algorithm.
Section 3 outlines the SHACAL-1 architectures for hardware implementation.
Performance results are given in section 4 and conclusions are provided in
section 5.

20.2 A Description of the SHACAL-1 Algorithm

The SHACAL [9] algorithm, developed by Helena Handschuh and David
Naccache of Gemplus, is based on the NIST’s SHA hash algorithm. SHACAL
is defined as a variable block and key length family of ciphers. There are two
versions specified in the submission: SHACAL-1, which is derived from SHA-1
and SHACAL-2, which is derived from SHA-256. However, other versions can
easily be derived from the SHA-384 and SHA-512 hash algorithms. Only the

Performance Analysis of SHACAL-1 Encryption Hardware Architectures 253

Figure 20.1. Outline of SHACAL-1 Encryption Algorithm.

SHACAL-1 algorithm is considered for implementation in this paper. How-
ever, the SHACAL-1 architecture described can be easily adapted for the other
variants.

SHACAL-1 operates on a 160-bit data block utilising a 512-bit key. The key,
k, can vary in length within the range, 128 ≤ k ≤ 512. If k < 512, it is appended
with zeros to a length of 512-bits. SHACAL-1 encryption, outlined in Fig. 20.1
is performed by splitting the 160-bit plaintext into five 32-bit words, A, B, C,
D and E. Next, 80 iterations of the compression function are performed. The
resulting A, B, C, D and E values are concatenated to form the ciphertext. The
compression function is defined as follows:

Ai+1 = ROTLEFT−5(Ai) + Fi(Bi, Ci, Di) + Ei + Cnsti + Wi

Bi+1 = Ai

Ci+1 = ROTLEFT−30(Bi)
Di+1 = Ci

Ei+1 = Di

(20.1)

where, Wi are the subkeys generated from the key schedule and the ROTLEFT−n

function is defined as a 32-bit word rotated to the left by n positions. The
constants, Cnsti, in hexadecimal, are,

Cnsti = 5a827999 0 ≤ i ≤ 19

Cnsti = 6ed9eba1 20 ≤ i ≤ 39

Cnsti = 8f 1bbcdc 40 ≤ i ≤ 59

Cnsti = ca62c1d6 60 ≤ i ≤ 79

(20.2)

254

and the function Fi(x, y, z) is defined as,

Fi (x, y, z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(x AND y)OR(x AND z) 0 ≤ i ≤ 19
x ⊕ y ⊕ z 20 ≤ i ≤ 39

(x AND y)OR(x AND z)OR(y AND z) 40 ≤ i ≤ 59
x ⊕ y ⊕ z 60 ≤ i ≤ 79

(20.3)

In the SHACAL-1 key schedule, the 512-bit input key is expanded to form
eighty 32-bit subkeys, Wi, such that,

Wi =
{

Keyi 0 ≤ i ≤ 15
ROTLEFT−1(Wi−3 ⊕ Wi−8 ⊕ Wi−14 ⊕ Wi−16 16 ≤ i ≤ 79

(20.4)

The first 16 subkeys are formed by splitting the input key into sixteen 32-bit
values.

20.2.1 SHACAL-1 Decryption

SHACAL-1 decryption is not defined in the submission. Therefore, it has
been derived and is presented here. It requires an inverse compression function
and an inverse key schedule.

The inverse compression function is as follows:

Ai+1 = Bi

Bi+1 = ROTRIGHT−30(Ci)
Ci+1 = Di

Di+1 = Ei

Ei+1 = Ai − [ROTLEFT−5(Bi) + InvFi (ROTRIGHT−30(Ci), Di , Ei)
+ InvCnsti + InvWi]

(20.5)

where InvWi are the inverse subkeys generated from the inverse key schedule
and the ROTRIGHT−n function is defined as a 32-bit word rotated to the right by
n positions. The constants, InvCnsti, in hexadecimal, are,

InvCnsti = ca62c1d6 0 ≤ i ≤ 19

InvCnsti = 8 f 1bbcdc 20 ≤ i ≤ 39

InvCnsti = 6ed9eba1 40 ≤ i ≤ 59

InvCnsti = 5a827999 60 ≤ i ≤ 79

(20.6)

Performance Analysis of SHACAL-1 Encryption Hardware Architectures 255

and the function InvFi(x, y, z) is defined as,

InvFi (x, y, z) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x ⊕ y ⊕ z 0 ≤ i ≤ 19

(xANDy)OR(xANDz)

OR(yANDz) 20 ≤ i ≤ 39

x ⊕ y ⊕ z 40 ≤ i ≤ 59

(xANDy)OR(xANDz) 60 ≤ i ≤ 79

(20.7)

The subkeys generated from the key schedule during encryption are used in
reverse order when decrypting data. Therefore, it is necessary to wait for all of
the subkeys to be generated before beginning decryption. However, an inverse
key schedule can be utilised to generate the subkeys in the order that they are
required for decryption. This inverse key schedule is defined as,

InvWi =

⎧⎪⎨
⎪⎩

InvKeyi 0 ≤ i ≤ 15

ROTRIGHT−1(InvWi−16) ⊕ InvWi−13

⊕InvWi−8 ⊕ InvWi−2 16 ≤ i ≤ 79
(20.8)

The InvKey is created by concatenating the final 16 subkeys generated during
encryption, such that,

InvKeyi = W64, W65, W66, W67, W68, W69,

W70, W71, W72, W73, W74,75, W76, W77, W78 (20.9)

20.3 SHACAL-1 Hardware Architectures

The SHACAL-1 algorithm is derived from the SHA hash algorithm. There-
fore, the design of a SHACAL-1 hardware architecture can be derived from
the design of a SHA hash algorithm architecture. Previous efficient imple-
mentations [10–12] of the SHA-1 and SHA-2 hash algorithms have utilised
a shift register design approach. Thus, this methodology has also been used
in the iterative, fully and sub- pipelined SHACAL-1 architectures described
here.

20.3.1 Iterative SHACAL-1 Architectures

In the iterative encryption and decryption architectures data is passed through
the compression or inverse compression function component eighty times. The
initial five data blocks are generated from the input block split into five 32-bit
blocks. The outputs of the function, A to E form the inputs on consecutive
clock cycles. After 80 iterations, the A to E outputs are concatenated to form
the 160-bit plaintext/ciphertext.

256

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Key
Wi

ROT LEFT -1

Figure 20.2. SHACAL-1 Key Schedule Design.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
InvKey

InvWi

ROTRIGHT -1

Figure 20.3. SHACAL-1 Inverse Key Schedule Design.

The main components in the iterative, fully and sub- pipelined architectures
are the compression function and the key schedule. The key schedule is imple-
mented using a 16-stage shift register design, as illustrated in Fig. 20.2.

The input 512-bit key is loaded into the registers in 32-bit blocks over 16
clock cycles. On the next clock cycle, the value of register 15 is updated with
the result of Eqn. 20.4. An initial delay of 16 clock cycles is avoided by taking
the values, Wi from the output of register 15 and not from the output of register
0. The subkeys, Wi , are generated as they are required by the compression
function.

The inverse key schedule is designed in a similar manner and is shown in
Fig. 20.3.

Typically, for decryption, the sender of the ciphertext will send the receiver
the original key used to encrypt the message. Hence, the receiver will have to
generate all eighty 32-bit subkeys before commencing decryption. However,
this can be avoided if the sender of the ciphertext sends the receiver the final
sixteen 32-bit subkeys that were created during encryption of the message as
a 512-bit inverse key. Now, the receiver can immediately begin to decrypt the
ciphertext, since the subkeys required for decryption can be generated as they
are required using this inverse key.

The design of the SHACAL-1 compression function is depicted in Fig. 20.4.
The design requires 5 registers to store the continually updating values of A, B,
C, D and E. The values in registers B, C and D are operated on by one of four
different functions every 20 iterations, as given in Eqn. 20.3.

The critical path of the overall SHACAL design occurs in the compression
function in the calculation of,

Ai+1 = ROTLEFT−5(Ai) + Fi (Bi , Ci , Di) + Ei + Cnsti + Wi (20.10)

Performance Analysis of SHACAL-1 Encryption Hardware Architectures 257

A ROTLEFT -30

ROTLEFT -5

B EC D

Wi + Cnsti

F i(B,C,D)

Figure 20.4. SHACAL-1 Compression Function Design.

CSA

EiROT(A i) T F(Bi,Ci,Di)

CSA

FA

Ai+1

Figure 20.5. CSA Implementation in Compression Function.

In the architectures described here, this critical path is reduced in 2 ways.
Firstly, the addition, T = Cnsti + Wi , is performed on the previous clock cycle
and thus, is removed from the critical path. Also, Carry-Save-Adders (CSAs)
are utilised. With CSAs, the carry propagation is avoided until the final addition.
Therefore, Eqn. 20.10 is implemented using two CSAs and one Full Adder (FA)
rather than three FAs, as shown in Fig. 20.5. Since the CSAs involve 32-bit addi-
tions, this implementation is faster than an implementation using only FAs [13].

The inverse compression function, outlined in Fig. 20.6, contains a subtrac-
tion. Hence, the throughput of the SHACAL-1 decryption architecture will be
slower than that of the encryption architecture.

During decryption the critical path of the overall SHACAL design occurs in
the inverse compression function, where,

Ei+1 = Ai − [ROTLEFT−5(Bi) + InvFi (ROTRIGHT−30(Ci), Di , Ei)

+ InvCnsti + InvWi] (20.11)

258

AROTRIGHT -30

ROTLEFT -5

BE CD

InvFi(x,y,z)
InvWi + InvCnst i

Figure 20.6. SHACAL-1 Inverse Compression Function Design.

CSA

AiROT(B i) 3 InvCnsti + InvWi

CSA

FA

Ei+1

CSA

InvF(ROT(Ci),Di,Ei)

Figure 20.7. CSA Implementation in Inverse Compression Function.

Once again, it can be reduced by performing the addition, InvCnsti + InvWi,
on the previous clock cycle. Eqn. 20.11 is manipulated for a CSA implementa-
tion by using two’s complement logic, such that,

Ei+1 = Ai + ROTLEFT−5(Bi) + 1

+ I nv Fi (ROTRIGHT−30(Ci), Di , Ei) + 1 + I nvCnsti + InvWi + 1 (20.12)

Performance Analysis of SHACAL-1 Encryption Hardware Architectures 259

Thus, CSAs can be used to improve the overall efficiency of the decryption
architecture, as illustrated in Fig. 20.7.

20.3.2 Fully and Sub-Pipelined SHACAL-1 Architectures

In the pipelined SHACAL-1 encryption architecture, the compression func-
tion and key schedule are designed as for the iterative architecture. However, the
eighty compression function iterations are fully unrolled and registers placed be-
tween each component, as depicted in Fig. 20.8. It is assumed that the same key
is used throughout a data transfer session. Every twenty compression function
components contain a different function according to Eqn. 20.3. New plaintext
blocks can be accepted on every clock cycle and after an initial delay of 81 clock
cycles, the corresponding ciphertext blocks will appear on consecutive clock
cycles. This leads to a very high-speed design. Further increases in speed can be
obtained by sub-pipelining each compression function. After implementation
using CSAs, the critical path of the encryption architecture lies in the path from
Ci to Ai+1. In order to reduce this path, a further set of registers can be placed
between the CSAs, as shown in Fig. 20.9. The initial latency is now 162 clock
cycles before ciphertext blocks are output.

The fully and sub- pipelined decryption architectures are designed in a similar
manner using the inverse compression function and inverse key schedule. After
implementation using CSAs, the critical path of the decryption architecture lies
in the path from Ei to Ei+1. A further set of registers can be placed between
the CSAs, as shown in Fig. 20.10, to reduce this new critical path.

C
o

m
p

re
ss

io
n

F
u

n
ct

io
n

Key
Schedule

Plain
text

Key

Subkeys
Wi

A0

B0

C0

D0

E0

A1

B1

C1

D1

E1

C
o

m
p

re
ss

io
n

F
u

n
ct

io
n

A2

B2

C2

D2

E2

…

…

…

…

…

C
o

m
p

re
ss

io
n

F
u

n
ct

io
n

A79

B79

C79

D79

E79

Cipher
text

K0 K1 K79

…

32

160 160

32

512

0 1 79

Figure 20.8. SHACAL-1 Fully Pipelined Architecture.

260

CSA

EiROT(Ai) T F(Bi,Ci,Di)

CSA

FA

Ai+1

Figure 20.9. Sub-Pipelining the Compression Function.

CSA

AiROT(Bi) 3 InvCnsti + InvWi

CSA

FA

Ei+1

CSA

InvF(ROT(Ci),Di,Ei)

Figure 20.10. Sub-Pipelining the Inverse Compression Function.

Performance Analysis of SHACAL-1 Encryption Hardware Architectures 261

20.4 Performance Evaluation

To provide a hardware performance evaluation for SHACAL-1, the hardware
architectures described in this paper are implemented on Xilinx FPGA devices
for demonstration purposes. The designs were simulated using Modelsim and
synthesised using Synplify Pro v7.2 and Xilinx Foundation Series 5.1i software.
They were verified using the SHACAL-1 test vectors provided in the submission
to NESSIE.

The iterative encryption architecture implemented on the Virtex-II XC2V500
device runs at a clock speed of 110 MHz and hence, achieves a throughput of
215 Mbps. The design utilises just 994 CLB slices. The iterative decryption
architecture implemented on the same device has a data-rate of 186 Mbps
and requires 1039 slices. The decryption design is slower since its critical
path contains a subtraction. The iterative architectures result in highly-compact
yet efficient implementations. In both designs the 160-bit plaintext/ciphertext
blocks and 512-bit key are input and output in 32-bit blocks. This implies a lower
IOB count and less routing, thus, the designs can be implemented efficiently
on smaller FPGA devices.

The fully and sub- pipelined architectures result in very high-speed designs.
The performance results for these architectures are outlined in Table 20.1.

The sub-pipelined architectures achieve higher speeds than the fully
pipelined architectures at the of additional area. However, the overall efficiency
of the designs is not affected and the sub-pipelined architecture can be im-
plemented on the same device. Additional sub-pipelining of the compression
function could be carried out to further increase throughput. However, the ad-
ditional area would require that the design is implemented on a larger Virtex-II
device.

Even higher data-rates are attainable if the architectures are implemented
on ASIC technology. Table 20.2 provides a summary of published work on

Table 20.1. Performance Results of SHACAL-1 Fully and Sub-Pipelined Architectures

Speed Area Throughput Efficiency
Architecture Device (MHz) (slices) (Mbps) (Mbps/slices)

Fully-pipelined XC2V4000 107 13729 17184 1.25
Encryption

Fully-pipelined XC2V4000 104 15241 16668 1.09
Decryption

Sub-pipelined XC2V4000 145 19733 23242 1.2
Encryption

Sub-pipelined XC2V4000 135 23038 23118 1
Decryption

262

fast, pipelined hardware implementations of the NESSIE block cipher final-
ists on FPGA devices. The SAFER++ algorithm is not included in the table
since an iterative design with a throughput of 403 Mbps [7] is the fastest im-
plementation published to date. For comparison purposes, the table includes
the performance metrics of a sub-pipelined single-chip implementation [14] of
the Rijndael algorithm, which is the fastest FPGA implementation of this algo-
rithm reported to date. Overall, the SHACAL-1 algorithm provides the fastest
pipelined implementation. However, it is difficult to compare the performance
of the algorithms as they are implemented on different devices. The closest in
speed to the SHACAL-1 implementation is the 20 Gbps Rijndael design by
Saggese et al [14] on a Virtex-E device. This Rijndael design requires a large
number of memory blocks and as such, the Virtex-E FPGA is the most suitable
device for implementation since it comprises a memory-rich architecture. The
SHACAL-1 algorithm requires no memory blocks and therefore, the Virtex-II
FPGA is targeted, as opposed to the Virtex-E device.

Although it is the fastest, the pipelined design is also the largest in area. High-
speed, yet lower area implementations are possible by unrolling the algorithm
by a lower number of compression function components, while still adopting
pipelining. The SHACAL specification provided performance metrics for a
software implementation of SHACAL-1 on an 800 MHz Pentium III processor.
Encryption was achieved at a data-rate of 52 Mbps, decryption at 55 Mbps
and key setup at 180 Mbps [9]. Therefore, even the iterative hardware design
outlined in this paper is 4 times faster than their software implementation.

The efficiency of the algorithm implementations is also given in Table 20.2.
Efficiency calculations are not provided for implementations that have been
designed specifically to a device, and thus, include features such as multipliers
and BRAM components. The MISTY1 implementation is the most efficient
pipelined design while the SHACAL-1 implementation on the Virtex-II device
is the next most efficient.

