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Progress in Theoretical Chemistry and Physics
A series reporting advances in theoretical molecular and material 
sciences, including theoretical, mathematical and computational

chemistry, physical chemistry and chemical physics

Aim and Scope

Science progresses by a symbiotic interaction between theory and experiment: theory is

used to interpret experimental results and may suggest new experiments; experiment

helps to test theoretical predictions and may lead to improved theories. Theoretical

Chemistry (including Physical Chemistry and Chemical Physics) provides the concep-

tual and technical background and apparatus for the rationalisation of phenomena in the
chemical sciences. It is, therefore, a wide ranging subject, reflecting the diversity of

molecular and related species and processes arising in chemical systems. The book

series Progress in Theoretical Chemistry and Physics aims to report advances in
methods and applications in this extended domain. It will comprise monographs as well

as collections of papers on particular themes, which may arise from proceedings of 

symposia or invited papers on specific topics as well as initiatives from authors or 
translations.

The basic theories of physics – classical mechanics and electromagnetism, relativity 
theory, quantum mechanics, statistical mechanics, quantum electrodynamics – support

the theoretical apparatus which is used in molecular sciences. Quantum mechanics 

plays a particular role in theoretical chemistry, providing the basis for the valence 
theories which allow to interpret the structure of molecules and for the spectroscopic

models employed in the determination of structural information from spectral patterns.

Indeed, Quantum Chemistry often appears synonymous with Theoretical Chemistry: it
will, therefore, constitute a major part of this book series. However, the scope of the

series will also include other areas of theoretical chemistry, such as mathematical

chemistry (which involves the use of algebra and topology in the analysis of molecular 
structures and reactions); molecular mechanics, molecular dynamics and chemical
thermodynamics, which play an important role in rationalizing the geometric and

electronic structures of molecular assemblies and polymers, clusters and crystals;
surface, interface, solvent and solid-state effects; excited-state dynamics, reactive

collisions, and chemical reactions. 

Recent decades have seen the emergence of a novel approach to scientific research,
based on the exploitation of fast electronic digital computers. Computation provides a
method of investigation which transcends the traditional division between theory and

experiment, Computer-assisted simulation and design may afford a solution to complex

problems which would otherwise be intractable to theoretical analysis, and may also

provide a viable alternative to difficult or costly laboratory experiments. Though

stemming from Theoretical Chemistry, Computational Chemistry is a field of research 
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in its own right, which can help to test theoretical predictions and may also suggest
improved theories.

The field of theoretical molecular sciences ranges from fundamental physical
questions relevant to the molecular concept, through the statics and dynamics of

isolated molecules, aggregates and materials, molecular properties and interactions, and 

the role of molecules in the biological sciences. Therefore, it involves the physical basis

for geometric and electronic structure, states of aggregation, physical and chemical

transformations, thermodynamic and kinetic properties, as well as unusual properties

such as extreme flexibility or strong relativistic or quantum-field effects, extreme
conditions such as intense radiation fields or interaction with the continuum, and the

specificity ofbiochemical reactions.

Theoretical chemistry has an applied branch – a part of molecular engineering,
which involves the investigation of structure-property relationships aiming at the
design, synthesis and application of molecules and materials endowed with specific
functions, now in demand in such areas as molecular electronics, drug design or genetic

engineering. Relevant properties include conductivity (normal, semi- and supra-),

magnetism (ferro- or ferri-), optoelectronic effects (involving nonlinear response),

photochromism and photoreactivity, radiation and thermal resistance, molecular recog-

nition and information processing, and biological and pharmaceutical activities, as well

as properties favouring self-assembling mechanisms and combinationproperties needed

inmultifunctional systems.

Progress in Theoretical Chemistry and Physics is made at different rates in these
various research fields. The aim of this book series is to provide timely and in-depth
coverage of selected topics and broad-ranging yet detailed analysis of contemporary

theories and their applications. The series will be of primary interest to those whose
research is directly concerned with the development and application of theoretical
approaches in the chemical sciences. It will provide up-to-date reports on theoretical
methods for the chemist, thermodynamician or spectroscopist, the atomic, molecular or

cluster physicist, and the biochemist or molecular biologist who wish to employ

techniques developed in theoretical, mathematical or computational chemistry in their
research programmes. It is also intended to provide the graduate student with a readily

accessible documentation on various branches oftheoretical chemistry, physical chem-
istry and chemical physics. 
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Preface

These two volumes collect thirty-eight selected papers from the scientific contributions

presented at the Fourth European Workshop on Quantum Systems in Chemistry and
Physics (QSCP-IV), held in Marly-le-Roi (France) in April 22-27 , 1999, A total of one

hundred and fifteen scientists attended the workshop, 99 from Europe and 16 from the

rest of the world. They discussed the state of the art, new trends, and future evolution of

the methods and applications.

The workshop was held in the old town of Marly-le-Roi, which lies to the West of

Paris between the historic centres of Saint-Germain-en-Laye and Versailles. Participants

were housed at the National Youth Institute, where over sixty lectures were given by lea-

ding members of the scientific community; in addition, over sixty posters were presented

in two very animated sessions. We are grateful to the oral speakers and to the poster pre-

senters for making the workshop such an stimulating experience. The social programme

was also memorable - and not just for the closing banquet, which was held at the French

Senate House. We are sure that participants will long remember their visit to the 'Musée

des Antiquités Nationales': created by Napoleon III at the birthplace of Louis XIV, this

museum boasts one of the world finest collections of archeological artifacts.

The Marly-le-Roi workshop followed the format established at the three previous

meetings, organized by Prof. Roy McWeeny at San Miniato Monastery, Pisa (Italy) in

April, 1996 (the proceedings of which were published in the Kluwer TMOE series); Dr

Steve Wilson at Jesus College, Oxford (United Kingdom) in April, 1997 (which resulted

in two volumes in Adv. Quant. Chem.); and Prof Alfonso Hernandez-Laguna at Los

Alixares Hotel, Granada (Spain) in April, 1998 (for which proceedings appeared in the

present series). These meetings, sponsored by the European Union in the frame of the

Cooperation in Science and Technology (COST) chemistry actions, create a forum for

discussion, exchange of ideas and collaboration on innovative theory and applications.

Quantum Systems in Chemistry and Physics encompasses a broad spectrum of re-

search where scientists of different backgrounds and interests jointly place special em-

phasis on quantum theory applied to molecules, molecular interactions and materials. The

meeting was divided into several sessions, each addressing a different aspect of the field:

1 - Density matrices and density functionals; 2 - Electron correlation treatments; 3 - Re-

lativistic formulations and effects; 4 - Valence theory (chemical bond and bond break-

ing); 5 - Nuclear motion (vibronic effects and flexible molecules); 6 - Response theory

(properties and spectra); 7 - Reactive collisions and chemical reactions, computational

chemistry and physics; and 8 - Condensed matter (clusters and crystals, surfaces and in-

terfaces).

Density matrices and density functional have important roles in both the interpreta-

tion and the calculation of atomic and molecular structures and properties. The hnda-

mental importance of electronic correlation in many-body systems makes this topic a

central area of research in quantum chemistry and molecular physics. Relativistic effects

are being increasingly recognized as an essential ingredient of studies on many-body sys-

tems, not only from a formal viewpoint but also for practical applications to molecules

and materials involving heavy atoms. Valence theory deserves special attention since it

xi



xii

improves the electronic description of molecular systems and reactions from the point of

view used by most laboratory chemists. Nuclear motion constitutes a broad research field

of great importance accounting for the internal molecular dynamics and spectroscopic

properties.

Also very broad and of great importance in physics and chemistry is the topic of re-

sponse theory, where electric and magnetic fields interact with matter. The study of che-

mical reactions and collisions is the cornerstone of chemistry, where traditional concepts

like potential-energy surfaces or transition complexes appear to become insufficient, and

the new field of computational chemistry finds its main applications. Condensed matter is

a field in which progressive studies are performed, from few-atom clusters to crystals,

surfaces and materials. 

We are pleased to acknowledge the support given to the Marly-le-Roi workshop by

the European Commission, the Centre National de la Recherche Scientifique (CNRS)

and Universite Pierre et Marie Curie (UPMC). We would like to thank Prof Alfred Ma-

quet, Director of Laboratoire de Chimie Physique in Paris, Prof. Alain Sevin, Director of

Laboratoire de Chimie Théorique in Paris, and Dr Gérard Rivière, Secretary of COST-

Chemistry in Brussels, for financial and logistic help and advice. Prof. Gaston Berthier, 

Honorary Director of Research, and Prof Raymond Daudel, President of the European 

Academy, gave the opening and closing speeches. The supportive help of Ms Françoise 

Debock, Manager of INJEP in Marly-le-Roi, is also gratefully acknowledged. Finally, it 

is a pleasure to thank the work and dedication of all other members of the local organiz-

ing team, especially Alexandre Kuleff, Alexis Markovits, Cyril Martinsky and, last but 

not least, Ms Yvette Masseguin, technical manager of the workshop. 

Jean Maruani and Christian Minot 
Paris, 2000 
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ARE EXACT KOHN-SHAM POTENTIALS EQUIVALENT TO
LOCAL FUNCTIONS?

R.K. NESBET

IBM Almaden Research Center
650 Harry Road, San Jose, California 95120-6099, USA

AND

R. COLLE 

Dipartimento di Chimica Applicata, Bologna
and Scuola Normale Superiore, Pisa, Italy

Abstract. In Kohn-Sham density functional theory, equations for the oc-

cupied orbital functions of a model state can be derived by minimizing the

exact ground-state energy functional of Hohenberg and Kohn. It has been

assumed for some time that the effective potentials in exact Kohn-Sham

equations are equivalent to local potential functions. Specializing this the-

ory to the exchange-only problem in a Hartree-Fock model, for which exact

solutions are known, this assumption is tested in a situation relevant to real

atoms. It is shown that the assumption fails.

1. Introduction

Density functional theory (DFT) is based on a proof [1] that the exter-

nal potential acting on an N-electron system is uniquely associated with

the electronic ground-state density function. The ground-state energy is a

functional of the spin-indexed electron density ρ (r), and this energy func-

tional is minimized by the ground-state density function. Introducing an

orbital model or reference state [2], the spin-indexed reference-state den-

sity ρ = Σ i ni,φ   i*φ i is expressed as a sum of densities of orthonormal spin-

indexed orbital functions weighted by reference-state occupation numbers

n i ,which for nondegenerate ground states have values 0,1 only. Unless ex-

plicitly varied, these occupation numbers are considered to be constants

such that Σ i ni = N. This and other equations are simplified here by omit-

3
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4 R. K. NESBET AND R. COLLE

ting spin indices for orbital functions, densities, and potential functions. 

Sums over spin indices are implied in integrals and summations. Exact wave 

functions Ψ are spin eigenstates, but single-determinant model or reference

states Φ have broken spin symmetry except for closed-shell singlet states.

An exact Kohn-Sham (KS) theory is defined by varying these occupied or-

bital functions so as to minimize the Hohenberg-Kohn (HK) ground-state

energy functional. Alternatively, if it is assumed that the variational Euler-

Lagrange equations for the orbital functions can be expressed in terms of 

purely local effective potential functions (the locality hypothesis), the same 

result should be achieved by minimizing only the mean kinetic energy of 

the reference state over all sets of occupied orbital functions that produce 

the ground-state density [2]. This procedure defines the Kohn-Sham con-

struction. It is commonly assumed that the locality hypothesis is valid, so 

that exact KS theory and the KS construction should be equivalent when 

the same Hohenberg-Kohn energy functional is used. 

If the locality hypothesis were valid as a general consequence of vari-

ational theory, it should apply to both exchange-correlation and kinetic 

energies. In their original paper, Kohn and Sham (1965) propose a model 

theory in which the kinetic energy is expressed by the linear operator – 1–
2 ∇2 

of Schrödinger. They do not resolve the question of locality of the exchange-

correlation potential. Subsequent literature has assumed this potential to 

be a local function, not a linear operator. This would be consistent if the 

kinetic energy operator were equivalent to an effective local potential func-

tion vT(r) in correctly-formulated variational equations, as postulated in

deriving the Thomas-Fermi equation [3], It has recently been shown that 

this cannot generally be true [4]. 

Since the locality hypothesis fails for the kinetic energy operator, it 

cannot be assumed without proof for the exact ground-state exchange-

correlation potential implied by DFT. We examine this issue here, compil-

ing evidence from prior literature that appears to contradict the locality 

hypothesis, and adding new evidence from new test calculations. These cal-

culations exploit the Hartree-Fock model of DFT, based on a demonstration 

that ground-state Hartree-Fock theory satisfies Hohenberg-Kohn theorems. 

2. Kinetic energy and Thomas-Fermi theory 

Given the exact HK energy functional E[ρ ] for external potential v(r),
infinitesimal variations of ρ induce variations of E within its range of def-

inition. To avoid irrelevant mathematical complexities, it will be assumed 

here that only physically realizable density functions need be considered. 

In Kohn-Sham theory, this is assured by restricting orbital functions to the 

usual Hilbert space, requiring continuity with continuous gradients except 
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for Kato cusp conditions at Coulomb potential singularities. The locality 

hypothesis assumes that such infinitesimal variations of E take the form 

(1)

where vE(r) is a local function of r. If E[ρ] can be defined for unrestricted

infinitesimal variations of ρ in a neighborhood of any physically realizable 

density, and a Lagrange multiplier µ is used to enforce the normalization

constraint ∫ ρ d3r = N, the stationary condition is

(2)

For free variations of ρ this implies the Thomas-Fermi equation 

(3)

If a kinetic energy functional can be defined, this derivation assumes that

=vT(r), a local effective potential, and that the residual exchange-

correlation energy defines an exact local exchange-correlation potential, 

Kohn and Sham postulate an orbital decomposition of the density func-

tion. In order to examine evidence that Eq.(1) is not adequate for density-

functional theory with this orbital structure, we consider an extended def-

inition, in which infinitesimal variations of E are described in terms of a 

linear operator that acts on orbital wave functions. This generalized func-

tional derivative is denoted by vE, and variations of E are given by

= vxc(r)

(4)

This generalization reduces to the standard form if vE is equivalent to 

a local function vE(r) when acting on occupied orbitals of a Kohn-Sham

model state. 

Exact KS equations impose normalization by requiring the occupied

^

orbitals of the model or reference state to be orthonormal. This introduces 

a matrix of Lagrange multipliers which can be diagonalized to give the 

canonical exact KS equations, for occupied orbitals i ≤ N,

(5)

where is replaced by the linear operator vT = –
1
–
2 ∇ 2 ^
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If the Thomas-Fermi and exact KS equations were equivalent, they 

would give the same result when Eq.(3) is multiplied by ρ and integrated 

and Eq.(5) is multiplied by niφ i*, integrated, and summed. Hence the equa-

tions are inconsistent unless Σ i ni ∈ i = Nµ . Because Σ i ni = N and ∋ 

i ≤ µ,

this equation cannot be true unless all orbital energies are equal. Except 

for unusual symmetry degeneracies, the exclusion principle rules this out 

for more than two electrons, and proves that Thomas-Fermi and exact KS 

equations are in general inconsistent [4]. 

This does not resolve the question of which of these equations is physi-

cally correct, but empirical evidence strongly supports Kohn and Sham in 

their choice of the linear operator vT = – 1–
2 ∇ 2 

Otherwise, Thomas-Fermi

equations cannot incorporate Fermi-Dirac statistics [4] and do not describe 

atomic shell structure and chemical binding [3]. 

3. Natural definition of component functionals 

The KS construction [2] defines a kinetic energy functional of the occupied

orbitals of the model state Φ, constrained so that the model density ρΦ 

equals that of the true ground state Ψ. Variation of this orbital functional 

leads to the usual Schrödinger operator for kinetic energy in exact KS 

equations. In fact, this construction or any alternative rule that associates 

a single-determinant reference state with each N-electron wave function Ψ 
provides a natural definition of correlation energy and separately of each 

of the orbital functional components of the reference-state mean energy

Using an unsymmetric normalization, (Φ|Ψ) = (Φ|Φ) = 1, any energy 

eigenvalue of the N-electron Hamiltonian H is given exactly by an unsym-

metrical formula E = (Φ|H |Ψ) = (Φ |H |Φ)+ (Φ |H | Ψ – Φ) = (Φ|H|Φ)+Ec.
Ψ – Φ is orthogonal to Φ by construction. This defines Ec = (Φ|H|Ψ– Φ)

as an off-diagonal matrix element of the Hamiltonian between the refer-

ence state and its orthogonal complement. The leading term (Φ|H|Φ) is an

explicit orbital functional. 

4. Orbital functional components of the energy functional 

The N-electron Hamiltonian takes the form H = T + U + V, where T is

the kinetic energy, U is the interelectronic Coulomb energy, and V is the

external potential energy. These separate terms in (Φ| H|Φ) define separate 

density functionals when the reference state Φ is determined by a wave 

function Ψ that is itself a density functional. Expressed as an explicit func-

tional of the occupied orbitals of the reference state, the kinetic energy 

(Φ|H|Φ) [5]

^
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functional is 

Similarly, the external potential energy is 

7

(6)

(7)

equal to the integral ∫ vρ d3r, where ρ is the density function of the refer-

ence state. This definition is valid in the KS construction because ρΦ = ρΨ. 
Denoting the two-electron Coulomb interaction by u, Coulomb minus ex-

change by u, the electronic interaction energy functional is
_

(8)

where

5. Functional derivatives and local potentials 

When Ec is defined as indicated above, the component density function-

als of (Φ|H|Φ) are explicit orbital functionals. A consistent definition of

orbital and density functional derivatives is required. If density functional 

derivatives were local functions, the variation of such a functional would be 

(9)

This formula is not meaningful if the functional derivative is a linear op-

erator that acts on orbital wave functions, because the notation vδρ is not

well-defined. A correct notation for such operators is 

(10)

which reduces to Eq.(9) if vF is equivalent to a local function vF(r). Vari-

ation of an explicit orbital functional takes the form 

(11)

from which Schrödinger derived the kinetic energy operator vT = –
1
–
2 ∇2 

used in the KS equations [2]. Consistency between Eqs.(10) and (11) implies 

the chain rule 

(12)

^

^

^

^
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From this chain rule, it follows for any functional derivative vF that

reduces to a local function vF(r) that

(13)

This sum rule determines the effective local potential if the locality hypoth-

esis is valid. 

6. Exchange energy in the Hartree-Fock model

It can be shown that the Hohenberg-Kohn theory is valid for an unrestricted

Hartree-Fock model. The full N-electron Hamiltonian H = T + U + V is

used, but trial wave functions are limited to single normalized Slater deter-

minants constructed from orthonormal spin-indexed orbital wave functions.

Only closed-shell states will be considered in specific calculations discussed 

here. The variational energy functional is (Φ |H|Φ) [6]. In this model, the

universal HK functional is (Φ|T + U|Φ), evaluated in any Hartree-Fock

ground state, corresponding to the density ρ of the Hartree-Fock wave

function Φ. The simplest definition of a reference state in this model is

Φ = Ψ since the variational trial functions Ψ are limited to the form of

single Slater determinants. With this definition, Ec vanishes exactly, and

all other components of the HK energy functional are known from their

values in Hartree-Fock ground states. This provides a model of DFT in

which everything is known or can be computed accurately: density, energy,

and wave function. 

This model can be used to test the validity of the locality hypothe-

sis for the effective exchange potential derived from the exchange energy

functional.

7. Energy relationships in the Hartree-Fock model

In this model, exact KS equations are equivalent to ground-state HF (or

UHF) equations and determine the same (unique) wave function Φ. The

model defines the variational energy functional as (Φ|H|Φ) for any trial

function in the form of a single determinant. In the KS construction (KSC),

the model function minimizes (Φ |T|Φ) subject to a density constraint, and

EKSC ≥ EHF. In optimized effective potential theory (OEP) [7, 8], occu-
pied orbital functions of a model state Φ are determined by equations of the 

same form as the KS equations, with a local exchange potential chosen to

minimize the variational energy (Φ| H|Φ). Since the OEP density is uncon-

strained except by normalization, while the KSC density is constrained to 

equal that of the HF ground-state, EKSC ≥ EOEP. Hence the variational

^
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TABLE1.
atoms (Hartree units) 

Variational energies for typical

Atom EHF EOEP EKSC 

He -2.8617 -2.8617 -2.8617

Be -14.5730 -14.5724 -14.5724

Ne -128.5471 -128.5455 -128.5454

energies of the three methods must be such that EKSC ≥ EOEP ≥ EHF

If the locality hypothesis is valid, an exact local exchange potential 

exists that must be equivalent to the linear exchange operator of Fock when

acting on the occupied ground-state orbital functions. Using this exchange 

potential, OEP must produce the HF ground state, and the KSC exchange

potential must agree with it. Hence the wave functions, electronic densities, 

and variational energies should all be equal. 

Evidence that ρ OEP ≠ ρ HF has been available for some time [10]. If

ρ OEP ≠ ρ HF, HK theory implies EOEP > EHF, and no local exchange

potential can minimize the variational energy. This contradicts the locality

hypothesis and implies that imposing locality is a variational constraint.

Except for He, computations indicate a variational error of constraint ∆E
in the OEP and KSC variational energies. Thus ∆ EOEP = EOEP–EHF > 0

and ∆ EKSC ≥ ∆ EOEP. Computed variational energies are shown for typ-

ical atoms in Table 1: EHF [11], EOEP [7, 8], and EKSC [9, 12]. Computed

energies are such that EKSC ≥ EOEP > EHF, in agreement with variational

theory if there is a locality constraint in the OEP and KSC methods. These 

KSC results show that although solution of the KSC equations produces

a local exchange potential, implying ” noninteracting v-representability” ,

this does not imply minimization of the variational energy functional, the 

”locality hypothesis”. 

8. Direct test of the locality hypothesis 

A necessary condition for locality of a density functional derivative is pro-

vided by varying the nuclear charge in an atom [5]. If a local potential 

function vF (r) is equal to the functional derivative then the defini-

tion of a functional derivative is tested by the criterion 

[9].

(14)

Only ground-state quantities are used in this formuala 
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TABLE 2. Results of the KS construction (Hartree units, 
signed integers indicate powers of 10) 

At Ph
HF Px

HF Px
KS PT

HF PT
KS

He -0.347-9 0.174-9 0.174-9 -0.606-5 -0.606-5

Be -0.316-9 0.126 -0.1-3 0.812 0.815

Ne 0.152-8 0.442 -0.3-4 6.859 6.862

We have carried out HF and KSC calculations, cross-checked between 

two different programs using different methods and procedures, and obtain 

total energies consistent with published HF [11] and KSC [9] results. Com-

puted values of the criterion quantities PF are shown in Table 2 for He, Be

and Ne ground states. In this table, HF refers to local potentials computed

for HF ground states using Eq.(13). The Hartree potential vh(r) satisfies

the locality criterion to computational accuracy in all cases, while the effec-

tive kinetic potential vT(r) fails by a large margin for Be and Ne. Px
HF testsHF

the Slater local exchange potential computed using Eq.(13), and indicates

that this test of locality fails. However, for the KSC local exchange poten-

tial, Px
KS is nonzero, but at the margin of accuracy of these calculations. 

It has recently been shown that the integral equation of the OEP model

implies Px
OEP = 0 [5], although the OEP energy and density differ from 

the HF ground state [12]. Thus this necessary but not sufficient condition 

for locality of the exchange potential is satisfied exactly in the OEP model 

and to a close approximation in KSC. 

9. Conclusions 

The mathematical issue involved here is the validity of the locality hypoth-

esis, that a correct variational derivation of exact Kohn-Sham equations 

implies the existence of local potentials equivalent to the density-functional

derivatives that occur in this theory. This hypothesis has been shown to 

fail (for N > 2) for the kinetic energy [4], so it cannot be assumed to be 

valid for exchange and correlation energies without a separate proof. In the 

unrestricted Hartree-Fock model of density-functional theory, there is no 

correlation energy, and this hypothesis implies the existence of an exact 

local exchange potential. Here we have shown that it fails for typical atoms 

with more than two electrons. The UHF model has the same mathematical 

structure for all atoms and molecules. Thus it can be expected that an exact 

local exchange potential does not exist in this model of density-functional

theory for quite general N-electron systems. 

Kohn-Sham kinetic and exchange energies in a correlated system can 
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be defined as orbital functionals with exactly the same form as in the UHF 

model [5], expressed as mean values in the model or reference state. In 

general, correlation energy cannot be expressed so directly as an orbital 

functional, much less as an explicit density functional. Except for correla-

tion screening of continuum-electron exchange, it is not obvious how the

mathematical character of these explicit orbital functionals could be qual-

itatively changed by cancellation against a necessarily more complex and 

numerically smaller correlation energy functional. We conjecture that the

local exchange-correlation potential anticipated in exact Kohn-Sham theory 

does not exist for any real system with more than two electrons. 
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THEORY OF EXACT EXCHANGE RELATIONS FOR A SINGLE
EXCITED STATE

A. NAGY
'
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Abstract. A recently proposed theory for a single excited state based on

Kato’s theorem is reviewed. The concept of adiabatic connection is extended

and the validity of Kato’s theorem along the adiabatic path is discussed.

Exchange identities are derived utilizing the principle of adiabatic connec-

tion and coordinate scaling. A generalized ’Koopmans’ theorem’ is derived.

1. Introduction

Though the density functional theory was originally a ground-state theory

[1], it has been extended to excited states, too. Nowadays, there are several

methods to treat excited states of atoms, molecules and solids. Rigorous

generalization for excited states was given by Theophilou [2] and by Gross,

Oliveira and Kohn [3]. Several calculations were done with this method

[4-11] This approach has the disadvantage that one has to calculate all

the ensemble energies lying under the given ensemble energy to obtain

the desired excitation energy. It is especially inconvenient to use it if one

is interested in highly excited states. Recently, Görling [12] presented a

new density fuctional formalism for excited states generalizing a recent

perturbation theory [13]. An alternative theory, worth mentioning, is time-

dependent density functional theory [14,15] in which transition energies are

obtained from the poles of dynamic linear response properties. The work

formalism proposed by Sahni and coworkers [16] has also been applied in

excited-state density functional calculations [17]. Görling [18] has presented

a generalized density fuctional formalism based on generalized adiabatic

connection.

13

J. Maruani et al. (eds.), New Trends in Quantum Systems in Chemistry and Physics, Volume I , 13–24.

© 2001 Kluwer Academic Publishers. Printed in the Netherlands. 



14 Á. NAGY 

Recently, a new approach of treating a single excited state has been

presented [19,20]. It is based on Kato’s theorem [21,22] and is valid for 

Coulomb external potential (i.e. free atoms, molecules and solids). It has

the advantage that one can treat a single excited state. 

2. Theory for a single excited state 

It is well-known that the ground state electron density is sufficient in prin-

ciple to determine all molecular properties. For Coulomb system this state-

ment can be simply understood (Bright Wilson’s [23] argument): Kato’s 

theorem [21,22] states that 

(1)

where the partial derivatives are taken at the nuclei β. So the cusps of the 

density tell us where the nuclei are (Rβ ) and what the atomic numbers Zβ 
are. On the other hand, the integral of the density gives us the number of

electrons:

(2)

Thus from the density the Hamiltonian can be readily obtained from which

every property can be determined. This argument is valid only for Coulomb 

systems, while the density functional theory is valid for any external po-

t en t ial .
Kato’s theorem is valid not only for the ground state but also for the

excited states. Consequently, if the density ni of the i-th excited state is

known, the Hamiltonian H is also in principle known and its eigenvalue 

problem

∧

∧

(3)

(4)

(5)

(6)

can be solved, where

HΨk = EkΨk      (k = 1, ..., i, ...)
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and

(7)

are the kinetic energy, the electron-electron energy and the electron-nucleon

operators, respectively. 

Using the concept [24,25] of adiabatic connection Kohn-Sham-like equa-

tions can be derived. It is supposed that the density is the same for both 

the interacting and non-interacting systems, and there exists a continuous 

path between them. A coupling constant path is defined by the Schrödinger

equation

(8)

where

(9)

The subscript i denotes that the density of the given excited state is sup-

posed to be the same for any value of the coupling constant α. α = 1 corre-

sponds to the fully interacting case, while α = 0 gives the non-interacting

system:

(10)

For α = 1 the Hamiltonian Hi
a is independent of i. For any other values of

∧

 

∧

α the ’adiabatic’ Hamiltonian depends on i, we have different Hamiltonian

for different excited states. Thus the non-interacting Hamiltonian (α = 0)

is different for different excited states. 

Now, let us study Kato’s theorem along the adiabatic path. First, the 

original form of Kato’s theorem [21] is reviewed: ’The Hamiltonian is writ-

ten as 

H = T+ W,
∧∧∧

(11)

where

(12)

W0 is a real-valued, measurable function bounded in the whole configu-

ration space. For each j, k with 0 ≤ j < k ≤ N the Vjk are real-valued,
_

H0
i Ψ0

k  = E0
k Ψ0

k .



