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Preface

This book evolved from the lectures that I delivered to senior undergradu-
ate and graduate students during the past 25 years or so, primarily in the 
civil engineering curriculum at The George Washington University. During 
this period, many students have contributed directly or indirectly by raising 
thoughtful questions. I am indebted to all of them.

There are a number of textbooks that treat the subject of groundwater 
either from a qualitative or from a rather abstract mathematical perspective. 
In this book, I have tried to maintain a balance between the two viewpoints. 
Nevertheless, a working knowledge of university level mathematics gener-
ally obtained during the first two years in an engineering curriculum, or 
a qualitative science field, with some exposure to geology will provide an 
adequate preparation on the part of the reader. Mathematical complexity, 
if any, is gradually introduced throughout the text. I have, however, made 
liberal use of graphical illustrations to aid in the comprehension of physics 
and mathematical concepts, as applied to the field of groundwater hydrol-
ogy. This aspect, coupled with a number of completely worked out illustra-
tive problems in the text, should appeal both to students and practicing 
engineers. 

This book addresses the subject of steady-state motion of groundwater in 
porous media only. An exception is the application of Theis’ transient flow 
equations to the problem of the determination of aquifer characteristics in 
Chapter 7. Although topics such as unsteady flows in unsaturated media 
with possible application to the transport of contaminants constitute an 
important aspect of groundwater mechanics, these are not treated here to 
limit the volume of the book.

I express my gratitude to my colleague and friend, Professor Khalid 
Mahmood, with whom I spent hours discussing various topics rang-
ing from the arts to the sciences. Without his constant inspiration and 
encouragement, this task would not have been successfully completed. 
I have immensely benefitted from previous authors, in particular Professor 
M. E. Harr and Professor Otto D. L. Strack, during the preparation of this 
manuscript. A special note of thanks is due to Professor Erik Thompson of 
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Colorado State University for introducing the finite element method to me. 
To all of them, I express my gratitude.

I take this opportunity to thank the members of the Spon Press (imprint 
of Taylor & Francis Group), especially Tony Moore and Amber Donley, for 
their unwavering support during the entire process of publication. 

Finally, I express my gratitude to my children, Sameera, Kashif, and 
Omar for their help in the preparation of the manuscript. As always, I thank 
my wife, Tahira, for understanding and support.
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Chapter 1

Introduction

In this chapter, we introduce the overall picture of groundwater, its rela-
tionship with the hydrological cycle, and other terminology used in the 
mechanics of groundwater flow through porous media. The term ground-
water, broadly speaking, refers to water that resides beneath the surface 
of the earth. However, to a groundwater hydrologist, or a geotechnical 
engineer, the term has a more restricted connotation: It implies a body of 
water that completely saturates the porous medium and the pressure at 
any point inside the body of water is equal to or above the atmospheric 
pressure. More on this aspect of water residing beneath the earth surface 
follows later in this chapter. We first look at some of the terminologies 
that are relevant for a further discussion. A water-bearing geological 
formation is called an aquifer if it stores enough water that can perme-
ate through the geological formation under ordinary hydraulic gradients 
(or field conditions). Todd (1959) relates the term to its Latin roots—
aquifer, combining form of aqua (water), and ferre (to bear). Thus, 
aquifer literally means water bearing. The important aspect of this defi-
nition is the fact that enough water can be economically mined from an 
aquifer. There are three more terms used in the definition of geological 
formation with regard to groundwater and its transmission. These are 
aquiclude, aquitard, and aquifuge. All these terms have their roots in 
Latin, according to Todd. An aquiclude is a geological formation that 
may contain a significant amount of water but is incapable of trans-
mitting it under ordinary field conditions. A typical example is a clay 
layer. For all practical purposes, an aquiclude represents an impermeable 
formation. It generally forms the confining layer of a confined aquifer 
(to be discussed subsequently). An aquitard refers to a geological forma-
tion that transmits water at a very low rate compared with an aquifer. It 
often acts as a leaky formation between two aquifers. The term aquifuge 
on the other hand refers to a geological formation that neither contains 
nor transmits water. Typical examples include unfractured igneous rocks 
such as granite.
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All rock masses contain solid skeleton and void spaces. These void 
spaces are referred to by different designations; for instance, interstices, 
pores, or pore spaces are synonymous with the word void spaces. The 
rock properties that affect the storage and movement of groundwater 
include porosity and coefficient of permeability. These terms are defined 
in quantitative terms in Chapters 2 and 3. However, a quasi-quantitative 
definition will suffice here for the time being. It is the porous space in an 
aquifer that stores water. Thus, greater the porosity of an aquifer, greater 
its capacity to store fluids. It is this property of the rock mass that is 
described quantitatively in the definition of the term porosity. Likewise, 
more permeable the aquifer, greater the ease with which the aquifer can 
transmit water. This quality of aquifer is described more precisely in a 
quantitative manner in the definition of the term coefficient of perme-
ability in Chapter 3.

In a given specimen of aquifer, not all the pore space is necessarily filled 
with water. If the void space is completely filled with water, the degree of 
saturation (or saturation) of the aquifer is referred to as 100%. If only one-
half of the void space is filled with water, the degree of saturation of aquifer 
is said to be 50%. Thus, the degree of saturation indicates the proportion 
of void space that is occupied by water. Its precise mathematical definition 
would be the ratio of volume of water, Vw, to the volume of void space, Vv, 
of the soil sample, that is, the degree of saturation, Sw = Vw/Vv. Sometimes, 
this ratio is expressed simply as decimal fraction and other times as a per-
centile ratio, as described earlier. Thus, greater the degree of saturation, 
wetter the soil is. There is another term that is similar (but not identical) to 
the degree of saturation, which also describes the wetness of soil sample. 
It is designated as the moisture content (or water content) of the soil. It 
is defined as the ratio of volume of water, Vw, contained in a soil sample 
to the total (nominal) volume, V, of the soil sample, that is, the moisture 
content, θ = Vw/V. Sometimes, it is also defined as the gravimetric, instead 
of volumetric, ratio.

1.1 HYDROLOGICAL CYCLE

A schematic sketch of the hydrological cycle is shown in Figure 1.1. In this 
sketch, the scale toward the earth crust is highly exaggerated in comparison 
with the mean earth radius. This exaggeration is needed to highlight the 
essential features of the hydrological cycle, such as the migration of water 
vapor after evaporation. It should be stated at the very outset that almost 
all water vapors (including clouds), residing in the atmosphere, occupy 
only the first layer of the atmosphere, close to the earth surface, commonly 
called the troposphere. The thickness of the troposphere is considered to 
be about 12 km, which is much smaller than the average radius (6370 km) 
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of the earth. It is therefore necessary to exaggerate the scale near the earth 
surface to cover the essential details without losing sight of the fact that the 
hydrological cycle covers a space comparable to a significant part of the 
earth surface. Looking from another perspective, the hydrological cycle is 
essentially a global phenomenon.

As the term hydrological cycle implies that it is a cycle in which any 
point (or event) can be viewed as the starting point; thereafter, conceptu-
ally speaking, the cycle perpetuates ad infinitum. Although it is arbitrary, 
precipitation is generally considered as the starting point (or event). During 
the hydrological cycle, the water from land, seas, and vegetation is evap-
orated; the vapor is transported through the atmosphere and eventually, 
under the right physical conditions, the vapor condenses into precipita-
tion. Thus completing the cycle! Within this cycle, there are a number of 
subcycles, as indicated in Figure 1.1. The groundwater constitutes a part of 
hydrological cycle.

Groundwater

Runoff
E

12 km

Tropopause Primary circulation

ET

Troposphere
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ean radius (6370 km
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Saltwater
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Figure 1.1  A schematic view of the hydrological cycle. Note: E, evaporation; ET, evapo-
transpiration; P, precipitation.



4 Mechanics of groundwater in porous media 

In the hydrological cycle, there are three fundamental processes involved. 
These are precipitation, evaporation of water from the seas and land 
masses, migration of vapors through the atmosphere, and the eventual 
condensation of water vapors. What does keep this cycle going? The short 
and quick answer is that the cycle is powered by the solar energy. To under-
stand how the solar radiation helps maintain the cycle, Figure 1.2 has been 
prepared. It shows that in the northern hemisphere north of latitude 38° 
N, there is a net loss of radiant energy annually—this part receives less 
solar energy than it radiates out to the space, while below 38° N toward 
the equator there is a net gain of the radiant energy annually by the earth. 
This average annual energy imbalance, between parts of the earth surface, 
cannot be maintained year after year; the system must eventually come to 
a stable equilibrium state. As an effort to achieve stability on such a large 
scale, the system sets up convection currents both in the atmosphere and 
the oceans of the earth. Although energy transfer by thermal conduction 
through the earth crust plays some role in achieving equilibrium, it is insig-
nificant compared with the convective transfer of energy.

There is another facet of the cycle worth looking at. This has to do with 
the average annual imbalance between evaporation from and precipitation 
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Figure 1.2 Net annual gain and loss of energies by parts of the earth.
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to the oceanic surfaces of the world. The ocean surfaces evaporate more 
water annually than they receive through direct precipitation. This imbal-
ance of water mass is, however, mitigated by the surface and subsurface 
migration of water from the continents to the oceans.

Finally, a few words about the distribution of the world’s free water! Not 
all the water of earth is free. An undetermined amount is held by chemical 
bonds in the minerals of the earth. Of the free water, 97% is contained by 
oceans. The next large storage of water is provided by glaciers and polar 
ice caps. After glaciers and polar ice caps, the groundwater stores about 
0.61% of the earth’s free water. The remaining amount is stored collectively 
in lakes, ponds, rivers, and soil moisture. On the average, only 0.001% of 
free water resides in the atmosphere at any time. Despite this low amount 
of vapor present in the atmosphere, it is this that is responsible for a large 
amount of annual precipitation, because of the rapidity with which water 
vapor enters and leaves the atmosphere. To account for the global-average 
precipitation, the entire atmospheric vapor must be replaced 40 times a 
year. Or from another point of view, the average residence time of atmo-
spheric moisture is slightly over 9 days (Eagleson, 1970).

1.1.1 Noncyclic water

Some of the water remains dormant for a long time and does not participate 
on a regular basis in the hydrological cycle. These waters are collectively 
classified as noncyclic waters. Among these, the juvenile water participates 
for the first time in the hydrological cycle. The juvenile water could be from 
three different sources: (1) magmatic, (2) volcanic, or (3) cosmic sources. Of 
the noncyclic water, the term fossil water refers to the water that is buried 
at the time of deposition of sediments during rock formation and remains 
in isolation for a long geological period. The term connate water refers to 
the water that remains in isolation for a long duration.

1.2 VERTICAL MOISTURE PROFILE

The part of precipitation that enters the earth surface is called the infiltra-
tion. Of this, a part called interflow moves parallel to the ground sur-
face through relatively more pervious soil structure (inset Figure 1.1). The 
remaining part redistributes and eventually percolates downward due to the 
action of gravity until it merges into a saturated reservoir of water resting 
on the impervious stratum. This redistribution and downward migration 
of infiltrated water causes vertical moisture profile (Figure 1.3b). Broadly 
speaking, the vertical moisture profile can be classified into two zones: one 
called the zone of aeration, close to the earth surface, and the other called 
the zone of saturation, away from the earth surface. The zone of aeration 
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is further classified into three categories: the soil water zone, intermediate 
zone, and the capillary zone. Collectively, the water contained in the zone 
of aeration is also referred to as the vadose water (Figure 1.3d). The main 
characteristic of vadose water is the fact that it only represents a part of the 
three-phase system: water, gas (generally air), and solid. Furthermore, the 
pore pressure (the pressure inside the water occupying the pore space) of 
vadose water is less than, or equal to, the atmospheric pressure. The surface 
where the pore pressure is atmospheric is called the watertable or the phre-
atic surface. In Figure 1.3, the lower edge of the capillary zone represents 
the watertable, where the pore pressure is atmospheric. The subclassifica-
tion of the vadose zone is further described in the following text.

1.2.1 Soil water zone

The soil water zone starts from the ground surface and extends downward 
through the major root systems of the trees. The moisture content in this 
zone depends largely on the availability of water at the ground surface. 
Temporarily, the soil in this zone can become completely saturated after a 
significant rain storm, or surface irrigation.

1.2.2 Intermediate zone

It starts from the lower edge of the soil water zone and ends at the upper 
limit of the capillary zone. Its thickness (or depth) depends largely on 
the location of the watertable (or phreatic surface). For deep watertable 
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conditions, the thickness of intermediate zone can approach several hun-
dred feet. Its primary role is to provide vertical seepage of excess (gravity) 
water, under the influence of gravitational pull. The water that is held up 
by the soil particles against the gravitational pull is called the pellicular 
water. The hygroscopic and capillary forces are instrumental in attaching 
this water to the surface of soil particles.

1.2.3 Capillary zone

The region between the intermediate zone and groundwater is called the 
capillary zone. The water in the capillary zone is held in interstices by the 
same forces that cause capillarity in narrow tubes in physical laboratories. 
An important feature of capillary zone is the fact that despite saturation, 
the pressure in pore water is subatmospheric. In other words, if the atmo-
spheric pressure is taken as the zero of pressure scale, the pore pressure in 
the capillary zone becomes negative.

The moisture profile in the zone of aeration, in general, and that in the 
capillary zone, in particular, is dependent on the grading of aquifer mate-
rial. Figure 1.4 highlights the dependence of moisture profile on the grada-
tion of the aquifer material. An ensemble of aquifer material is said to be 
well graded (or poorly sorted) if it represents a variety of grain sizes; it 
is called poorly graded if the ensemble represents the predominance of a 
single grain size. It can be seen from Figure 1.4 that the moisture decreases 
rapidly toward residual saturation with height, z, in the case of poorly 
graded soil. On the other hand, in the case of well-graded soils, the mois-
ture profile gradually decreases with height. This behavior is attributed to 
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the geometric differences in interstitial spaces between solid grains of the 
well-graded and poorly graded aquifers.

In order to understand the physical mechanism operative in the develop-
ment of moisture profile in the capillary zone, it is instructive to replace 
conceptually the interstitial space of the aquifer by an idealized model of 
the void space. For this purpose, we replace the tortuous interstitial space 
between the solid grains of the aquifer by the cylindrical tubular void 
spaces of an ensemble of capillary tubes of different inner radii. Each capil-
lary tube is oriented vertically in space, and its radius is supposed to repre-
sent, in some sense, the mean radius of a twisted interstitial path. The rise 
of water due to capillary action in such an idealized ensemble of tubes can 
be easily determined from the basic laws of fluid mechanics. This capillary 
action is exemplified in Figure 1.5. The abscissa in this figure represents the 
normalized radius, r/r0, of the capillary tube, varying continuously from 
zero to a maximum value of r/r0 = 1.0. The corresponding ordinate repre-
sents the normalized capillary rise hc/hc0 in a tube of inner radius r. The 
curve in this figure is based on the fact that the capillary rise, hc, in a tube 
is inversely proportional to the inner radius, r, of the tube.

At this stage, we introduce another simplification in order to make the prob-
lem even more tractable. We assume the following simplifying assumption:
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where Nr represents the total number of capillary tubes in the ensem-
ble with the inner radii equal to r. In other words, the number of tubes 
increases four times as the radius reduces to one-half. This assumption is 
more in keeping with the well-graded aquifer than with the poorly graded 
ones. More importantly, this simplification ensures that each group of 
capillary tubes with the same radius covers the same proportion of the 
total cross-sectional area represented by the ensemble of capillary tubes. 
Thus, it can be shown (Appendix A) that the graph hc/hc0 versus r/r0 
(Figure 1.5) is identical with the graph between z/zf and the degree of 
saturation Sw = Vw/Vv, as shown in Figure 1.6.

Finally, as the size of the capillary tubes approaches zero, the forces 
that cause capillarity are dominated by those forces that cause the affin-
ity of water molecules to adhere to the surface of mineral particles. Water 
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Figure 1.6 Moisture profile based on a simplified ensemble of capillary tubes.
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held at or near the surface of mineral particles is called hygroscopic water 
(Polubarinova-Kochina, 1962). In the context of groundwater hydrology, 
the term pellicular water is used to embrace all kinds of waters that do 
not readily move under the influence of gravitational pull. The cross-
hatching in Figure 1.6 implies the pore spaces where the hygroscopic 
and pellicular waters dominate the capillary action. Thus, for narrower 
interstitial space, this leaves the aquifer with the residual saturation as 
shown in the figure.

Finally, as closing remarks, it should be noted that the physics of the 
movement of water through twisted, uneven interstitial spaces is quite dif-
ferent from the physics that determines the capillary rise. For instance, the 
physics of capillary rise through a constant tubular passage can never rep-
licate the hysteresis effects normally associated with moisture curve. The 
analysis in the forgoing is intended to demonstrate that simple physical 
principles can contribute to the fundamental understanding of moisture 
profile in the vadose zone.

1.3 CLASSIFICATION OF AQUIFERS

Aquifers are generally of extensive areal extent. Broadly speaking, the aqui-
fers can be classified into two main categories: the confined aquifer and the 
unconfined aquifer. These two types are schematically shown in Figure 1.7, 
and are further described in Sections 1.3.1 and 1.3.2.

Recharge area

Outcrop (confining layer)

Piezometric surface

Ground surfaceWell

AquicludeWatertableUnconfined aquifer

Confined aquifer

Impervious bedrock Outflow
to discharge area

Figure 1.7 A schematic sketch for the classification of aquifers.
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1.3.1 Confined aquifer

An aquifer that is confined from above by a layer of aquiclude, and also 
confined from below by either an aquiclude or impervious bedrock, 
is called a confined aquifer. The pore pressure (the pressure inside the 
groundwater) in such an aquifer is quite above the atmospheric pressure. 
The confined aquifer mostly serves as a conduit for the transportation of 
groundwater from the recharge area to the natural, or man-made, dis-
charge site (Figure 1.7). Since water is considered highly incompressible 
(compressibility, β = 4.5 × 10−10 m2/N), even a small amount of addition (or 
subtraction) of water volume to the confined aquifer significantly raises the 
pore pressure throughout the aquifer.

1.3.2 Unconfined aquifer

An aquifer whose upper boundary is defined by watertable (or phreatic 
surface) is called an unconfined aquifer. The lower boundary of such an 
aquifer may be a confining layer, or impervious bedrock. In the case of 
an unconfined aquifer, the undulations in the phreatic surface (watert-
able) are largely due to addition or subtraction of water volume. In com-
parison with a confined aquifer, in the case of an unconfined aquifer, 
addition or subtraction of a small amount of water does not significantly 
affect the pore pressure. The unconfined aquifers receive recharge from 
deep percolation of infiltrated surface water. They discharge either natu-
rally into ground surface, rivers, lakes, oceans or into man-made dis-
charge locations such as wells.

1.3.3 Perched aquifer

The perched aquifers are schematically illustrated in Figure 1.8. These 
aquifers are essentially unconfined aquifers that rest on clay lenses of lim-
ited areal extent. The perched aquifers are dispersed in the unsaturated 
zone between the main watertable (of an extensive unconfined aquifer) and 
the ground surface, as shown in the figure.

1.4 RIVER–AQUIFER INTERACTION

The interactions between the rivers and the aquifers are illustrated in 
Figure 1.9. There are essentially two types of interactions: (1) either the 
stream is gaining (effluent stream) water from the aquifer (Figure 1.9a), 
or (2) it is losing (influent stream) water to the aquifer (Figure 1.9b and c). 
When the groundwater slopes toward the river bank, the river is gaining 
water; otherwise, it is losing water to the aquifer.
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Perched aquifer

Clay lens

Main watertable

Groundwater

Figure 1.8 Perched aquifer.

(a) (b)

(d)(c)

Flood stage

Low flow Bank storage

Groundwater Groundwater

GroundwaterGroundwater

Figure 1.9  River–aquifer interaction: (a) effluent stream, (b) influent stream, (c) influent 
stream (deep watertable), and (d) bank storage.
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The same river could be effluent along a reach of the river, while on the 
other reaches it could be influent. Even at the same reach, a river can act as 
the influent stream during high flood levels, and it may act as an effluent 
stream during low flood levels. The water stored in the aquifer during high 
and low river stages is termed as bank storage (Figure 1.9d). The water 
provided by the aquifer to the river is said to constitute the base flow of 
the river. It is the base flow that maintains discharge in the river during 
prolonged absence of precipitation in the catchment area.

1.5 HOMOGENEITY AND ISOTROPY OF AQUIFERS

There are two properties of aquifers that play a paramount role in the 
mechanics of groundwater through porous media. These are homoge-
neity and isotropy of aquifers with respect to some physical quantity 
of interest. In our case, the quantity of interest includes the coefficient 
of permeability and porosity, to mention a few. A medium of flow, or 
aquifer, is said to be homogeneous if the quantity of interest does not 
depend on the location of the point. In other words, the quantity of 
interest remains uniform throughout the medium. If a medium is not 
homogeneous, it is called heterogeneous. The medium of flow is said to 
be isotropic if, at a given point, the quantity of interest does not depend 
on the direction; otherwise, it is called anisotropic. To be concrete, we 
shall take the coefficient of permeability as the quantity of interest for 
further discussion. There are four possibilities with regard to this physi-
cal quantity and the aquifer: (1) the aquifer is homogeneously isotropic; 
(2) the aquifer is heterogeneously isotropic; (3) the aquifer is homoge-
neously anisotropic; and (4) the aquifer is heterogeneously anisotropic. 
These possibilities, or conditions, are graphically shown in Figure 1.10a 
through d.

For isotropic aquifers, the coefficient of permeability, K, at a given 
point of flow medium is represented graphically by the length of an 
arrow. The direction of the arrow indicates the direction along which the 
coefficient of permeability has been implied (or measured). For an iso-
tropic aquifer, the length of the arrow does not change at a given point. 
Thus, the tip of the arrow traces a circular trajectory as its direction is 
varied. In the case of an anisotropic aquifer, however, the graphical illus-
tration becomes more complex, because of the fact that the coefficient 
of permeability becomes a second-order tensor, as described in detail 
in Chapter 3. Nevertheless, the directional dependence of coefficient of 
permeability in the case of an anisotropic aquifer can be obtained from 
the so-called ellipse of direction. These ellipses are schematically shown 
for anisotropic media in Figure 1.10c and d. The semidiameters of these 
ellipses are proportional to the square root of the directional coefficient 
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of permeability. Furthermore, the directions of maximum and mini-
mum diameters of the ellipse do represent the principal directions of 
anisotropy of the aquifer. Incidentally, these directions do correspond 
with the physical directions along and across the bedding planes of the 
aquifer.

Finally, in these sketches, if the size of the circle changes from point to 
point, the isotropic aquifer is considered heterogeneous. Likewise, if the 
shape or the orientation of the ellipse changes from point to point, the 
anisotropic aquifer is also considered heterogeneous.

1.6 ILLUSTRATIVE PROBLEMS

1.1 The phreatic surface (or watertable) levels with respect to an arbitrary 
datum are recorded on the map for three observation wells, A, B, and 
C, as shown in the following figure. Construct the contours of the 
watertable and find the direction of the steepest descend, using the data 
that have been provided on the map.

(a) (b)

K1 K1

K2 K2

K1 = K2

K 2x
K 2y

K 1y K 1x

K1x = K2x K1y = K2y

K1   K2

K1x   K2x
or K1y   K2y

(d)(c)

Figure 1.10  Types of homogeneity and isotropy of aquifers: (a) homogeneously 
isotropic, (b) heterogeneously isotropic, (c) homogeneously anisotropic, 
and (d) heterogeneously anisotropic.
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Scale
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Well B (watertable level 93 m)

Well C (watertable level 90.5 m)

Well A (watertable level 96 m)
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A contour map for the groundwater surface within the triangle ABC 
is constructed by linear interpolation. The groundwater contours and 
the line of steepest descend, which is at right-angle to the contour lines, 
are shown in the following figure. It may be emphasized here that the 
linear interpolation of the watertable, between three points ABC, rep-
resent a plane surface. The intersection of this plane surface with a 
horizontal surface yields a line that may be called strike, in keeping 
with the terminology used in structural geology. The strike lines are 
also shown in the figure.
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90.5 m

Line of steepest descend

Interpolated
phreatic surface

Strike

200 m Horizontal plane

B

C

A

Watertable contours

0 200 400 m

95

94 25
5

Strike

93

92

091



16 Mechanics of groundwater in porous media 

1.2 Groundwater contours are shown on the following map along with the 
course of a river. Determine the river reaches along which the stream 
behaves like an effluent and influent stream. Use the data that have 
been provided on the map for your analysis.

B
C

North1
2

3

4

43

4

6

10

1

12

14

2
Watertable contour map

A

8

We construct typical cross sections of the phreatic surface across 
the river. Locations of these sections are identified on the map, and the 
cross sections themselves are shown in the following drawings. Cross 
sections, section 1-1 and section 2-2, show that the phreatic surface 
dips away from the river to the aquifer. Thus, along the reach from 
section 1-1 to section 2-2, the river behaves like an influent (loosing) 
stream. Likewise, sections 3-3 and 4-4 show that the phreatic surface 
slopes toward the river, indicating seepage from the aquifer into the 
river. Thus, along the reach between these two sections, the river 
behaves as an effluent (gaining) stream. It may be further observed 
that influent streams flow over the ridge of the groundwater surface, 
while the effluent streams flow along the valley of groundwater sur-
face. Thus, a study of the contour map shows that the river reach 
from A to B and from B to C behaves, respectively, as the influent and 
effluent stream.
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Chapter 2

Preliminaries

In this chapter, we present a synopsis of basic definitions, concepts, and the 
fundamental principles of fluid mechanics and soil mechanics, which are 
necessary prerequisites for an adequate understanding of the subject matter 
treated in this book. To help facilitate comprehension on an elementary but 
firm level, a deliberate attempt is made to develop these ideas from the rudi-
ments of physics; the principles of general applicability are deduced from 
geometric and physical reasoning, with a minimum use of the mathemati-
cal abstraction. For the understanding of the subsequent sections, however, 
a minimum proficiency in mathematical skills generally acquired during 
the first 2 years of differential and integral calculus at a university level 
is assumed. Likewise, some elementary exposure to vector analysis and 
matrix theory is highly desirable.

2.1 PRELIMINARIES FROM FLUID MECHANICS

2.1.1  Stress vector and its vector resolution 
into normal and shearing components

Let us consider a material body in a state of static equilibrium under the 
action of external forces, as shown in Figure 2.1a. These external forces 
can be classified into two categories: the first includes those forces that 
act directly on the surface of the body by physical contact, and the second 
includes those forces that act indirectly on the mass of the body without 
any material contact. The first category is designated as the surface trac-
tion, and the second as the body force. While surface traction includes, for 
instance, the reactive forces developed at the points of contact of the body 
with other material bodies, body force includes, for instance, the force 
exerted by the earth’s gravitational field on the entire mass of the material 
body.

Let us perceive the body to be dissected into two parts A and B, by an 
imaginary plane abcd, as shown in Figure 2.1a. We assume that the body 
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as a whole, as well as any part thereof, is in a state of static equilibrium. 
Let us isolate the two parts from each other and focus our attention on the 
equilibrium of part A. Since, after dissection, the remaining external forces 
acting on part A are not necessarily in equilibrium, it becomes a logical 
necessity for us to assume the existence of some additional equilibrating 
forces acting on the imaginary surface S of part A; for, otherwise, part A 
cannot remain in equilibrium.

With regard to these equilibrating forces, we have no a priori knowledge 
of whether these forces act uniformly or act in a preferred direction over 
the imaginary surface S. Let us, therefore, consider, without loss of general-
ity, a resultant elemental force δF acting at an oblique angle to the elemen-
tal area δA, as shown in Figure 2.1b. We now introduce the fundamental 
postulate of the mechanics of continuous media: The ratio δF/δA converges 
to a well-defined limit dF/dA at point P, and the moment due to δF about 
any point of δA vanishes, as δA tends to zero without leaving the point P. 
In other words,

 
≡ = δ

δδ →TT
FF FFd
dA A

limn
A 0  (2.1)

where Tn is called the stress vector (or traction) and its direction is the 
limiting direction of δF. The magnitude and direction of the stress vector 
depend, in general, on the location of the point P and the orientation of 
the elemental area δA. The superscript n in the notation Tn emphasizes the 
dependence of the stress vector on the direction of the unit normal vector 
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(a) (b)
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Fk (typical body force)
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δA

δFt

δFn

F1

n

Figure 2.1  Stress vector and its vector resolution into normal and shearing vectors: 
(a) a material body dissected into parts A and B by an imaginary plane and 
(b) equilibrating forces on the imaginary surface S of part A.
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nn to the elemental area δA. The elemental force δF can be resolved into 
two orthogonal vector components δFn and δFt: the former acting in the 
direction of the unit outward normal vector to the elemental area δA, and 
the latter acting parallel to the plane of area δA, as shown in Figure 2.1b. 
It is convenient for future reference to introduce two additional limiting 
ratios:

 
σσ ≡ = δ

δδ →
FF FFd
dA A

limn
A

n
0  (2.2a)

 
ττ ≡ = δ

δδ →
FF FFd
dA A

limt
A

t
0  (2.2b)

where
σ is the normal stress vector
τ is the shearing stress vector

The normal stress vector is further qualified as the tensile stress vector, if 
δFn acts in the direction of the outward unit normal vector, nn, to the ele-
mental area δA; otherwise, it is designated as the compressive stress vector. 
It may be noted that σ and τ have the dimensions of force per area and thus 
represent the intensity—or, preferably, the density—of force distribution at 
a point. In the subsequent sections, we shall further use the concept of the 
normal and shearing stress vector in investigating the behavior of pressure 
in a fluid in a state of static equilibrium.

2.1.2 Static pressure at a point

By hypothesis, a liquid is a substance that yields under the action of a shear 
stress vector, however small the shear stress vector may be! As a corollary, 
the forces acting on the real or an imaginary surface of a liquid body at 
rest must act at right angle to the surface. Furthermore, since liquid cannot 
resist (significant) tensile stresses, these external surface forces must point 
toward the interior of the liquid body.

Let us now consider a body of liquid contained in a vessel to be at rest, as 
shown in Figure 2.2a. As before, we shall assume that the body as a whole, 
as well as any part thereof, is in static equilibrium. Let us further consider 
a cylindrical portion of the liquid (shaded cylinder in Figure 2.2a) removed 
from its surroundings as shown in Figure 2.2b. Such a body is called a free-
body in mechanics. On this free-body, there again act two kinds of forces: 
one acts directly on the surface due to the action of the surrounding mate-
rial, and the other indirectly on the mass due to the gravitational attraction 
of earth. In liquids that are in static equilibrium, the surface forces vary in 
general with area, but they always remain at a right angle to the surface. 
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The body force, however, is proportional to the mass of the body, and it 
acts along the direction of acceleration due to gravity. For simplicity, we 
assume that at the top surface (free surface) there acts no force. At the bot-
tom surface, however, there must act a resultant upward force δF, as shown 
in Figure 2.2b. On every differential area dA of the curved cylindrical sur-
face acts some resultant differential force dP, which is oriented at a right 
angle to the surface. Since the free-body is in a state of static equilibrium, 
the algebraic sum of the components of forces along the vertical axis must 
equal zero.

Resolving forces along the vertical axis, and remembering that the dif-
ferential forces on the cylindrical surface have no components along this 
axis, we conclude

 δF = δW = γδAh (2.3)

where
δW is the weight of the cylindrical free-body [MLT−2]
γ is the specific weight (weight per volume) of liquid [ML−2T−2]
δA is the cross-sectional area of the cylinder [L2]
h is the height of cylinder [L]

The static pressure at any point P in a liquid, at a depth h from the free 
surface, is defined by the following limiting ratio:

 
= δ

δ
= γδ

δ
= γδ → δ →p F

A
Ah
A

hlim limA A0 0  (2.4)

Free surface

h
Differential
stress vector

dP

(a) (b)

dA

δW

δF
δA

Figure 2.2 Definition sketch: (a) a liquid body at rest and (b) cylindrical free-body.
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as δA contracts to zero without leaving the point P. Thus, in a liquid with 
constant specific weight, the static pressure at any point depends only on 
the depth of the point from the free surface.

2.1.2.1 The invariance of static pressure with direction

It is evident that the pressure, p, and the normal stress vector, σ, are similar 
concepts. Since normal stress vector at a given point depends in general on 
the orientation of the elemental area, it is natural to expect a similar behav-
ior in the case of pressure. We are, therefore, led to the following question: 
How does the pressure change with the orientation of the elemental area 
δA, at a fixed point P? To answer this question, the illustration in Figure 
2.3 has been prepared. This figure shows a cylindrical free-body isolated 
from the surrounding liquid in static equilibrium. Unlike the previous case, 
however, the bottom surface of this cylindrical free-body is inclined at an 
angle θ with respect to the horizontal plane. The centroid of the bottom 
(point P in Figure 2.3) is located at a depth h, from the free surface. Thus, 
the weight of the free-body can be obtained from the following equation:

 δW = γδA′h (2.5)

Free surface

P

h
δA

(a) (b)

δA΄

δA΄

δF δF cos θ

θ

θ

δF

δW δW

θ

θ

Figure 2.3  Invariance of static pressure with direction: (a) perspective view of the free 
body and (b) side view of the free body.
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where δA′ represents the normal cross-sectional area of the cylindrical 
free-body. The normal cross-sectional area δA′ is, in fact, the orthogo-
nal projection of the elliptical bottom area δA on the horizontal plane 
(Figure 2.3a). Thus, these elemental areas are related by the following 
equation:

 
δ = δ ′

θ
A A

cos
 (2.6)

On the elliptical bottom area δA, there must act a resultant force δF due to 
the surrounding liquid. This resultant force must act at right angle to the 
surface, and it should point toward the interior of the body, because of the 
hypothesis of liquid bodies in static equilibrium. Since the free-body is in a 
state of static equilibrium, the algebraic sum of the components of external 
forces along the vertical axis must equal zero. Thus, remembering that the 
surface forces acting on the curved cylindrical surface have no components 
in the vertical direction, we obtain

 δ θ = δ = γ δ ′F W A h�cos �  (2.7)

Now, as before, the pressure at a point P, located at a depth h from the 
surface, is given by the following limit:

 

( )
≡ δ

δ
=

γ δ ′ θ
δ ′ θ

= γδ → δ →p F
A

h A
A

hlim �lim
� � /cos

/cos
�A A0 0  (2.8)

Since θ is an arbitrary angle of inclination of the elemental area δA, the 
preceding result shows that the pressure remains the same at point P, irre-
spective of the orientation of the plane. In other words, the liquid in static 
equilibrium exerts equal pressures in all directions at a given point, and 
the magnitude of pressure depends on the depth of the point from the free 
surface.

2.1.2.2  Static pressure at a point not directly 
under the free surface

Let us now consider the problem of static pressure at a point P, which 
does not lie directly under the free surface, as shown in Figure 2.4. In 
this case, what is the significance of depth h in the equation for pressure, 
p = γh? To answer this question, we proceed as follows. Let there be two 
points P and Q, lying in the same horizontal plane, such that the point Q is 
located directly under the free surface. Let us further consider a cylindrical 
free body with a constant elemental cross-sectional area δA, created by a 
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horizontal straight line generator and having two orthogonal end surfaces 
passing through points P and Q, as shown in Figure 2.4. Let there be 
resultant forces δFP and δFQ on the two elemental areas, passing through 
points P and Q, respectively. The forces acting on the curved cylindrical 
surface are oriented at right angle to the longitudinal (horizontal) axis 
of the cylinder; thus, these forces do not have components acting along 
the longitudinal axis of the free body. Since the body force δW (weight of 
the free body) acts vertically downward, it also has no component in the 
horizontal direction, including the axis of the free body. Since the free 
body is in a state of static equilibrium, the algebraic sum of the (scalar) 
components of external forces along the longitudinal axis must be equal 
to zero. Thus,

 
δ = δF F P Q  (2.9)

(The reader is reminded that δFP represents the magnitude of the vector 
δFP.) Now, by definition, the pressure at points P and Q are, respectively, 
given by the following limiting ratios:

 
= δ

δδ →p F
A

�limP A
P

0  (2.10a)
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δ
δδ →p F
A

limQ A
Q

0  (2.10b)
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Figure 2.4 Pressure at a point P not directly beneath the free surface.
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Replacing δFP in Equation 2.10a by δFQ, using Equation 2.9, shows that the 
pressure at point P is exactly equal to the pressure at point Q. Since point 
Q is beneath the free surface at a depth h, the following transitive equality 
is true:

 = = γp p hP Q  (2.11)

Thus, in the case of a point lying beneath the free surface (for instance 
point Q), the variable h represents the actual depth of the point from the 
free surface. However, in the case of a point not lying under the real free 
surface (for instance point P), the variable h may be regarded to represent 
the virtual depth of the point from an imaginary extension of the free sur-
face (see the depth of point P from the dotted line in Figure 2.4).

The argument presented in the preceding paragraphs assumes the exis-
tence of a free surface and the point P is said to be communicating with the 
free surface. A point P is said to be communicating with the free surface if 
the point P can be joined with another point S on the free surface through 
a curve, without leaving the liquid body at all.

2.1.3 Bernoulli’s theorem

In this section, we intend to develop Bernoulli’s theorem for an incom-
pressible, ideal fluid (no friction) in a state of steady motion, based solely 
on energy consideration. According to the fundamental law of thermo-
dynamics, energy can be neither created nor destroyed. Furthermore, all 
forms of energy are equivalent and their dimensions are the same as that 
of work—distance times force. In this section, we are particularly inter-
ested in two forms of energies: the kinetic energy and the potential energy. 
Briefly stated, the kinetic energy of a given mass is due to the velocity of the 
mass; while the potential energy is due to the location of the center of mass. 
The sum of kinetic and potential energy is also referred to as the mechani-
cal energy. These forms of energy are further described, in some detail, in 
the subsequent sections.

2.1.3.1 Kinetic energy

The original enunciation of Newton’s laws of motion relates to the dynam-
ics of a point-mass, which assumes a vanishingly small volume for a given 
mass m. Also, while analyzing the rectilinear motion of a point-mass, the 
vector quantities can be easily treated as scalars, with a positive or a nega-
tive sign attached to them, to indicate the sense of direction. The advan-
tage of using vector algebra over the ordinary scalar algebra in this case 
disappears.
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Let us suppose a point-mass m is initially moving in a straight line with 
a constant velocity (or speed) Vi. Let us also assume that a constant net 
force, F, acts on the system over a distance S, to impart a final velocity Vf, 
as shown in Figure 2.5a. The work done, W, by the force, F, on the point-
mass, m, during displacement S, is given by the following equation:

 W = F × S (2.12)

Since the net force acting on the point-mass is constant, the resulting accel-
eration of the mass should also be constant. From our knowledge of kine-
matics of rectilinear motion with a constant acceleration, the following 
formula is applicable:
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where a = F/m, the constant acceleration of the point-mass m. Combining 
the last two equations yields
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Figure 2.5  (a) Rectilinear motion of point-mass m, acted upon by an accelerating 
force F; and (b) rectilinear motion of point-mass m, acted upon by a retard-
ing force F.
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Based on the principle of conservation of energies, the work done by a force 
on a system of mass m must cause an increase in the energy of the system. 
Thus, the right-hand side of the preceding equation should represent the 
increase in the energy of the system m.