20.5 Conclusions

Throughout the NESSIE project, there has been no performance evaluation
provided for hardware implementations of the SHACAL algorithm. In this
paper, the SHACAL-1 algorithm is studied and both low-area iterative and
high-speed pipelined architectures are described. The results presented in the
paper improve on performance metrics previously published by the authors
[8]. The SHACAL-1 architectures are implemented on Xilinx FPGA devices
for demonstration purposes, but can readily be implemented on other FPGA or
ASIC technologies. The iterative architectures are highly compact, yet efficient,
when implemented on Virtex-II devices. A very high-speed 23 Gbps design is
achieved when the sub-pipelined SHACAL-1 architecture is implemented on

Performance Analysis of SHACAL-1 Encryption Hardware Architectures 263

Table 20.2. Summary of NESSIE Algorithm Hardware Implementations.

Throughput Efficiency
Authors Algorithm Device Area (Mbps) (Mbps/slices)

Authors SHACAL-1 XC2V4000 19733 slices 23242 1.2

Pan et al [2] IDEA XC2V1000 4221 slices 6080 −
34 multipliers

Rouvroy MISTY1 XC2V2000 6322 slices 19392 3.07
et al [3]

Standaert Khazad XCV1000 8800 slices 9472 1.08
et al [4]

Ichikawa Camellia XCV1000E 9692 slices 6750 0.7
et al [5]

Beuchat[6] RC6 XC2V3000 8554 slices 15200 −
80 multipliers

Saggese Rijndael XCV2000E 5810 slices 20224 −
et al [14] 100 BRAM

the Virtex-II XC2V4000 device. SHACAL-1 is the fastest algorithm in hardware
when compared to pipelined hardware implementations of the other NESSIE
block cipher finalists. The other SHACAL algorithm version specified in the
submission, SHACAL-2, operates on a 256-bit data block utilising a 512-bit
key. The SHACAL-1 architectures described in this paper can be easily adapted
for SHACAL-2. The authors have also conducted work on SHACAL-2 iterative
and pipelined architectures, which achieve even higher speeds than SHACAL-
1 architectures. The SHACAL-2 iterative design runs at a speed of 432 Mbps
while a fully pipelined architecture achieves a throughput of 26 Gbps [15].

The SHACAL-2 algorithm was selected as one of four block ciphers to
be included in the NESSIE portfolio of cryptographic primitives. Overall, the
SHACAL algorithm has proven to be very secure with a large security margin.
Since it is derived from the SHA hash algorithm, it has already undergone
much cryptanalysis. It performs well when implemented in software [16] and
as is evident from this paper, very high-speed hardware implementations are
also possible. Since security and performance were the two main criteria in the
NESSIE selection process, the SHACAL algorithm is an ideal candidate for
selection.

References

[1] US NIST Advanced Encryption Standard, (January, 2004) http://csrc. nist.gov/encryption/aes/
[2] Z. Pan, S. Venkateswaran, S.T. Gurumani, and B.E. Wells, Exploiting Fine-Grain Parallelism present

within the International Data Encryption Algorithm using a Xilinx FPGA, 16th International Conference
on Parallel and Distributed Computing Systems (PDCS-2003), (Nevada, US, 2003).

264

[3] G. Rouvroy, F.X. Standaert, J.J. Quisquater, J.D. Legat, Efficient FPGA Implementation of Block Cipher
MISTY1, The Reconfigurable Architecture Workshop (RAW 2003), (Nice, France, 2003).

[4] F.X. Standaert, G. Rouvroy, Efficient FPGA Implementation of Block Ciphers Khazad and MISTY1,
3rd NESSIE Workshop, http://www.di.ens.fr/wwwgrecc/NESSIE3/, (Germany, 2002).

[5] T. Ichikawa, T. Sorimachi, T. Kasuya, M. Matsui, On the criteria of hardware evaluation of block
ciphers(1), Technical report of IEICE, ISEC2001-53, (2001).

[6] J.L. Beuchat, High Throughput Implementations of the RC6 Block Cipher Using Virtex-E and Virtex-
II Devices, INRIA Research Report, http://perso.ens-lyon.fr/jean-luc.beuchat/publications.html, (July,
2002).

[7] T. Ichikawa, T. Sorimachi, T. Kasuya, On Hardware Implementation of Block Ciphers Selected at the
NESSIE Project Phase 1, 3rd NESSIE Workshop, http://www.di.ens.fr/wwwgrecc/NESSIE3/, (Ger-
many, November 2002).

[8] M. McLoone, J.V. McCanny, Very High Speed 17 Gbps SHACAL Encryption Architecture, 13th Inter-
national Conference on Field Programmable Logic and Applications—FPL 2003, (Portugal, September
2003).

[9] H. Handschuh, D. Naccache, SHACAL, 1st NESSIE Workshop, http://www.cosic.esat.kuleuven.
ac.be/nessie/workshop/, (Belgium, November, 2000).

[10] K.K. Ting, S.C.L. Yuen, K.H. Lee, P.H.W. Leong, An FPGA based SHA-256 Processor, 12th Inter-
national Conference on Field Programmable Logic and Applications—FPL 2002, (France, September,
2002).

[11] T. Grembowski, R. Lien, K. Gaj, N. Nguyen, P. Bellows, J. Flidr, T. Lehman, B. Schott, Compara-
tive Analysis of the Hardware Implementations of Hash Functions SHA-1 and SHA-512, Information
Security Conference”, (October, 2002).

[12] M. McLoone, J.V. McCanny, Efficient Single-Chip Implementation of SHA-384 and SHA-512, IEEE
International Conference on Field-Programmable Technology—FPT 2002), (Hong Kong, Dec 2002).

[13] T. Kim, W. Jao, S. Tjiang, Circuit Optimization Using Carry-Save-Adder Cells, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, Vol. 17, No. 10, (October, 1998).

[14] G.P. Saggese, A. Mazzeo, N. Mazzocca, A.G.M. Strollo, An FPGA-Based Performance Analysis of
the Unrolling, Tiling, and Pipelining of the AES Algorithm, 13th International Conference on Field
Programmable Logic and Applications—FPL 2003, (Portugal, September, 2003).

[15] M. McLoone, Hardware Performance Analysis of the SHACAL-2 Encryption Algorithm, submitted to
IEE Proceedings—Circuits, Devices and Systems, (July, 2003).

[16] NESSIE, Performance of Optimized Implementations of the NESSIE Primitives, http://www.cosic.
esat.kuleuven.ac.be/nessie/deliverables/D21-v2.pdf, (February, 2003).

Chapter 21

Security Aspects of FPGAs in Cryptographic
Applications

Thomas Wollinger and Christof Paar∗

Chair for Communication Security (COSY)
Ruhr-Universität Bochum, Germany
{wollinger, cpaar}@crypto.rub.de

Abstract This contribution provides a state-of-the-art description of security issues on
FPGAs from a system perspective. We consider the potential security problems of
FPGAs and propose some countermeasure for the existing drawbacks of FPGAs.
Even though there have been many contributions dealing with the algorithmic
aspects of cryptographic schemes implemented on FPGAs, this contribution is
one of the few investigations of system and security aspects.

Keywords: cryptography, security, attacks, reconfigurable hardware, FPGA, cryptographic
applications, reverse engineering

21.1 Introduction and Motivation

In recent years, FPGAs manufacturers have come closer to filling the per-
formance gap between FPGAs and ASICs, enabling them, not only to serve
as fast prototyping tools but also to become active players as components in
systems. Reconfigurable hardware devices seem to combine the advantages of
software and hardware implementations. Furthermore, there are potential ad-
vantages of reconfigurable hardware in cryptographic applications: algorithm
agility, algorithm upload, architecture efficiency, resource efficiency, algorithm
modification, throughput and cost efficiency.

The choice of the implementation platform of a digital system is driven by
many criteria and is heavily dependent on the application area. In addition to

∗ This research was partially sponsored by the German Federal Office for Information Security (BSI).

265

P. Lysaght and W. Rosenstiel (eds.),

New Algorithms, Architectures and Applications for Reconfigurable Computing, 265–278.

© 2005 Springer. Printed in the Netherlands.

266

the aspects of algorithm and system speed and costs there are crypto-specific
ones: physical security (e.g., against key recovery and algorithm manipulation);
flexibility (regarding algorithm parameter, keys, and the algorithm itself); power
consumption (absolute usage and prevention of power analysis attacks); and
other side channel leakages.

The remainder of this chapter is organized as follows: We devote the first
part of this chapter to studying FPGAs from a system security perspective by
describing some possible attacks (Section 21.2). In the second part we present
possible countermeasures against the introduced attacks (Section 21.3). We end
this contribution with some conclusions.

21.2 Shortcomings of FPGAs for Cryptographic
Applications

This section summarizes security problems produced by attacks against given
FPGA implementations. First we would like to state what the possible goals of
such attacks are.

21.2.1 Why does Someone Wants to Attack FPGAs?

The most common threat against an implementation of a cryptographic al-
gorithm is to learn a confidential cryptographic key, that is, either a symmetric
key or the private key of an asymmetric algorithm. Given that the algorithms
applied are publicly known in most commercial applications, knowledge of the
key enables the attacker to decrypt future (assuming the attack has not been
detected and countermeasures have not been taken) and, often more harming,
past communications which had been encrypted. Another threat is the one-
to-one copy, or “cloning”, of a cryptographic algorithm together with its key.
In some cases it can be enough to run the cloned application in decryption
mode to decipher past and future communications. In other cases, execution
of a certain cryptographic operation with a presumingly secret key is in most
applications the sole criteria which authenticates a communicating party. An
attacker who can perform the same function can masquerade as the attacked
communicating party. Yet another threat is presented by applications where
the cryptographic algorithms are proprietary. Even though such an approach is
not widespread, it is standard practice in applications such as pay-TV and in
government communications. In such scenarios it is already interesting for an
attacker to reverse-engineer the encryption algorithm itself. The associated key
might later be recovered by other methods (e.g., bribery or classical cryptanal-
ysis.) The discussion above assumes mostly that an attacker has physical access
to the encryption device. Whether that is the case or not depends heavily on

Security Aspects of FPGAs in Cryptographic Applications 267

the application. However, we believe that in many scenarios such access can be
assumed, either through outsiders or through dishonest insiders.

In the following we discuss the vulnerabilities of modern FPGAs to such
attacks. In areas where no attacks on FPGAs have been published, we have
tried to extrapolate from attacks on other hardware platforms, mainly memory
cell and chip cards.

21.2.2 Description of the Black Box Attack

The classical method to reverse engineer a chip is the so-called Black Box
attack. The attacker inputs all possible combinations, while saving the corre-
sponding outputs. The intruder is then able to extract the inner logic of the
FPGA with the help of the Karnaugh map or algorithms that simplify the re-
sulting tables. This attack is only feasible if a small FPGA with explicit inputs
and outputs is attacked and a lot of processor power is available. The reverse
engineering effort grows and it will become less feasible as the size and com-
plexity of the FPGA increases. The cost of the attack, furthermore, rises with the
usage of state machines, LFSRs (Linear Feedback Shift Registers), integrated
storage, and, if pins can be used, as input and output [Dipert, 2000].

21.2.3 Cloning of SRAM FPGAs

The security implications that arise in a system that uses SRAM FPGAs
are obvious, if the configuration data is stored unprotected in the system but
external to the FPGA. In a standard scenario, the configuration data is stored
externally in nonvolatile memory (e.g., PROM) and is transmitted to the FPGA
at power up in order to configure the FPGA. An attacker could easily eavesdrop
on the transmission and get the configuration file. This attack is therefore fea-
sible for large organizations as well as for those with low budgets and modest
sophistication.

21.2.4 Description of the Readback Attack

Readback is a feature that is provided for most FPGA families. This feature
allows one to read a configuration out of the FPGA for easy debugging. An
overview of the attack is given in [Dipert, 2000]. The idea of the attack is to
read the configuration of the FPGA through the JTAG or programming interface
in order to obtain secret information (e.g. keys or a proprietary algorithm). The
readback functionality can be prevented with a security bit. In some FPGA
families, more than one bit is used to disable different features, e.g., the JTAG
boundary. In [Aplan et al., 1999], the idea of using a security antifuse to prevent
readout of information is patented.

268

However, it is conceivable, that an attacker can overcome these countermea-
sures in FPGAs with fault injection. This kind of attack was first introduced
in [Boneh et al., 1997]. The authors showed how to break public-key algo-
rithms, such as the RSA and Rabin signature schemes, by exploiting hardware
faults. Furthermore, they give a high-level description of transient faults, la-
tent faults, and induced faults. This publication, was followed by [Biham and
Shamir, 1997], where the authors introduced differential fault analysis, which
can potentially be applied against all symmetric algorithms in the open litera-
ture. Meanwhile there have been many publications that show different tech-
niques to insert faults, e.g., electro magnetic radiation [Quisquater and Samyde,
2001], infrared laser [Ajluni, 1995], or even a flash light [Skorobogatov and
Anderson, 2002]. It seems very likely that these attacks can be easily applied to
FPGAs, since they are not especially targeted to ASICs. Therefore, one is able
to deactivate security bits and/or the countermeasures, resulting in the ability
to read out the configuration of the FPGA [Kessner, 2000, Dipert, 2000].

Despite these attacks Actel Corporation [Actel Corporation, 2002] claims
that after the programming phase, the cells of their FPGAs cannot be read
at all. On the other hand Xilinx offers the users the software tool JBits
[Guccione and Levi, 2003], which provides an API to access the bitstream
information and allows dynamic reconfiguration for Xilinx Virtex FPGAs.
JBits allows a simplified and automated access to specific parts of the bit-
stream, resulting in a extra advantage for the attacker who performs a readback
attack.

21.2.5 Reverse-Engineering of the Bitstreams

The attacks described so far output the bitstream of the FPGA design. In
order to get the design of proprietary algorithms or the secret keys, one has to
reverse-engineer the bitstream. The condition to launch the attack is not only
that the attacker has to be in possession of the bitstream, but furthermore the
bitstream has to be in the clear, meaning it is not encrypted.

FPGA manufactures claim, that the security of the bitstream relies on the
disclosure of the layout of the configuration data. This information will only
be made available if a non-disclosure agreement is signed, which is, from a
cryptographic point of view, an extremely insecure situation. This security-by-
obscurity approach was broken at least ten years ago when the CAD software
company NEOCad reverse-engineered a Xilinx FPGA. NEOCad was able to
reconstruct the necessary information about look-up tables, connections, and
storage elements [Seamann, 2000]. Hence, NEOCad was able to produce de-
sign software without signing non-disclosure agreements with the FPGA man-
ufacturer. Even though a big effort has to be made to reverse engineer the
bitstream, for large organizations it is quite feasible. In terms of government

Security Aspects of FPGAs in Cryptographic Applications 269

organizations as attackers, it is also possible that they will get the informa-
tion of the design methodology directly from the vendors or companies that
signed NDAs.

21.2.6 Description of Side Channel Attacks

Any physical implementation of a cryptographic system might provide a side
channel that leaks unwanted information. Examples for side channels include
in particular: power consumption, timing behavior, and electromagnet radia-
tion. Obviously, FPGA implementations are also vulnerable to these attacks. In
[Kocher et al., 1999] two practical attacks, Simple Power Analysis (SPA) and
Differential Power Analysis (DPA) were introduced. The power consumption
of the device while performing a cryptographic operation was analyzed in order
to find the secret keys from a tamper resistant device. The main idea of DPA
is to detect regions in the power consumption of a device which are correlated
with the secret key. Moreover, in some cases little or no information about the
target implementation is required. Since their introduction, there has been a
lot of work improving the original power attacks (see, e.g., relevant articles
in [Kaliski, Jr. et al., 2003]. There seems to be very little work at the time of
writing addressing the feasibility of actual side channel attacks against FPGAs.
Very recently the first experimental results of simple power analysis on an ECC
implementation on an FPGA have been presented in [Örs et al., 2003] and on
RSA and DES implementations in [Standaert et al., 2003]. Somewhat related
was the work presented in [Shang et al., 2002] which concludes that 60% of the
power consumption in a XILINX Virtex-II FPGA is due to the interconnects
and 14% and 16% is due to clocking and logic, respectively. These figures
would seem to imply that an SPA type attack would be harder to implement on
an FPGA than on an ASIC. However, the results presented in [Standaert et al.,
2003, Örs et al., 2003] show that SPA attacks are feasible on FPGAs and that
they can be realized in practice.