Then Kato’s theorem states: 

16 Á. NAGY

measurable functions defined in the 3-dimensional space, which vanish iden-

tically outside some sphere and satisfy 

(13)

where σ is a fixed constant such that σ ≥ 2. These assumptions are satisfied 

by the Coulomb potential: 

(14)

(15)

(16)

where the partial derivatives are taken at the nuclei β and Ψ is the average
-

value of Ψ taken over the sphere r = constant around the nucleus β, for

fixed values of the remaining electron coordinates r2, ..., rN:

(17)

From this Eq. (1) can be derived [21]. 

Now let us turn to Kato’s theorem along the adiabatic path. The Hamil-

tonian is given by Eq. (9). As the density ni is fixed along the adiabatic 

path, its derivatives are also fixed thus we have Eq. (1) for any value of α. 
This gives a constraint for Vi

α The Hamiltonian (9) has the form of (11) -
(12) :

∧

(18)

Though the second term is not the same as Eq. (14), in the vicinity of the 

nucleus Rβ, the term –Zβ/|r – Rβ| should be the dominant in order to 

obtain (1).



The density ni of the excited state is
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In spite of the fact that Kato's theorem is valid along the adiabatic 

path, we do not know the potential Wα ,i in (14) or Vi 
α in (9). Moreover, it

might as well happen that there are several potentials that give the same 

density. In the next section we show that for a given electron-configuration,

the non-interacting effective potential can be uniquely constructed from the 

density of the excited state ni [20].

3.

In the density functional theory there are several methods [26-34] to obtain 

the Kohn-Sham potential from the ground-state electron density. These 

methods can be generalized to excited states. We now show that for a given 

electron-configuration, the non-interacting effective potential can be given 

uniquely from the density of the excited state ni. Here only nondegenerate 

case is considered. Then the non-interacting wave-function can be given as 

a Slater determinant of orbitals satisfying the one-electron equations 

Construction of excited-state effective potential 

(19)

(20)

where the occupation numbers λ ij can be 0 or 1. I corresponds to the highest 

occupied or bit al. 

Now, we introduce the functions Ki
j with the following definition: 

(21)

(22)

As it can be seen from the definition (21) the functions Ki are not all 

independent:

(23)

Substituting Eq. (21) into Eq.(19) we obtain 
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Let us suppose that the order of the orbitals corresponds to increasing 

eigenvalues: ε i
1 ≤ ε i2 ≤ ε i3 .... From Eq. (23) follows that

(24)

(If λ i1 = 0 then one should select another orbital which is occupied.) The 

effective potential v0
i (r) can then be eliminated from equations (22) as

follows. From the first equation of (22)

(25)

Then substitute this potential to the remaining I – 1 equations of (22): 

(26)

(27)

So we arrive at a system of differential equations, I – 1 equations for I –

1 functions K i
j , j = 2, .., I. The functions K i

j should satisfy the proper 

boundary conditions and normalization

where

and orthogonality 

(28)

(29)

conditions.

Now, we can integrate the system (26) of I – 1 differential equations 

for arbitrarily chosen parameters η ij Having specified the boundary con-

ditions and satisfied the normalization and orthogonality conditions, the 

proper values of η ij can be determined. Though, this is a typical eigenvalue-

eigenfunction problem, it may be questioned whether their solution exists 

because of their non-linear coupled character. This is analogous to the so-

called non-interacting v-representability problem of the ground-state the-

ory. In the ground-state theory it is generally supposed that the potential 

exists for true physical densities. Detailed investigations, though showed, 
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that there are exceptions [35,36]. For example, Aryasetiawan and Stott [31] 

studied the problem of v-representability for several model systems and 

constructed densities that are not ground-state densities. Instead, these are 

excited state densities. (E. g. They determined the effective potentials cor-

responding to the ground- and the first excited-state densities in a model 

of three spinless fermions moving in the square-well potential.) So even if 

a given density is not a ground-state density, it is an excited-state den-

sity. It is straighforward to assume that physically acceptable excited-state

densities are non-interacting v-representable.

4. Exact exchange relations 

In this new theory, the exact form of the exchange energy functional for the 

excited state is unknown. For constructing approximations it is necessary 

to uncover constraints which are satisfied by the exact exchange energy and 

potential. With this in mind the following theorems are derived. (We men-

tion in passing that these are straighforward generalizations of theorems 

valid for the ground state [37].)

The Kohn-Sham equations corresponding to the excited state i have the 

form

(30)

Here, we emphasize that the effective potential v0
i (r; [ni ]) depends on the

excited state density ni , that is we have different effective potential for 

different excited states. 

The excited state density ni is given by 

(31)

(32)

(33)

provided that an electron is excited to the level J from the level M. λ ik are

the occupation numbers. We can also define a 'ground-state' density 

(34)

and
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(35)

It is, of course, not the true ground-state density as it is constructed from 

the excited-state Kohn-Sham orbitals. 

Now, the 'Koopmans' theorem' for the ith excited state reads

(36)

where ψ iα=0 is the single determinant of the non-interacting excited state 

is the non -interacting 'ground -state' determinant of N – 1i and ψ i,0
is built of the lowest N – 1 orbitals of the Hamil-electrons,i.e. ψ i,0

tonian (9) for α = 0.

=

Another important theorem relates the orbital energy difference with 

the corresponding difference of the expectation values of the Hamiltonian

α 0 , N –1

α = 0, N–1

H.
∧

(37)

whereψ α=0 
is the non-interacting 'ground-state' determinant of N elec-

trons, i.e. ψ i,0α=0 
is built of the lowest N orbitals of the Hamiltonian (9) for 

α = 0. ε iHOMO is the energy of the 'highest occupied orbital' in determinant

ψα=0 
i,0

A useful relation for exchange energy difference reads 

(38)

where ∆ ni
F (r) is the density of the highest occupied Kohn-Sham orbital:

(39)

This expression can also be considered as a recursion relation leading to 

(40)

L = M + j, (41)

i,0

where in accordance with the notations of Eqs. (31), (32) and (34) 
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Eq. (38) may be cast in the form of the following identity: 

(42)

(43)

(44)

(45)

where vx
HF

is the Hartree-Fock exchange potential with Kohn-Sham or-
∧

bitals. One can immediatelly see that Eq. (45) has the consequence that 

the highest occupied orbital energy in the Hartree-Fock and Kohn-Sham

theory equals. This statement is true both for the ground and the excited 

states. This theorem was derived in the ground-state Kohn-Sham theory 

[38-40] and utilized in the KLI approximation for the optimized potential

method.

5.  Proof of the theorem 

Let us construct the Hamiltonian 

(46)

where vi
α(r;[n]) is defined such that the ith excitation density ni remain

independent of α. 
From previous studies we know that the asymptotic decay of nα 

i = ni

is governed by |E α 
i – E α 

i,0 |, where E α 
i is the ith excited-state energy of 

Hi
α. Eα,N  –1is, on the other hand, the 'ground-state' energy of Hi

α with
∧

one-electron removed. As ni is independent of α, |Ei
α – Eα, N–1| is also

independent of α. Consequently,

N–1

(47)

i,0

i,0

and

∧
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From Eqs. (46) and (47) we obtain

(48)

Now, following Görling and Levy [13] and Nagy [19] vi
α can be expanded

as

(49)

where u and v i
x are the Coulomb and exchange potentials, respectively.

From Eqs. (48) and (49) it follows that

(50)

Thus we obtained the ’Koopmans’ theorem’ for the excited state (Eq. (36)).

Now, we can apply the ’ground-state Koopmans’ theorem’ [37,38,40]:

(51)

Combining Eqs. (36) and Eq. (51) we arrive at Eq. (37). Now, returning

to Eq. (50) and comparing the expectation values on both sides of the

equation, we can immediatelly obtain identities (38) and (45). Recursion

relation (40) can be readily derived from Eq. (45) by a simple substitution

of Eqs. (41) - (44). In the theorems presented, we have the orbitals corre-

sponding to the non-interacting excited-state potential, so these are useful

constraints for this (unknown) potential.
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Abstract. In this paper we consider a criterion to allow a new coupling be-

tween density functional theory and configuration interaction methods. We

study as a possible criterion the ordering of the orbital energies produced

by the exchange-only KLI potential. This idea arises from the observation

that the KLI potential behaves as - 1/r for large r in agreement with the

known properties of the exact Kohn-Sham potential. The KLI bound states

can thus be classified into valence and Rydberg orbitals, the latter not ex-

pected to make an important contribution to the correlation energy. We

verify this assumption for the first terms of the He and Be series, as in the

former only dynamical correlation is supposed to be present, whereas in the

latter peculiar near-degeneracy effects intervene. In addition, exact results

are given for the Be series in the limit of infinite nuclear charge. Although

the contribution to the correlation energy from the low lying virtual states

are significantly different for the two series (saturating as Z increases for

the He series and being proportional to Z for large Z for the Be series)

the remaining contributions to the correlation energy for both series sat-

urate suggesting the application of DFT to the calculation of this latter

contribution.
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1. Motivation 

While fitting to experimental data produces density functionals for the 

exchange-correlation energy with average errors approaching the 1 kcal/mol

limit, some fundamental problems still remain. For example, the Kohn-

Sham (KS) eigenstate is constructed from a single determinant, which 

may not even yield the correct density in the case of degeneracy (”non 

v-representability”, see, e.g. [1]). Moreover, the nature of the KS determi- 

nant may rapidly change by the inflence of a vanishingly small perturbation. 

While the standard resolution of this problem is the ensemble treatment 

(see, e.g, [2, 3]) an alternative approach is to use the multi- (and not

single-) determinant wave functions to describe the reference state. This 

approach has been initiated by Lie and Clementi 25 years ago [4, 5] and 

is based on the observation that a few Slater determinants might describe 

an important, system specific part of the correlation energy, the remain- 

ing part showing an easy transferable behavior from system to system. A

general definition of this separation of the correlation energy (often called 

‘“static” and ”dynamic”, respectively) is not unique, as can be seen by the 

treatment given in the Lie and Clementi paper quoted above [5] (for more 

recent discussions, see, e.g. [6, 7]). In their first paper [4], Lie and Clementi 

treated diatomic molecules by considering the minimum number of Slater 

determinants to guarantee the proper dissociation of the molecule. The dy- 

namic correlation energy was obtained by using an approximate density 

functional (DF). In the second one [5], it is shown that a few configura- 

tions remain important, and that they have to be added to the wave func- 

tion calculation in order to achieve good results. Other methods to couple 

a. multi-determinant treatment to density functionals have been proposed

(see, e.g., Ref. [8, 9, 10, 11, 12]). Essentially, there are two ways of resolving

tho problem of the choice of the ”important” determinants: 

a) finding an appropriate separation into determinants yielding the 

’’ static” correlation energy, 

b) using a criterion allowing an arbitrary number of Slater determinants. 

The second approach is of course more flexible, as it allows the user to 

decide upon the most convenient separation. It also allows one to check the 

quality of the result by changing the separation, and to approach the exact 

value along with the reduction of the DF contribution and the increase 

of the wave function part. The former approach is, however, simpler for 

a systematic study and ”black-box” applications; this is the approach we 

followed in the present paper. We will limit ourselves (for the present) to 

wave function calculations, but briefly mention some implications of adding 

approximate density functionals to correct for the remaining part of the 

correlation energy. The systems that we will study are deliberately simple: 
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the He and Be series, as in the latter the origin of the near-degeneracy is well 

understood. Linderberg and Shull [13] have shown that in the Be series (in 

contrast to the He series) a two-configuration (ls22s2 and ls22p2) treatment 

is required, due to the degeneracy of the 2s and 2p levels when the nuclear

charge, Z, goes to infinity. A confirmation of the regular behavior of the 

correlation energy in the series can be seen in, e.g., the numerical study 

of Clementi [14], and is confirmed by more recent estimations of the exact 

correlation energy (cf. [15]). In fact, as Z becomes very large, the dominant

term in the correlation energy becomes constant (Z-independent) in the He

series, while in the Be series it is linear in Z, the proportionality constant

being -0.011727[13]. The difficulty of approximate DFs to describe this

behavior was recognized long ago [16], and has not been solved to this day in 

approximate Kohn-Sham methods. We would like to recall that the careful 

treatment of quasi-degenerate states is also important in wave-function 

methods [17]. 

2. Method

The philosophy of our approach is based upon a simple observation: molecu-

les normally possess an energy gap, while the uniform electron gas, used 

as a starting point in LDA and GGA's, does not. Furthermore we expect 

the states contributing to the dynamic correlation to lie in the continuum, 

based on the observation of Davidson [18] that the most important natural 

orbitals of He are significantly different from the Rydberg orbitals: the 

correlating orbitals have to be localized in the same spatial region as the 

strongly occupied ones, in order to describe the formation of the correlation

hole. We thus expect that among the states below the ionization limit only 

a few (the valence states) contribute significantly to the correlation energy. 

To be more specific, we will consider the one-particle states to be eigenstates 

of some one-particle hamiltonian: 

(1)

and treat the correlation by standard quantum mechanics methods in the 

space of the orbitals with negative eigenvalues (ε i < 0). 1 The choice of h0

can play a major role. It is well known that obtaining the Hartree-Fock wave 

function does not have any implication on the non-occupied (virtual) states. 

The freedom of choosing the virtual states has been used, for example, in 

1The potentials, and the orbital energies are, of course, determined only up to an 

arbitrary constant, which does not modify the eigenstates. As we are interested only 

in a selection of the eigenstates, the choice of the constant is immaterial. In our case, 

we choose all states which are below ionization for the non-interacting systems, which 

corresponds to the negative eigenvalues for a potential which vanishes at infinity. 
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constructing improved virtual orbitals (see, e.g., [19]) or other types of 

orbitals (see, e.g., [20]). Conventional Hartree-Fock calculations very often 

show that the eigenvalues of the virtual orbitals are positive, and thus 

not suited for our purpose. We will consider in this paper a well-defined 

one-body hamiltonian, with a local potential: the Krieger-Li-Iafrate (KLI)

[21] hamiltonian. This has been already done, e.g., by Engel et al.[22]. 

Using orbitals which do not originate from a Fock potential is, of course, 

not new (cf. the use of orbitals which originate from density functional 

calculations, e.g., in Ref. [23]). Fritsche [24] has argued that taking the 

Kohn-Sham (KS) determinant as the starting point of a wave function 

expansion guarantees that density is already correct at zeroth order. Görling

and Levy [25] have constructed a perturbation theory which guarantees 

that the density is correct to each given order. Their second-order energy 

expression does not contain the correlation potential, and thus one may 

consider the KLI potential (as giving an excellent approximation to the 

exact exchange potential, in the DF sense) as a

”

best” starting point, to

second order. Furthermore, the exact KS potential requires the knowledge 

of the exact density, while the KLI potential can be obtained with an effort 

comparable to that of an Hartree-Fock calculation. We thus write :

(4

Let, us now analyse the behavior of VKLI for Z → ∞. Following the

treatment of Linderberg and Shull [13], we will change to modified Hartree

units (E → E = E/Z 2, r → r = Zr; E is the energy, r the distance of the

electron from the nucleus in atomic units.) The exact hamiltonian in these 

units becomes for atomic systems:

~~

(3)

where T is the operator for the kinetic energy, N the number of electrons,

ri the distance of the ith electron from the nucleus and rij the distance

between electrons i and j. For Z → ∞ , the system is that of N non-

interacting electrons in the external potential of the hydrogen atom. As the 

electron-electron interaction has been turned off as 1/Z in H, it will also

disappear in VKLI as 1/Z so that
~

(4)

In the modified Hartree units (cf. text preceding Eq. 3) we thus obtain 
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Figure 1. r times V (1)

KLI (r) as a function of r, asymptotically approaching N – 1 = 3.
~~

(5)

where V
(1)

KLI is Z-independent. V (1)

KLI for the Be series is shown in Figure
~~

1. Details about how to compute to first order the Coulomb and exchange 

parts of VKLI . namely Vh and Vx in the limit of very large Z, are given in 

Appendix 1. The shape of r times V (1 )

KLI (cf. Fig. 1) is consistent with the

asymptotic expression:

~

(6)

which implies that Rydberg states exist both in the He and the Be series. 

Let us now analyse the behavior of the KLI orbital energies as Z → ∞. 
As for the potential expansion in Z, we write for the ith orbital energy, in 

modified Hartree units 

(7)

Introducing Eq. 4 into Eq. 2 and applying perturbation theory, it turns out 

that the zeroth order is just the hydrogenic orbital energy 

(8)

( φ i,H being the ith orbital of the H atom), whereas we get the first-order

change in the ε i to be~

(9)
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in modified Hartree units (or ~ Z in Hartree units). The difference between 

the 2s and 2p orbital energies is thus proportional to Z at most, for Z → ∞. 
For i = 2s and 2p, we obtain for the integral, 0.530147 and 0.591788,

respectively. We expect the KLI orbitals to have first-order changes with 

respect to φ  i, H

(i = 1s, 2s, 2p ...) (10)

whereφ i(1)
is Z-independent. A similar expansion will arise for Slater de-

terminants constructed from the φ i, Φ I yielding
~ ~

~

(11)

here Φ I .H is Constructed from φ i,H (e.g., i = 1s, 2s for the Be Φ  0,H), and

Φ I(1)
satisfies 〈 Φ I,H |Φ (1)

I 〉 = 0, since it differs from Φ I,H by the orbital φ i(1)

hich is orthogonal to φ i,H. These results allow us to calculate the behavior 

of the energy for Z → ∞.

∼

 

∼

 
∼

 
Starting with KLI determinant in modified Hartree units Φ0 and ac- 

ording to perturbation theory, we express the energy up to second order 

in 1/Z as2

(12)

(13)

i.e. in Hartree units for Be 

We have used the following formulas 

(14)

2
For the sake of simplicity we did not include single particle excitations into Eq. 12,

as they contribute only to order 1/Z2
and higher. The reason is that the degenerate

hydrogen orbitals, which might generate terms in 1/Z , have different symmetry , and the

matrix elements between orbitals of different symmetry are zero. 

E (0)
 + E (1)

 + E (2)
 = _1.25Z 2

 + 1.550111Z +  (Z0
)
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(15)

(16)

where the term proportional to Z2 in Eq. 13 is provided by Φ0 alone, while
~

part of the term linear in Z comes from the second-order contribution. 

The correlation energy to order linear in Z is thus given by

E (2) = -0.0208872+ (Z0) (Be series) (17)

The second order energy does not have a divergent term, in contrast to the 

one obtained using the hydrogen hamiltonian at zeroth order. 

As the source of this term linear in Z is the 2s-2p degeneracy in the hy-

drogen atom, we can also diagonalize the hamiltonian matrix in this space 

[13]

where Φs is the 1s22s2
 configuration, and Φp is the 1s22p2

 configuration.
~

To order Z (0)
the expression for E is identical to that obtained when con- 

structing the perturbation series with hydrogenic orbitals (instead of using 

KLI orbitals) [ 13] :

E = –1.25Z 2
+ 1.559273Z + (Z0) (19)

The resulting correlation energy is -0.011727Z (using Eq. 14 for the KLI 

energy), which yields thus the exact leading term in the correlation en-

ergy. Notice that the KLI second-order energy overestimates the quasi- 

degeneracy effect: the coefficient of Z in Eq. 17 was nearly twice the exact 

~
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TABLE 1. Energies in the He series 
E (0) + E (1) is the expectation value of the hamil-

tonian with the KLI wave function; E (2) the cor-
relation energy in second-order perturbation theory 

(Eq. 39); Eexact is taken from Ref. [15]. Total ener-
gies are given in order to facilitate the comparison
with calculations using zeroth order wave functions 
different from KLI 

Z E (0) + E (1) E (1) + E(1) + E (2) Eexact

2 -2.862 -2.907 -2.904

3 -7.236 -7.282 -7.280

4 -13.611 -13.656 -13.656

5 -21.986 -22.031 -22.031

6 -32.361 -32.406 -32.406

7 -44.736 -44.781 -44.781

8 -59.111 -59.156 -59.157

9 -75.486 -75.531 -75.532

10 -93.861 -93.906 -93.907

TABLE 2. Energies in the Be series
E(0) + E (1)

is the expectation value of the hamilto-

nian with the KLI wave function; E (2)
the correlation

energy in second-order perturbation theory (Eq. 39); 
Eexact is taken from Ref. [15] 

Z E (0) + E (1) E (0)
+ E (1) + E (2) Eexact

4 -14.572 -14.693 -14.667

5 -24.237 -24.377 -24.349

6 -36.407 -36.566 -36.535

7 -51.081 -51.257 -51.223

8 -68.257

9 -87.933 -88.141 -88.101

10 -110.110 -110.334 -110.291

-68.448 -68.412

one. Of course, higher order terms compensate for this discrepancy. (We

get for the third order energy a correction of 0.0035 mH.)

3. Numerical results 

Usually, the correlation energy is defined with respect to the non-relativistic

Hartree-Fock energy. In density functional theory, the expectation value of

1_
Z
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TABLE 3. Energies in the He series in restricted sub-
spaces
Eq

(2) is the correlation energy in second-order perturbation theory
taking into account only the configurations 1s2, 2s2 and 2p2 built
from KLI orbitals; Eq is the total energy obtained from a configu-

ration interaction calculation in the same space; E (2) (ε < 0) is the 
correlation energy in second-order perturbation theory obtained in

the space of the KLI orbitals with negative orbital energies 

Z E (0) + E (1) + Eq (2) Eq E (0) + E (1) + E (2) (ε < 0)

2 -2.862 -2.862 -2.863

3 -7.237 -7.237 -7.238

4 -13.612 -13.612 -13.614

5 -21.987 -21.987 -21.989

6 -32.362 -32.362 -32.364

7 -44.737 -44.737 -44.739

8 -59.112 -59.112 -59.1 14 

9 -75.487 -75.488 -75.489

10 -93.863 -93.862 -93.864

TABLE 4. Energies in the Be series in restricted subspaces 
Eq(2) is the correlation energy in second-order perturbation theory taking into 
account only the configurations 1s22s2

and 1s22p2 built from KLI orbitals; Eq
is the total energy obtained from a configuration interaction calculation in the 

same space; E (2) (ε < 0) is the correlation energy in second-order perturbation
theory obtained in the space of the KLI orbitals with negative orbital energies; 
EMCHF is the multiconfiguration Hartree-Fock energy taken from Ref. [15] 

Z E (0) + E (1) + Eq
(2) Eq E (0) + E (1) + E (2) (ε < 0) EMCHF

4 -14.619 -14.606 -14.627 -14.617

5 -24.308 -24.290 -24.3 15 -24.297

6 -36.498 -36.476 -36.504 -36.481

7 -51.189 -51.162 -51.195 -51.168

8 -68.380 -68.350 -68.387 -68.356

9 -88.072 -88.039 -88.080 -88.045

10 -110.265 -110.228 -110.273 -110.234

the KS determinant is used as a reference. As we start with a KLI determi-

nant, we use still another definition of the correlation energy. In this paper,

we will mean by ‘correlation energy’ the difference between the energy

obtained at a given level and the expectation value of the hamiltonian ob-

tained with the KLI determinant. In particular, we will compare the exact
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correlation energies, Ec, with those obtained within second-order pertur- 

bation theory, E (2) (cf. Tab. 1 and Tab. 2 for He and Be, respectively), 

Eq
(2) , the second-order contribution from the space of 1s,2s and 2p orbitals,

Ec,q, the configuration interaction correlation energy in the same space 3,

and finally the contribution to the second-order energy coming from the 

orbitals with negative orbital energies, E (2) (ε 
i

< 0). The values for Eq
(2) ,

Ec,q, E (2) (ε i < 0) can be inferred from the data given in Tables 1 and 3 for

He, arid Tables 2 and 4 for Be. Eq
(2) , Ec,q, E (2) (ε i < 0) are compared to Ec

in Figs. 2 and 3 (for He and Be respectively). Technicals details concerning 

our calculations are deferred to Appendix 2. We want to mention, however,

that we estimate our second-order energies to be 1-2 mH too high, due to 

the basis sets limitations. 

While for the He series, it turns out that the total energy is only slightly

too low within second-order perturbation theory based upon KLI (cf. Tab. 1 

arid Fig. 2), a severe over-estimate of the correlation can be observed for the 

Be series (cf. Tab. 2 and Fig. 3). If we use only the orbitals with negative 

energies to obtain the correlation energy,E (2) (ε i < 0), we observe that in 

the He series, there is only a negligible contribution coming from these 

orbitals, while in the Be series it decreases linearly with Z , in accordance 

with the asymptotic behavior given by Eq. 17. Notice that the slope is 

more pronounced for E(2) (Z) and Eq
(2) (Z) than for Ec (Z) and Ec, q (Z) (cf.

Eqs. 17 and 19 and Fig. 3). Of course, higher order terms in the perturbation

series will correct this effect. At infinite order in perturbation theory, using 

only the space of ls22s2 and ls22p2 configurations, we get the same result

as that obtained by diagonalizing the hamiltonian in this space. 

As the overestimation of the second-order correlation energy could be 

traced back to the quasi-degeneracy effect, a simple correction is the one 

suggested by Eggarter and Eggarter in their analysis of Hartree-Fock based 

second-order perturbation theory [26], namely that the correlation energy 

can be approximated by 

Ec ≈ E(2) + Ec, q – E q
(2)

(20)

This expression gives the correct linear term for Z → ∞ as the erroneous

linear term appearing in E (2)
is compensated by that in E q

(2) (cf. Eq. 17).

Using Eq. 20 the errors are reduced from maximally 43 to 13 mH in the Be 

series (cf. Tab. 4 and Fig. 4). For the He series a calculation in the space 

of determinants having the doubly occupied orbitals 1s, 2s or 2p shows

virtually no effect in comparison with a second-order energy calculation in

the same space (cf. Tab. 3 and Fig. 4). 

3
We considered the 1s2,2s2,2p2 configurations in the He series, and the 1s22s2 and

1s22p2 configurations in the Be series.
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a) Ec b) E(2)

Figure 2. Correlation energies (i.e. differences to 〈Φ0 |H|Φ0〉) in various approximations

for the He series vs. the nuclear charge, Z: a) exact (taken from Ref.[15]); b) calculated up 

to second order in full space; c) calculated up to second order in the space of orbitals with 

negative energies; d) calculated with a configuration interaction in ls,2s,2p subspace; e)

calculated up to second order in ls,2s,2p subspace. 

In the Be series, we notice some difference between the second-order

the He series, both E q
(2)

and E(2)(ε i < 0) are very small, cf. Fig. 2.) Lower

bounds for the energy obtainable in the space of the 1s, 2s, 2p orbitals are

given by the multi-configuration Hartree-Fock (MCHF) calculations [15],

which yield the lowest energies in the 1s, 2s, 2p space. We see from Tab. 4

that optimizing the orbitals in the MCHF calculation lowers the energy by 

roughly 10 mH in the Be series; this difference is similar to that obtained 

when comparing E(2)(ε i < 0) with Eq
(2) . Thus, taking care of E (2)(εi < 0)

might be used to compensate for orbital optimization. 

contributions in the 1s, 2s, 2p (Eq (2) ) space vs. E(2)(ε i < 0) (cf. Fig. 3). (In
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We believe that a density functional might be used to obtain the total

energies once the effect of quasi-degenerate states on the correlation energy 

is taken into account. In fact, introducing a gap in the uniform electron gas 

is possible. Several variants might be investigated, e.g. 

a) shifting all virtual states by a gap 

b) excluding all states above the Fermi level within a range for the 

remaining part of the correlation energy. 

For both cases electron gas calculations were done, and the latter variant 

was already used in molecular calculations in a scheme combining multi- 

configuration wave-functions with density functionals (see, e.g., Ref. [10]). 

The uniform electron gas with a gap shift was also used in molecular calcu- 

Figure 3. 
for the Be series vs. the nuclear charge, Z: 

a) full line: exact taken from Ref.[15] (Ec);
b) long dashed line: calculated up to second order in full space (E(2));
c) short dashed line: calculated up to second order in the space of orbitals with negative 

energies (E (2) (ε < 0));
d) dotted line: calculated with a configuration interaction in 1s,2s,2p subspace (Ec,q) ;

e) dashed dotted line: calculated up to second order in 1s,2s,2p subspace (Eq(2)) .

Correlation energies (i.e. differences to 〈Φ0 |H|Φ0〉) in various approximations
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lations assuming that one can define a local gap (where n is the

electron density of the system considered) which asymptotically is equal to

the ionization potential [28]. It turns out that one has to take into account

also the self-interaction correction and a gradient correction. In connection 

with recent exchange density functionals, quite good results could be ob-

tained [30]. Such a treatment neglects, in principle, all contributions coming 

from states within the gap. It thus seems natural to add the correlation en-

ergy of such a functional to that missing in a full calculation within the

space of orbitals with negative energies. As shown above, this quantity is 

quite safely estimated from a configuration interaction within the space of 

quasi-degenerate states. Thus, the density functional should describe only 

Ec. – Ec,q which changes very little with Z (cf. Fig. 5; the fluctuations in

the plot might be due to our numerical accuracy). To estimate the effect of 

the higher states with ε i < 0 we use an equation similar to Eq. 20:

(Ec (ε i < 0) ≈ Ec,q + E (2) (ε i < 0) – Eq(2)) (21)

We plot in Fig. 5 the part of the correlation energy which has to be described 

by the density functional, viz., Ec – Ec(ε i < 0) which we approximate by 

Figure 4. 
Z:

a) He series, Ec – E(2).

b) He series, (Ec – (E(2) + Ec,q – Eq
(2)

)), cf. Eq. 20;

c) Be series, full line: Ec – E (2)
; broken line: (Ec – (E(2) + Ec,q – Eq

(2)
)), cf. Eq. 20.