Let us look at the physics of this problem from another perspective. 
Let there be a point-mass m, translating with a uniform velocity V; and 
let there be a net uniform opposing force F, which brings the mass m to 
a complete stop over a distance S (Figure 2.5b). Since the opposing force 
remains constant in magnitude, the work done in this case is given by the 
following:

 W = −F × S (2.15)

where the negative sign implies that the force and the displacement are in 
opposite directions. Again, since the opposing force remains constant, it 
must impart a constant acceleration (or retardation) to the mass. Thus, 
in this case the kinematic relationships for the rectilinear translation of a 
point-mass with constant acceleration must hold; in particular,
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because the final velocity Vf = 0 and the initial velocity is V. Now, combin-
ing Equation 2.16 with Equation 2.15 yields the following:

 
=W mV

2

2
 (2.17)

It is interesting to note that the right-hand side of the previous equation 
contains the variable that solely describes the kinetic condition of the mass 
m, prior to the application of the opposing force. In other words, the quan-
tity, mV2/2, is indeed an attribute of the moving material object, oblivious 
to the future encounter with the force. And, also, this quantity is exactly 
equal to the work done on the point-mass in bringing it to a complete 
rest. It is therefore understandable that this quantity is designated in the 
literature as the kinetic energy of the point-mass translating with velocity 
V. The adjective kinetic refers to the fact that this quantity, for a given 
mass m, depends only on its velocity; and energy refers to the fact that 
its dimension is the same as that of work; it also represents the capacity 
of the moving object to do work on the surrounding until it comes to a 
complete rest.

The development given hitherto—in particular the one leading to 
Equation 2.14—is an affirmation of the fact that the general work-energy 
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equation is true in the case of a rectilinear motion of point-mass subject to 
a constant net force. The work-energy equation is, however, more general 
in scope. It is valid for any curvilinear trajectory of the point-mass, acted 
upon by a variable (as opposed to a constant) force. It can be obtained by 
integrating Newton’s second law of motion along an actual trajectory of 
the point-mass. Instead, as stated previously, we intend to pursue more 
physical and geometrical intuition in the derivation of this equation. It is, 
therefore, desirable to obtain the general work-energy equation based on 
heuristic arguments, starting with Equation 2.14. To achieve this, we pro-
ceed as follows.

With regard to Equation 2.14, it is worth stressing that the actual mag-
nitude of either the constant force, F, or the distance S, does not appear, 
per se, in this equation, as long as the work, W, truly represents the work 
done by the impressed force on the point-mass. If the impressed force is 
variable, the work done by the variable force F(r) on the point-mass during 
its travel from point r1 to r2 can be obtained from the following integral 
(Figure 2.6):
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In the evaluation of work, it is understood that the integration in the pre-
ceding equation is carried out along the actual trajectory from position r1 
(point 1, in Figure 2.6) to position r2 (point 2, in Figure 2.6). This work on 
the point-mass must cause an increase in the kinetic energy of the point-
mass (Equation 2.14). Thus,
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where V1 and V2 are the speeds of the point-mass at points 1 and 2, 
respectively.

2.1.3.2 Potentials and the potential energy

The treatment by Housner and Hudson (1959) on this subject is straight-
forward and to the point. The discussion here follows, in parts, their 
development rather closely. It is evident from Equation 2.19 that while the 
right-hand side depends on the conditions at the two end points, point 1 
and point 2, only, the work integral depends on the actual trajectory or the 
path. At this juncture, we wish to ask the following question: Under what 
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conditions the work integral is independent of the actual path and depends 
only on the lower and upper limits of integration? The answer is deceptively 
simple: Whenever the infinitesimal work F·dr represents an exact differen-
tial of a differentiable function Φ = Φ(x, y, z), the line integral is indepen-
dent of the actual path and depends only on the lower and the upper limits 
of integration, because
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When the work integral is independent of the actual path, the force is said 
to be derivable from a scalar function Φ(x, y, z): for
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Figure 2.6 Definition sketch for work-energy equation.
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and the following equalities hold
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because the differentials dx, dy, and dz are arbitrary. The scalar function Φ 
is also called the potential function.

It is partly due to tradition and partly due to convenience that we define 
another potential function U that is negatively equal to Φ so that

 
∫ ∫ ∫= − Φ = − ⋅ = − −







Φ

Φ

rr

rr

dU d F dr mV mV
2 2

U

U
2
2

1
2

1

2

1

2

1

2

 (2.22)

The function U is called the potential energy associated with the force 
field, and it is meaningfully defined only when the work integral is indepen-
dent of the path. With the introduction of new potential U = −Φ, the force 
can be derived as follows:
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on any differentiable scalar function, such as U = U(x, y, z), and yields, as a 
result of this operation, the gradient of the scalar function. Thus, the force 
vector F(x, y, z) equals the negative gradient of the potential function U.

The role of tradition in introducing the function U lies in the fact that we 
like to see the force directed from a higher value to the lower value of the 
potential U (just as we like to perceive that the heat flows in the direction 
of decreasing temperature). The convenience of introducing U for −Φ lies 
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in the fact that the principle of conservation of mechanical energy can now 
be stated more succinctly:
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which asserts that the sum of potential and kinetic energies (and not the 
difference between Φ and the kinetic energy) remains constant, in a force 
field where the work integral is independent of the path. Such a force field 
is, therefore, said to be a conservative force field: because, the sum of the 
potential energy and the kinetic energy is preserved (or conserved). Thus, 
only in a conservative force field, the principle of conservation of mechani-
cal energy holds.

The principle of conservation of mechanical energy is more general 
than required for the study of groundwater. For this study, we want to 
know whether the gravitational force field near the surface of the earth 
represents a conservative force field or not! To ascertain the nature of the 
gravitational force field near the earth surface, the following illustration 
is relevant.

Let us assume that a point-mass m moves along a certain path from posi-
tion 1 to position 2 in a gravitational field near the surface of the earth, as 
shown in Figure 2.7. Throughout its motion, the point-mass is acted upon 
by a constant force due to its weight, that is, F = mg. During a small (infini-
tesimal) displacement dr, the work done by this force is
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� cos
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(2.24)

where β denotes the direction angle (see Figure 2.7). It follows from the last 
equality that

 
( )⋅ = −FF rrd d mg y   

which represents an exact differential. Thus, the work integral is indepen-
dent of the path and the gravitational force field near the earth surface con-
stitutes a conservative force field. In this case, it is, therefore, meaningful to 
define the differential of the potential energy as
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 = − ⋅ =FF ddrrdU mg dy   (2.25)

which, on integration, yields

 ( )= +U mg y C

The constant of integration, C, can be made to vanish by arbitrarily choos-
ing U = 0 at y = 0. Since the origin of the coordinate system is arbitrary, 
this demonstrates that the potential energy can be set equal to zero at any 
arbitrary (but convenient) level. Thus, the increase in the potential energy 
as the point-mass moves from point 1 to point 2 (Figure 2.7) is given by the 
following:

 − = −U U mg y y� ( )2 1 2 1  (2.26)
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Figure 2.7 Force field due to gravity near the surface of the earth.



34 Mechanics of groundwater in porous media 

Finally, a few concluding remarks are in order. The developments presented 
so far are based on the dynamics of a point-mass. The notion of a point-
mass may, however, be expanded to include a system of mass, m, with non-
negligible size, if the rotational velocities are negligible in comparison to 
the translational velocities.

2.1.3.3  Energy equation for steady motion of 
an incompressible ideal fluid

We extend the ideas presented so far to include the laminar motion of 
an incompressible ideal fluid (nonviscous) along a streamline. For this 
purpose, we like to perceive a steady flow taking place through an infinitely 
small diameter of a streamtube as shown in Figure 2.8. A streamtube is 
an imaginary tube inside the fluid whose lateral side (as opposed to cross 
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Figure 2.8 Definition sketch for Bernoulli’s equation.
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sections) is generated by streamlines. Thus, no flow can either enter or 
leave the streamtube, except through the cross-sectional areas.

In fluid mechanics, we use the term system with a special connotation: 
It refers to a portion of fluid bound by an enclosing surface such that the 
system always refers to the same matter, irrespective of the configuration of 
the enclosing surface. Now, let a system of mass m occupy a volume of the 
streamtube at any instant of time t, as shown by the solid lines in Figure 
2.8. Let the same system of mass m occupy another volume, shown by dot-
ted lines in the figure, at some subsequent time t + δt, where δt represents an 
infinitesimal increment of time t. Thus, in conformity with the principle of 
conservation of energy, the work done by the external forces on the system 
of mass m, during time interval δt, must equal the increase of the mechani-
cal energy of the system m during the same time interval δt. In other words, 
the work done by external forces, during the time interval δt,

 δW = δ(KE) + δ(U) (2.27)

where the first and the second terms on the right-hand side represent the 
increase in the kinetic and the potential energy of the system m, respectively.

To evaluate the work done by external forces, as time lapses from t to 
t + δt, we consider the pressure forces acting on the two cross sections, des-
ignated as 1-1 and 2-2 in Figure 2.8. Thus,

 δW = δW1 + δW2 (2.28)

where δW1 and δW2 represent the work done by pressure forces on the two 
cross sections 1-1 and 2-2, respectively, as these cross sections advance in the 
direction of flow during the time interval δt. Furthermore (see Figure 2.8),

 ( )δ = δ δW p A V t1 1 1 1  (2.29a)

 ( )δ = − δ δW p A V t2 2 2 2  (2.29b)

where
the subscripts, 1 and 2, refer to the lower and upper cross sections
the variables p, δA, and V refer to pressure, cross-sectional area, and 

the speed of flow, respectively

The negative sign in Equation 2.29b implies that the pressure force and 
displacement are opposite to each other on cross section 2-2. Since the fluid 
is incompressible and the motion is steady, it follows that

 ( )δ δ = δ δ = δAV t A V t Vol1 1 2 2  (2.30)
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where δ(Vol) represents the volume of fluid crossing any cross section dur-
ing time interval δt. Thus,

 ( ) ( )δ = − δW p p Vol1 2  (2.31)

Now, to find the change in the mechanical energy of the system of mass m 
as the time lapses from t to t + δt, we argue as follows: By definition, this 
change in mechanical energy equals the difference between the mechanical 
energy of the system of mass, m, at time t + δt and the mechanical energy of 
the same system of mass at time t. As time lapses, the (spatial) configuration 
of the system of mass m changes. The new configuration of the system of 
mass m is characterized by the fact that space A has been subtracted and 
space C has been added to the previous configuration of the same system 
of mass m (see Figure 2.8). In other words, the change in the mechanical 
energy of the system m is equal to the difference between the mechanical 
energies of mass occupying space C and that occupying space A, because 
the mass occupying the common space B does not contribute to the change 
due to the assumption of a steady motion. Thus,
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 ( ) ( ) ( )δ = ρ δ − ρ δU g y g yVol Vol2 1  (2.32b)

Now combining Equation 2.27 with Equations 2.31 and 2.32a,b and 
dividing throughout by the factor ρg δ(Vol) as δt → 0, the following equa-
tion is obtained:
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where γ denotes the specific weight of the fluid. Equation 2.33b represents 
one form of the Bernoulli equation, after the Swiss physicist and mathema-
tician Daniel Bernoulli (1700–1782), who published it in 1738 along with 
his famous work, Hydrodynamica.

Each term in the Bernoulli equation, as stated earlier, represents the 
energy per weight. In US customary units, these terms are expressed in 
foot (ft·lb/lb = ft), while in SI units, meter (m·N/N = m) is frequently used. 
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Since each term in Equation 2.33b has the dimension of length [L], the first 
three terms, starting from the left, are designated as the pressure head, 
the elevation head, and the velocity head, respectively. Their sum repre-
sents the total energy head. Thus, according to the Bernoulli equation, the 
total energy head remains the same along a streamline, as long as the fluid 
is ideal (nonviscous), incompressible, and the flow is steady. As a further 
consequence, along a horizontal streamline (y1 = y2), the velocity increases 
at a point where pressure decreases. Finally, when velocity heads are zero, 
the preceding equation degenerates to an unreal situation, where, in the 
absence of velocity, the existence of a streamline, or a streamtube, becomes 
imaginary. Despite this degeneration, the Bernoulli equation does conform 
to the pressure distribution in stagnant fluids, for it reduces to

 − = γ −p p y y(� )1 2 2 1  (2.34)

when velocity tends to zero.

2.2 PRELIMINARIES FROM SOIL MECHANICS

2.2.1 Porosity of soil or porous medium

The nominal volume (or the total volume) represented by a sample of soil 
or porous medium can be divided into two parts: one occupied by the solid 
skeleton (or the granular matrix) of soil, and the other by the void spaces 
in the soil. The sum of these two parts completely comprises the nominal 
volume of the sample. For such a soil sample, the porosity can be defined 
as the ratio of volume of void space to the nominal volume of the sample 
(Figure 2.9a). In mathematical notation,

 
=n V
V
v  (2.35)

where
n is the (volumetric) porosity, a dimensionless quantity [L3/L3]
Vv is the volume occupied by void spaces [L3]
V is the nominal (or total) volume of sample [L3]

Porosity is sometimes represented as a percentile ratio. Since soil structure 
is highly random on a microscopic scale, it is understood that the nominal 
volume is just large enough so that the ratio defined in Equation 2.35 rep-
resents a stable average value.

Similar to the notion of volumetric porosity, we have the notion of areal 
porosity. For this purpose, we assume that a typical cross section of the 
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soil sample consists of two parts: one representing the area occupied by 
the grains, and the other representing the area occupied by void spaces 
(Figure 2.9b). The sum of these areas comprises the nominal cross-sectional 
area of the soil sample. We can now define

 
=m A
A
v  (2.36)

where
m is the areal porosity, a dimensionless quantity [L2/L2]
Av is the area of void space [L2]
A is the nominal cross-sectional area of the soil [L2]

It can be shown that the average value of areal porosity is the same as the 
value of volumetric porosity; for
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Figure 2.9 Definition sketches: (a) volumetric porosity and (b) areal porosity.
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The first equality follows from the mathematical definition of an average 
value, m, and the last equality follows from the definition equation (2.35). 
Henceforth, we shall simply use the term porosity to indicate the areal or 
the volumetric porosity of the soil sample.

Although porosity is a good indication of the storage capacity of the soil 
or a porous medium to store groundwater in its pore spaces, this physical 
property loses much of its significance during the consolidation of soils. 
During consolidation, both the numerator and the denominator in defini-
tion equation (2.35) undergo changes. For such situations, another physical 
property, called void ratio, becomes more pertinent. It is defined in the 
following section.

2.2.2  Void ratio, water content, and 
degree of saturation

The void ratio is defined by the following equation:

 
=e V
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s
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where
e is the void ratio, a dimensionless quantity [L3/L3]
Vs is the volume of soil skeleton [L3]

In the preceding definition, it is understood that Vs is incompressible 
compared to Vv.

Another physical property especially for fine-grained soils is called the 
water content, w. It is defined as
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 (2.39)

where
Ww is the weight of water in a soil sample [ML/T2]
Ws is the weight of soil skeleton in a soil sample [ML/T2]

The weight of soil skeleton, Ws, also represents the oven-dry weight of the 
soil sample at a standardized temperature range of 105°C–115°C. Similar 
to void ratio, in the definition of water content, the weight of water is 
referred to the unchanging weight of soil solids. Sometimes, especially in 
the literature on hydrogeology, volumetric ratio is used to express moisture 
content. The volumetric water content θ is defined as the ratio of contained 
volume of water Vw to the nominal volume of the sample V, that is, θ = Vw/V.
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The void spaces in a soil, especially above water table, may not be fully 
saturated. In other words, a part of the void space may be filled with air. 
For such situations, the degree of saturation is defined as

 
( ) =S V

V
% �100 w

v
 (2.40)

where
S is the degree of saturation in percent
Vw is the volume of water in the soil sample [L3]

2.2.3  Total pressure, porewater pressure, 
and effective pressure

The unit weight (or specific weight) of a substance represents the ratio of 
the weight to the confining volume of the substance. In the case of natural 
soils, the weight of the sample varies depending on its water content. It is 
therefore meaningful to define at least two kinds of unit weights: the dry 
unit weight, γd, for oven-dry soils and the saturated unit weight, γsat, for the 
saturated soils.

Now, let us consider a submerged sample of soil held in a container as 
shown in Figure 2.10. We shall assume that the submerged soil sample as 
well as the inundating water is in a state of static equilibrium. We shall 
also assume the submerged soil behaves like a fluid; in particular, we shall 
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Figure 2.10 Definition sketch for total, porewater, and effective pressure.
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assume no shear stress between the soil and the interior surface of the con-
tainer. Under such stipulations, the total pressure, pt, at a point on the bot-
tom of the container is given as

 = γ + γp h z t sat  (2.41)

In the preceding equation, γ denotes the unit weight of water and the depths 
h and z are shown in the figure. The hydrostatic pressure inside a pore 
(porewater) in contact with the bottom is given by

 p = γ(h + z) (2.42)

as long as the pore space is communicating with a point on the free surface 
of water. The effective pressure is defined as the difference between the 
total and the hydrostatic pressure. Thus, the effective pressure is given as

 ( )≡ − = γ − γp p p ze t sat  (2.43)

In the preceding equation, (γsat − γ) represents the so-called submerged unit 
weight of the soil. It is interesting to note that the effective pressure does 
not depend on the depth of submergence, h. In soil mechanics, the porewa-
ter pressure is also called the neutral stress and it does not affect directly 
either the shear resistance or the compressibility of soils. It is the effective 
pressure (or, more precisely, the effective stress) that plays a paramount 
role in the strength and deformation mechanics of soils. This assertion is 
commonly known as the principle of effective stress in the literature on 
soil mechanics and geotechnical engineering (Terzaghi, 1943; Lambe and 
Whitman, 1969).

2.3 CONTINUUM CONCEPT OF A POROUS MEDIUM

The idea of a continuum is as old as the analytical thinking: Is the essence 
of physical universe discrete or continuous? Both notions have been equally 
present in our abstract thoughts: sometimes complementing and sometimes 
contradicting each other! If the history of scientific thoughts is any indi-
cation, it appears that our analytical effort has been more on the part of 
continuous—as manifestly borne out by the enormous development of infin-
itesimal calculus and its predominant role in the scientific and engineering 
curricula. Part of this predominance is due to the remarkable success of 
analytical methods based on infinitesimal calculus in formulating and find-
ing acceptable answers to a vast array of complex engineering problems. 
Nevertheless, all mathematical entities are a figment of imagination. Their 
usefulness or lack of it in solving a particular physical problem can only be 
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determined by empiricism. Rationalism alone cannot pass judgment on its 
own effectiveness.

In the past, be it the analysis of solids, fluids, or gases (with the possible 
exception of rarified gases), we have used the notion of continuum quite 
effectively, despite the fact that all matter is discrete on a sufficiently small 
(microscopic) scale. Can we use the same notion of a continuum, coupled 
with the mathematical formulation based on partial differential equations 
utilizing the limiting process of infinitesimal calculus, in the analysis of 
flow through a porous medium, where the discrete nature of the granular 
material is visible even to unaided eyes? The short answer is yes: provided, 
the smallest dimension of the flow region of practical interest is sufficiently 
large (by many orders of magnitude) in comparison with the largest inter-
granular distance between particles of the porous medium. From a purist’s 
perspective, the issue is the same whether we analyze a fluid continuum or 
flow through a porous medium. It is the relative size of the region of practi-
cal interest, in comparison to the intergranular distance, that matters.

In the foregoing, we have left intentionally the issue in its bare essen-
tials. A more involved discussion only further complicates it. If we agree to 
use the mathematical formulation based on partial differential equations, 
involving limiting processes of infinitesimal calculus, the issue of finding or 
extrapolating the values of the field variables (e.g., pressure, porosity, den-
sity, coefficient of permeability) down to the limit of a mathematical point 
deserves a more careful attention. This aspect of the problem is further 
discussed in the subsequent sections.

2.3.1 Notion of porosity in a porous medium

As a point of departure, we shall start a more careful discussion on the con-
cept of porosity in this section. For this purpose, we refer to the illustration 
in Figure 2.11a, which represents a sequence of concentric spheres centered 
at a point P with diminishing radii:

 > > > > → →∞r r r r r n� where 0asn n1 2 3  (2.44)

We can also conceive a corresponding sequence of porosity whose general 
term is computed as

 


( )
( )= = ∞n
V
V

n; � 1,�2,�3, ,n
v n

n

 (2.45)

where
nn represents the porosity based on a spherical nominal volume, 

= πV r( ) 4/3� �n n
3, of the soil sample centered at P with a radius rn

(Vv)n represents the total void space contained in this sample
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In Figure 2.11b, the value of porosity versus the volume of spherical soil 
sample, (V)n, is schematically plotted. It can be perceived that the porosity 
values will indicate rapid fluctuations as the radius of sample falls below a 
value r0, representing a certain order of magnitude of intergranular dimen-
sion. It is also perceivable that the porosity value will eventually converge 
either to 0 or 1, depending upon the location of point P, whether it is occu-
pied by the grain or the pore space. As the nominal size of the sample 
increases beyond r0, or = πV r( ) 4/3� �0� 0

3, the porosity values will stabilize 
because of the presence of a large (statistically speaking) number of grains. 
If the sample size is further increased, the effect of macroscopic heteroge-
neity of the porous medium may creep in.

The foregoing discussion about the behavior of porosity is schemati-
cally shown in Figure 2.11b. If the medium is locally homogeneous on 
macroscopic scale, the porosity values nn will remain almost constant as 
the sample radii rn increase in the neighborhood of r0. In other words, 

Sample volume, (V )n

(V )00.0

n(P) =n0

1.0

n0Po
ro

sit
y

Macroscopic heterogeneity

(b)

Spherical nominal volume, (V )1

Mathematical point P

(a)

P

rn

r1

r2

r3

Figure 2.11  (a) A sequence of concentric spheres, and (b) a schematic plot of porosity 
versus spherical sample size.
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porosity nn = n0 does not depend on the value of rn, as long as r0 <  rn < ru. If 
we disregard the microscopic fluctuations, the constant value of porosity, 
n0, may be regarded as the extrapolated value of porosity as the sample size 
rn tends to zero without leaving the point P. Thus, this provides a rational 
procedure for defining porosity at a mathematical point P of the porous 
continuum.

For further discussion on the effectiveness of continuum approach in 
mechanics, the reader is referred to the literature by Prandtl and Tietjens 
(1934), Hubbert (1957), Hodge (1970), and Bear (1972). In connection with 
the flow in porous media, Bear has introduced the notion of representative 
elementary volume (REV).

2.3.2 Notion of rectilinear flow in a porous medium

The movement of groundwater through a porous medium is generally 
sluggish and complex. The actual path taken by a fluid particle (parcel) 
through the interstices of the porous medium on a microscopic level is 
rather irregular and tortuous in nature, as shown in Figure 2.12a. In such 
a medium, the concept of a rectilinear motion ceases to exist, and it can 
only be defined in an idealistic way. For this purpose, in the theoretical 
analysis of groundwater flow, we shall replace the actual porous medium 
by a fictitious homogeneous medium, in which every field variable associ-
ated with the porous medium is defined at each point (x, y, z), irrespective 
of the fact of whether the point is actually occupied by a solid grain or 
a void space. We shall also regard the groundwater as an ideal contin-
uum, which permeates throughout the fictitious porous medium, and the 

(a) (b)

Figure 2.12  (a) Tortuous flow through porous medium, and (b) equivalent rectilinear 
flow through porous medium.
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relevant flow variables of this ideal continuum are defined at each math-
ematical point for all times. Under such idealized conditions, we shall 
designate the groundwater flow as a rectilinear flow field if the theoretical 
(as opposed to actual) velocity field remains constant (Figure 2.12b). The 
usefulness of such analyses, off course, rests on the anticipation that the 
theoretical flow should represent, on a macroscopic scale, an average flow 
field. In this regard, the analyst plays a paramount role in interpreting the 
theoretical results.

2.3.3 Specific discharge and seepage velocity

The discharge of a liquid through an orifice is defined as the volume of liq-
uid crossing the orifice in a unit time. If the flow is uniform and the velocity 
vector V is normal to the area A of the orifice, as shown in Figure 2.13a, 
then discharge Q is given by the following equation:

 Q = AV (2.46a)

On the other hand, if the flow is uniform but the velocity vector acts at an 
oblique angle to area as shown in Figure 2.13b, the discharge is given by 
the following equation:

 = θQ AV cos  (2.46b)

where θ represents the angle between velocity vector V and unit vector 
en, acting normal to the orifice area (see Figure 2.13b). It is evident from 

A
A

V
V cos θen

A

VV

(a) (b)

θ

Figure 2.13  Definition sketch for discharge of liquid through an orifice: (a) velocity vec-
tor normal to the orifice area, and (b) velocity vector at an oblique angle to 
the orifice area.
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Equation 2.46b that the normal component of velocity vector is instru-
mental in transporting the fluid across the orifice. The tangential compo-
nent of velocity, however large, is inconsequential in contributing to the 
discharge.

The preceding relationships are purely geometric in nature. However, an 
important fact in developing the preceding equations is the perception that 
the entire area of the orifice is available for flow. This may not be true in 
the case of flow through a porous medium. It is therefore necessary to exer-
cise care in the definition of velocity in a porous medium. To illustrate this 
point, Figure 2.14 has been prepared. A just facile mathematical manipula-
tion of Equation 2.46a yields

 
=V Q
A

 (2.47)

With regard to groundwater flow, the velocity obtained by the preceding 
equation is meaningless unless we define the physical nature of Q and A. If 
Q represents the actual discharge across the nominal area A, then there are 
two different velocities:

 
≡ =q V Q

A
 (2.48a)

Specific discharge, q=Q/A

Void area, Av
(filled with water)

Average seepage
velocity, v=Q/Av

Solid grain

Nominal
area A

Figure 2.14  Illustration of relationship between specific discharge and average seepage 
velocity.
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and

 
=v Q
Av

 (2.48b)

where
A represents the nominal (total) cross-sectional area
Av is the total void area contained in A (Figure 2.14)

In the literature on groundwater, vector q is called the Darcy velocity and 
its magnitude q the specific discharge. Velocity v represents the average 
seepage velocity. If Q represents the actual discharge across the cross-
sectional area A, then

 = =Q q A v A    v  (2.49)

or,

 
= =q v A

A
v n   v  (2.50)

Since porosity n is always less than one, it follows from the preceding equa-
tion that the specific discharge q is always less than the average seepage 
velocity v.

2.4  STAGNANT GROUNDWATER AND ZERO-
GRADIENT OF PIEZOMETRIC HEAD

A sample of soil is shown completely submerged in Figure 2.15. We shall 
assume that the entire pore space is filled with water, which is in a state of 
hydrostatic equilibrium. The phrase hydrostatic equilibrium implies that 
the water body occupying the pore space of the granular medium is stag-
nant, contiguous, and communicates with the free water surface. If we 
insert a piezometric tube at a point P, the rise of water in the piezometer 
will be equivalent to the pore pressure at the point of insertion (Figure 
2.15). In other words, if h denotes the rise of water in the piezometer, p 
the porewater pressure, and γ the specific weight of water, then h = p/γ. If 
z denotes the elevation of the point P, with respect to an arbitrary datum, 
the sum z + h = z + p/γ is called the piezometric head or piezometric level 
at point P, and it is denoted by ϕ. In the case of a stagnant body of pore-
water, the piezometric head ϕ at all points represents the same constant 
elevation of the free water surface (see Figure 2.15). The last assertion is 
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independent of the nature of the submerged porous medium with respect 
to its homogeneity and isotropy. Thus, we come to the conclusion that in 
the case of stagnant groundwater the gradient of the piezometric head 
must vanish.

It is not difficult to imagine that a nonzero Darcy velocity vector q at any 
point corresponds with a nonzero gradient vector, ∇ϕ, at the same point in 
the groundwater flow field. Since q = 0 corresponds with ∇ϕ = 0, it is obvi-
ous that, for a sufficiently small magnitude of q, the relationship between 
vector q and the gradient vector ∇ϕ must be proportional (this follows 
from the fact that all functional relationships in a sufficiently small neigh-
borhood are linear, provided the functions are—casually speaking—not 
pathological). In the present case, this proportional relationship is, how-
ever, between two vector quantities (as opposed to scalar quantities). Thus, 
the constant of proportionality could, in general, be a constant matrix 
of proportionality. If, however, the porous medium is isotropic, then the 
vectors q and ∇ϕ are related by a scalar constant of proportionality. In 
other words,

 q = k∇ϕ (2.51)

where k is the scalar constant of proportionality. It is apparent from 
Equation 2.51 that the specific discharge vector q and the gradient vector 
∇ϕ are parallel in an isotropic medium. Since gradient vector ∇ϕ is always 
normal to constant-ϕ surface, it is obvious that the specific discharge vector 
q is also normal to constant-ϕ surface in an isotropic medium.

The last assertion is further exemplified by the illustration shown in 
Figure 2.16, which represents a uniform velocity field through an isotropic 
porous medium contained in a circular tube. Since the velocity vector q is 
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Figure 2.15 Hydrostatic water and gradient of piezometric head.
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parallel to the axis of the tube, any orthogonal cross section of the tube 
represents a constant-ϕ surface, where the sum ϕ = h + z remains constant. 
The middle section with three piezometers installed at the circumference, 
as shown in Figure 2.16, represents a typical constant-ϕ surface. Since 
this section represents a surface where ϕ is constant, the three piezometric 
heads represent one and the same elevation as illustrated in the figure. In 
fact, at any point in this section (including the center of the circular cross 
section), the piezometric head is the same as indicated by any of the three 
piezometers installed at the circumference. This last observation has some 
further practical ramification. For instance, to measure the piezometric 
head at any interior point of the flow, one needs to install a piezometer at 
any convenient point on the circumference of the orthogonal section, with-
out disturbing the flow in the interior.

Finally, as a concluding remark, let us emphasize the fact that the preced-
ing argument does not depend on the inclination of the tube. It is only for 
convenience of illustration that the axis is shown horizontal in the figure. 

Arbitrary datum

Constant piezometric level

h=p/γ
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Axial flow

Figure 2.16 An orthogonal section of the axial flow represents a constant ∅-surface.
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Otherwise, the axis of the tube may incline downward, upward, or be hori-
zontal, so long as the piezometric head is measured vertically from the 
arbitrarily chosen datum to the top surface of water in the piezometer.

2.5 PIEZOMETRIC HEAD IN THE FIELD

Figure 2.17 illustrates schematically the meaning of a piezometric head at 
any point P in the groundwater flow field. The piezometer shown in the 
sketch is also referred to as the observation well, monitoring well, or simply 
as the standpipe. It is understood that acceleration due to gravity acts verti-
cally downward in this illustration.

For the ease of illustration, the aquifer is shown as the confined aquifer 
and the groundwater flow as the horizontal flow field. However, none 
of these facts are germane. The main purpose of this illustration is to 
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Figure 2.17 Definition sketch for piezometric head in the field.
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highlight geometrically the significance of various terms such as piezo-
metric head (ϕ), elevation head (z), and the pressure head (p/γ). All these 
quantities are scalars, with values positive, negative, or zero. The posi-
tive quantities are shown upward. With the exception of pressure head, 
these quantities are measured with respect to an arbitrary datum, which 
is generally taken as a geodetic bench mark, the horizontal impervious 
bedrock, or any convenient level. The pressure head (p/γ) is, however, 
measured with respect to a horizontal plane passing through the point P. 
A zero pressure head corresponds with the atmospheric pressure. Thus, 
a negative value of pressure head implies a suction pressure, which is not 
relevant in the case of groundwater movement. It is illustrated for com-
pleteness, and is meaningful only in the case of vadose water, where pore 
pressure is subatmospheric.

2.6 ILLUSTRATIVE PROBLEMS

2.1 The following figure illustrates two configurations of piezometers 
tapped to a pipe carrying water at a pressure of 10.0 kPa (kilo-Pascal) 
at the center, C, of the cross section. Knowing the pressure at the center 
is the same as the pressure at point P, find the rise of water column in 
the two piezometers shown in (a) and (b).

C CP P

(a) (b)

Q

h = ?
h = ?

Solution: It is given that pC = pP = 10 kPa = 10 kN/m2.
The height of water column in piezometers (a) and (b) with respect to 

point P is the same, because the pressure at Q is the same as the pres-
sure at P. The height is given by the following formula:

=
γ

= =h p 10 kN/m
9.810 kN/m

1.019 mC
2

3
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where γ represents the unit weight of water and is found from the fol-
lowing formula:

( )( )γ = Density of water acceleration due to gravity

Thus,

( )( )γ = =1000 kg/m 9.81m/s 9.810 kN/m3 2 3

where
≡ ⋅N 1.0 kg m/s .2

2.2 Two arrangements of automatic gate opening are illustrated in the fol-
lowing figure. It is required that the circular plate (gate) should open 
when the water height reaches 2 m above the plate. Find the coun-
terweight in both cases so that the gate opening requirement is met. 
Ignore the weight of the circular plate in comparison to the hydrostatic 
pressure force. Assume the string-pulley system is frictionless.

W

p

0.5 m
W

0.5 m

Area = π/4 = 0.785 m2 1 m1 m

1.
5 

m

p

2 
m

Solution: The pressure p acting on the circular plate is given by the 
following equation:
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 ( )( )= γ = =p h 9.810kN/m 2.0m 19.62� kN/m3 2  (IP2.2.1)

The force due to pressure on the circular plate is given by the following 
equation:

 Force, F = Pressure × Area  
 = 19.62 kN/m2 × 0.785 m2 = 15.40 kN (IP2.2.2)

This force should equal the counterweight, that is,

 W = F = 15.40 kN (IP2.2.3)

The magnitude of the counterweight is the same in both cases, because 
force due to pressure on the circular plate is the same. This force 
depends only on the magnitude of pressure and the magnitude of area 
on which the pressure is acting. It (the pressure force) has little to do 
with the weight of water supported by the circular plate. In fact, the 
weight of water supported by the circular plate in part (b) of the figure 
is only 11.09 kN, which is much less than 15.40 kN—the force due to 
pressure.

2.3 The dry density of soil sample with porosity 0.4 is found to be 1650 
kg/m3. Find the void ratio and the specific gravity of the sample.

Solution: The void ratio is defined as

 
= = =

−
e V

V
V

V V
Void ratio,  Volume of voids

Volume of soil skeleton
v

s

v

v
 (IP.2.3.1)

or
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−
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−
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v
 (IP.2.3.2)

where n is the porosity. Substituting the value of n, we obtain the 
following:

 
=

−
=e 0.4

1.0 0.4
0.6667  (IP.2.3.3)

Referring to the following figure, the dry density is given by the follow-
ing expression:

 ( )ρ = =
+

M
V

M
V e1d

solid solid

s
 (IP.2.3.4)



54 Mechanics of groundwater in porous media 

VolumeMass

Mvoid = 0 Void Vν

V  = Vs  + VvVsSolid

Segregated phases

Msolid

Thus, the mass of solid, Msolid, is given by the following expression:

 ( )= + ρM V e1 �solid s d  (IP.2.3.5)

Likewise, the mass of water occupying the space Vs is given by the 
following:

 = ρM Vwater s w  (IP.2.3.6)

Thus, by definition, the specific gravity of the solid grains is given by 
the ratio of the two masses, as follows:

 
( )= + ρ

ρ
G e1s

d

w
 (IP.2.3.7)

where Gs stands for the specific gravity of the solid grains. Substituting 
the values in the preceding equation yields

 
( )= + =G 1 0.6667 1650 kg/m

1000 kg/m
2.75s

3

3
 (IP2.3.8)

In the preceding equation, 1000 kg/m3 represents the density of water 
in SI system.

2.7 EXERCISES

2.1 Find the pressure in kN/m2 at a point 10 m below the surface of an 
ocean. Ignore the compressibility of water and the atmospheric pres-
sure at the surface of the ocean. Density of saltwater may be taken as 
1.025 g/cm3.

2.2 Repeat Exercise 2.1 for a freshwater lake. The density of freshwater 
may be taken as 1.000 g/cm3.
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2.3 An open tank contains 6.0 m of water overlain with 3.0 m of oil. Find 
the pressure at the bottom as well as at the interface between the two 
liquids. Assume the specific gravity of oil as 0.8.

2.4 The following figure illustrates two different sets of situations. In 
part figure (a), the liquid flowing through the pipe is freshwater and 
it is the same liquid used in the piezometer to measure the pres-
sure. Likewise, the liquid, both in the pipe and the piezometer in 
part figure (b), represents saltwater. If the density of saltwater is 
1.025 g/cm3 and the pressures in both pipes are same, prove the fol-
lowing equation:

 

−
=

h h
h

1
40
.f s

s

Same pressure
(b) Saltwater

hs

hf

(a) Freshwater

2.5 An open container contains saturated soil, with specific weight 
18 kN/m3, to a depth of 2 m (see the following figure). Find the effec-
tive pressure pe at the bottom of the container. Assume the saturated 
soil behaves like liquids and is in a state of hydrostatic equilibrium.

2 m
Saturated soil
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2.6 Repeat Exercise 2.5 if the saturated soil is overlain by water of depth 
2 m, as shown in the following figure.

 

Saturated soil

Water
2 m

2 m

2.7 Determine the height of water rise in the manometer shown in the 
following figure, if the depth of water in the flume is 1.0 m. (Hint: 
Although the water is not stagnant [flowing with velocity 1.0 m/s in 
the longitudinal direction], the hydrostatic pressure variation may be 
assumed along orthogonal section, nn, of flow).

Manometer

1.0 m

V = 1.0 m/s n

n

?

30°

2.8 A longitudinal section of a flume with an automatic plate opening is 
shown in the following figure. Neglecting the weight of the plate and 
assuming massless frictionless string-pulley system, determine the 
magnitude, W, of the counterweight so that the plate opens when the 
depth of flow reaches 3.0 m. (Hint: See Exercise 2.7.)
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W (counterweight)

0.5 m

3.0 m

0.5 m

30°
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Chapter 3

Field equations of flow 
through a porous medium

In this chapter, we intend to lay down the mathematical foundations for the 
analysis of groundwater movement through a porous medium. For conve-
nience, we shall assume that the fluid and the porous medium are incom-
pressible, and the flow is in a state of steady equilibrium.

3.1 DARCY’S LAW

Henry Darcy, a French hydraulic engineer, conducted a series of experimental 
studies to investigate the quantitative behavior of flow of water through homo-
geneous filters of sands. A schematic of his experimental apparatus is shown 
in Figure 3.1a. Using this apparatus, he investigated the relationship between 
discharge, cross-sectional area of flow, difference between the manometer 
heights, and the length of seepage of flow. In his experimental setup, water 
moved vertically down through the sand column, and mercury was used as 
the manometer fluid. However, in reporting the experimental observation, the 
mercury manometer heights were converted into equivalent water heights. An 
excellent account of Darcy’s experimental study is given by Hubbert (1957). 
The illustrations in Figure 3.1 are adapted from this reference.

It is, however, more instructive to modify Darcy’s apparatus to permit the 
possibility of investigating the flow through an inclined isotropic, homoge-
neous column of sand as shown in Figure 3.2. This modification is par-
ticularly significant in clearly defining each variable and emphasizing the 
importance of pressure, or lack of it, in determining the direction of flow.