21.2.7 Description of Physical Attacks

The aim of a physical attack is to investigate the chip design in order to get
information about proprietary algorithms or to determine the secret keys by
probing points inside the chip. Hence, this attack targets parts of the FPGA,
which are not available through the normal I/O pins. This can potentially be
achieved through visual inspections and by using tools such as optical micro-
scopes and mechanical probes. However, FPGAs are becoming so complex that
only with advanced methods, such as Focused Ion Beam (FIB) systems, one
can launch such an attack. To our knowledge, there are no countermeasures to
protect FPGAs against this form of physical threat. In the following, we will

270

try to analyze the effort needed to physically attack FPGAs manufactured with
different underlying technologies.

SRAM FPGAs. Unfortunately, there are no publications available that ac-
complished a physical attack against SRAM FPGAs. This kind of attack is
only treated very superficially in a few articles, e.g. [Richard, 1998]. In the
related area of SRAM memory, however there has been a lot of effort by
academia and industry to exploit this kind of attack [Gutmann, 1996, Gutmann,
2001, Anderson and Kuhn, 1997, Williams et al., 1996, Schroder, 1998, Soden
and Anderson, 1993, Kommerling and Kuhn, 1999]. Due to the similarities in
structure of the SRAM memory cell and the internal structure of the SRAM
FPGA, it is most likely that the attacks can be employed in this setting.

Contrary to common wisdom, SRAM memory cells do not entirely loose
their contents when power is cut. The reason for these effects are rooted in the
physical properties of semiconductors (see [Gutmann, 2001] for more details).
The physical changes are caused mainly by three effects: electromigration, hot
carriers, and ionic contamination.

Electromigration implies a high current density, that relocates metal atoms
in the opposite direction of the current flow. Electromigration results in voids at
the negative electrode and hillocks and whiskers at the positive electrode. The
result is that electrons with very high energy are able to overcome the Si − Si O2

potential barrier and accelerate into the gate oxide. These are called hot car-
rier electrons and it can be days before they become neutralized [Gutmann,
2001]. Ionic contamination is triggered by the sodium ions present in the
material which are used during the semiconductor manufacturing and pack-
aging processes. Electrical fields and high temperature enable movement to-
wards the silicon/sillicon-dioxide interfaces, resulting in a changes in threshold
voltages.

In the published literature one can find several different techniques to de-
termine the changes in device operations. Most publications agree that devices
can be altered, if 1) threshold voltage has changed by 100 mV or 2) there is a
10% change in transconductance, voltage or current. An extreme case of data
recovery, was described in [Anderson and Kuhn, 1997]. The authors were able
to extract a DES master key from a module used by a bank, without any special
techniques or equipment on power-up. The reason for this was that the key was
stored in the same SRAM cells over a long period of time. Hence, the key was
“burned” into the memory cells and the key values were retained even after
switching off the device.

“IDDQ testing” is a widely used method for testing integrated circuits and is
based on the analysis of the current usage of a device. The idea is to execute a set
of test vectors until a given location is reached, at which point the device current
is measured. Hot carrier effects, cell charge, and transitions between different

Security Aspects of FPGAs in Cryptographic Applications 271

states can then be detected as abnormal IDDQ characteristics [Gutmann, 2001,
Williams et al., 1996]. In [Schroder, 1998], the authors use the substrate current,
the gate current, and the current in the drain-substrate diode of a MOSFET to
determine the level and duration of stress applied.

When it becomes necessary to access internal portions of a device, there
are also alternative techniques available to do so, as described in [Soden and
Anderson, 1993]. Possibilities include the use of the scan path that the IC
manufacturers insert for test purposes or techniques like bond pad probing
[Gutmann, 2001].

When it becomes necessary to use access points that are not provided by the
manufacturer, the layers of the chip have to be removed. Mechanical probing
with tungsten wire with a radius of 0, 1 − 0, 2 µm is the traditional way to
discover the needed information. These probes provide gigahertz bandwidth
with 100 f F capacitance and 1M� resistance.

Due to the complex structure and the multi-layer production of chips, me-
chanical testing is not sufficient enough. Focused Ion Beam (FIB) workstations
can expose buried conductors and deposit new probe points. The functionality
is similar to an electron microscope and one can inspect structures down to
5nm [Kommerling and Kuhn, 1999]. Use of an electron-beam tester (EBT) is
another measurement method. An EBT is a special electron microscope that is
able to speed primary electrons up to 2.5 kV at 5nA. EBT measures the energy
and amount of secondary electrons that are reflected.

From the discussion above, it seems likely that a physical attack against
SRAM FPGAs can be launched successfully, assuming that the described tech-
niques can be transferred. However, the physical attacks are quite costly and
having the structure and the size of state-of-the-art FPGA in mind, the attack
will probably only be possible for large organizations, for example intelligence
services.

Antifuse FPGAs. To discuss physical attacks against antifuse (AF) FPGAs,
one has to first understand the programming process and the structure of the
cells. The basic structure of an AF node is a thin insulating layer (smaller than
1 µm2) between conductors that is programmed by applying a voltage. After
applying the voltage, the insulator becomes a low-resistance conductor and
there exists a connection (diameter about 100nm) between the conductors. The
programming function is permanent and the low-impedance state will persist
indefinitely.

In order to be able to detect the existence or non-existence of the connection
one has to remove layer after layer, or/and use cross-sectioning. Unfortunately,
no details have been published regarding this type of attack. In [Dipert, 2000],
the author states that a lot of trial-and-error is necessary to find the configuration
of one cell and that it is likely that the rest of the chip will be destroyed, while

272

analyzing one cell. The main problem with this analysis is that the isolation layer
is much smaller than the whole AF cell. One study estimates that about 800,000
chips with the same configuration are necessary to explore the configuration file
of an Actel A54SX16 chip with 24,000 system gates [Dipert, 2000]. Another
aggravation of the attack is that only about 2–5% of all possible connections in
an average design are actually used. In [Richard, 1998] a practical attack against
AF FPGAs was performed and it was possible to alter one cell in two months
at a cost of $1000. Based on these arguments some experts argue that physical
attacks against AF FPGAs are harder to perform than against ASICs [Actel
Corporation, 2002]. On the other hand, we know that AF FPGAs can be easily
attacked if not connected to a power source. Hence, it is easier to drill holes to
disconnect two connections or to repair destroyed layers. Also, depending on
the source, the estimated cost of an attack and its complexity are lower [Richard,
1998].

Flash FPGAs. The connections in flash FPGAs are realized through flash
transistors. That means the amount of electrons flowing through the gate changes
after configuration and there are no optical differences as in the case of AF FP-
GAs. Thus, physical attacks performed via analysis of the FPGA cell material
are not possible. However, flash FPGAs can be analyzed by placing the chip in a
vacuum chamber and powering it up. The attacker can then use a secondary elec-
tron microscope to detect and display emissions. The attacker has to get access
to the silicon die, by removing the packet, before he can start the attack [Dipert,
2000]. However, experts are not certain about the complexity of such an attack
and there is some controversy regarding its practicality [Actel Corporation,
2002, Richard, 1998]. Other possible attacks against flash FPGAs can be found
in the related area of flash memory. The number of write/erase cycles are limited
to 10,000–100,000, because of the accumulation of electrons in the floating gate
causing a gradual rise of the transistors threshold voltage. This fact increases
the programming time and eventually disables the erasing of the cell [Gutmann,
2001]. Another less common failure is the programming disturbance in which
unselected erased cells gain charge when adjacent selected cells are written
[Aritome et al., 1993]. This failure does not change the read operations but it
can be detected with special techniques described in [Gutmann, 2001]. Further-
more, there are long term retention issues, like electron emission. The electrons
in the floating gate migrate to the interface with the underlying oxide from where
they tunnel into the substrate. This emission causes a net charge loss. The oppo-
site occurs with erased cells where electrons are injected [Papadas et al., 1991].
Ionic contamination takes place as well but the influence on the physical behav-
ior is so small that it can not be measured. In addition, hot carrier effects have a
high influence, by building a tunnel between the bands. This causes a change in
the threshold voltage of erased cells and is especially significant for virgin cells

Security Aspects of FPGAs in Cryptographic Applications 273

[Haddad et al., 1989]. Another phenomenon is over-erasing, where an erase
cycle is applied to an already-erased cell leaving the floating gate positively
charged. Thus, turning the memory transistor into a depletion-mode transistor
[Gutmann, 2001].

All the described effects change in a more or less extensive way the cell
threshold voltage, gate voltage, or the characteristic of the cell. We remark
that the stated phenomenons apply for EEPROM memory and that due to
the structure of the FPGA cell these attacks can be simply adapted to attack
flash/EEPROM FPGAs.

Summary of Physical Attacks. It is our position that due to the lack of
published physical attacks against FPGAs, it is very hard (if at all possible)
to predict the costs of such an attack. It is even more difficult to compare the
effort needed for such an attack to a similar attack against an ASIC as there
is no publicly available contribution which describes a physical attack against
an FPGA that was completely carried out. Nevertheless, it is possible to draw
some conclusions from our discussion above.

First, we notice that given the current size of state-of-the-art FPGAs, it seems
infeasible, except perhaps for large government organizations and intelligence
agencies, to capture the whole bitstream of an FPGA. Having said that, we
should caution that in some cases, an attacker might not need to recover the
whole bitstream information but rather a tiny part of it, e.g., the secret-key. This
is enough to break the system from a practical point of view and it might be
feasible.

On the other hand, there are certain properties that might increase the effort
required for a physical attack against FPGAs when compared to ASICs. In the
case of SRAM-, Flash-, EPROM-, and EEPROM-FPGAs there is no printed
circuit (as in the case of ASICs) and therefore it is potentially harder to find
the configuration of the FPGA. The attacker has to look for characteristics that
were changed on the physical level during the programming phase. In the case
of antifuse FPGAs the effort for a physical attack might increase compared
to ASICs because one has to find a tiny connection with a diameter of about
100 nm in a 1 µm2 insulation layer. Furthermore, only 2–5% of all possible
connections are used in an average configuration.

21.3 Prevention of Attacks

This section shortly summarizes possible countermeasures that can be pro-
vided to minimize the effects of the attacks mentioned in the previous section.
Most of them have to be realized by design changes by the FPGA manufacturers,
but some could be applied during the programming phase of the FPGA.

274

21.3.1 How to Prevent Black Box Attacks

The Black Box Attack is not a real threat nowadays, due to the complexity
of the designs and the size of state-of-the-art FPGAs (see Section 21.2.2).
Furthermore, the nature of cryptographic algorithms prevents the attack as well.
Cryptographic algorithms can be segmented in two groups: symmetric-key and
public-key algorithms. Symmetric-key algorithms can be further divided into
stream and block ciphers. Today’s stream ciphers output a bit stream, with a
period length of 128 bits [Thomas et al., 2003]. Block ciphers, like AES, are
designed with a block length of 128 bits and a minimum key length of 128 bits.
Minimum length in the case of public-key algorithms is 160 bits for ECC and
1024 bits for discrete logarithm and RSA-based systems. It is widely believed,
that it is infeasible to perform a brute force attack and search a space with 280

possibilities. Hence, implementations of these algorithms cannot be attacked
with the black box approach.

21.3.2 How to Prevent Cloning of SRAM FPGAs

There are many suggestions to prevent the cloning of SRAM FPGAs, mainly
motivated by the desire to prevent reverse engineering of general, i.e., non-
cryptographic, FPGA designs. One solution would be to check the serial num-
ber before executing the design and delete the circuit if it is not correct. This
approach is not practical because of the following reasons: 1) The whole chip,
including the serial number can be easily copied; 2) Every board would need
a different configuration; 3) Logistic complexity to manage the serial numbers
[Kessner, 2000]. Another solution would be to use dongles to protect the de-
sign [Kean, 2001, Kessner, 2000]. Dongles are based on security-by-obscurity,
and therefore do not provide solid security, as it can be seen from the software
industry’s experience using dongles for their tools. A more realistic solution
would be to have nonvolatile memory and an FPGA in one chip or to combine
both parts by covering them with epoxy. This reflects also the trend in chip
manufacturing to have different components combined, e.g., the FPSLIC from
Atmel. However, it has to be guaranteed that an attacker is not able to separate
the parts.

Encryption of the configuration file is the most effective and practical coun-
termeasure against the cloning of SRAM FPGAs. There are several patents
that propose different scenarios related to the encryption of the configuration
file: how to encrypt, how to load the file into the FPGA, how to provide key
management, how to configure the encryption algorithms, and how to store the
secret data In [Yip and Ng, 2000], the authors proposed that to partly decrypt the
configuration file, in order to increase the debugging effort during the reverse
engineering. If an attacker copies the partly decrypted file, the non-decrypted

Security Aspects of FPGAs in Cryptographic Applications 275

functionality is available, whereas the one decrypted is not. Thus, the attacker
tries to find errors in the design unaware of the fact, that they are caused through
the encrypted part of the configuration. Most likely an attacker with little re-
sources, would have dropped the reverse engineering effort, when realizing that
the parts are decrypted (which he did not do because he did not know). However,
this approach adds hardly any extra complexity to an attack if we assume that
an attacker has a lot of resources. In [Kelem and Burnham, 2000] an advanced
scenario is introduced where the different parts of the configuration file are en-
crypted with different keys. The 60RS family from Actel was the first attempt
to have a key stored in the FPGA in order to be able to encrypt the configuration
file before transmitting it to the chip. The problem was that every FPGA had
the same key on board. This implies that if an attacker has one key he can get
the secret information from all FPGAs. In [Kean, 2001], the author discusses
some scenarios where depending on the manufacturing cost, more than one key
is stored in the FPGA.

An approach in a completely different direction would be to power the whole
SRAM FPGA with a battery, which would make transmission of the configura-
tion file after a power loss unnecessary. This solution does not appear practical,
however, because of the power consumption of FPGAs. Hence, a combination
of encryption and battery power provides a possible solution. Xilinx addresses
this with an on-chip 3DES decryption engine in its Virtex II [Xilinx Inc., 2003]
(see also [Pang et al., 2000]), where only the two keys are stored in the battery
powered memory. Due to the fact that the battery powers only a very small
memory cells, the battery is limited only by its own life span.

21.3.3 How to Prevent Readback Attacks

The readback attack can be prevented with the security bits set, as provided
by the manufactures, see Section 21.2.4. If one wants to make sure that an
attacker is not able to apply fault injection, the FPGA has to be embedded
into a secure environment, where after detection of an interference the whole
configuration is deleted or the FPGA is destroyed.

21.3.4 How to Prevent Side Channel Attack

In recent years, there has been a lot of work done to prevent side-channel
attacks, see [Kaliski, Jr. et al., 2003]. The methods can generally be divided into
software and hardware countermeasures, with the majority of proposals dealing
with software countermeasures. “Software” countermeasures refer primarily to
algorithmic changes, such as masking of secret keys with random values, which
are also applicable to implementations in custom hardware or FPGA. Hardware
countermeasures often deal either with some form of power trace smoothing or

276

with transistor-level changes of the logic. Neither seem to be easily applicable
to FPGAs without support from the manufacturers. However, some proposals
such as duplicated architectures might work on today’s FPGAs.

21.3.5 How to Prevent Physical Attacks

To prevent physical attacks, one has to make sure that the retention effects
of the cells are as small as possible, so that an attacker cannot detect the status
of the cells. Already after storing a value in a SRAM memory cell for 100–
500 seconds, the access time and operation voltage will change [van der Pol
and Koomen, 1990]. Furthermore, the recovery process is heavily dependent
on the temperature: 1.5 hours at 75◦C , 3 days at 50◦C , 2 month at 20◦C , and
3 years at 0◦C [Gutmann, 2001]. The solution would be to invert the data stored
periodically or to move the data around in memory. Cryptographic applications
also cause long-term retention effects in SRAM memory cells by repeatedly
feeding data through the same circuit. One example is specialized hardware
that always uses the same circuits to feed the secret key to the arithmetic unit
[Gutmann, 2001]. Neutralization of this effect can be achieved by applying
an opposite current [Tao et al., 1993] or by inserting dummy cycles into the
circuit [Gutmann, 2001]. In terms of FPGA application, it is very costly or even
impractical to provide solutions like inverting the bits or changing the location
for the whole configuration file. A possibility could be that this is done only for
the crucial part of the design, like the secret keys. Counter techniques such as
dummy cycles and opposite current approach can be carried forward to FPGA
applications.

In terms of flash/EEPROM memory cells, one has to consider that the first
write/erase cycles causes a larger shift in the cell threshold [San et al., 1995]
and that this effect will become less noticeable after ten write/erase cycles
[Haddad et al., 1989]. Thus, one should program the FPGA about 100 times
with random data, to avoid these effect (suggested for flash/EEPROM memory
cells in [Gutmann, 2001]). The phenomenon of overerasing flash/EEPROM
cells can be minimized by first programming all cells before deleting them.