Errors of second-order energies and of Eq. 20 with respect to nuclear charge,

(|∇n|/n)2
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Ec minus the r.h.s. of Eq. 20. We also show in Fig. 5 Ec – Ec,q which

differs only little from the preceding quantity. In both cases we notice that

there is a very small change of this quantity with respect to Z, and this 

is in part due to our numerical inaccuracies. It would not be difficult to

generate a functional having a behavior like that shown for Ec – Ec,q , or

Ec – Ec (ε i < 0). It turns out, however, that using the functional of Ref. [30]

for Be already yields a quite reasonable correlation energy, and using Ec,q

(cf. Fig. 6) plus this density functional for Ec – Ec,q would yield a too large

correlation energy. We also show the difference between Ec and E(2)
 (ε < 0)

to show that the latter is not so easy to describe with the same type of Z-
dependence, due to the error in the Z-dependent term, mentionned before.

4. Conclusion 

Our results demonstrate that even when the nearly exact KLI exchange po-

tential (cf. [21, 22]) is employed as the zeroth order KS potential, it is not

possible to even qualitatively account for the correlation energy by employ-

Figure 5. 
charge, Z: 

a) He series, Ec – E (2) (ε < 0); 

b) He series, Ec – Ec,q;
c) He series, (Ec – (Ec,q + E (2) (ε < 0) – Eq

(2)
)), cf. Eq. 21;

d) Be series, full line: Ec – E (2) < 0)), long dashed line: Ec  – Ec,q), short dashed line:

(Ec – (Ec, q + E (2) (ε < 0) – Eq (2))), cf. Eq. 21.

Correlation energy not described by states in the gap, with respect to nuclear 
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ing second order perturbation theory in a system such as the Be isoelec- 

tronic series in which virtual states exist which are quasi-degenerate with 

occupied orbitals. This follows from the fact that the coefficient of the term 

linear in Z, which dominates the correlation energy, is in error by nearly 

a, factor of two when second order perturbation is employed. However, we 

find that, diagonalizing the Hamiltonian in the space of quasi-degenerate 

orbitals by employing a linear combination of determinants leads to the 

correct linear dependence on Z of the correlation energy. Moreover, the re-

maining correlation energy due to contributions from all the other virtual 

orbitals in the system including those in the continuum (which actually

make the largest contribution) rapidly saturate as Z increases as in the

case of the He isoelectronic series in which there is no quasi-degeneracy of 

virtual with occupied orbitals. This encourages us to believe that it will

be possible to construct density functionals for this component of the cor- 

relation energy since the latter tend to saturate in the high density limit 

when properly constructed to satisfy certain scaling conditions (25,28). The

inclusion of quasi-degeneracy effects, although generally ignored in DF cal-

culations, can have important effects on calculated ionization potentials, 

electron affinities and molecular atomization energies because the addition 

or subtraction of an electron or the creation of a chemical bond can eas-

ily change a system from one having a quasi-degeneracy to one that does

not and vice-versa, leading to significant changes in the correlation energy. 

Figure 6. Difference between the energies in the space of Slater determinants constructed 

by doubly occupying the 1s, 2s , 2p orbitals, and the expectation values with the KLI

determinants, (Φ0|H|Φ0〉, vs. the nuclear charge, Z. a) triangles connected by a full line:

in the He series (Ec,q); b) squares connected by a full line: in the Be series (Ec,q).
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We therefore anticipate that the inclusion of the considerations discussed 

above will make significant contributions to the accurate calculation of the 

ground state properties of atoms and molecules.

5. Appendix 

5.1. 1/Z TERM OF VKLI
~

In order to see what happens in order 1/Z in KLI, let us recall a few

expressions.

We take for the Coulomb term: 

where

and get the following expressions from mathematica[29] 

a) in the He series: 

b) in the Be series: 

(22)

(23)

(24)

(25)

Using notations similar to those of [21], but dropping the spin index, as we 

restrict ourselves to closed-shells, we have for the exchange energy: 

(26)

and its functional derivative, employing real wave functions, is

(27)

From Eq. 12 of Ref. [21] 



CORRELATION ENERGY CONTRIBUTIONS 41 

b) in the Be series:

(28)

From Eq. 48 of Ref. [21] and developping the φ i according to Eq. 10, we

get for the local exchange part of KLI potential:

a) in the He series:

~

(29)

(30)

and the constant C is determined by the requirement (Eq. 18 of Ref. [21]):
~

(31)

Substituting into the above equation the expression of Vx (r) and integrat-

ing over r, we get for the Be series:

~~

~

(32)

From the following values for the integrals involving hydrogenic orbitals:

) = 0.624999

) = 0.150390

I = 0.209876

1 = 0.021948 (33)

we obtain with Mathematica
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and

(34)

(35)

5.2.  TECHNICAL DETAILS 

The KLI potentials were obtained with the numerical program [31]. 

t he formulas:

The zeroth, first and second-order energies were calculated according to 
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where φ a, φ b (respectively φ r,φ s ) are occupied (respectively virtual) KLI

orbitals with energies εa , εb (respectively ε r, ε s).
The correlation energies in the space of the configurations generated 

by doubly occupying the 1s, 2s and 2p KLI orbitals were obtained with 

Mathematica [29].

The KLI orbitals were obtained in a Slater type even-tempered basis 

set (available on request). 

The second-order energies, using all orbitals, can be compared for the He 

series to the more accurate ones obtained by Engel et al [22], which quote 

48.2 and 46.8 for He and Ne8+, respectively for their correlated OPM results

(cf.Tab.5 of [22]) from which we estimate our errors to be 2mH, which

may well be attributed to the missing f, g, ... functions in our basis set. 

As the 4f, 5g, ... states are not expected to yield a significant contribution

to the correlation energy, we believe that our results for ε i < 0 should be

accurate to the same order of magnitude.
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Abstract. The local-scaling transformation (LST) variational method is used to

derive an energy functional which depends on R dynamical variables, the LST

functions realizing the transformation of the R orbitals involved in the expan-

sion of the model N-fermion wave function. The solution of the Euler-Lagrange

system with respect to these variables leads to the determination of approximate

ground-state properties for the considered system. A set of atomic and molecular

problems is discussed.

1. Introduction

A local-scaling transformation (LST) is a special type ofmapping of the three-

→

→ → →

→

→→

dimensional vector space onto itself: r → f (r), which maintains the direction

r0 =r/r ofthe original vector r. This transformation is a generalization of the
→

 

standard scaling transformation: r→ λ r. LSTs have been applied in quantum

chemistry (e.g., Refs [1-81). Petkov and Stoitsov [9] and Petkov and coworkers

[10] have systematically developed the LST variational method, using a single

transformation for all particle coordinates ri . On the basis of this method a ri-
→

gorous version of DFT was formulated [ 11-20].

In the present paper we propose an extension of the LST method, introducing

independent LSTs for different single-particle orbitals. This orbital local-scaling 

transformation (OLST) method is applicable to various multifermionic systems.

45

J. Maruani et al. (e&.), New Trends in Quantum Systems in Chemistry andPhysics, Volume I, 45–61.

© 2001 KIuwer Academic Publishers. Printed in the Netherlands. 



46 YA. I. DELCHEV ET AL. 

In the next section the main features of the LST method are recalled.

The third section is devoted to the analysis of the effect of independent LSTs

for the different one-particle orbitals. It is shown that the nodal structure of the

initial orbitals, and that of the new (locally-scaled) ones, lead to a weakening of 

the constraints on the Jacobian with respect to the case of a uniform transforma-

tion of the orbitals. The OLST operators which realize the transformation of the 

reference set of orbitals are introduced. The set manifold thus generated forms 

an orbit whose elements are, by construction, in one-to-one correspondence with 

the wave functions built through these elements. The set of all these functions 

forms a class in the N-particle Hilbert space LN .
In the fourth section is formulated a variational method based on the OLSTs

defined in this class, ⊂ LN . The energy of the system becomes a functional

ofthe LST functions, fi (r) , that realize the transformation of the orbitals ϕ i (r) .

→

→

The variation of this functional with respect to the new (locally-scaled) dynami-

cal variables fi (r) leads to an Euler-Lagrange system. Using the solution of this

system one can derive the approximate wave function and then all ground-state

properties.

In the last section we discuss some possible implementations of the proposed 

OLST method for atoms and molecules, and also some technical points for its 

realization.

2. Local-scaling transformation of the real three-dimensional vector space 

We consider the three-dimensional vector space 

(1)

where S 2
is the sphere of unit vectors r0 = r/r centered on the origin of coordin-

ates. The local-scaling transformation is the following continuous transformation

of R3:

→→

 

(2)

Obviously, the mapping r → r = f (r) ∈ R3
ascertains a one-to-one correspond-

ence between every vector r' ∈ R3
and the vector r ,with the same direction but

changed length: r' = f(r,r0) ∈  R1 .
We assume that the set of all scalar functions f(r,r0) satisfies the conditions:

→

→ →

→

→ →→ →

→
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The Jacobian can be written as: 

(3)

and that the functional determinant (Jacobian of the LSTs) obeys the conditions: 

(4)

(5)

In spherical polar coordinates, for every fixed pair (θ, ϕ), Eqn (5) takes the form

(6)

The properties of the local-scaling transformation set fullfilling the conditions 

(3) and (4) can be formulated in the following propositions [9, 10], the proofs of 

which are given in Ref. [9]. 

Lemma 1: The set of LSTs defined in Eqn (2) forms the so-called LST group 

with respect to the operation “sequential application”: 

(7)

This means that: 

1) The binary operation is associative for any three elements f1 (r) , f2 (r) , f3 (r)
belonging to 

2) There exists a unit element, fe (r) = r ∈ .

3) For every f(r) ∈ there exists an inverse element, f–1(r) ∈ , such that 

→→
→

→→ →

→

→

→→

→
→

→
 

Let LN be the antisymmetric Hilbert space of an N-fermion system described 

by a Hamiltonian H independent ofthe spin variables, and let Φ (r
1
, ...,rN) be an

arbitrary normalized wave function belonging to LN . To every element of the set 

one may associate a unitary linear operator defined through the rule:

→

 

→

 

∧
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(8)

We denote the set ofoperators corresponding to the elements f(r) ∈ by
→

→

 

Lemma 2: The set is a group with respect to the operator product and is a

Lemma 3: Thegroups and are isomorphic.

One may also define the action of the operator as N repeated actions of

unitary representation of   in the space LN .

the operator uf :

uN
f

(9)

The i-th action of uf realizes the LST of the wave bction F with respect to

the i-th coordinate, which leads to Eqn (9) [9, 10] when all transformations are 

performed. The set of unitary linear operators uf forms a group isomorphic to 

uf ≡ {uf | f(r) ∈ . The group can be represented as the N-th direct dia-

-gonal product ofN replicas of the group u [ l l]:7

→→

(10)

3. Independent local-scaling transformations of the single-particle orbitals 

We consider the space of square-integrable single-particle functions L1. Let us 

assumethat {ϕ i (r,σ)}, ≡ {ϕ i(r)xi(σ)}, ≡ {ϕ i (x)}i is a given orthonormal (or sim-

ply normalized) linearly independent sequence containing, in general, an infinite 

number of spin-orbitals, and that LR
1 is a subspace of L1 spanned onto a finite 

ordered set (ϕ i (x)}
R
i=1 of spin-orbitals. We transform them through independent 

LSTs acting on every spin-orbital by a different operator uf :

→

→→ →
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(11)

where the second line of Eqn (11) is written in spherical coordinates for every

fi (r)≡ fi (r,θ, ϕ) , The corresponding "spin-orbital density distributions" are:

fixed pair (θ, ϕ), writing ji (fi (r)) = ϕ i (fi (r,θ, ϕ ), θ, ϕ) , ψ i (r) = ψ i (r, θ, ϕ) , and

(12)

and it is supposed that the scalar functions fi (r,r0) , which are continuous and

differentiable, satisfy the conditions (3). These conditions define {fi (r)}
R
i=1 as

monotonically increasing for every fixed pair Ω0=( θ0, ϕ0). Therefore, there exists 

a one-valued function fi
-1(r,θ 0, ϕ0) º r(fi, θ0 ϕ0), inverse to fi(r, θ0 ϕ0). It follows 

from Eqs (12) and (3) that every function ρψ
i (7) must be non-negative.

Letϕ i (r) be an arbitrary orbital of the set {ϕ i (r)}R
i=1 , fi (r) an LST function,

and the transformation (12) generate a continuous function ρ iψ (r). Integrating

Eqn (12) one obtains:

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

 

(13)

The equalities (13) show that the considered functions ψ i (r) must also be norm-
→

alized and, as we have the relation 〈ψ i | ψ  i 〉 = 〈 ϕ i | ϕ〉, the operators are

unitary. Thus, fixing the LST function fi(r)- which obeys Eqs (3) - and ρ iϕ (r) -

which is a normalized, non-negative and continuous distribution, one establishes

that the function ρ ψ 
i

(r) must also be normalized.

Let now ρϕ 
i (r) and ρψ 

i (r) be fixed functions. Then Eqn (12) can be brought

into the form of an equation with separate variables, whose particular solution 

(14)

always exists [20]. Solving Eqn (14) for all pairs (θ,ϕ) one obtains the total LST

function fi(r) = fi(r,θ,ϕ). 
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As the action of these operators does not affect the spin functions, xi( σ), we

have omitted the spin coordinates in Eqs (11) and (12), and shall use the term 

orbitals to cover both orbitals and spin-orbitals. We shall study the existence and

definiteness of transformations (11) for both orthonormal and just normalized

initialsets {ϕ i (r)} R
i=1 , assuming the orbitals ϕi (r) are continuous. 

Let us assume further that orbitals ϕi (r) and ψi (r) have some nodal points.

Then, the corresponding one-orbital densities ρ i
ϕ(r) and ρ

i
ψ (r) are equal to zero

and have minima for these nodal points. For a chosen direction, Ω0 = (θ0,  ϕ 0), 
Eqn (12) can be put in the form of a first-order differential equation:

→

→

→

→

→

→

(15)

As the functions ρi
ψ 

(r) , ρ
i

ϕ (r) and fi(r) are continuous, they are locally limi-

ted. Thus, besides the points where ρ
i
ϕ (f

i
(r)) becomes zero, the right-hand side

of Eqn (15): 

(16)

is a locally limited function
~

Let the nodal points of the orbital ϕi(r) be located at r = rα
ϕ

, α = 1, ..., k.

Then the function ρϕ
i

(fi (r)) in the denominator of the fraction F(rf) vanishes

~
for r = r αϕ = fi

–1
(rα

ϕ i), α = 1, ...) k. At these points, the conditions for the exist-

ence theorem in Eqn (15) are not fulfilled [21]. The derivative (dfi(r)/dr) → ∞ 
when r → rα

ϕ
, and one cannot obtain values of the LST function fi (r) by solving 

Eqn (1 5). 

Let now the density distribution ρψ
i (fi (r)) become zero at r = r

ψ
β (β=1,...,l),

and

(17)

Then the derivative dfi (r)/dr, for r = rβ
ψ

, is parallel to the r-axis. For the points

r αϕ
where the conditions for the existence theorem in Eqn (15) are not fulfilled,

the equation 

(18)
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is well defined for all r ≠ rβ
ψι  . Determining the solution r(fi ) of Eqn (18), one can

now find the fi (r = rα
ϕι ) , α = 1, . . ., k, as solutions ofthe equation

r(x)=rα
ϕι . (19) 

Here Eqn (15) has no meaning and, hence, the function fi(r, θ, ϕ), for the fixed

direction Ω0. 
The above statements can be summarized as follows. 

Proposal I: A set of continuous, linearly independent, normalized orbitals 

{ϕ i(r)}R
i=1 can be transformed uniquely into a normalized set {ψ i ([f

i
(r)];r)}R

i=1 ,

locally scaling the initial set by the operators (11) and imposing the following

conditions on the distribution ρψ 
i (r) :

→

→

→

→

→

→→

→

→→

→

→

→

(20a)

For those points rα
ϕ (if they exist) that are related to the nodal points r = rα

ϕ of

theinitial orbitals ϕ  i, (r) by the equation

~

(20b)

(21a)

for every chosen direction. The positions r = r β
ψ

(if they exist) where the deriv-

ative (∂fi(r)/∂r) = 0 , i.e., when the Jacobian of the LSTs annihilate:

(2 1 b) 

for every chosen direction, are nodal points of the function ψ i ([fi (r)];r) , Any-

where else, the following conditions: 

(2 1c) 

must be fulfilled.

As an illustration, we display below the functions fi (r) and ∂fi (r)/∂r that rea-

lize the LSTs of the orthogonal, hydrogen-like orbitals ϕ    H
1,00

= R1s

H
(r) Y00 (θ, ϕ ) and 

the Jacobian goes to infinity:
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and

into the analytical HF orbitals of Clementi and Roetti [22] 

for lithium. 

Figure la. Graphics of the orbital densities 

ρ 
1s

H (r) (solidline)and ρ 
1s

CR (r) (dottedline)in

Figure 1b. Graphics of the orbital densities 

ρH
2s

(r) (solidline)and ρCR
2s (r) (dottedline)in

atomic units. atomic units.

Using Eqn (14) we have calculated in a closed analytical form the LST func- 

tions f1s(r) and f2s(r) and their derivatives ∂ f1s (r )/∂ r and ∂f2s(r)/∂r. In Figures (la)

and (lb) graphics of the one-orbital densities ρ 
1s

H (r), ρ 
1s
CR (r) and ρ 

2s

H (r), ρ 
2s

CR (r) , 
respectively, are displayed. Figures (2a) and (2b) show the LST functions f1s(r),

f
2s

(r) and the first derivative of the latter. As is seen in Fig. (2b)f'
2s

(r) →infinity

for one of the two inflexion points of f
2s

(r) (which corresponds to the zero of 

ρ  
2s

H (f2s (r)) . The other inflexion point (for which f'2s (r) = 0) corresponds to the

zero of ρ 
2s

CR (r).

Figure 2a. Graphic of the LST function f1s (r) in

atomic units. 

Figure 2b. Graphics of the LST function f2s (r)
(solid line) and its first derivative (dotted line) 

in atomic units. 

ϕH
2,00 = RH

2s(r)Y00(θ,ϕ)

ϕCR
1,00 = RCR

1s (r)Y00(θ,ϕ) ϕCR
2,00 = RCR

2s (r)Y00(θ,ϕ)
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It can be proven that the set of all LSTs, {fi } , fulfilling the conditions (20)

and (2 1) forms a group ≡ {fi } (see Section 2). Every element fi of this group

transforms the i-th reference orbital ϕ
i (r) into the function ψ

i ([fi (r)];r), and

distorts the corresponding distribution ρ ϕ
i (r) into the distribution ρψ

i ([f i ,(r)];r) ,

keeping the angles with the original direction r
0

= r /r unchanged. The set of

unitary linear operators uf forms a group ≡ | fi , } isomorphic to the

group

We form the set of all elements

→

→

→

→→

→

→

→

→→

→

→

(22)

where every fi (r) is a fixed LST function belonging to We can write the set

(23)

(24)

Since the group is a set of tensor products of elements of the LST groups ,

through which the orbital transformations are realized, we call the orbital LST 

(OLST) group. 

the set{ϕ
i (r)}

R

i=1
according to the rule:

→

(25)

as a direct product of the groups 

form a group malized set 

definition (25). The normalized sets 

where the action of the one-particle operators uf is defined in Eqn (1 1). 

The operators that transform the initial set into a nor-

} , by virtue of their 

generated by the action of the oper-

to every element F f
1

, f
2

,...,f
R
∈ we associate an operator acting on

{ψi}
R
i=1



ators

groups

ones
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are not linearly independent. Here we formally redefine the 

(and the corresponding 

) that produce linearly dependent sets, for which the Grammian is→→ →
 

excluding the elements and

equal to zero: 

and

(26)

The groups 

(we restore the spin variables in the notation). The manifold of all orbital sets 

reduced in this manner are mutual isomor 

Let us fix a normalized set of R linearly independent orbitals 

induced by the operators - Eqn (25) - forms an orbit:

is the orbit-generating set. For this orbit where

the inclusion relation Hence 

of all sets of linearly independent orbitals 

ments of the group 

Let R = N and

(27)

holds

is that manifold in L1 which consists

induced by the ele-

(28)

Antisym-be the N-particle product for a chosen spin-orbital set 

metrizing the expression (28) yields the corresponding Slater determinant:

(29)

where AN is the antisymmetrizer, LN the antisymmetric N-particle Hilbert space,

and SN the subclass ofsingle Slater determinants in LN . In the same way we build

the Slater determinants for the spin-orbital set belonging to the orbit 

(30)

{ϕ
i
(x)}

R

i= 1

{ϕi(x)}
R
i=1 ∈LR

1
→

{ϕi(x)}N
i=1  ∈ LN

1
→

u f1,f2,....fR

{ψi}
R
i=1

∂[{ϕi}
R
i=1] ≡ ∂R

ϕ ,

{Ψi([fi(r)];x)}R
i=1

∂R
ϕ

∂N
ϕ:



and vice ver-

is well defined both for the
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The class SN of determinantal wave functions (30) originates from the mo-

del determinant (29). The very mode of generation of the determinants (30) sets

up a correspondence of every spin-orbital set of the orbit with one and only

one function of the class (30):

sa. This means that the determinant class

OLSTs, which belong to the group . , and on the orbit

Since, for a given prototype determinant Φ one could not generate all N-particle

Slater determinants through OLSTs - Eqs. (11) and (12),

, can be approximated through

a unique, multidimensional expansion belonging to the subspace LR
N ⊂ LN , span-

ned on M =

Every N-particle wave function,

Slater determinants

(31)

In the above expansion, the determinants are built from the spin-orbital sets

of N indexes: I= {ik }, i1 <i2 < ...< iN Then, using Eqn (30), one gets: 

(32)

Every function of the class

functions is built from a single spin-orbital set

construction, to a one-to-one correspondence between the sets

and the approximate CI-like wave functions (32):

and, hence, 

one also has: 

of configuration-interaction (CI)-like wave 

.This leads, by
→→

(33)

. It is obvious that, as in the one-determinant case, 

Ψ0({xi}
N
i=1)

→

{ΦI ≡ A [ϕi (x)...ϕ iN(x)]}M

I =1
:→ →

{ϕ ik(x)}ik
N

=1
→

{ψi([fi(r)]; x)}
R
i=1
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4. Variational method based on the OLSTs

Using a class of trial N-particle wave functions, Ψ ∈ LN , to find an approximation

to the ground-state energy, E0 , by minimization of the functional

of the class 

the energy: 

one performs an application of the variational method based on the LSTs of the 

one-particle spin-orbitals, which we call the OLST method.

We consider an N-particle fermionic system in its ground state, described by 

the Hamiltonian 

(34)

We choose a CI-like prototype wave function, Eqn (32), as a generating function 

the expectation value of For all states 

(35)

takes the form ofa functional ofboth the OLST functions (fi }
R
i=1 and the CI-like

reference wave function Φ. As this latter is expressed through the expansion co-

efficients {CI)
M
l=1 andtheinitial set {ϕ i}

R
i=1, the above expression can be viewed

as a functional of {fi}
R
i=1 , depending on {CI}

M

l=1 and {ϕi}
R
i=1 .

The determination of the ground-state energy, which is performed through

minimization of the functional represents a variational 

approach defined in the class  In terms of the variational method, this

means that the OLSTs define a class of trial functions (32) of L
N , and the global

minimum of the energy functional in this class leads to an 

upper limit to E0, if it exists. 

This orbital local-scaling transformation procedure, which allows to find 

approximate values for the ground-state properties of a many-electron system, 

consists of the following steps: 

E[f1 ,..., fR ;{C1}
M
I =1 ;Φ ],

E[f
1 ,..., fR ;{C

1
}

M
I=1; Φ ]
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1) Selection of a proper initial set of spin-orbitals, , and then of 

the model wave function Φ∈ LN which generates the class of trial wave func-

tions according to Eqn (32).

2) Building of the functional 

3) Finding the solution of the variational system of coupled equations: 

(34) and Eqn (35). 

(36)

using the 

, and then all 

(37)

for all i = 1,..., R and I = 1,..., M, as 

assuming the existence of a solution in the class 

4) Finding an approximate wave function,

resulting optimal sets of coefficients 

properties of the system. 

Let us construct the functional

and functions 

where the 

corresponding to the orthogonal transformed set {ψ i[fi ]}R
i=1 , Eqn (30). We fon 

the auxiliary functioal ε, adding to Eqn (37) the following constraint:

are built from determinants Ψ sl , with I=(ik} and il<i2<...<iN ,

The second term on the right hand side of this equation ensures that the solution 

of the Euler-Larange system, Eqs (36), leads to the normalized wave functions,

=1.Thespin-orbitalset,{Ψ i[fi
ops ]}

R
i=1 ,under the constraint 

corresponding to the stationary value of the energy will be orthonormal. The op-

timal energy, Eopt > E0, is equal to the resulting value of the Lagrange multiplier

ε. E[Ψ opt] = ε0. Obviously, the explicit form of the functional (38) will be rather

simpler than that of the functional (35), which is constructed assuming the varia-

tionalset {ψ i[fi ]}
R
i=1

to be non-orthogonal.

5. Implementation of the OLST method in quantum chemistry

5.1. ATOMIC CASE 

using the Hamilton E[f1,..., fR ;{C
1
}

M
I =1 ; Φ ]

{ϕ
i
(x)}R

i= 1 ,
→

Ψf 1 ,..., fR
 ,

{C
I
}

M
I=1 {fi

opt
}

R

i=1 ,

Ψf 1 , .. .,  f R

〈Ψ f 1
o p t,. .. , f

o p t
R |Ψ f1

o pt,. ..,f
R
o p t〉
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We choose the initial single-electron orbitals as products of radial, angular and

spin functions: 

and impose the following constraint on the LST functions: 

Thus the LSTs of the orbitals do not affect the angular variables: 

(39)

(40)

(41)

After integration over the angle and spin variables the energy (37) takes the form 

of a functional of LST functions: 

The Euler-Lagrange system will then consist of the habitual integro-differential

equations with respect to the functions fi (r) completed by an additional set of

equations for the coefficients CI .

The analysis of the variational equations for the nonrelativistic Hamiltonian 

in the Born-Oppenheimer approximation shows that fi(r) ~ r when r → 0 or r
→ ∞ Using these boundary conditions one can solve numerically the Euler-La-

grange system, getting the optimal energy and then all ground-state properties of

the N-fermion system. 

Let the atomic orbitals be chosen in the form (39) and Ri(r) be the radial fac-

tors obtained by solving the multiconfigurational SCF equations corresponding

to the actual expansion: Φ = ΣCI ΦI . Let us choose as initial radial functions in

Eqn (39) the corresponding nodeless - and hence non-orthogonal - Slater radial 

functions. Then (as it was shown in Section 3) there exists a unique set of LST 

functions, {l(r)}R

i=1 , that bring the initial set ofradial factors

into the set {Ri(r)) of the optimized atomic-orbital radial factors.

This shows that, in the approximation of a separated angular dependence in 

the one-particle atomic orbitals (39), the proposed OLST method is equivalent 

to the MCSCF approach. One may expect that, for light atoms at the HF level,

the functions fi (r) may be parameterized in a suitable way involving a limited

number of parameters. This follows from the simplicity of the behavior of the

_

I

(42)

{Ri}
R
i =1 ≡{Ri

(s) (r)}R
i =1
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LST functions fi(r): they must be monotonic and possess inflexion points, which

generate nodes in the transformed radial functions: 

(43)

and also from the flexibility of the Slater functions Ri
(s)(r). Then, the energy

functional will be reduced to a function depending on these parameters, and the

variational problem, to a Ritz minimization procedure.

The resolution of the Euler-Lagrange system in the OLST method could be 

performed by using algorithms based on the spline methods [23, 24]. This may 

permit to increase the accuracy of numerical MCSCF calculations [25]. One may 

anticipate that the use of analytical approximations for the LST functions fi(r),
instead of the radial factors Ri (r) with suitable core-splines [23] or B-splines

[24], will improve the convergence characteristics of the numerical procedure in 

actual updating of the radial functions (43). 

5.2. MOLECULAR CASE 

The positions {Rj}K
J=1 of the K nuclei forming the molecular skeleton in the Born-

Oppenheimer approximation are assumed to be fixed. Since every transfoma-

tion ϕi (r) ____→  
ufi ψi ([fi],r) is generated by a mapping r → r' of R3

 onto itself, 

the positions of the nuclei must remain unaltered after the orbitals distorsion:

→→ →→

(44)

Therefore, only those fi ∈ that fulfill Eqn (44) have to be considered. The set

of these fi forms a group, which is subgroup of 

Let us take the initial molecular orbitals as linear combinations of predefined 

basis functions: 

→

→

(45)

where the Cµi are expansion coefficients. The basis functions x1,. . . ,xn are taken

as normalized and centered on the atomic nuclei. We choose the basis functions 

xµ µ = 1, . . . , n, as atomic orbitals ofthe form (39).