An isotropic, homogeneous sample of sand is packed inside the cylindri-
cal tube of cross-sectional area A and is retained by two porous plugs (of 
negligible resistance), as shown in Figure 3.2. The two ends of the tube are 
connected to two constant-head reservoirs. The elevation of water in the 
reservoir can be adjusted to vary the head difference across the sand col-
umn. Two piezometric tubes, δx distance apart, are connected to the cylin-
der to observe the piezometric head difference between Point 1 and Point 2. 
The water flows through the sand column from the upper reservoir to the 
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lower for a sufficient duration of time to ensure a saturated, steady-state 
condition. For such a steady-state condition, and a fixed—but arbitrary—
angle of inclination, α, of the tube, the following three empirical observa-
tions can be made:

 1. If the length δx and the cross-sectional area of flow A are kept con-
stant, the discharge Q varies in proportion to the piezometric head 
difference, (ϕ1 − ϕ2).

 2. If the cross-sectional area A and the head difference (ϕ1 − ϕ2) are kept 
constant, the discharge Q varies in an inverse proportion to seepage 
length δx.

 3. If the piezometric head difference (ϕ1 − ϕ2) and the seepage length δx 
are kept constant, the discharge Q varies in proportion to the cross-
sectional area A.

15

Q

(a) (b)
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φ2
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Figure 3.1  (a) Schematic of Darcy’s apparatus and (b) proportional relationship 
between discharge Q and head difference, ϕ1 − ϕ2. (Adapted from Hubbert, 
M.K. Darcy’s Law and the field equations of the flow of underground fluids, 
Bulletin de l’Association Internationale d’Hydrologie Scientifique, n° 5, 1957.)
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The aforementioned proportionality relationships can be replaced by the 
following equality relationship:

 

( ) ( )
=

φ − φ
δ

= −
φ − φ
δ

= − δφ
δ

Q KA
x

KA
x

KA
x

�1 2 2 1  (3.1)

where K is a constant of proportionality. The preceding relationship can 
also be written as

 
≡ = − δφ

δ
q Q

A
K

x
   (3.2)

where q is the specific discharge, which represents the discharge per area 
and has the dimension of velocity [L/T] (see Section 2.3). It may be empha-
sized that the cross-sectional area A is at right angle to the main flow 
direction. If we let δx→0, Equation 3.2 reduces to the following ordinary 
differential equation:

 
= − φ = − φ =q K d

dx
K d

dx
Ki  (3.3)

where i ≡ −dϕ/dx, which is commonly called the hydraulic gradient, and 
it represents a negative slope of the piezometric level when the axis of the 
tube is horizontal, that is, α = 90° (Figure 3.2). Since the hydraulic gradient 
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Figure 3.2 Definition sketch for Darcy’s law.
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is dimensionless [L/L], it is evident from Equation 3.3 that K has the same 
dimension as that of velocity [L/T]. Furthermore, in a flow under unit 
hydraulic gradient, q is numerically equal to K. In other words, a larger 
value of K means a larger specific discharge q, under a unit hydraulic gradi-
ent. Thus, this constant of proportionality can be assigned a physical sig-
nificance: It quantifies the ease with which the porous medium permits the 
fluid to flow. It is therefore called the coefficient of permeability. Among 
hydrogeologists, the term hydraulic conductivity is more popular. It is easy 
to speculate that for a given fluid at a given temperature, the value of K 
should depend on the physical nature of porous medium only. Otherwise, 
K should depend on the nature of both the fluid and the porous medium.

To dispel any preconceived notions, some of the salient features of Figure 
3.2 are emphasized here:

 1. The piezometric head is plotted vertically, only for those points that 
lie on the center line of the tube. The locus of this plot represents the 
piezometric level in Figure 3.2.

 2. The fluid in the region from the upper reservoir to the upstream end 
of the porous sample is assumed to be in a quasi-static condition. In 
this region, the piezometric level is shown constant in the figure. The 
same is also implied for the fluid in the region downstream from the 
lower end of the sample. This assumption is not necessary and is used 
only to simplify the illustration. What is important is the fact that 
ϕ1 and ϕ2 do indeed represent the piezometric levels at Point 1 and 
Point 2, respectively.

 3. Furthermore, the piezometric level does drop linearly along the sam-
ple, because of the homogeneity of the porous medium. This linear 
drop has little to do with the smallness or largeness of the sample 
length δx.

Referring to the empirical development leading to Equation 3.3, it is worth 
emphasizing the fact that the derivation of this equation does not depend 
on the inclination angle α of the cylindrical tube. In fact, the conclusion 
is true for any value of α. With α = 0, the experimental setup in Figure 3.2 
essentially conforms to the apparatus used by M. Henry Darcy, as reported 
in 1856 (Hubbert, 1957). Equation 3.3 represents a proportional relation-
ship between the specific discharge q and the hydraulic gradient −dϕ/dx. 
Figure 3.1 also indicates the proportionality between discharge and the 
drop of piezometric head across the homogeneous sand column, as experi-
mentally observed by Darcy. Thus, Equation 3.3 is appropriately known 
as Darcy’s law in his honor. It is analogous to Ohm’s law of electric resis-
tance, Fourier’s law of heat conduction, or Fick’s law of diffusion. Darcy’s 
law has provided the greatest stimulus to the analytical development of 
flow through the porous media; and, it has indeed placed the subject of 
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groundwater flow, at par, with those fields that are governed by the Laplace 
equation in physics.

Finally, to observe the role of pressure in determining the direction of 
flow, the following facts may be noted from the figure: (1) when the axis of 
the tube is parallel to the piezometric level, the pressure head p1/γ is equal 
to p2/γ, that is, the flow through the porous medium takes place despite the 
absence of pressure gradient; (2) when the axis of the tube is inclined at a 
steeper inclination than the piezometric level, the flow through the porous 
medium takes place in an adverse direction of pressure, that is, p1/γ < p2/γ; 
and (3) when the axis of tube is at a flatter slope than the dip of the piezo-
metric level, the flow takes place in the direction of decreasing pressure. 
Thus, in groundwater flow, the direction of pressure gradient, in itself, has 
little to do with the direction of specific discharge q. It is the negative gradi-
ent of the piezometric head (same as the total energy head, if the velocity 
head is negligible) that determines the direction of specific discharge q in a 
porous medium.

3.1.1 Generalization of Darcy’s law

We extend Darcy’s law to cover three-dimensional flows through porous 
media. For simplicity of thought, we would assume the porous medium to 
be homogenous and isotropic. If the medium is isotropic, the coefficient of 
permeability, K, does not depend on the direction of flow. Thus, as a gen-
eralization of Darcy’s law (Equation 3.3) for three-dimensional flows in an 
isotropic porous medium, the following form may be proposed:

 
= − ∂φ

∂
q K

xx  (3.4a)

 
= − ∂φ

∂
q K

yy  (3.4b)

 
= − ∂φ

∂
q K

z
   z  (3.4c)

where qx, qy, qz represent the rectangular components of the specific dis-
charge vector, q, in an arbitrary, three-dimensional, right-handed Cartesian 
coordinate system. The preceding three scalar equations can also be repre-
sented by a single vector equation:

 qq φφ= −K  (3.5)

By tradition, the coefficient of permeability K, like many other coeffi-
cients in physics, is represented by a positive scalar quantity. If K is a 



64 Mechanics of groundwater in porous media 

positive scalar, then the last equation indicates that the two vectors q 
and −∇ϕ are parallel and have the same sense of direction in an isotropic 
medium.

Furthermore, if the generalization of Darcy’s law, as proposed in 
Equations 3.4, is true, it must reduce to Equation 3.3 for one-dimensional 
uniform flow. To be concrete, let the specific discharge vector q point 
downward; and, since the orientation of the coordinate system is arbitrary, 
let the x-axis also point downward as shown in Figure 3.3. With this choice 
of axes, qy ≡ qz ≡ 0. Since the vectors q and −∇ϕ are parallel in an isotropic 
medium, it follows that any horizontal surface (normal to q) must represent 
a constant ϕ-surface. Thus, the partial derivatives of ϕ with respect to y 
and z must be zero at all points, that is,

 

∂φ
∂

= ∂φ
∂

≡
y z

0

Consequently, the set of three equations (3.4) reduces to a single equation 
and two identities as follows:

 
= = − φ =q q K d

dx
Ki x

z-axis
y-axis

Axis

x-axis

Δ–   φ

q

0

φ = constant surface

φ = constant surface
∂φ ∂φ
∂y ∂z

Figure 3.3  Definition sketch for one-dimensional flow parallel to the axis of sand column 
in Darcy’s apparatus.
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( ) ( )≡ − ∂φ

∂
≡q K

y
0� by choice ; 0� by necessityy

 
( ) ( )≡ − ∂φ

∂
≡q K

z
0� by choice ; 0 by necessityz

The components qy and qz are identically equal to zero because of the 
choice of coordinate system with respect to the direction of specific dis-
charge vector q. However, the partial derivatives of ϕ with respect to y and 
z are identically equal to zero as a necessary consequence of the isotropy 
of the medium. Thus, the preceding statements are identical to the original 
statement of Darcy’s law as embodied in Equation 3.3. Hence, for a three-
dimensional isotropic medium, the generalization of Darcy’s law, as given 
in Equation 3.4, appears acceptable.

Finally, since the generalized Darcy’s law involves three equations but 
four unknowns, qx, qy, qz, ϕ, we need another equation to close the math-
ematical formulation. This fourth equation is provided by the conservation 
of mass (or continuity) of fluid flow. This last equation is the subject matter 
of Section 3.2.

Before we conclude this section, it is worthwhile to look back on Equation 
3.5, which can be rearranged in the following manner:

 

qq = − φ
K

   (3.6)

The left-hand side of the preceding equation represents the dimensionless 
velocity vector (because scalar K equals velocity under a unit hydraulic gra-
dient) and the right-hand side represents the negative gradient of a scalar 
function ϕ(x, y, z). It is traditional in applied mathematics and mechanics to 
call such a scalar function as the potential function. Thus, in an isotropic 
medium (not necessarily homogeneous), the piezometric head does represent 
a potential function. This potential function ϕ(x, y, z) can therefore be called 
the dimensionless specific discharge potential. However, for an isotropic 
medium that is also homogeneous in nature, Equation 3.5 can be written as

 q = −∇(Kϕ) (3.7)

This, incidentally, shows that the velocity vector q can also be obtained 
from a scalar, potential function Φ ≡ (Kϕ). Thus, for a specific discharge 
vector q(x, y, z) in a three-dimensional medium, which is isotropic as well 
as homogeneous, there exists a potential function, Kϕ(x, y, z), which may 
incidentally be called the specific discharge potential. For further discus-
sion on potential functions, please see Section 2.1.3.2.
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3.1.2  Laboratory determination of 
coefficient of permeability

Since there is no reliable information in general on the values of coeffi-
cient of permeability, it becomes necessary to determine this coefficient 
experimentally, either in the laboratory, or in the field. The field determina-
tion of aquifer characteristics—as this is commonly called—is discussed in 
Chapter 7. The laboratory determination is discussed here and is essentially 
performed using two types of permeameters: the one is called the constant 
head permeameter, and the other the variable head permeameter. These 
two types are shown in Figures 3.4 and 3.5.

Constant head permeameter (Figure 3.4): This apparatus is used for soil 
of high permeability, where the discharge through the soil sample can be 
experimentally observed in a reasonable duration with a reasonable accu-
racy. This method gives reliable results for clean sands and gravels. For the 
computation of K, the following equation is used (which is simply a restate-
ment of Darcy’s law):

h = –(φ2 – φ1)

φ2φ1

XX
L

A

Section XX

Q

Figure 3.4 A constant head permeameter.
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=K QL
Ah

 (3.8)

where
Q is the observed discharge
L is the length of the soil sample
A is the cross-sectional area
h = −(ϕ2 − ϕ1) is the piezometric head difference across the sample

These variables are also shown in Figure 3.4. All of the variables shown on 
the right-hand side are experimentally determined.

Variable-head permeameter (Figure 3.5): This apparatus is used for soils 
of low permeability. The experimental setup is shown in the sketch, which 
allows considerable variations of head, and time of flow, to account for 
the variability of K values. To determine K, the following equations can 
be used:

Inner cross-sectional area, a

Area of sample, A

LQ

h(t)

h0

δh = –dh

Q = –a dh/dt

a

–dh

Figure 3.5 A variable head permeameter.
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where
a is the inner cross-sectional area of the narrow tube
L is the length of the soil sample
A is the cross-sectional area of sample
h(t) = −(ϕ2 − ϕ1) is the piezometric head difference across sample at any 

observed time t

These variables are also shown in Figure 3.5. All of the variables shown on 
the right-hand side are experimentally determined.

Derivation of equation for variable-head permeameter: At time t = 0, the 
permeameter is charged with an initial head h0, as shown in the figure. As 
time proceeds, the head in the narrow tube slowly drops, due to flow into 
the constant-head reservoir. Let h = h(t) represent the head at any time t as 
shown in the sketch. At this instant, the discharge through the apparatus is

 
( ) = −Q t a dh

dt
     (3.10)

The negative sign means that the differential of column height, dh, 
decreases as the differential of time dt increases. In other words, Q is 
considered positive when the head h(t) in the narrow tube falls. From the 
geometry of the differential element shown in the sketch, it is clear that 
the expression on the right-hand side of Equation 3.10 represents the rate 
of change of volume with respect to time. This, of course, is the definition 
of discharge. From Darcy’s law, the discharge through the apparatus at 
any time t is given by

 
( ) =Q t KA h

L
 (3.11)

where h indeed represents the head difference, −(ϕ2 − ϕ1), across the porous 
sample of length L. (Why? Prove it!) Thus, combining the last two equations 
yields the following ordinary differential equation:

 
+ =dh

dt
K hA

La
� � 0  (3.12)
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The preceding equation is separable and on integration yields the following 
expression for h(t):
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To eliminate the arbitrary constant, C, of integration, let h(t) = h0 at time 
t = 0 in the preceding equation. Thus,
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which finally yields the two expressions for K, given in Equations 3.9a 
and 3.9b.

3.2  CONSERVATION OF MASS, 
OR CONTINUITY, EQUATION

As mentioned in the previous section, we need another equation to complete 
the mathematical formulation for the determination of four unknowns, qx, 
qy, qz, ϕ. The required equation is provided by considering the conservation 
of mass inside a small (infinitesimal) parallelepiped (Figure 3.6). For this 
purpose, we assume that the specific discharge q(x, y, z, t) and fluid density 
ρ(x, y, z, t) are in general functions of space and time.

Now, let us consider two faces normal to the x-axis indicated by Face 1 
and Face 2, having a nominal cross-sectional dimension δy · δz, as shown 
in Figure 3.6. Let q and ρ represent the specific discharge vector and the 
density of fluid, respectively, at the center of Face 1. Let us first consider 
the transport of mass across Face 1 into the parallelepiped during a small 
(infinitesimal) duration of time δt, as follows:

 ( )ρ δ δ δq y z tx  (3.14a)

It may be emphasized that only the normal component qx of q is instru-
mental in transporting the mass across Face 1. Furthermore, the quantity 
qx(δyδz)δt indeed represents the volume of fluid flow across Face 1 during 
time interval δt, despite the fact that only part of the nominal area (δyδz) is 
available for flow due to the presence of granular material. The last asser-
tion is implicit in the definition of the specific discharge vector q. Likewise, 
the transport of mass across Face 2 out of the parallelepiped is

 ( ) ( )ρ + δ ρ  δ δ δq q y z tx x  (3.14b)
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Thus, the net gain of mass inside the parallelepiped during the time interval 
δt, due to the mass flow across the two faces, Face 1 and Face 2, becomes

 ( ) ( )( ) ( ) ( )ρ δ δ δ − ρ + δ ρ  δ δ δ = −δ ρ δ δ δq y z t q q y z t q y z tx x x x  (3.14c)

In the preceding equation, the expression on the right-hand side can be 
replaced by a truncated Taylor’s series, ignoring higher order terms. Thus, 
the net gain due to mass flow across Face 1 and Face 2 becomes
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Similarly, when the mass transport takes place across all (six) faces, the net 
gain of mass inside the parallelepiped during time interval δt is given by the 
following:
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Let the mass of fluid inside the parallelepiped at any time be m(t). Since only 
the pore space can contain fluid, it is evident that for a completely saturated 
medium this mass should be given by the following:

Face 1

Face 2Grainx

y

z

Pore space filled with water

ρqx(δyδz)δt

δz
δy

δx

[ρqx+ δ(ρqx)](δyδz)δt

Figure 3.6 Definition sketch for conservation-of-mass equation.
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 ( ) ( )= ρ δ δ δm t n x y z     (3.14f)

where
n is the porosity
(n δxδyδz) is the volume of the total pore space contained by the 

parallelepiped

The increment of mass m(t) during time interval δt thus becomes
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because the volume of the parallelepiped does not change with time. Hence, 
equating the net gain (Equation 3.14e) to the increment of m (Equation 
3.14g) yields the final equation:
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Since δx, δy, δz, δt are arbitrary, the preceding equation reduces to
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If the groundwater flow is in a steady-state condition—that is, ρ and n do 
not depend on time—then the preceding equation reduces to the following:
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Finally, if the fluid is homogeneous, we have the so-called continuity 
equation:
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In conclusion, the flow of an incompressible homogeneous fluid in a sat-
urated nonconsolidating aquifer satisfies the continuity equation. These 
requirements can be more succinctly stated as follows: The groundwater 
flow in a steady state (which undergoes no change with time) satisfies the 
continuity equation. This assertion is true irrespective of the nature of 
porous medium with regard to its isotropy or its homogeneity.
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3.3 LAPLACE EQUATION

If we consider the flow of an incompressible fluid in an isotropic, homo-
geneous nonconsolidating porous medium, the fluid must satisfy the three 
equations (3.4) of generalized Darcy’s law, as well as the continuity equa-
tion (3.17). Taken together, these four equations provide the necessary 
equations for the solution of the four unknowns, qx, qy, qz, ϕ. It is how-
ever possible to eliminate the components of specific discharge vector q. To 
accomplish this, let us substitute the components of the specific discharge 
vector from the three equations (3.4) into the continuity equation (3.17) as 
follows:
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Since the medium is homogeneous, the coefficient of permeability K does 
not depend on the location of a point—it is a constant for the entire medium. 
Thus, the preceding equation can be written as
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If we further assume that K is not zero, the preceding equation reduces to
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Equation 3.20 is known as the Laplace equation and the operator ∇2 is 
called the Laplacian operator.

Finally, the piezometric head ϕ, at any point in a steady-state flow field of 
an incompressible, homogeneous fluid in an isotropic, homogeneous, porous 
medium satisfies the Laplace equation. Thus, the solution of a ground-
water flow leads to the solution of the so-called boundary-value problem 
associated with the Laplace equation, subject to appropriate boundary 
conditions.

3.4  TWO-DIMENSIONAL ANISOTROPIC MEDIUM 
AND PERMEABILITY MATRIX (OR TENSOR)

Most geological formations bearing groundwater are to some extent aniso-
tropic and heterogeneous in character. Our objective here is, therefore, to 
extend Darcy’s law to a two-dimensional anisotropic porous medium.



Field equations of flow through a porous medium 73

Let us consider an anisotropic porous medium, as shown in Figure 3.7a. 
For clarity of perception, such a medium can be visualized to consist of 
an alternating sequence of two vanishingly thin layers of different perme-
ability. In such a medium, we can recognize two mutually orthogonal lines 
of symmetry, one along the bedding plane and the other across the bed-
ding plane, as represented by x′-axis and y′-axis in Figure 3.7a. Since the 
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Figure 3.7  (a) A two-dimensional anisotropic medium, (b) hydraulic gradient points in 
x′-direction, (c) hydraulic gradient points in y′-direction, (d) hydraulic gradient 
points in x-direction, and (e) asymmetrical specimen.
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medium is anisotropic, the coefficient of permeability ′Kxx in x′-direction is, 
in general, different from the coefficient of permeability ′Kyy in y′-direction. 
Let a specimen of this porous medium be cut symmetrically about x′-axis 
(Specimen A in Figure 3.7a) and subjected to a hydraulic gradient along 
the x′-axis (Figure 3.7b). This hydraulic gradient will induce a specific dis-
charge vector at point P. From a purely hypothetical viewpoint, the spe-
cific discharge vector, q, could either point in the x′-direction, or upward, 
or downward, as shown, respectively, by arrows a, b, c in Figure 3.7b. 
Since the problem is symmetrical about the x′-axis, the specific discharge 
vector, q, cannot deviate from the x′-direction. A similar argument also 
holds for Specimen B cut along y′-axis and subjected to a hydraulic gradi-
ent in the y′-direction, as shown in Figure 3.7c. Since the situation shown 
in Figure 3.7b and c is essentially the same as stipulated in Darcy’s original 
experiment—that is, the hydraulic gradient and the specific discharge vec-
tor point in the same direction—the following generalization of Darcy’s 
law for an anisotropic medium in x′, y′-coordinate system can be proposed:
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or in matrix form
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where
′ ′q q and x y represent the components of specific discharge vector q along 
x′- and y′-axis, respectively

− ∂φ
∂ ′x

 and −
∂φ
∂ ′y  represent the components of the hydraulic gradient −∇ϕ 

along x′- and y′-axis, respectively
′ ′K K and xx yy represent the coefficients of permeability along x′- and 
y′-axis, respectively

Let us now consider a specimen cut along the x-axis and subject it to a 
hydraulic gradient acting along the x-axis, as shown in Figure 3.7d. In this 
case, the porous medium is not symmetrical about the x-axis, because the 
lower half of the specimen below the x-axis is not the same as the reflection 
of the upper half into the x-axis (Figure 3.7e). Hence, in this case, we have 
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no a priori reason to believe that the specific discharge vector acts along the 
x-axis. Consequently, we assume without loss of generality that the specific 
discharge vector q acts in a direction other than the x-axis (Figure 3.7d). In 
this case, the hydraulic gradient, despite the fact that it acts in x-direction, 
can induce a nonzero velocity component, qy, acting at a right-angle to the 
gradient vector. Thus, in the x-, y-coordinate system, Darcy’s law should 
have the general linear form:
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or in matrix notation
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where
qx and qy represent components of the specific discharge vector in the 

x- and y-coordinate system, respectively

− ∂φ
∂x

 and − ∂φ
∂y

 represent the components of hydraulic gradient in the 

x- and y-coordinate system, respectively

The elements Kxx, Kxy, Kyx, and Kyy of the coefficient matrix physically repre-
sent the coefficients of permeability as before. However, among these coef-
ficients, Kxy and Kyx are rather peculiar, for they represent the cross coupling 
between the components of specific discharge and hydraulic gradient vectors. 
For instance, Kxy represents the contribution to x-component of the specific 
discharge vector by the y-component of the hydraulic gradient vector. A simi-
lar interpretation for Kyx is possible by an examination of Equations 3.22. 
These two coefficients are casually referred to as the cross permeability coeffi-
cients, and the other two, Kxx and Kyy, as the normal permeability coefficients. 
Thus, in a reference frame chosen arbitrarily—such as the x, y-coordinate 
system—without regard to the intrinsic symmetry of the porous medium, 
Darcy’s law requires four coefficients of permeability for relating hydraulic 
gradient −∇ϕ to the specific discharge vector q. However, as we shall see later, 
only three of these coefficients are independent, because it turns out that the 
cross permeability coefficients are equal, that is, Kxy = Kyx.
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If the orientation of porous medium is such that the x′-axis coincides 
with the x-axis (θ = 0 in Figure 3.7a), the coefficient matrix

 
[ ] ≡













K
K K
K K
xx xy

yx yy
 (3.23)

in Equation 3.22c should reduce to

 
[ ]′ ≡

′
′
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K
K

K
0

0
xx
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given in Equation 3.21c. In other words,

 → ′ → ′ = → θ→K K K K K K; �� � and � 0,� as � 0xx xx yy yy xy yx

This suggests that the elements of [K] matrix, Kxx, Kxy, Kyx, and Kyy, should 
somehow be related to the orientation angle θ. The mathematical entities 
whose components depend on the rotation (or orientation) of the reference 
frame constitute the subject matter of tensor analysis. Here, we are not inter-
ested per se in this field of mathematics. However, please note that the com-
ponents of the [K] matrix do constitute a tensor of second order, or rank. 
Since the components of this tensor physically represent the coefficients of 
permeability, we shall henceforth refer to this as the permeability tensor, 
and the corresponding matrix, the permeability matrix. In the particular 
case when the off-diagonal terms become zero, as in Equation 3.24, the 
diagonal terms (e.g., ′K  xx  and ′Kyy) are called the principal values, and the 
corresponding directions, x′-axis and y′-axis, the principal directions of 
the permeability tensor. In our particular case, these principal directions 
indeed represent the axes of symmetry of the two-dimensional anisotropic 
porous medium. In the subsequent sections, we shall develop the definite 
expressions that represent the influence of angle θ on the components of the 
permeability tensor.

If we choose x′, y′-coordinate system as our reference frame, Darcy’s law 
reduces to the mathematical form given in Equations 3.21, where ′K  xx  and 

′Kyy are physical properties of the porous medium. These either are known 
a priori or can be determined by an experiment. Thus, from a theoretical 
viewpoint, Equations 3.21 can always serve as a valid starting point for the 
analysis of flow in an anisotropic medium. However, from a practical view-
point, such a judicious selection of reference frame may be undesirable—or 
even impossible in some cases, as in the case of nonuniformly anisotro-
pic medium with changing principal directions of permeability. Thus, we 
encounter a situation where Darcy’s law is known in a particular reference 
frame, but for practical purposes, we deduce it with respect to an arbitrary 
reference frame. At the heart of this problem is the fundamental question: 
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How do the components of a vector, such as the specific discharge vec-
tor, or the partial derivatives of a scalar function, transform under rota-
tion of reference system? When the x, y-reference frame is rotated through 
an angle θ to obtain x′, y′-reference frame, the components of discharge 
vector transform according to the following equation (details are given in 
Appendix B):
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The components of the gradient vector in the two reference frames are also 
related by a similar matrix equation:
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where
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− θ θ
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is the so-called rotation matrix. We should, however, emphasize here that 
a positive value of θ implies a counterclockwise rotation of x, y-reference 
system to x′, y′-reference system. Substituting the expressions for specific 
discharge vector and the gradient vector from Equations 3.25 and 3.26 in 
Equation 3.21c yields
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When the preceding equation is (left) multiplied by the inverse of rotation 
matrix, it yields
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Since the rotation matrix is an orthogonal matrix, its inverse is simply 
equal to its transpose, that is,
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θ − θ
θ θ
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Finally, after multiplying out the three square matrices in Equation 3.29, 
we get
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This equation relates the specific discharge vector q to the hydraulic gradi-
ent vector −∇ϕ in a general x, y-reference frame. Thus, Equation 3.31 is 
the mathematical statement of Darcy’s law with respect to x, y-coordinate 
system, for a two-dimensional anisotropic medium.

Now, comparing Equation 3.31 with Equation 3.22c, we observe that

 
= ′ θ + ′ θK K Kcos sinxx xx yy

2 2  (3.32a)

 
= ′ θ + ′ θK K Ksin cosyy xx yy

2 2  (3.32b)

 ( )= = ′ − ′ θ θK K K K sin cosxy yx xx yy  (3.32c)

It is evident that the permeability matrix is symmetric, that is, Kxy = Kyx. 
Moreover, for a given anisotropic porous medium, the elements of the per-
meability matrix [K] are functions of one independent variable, θ, only, 
because the principal values, ′Kxx and ′K ,yy  are the given characteristics of the 
anisotropic medium. Also, since the elements, Kxx, Kxy, Kyy, are functions of 
a single variable θ, these elements cannot be chosen arbitrarily. They must 
always satisfy the restrictions imposed by the preceding three equations. In 
the following section, we shall describe graphically the restrictions imposed 
by Equations 3.32 on the elements of the permeability matrix [K].

3.4.1 Mohr’s circle

Let us recall the following trigonometric identities:

 θ = θ θsin2 2sin cos

 
θ = + θcos 1 cos2

2
2
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θ = − θsin 1 cos2

2
2

Using these identities, we can express the preceding three equations, 
Equation 3.32, in the following forms:
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+

′ − ′
θK K K K K

2 2
cos2xx

xx yy xx yy  (3.33a)
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2 2
cos2yy
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= =

′ − ′
θK K K K�

2
sin2xy yx

xx yy  (3.33c)

For a given value of θ, we can obtain simultaneously the components Kxx 
and Kxy from Equations 3.33a and 3.33c. These components, Kxx and Kxy, 
can be used to denote the coordinates of a point P(Kxx,Kxy) in a plane. We 
shall refer to this plane as the permeability plane, and the coordinates as 
the permeability coordinates of a generic point P. The permeability plane is 
similar to the usual x, y-plane of the analytical coordinate geometry. The 
abscissa on this plane represents the normal coefficients (Kxx, or Kyy) and 
the ordinate, the cross permeability coefficient (Kxy). There is, however, a 
substantive difference between the two planes: The positive direction of the 
ordinate axis points downward instead of upward (Figure 3.8).The reason 
for this deviation from the established convention of the analytical coor-
dinate geometry will be explained later. (The treatment given here is very 
similar to Mohr’s graphical analysis of stress tensor for two-dimensional 
stress field in elasticity).

Taken together, Equations 3.33a and 3.33c can now be viewed as the 
parametric form of a general plane curve executed in the permeability 
plane by point P, as the parameter θ is arbitrarily varied. In order to deter-
mine an explicit mathematical expression for the shape of this curve, we 
need to eliminate θ from Equations 3.33a and 3.33c. To accomplish this, 
we express Equations 3.33a and 3.33c in the following form:
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Adding the preceding two equations yields
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 (3.35)

which is similar in form to the equation of a circle

 [ ] [ ]− + − =x x y y r�c c
2 2 2  (3.36)

whose radius is r and the center is at (xc, yc). Thus, the locus of point P rep-
resents a circle with radius

 
=

′ − ′r K K�
2

xx yy  (3.37)

and center on the horizontal axis at a distance
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Figure 3.8 Permeability plane and Mohr’s circle.
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from the origin, as shown in Figure 3.8. This circle is known as Mohr’s 
circle, named after the prominent German professor of engineering mechan-
ics, who suggested its use in the analysis of stress tensor.

We are now at a point where we can discuss the geometric features of 
Mohr’s circle. For instance, if the principal values ′Kxx and ′Kyy of perme-
ability of the anisotropic aquifer are known, we can readily find the radius 
and the center from Equations 3.37 and 3.38, respectively, and construct 
the Mohr circle for the anisotropic medium, as shown in Figure 3.8. From 
this diagram, we observe the following geometric relationships:

 
= + =
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xx  (3.39)
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2 2
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Thus, the abscissas of points A and B represent the principal values of per-
meability tensor. Using the geometric elements of Mohr’s circle, we can 
express Equation 3.33 in the following form:

 = + θK OC r� � cos2xx  (3.41a)

 
= − θK OC r� � cos2yy  (3.41b)

 = θK r sin2xy  (3.41c)

With the help of preceding relationships, a pair of points P(Kxx, Kxy) and 
Q(Kyy, − Kxy) can be located on the circle, as shown in Figure 3.9a. For 
lack of a better terminology, we shall refer to this pair of points as the 
conjugate pair.

Before we conclude this section, it is worth emphasizing a few facts:

 a. Every point on the Mohr circle—for example, P(Kxx, Kxy) or Q(Kyy, 
− Kxy)—can be associated with an independent parameter θ. Since the 
parameter θ represents the angle between the x-axis and a principal 
direction (x′-axis) of the medium, it also corresponds to a unique per-
meability matrix [K] for a given anisotropic medium (see Equations 
3.33). As described in Equations 3.32, the elements of [K] matrix are 
functions of a single variable θ for a given anisotropic medium.

 b. Since the permeability coordinates of point A are = ′K Kxx xx and Kxy= 0, 
point A must correspond with θ = 0 (Equations 3.33). Evidently, the 
generic point P(Kxx, Kxy) corresponds with parameter θ. It is also clear 
from Figure 3.9 that to make the generic point P approach point A, the 
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radius CP must be rotated in a counterclockwise direction through an 
angle 2θ on the Mohr diagram. On the physical plane (Figure 3.9b), 
however, the x-axis must be rotated through an angle θ in a coun-
terclockwise direction to align with the x′-axis. It is to achieve the 
same sense of rotation in both the permeability plane and the physi-
cal plane that we chose the positive direction of Kxy-axis downward, 
contrary to the established convention of the analytical coordinate 
geometry.

 c. Finally, the radial directions CP and CQ in Figure 3.9 indeed repre-
sent the positive half rays of x-axis and y-axis, respectively.

3.4.2  Physical significance of cross 
permeability terms

Darcy’s law for an anisotropic aquifer with respect to a rectangular, right-
handed, Cartesian coordinate system is given as
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where Kxx and Kyy are always positive coefficients (Equations 3.31). The 
cross permeability coefficients

 
( )= = ′ − ′ θK K K K� � 1
2
� sin2xy yx xx yy  (3.42)

could, however, be either positive or negative depending on the value of θ 
and the sign of the term ( )′ − ′K K .xx yy  What is the physical meaning of the 
negative sign of the cross permeability coefficient? The answer to this ques-
tion is presented in the following paragraphs.

For present discussion, we shall assume ′Kxx is greater than ′K ;yy  in other 
words, θ denotes the angle between the x-axis and the major principal 
direction of permeability of the anisotropic medium (Figure 3.9b). Now, 
if θ is chosen to lie in the first quadrant, 0 < θ ≤ π/2, the sin 2θ will remain 
positive. Thus, in this case, as a consequence, the cross permeability coef-
ficients will also remain positive, that is, Kxy = Kyx ≥ 0. Let us now look at 
the corresponding flow field in the medium under the influence of a unit 
hydraulic gradient acting in the positive x-direction:
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By substituting Equation 3.43 in Equation 3.22c, we observe that

 = ≥q K� 0x xx  (3.44a)

 = ≥q K� 0y yx  (3.44b)

Thus, as long as the major principle axis of the anisotropic aquifer lies in 
the first quadrant of the x, y-coordinate plane, both components, qx and qy, 
of the specific discharge vector will remain positive under the influence of a 
hydraulic gradient vector acting in the positive x-direction This situation is 
graphically illustrated in Figure 3.10a. However, if the major principal axis is 
chosen to lie in the second quadrant of the x, y-plane, (π/2 < θ ≤ π), the cross 
permeability coefficients become negative. Thus, in this case, the components 
of the specific discharge vector, under the influence of the hydraulic gradient 
vector acting in the positive x-direction, satisfy the following inequalities:

 = ≥q K� 0x xx  (3.45a)

 = ≤q K� 0y yx  (3.45b)

This situation is illustrated in Figure 3.10b.
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To grasp fully the significance of cross permeability coefficients in 
determining the direction of flow field, Figure 3.11 has been prepared. 
In this figure, the major principal direction of permeability is kept con-
stant to lie in the first quadrant, while the influence of the hydraulic 
gradient on the direction of specific discharge vector q is graphically 
shown. The direction of the hydraulic gradient vector −∇ϕ is varied in 
three steps: starting from positive x-direction, to positive y-direction, 
to negative x-direction, and finally to negative y-direction. The corre-
sponding directions of the specific discharge vector q are represented by 

M
inor principal axis

M
ajor principal axis

Minor principal axis

Major principal axis

K¢yy
K¢xx

(a)

(b)

q

q

θ

θ + π/2

–   φ

–   φ

Figure 3.10  (a) Major principal direction of permeability lies in the first quadrant and 
(b) major principal direction of permeability lies in the second quadrant.
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solid arrows in the figure. It is apparent from this figure that the role of 
cross permeability coefficients is such that it always enforces the specific 
discharge vector to tilt toward the major principal direction of perme-
ability. The same conclusion can also be drawn if the principal direction 
of permeability of an anisotropic aquifer lies in the second quadrant of 
the x, y-coordinate plane.

3.5 EXERCISES

3.1 A variable head permeameter is shown in Figure 3.5. The permeameter 
of this kind is used in the laboratory to determine the coefficient of per-
meability of low-permeable soils. Find the coefficient of permeability 
of soil sample if h0 = 50 cm, a = 0.5 cm2, A = 10 cm2, L = 20 cm and the 
observed head h = 28 cm after 1 h.

3.2 The permeability values of a two-dimensional, anisotropic, homo-
geneous aquifer are Kxx = 0.100 cm/s, Kyy = 0.020 cm/s, and Kxy = 
Kyx = 0.003 cm/s. Find (1) the directions and principal values of the 
permeability tensor and (2) the gradient of the piezometric surface at 
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Figure 3.11  Role of cross permeability coefficients in tilting the specific discharge vector 
toward the major principal direction.
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a point where the velocity components are qx = 0.10 cm/s and qy = 0.1 
cm/s. Please illustrate your answer with neat sketches.

3.3 Considering a planar flow in the x, y-plane, find the components of 
the discharge vector (qx, qy) at a point where dϕ/dx = 0.002 and dϕ/
dy = 0.000. You may assume that the aquifer is homogeneous, anisotro-
pic aquifer with major principal axis inclined at an angle of 30° with 
respect to the x-axis. The principal values of the two-dimensional aniso-
tropic permeability tensor are K1 = 0.0002 cm/s and K2 = 0.00001 cm/s. 
Please do not forget to mention units for your answer.
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Chapter 4

Discharge potentials for 
two-dimensional flows in 
horizontal, shallow aquifers

4.1  HORIZONTAL, SHALLOW, CONFINED 
(ARTESIAN) AQUIFER

In general, the steady-state flow of an incompressible, homogeneous fluid 
in a three-dimensional, isotropic, homogeneous aquifer is governed by the 
Laplace equation
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where ϕ represents the piezometric head (or level) at any point in the flow 
field. Of particular interest to us is the case when ϕ does not depend on 
one of the spatial coordinates, say z, where z-direction is taken vertically 
upward. In such a case, the piezometric head (or level) becomes a function 
of two independent variables, that is, ϕ = ϕ(x, y), and the Laplace equation 
reduces to a two-dimensional case:
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Now, consider an aquifer bounded by two horizontal confining layers, 
some finite distance H apart (Figure 4.1). When H is much smaller than the 
areal extent, the aquifer is called a horizontal, shallow, confined aquifer. If 
we assume that the areal extent is infinite, (−∞ < x < + ∞) and (−∞ < y < + ∞), 
and there is no source or sink in the finite plane, then the following two 
inferences can be drawn:

 1. At a given (fixed) value of z, on any two verticals, say at (x1,y1) and 
(x2,y2), the specific discharge vectors q must be identical. Borrowing 
the terminology from fluid mechanics, the velocity profiles at the two 
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verticals must be identical. This inference follows from our a priori 
intuition that both verticals can be considered as the centroidal axis 
for the infinite horizontal, confined aquifer.

 2. At any point in the flow field, the specific discharge vector q lies in a 
horizontal plane. This inference follows from the previous assertion. 
The argument goes like this. Since the velocity profiles at any two ver-
ticals are identical, the partial derivatives of q with respect to x and y 
must be zero. Thus, the continuity equation (Equation 3.17) reduces 
to the following ordinary differential equation:

 
=dq

dz
0�z

 whose solution is qz = C, an arbitrary constant throughout the flow 
region. Since qz = 0, at the impervious boundaries, it follows that 
qz ≡ 0. Thus, the specific discharge vector lies everywhere in a hori-
zontal plane.