21.4 Conclusions

This chapter analyzed possible attacks against the use of FPGAs in security
applications. Black box attacks do not seem to be feasible for state-of-the-art
FPGAs. However, it seems very likely for an attacker to get the secret informa-
tion stored in a FPGA, when combining readback and fault injection attacks.
Cloning of SRAM FPGAs and reverse engineering depend on the specifics of
the system under attack and they will probably involve a lot of effort, but this
does not seem entirely impossible. Physical attacks against FPGAs are very

Security Aspects of FPGAs in Cryptographic Applications 277

complex due to the physical properties of the semiconductors in the case of
flash/SRAM/EEPROM FPGAs and the small size of AF cells. It appears that
such attacks are even harder than analogous attacks against ASICs. Even though
FPGA have different internal structures than ASICs with the same functional-
ity, we believe that side-channel attacks against FPGAs, in particular power-
analysis attacks, will be feasible too.

It seems from our previous remarks that, while, the art of cryptographic al-
gorithm implementation is reaching maturity, FPGAs as security platforms are
not, and in fact, that they might be currently out of question for security appli-
cations. We do not think that is the right conclusion, however. It should be noted
that many commercial ASICs with cryptographic functionality are also vulner-
able to attacks similar to the ones discussed here. A commonly taken approach
to prevent these attacks is to put the ASIC in a secure environment. A secure en-
vironment could, for instance, be a box with tamper sensors which triggers what
is called “zeroization” of cryptographic keys, when an attack is being detected.
Similar approaches are certainly possible for FPGAs too. (Another solution
often taken by industry is not to care and to build cryptographic products with
poor physical security, but we are not inclined to recommend this.)

References

Actel Corporation (2002). Design Security in Nonvolatile Flash and Antifuse. Avaialble at http://
www.actel.com/appnotes/DesignSecurity.pdf.

Ajluni, C. (1995). Two New Imaging Techniques to Improve IC Defect Indentification. Electronic Design,
43(14):37–38.

Anderson, R. and Kuhn, M. (1997). Low Cost Attacks on Tamper Resistant Devices. In 5th International
Workshop on Security Protocols, pages 125–136. Springer-Verlag. LNCS 1361.

Aplan, J. M., Eaton, D. D., and Chan, A. K. (1999). Security Antifuse that Prevents Readout of some but
not other Information from a Programmed Field Programmable Gate Array. United States Patent, Patent
No. 5898776.

Aritome, S., Shirota, R., Hemink, G., Endoh, T., and Masuoka, F. (1993). Reliability Issues of Flash Memory
Cells. Proceedings of the IEEE, 81(5):776–788.

Biham, E. and Shamir, A. (1997). Differential Fault Analysis of Secret Key Cryptosystems. In Advances in
Cryptology—CRYPTO ’97, pages 513–525. Springer-Verlag. LNCS 1294.

Boneh, D., DeMillo, R. A., and Lipton, R. J. (1997). On the Importance of Checking Cryptographic Protocols
for Faults (Extended Abstract). In Advances in Cryptology—EUROCRYPT ’97, pages 37–51. Springer-
Verlag. LNCS 1233.

Dipert, B. (2000). Cunning circuits confound crooks. http://www.e-insite.net/ ednmag/contents/images/
21df2.pdf.

Guccione, S. A. and Levi, D. (2003). Jbits: A java-based interface to fpga hardware. Technical report, Xilinx
Corporation, San Jose, CA, USA. Available at http://www.io.com/ guccione/Papers/Papers.html.

Gutmann, P. (1996). Secure Deletion of Data from Magnetic and Solid-State Memory. In Sixth USENIX
Security Symposium, pages 77–90.

Gutmann, P. (2001). Data Remanence in Semiconductor Devices. In 10th USENIX Security Symposium,
pages 39–54.

Haddad, S., Chang, C., Swaminathan, B., and Lien, J. (1989). Degradations due to hole trapping in flash
memory cells. IEEE Electron Device Letters, 10(3):117–119.

Kaliski, Jr., B. S., Koç, Ç. K., Naccache, D., Paar, C., and Walter, C. D., editors (2003). CHES 1999-2003,
Berlin, Germany. Springer-Verlag. LNCS 1717/1965/2162/2523/2779.

278

Kean, T. (2001). Secure Configuration of Field Programmable Gate Arrays. In International Conference on
Field-Programmable Logic and Applications 2001 (FPL 2001), pages 142–151. Springer-Verlag. LNCS
2147.

Kelem, S. H. and Burnham, J. L. (2000). System and Method for PLD Bitstram Encryption. United States
Patent, Patent Number 6118868.

Kessner, D. (2000). Copy Protection for SRAM based FPGA Designs. Available at http://www.free-
ip.com/copyprotection.html.

Kocher, P., Jaffe, J., and Jun, B. (1999). Differential Power Analysis. In CRYPTO ’99, pages 388–397.
Springer-Verlag. LNCS 1666.

Kommerling, O. and Kuhn, M. (1999). Design Principles for Tamper-Resistant Smartcard Processors. In
USENIX Workshop on Smartcard Technology (Smartcard ’99), pages 9–20.

Örs, S., Oswald, E., and Preneel, B. (2003). Power-Analysis Attacks on an FPGA — First Experimental
Results. In CHES 2003, pages 35–50. Springer-Verlag. LNCS 2779.

Pang, R. C., Wong, J., Frake, S. O., Sowards, J. W., Kondapalli, V. M., Goetting, F. E., Trimberger, S. M.,
and Rao, K. K. (2000). Nonvolatile/ battery-backed key in PLD. United States Patent, Patent Number
6366117.

Papadas, C., Ghibaudo, G., Pananakakis, G., Riva, C., Ghezzi, P., Gounelle, C., and Mortini, P. (1991).
Retention characteristics of single-poly EEPROM cells. In European Symposium on Reliability of
Electron Devices, Failure Physics and Analysis, page 517.

Quisquater, J.-J. and Samyde, D. (2001). Electro Magnetic Analysis (EMA): Measures and Countermeasures
for Smart Cards. In International Conference on Research in Smart Cards, E-smart 2001, pages 200 –
210, Cannes, France.

Richard, G. (1998). Digital Signature Technology Aids IP Protection. In EETimes—News. Available at
http://www.eetimes.com/news/98/ 1000news/ digital.html.

San, K., Kaya, C., and Ma, T. (1995). Effects of erase source bias on Flash EPROM device reliability. IEEE
Transactions on Electron Devices, 42(1):150–159.

Schroder, D. (1998). Semiconducor Material and Device Characterization. John Wiley and Sons, 2nd edition.
Seamann, G. (2000). FPGA Bitstreams and Open Designs. Available at http://www.opencollector.

org/news/Bitstream.
Shang, L., Kaviani, A., and Bathala, K. (2002). Dynamic Power Consumption on the Virtex-II FPGA

Family. In 2002 ACM/SIGDA 10th International Symposium on Field Programmable Gate Arrays,
pages 157–164. ACM Press.

Skorobogatov, S. and Anderson, R. (2002). Optical Fault Induction Attacks. In CHES 2002, pages 2–12.
Springer-Verlag. LNCS 2523.

Soden, J. and Anderson, R. (1993). IC failure analysis: techniques and tools for quality and reliability
improvement. Proceedings of the IEEE, 81(5):703–715.

Standaert, F.-X., van Oldeneel tot Oldenzeel, L., Samyde, D., and Quisquater, J.-J. (2003). Power Analysis
of FPGAs: How Practical is the Attack. In 13th International Conference on Field Programmable Logic
and Applications — FPL 2003. Springer-Verlag. LNCS 2778.

Tao, J., Cheung, N., and Ho, C. (1993). Metal Electromigration Damage Healing Under Bidirectional
Current Stress. IEEE Transactions on Elecron Devices, 14(12):554–556.

Thomas, S., Anthony, D., Berson, T., and Gong, G. (2003). The W7 Stream Cipher Algorithm. Available at
http://www.watersprings.org/pub/id/draft-thomas-w7cipher-03.txt. Internet Draft.

van der Pol, J. and Koomen, J. (1990). Relation between the hot carrier lifetime of transistors and CMOS
SRAM products. In International Reliability Physics Symposium (IRPS 1990), page 178.

Williams, T., Kapur, R., Mercer, M., Dennard, R., and Maly, W. (1996). IDDQ Testing for High Performance
CMOS—The Next Ten Years. In IEEE European Design and Test Conference (ED&TC’96), pages
578–583.

Xilinx Inc. (2003). Using Bitstream Encryption. Handbook of the Virtex II Platform. Available at
http://www.xilinx.com.

Yip, K.-W. and Ng, T.-S. (2000). Partial-Encryption Technique for Intellectual Property Protection of
FPGA-based Products. IEEE Transactions on Consumer Electronics, 46(1):183–190.

Chapter 22

Bioinspired Stimulus Encoder for Cortical
Visual Neuroprostheses

Leonel Sousa, Pedro Tomás1, Francisco Pelayo2, Antonio Martinez2,
Christian A. Morillas2 and Samuel Romero2

1 Department of Electrical and Computer Engineering, IST/INESC-ID, Portugal
las@inesc-id.pt, pfzt@sips.inesc-id.pt

2 Department of Computer Architecture and Technology, University of Granada, Spain
fpelayo@ugr.es, {amartinez, cmorillas, sromero}@atc.ugr.es

Abstract This work proposes a real-time bioinspired visual encoding system for multielec-
trodes stimulation of the visual cortex supported on Field Programmable Logic.
This system includes the spatio-temporal preprocessing stage and the generation
of time-varying spike patterns to stimulate an array of microelectrodes and can be
applied to build a portable visual neuroprosthesis. It only requires a small amount
of hardware thanks to the high operating frequency of modern FPGAs, which al-
lows to sequentialize some of the required processing. Experimental results show
that, with the proposed architecture, a real-time visual encoding system can be
implemented in FPGAs with modest capacity.

Keywords: Visual cortical-neuron stimulation, retina model, FPL implementation, visual in-
formation processing

22.1 Introduction

Nowadays, the design and the development of visual neuroprostheses in-
terfaced with the visual cortex is being tried to provide a limited but useful
visual sense to profoundly blind people. The work presented has been car-
ried out within the EC project “Cortical Visual Neuroprosthesis for the Blind”
(CORTIVIS), which is one of the research initiatives for developing a visual
neuroprosthesis for the blind [1, 2].

279

P. Lysaght and W. Rosenstiel (eds.),

New Algorithms, Architectures and Applications for Reconfigurable Computing, 279–290.

© 2005 Springer. Printed in the Netherlands.

280

Visual
Stimulus

Image
capture

Stimulus
Encoder

Serial Link
(sender)

Serial Link
(Receiver)

Electrode
Stimulator

Inside
Human
HeadVisual Cortex Cells

Electrical
stimulus for

microelectrode
array

Outside
Human
Head

Figure 22.1. Cortical visual neuroprosthesis.

A block diagram of the cortical visual neuroprosthesis is presented in
Fig. 22.1. It includes a programmable visual stimulus encoder, which computes
a predefined retina model, to process the input visual stimulus and to produce
output patterns that approximate the spatial and temporal spike distributions re-
quired for effective cortical stimulation. These output patterns are represented
by pulses that are mapped on the primary visual cortex and are coded by using
Address Event Representation [3]. The corresponding signals are modulated
and sent through a Radio Frequency (RF) link, which also carries power, to
the electrode stimulator. This project uses the Utah microelectrode array [4],
which consists on an array of 10 × 10 silicon microelectrodes separated by
about 400 µm in each orthogonal direction (arrays of 25 × 25 microelectrodes
are also considered). From experimental measures on biological systems, it
can be established a time of 1 ms to “refresh” all the spiking neurons, which
means an average time slot of 10 µs dedicated to each microelectrode. The
RF link bandwidth allows communication at a bit-rate of about 1 Mbps, which
means an average value of 10 kbps for each microelectrode in a small size
array of 10 × 10 electrodes or about 1.6 kbps for the 25 × 25 microelectrode
array.

The work presented herein addresses the design of digital processors for
implementing the block shown shaded in Fig. 22.1 and extended in Figure 22.2
in Field Programmable Logic (FPL) technology. The adopted retina model is
a complete approximation of the spatio-temporal receptive fields characteristic

Visual
Stimulus

Spike
Multiplexing

RF Link
Spike

Generation
Visual

Stimulus

Contrast
Gain

Control

Motion
detection

+

R

G

B

Edge detection

Early Layers Neuromorphic Pulse Coding

Figure 22.2. Retina early layers.

Bioinspired Stimulus Encoder for Cortical Visual Neuroprostheses 281

response of the retina ganglion cells. It also includes two other blocks. A leaky
integrate-and-fire block, that generates the spikes to stimulate the cortical cells,
i.e. the neuromorphic pulse coding. A spike channel interface block which uses
the Address Event Representation (AER) protocol to communicate information
about the characteristics of spikes and addresses of target microelectrodes with-
out timestamps. The architecture of the system has been designed taking into
account the specifications of the problem described above and the technical char-
acteristics of modern Field Programmable Gate Array (FPGA) devices. Experi-
mental results show that a complete artificial model that generates neuromorphic
pulse-coded signals can be implemented in real-time even in FPGAs with low-
capacity.

The rest of this paper is organized as follows. The architecture for modelling
the retina and for coding the event lists that will be carried out to the visual
cortex is presented in section 22.2. Section 22.3 describes the computational
architectures designed for implementing the retina model in FPL, discussing
their characteristics and suitability to the technology. Section 22.4 presents
experimental results obtained by implementing the stimulus encoder on a FPGA
and section 22.5 concludes the presentation.

22.2 Model Architecture

The neuron layers of the human retina perform a set of different tasks, which
culminate in the spiking of ganglion cells at the output layer [5]. These cells
have different transient responses, receptive fields and chromatic sensibilities.
The system developed implements the full model of the retina, which includes
all the processing layers, plus the protocol for carrying the spikes to the visual
cortex in a serial way through a RF link.

The visual stimulus encoder includes two bio-inspired blocks which are
shown in grey in Fig. 22.2. The first is an edge detection block based on a set
of weighted Gaussian spatial filters dependent on time through low pass filters.
The second block consists of a local contrast gain controller (CGC) which
attempts to compensate for the biological delay of the visual signal processing
and transmission. The spike generation block produces the spike events which
will stimulate the visual cortex.

22.2.1 Retina Early Layers

The presented retina computational model is based on research published in [
5, 6, 7, 8] and was extended to the chromatic domain by considering independent
filters for the basic colors.

The first filtering element, the retina early layers (see Fig. 22.2) is an
edge detector composed of a set of two Gaussian spatial filters per color

282

channel, parameterized by a gain ai j and a standard deviation σi j , as shown
in equation 22.1.

gi (r) = ai√
2πσi

e
− r2

2σ2
i (22.1)

In order to detect edges the Gaussian filters of each color channel are parame-
terized with opposite signs and different standard deviations. The output is then
processed by a set of temporal first-order low pass filters:

hi j (t) = H (t) · Bi j e
−Bi j ·t (22.2)

where H (t) represents the Heaviside step function and Bi j is the decay rate.
The output of the edge detection block is:

m(r, t) =
∑

i=R,G,B

si (r, t) ∗
2∑

j=1

gi j (r) · hi j (t) (22.3)

where ∗ denotes the convolution operator and {sR, sG, sB} are the color compo-
nents of the visual stimuli. The bilinear approximation was applied to derive a
digital version of the time filters represented in the Laplace domain [9]. It leads
to first order Infinite Impulse Response (IIR) digital filters with input vi j [q, t]
and output wi j [q, t] which can be represented by equation 22.4.

wi j [q, n] = bL Pi j × wi j [q, n − 1] + cL Pi j × (vi j [q, n] + vi j [q, n − 1])

(22.4)

The second filtering block of the visual stimulus encoder is a motion detector
based on a temporal high pass filter defined by a pole in −α whose impulse
response is represented in equation 22.5.

hH P (t) = δ(t) − αH (t)e−αt (22.5)

The filter was also represented in the digital domain by applying the bilinear
approximation. The result is a first order Infinite Impulse Response (IIR) digital
filter which can be represented by equation 22.6 where m[q, n] is the filter input
and u[q, n] is the output.

u[q, n] = bH P × u[q, n − 1] + cH P × (m[q, n] − m[q, n − 1]) (22.6)

The resulting activation u(r,t) is multiplied by a Contrast Gain Control (CGC)
modulation factor g(r, t) and rectified to yield the firing rate of the ganglion
cells response to the input stimuli.