Then, for LST functions of the type (40), the locally-scaled molecular orbital

(45) tums into an orbital depending on the function fi(r) and its derivative: 
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and the energy, as in the atomic case, takes the form of a functional of the OLST 

functions (42). Choosing the expansion coefficients Cµi in a proper way, one can

then determine completely this functional. 

Let us fix the coefficients (CI} . Then, solving the Euler-Lagrange system:

(46)

one can find the radially optimized molecular orbitals ψ i([fi
opt];r) : this variatio-

nal solution does not depend on the initial values of the coefficients Cµi or on the 

number n of basis functions χ µ in Eqn (45). However, since we do not optimize

the angular dependence of the initial molecular orbitals ϕ i (r) , the accuracy of
→

the resulting one-particle functions ψ i ([ƒi
opt];r) will depend, in this respect, on

the choice of the basis {χ
∝
}n

∝=1 . Persuing the variational process with respect to

the coefficients {CI} and the orbitals (ψ1 ), one would obtain, in principle, the

ground-state characteristics of the system in the OLST approach. 

Because the optimization of the energy functional (42) must be realized by 

solving numerically a system of differential equations, the applicability of the 

OLST method is, in practice, limited to simple molecules, considering a strongly 

reduced CI space. But one could perform calculations of main properties with a 

high level of accuracy, using one-electron functions satisfying the nuclear cusp 

condition and possessing the correct long-range behavior. 

An important feature of this model is that it makes it possible to compare the 

accuracy of analytical, Roothaan-Hall molecular calculations with that of nume-

rical ones. Using, for instance, optimized analytical functions χi (r) , one could

further improve them in the framework of the OLST method. One can thus test 

the capacity of different finite basis sets to reproduce various properties.

→

In conclusion, the mathematical treatment of the variational problem based 

on the OLST method is more general in the molecular case than in the atomic

case, since now any initial set of appropriately defined functions ϕi(ζ) may be

used. A next step in our investigations will be an extension of the OLST method 

to approaching excited states. 
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Abstract. In the formalism of reduced density matrices and functions, using the

irreducible tensor-operator technique and the space-spin separation scheme, the

matrix elements of one of the main spin-relativistic corrections of the Breit-Pauli

Hamiltonian, the spin-orbit interactions, are expressed in a form suitable for nu-

meric implementation. A comparison with other methods is made and the advan-

tages of such an approach are discussed.

1. Introduction

In the formalism ofreduced density matrices and functions (RDM & RDF) [1-31

the matrix elements and expectation values of the different types of spin-invol-

ving operators take the form of a product of space and spin factors [1, 4]. The

spin part is determined by the spin symmetry and reduces to 3j-symbols and the

spatial part is determined by the action of space operators on the spin distribu-

tion or correlation matrices or functions [1, 4, 5]. The spin distribution and cor-

relation functions are built from the spatial part of the RDMs of first or second

order, respectively. In this approach, the space-spin separation results from the

possibility of separating the space and spin variables in the RDMs [6-9] and of

the resulting expressions for the matrix elements of the perturbation terms in the

Breit-Pauli Hamiltonian [10].

In terms of the RDMs and RDFs and in the scheme of the space-spin separa-

tion there are presented in Refs [1,4] the matrix elements and expectation values
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of the various spin-involving operators, which are relativistic corrections of the 

Breit-Pauli Hamiltonian. The matrix elements and expectation values of the op-

erators corresponding to the different types of spin interactions are reduced to

products of a multiplier determined by the spin symmetry, characterizing a spin 

state or a transition between two states in a given spin multiplet, and a space part 

which depends neither on the spin state nor on a transition between two states.

This space part is expressed by the action of the considered space operator on 

the space part of the relevant spin distribution or correlation matrix or function.

In the present work we present a further stage in the treatment of the matrix 

elements of one of the main relativistic corrections, the spin-orbit interactions, 

which should be amenable to direct numerical implementation. Using the irredu-

cible tensor-operator technique and applying the Wigner-Eckart theorem, the ma-

trix elements of the spin-orbit interactions are presented as products, or sums of 

products, of multipliers determined by the spin symmetry, multipliers character-

izing the orbital symmetry, and a spatial part determined by the action of the 

symmetrized space tensor-operators on the normalized spin distribution or cor-

relation matrices or functions. The action of these space operators, which is the 

same for a given spin multiplet and is independent on the investigated splitting 

or transition, is reduced by a standard procedure. The expectation values of the 

operators of spin-same orbit and spin-other orbit couplings, giving the amount 

of splitting of the energy levels, are expressed in an analytical form suitable for 

numerical implementation. We also consider the transition matrix elements of 

these operators, giving the contribution of spin-orbit interactions to the corres-

ponding spin transitions. 

2. Matrix elements in the RDM formalism 

The RDM of order s (s-RDM) of an N-electron system (1≤ s ≤ N) in the state K,

described by a wave function Ψ K(τ1 ,.. ., τ N) , τ i = (r , σ i) , eigenfunction of the

operators S
2

and SZ, has the form [1-3, 11-14]:

i
→

(1)

The corresponding RDF of order s (s-RDF) is defined by the expression:

(2)

The generalized, transition s-RDM between states K and K' described by Ψ K and

Ψ K has the form [1-3]:
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(3)

For the transition s-RDF we have a similar expression, following from Eq. (2).

written as:

∧

The expectation value of a given s-particle operator, F(i1 ,i2 , . . .,is) , can be 

(4)

In the above expression, Σ means a summation over all possible sets (il, i2, ...,

iN) and Spi1,i2... .is is an operator of integration over particle coordinates labelled

with the corresponding numbers, after identification of the primed and unprimed

coordinates.

In many-electron theory, the expectation values and matrix elements of sym -
metric sums of identical operators are of main importance. Then, for the expec-

tation values of a symmetric sum of identical s-particle operators, F(i1 ,i2, , . . , is ) ,
assuming the following order of numbers ik, 1 ≤ il< i2 < ... < is ≤ N, we have:

∧

{is}

( 5 )

This is a general expression. Usually, only RDMs or RDFs of 1st or 2nd order 

are relevant. Higher-order matrices or functions are used only in specific cases. 

After separation of the space and spin variables, the 1-RDM takes the form: 

(6)

where the ργ,γ (r1;r1') are the space components and the γ(σ) (σ = α, β) the spin

one-electron wave functions. The space components form the charge and spin

distribution matrices:

→→

 

(7)
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(8)

where K is the index of the spin state corresponding to <SZ> = M (M = S, S - 1,
... , - S), K corresponds to the maximal value: M = S, D(r

1
;r

1
) is the normalized _

spin distribution matrix (which is the same within a given spin multiplet), and

→ →

Similarly, the 2-RDM can be written in the form: 

(9)

(10)

where the are the space components. There are altogether 16 

components in Eq. (10), but only 6 are independent space components [ 1, 2, 6]. 

These latter form the spin correlatior matrix. 

The spin-orbit interaction matrix can then be written in the form: 

(11)

is the normalized spin-orbit interaction matrix (the same

is given by)

(12)

where Dso

for all states in a given spin multiplet), and 

constructed on four of the components of Eq. (10). 

3. Spin-orbit interactions 

3.1. THE FUNCTIONAL OF THE SPIN-SAME ORBIT INTERACTION

For an N-electron system in the field of M nuclei, the operator of the spin-same
orbit interaction in the effective Breit-Pauli Hamiltonian has the form: 

(13)

ργγ
 ',

γ "γ " (r
1
,r

2
;r

1
,r

2
')

→→→→

(r
1
,r

2
;r

1
,r

2
')→→ →→

qso(KK |r
1
,r2,r1

,'r
2
'→→ → →

___
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where Li/λ is the orbital momentum of the i-th electron with respect to nucleus λ, 
→

→→ →
with radius-vector Rλ and charge Zλ, rλ i = R λ - ri α = 1/2c is the fine-structure

constant, and g0 is the g-factor of the free electron [15]. We consider the transi-

tion matrix element between two states K and K' in the same spin multiplet. The 

transition between different spin multiplets is impossible from a symmetry point 

of view because it is not possible to express elements of an irreducible represe-

nttion of the group SO(3) with elements of a different irreducible representation 

of the same group. We obtain the transition matrix element of the operator (13) 

by expressing the scalar product in terms of irreducible tensor operators, using 

the expressions of the transition matrix elements of the spin-involving operators 

[ 1, 4], in the form: 

where S 1

m and L 1

–m (1) are the components of the symmetrized operators of the 

total spin and total orbital momentum and 

Applying the Wigner-Eckart theorem to the matrix elements of S1
m and ex-

pressing the angular momentum operator (a vector product of r and p) in terms 

of a product of irreducible tensor operators, one obtains 

(14)

where

are the normalized spherical functions, (∇* )1 
p are the symmetrized components

of the angular partof the ∇ operator [8, 16], and C
S1S

MmM . are 3j-symbols. Expres-

sion (14) is valid also when a magnetic field is applied to the system. 

For a same state, Eqn (14) takes the form: 
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(15)

This term gives the width of the spectral line splitting. 

For a system with fixed nuclei, Z λ, the angular momentum takes the form: 

From the general formula of the matrix element of a product of two tensor oper-

    '

ators:

(16)

it follows that rλ× p(i) = 0, because the matrix element of rλdiffers from zero 

only when ML (i) = M L (i) while that of p(i) differs from zero only when M L(i) =

ML (i) + 1 [17]. Then Eqn (15) takes the form:

(17)

Expressions (1 5) and (1 7) are very suitable for direct numerical implementation, 

due to the separation of space and spin variables and their simplicity. 

3.2. THE FUNCTIONAL OF THE SPIN-OTHER ORBIT INTERACTION

The spin-other orbit interaction operator in the effective Breit-Pauli Hamiltonian

can be expressed as the two-particle symmetric sum: 

(18)

There the angular momentum of the j-th electron with respect to the i-th electron

has the form: 

(19)

    '
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According to Eqn (16), for a given state, the expectation value of rj×p(i) is

equal to zero. Then, the expectation value of the operator Li/j takes the form:

Consequently, for the expectation value of Eqn (1 8), one has: 

Applying the Wigner-Eckart theorem for the expectation value of the operator S
yields, for the frst term in Eqn (20): 

Expressing the angular momentum as a vector product of the operators r and p
in terms of irreducible tensor operators, one obtains: 

(21)

This expression determines the contribution of the first terms in Eqn (20) to the 

width of the spectral line splitting. 

The last terms in Eqn (20) can be written in the form, well known in atomic 

spectroscopy[17]:

(22)
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where a(r) is a one-particle tensor operator, and the constant C in the last expres-

sion must be determined for every different case. 

For different states within a spin multiplet, the component rj×p(i) of the ang-

ular momentum (19) is non-zero. This follows from the general form of (16):

In this case, using the Wiper-Eckart theorem yields, for the matrix element of

the first terms in Eqn (1 8): 

The expression in square brackets on the left-hand side can be written as:

Applying the Wiper-Eckart theorem for the operator S yields, for the matrix 

element of the first terms in Eqn (23): 

Expressing the angular momentum as a vector product of the operators r and p
in terms of irreducible tensor operators yields, for the matrix element of the trim-

sitionMS → M S:    '
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Using the irreducible tensor-operator technique one can express the second terms 

in Eqn (23) in the form: 

Then, for the matrix element we obtain: 

The third term in Eqn (23) can be written in the form: 

Then, the corresponding matrix element takes the form: 

(25)

(26)

The matrix element of the first term in Eqn (26), analogous to (22), has a form 

that is well known in atomic spectroscopy. Using the irreducible tensor-operator

technique we can express the second term as:

(2 7) 

(28)
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We can rewrite Eqn (27) as:

where the Vk1(i) are direct products of the operators C k
(i) and S

1
(i). The numeri-

cal values ofthe matrix elements of the operators V 11
qm (i) are measured in atomic

spectroscopy [17]. In this case Eqn (29), and also Eqn (22), do not take part in 

the minimization. 

4. Discussion and Conclusion 

The results presented here allow, not only to include the spin-orbit interactions 

in the energy functional for a spin-polarized, many-electron systems, in terms of 

density matrices [ 1, 2, 18-20], but also to set up a numerical minimization proce-

dure, in the frame of the variational approach for density matrices. 

It is possible to include the spin-same orbit interactions in the Hartree-Fock

scheme but there are basic difficulties with the spin-other orbit interactions, con-

nected with the one-particle representation of the two-body matrix for spin-orbit

interactions. These difficulties can be overcome if one constructs the many-elec-

tron wave function in the vector-model scheme [16, 17, 21] or in the framework 

of the valence-bond method [1]. But even for the consideration of the spin-same
orbit interactions in the Hartree-Fock scheme one must impose additional condi-

tions of preservation of spin symmetry. 

In atomic spectroscopy [17] the irreducible tensor-operator method allows

the calculation of the width of the spectral line splitting induced by the spin-orbit

interactions, determining the constant in expressions such as Eqn (22). The cal-

culations are realized after minimization of the energy functional constructed in 

the vector-model scheme. In contrast to this, the results of the present work give 

the possibility to determine the width of the line splitting through a minimiza-

tion of the energy functional of the density matrix, constructed with a wave func-

tion corresponding to a given quantum mechanical approach. This is realized 

with the inclusion of the terms (15), (21), (22) in the energy functional. In con-

trast to the case in atomic spectroscopy, we add Eqs (15) and (21) to expressions

such as Eqn (22). These terms precise the width of the spectral line splitting. In 

addition, while the term (22) is determined by the global characteristics of the 

system (total spin and orbital angular momentum), the terms (15) and (21) are

determined by individual characteristics, such as the particular spin and space 

geometry of the system (3j-symbols).
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The matrix elements (14), (24) and (25), resp. (28), describing the contribu- 

tions of the spin-orbit interactions to the transitions in a given spin multiplet, are 

also determined by specific characteristics of the system. The inclusion of these 

terms in the energy functional gives the possibility to determine their contribu-

tions in the transition through the minimization procedure. The constraint for the 

orbital quantum numbers, which follows from the symmetry properties of the 3j-

symbols, results from the fact that the inclusion of these interactions, expressed 

by a spin-involving operator, removes the orbital degeneracy. 

In the Barth-Hedin construction [19, 22, 23], the most widely used in Kohn-

Sham-type calculations for spin-polarized systems, the energy functional is de- 

fined in terms of the first-order density matrix. This does not allow the descrip-

tion of relativistic corrections (including the spin-orbit interactions), which are 

formed with two-body density matrices. Then it is only possible to determine the 

influence ofan external magnetic field on the ground state [19].

The formalism presented here can be used for the determination of all relati- 

vistic corrections in the Breit-Pauli Hamiltonian as well as for calculation of the 

influence of an external magnetic field, not only for the ground state but also for 

an arbitrary state of the spin multiplet. In practice, the problem is reduced to buil- 

ding the corresponding spin distribution and correlation matrices and functions 

within of a suitable quantum mechanical approximation, and performing the ele- 

mentary mathematical operations presented in this work. The use of a suitable 

minimization procedure, preserving automatically the space and spin symmetry 

(eg, applying the local-scaling transformation method [24-26] or, more precise-

ly, its formulation for spin-polarized systems [20, 27, 28]) allows a direct mini-

mization of the density-matrix energy functional, including arbitrary relativistic 

correction terms. This is the aim of our future investigations. 
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MANY-ELECTRON STURMIANS APPLIED TO ATOMS AND
IONS IN STRONG EXTERNAL FIELDS

JOHN AVERY AND CECILIA COLETTI

H.C. Ørsted Institute, University of Copenhagen 
DK-2100 Copenhagen, Denmark 

Abstract. Methods are introduced for constructing sets of antisymmetrized

many-electron Sturmian basis functions using the nuclear attraction poten-

tial of an atom or ion as the basis potential. When such basis sets are used,

the kinetic energy term disappears from the secular equation, the Slater

exponents are automatically optimized, convergence is rapid, and a solu-

tion to the many-electron Schrödinger equation, including correlation, is

found directly, without the use of the SCF approximation. This technique

is applied to atomic ions in external fields so strong that treatments based

on perturbation theory are not possible.

1. Many-electron Sturmians for atoms

Suppose that we are able to find a set of functions φ v (x) which are solutions

to the many-electron equation:

In equation (1), ∆ is the generalized Laplacian operator

(1)

(2)

while x represents the set of coordinate vectors for all the electrons in the

system:

and

(3)

(4)
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In the present paper we shall discuss the case where 

J. AVERY AND C. COLETTI 

(5)

represents the attractive potential of the nucleus of an N-electron atom or 

ion, but the method discussed here can also be applied to molecules, as we 

have shown in previous papers [13,14]. In the molecular case, V0 (x) would

represent the attractive potential of all the nuclei in the system. The con- 

stants β v in equation (1) are especially chosen so that all the solutions to

the zeroth-order many-electron wave equation (1) correspond to the same 

value of the energy E, regardless of the quantum numbers v. Thus the set

of functions φ v (x) may be regarded as a set of generalized Sturmian basis

functions [1-11]. But can we obtain a set of solutions to equation (1); and

can we find a suitable set of weighting factors for the potential so that all 

these solutions correspond to the same energy? We shall now try to demon-

strate that such a set of solutions can indeed be constructed. 

Let

(6)

where

(7)

and

(8)

Thefunctions xµ (xj) are just the familiar hydrogenlike atomic spin-orbitals,

except that the orbital exponents kµ are left as free parameters which we

shall determine later by means of subsidiary conditions. In equations (6)-

(8), µ represents the set of quantum numbers {n,l,m,s}. The functions

xµ (xj) satisfy the relationships:

(9)

(10)



MANY-ELECTRON STURMIANS APPLIED TO ATOMS AND IONS 79

and

We now introduce the subsidiary conditions 

(11)

(12)

(13)

and

Provided that the subsidiary conditions are satisfied, the product shown in 

equation (6) will be a solution to (l), since 

It can easily be seen that an antisymmetrized function of the form 

(15)

will also satisfy (1), since the antisymmetrized function can be expressed as

a sum of terms, each of which has the form shown in equation (6). When we 

use the set of functions φ v (x) as a basis set to build up the wave function

of an N-electron atom or ion, we shall of course use the antisymmetrized 

functions shown in equation (15), since we wish the wave function to satisfy 

the Pauli principle. 

Sturmian basis sets satisfy potential-weighted orthonormality relations, and

similarly, our generalized many-electron Sturmian basis functions satisfy an 

orthonormality relation where the weighting factor is the potential V0 (x)

[12-14]. To see this, we consider two different solution to equation (1). From 

(1). it follows that they satisfy 

(16)
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and

For the case where v = v', we have

(17)

If we take the complex conjugate of (17), subtract it from (16), and make 

use of the Hermiticity of the operator ∆ + E, we obtain:

(18)

where the constants β v are assumed to be real. From equation (18) it follows

   'that if β v – β v ≠ 0, then

(19)

(20)

Combining (19) and (20), and making use of the orthonormality of the spin 

functions and the spherical harmonics, we obtain the potential-weighted 

orthonormality relations: 

(20

where v stands for the set of quantum numbers { µ,µ', ....,µ"}.

2. The secular equation 

Having constructed a set of many-electron Sturmian basis functions by the 

method just described, we would like to use this basis set to solve the

Schrödinger equation for an N-electron atom in a strong external field.

Using atomic units, we can write the Schrödinger equation in the form: 

(22)

(23)

where

1_
2



is the interelectron repulsion potential and
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Here V0(x) is the nuclear attraction potential shown in equation (5), while 

(24 ) 

(25)

is the potential due to the applied field. In equation (25) we show the po-

tential due to a constant electric field whose field strength ε is expressed in 

atomic units. Expanding the wave function as series of generalized Sturmian 

basis functions, and making use of equation (l), we obtain: 

(26)

Multiplying (26) from the left by a conjugate basis function, integrating over 

the coordinates, and making use of the potential-weighted orthonormality 

relation (21), we obtain: 

(27)

We now introduce a parameter, p0, which is related to the energy E of the

system by 

and we also introduce the definition: 

(28)

(29)

We shall see below that if V(x) is a potential produced by Coulomb inter-

actions, then the matrix T v', v , defined in this way, is independent of p0. In 

terms of these new parameters, the secular equation, (27), can be written

in the form. 

(30)

The total potential, V, consists of a nuclear attraction part, V 0, an inter-

electron repulsion part, V', and a part due to the applied field, V". The

matrix Tv',v can also be divided into three parts 

(31)
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corresponding respectively to nuclear attraction, interelectron repulsion and 

applied field. From the potential-weighted orthonormality relation (21) and 

the subsidiary conditions, (12) and (13), it follows that:

The zeroth-order energy of the system is then given by 

(32)

Thus T0
v',v is independent of p0, as we mentioned above. If there is no

external field, and if the interelectron repulsion is neglected, the matrix 

Tv',v = T0
v',v is diagonal, and the Sturmian secular equation, (30), simply

requires that 

(33)

(34)

which is the correct energy of a system of N noninteracting electrons in the 

attractive field of the atom's nucleus. (For simplicity we use the approxi- 

mation where the motion of the nucleus is neglected.) 

3. The interelectron repulsion matrix 

Let us now turn to the evaluation of the interelectron repulsion matrix, 

(35)

We shall see that this matrix is also independent of p0. In order to evaluate

T'v',v we need to calculate 2-electron integrals of the form: 

(36)
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where W1(x1) and W2(x2) are products of spherical harmonics. This can 

be done using Fourier-transforms and contour integration, as described in 

some of our previous papers. Alternatively we can expand 1/r
12

in a series

of Legendre polynomials:

∧∧

(37)

Then

(38)

(39)

(40)

where

and

Usually very few of the angular coefficients al are non-zero, so the sum 

in equation (38) involves only a few terms. The radial integrals Il can be 

evaluated by means of the relationship 

(41)

(42)

where

is a hypgeometric function. For example, suppose that we are considering 

a 2-electron atom or ion and that 

(43)

where

(44)
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so that 
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Then the diagonal element of the interelectron repulsion matrix involving

the configuration v  = {1, 0, 0, 
1–
2 ; 1, 0, 0, –

1–
2 } is given by

The radial integral can be evaluated by means of equation (41), and the 

result is: 

(47)

which is a pure number, independent of p0. The matrix elements of the

interelectron repulsion potential, T'v',v always prove to be pure numbers, 

and they are always independent of p0 . The reason for this is that the

subsidiary relations (12) and (13) require that 

(48)

Thus the ratios kµ /p0 are always pure numbers; and from equations (8),

(35) and (41) it follows that T'v',v can always be expressed in terms of these

ratios. The simple example which we have considered here already allows

us to find the energies of the 2-electron isoelectronic series of atoms and 

ions in the rough approximation where our basis set consists only of a single 

2-electron Sturmian basis function - that shown in equation (45). In that 

case: the secular equation reduces to the requirement that 

(49)

where we have made use of equations (32) and (47). In this rough approx- 

imation, the energies of the atoms and ions in the 2-electron isoelectronic 

series are given by 

(50)
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More accurate energies could of course be obtained by using more basis 

functions; but the crude 1-basis-function result shown in equation (50) al-

ready is in good agreement with Clementi’s Hartree-Fock energies [15], as 

is shown in Figure 1 .

Figure 1. This figure shows the energies as a function of Z for the ions in the two electron

isoelectronic series calculated in the crude approximation where only one configuration

is used (equation (50)). The line shows the energies calculated from equation (50), while 

the dots represent Clementi’s Hartree-Fock values [15]. 

4. The 3-electron isoelectronic series in a strong electric field

We are now in a position to calculate the properties of an atom or atomic

ion in a strong external field. For example, let us consider the 3-electron

isoelectronic series, Li, Be+, B2+, C3+, N4+, O5+, ... etc subjected to a 

constant external electric field so strong that treatments based on pertur-

bation theory must fail. We saw above that T0
v,v and T'v,v are pure numbers, 

independent of p0 . By contrast, the matrix

(51)
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where

Figure 2. Figure 2 shows the polarization of ions in the three-electron isolectronic

series. P is the induced dipole moment in electron-Bohrs, while ε is the external field 

in Hartree/elelectron-Bohr. It can be seen that a pre-ionization anomaly occurs when 

the induced dipole moment reaches approximately 1 electron-Bohr. This pre-ionization

anomaly is associated with an avoided crossing between the first excited state and the 

ground state (figure 3), where the character of the ground state changes abruptly and

begins to include a large proportion of configurations corresponding to high values of 

n (figure 4). The dashed lines indicate how we believe the calculated induced dipole 

moments would behave if our basis sets were more complete. 

depends on p0; but it can be separated into a pure number (the integral in

the second part of equation (51)) multiplied by the factor η = ε/p2
0, where

is the electric field strength in atomic units. Thus we can write:  

(52)

(53)

For simplicity we shall confine our basis set to the following 9 configurations:

n = 2,3,4 

n = 2, 3, 4 

ε
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n = 3 ,4

n =  4  (54)

Each of these configurations consists of a Slater determinant involving a 

helium-like inner shell and an outer spin-up orbital. If we choose z-axis in 

the direction of the applied field, the z component of total angular mo-

mentum is a good quantum number; and we consider here only the M = 0

states of the system. We would like the configurations of equation (52) to 

be 3-electron Sturmian basis functions - that is to say, they should all sat-

isfy equation (1), and they should all correspond to the same value of the 

energy, E = –p0

2
/2. As we saw above, this can be achieved by building the

configurations of orbitals of the form shown in equations (7) and (8), with 

Slater exponents kµ satisfying the subsidiary conditions (12) and (13). It

then follows that 

(55)

arid

(56)

Thus if we take matrix elements between configurations involving different 

values of n, we do not have orthonormality between the atomic orbitals 

of one configuration and those of the other. As a consequence we must ei-

ther use the generalized Slater-Condon rules [16-18| or in some other way 

take into account the absence of orthonormality between configurations in-

volving different values of n. Apart from this complication, the evaluation 

of the matrix elements T'v',v and Vv' ,v is straightforward; and the results

are shown in Tables 1 and 2. The interelectron repulsion matrix is block-

diagonal, each block corresponding to a value of the total orbital angular 

momentum quantum number L. For the matrix elements of the applied 

field, the only non-zero values are those corresponding to ∆ L = ±1, as 

shown in Table 2. In order to obtain the wave functions, energies and po-

larizations for the 3-electron series in the external field, we first pick a value 

of Z and a value of the parameter η. We then solve the secular equation 

(57)

and by repeating the diagonalization for many other values of η we obtain 

the ground state and excited state energies, wave functions, and polariza-

tions of the system as functions of this parameter. Since we also obtain a 

spectrum of p0 values with each diagonalization, we can use the relationship
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= η p0
2

 to find these properties as functions of the external field. For exam-

ple, Figure 2 shows the polarizations of the ground states of the B2+, C3+,

N4+ and O5+ ions as functions of the strength of the applied field. In this

figure, atomic units are used, both for the polarization and for the applied

electric field strength. It can be seen from this figure that when the polariza-

tion reaches a value of approximately 1 atomic unit (1 electron-Bohr), the 

polarizability increases sharply. This seems to be a pre-ionization anomaly 

corresponding to an avoided crossing in the spectrum (Figure 3), where the 

character of the ground state changes from being dominated by the n=2

configurations and begins to include a large proportion of configurations 

corresponding to higher values of n, as shown in Figure 4. Our basis set is 

too poor to represent the true behavour of the polarization following the 

avoided crossing. In fact, avoided crossings of higher excited states occur 

at, much lower values of the applied field, so that when the first excited 

state meets the ground state for an avoided crossing, it is already rich in 

configurations corresponding to high values of n. This is reflected in Figure 

2 by dotted lines, which show how we believe the calculated polarizations 

would continue to increase with increasing field if our basis set were richer. 

Figure 3. This figure shows the M = 0 energy levels in Hartrees for O5+ in a very

strong external electric field. An avoided crossing between the first excited state and the 

ground state occurs when the applied field is approximately 1.7 Hartrees/electron-Bohr, 

and this can be seen to correspond to the field where the pre-ionization anomaly for 

Z = 8 occurs in figure 2. Since an avoided crossing between the first excited state and 

the second excited state has already occured at a lower value of the field the ground state 

becomes rich in configurations corresponding to high values of n.

ε
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TABLE 1. Blocks of T’v v for the 3-electron isoelectronic series 
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TABLE 2. Blocks of V v’,v

5. Discussion 

The use of many-electron Sturmian basis functions derived from the actual 

nuclear attraction potential of an atom or molecule offers a number of 

advantages:

1. The matrix representation of the nuclear attraction potential in this 
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basis isdiagonal.

from the secular equation.
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2. When such basis functions are used, the kinetic energy term vanishes

3. The Slater exponents of the basis set are automatically optimized. 

4. Convergence is rapid. 

5. A solution to the many-electron Schrodinger equation is obtained di- 

6. Excited states are obtained with good accuracy (as is illustrated in 

rectly, without the use of the SCF approximation.

Table 3). 

Figure 4. This figure shows the changes in the character of the ground state of O5+ at the

avoided crossing between the ground state and the first excited state. The percentage of 

the wavefunction corresponding to the n = 2 configuration, equation (54), drops sharply, 

to be replaced by configurations corresponding to higher values of n. Since the ground

state wavefunction then contains d and f functions the polarizability increases. 