Now, if the aquifer is isotropic, then according to Darcy’s law, the follow-
ing is true:
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Figure 4.1 Definition sketch for horizontal, shallow, confined (artesian) aquifer.
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Since in an isotropic aquifer the constant ϕ-surfaces are always normal to 
the specific discharge vector, it follows that such surfaces must be generated 
by vertical straight line generators, as shown in Figure 4.1. In other words, 
ϕ is indeed a function of two independent variables, x and y in a horizontal, 
confined aquifer of infinite areal extent. Since constant ϕ-surfaces are ver-
tical, each component, qx or qy, remains uniform, along any vertical line. It 
is therefore possible to define the following equalities:
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= = − ∂φ

∂
= −

∂ φ
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= −
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HK
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 ( )Φ ≡ φ +x y HK x y C, ( , )  (4.3c)

where
C is an arbitrary constant
Qx and Qy are discharges per width normal to the x-axis and y-axis, 

respectively, as shown in Figure 4.1 (for clarity, only Qx is shown)

In Equations 4.3a and 4.3b, the first equality follows from the uniformity 
of qx and qy with depth, the second from Darcy’s law, and the rest from 
calculus. Thus, for a horizontal, confined flow of an infinite areal extent, 
there exists a potential function Φ = KHϕ + C whose partial derivatives with 
respect to x and y yield the discharges Qx and Qy per width normal to 
x- and y-axis, respectively, through the entire depth of aquifer. We shall 
therefore call Φ(x, y) the discharge potential for horizontal, confined flows 
of infinite areal extent.

It must however be emphasized that for the existence of discharge 
potential, the requirement of an infinite areal extent is not necessary. 
What is pertinent is the fact that the first equality in Equations 4.3a 
and 4.3b

 =Q Hqx x

 =Q Hqy y

must be true. This would be true whenever qx and qy are invariant with 
depth at a given vertical. This in turn implies that the constant ϕ-surfaces 
should be vertical for the existence of discharge potential. Thus, the 
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discharge potential Φ is defined for flows through horizontal, confined 
aquifers even if the aquifers are of finite areal extent, so long as the con-
stant ϕ-surfaces are vertical prismatic surfaces generated by straight line 
generators. This is most likely the case when H is much smaller than the 
areal extent of the aquifer—especially in the middle of the aquifer away 
from the boundary conditions. The discharge potential Φ(x, y) given in 
Equations 4.3 may therefore be applicable to flows through horizontal, 
shallow, confined aquifers.

The solutions of Laplace’s equations are called the harmonic functions. 
It is one of the properties of the harmonic functions that if there are two 
harmonic functions, Φ1 and Φ2, then their linear combination

 ( )Φ = αΦ +βΦ α β; , denote arbitrary constants1 2

is also a harmonic function. Since the piezometric head ϕ(x, y) is a harmonic 
function (Equation 4.1), and any constant function is always a harmonic 
function, it follows from the preceding property that

 ( )Φ = φ +x y KH x y C, ( , )  (4.4)

is also a harmonic function. Thus, the solution of a steady-state ground-
water flow through a horizontal, shallow, confined aquifer is completely 
defined by the two-dimensional Laplace equation:
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2
2  (4.5)

in terms of the discharge potential for horizontal, shallow, confined flow, 
Φ = Φ(x, y), subject to the appropriate boundary conditions. The discus-
sion of discharge potential given here is similar to the treatment given by 
Strack (1989).

4.2  HORIZONTAL, SHALLOW, UNCONFINED 
(PHREATIC) AQUIFER

Figure 4.2 represents the essential physical features of a two-dimensional 
flow (in x, z-plane) in a phreatic aquifer. In this illustration, all sections 
parallel to x, z-plane are identical. While the bottom surface of flow is 
horizontal, the top surface is in general a curvilinear plane, which rep-
resents the watertable, or the phreatic surface, where the pressure is 
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atmospheric. At each vertical boundary, x = 0 or x = L, the piezometric 
head is a constant, because of the presence of a large body of water in a 
quasi-static state. Although the steady flow in an aquifer can be solved by 
finding the mathematical solution of the boundary-value problem associ-
ated with the Laplace equation, in this case, it is not possible because the 
flow region, where the Laplace equation applies, is not known a priori. 
This shortcoming has, however, been overcome by invoking the so-called 

Phreatic surface (watertable)

Natural surface

Impervious bedrock

patmPhreatic surface

x = L
x = 0

z

0

q
Seepage face

φ Constant y

φ – Constant surface

h(x, y)

φ(x, y, 0)

x

x

φ Constant

φ Constant

q Seepage face

Impervious bedrock

x = L

γ

φ = Constant

= 0

Figure 4.2  Physical features of a two-dimensional flow (in x, z-plane) in a phreatic 
aquifer.
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Dupuit (1863)–Forchheimer (1886) assumptions. The Dupuit–Forchheimer 
assumptions can be summarized as follows:

 1. The constant ϕ-surfaces are assumed to be prismatic surfaces gener-
ated by vertical straight line generators. The hydraulic gradient at any 
vertical is taken as the (negative) gradient of the phreatic surface and 
it acts at every point of the vertical.

 2. The specific discharge vector at a given (fixed) vertical remains invari-
ant with depth.

For convenience, we take the atmospheric pressure as the zero, patm = 0, 
of the pressure scale, and the elevation of the horizontal plane as the zero 
of the piezometric head, that is, ϕ = 0 at z = 0. Under these assumptions, 
the depth h(x, y) of the aquifer at any point (x, y) is, approximately, equal 
to the piezometric head ϕ(x, y, 0), that is h(x, y) ≅ ϕ(x, y, 0). Thus, for a 
two-dimensional flow in a horizontal plane (x, y-plane) through a phreatic 
aquifer, the Dupuit–Forchheimer formulation leads to the following 
(Figure 4.3):
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Figure 4.3  Two-dimensional flow (in x, y-plane) in a phreatic aquifer after the Dupuit–
Forchheimer formulation.
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Φ ≡ φ +x y K x y C( , ) ( , )

2
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2
 (4.6c)

In the preceding development, the approximation ϕ ≅ h has been used, and 
C is the usual arbitrary constant. Since in the case of a phreatic aquifer 
the discharge potential Φ is nonlinearly related to the piezometric head ϕ, 
one naturally raises the question: Does Φ satisfy the Laplace equation? The 
short answer is yes! It can, however, be deduced by analyzing the continuity 
of flow in the differential element shown in Figure 4.4. If we set δx = δy = 1, it 
can be quickly observed from this figure that the flow satisfies the following:
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Now, substituting the expressions for Qx and Qy from Equations 4.6 into 
Equation 4.7 yields
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This shows that the discharge potential exists even for flows through a 
phreatic aquifer, and it satisfies the two-dimensional Laplace equation 
under the Dupuit–Forchheimer assumptions.

We can therefore conclude that for both confined and unconfined shal-
low horizontal flows, discharge potentials exist and they are harmonic 
functions with the following property:

 
= − ∂Φ

∂
Q

nn  (4.9)

where
n denotes the spatial coordinate
Qn denotes the steady-state discharge per width of aquifer normal to 

n-axis

The validity of the preceding equation can be demonstrated as follows.
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Let the discharges Qx and Qy be defined with respect to the x, y-coordinate 
system and let the angle between the x-axis and the n-axis be θ, as shown 
in Figure 4.5. Now, the partial derivatives of Φ(x, y) are related by the fol-
lowing equation (Equation 3.26):
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or, after substituting the values for cos θ and sin θ from Figure 4.5, the pre-
ceding equation reduces to
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Figure 4.4 Continuity of flow in terms of discharges Qx and Qy.
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or
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 = +sQ y Q x Q   n x y  (4.10d)

The last equation is simply the reaffirmation of the fact that Qn satisfies the 
continuity requirement. Thus,

 
= − ∂Φ

∂
Q

n
 n

indeed represents the discharge per width normal to the n-axis.
In summary, we reiterate that in the general case of planar flows in x, 

y-plane, the discharge potential Φ(x, y) exists, irrespective of whether the 
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flow takes place through a confined aquifer or an unconfined aquifer. In the 
case of an unconfined aquifer, the flow is represented as a planar flow field 
by invoking the Dupuit–Forchheimer assumptions. Thus, in both cases, the 
flow field is assumed as the planar flow field in x, y-plane. Furthermore, 
the discharge potential in both cases is a harmonic function with the prop-
erty that Qx = −∂Φ/∂x or Qy = −∂Φ/∂y, where Qx or Qy represents the dis-
charge per width of aquifer normal to the x-axis or the y-axis, respectively, 
through the entire depth of aquifer.

4.3  HORIZONTAL, SHALLOW, PARTLY 
CONFINED AQUIFER

In the previous two sections, we introduced the notion of discharge poten-
tials for a horizontal, shallow, confined aquifer and for a shallow, uncon-
fined (phreatic) aquifer resting on horizontal impervious bedrock. It was also 
noted that in both cases, the discharge potential satisfies the two-dimensional 
Laplace equation and it (discharge potential) has the following property:

 
= − ∂Φ

∂
Q

nn  (4.9)

where
n denotes the spatial coordinate
Qn denotes the discharge per width of aquifer normal to n-axis

In many practical problems, we are encountered with the situation where 
the flow takes place in a confined aquifer, in part of the flow region, and in 
an unconfined (phreatic) aquifer, in the remaining part of the aquifer. Two 
typical examples are illustrated in Figure 4.6. Following Strack (1989), we 
shall designate the boundary between the two regions as the interzonal 
boundary.

We know that the piezometric head, ϕ = z + p/γ, is defined at each point 
of the flow region, irrespective of whether the point lies in the confined or 
unconfined region. If the pressure field is continuous throughout the flow 
region, it follows that ϕ is also continuous throughout the flow region—
especially across the interzonal boundary. Furthermore, since ϕ is defined 
with respect to an arbitrary datum, we can the datum at the horizontal 
impervious base as shown in Figure 4.6.

Now, let us look at the discharge potentials. For horizontal, shallow con-
fined aquifers, it is defined as

 ( )Φ = φ +x y KH x y C, ( , )c c  (4.11)
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and for horizontal, shallow, unconfined aquifer (under Dupuit–
Forchheimer’s assumptions) as

 
( )Φ = φ +x y K x y C� , ( , )

2u u

2
 (4.12)

In the previous equations, the subscripts c and u refer to confined and 
unconfined regions of the aquifer, respectively. It is also understood 
that discharge potentials are defined when constant ϕ-surfaces repre-
sent either actual, or assumed, prismatic surfaces generated by vertical 
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Figure 4.6 Examples of one-dimensional flows in partly confined aquifers.
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straight line generators (parallel to z-axis). In other words, discharge 
potential only depends on x- and y-coordinates, and is independent of 
z-coordinate.

Now, let us look at the discharge potential at the interzonal boundary. 
When approached from the confined region, it becomes

 Φ = +KHH Cc c  (4.13)

Likewise, when approached from the unconfined region, it becomes

 
Φ = +KH C

2u u

2
 (4.14)

because piezometric head, ϕ, is continuous as a consequence of continu-
ity of pressure field. If we further require that the discharge potential, Φ, 
should be continuous across the interzonal boundary, then it follows from 
the previous two equations that
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 (4.15a)

or
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 (4.15b)

In order to have a continuous discharge potential, Φ, throughout the flow 
region, it is, therefore, necessary that Equation 4.15b must be satisfied. 
This in turn implies that only one of the two arbitrary constants, Cc or Cu, 
can be left arbitrary. We, therefore, set arbitrarily Cu to be zero. Thus, the 
definition Equations 4.11 and 4.12 reduce to

 
( )Φ = φ −x y KH x y KH, ( , )

2c

2
 (4.16)

 
Φ = φx y K x y( , ) ( , )

2u

2
 (4.17)

for confined and unconfined regions of flow, respectively.
Finally, since at the interzonal boundary the discharge potential is con-

stant (Φc = Φu = 1/2KH2), there can be no flow tangential to the boundary. 
Hence, discharge is continuous across the interzonal boundary. In other 
words,
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where
n-axis is normal to the interzonal boundary and it points in the flow 

direction
Qn represents the discharge, per width normal to n-axis through the 

entire depth H of aquifer, across the interzonal boundary

Thus, we conclude that the discharge potential and its partial derivatives 
are continuous across the interzonal boundary.

4.4 APPLICATIONS

In this section, we apply the notion of discharge potential to solve illus-
trative problems related to steady groundwater flow in three types of 
horizontal, shallow, aquifers: (1) confined, (2) unconfined, and (3) partly 
confined aquifers. In all these types, discharge potential Φ exists and it 
satisfies the Laplace equation in two dimensions with appropriate bound-
ary conditions.

4.4.1  Flow through horizontal, shallow, 
confined (artesian) aquifer

4.4.1.1 Case I: Rectilinear flow through a confined aquifer

As an elementary illustration, let us consider a shallow (H ≪ L) confined 
aquifer completely traversed by two parallel perennial rivers extending 
from negative infinity to positive infinity as shown in Figure 4.7. Let 
the two rivers be at a distance L apart, and at a typical cross section, 
the water depths in the rivers be denoted by h1 and h2. We shall further 
assume that the water surface slopes in the two perennial rivers are neg-
ligible in comparison with (h1 − h2)/L. This is tantamount to saying that 
water surface elevation in each river does not change with y. Thus, all sec-
tions parallel to x, z-plane are identical and the discharge potential does 
not depend on y.

Under these simplifying assumptions, the specific discharge can be 
assumed rectilinear in x-direction. Thus, the two-dimensional Laplace 
equation given in Equation 4.5 reduces to the following ordinary differen-
tial equation:

 

Φ =d
dx

0��
2

2  (4.19)
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because ∂Φ/∂y ≡ 0. The general solution of the preceding differential equa-
tion is

 Φ = Ax + B (4.20)

where A and B are arbitrary constants. These constants can be determined 
by invoking the boundary conditions. However, before determining these 
constants, it is convenient—though not necessary—to assume the datum 
for ϕ and Φ to lie on the horizontal plane z = 0, that is, at z = 0, ϕ = 0, and 
Φ = 0. Thus, at the two rivers, the piezometric head satisfies ϕ1 = h1 and 
ϕ2 = h2, as shown in the figure. This yields the following boundary condi-
tions at the left and right boundaries, respectively:

 
= − φ = φ = Φ = Φ = φ =x L h KH KHhAt
2
, � , or �1� 1 1 1 1  (4.21a)
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Figure 4.7 Definition sketch for flow through confined (artesian) aquifer.
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Substituting these boundary conditions in Equation 4.20 yields

 
Φ = −



 +A L B

21  (4.22a)

 
Φ = +



 +A L B

22  (4.22b)

or

 

( )
=
− Φ − Φ

A
L
1 2  (4.23a)

 

( )
=

Φ + Φ
B

2
1 2  (4.23b)

Hence, the discharge potential for this case becomes
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This finally yields the discharge per width normal to the x-axis through the 
entire depth of the aquifer as
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Equation 4.24 can also be written in terms of the piezometric head 
(or level) as
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which gives the specific discharge as
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In this case, Equations 4.24 and 4.26 show that both the discharge poten-
tial Φ and the piezometric head ϕ vary linearly with x. This fact is graphi-
cally shown in Figure 4.8.

4.4.1.2  Case II: Radial flow toward a well in 
a confined (artesian) aquifer

As a second example, we shall consider the radial flow toward a well cen-
trally located in a circular island. In this case, we are interested in the 
steady well discharge, Q, and its relationship with the discharge potential, 
Φ. For further analysis, it is more convenient to use a cylindrical coordi-
nate system (r, θ, z). In horizontal, shallow confined aquifers, the discharge 
potential does not depend on z-coordinate. Furthermore, because of axial 
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symmetry, the discharge potential only depends on r and not on θ, that is, 
Φ = Φ(r). Thus,

 
= − ∂Φ

∂
= − ΦQ

r
d
drr  (4.28)

and the well discharge Q is obtained from the requirement of continuity of 
flow (see Figure 4.9):

 
( )( )= π − = π ΦQ r Q r d
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Rearranging the preceding equation yields the following ordinary differen-
tial equation that governs the discharge potential:
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Figure 4.9  Definition sketch for radial flow toward a well: (a) cylindrical coordinate 
system, (b) symmetrical cross section. (Continued )
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The general solution of this differential equation is given as follows:
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+r Q r C( )

2
ln  (4.31a)

where C is an arbitrary constant. To determine C, we invoke the boundary 
condition: Φ = Φ0 at r = r0. This gives us
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Now C can be eliminated from Equations 4.31a and 4.31b by subtracting 
one from the other. This subtraction yields the following:
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The previous equation can also be expressed in terms of the piezometric 
head ϕ by making use of the identity Φ ≡ KHϕ. The substitution for Φ in 
Equation 4.32 yields
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r
r
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2

ln
0

0  (4.33)

The preceding result was previously reported by Thiem in 1906.

4.4.2  Flow through horizontal, shallow, 
unconfined (phreatic) aquifer

4.4.2.1  Case I: One-dimensional flow through 
an unconfined (phreatic) aquifer

Let us consider a shallow phreatic aquifer, resting on horizontal impervious 
bedrock and completely traversed by two parallel perennial rivers L dis-
tance apart, extending from negative infinity to positive infinity, as shown 
in Figure 4.10. As with the first example (Case I) discussed previously, we 
shall assume that the slope of water surface in each perennial river is neg-
ligible. Thus, all cross sections, parallel to x, z-plane, are identical and the 
two-dimensional Laplace equation (4.8) reduces to the following ordinary 
differential equation
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dx
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because ∂Φ/∂y ≡ 0. If we assume, for convenience, that the piezometric head 
ϕ and the discharge potential Φ are measured with respect to the horizontal 
impervious bedrock, that is, ϕ = Φ = 0, at z = 0, the boundary conditions on 
the left and right side of the idealized flow region become, respectively,
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The solution of the differential equation (4.34) subject to the boundary con-
ditions (4.35a) and (4.35b) is exactly the same as given previously, that is,
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This shows that the discharge potential, Φ, varies linearly with x for uni-
directional flows even in the case of a phreatic aquifer under the Dupuit–
Forchheimer assumptions. On the other hand, it should be emphasized 
that the piezometric head, ϕ, does not vary as a linear function of x, 
because Φ and ϕ are not related linearly in the case of phreatic aquifer. 
Recalling the definition of discharge potential for horizontal, shallow 
unconfined aquifer

 
Φ ≡ φ +K C

2
�

2

 (4.6c)

we see that Φ is a quadratic function of ϕ. Furthermore, the constant C in 
the preceding equation vanishes due to the fact that the arbitrary datum 
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Figure 4.10 Definition sketch for flow through an unconfined (phreatic) aquifer.
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for each function, ϕ or Φ, is set at z = 0. Thus, for one-dimensional flow 
through the phreatic aquifer, Equation 4.6c reduces to

 
Φ ≡ φK

2

2
 (4.37)

Now, combining Equation 4.37 with Equation 4.36 yields

 
φ = − φ − φ + φ + φ

L
x�

2
2 1

2
2
2

1
2

2
2

 (4.38a)

 
( ) ( )φ ≅ = − − + +x h x h h

L
x h h� �

2
2 2 1

2
2
2

1
2

2
2

 (4.38b)

where h = h(x) represents the height of the phreatic surface above z = 0 plane. 
Equation 4.38b represents the so-called Dupuit parabola, depicting the 
shape of the watertable (phreatic surface). The last equation can be written 
in a normalized form as indicated in the following text:
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 (4.38c)

Equation 4.38c is shown graphically in Figure 4.11 (lower plot) for selected 
values of head ratios, h2/h1. In this figure, the ordinate represents the nor-
malized height, above h2, of the watertable; the abscissa, the normalized 
x-coordinate in the direction of flow; and the curve parameter, the head 
ratio, h2/h1. When the head ratio h2/h1 = 0, the watertable profile is repre-
sented by a parabola whose vertex lies at point (0.5, 0), as shown in the fig-
ure. It is also apparent from this figure that the watertable profiles become 
more and more linear as h2 approaches h1. The upper plot shows the linear 
variation of the discharge potential from Φ1 to Φ2. It is apparent from these 
plots that while the watertable profile depends on the head ratio h2/h1, the 
variation of the discharge potential does not depend on this ratio—it varies 
linearly from Φ1 to Φ2 for all values of head ratios h2/h1.

Finally, the discharge in the x-direction per width normal to the x-axis 
through the entire depth of the aquifer is obtained by differentiating 
Equation 4.36 with respect to x. Thus,

 

( )
= = − Φ =

Φ − Φ
Q Q d

dx L
� x

1 2  (4.39)
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We can substitute the values

 
Φ = Kh

21
1
2

 (4.40a)

 
Φ = Kh

22
2
2

 (4.40b)

into Equation 4.39 to obtain

 
= −



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Q K h h
L2

1
2

2
2

 (4.41a)

0.0N
or

m
al

iz
ed

 p
ot

en
tia

l 1.0

1.0

0.5

0.5

–0.5 0.0 0.1 0.2 0.3 0.4 0.5

N
or

m
al

iz
ed

 w
at

er
ta

bl
e h

ei
gh

t (
h–

h 2
)/(

h 1
–

h 2
)

0.0

x
L

h

h2
h1 h(x)

0.1
0.2

0.8

0.0

Normalized abscissa x/L

Curve parameter: h2/h1

0.5

h2/h1       1.0

(Φ
–

Φ
2)

/(
Φ

1–
Φ

2)

Figure 4.11 Normalized plot of the Dupuit parabola.
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This equation is also known as the Dupuit formula for discharge per width 
through the unconfined (phreatic) aquifer. It is, however, more instructive 
to rewrite Equation 4.41a in the following form:

 [ ]{ }

( )
=

+







−















=

Q
h h

K h h
L2

Average flow depth Average specific discharge

1 2 1 2

 (4.41b)

It is now clear that the Dupuit formula obtained by integrating the differ-
ential equation (4.34) using the Dupuit–Forchheimer formulation leads to 
the result that the discharge per width of the phreatic aquifer is simply the 
product of the average depth of flow with the average specific discharge. 
It is also of no surprise that this discharge is constant, because of one-
dimensional nature of flow.

4.4.2.2  Case II: Radial flow toward a well in 
an unconfined (phreatic) aquifer

This case is similar to the one dealt with in the case of the confined aquifer. 
In terms of discharge potential Φ, the governing equation and the boundary 
conditions are identical to those given before. The only difference, however, 
is in the definition of the potential functions for confined and unconfined 
aquifers. Thus, Equation 4.32, obtained previously in connection with the 
well in a confined aquifer, can be used here:

 
Φ =

π
+ ΦQ r

r2
ln �

0
0  (4.32)

where Φ and Φ0 are now defined, respectively, by the following equations 
for the unconfined aquifer:

 
Φ = φ +K C1

2 u
2  (4.42a)

 
Φ = φ +K C1

2 u0 0
2  (4.42b)

Substituting these values in Equation 4.32 yields the following:

 



φ =
π

+ φ





Q
K

r
r

ln �
0

0
2  (4.43)



110 Mechanics of groundwater in porous media 

A few concluding remarks are in order. Whereas the discharge potential Φ 
satisfies the two-dimensional Laplace equation for the unconfined aquifer, 
the piezometric head ϕ does not. Thus, superposition of Φ is allowed but 
that of ϕ is not. Furthermore, these analyses of radial flows to wells in con-
fined as well as unconfined aquifers assume a constant head boundary at a 
finite radius r0. The notion of a steady-state condition (or equilibrium) in an 
extensive aquifer where r0→∞ needs further discussion. This aspect of the 
well flow will be dealt with later.

4.4.3  Flow through horizontal, shallow, 
partly unconfined aquifer

4.4.3.1  Case I: One-dimensional flow through 
partly unconfined aquifer

A typical case of one-dimensional flow through a partly unconfined aquifer 
is shown in Figure 4.12. It may be reiterated that the discharge potential 
Φ satisfies the two-dimensional Laplace equation in the entire flow region, 
including confined as well as unconfined aquifers. Furthermore, we forced 
the discharge potential to be continuous everywhere within the flow region 
by imposing restrictions on the arbitrary constants (Section 4.3). The con-
tinuous discharge potential is given by the following definition equations:

 
( )( )Φ = Φ = φ −x y x y KH x y KH( , ) , ( , )

2
for confined aquiferc

2
 (4.16)

 
( )Φ = Φ = φx y x y K x y( , ) ( , ) ( ,� )

2
for unconfined aquiferu

2
 (4.17)

From a mathematical point of view, the flow is again governed by the ordi-
nary differential equation

 

Φ =d
dx

0�
2

2

subject to the boundary conditions: Φ = Φ1 and Φ = Φ2 at x = −1/2 L and 
x = +1/2 L, respectively. The solution of this boundary-value problem is

 

( ) ( )
Φ =

− Φ − Φ
+

Φ + Φ
L

x
2

1 2 1 2  (4.44a)

in which Φ1 and Φ2 are defined by definition equations (4.16) and (4.17), 
respectively. Substituting Φ1 and Φ2 in Equation 4.44a yields
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Φ =

− φ −
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
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2
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2
2

1
2

2
2

 

(4.44b)

4.4.3.1.1 Location of interzonal boundary

Let at the interzonal boundary x = xb, the potential Φ = 1/2 KH2. Substituting 
these values in Equation 4.44b yields the following expression:
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Figure 4.12 One-dimensional flow through partly unconfined aquifer.
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 (4.45a)

The right-hand side of the previous equation can be written in dimension-
less form as follows:
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It is evident from the previous equation that xb/L → −1/2 or 1/2 as ϕ1/H → 1.0 
or ϕ2/H→1.0.

4.4.3.1.2 Determination of discharge

As before, the discharge can be evaluated by taking the derivative of the dis-
charge potential with respect to x. Thus, from Equation 4.44b, we obtain 
the following expression for discharge:

 
= = − Φ =

φ −



 − φ
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 (4.46)

4.4.3.2  Case II: Radial flow toward a well 
in partly unconfined aquifer

A typical case is illustrated in Figure 4.13. It is assumed that the aquifer is 
confined at a radial distance r0, and unconfined at the well radius, rw. The 
equation describing the (continuous) discharge potential Φ as a function 
of radial distance r is the same as given before for the case of completely 
confined, or completely unconfined aquifer, that is,

 
Φ =

π
+ ΦQ r

r2
ln �

0
0  (4.32)

Since at r0 the aquifer is confined, the discharge potential is given by the 
following equation:

 
Φ = φ −KH KH1

20 0
2  (4.47)
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Also, since the aquifer behaves as an unconfined aquifer at the well, the 
discharge potential at the well is given by the following:

 
Φ = φK� 1

2w w
2  (4.48)

where the subscript w refers to quantities at the well radius, rw. Combining 
the previous three equations yields
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2Φ = 0

2φ = 0

2Φ = 0

2φ = 0

dΦ
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2Φ(r)= 0; Qr = –

Φ = 1/2Kφ2 Φ = KHφ – 1/2KH2

Figure 4.13 Radial flow through a partly unconfined aquifer.
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2  (4.49)

Equation 4.49 can be rearranged to obtain the following explicit expression 
for the well discharge:
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 (4.50)

4.4.3.2.1 Location of interzonal boundary

In this case, the interzonal boundary represents a cylindrical surface with 
the axis coincident with the axis of the well. At the interzonal boundary, let

 
= φ = Φ =r r H KH; � ; or � 1

2b ��
2  (4.51)

Combining Equation 4.32 with Equations 4.47 and 4.51 yields
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or
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It is obvious that the quantity (2πKH2) must have the dimension of Q, 
because the argument of an exponential function must be dimensionless. 
Let this quantity be denoted by QH so that QH ≡ (2πKH2). It is possible to 
assign a physical meaning to QH. For instance, it represents the (imaginary) 
radial discharge entering the aquifer cylinder of radius and height equal 
to H, under a unit hydraulic gradient. Using QH, the preceding equation 
can be written as

 

= −




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Q
Q H

Hexp 1 ; �b H

0

0
0  (4.52c)

in which quantities within the parentheses are positive. Thus, from this 
equation, one readily concludes that rb → r0 as ϕ0 → H.
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4.5 ILLUSTRATIVE PROBLEMS

4.1 A typical cross section through a confined aquifer traversed by 
two parallel perennial rivers is shown in the following sketch. The 
coefficient of isotropic permeability of the left-half of the aquifer K1 
is three times that of the right-half of the aquifer K2, that is, K1 = 3K2. 
Other pertinent data are given in the sketch. Determine the following: 
(i) pressure at point P and (ii) the coefficients of permeability, if the 
steady discharge per meter width of aquifer (normal to the plane of 
paper) is 1.0 × 10−5 m2/s.

z-axis

x-axis

P

H = 20 m

K1 K2

φ1 = 25 m
φ2 = 22 m

1000 m 1000 m

10 m φ

(i)  Pressure at Point P: We assume that the piezometric head at the 
mid-section of the aquifer is ϕ. The discharge per meter width 
through the left-half of the aquifer is given as

 
( ) ( )

=
φ − φ

Q
K H

L
left-halfx

1 1  (IP4.1.1)

Similarly, the discharge through the right-half of the aquifer is given 
by the following:

 
( ) ( )

=
φ − φ

Q
K H

L
right-halfx

2 2  (IP4.1.2)

Since the flow is in a steady state, with no sink or source within the 
aquifer, the two discharges given earlier must be equal. Thus, equat-
ing the right-hand sides of the preceding two equations yields the 
following:

 ( ) ( )φ − φ = φ − φK K1 1 2 2  (IP4.1.3)

It is given that K1 = 3K2. Thus, substituting the value of K1 in terms of 
K2 in the preceding equation yields, after some rearranging and cancel-
ling the terms, the following expression for the unknown ϕ:
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( ) ( )
φ =

φ + φ
=

× +
=

3
4

3 25 22
4

24.25 m.1 2  (IP4.1.4)

From Equation IP4.1.4, the pressure head at P can be found as follows:

 γ
= φ − = − =p z 24.25 10 14.25 m.  (IP4.1.5)

(ii) Coefficients of permeability: In the formula for discharge

 

( )
=

φ − φ
Q

K H
Lx

1 1  (IP4.1.6)

every variable is known except the coefficient of permeability K1. This 
can be readily found as follows:

 

( )
× =

× −
= ×− −K

K1.0 10
20 25 24.25

1000
; or 6.667 10  m/s.5 1

1
3  

(IP4.1.7)

Finally,

 

( )
= =

×
= ×

−
−K K K

3
; or

6.667 10
3.0

2.222 10 m/s.2
1

2

3
3  (IP4.1.8)

Remarks: The piezometric head, or the pressure head, at point P does 
not depend on the actual values of H, or of discharge Qx, or of the coef-
ficients of permeability, so long as the ratio K1/K2 remains the same.

4.2 A two-dimensional flow field (in x, z-plane) through a shallow hori-
zontal, unconfined aquifer is shown in the following sketch. Using the 
Dupuit–Forchheimer assumptions, find the following: (i) the pressure at 
point P and (ii) the discharge per meter width of aquifer if the coefficient 
of permeability is K = 0.0001 m/s. Assume an isotropic, homogeneous 
aquifer with constant head boundaries at the left and right extremities.

z-axis

x-axis

P
10 m

1000 m

4000 m

K = 0.0001 m/s φ2 = 15 mφ1 = 18 m
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(i)  Pressure at P: Based on the Dupuit–Forchheimer formulation, one 
obtains the following expression for the variation of the discharge 
potential for this problem:

 
( ) ( )Φ = − Φ − Φ + Φ + Φ Φ = φx

L
K1

2
; � 1

21 2 1 2
2  (IP4.2.1)

The preceding equation can also be written in terms of the piezometric 
head ϕ, as follows:

 
( ) ( )φ = − φ − φ + φ + φx

L
1
2

2
1
2

2
2

1
2

2
2  (IP4.2.2)

Let at point P, x = xp and ϕ = ϕp, so that the preceding equation yields 
the following:

 
( ) ( )φ = − φ − φ + φ + φ

x
L

1
2p

p2
1
2

2
2

1
2

2
2  (IP4.2.3)

From the sketch, it can be readily found that φ = 324m ,1
2 2

φ = =x L225m , and / 1/4.p2
2 2  Substituting these values in the previous 

equation yields the following:

 
φ = φ =249.75� m ; or � 15.8 m.p p
2 2

Thus, the pressure head at point P is given by the following:

 γ
= φ − = − =p z 15.8 10 5.8 m.p p  (IP4.2.4)

(ii)  Discharge Qx: The discharge per foot width of the aquifer normal 
to the plane of paper is obtained as

 

( )( )

( )

= − Φ =
Φ − Φ

=
φ − φ

=
−

×
= × −

Q d
dx L

K
L

� 1
2

0.0001 324 225
2 4000

1.238� 10 m /s.

x
1 2 1

2
2
2

6 2  (IP4.2.5)

Remarks: As before, the pressure, or the piezometric head, at point P 
does not depend on the actual value of K. It is independent of K. The 
question to ponder is: What happens to pressure when K becomes zero?

4.3 A well is centrally located in a circular island surrounded by con-
stant-head boundary as shown in the following sketch. Assuming 
an isotropic confined aquifer of depth H = 20 m and the flow in a 
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steady-state condition, find the coefficient of permeability K if the 
steady well discharge is Q = 0.01 m3/s. Other pertinent data are given 
in the following figure.

r0 = 2000 m

rb = 400 m H = 20 m

Q = 0.01 m3/s

φ0 = 22 m

The formula for the interzonal boundary from the text is

 

= − π
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where
H = 20 m
φ = 22 m0

Q = 0.01 m3/s

= =r
r

� 400 m
2000 m

� 1
5

b

0

Substituting the preceding values in Equation IP4.3.1 yields the follow-
ing expression for K:

 

=







− π ×



 −




= × −K

ln 1
5

2 400
0.01

22
20

1
6.4� 10 m/s.5

4.6 EXERCISES

4.1 The piezometric heads in three observation wells are shown in the 
sketch. Assuming a homogeneous, isotropic confined aquifer of depth 
12 m, find the discharge potential Φ(x, y) as a function of x and y if 
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there are no sources or sinks in the vicinity of wells. You may assume 
that the aquifer is shallow and horizontal in x, y-plane. Find Qx, Qy, 
and the maximum discharge Qmax (discharge per width through the 
entire depth of aquifer). The coefficient of permeability is given as 
K = 0.0005 m/s. (Hint: The discharge potential may be assumed as a 
linear function of x and y and, consequently, the flow may be assumed 
rectilinear. A reference to Figure 4.1 in the text may be helpful.)

y-
ax

is

x-axis

Well C: φc = 20 m

Well B: φB = 18 m

Well A: φA = 15 m

500 m

20
00

 m

1500 m

2000 m

4.2 Treating as a shallow, horizontal unconfined aquifer, solve Excercise 4.1, 
using Dupuit–Forchheimer’s assumption. Disregard the aquifer depth, 
with the exception of other pertinent data, in the preceding exercise.

4.3 The following figure describes one-dimensional flow through a partly 
confined aquifer. Find the location of the interzonal boundary. The 
aquifer material is homogeneous, isotropic with coefficient of perme-
ability K = 0.0005 m/s. Other data are shown on the figure. What is the 
discharge Qx?

4000 m

25 m

K = 0.0005 m/s

H = 20 m

18 mxb = ?

4.4 The following figure describes the radial flow toward a well in a partly 
confined aquifer. Find well discharge Q and corresponding rb. Pertinent 
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data are given on the figure. Assume isotropic homogeneous aquifer 
material with K = 0.0005 m/s.

K = 0.0005 m/s
H = 20 m

Q = ?

2rw = 0.5 m

rb = ? 25 m

2000 m

φw = 16 m
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Chapter 5

Laplace equation, superposition 
of harmonic functions, 
and method of images

The solutions of Laplace equation are called harmonic functions. These 
harmonic functions enjoy certain properties that are quite useful in obtain-
ing a variety of solutions to practical problems. Here, we are interested in 
solutions to a number of engineering problems related to the movement of 
groundwater. In this regard, the so-called method of images is of immense 
usefulness in solving the boundary-value problems governed by the Laplace 
equation—especially when the boundary conditions are those that are 
often encountered in practice, but are not readily amenable to analysis.

5.1  SOME IMPORTANT PROPERTIES 
OF HARMONIC FUNCTIONS

Before we start describing the method of images, it is imperative that we 
discuss informally the Laplace equation and its solutions in general terms. 
Those who are interested in a greater precision and mathematical rigor may 
refer, for instance, to Kellogg (1953) and Sneddon (1957). The following 
informal assertions about the subject matter from our perspective are quite 
adequate for the time being.

Assertion 5.1: If Φ1 and Φ2 are two solutions of the Laplace equation, then 
their linear combination Φ = c1Φ1+c2Φ2 is also the solution of the Laplace 
equation, where c1 and c2 are arbitrary constants. This assertion is true 
because the Laplace equation,

 
( )Φ ≡ ∂ Φ

∂
+ ∂ Φ

∂
=x y

x y
� ,� 0,2

2

2

2

2

is a linear homogeneous differential equation. The truth of this assertion 
can be easily demonstrated by substitution of Φ = c1Φ1 + c2Φ2 in the Laplace 
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equation and making use of the fact that Φ1 and Φ2 are harmonic functions. 
For instance,

 
( )Φ + Φ = Φ + Φ = + =c c c c 0 0 02
1 1 2 2 1

2
1 2

2
2

The following are the special cases of linear combinations: Φ = Φ1 + Φ2, 
Φ = c1Φ1, and Φ = c2Φ2. Incidentally, this assertion is also true for a linear 
combination of a number of harmonic functions, greater than two, such as

 Φ = Φ + Φ + + Φc c c .n n1 1 2 2

Assertion 5.2: The maximum or the minimum value of the harmonic func-
tion Φ(x, y) always lies on the boundary of the region.

Assertion 5.3: In a region (bounded by one continuous boundary, or mul-
tiple continuous boundaries), the harmonic function Φ(x, y) is uniquely 
defined for the following types of boundary conditions:

• Type 1 (Dirichlet’s problem): Everywhere on the boundary the poten-
tial Φ(x, y) is specified.

• Type 2 (Neumann’s problem): Everywhere on the boundary, the deriv-
ative ∂Φ/∂n along the outward normal to the boundary is specified.

• Type 3 (Mixed boundary-value problem): In this case, the Type 1 bound-
ary condition is specified on the part of the boundary and the Type 2 
boundary condition is specified on the remaining part of the boundary.

Type 3 is the most general and it contains the remaining two types as par-
ticular cases. Thus, the existence of a unique potential inside the region for 
a Type 3 boundary condition also implies the uniqueness of Φ(x, y) in the 
remaining two cases.

Assertion 5.4: The value of a harmonic function at a given point, (x, y), is 
always equal to the mean value of the function on the circumference of a circle 
with its center at the point (x, y). The radius of the circle is however arbitrary.

Finally, whereas Assertion 5.1 reveals the possibility of multiple har-
monic functions in a given region, Assertion 5.3 limits the multiplicity to a 
unique harmonic function under three types of boundary conditions.

5.2 METHOD OF IMAGES

The method of images is a skillful way of employing the solutions of the 
Laplace equation, valid for an infinite domain, to the practical problems 
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defined generally over a finite (or semi-finite) domain. The method has been 
used previously in the field of electrostatics and heat conduction in phys-
ics. It depends on the superposition of a finite number of harmonic func-
tions, such that a part of the superposed solution of the Laplace equation 
satisfies the specified boundary conditions of a given practical problem. 
Thus, based on Assertion 5.3 stated earlier, the part of the superposed 
solution of the Laplace equation also uniquely defines the actual solution 
of the given problem, if the superposed part happens to meet the actual 
boundary conditions imposed by a given physical problem. The details of 
the method are better understood by an example problem, as shown in the 
following sections.