The CGC models the strong modulatory effect exerted by stimulus contrast.
The CGC non-linear approach is also used in order to model the “motion an-
ticipation” effect observed on experiments with a continuous moving bar [7].
The CGC feedback loop involves a low-pass temporal filter with the following

Bioinspired Stimulus Encoder for Cortical Visual Neuroprostheses 283

impulse response:

hL P (t) = Be− t
τ (22.7)

where B and τ define the strength and constant time of the CGC. The filter is
computed in the digital domain, by applying the same approximation as for the
high-pass filter, by equation 22.8.

z[q, n] = bL P × z[q, n − 1] + cH P × (y[q, n] + y[q, n − 1]) (22.8)

and the output of the filter is transformed into a local modulation factor (g) via
the non-linear function:

k(t) = 1

1 + [v(t) · H
(
v(t)

)
]4

(22.9)

The output is rectified by using the function expressed in eq. 22.10:

Fi (r, t) = ψ H
(
y(r, t) + θ)[y(r, t) + θ] (22.10)

where ψ and θ define the scale and baseline value of the firing rate fi (r, t).
The system to be developed is fully programmable and typical values for

all parameters of the model are found in [6]. The model has been completely
simulated in MATLAB, by using the Retiner environment for testing retina
models [10].

22.2.2 Neuromorphic Pulse Coding

The neuromorphic pulse coding block converts the continuous-varying time
representation of the signals produced in the early layers of the retina into a
neural pulse representation. In this new representation the signal provides new
information only when a new pulse begins. The model adopted is a simplified
version of an integrate-and-fire spiking neuron [11]. As represented in Fig. 22.3,
the neuron accumulates input values from the respective receptive field (output
firing rate determined by retina early layers) until it reaches a given threshold.
Then it fires and discharges the accumulated value. A leakage term is included
to force the accumulated value to diminish for low or null input values. The

+
x

M
U

X

γ+-

+

d
-

F
i
(r,t)

Pulse1

Pulsei

PulseN

...
...

To channel

Figure 22.3. Neuromorphic pulse coding.

284

pulses are then generated accordingly to equations 22.11 and 22.12

Pacc[q, n] = F[q, n] + γ · Pacc[q, n − 1] − pulse[q, n − 1] − d (22.11)

pulse[q, n] = H (Pacc[q, n] − φ) (22.12)

where Pacc is the accumulated value, F is the early layer’s output, γ < 1 sets
the decay rate of Pacc (decay = 1 − γ) and H represents the Heaviside step
function. The circuit fires a pulse whenever the accumulated value Pacc is bigger
then the threshold φ.

The amplitude and duration of the pulses are then coded using AER, which is
represented in a simplified way in Fig. 22.3 by a multiplexer. This information
is then sent to the corresponding microelectrodes via the RF link. An event
consists of an asynchronous bus transaction that carries the address of the
corresponding microelectrode and is sent at the moment of pulse onset (no
timestamp information is communicated). An arbitration circuit is required at
the sender side and the receiver has to be listening to the data link with a constant
latency.

22.3 FPL Implementation

This section discusses the implementation in FPL technology of the visual
encoding system presented in the previous section. The usage of FPL technology
will allow changing the model parameters without the need of designing another
circuit. This has special importance since different patients have different sight
parameters therefore requiring adjustments to the artificial retina. FPL may
also allow changing model blocks if new information on how visual stimuli is
processed reveals the need to introduce new filtering blocks.

For the design of the system, different computational architectures were
considered both for the retina early layers and for the neuromorphic coding
of the pulses. These architectures lead to implementations with different char-
acteristics, in terms of hardware requirements and speed. The scalability and
programmability of the system are also relevant aspects that are taken into
account for FPL implementations.

22.3.1 The Retina Early Layers

There can be multiple approaches to implementing the retina early layers
each of which involve different hardware requirements, so the first step would
be to analyze the necessary hardware to build the desired processor. Assuming
a typical convolutional kernel of 7 × 7 elements for the Gaussian spatial filters
and that high-pass and low-pass temporal filters are computed by using the
difference equations 22.4, 22.6 and 22.8, respectively, then 104 multiplications

Bioinspired Stimulus Encoder for Cortical Visual Neuroprostheses 285

and 107 additions per image cell are required for just one spatial channel.
For a matrix of 100 microelectrodes, the hardware required by a fully parallel
architecture makes it impractical in FPL technology. Therefore, the usage of the
hardware has to be multiplexed in time, but the temporal restriction of processing
the whole matrix with a frequency up to 100 Hz must also be fulfilled. This
restriction is however wide enough to consider the processing of cells with
a full multiplexing schema inside each main block of the architecture model
presented in section 12.2: edge detection and motion detection and anticipation.

The architectures of these blocks can then be described as shown in
Figure 22.4, where each main block includes one or more RAM blocks to save
processed frames in intermediate points of the system in order to compute the
recursive time filters. At the input, dual-port RAMs are used for the three color
channels, while a ROM is used to store the coefficient tables for the Gaussian
spatial filters. The operation of the processing modules is locally controlled and
the overall operation of the system is performed by integrating the local control
in a global control circuit. The control circuit is synthesized as a Moore state
machine, because there is no need to modify the output asynchronously with
variations of the inputs. All RAM address signals, not shown in the Figure 22.4,
are generated by the control circuit.

The Gaussian filter module (see Fig. 22.4a) calculates the 2D convolution
between the input image and the predefined matrix coefficients stored in the
ROM. It operates in a sequential method, where pixels are processed one at a
time in a row major order and an accumulator is used to store the intermediate
and final results of the convolution. The local control circuit stores the initial

+

Q D

RAM

x

+

Coef.
+/-

+

+

+

Input

O
utput

l[n-1] l[n]

x[n] y[n]

(b) Infinite Impulse
 Filter (IIR) block.

(a) Gaussian
 filter block.

(c) Spike generation
 block.

Low pass
(IIR1)

Low pass
(IIR2)

Gaussian1

+
+

-

High pass
(IIR3)

x

Non
Linear

Low
pass
(IIR4)V

isual stim
ulus

Rectif.

QA

DB

Dual port RAM:
implements a FIFO

D Q

QA

DB

Dual
port
RAM

Shift registerLook-Up
table

m[q,n]

Spike
GenerationQA

DB

Dual
port
RAM

wi1[q,n]Vi1[q,n]
z[q,n]

y[q,n]

F[q,n]

Gaussian2

+ + =

Q D

RAM

+

+
+

-

x

Input

O
utput spike

evet

γ

d φ

x

Q

ROM

+
+

+

O
utput

Input

(d) Global architecture.

Figure 22.4. Detailed diagram for the visual encoder computational architecture.

286

pixel address, row and column, and then successively addresses all the data, and
respective filtered coefficients stored in the ROM, required for the computation
of the convolution. After multiplying each filter coefficient the resulting value
is successively accumulated. When the calculation is finished for a given pixel
(see Fig. 22.4d), the value is sent to the low pass filter. The filter (see Fig. 22.4b)
is computed in a transposed form where the output is calculated by adding the
input x[n] to the stored value l[n] which was previously computed as

l[n − 1] = bL Pi j · y[n − 1] + x[n − 1] (22.13)

The input scaling by CL Pi j as shown in equation 22.4 is made with the Gaus-
sian filter coefficient matrix. The output of the low pass filters of the different
color channels is then added accordingly to eq. 22.3 and the result, m[q, n], is
processed by a temporal high pass filter module also implemented with the IIR
module of Fig. 22.4 before being processed by the CGC block. This module
consists on a low pass filter (eq. 22.8) and a non-linear function (eq. 22.9) which
is computed by using a lookup table stored in a RAM block. The low-pass filter
circuit is again implemented with the IIR module of Fig. 22.4(b). The last pro-
cessing module is a rectifier which clips the signal whenever its value decreases
below a predefined threshold. It is implemented by a simple binary comparator
whose output is used to control a multiplexer.

The overall circuit operates in a 4 stage pipeline corresponding to each one
of the main processing blocks. Only the first pipeline stage requires a variable
number of clock cycles depending on the dimension of the filter kernel–49
cycles for a 7 × 7 kernel. Each of the two other pipeline stages is solved in a
single clock cycle.

22.3.2 Neuromorphic Pulse Coding

Fig. 22.4d shows two processing modules associated with the neuromorphic
pulse coding: i) for pulse generation and its representation and ii) to arbitrate
the access to the serial bus (the input to the serial link in Figure 22.1). This
block is connected to the retina early layers through a dual port RAM (CGC
block in Fig. 22.4) where one writes data onto one port and the other reads it
from the second port.

The pulse generation circuit, which converts from firing rate to pulses, can
be seen as a simple Digital Voltage Controlled Oscillator (DVCO) working in
a two clock cycle stage pipeline. In the first stage the input firing rate is added
to the accumulated value. In the second stage a leakage value is subtracted and,
if the result is bigger than the threshold φ, a pulse is fired and the accumulator
returns to the zero value (see Fig. 22.4c). Note that in this architecture the
accumulator circuit is made with a RAM, since it corresponds to a single adder
and multiple accumulator registers for the different microelectrodes.

Bioinspired Stimulus Encoder for Cortical Visual Neuroprostheses 287

AER was used to represent the pulses while the information is serialized. In
a first approach, the architecture consisted of an arbitration tree to multiplex the
onset of events (spikes) onto a single bus. In this tree, we check if one or more
inputs has a pulse to be sent and arbitrate the access to the bus through the re-
quest/acknowledge signals in the tree [3]. This tree consists of multiple subtrees,
where registers can be used for buffering the signals between them. This archi-
tecture is not scalable, since it requires a great amount of hardware and is not a
solution when arrays with a great number of microelectrodes are used (see sec-
tion 12.4). To overcome this problem, and since the circuit for pulse generation
is intrinsically sequential, a First In First Out (FIFO) memory is used to register
the generated spikes for the microelectrodes. Only one pulse is generated in
a clock cycle and information about it is stored in the FIFO memory because
requests may find the communication link busy. This implementation has the
advantage of not increasing the hardware resources required with the increase
in the number of microelectrodes, but its performance is more dependent on the
channel characteristics since it increases the maximum wait time to send a pulse.

The FIFO is implemented by using a dual-port data RAM, where input is
stored in one port and, at the other port, the pulse request is sent to the channel.
Also to avoid overwriting when reading data from the FIFO a shift register is
used to interface the data output of the RAM with the communication channel.

22.4 Experimental Results

The visual encoding system was described in VHDL and exhaustively tested
on a Digilent DIGILAB II board based on a XILINX SPARTAN XC2S200
FPGA [12] with modest capacity. The synthesis tool used was the one supplied
by the FPGA manufacturer, the ISE WebPACK 5. This FPGA has modest
capacities, with 56 kbit of block-RAM and 2352 slices, corresponding to a total
of 200,000 system-gates. The functional validation of the circuits was carried
out by comparing the results obtained with MATLAB Retiner [10].

For the test and experimental results presented in this section, only one color
channel is considered and the input signal is represented in 8-bit grayscale.
However, internally 12-bit signals are used in order to reduce discretization
errors. The dimension of the microelectrode array is 100.

Analyzing the results in Table 22.1 it is clearly seen that the retina early
layers do not require many FPGA slices but consumes a significant amount of
memory. The synthesis of the circuit for an array of 1024 microelectrodes shows
a similar percentage of FPGA slice occupation but it uses all the 14 RAM blocks
supplied by the SPARTAN XC2S200. In terms of time restrictions, the solution
works very well since it can process the array of input pixels in a short time,
about 0.1ms for 100 microelectrodes, which is much lower than the specified
maximum of 10ms. In fact this architecture allows to process movies at frame

288

rate of 100 Hz with 10,000 pixels per image without increasing the number of
slices used.

The analysis of the AER translation method has however different aspects.
For a typical matrix of 100 microelectrodes, the tree solution (with or with-
out intermediate registers) is a valid one as the resource occupation is low.
However, the increase in the number of microelectrodes implies the usage of
a great amount of hardware and this solution becomes impracticable for FPL
technology. In that case, the proposed FIFO based solution has the great advan-
tage of accommodating a great number of electrodes with a small amount of
hardware and just one RAM block. With a channel bandwidth of about 1 Mbps,
the FIFO based AER circuit does not introduce any temporal restrictions in the
firing rate. Even when operating at a lower clock frequency than that admitted
by the retina early layers circuit, e.g. 40 MHz, the FIFO based circuit is able
to process 100 requests in about 2.5 µs which is much less than the value of
1 ms initially specified and also much less than the time required to send the
information through the channel.

In Table 22.1 results are individually presented for the retina early layers
and for the neuromorphic pulse coding circuits. The overall system was also
synthesized and implemented in a SPARTAN XC2S200 FPGA. In this case the
Neuromorphic Pulse Coding RAM block had to be implemented in distributed
RAM due to the low memory capacity of the FPGA. A clock frequency greater
than 40 MHz is achieved by using about 28% of the slices and 12 of the total
of 14 RAM-blocks, for 100 microelectrodes.

Table 22.1. Retina encoding system implemented on a SPARTAN XC2S200 FPGA.

Maximum Number
Number of Slice clock of RAM

Block microelectrodes occupation frequency blocks used

Retina early layers 100 21% 47 MHz (49 cc∗) 5
1024 21% 47 MHz (49 cc∗) 10

Spike Generation 100 2% 51 MHz 1
1024 2% 51 MHz 3∗∗

AER 100 9% 99 MHz 0
Registered Tree 256 17% 98 MHz 0

512 37% 93 MHz 0

AER 100 10% 64 MHz 0
Unregistered Tree 256 21% 63 MHz 0

512 45% 57 MHz 0

FIFO AER *** 5% 75 MHz 1

∗ 49 clock cycles are required for processing a pixel
∗∗ implemented as distributed RAM in the overall system occupying 33% extra slices
∗∗∗ not dependent of the number of micro-electrodes

Bioinspired Stimulus Encoder for Cortical Visual Neuroprostheses 289

(a) Edge detecting. (b) Early Layers. (c) Spike generation.

Figure 22.5. Testing of the visual encoding module for a microelectrode array of 32 × 32.

In order to test the visual encoding module a system prototype was devel-
oped based on two XILINX XC2S200 FPGAs (one to implement the visual
encoder and the other to implement the capture of image frames and visual-
ization of the system output), one digital output color camera module, model
C3188A [13] which captures images in QVGA at a frame rate up to 60Hz and
one standard monitor. Figure 22.5 shows some of the experimental results of
the Visual Encoding implementation: Fig. 22.5(a) show the result of the edge
detecting block, Fig. 22.5(b) shows the output of the Early Layers module,
where moving fingers caused a non-zero output. Fig. 22.5(c) shows the output
of the neuromorphic pulse coding module after image restoration with a second
order low pass filter with poles at 6 Hz.

22.5 Conclusions

The present work proposes a computational architecture for implementing a
complete model of an artificial retina in FPL technology. The system is devised
to stimulate a number of intra-cortical implanted microelectrodes for a visual
neuroprosthesis. It performs a bio-inspired processing and encoding of the
input visual information. The proposed processing architecture is designed to
fulfill the constraints imposed by the telemetry system to be used, and with the
requirement of building a compact and portable hardware solution.

The synthesis results demonstrate how the adopted pipelined and time multi-
plexed approach makes the whole system fit well on a relatively low complexity
FPL circuit, while real-time processing is achieved. The use of FPL is also very
convenient to easily customize (re-configure) the visual pre-processing and
encoding system for each implanted patient.

Acknowledgments

This work has been supported by the European Commission under the project
CORTIVIS (“Cortical Visual Neuroprosthesis for the Blind”, QLK6-CT-2001-
00279).

290

References

[1] Cortical visual neuro-prosthesis for the blind (cortivis): http://cortivis.umh.es.
[2] Ahnelt P., Ammermüller J., Pelayo F., Bongard M., Palomar D., Piedade M., Ferrandez J., Borg-

Graham L., and Fernandez E. Neuroscientific basis for the design and development of a bioinspired
visual processing front-end. In Proc. of IFMBE, pages 1692–1693, Vienna, 2002.

[3] Lazzaro J. and Wawrzynek J. A multi-sender asynchronous extension to the address event protocol. In
Proc. of 16th Conference on Advanced Research in VLSI, pages 158–169, 1995.

[4] Maynard E. The Utah intracortical electrode array: a recording structure for potential brain-computer
interfaces. Elec. Clin. Neurophysiol., 102:228–239, 1997.