The method can be applied both to atoms and to molecules. Only atoms 

are considered in the present paper, but in previous papers [13,14] we have 

shown that the momentum-space methods of Fock, Shibuya and Wulfman 

are very suitable for constructing molecular many-electron Sturmian basis 

sets.

In the present paper, we have illustrated the method by considering 

atomic ions of the 3-electron isoelectronic series in very strong external 

electric fields. Our basis set consisted of only 9 generalized Sturmian basis 

functions (equation (54)); but it would be possible to represent the ground 

states with a still smaller set, with no loss of accuracy, if the basis functions 
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TABLE 3. Excited 2S -states of O5+ and F6+ in Hartrees. The basis set used consisted 
of the 5 configurations, φ n s = |xnsx1sx1s | n = 2, ...) 6. Experimental values are taken–

from Moore's tables [22]

were constructed from parabolic hydrogenlike orbitals of the type studied by 

Aquilanti and co-workers [19-21]. These alternative hydrogenlike orbitals,

separated in parabolic coordinates, are in fact the most suitable building 

blocks for representing the wave function of an atom or ion in an external 

electric field. 

Our basis set is so small that it is insufficient to represent accurately the

neutral lithium atom; but convergence improves with increasing Z, and the 

ions in the 3-electron isoelectronic series are described increasingly well as 

Z becomes large. Once the matrix elements shown in Tables 1 and 2 have

been calculated, solutions for all values of Z and can be obtained with 

almost no calculational effort by diagonalizing the 9 × 9 matrix shown in 

equation (57). 

In conclusion, the method of many-electron Sturmian basis functions 

seems to offer an interesting and promising alternative to the usual SCF-

CI methods. 
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AN IMPLEMENTATION OF THE CONFIGURATION-SELECT-
ING MULTI-REFERENCE CONFIGURATION-INTERACTION
METHOD ON MASSIVELY PARALLEL ARCHITECTURES
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Abstract. We report on a scalable implementation of the configuration-

selecting multi-reference configuration interaction method for massively

parallel architectures with distributed memory. Based on a residue driven

evaluation of the matrix elements this approach, which was adapted to al-

low the selective treatment of triple and quadruple excitations with respect

to the reference space, allows the routine treatment of Hilbert spaces ofwell

over 109 determinants. We demonstrate the scalability of the method for 

up to 128 nodes on the IBM-SP2 and for up to 256 nodes on the CRAY-

T3E. We elaborate on the specific adaptation of the transition residue-

based matrix element evaluation scheme that ensures the scalability and

load-balancing of the method. 

1. Introduction

For many years the multi-reference configuration interaction method (MRCI) 

[1, 2, 3] has been one ofthe benchmark tools for accurate investigation into

the electronic structure ofatoms and molecules. Ever since the development

ofthe direct CIalgorithm [1] highlyefficient implementations [4] havebeen

used for a wide variety of molecules. The generic lack of extensivity of

the MRCI method has at least been partially addressed with a number of 

a posteriori [5, 6] corrections and through direct modification of the CI

energy-functional [7,8, 9, 10, 11, 12].

Due to its high computational cost, however, application of MRCI re-

main constrained to relatively small systems. For this reason the configura-

tion-selective versionofthe MRCI-method (MRD-CI), introducedby Buen-

ker and Peyerimhoff [13, 14, 15], has arguably become one of its most
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widely used versions. In this variant only the most important configura-

tions of the interacting space of a given set of primary configurations are 

chosen for the variational wavefunction [16] , while the energy contributions 

of the remaining configurations are estimated on the basis of second-order

Rayleigh-Schrödinger perturbation theory [17, 18]. Since the variationally 

treated subspace of the problem is much smaller than the overall Hilbert 

space, the determination of its eigenstates requires far less computational 

effort. Indeed, for typical applications the overwhelming majority of the 

computational effort is concentrated in the expansion loop, where the en-

ergy contribution of candidate configurations is computed. 

Even within this approximation, the cost of MRCI calculations remains 

rather high. The development of efficient configuration-selecting CI codes 

[19, 20, 18, 25, 21, 22, 23, 26] is inherently complicated by the sparseness 

and the lack of structure of the selected state-vector. In order to further 

extend the applicability of the method, it is thus desirable to employ the 

most powerful computational architectures available for such calculations. 

Here we report on the progress of the first massively parallel, residue-driven

implementation of the MRD-CI method for distributed memory architec-

tures. While efforts to parallelize standard MR-SDCI (all single and dou-

ble excitations) on distributed memory architectures face significant diffi-

culties rooted in the need to distribute the CI vectors over many nodes 

[24, 27, 28, 29] – a parallel implementation of MRD-CI can capitalize on 

the compactness of its state representation. In our implementation the con-

struction of the subset of nonzero matrix elements is accomplished by the 

use of a residue-based representation of the matrix elements that was orig-

inally developed for the distributed memory implementation of MR-SDCI

[29|. This approach allows us to efficiently evaluate the matrix elements 

both in the expansion loop as well as during the variational improvement 

of the coefficients of the selected vectors. 

In order to attain an efficient implementation of the MRCI family of 

methods on massively parallel machines with distributed memory mecha-

nisms must be devised that distribute the data among the nodes of the ma-

chine such that all computations can be accomplished using only local data.

In our determinant-based implementation the residue-tree, as discussed in 

section 2, plays the role of the organizing principle. Going somewhat beyond 

the standard MRD–CI, our implementation was specifically optimized to es-

timate the importance of triple- and quadruple excitations of the reference 

configuration. The energy arising from such configurations yields the over-

whelming contribution to the energy difference between FCI and MR-SDCI

and is thus of paramount importance for the development approximately 

extensive versions of the MRCI method [7, 8, 9, 10]. Since the number of 

higher-than-doubly excited configuration rises so quickly with system size, 
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Figure 1. Schematic representation of the two-particle residuetree. For each element of 
the configuration-list (A) all possible two-particle residues are constructed. In the config-
uration illustrated iri (B) each box represents one occupied orbital, the shaded region cor-
responds to the residue arid the two white boxes to the orbital pair. The ( ne – 2)-electron

residue configuration is looked up in the residue-tree (C), where an element (D) is added 
that ericodes the orbitals that where rernoved, information regarding the permutation 

required and the index of the original configuration in the configuration list. Solid arrows
in the figure indicate logical relations ships, dotted arrows indicate pointers incorporated 

in the data structure. The residue-list, along with all elements must be rebuilt once after 

each expansion loop, the effort to do so is proportional to product of n2
e with the number

of configurations. The number of matrix elements encoded in a single element of the 

residue-tree is proportiorial to the square of the number of entries of type (D).

FCI as well as CI-SDTQ calculations are prohibitively expensive for all but 

the smallest systems. In addition it is possible to modify the treatment of 

the TQ excitations, such as to provide explicit extensive dressings of the

CI matrix elements for incomplete primary spaces. Configuration selecting 

CI provides a particularly effective, maybe the only viable, compromise be-

tween computational efficiency and accuracy for the treatment of the TQ 

space. Here we report on the key principles of the the implementation of the 

method and provide timings for benchmark applications that demonstrate 

the scalability of the method for up to 128 nodes of an IBM-SP2 and up to 

256 nodes of a CRAY-T3E for Hilbert spaces of dimension up to 5 × 109 of

which up to 5 ×106 elements were selected for the variational wavefunction.

2. Methodology 

In the following we will describe the key ingredients for the residue based 

parallel implementation of the configuration selecting MR-CI method. We 

begin with a description of the orbital partitioning scheme that allows a 

flexible treatment of the triple and quadruple excitations with regard to 
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the active space. We illustrate the principle of the residue-based matrix-

element evaluation that is at the heart of our algorithm. Next we present 

the results of benchmarks of the method for O2, NO2 and benzene as a 

function of the number of nodes used. 

2.1. MATRIX ELEMENT EVALUATION 

Virtually all computational effort of the configuration selective CI method

is concentrated in two steps. First, the many body field 

(1)

must be computed for all non-selected configurations |φ i〉 to asses there

importance. Here 

(2)

designates either the set of all previously selected configurations or a suit-

ably chosen reference set. Secondly, matrix elements of the same form as 

equation (1) must be evaluated repeatedly for all selected configurations 

with respect to the CI vector in the variational subspace to determine 

its eigenstates. In configuration selecting CI these operations are compli-

cated by the lack of structure in the selected Hilbert space even on single-

processor machines. 

Several parallelization strategies have been advocated to implement 

complex algorithms on distributed memory machines, data locality becomes

a paramount issue. One widely used approach is the use of client-server

models, where one central node distributes the data among the client nodes 

on demand. This model is very versatile and has been used for a number 

of applications. However, in complex algorithms involving large amounts 

data, communication bottlenecks can easily arise as the communication 

patterns vary widely with the size of the active space, the number of elec-

trons and the size of the orbital basis. In addition, one of the key challenges 

in data-management for CI application arises from the fact that inter-node

cornmunication is always slower than a typical computation. As a result, 

as parallel implementation must insure that all data transmitted between 

nodes can be used many times before it is discarded. 

In our implementation we have therefore chosen an alternate communi-

cation scheme, where all operations and data are distributed a priori among

the nodes of the machine accoriding to an organizing principle that ensures 

an equal distribution of the work among the nodes. The advantage of this 

approach is that the scalability of the algortihm is a mathematical neces-

sicity, however, the concepts employed are quite narrow and differ already 
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appreaciable between closely related problems such as the configuration se-

lecting and the non-selecting versions of MRCI. Hence, much effort must be 

devoted to optimize the organizing principle for each particular application 

of the scheme. 

To compute the matrix elements of the Hamilton operator we exploit

an enumeration scheme in which each matrix element between two deter-

minants (or configuration state functions) |φ1 〉 and |φ2 〉 is associated with

the subset of orbitals that occur in both the target and the source de-

terminant. This unique subset of orbitals is called the transition residue
mediating the matrix element and serves as a sorting criterion to facili-

tate the matrix element evaluation on distributed memory architectures. 

For a given many-body state, we consider a tree of all possible transition 

residues as illustrated in Figure (1). For each such residue we build a list of 

residue-entries, composed of the orbital-pairs (or orbital for a single-particle

residue) which combine with the residue to yield a selected configuration

and a pointer to that configuration. For configuration selecting CI the re-

duction in the number of selected configurations combined with the large 

total memory of modern distributed memory machines allows us to build 

the residue tree for the selected configuration, provided that only the re-

quired section of the residue tree are stored in the different stages of the 

computation.

Once the residue tree is available the evaluation of the matrix elements 

is very efficient. In the expansion step, one must evaluate qi = 〈φ i|HP|Ψ〉, 
where P projects on the part of the Hilbert space in which only inactive

arid active and low orbitals are occupied. For SD (single & double exci-

tations only) calculations one needs to consider only residues and orbital 

pairs that contain no d-type orbitals. For TQ (single & double, triple and

quadruple excitations) at most two orbitals of type h and I are allowed in

the residue and none in the orbital pair. This portion of the residue tree 

contains but a fraction of the overall residue tree and is easily accommo-

dated on all nodes. For each |φ i 〉 we determine the required single- and two-

particle residues, which are then searched for in the residue tree. In a SD

calculation one can eliminate the search step by constructing the allowed 

excitations directly from the internal residues. If a match is found the infor-

mation in the tree enables us to immediately compute all matrix elements 
associated with the given residue. As a result the overall numerical effort 

scales strictly linear with the number of configurations Φ i for which ma-

trix elements must be evaluated and the number of non-trivial operations 

per configuration is proportional to n2
e Again, there is a significant differ-

ence between configuration-selecting and non-selecting CI calculations. In 

non-selecting CI the number of non-zero matrix elements scales as n2
e N2

for each configuration, the step to determine the transition residues is thus 
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Figure 2. Schematic representation of the computation of twc-particle matrix-elements
in the expansion step using the residue-tree. For a given configuration (A) we form 

all two-particle residues, which are looked up in the residue tree. In the configuration 
illustrated in (A) each box represents one occupied orbital, the shaded region corresponds

to the transition residue and the two white boxes to the orbital pair. The (ne –2)-electron

residue configuration is looked up in the residue-tree (B). Each orbital pair (C) associated 
with the residue encodes a matrix element with an element of the configuration list (D). 
The orbital indices of the required integral are encoded in the orbital pairs in (C), the 
coefficient of the source configuration is looked up directly in (D). Only one lookup 

operation is required to compute all matrix elements associated with the given transition

residue and only the subset of matrix elements that lead to selected source-configurations

are coristructed. 

not dominant. In configuration-selecting CI, most of the possible matrix 

elements do not lead to selected configurations, thus the number of entries 

per element of the transition residue-tree is much smaller than O(N2 ). Here

the residue-based implementation avoids the explicit enumeration of ma-

trix elements that do not lead to selected configurations. For this reason, a 

residue-based implementation of MRD-CI on a massively parallel architec-

ture offers a good balance between the computational demands and storage 

requirements.

In the iteration phase the full residue tree for all selected configurations 

must be built, but a single copy of the tree can be distributed across all 

nodes. All matrix elements associated with a given transition residue can 

be locally evaluated if the associated orbital pairs are present on a unique 

node. We note that the residue tree itself (part B in Figure (2)) is not 

required at all, only the set of connected orbital pairs is needed. As a result 

no lookup operations are required in this step and one can simply loop 

over the locally available section of the orbital pair segments to evaluate 
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TABLE 1. List of the distinct corriputational steps in the parallel implemen- 

tation of the configuration-selecting MRCI procedure. There are three phases, 
associated with the initialization of the program and the expansion and itera- 

tiori of the state-vector respectively. The details of the phases are discussed in 

tkie text. The fourth row of the table details which set of nodes is involved in 

each step, while the fifth row indicates the type of operation that dominates the 

step. Almost all the computational effort is concentrated in steps E and M, the 
next leading contribution arising from the logic steps D2,R2,G2. Only standard 

high-level comunication routines were used to make the program as portable
as possible. 

Phase Type 

Expansion & Logic Steps 

D1 distribution of initial state All nodes Broadcast

R1 build section of restricted residue tree All nodes Computation

G1 gather and distribute residue tree All nodes Pairwise

E expansion loop All nodes Computation

D2 distribute selected configurations All nodes All-to-All

R2 build one section of full residue tree All nodes Computation

G2 gather the residue tree All nodes All-to-All

Iteration Steps 

D3 Distribute New Coefficients Node 0 Broadcast

M Evaluate matrix elements All nodes Corriputation

G3 Gather many body field Node 0 Gather

X Davidson iteration Node 0 Iteration

all matrix elements that can be constructed for the present orbital sets. 

Since each matrix element is uniquely identified by its transition residue, 

the contributions to the many-body field can be simply collected at the 

end of this step on a single node to perform the Davidson iteration. This 

mechanism allows a rapid evaluation of all matrix elements while using the 

available core memory to its fullest extent. 

In order to facilitate the explicit treatment of triple and quadruple ex-

citation from a given reference set, we partition the orbital space into five 

segments according to a partition scheme that proved promising in an ear-

lier investigation [30]. The population of these segments allows the gradual 

inclusion of triple and quadruple (TQ) excitations in cases where even the 

enumerative search of such configurations in the expansion loop is pro-

hibitively expensive. 
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2.2. PARALLEL IMPLEMENTATION 

In a truly scalable implementation great care must be take to divide all 

work equally across the participating nodes. A remaining non-scalable por-

tion of 1% of the computational effort of a single processor application 

translates into a 100% overhead if the same task is distributed across 100 

nodes. Our massively parallel algorithm for configurations-selecting MRCI 

is therefore based on a client server model that strictly separates the cal-

culation from the communication steps. The latter were chosen to require 

only global communication directives of the underlying MPI communica-

tion library which can be expected to execute efficiently on most modern 

parallel architectures. 

According to the above outline the overall work can be broken into 

two distinct phases that require the same order of magnitude of compu-

tational effort. Table Table (1) summarizes the most important steps of 

the configurations-selecting CI procedure. In an expansion step we begin

with the distribution of the current state-vector to all nodes (D1). Each 

nodes then builds the restricted residue tree for all the set of configurations 

it received in step (D1). The effort per node involved in this step (R1) is 

strictly proportional to n 2
e Nconf/Nk , it will therefore scale well with the 

number of nodes Nk. Next (step G1) the residue tree must be distributed 

to all nodes. Since orbital pairs belonging to the same transition residue 

have been created on several different nodes this is a nontrivial operation. 

Using a hashing mechanism we first assign a unique node to each tran-

sition residue and then gather all orbital pairs belonging to that residue 

on the appropriate node. Then each node builds its unique section of the 

residue tree. The hashing mechanism ensures the balancing of the compu-

tational effort across all nodes. Finally the information of all the nodes is 

distributed via an all-to-all communication across the entire machine. Now 

(step E) each node can run through a predetermined section of the search 

space to evaluate the energy contributions and to select the configurations 

for the variational subspace. Step E dominates the overall computational 

effort of the configuration-selection by a large margin. 

The next three steps prepare the variational subspace for the iterations. 

Since the distribution of the selected configurations on the different nodes 

can be rather uneven, we first redistribute the configurations among the 

nodes(D2). Then each node constructs its portion of the full residue tree 

(R2). These contributions are gathered in analogy to step (G1) across all 

nodes, such that each node has all orbital pairs for its assigned transition 

residues. In contrast to step (G1), however, the entries are not distributed 

across the machine, but remain on the nodes for the local matrix element 

evaluation. The computational effort in the matrix elements evaluation step 

P. STAMPFUSS AND W. WENZEL 
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Figure 3. Histogram of the CPU time in the iteration step for the O2 benchmark

calculation including triple and quadruple excitations described in the text (a) in the 

absence of load-balance through the exchange of residue-entries between nodes and (b) 
with such load-balancing. The reduction in the width of the distribution improves the 

scalability of the algorithrn. 

is proportional to the expectation value of the square of the number of or-

bital pairs over the transition residues. The hashing mechanism we used 

to assign transition residues to nodes, however, ensures only that there are 

approximately the same number of residues on each node. Figure (3)(a) 

demonstrates that the computational effort can nevertheless vary quite 

significantly among the nodes, an effect that worsens with an increasing 

number of nodes. Such an imbalance in the work-distribution leads to the 

loss of scalability of the algorithm. It is therefore important to redistribute 

the workload among the nodes to achieve better performance. To this end 

we gather discretized histograms of the transition residue distribution on 

the server node, which uses this information to assign approximately even 

work-loads to all nodes. Based on this technique the theoretical deviations 

in the variation of the work-load can be reduced from over 50% to less 

than 12% of the overall average computational effort. Figure (3) shows his-

tograms of the distribution of the work-load without and without active 

load-balancing to demonstrate this observation. 

After the redistribution of the transition-residue table, the program can 
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proceed with the iteration steps to converge the variational subspace. The 

four steps comprising an iteration are executed many times after each ex-

pansion loop, but require no further logic information. Almost all the work 

is concentrated in step M. We note in passing that in the expansion step 

only a fraction of all possible integrals are required on the nodes, a fact 

that will be exploited in future versions of the code.

3. Benchmark Calculations

In order to demonstrate the scalability of the implementation we have con-

ducted benchmark calculations for two typical applications of the program. 

The first example is concerned with the evaluation of the importance of the 

triple and quadruple excitations for the potential energy surfaces of the oxy-

gen molecule and its anion. Previous work has established that the accurate 

calculation of the electron affinity of O2 remains a formidable challenge even 

to present day quantum chemical techniques. At the level of a CAS-SCF

description the adiabatic electron affinity of the oxygen molecules is pre-

dicted with the wrong sign even in the basis set limit. A careful study[31] 

concluded that strong differential dynamical correlation effects are most 

likely entirely responsible for the source of this discrepancy. In MRCI-SD

calculations the correct sign for the electron affinity can barely be reached 

using aug-QZP quality basis sets. A semiquantitative agreement between 

experiment and theory was reached, when the multi-reference generaliza-

tion of the Davidson correction[6] was applied to estimate the effect of 

higher excitations to the MRCI wavefunction. 

O2 is therefore one of the simplest molecules which challenges one of the 

central paradigms of modern quantum chemical correlation methods that

rest on the assumption the explicit treatment of single and double excita-

tions of a chemically motivated reference set of configurations is sufficient to 

quantitatively account for dynamical correlation effects. This observation, 

as well as the desire to explicitely test approximations for extensivity cor-

rections to MR-SDCI[7, 8, 9, 10] motivated the development of the present 

code. Since the CAS+SDTQ Hilbert space of O2 in a aug-QZP basis has di-

mension 32 × 10
9
, this problem cannot be treated with any of the presently

available MR-SDCI or MRD-CI implementations, but provides a suitable

challenge for our parallel implementation. The calculations were performed 

in a (sp)-augmented cc-pVTZ, cc-pVQZ and cc-pVSZ basis set in D2h sym-

metry at the experimental geometries. In Hilbert spaces of dimension up to 

5× 109 containing triple and quadruple excitations we selected up to 5 × 106

determinants as a function of the threshold for the coefficients ranging from 

10 3 to 10 6 .

In the second example, more within the traditional applications of confi-
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Figure 4. Total CPU time in (sec) for the fully converged calculation of the ground state 
of the two benchmark calculations described in the text as a function of the number of 

nodes of the IBM-SP2. A straight line indicates perfect scaling of the computational effort

with the number of riodes. The shaded areas iri the bars, from top to bottom, indicate 

the contributions of the rriatrix element evaluation (steps D3,M,G3,X in Table (l)), logic 
(D1,R1,G1,D2,R2,G2) arid the expansion loop (step E). 

guration-selecting CI, we have computed the ground state energy of benzene 

in a cc-pVDZ basis set using active spaces of 6 and 12 active orbitals. The 

latter calculation was motivated by the desire to test the program for very 

large Hilbert spaces, but the smaller active space is sufficient to adequately

describe the chemistry of benzene. The calculation was performed in C6v

symmetry resulting in Hilbert spaces of up to 3 × 10
9

determinants of which

up to 2 × 10
6

were selected for the variational subspace.

3.1. SCALABILITY 

The most important consideration in the evaluation of the performance of 

a parallel program is its scalability with the number of processors used for 

a given calculation. For scaling purposes we selected a typical run with 

109 determinants (1.8 × 106 selected) for O2 and another with 1.3 × 10 9

determinants (1.6 × 106 selected) for benzene respectively. For these cases 

we performed benchmark runs on the 256-node IBM-SP2 of the Karlsruhe 
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supercomputer center. We also tested the program on the on the 256-node

and 512-node CRAY-TE3’s of the supercomputer center (HLRZ) of the 

Research Center Jülich and using the maximally available number of pro-

cessors for standard runs, i.e. 256 on the CRAY-TE3 and 128 on the IBM-

SP2 respectively. The runs on the CRAY T3E with its larger data types 

but smaller core memory per node forced us to use a somewhat smaller 

threshold than on the IBM-SP2 for the scaling runs in order to be able to 

finish the calculation even for a small number of processors. Since all data 

except integrals and state-vector is distributed across the machines the size 

of the maximally treatable Hilbert space grows significantly with the num-

ber of nodes. Unfortunately the T3E consists of two machines of different

physical characteristics: the smaller cluster (128 nodes) permits runs rang-

ing from 16 to 64 nodes, the larger one allows runs requiring 65-256 nodes. 

The interpretation of the scaling data will have to take this “break” into

account.

Figure (4) shows the total computational effort (excluding the time to 

read the integral file) of the aforementioned scaling runs on the IBM-SP2

as a function of the number of nodes. In these plots, the computational

effort for all logic-steps sections (D1,R1,G1,D2,R2,G2) are subsumed in 

one category, the expansion loop (E) and the iteration loop (D3,M,G3,X) 

constitute the other main components of the program. This division is 

motivated by the fact that the relative importance of these three main 

computational steps varies with the type of calculation performed and a 

different scaling behavior of these steps will result in an overall different 

performance for different calculations. The number of times the expansion 

loop is executed, for instance (in the test calculations twice for the SD and 

once for the TQ segment), will significantly affect the overall performance.

Varying the threshold leads to a redistribution of the effort from expansion 

to matrix elements. Increasing the number of states (only one state per

symmetry was computed in the test calculations) will reduce the importance 

of the logic section, as does an increase in the desired accuracy for the state-

vector in the iteration steps. Since the expansion step is easier to parallelize 

than iteration and logic the test calculations we have selected less-than-ideal

runs to test the program by using only the minimal number of expansion 

steps with a relatively low accuracy in the iteration step that somewhat 

overemphasizes the importance of the logic step – the most difficult part 

of the program. 

For benzene we find almost perfect scaling from 48 to 128 nodes for

the IBM-SP2. The total computational effort in the expansion loop, which 

dominates the overall computational effort, is constant to within 0.4% in 

going from the smallest to the largest number of nodes. In contrast, the 

effort associated with logic and communication grows somewhat with the 
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TABLE 2. Total CPU times for the benchmark 

calculations described in the text on the IBM-SP2
arid the CRAY T3E as a function of the number 

of nodes. Given is the time in sec/node for the ex-

pansion arid convergence of a single state in each

calculation. The fractiorial computational loss be-

tween two test runs is defined as the ratio of the 
CPU-times per node divided by the perfect speedup 

factor given by the ratio of the nodes. The loss-data
in the table always refer to successive entries. The

calculation for benzene on the IBM-SP2 employed 

12 active orbitals, that on the CRAY-T3E used a 
realistic active space of six orbitals. Note that the 
sensible limit for the latter calculations lies around 

64 nodes, where less than 5 minutes are required to 

converge the calculation. 

IBM-SP2

O
2

C6 H6

number of time loss time loss 

nodes (s/node) (s/node) 

16 8308 

32 4374 5% 

48 10122 

64 2480 13% 7510 0% 

96 5160 3% 

128 1410 14% 4012 4% 

CRAY-T3E

O2 C6H6

16 5334 

32 2887 8% 319 

64 1539 10% 172 8% 

65 2062 244 

128 1107 6% 147 20% 

256 620 12% 

number of nodes. This is to be expected, since the communication cost 

grows with the number of nodes and a total of 3.7 / 9.1 GB of data have 

to be transmitted across the machine for the small and large residue tables 

respectively. The overall speedup factor from 64 to 128 nodes is 1.86 (see 

Table (2)). 

For the benchmark calculation of O2 a more pronounced increase in the 
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Figure 5. Histograrn of the CPU-time distribution of (a) an expansion step including 

TQ excitations arid (b) an iteration step for the O2 benchmark calculation described iri 

the text on 64 nodes of the IBM-SP2. The computational effort in the expansion step is 
almost perfectly distributed that of the iteration step varies with a standard deviation 

of approximately 4% resulting in a loss of computational efficiency as “fast” nodes have 

to wait for the “slow” nodes to finish. Without the use of load-balancing the width of 

distribution for the iteration step increases significantly. Since the number of transition 

residues/node decreases with the number of nodes, fluctuations in the computational 
effort become more difficult to balance for a large number of processors. 

overall computational effort is observed in going from 32 to 128 nodes, in 

particular in with the last doubling from 64 to 128 processors. Again, the 

computational effort in the expansion loop is relatively stable, increasing 

only 6.7% (6.3%) in going from 32 to 64 (64 to 128) nodes respectively. This 

is the result of the near perfect load-balancing in evidence in Figure (5), 

which shows a histogram of the total CPU time/node for a run on 64 nodes. 

The presence of triple and quadruple excitations significantly complicates 

the overhead associated with the generation of the residue trees. Given 

the relatively wide distribution of the computational effort per transition 

residue that results from the presence of the TQ excitations, it becomes 

more and more difficult to balance the computational load in the matrix 

element step. This results in a larger variation in the load among the pro-

cessors, which decreases the performance of the iteration step, since all 

processors must wait for the last node to finish. Because large amounts of 

data are required for the evaluation of the matrix elements it is difficult to 
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TABLE 3. Performance data for selected MRD-CI SD calculations. 
All calculations were performed on the CRAY-T3E of the HLRZ 

Jülich. The calculation on O2 was performed in D2h symmetry at 

the experimental geometry using a (2s2p) complete active space 

and a coefficient threshold of λ = 10–5 The calculations on NO2

were performed on the X1A1 ground state in C2v symmetry at the 

experimental geometry using a (1211) complete active space arid

λ = 3 × 10–5. The calculation on C6H6 were performed on the 
X 1A1 ground state in D2h symmetry using a C6v geometry with 
R = 2.79Åand a (00002121) active space with λ = 3 × 10–5 Ndet

designates the size of the Hilbert space, Nsel that of the selected 

subspace, the next column indicates the number of nodes used and 

the last the turnaround time till convergence in seconds. (*) The
calculation in the cc-pVQZ basis requires twice the number of iter-

ations of the calculation in the cc-pVTZ basis, which is responsible

for the disproportionate increase in CPU time. 

Basis Ndet Nsel Nodes CPU (s) 

O–
2 aug-cc-pVDZ 1 × 105 5.1 × 104 8 24 

aug-cc-pVTZ 1 × 106 3.5 × 105 65 61 

aug-cc-pVQZ 3 × 107 7.5 × 105 65 226 

94 8 80cc-pVDZ 35

cc-pVTZ 2 6 45

NO2

64 127

cc-pVQZ 96 55 64 1225(* )

C6H6 cc-pVDZ 4 × 107 2 × 105 64 172

go beyond the present implementation and to dynamically adjust the load 

while the iteration is in process. 