5.2.1  Well at a finite distance from 
an infinitely long stream

Our goal in discussing this problem is to demonstrate how the mathemati-
cal solution of potential function for the flow field around a well operating 
in the vicinity of a long perennial river can be obtained by simple super-
position of elementary harmonic functions. For this purpose, we take the 
potential function, Φ, of flow field around a fully penetrating well in a 
confined aquifer of infinite extent as the elementary harmonic function. 
We choose two wells located 2d-distance apart as shown in Figure 5.1. In 
this figure, one of the wells is the regular discharge well with discharge 
Q, while the other is a recharge well with discharge –Q. The regular well 
pumps water out of the aquifer, while the recharge well pumps water into 
the aquifer. Throughout this discussion, we shall assume a horizontal, 
homogeneous, isotropic confined aquifer of extensive areal extent with a 
coefficient of permeability K.

The discharge potential for a fully penetrating well in a horizontal con-
fined aquifer of extensive areal extent is given by the following equation:

 
Φ =

π
+Q r C

2
ln1 1 1  (5.1)

where
Q is the steady (not changing with time) well discharge
The variable r1 is the radial distance from the well to a movable point 

P(x, y) where Φ1 is evaluated
C1 is a constant

It is apparent from Equation 5.1 that C1 represents the potential at a dis-
tance r1 = 1. Since potential is always measured with respect to an arbitrary 
datum, it becomes obvious that C1 is an arbitrary constant. Let
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Φ = −

π
+Q r C

2
ln2 2 2  (5.2)

be the discharge potential of a recharge well (discharge equal to −Q), where 
r2 is the radial distance from the recharge well to the point P(x, y), and C2 
is another arbitrary constant. If both the discharge well and the recharge 
well are simultaneously operating in the same horizontal, confined aquifer 
of extensive areal extent, the combined discharge potential Φ, according to 
Assertion 5.1, is given by the following linear combination:

 
( )Φ = Φ + Φ =

π
− + +Q r r C C

2
ln ln1 2 1 2 1 2  (5.3a)

 
Φ =

π
+Q r

r
C

2
ln �1

2
 (5.3b)

where C = C1 + C2 is an arbitrary constant. The resulting flow field is shown 
in Figure 5.2. It is quickly seen from this figure that r1 = r2 represents the 
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Discharge well Q

Recharge well –Q

Figure 5.1 Definition sketch.



Laplace equation, superposition of harmonic functions, and method of images 125

locus of the right-bisector (i.e., a line that bisects a given line segment at 
right-angle) of the line joining the two wells. Hence, along this locus (y-axis 
in Figure 5.2), the discharge potential remains constant, that is,

 Φ = Φ = C0�  (5.4)

Now, if the flow field on the right-hand side of the y-axis, including the 
recharge well, is removed and replaced by some equivalent constant head 
boundary along the y-axis—such as a fully penetrating vertical bank of 
a long perennial river, the effect of this change, mathematically speaking, 
will not even be felt by the flow field on the left-hand side of the y-axis. 
In other words, according to Assertion 5.3, the mathematical solution on 
the left side of the y-axis can also represent a unique harmonic solution 
of the flow field due to a single discharge well, operating in isolation at 
a distance d from an infinitely long perennial river with constant head. 
This situation is shown in Figure 5.3. In this figure, the y-axis represents 
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r2
1 = (x + d)2 + y2
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y
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Real well field Image well field

Φ = Constant surfaces

Φ = Φ0

dd
Discharge well

Figure 5.2 Superposition of two elementary harmonic functions.
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the fully penetrating vertical bank of a perennial river with constant head 
boundary condition, that is, ϕ = ϕ0 and consequently Φ = Φ0(=KHϕ0) as 
shown in the figure.

The recharge well does not exist in reality and is only used as a math-
ematical contraption to obtain a harmonic function that satisfies the actual 
boundary condition of a physical problem. In the literature, the recharge 
well is also called the image well, because it represents the image of the 
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Figure 5.3 A well at a finite distance from an infinitely long perennial river.
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actual well if the constant-head boundary (e.g., y-axis) is regarded as a mir-
ror. Of course, the mirror in this case is somewhat funny, for it changes the 
discharge Q of the real well into discharge –Q of the image well.

What we have hitherto described is the essence of the method of images. 
The method is, however, more general and can be applied to obtain solu-
tions to other problems of practical importance. Further applications are 
discussed later in this chapter.

In order to highlight the essential features of the flow field, Figure 5.4 
has been prepared. With regard to this figure, it is worth mentioning that 
both the discharge and the recharge wells fully penetrate the confined 
aquifer, and the resulting flow field is truly two-dimensional in the x, 
y-plane, with no variation along the z-axis. All surfaces depicting the 
equipotentials and the flow sheets are circular cylindrical surfaces, with 
axes of cylinders parallel to the z-axis. This is mathematically true for 
horizontal confined aquifers of extensive areal extent. Incidentally, the 
depth H, or the coefficient of permeability K, of the confined aquifer does 
not influence the circular cylindrical nature of these surfaces, so long 
as the wells are fully penetrating, depth H remains finite, and the areal 
extent of the aquifer remains infinite. Furthermore, equipotential surfaces 
and flow sheets constitute a set of orthogonal family, because the aquifer 
is isotropic.

z-axis

Flow

Flow

Impervious bedrock

x-axis

y-axis

Recharge well –Q

Discharge well Q

Φ
=

Φ
0

Φ – surface

Figure 5.4 Perspective view of superposition of two elementary harmonic functions.
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Combined discharge potential in rectangular Cartesian coordinate 
system: For further analysis of the flow field around a single well operating 
in the vicinity of a long perennial river, it is more convenient to work with 
the rectangular coordinate system. For this purpose, a reference to Figure 
5.2 will be useful. The Equation 5.3a can be expressed in terms of x, y 
coordinates as shown in the following:

 
{ } { }( ) ( ) ( )Φ =

π
+ + − − +



 + Φx y Q x d y x d y� ,

4
� �ln � ln2 2 2 2

0  (5.5)

The discharge Qx can be easily obtained by differentiating the preceding 
equation as follows:

 
{ } { }
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( )
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
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

Q
x

Q x d
x d y

x d
x d y4
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x 2 2 2 2
 (5.6)

The variation of discharge Qx along the y-axis can be determined by sub-
stituting x = 0 in the preceding equation to obtain

 ( )
= −

π +













Q Q
d y d

1
1 /

x 2
 (5.7a)

which shows that Qx acts always in the negative x-direction, along the 
y-axis. In other words, there is seepage from the river into the confined 
aquifer. Furthermore, the amount of seepage per length of river is a func-
tion of three variables, Q, y, d. The preceding equation can also be written 
in a dimensionless form as follows:

 ( )π
= −

+













Q
Q d y d/

1
1 /

x
2

 (5.7b)

This shows that the dimensionless seepage per length into the aquifer 
from the constant-head boundary is only a function of the dimensionless 
y-coordinate, y/d. The dimensionless seepage profile has also been plotted 
in Figure 5.3 along a segment of the y-axis. Equation 5.7a can further be 
integrated along the y-axis to obtain the time rate of total seepage, Qtotal, 
from the river into the aquifer, as follows:

 
∫=
∞

Q Q dy2total x

0

where, Qtotal is the total seepage volume per time, [L3/T]
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It is left as an exercise for the reader to prove that Qtotal = Q, where Q 
is the steady well discharge [L3/T]. This result, incidentally, also demon-
strates that the solution obtained by the method of images for a single well 
operating in the vicinity of a long river with constant head does indeed 
represent the steady-state condition.

Geometry of equipotential curves: From Equation 5.5, it is possible to 
infer analytically the geometrical features of the equipotential curves. For 
this purpose, Equation 5.5 can be rearranged to obtain the following form:

 

( ) ( )
( )

Φ − Φ
π

=
+ +
− +













x y
Q

x d y
x d y

,
/4

ln0
2 2

2 2
 (5.8)

where the term on the left-hand side, ( )Φ − Φ
π

x y
Q
,
/4

,0  represents the dimen-

sionless potential relative to Φ0. The constant Φ0 represents the discharge 
potential at points determined by r1 = r2. For a given value of well dis-
charge, Q, the potential Φ(x, y) = const represents a curve in the x, y-plane. 
The nature of this curve can be obtained by setting the left-hand side of 
Equation 5.8 equal to a constant. Let this constant be denoted by

 

( )
θ ≡

Φ − Φ
π

x y
Q
,
/4

0

so that Equation 5.8 can be written in the following form:

 

( )
( )

=
+ +
− +

θe
x d y
x d y

2 2

2 2
 (5.9a)

or

 
( ) ( )− +



 = + +





θe x d y x d y2 2 2 2  (5.9b)

After some algebraic manipulations, the preceding equation can be cast in 
the following form:

 
− = − +

−








 +

θ

θd x xd e
e

y2 1
1

2 2 2  (5.10)

By adding [(eθ+1)/(eθ−1)]2d2 to both sides of Equation 5.10, we can obtain 
the following equation:
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For a constant value of θ, Equation 5.11 represents a circle with center at
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and of radius
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The preceding equations can be expressed in a more convenient form utiliz-
ing the normalized coordinates, x/d, y/d and R/d with the result
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The preceding results are graphically shown in Figure 5.5. In the lower 
sketch, the abscissa represents the normalized x-coordinate, while the ordi-
nate represents both the normalized y-coordinate as well as the normalized 
radius of the equipotential circle. The real well is situated at x/d = −1.0 (in 
other words, the well is located at a distance d from the perennial river on 
the negative x-axis). The thick solid curve, identified by C-R in the figure, 
represents the relationship between the normalized x-coordinate of the cen-
ter and the normalized radius of the equipotential circle. A selected number 
of four equipotential circles, with curve parameter
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( )
θ ≡

Φ − Φ
π

= − − − −
x y
Q
,
/4

0.05, 0.10, 0.20, �and 0.400

is shown in this figure. The numerical values representing the progression 
of curve parameter are so chosen that the center of each equipotential circle 
lies on the circumference of the next proceeding circle. The centers of pro-
ceeding equipotential circles tend toward the well axis with a decreasing 
value of curve parameter, θ, as shown in the sketch.

A cross section of the potential surface along the x-axis is shown in the 
upper sketch. It is evident from this sketch that Φ(x, y) = Φ0 at a point where 
x/d = 0. The ordinate in this figure represents the dimensionless potential 
( )Φ − Φ

π
x y
Q
,
/4

0  relative to Φ0, where Φ0 represents the potential at the peren-

nial river as well as at the far field (i.e., x→±∞ or y→±∞).
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5.2.2  Well at a finite distance from an 
infinitely long impervious boundary

As a second application, we find the discharge potential for a well operating in 
the vicinity of a long, straight, fully penetrating impermeable boundary. For 
this purpose, we assume two fully penetrating wells, located at 2d-distance 
apart with equal discharge Q, operating simultaneously in a confined aqui-
fer of infinite areal extent. Following Assertion 5.1, the combined discharge 
potential can be obtained by superposition as follows:

 
( )( )Φ = Φ + Φ =

π
+ + +r r Q r r C C,

2
ln ln1 2 1 2 1 2 1 2  (5.14a)

 
( )Φ =

π
+r r Q r r C,

2
ln �1 2 1 2  (5.14b)

where the subscripts, 1 and 2, refer to the variables associated with the 
two wells, W1 and W2, as shown in Figure 5.6. This figure, incidentally, 
also defines the rectangular Cartesian coordinate system in relation to the 
location of two wells. As in the previous case, the radial distances r1 and r2 
locate the position of the movable point P(x, y), where the discharge poten-
tial is evaluated. We can represent the discharge potential in terms of x, y 
coordinates as follows:

 
{ } { }( ) ( ) ( )Φ =

π
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4
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Discharges Qx and Qy at any point P(x, y) can be obtained by differentiat-
ing the preceding equation with respect to x and y, respectively, that is,
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It is evident that the potential function Φ(x, y)  does not change when x is 
replaced by −x, or y is replaced by −y, in Equation 5.15. Thus, the constant 
Φ−curves are symmetrical about the y-axis, as well as about the x-axis. 
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In three dimensions, a similar symmetry is maintained when the term 
curves is replaced by prismatic surfaces and the y-axis by the y, z-plane 
and the x-axis by the x, z-plane.

By substituting x = 0 in Equation 5.16a, it is clear that Qx = 0 along the 
y-axis. In other words, the combined harmonic function in this case is such 
that there is no flow across the right bisector of the line joining the two 
wells. As a conclusion, we state that in this case the specific discharge vec-
tor q at any point on the y-axis (or y, z-plane) acts parallel to the y-axis. 
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Now, if we remove the right half of the flow field including well W2 and 
replace it with a long, fully penetrating vertical impervious boundary in 
order to ensure zero flow across the y-axis, the flow field on the left half 
(x < 0) will not even feel the absence of the flow field on the right half (x > 0). 
Thus, the flow field on the semi-infinite (x < 0) plane can also represent the 
actual flow field due to a well operating in isolation at a distance d from an 
infinitely long, fully penetrating vertical impervious boundary. This situ-
ation is shown in Figure 5.7. From Equations 5.16a and 5.16b, it is also 
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possible to obtain the following two equations representing the dimension-
less discharge along the x-axis and the y-axis, respectively:

 ( )π
= −

−
Q
Q d

x d
x d/
/

/ 1
x

2
 (5.17a)

 ( )π
= −

+
Q
Q d

y d
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/ 1
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2
 (5.17b)

These profiles of dimensionless discharges are also shown along the x-axis 
and the y-axis in Figure 5.7. It can be seen from this figure that Qx→±∞ 
as x/d approaches the well axis. Also, along the y-axis the discharge Qy 
always acts toward the origin that represents the stagnation point (a point 
where q = 0).

The well W2 that is being removed is called the image well in the lit-
erature. It is not a real well and should be construed simply as a device to 
obtain the harmonic solution to the real boundary-value problem.

To obtain a mathematically acceptable solution to the flow field around 
a well operating at a distance d from an infinitely long, straight impervious 
boundary, we first find the image well by reflecting the actual well about a 
vertical reflecting plane surface located at the impervious boundary. Then, 
we assign the same discharge to the image well as that of the actual well. 
This is in contradistinction to the previous case of the well in the vicinity 
of a constant-head boundary, where the discharge of the image well was 
negatively equal to the discharge of the actual well.

In summary, the discharge of the real and image wells are negatively 
equal to each other in the case of a well operating in the vicinity of a 
straight constant-head boundary; otherwise, the discharge of the well and 
its image well are equal to each other, if the well operates in the vicinity of 
a straight impervious boundary.

5.2.3  Well operating in the vicinity of combined 
impervious and constant-head boundaries

The versatility of the method of images goes beyond the two cases discussed 
in the foregoing. It can be applied to cases such as shown in Figure 5.8. 
In all three cases shown in this figure, the well is operating in the vicinity of 
two straight intersecting boundaries. These boundaries could either repre-
sent the same type or different types of boundary conditions, for example, 
one representing the constant-head and the other representing the impervi-
ous boundary, as shown in Figure 5.8a. This figure is further discussed in 
some detail in the following text.
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Figure 5.8a represents a single discharge well operating in the vicinity of 
two different intersecting straight boundaries. The constant-head bound-
ary is represented by a simple line, while the impervious boundary by a 
shaded (cross-hatched) straight line. The well, as shown by the solid circle 
in the figure, is located at a distance a from the constant-head boundary 
and at a distance b from the impervious boundary. The images of the oper-
ating well through the two boundaries are shown by open circles and are 
labeled as I1 and I2, respectively. It should be recalled that the discharge 
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Figure 5.8  Aquifer bounded by two straight boundaries: (a) Constant-head and impervi-
ous boundaries intersecting at right-angle, (b) two impervious boundaries 
intersecting at right-angle, and (c) two constant-head boundaries intersecting 
at an angle of 45°.
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of the image well is negatively equal to the discharge of the well, when 
reflected through the constant-head boundary. Otherwise, the discharge of 
the image well remains the same as that of the well when reflected through 
the impervious boundary. The image identified by I3 can be viewed in two 
different ways: It could be viewed either as the reflected image of the image 
well I2 through the constant-head boundary (or its extension) or as the 
reflection of the image well I1 through the impervious boundary (or its 
extension). It must however be kept in mind that each reflection through 
the constant-head boundary changes the sign of the discharge, while each 
reflection through the impervious boundary has no effect on the discharge 
of the reflected image. Thus, in order to obtain the flow field in the vicin-
ity of the well bounded by two types of straight boundaries, one needs to 
combine the elementary solution of the well with the elementary solutions 
of three image wells, all operating in the same confined horizontal aquifer 
of infinite areal extent. The combined solution will of course meet the con-
stant head boundary condition at the y-axis and the impervious boundary 
condition on the x-axis. To prove this statement, we proceed as follows. Let 
r, r1, r2, r3 be the radial distances from the actual well and the three images 
I1, I2, I3, respectively, to a movable point P(x, y). Thus, based on Assertion 
5.1, the combined harmonic function can be expressed as follows:
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or, equivalently, as
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(5.18b)

In Equation 5.18b, negative terms in the square bracket indicate that the 
discharges of the image wells, I1, I3 are negatively equal to Q, and C is an 
arbitrary constant. It can be readily seen that when the movable point P(x, y) 
lies on the y-axis, the sum of the terms inside the square bracket becomes 
zero, for r = r1 and r2 = r3. In other words, combined harmonic function is 
such that the discharge potential Φ remains a constant, Φ = C(=Φ0), along 
the y-axis. This constant can appropriately be chosen to correspond with 
the constant head ϕ0 in the perennial river. The important fact, however, is 
to note that Φ remains constant not only along the positive y-axis, but also 
along the negative y-axis, which represents the extension of the boundary 
condition, as shown in Figure 5.8 by a dotted line.

To demonstrate that the combined harmonic function also meets the 
impervious boundary condition on the x-axis, we need to calculate Qy 
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along the x-axis. The discharge Qy(x, y) at any movable point P(x, y) can 
be calculated by a simple partial differentiation of Equation 5.18b with 
respect to y, as follows:
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 (5.19)

From Figure 5.9a, the following relationships can be seen:

 ( ) ( )= − + −r x a y b2 2 2  (5.20a)

 ( ) ( )= + + −r x a y b1
2 2 2  (5.20b)

 ( ) ( )= − + +r x a y b �2
2 2 2  (5.20c)
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Figure 5.9  (a) Definition sketch and (b) invariance of product r · r2, under reflection 
through the x-axis of the variable point P(x, y).
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 ( ) ( )= + + +r x a y b �3
2 2 2  (5.20d)

Differentiating the preceding relationships given in Equation 5.20 with 
respect to y, we obtain the following expressions:
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Now combining Equation 5.19 with Equations 5.20 and 5.21 yields the 
following explicit expression for the discharge in terms of x, y coordinate:
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If we set y = 0 in the preceding equation, we obtain the following result:

 
[ ]( ) =

π
=Q x Q,0

4
0 0y  (5.23)

which is valid for all points on the x-axis. Equation 5.23 shows that the 
combined harmonic function also satisfies the impervious boundary condi-
tion along the x-axis. Again, it is worth noting that the combined harmonic 
function satisfies the impervious boundary condition along the entire 
x-axis—including the extension shown by a dotted line in Figure 5.8.

We can, alternatively, demonstrate that the combined potential in this case 
satisfies the impervious boundary condition along the x-axis, by appeal-
ing to our geometric intuition. For this purpose, we refer to Figure 5.9b. 



140 Mechanics of groundwater in porous media 

It is evident from this figure that the product r · r2 of the radial distances 
remains the same when the movable point P(x, y) is reflected through the 
x-axis to obtain its image P′(x, −y). The same is of course true for the prod-
uct r1 · r3. Now, it follows from Equation 5.18a that the term inside the 
square bracket does not change as the movable point P(x, y) is replaced 
by its reflection through the x-axis. In other words, Φ(x, y) = Φ(x, − y) or 
the potential function Φ is symmetric about the x-axis. Thus, the gradi-
ent vector of Φ, at points on the x-axis, is parallel to the axis. Since, in an 
isotropic medium, the specific discharge vector q is parallel to the gradient 
vector, it follows that, at all those points that lie on the x-axis, the specific 
discharge vector is parallel to the axis. Thus, the combined potential in this 
case leads to a flow field that creates its own virtual impervious boundary 
along the x-axis.

What we have accomplished so far is to find a harmonic function—
defined throughout the x, y-plane—which also meets the constant-head 
boundary condition along the y-axis while maintaining the impervious 
boundary condition along the x-axis. Thus, this harmonic function meets 
all the requirements of the boundary-value problem in the first quadrant of 
the x, y-plane, and based on Assertion 5.3 it is the unique solution to the 
potential field of a well operating in the vicinity of two intersecting straight 
boundaries.

The case shown in Figure 5.8b is either self-explanatory, or its explana-
tion closely follows the previous discussion. A detailed discussion on this 
case is therefore omitted. The situation shown in Figure 5.8c, however, 
needs some explanation. This situation represents in practice the flow field 
of a well operating near the confluence of two perennial rivers. These rivers 
are idealized to represent two straight constant-head boundaries intersect-
ing at an angle of 45°. In order to obtain a harmonic function that meets the 
constant-head boundary conditions at x-x line and xy-xy line, we need to 
combine the elementary solution of the well with other elementary solutions 
of seven image wells, as shown in the figure. The locations of image wells 
are obtained by reflecting alternatively the well through the two straight 
boundary lines. One sequence of such reflections is indicated by arrows in 
the figure. The other sequence of reflections can be similarly obtained by 
first reflecting the well through the x-x line. The other sequence of reflec-
tions is not shown for clarity.

5.2.4  Well between two parallel impervious 
boundaries

As a closing remark, it may be emphasized that a number of images may 
be finite or, in some cases, infinite depending upon the angle between the 
reflecting boundaries. As an example of the latter, consider the infinite 
sequence of images in the case of a well operating between two parallel 
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straight boundaries, as shown in Figure 5.10. This figure illustrates an ide-
alized presentation of a buried alluvial deposit in a more-or-less straight 
river valley. In order to make it amenable to the method of images, the typi-
cal cross section of the buried deposit (Figure 5.10b) is replaced by a uni-
formly confined aquifer of width d and depth H. In the plan view (Figure 
5.10a), the aquifer is represented by an infinite strip (extending along the 
y-axis) of a constant width d bound by two parallel impervious boundaries. 
The problem is to find the flow field in the vicinity of a single well located at 
distances a, b from the left and right impervious boundaries, respectively. 
In order to solve this problem using the method of images, one needs to 

y-axis
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d(a)

a

3.5 2a

4.5 x/d

H

H

ba
d

Real well Q > 0

Impervious boundary

Image well Q > 0

Q > 0

(b)

(c)

Figure 5.10  (a) Plan view of well and its infinite sequence of images, (b) typical buried 
alluvial deposit in a straight river valley, and (c) an idealized uniformly con-
fined aquifer.
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consider an infinite sequence of images, extending on either side of the 
impervious boundaries. Locations of these images can be found from the 
following sequence.

5.2.4.1 Location of image wells on the positive x-axis

From Figure 5.10a, it is seen that the image wells are found in a cluster of 
two wells whose mean location increases in an arithmetic progression from 
the origin. Let n denote the nth term of this sequence, then
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where ( )x d/L n
 and x d( / )R n denote the normalized location of the left and 

the right image wells, respectively, in the nth pair (or cluster).

5.2.4.2 Location of image wells on the negative x-axis

In a similar manner, the location of images on the negative axis can be 
found from the following sequence:
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In the preceding sequence, the term n = 1 should be regarded with an excep-
tion, where ( )x d/R 1

 in fact represents the actual well and not the image.
In practice, it is impossible to handle an infinite array of images. It, there-

fore, becomes necessary to replace the infinite sequence of image wells by a 
finite sequence of images close to the boundaries. If the solution converges 
rapidly, this truncation of infinite sequence works well; otherwise, the more 
sophisticated mathematical analysis based on the use of complex variables, 
or the numerical analysis utilizing the finite difference or the finite element 
method becomes necessary. The numerical methods are discussed later in 
this text; however, the application of complex variables, or theory of func-
tions, is not within the prevue of this book. The interested reader may con-
sult, for example, Rothe et al. (1961), Bear (1988), or Strack (1989).
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5.3 METHOD OF IMAGES FOR CIRCULAR BOUNDARY

So far we have used the method of images with regard to straight constant-
head or impervious boundaries. The genesis of this thought lies in the fact 
that the right-bisector of the line segment joining the well (with discharge 
Q) and its image well (with discharge –Q) represents the straight constant-
head boundary—along which the piezometric head and consequently the 
discharge potential Φ remain constant. However, a review of Figure 5.2 will 
quickly reveal the fact that all equipotential curves, including the y-axis, 
along which Φ remains constant are circular in nature. The y-axis is indeed 
the circular arc of infinite radius. This naturally leads to the possibility that 
the method of images could also be extended to include flow regions with 
circular constant-head boundaries, such as a circular island surrounded by 
a large body of constant-head water. This situation is illustrated in Figure 
5.11. Our objective here is to determine the flow field in the vicinity of a 
well that is eccentrically located with respect to the center of the circular 
island.

The top sketch in Figure 5.11 shows the circular island with radius R and 
the location of the pumping well. The middle sketch shows the cross sec-
tion along the x-axis of the island and its surroundings. The bottom sketch 
shows the relevant geometrical parameters. We assume that the radius R 
and off-set δ of the well off the center of the island are part of the given 
data. Also, on the cylindrical surface at a distance R from the center, the 
(constant) piezometric head is known, that is, ϕ = ϕ0, or Φ = Φ0(=KHϕ0) on 
x′2+y′2 = R2. The x′,y′ coordinate system is located at the center of the island 
as shown in the lower sketch. To find the flow field in the vicinity of the 
eccentric well, we need the location, δ*, of the image well, which can be 
obtained as shown subsequently. From the lower sketch of Figure 5.11, we 
find the following geometrical relations:

 δ = − −x dc  (5.26a)

 δ = − +x d*
c  (5.26b)

Multiplication of preceding two equations yields the following result:

 δδ = −x d*
c
2 2  (5.26c)

Substituting the value of xc from Equation 5.12a into the preceding equa-
tion yields
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By invoking Equation 5.12c, the preceding equation can be represented as 
follows:

 δδ = R* 2  (5.27)

from which the unknown

 
δ =

δ
R* 2

 (5.28)

can be obtained in terms of the known data, R and δ.
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Figure 5.11 Eccentric well in a circular island.
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5.4 ILLUSTRATIVE PROBLEMS

5.1 A well is located at 500 m from a long, straight constant-head bound-
ary aa. The aquifer is uniformly isotropic with coefficient of per-
meability K = 0.00014 m/s. The steady-state piezometric levels at 
observation wells, A and B, are 20 m and 19 m, respectively, as shown 
in the following sketch. If the aquifer remains confined of uniform 
depth H = 8 m, find the following:

 (a) The piezometric level in observation well located at P(1000, 500)
 (b) The steady (not changing with time) discharge Q
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a

B
x-axis

P(1000, 500)1000 m
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H = 8 m 19 m
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d 500 m

500 m

φ = φ0 = 20 m

Part (a): This is a problem where the well is situated near a long 
constant-head boundary. The potential Φ is in general found from the 
following equation:
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Since the aquifer remains confined, the preceding equation can be 
replaced by the following equation:
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2
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where
ϕ represents the piezometric level at the movable point P(x, y)
r1 and r2 represent the radial distances from the well and its image 

to the point P(x, y), respectively
ϕ0 represents the piezometric level in the observation well A (or the 

level in the perennial river)

At observation well B, the following information is known:

 r1 = 1000 m

 r2 = 2000 m

 φ =19mB

 φ =20m0

Substituting the preceding information in Equation IP5.1.2 yields the 
following:
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From Equation IP5.1.3, the following can be obtained:

 π
= − =Q

KH2
19 20
ln(0.5)

1.4427 m  (IP5.1.4)

At point P(1000, 500), the following data can be easily obtained:

 r1 = 707.107 m

 r2 = 1581.14 m

 φ = 20m0

Thus, substituting the preceding values in Equation IP5.1.2 yields the 
following:

 
φ = 




+ =1.4427�ln 707.107

1581.13
�20 18.84m.P
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Part (b): The steady-state discharge can be obtained from Equation 
IP5.1.4 as follows:

 Q  = 1.4427 m × 2π × K × H = 1.4427 m × 2π × 0.00014 m/s × 8 m 
= 0.010 m3/s. 

5.2 A fully penetrating well of radius rw is situated at a distance d from 
a perennial river, as shown in the sketch in section a. Groundwater 
is pumped from the well at a constant rate Q. Assuming the aquifer 
remains confined do the following:

 (a) Develop an expression for time T taken by a nondispersive con-
taminant to travel from the disposal site dc to the well. Assume 
the confined aquifer is homogeneously isotropic with coefficient 
of permeability K, porosity n, and depth H. Ignore the radius rw 
in comparison with d and dc.

 (b) Find the travel time T in years for the following data: d = 1000 m, 
dc = 5000 m, K = 0.0001 m/s, H = 20 m, Q = 0.1 m3/s, and n = 0.25.

Well Q

Contaminant site x-axis

H

y-axis
d dc

φ=φ0    Φ=Φ0  (=KHφ0)

Part (a): The discharge potential Φ(x, y) in this case is given by the fol-
lowing equation:
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where r1 and r2 denote the radial distances from the well and its image 
to a movable point P(x, y), respectively. The reader is reminded that the 
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well in this case is situated at a distance d from the origin of the x, y, 
z-coordinate system on the positive x-axis. Thus, the radial distances 
can be expressed as follows:

 ( )= − +r x d y1
2 2 2  (IP5.2.2a)

 ( )= + +r x d y2
2 2 2  (IP5.2.2b)

The discharge Qx(x,  y) per width normal to the x-axis through the 
entire depth of aquifer can be obtained by a partial differentiation of 
Φ(x, y) with respect to x. Thus, from Equations IP5.2.1 and IP5.2.2, 
we obtain the following expression
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for discharge Qx at any point P(x, y). In order to obtain the discharge 
along the x-axis, we set y = 0 in the preceding equation to obtain
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From Equation IP5.2.4, it is evident that Qx is negative for points on 
the x-axis, meeting the inequality requirement x > d. In other words, 
the discharge is toward the well. The x-component, qx, of the specific 
discharge vector can be readily obtained from the preceding equation 
as follows:
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Equation IP5.2.5 describes the variation of qx along the x-axis. The 
term nondispersive contaminant implies that the contaminant does not 
diffuse or disperse during convection by the flow. Thus, the contami-
nant travels with the average seepage velocity, v, through the aquifer. If 
x = x(t) denotes the location of a parcel of contaminant on the x-axis at 
any time t, then the velocity of this parcel is given by

 
( ) =v t dx

dt
Since the average seepage velocity, v, and the specific discharge, q, are 
related by equation nv = q (see Chapter 2, Equation 2.50), it follows 
from Equation IP5.2.5 that the following statement is true:
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where n denotes the areal (and also the volumetric) porosity. Thus, the 
migration of a nondispersive contaminant along the x-axis is governed 
by the following differential equation:
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The preceding differential equation is separable, for n, Q, d, and H are 
given (or known) constants. This equation can be integrated to obtain
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where T denotes the time taken by the nondispersive contaminant to 
travel from the disposal site, x = dc, to the well, x = d. The solution of 
the preceding differential equation can be written in a dimensionless 
form as follows:
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The denominator on the right-hand side has the dimension of time, and 
for a given problem, this time is a unique constant. Let this constant 
be denoted by

 
τ ≡ πHd

Q

2

It is possible to give this constant a physical meaning, for instance, 
it represents the time to empty a full cylindrical tank of radius d and 
height H while emptying the tank at a constant rate Q. A graph of 
Equation IP5.2.7 is illustrated in the following figure. In this graph, 
the abscissa denotes the normalized coordinate x/d, and the ordinate, 
the dimensionless time, T/τ. The curve parameter represents the poros-
ity, n, of the aquifer. The curve with the curve parameter n = 1 is not 
physically realistic for aquifers and is only shown for completeness. 
Likewise, the curve for n = 0 is a degenerate case. Despite these com-
ments, the following observations are pertinent:
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 (i) The travel time does not depend on the coefficient of permeability 
K, as long as the well is pumped at a constant rate of Q and the 
aquifer remains confined.

 (ii) Reducing the porosity n of the aquifer (for instance, by compac-
tion) only aggravates the travel time of the nondispersive contami-
nant. In other words, less porous aquifers transmit a contaminant 
at a faster rate, provided the well discharge is kept at the same 
constant rate Q and the aquifer remains confined.

At first glance, the preceding comments seem to defy common sense, 
but a moment of reflection reconciles the apparent contradiction in 
thought. The basic physical concepts involved in arriving at these con-
clusions are the notion of continuity of flow and the notion of average 
seepage velocity. As long as the flow field is continuous, the travel time 
decreases with a decrease in porosity.

d
dc

Well Q

Contaminant site

HConstant head

x-coordinate x/d

50

40

x

y

n=
1.0

n=0.5

n = 0.25

d

dc

Contaminant site

30

20

10

0
1 2

D
im

en
sio

nl
es

s t
ra

ve
l t

im
e T

/τ

3 4 5 6

τ = πHd2

Q



Laplace equation, superposition of harmonic functions, and method of images 151

Part (b): For this problem, the value of K is not germane. Substituting 
the appropriate values for other variables in Equation IP5.2.7 yields 
the required answer for T as follows:

The normalizing time,

 

τ = π = π × ×
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3

For this problem, the disposal site is located at the normalized dis-
tance, dc/d = 5. Thus, substituting this value in the left-hand side of 
Equation IP5.2.7, along with a value of porosity, yields the following 
result:
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Finally, the travel time is obtained as follows:

 T = 9.33333 × τ = 9.33333 × 7272.2 day

 
= × ×









 =T 9.33333 7272.2 day 1year

365day
186year

5.3 A fully penetrating well with eccentricity ratio δ/R = 0.5 is located in a 
circular island of diameter 4000 m. The island is surrounded by a 
freshwater lake of depth 20 m. The average depth of the confined aquifer 
is estimated to be H = 10 m (see the following figure).

 (a) Find the maximum steady discharge of the well so that the aquifer 
remains confined, if the radius of the well rw = 0.25 m, and the 
estimated coefficient of isotropic permeability K = 0.00015 m/s.

 (b) Repeat the same problem if the well is centrally located, that is, 
δ/R = 0.0. Compare the results in the two cases.
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Part (a): The discharge potential Φ at any point P(x′, y′) is given by the 
following equation:

 
Φ =

π








 +

Q r
r

C�
4

ln 1
2

2
2  (IP5.3.1)

where
r1 and r2 depend on the location of the movable point P(x′, y′)
C is an arbitrary constant

If desired, the radial distances can be expressed in terms of x′ and y′ 
coordinates by the following equations:

 ( )= ′ − δ + ′r x y1
2 2 2  (IP5.3.2a)
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( )= ′ − δ∗ + ′r x y2

2
2

2  (IP5.3.2b)

 
δ =

δ
R* 2

 (IP5.3.2c)

Determination of arbitrary constant C: The arbitrary constant in 
Equation IP5.3.1 can be determined by invoking the condition on the 
circumference of the island, that is, Φ = Φ0 = KHϕ0 = 0.00015 m/s × 
10 m × 20 m = 0.030 m3/s. Since Φ = Φ0 is constant at every point on 
the circumference, this must also be true for a particular point S on 
the circumference. Thus, at point S, the following statements are true:

 Φ = Φ (a known constant)0  (IP5.3.3a)

 ( )= − δr R1
2 2

 (IP5.3.3b)

 
( )= − δr R *

2
2

2
 (IP5.3.3c)

Substituting the preceding values in Equation IP5.3.1 and replacing δ* 
by R2/δ yield the following expression for the arbitrary constant:

 
= Φ −

π
δC Q
R4

ln0

2

2  (IP5.3.4)

Thus, combining Equation IP5.3.4 with Equation IP5.3.1 yields the 
potential at any point in terms of the known parameters of the prob-
lem, as follows:

 
Φ =

π
+

δ




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+ ΦQ r

r
R

2
ln ln1

2
0  (IP5.3.5)

For the aquifer to remain confined, the piezometric head at the well 
must not fall below 10 m. It is, therefore, true that the preceding equa-
tion reduces to the following at the circumference of the well:

 
Φ =

π
+

δ




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+ ΦQ r

r
R�

2
ln lnw

w

2
0  (IP5.3.6)

where

 Φ = φ = × × =KH 0.00015�m/s 10m 10m 0.015m /sw w
3

 =r 0.25mw
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 δ = 1000 m
 R = 2000 m

 = − ≅r 3000m 0.25m 3000m.2

Substituting the preceding values in Equation IP5.3.6 yields the 
following:

 
=

π
+




+Q0.015m /s

2
ln 0.25
3000

ln 2000
1000

0.030m /s3 3

from which the unknown Q can be obtained as

 Q = 0.0108 m3/s (IP5.3.7)

Part (b): In this case, there is complete axial symmetry. Hence, the fol-
lowing equation can be used:

 
( )Φ =

π





+ Φr Q r

r2 0
0

Substituting r = rw = 0.25 m and r0 = R = 2000 m in the preceding equa-
tion yields the following:

 
=

π





+Q0.015m /s

2
ln 0.250
2000

�0.030m /s3 3

From the preceding equation, Q is obtained as

 Q = 0.0105 m3/s. (IP5.3.8)

Now, comparing this value of Q with the previous value (Equation 
IP5.3.7), it is obvious that the two values differ by less than 5% despite 
the fact that the eccentricity ratio in the two cases differ by as much as 
50%. This conclusion is in conformity with the previous findings (see 
page 80 of Todd [1959]).

5.5 EXERCISES

5.1 For Illustrative Problem 5.1, determine the contour of the piezometric 
surface that passes through the observation well B. The contour of 
the piezometric surface is a curve along which the piezometric level 
remains the same. (Hint: In this case, we know the contours are circu-
lar curves. Find the point closest to the constant-head boundary where 
the piezometric head is the same as ϕB = 19 m. Then find the diameter 
and the radius of the circular contour.)
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5.2 For the case discussed in Illustrative Problem 5.1, prove the aquifer 
remains confined, if the well radius rw = 0.25 m.

5.3 Prove that the definite integral

 
∫=
∞

Q Q dy2total x

0

represents the steady (not changing with time) well discharge Q, if (see 
Equation 5.7a)

 ( )
= −

π +













Q Q
d y d

� 1
1 /

x 2

where Q and d are constants.
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Chapter 6

Flow net

In this chapter, we intend providing the theoretical basis and the imple-
mentation of the graphical method, commonly called the method of flow 
net, for estimating seepage and pore (uplift) pressure in a two-dimensional 
groundwater flow. Although the graphical method can be applied to 
two-dimensional flows in a horizontal plane, it is mostly applied to two-
dimensional flows in a vertical plane, under hydraulic structures, especially 
by civil engineers. Through most of this chapter, we shall assume that the 
vertical plane is spanned by x, y coordinates of a rectangular Cartesian 
coordinate system, where y-axis points vertically upward. We shall first 
describe the method of flow net for an isotropic, homogeneous aquifer; 
later, we shall extend the method to include anisotropic, heterogeneous 
media. We must, however, state that the graphical method of flow net is 
not applicable to three-dimensional flow fields.