[5] Wandell Brian. Foundations of Vision: Behavior, Neuroscience and Computation. Sinauer Associates,
1995.

[6] Wilke S., Thiel A., Eurich C., Greschner M., Bongard M., Ammermüler J., and Schwegler H. Population
coding of motion patterns in the early visual system. J. Comp Physiol A, 187:549–558, 2001.

[7] Berry M., Brivanlou I., Jordan T., and Meister M. Anticipation of moving stimuli by the retina. Nature
(Lond), 398:334–338, 1999.

[8] Markus Meister and Michael J. Berry II. The neural code of the retina. Neuron, 22:435–450, March
1999.

[9] Oppenheim A. and Willsky A. Signal and Systems. Prentice Hall, 1983.
[10] F.J. Pelayo, A. MartÌnez, C. Morillas, S. Romero, L. Sousa, and P. Tom·s. Retina-like processing and

coding platform for cortical neuro-stimulation. In Proc. of 25th Annual IEEE International Conference
of the Engineering in Medicine and Biology Society, IEEE Catalog number 03CH37439C, pages 2023–
2026, Cancun, Mexico, September 2003.

[11] Gerstner W. and Kistler W. Spiking Neuron Models. Cambridge University Press, 2002.
[12] XILINX. Spartan-II 2.5V FPGA Family: Functional Description, 2001. Product Specification.
[13] Quasar Electronics Ltd. C3188A - Digital Output Colour Camera Module. http://www.electronic-kits-

and-projects.com/kit-files/cameras/d-c3188a.pdf.

Chapter 23

A Smith-Waterman Systolic Cell

C.W. Yu, K.H. Kwong, K.H. Lee and P.H.W. Leong

Department of Computer Science and Engineering
The Chinese University of Hong Kong, Shatin, Hong Kong
y chi wai@hotmail.com,edwardkkh@alumni.cuhk.net,
khlee@cse.cuhk.edu.hk,phwl@cse.cuhk.edu.hk

Abstract In order to understand the information encoded by DNA sequences, databases
containing large amount of DNA sequence information are frequently compared
and searched for matching or near-matching patterns. This kind of similarity cal-
culation is known as sequence alignment. To date, the most popular algorithms
for this operation are heuristic approaches such as BLAST and FASTA which
give high speed but low sensitivity, i.e. significant matches may be missed by the
searches. Another algorithm, the Smith-Waterman algorithm, is a more compu-
tationally expensive algorithm but achieves higher sensitivity. In this paper, an
improved systolic processing element cell for implementing the Smith-Waterman
on a Xilinx Virtex FPGA is presented.

Keywords: Field programmable gate arrays, Systolic arrays, Biochemistry.

23.1 Introduction

Bioinformatics is becoming an increasingly important field of research. With
the ability to rapidly sequence DNA information, biologists have the tools to,
among other things, study the structure and function of DNA; study evolutionary
trends; and correlate DNA information with disease. For example, two genes
were identified to be involved in the origins of breast cancer in 1994 [1]. Such
research is only possible with the help of high speed sequence comparison.

All the cells of an organism consist of some kind of genetic information.
They are carried by a chemical known as the deoxyribonucleic acid (DNA) in
the nucleus of the cell. DNA is a very large molecule and nucleotide is the
basic unit of this type of molecule. There are 4 kinds of nucleotides and each

291

P. Lysaght and W. Rosenstiel (eds.),

New Algorithms, Architectures and Applications for Reconfigurable Computing, 291–300.

© 2005 Springer. Printed in the Netherlands.

292

have different bases, namely adenine, cytosine, guanine and thymine. Their
abbreviated forms are “A”, “C”, “G” and “T” respectively. In this paper, the
sequence is referred to as a string, and the bases form the alphabet for the
string.

It is possible to deduce the original sequencing in DNA which codes a par-
ticular amino acid. By finding the similarity between a number of “amino-acid
producing” DNA sequences and a genuine DNA sequence of an individual,
one can identify the protein encoded by the DNA sequence of the individual. In
addition, if biologists succeed in finding the similarity between DNA sequences
of two different species, they can understand the evolutionary trend between
them. Another important usage is that the relation between disease and inheri-
tance can also be studied. This is done by aligning specific DNA sequences of
individuals with disease to those of normal people. If correlations can be found
which can be used to identify those susceptible to certain diseases, new drugs
may be made or better techniques invented to treat the disease. There are many
other applications of bioinformatics and this field is expanding at an extremely
fast rate.

A human genome contains approximately 3 billion DNA base pairs. In order
to discover which amino acids are produced by each part of a DNA sequence,
it is necessary to find the similarity between two sequences. This is done by
finding the minimum string edit distance between the two sequences and the
process is known as sequence alignment.

There are many algorithms for doing sequence alignment. The most com-
monly used ones are FASTA [2] and BLAST [3]. BLAST and FASTA are
fast algorithms which prune the search involved in a sequence alignment using
heuristic methods. The Smith-Waterman algorithm [4] is an optimal method for
homology searches and sequence alignment in genetic databases and makes all
pairwise comparisons between the two strings. It achieves high sensitivity as
all the matched and near-matched pairs are detected, however, the computation
time required strongly limits its use.

Sencel Bioinformatics [5] compared the sensitivity and selectivity of various
searching methods. The sensitivity was measured by the coverage, which is
the fraction of correctly identified homologues (true positives). The coverage
indicates what fraction of structurally similar proteins one may expect to identify
based on sequence alone. Their experiments show that for a coverage around
0.18, the errors per query of BLAST and FASTA are about two times that of
the Smith-Waterman algorithm.

Many previous ASIC and FPGA implementations of the Smith-Waterman
algorithm have been proposed and some are reviewed in Section 23.4. To date,
the highest performance chip [6] and system level [7] figures have been achieved
using a runtime reconfigurable implementation which directly writes one of the
strings into the FPGA’s bitstream.

A Smith-Waterman Systolic Cell 293

In this work, an FPGA-based implementation of the Smith-Waterman algo-
rithm is presented. The main contribution of this work is a new design for a
Smith-Waterman cell that uses three Xilinx Virtex slices and is able to achieve
the same density and performance as an earlier reported cell [6], without the
need to perform runtime reconfiguration. This has advantages in that the de-
sign is less FPGA device specific and thus can be used for non-Xilinx FPGA
devices as well as ASICs. Whereas the runtime reconfigurable design requires
JBits, a Xilinx specific API for runtime reconfiguration, the design presented
in this paper was written in standard VHDL. Moreover, in the proposed design,
both strings being compared can be changed rapidly as compared to a runtime
reconfigurable system in which the bitstream must be generated and down-
loaded, which is typically a very slow process since a large bitstream must be
manipulated and downloaded via a slow interface. This reconfiguration process
may become a bottleneck, particularly for small databases. Furthermore, other
applications may require both strings to change quickly. The design was im-
plemented and verified using Pilchard [8], a memory-slot based reconfigurable
computing environment.

23.2 The Smith-Waterman Algorithm

The Smith-Waterman Algorithm is a dynamic programming technique which
utilizes a 2D table. As an example of its application, suppose that one wishes
to compare sequence S (“ACG”) with sequence T (“ATC”). The intermediate
values a, b and c (shown in Fig. 23.2) are then used to compute d according to
the following formula:

d = min

⎧⎪⎪⎨
⎪⎪⎩

{
a if Si = Tj

a + sub if Si
= Tj

b + ins
c + del

(23.1)

If the strings being compared are the same, the value a is used for d. Other-
wise, the minimum of a plus some substitution penalty sub, b plus some insertion
penalty ins and c plus some deletion penalty del is used for d. Data dependencies
mean that entries d in the table can only be calculated if the corresponding a, b,
c values are already known and so the computation of the table spreads out from
the origin as illustrated in Fig. 23.1. As an example, the first entry that can be
computed is that for “AA” in Fig. 23.2(a). Since Si = T − i = ‘A′, according
to Equation. 23.1, d = a and so the entry is set to 0. In order to complete the
table, the template of Fig. 23.2(b) is moved around the table constrained by the
dependencies indicated by Fig. 23.1.

The substitution, insertion and deletion penalties can be adjusted for different
comparison requirements. If the presence of redundant characters is relatively

294

Table 23.1. Figure showing the progress of the Smith-Waterman
algorithm, when the string “ACG” is compared with “ATC”.

A C G
0 1 2 3

A 1 ? ? ?
T 2 ? ? ?
C 3 ? ? ?

Si

a b
Ti c d

(a) Initial table. (b) Equation 23.1 values.

A C G
0 1 2 3

A 1 0 1 2
T 2 1 2 3
C 3 2 1 2

(c) Final table.

less acceptable than just a difference in characters, the insertion and deletion
penalties can be set to a higher value than the substitution penalty. In the align-
ment system presented, the insertion and deletion penalties were fixed at 1 and
the substitution penalty set to 2, as is typical in many applications.

If S and T are m and n in length respectively, then the time complexity of
a serial implementation of the Smith-Waterman algorithm is O(mn). After all
the squares have been processed, the result of Fig. 23.2(c) is obtained. In a
parallel implementation, the positive slope diagonal entries of Fig. 23.1 can
be computed simultaneously. The final edit distance between the two strings
appears in the bottom right table entry.

S0 S 1 S2 S 3

T0

T1

T2

T3

...

...

Time

Processing Element Number

1 2 3 4 ...

Figure 23.1. Data dependencies in the alignment table. Thick lines show entries which can
be computed in parallel and the time axis is arranged diagonally.

A Smith-Waterman Systolic Cell 295

23.3 FPGA Implementation

In 1985, Lipton and Lopresti observed that the values of b and c in Equa-
tion 23.1 are restricted to a ± 1 and the equation can be simplified to obtain [9]:

d =
{

a if ((b or c) = a − 1) or (Si = Tj)

a + 2 if ((b and c) = a + 1) and (Si
= Tj)
(23.2)

Using Equation 23.2, it can be seen that the data elements b, c and d only
have two possible values. Therefore, the number of data bits used for the
representation of b, c and d can be reduced to 1 bit. Furthermore, two bits can
be used to represent the four possible values of the alphabet.

The processing element (PE) shown in Fig. 23.2 was used to implement
Equation 23.2. A number of PEs are then connected in a linear systolic array to
process diagonal elements in the table in parallel. As shown in Fig. 23.1, PEs
are arranged horizontally and are responsible for their corresponding column.
In the description that follows, the sequence that changes infrequently is S and
the sequences from the database are T . In each PE, two latches are used to store
a character Si . These characters are shifted and distributed to every processing
element before the actual comparison process beings. The base pairs of T are
passed through the array during the comparison process, during which the d of
Equation 23.2 is also computed.

In order to calculate d, inputs a, b and c should be available. In the actual
implementation, the new values b, c and d are calculated during the comparison
of the characters as follows:

1 data in is the new value of c and it is stored in a flip-flop. At the same time,
this new c value and the previous d value (from a flip-flop) determines
the new b value (b = temp c XNOR temp d)

Q

QSET

CLR

D

1

2

5
2-bit

Comp-
arator

(=)

Q

Q
SET

CLR

D

1

0

Q

QSET

CLR

D

Q

QSET

CLR

D

2

2

2

2
s_in

t_in

data_in

init_in

s_out

t_out

data_out

init_out

temp_c
pre_d

temp_d

b
temp_b

CEtransfer

CE

Q

QSET

CLR

D

CE

Q

QSET

CLR

D

CE
CE

transfer
en

en

Figure 23.2. The Smith-Waterman processing element (PE). Boxes represent D-type flip-
flops.

296

b1 5

GND
0

RAM b1 5

GND
0

FF

b1 5

GND
0

FF

b1 5Vcc1
0

RAM

s(0)

s(1)

s(0)_out_1st

s(0)_out_2nd

s(1)_out_1st

s(1)_out_2nd

b1 5

GND
0

RAM b1 5

GND
0

FF

b1 5

GND
0

FF

b1
5Vcc1

0

RAM

t(0)

t(1)

t(0)_out_1st

t(0)_out_2nd

t(1)_out_1st

t(1)_out_2nd

a11

a22

3 a3

4 a4

b1 5

LUT
(=)

b1 5

GND
0

FF

a11

a22

3 a3

4 a4

b1 5

LUT
(AND +
MUX)

s(0)_1st

b_1st

equal_1st

init_out_1st

equal_1st

init_out_2nd

s(1)_1st
t(0)_1st

t(1)_1st

temp_c_1st
equal_1st b1 5

GND
0

FF

a11

a22

3 a3

4 a4

b1 5

LUT
(=)

b1 5

GND
0

FF

a11

a22

3 a3

4 a4

b1 5

LUT
(AND +
MUX)

s(0)_2nd

b_2nd

equal_2nd

equal_2nd

s(1)_2nd
t(0)_2nd

t(1)_2nd

temp_c_2nd

equal_2nd
b1 5

GND
0

FF

init_in

pre_d_1st

temp_d_1st

pre_d_2nd

temp_d_2nd

a11

a22

b1 5

LUT
(XNOR)

b1 5

GND
0

FF

b1 5

GND
0

FF

a11

a22

b1 5

LUT
(XNOR)

temp_b_1st

temp_c_1st

temp_d_1st

temp_b_1st

b_1st

temp_d_1st

temp_c_1st

d_in_1st

dout_1st

temp_b_1st

a11

a22

b1 5

LUT
(XNOR)

b1 5

GND
0

FF

b1 5

GND
0

FF

a11

a22

b1 5

LUT
(XNOR)

temp_b_2nd

temp_c_2nd

temp_d_2nd

temp_b_2nd

b_2nd

temp_d_2nd

temp_c_2nd

d_in_2nd

dout_2nd

temp_b_2nd

Slice 1 Slice 2

Slice 3 Slice 4

Slice 5 Slice 6

Figure 23.3. Two processing elements mapped to 6 Virtex slices.

2 The new b value is stored in a flip-flop. At the same time, the output of a
2-to-1 MUX is then selected depending on whether Si = Ti . The output
of the MUX (a ‘0’ value or (b AND temp c)) becomes the new d value.
This new d value is stored in a flip-flop.

3 Values of b and d determine the data output of the PE (data out=temp b
XNOR temp d). The data output from this PE is connected to the next PE
as its data input (its new c value)

When the transfer signal is high, the sequence S is shifted through the PEs.
When the en signal is high, all the flip-flops (except the two which store the
string S) are reset to their initial values. The init signal is high when new signals

A Smith-Waterman Systolic Cell 297

from the preceding PE are input and the new value of d calculated. When the
init signal is low, the data in all the flip-flops are unchanged.

Each PE used 8 flip-flops as storage elements and 4 LUTs to implement the
combinational logic. Thus the design occupied 4 Xilinx Virtex slices. Guccione
and Keller [6] used runtime reconfiguration to write one of the sequences into
the bitstream, saving 2 flip-flops and implementing a PE in 3 slices. In the pro-
posed approach, two otherwise unused LUTs were configured as shift register
elements using the Xilinx distributed RAM feature [10]. Thus the design oc-
cupies 3 Xilinx Virtex slices per PE, without requiring runtime reconfiguration
to change S. In the actual implementation, 2 PEs were implemented in 6 slices
since sharing of resources between adjacent PEs was necessary in the actual
implementation.

Fig. 23.3 shows the mapping of the PEs to slices. All the signals ending with
“ 1st” were used in PE Number 1, and signals ending with “ 2nd” were used
for PE2. The purpose of each signal can be understood by referring back to
Fig. 23.2. It was necessary to connect the output of the RAM-based flip-flops
directly to a flip-flop (FF in the diagram) in the same logic cell (LC) since
internal LC connections do not permit them to be used independently (i.e. it
was not possible to avoid connecting the output of the RAM and the input of
the FF). Thus, Slice 1 was configured as a 2 stage shift register for consecutive
values of Si and Slice 3 was used for two consecutive values of Ti .

Fig. 23.4 shows the overall system data path. Since the T sequences are
shifted continuously, the system used a FIFO constructed from Block RAM to
buffer the sequence data supplied by a host computer. This improves throughput

0
5 1

2

2

s_input

en

t_input

init_in

0

a22

a1

Vcc1

6

b1

b2

empty

write read

1

2

3

4

5b1

GND
0

0 0

5

6

d_in
5

6
en

7

0
5

6

b1

b2

0 0

1

7

init_out

en_out

d_out

preload

score_out

Figure 23.4. System data path.

298

of the system since a large number of string comparisons can be completed
before all of their scores are read from the controller, reducing the amount of
idle time in the systolic array. The input and output data width of the FIFO
RAM were both 64 bits. The wide input data width helped to improve IO
bandwidth from the host computer to the FIFO RAM. A 64-to-2 shifter and a
controller counter were used for reducing the output data width of the FIFO
RAM from 64 bits to 2 bits, so as to allow data to be fed into the systolic
array.