The data for the test runs is summarized in detail in Table (2). For the 

IBM SP-2 we find near-perfect speedups for benzene. For O2 the speedup 

factors associated with the doubling of the nodes are somewhat worse, but 

still warrant the use of a large number of nodes to perform the calculation in 

most circumstances. MRCI calculations require nontrivial communication 

steps on parallel machines, so that some loss of computational efficiency is 

unavoidable. On the CRAY-T3E we find a similar situation: For benzene 

we report calculations with the more realistic six-orbital space. On 128 

nodes this calculation requires less than three minutes total turnaround 

time and the residue table in the iteration step is spread so thinly that it 

becomes impossible to balance. This explains the somewhat large loss of 

20% efficiency in going from 65 to 128 nodes. Note that the data for 64 (65) 

nodes where obtained on the small (large) cluster of the T3E described 

above. The time differences are indicative of the relative performance of 

these two machines. 



110 P. STAMPFUSS AND W. WENZEL 

3.2. PERFORMANCE 

Having verified the scalability of the method we now turn to the overall 

performance of the implementation to give some impression on the total 

CPU requirement for some well studied molecules. A great deal of cau-

tion is required in the interpretation of this data in a rapidly changing

hardware landscape, as modifications in processor speed and architecture, 

caching capabilites and memory structure make comparisons between test 

calculations very difficult. Keeping these shortcomings in mind, however, 

overall performance data provides the prospective user with an order-of-

magnitude estimate of the computational requirements. The benchmarks 

were performed on both IBM-SP2 with 120 Mhz RISC2 processors and 512

MB/node and the CRAY TE3 with 300 Mhz DEC Alpha Processors and 

128 MB/node. Even though there is almost a factor 3 between the cycle 

rates of these machines the IBM processor has the larger floating point

throughput. Neither of these processors is at the high end of present-day

computational performance. Table (3) summarizes total CPU-times for cal-

culations on O2, NO2 and benzene for a number of basis sets to give an 

impression of the total turnaround-times that can be expected for standard 

calculations.

4. Discussion

Accurate benchmark methods for the treatment of dynamical correlation 

effects, such as MRCI, have made a significant impact in the development 

of quantum chemistry. Since their computational effort rises rapidly (as 

n 6
e ) with the number of electrons, only the use of the most powerful com-

putational architectures ensures their continued relevance to the field. Be-

cause massively parallel architectures with distributed memory will yield 

the highest computational throughput in the foreseeable future, it is worth-

while to pursue the use of these machines for quantum chemical benchmark 

calculations. The development of the first scalable implementation of one of 

the most popular variants of the MRCI method family on such architectures 

is one important step in this direction. The present implementation allows 

the treatment of Hilbert spaces and systems that are larger than those that 

can be treated on traditional architectures, while significantly reducing the 

turnaround time for more moderate applications. With the ability to rou-

tinely treat Hilbert space exceeding 10 billion determinants many questions 

that require a delicate balance of dynamical and non-dynamical correlation 

effects, e.g in transition metal chemistry, become amenable to the MRCI 

method.

A spin-adapted implementation of the residue-based MRCI algorithm, 

both for MR-SDCI[29] and its configuration-selecting variant is presently 
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under way. We report here on the progress of the determinantal program, 

a spin-adapted version is presently under development. However, it is un-

clear whether a significant computational advantage can be expected from 

this code, in particular for the configuration-selecting algorithm including

TQ excitations. The reason for this expectation lies in the fact that the 

number of unpaired spins rises rapidly for complex molecules and highly 

excited configurations. The size of the representation matrices of the sym-

metric or unitary groups that are required in spin-adapted implementations 

grows exponentially with the number of unpaired electrons. In non-selecting

MR-SDCI the fact that all possible configuration state functions (CSF) are 

present allows an efficient implementation, in configuration-selecting MRD-

CI the sparseness of the state-vector leads to a significant computational 

overhead in the generation of the representation matrices of the line-up

permutations that are necessary to evaluate the matrix elements[23]. We 

note that FCI codes have long ago abandoned CSF based implementa-

tions[32, 33] in favor of a determinantal approach, even though the number 

of electrons is strongly limited in FCI. With larger Hilbert spaces and an 

increasing electron number a similar trend may appear for configuration-

selecting MRD-CI.

One of the intrinsic bottlenecks of our present implementation configura-

tion-selecting MRD-CI is the difficulty to develop efficient integral-driven

matrix element evaluation methods in the iteration step, which ultimately 

limits the size of the basis that can be employed for these calculations. 

While many interesting calculations will be possible with the existing code, 

we are presently exploring the possibility of non-local integral storage for 

basis sets exceeding 400 orbitals1. In addition, it is worthwhile to investi-

gate approximations, such as multi-reference second-order Brillouin-Wigner

perturbation theory [17, 34, 35, 36], that eliminate the selected variational 

subspace in MRD-CI altogether. We note that the selection step in MRD-

CI scales with n 2
e N2 (where N is the number of orbitals), as opposed to the

iteration step which principally scales as n2
e N4. The MR-BWPT approxi-

mation rests on the assumption that the presence of the vast majority of the 

selected configurations in MRD-CI is required not because their individual 

energy contribution cannot be estimated perturbatively, but because they 

generate a many-body field on the primary configurations that alters the 

relative importance of the latter. 
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Abstract. Some comments are made on the basis sets employed in recent

studies of electron correlation energies for small molecules with particular

reference to calculations for the ground states of the nitrogen and water

molecules. For diatomic systems, the use of finite difference and finite basis

set approximations in generating the Hartree-Fock reference function is

compared. The distributed, universal, even-tempered basis sets (for which

we introduce the acronym duet ) and correlation consistent basis sets are

compared for both the Hartree-Fock model and in treatments of correlation

effects. The use of correlation treatments based on many-body perturbation

theory and on coupled cluster expansions are discussed. The systematic

approximation of the molecular integral supermatrix corresponding to duet
basis sets is addressed, as are applications to molecular systems containing

heavy atoms.

1. Introduction

The famous 1927 paper of Heitler and London [1] on the ground state of

the hydrogen molecule not only established the burgeoning field of quan-

tum chemistry but also introduced the basis set into molecular electronic
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structure calculations - an approximation which is ubiquitous in almost all 

practical applications - and with it the basis set truncation error. This er-

ror has plagued practical applications through to the present time. Indeed, 

interest in reduction of the basis set truncation errors arising in studies of 

the simplest of molecules, the ground state of the hydrogen molecule, has 

continued though to the end of the twentieth century ([2]-[6]).

Three years ago, in 1996, we reported ([7],[8]) highly correlated calcu-

lations for the ground state of the nitrogen molecule and for the ground

state of the water molecule. These calculations employed systematically de-

veloped distributed universal even-tempered primitive spherical harmonic

Gaussian basis sets in conjunction with a correlation treatment based on 

second order many-body perturbation theory. Over the past three years, 

a number of other studies of these two systems have been reported ([9]-

[14]) using a variety of basis sets and methods for handling the correlation 

problem. One of the primary purposes of this paper is to compared our 

methods and the results they support with this more recent work with 

particular emphasis on the basis sets employed. 

In section 2, we comment on the basis sets used in the various studies of 

electron correlation effects in small molecules cited above. We briefly dis-

cuss the systematic sequences of distributed universal even- tempered prim-

itive spherical harmonic Gaussian basis sets employed in our calculations in

subsection 2.1. The correlation consistent basis sets developed by Dunning 

and his collaborators ([15]-[22]) and used in more recent studies ([9]-[14]) of

N2 and H2O are also described. In subsection 2.2, we specifically consider

recent calculations for the ground state of the nitrogen molecule whilst 

in subsection 2.3 we turn our attention to the ground state of the water

molecule. The systematic approximation of the molecular integral super-

matrix corresponding to distributed universal even- tempered basis sets of

primitive spherical harmonic Gaussian functions is considered in subsection 

2.4. Section 3 contains a summary. 

2. Comments on the basis sets used in recent studies of electron
correlation in small molecules 

Most molecular electronic structure calculations are carried out in two dis-

tinct stages ([23],[24]); the first involving an independent particle model 

(usually the Hartree-Fock model) and the second taking account of elec-

tron correlation effects (usually by means of a “many-body” technique, such 

as many-body perturbation theory or a cluster expansion). For atoms the

use of spherical polar coordinates allows the problem to be factorize into 

an angular part which can be handled analytically and a one-dimensional

radial part which can be solved numerically by introducing a suitable grid. 
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For molecules, there is, in general, no suitable coordinate system and thus 

the use of finite basis set expansions has become ubiquitous. This leads to 

the matrix Hartree-Fock equations and the so-called algebraic approxima-

tion in which the integro-differential Hartree-Fock equations become a set 

of algebraic equations for the expansion coefficients defining single particle 

state functions or orbitals. The solution of the matrix Hartree-Fock equa-

tions yields a set of orbitals, both occupied and unoccupied, which can be 

used to develop a description of electron correlation effects.

Diatomic molecules are an exception, in that the use of elliptical coor-

dinates facilitates the factorization of the problem into a part, depending 

on the azimuthal angle, ϕ, which can be solved analytically and a part, de-

pending on the prolate spheroidal coordinates1 λ and µ which is handled

numerically. This two-dimensional grid gives rise to computational demands 

which are not inconsiderable and it is perhaps not surprising that, although 

the atomic Hartree-Fock problem could be already handled numerically us-

ing finite difference techniques in the 1930s and handled with ease by the

1950s when digital computing machines became available, such molecular 

problems were not regarded as tractable until the early 1980s [25] (for a

recent review see [26], which might be termed the dawn of the “supercom- 

puter age". Even today, finite difference diatomic molecule calculations are

restricted to the Hartree-Fock model. 

For many years, the development of basis sets for molecular electronic 

structure calculations was seen as a compromise between, on the one hand, 

the need to use a basis set that was sufficiently flexible to support the level

of accuracy required in a particular investigation, and, on the other hand, 

the size of the basis set is small enough to allow the calculation to be car-

ried within a particular time scale (See, for example, ([27],[28])). In much

contemporary work, this is often the balance that has to be struck in spe-

cific applications of quantum chemical techniques. But this is an approach 

which is not without its pitfalls. Too often the assumed accuracy of the 

results depends on a fortuitous cancellation of errors arising from trunca-

tion of the basis sets with those associated with, for example, the neglect 

of certain correlation effects. Such errors may not be at all apparent to the 

casual user of quantum chemical computer programs. However, the need

to develop methods for systematically refining basis sets has been recog-

nized as an essential ingredient of any techniques for handling molecular 

electronic structure which aims to achieve high precision. 

1λ = (rA + rB)/R, µ = (rA – rB) /R
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2.1. SYSTEMATIC SEQUENCES OF DISTRIBUTED UNIVERSAL EVEN-
TEMPERED PRIMITIVE SPHERICALHARMONIC GAUSSIAN BASIS SETS

In recent years, we have reported ([2],[29]-[37]) a number of studies in which 

detailed comparisons of finite difference Hartree-Fock calculations for di-

atomic molecules with the corresponding finite basis set calculations using

Gaussian basis sets have been reported. Such comparisons have been made 

for closed-shell systems, first for systems containing light atoms ([30]-[33])

and then for molecules containing heavy atoms ([34],[35]). More recently, 

comparisons have been made for some prototypical open-shell diatomic 

molecules, again, first for systems containing only light atoms [36] and

then, very recently, for molecules containing heavy atoms [37]. In all cases 

the finite basis set total energies supported by the large and flexible basis 

sets employed approached the finite difference results at an accuracy ap-

proaching the sub- µHartre level. These “high precision” basis sets have

subsequently been used in studies of polyatomic molecules and in studies 

of electron correlation effects. In particular, in 1996 highly correlated calcu-

lations for the ground state of the nitrogen molecule [7] and for the ground 

state of the water molecule [8] were reported. Over the past three years, a 

number of other studies of these two systems have been reported ([9]-[14])

using a variety of basis sets and methods for handling the correlation prob-

lem. As we have already said, one of the primary purposes of this paper is 

to compared our results published in 1996 with this more recent work. 

We introduce the acronym duet - distributed universal even-tempered

to describe the basis sets employed in our calculations. These basis sets 

combined a number of features:-

(i) they are distributed. Although finite basis set approximations to 

molecular wavefunctions can be formally developed in terms of a one-centre

expansion [28], it is well known that this approach is often poorly con-

vergent, especially when off-centre heavy atoms are present. Most often a 

molecular basis set is constructed from subsets centred on each of the com-

ponent atoms. These distributed basis sets with atom-centred subsets are 

employed in the vast majority of contemporary quantum chemical calcu-

lations. However, in general, the distribution may involve other expansion 

centres. For example, in the case of diatomic molecules the introduction 

of a subset centred on the bond mid-point has been demonstrated to be 

beneficial in “high precision” Hartree-Fock studies in that such functions 

lead to more rapid convergence of the energy expectation value. 

(ii) they are universal. The parameters defining the basis set are not se-

lected with a view to describing one particular atom, property or molecular 

environment. The subsets of the duet basis set can, therefore, be centred on 

any atomic nucleus or other point where significant electron density may ac-

cumulate. Furthermore, duet basis sets are therefore available for molecules 
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containing any atom of the Periodic Table and specific applications do not 

depend on the availability of tabulated atomic sets. 

(iii) they are even-tempered. The exponents are taken to form a geo-

metric series. The duet basis sets can therefore be easily enlarged if higher 

accuracy is required. Computational linear dependence, which has to be 

carefully control in “high precision” studies, can be routinely controlled. 

(iv) they form a systematic sequence. The duet basis sets form a sys-

tematically constructed sequence which can be explicitly demonstrated to 

approach a complete set for a given expansion centre. 

(v) they are primitive spherical-harmonic Gaussian functions. The use 

of spherical-harmonic Gaussian basis functions avoids the linear dependence 

problems which can arise with Cartesian Gaussian basis functions when 

higher harmonics are included. The use of primitive Gaussian is essential 

for the formal mathematical completeness of the sets employed in the limit 

of an infinite number of basis functions in the one-centre case. For the

multicentre case the approach is heuristic. 

(vi) they are not “energy biased”. The parameters defining the duet
basis sets are not specifically chosen to support the lowest expectation of 

the energy. The duet basis sets might, therefore, be expected to deliver 

“high precision” for a range of expectation values. Indeed, a current study

([37],(38]) of multipole moments using finite difference and finite basis set 

approaches supports this view. 

The more recent publications with which we compare our 1996 calcu-

lations for N2 and H2O have exclusively used the correlation consistent 

basis sets introduced by Dunning [15] in 1989. It is useful to compare the

characteristics of the correlation consistent basis sets with those of the duet
basis sets. For the purposes of the present study, the essential features of 

the correlation consistent basis sets are 

(i) they are atom-centred. Indeed, correlation consistent basis sets are 

developed for atomic systems and then used in the synthesis of molecular 

basis sets. 

(ii) they are atom specific. Tabulations of correlation consistent basis 

sets are available. However, they are not available for all atoms of the 

Periodic table and for different molecular environments. 

(iii) they form a sequence. Empirical extrapolation procedures have been 

proposed to investigate the “infinite basis set” limit for calculations carried 

out with correlation consistent basis set sequences. However, the present 

authors are not aware of any proof that this limit corresponds to a complete 

basis set in the one-centre case. For the multicentre case this approach is 

also heuristic. 

(iv) they are contracted. A property that would appear to preclude any 

formal demonstration of completeness. 
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(v) they are energy biased. Correlation consistent basis set are specifi-

cally designed to recover electron correlation energy. 

2.2. A COMPARISON OF RECENT STUDIES OF THE N2 GROUND STATE 

Almost one half of the electronic binding energy of the nitrogen molecule 

ground state is attributable to electron correlation effects and it is not 

surprising that interest in this system continues unabated. 

In 1993, Kobus published [39] a finite difference Hartree-Fock energy for 

the nitrogen molecule ground state at a nuclear separation of 2.068 bohr.

Use of a grid of 169 × 193 points supported a finite difference Hartree-Fock

energy of -108.993 825 7 Hartree. A systematically developed distributed 

basis set of even-tempered Gaussian functions [29] supported an energy of 

–108.993 824 5 Hartree which deviates by just 1.2 µHartree from the fi-

nite difference value. The basis set employed in this calculation consisted of 

primitive Gaussian-type functions. The functions were distributed on three 

centres - the two nuclei and the bond mid-point. It has been established that 

within the Hartree-Fock model this distribution of expansion centres leads 

to more rapid convergence that the more widely used distribution in which 

functions are centred on the nuclei only. On each centre subsets of functions 

of successively higher symmetry are added in order to explore the conver-

gence pattern. For each symmetry type on a given centre even-tempered

sequences were employed to reduce the associated basis set truncation er-

ror. The final basis set employed in our study of the Hartree-Fock energy

of the nitrogen molecule can be written [30s15p15d15f; 27s12p10d10f bc],

which consists of a 30s15p15d15f set centred on each of the nuclei and a

27s12p10d10f on the bond centre. The latter basis set was obtained from

the 30s15p15d15f set by deleting the most diffuse functions, which, when

positioned on the bond centre, give rise to computational linear dependence. 

The total molecular electronic energy for the ground state of the nitro-

gen molecule is –109.587 82 Hartree. Quiney, Moncrieff and Wilson [41] 

have defined the post Hartree-Fock energy for the system XY as

∆ EXY =EXY – EHF
XY (1)

where EXY is the total molecular ground state energy, which is available 

from experiment, and E HF
XY is the exact Hartree-Fock energy, which is avail-

able from finite difference and finite element calculations, and from finite 

basis set studies in which convergence with respect to basis set has been 

monitored. The values of the post-Hartree-Fock energy for the nitrogen 

molecule ground state at a nuclear separation of 2.068 bohr has been esti-

mated to be –594.00 mHartree. The accuracy with which the post-Hartree-

Fock energy can be determined depends both on the accuracy of the finite 
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difference Hartree-Fock energy and that of the total molecular energy de-

rived from experiment. Errors in the experimentally derived total molecular

energy are the dominant source of error in the post-Hartree-Fock energies.

Almost 91% of the post-Hartree-Fock energy of the nitrogen molecule

is associated with non-relativistic electron correlation effects. An empiri-

cal estimate of the correlation energy is –539.52 mHartree [4]. In 1996,

we employed [7] the basis set described above as a starting point for the

treatment of correlation effects using second order many-body perturba-

tion theory. Using a basis set containing functions of s, p, d, f, g and h
symmetry on three centres, the nuclei and the bond centre, we recovered 

a correlation energy of –530.43 mHartree. This represents some 98.3% of 

the empirical estimate of the total correlation energy. Extrapolation of the 

correlation energies supported by a systematic sequence of basis set includ-

ing successively higher symmetries gives an estimated correlation of –535.4 

mHartree, which is some 99.2% of the empirical estimate. This also repre-

sent 90.1% of the post-Hartree-Fock energy. The resulting correlation ener-

gies were also assessed by comparison with Klopper’s “MP2-R12” method 

for which an application to the nitrogen molecule was reported in 1995 

[42]. Klopper reports an estimated second-order correlation energy com-

ponent of –536.14 Hartree for N2 with a nuclear separation of 2.07 bohr. 

Thus second order many-body perturbation theory accounts for over 99% 

of the empirical correlation energy. The remaining error in the correlation 

energy is therefore an order of magnitude smaller than the remaining error 

in the post-Hartree-Fock energy which is mainly associated with relativistic 

effects.

In 1997, A.K. Wilson and Dunning [9] presented “MP2” calculations 

for the nitrogen molecule ground state using the correlation consistent ba-

sis sets. In a study which included only ‘valence’ correlation effects they 

reported a correlation energy of –408.53 mHartree from their basis set 

designated cc-pV5Z and –413.23 mHartree from their largest basis set,

the cc-pV6Z set. Klopper reported a valence correlation energy of –420.37

mHartree for this system. For the cc-pV5Z basis set, Moncrieff and Wilson 

[7] reported a total correlation energy estimate of –477.70 mHartree for a

nuclear separation of 2.068 bohr, whilst in subsequent work [4] for the same 

geometry they employed the correlation consistent basis set designated aug-
cc-pCV5Z to obtain a total correlation energy estimate of –523.9 mHartree.

This represents about 97% of the empirical correlation energy estimate. In 

the same year, Dunning’s group [10] also employed the correlation consis-

tent basis sets in coupled cluster calculations for a number of homonuclear 

diatomic molecules, including the nitrogen molecule. 

In 1998, Klopper and Helgaker [13] examined the convergence of “CCSD-

R12” calculations for a sequence of correIation consistent basis sets. This 
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explicitly correlated coupled-cluster doubles model involves non-standard

two-, three-, four- and even five-electron integrals in addition to the stan-

dard one- and two-electron integrals. These non-standard, many-electron

integrals are reduced to, at most, two-electron integrals by inserting a res-

olution of the identity [43]. However, there is no unique way of inserting 

this resolution of the identity and, furthermore, its accuracy is dependent 

on the quality of the basis set employed. In the same year as Klopper and

Helgaker’s work was published, Halkier et al [12] made a comparison of 

second order perturbation theory energies and coupled cluster correlation 

energies for a sequence of correlation consistent basis sets. For the nitrogen 

molecule ground state with a nuclear separation of 109.77 pm (2.0744 bohr)
they reported Hartree-Fock, “MP2”, “CCSD” and “CCSD(T)” calculations 

using cc pCVnZ correlation consistent basis sets, n = D, T, Q, 5, 6. They 

also reported a numerical Hartree-Fock energy of –108.993 188 Hartree for 

the same nuclear geometry. The errors in the matrix Hartree-Fock calcula-

tions carried out with correlation consistent basis sets were found to be (in 

µHartree)

cc-pCVDZ 38271 µHartree
cc-pCVTZ 8788 µHartree
cc-pCVQZ 1876 µHartree
cc-pCV5Z 360 µHartree
cc-PCVGZ 88 µHartree

The cc-pCV5Z basis set can thus support a total Hartree-Fock energy at

the sub-µHartree level. The error in the matrix Hartree-Fock energy cor-

responding to the cc-pCV6Z set should be compared with the error of 1.2 

µHartree associate with the duet basis set. Turning to the correlation en-

ergy calculations reported by Halkier et al [12], the “MP2” studies recover 

the following percentages of the empirical correlation energy estimate 

cc-pCVDZ 71%

cc-pCVTZ 89%

cc-pCVQZ 95%

cc-pcv5Z 97%

cc-pCV6Z 98%

whilst the “CCSD” estimates of the electron correlation energy were 

cc-pCVDZ 72%

cc-pCVTZ 89%

cc-pCVQZ 94%

cc-pCV5Z 96%

cc-pCV6Z 96%



COMMENTS ON BASIS SETS FOR CORRELATION IN MOLECULES 123 

By comparison, the duet basis set supported 98.3% of the empirical corre-

lation energy and 99.2% after extrapolation. For the correlation consistent 

basis sets, extrapolation leads to 99.6% and 97.5% of the empirical corre-

lation energy for the “MP2” and “CCSD” methods, respectively. 

Halkier et al [12] also reported the correlation energies given by the 

“CCSD(T)” method when supported by correlation consistent basis sets. 

Whereas perturbative analysis [23] indicates that “CCSD” is a third order 

theory in that all terms through third order in the energy perturbation ex-

pansion are included, “CCSD(T)” is a fourth order approach. Single, double 

and quadruple replacements are included by means of the coupled cluster 

ansatz. Triple replacements are included perturbatively. The “CCSD(T)” 

method recovers the following percentages of the empirical correlation en-

ergy when supported by the correlation consistent basis sets 

cc-pCVDZ 74.2%

cc-pCVTZ 92.3% 

cc-pCVQZ 98.0%

cc-pCV5Z 99.8%

cc-pCV6Z 100.6%

The slight overestimate of the correlation energy for the largest basis set in 

the sequence may be attributable to error in the empirical estimate of the 

correlation energy. 

2.3. A COMPARISON OF RECENT STUDIES OF THE H2O GROUND 
STATE

The ground state of the water molecule is the second molecular system for 

which the results of recent studies can be usefully compared. The geometry 

employed in all of the calculations discussed here was RO–H=1.80885 bohr

and H–O–H= 104.52. For this polyatomic system finite difference results 

which allow the precise assessment of the Hartree-Fock energies are not 

available. However, the systematic development of a distributed basis set 

for this molecule by Moncrieff and Wilson [8] is believed to lead to an energy 

which is within a few µHartree of the Hartree-Fock limit. In Table 1, the

matrix Hartree-Fock energies supported by the correlation consistent basis 

sets are compared with the distributed basis set result. Note that the error 

associated with the largest correlation consistent basis set is comparable 

with that measured for the N2 ground state for a basis set of the same 

type.
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TABLE 1. Comparison of matrix Hartree-Fock energies for the water ground state sup 

ported by correlation consistent basis sets and by universal basis set sequences. All energies 
are given in Hartree. δ is the difference between the total matrix Hartree-Fock energy for 

a correlation consistent basis set and the corresponding duet basis set energy. δ is given in 
µ Hartree.

Method/Basis Set E(m)HF Reference δ 

cc-pCVDZ –76.027 204 a 40284 

cc-pCVTZ –76.057 358 a 10130 

cc-pCVQZ –76.064 948 a 2540

cc-pCV5Z –76.067 105 a 383

cc-pCV6Z –76.067 404 a 84

duet –76.067 488 b

a A. Halkier, T. Helgaker, P. Jorgensen, W. Klopper, H. Koch, J. Olsen and A.K. Wilson,

Chem. Phys. Lett. 286, 243 (1998).

b D. Moncrieff and S. Wilson, J. Phys. B: At. Mol. & Opt. Phys. 29, 6009 (1996). 

For the previously defined H2O molecular geometry, the estimated em-

pirical correlation energy of the water molecule in its ground state is –370± 

3 mHartree. The “MP2-R12” energy indicates that some 97.8 % of the ern-

pirical correlation energy is supported by the second-order expansion for 

the energy. In Table 2, the second order energies supported by the correla-

tion consistent basis sets are compared with the duet basis set result. The 

largest correlation consistent basis set (cc-pCV6Z) recovers some 98.5% 

of the second order correlation energy component which is increased to 

99.7% by extrapolation. The duet basis set accounts for some 98.6% of the 

estimated exact second order energy or some 99.96% after extrapolation. 

“CCSD” recovers about 96.4% of the empirical correlation energy whilst 

“CCSD(T)” accounts for 99.2% of the empirical correlation energy. 

2.4. SYSTEMATIC APPROXIMATION OF THE MOLECULAR INTEGRAL 
SUPERMATRIX CORRESPONDING TO DUET BASIS SETS

Because of their flexibility, duet basis sets are necessarily large. Large basis 

sets of Gaussian functions are not a problem in quantum chemical studies 

provided that care is taken to avoid computational linear dependence. How-

ever, the number of two-electron integrals which arise formally increases as 

the fourth power of the number of basis functions. The traditional approach 

to basis set construction of using a set of as smaller size as possible whilst 

supporting the desired accuracy is motivated by the requirement that the 

two-electron integral list be kept as short as possible. The large number of 

two-electron integrals which arise in most quantum chemical calculations 

has motivated many studies of reliable schemes for approximating them. 
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Indeed, the whole of semi-empirical quantum chemistry can be regarded 

as the development of schemes for approximating the two-electron inte-

grals which arise in ab initio molecular electronic structure calculations. 

Schemes are required for the systematic approximation of the molecular

integral supermatrix corresponding to duet basis sets. In this section, we 

briefly examine some possibilities. 

TABLE 2. Comparison of second order energy components supported by correlation 

consistent basis sets and universal basis set sequences with the approximate explicitly 
correlated energies obtained by Klopper. δ is the difference between the energy supported

by a given basis set and that given by Klopper. δ is given in mHartree.

Method/Basis Set E2 δ Reference

MP2-Rl2 –0.362 01 a

cc-pCVDZ –0.241 326 120.68 b 

cc-pCVTZ –0.317 497 44.51 b 

cc-PCVQZ –0.342 631 19.38 b 

cc-pCV5Z –0.352 283 9,73 b

cc-pCV6 Z –0.356 407 5.60 b 

Estimated limit –0.361 (1) 0.9 b 

duet –0.356 828 5.18 c

Estimated limit –0.361 850 0.16 c

a W. Klopper, J. Chem. Phys. 102, 6168 (1995).

b A. Halkier, T. Helgaker, P. Jorgensen, W. Klopper, H. Koch, J. Olsen and A.K. Wilson, 

Chem. Phys. Lett. 286, 243 (1998).

c D. Moncrieff and S. Wilson, J. Phys. B: At. Mol. & Opt. Phys. 29, 6009 (1996). 

2.4.1. The two-electron integral supermatrix 

The two-electron integrals can be arranged as a symmetric, positive definite

supermatrix with rows and columns labeled by the index 

(ij), j = 1, 2, ... , i; i=1, 2, ..., n (2)

so that the supermatrix takes the form
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11 21 22 31 32 33 ... 