6.1 ISOTROPIC CASE

In the case of steady two-dimensional (planar) groundwater flows in homo-
geneous, isotropic media, we know from Darcy’s law that the components 
of the specific discharge vector q = (qx, qy) at any point (x, y) can be derived 
from a potential function as shown in the following:

 
= − ∂Φ

∂
q x y x y

x
( , ) ( ,� )

x  (6.1a)

 
= − ∂Φ

∂
q x y x y

y
( , ) ( ,� )

y  (6.1b)

where the potential function Φ(x, y) = Kϕ(x, y) + C. Here, the symbols K 
and ϕ have their usual meanings: the isotropic coefficient of permeability 
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and the piezometric head at any point (x, y) in the planar flow field. We can, 
for convenience, set the arbitrary constant, C, to zero. This is tantamount 
to setting the arbitrary datum for Φ and ϕ at the same level. In order for Φ 
to be called a potential function, Φ must also satisfy the Laplace equation. 
Since by hypothesis the flow is in a two-dimensional, steady state, it must 
satisfy the continuity equation:

 

∂
∂

+
∂
∂

=q
x

q
y

0x y  (6.2)

Although it is not shown explicitly, it is understood that qx and qy are func-
tions of two independent coordinates x and y. Now, by substituting the 
expressions of qx and qy from Equation 6.1 into Equation 6.2, we readily 
see that Φ is indeed a harmonic function. It is, therefore, properly called 
the potential function. A flow field in which the velocity components are 
derivable from a scalar potential and which also satisfies the continuity 
equation is called a potential flow in fluid mechanics. Thus, a steady two-
dimensional groundwater flow in an isotropic, homogeneous aquifer can 
also be called a potential flow.

Now, for a planar flow, Φ(x, y) is a scalar function of two independent 
spatial coordinates x, y. Thus, Φ(x, y) = constant represents a curve in the 
x, y-plane (Figure 6.1). This curve is also called an equipotential curve, 
because along this curve potential remains the same. Thus, along this 
curve, the differential dΦ = 0. We know from calculus that the exact dif-
ferential of Φ(x, y) is given by the following equation:

Impervious boundary

Constant head boundary

φ1
φ2

φ1 > φ2 Equipotential curve

Flow

Figure 6.1 Definition sketch for an equipotential curve.
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Φ = ∂Φ

∂
+ ∂Φ

∂
d

x
dx

y
dy  (6.3a)

Thus, along Φ(x, y) = constant curves, the following must be true:

 
( )Φ = ∂Φ

∂
+ ∂Φ

∂
= − + =d

x
dx

y
dy q dx q dy 0�x y  (6.3b)

where the second equality follows from the fact that the flow is a poten-
tial flow. The last equation yields the following differential equation for 
Φ(x, y) = constant curves:

 
= −Φ=

dy
dx

q
q

| const
x

y
 (6.4)

Let us, now, consider a steady two-dimensional flow field in a region devoid 
of any point source or sink, as shown in Figure 6.2. Since the flow field is 
steady, the discharge, per width normal to the plane of paper, across curve 
I must be the same as the discharge across curve II. In other words, the 
discharge depends on the locations of point s1 and s2 only and not on the 
geometry of the curve, per se. Thus, the following line integral

 

qq nn∫ ∫ ( )= ⋅ = +Q �ds q n q n ds
s

s

x x y y

s

s

1

2

1

2

 (6.5)

must be independent of the actual path of integration. This is only possible 
if the expression q ⋅ n ds is an exact differential of some function of x and y. 
Let this function be denoted by Ψ(x, y). Thus,

 
∫ ∫ ( )= Ψ = +
Ψ

Ψ

Q d q n q n dsx x y y

s

s

1

2

1

2

 (6.6a)

and

 = Ψ − ΨQ 2 1  (6.6b)

The preceding argument is predicated on the premise that the flow field 
is steady and planar. It does not assume that the velocity field is derivable 
from a potential. Thus, for all planar flow fields (whether potential or not), 
which happen to be in steady-state conditions, there exist scalar functions 
Ψ(x, y), such that the preceding two equations are satisfied. This reasoning 
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only establishes the existence of Ψ(x, y) in planar, steady flow fields but 
reveals little on the physical nature of such functions, other than that envi-
sioned earlier. To further explore the physical meaning and other math-
ematical manifestations of such functions, we proceed as follows.

Equating the expressions inside the integral signs of Equation 6.6a, 
we get

 ( )Ψ = +d q n q n dsx x y y  (6.7)

where (see Figure 6.2)

 
= δ

δ
=δ →n y

s
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ds

limx s 0  (6.8a)

 
= − δ

δ
= −δ →n x

s
dx
ds

limy s 0  (6.8b)
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Figure 6.2 Two-dimensional steady flow and stream function.
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or

 ( )Ψ = −d q dy q dxx y  (6.9a)

From calculus, the exact differential of a function Ψ(x, y) is given by the 
following equation:

 
Ψ = ∂Ψ

∂
+ ∂Ψ

∂
d

x
dx

y
dy  (6.9b)

Thus, from Equations 6.9a and 6.9b, we obtain the following:

 
( )Ψ = − = ∂Ψ

∂
+ ∂Ψ

∂
d q dy q dx

x
dx

y
dyx y  (6.9c)

or
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


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y
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Since dx and dy are independently arbitrary (i.e., one can change arbitrarily 
dx or dy without simultaneously changing the other), it follows from the 
last equation that the following two equations must be true:

 
= + ∂Ψ

∂
q

yx  (6.10a)

 
= − ∂Ψ

∂
q

xy  (6.10b)

The last two equations show that the components of specific discharge vec-
tor q are also related to the partial derivatives of Ψ(x, y).

Now, we introduce the notion of a streamline in groundwater flow, par-
allel to a similar concept in fluid mechanics. A streamline is an imaginary 
line (in general, a curved line) in a groundwater flow field such that at every 
point on this line the specific discharge vector q is tangential to the line. 
Although the concept of a streamline is valid for a three-dimensional flow 
field, we restrict it to two-dimensional planar flows only. Thus, the tangent 
at any point of a streamline must satisfy the following differential equation 
(see Figure 6.3):

 
=dy

dx
q
q

| streamline y

x
�  (6.11)
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Since Ψ(x, y) is a function of two independent variables, x and y, Ψ = constant 
represents a curve in x, y-plane. Along this curve, dΨ = 0. Hence, setting the 
differential dΨ in Equation 6.9a equal to zero gives the following differen-
tial equation for all Ψ = constant curves:

 
=Ψ=

dy
dx

q
q

| const
y

x
 (6.12)

Comparing Equation 6.12 with Equation 6.11, it becomes clear that 
Ψ = constant curves are the same as streamlines, for their differential 
equations are the same. It is for this reason that the scalar function Ψ(x, y) 
is called the stream function, because for arbitrary values of constant C, 
Ψ(x, y) = C represents a family of streamlines in the flow field.

At a give point (x, y), the slope of Φ(x, y) = constant curve is given by 
Equation 6.4 and, at the same point, the slope of Ψ(x, y) = constant curve 
is given by Equation 6.12. Thus multiplying the two slopes, we obtain the 
following:
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q

q
q

| | 1const const
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 (6.13)

This implies that the constant-Ψ and constant-Φ curves intersect each other 
at right angles. Thus, these curves constitute the so-called orthogonal 

Streamline

y-axis

Tangent at P(x, y)

x-axis

dx

dy

qy

q

qx

P(x, y)

Figure 6.3 Definition sketch for the derivation of streamlines.
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trajectories. It is worth stressing at this point that the orthogonal inter-
section of these curves is only ensured in steady, planar groundwater 
flows in homogeneous, isotropic aquifers. If the medium is not homoge-
neously isotropic, the specific discharge vector q(qx, qy) is not derivable 
from a scalar potential function Φ. Likewise, if the flow is not steady and 
planar, the stream function Ψ does not exist. In other words, if either Φ 
or Ψ does not exist, it is mute to talk about orthogonal trajectories.

Finally, if both potential (Φ) and stream functions (Ψ) exist, then each 
family contains infinitely many members (or curves), because there are 
infinitely many solutions to a differential equation, such as Equation 6.4 
or 6.12. However, a finite number of these orthogonal trajectories can be 
obtained graphically. Such a finite number of orthogonal trajectories con-
stitute the so-called flow net for the given problem.

It is sometimes more convenient to work with the piezometric head ϕ, 
instead of Φ. In this regard, it is worth stressing that along an equipo-
tential curve both ϕ and Φ (=Kϕ) remain constant. Thus, ϕ = constant 
curves also intersect streamlines orthogonally. It is therefore evident 
that constant piezometric head lines and streamlines also constitute the 
orthogonal trajectories. A finite number of these orthogonal trajecto-
ries can be used to find flow net for a given problem. The guidelines for 
obtaining the graphical solution are further discussed using a concrete 
example.

6.1.1  Example of flow-net construction and analysis

An example of flow net is shown in Figure 6.4. In this figure, AB and CD 
represent that part of the boundaries where the piezometric head ϕ is 
known. Because of the presence of large bodies of water in a quasi-static 
state, the piezometric head along these boundaries is assumed constant. 
For instance, on AB, the piezometric head ϕ = 18 m and on the boundary 
CD, ϕ = 2 m. For the purpose of assigning numerical values to ϕ, the arbi-
trary datum is assumed at the same level as that of AB. A part of the top 
segment of the flow region, denoted by 1-2-3-4-5, represents a streamline 
along which Ψ remains constant. It is assumed, for convenience, that the 
contact line between the structure and the aquifer represents a streamline 
because of the substantial difference between the coefficients of permeabil-
ity of the aquifer and the concrete structure. Likewise, the lower boundary, 
denoted by 6-7, represents another streamline, which represents another 
Ψ = constant boundary.

In the foregoing theoretical development, we have seen that the Ψ = 
constant curves (streamlines) intersect ϕ = constant curves (equipotential 
lines) at right angles. During the graphical construction of flow net, this 
fact is kept in mind, while sketching the Ψ = constant (streamlines) and 
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the ϕ = constant (equipotential) lines to cover the main portion of the flow 
domain. To start the drafting process, two or three streamlines are ten-
tatively sketched, making sure they intersect at right angles to the known 
equipotential lines at AB and CD. Then, two or three equipotential lines 
are tentatively sketched, making sure that they intersect the known stream-
lines, such as 1-2-3-4-5 and 6-7, at right angles. In addition, they should 
also intersect the tentatively drawn streamlines close to right angles. If the 
intersections between the tentatively drawn streamlines and equipoten-
tial lines are far from being at right angles, they are continually adjusted 
until they approximately satisfy this condition. During this trial-and-error 
effort, the intersections of streamlines at the known boundaries, such as 
AB and CD, are kept at perfect right angles. Likewise, the intersections 
of sketched equipotential lines with the known streamlines, such as 1-2-
3-4-5 and 6-7, are maintained at right angles. During this process, the 
experience of the draftsman and familiarity with previously well-drawn 
flow nets—especially with similar flow domain and specified boundary 
conditions—are extremely important. Although drawing good flow nets 
is an art, this skill can be developed by an initiated beginner with enough 
practice.

Once the task of drawing the initial streamlines and equipotential lines is 
satisfactorily accomplished, the task of filling in the remaining flow domain 
with additional streamlines and equipotential lines begins.
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Figure 6.4 An example of flow net in a homogeneous, isotropic aquifer.
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With regard to the construction of flow net, the following guidelines are 
helpful:

 1. The streamlines and equipotential lines should be smooth curves and 
intersect each other orthogonally. Realizing that the top streamline 
(1-2-3-4-5) is very convoluted and the lowest streamline (6-7) is rather 
straight forward, it is helpful to perceive a gradual transition from the 
top to the lowest streamline while sketching intermediate streamlines.

 2. Each flow channel, contained between two consecutive streamlines, 
must preferably carry equal amount of flow.

 3. Although the theory demands only orthogonal intersection between 
the streamline and the equipotential line, it puts no restrictions on the 
aspect ratio (ratio between length and width) of the individual cell of 
the flow net—whether it should represent a curvilinear square or a 
curvilinear rectangle.

 4. However, from a practical point of view, if we plan to use the flow net 
to estimate seepage through the aquifer, or predict the uplift pressure 
due to porewater, it is incumbent upon the analyst to draw the flow 
net with individual cells consisting of curvilinear squares. Only in 
such a case, different flow channels carry equal amount of flow, and 
the consecutive equipotential lines represent equal drop in the piezo-
metric head.

 5. Although not necessary, it is however convenient to maintain an 
aspect ratio of one. In other words, each cell of the flow net should 
represent a curvilinear square.

In the construction of flow net exemplified in Figure 6.4, the aforemen-
tioned guidelines have been used with reasonable adherence. In such a flow 
net, the individual cell can be inscribed by a circle. A typical inscribed circle 
with curvilinear diameters labeled as Δs and Δn is also shown in the figure. 
The inscription of a circle, thus, demonstrates that the individual cell rep-
resents a curvilinear square instead of a curvilinear rectangle. It is this cell 
that approaches a perfect square as its diameter reduces ad infinitum.

The quantitative application of the flow net to the estimation of seepage 
and uplift pressure is described in Illustrative Problem 6.1.

6.2 ANISOTROPIC CASE

We assume that a given medium is homogeneously anisotropic with prin-
cipal values of permeability ′Kxx and ′Kyy in the principal directions, which 
are taken along x′-axis and y′-axis, respectively. In this medium, accord-
ing to Darcy’s law, the components ′qx and ′qy of the specific discharge 
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vector, along the principal directions, at any point (x′, y′), are given by the 
following equation:

 
( )′ ′ ′ = − ′ ∂φ

∂ ′
q x y K

x
,�x xx  (6.14a)

 
( )′ ′ ′ = − ′ ∂φ

∂ ′
q x y K

y
,�y yy  (6.14b)

If the flow is two dimensional in a steady-state condition, the following 
continuity equation must be satisfied:
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=q
x

q
y
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It may be emphasized that the continuity equation is valid for both iso-
tropic and anisotropic media, as long as the fluid and the porous medium 
remain incompressible, and the flow field is in a steady-state condition. 
Substituting the components of the specific discharge vector from Equation 
6.14a and 6.14b into Equation 6.15 yields the following:
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+ ′ ∂ φ
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x
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2

2

2

2  (6.16)

It is evident that ϕ is neither a potential function nor it satisfies the Laplace 
equation, for Equation 6.16 does not lead to the Laplace equation as long 
as ′ ≠ ′K K .xx yy  In other words, the scalar function ϕ(x′, y′) does not satisfy 
the Laplace equation in anisotropic media. It is therefore not a potential 
function and the resulting flow field (Equations 6.14a and 6.14b) is not a 
potential flow field. Thus, in anisotropic media, constant-ϕ curves do not 
intersect constant-Ψ curves at right angles.

At this juncture, we ask whether it is possible to transform the physical 
flow region into a fictitious flow region where Equation 6.16 indeed reduces 
to the Laplace equation. The short answer is yes, and it can be easily justified 
by choosing the following transformation:

 x = x′ (6.17a)

 y = βy′ (6.17b)

In the aforementioned equations, x y coordinates span the new fictitious 
plane, β is a magnification factor (if β > 1), x′ y′ coordinates span the aniso-
tropic physical plane, and the two sets of coordinate axes—x′-axis, y′-axis 
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and x-axis, y-axis—are, respectively, parallel under the aforementioned 
transformation.

This transformation maps an antecedent point P′(x′, y′) onto an image 
(transformed) point P(x, y) (Figure 6.5). Thus, in general, under this trans-
formation, the x coordinate of P becomes some function of x′, y′; that 
is, x = x(x′, y′), because image P depends on the location of its antecedent 
point P′, defined by its coordinates (x′,y′). Likewise, y = y(x′, y′). Now let 
the scalar function ϕ be known as an explicit function of x, y coordinates 
of the transformed region; that is, ϕ = ϕ(x, y). Then, the scalar function can 
also be written as an implicit function of x′, y′ coordinates as shown in the 
following:

 
( ) ( )φ = φ ′ ′ ′ ′ x x y y x y,� ,� ,�  (6.18)
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Figure 6.5  Mapping of an anisotropic aquifer to a fictitious isotropic flow domain, using 
transformation Equation 6.17.
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Using the rule for partial differentiation of implicit functions, we obtain

 

∂φ
∂ ′

= ∂φ
∂

∂
∂ ′

+ ∂φ
∂

∂
∂ ′

= ∂φ
∂x x

x
x y

y
x x

 (6.19a)

 

∂φ
∂ ′

= ∂φ
∂

∂
∂ ′

+ ∂φ
∂

∂
∂ ′

= β ∂φ
∂y x

x
y y

y
y y

 (6.19b)

In the second equality, in Equations 6.19a and 6.19b, we have made use of 
the fact that the following are true under the transformation law (Equations 
6.17a and 6.17b)
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In a similar manner, we can show that the following transformations of 
second partial derivatives are also true:
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Substituting the above-mentioned second-order partial derivatives into 
Equation 6.16 yields the following:

 
′ ∂ φ
∂

+ ′ β ∂ φ
∂

=K
x

K
y

0xx yy

2

2
2

2

2  (6.22)

If we choose ′ β = ′K K ,yy xx
2  Equation 6.22 reduces to the Laplace equation in 

the transformed region spanned by coordinates x and y. Thus, in a trans-
formed space mapped by Equations 6.17a and 6.17b with β = ′ ′K K ,xx yy  
the scalar function ϕ becomes a harmonic function and the flow becomes 
the planar potential flow. In such a flow field, ϕ and Ψ curves constitute 
orthogonal trajectories, and, consequently, the construction of an orthogo-
nal flow net becomes possible.

6.2.1  Equivalent permeability in 
transformed regions

In the foregoing, we found a way to transform a homogeneous, anisotro-
pic region into a fictitious homogeneous, isotropic region in which Ψ and ϕ 
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curves intersect at right angles. These orthogonal trajectories can be further 
converted to skewed trajectories by the inverse transformation (Figure 6.5). 
Thus, the function ϕ and the corresponding pressure head (p/γ) can be found 
at any point (x′, y′) in the real anisotropic aquifer. However, the question that 
remains is: How do we find an equivalent isotropic coefficient of permeabil-
ity, Ke, such that the seepage per width normal to the plane of paper through 
the transformed isotropic flow region remains the same as that through the 
real anisotropic aquifer? To answer this question, we proceed as follows:

In an attempt to answer this question, Figure 6.6 has been prepared. In 
Figure 6.6, a differential element A′B′C′ is shown, which under transfor-
mation becomes the differential element ABC as shown in the figure. We 
require that the differential discharge, dQ′, across the differential line seg-
ment, B′C′, should be the same as the differential discharge, dQ, across 
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(b)
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Figure 6.6  Definition sketch for equivalent isotropic coefficient of permeability: 
streamlines and differential element in (a) a fictitious isotropic aquifer and 
(b) a real anisotropic aquifer.
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the transformed line segment, BC. The differential discharge across the 
differential line segment B′C′ is given by the following:

 qq nn ( )′ = ′ ⋅ ′ ′ = ′ ′ + ′ ′ ′ = ′ ′ − ′ ′dQ ds q n q n ds q dy q dxx x y y x y  (6.23a)

Since ′qx and ′qy are the components of the specific discharge vector along 
the principle directions of the anisotropic aquifer, they can be written using 
Darcy’s law as shown in the following:

 
′ = − ′ ∂φ

∂ ′
q K

xx xx  (6.23b)

 
′ = − ′ ∂φ

∂ ′
q K

yy yy  (6.23c)

Substituting the values of qx′ and qy′ from Equations 6.23b and 6.23c into 
Equation 6.23a yields the following expression for the differential dis-
charge across the differential line segment B′C′:
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Now, let us look at the discharge across the differential segment BC after 
transformation. This differential discharge is given by the following 
equation:
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where Ke denotes the equivalent isotropic coefficient of permeability (yet to 
be determined) of the fictitious isotropic aquifer. From the transformation 
law (Equations 6.17a and 6.17b), we note the following:
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Substituting these values from Equations 6.26a and 6.26b into Equation 
6.25 yields
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Since we require that the differential discharge, dQ′, given in Equation 
6.24, should be equal to the differential discharge, dQ, given in 
Equation 6.27, the right-hand sides of these two equations should also 
equal each other; that is,
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Since dx′ and dy′ are independently arbitrary, and both partial derivatives 
∂ϕ/∂x′ and ∂ϕ/∂y′ cannot simultaneously vanish (if they do, the groundwa-
ter flow is stagnant), it follows that

 
′ = β ′ =

β
K K K Kand/or � 1
xx e yy e�  (6.30)

Thus, if we demand that the discharge per width normal to the paper should 
be the same in both cases—the real anisotropic aquifer and the fictitious 
isotropic aquifer—then the equivalent coefficient of isotropic permeability 
of fictitious aquifer should be

 
= ′ ′K K Ke xx yy  (6.31)

Equation 6.31 finally gives the required result.

6.2.2  Example of flow-net construction in a 
homogeneous, anisotropic aquifer

The entire process of flow-net construction in a homogeneous, anisotropic 
flow domain requires three separate but complementary steps:

 1. Mapping the anisotropic real flow domain into a fictitious isotropic 
domain, using the transformation indicated in Equations 6.17a and 
6.17b. This aspect of the solution is illustrated in Figure 6.7.

 2. Finding a flow net in a fictitious isotropic domain where the Laplace 
equation is valid; thus, the flow is potential and the construction of 
an orthogonal flow net is possible. This aspect of the solution is illus-
trated in Figure 6.8.
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K ýy

Tran
sfo

rm
ati

on

2a

B

6

A

a

x-ax
is

y-axis

x= x¢

y=βy¢

B¢A¢

Homogeneous, anisotropic, real aquifer

Ke

D
C

7

Fictitious homogeneous, isotropic

y¢-axis

6' 7¢

C ¢ D¢

x¢-
axi

s

K¢ xx

K¢ xx

K¢ yy

K¢ yy

= 4 
   β

 = 2
Figure 6.7 Mapping of real anisotropic flow region onto fictitious isotropic flow region.

Fictitious homogeneous, isotropic

A B C D

Ke

y-axisy¢-axis

x-
ax

is
x¢-

ax
is

A¢

C¢
D¢

7¢

6 7
6¢

Transformation
x = x¢
y = βy¢

Figure 6.8  Flow net for fictitious isotropic flow region. Notes: Primed quantities refer 
to anisotropic aquifer. Unprimed quantities refer to fictitious isotropic flow 
domain. Coordinate axes are along principal directions of anisotropy of real 
aquifer.



Flow net 173

 3. Finally, finding the flow net (not necessarily orthogonal) for the actual 
anisotropic flow region using the inverse transformation and proceed-
ing with the quantitative estimates, if so desired, for the seepage and 
the uplift forces on the structure. The illustration in Figure 6.9 repre-
sents the inverse transformation to obtain the corresponding flow net 
valid for the real anisotropic aquifer.

Step 1: The illustration shown in Figure 6.7 represents the actual anisotropic 
aquifer and its mapping onto a fictitious isotropic flow region. The original 
anisotropic flow region is shown in solid lines, while its transformed image 
is shown in dotted lines. For the implementation of the theory, we are only 
concerned with the mapping of the flow region and boundaries. The map-
ping of the hydraulic structures, or the free water surface, is not relevant. 
They are included in the transformation to add realism, besides providing 
a visual reference point to the otherwise abstract mathematical transfor-
mation. Using nonmathematical language, the transformation embodied in 
Equations 6.17 can be viewed as an expansion, or a contraction, of the 
actual flow region in the ordinate direction only. The coordinate axes are 
taken parallel to the principal directions of anisotropy of the real aquifer, as 
shown in Figure 6.7. For the purpose of illustration, the ratio between the 
principal values of coefficient of permeability is taken as ′ ′ =K K/ 4,xx yy  which 
results in the magnification factor β = 2. It is this magnification factor that 
has been used in transforming the real aquifer into a factitious isotropic flow 
region. Some general properties of this mapping are summarized as follows:

• Under this mapping, or transformation using Equations 6.17, the 
straight lines remain straight.

• Under this mapping, the parallel lines remain parallel.
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φ=7.588 m
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K¢ xx

K¢ yy

C¢

a
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Figure 6.9 Flow net for anisotropic real aquifer.



174 Mechanics of groundwater in porous media 

• Under this mapping, the rectangular regions transform, generally, 
into parallelograms, with internal angles other than 90°. The only 
exception is when the side of the rectangle is parallel to one of the 
coordinate axes.

It must be stated for subsequent reference that all quantities denoted by 
prime (′) refer to the anisotropic real aquifer, while the unprimed denota-
tion is reserved for the fictitious isotropic flow domain.

Step 2: Once the fictitious isotropic flow region and boundaries are 
obtained by mapping, the flow net for the transformed region can be 
obtained as discussed previously for homogeneously isotropic aquifer. This 
step is illustrated in Figure 6.8, where the actual anisotropic flow region 
and boundaries are shown in chain-dotted lines. The fictitious isotropic 
flow region is shown in solid lines.

Step 3: The (orthogonal) flow net obtained in Step 2 is transformed into 
the corresponding flow net (not necessarily orthogonal) for the real aniso-
tropic aquifer using the inverse transformation. The result of this step is 
illustrated in Figure 6.9. It is important to emphasize that while the stream-
lines intersect the known equipotential AB at right angles in the fictitious 
isotropic flow region, they intersect the known equipotentials, such as A′B′, 
at an angle other than a right angle. This angle of intersection is shown typ-
ically by aa in Figure 6.9. It is however evident that all streamlines intersect 
the known equipotential A′B′ at the same angle, as typically shown by aa. 
The last assertion follows from the fact that parallel lines remain parallel 
during transformation.

In the case of an anisotropic aquifer, the quantitative analyses for 
seepage and uplift pressure follow the same steps as described for 
homogeneous, isotropic aquifer. It is left as an exercise for the reader to 
estimate the seepage and uplift pressure under the hydraulic structure 
shown in Figure 6.9.

6.2.3 Illustrative problem 6.1

For the structure shown in Figure 6.4, find the following: (a) the seepage 
through the aquifer, per width normal to the plane of paper, if the coeffi-
cient of permeability K = 0.001 cm/s; (b) the porewater pressure at point P; 
and (c) the uplift pressure due to porewater at the base of the hydraulic 
structure.

Part (a): The discharge in general is given by the following:

 Discharge = (Flow area) × (Normal velocity) (IP6.1.1)

In this case, at a typical section of a flow channel, the flow area = Δn × 1, 
and at the same section, the normal velocity is given by Darcy’s law
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where nϕ denotes the number of equal drops in the piezometric head from 
the upstream boundary (AB) to the downstream boundary (CD). From 
Figure 6.4, this number is equal to 16. The discharge through a single flow 
channel is thus given as shown in the following:
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Since each cell of the flow net represents a curvilinear square, Δn = Δs. 
Thus, the aforementioned equation reduces to
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The total amount of flow per depth normal to the paper is, therefore, given 
by the following equation:

 
( )= = φ − φΨ

Ψ

φ
Q n Q n
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where nΨ denotes the total number of flow channels in Figure 6.4. In the 
aforementioned expression, the ratio nΨ/nϕ is called the shape factor (SF). 
It may be emphasized that neither nΨ nor nϕ necessarily represents a whole 
number. Furthermore, the SF for a well-drawn flow net does not depend on 
its further refinement. It is a property of the flow region and the boundary 
conditions. From Figure 6.4, it is estimated that nΨ = 4.75. Substituting the 
relevant values from the figure into Equation IP6.1.5 yields the required 
discharge, per width normal to the paper, as shown in the following:
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Part (b): The porewater pressure at any point P is given by the following 
expression:

 γ
= φ −p y  (IP6.1.7)



176 Mechanics of groundwater in porous media 

For point P, we find the following values:

 ϕ = 5.0 m, y = −10 m (IP6.1.8)

Combining Equation IP6.1.8 with Equation IP6.1.7 yields the following 
expression for pressure at P:

 
( )

γ
= − − =p 5.0 10 15m�(meter of water)  (IP6.1.9)

Since p/γ represents the pressure inside the porewater, it acts equally in all 
directions, as shown in the following figure.
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Part (c): Since the arbitrary datum for ϕ is taken at the same level as that 
of AB, the elevation head (y) is zero for all points located at the base of the 
hydraulic structure. Thus, at all points situated at the base of the hydraulic 
structure,

 γ
= φ − = φp y  (IP6.1.10)

Using flow net, the discrete points where the equipotential lines intersect 
the base of the hydraulic structures can be located. At these points, the 
uplift pressure can be found using Equation IP6.1.10. The uplift pressure 
profile is plotted at the base of the figure.
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6.3 LAYERED HETEROGENEITY

A typical section of a stratified geological formation bearing groundwater is 
shown in Figure 6.10. For simplicity, each layer in this figure can be viewed 
as a homogeneous, isotropic medium with uniform thickness. However, the 
coefficient of isotropic permeability changes in general from layer to layer. 
Our objective here is to replace this medium of layered heterogeneity with 
an equivalent (in some sense) homogeneous, anisotropic medium. The term 
equivalent is deliberately left ambiguous, because its meaning depends on 
the objective of the analysis. In any case, the purpose of replacing the actual 
stratified formation with an equivalent medium tacitly assumes that such a 
replacement simplifies the mathematical formulation and thus reduces the 
analytical effort on the part of the analyst.

We assume a priori that the principal directions of the equivalent 
homogeneous, anisotropic aquifer align with the horizontal and vertical 
directions—the horizontal representing the direction of the bedding plane 
and the vertical representing the direction transverse to the bedding plane. 
We further assume that the equivalency implies that flows in the horizontal 
and vertical directions of the original formation are exactly the same as the 
corresponding flows in the equivalent homogeneous, anisotropic medium 
under the same hydraulic gradients. To accomplish this we proceed as 
follows:
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Figure 6.10 Layered heterogeneous geological formation.
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Even for an anisotropic aquifer, Darcy’s law in its original form is 
applicable along the principal direction (x-direction), because the specific 
discharge vector along the principal direction is normal to ϕ = constant 
surfaces. Thus, the discharge per width normal to the plane of paper, in an 
equivalent anisotropic aquifer, can be written, using Darcy’s law, as

 
= × − ′ φ



Q A K d

dxxx  (6.32)

where
A denotes the flow area

′Kxx denotes the coefficient of permeability in the principal direction

− φd
dx

 denotes the gradient of the piezometric surface in the principal 

direction

The aforementioned equation can also be written as

 
( )= × × ′Q D K H

L
1 xx  (6.33)

where the quantities (D × 1) and H/L designate the flow area and the hydrau-
lic gradient, respectively (Figure 6.11).

Now, with reference to Figure 6.11, it is noted that the hydraulic gradi-
ent is same for all layers. Thus, the total discharge per width normal to the 
plane of Figure 6.11 is given by the following sum:
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where di and Ki denote the thickness and the isotropic coefficient of perme-
ability of the ith layer, respectively. To ensure equivalency between the two 
aquifers, it is required that the two discharges given in Equations 6.33 and 
6.34 must be equal. Thus, equating these discharges and expressing the 
coefficient of permeability in the x-direction of the equivalent anisotropic 
aquifer, we obtain
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n
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 (6.35)

Equation 6.35 shows that the equivalent coefficient of permeability in the 
x-direction is the thickness-weighted arithmetic average of individual coef-
ficients of permeability, Ki.
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Now, let us consider the flow in the vertical direction through the strati-
fied medium, as shown in Figure 6.12. Again, Darcy’s law in its original 
form is applicable because the y-axis is assumed to align with one of the 
principal directions of anisotropy of the equivalent aquifer. Thus, accord-
ing to Darcy’s law

 
= − ′ φq K d

dyy yy  (6.36)

where the symbols carry their usual meanings
qy represents specific discharge (discharge per area) in the y-direction

′Kyy is the coefficient of permeability of an equivalent homogeneous, 
anisotropic aquifer

− φd
dy

 represents the hydraulic gradient in the y-direction

Since the flow is steady and devoid of any point sinks or sources, the specific 
discharge in the y-direction through each layer must be the same; that is,
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Figure 6.11 Definition sketch for flow in the x-direction.
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 = = = = =q q q q qy y y yn y1 2 3  (6.37)

Equation 6.36 can be written as

 
= ′q K H

Dy yy  (6.38)

where H and D are defined in Figure 6.12. Since each layer is homoge-
neously isotropic with the coefficient of permeability, Ki, it is evident from 
Darcy’s law that
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or

 
∑ ∑= = 





= =

H H q d
K
1

i

n

i y
i

n

i
i1 1

 (6.40)

d2

d1

d3

dn

y-
ax
is

x-axis

q

H=–(φ2 – φ1)

Dφ1

φ

φ2

Figure 6.12 Definition sketch for flow in the y-direction.
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Combining Equation 6.40 with Equation 6.38 yields the required expres-
sion for the coefficient of permeability in the y-direction for the equivalent 
homogeneously anisotropic aquifer, as shown in the following:

 
∑′

= 





=
K D

d
K

1 1 1
yy i

n

i
i1

 (6.41)

The last expression shows that the equivalent coefficient of permeability 
in the y-direction represents the thickness-weighted harmonic average of 
individual coefficients of permeability. It is known that the arithmetic aver-
age is always greater than the harmonic average. In other words, ′ > ′K K .xx yy  
For a demonstration of the truth of this assertion, see Harr (1991, p. 28) or 
Terzaghi (1943, p. 244). Further discussion on this subject can be found in 
Charbeneau (2000). This result shows that the direction parallel to the bed-
ding planes represents the major principal axis, while the direction normal 
to the bedding planes represents the minor principal axis of the equivalent 
homogeneous, anisotropic aquifer.

These results are graphically summarized in Figure 6.13, which rep-
resents side-by-side the layered isotropic heterogeneity of the geological 
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Figure 6.13 Graphical representation of equivalency.
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formation and its equivalent homogeneously anisotropic formation. In the 
lower figure, the characteristic length (Lmin) is assumed much larger than 
the total depth of the fundamental sequence of strata (Figure 6.10); other-
wise, the whole idea of equivalency becomes meaningless.

6.3.1 Refraction of streamline

When a streamline enters a new homogeneous, isotropic aquifer, it expe-
riences, in general, an abrupt change in its direction due to refraction. 
This refraction of streamline at the interface of two different isotropic 
strata is similar (though not identical) to the refraction of a ray of light 
in optics. To understand the physics of this phenomenon, Figure 6.14 has 
been prepared. This figure shows the interface between two homoge-
neous, isotropic strata of differing coefficients of permeability, K1 and K2. 
The variables n and s designate the normal and tangential coordinates, 
respectively, at any point on the interface. Since there are no point sources 
or sinks within the flow field, and the flow is in a steady-state condition, 
it follows that the component of the specific discharge vector, normal to 
the interface, qn, must be continuous at all points on the interface. Thus 
(see Figure 6.14),

 =q qn n1 2  (6.42a)
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stream
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Figure 6.14 Refraction of streamline at the interface of different isotropic aquifers.
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 θ = θq qcos cos1� 1 2� 2  (6.42b)
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where the subscript 1 and 2 refer to the two strata with coefficients of per-
meability K1 and K2, respectively. It is also concluded that the pressure field 
is continuous at every point of the flow field (including the point lying on the 
interface), for, otherwise, it will cause an infinite pressure gradient that can-
not be sustained by the aquifer. This leads to the conclusion that the piezo-
metric head ϕ1, in aquifer 1, and piezometric head ϕ2, in aquifer 2, should 
be equal at any point located on the interface between the two strata. In 
other words, the piezometric head, ϕ(x, y) = p/γ + y, is continuous across the 
interface, because p/γ as well as y are continuous across the interface. Also, 
the tangential components of the specific discharge vectors, q1 and q2, along 
the two adjacent sides of the interface are given by the following:
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where, in the second equality, we have used the fact that 
∂ϕ1/∂s = ∂ϕ2/∂s = (say, ∂ϕ/∂s) due to the continuity of the piezometric head 
across the interface. Thus, division of Equation 6.43a by Equation 6.43b 
yields the following:
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Eliminating q1/q2 from Equations 6.44 and 6.42c, we obtain
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This shows that during refraction, an incident streamline undergoes an 
abrupt change in direction from θ1 to θ2 (Figure 6.14). The change is 
characterized by the fact that the ratio of tangents of angles the stream-
line makes with the normal to interface is exactly the same as the perme-
ability ratio. With the exception of θ1 = 0, larger the difference between 
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the coefficients of permeability, larger is the angular deviation of the 
streamline after refraction. Further consequences of Equation 6.45 are 
illustrated graphically in Figure 6.15.

6.4 CONCLUDING REMARKS

The flow net in fact represents the graphical solution of the boundary-value 
problem associated with the Laplace equation ∇2ϕ = 0 subject to the known 
boundary conditions. It may be emphasized here that for a given flow region 
and boundaries, the flow net is unique and does not depend on the actual 
numerical specification of the boundary conditions. In other words, the flow 
net configuration remains the same, as long as the flow region and the type 
of the boundaries (with regard to constancy of ϕ and Ψ) remain the same. 
This aspect of the flow net analysis is particularly appealing in the early stud-
ies of a groundwater project. It is the relative ease with which the flow net 
can be constructed and analyzed that makes its use so attractive. However, 
all aquifers are heterogeneous and anisotropic to a varying degree of com-
plexity. The flow nets presented in the foregoing sections pertain to rather 
simplified models of aquifer. Despite these inherent simplifications, the flow 
net analyses provide an additional degree of confidence to the judgment of a 
groundwater hydrologist or a geotechnical engineer.
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∆n1

∆n 2

∆s2

∆s1

Interface

K2 = 4K1

∆Q2 = ∆Q1 =∆Q

∆s2 K2 4
K1

= =
∆n2

Streamtube

φi
φi – ∆φ

φ i–
∆φ

φ i

Figure 6.15 Consequence of refraction of streamlines.
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6.5 EXERCISES

6.1 Find the seepage per width normal to the plane of figure of the 
structure shown in Figure 6.9 if the coefficients of permeability are 
′ =K 0.0004m/sxx  and ′ =K 0.0001m/s.yy

6.2 Estimate the uplift force due to porewater pressure on the hydraulic 
structure shown in Figure 6.9.

6.3 Find the relationship among α, γ, β so that the inclined sheet pile becomes 
vertical after the anisotropic, homogeneous aquifer β = ′ ′K K/xx yy  
is transformed into a fictitious isotropic, homogeneous flow domain. 
Assume 0 < α < γ < 1/2 π.

αγ

6.4 For the situation shown in the following figure (flow net partly drawn), 
find the following: (1) the seepage through the aquifer per width normal 
to the plane of paper and (2) the pressure profile on both sides of the sheet 
pile. Assume the aquifer is homogeneous, isotropic and the coefficient of 
permeability K = 0.005 cm/s.