The Score Counter computes the edit distance by accumulating results cal-
culated in the last PE of the systolic array. The output of the last PE is actually
the d value in the squares of the rightmost column of the matrix, and differ-
ences in values of consecutive squares in the rightmost column must be 1. The
dataout of the last PE is ‘0’ when d = b − 1, and the output ‘1’ when d = b + 1.

Therefore, a Shift Counter was initialized to the length of the sequence S. It
is decremented if the output value was ‘0’, otherwise it is incremented. After
the entire string T is passed through the systolic array, the counter contains the
final string comparison score.

23.4 Results

The design was synthesized from VHDL using the Xilinx Foundation 5.1i
software tools and implemented on Pilchard, a reconfigurable computing plat-

(which has 12,288 slices) and uses a SDRAM memory bus interface
instead of the conventional PCI bus to reduce latency.

A total of 4,032 PEs were places on an XCV1000E-6 device (this number was
chosen for floorplanning reasons). As reported by the Xilinx timing analyzer,
the maximum frequency was 202 MHz.

A number of commercial and research implementations of the Smith Water-
man algorithm has been reported and their performance figures are summarized
in Table 23.2. Examples are Splash [11], Splash 2 [12], SAMBA [13], Paracel
[14], Celera [15], JBits from Xilinx [6], and the HokieGene Bioinformatics
Project [7]. The performance measure of cell updates per second (CUPS) is
widely used in the literature and hence adopted for our results.

FPGA

Figure .5. Photograph of the Pilchard board.23

form [8] (Fig. 23.5). The Pilchard platform uses a Xilinx Virtex XCV1000E-6

A Smith-Waterman Systolic Cell 299

Table 23.2. Performance and hardware size comparison of previous implementations
(processor core not including system overheads). Device performance is measured in cell
updates per second (CUPS).

System Device Run-time
Number of PEs per performance performance reconfiguration

System chips chip (CUPS) (CUPS) requirement

Splash(XC3090) 32 8 370 M 11 M No
Splash 2(XC4010) 16 14 43 B 2,687 M No
SAMBA(XC3090) 32 4 1,280 M 80 M No
Paracel(ASIC) 144 192 276 B 1,900 M N/A
Celera (software 800 1 250 B 312 M N/A

implementation)
JBits 1 4,000 757 B 757 B Yes

(XCV1000-6)
JBits 1 11,000 3,225 B 3,225 B Yes

(XC2V6000-5)
HokieGene 1 7000 1,260 B 1,260 B Yes

(XC2V6000-4)
This implementation 1 4,032 742 B 742 B No

(XCV1000-6)
This implementation 1 4,032 814 B 814 B No

(XCV1000E-6)

processing elements. Celera Genomics Inc. reported a software based system
using an 800 node Compaq Alpha cluster.

Both the JBits and the HokieGene Bioinformatics Project were the latest
reported sequence alignment systems using the Smith-Waterman Algorithm
and use the same PE design. JBits reported performance for two different FPGA
chips, the XCV1000-6 and the XC2V6000-5. The HokieGene Bioinformatics
Project used an XCV6000-4. As can be seen from the table, the performance
of the proposed design is similar to the JBits design on the same size FPGA (a
XCV1000-6), and the JBits and HokieGene implementations on an XCV6000
gain performance by fitting more PEs on a chip, and our performance on the
same chip would be similar.

Splash contains 746 PEs in a Xilinx XC3090 FPGA performing the Smith-
Waterman Algorithm. Splash 2’s hardware was different from Splash, which
used XC4010 FPGAs with a total of 248 PEs. SAMBA [13] incorporated 16
Xilinx XC3090 FPGAs with 128 PEs altogether dedicated to the comparison
of biological sequences.

ASIC and software implementations have also been reported. Paracel, Inc.
used a custom ASIC approach to do the sequence alignment. Their system
used 144 identical custom ASIC devices, each containing approximately 192

300

23.5 Conclusion

A technique, commonly used in VLSI layout, in which two processing ele-
ments are merged into a compact cell was used to develop a Smith-Waterman
systolic processing element design which computes the edit distance between
two strings. This cell occupies 3 Xilinx Virtex slices and allows both strings
to be loaded into the system without runtime reconfiguration. Using this cell,
4032 PEs can fit on a Xilinx XCV1000E-6, operate at 202 MHz and achieve a
device performance of 814 B CUPS.

References

[1] Y. Miki, et. al. A Strong Candidate for the Breast and Ovarian Cancer Susceptibility Gene, BRCA1.
Science, 266:66–71, 1994.

[2] European Bioinformatics Institute Home Page, FASTA searching program, 2003.
http://www.ebi.ac.uk/fasta33/.

[3] National Center for Biotechnology Information. NCBI BLAST home page, 2003.
http://www.ncbi.nlm.nih.gov/blast.

[4] T. F. Smith and M. S. Watermann. Identification of common molecular subsequence. Journal of Molec-
ular Biology, 147:196–197, 1981.

[5] Sencel’s search software, 2003. http://www.sencel.com.
[6] Steven A. Guccione and Eric Keller. Gene matching using JBits, 2002. http://www.ccm.ece.vt.

edu/hokiegene/papers/GeneMatching.pdf.
[7] K. Puttegowda, W. Worek, N. Pappas, A. Danapani and P. Athanas. A run-time reconfigurable system

for gene-sequence searching. In Proceedings of the International VLSI Design Conference, page (to
appear), Jan 2003.

[8] P. Leong, M. Leong, O. Cheung, T. Tung, C. Kwok, M. Wong and K. H. Lee. Pilchard—a reconfigurable
computing platform with memory slot interface. In Proceedings of the IEEE Symposium on Field-
Programmable Custom Computing Machines, page (to appear), April 2001.

[9] Richard J. Lipton and Daniel Lopresti. A systolic array for rapid string comparison. In Proceedings of
the Chapel Hill Conference on VLSI, pages 363–376, 1985.

[10] Xilinx. The programmable logic data book, 2003.
[11] D. T. Hoang. A systolic array for the sequence alignment problem. Brown University, Providence, RI,

Technical Report, pages CS–92–22, 1992.
[12] D. T. Hoang. Searching genetic databases on splash 2. In Proceedings 1993 IEEE Workshop on Field-

Programmable Custom Computing Machines, pages 185–192, 1993.
[13] Dominique Lavenier. SAMBA: Systolic Accelerators for Molecular Biological Applications, March

1996.
[14] Paracel, inc, 2003. http://www.paracel.com.
[15] Celera genomics, inc, 2003. http://www.celera.com.

The implementation was successfully verified using the Pilchard platform
whcih provides a 133 MHz, 64-bit wide memory mapped bus to the FPGA.
The processing elements and all other logic of the implementation operate
from the same 133 MHz clock. The interface logic occupied 3% of the Virtex
device. The working design was used mainly for verification purposes and had a
disappointing performance of approximately 136 B CUPS, limited by the simple
polling based host interface used. A high speed interface which performs more
buffering and is able to cause the memory system to perform block transfers
between the host and Pilchard is under development.

Chapter 24

The Effects of Polynomial Degrees
On The Hierarchical Segmentation Method

Dong-U Lee and Wayne Luk1, John D. Villasenor2,
Peter Y.K. Cheung3,

1 Department of Computing
Imperial College, London, United Kingdom
{dong.lee, w.luk}@ic.ac.uk

2 Electrical Engineering Department
University of California, Los Angeles, USA
villa@icsl.ucla.edu

3 Department of EEE Imperial College, London, United Kingdom
p.cheung@ic.ac.uk

Abstract This chapter presents the effects of polynomial degrees on the hierarchical seg-
mentation method (HSM) for approximating functions. HSM uses a novel hierar-
chy of uniform segments and segments with size varying by powers of two. This
scheme enables us to approximate non-linear regions of a function particularly
well. The degrees of the polynomials play an important role when approximating
functions with HSM: the higher the degree, the fewer segments are needed to
meet the same error requirement. However, higher degree polynomials require
more multipliers and adders, leading to higher circuit complexity and more delay.
Hence, there is a tradeoff between table size, circuit complexity and delay. We
explore these tradeoffs with four functions:

√− log(x), x log(x), a high order
rational function and cos(πx/2). We present results for polynomials up to the
fifth order for various operand sizes between 8 and 24 bits.

Introduction

In this chapter, we explore the effects of polynomial degrees when approxi-
mating functions with the hierarchical segmentation method (HSM) presented

301

P. Lysaght and W. Rosenstiel (eds.),

New Algorithms, Architectures and Applications for Reconfigurable Computing, 301–313.

© 2005 Springer. Printed in the Netherlands.

302

in [8]. HSM is based on piecewise polynomial approximations, and uses a novel
hierarchy of uniform segments and segments with size varying by powers of two.
This scheme enables us to use segmentations that take the non-linear regions
of a function into account, resulting in significantly fewer segments than the
traditional uniform segmentation.

The degrees of the polynomials play an important role when approximating
functions with HSM: the higher the degree, the fewer segments are needed to
meet the same error requirement. However, higher degree polynomials require
more multipliers and adders, leading to higher circuit complexity and more
delay. Hence, there is a tradeoff between table size, circuit complexity and
delay. We explore these tradeoffs with the following four non-linear compound
and elementary functions:

f1 =
√

− log(x) (24.1)

f2 = x log(x) (24.2)

f3 = 0.0004x + 0.0002

x4 − 1.96x3 + 1.348x2 − 0.378x + 0.0373
(24.3)

f4 = cos(πx/2) (24.4)

where the input x is an n-bit number over [0, 1) of the form 0.xn−1..x0. Note that
the functions f1 and f2 cannot be computed for x = 0, therefore we approximate
these functions over (0, 1) and generate an exception when x = 0. In this work,
we implement an n-bit in, n-bit out system. However, the position of the decimal
(or binary) point in the input and output formats can be different in order to
maximize the precision that can be described. We present results for polynomials
up to fifth order for various operand sizes between 8 and 24 bits. We have opted
for faithful rounding [3], meaning that the results are rounded to the nearest or
next nearest, i.e. they are accurate within 1 ulp (unit in the last place).

The principal contribution of this chapter is a review of HSM and a quan-
titative analysis of the effects of the polynomial degrees. The novelties of our
work include:

� a scheme for piecewise polynomial approximations with a hierarchy of
segments;

� quantitative analysis of the effects of using different order polynomials;
� evaluation with four compound functions;
� hardware implementation of the proposed method.

The rest of this chapter is organized as follows: Section 24.1 covers background
material and previous work. Section 24.2 reviews HSM. Section 24.3 explores
how the polynomial degrees affect HSM at various operand sizes. Section 24.4
discusses evaluation and results, and Section 24.5 offers conclusions and future
work.

The Effects of Polynomial Degrees 303

24.1 Background

Many applications including digital signal processing, computer graphics
and scientific computing require the evaluation of mathematical functions. Ap-
plications that do not require high precision, often employ direct table look-up
methods. However, this can be impractical for precisions higher than a few bits,
because the size of the table is exponential in the input size.

Recently, table look-up and addition methods have attracted significant at-
tention. Table look-up and addition methods use two or more parallel table
look-ups followed by multi-operand addition. Such methods include the sym-
metric bipartite table method (SBTM) [14] and the symmetric table addition
method (STAM) [15]. These methods exploit the symmetry of the Taylor ap-
proximations and leading zeros in the table coefficients to reduce the look-up
table size. Although these methods yield significant improvements in table size
over direct look-up techniques, they can be inefficient for functions that are
highly non-linear.

Piecewise polynomial approximation [11] which is the method we use in
this chapter, involves approximating a continuous function f with one or more
polynomials p of degree d on a closed interval [a, b]. The polynomials are of
the form

p(x) = cd xd + cd−1xd−1 + · · · + c1x + c0 (24.5)

and with Horner’s rule, this becomes

p(x) = ((cd x + cd−1)x + · · ·)x + c0 (24.6)

where x is the input. The aim is to minimize the distance ‖p − f ‖. Our work is
based on minimax polynomial approximations, which involve minimizing the
maximum absolute error. The distance for minimax approximations is:

‖p − f ‖∞ = max
a≤x≤b

| f (x) − p(x)|. (24.7)

Piñeiro et al. [13] divide the input interval into several uniform segments. For
each segment, they store the second degree minimax polynomial approximation
coefficients, and accumulate the partial terms in a fused accumulation tree. Such
approximations using uniform segments [12], [1] are suitable for functions with
linear regions, but are inefficient for non-linear functions, especially when the
function varies exponentially. It is desirable to choose the boundaries of the
segments to cater for the non-linearities of the function. Highly non-linear re-
gions may need smaller segments than linear regions. This approach minimizes
the amount of storage required to approximate the function, leading to more
compact and efficient designs. HSM uses a hierarchy of uniform segments (US)
and powers of two segments (P2S), that is segments with the size varying by
increasing or decreasing powers of two.

304

Similar approaches to HSM have been proposed for the approximation of
the non-linear functions in logarithmic number systems. Henkel [4] divides the
interval into four arbitrary placed segments based on the non-linearity of the
function. The address for a given input is approximated by another function that
approximates the segment number for an input. This method only works if the
number of segments is small and the desired accuracy is low. Also, the function
for approximating the segment addresses is non-linear, so in effect the problem
has been moved into a different domain. Coleman et al. [2] divide the input inter-
val into seven P2S that decrease by powers of two, and employ constant numbers
of US nested inside each P2S, which we call P2S(US). Lewis [9] divides the in-
terval into US that vary by multiples of three, and each US has variable numbers
of uniform segments nested inside, which we call US(US). However, in both
cases the choice of inner and outer segment numbers is done manually, and a
more efficient segmentation could be achieved using our segmentation scheme.

24.2 The Hierarchical Segmentation Method

Let f be a continuous function on [a, b], and let an integer m ≥ 2 specify
the number of contiguous segments into which [a, b] has been partitioned:
a = u0 ≤ u1 ≤ . . . ≤ uk = b. Let d be a non-negative integer and let Pi denote
the set of functions pi whose polynomials are of degree less or equal to d. For
i = 1, . . . , m, define

hi (ui−1, ui) = min
pi ∈Pi

max
ui−1≤x≤ui

| f (x) − pi (x)|. (24.8)

Let emax = emax (u) = max1≤i≤m hi (ui−1, ui). The segmented minimax approx-
imation problem is that of minimizing emax over all partitions u of [a, b]. If the
error norm is a non-decreasing function of the length of the interval of ap-
proximation, the function to be approximated is continuous and the goal is to
minimize the maximum error norm on each interval, then a balanced error so-
lution is optimal. The term “balanced error” means that the error norms on each
interval are equal [5].

We presented an algorithm to find these optimum boundaries in [8], based on
binary search. This algorithm is implemented in MATLAB, where the function
to be approximated f , the interval of approximation [a, b], the degree d of
the polynomial approximations and the number of segments m are given as
inputs. The program outputs the segment boundaries u1..m−1 and the maximum
absolute error emax . Figure 24.1 shows the optimum segment boundaries for 16
and 24-bit second order approximations to f1. We observe that f1 needs more
segments in the regions near zero and one, i.e. smaller segments are needed
when the curve has rapidly changing non-linear regions.

In the ideal case, one would use these optimum boundaries to approximate
the functions. However, from a hardware implementation point of view, this can

The Effects of Polynomial Degrees 305

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

x

f 1(x
)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

x

f 1(x
)

Figure 24.1. Optimum locations of the segments for 16 and 24-bit operands and second order
approximations to f1, resulting in 4, operands and second order approximations to f1, resulting
in 44 and 358 segments respectively.

be impractical. The circuit to find the right segment for a given input could be
complex, hence large and slow. A more hardware-friendly systematic segmen-
tation scheme is needed which leads to the development of HSM. Nevertheless,
the optimum segments give us an indication of how well a given segmentation
scheme matches the optimum segmentation in terms of numbers of segments.
Moreover, they provide information on the non-linearities of a function.

HSM, which is based on piecewise polynomial approximations and uses an
efficient hierarchy of US and P2S is also presented in [8]. This scheme en-
ables us to use segmentations that take the non-linear regions of a function
into account, resulting in significantly fewer segments than the traditional uni-
form segmentation. The hierarchy schemes H we have chosen are P2S(US),
P2SL(US), P2SR(US) and US(US). These four schemes cover most of the non-
linear functions of interest. P2S means segments that increase by powers of two
up to the mid-point then decrease by powers of two. P2SL are segments that
increase by powers of two, and P2SR are segments that decrease by powers of
two. US are the conventional uniform segments. P2SL(US) would mean that
the outer segmentation is P2SL and there are inner segments US nested inside
the outer segments.