11 [1111] 

21 [2111] [2121] 

22 [2211] [2221] [2222] 

31 [3111] [3121] [3122] [3131] 

32 [3211] [3221] [3222] [3231] [3232]

33 [3311] [3321] [3322] [3331] [3332] [3333] 

...
A unique index can be assigned to each row/column by means of the formula

(ij) = [i(i – 1)]/2 + j (3)

Systematic approximation of the molecular integrals arising in a particular 

calculation should address the problem of approximating the whole of this 

supermatrix rather than the individual elements. 

2.4.2. Application of the Schwartz inequality 
Application of the Schwartz inequality to the two-electron repulsion inte-

grals gives [44] 

(4)

The two-centre integrals [pq|pq] and [rs|rs] can be evaluated rapidly and

the above inequality might facilitate the elimination of large numbers of 

electron repulsion integrals without sacrificing accuracy of calculated prop-

erties. Introducing a threshold τ1, quantum chemical algorithms can be

constructed in which all integrals for which 

(5)

(6)

where

are neglected for a suitably chosen τ1. A further refinement might be to

define a second threshold τ2 so that integrals for which

τ1 < Jpqrs < τ2 (7)

τ2 < Jpqrs (8)

can be approximated and only integrals for which 

are explicitly evaluated. In the direct self-consistent field procedure ([45]-

[48]) and in other algorithms which are both direct and iterative the thresh-

olds might be changed from iteration to iteration and reduced as conver-

gence is approached. 
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For large, that is extended, systems, the total number of two-electron

integrals which have a magnitude less than some chosen tolerance may be 

very large and the cumulative effect of neglecting these integrals may be 

quite significant. Indeed, the Schwartz inequality discussed above can result 

in an unacceptable loss of accuracy for very large molecular systems even 

though the threshoId may be set quite tightly.

2.4.3. Fast Gaussian methods 
Much recent work in ab initio quantum chemistry has been directed towards 

the development of “fast Gaussian’’ methods which scale linearly [O(n)] or

as O(n log n) with the number of electrons ([49]-[57]). Indeed, in studies of

the many-body problem across a range of applications for both the classi-

cal and the quantum formulation ([58]-[67]), a variety of “fast hierarchical” 

methods have been introduced which significantly reduce the complexity of 

the N-body problem by subdividing space into a fixed hierarchy of cells and 

exploiting a treelike data structure. In “many-body tree” approaches the 

root (parent) problem is recursively subdivided into smaller cells (children). 

The complexity of the algorithm is reduced by approximating the distri-

bution of particles within a cell as a series (multipole) expansion which 

converges rapidly in the far field. Unlike the classical many-body prob-

lem the quantum mechanical formulation involves continuous distributions. 

Molecular integrals that involve charge distributions which do not penetrate 

may be handled via a multipole approach whilst integrals with overlapping 

charge distributions are near-field and must be evaluated. The efficiency of 

these hierarchical multipole methods in quantum chemical application is 

critically dependent on the effective partition of near- and far-field inter-

actions. This partition is complicated by the fact that it depends not only 

on the extent and separation of the charge distributions but also on the 

tolerance imposed and the order of multipole expansion employed. 

Carlson and Rushbrooke [68] introduced a (real arithmetic) two-centre

multipole expansion in 1950. The expansion expresses the electron-electron

interaction as a sum of products of three terms - the first depending on the 

coordinates of electron 1 with respect to a centre P, the second depending 

on the distance P – Q, and the third depending on the coordinates of 

electron 2 with respect to centre Q. Explicitly, the multipole expansion 

may be written 
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where

and

are multipole tensors, and

and

(9)

(10)

(11)

(12)

(13)

Computations are simplified by the following relations between the multi-

pole tensors for positive and negative values of m:-

(14)

(15)

(16)

(17)

The reader is referred elsewhere for further details[49]-[57].

2.4.4. Cholesky decomposition
It has been shown in the previous section how the evaluation of integrals 

can be simplified in studies of extended molecules where there is no signifi-

cant overlap between the two charge distributions involved for a significant 

fraction of the integrals. Accurate studies of small molecules necessitate the 

use of large basis sets for which the corresponding charge distributions do 

overlap significantly and the methods described above are not applicable. 

However, computational linear dependence amongst the charge distribu-

tions involved in the two-electron integral supermatrix can be exploited 

by means of a Cholesky decomposition. A brief outline of this approach is 

given below. Further details can be found elsewhere ([69]-[73]).

The two-electron supermatrix, V = Vij;kl, is a symmetric, positive def-

inite matrix may be written in the form 



and

COMMENTS ON BASIS SETS FOR CORRELATION IN MOLECULES 129 

V = LL† (18)

where L is a lower triangular matrix and L† is its transpose. Explicitly, this 

matrix product may be written

(19)

where the index (pq) runs over all possible charge distributions. However,

in the presence of computational linear dependence, an approximation to 

V may be written 

(20)

where the effective numerical rank of the two-electron integral matrix, v, is

considerably less than the total number of charge distributions. 

A very stable algorithm for the construction of L is known which most

importantly does not require the construction of the full V supermatrix.

For (ij) = 1,2, ..., [n(n + 1)]/2

(21)

(22)

The summations are omitted when the upper index is zero. 

3. Summary 

We have critically compared the basis sets used in our 1996 studies of 

correlation effects in the ground states of the nitrogen molecule and of 

the water molecule with those used in some more recent studies. We have 

introduced the acronym duet for our distributed universal even-tempered

basis set. These duet basis sets have been compared with the more widely 

employed correlation consistent basis sets. The duet approach to basis set

construction has been applied to systems containing heavy atoms, to open-

shell systems, to properties other than the energy and to the relativistic 

electronic structure problem. 
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The duet basis sets have two principal advantages over more commonly

used approaches to the construction of molecular basis sets:-

(i) accuracy - They can be systematically enlarged and formally ap-

proach a complete set in the limit of an infinite basis set for a given expan-

sion centre. 

(ii) lack of bias - The parameters defining the duet basis sets are not 

optimized for the calculation of one particular property, molecular environ-

ment or electronic state. 

We have briefly discussed schemes for the systematic approximation of 

the molecular integral supermatrix corresponding to duet basis sets.
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RELATIVISTIC QUANTUM MECHANICS OF ATOMS AND
MOLECULES

H. M. QUINEY 

School of Chemistry, University of Melbourne 
Parkville, Victoria 3052, Australia 

Abstract. An overview of relativistic electronic structure theory is pre-

sented from the point of view of quantum electrodynamics. The partici-

pation of the negative-energy states in practical calculations is described

from complementary points of view, in order to illustrate how they enter

into the operation of relativistic mean-field theories. Examples of our imple-

mentation of relativistic electronic structure theory are drawn from studies

of gauge invariance, many-body perturbation theory, inner-shell processes,

electron momentum spectroscopy, and relativistic density functional the-

ory.

1. Introduction

The many layers of existing physical theories are characterised by a com-

parison of the energy of the processes which they describe to fundamental

parameters. For example, Planck’s constant, h, defines the granularity of the

energy scale on which a system may be considered to be quantum mechan-

ical, semi-classical, or classical. Formally, we can make a model quantum

mechanical system appear to behave as a classical system by considering

the limit h → 0, a perpective which is particularly clear in the Lagrangian

formulation of quantum theory [1, 2]. Of course we are not free to alter

a fundamental constant in experiments, which are designed either to ex-

pose the shortcomings of an existing theory, or to extract new information

within its known limits of validity.

Within atoms and molecules, electronic structure is strongly influenced

by widely spaced discrete energy levels and quantum mechanical laws, but

collisional processes are often well-described by classical models, and an

effective continuum of translational energy states accessible to the sys-
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tem. The validity of physical models describing spectroscopy, reactivity, 

and chemical bonding is similarly determined by the relation between the 

mean speed of the electrons and the speed of light, c. If the mean electron 

speed is small compared with c, such as is the case with the light elements 

or in the valence shells of all but the heaviest elements, we may safely as-

sume that c → ∞ compared with the mean speed of the electrons, and

adopt a non-relativistic formulation of quantum mechanics, and a classi-

cal theory of electrodynamics. Such an assumption is not warranted in the 

high-energy regime of inner-shell electrons, for which the special theory of 

relativity introduces significant modifications to non-relativistic quantum 

mechanics and to the electrodynamic interactions between charged parti-

cles. At the threshold of energies at which the creation of electron-positron

pairs becomes possible, the scale of energy is set by the mass-energy rela-

tion, E = mc2 . Of course, c is another finite fundamental constant which

we are not free to alter. It is a fundamental postulate of the theory of spe-

cial relativity that light propagates in vacuo with speed c in all inertial 

frames of reference. The precise numerical value of c determines the struc-

ture of space-time, and the nature of transformations between frames. The 

extent to which we may assume that non-relativistic quantum mechanics 

will suffice in a given situation requires the same prudence as is required 

in the use of classical or semi-classical approximations in the description of 

low-energy phenomena. 

Much of the current activity in relativistic quantum chemistry is mo-

tivated by the recognition of the influence of relativistic mechanics on the

structural properties of molecules, and their interactions with electric and 

magnetic fields. The conventional treatment retains the non-relativistic ba-

sis of quantum chemistry to which are applied a series of “relativistic correc-

tions”. It is certainly the case that if attention is restricted to problems of 

this type, in which so-called “relativistic effects” are isolated in effective core 

potentials and spin-dependent perturbations, one is likely to obtain a reli-

able picture of the chemical properties of the heavy elements, provided that 

these properties depend mainly on the valence electron distribution. This 

approach is not the method of choice, however, in considerations of high-

energy phenomena in the neighbourhood of heavy nuclei. In atomic physics, 

where the technical challenges of adopting relativistic quantum mechanics 

are easier to deal with, no practical or formal incentive remains which would 

persuade one to adopt non-relativistic methods in the regime in which rela-

tivistic effects are important. Given the simultaneous development of both 

computer hardware and numerical algorithms, and the increasing aware-

ness of the important impact of special relativity on the properties of the 

heavy elements, it would appear to be just a matter of time until relativistic 

quantum electrodynamics (QED) finds similarly widespread application in 
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chemistry.

A simple and general treatment emerges if a formulation derived from 

relativistic QED is adopted. The clear advantage of such an approach is that

it is applicable to all electronic phenomena within atoms and molecules if

it can be implemented consistently and to sufficient precision. This point of 

view places one in a position to study high-energy phenomena, particularly 

the radiative corrections to energy levels which consititute the Lamb shift, 

and the electroweak interactions between electrons and nucleons which vio-

late parity inversion symmetry. In this latter case the energy scale is set by

the Fermi constant, GF
__ 2 ×~ 10–14 a.u., and the strength of the effect by

the masses of the virtual W- and Z-bosons, MW and MZ , which mediate

the effective P-odd interaction. One need not lose sight of non-relativistic

and classical formulations, however, since all non-relativistic results are re-

covered in the parametric limit c → ∞, and all classical results in the

parametric limit h → 0.

In this presentation, we discuss the formulation which underpins our

treatment of electronic structures and electric and magnetic properties of 

atoms and molecules, and some technical details of how the method is 

implemented in BERTHA, a relativistic molecular electronic structure pro-

gram. A detailed account of the program was given in the proceedings of the

1997 QSCP meeting in Oxford [3]; here we concentrate on some aspects of 

the treatment of electric and magnetic properties within our computational

framework of finite basis set expansions. 

2. Dirac equation 

The manifestly covariant form of the Dirac equation [4] is 

(1)

where the space-time four-vector, x, is written

(2)

(3)

The four-momentum is defined by pµ = i∂/∂xµ , and Aµ
is the classical

four-potential, where 

(4)

The scalar potential is φ (r)/c, and A(r) is the vector potential of the

external electromagnetic field. The 4 × 4 matrices, γ µ satisfy the anticom-

mutation relations 

(5)



The 4 × 4 matrices α and β are given by
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where gµv is the Minkowski space metric, whose non-zero elements are

g00 = 1 and g11 = g22 = g33 = -1.Repeated indices imply summation in

the inner product aµ bµ

Premultiplying by c γ 0, the Dirac equation is obtained in the non-relativi-

stic variables (x, t),

(6)

(7)

where q = {x, y, z }, σ q are the Pauli spin matrices, β = γ0 and I is the

2 × 2 unit matrix. 

If we assume that the external electromagnetic field consists only of a 

time-independent scalar potential, V(r) = –eφ (r), the solutions are of the

form

(8)

where ψ k(r) is a four-component function of position satisfying the spatial

eigenvalue equation 

(9)

with eigenvalue, Ek. The solution of equations of this type forms the com-

putational basis of the relativistic electronic structure theory of atoms and 

molecules. The solutions are classified as being of ‘positive-energy’ type for 

Ek > 0, and ‘negative-energy’ type for Ek < 0 (Figure 1). For attractive

potentials, V(r) < 0, of the type which most commonly occur in elec-

tronic structure theory, the positive-energy solutions are further classified 

as square-integrable bound states if –mc2 < Ek < mc2 . All other solutions 

belong to a continuum of states representing scattering in the external field. 

In the case where there is no external field, the spectrum consists only of 

positive- and negative-energy continua. 

3. The role of negative-energy states 

The classical relativistic mass-energy expression for a free-particle

E2 = c2 p2
+ m2 c4

(10)

clearly leads to two values of E, differing only in sign, for given values of 

p2 and m. In classical relativistic mechanics the negative-energy solution 
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Single-particlespectrum
Non-relativistic and relativistic

.. Dirac
Schrodinger Dirac (Basis set)

Figure 1. Schematic representation of the non-relativistic (Schrödinger) and rela- 

tivistic (Dirac) spectra. The shaded areas represent continua, and the levels indicate 

discrete states. A finite basis set representation is included to indicate the manner

in which the complete energy domain is spanned. Closely spaced levels are intended 

to suggest fine structure in the relativistic bound-state spectra. 

is just discarded using physical arguments, and once a positive-energy so-

lution has been selected, the particle will remain in that state unless an 

external perturbation is applied. The special principle of relativity requires 

that quantum mechanical free-particles also satisfy the mass-energy rela-

tion, Eq. (10), but now we may not discard so lightly the negative-energy

solutions, because they form part of the complete set of eigenfunctions of 

Dirac’s relativistic wave equation. In one-electron theory, which Dirac called 

e-number theory, a particle which is assumed initially to occupy a positive-

energy state is unstable with respect to spontaneous radiative decay to a
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negative-energy state. In order to overcome this difficulty, it is necessary 

to reinterpret the solutions of the Dirac equation as operators which cre-

ate or annihilate the quanta of a relativistic field, which in this case is the 

electron-positron field. Dirac denoted this approach as q-number theory, to

distinguish the quantised creation and annihilation of particles from the 

classical prescriptions of c-number theory. Irrespective of how one performs 

this bookkeeping exercise, the use of the Dirac equation necessarily sacri-

fices any classical picture in which the number of particles is conserved, in 

favour of a more general conservation law in which the total charge is the 

conserved quantity. We shall examine how this works in practice, and the 

extent to which one need worry about such apparently exotic concepts in 

atomic physics and quantum chemistry, using some simple examples.

3.1. THE COMPOSITION OF A BOUND STATE 

The only situation in which the labels “electron” and ‘‘positron)” have sim-

ple meanings is for free-particles, and it is for this reason that we prefer 

to use the terminology “positive-energy” and “negative-energy” when dis-

cussing solutions of the Dirac equation. The application of an attractive 

external potential may generate positive-energy bound-state solutions of

the Dirac equation, but expansion of any of these states in a complete basis 

of free-electron solutions includes contributions from both the positive- and

negative-energy branches of the spectrum. 

Taking the simplest case, we may find the expansion of the 1s1/2 bound-

state of a hydrogenic ion, ψ 1S(r), in a basis of positive- and negative-energy

free-particle states, in which p is the momentum associated with the 

state, and p = |p|. If write this expansion in the form

φ±
p (r),
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Although this expression is rather complicated, we can see that for finite

values of c, the coefficients {cp– } are non-vanishing, so that the external-

field bound-state contains admixtures of the negative-energy solutions of 

the free-particle problem. If we consider the non-relativistic limit, c → ∞, 
γ → 1, and note that

we recover the non-relativistic result [6] 

The fraction of the total bound-state density which is attributable to 

the negative-energy parts of its free-particle expansion is rather small for 

most elements of the Periodic Table, and it is worth wondering whether

the negative-energy states are ever worth our serious consideration. We 

have identified two related cases in which the negative-energy states may 

play a crucial role in atomic and molecular problems: magnetic interactions 

[3], and the Lamb shift [5]. In second-order magnetic interactions, such 

as those encountered in nuclear magnetic resonance studies, the negative-

energy states generated by an external electrostatic mean-field model may 

dominate the calculation of the interaction energy, though one may disguise 

this by modifying the effective potential which is used to construct the 

spinors. In the Lamb-shift, however, failure to treat the negative-energy

parts correctly destroys the relativistic invariance of the problem to such 

an extent that that the renormalisation algorithm fails, leading to divergent, 

unphysical results. In the next section we shall see that, even in the simplest 

cases, negative-energy states enter into bound-state problems, though their 

influence may be indirect. 

3.2. THE POSITRON AS A “HOLE” 

In Dirac’s “hole” theory of the positron, single-particle states whose en-

ergies are less than –mc2 a.u. are assumed to be filled with electrons,

according to the Pauli Exclusion Principle. The energy of the filled vacuum 

is subtracted from any physical model, on the grounds that it contributes 

a constant (albeit infinite) shift which is unobservable. In this model, a 

positron is interpreted as a hole in the density of negative-energy electrons, 

a description which Dirac constucted by analogy with the treatment of 

inner-shell processes, particularly those involving X-ray emission. 
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In Rayleigh-Schrodinger perturbation theory, the second-order correc-

tion to the energy, ε2, of an occupied state, |a〉 , whose zere-order energy is

εa , is given by

where the perturbation is denoted by Ô, and the unoccupied states of the

complete spectrum are labelled |v〉 with eigenvalues ε v .
In order to implement a valid formulation of bound-state quantum elec-

trodynamics, we must incorporate the physical ideas of Dirac hole theory 

into any perturbative prescription for energy corrections to relativistic en-

ergy levels. We label negative-energy states by |n〉 with energies εn, occu-

pied positive-energy states by |p〉 with energies εp, and unoccupied (virtual)

states by |v〉 with energies εv. It is assumed that these states are solutions of

the single-particle Dirac equation constructed from some time-independent

external field. 

In the most elementary relativistic treatment of this problem, the second-

order correction to the total energy of this system consists of two parts: 

1. The correction to the energy of the negative-energy vacuum electrons

and the positive-energy electrons due to single-particle excitations in

volving virtual intermediate states.

2. The correction to the energy of the vacuum in the absence of occupied 

positive-energy states, which must be removed because it is unobserv-

able.

Following this prescription, which involves only the occupancy of elec-
trons in states of positive- or negative-energy, the relativistic second-order

shift in the energy of the system, E
R
2

is

In the second term, representing the correction to the “dressed vacuum 

the states { |p〉 } are unoccupied, and are consequently accessible as inter

mediate states in the energy correction to the vacuum.

Two of the summations cancel term-by-term, yielding 

(11)

(12)
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(13)

where {|p〉} is comprised of all those elements which are not in the set {|p〉 },

irrespective of their positive- or negative-energy classifications.

_

While Eq. (11) conveys the impression that we should sum over all states

outside of the set {|p〉 } as if they are virtual states, it is Eq. (12) which

indicates the physical origin of the components of the second-order energy 

correction, within a framework drawn from quantum electrodynamics. The 

part of the summation involving positive-energy intermediate states is con-

ventional, and describes the inclusion of singly-excited corrections to the 

wavefunction. The part of the summation involving negative-energy states, 

however, corresponds to a polarization of the vacuum charge-current den-

sity due to the blocking of {|p〉 } as accessible intermediate states, as a con-

sequence of the Exclusion Principle. For a set { |p〉 } describing the bound

single-particle states of a model atomic or molecular hamiltonian, the sum-

mation involving negative-energy states is a finite, observable component 

of the infinite, unobservable energy correction to the dressed vacuum. 

3.3. THE POSITRON AS A “PARTICLE” 

While the close analogy between electron-positron pair creation and core

excitation phenomena in heavy elements is appealing, the manipulation

involving subtraction of the divergent vacuum term is cumbersome. More 

elegant techniques have long been used in which the positron is treated as 

a particle, rather than as a hole. 

We assume that the spatial part of the external-field Dirac field opera-

tor, ψ D(x), takes the form

where and am are creation and annihilation operators for positive-energy

states, and and bm are the corresponding operators for negative-energy

states. The charge operator, Q, is

where Q0 is a constant associated with the vacuum charge, to be chosen

later.

The hamiltonian in this representation is 

a†
m

b†
m
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and a one-electron positive-energy state, Ψa , is generated by operating on

the external-field vacuum, |0〉 

If we wish to consider the lowest-order effect of virtual electron-positron

pair creation, we must include in our one-electron bound-state trial wave-

function, Ψ, corrections arising from three-particle states which conserve

the original total charge, Q = -1. These three-particle wavefunction cor-

rections, Ψ take the form

revealing a key feature of relativistic quantum electrodynamics; one follows 

the total charge, and not the total number of particles. 

This problem has been worked out in detail, and in greater generality 

by Sucher [7], who finds that the second-order energy correction due to

virtual pair creation using this approach consists of two parts; a connected 

part corresponding precisely to E R–
2 and a divergent, disconnected part 

corresponding to the vacuum correction term which was eliminated term-

by-term in the treatment based on hole theory. The total observable second-

order shift is identical to the one we deduced using hole theory, and the 

physical process giving rise to the term E R–
2 has been revealed to arise 

from the finite part generated by three-particle intermediate external-field

states involving two electrons and one positron. 

3.4. THE POSITRON AS AN ELECTRON PROPAGATING BACKWARDS 
IN TIME 

According to the CPT theorem, the product of the symmetries of a phys-

ical system under charge- (C), parity- (P) and time-inversion (T) must be 

even. Electromagnetic interactions are parity conserving (P-even), and in 

a relativistic theory of mechanics we must consider the relative time or-

dering of events, rather than adopt the universal time frame assumed in 

Newtonian mechanics. Consequently, an electron moving backwards in time 

apparently exhibits the properties of a particle with the same mass as the 

electron, but whose charge has been reversed in sign. In a time-ordered

representation, the particle-hole properties of electrons and positrons axe 

replaced by a consideration of regions of space-time involving, respectively, 

times later and earlier than for a given space-time coordinate. 

The prescriptions of Dirac hole theory were incorporated using the 

time-ordering of events by Feynman [8]. He wrote the propagation kernel, 
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K(x2, x1), for relativistic electrons as

so that the positive-energy states propagate an electron to later times, and 

the negative energy solutions propagate it to earlier times. 

The relativistic second-order shift, E2, due to a time-independent scalar

perturbation, V, in this formulation is 

We have assumed that the perturbation is a local function of the electronic 

coordinates which operates instantaneously, on the Dirac delta function 

δ (t2 – t1). Integration over the time intervals –∞ < (t2 – t1) < 0 and

0 < (t2 – t1) < ∞ is then trivial. Use of the identity

leads directly to the result 

(14)

(15)

(16)
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which is just a special case of Eq.(11) restricted to a one-electron problem. 

The second term depending on δ (ε0 − ε p) is necessarily imaginary, and rep-

resents a width, rather than the shift of the perturbation. The summation 

over p excludes the state ψ0; the complete Gell-Mann-Low formalism [10] 

is required to demonstrate this feature.

__

3.5. THE VALIDITY OF RELATIVISTIC MEAN FIELD APPROXIMATIONS 

These elementary exercises concerning the negative-energy states reveal a 

feature of relativistic many-electron theory which is of crucial importance 

in defining the place of the relativistic self-consistent field approximation 

within QED. Even if we take the trouble to ensure that the negative-energy

states enter into a calculation only if real or virtual pair production pro-

cesses are involved, the conclusions are indistinguishable from those of an 

unquantised theory, provided that only one-body interactions are involved. 
The formal equivalence between the results of the quantised and unquan-

tised theories has been noted many times in the literature [8, 9], including 

in our own work on relativistic perturbation theory [12]. Consequently, 

we would make an error of interpretation if we were to imagine that the 

negative-energy states are empty in the vacuum state, and consequently 

available to serve as intermediate states in perturbation theory. On the 

basis of calculations performed using such a model, however, no serious 

problems would arise since a rigorous justification of them within QED can 

be presented using the principles outlined above. It is fair to suggest that 

much of the work performed in a relativistic atomic physics until the 1980’s, 

beginning with the earliest formulation by Swirles in 1935 [11], was moti-

vated by sound physical instinct and impressive agreement between theory 

and experiment, but not much thought was given to the potential prob-

lems posed by the negative-energy states; this simplified view was made 

possible by the concentration of this work on orbital models, mean-field

potentials, and bound-states. The advent of successful relativistic finite ba-

sis parametrisations in the 1980’s, explicit representations of the complete 

Dirac spectrum, and a rather active literature concerned with fundamental 

principles has served to bring these problems out into the open. An ap-

preciation of the issues concerned with pair creation is necessary if one if 

develop numerical algorithms for relativistic calculations in atomic physics 

and quantum chemistry. 

At each iteration of a relativistic self-consistent field calculation we de-

fine a one-body potential which supports a complete single-particle spec-

trum. As we have already seen, a hydrogenic bound-state includes admix-

tures of the negative-energy solutions of the free-particle Dirac equation 

field. More generally, the mean-field potentials at different stages of the 
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iterative self-consistent field procedure may be quite different from one 

another, and any positive-energy spinor may contain admixtures of the 

negative-energy solutions generated in an earlier iteration. However, these 

mean-field potentials are of one-body type and, even if it is not apparent 

in the formalism, the orbital rotation process that takes us from one iter-

ation to the next incorporates both excitation processes to positive-energy

virtual states, and electron-positron pair creation processes in the spectral 

basis of earlier representations. Even in a multi-configurational formulation 

of mean field theory, the spinor rotation that updates the spinor |i〉 to a

new approximation, |i'〉, takes the form

r

where U is unitary, and the sum over {|r〉} includes all states of both

positive- and negative-energy. In the relativistic generalisation of multi-

configurational self-consistent field (MC-SCF) theory, the matrix U is con-

structed from the Hessian matrix, and is based on an expansion of the 

electronic energy to second-order, though formally we may infer the ex-

istence of a matrix U in any iterative SCF procedure. Failure to include

the negative-energy states in the transformation destroys the quadratic 

convergence characteristics of relativistic Hessian-based MC-SCF theories 

[13]. On the face of it, such a procedure appears to involve the calcula-

tion of a highly-excited state, in which the negative-energy states play the 

role of virtual states on the same footing as unoccupied positive-energy

levels, and in which half of the eigenvalues of the Hessian matrix are nega-

tive, and the other half are positive. But this appearance is quite illusory, 

since rotations involving the negative-energy states are equivalent to the 

virtual pair-creation terms which remain after the unobservable vacuum 

energy has been subtracted. Multi-configurational SCF theories involve the 

iterative improvement of one-body potentials, and so they fall within the 

same category as our model problem in perturbation theory, and under the 

protective umbrella of Furry bound-state QED theory. 

It is only after we have defined a single-particle basis and a time-

independent external field that we need be concerned about how to deal 

with truly many-body interactions. In this case the fortuitous equivalence 

between the formulae of quantised and unquantised perturbation theory 

suffers a catastrophic break down. If we restrict the formulae of many-

body perturbation theory to include only excitation to positive-energy vir-

tual states from positive-energy bound-states which are deemed initially 

to be occupied, we generate the “no-virtual pair” approximation. Implicit 

in this description is the understanding that no pairs are to be created or 

annihilated in the basis of configurations corresponding to the original ex-

ternal field, and the corresponding division of the spectrum into positive-
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and negative-energy branches. The description does not imply, however, 

that no pair-creation processes at all are involved, because clearly the ex-

ternal field has associated with it a polarisation potential which distorts 

the spectrum corresponding to the case in which no fields are present. Sim-

ilarly, the possibility of pair-creation processes is not precluded by the use

of the no-virtual pair prescription, since the description is representation-

dependent.

The rules for including pair creation processes in relativistic many-

body theory and for avoiding the catastrophe often described as “Brown-

Ravenhall disease” [14] have been presented several times, notably by Lab-

zowsky [15] and Sapirstein [16]. They derive small many-body corrections 

to many-body perturbation theory, involving intermediate states in which

the original N electrons are augmented by the creation of M pairs, violating

the classical notion of the conservation of particle number, but respecting 

the conservation of the total charge of the system. 

4. Relativistic finite basis set methods 

4.1. SPINOR BASIS SETS 

We write four-component atomic or molecular position-space amplitudes, 

ψ i (r), as an N-dimensional, multi-centre, finite basis set expansion

where µ labels the basis function parameters, T = {L, S}, are radial

functions and the spin-angular spinors are 

f T
κµ (r)
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A two-component basis function is denoted by M[T,µ ,r]. A number of

classes of spinor basis set may be specified by a particular choice of radial 

function. Finite basis set calculations may exhibit catastrophic variational 

collapse problems, and we restrict our attention to choices of the radial 

functions for which such problems do not occur. 