4.0 m

3.0 m
1.0 m

2.0 m

1.0 m

0.0

Sc
al

e o
f m

et
er

 



186 Mechanics of groundwater in porous media 

6.5 During refraction, an incident streamline undergoes an abrupt change 
in direction as shown in Figures 6.14 and 6.15. With regard to vari-
ables defined in these figures, prove the following:

 (a) = θ
θ

s
s

sin
sin

2

1

2

1

 (b) = θ
θ

n
n

cos
cos

2

1

2

1
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Chapter 7

Determination of aquifer 
characteristics

In this chapter, we present from a pedagogical point of view the theory 
behind in situ determination of two aquifer characteristics: the transmis-
sivity and the storativity of the aquifer. We shall first define these terms for 
confined aquifers and later extend the definition to unconfined aquifers. 
For a confined aquifer, the transmissivity is defined as T = KH, where T 
denotes the transmissivity, K the coefficient of permeability of a homoge-
neous, isotropic aquifer, and H the uniform depth of a horizontal confined 
aquifer. The storativity, S, of a horizontal confined aquifer represents the 
amount of water released or stored per aquifer area per unit change in 
the piezometric head. Storativity, S, is a dimensionless quantity, and in the 
case of confined aquifers, its numerical value is rather low—generally less 
than 0.001. These characteristics are further shown graphically in Figure 
7.1, which illustrates the physical meaning of transmissivity in a confined 
aquifer and that of storativity in an unconfined aquifer. The transmissivity 
can be interpreted as the discharge per width through the entire aquifer 
depth under a unit hydraulic gradient (Figure 7.1a). The storativity on the 
other hand depends on two separate physical properties: the compress-
ibility of water and the squeezing (consolidating) property of the aqui-
fer. The amount of water released due to the decline of pressure depends 
on the compressibility of water as well as the consolidation of the aqui-
fer. Thus, the storativity of an aquifer, in principle, can be calculated in 
terms of compressibility of water and the consolidation characteristics 
of the aquifer.

In case of unconfined aquifer, the transmissivity, T, is in general a vari-
able quantity and can only be defined as an average property. On the other 
hand, the storativity of an unconfined aquifer can be closely approximated 
simply by its porosity (Vv/V). This fact is illustrated in Figure 7.1b.
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7.1  DETERMINATION OF TRANSMISSIVITY 
OR COEFFICIENT OF PERMEABILITY

7.1.1 Thiem equation: Confined aquifer

Before we discuss the determination of transmissivity, it is relevant to 
argue about the notion of a steady-state (equilibrium) groundwater flow 
field in relation to the Thiem equation. The Thiem equation for con-
fined aquifers was derived in Chapter 4 and is reproduced here for quick 
reference:

 
( )φ =

π
+ φr Q

KH
r
r2

ln
0

0  (4.33)

In the aforementioned equation, the symbols carry their usual meanings. 
The symbol ϕ0 denotes the constant (not changing with time) piezometric 
head at radial distance r0 from the pumping well. There are a number of 
points that should be emphasized with regard to this equation. The fore-
most among these is the fact that the derivation of the Thiem equation is 
based on the assumption of a steady-state flow condition. In a horizontal, 
extensive confined aquifer, it takes an infinite time to develop a steady-
state condition. However, in practice, after a sufficient lapse of time since 
the beginning of pumping, the potential field around the well appears to 
achieve a quasi-limiting condition in which the change in the piezometric 
surface becomes imperceptible. Under this condition, the previous equation 
can be written in the following forms:

Aquifer area = 1

Piezometric surface, i = 11

H

1
1

(a) (b)

1

Drop = 1

Vv
V

S = Volume of water,

T = Q = q   (H    1) = KH

(φ
-1

)

φ

Figure 7.1  (a) Transmissivity in a confined aquifer and (b) storativity in an unconfined 
aquifer.
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Equation 7.1b can be used for the determination of transmissivity of a 
confined aquifer. Although Equation 7.1b is strictly valid for a steady-
state condition, its practical utility for the determination of transmissiv-
ity, despite a quasi-steady-state condition, is recognized in the literature 
(see, for instance, Todd, 1959, p. 83). And its use in aquifer testing is later 
justified in Section 7.6. In Equation 7.1b, the variables r1 and r2 denote 
the radial distances from the pumping well to two observation wells, with 
piezometric elevations ϕ(r1) and ϕ(r2), respectively.

7.1.2 Dupuit equation: Unconfined aquifer

Similar to the Thiem equation, the steady-state potential function for an 
unconfined, homogeneous, isotropic aquifer was derived in Chapter 4, 
based on the Dupuit–Forchheimer assumptions. The Dupuit equation can 
be written in the following forms:
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 (7.2b)

Equation 7.2b can be used to determine the coefficient of permeability K of 
the unconfined, homogeneous, isotropic aquifer. In the previous equations, 
the symbols ϕ1 and ϕ2 denote the phreatic surface elevations at observation 
wells located at radial distances r1 and r2, respectively.

As a practical advice, it is recommended that the locations of observa-
tion wells should neither be very close nor too far from the pumping well 
so that the changes in the elevation of the piezometric (or phreatic) surface 
could be determined with reasonable precision. Finally, the steady-state 
equations discussed hitherto for confined and unconfined aquifers do not 
provide any information about the storativity of aquifers. This limitation 
is, however, overcome by the use of transient analysis, which constitutes 
the subject matter of the proceeding sections. Despite these limitations, the 
steady-state equations are regarded to yield better estimations of aquifer 
transmissivity or coefficient of permeability than transient analyses (Todd, 
1959; Fetter, 2001).
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7.1.3 Illustrative problem 7.1

A fully penetrating well in a homogeneous, isotropic, horizontal confined 
aquifer of depth 15 m. is pumped at a constant rate of Q = 1000 m3/day. 
After sufficient time, the piezometric surface appears to be in a quasi-
limiting state. At that time, the piezometric levels in two observation wells, 
located at radial distances 10 m and 20 m, are 20 m and 22 m, respectively 
(see the following figure). Find (a) the transmissivity and (b) the coefficient 
of permeability of the aquifer.

Q = 1000 m3/day

H = 15 m

r1 = 10 m

φ(
r 1

)=
20

 m
 

φ(
r 2

)=
22

 m
 

r2 = 20 m

Solution: Since the problem pertains to a confined aquifer, Equation 7.1b is 
applicable. Thus, substituting the appropriate data in Equation 7.1b yields 
the following:

 ( )

( ) ( )= =
π φ − φ 

=
π −

=

T KH Q
r r

r
r2

ln

1000m /day
2 22m 20m

ln 20
10

55.155m /day

2 1

2

1

3
2

The coefficient of permeability K can be obtained as shown in the following:

 
= = =K T
H

55.155m /day
15m�

3.68m/day
2
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7.2  THEIS EQUATION: TRANSIENT RADIAL FLOW 
TO A WELL IN A CONFINED AQUIFER

We shall consider here the unsteady (transient) radial flow to a fully pene-
trating well in a horizontal confined aquifer. The discussion is based on the 
solution given by Theis (1935). Theis obtained the solution for the transient 
radial flow toward a well based on an analogy between the groundwater 
flow and the flow of heat by conduction. The Theis solution is based on the 
following assumptions:

 1. The aquifer is homogeneous, isotropic, and confined by two horizon-
tal impermeable layers of infinite areal extent, but at a finite distance, 
H, apart.

 2. The original piezometric surface (or potentiometric surface) prior to 
pumping is also horizontal at some finite height, ϕ0, from an arbitrary 
datum.

 3. The well is pumped at a constant rate, Q, and its diameter is infinitely 
small.

 4. The well axis is vertical, or the flow is planar radial.
 5. The groundwater is released instantaneously by the aquifer, and the 

celerity of the pressure wave (disturbance) is infinite.

Under the aforementioned assumptions, the solution of transient flow to the 
well must satisfy the following continuity equation:

 

( ) ( ) ( )∂ φ
∂

+
∂φ
∂

=
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∂
r t
r r

r t
r
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r t
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, 1 , ,2

2  (7.3)

In the aforementioned equation, the height of piezometric (or potentiomet-
ric) surface, ϕ(r, t), above an arbitrary datum is a function of two indepen-
dent variables: r and t. The variable r denotes the radial distance as before, 
and the variable t denotes the lapsed time since the initiation of pumping, 
at a constant rate, Q. Since, for steady-state cases, the piezometric height ϕ 
is not a function of time, the preceding equation reduces to Laplace equa-
tion in polar coordinates (r, θ), for steady, planar, radial flows. Figure 7.2 
represents the definition of flow field as well as the pertinent variables asso-
ciated with the transient analysis of flow toward a fully penetrating well in 
a homogeneous, isotropic, horizontal confined aquifer. The variable,

 ( ) ( )= φ − φs r t r t, ,0

as shown in Figure 7.2, is called the drawdown. At any given time, the 
three-dimensional surface traced by s(r, t) with radial symmetry is called 
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the cone of depression. In transient flows, this cone of depression of the 
piezometric (or potentiometric) surface deepens with the passage of time.

In order to solve the partial differential Equation 7.3, we need initial and 
boundary conditions. These are provided as follows:

 ( )φ = φ ′r r s, 0 �for all0�  (7.4a)

 ( )φ → φ →∞ ′r t r t s, as for all0���  (7.4b)
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Equation 7.4a represents the initial condition, and Equation 7.4b describes 
the behavior of the potential function ϕ at the far field. This description 
also implies that the cone of depression only deepens with time, and its rim 
(or periphery) theoretically remains at infinity for all times. The boundary 
condition (7.4c) maintains the continuity of flow at the well, in spite of the 
fact that the well radius tends to zero.

The mathematical solution to the boundary-value problem formulated 
hitherto has been obtained by Theis (1935). And it can be stated as follows:
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π
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Constant well discharge Q

Natural surface Drawdown, s(r, t)

t = 0

t
t – δt

t + δt
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Impervious bedrock
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H

Piezometric surface

Radial velocity (typical) r+ +

Figure 7.2 Definition sketch for the Theis equation.
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The variable x in the exponential integral is the dummy variable of integra-
tion. The value of this integral depends on the lower limit of integration, u. 
Here, u is a dimensionless parameter, and for a given aquifer, it depends 
only on two variables, r and t, because T and S are known or fixed param-
eters. In the context of groundwater mechanics, the integral in Equation 
7.5a is called the Theis well function and is denoted by W(u). Thus,

 
( ) ( )= φ − φ =

π
s r t r t Q

T
W u, ,

4
( )0  (7.6)

The Theis well function can be expressed by the following infinite series:

 
( ) ( )= − − + −

×
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+W u u u u u u0.5772 ln
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It is readily seen from the preceding equation that W is a dimensionless 
function of the dimensionless argument u. This well function, W, has been 
tabulated in terms of its argument u by Wenzel (1942). Although tables 
depicting numerical values of W in terms of u appear in other standard 
texts on groundwater hydrology (see, for instance, Todd, 1959; Freeze and 
Cherry, 1979; Carbeneau, 2000; Fetter, 2001), Appendix C includes this 
table, after Wenzel, for quick reference. It should also be mentioned that 
Carbeneau (2000) has included the spreadsheet module based on Basic 
computer programming language in his book.

The well function W is shown graphically in Figure 7.3. The curve in this 
figure is called the reverse type curve. Traditionally, abscissa in this figure 
represents 1/u, instead of u. The most important fact, however, about this 
curve is that it is a universal graph in the sense that any and all transient 
flows in an ideal Theis aquifer satisfy this curve irrespective of the actual 
values of variables, r and t, and the values of parameters, Q, T, and S. It is 
this fact that is rightfully exploited later in the solution of the inverse prob-
lem by the Theis method for the determination of aquifer characteristics, 
T and S. In the present context, the inverse problem is defined as follows: 
When the drawdown at a radial distance at a given time since the begin-
ning of pumping is known, the problem to find the aquifer characteristics, 
T and S, is called the inverse problem.

Equations 7.6, 7.7, and 7.5b are called nonequilibrium equations or 
Theis equations for the analysis of transient planar radial flows toward a 
fully penetrating well in an extensive, confined aquifer. In a given case, the 
successive development of drawdown of piezometric surface with time can 
be obtained from these equations.
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7.2.1 Illustrative problem 7.2

A fully penetrating well in a confined aquifer is pumped at a constant 
rate, 2000 m3/day. Assuming a homogeneous, isotropic, horizontal con-
fined aquifer with T = 200 m2/day and S = 0.0005, find the drawdowns at 
distances 6 and 12 m from the well, after 2 days of pumping.

Solution: Find parameter u and W(u) at r = 6 m.
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 W = 10.82, from first two term approximation of series (7.7)

Find parameter u and W(u) at r = 12 m.
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 W = 9.43, from first two term approximation of series (7.7)

The drawdowns can be obtained from the equation s(r, t) = (Q/4πT)W by 
substituting the appropriate values. Thus,
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Figure 7.3 Reverse type curve.
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( ) =

π ×
× =s 12m, 2days 2000 m /day

4 200 m /day
9.43 7.50 m

3
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Remarks: This illustrative problem shows that the drawdown at any time 
at any radial distance due to constant pumping can be obtained from the 
Theis equation, provided the aquifer constants, T and S, are known a priori. 
More important from a practical perspective is the inverse problem.

7.3 THEIS METHOD

Theis proposed a graphical method for the determination of aquifer con-
stants, when the observed values of drawdowns at various time points are 
known either for a single or multiple (nonpumping) observation wells. The 
method is based on the Theis equations for transient response of the ideal-
ized Theis aquifer to the constant rate of pumping. The theory and proce-
dure of the Theis method are given in the following.

Taking the logarithm of Equations 7.6 and 7.5b yields the following results:
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If the discharge well is pumped at a constant rate, the quantity Q in 
Equation 7.8 remains a constant. Thus, for a fully penetrating well in 
a confined aquifer with constant Q, the term log[Q/4πT] also remains 
constant, because T is constant for a homogeneous confined aquifer. 
This further implies that the two variables log[s(r, t)] and log[W(u)] are 
essentially the same, with the exception that they differ by a constant. 
A similar reasoning also holds with regard to variables log[t/r2] and 
log[1/u] in Equation 7.9, because S and T are constant for a given homo-
geneous confined aquifer.

The previous discussion has some further implications. For instance, the 
plot of W versus 1/u is similar in shape to the plot of s(r, t) versus t/r2, when 
drawn on log-log graph papers of same scale and size. The graph of W 
versus 1/u is a unique curve, which is theoretically obtained and does not 
rely on the field observation for its determination.

The graph between s(r, t) and t/r2 is called the field data plot (or, simply, 
the data plot), and it does depend on the actual field observations. If drawn 
to the same scale as the reverse type curve (Figure 7.3), the data plot should 
look identical to the reverse type curve. These two curves can further be 
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brought to a near-congruence by sliding one curve relative to the other while 
keeping the respective abscissa and ordinate axes of the two graphs parallel.

A step-by-step procedure for the determination of aquifer characteristics, 
using the Theis method, is outlined as follows:

 1. We begin with the construction of the reverse type curve, once for all, 
on a log-log graph paper as shown in Figure 7.3.

 2. For each aquifer testing, the field observations are recorded to con-
struct the data plot. For the construction of the data plot, the draw-
downs s(r, t) are plotted against the variable t/r2 on a log-log graph 
paper with same scale and size as that of the type curve (Figure 7.4). 
It must be emphasized that the drawdown s(r, t) is plotted as the 
ordinate, and the variable t/r2 as the abscissa. This ensures that the 
variable log[s] corresponds to log[W], while the variable log[t/r2] cor-
responds to log[1/u].

 3. The data plot is slid relative to the type curve to achieve visually the 
best fit between the data and the type curve, while maintaining the 
respective axes parallel (see Figure 7.5). For this step, a light table may 
be handy.

 4. Once the best fit between the data and the type curve is obtained, 
any convenient point (not necessarily on the curve) may be selected 
as the match point (see point P, in Figure 7.5). The ordinate and the 
abscissa of the match point are recorded on both graphs, as shown in 
the figure.
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Figure 7.4 Field data plot.
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 5. Finally, the aquifer constants are obtained from the following 
equations:

 
=

π
T QW

s4
p

p

 
= 





÷ 





S T t
r u

4 1
p p

2

  In these equations, subscript p refers to the respective coordinates of 
the match point P (Figure 7.5).

The details of the aforementioned procedure are further described in the 
following illustrative problem.

7.3.1 Illustrative problem 7.3

During an aquifer testing, the time–drawdown data were obtained as 
shown in the following table. Using the Theis method, determine the 
aquifer constants, T and S, if the pumping rate, Q = 500 m3/day, were kept 
constant during the aquifer testing.
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Figure 7.5 Superimposing the data plot on the type curve to achieve best fit.
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Time since 
pumping (min)

Radial distance 10 m Radial distance 20 m Radial distance 40 m 

Drawdown (m) Drawdown (m) Drawdown (m)

5 1.75 0.72 0.13
10 2.15 1.19 0.35
15 2.39 1.43 0.56
20 2.71 1.59 0.72
25 2.80 1.83 0.80
30 3.02 1.99 0.95
40 3.18 2.23 1.19
50 3.42 2.39 1.35
60 3.50 2.43 1.43
70 3.58 2.55 1.59
80 3.90 2.71 1.67
90 3.98 2.79 1.71

100 3.98 2.82 1.83
110 3.98 2.86 1.91
120 4.02 2.94 1.99

Solution: We should use consistent units—actual units are arbitrary but 
consistency is not! We decide to use minutes for measuring time. Thus,

 = =Q 500m /day 0.3472m /min3 3

The reverse type curve for the Theis method is constructed once for all, 
as shown in Figure 7.3. Using the data shown in the table, the drawdown 
s(r, t) is plotted against the variable (t/r2) on the log-log paper with the 
same scale as that used for the type curve. This plot is shown in Figure 
7.4. The next task is to obtain the best fit between the type curve and 
the data curve. For this purpose, we take (arbitrarily) the match point 
on the type curve with coordinates (1, 1). After achieving the best fit 
visually, we record the following correspondence between the variables 
(see Figure 7.5):

 Wp = 1 corresponds to sp = 0.8 m

 (1/u)p = 1 corresponds to (t/r2)p = 0.003 min/m2

Substituting the appropriate values, we obtain

 ( )=
π

=
π

=T QW
s4

0.3472 m /min
4 0.8 m

0.0388 m /minp

p

3
2
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and
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
 ÷ 


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= × × =

S T t
r u

4 1

4 0.0388 m /min 0.003min/m 0.00047

p p
2

2 2

7.3.2 Optimization problem

The Theis method for the determination of aquifer characteristics is essen-
tially a graphical method. Although it is extremely useful in understanding 
the basic theory behind the procedure, it is not very convenient in the con-
temporary computational environment of engineering offices. It is there-
fore desirable to cast this graphic approach into numerical computational 
procedures, using ubiquitous availability of personal computers. The Theis 
method can be easily formulated as a nonlinear optimization problem. The 
optimization problem can be stated as follows:

Find a solution vector 








T
S

, which meets the following explicit constraints

 ≤ ≤T T Tmin max

 ≤ ≤S S Smin max

and minimizes the following error function (or objective function)

 
∑( )= −
=

e
n

s s1

i

n

i
c

i
o

1

2

where
Subscript i refers to the observed data point
Superscripts c and o refer to the computed and observed values of 

drawdown, respectively
Subscripts min and max refer to the minimum and the maximum con-

straints on the values of T and S

The aforementioned optimization problem can be solved using standard 
methods. For instance, the Complex method of Box can be easily used 

(Box, 1965; Haque, 1985). For a given solution vector 








T
S  and Q, the 

computed value of drawdown can be determined using the Theis Equations 
(7.6), (7.7), and (7.5b). This requires the numerical determination of the 
well function. The interested reader may consult Appendix D, Carbeneau 
(2000), or Strack (1989, pp. 196–200) for the computer implementation of 
the approximate formulas for the well function.
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7.4 JACOB STRAIGHT-LINE METHOD

For sufficiently large values of t, or small values of r, Cooper and Jacob 
(1946) noticed that the infinite series for the well function (Equation 7.7) 
can be approximated by truncating the series after two terms. Thus, based 
on their approximation, the well function can be written as

 
( ) ≅ − − = = 











W u u
u

T
S

t
r

0.5772 ln ln 0.561 ln 2.25 2
 (7.10)

Using this approximation, the drawdown can be found from the following 
equation:
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π
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The first term on the right-hand side of the previous equation is constant for 
an idealized Theis aquifer with a fully penetrating discharge well, operating 
at a constant Q. The variables, s(r, t) and log(t/r2), in Equation 7.11b, there-
fore, represent the equation of a straight line. Thus, Equation 7.11b should 
plot as a straight line on a semilogarithmic paper, with s(r, t) plotted on the 
arithmetic scale and the variable t/r2 plotted on the logarithmic scale (see 
Figure 7.6). The slope of the straight line in Figure 7.6, therefore, represents 
the quantity, 2.30 Q/4πT. The slope of the straight line on a semilogarithmic 
graph paper is simply equal to the drawdown change, Δs, per log cycle, as 
shown in Figure 7.6. It may be emphasized that the slope of the straight 
line in this figure is positive, because the increasing drawdown is plotted 
downward. Thus,

 
( )= − =

π
s s s Q

T
2.30�
42 1  (7.12a)

 ( )=
π −

=
π

T Q
s s

Q
s

2.30�
4

2.30�
42 1

 (7.12b)

If the constant pumping rate, Q, and the slope of straight line, Δs, are 
known, the previous equation provides an estimate of transmissivity, T, of 
the idealized Theis aquifer.

To estimate the storativity, S, of the aquifer, we proceed as follows. Let 
us extrapolate the straight line in Figure 7.6, until it intersects with the 
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zero-drawdown axis at some point with a positive value of abscissa t/r2, as 
shown in the figure. Let this value be denoted by (t/r2)0. Since drawdown, 
s(r, t), vanishes at t/r2 = (t/r2)0, it follows that the well function, W(u), should 
also become zero at t/r2 = (t/r2)0. In other words, argument of the logarith-
mic function must become unity in Equation 7.10 at t/r2 = (t/r2)0. Thus, set-
ting the argument of the logarithmic function equal to unity provides the 
necessary equation for S as shown in the following:

 
= 



S T t

r
2.25� 2

0

where the quantity (t/r2)0 is obtained graphically and T is obtained from 
Equation 7.12b. The details of the Jacob straight-line method are further 
elucidated, using Illustrative Problem 7.4.

7.4.1 Illustrative problem 7.4

For the field data shown in the table in Illustrative Problem 7.3, evaluate the 
aquifer constant using Jacob’s straight-line method.

Solution: As before, we decide to use the minute as the unit for measuring 
time. The actual choice is arbitrary, but we must use a consistent set of 
units for measurements. Thus, the constant discharge

 = =Q 500 m /day 0.3472 m /min.3 2

0.0047
D

ra
w

do
w

n,
 s 

 (m
)

Slope = ∆s/1 = 1.65

log 10-1 - log 10-2 = 1

∆s = 2.20 - 0.55 = 1.65

0.0

1.0

2.0

3.0

4.0
10-2 10-1 100

t/r2  (min/m2)

Figure 7.6 Semilogarithmic plot for the Jacob straight-line method.
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To proceed further, we need to plot the data on a semilogarithmic graph 
paper. From this plot, we visually infer the best-fit straight line passing 
through the data. This step is shown in Figure 7.6. From this figure, we can 
obtain the following information:

Slope of best-fit straight line, Δs = (s2 – s1) = 2.20 – 0.55 = 1.65 m.
From Figure 7.6, the intercept of the line with the zero-drawdown axis is 

found as shown here:

 





 =t

r
0.0047 �min/m2

0

2

The transmissivity can be obtained from the following expression:

 
=

π
= ×

π ×
=T Q

s
2.30�
4

2.30 0.3472m /min
4 1.65m

0.0385m /min
3

2

The storativity can be obtained from the following expression 
(Equation 7.13):

 ( ) ( )

= 





= × × =

S T t
r

2.25�

2.25 0.0385m /min 0.0047min/m 0.0004

2
0

2 2

Comparing the values of T and S with the previously obtained values using 
the Theis method, we observe slight differences, which can be attributed 
to the graphical nature of the solutions. Despite these comments, the two 
methods give reasonably close answer to transmissivity and storativity of 
the aquifer.

7.5  MODIFICATION OF THE JACOB METHOD: 
DISTANCE–DRAWDOWN METHOD

When simultaneous observations are made in three or more than three 
observation wells, a straightforward modification of the Jacob method is 
possible. In this case, the time of observation, t = tobs, becomes a constant 
and Equation 7.11b can be modified to the following form:

 
( ) ( )=

π





−

π
s r t Q

T
Tt
S

Q
T

r, � 2.30�
4

log 2.25 � 2.30�
2

�logobs  (7.13)

Since the first term on the right-hand side is constant, the aforementioned 
equation represents a straight line on the semilogarithmic graph paper, 
when s(r, t) is plotted on the arithmetic scale, and the radial distance r 
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on the logarithmic scale. The slope of this line represents the quantity, 
−(2.30Q/2πT). On the semilogarithmic graph paper, the slope of the line is 
given by the following expression (Figure 7.7):

 
= −

−
= − =s s

r r
s s sSlope

log log 1
2 1

2 1

2 1  (7.14)

where s2 and s1 are drawdowns, respectively, at radial distances r2 and 
r1. The second equality in the aforementioned expression is true if r2 > r1 
and these radial distances are a log-cycle apart. Thus, equating the slope 
with the expression −(2.30 Q/2πT) yields the required equation for trans-
missivity as shown here:

 ( )= −
π −

= −
π

T Q
s s

Q
s

2.30�
2

2.30�
22 1

 (7.15)

To compute storativity, we proceed similarly to the procedure followed in 
the case of the Jacob straight-line method. Using Cooper–Jacob’s approxi-
mation, the drawdown at any time and at any radial distance can be 
obtained by the following equation:
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Figure 7.7  Modification of the Jacob method. Simultaneous drawdowns are plotted on 
the arithmetic scale against the radial distances plotted on the logarithmic 
scale.
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From Figure 7.7, we observe that, according to Cooper–Jacob’s approxima-
tion, the drawdown vanishes at r = r0. Thus, setting the argument of the 
logarithmic function equal to one in Equation 7.11a yields the necessary 
expression for S as shown in the following:

 
= 





S T t
r

2.25� obs

0
2

7.5.1 Illustrative problem 7.5

Instantaneous drawdown readings at the end of 60 min of constant 
pumping are given in the following table. If the constant pumping rate 
is Q = 500 m3/day, find the aquifer constants, T and S, using distance–
drawdown method.

Time since 
pumping (min)

Radial distance 10 m Radial distance 20 m Radial distance 40 m 

Drawdown (m) Drawdown (m) Drawdown (m)

60 3.50 2.43 1.43

Solution: The distance–drawdown data are plotted on a semilogarithmic 
graph paper as shown in Figure 7.7. From this figure, the slope of the best-fit 
line is obtained as follows:

 Slope = (s2 − s1)/1 = (0.0 − 3.5) = −3.5 m.

The next step of the procedure is to find graphically, by extrapolating the 
straight line, the value of the radial distance r0, where the drawdown is 
zero. From Figure 7.7, the value r0 = 100 m is found. The transmissivity of 
the aquifer is found from Equation 7.15 as shown in the following:

 ( )= −
π

= − ×
π −

=T Q
s

2.30�
2

� 2.3 0.472 m /min
2 3.5 m

0.036 m /min
3

2

The storativity is found as

 
( )= = × × =S T t

r
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0.00049obs

0
2

2
2

7.6  REMARKS ON THE USE OF THE THIEM EQUATION 
IN THE CASE OF UNSTEADY FLOW CONDITION

The Thiem equation is based on the physics of steady-state (equilibrium) 
flow condition. As pointed out by Todd (1959, p. 82), the equilibrium flow 
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condition in an extensive aquifer is theoretically not possible. From the 
transient analysis of Theis, it is also evident that the drawdown, s(r, t), at a 
definite r keeps on increasing ad infinitum with time, t, and, more impor-
tantly, the drawdown curve becomes undefined as time approaches infinity. 
Thus, it is natural to suspect the estimate of transmissivity, T, based on the 
Thiem equation (7.1b). However, the empirical evidence is contrary to this 
suspicion. Values of transmissivity obtained by Equation 7.1b, even under 
nonequilibrium conditions, appear to be satisfactory. This fact is also rec-
ognized in the literature previously (Todd, 1959; Fetter, 2001).

The explanation of this paradox can be found in the works of Charbeneau 
(2000) and Hermance (1999). According to Charbeneau, the time-rate of 
change of drawdown after sufficiently long duration of pumping, or small 
values of r, is given by the following equation (Charbeneau, 2000, p. 108):

 

∂
∂

≅
π





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s
t

Q
T t4

1  (7.16)

With respect to the aforementioned equation, there are two facts worth 
mentioning: (1) ∂s/∂t → 0, as t → ∞ and (2) the time-rate of change of draw-
down ∂s/∂t does not depend on the radial distance, r. In other words, the 
changes in drawdown, δs, is the same at all radial distances, during any 
increment of time δt. This observation is in concurrence with the findings of 
Hermance (see Figure 10.4, Hermance, 1999, p. 122). Both of these studies 
imply that, after an initial pumping, the gradient of phreatic surface stabi-
lizes, despite of the fact that the drawdown itself does not. In other words, 
after initial pumping, the difference in phreatic elevations ( ) ( )φ − φ r r2 1  
at two arbitrary locations becomes invariant of time. Thus, in computing 
T from Equation 7.1b, it does not materially matter whether the difference 

( ) ( )φ − φ r r2 1  is observed at a finite time or at a time which tends to infin-
ity. The preceding argument is true provided the time of observation is suf-
ficiently delayed since the beginning of pumping.

In this chapter, we have conveyed the basic idea behind the aquifer test-
ing. The discussion has been directed toward students who are interested 
in finding the basic thought, without getting into cumbersome details of 
actual implementation of the method to field situations. For this purpose, 
the aquifer is simplified to represent the idealized Theis aquifer. We are all 
aware of the fact that the real situation in the field may be far from this ide-
alization. The various treatments of the problem when the aquifer departs 
from this idealized situation have been given in the literature. The subject 
does not belong to an introductory textbook. The interested readers may, 
however, consult more comprehensive treatise on this subject. For instance, 
Batu (1998) treats the subject of aquifer hydraulics in greater details from 
the perspective of a practicing engineer.
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7.7 EXERCISES

7.1 A fully penetrating well in a confined aquifer is pumped at a constant 
rate, 4000 m3/day. Assuming a homogeneous, isotropic, horizontal 
confined aquifer with T = 400 m2/day and S = 0.0005, find drawdowns 
at distances 10 and 15 m from the well, after 2 days of pumping. For 
the solution, use Jacob’s approximation for the well function.

7.2 Redo Exercise 7.1 using T = 200 m2/day. All other data remain the same 
as in the enunciation of Exercise 7.1.

7.3 By comparing the results obtained in Exercises 7.1 and 7.2, discuss 
qualitatively the influence of transmissivity on the potentiometric 
(piezometric) surface.

7.4 During an aquifer testing, the time–drawdown data were obtained as 
shown in the following table. Using the Theis method, determine the 
aquifer constants, T and S, if the pumping rate, Q = 1000 m3/day, were 
kept constant during the aquifer testing.

Time since 
pumping (min) 

Radial distance 10 m Radial distance 20 m Radial distance 40 m 

Drawdown (m) Drawdown (m) Drawdown (m)

5 2.07 1.27 0.32
10 2.87 1.59 0.79
20 3.18 2.23 1.51
30 3.62 2.47 1.59
60 4.30 3.18 2.07
90 4.70 3.18 2.39

120 4.93 3.58 2.47

7.5 For the data given in Exercise 7.4, evaluate the aquifer constant using 
Jacob’s straight-line method.

7.6 Using distance–drawdown method, find the aquifer constants (T and S) 
utilizing the simultaneous drawdown data at 60, 90, and 120 min 
after pumping of well at a constant rate, Q = 1000 m3/day, as given in 
Exercise 7.4. Should the answer, theoretically speaking, be the same in 
three cases? If they are same, find graphically, as well as analytically, 
the relationship between radius of influence, r0, and time, t. If they are 
not same, find the average values of T and S.

7.7 Aquifer testing based on the Theis method was performed in a con-
fined aquifer of depth 20 m with a fully penetrating well discharging 
at a constant rate Q = 1200 m3/day. After finding the best fit between 
the data plot and the reverse type curve, the following coordinates 
of the match point were found: Wp = 1, (1/u)p = 1 on the type curve, 
and sp = 0.8 m, (t/r2)p = 0.003 min/m2 on the data plot. Find the aquifer 
constants T and S.
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Chapter 8

Coastal aquifers

In this chapter, we shall discuss the flow of groundwater in the vicinity of 
coastlines. For this purpose, we shall assume that the interface between 
the saltwater and the freshwater is sharp without molecular diffusion or 
mechanical dispersion. Figure 8.1 illustrates schematically the various pos-
sibilities of the groundwater flow toward the actual coastline with and 
without a sharp interface. To simplify the analysis, we shall make through-
out this chapter the following assumptions: (1) the interface between the 
freshwater and saltwater is sharp; (2) the saltwater is in a stagnant state; 
and (3) the freshwater migrates toward the coastline, and this migration 
may be analyzed by using the Dupuit–Forchheimer assumptions.

8.1 GHYBEN–HERZBERG PRINCIPLE

Studies in the late nineteenth century by W. Baydon-Ghyben and A. 
Herzberg independently lead to the following equation, describing the 
interface between the freshwater and saltwater of the seas (Figure 8.2):

 
( ) ( )=

ρ
ρ − ρ

h x y h x y, ,s
f

s f
f  (8.1)

where
ρ denotes the density of the fluid
h denotes the height as shown in Figure 8.2
Subscripts f and s refer to freshwater and saltwater, respectively

Equation 8.1 is strictly valid if the interface between the freshwater and 
saltwater is sharp and the fluids are in hydrostatic equilibrium.

It is apparent from Figure 8.2 that, in the case of Ghyben–Herzberg anal-
ysis, the discharge of freshwater into the sea takes place along a line with 
zero discharge area. As pointed out by Hubbert, the Ghyben–Herzberg 
analysis must break down near the shoreline in order to provide a seepage 



210 Mechanics of groundwater in porous media 

face for the outflow of freshwater. A more realistic picture of groundwater 
flow near the shore is shown in Figure 8.3, which has been adapted after 
Hubbert’s work (1940).

8.2  STRACK’S ANALYSIS: INSTABILITY 
CAUSED BY A FULLY PENETRATING WELL 
IN A SHALLOW COASTAL AQUIFER

Following Strack, we assume a priori the following general linear relation-
ship between h and ϕ:

 h = αϕ + β (8.2)

where
α and β are arbitrary constants
The height h is defined in Figure 8.4, along with the other pertinent 

variables

Mean sea level

Mean sea level

Phreatic surface

Phreatic surface

Freshwater

Freshwater

Sharp interface

Diffused interface

Saltwater

Saltwater

Sea

Sea

Figure 8.1 Schematic cross sections of coastal aquifers.
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Figure 8.2 Definition sketch for Ghyben–Herzberg equation.
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Figure 8.3  Equipotentials and flow lines near the shore. (After Hubbert, M.K., J. Geol., 
48, 785, 1940.)
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Using Darcy’s law for homogeneous isotropic aquifer, we obtain the follow-
ing expressions for the discharge:
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The aforementioned equation for α ≠ 0 can be written as
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Figure 8.4  Nomenclature for shallow confined interface flow region and shallow con-
fined aquifer.
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Thus, for α ≠ 0, the discharge potential becomes

 
Φ = α φ + β
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If α = 0, it follows from Equation 8.2 and Darcy’s law that the following 
relationships are true:
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which in turn implies that in the case of α = 0 the discharge potential is 
given by the following:

 Φ = Kβϕ + C (8.7)

In Equations 8.2 through 8.7, ϕ denotes the piezometric head with respect 
to a horizontal impervious bedrock and C, an arbitrary constant. However, 
in all cases—whether alpha (α) is equal to zero or not—the discharge 
potential Φ is indeed a potential function, and it satisfies the Laplace 
equation (see Sections 4.1 and 4.2).

8.2.1 Shallow confined interface flow region

The geometry of this region is defined in Figure 8.4. Our objective in this 
section is to establish the relationship between the flow depth, h, and the 
piezometric head, ϕ, in a shallow confined interface flow region. For this 
purpose, we shall assume that the sea level Hs, the depth of confined aquifer 
H, and the densities of freshwater and saltwater, ρf and ρs, are known data. 
The other variables such as h, hf, and ϕ are considered as the unknown. 
From Figure 8.4, the following two geometrical relationships can be easily 
established:

 ( )= − −h h H Hs s  (8.8)

 φ = +H hs f  (8.9)

From Ghyben–Herzberg equation, the following relationship between the 
unknowns can also be determined:
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h hf
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f
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By substituting the value of hs from Equation 8.10 into Equation 8.8, we 
obtain the following:
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The second equality in the aforementioned equation follows from the geo-
metric relationship  hf = ϕ − Hs, given in Equation 8.9. Equation 8.11 can be 
expressed as

 
=

ρ
ρ − ρ









φ −

ρ
ρ − ρ








 +h H H  f

s f

s

s f
s  (8.12)

It is now clear that the relationship between h and ϕ is linear in the case of 
the shallow confined interface flow region. Comparing the aforementioned 
equation with Equation 8.2, we obtain
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s f
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( )β
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−ρ + ρ − ρ

ρ
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f
 (8.13c)

Thus, flows through the shallow confined interface region can be described 
by the discharge potential:
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 (8.14)

where
Cci represents an arbitrary constant
The subscript ci refers to the confined interface flow region
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The second term inside the square brackets represents the piezometric head, 
ϕ = ϕ0, at x = 0, as shown in Figure 8.5. From this figure, it can be readily 
seen that

 

( )( )φ = + ρ
ρ

− =
ρ − ρ − ρ

ρ
H H H

H Hs

f
s

s s s f

f
0  (8.15)

Thus, Equation 8.14 can be written as

 
[ ]Φ =

ρ
ρ − ρ
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


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φ − φ +K C

2
f

s f
ci0

2
 (8.16)

8.2.2  Shallow confined flow region and 
continuity of discharge potential

The discharge potential for the shallow confined flow region is known 
(Chapter 4):

 
Φ = φ −KH KH

2

2
 (8.17)

At the interregional boundary, the discharge potentials given by Equations 
8.17 and 8.14 should be continuous. This interregional boundary is located 
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Figure 8.5 Piezometric head at the coastline (x = 0).
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at the tip of the saltwater tongue, as shown in Figure 8.4. At the tip, the 
piezometric head, ϕt, is given by the following expression:

 
φ = ρ

ρ
Ht

s

f
s  (8.18)

In order to ensure continuity of the discharge potential Φ at the tip of the 
saltwater tongue, the discharge potential must have the same value at the 
tip whether this point is approached from the left or the right in the figure. 
In other words, the potential function given in Equation 8.14 must acquire 
the same value as that of the potential function given in Equation 8.17 at 
the tip. Thus, equating these potentials at the tip of the saltwater tongue 
yields the following equation:
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 (8.19)

where the piezometric head at the tip ϕt is given by Equation 8.18. By sub-
stituting the value of ϕt from Equation 8.18 into Equation 8.19 and solving 
for the arbitrary constant Cci, one obtains the following result:
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2
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s

f
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2  (8.20)

The constant Cci is no more arbitrary, it must maintain the aforementioned 
value in order for the discharge potential to be continuous across the tip of 
the saltwater tongue.