306

We have implemented HSM in MATLAB, which deals with the four schemes.
The program called HFS (hierarchical function segmenter) takes the following
inputs: the function f to be approximated, the polynomial degree d , input range,
the requested output error emax , ulp of the input, operand size n, hierarchy
scheme H , number of bits for the outer segment v0, and precisions of the
polynomial coefficients and the data paths. HFS divides the input interval into
outer segments whose boundaries are determined by H and v0. HFS finds
the optimum number of bits v1 for the inner segments for each outer segment,
which meets the requested output error constraint. For each outer segment, HFS
starts with v1 = 0 and computes the error e of the approximation. If e > emax

then v1 is incremented and the error e for each inner segment is computed,
i.e. the number of inner segments is doubled in every iteration. If it detects
that e > emax it increments v1 again. This process is repeated until e ≤ emax

for all inner segments of the current outer segment. This is the point at which
HFS obtains the optimum number of bits for the current outer segment. HFS
performs this process for all outer segments.

Figure 24.2 shows the segmented functions obtained from HFS for 16-bit
second order approximations to the four functions. It can be seen that for f3,
the segments produced by HFS closely resemble the optimum segments in
Figure 24.1. Double precision is used for the data paths to get these results. Note
that for relatively linear functions such as f4, the advantages of using HSM over
uniform segmentation is small. The advantages of HSM become more apparent
as the functions become more non-linear (f1 being an extreme example).

24.3 The Effects of Polynomial Degrees

The degrees of the polynomials play an important role when approximating
functions with HSM: the higher the degree, the fewer segments are needed to
meet the same error requirement. However, higher degree polynomials require
more multipliers and adders, leading to higher circuit complexity and more
delay. Hence, there is a tradeoff between table size, circuit complexity and
delay.
Table size. As the polynomial degree d increases, the width of the coefficient
look-up table increases linearly. One needs to store d + 1 coefficients per seg-
ment.
Circuit Complexity. As d increases, one needs more adders and multipliers to
perform the actual polynomial evaluation. These increase in a linear manner:
since we are using Horner’s rule, d adders and d multipliers are required.
Delay. Note that the polynomial coefficients in the look-up table can be accessed
in parallel. Hence the delay differences between the different polynomial de-
grees occur when performing the actual polynomial evaluation. Due to the serial
nature of Horner’s rule, the increase in delay of the polynomial evaluation is
again linear (d adders and d multipliers).

The Effects of Polynomial Degrees 307

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.2

0.4

0.6

0.8

1

x

f 4(x
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

x

f 2(
x)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

x

f 1(x
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.2

0.4

0.6

0.8

1

1.2

x

f 3(x
)

Figure 24.2. The segmented functions generated by HFS for 16-bit second order approxima-
tions. f1, f2, f3 and f4 employ P2S(US), P2SL(US), US(US) and US(US) respectively. The
black and grey vertical lines are the boundaries for the outer and inner segments respectively.

308

We vary the polynomial degree for a given approximation, the circuit com-
plexity and delay are predictable. However, for the table size, although the
“number of coefficients per segment” (the width of the table) is predictable,
the size of the look-up table depends on the total of number of segments (the
depth of the table) as well. To explore the behavior of the table size, we have
calculated table sizes at various operand sizes between 8 to 16 bits and poly-
nomial degrees from one to five. Double precision is used for the data paths to
get these results. The bit widths of the polynomial coefficients are assumed to
be the same as the operand size. Mesh plots of these parameters for the four
functions are shown in Figure 24.3.

Interestingly, all four functions share the same behavior. We observe that
the plots have an exponential behavior in table size in both the operand width
and the polynomial degree. Although first order approximations have the least
circuit complexity and delay (one adder and one multiplier), we can see that
they perform poorly (in terms of table size) for operand widths of more than 16
bits. Second order approximations have reasonable circuit complexity and delay
(two adders and two multipliers) and for the bit widths used in these experiments
(up to 24 bits), they yield reasonable table sizes for all four functions.

1
2

3
4

5

10
15

20

0

1

2

3

4

x 10
5

Degree

f
1

Operand Width

T
ab

le
 S

iz
e

1
2

3
4

5

10
15

20

0

1

2

x 10
5

Degree

f
2

Operand Width

T
ab

le
 S

iz
e

1
2

3
4

5

10
15

20

0

2

4

x 10
5

Degree

f
3

Operand Width

T
ab

le
 S

iz
e

1
2

3
4

5

10
15

20

0

2

4

6

8

x 10
4

Degree

f
4

Operand Width

T
ab

le
 S

iz
e

Figure 24.3. Variations of the table sizes to the four functions with varying polynomial
degrees and operand bit widths.

The Effects of Polynomial Degrees 309

Another observation is that the improvements in table size of using third or
higher order polynomials are very small. For instance, looking at the 24-bit
results to f2, the table sizes of first, second and third order approximations are
294768, 22680 and 8256 bits respectively. The difference between first and
second order is a factor of 11.3, whereas the difference between second and
third order is a factor of 2.7. Therefore, the overhead of having an extra adder
and multiplier stage for third order approximations maybe not be worth while
for a table size reduction of a factor of just 2.7.

Hence, we conclude that for operand sizes of 16 bits or fewer, first order
approximations yield good results. For operand sizes between 16 and 24 bits,
second order approximations are perhaps more appropriate. We predict that for
operand sizes larger than 24 bits, the table size improvements of using third or
higher order polynomials will appear more dramatic.

In [8], we have compared the number of segments of HSM to the optimum
segmentation. For first and second order approximations, the ratio of segments
obtained by HSM and the optimum is around a factor of two. To explore how
this ratio behaves at varying operand widths and polynomial degrees, we obtain
the results shown in Figure 24.4. We can see that the ratios are around a factor of
two at various parameters, with HSM showing no obvious signs of degradation.

1
2

3
4

5

10
15

20

1

2

3

Degree

f
1

Operand Width

H
S

M
 /

O
pt

im
um

1
2

3
4

5

10
15

20

1

1.5

2

Degree

f
2

Operand Width

H
S

M
 /

O
pt

im
um

1
2

3
4

5

10
15

20

1

1.5

2

Degree

f
3

Operand Width

H
S

M
 /

O
pt

im
um

1
2

3
4

5

10
15

20

1

1.2

1.4

1.6

1.8

Degree

f
4

Operand Width

H
S

M
 /

O
pt

im
um

Figure 24.4. Variations of the HSM / Optimum segment ratio with polynomial degrees and
operand bit widths.

310

24.4 Evaluation and Results

Table 24.1 compares HSM with direct table look-up, SBTM and STAM
for 16 and 24-bit approximations to f2. We observe that table sizes for di-
rect look-up approach are not feasible when the accuracy requirement is high.
SBTM/STAM significantly reduce the table sizes compared to the direct table
look-up approach, at the expense of some adders and control circuitry. In the
16-bit results, HSM4 has the smallest table size, being 546 and 8.5 times smaller
than direct look-up and STAM. The table size improvement of HSM is of course
at the expense of more multipliers and adders, hence higher latency. Generally,
the higher the polynomial degree, the smaller the table size. However, in the
16-bit case, HSM5 actually has larger table size than HSM4. This is because
of the extra overhead of having to store one more polynomial coefficient per
segment exceeds the reduction in number of segments compared to HSM4. We
observe for the 24-bit results, the differences in table sizes between HSM and
other methods are even larger. Moreover, the reductions in table size by using
higher order polynomials get greater as the operand widths increase (i.e. as the
accuracy requirement increases). For applications that require relatively low
accuracies and latencies, SBTM/STAM may be preferred. For high accuracy
applications that can tolerate longer latencies, HSM would be more appropriate.

Table 24.1. Comparison of direct look-up, SBTM, STAM and HSM for 16 and 24-bit
approximations to f2. The subscript for HSM denotes the polynomial degree, and the
subscript for STAM denotes the number of multipartite tables used. Note that SBTM is
equivalent to STAM2.

operand table size
width method (bits) compression multiplier adder

16 direct 1,048,576 546.1 − −
SBTM 29,696 15.5 − 1
STAM4 16,384 8.5 − 3
HSM1 24,384 12.7 1 2
HSM2 4,620 2.4 2 3
HSM3 2,304 1.2 3 4
HSM4 1,920 1.0 4 5
HSM5 2,112 1.1 5 6

24 direct 402,653,184 77,672.3 − −
SBTM 2,293,760 442.5 − 1
STAM6 491,520 94.8 − 5
HSM1 393,024 75.8 1 2
HSM2 40,446 7.8 2 3
HSM3 11,008 2.1 3 4
HSM4 6,720 1.3 4 5
HSM5 5,184 1.0 5 6

The Effects of Polynomial Degrees 311

Table 24.2. Hardware synthesis results on a Xilinx Virtex-II XC2V4000-6 FPGA for 16
and 24-bit, first and second order approximations to f2 and f3.

operand speed latency block block
function order width (MHz) (cycles) slices RAMs multipliers

f2 1 16 202 11 332 2 2
24 160 12 897 44 4

2 16 153 13 483 1 4
24 135 14 871 2 10

f3 1 16 232 8 198 2 1
24 161 10 418 37 2

2 16 198 12 234 1 3
24 157 13 409 3 4

The reference design templates have been implemented using Xilinx System
Generator. These design templates are fully parameterizable, and changes to the
desired function, input interval, operand width or finite precision parameters
can result in producing a new design automatically.

A variant [7] of our approximation scheme to f1 and f4, with one level of P2S
and US(P2S), has been implemented and successfully used for the generation
of Gaussian noise samples [6]. Table 24.2 contains implementation results for
16 and 24-bit, first and second order approximations to f2 and f3, which are
mapped and tested on a Xilinx Virtex-II XC2V4000-6 FPGA. The bit widths
of the coefficients and the data paths have been optimized by hand to minimize
the size of the multipliers and look-up tables. The design is fully pipelined
generating a result every clock cycle. Designs with lower latency and clock
speed can be obtained by reducing the number of pipeline stages. The designs
have been tested exhaustively over all possible input values to verify that all
outputs are indeed faithfully rounded.

We can see that for the 16-bit results, the first order approximations have faster
speed, lower latency, and fewer slices and block multipliers. But they use slightly
more block RAMs, which is due to the larger numbers of segments required.
For the 24-bit cases, the first order results are again faster (in terms of both
clock speed and latency) and use fewer block multipliers, but they use slightly
more slices and many more block RAMs. This is due the inefficiency of the first
order approximations for large operand bit widths as discussed in Section 24.3.

Our hardware implementations have been compared with software imple-
mentations (Table 24.3). The FPGA implementations compute the functions
using HSM with 24-bit operands and second order polynomials. Software im-
plementations are written in C generating single precision floating point num-
bers, and are compiled with the GCC 3.2.2 compiler. This is a fair comparison
in terms of precision, since single precision floating point has 24-bit mantissa
accuracy.

312

Table 24.3. Performance comparison: computation of f2 and f3 functions. The
XC2V4000-6 FPGA belongs to the Xilinx Virtex-II family. The Athlon and the Pentium
PCs are equipped with 512MB and 1GB DDR RAMs respectively.

speed throughput completion
function platform (MHz) (operations/second) time (ns)

f2 XC2V4000-6 FPGA 135 135 million 104
AMD Athlon PC 1400 7.14 million 140

Intel Pentium 4 PC 2600 0.48 million 2088

f3 XC2V4000-6 FPGA 157 157 million 83
AMD Athlon PC 1400 1.76 million 569

Intel Pentium 4 PC 2600 1.43 million 692

For the f2 function, the Virtex-based FPGA implementation is 20 times faster
than the Athlon-based PC in terms of throughput, and 1.3 times faster in terms
of completion time. We suspect that the inferior results of the Pentium 4 PC are
due to inefficient implementation of the log function in the gcc math libraries
for the Pentium 4 CPU. Looking at the f3 function, the FPGA implementation
is 90 times faster than the Athlon-based PC in terms of throughput, and 7 times
faster in terms of completion time. This increase in performance gap is due to
the f3 function being more ‘compound’ than the f2 function. Whereas a CPU
computes each elementary operation of the function one by one, HSM looks
at the entire function at once. Hence, the more compound a function is, the
advantages of HSM get bigger.

Note that the FPGA implementations use only a fraction (less than 2%) of the
device used, hence by instantiating multiple function evaluators on the same chip
for parallel execution, we can expect even larger performance improvements.

24.5 Conclusion

In this chapter, we have presented the effects of polynomial degrees on the
hierarchial segmentation method (HSM) for evaluating functions. The effects
are explored using four functions:

√− log(x), x log(x), a high order rational
function and cos(πx/2). HSM uses a novel hierarchy of uniform segments
and segments with size varying by powers of two. This scheme enables us to
approximate non-linear regions of a function particularly well. Compared to
other popular methods such as STAM, our approach has longer latencies and
operators, but the size of the look-up tables are considerably smaller. The table
size improvements get larger as the operand bit width increases.

Looking at the effects of the polynomial degrees, we have seen that first
order approximations are appropriate for operand widths of fewer than 16 bits,
and second order approximations are well suited for operand widths between

The Effects of Polynomial Degrees 313

16 and 24 bits. We expect that the advantages of using higher order polynomials
will become larger for operands widths of more than 24 bits. We have also seen
that the performance of HSM over the optimum segmentation is around a factor
of two throughout various operand widths and polynomial degrees.

References

[1] J. Cao, B.W.Y. We and J. Cheng, “High-performance architectures for elementary function generation”,
Proc. 15th IEEE Symp. on Comput. Arith., 2001.

[2] J.N. Coleman, E. Chester, C.I. Softley and J. Kadlec, “Arithmetic on the European logarithmic mi-
croprocessor”, IEEE Trans. Comput. Special Edition on Comput. Arith., vol. 49, no. 7, pp. 702–715,
2000.

[3] D. Das Sarma and D.W. Matula, “Faithful bipartite rom reciprocal tables”, Proc. IEEE Symp. on Com-
puter Arithmetic, pp. 17–28, 1995.

[4] H. Henkel, “Improved Addition for the Logarithmic Number System”, IEEE Trans. on Acoustics,
Speech, and Signal Process., vol. 37, no. 2, pp. 301–303, 1989.

[5] C.L. Lawson, “Characteristic properties of the segmented rational minimax approximation problem”,
Numer. Math., vol. 6, pp. 293–301, 1964.

[6] D. Lee, W. Luk, J. Villasenor and P.Y.K. Cheung, “A hardware Gaussian noise generator for channel
code evaluation”, Proc. IEEE Symp. on Field-Prog. Cust. Comput. Mach., pp. 69–78, 2003.

[7] D. Lee, W. Luk, J. Villasenor and P.Y.K. Cheung, “Hardware function evaluation using non-linear
segments”, Proc. Field-Prog. Logic and Applications, LNCS 2778, Springer-Verlag, pp. 796–807, 2003.

[8] D. Lee, W. Luk, J. Villasenor and P.Y.K. Cheung, “Hierarchical Segmentation Schemes for Function
Evaluation”, Proc. IEEE Int. Conf. on Field-Prog. Tech., pp. 92–99, 2003.

[9] D.M. Lewis, “Interleaved memory function interpolators with application to an accurate LNS arithmetic
unit”, IEEE Trans. on Comput., vol. 43, no. 8, pp. 974–982, 1994.

[10] O. Mencer, N. Boullis, W. Luk and H. Styles, “Parameterized function evaluation for FPGAs”, Proc.
Field-Prog. Logic and Applications, LNCS 2147, Springer-Verlag, pp. 544–554, 2001.

[11] J.M. Muller, Elementary Functions: Algorithms and Implementation, Birkhauser Verlag AG, 1997.
[12] A.S. Noetzel, “An interpolating memory unit for function evaluation: analysis and design”, IEEE Trans.

Comput., vol. 38, pp. 377–384, 1989.
[13] J.A Piñeiro, J.D. Bruguera and J.M. Muller, “Faithful powering computation using table look-up and a

fused accumulation tree”, Proc. 15th IEEE Symp. on Comput. Arith., 2001.
[14] M.J. Schulte and J.E. Stine, “Symmetric bipartite tables for accurate function approximation”, Proc.

13th IEEE Symp. on Comput. Arith., vol. 48, no. 9, pp. 175–183, 1997.
[15] J.E. Stine and M.J. Schulte, “The symmetric table addition method for accurate function approximation”,

J. of VLSI Signal Processing, vol. 21, no. 2, pp. 167–177, 1999.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