8.2.3 Flow prior to pumping of well

We assume there is a unidirectional flow in the negative x-axis through the 
combined aquifer region, comprising of a shallow confined interface flow 
region and a shallow confined aquifer as shown in Figure 8.4. This flow is 
described by a continuous discharge potential Φ, which satisfies the Laplace 
equation in the entire flow region. In the shallow confined interface flow 
region, this potential function is described by the following mathematical 
expression:
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and in the shallow confined flow region, by the following mathematical 
expression:

 
Φ = φ −KH KH

2

2
 (8.22)

Despite two different mathematical expressions for its description, Φ 
remains a continuous harmonic function that satisfies the Laplace equation 
∇2Φ = 0 in the entire flow region. Since the flow problem is unidirectional 
along the negative x-axis, the general solution of the Laplace equation is 
given by the following:

 Φ = Ax + B (8.23)

The constants A and B can be found from the following boundary 
conditions:

 Φ = Φ =xat 00��  (8.24a)

 Φ = Φ =x Lat �1��  (8.24b)

Substituting the values of A and B, obtained by boundary conditions 
(8.24a) and (8.24b), Equation 8.23 can be written as

 
Φ = Φ − Φ + Φ = − + Φ

L
x Q x� � x

1 0
0 0 0  (8.25)

where Qx0 denotes the discharge per width through the entire depth of the 
confined aquifer. The negative sign in the aforementioned equation implies 
that the flow through the aquifer is in the negative x-direction (Figure 8.4).

8.2.4 Discharge potential for combined flow

In the absence of the well, the discharge potential for unidirectional flow 
toward the coast is given by Equation 8.25. The discharge potential for flow 
toward a well, located at a distance d from the coastline, can be obtained 
by the method of images. This discharge potential due to a well in the vicin-
ity of the coastline is (see Chapter 4)
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+ +
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 (8.26)

The aforementioned discharge potential is based on the choice that Φ = 0 
at the coast. The combined flow field is described by the combination of 
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the two potentials given in Equations 8.25 and 8.26. Thus, the discharge 
potential for the combined flow field becomes
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The last equation describes the discharge potential at a generic point (x, y) 
in the combined flow field, due to a well pumping in the vicinity of the 
coastline in the presence of a unidirectional flow toward the coastline.

8.2.5 Shape of the tip of the saltwater tongue

The value of piezometric head at the tip has been given previously as 
(Figure 8.4)

 
φ = ρ

ρ
Ht

s

f
s  (8.18)

Substitution of this value into Equation 8.22 yields the following expres-
sion for the discharge potential at the tip:
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It is evident from this equation that for a given problem the discharge 
potential remains constant along the tip of the saltwater tongue. Thus, the 
shape of the tip in x, y-plane can be ascertained by the substitution of this 
constant into Equation 8.27b, as shown in the following:
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which can be written in the following dimensionless form:
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Using the following notations for the dimensionless quantities

 
λ ≡ − ×

ρ − ρ
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µ ≡ − Q

Q dx0
 (8.31b)
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Equation 8.30 can be written as
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It may be emphasized that both λ and μ are positive quantities because Qx0 
is negative.

8.2.6  Relationship between the location of the 
tip on the x-axis and the well discharge

The aforementioned equation describes the geometry of the tip of the 
saltwater tongue in terms of the dimensionless coordinates x′ and y′. If we 
denote the location of the tip on the x-axis by ′ =x x d( / ),t t  we can obtain 
an implicit expression for ′xt  by substituting ′xt  for x′ and setting y′ = 0 in 
Equation 8.32. Thus, the following implicit expression describes the tip 
location on the x-axis:
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For a given problem, λ ≡ − ×
ρ − ρ
ρ

KH
Q d

�
x

s f

f

2

0
 is a constant and µ ≡ − Q

Q dx0  
represents the normalized well discharge. It is, therefore, evident that for a 
given problem (λ = constant), Equation 8.33 describes the location of the stable 
saltwater tongue tip ′x( )t  as a function of the normalized well discharge (μ). 
This functional relationship is graphically illustrated in Figure 8.6 for λ = 0.5. 
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From this figure, it is clear that the relationship between ′xt  and μ has a max-
ima. Thus, there is no possible stable tip location for well discharges above a 
certain maximum value. In other words, the maximum well discharge cor-
responding to the maxima point represents the threshold of instability. This 
condition is labeled in Figure 8.6 as the critical well discharge.

To further explore the behavior of the maxima point, Figure 8.7 has been 
prepared for two different values of λ = 0.3 and λ = 0.5. There are a num-
ber of points about this figure that deserve special attention. For instance, 
points identified by A and B represent two different given problems. In both 
cases, the well discharge is zero and the saltwater tongues are in stable 
equilibrium with the unidirectional flow Qx0 in the negative x-axis. The 
case A pertains to relatively lesser transmissivity value than that of case B. 
However, in both cases as the well discharge increases up to a maximum 
value, the tip of the saltwater tongue moves toward the well. Also, in both 
cases, the functional relationship is characterized by the presence of the 
maxima point.

Since the maxima point represents the critical point, it is natural to investi-
gate the locus of this point. From a mathematical point of view, it is also pos-
sible to determine the locus of the maxima point by differentiating Equation 
8.33 with respect to ′xt  and setting the derivative of the normalized well 
discharge equal to zero. Such a differentiation yields the following results:
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Let ′xm denote the abscissa of the maxima point. Then substitution of ′xm for 
′xt  in Equation 8.34a and remembering that µ ′ =d dx/ 0t  at ′ = ′x xt m yields the 

following relationship for the location of the maxima point:
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or

 
′ = + − µ

π
x 1m  (8.34c)

which shows that the maxima point is a function of dimensionless well 
discharge, μ, only. The aforementioned equation describes the locus of the 
maxima point in x′, μ-plane. As we shall see in the subsequent section, the 
locus of the maxima point is identical to the locus of the stagnation point 
in x′, µ-plane.
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8.2.7  Relationship between the location of the 
stagnation point and the well discharge

The combined discharge potential along the x-axis is obtained by setting 
y = 0 in Equation 8.27a as shown in the following:
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Since the problem is symmetric about the x-axis, the stagnation point is the 
same where the x-component of the discharge vector is zero on the x-axis. 
Thus, setting the partial derivative of Φ with respect to x in the aforemen-
tioned equation equal to zero yields the following equation:
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which shows that the x-coordinate of the stagnation point on the x-axis is 
a function of the well discharge Q. Denoting the x-coordinate of the stag-
nation point by xs, the following explicit expression for the location of the 
stagnation point can be found:

 
= + − µ

π
x
d

1 �s  (8.37a)

which, in terms of the normalized x-coordinate, becomes

 
′ = + − µ

π
x 1s  (8.37b)

where μ = −Q/Qx0d is the normalized well discharge. Figure 8.8 has been 
prepared to illustrate the aforementioned relationship between ′xs  and μ. 
From this figure, it is obvious that the stagnation point moves from the well 
toward the coastline as the well discharge increases. For μ = 0, the stagna-
tion point is at the well and for μ = π, it is at the coastline.

8.2.8 Mechanics of instability

Based on the instability theory presented by Strack, the saltwater wedge 
becomes unstable (or reaches the threshold of instability) when the location 
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of the stagnation point coincides with the location of the tip of the saltwater 
tongue on the x-axis. This situation is schematically illustrated in Figure 
8.9. Once the tip of the saltwater tongue moves toward the well from its 
location at the stagnation point, there is no stable equilibrium possible and 
the well discharges the mixed (saltwater and freshwater) flow. We can, 
therefore, express the threshold condition by requiring that ′ = ′x x .t s  Thus, 
substituting the value of ′xs from Equation 8.37b for ′xt  in Equation 8.33 
yields the following critical condition:
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Or the following inequality describes the unstable condition:
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Equation 8.38 represents a curve in λ, μ-plane as shown in Figure 8.10. The 
area toward the right of the curve represents the unstable area.
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Chapter 9

Finite element method

In this chapter, we introduce the reader to the finite element method—one 
of the most flexible and powerful methods for numerical computations 
of engineering problems in general and of groundwater flows in particu-
lar. Our purpose here is twofold: one, to introduce the theory behind the 
numerical method quickly; and two, to prepare the reader for the implemen-
tation of the method using computers. For his purpose, a deliberate attempt 
is made to present the method in its simplest form. Although the method is 
quite general, we shall restrict it to the solution of the Laplace equation in 
the context of steady-state groundwater flows in a known region.

9.1  STEADY-STATE GROUNDWATER FLOW IN 
A KNOWN TWO-DIMENSIONAL REGION

9.1.1 Formulation of boundary-value problem

The steady flow of groundwater in a known two-dimensional flow region 
 can be formulated as the following boundary-value problem:

Find a function ϕ(x, y) such that

 


∂ φ
∂

+ ∂ φ
∂

=
x y

0 in
2

2

2

2  (9.1a)

subject to the boundary conditions:

 φ = φ φSon  (9.1b)

 

∂φ
∂

=
n

q Sonn q  (9.1c)

where ϕ and qn denote the piezometric head and a specified function on 
Sq, respectively. The partial derivative, ∂ϕ/∂n, denotes the derivative along 
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the normal to the surface Sq. The overscored quantities indicate the known 
functions. The boundaries Sϕ and Sq represent the part of the boundary 
where ϕ and qn are specified, respectively. The union of Sϕ and Sq consti-
tutes the entire boundary S (see Figure 9.1).

In finite element formulation, we do not directly work with the aforemen-
tioned boundary-value problem. Instead, we work with the corresponding 
calculus of variations formulation of the boundary-value problem. The dis-
cussion on what represents the corresponding calculus of variations formu-
lation constitutes the subject matter of the following section.

9.1.2 Corresponding calculus of variations problem

We assume a priori the following functional defined for functions ϕ(x, y) 
meeting the requirement φ = φ φSon :
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With regard to the aforementioned equation, J is called the functional in 
the vernacular of calculus of variations. A functional is simply a function 
whose arguments are themselves functions defined over some region . 
The important fact from our perspective, however, is that the functional J 
attains a real value for each (given) function ϕ(x, y). On the very outset, we 
shall like to assert that the functional attains a stationary value (in fact, a 
minimum value) when ϕ(x, y) satisfies the aforementioned boundary-value 
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problem—that is, ϕ(x, y) is a solution to the boundary-value problem. 
The proof of this assertion follows.

Let δϕ denote an arbitrary change in function ϕ(x, y). As we shall see 
later, δϕ is arbitrary but satisfies some restrictions imposed by mathemat-
ics. Using the jargons of calculus of variations, such an arbitrary change in 
the independent argument of J is called an admissible variation. Thus, δϕ 
represents an admissible variation of function ϕ(x, y). In general, however, 
the symbol δ() stands for change or variation in the quantity within the 
parentheses ().

Since J is a function of ϕ(x, y) any change in ϕ(x, y) will also result into 
a corresponding change in J. Let δJ be the corresponding change in J due to 
an admissible variation, δϕ, in the function ϕ(x, y) so that
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If J = J(ϕ) attains a stationary value at the argument, ϕ = ϕ(x, y), the change 
in the functional, δJ, must be equal to zero for arbitrarily small admissible 
variations in ϕ = ϕ(x, y). Thus, setting δJ = 0 yields the following:
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Equation 9.4b follows from the ordinary differential calculus of infinitesi-
mals and Equation 9.4c from the following identity (see Appendix D for 
proof):

 
( )δ


 ≡ δdy

dx
d
dx

y  (9.5)

From differential calculus of infinitesimals, we can easily verify the follow-
ing equalities (using the rule for derivative of product of two functions):
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( )∂φ
∂

∂ δφ
∂

= ∂
∂

∂φ
∂

δφ




− ∂ φ
∂

δφ
x x x x x
� �

2

2  (9.6a)

 

( )∂φ
∂

∂ δφ
∂

= ∂
∂

∂φ
∂

δφ








 −

∂ φ
∂

δφ
y y y y y
� �

2

2  (9.6b)

Substituting the aforementioned values in Equation 9.4c yields the following:

 





 
∫ ∫

∫

− ∂ φ
∂

+ ∂ φ
∂






δφ









 + ∂

∂
∂φ
∂

δφ








+ ∂
∂

∂φ
∂

δφ












 + δφ =

K
x y

d K
x x

y y
d q dS� 0n

S

2

2

2

2

q

 (9.7a)

Using Gauss’s theorem, the second area integral can be converted into 
boundary integral as shown in the following:

 



∫ ∫

∫

− ∂ φ
∂

+ ∂ φ
∂






δφ









 + ∂φ

∂
δφ








+ ∂φ
∂

δφ













 + δφ =

K
x y

d K
x

n

y
n dS q dS� 0

x

S

y n

S

2

2

2

2

q

 (9.7b)

 



∫ ∫

∫

− ∂ φ
∂

+ ∂ φ
∂






δφ









 + ∂φ

∂









+ ∂φ
∂














δφ + δφ =

K
x y

d K
x
n

y
n dS q dS� � 0

x

S

y n

S

2

2

2

2

q

 (9.7c)

where nx, ny are the components of unit outward normal to S. Since ϕ 
is the specified boundary condition on Sϕ, we require that the admissible 
variation should be zero on this part of the boundary—that is, δϕ = 0 on Sϕ. 
Thus, the last two boundary integrals in Equation 9.7c can be combined to 
obtain the following result:

 



∫ ∫− ∂ φ

∂
+ ∂ φ
∂






δφ









 + ∂φ

∂






+ ∂φ
∂
















+













×δφ =

K
x y

d K
x
n

y
n q

dS

� � �

� 0

x y n

s

2

2

2

2

q

 (9.7d)
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The aforementioned equation remains true for all arbitrarily small admis-
sible variations in ϕ=ϕ(x, y). Since δϕ is arbitrary in  and also on Sq, it 
follows from the aforementioned equation that

 


∂ φ
∂

+ ∂ φ
∂

=
x y

0 on
2

2

2

2  (9.8a)

 

− ∂φ
∂







+ ∂φ
∂
















=K

x
n

y
n q Sonx y n q  (9.8b)

Thus, we come to the conclusion that when J attains a stationary value—
that is, δJ = 0, the argument function ϕ(x, y), for which J attains a stationary 
value, is also the solution to the boundary-value problem, because, accord-
ing to Equation 9.8a, ϕ(x, y) satisfies the Laplace equation at every point 
of  and also meets the boundary condition on Sq, according to Equation 
9.8b. What about the boundary condition on Sϕ? We have satisfied that 
boundary condition by requiring that the admissible variations should be 
zero on Sϕ. We have used this fact in arriving at Equation 9.7d from 9.7c. 
Thus, the function ϕ = ϕ(x, y), which gives the stationary value to the func-
tional J, is also the solution to the boundary-value problem.

A few words about the boundary conditions are in order. First, we see, 
from Equation 9.8b, that the specified function qn  on Sq boundary indeed 
represents the outward normal flux; second, we force compliance with 
boundary condition on Sϕ by requiring that the admissible variation should 
be zero on this boundary. In the parlance of calculus of variations, we call 
the boundary condition on Sϕ as the forced boundary condition and the 
boundary condition on Sq as the natural boundary condition.

9.2  FINITE ELEMENT FORMULATION 
FOR THE LAPLACE EQUATION

In finite element method, we directly work with the variational formulation 
of the boundary-value problem. For this purpose, Equation 9.4b can best 
be written in matrix form as shown in the following:

 



∫ ∫ { }{ }δ =

δ ∂φ
∂







δ ∂φ
∂









































∂φ
∂







∂φ
∂































+ δφ =J
x

y

K
K

x

y

d q dS0
0

0

T

T
n

Sq

 (9.9)
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where {}T denotes the transpose of the column matrix {}. We divide the 
flow region  into a number (m) of subregions, as shown in Figure 9.2. 
For simplicity, we assume each subregion to be of triangular shape. Let δJe 
denote the variation in J due to an admissible variation of ϕ in a typical 
element e. Then, δJe can be found by evaluating the two integrals given in 
Equation 9.9 over a typical element e. Let us break this variation in J into 
two parts:

 δ = δ + δJ J Je e
int

e
ext  (9.10a)

The first part is given by

 



∫δ =

δ ∂φ
∂
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
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
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
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∂
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
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



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



















J
x

y

K
K

x

y

d0
0e

int

T

e
 (9.10b)

where e denotes the domain of integration for a typical element, e, and 
the second part by

 
∫ { }{ }δ = δφJ q dSe

ext T
n

Sqe

 (9.10c)

m

1

2 3

e

Figure 9.2 Discretization of flow region .
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In the aforementioned equation, Sqe denotes the boundary of element e 
where qn  has been specified. The boundary integral over Sqe in Equation 
9.10c for a typical element located in the interior of  is zero unless a part 
of the element boundary coincides with a part of Sq of region . Presently, 
we shall postpone a discussion on surface integral and, instead, focus our 
attention on the details of contribution to δJe by the area integral, given in 
Equation 9.10b. For this purpose, a reference to Figure 9.3 will be handy 
for further discussion.

We assume a priori a general linear behavior of the unknown function 
ϕ = ϕ(x, y) within the element e. To describe this linear behavior of ϕ math-
ematically, we embed a local x, y, ϕ coordinate system at the centroid of the 
typical element e, as shown in Figure 9.3. The choice of a local coordinate 
system is arbitrary; however, we choose the centroid for the origin and 
keep x- and y-axis parallel to the so-called global coordinate system (x-0-y 
in the figure). Any linear behavior of ϕ = ϕ(x, y) in terms of x and y can be 
written as

 ( )φ = + +x y a a x a y,� � 1 2 3  (9.11a)

Typical element, e

Interpolated φ(x, y)

0

x
y

i-node

j-node x-axis
φ-

ax
is

y-axis

k-node

φk
φi

φj

φ

eR

Figure 9.3 A general linear behavior of ϕ(x, y) in subregion, e  .
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which can also be written in matrix form as

 

( )φ = 





















x y x y
a
a
a

,� 1
1

2

3

 (9.11b)

where a1,  a2,  a3 are the unknown coefficients and ⌊ ⌋ represents a row 
matrix (or vector). If ϕi, ϕj, ϕk denote the values of the function ϕ at the 
three nodes i, j, k, respectively, then the following three linear equations 
must be true:

 φ = + +a a x a yi i i1 2 3  (9.12a)

 φ = + +a a x a yj j j1 2 3  (9.12b)

 φ = + +a a x a yk k k1 2 3  (9.12c)

where (xi, yi),  (xj, yj), (xk, yk) are the coordinates of the three nodes, i, j, k, 
respectively. The aforementioned three equations can be written in matrix 
form as shown in the following:

 

φ
φ
φ
















=

































x y
x y
x y

a
a
a

1
1
1

�
i

j

k

i i

j j

k k

1

2

3
 (9.12d)

which in condensed symbolic notation may be written as

 [ ]{ } { }φ = A a  (9.13)

where

 

[ ]{ } { }φ ≡
φ
φ
φ

















≡

















≡

















A
x y
x y
x y

a
a
a
a

,
1
1
1

�, and
i

j

k

i i

j j

k k

1

2

3

Equation 9.11b can be written in condensed symbolic notation as (Figure 9.3)

 ( ) { }φ = 



 φ−x y x y A,� | 1 [ ]over a typical element e� � �

1  (9.14)

It may be emphasized that on the right-hand side in the aforemen-
tioned equation, only the row vector 


x y1  depends on the spatial 
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coordinates x and y. The inverse matrix [A]−1 contains only the coordinates 
of the three vertices, i, j, k, of the element e. The elements of this matrix 
are shown in Table 9.1. Thus, taking the partial derivatives of both sides of 
Equation 9.14 while treating the matrices [A]−1 and {ϕ} as constants yields 
the following:

 
{ }∂φ

∂
=   φ−

x
A� 0 1 0 [ ] 1  (9.15a)

 
{ }∂φ

∂
=   φ−

y
A� 0 0 1 [ ] 1  (9.15b)

or in a combined matrix form

 

{ }

∂φ
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





∂φ
∂































=








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x

y

A0 1 0
0 0 1

[ ] 1  (9.15c)

From the aforementioned equation, it follows

 

{ }
δ ∂φ

∂






δ ∂φ
∂





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





















=








 δφ−

x

y

A0 1 0
0 0 1

[ ] 1  (9.16)

Table 9.1 Matrix of nodal coordinates [A] and its inverse [A]−1

[ ] =


















A

x y

x y

x y

i i

j j

k k

1
1
1

The inverse matrix is given as follows:

[ ] =
− − −
− − −
− − −



















−A
x y x y x y x y x y x y
y y y y y y
x x x x x x

1
2 ijk

j k k j k i i k i j j i

j k k i i j

k j i k j i

1

where 2Δijk denotes the determinant of [A] matrix, or twice 
the area of the triangular element, with nodes i, j, k.
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where

 

{ }δφ ≡
δφ
δφ
δφ

















i

j

k

 (9.17)

In the aforementioned identity, the elements of the vector on the right-hand 
side represent the variations in the nodal values of the function ϕ at i-, j-, 
and k-nodes, respectively, as shown in Figure 9.4.

φ(x, y)

i-node

Typical element, e

Typical
admissible variation, δφ

j-node

k-node

φiφk

δφk δφi

δφj

δφi

δφk

δφj φ + δφ

φj

Re

eR

Figure 9.4 Definition sketch for the variation, δϕ(x, y), over a typical element, e.
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Now, the area integral
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
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
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over a typical element e can be found as shown in the following:

 



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
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
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
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
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
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
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(9.18)

where e denotes the domain of integration for a typical element, e. The 
aforementioned integral can also be written as

 



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
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e

 (9.19)

because the matrices {δϕ}T and {ϕ} do not depend on the dummy vari-
able of integration, d, they can be taken out of the integral sign. The 
integrand in the aforementioned integral represents a (3 × 3) matrix whose 
elements are constants, independent of the variable of integration. After 
integration over a typical element, the aforementioned expression can be 
represented as
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or in condensed symbolic notation as

 
[ ]{ } { }δφ φSKe

T
e e   (9.20)

In the aforementioned expression, subscript e refers to the typical element e. 
The matrix [SK]e is symmetric, and in the parlance of the finite element 
method, this matrix is referred to as the element stiffness matrix. It has 
the dimension (3 × 3)—that is, it consists of three rows and three columns. 
The elements of the stiffness matrix are given in Table 9.2, in terms of the 
coordinates of vertices of the triangular region e and the coefficient of 
permeability K of the medium.

With regard to a typical element e, we are at a point where we can 
state that a part of the contribution, J ,e

int  to δJe is given by the following 
equation:

 
[ ]{ } { }δ = δφ φJ SK  e

int
e
T

e e   (9.21)

Table 9.2 Details of element stiffness matrix [SK]

( )( ) ( )( )( ) ( )= = − − + − − SK SK i i K y y y y x x x x1,�1 ,
4 ijk

j k j k k j k j

( ) ( )( ) ( )( ) ( )= = − − + − − SK 2 1 SK j i
K
4

y y y y x x x x
ijk

k i j k i k k j, ,

( )( ) ( )( )( ) ( )= = − − + − − SK 3,1 SK k, i
K
4

y y y y x x x x
ijk

i j j k j i k j

( ) ( )( ) ( )( ) ( )= = − − + − − SK 1,2 SK i j
K
4

y y y y x x x x
ijk

j k k i k j i k,

( ) ( ) ( )( ) ( )( )= = − − + − − SK SK j j K y y y y x x x x2,2 ,
4 ijk

k i k i i k i k

( ) ( )( ) ( )( ) ( )= = − − + − − SK 3,2 SK k, j
K
4

y y y y x x x x
ijk

i j k i j i i k

( )( ) ( )( )( ) ( )= = − − + − − SK 1,3 SK i, k
K
4

y y y y x x x x
ijk

j k i j k j j i

( ) ( )( ) ( )( ) ( )= = − − + − − SK 2,3 SK j, k
K
4

y y y y x x x x
ijk

k i i j i k j i

( )( ) ( )( )( ) ( )= = − − + − − SK 3,3 SK k, k
K
4

y y y y x x x x
ijk

i j i j j i j i

Note: Δijk denotes the area of the triangle with vertices i, j, k. Matrix [SK] 
is symmetric.
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We, now, naturally divert our attention to the remaining part, J ,e
ext  of 

the contribution to δJe. This issue is the subject matter of the proceeding 
paragraphs.

As mentioned briefly in the foregoing, the contribution

 
∫ { }{ }δ = δφJ q dSe

ext T
n

Sqe

 (9.10c)

by a typical element completely located in the interior of the flow region  
is zero, because the element boundary Sqe where the flux is specified van-
ishes. Only when the element happens to embrace a part of the boundary, 
Sq, of the main flow domain, , there may be a nonzero contribution to δJe. 
Such a situation is shown in Figure 9.5.

With regard to Figure 9.5, it is seen that the side i j of the element e 
embraces a part of the boundary, Sq, where qn is specified. Since the inter-
polated variation, δϕ(x, y), is linear within a typical element, it is also linear 
on the element boundary. Thus,
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Figure 9.5 Nomenclature for equivalent groundwater flux at the nodes.
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where s denotes the coordinate of a generic point along element boundary 
i j, as shown in the figure. If the s-coordinates of nodes i and j are s = 0 and 
s = l, respectively, then the following equation is true
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or combining the last two equation yields the following:
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If we assume a linear variation of qn  with s, we can write, similar to 
Equation 9.24, the following equation:
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where qni and qnj denote, respectively, the values of normal flux at nodes 
i and j. Substituting Equations 9.24 and 9.25 into Equation 9.10c yields
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which on definite integration yields the following:
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where Qi and Qj are two quantities acting on the nodes i and j such that 
the product

 δφ + δφQ Qi i j j  (9.28)

truly represents the right-hand side of Equation 9.26. It can be shown (by 
actual matrix multiplication and performing the definite integration shown 
in Equation 9.26) that
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It is also clear that Qi and Qj represent the equivalent groundwater flows at 
the two nodes i and j, respectively. Furthermore, from our knowledge of stat-
ics of structures, we can recognize that Qi and Qj are similar to the so-called 
statically equivalent loads acting at the two nodes. These loads are equivalent 
to distributed trapezoidal loading with intensity of loading qni and qnj at the 
two nodes i and j, respectively. This equivalency between the point loads and 
the transversely distributed loading is shown in Figure 9.6. When =q q ,n ni j  
the equivalent point loads, Qi and Qj, reduce to the case of uniformly distrib-
uted loading. Likewise, when either qni or qnj vanishes, the equivalent loads, 
Qi and Qj, reduce to the case of triangularly distributed loading (Figure 9.6).

It is now clear that the variation in J due to admissible variation in ϕ(x, y) 
over a typical element e (including the interior region as well as the exterior 
boundary) is given by the following expression:
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Figure 9.6 Equivalent groundwater flux at the two nodes i and j.
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where
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Thus, the total variation in J is given by the following sum:
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The aforementioned sum can also be written as
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(9.33)

The total sum representing the variation of J in Equation 9.32, or in 
matrix Equation 9.33, does not necessarily vanish for arbitrarily small 
variations in ϕ about the true solution, because both the function ϕ and 
the admissible variations δϕ are discontinuous in the flow region . In 
order to ensure δJ = 0, it is necessary that function ϕ as well as the admis-
sible variation should be continuous throughout the region . This con-
tinuity requirement has been ignored in formulating the sum in Equations 
9.32 and 9.33.

We can easily ensure the continuity of the function and the admissible 
variations by the use of compatibility matrix. The role of compatibility 
matrix is further discussed in the subsequent sections, using the two ele-
ments, e and e + 1, illustrated in Figure 9.7. However, the idea is more gen-
eral in scope. In the actual writing of the computer code, it is not even 
necessary to use compatibility matrix per se, as long as we ensure continu-
ity of interpolated function ϕ, and that of its variation δϕ, throughout the 
region . This continuity requirement has further ramifications during the 
assembly of global stiffness matrix and the flux boundary conditions, as we 
shall see later. These issues are discussed in some details in the following 
sections.
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9.2.1  Compatibility matrix, continuity of 
piezometric head, and related issues

For the two elements e and e + 1 shown in Figure 9.7, we can write detailed 
expressions for the contributions by the area and surface integrals sepa-
rately. The contribution by the area integral can be written as
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Figure 9.7 Compatibility matrix and its role.
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and the contribution by the surface integral as
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In the previous two equations, subscripts e and e + 1 refer to the elements 
shown in the figure. With regard to element stiffness matrices, [ ]e and [ ]e+1 
in Equation 9.34, only the location i j—that is, ith row and jth column of 
the element stiffness matrix—is shown, instead of the full designation SK 
(i, j). It is hoped that this economy of notation does not cause unnecessary 
confusion.

The dependent (local) and the independent (global) vectors of nodal val-
ues are related by the following equation (Figure 9.7):
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The aforementioned relationship is valid only if the interpolated piecewise 
linear ϕ is continuous across interelement boundaries. It is convenient for 
this discussion to write Equation 9.36 using condensed symbolic nota-
tions as
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where the rectangular matrix [C] is referred to as the compatibility 
matrix and it transforms the vector consisting of global nodal values (like 
ϕ1, ϕ2,…  etc.) into a vector consisting of local nodal values (like φ φ,� , � � etci

e
j
e

.). 
Taking the transpose of the aforementioned equation yields
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From Equation 9.38a, it follows that the variations in local and global 
nodal values are related by the following equation:
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For the two elements shown in Figure 9.7, Equation 9.34 can be written, 
using Equations 9.37 and 9.38b, in the following form:
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which after (right- and left-hand) multiplication by [C] and [C]T yields the 
following:

 

( )
{ }

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

δ = δφ

+ +

+ +

























φ

+ + +

+ + +

+ + +

jjkk iikk
ee ee

J

kk kk ki kj ki kj

ik ii ij

ji jj ii ij

jk ji jj

0

0

{ }int T

e e e e e e

e e e

e e e e

e e e

1 1 1

1 1 1

1 1 1

 

(9.40)

Using finite element vernacular, the 4 × 4 matrix in the aforementioned 
equation is called the global stiffness matrix or the assembled stiffness 
matrix. In the same equation, the matrices
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now represent the independent vectors, consisting of the global nodal values 
and the global admissible variations. It is also evident that the interpolated 
function ϕ and the interpolated admissible variation δϕ, using the afore-
mentioned vectors, are piecewise linear as well as continuous throughout 
the region .

The role of the compatibility matrix in obtaining the global matrix from 
individual element stiffness matrices can be discerned by a comparative 
examination of two square matrices given in Equations 9.39 and 9.40. For 
instance, the content of the global matrix at third row and first column 
(highlighted in boldface) comprises the sum of the content of the element 
stiffness matrix at location jk of element e with the content at location ik 
of element e + 1. Here it is seen from Figure 9.7 that location jk of element 
e and the location ik of element e + 1 correspond with the same location 
3,1 (third row and first column) of the global matrix. Thus, the multipli-
cation of element stiffness matrices with the compatibility matrix simply 
establishes this correspondence and results in appropriate addition. This 
correspondence can be supplied by simple mapping of the local node num-
bering to the global node numbering, without resorting to the construction 
and subsequent multiplication by the compatibility matrix. This mapping 
is generally provided as a part of input data.

We, now, revert to the task of determining δJext. According to Equation 
9.35, this contribution for the two elements shown in Figure 9.7 is given by
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which can be written, using Equation 9.38b, as follows:
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or
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or

 

{ }δ = δφ

+

+



























= δφ

























+

+

+

J
Q Q

Q

Q Q
Q

Q
Q
Q
Q

{ }ext T
k
e

k
e

i
e

j
e

i
e

j
e

T

1

1

1

1

2

3

4
 (9.41c)

Now, we can combine the two contributions to obtain
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Since the interpolated function ϕ and admissible variations are continuous, 
δJ must equal zero for arbitrarily small variations around the true solution. 
Furthermore, since the following vector
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is completely arbitrary, the terms inside the braces () must be equal to zero. 
In other words,
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or
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(9.43b)

which represents a system of four simultaneous equations in four unknowns,
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In Equation 9.43, the 4 × 4 matrix is the same global stiffness matrix given 
in Equation 9.40, and the right-hand vector represents the known fluxes 
given in Equation 9.41c. If the global stiffness matrix is invertible (which in 
the case of Laplace equation is), the solution can be found.

What we have discussed is essentially the finite element method in its 
most basic form. However, there is one more aspect of the method that 
needs our attention before we can actually implement the method. This 
aspect constitutes the subject matter of the following section.
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9.2.2 Treatment of known values of ϕ at the nodes

In the foregoing, we had assumed that all nodal values in the vector
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were unknown. This might not be the case. There are more than one ways 
to handle this situation. One of the ways to handle this situation is described 
here with an example. Let φ = φ2 2  be a known value in Equation 9.43. We 
adjust the finite element Equations 9.43 in the following manner:
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(9.44)

After the aforementioned adjustment to the finite element equations, we 
treat as if all ϕs are unknown. The adjustment can be performed in two 
steps: first, multiply column 2 of the global stiffness matrix by the known 
value φ2  and bring the product to the right-hand side; second, replace the 
second equation in the set by φ = φ .2 2  From the perspective of computer 
programming, this adjustment might be the simplest to implement. Once 
the adjustments are made, any computer routine can be used to invert the 
global stiffness matrix and thus obtain the answer for the unknown nodal 
vector,
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Appendix A: Identical similarity 
between Figures 1.5 and 1.6

To begin with, we assume, for simplicity, that the pore space of the aquifer 
can be represented by the inner space of an ensemble of capillary tubes 
whose inner radii range continuously from zero to a maximum radius r0, as 
shown in the accompanying sketch. It is further assumed that each tube is 
oriented vertically and has a uniform radius. It is, however, assumed that 
the acceleration due to gravity acts vertically downward.

Our basic hypothesis is
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where
Nr denotes the number of capillary tubes with (inner) radius r
C is a constant of proportionality

Let us take a cross section of the ensemble of capillary tubes at a height h, 
which represents the rise of water in a capillary tube of radius r (Figure 
A.1). It is evident that at this cross section, all capillary tubes with radii 
less than or equal to r are filled with water. If Aw represents the total area 
of the cross section occupied by water, it can be obtained by the following 
definite integral:
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Likewise, if A represents the total pore area at the cross section, it is 
represented by the following definite integral:
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 (A.4)

From the last two equations, we obtain the following:
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The ratio A A/w  on the left-hand side of Equation A.5 represents the degree 
of saturation in fraction (as opposed to percentile ratio). It is now apparent 
from Equation A.5 that the normalized radius r r/ 0 and the degree of 
saturation expressed in fraction are identical.

The normalized capillary rise hc /hc0 in Figure 1.5 also represents the normal-
ized rise of water above watertable, z/zf. From the viewpoint of physics, both 
refer to the same normalized distance, only the notation has been changed. 
Since the abscissae and the ordinates in Figures 1.5 and 1.6 are, respectively, 
identical, it is evident that the two graphs in these figures are also identical.

Capillary
rise h

2r02r

2r

Atmospheric
pressure

Atmospheric
pressure

(watertable)

Rise h

Tube radius < r
Area filled with water Tube radius > r

Void area

Figure A.1 Definition sketch.
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Appendix B: Transformation of 
components of a vector under 
rotation of reference frame

In two-dimensional space, let the directed line segment OP represent a vec-
tor x, whose components with respect to x, y-reference frame be denoted 
by the ordered pair (x, y). Let another x′, y′-reference frame be imbedded 
in this space and the components of x be denoted by (x′, y′). For the sake of 
discussion, we shall speak of x′, y′-reference frame as being obtained from 
the rotation of the x, y-reference frame through an angle θ in a counter-
clockwise direction (Figure B.1). With respect to the geometric construction 
shown in Figure B.2, we make the following observations: (1) Points x, x′ 
represent the orthogonal projections of point P on the x- and x′-axis, respec-
tively; likewise, points y, y′ represent the orthogonal projections of point P on 
the y- and y′-axis, respectively; and (2) the triangles Pxx‴, Pyy‴, Oxx″, and 
Oyy″ are all right-angle triangles. From the geometric construction shown in 
Figure B.2, we conclude the following relationships between distances:

 ′ = ′′ + ′′ ′ = ′′ + ′′′Ox Ox x x Ox xx   (B.1a)

 ′ = θ + θx x y�cos �sin  (B.1b)

and

 ′ = ′′ − ′′ ′ = ′′ − ′′′Oy Oy y y Oy yy      (B.2a)

 ′ = θ − θy y x�cos �sin �  (B.2b)

The last two equations can be combined into a single matrix equation, as 
follows:

 

′
′












=

θ θ
− θ θ

























x
y

x
y

cos sin
sin cos

 (B.3)



254 Appendix B: Transformation of components of a vector

The Equation B.3 shows how the components of a vector x transform when 
the reference frame is rotated through an angle θ in a counterclockwise 
direction. We emphasize that in the previous equation, a positive value 
of θ implies a counterclockwise rotation of x, y-reference frame to x′, 
y′-reference frame.

0
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Vector x

y-
ax

is

y¢-
ax

is

x-axis
θ

x¢-axis

x¢

Figure B.1 Definition sketch for vector x and its components (x, y) and (x′, y′) in the two 
reference frames.
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Figure B.2 Definition sketch for geometric construction.
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Appendix C: Table of 
well function W(u)

u 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 

×100 0.219 0.049 0.013 0.0038 0.0011 0.00036 0.00012 0.000038 0.000012
×10–1 1.82 1.22 0.91 0.70 0.56 0.45 0.37 0.31 0.26
×10–2 4.04 3.35 2.96 2.68 2.47 2.30 2.15 2.03 1.92
×10–3 6.33 5.64 5.23 4.95 4.73 4.54 4.39 4.26 4.14
×10–4 8.63 7.94 7.53 7.25 7.02 6.84 6.69 6.55 6.44
×10–5 10.94 10.24 9.84 9.55 9.33 9.14 8.99 8.86 8.74
×10–6 13.24 12.55 12.14 11.85 11.63 11.45 11.29 11.16 11.04
×10–7 15.54 14.85 14.44 14.15 13.93 13.75 13.60 13.46 13.34
×10–8 17.84 17.15 16.74 16.46 16.23 16.05 15.90 15.76 15.65
×10–9 20.15 19.45 19.05 18.76 18.54 18.35 18.20 18.07 17.95
×10–10 22.45 21.76 21.35 21.06 20.84 20.66 20.50 20.37 20.25
×10–11 24.75 24.06 23.65 23.36 23.14 22.96 22.81 22.67 22.55
×10–12 27.05 26.36 25.96 25.67 25.44 25.26 25.11 24.97 24.86
×10–13 29.36 28.66 28.26 27.97 27.75 27.56 27.41 27.28 27.16
×10–14 31.66 30.97 30.56 30.27 30.05 29.87 29.71 29.58 29.46
×10–15 33.96 33.27 32.86 32.58 32.35 32.17 32.02 31.88 31.76

Source: After Wenzel, L.K., Method of Determining Permeability of Water-Bearing Materials with 
Special Reference to Discharging Well Methods, U.S. Geological Survey Water Supply Paper 887, 1942.
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Appendix D: Proof of the 

assertion ==( ) ( )( )δdy dx d dx y

Let y = y(x) be any function of x and δy an admissible variation in y(x), as 
shown in Figure D.1. We know, by definition, that ( )δ dy dx/  stands for the 
change in the derivative of the function y = y(x) as the function changes 
from y(x) to y(x) + δy(x). This change in the derivative can be written as fol-
lows (see Figure D.1):
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Figure D.1 Definition sketch.



258 Appendix D: Proof of the assertion (dy/dx) = (d/dx) (δy)

In Equation D.1, the second equality follows from the differential calculus 
of infinitesimals. Thus,
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