4.1.1. Radial L- and S-spinors
These are a suitable choice for one-centre, point-nuclear problems. 

(17)

for fixed real λ, n = 0,1,2,... for κ < 0 and n = 1, 2, 3, ... for κ >

0. The upper sign is chosen for T = L, and the lower sign for T = S. 
Elements of the S-spinor sets are generated from the L-spinor sets by fixing

n (smallest value for fixed κ) and choosing exponent sets, {λ κ,i }. The S-

spinor set is the relativistic analogue of the non-relativistic Slater basis set. 

The advantage of L-spinors is that very large basis sets may be employed 

without introducing computational linear dependence. We are currently

investigating the use of these functions in a relativistic implementation of 

the convergent close-coupled approximation to photoionisation. 

4.1.2. Radial G-spinors
The G-spinor basis set is relativistic analogue of the Gaussian-type func-

tions of quantum chemistry, and retains all of the advantages conferred by 

the Gaussian product theorem in the evaluation of multi-centre integrals. 

The form of the large and small-component radial functions is fixed by the 

kinetic balance prescription, so that 

(18)

(19)

The exponent set {λ µ} is chosen according to quantum chemical prescrip-

tions.

f T
κµ (r)
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4.2. KINETIC BALANCE 

The necessity of a one-to-one mapping between the elements of the large-

and small-component basis sets has been discussed in [17] and forms an 

integral part of the algorithms which have been implemented in BERTHA. 

Here, we generalise the treatment of [18] to examine the consequences of ki-

netic balance on the finite-dimensional representation of the complete Dirac 

spectrum, rather than just its positive-energy solutions. It is instructive to 

consider the free-particle Dirac equation 

Straight forward algebra yields 

and the relativistic energy-momentum relation 

leads to separate equations for 

where η T = 1 if T = L, η T = -1if T = S, and T ≠ T. Further use of the

operator identity 

(20)

(21)

If we now consider the matrix representation of the free-particle Dirac equa-

tion

the vectors of expansion coefficients, cL and cS, form the solutions of a pair

of simultaneous matrix equations 

(22)

Equations involving either cL or cS may be obtained by elimination,

yielding

(23)
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Decoupling of the matrix representation of the Dirac equation, Eqn. 

(23), into valid representations of the Dirac free-particle operator equation, 

Eqn. (21) is possible only if the matrix identities 

- (24)

are satisfied, where p2

TT is the matrix representation of the operator 

(σ . p)(σ . p) = p2I in the basis set The matching of basis functions^

according to

generates representations which satisfy the Eqn. (24), because

(25)

(26)

(27)

(28)

Without loss of generality we have chosen the arbitrary constants to 

be unity, but we need make no further assumptions about the functional 

form or normalization of the sets and 

Substituting Eqns. (??) and (26) into Eqn. (23) yields two matrix rep-

resentations of the free-particle Schrodinger equation for the large- and

small-component functions 

p2
LLcT = p2SLLcT for T = L, S. (29)

The large- and small-component expansion vectors, cL and cS , are solu-

tions of identical generalized matrix eigenvalue equations which, following

these manipulations, can be written entirely in terms of p 2
LL and SLL , even

though the large- and small-component basis functions are different. As 

a consequence of the identical values of p2 which arise in the partitioned 

equations for cT , there is a one-to-one mapping of the positive and nega-

tive energy eigenvalues of the free-particle four-component equations of the

form E → –E if strict kinetic balance is adopted. Substitution of Eqn. (26)

into Eqn. (22) determines the simple relationship 

between the large and small component vectors. The origin of the nation 

L and S for components is obvious if one considers the relative magnitudes 

of cL, for a positive-energy eigenvalue, ε > c2
. For negative-energy solu-

tions, however, ε < –c2 and the conventional notation is misleading. A 

2M-dimensional space of four-component solutions of the Dirac equation,

{ϕT
k}.

{ϕL
k} {ϕS

k}.

{NS
k}
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ψε is constructed for the eigenvalue spectrum from

the M linearly independent solutions of the two-component equation Eqn. 

(29), each with eigenvalue p2. It is straightforward to demonstrate that

= 0, establishing the linear independence of the spinor space.

The use of the unrestricted kinetic balance (UKB) prescription has been

suggested in order to avoid the computational labour involved in imple-

mentation of the contraction of primitive radial functions implied by the 

definition of a small component G-spinor in Eq. (18). Since the RKB rep-

resentation may be extended towards completeness and is linearly inde-

pendent, however, the inflation of the small-component basis implied by 

the UKB basis must be a matter of considerable concern. It is found that

UKB calculations suffer from serious linear dependence problems, and that 

negative-energy solutions are generated which have zero or near-zero kinetic 

energy, and vanishing large-components. We do not regard, therefore, the 

UKB prescription as a satisfactory relativistic finite basis set method for 

these reasons. A better solution is to eliminate these unphysical vectors with 

zero kinetic energy and small-component functions which are unmatched

by large-component partners from the outset, by the use of a matched set 

of RKB G-spinor basis functions.

In practice, one may choose a non-orthogonal set of functions to solve 

the large-component free-particle equation, Eqn. (29), and use these two-

component solutions to construct an orthonormal set of discrete four-compo-

nent solutions of the Dirac equation. These four-component solutions span 

the same linear space as the union of the separate two-component ki-

netically balanced large- and small-component spaces, provided that all
positive- and negative-energy solutions are included. From another point 

of view, we may use the prescriptions of this section to construct a 2N-

dimensional basis set of free-electron Dirac spinors starting with a two-

component basis formed by solution of the free-electron Schrodinger equa-

tion, and the relationship between the expansion coefficients of a RKB

set, Eq. (22). Introduction of an external field causes a rotation amongst 

the elements of the discrete free-electron spinor set, just as we found in 

the analytic decomposition of the 1s hydrogenic bound-state into its exact

free-electron components. 

4.3. REPRESENTATIONS OF THE CHARGE-CURRENT DENSITY 

All quantities involved in relativistic calculations can be deduced from the 

components of the relativistic four-current, jµ = (e,j): this is true also for

relativistic generalisations of density functional theories. We have chosen to 

work with these quantities directly, rather than construct them from scalar 

ε = +_ √c2 (1 + (p/c)2 )

〈ψε |ψ_ ε〉
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basis functions. For a four-component Dirac spinor, 

components of the four-current are defined to be 

where q = {x, y, z }. Subsituting explicit expressions for the components of

ψ and the matrices α q, we find that the components or the four-current

are real, and are given by 

In our G-spinor representation, any component of the four-current may

be reduced to a linear combinations of quantities derived from two-compo-

nent objects, according to the rules: 

Overlap charge density
Overlap current density

where T is either L or S, and T ≠ T. The operators, {αq } are constructed

from the two-dimensional blocks {σ q } so we are able to generate the com-

ponents of the four-current without explicit consideration of zero-valued

couplings between spinor components. 

The Gaussian Product Theorem is invoked in order to write any of these 

four quantities in the general form

The label q = 0 refers to the overlap density, and σ0 = I. The summation 

over {i, j, k} terminates after (Λ + 1)(Λ + 2)(Λ + 3)/6 terms, where Λ =

This involves G-spinor expansion coefficients, Eq, and Hermite Gaussian

functions, H(µv; i, j, k; r). The Hermite Gaussian functions are the ones 

commonly used in quantum chemistry programs [19]. 

+ k, and k = 0,1, or 2.
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The important consequence of this formulation is that ab initio relativis-

tic electronic structure atomic and molecular calculations may be performed 

using techniques borrowed from atomic physics and quantum chemistry, in-

cluding the calculation of electric and magnetic properties. The “relativistic 

features” of the problem are largely buried in the Eq-coefficients, greatly

simplifying the subsequent implementation a relativistic quantum mechan-

ical description of electronic structure. 

4.4. GAUGEINVARIANCEOFMATRIXMETHODS

Gauge invariance of the Dirac equation implies that under the transforma-

tion

(30)

where Λ (r) is an arbitrary differentiable function the Dirac hamiltonian

transforms according to 

which transforms the solution of the Dirac equation according to 

In order to illustrate the problems which may arise in the relativistic treat-

ment of magnetic properties using finite basis set methods, we choose the 

simplest non-trivial example, Λ (r) = z, which introduces an interaction

hamiltonian cαz . The untransformed and transformed hamiltonians, hD
and hD , respectively, are given by'∧

∧

and since they are related by an elementary gauge transformation, they gen-

erate identical eigenvalue spectra, with solution sets related by a complex 

phase factor. 

The results in Table 1 represent a study of the convergence of the few 

lowest-energy bound-states of hD and hD for H-like neon. Although the 

eigenvalue spectra of the two representations converge towards one another 

and towards the exact hydrogenic eigenvalues as the basis set is enlarged, 

it is necessary to saturate the space of G-spinors with = 4 functions in

order to achieve the level of agreement between the two representations 

considered here.

'
∧ ∧
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TABLE 1. Calculations with hD and h'D for H-like neon. The G-spinor

basis set for all angular types is geometric with α = 0.01 and β = 1.9. 

In order to highlight the selection rules operational in this problem,
the original 30s 30p basis set has been augmented only by functions
whose magnetic quantum number is mj = ±1/2.

∧∧
h'D

30s 30p | 30s 30p 30d | 30s 30p 30d 30f 30g

1 -50.066725 -50.066720 -50.066720

2 -50.066725 -50.066720 -50.066720

3 -12.534053 -12.525472 -12.520899

4 -12.534053 -12.525472 -12.520899

6 -12.504163 -12.520163 -12.520867

7 -12.407097 -12.504293 -12.504163

8 -12.407097 -12.504293 -12.5041 63 

5 -12.504163 -12.520163 -12.520867

9 -11.938560 -12.478914 -12.504151

10 -11.938560 -12.478914 -12.504151

hD

30s 30p 

-50.066718

-50.066718

-12.520860

-12.520860

-12.520856

-12.504163

-12.504163

-12.520856

-12.504163

-12.504163

There are other less obvious problems associated with the use of a non-

zero gauge function Λ (r), the most important of which is that the trans-

formed Dirac hamiltonian can no longer be block-diagonalised in represen-

tations labelled by (k, mj). For a finite representation, this splits the p3/2

states, for example, into two manifolds, characterised by mj = ±1/2 and

mj = ±3/2. The eigenvalue ε = –12.504163 a.u. persists throughout all sets

of calculations, because the only functions with mj = ±3/2 included in the

basis are of ptype, and consequently there are no non-zero off-diagonal ma-

trix elements of cαz involving these functions; this eigenvalue corresponds 

to the single-particle states 2p3/2i±3/2 . The degeneracy of Kramers pairs is 

preserved at all times because cα z only couples basis states of the same mj,
but in the restricted subspace of s– and p–type functions the two pairs of

p3/2 functions experience a physically meaningless splitting which is charac-

teristic of an incomplete expansion. Moreover, the basis set representation

of h'D requires the use of complex arithmetic, while the representation of

hD may be constructed using real arithmetic, if the convention is adopted

that the small-component amplitudes are chosen to be purely imaginary.

∧

  

∧

∧

 

The reason for the complex nature of the representation of h'D is easy

to find; the inclusion of basis functions of higher angular momentum serves 

to construct the phase factor exp[–iΛ (r)] as a multipole expansion, which
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in this case takes the form 

We may accommodate this gauge transformation exactly by defining

B-spinors, B[T, µ, rAµ ], the two-component equivalents of London orbitals.

where M[T,µ , rAµ ] is a G-spinor. The phase factor exp [–iΛ( r)] has the

effect of including basis functions with large angular momentum into the 

basis set. 

5. Some practical considerations 

5.1. THE NON-RELATIVISTIC LIMIT

It is a satisfying feature of the Dirac equation that its four-component

spinor solutions may be re-interpreted as two-component spin-orbitals in 

the formal limit c → ∞. From a computational point of view, however,

fixing c to be more than two or three orders of magnitude larger than its

natural value introduces numerical instability in the diagonalisation of the 

basis set representation of the Dirac equation; the practical upper limit is 

approximately c → 20000 a.u. This method may not be used for high pre-

cision determinations of non-relativistic wavefunctions, since this value of c
is unable to extinguish completely the fine structure in the core electronic 

levels of heavy elements. 

In order to make direct comparisons between our relativistic formulation 

and the non-relativistic limit of quantum mechanics, we make use of the

identity

to write a two-component Schrodinger equation
..

involving only the large-component two-spinor, ψ L(r), of a Dirac four-

spinor, ψ (r). For a given set of Gaussian orbital exponents, this formulation

generates degenerate pairs of non-relativistic spin-orbitals in the relativis-

tic large-component G-spinor basis set, with eigenvalues identical to those 

which would be generated in the usual scalar orbital formulation of quantum 

chemistry. These two-component solutions will, in general, involve unitary

rotations amongst states of α and β spin, but can readily be transformed 

into states of pure spin if required. 
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All that is required to implement this non-relativistic procedure in ad-

dition to the elements of our relativistic electronic structure formalism, are 

the one-electron G-spinor integrals over the two-component form of the

kinetic energy operator, p)(σ . p). Since the operator σ p is trans-

lationallv invariant, we may use the result from atomic structure theory

where f(r) is an arbitrary function of r. Repeated application of this iden-

tity to a two-component G-spinor yields

demonstrating that the operator p2 returns the quantum numbers of the

two-component spin-angular functions to their original values, so that the 

procedure introduces an elementary radial differential operator of the same 

general form as in non-relativistic atomic theory. In order to make the 

comparison complete, we need only note that for a given value of orbital

angular momentum, > 0, two fine-structure components may be formed, 

k = and κ = – - 1. In either case,

κ(κ + 1) = + 1).

The special case where fine-structure is absent, corresponding to = 0, 

also satisfies the equivalence between scalar and two-spinor non-relativistic

formulations, since κ = –1 and κ(κ+ 1) = 0.

In order to construct Hartree-Fock wavefunctions using this prescrip-

tion, all contributions to the relativistic Fock matrix which involve the small 

component amplitudes are simply ignored, since ψ S (r) = 0 for positive-

energy solutions of the Dirac equation in the non-relativistic limit. For 

closed-shell systems, the solutions obtained using this prescription differ 

from restricted HF spin-orbital wavefunctions only by a unitary trans-

formation. It can be also used as a basis for unrestricted Hartree-Fock

wavefunctions for open-shell systems, with all the usual problems of spin 

contamination which accompany it.

5.2. INTEGRAL ECONOMISATION 

We have described elsewhere our approach to the economisation of inte-

gral evaluation in direct implementations of Dirac-Hartree-Fock theory [3].

Many of the integral screening algorithms pioneered by Almlöf, Fægri and 

Korsell [20] may be carried over directly into the relativistic formulation; 

1_
2 (σ .
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this also forms the basis of the DIRAC program [21], whose developers were 

the first to implement this approach in a relativistic context. Visscher [22] 

has also made the important observation that the charge density associ-

ated with the small-component functions is highly localised, and that the 

interactions between such charge densities satisfy classical electrostatics. 

In BERTHA, these insights have been combined into an operational 

algorithm, exploiting the localisation of charge characteristic of the small-

component parts of Dirac spinors and our experience in constructing atomic 

solutions of the Dirac equation. Self-consistent field solutions of the Dirac 

equation are constructed in BERTHA according to the following scheme: 

1. Initialise the molecular density matrix by first constructing a basis

of atomic orbitals in the the chosen basis set. This involves an atomic 

structure calculation for each atom, and we have included the ability to 

select ionic states as the building block if this is appropriate. A minimal 

basis of atomic spinors is used to form a simple LCAS (linear combi-

nation of atomic spinors) molecular wavefunction. The core molecular 

spinors are only weakly perturbed atomic spinors, so an accurate and 

robust zero-order approximation to the total electron density is formed, 

particularly in the neighbourhood of a heavy nucleus. Deficiencies are 

concentrated in the valence region, and the procedure behaves rather 

like a non-relativistic calculation from this point onwards. 

2. In the early SCF iterations, all interactions involving large-components

are included without approximations, using conventional integral screen-

ing algorithms and dynamic choice of selection-rejection threshold. All 

one-centre contributions are treated exactly using Racah algebra meth-

ods borrowed from atomic physics. Direct two-centre charge-charge

interactions involving small components are calculated using classi-

cal electrostatic methods, including the Almlöf J-matrix method [23],

multipole expansions, and point-charge models [22]. All multi-centre

small-component exchange contributions are neglected, on the assump-

tion that small-component densities are localised to nearly spherical 

regions centred on the nuclei. This procedure is continued until the 

convergent region of the iterative algorithm has been entered. 

3. Classes of neglected multi-centre small-component integrals are rein-

troduced exactly, using the integral screening algorithm to eliminated 

numerically insignificant contributions. The procedure is continued un-

til convergence. 

As one passes from one stage to the next, it is important to reinitialise 

the density matrix, so that the density difference matrix reflects changes 

due to a fixed subspace of the two-electron integral list. 

In the early stages, the SCF procedure has all the characteristics of all-

electron ab initio non-relativistic theory, and involves a similar cost. The 
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one-centre two-electron integrals involve almost no overhead when calcu-

lated using methods derived from the decomposition of integrals into radial 

and angular contributions, so we calculate these at every iteration without

bothering to include them in the screening algorithm. The approximate 

treatment of the multi-centre small-component contributions echoes semi-

empirical techniques, in which the neglect of differential overlap is used 

to reject small contributions on physical grounds. It is important to note, 

however, that these approximations are used only as a computational tool

which allows us to reach the final iterations of a complete Dirac-Hartree-

Fock(-Breit) calculation by way of cheap iterations whose cost is essentially 

non-relativistic. In the end, nothing is neglected. The physical motivation

which underlies neglect of integrals on the basis of differential overlap means 

that the approximations are well-tested and controllable, and that approxi-

mations which are intermediate between semi-empirical and ab initio limits

may be constructed if required, by the simple expedient of switching off the 

evaluation of selected integral classes, and approximating the interactions 

using model charge distributions and classical electrostatics. 

5.3. CONSTRUCTION OF THE RELATIVISTIC J-MATRIX

In relativistic single particle theories (DHF, DHFB, RDFT) it is conve-

nient to separate the Fock matrix into Coulomb (J-matrix) and exchange-

correlation (K-matrix) contributions. Electron density is a real, scalar quan-

tity, and we may eliminate all spinor structure in J-matrix construction.

Following Almlöf [23], we define a scalar Hermite density matrix, H,

where the labels {αβ} indicate origin locations and exponents, and sum over

{µv } includes all basis functions which share the labels (αβ}. The indices

{ijk} are Hermite polynomial indices. The large-component Hermite set is

a subset of the small-component set as a consequence of kinetic balance and 

the matching of functions. The efficiency of this approach increases with 

increasing angular momentum (more density is accumulated in the sum over

{µv }) and with the use of family or universal basis sets (in which many

symmetries share the same sets {αβ}). Although the form of H[αβ; ijk] is

the same as the non-relativistic case, the length is longer because ( i j k } is

determined by the small component. For fixed angular momenta, and 

the increase in length over the non-relativistic value is 
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where Λ = + For f-functions, this is results in factor of approximately

two.

We employ the Hermite density to construct single-particle Coulomb 

matrix elements in a scalar Hermite basis set 

where [i'j'k';α'β'|ijk; αβ] is a two-electron electrostatic integral involving

Hermite Gaussian functions. For {αβ} corresponding to f-functions, this

between 50 and 100 times faster than calculating two-electron G-spinor

integrals to obtain the same quantity. For p-type functions the factor is 

about five, but the unit cost is much less. The improvements in practice

are also geometry-dependent because of sparseness. 

In BERTHA, we may readily evaluate the essential ingredients using 

the generalised Hermite charge-current density matrix 

where the charge density requires T1 = T2 , T3 = T4 , T1 ≠ T3 , q = 0,

and the components of the current density are obtained from T1 ≠ T2 ,

T3 ≠ T4 , T1 = T4 , q = (x, y, z ). In terms of the Hermite Gaussian functions,

H[αβ; ijk; r], the required quantities are

All spinor structure has been absorbed in the modified densities, which are 

real, scalar quantities. 

J-matrix elements in the G-spinor basis set are then constructed by

repeated use of the scalar Hermite Gaussian integrals 

where the spinor elements {µ 'v'} are spanned by the scalar labels (expo-

nents and origins) {α' β ' }. This involves the cost of a nuclear attraction

integral.



RELATIVISTIC QUANTUM MECHANICS 161 

6. Applications 

6.1. A HYDROGENIC MODEL PROBLEM 

Some time ago we considered a simple model problem in relativistic per-

turbation theory, in which a hydrogenic ion with point nuclear charge Z
is perturbed by an additional point nuclear charge, Z' [12]. When Z' = 1, 

this is a simple model for nuclear β-decay, and we shall assume that Z' = 1

throughout this section. 

The energy levels of the perturbed and unperturbed systems may be 

determined exactly, as may the components of the perturbation expansion 

which describes the perturbed system, 

For the 1s1/2 hydrogenic ground state, we find that the components of

the perturbation expansion of the energy to second-order in Z' are given 

by

The calculations of the energy components of the model problem as a 

function of nuclear charge, Z, presented in Table 2 were performed using L-

spinor basis sets, the dimensions of which were enlarged until the calculated 

value of ε2 matched the exact value to the number of figures quoted. Both 

the single-particle eigenvalue, ε0, and the first-order perturbation, ε2 may

be calculated exactly by the choice of the L-spinor exponent λ = Z, de-

fined in Eq. (17). The second-order contributions, however, may be divided

into contributions involving summations over positive- and negative-energy

states, ε2
(+)  and ε2

 (–), respectively, as defined by Eq. (12).

The non-relativistic limit of ε2 may be determined by setting c → ∞ 
and γ → 1, yielding ε 2 

NR = –1/2, which is consistent with the result

obtained directly from the Schrodinger equation; all non-relativistic energy 

components at third- and higher-order vanish identically. Expanding γ in

a series in (Z/c)2, we find that
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TABLE 2. Calculations of the zerc-order spinor energy, ε0, posi-

tive- and negative- energy contributions, ε 2 
(+) and ε2 

(–), respectively, to

the second-order correction, ε2 and the quasi-relativistic approximation,
ε 

2

qr ≅ –1 /2 – 3Z2/4c2, as a function of the nuclear charge Z. The pertur-

bation corresponds to Z’ = 1 in all cases, and all energies are in atomic 

units. Numbers in parentheses indicate powers of ten. 

ε2 
(–) ε2 

(+)
+ ε2 

(–)ε0 ε2 
(+)Z

10 -50.066742 -0.504126 1.05223(-4) -0.504021 -0.503994

20 -201.076523 -0.517054 6.42479(-4) -0.516412 -0.515975

30 -455.524907 -0.539992 1.76627(-3) -0.538225 -0.535945

40 -817.807498 -0.575023 3.56735(-3) -0.571455 -0.563902

50 -1294.626156 -0.625655 6.16022(-3) -0.619495 -0.599846

60 -1895.682356 -0.697776 9.73442(-3) -0.688042 -0.643779

70 -2634.846565 -0.801560 1.46176(-2) -0.786943 -0.695699

80 -3532.192151 -0.955622 2.13944(-2) -0.934228 -0.755607

90 -4617.757654 -1.197134 3.11666(-2) -1.165967 -0.823502

We observe in Table 2 that the approximate formula reproduces the com-

plete second order shift for small Z, but that the accuracy of the lowest-

order expansion in powers of Z/c deteriorates as Z is increased. For large Z,
the approximate formula is completely inadequate] and ε

2

(–)
varies approx-

imately as (Z/c)3, making a significant contribution to the total second-

order energy shift. 

6.2. INNER-SHELL PROCESSES 

X-ray emission is a process in which single-particle relativistic effects domi-

nate correlation effects in the calculation of transition energies, particularly 

for large Z. The relativistic contribution to the inner-shell ionisation energy, 

ER, of an atom or molecule is given to a good approximation by

ER = {EDHF [X] – EHF [X]} – {EDHF – EHF}

where EDHF is the Dirac-Hartree-Fock energy of the neutral atom or mole-

cule, EHF is the Hartree-Fock energy, and [X] denotes a specified hole state.

Table 3 presents calculations of ER and its constituent parts for selected

atoms, X, and core-hole state ions, X[1s], while Table 4 extends the treat-

ment to diatomic oxides, XO, and core-hole state molecular ions, X[1s]O. 

The dominance of the nuclear field is evident, since the effect of the chem-

ical environment is rather small in all cases, and the value of ER for the

atomic system is a good first approximation to the corresponding value in 

_ 1_
2

_ 3z2

4c2

__
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TABLE 3. Self-consistent field electronic energies of the elements, X, in Hartree
atomic units. The notation [1s] denotes an atomic 1s hole localized a t nucleus X;
energies without this label refer to the ground electronic configuration. EDHF de-

notes the Dirac-Hartree-Fock energy, and EHF is the non-relativistic Hartree-Fock

energy (in a.u.).

X EDHF EHF EDHF [1s] EHF[1s] ER 

Be -14.57589170 -14.57302261 -10.04264318 -10.04050268 0.00073 

O -74.82498609 -74.76918802 -54.76742858 -54.72826630 0.01663

Si -289.4613374 -288.8344384 -221.4707322 -221.0195009 0.17567 

Ca -679.7101599 -676.7572540 -530.7855994 -528.6200637 0.78737

Ge -2097.474048 -2075.331574 -1688.294489 -1671.937402 5.78604

Sr -3178.079985 -3131.525998 -2584.449674 -2549.824143 11.92846

Sn -6176.128513 -6022.842857 -5099.251964 -4983.968704 38.00240

C -37.67604073 -37.65969455 -26.75871771 -26.74712643 0.00475 

Mg -199.9350663 -199.6145489 -151.7311565 -151.5021466 0.09150 

TABLE 4. Self-consistent field energies of diatomic oxides, XO, in Hartree atomic

units. The notation [X] denotes an atomic 1s hole localized at nucleus X; energies

without this label refer to the ground electronic configuration. EDHF denotes the
Dirac-Hartree-Fock energy, and EHF is the non-relativistic Hartree-Fock energy

(in a.u.).

XO ED H F EH F EDHF [X] EHF [X] ER λ 

BeO -89.5082 -89.4500 -84.9987 -84.9413 0.0008 0.67 

CO -112.8558 -112.7841 -101.9313 -101.8644 0.0168 0.830

MgO -274.7558 -274.3809 -226.4938 -226.2103 0.0914 1.185

SiO -364.5198 -363.8392 -296.4965 -295.9915 0.1758 1.270

CaO -754.5440 -751.5430 -605.6562 -603.4438 0.7886 1.490

GeO -2172.0787 -2150.0523 -1762.9201 -1746.6415 5.7417 1.708

SrO -3252.7843 -3206.5430 -2659.3187 -2624.7110 11.9338 1.736

SnO -6250.5354 -6097.6321 -5173.7115 -5058.7629 37.9547 1.860

the molecule. The atomic calculations were performed with both BERTHA 

[3] and GRASP [24], and found to be in agreement for the large basis sets 

employed here. The consistency of the results for ER when atomic and 

molecular values are compared serves as a useful cross-check on our imple-

mentation of open-shell Dirac-Hartree-Fock and Hartree-Fock theory in a 

spinor basis set. It is likely that the basis set descriptions of the bonding 

region of the molecules and molecular ions would benefit from the addi-

tion of additional polarisation functions but that scarcely matters in the 
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calculation of X-ray ionisation energies, since the basis set truncation er-

rors evidently cancel to a good approximation when calculating the energy 

differences involving core-hole states. 

For emission involving a 1s hole, it is convenient to adopt a relativistic 

hydrogenic model of mean-field screening in which 

where λ is a screening parameter.

The large value of the effective value of the screening constant, λ for

high Z is indicative of the significant spatial contraction of the inner core 

spinor following ionisation. 

6.3. RELATIVISTIC MOMENTUM-SPACE DISTRIBUTIONS 

In the relativistic plane-wave impulse approximation, the cross-section for 

(e – 2e) ejection from ψ i , σ, is defined by the differential relation [25]

where A labels the scattered electron, B the ejected electron. K and Si are

kinematic factors characteristic of the experiment.

The transformation of a G-spinor to a pspace representation is facil-

itated by the orthonormality of the spin-angular functions in both the r-
space and p-space angular variables, χ(ϑr,ϕr) and χ(ϑp,ϕp), respectively.

The transformation of a radial function, f T
km (r) to p-space form is achieved 

by evaluating spatial integrals over spherical wave amplitudes

where is the angular momentum associated with the two-spinor labelled 

by ,(pr) is a spherical Bessel function, E = + and the

component labels take the values T = L or T = S. The upper sign is 

chosen for T = L, and the lower sign for T = S. The radial integration 

may be performed analytically, for anv p ≥ 0. In the low-momentum and

non - relativistic limits, and the small component

p-space amplitudes vanish

_

√ (E + c
2
)/πE→√ 2/π,

______________

√c2p2 + c4,
________



RELATIVISTIC QUANTUM MECHANICS 165 

Using results from Racah algebra, we reduce two-centre G-spinor r-
space overlap densities to angle-averaged p-space densities of the form 

where T = {L, S}, f T
km (p) is the p-space transform of f

T
κm (r), R = |RA -

spinor spherical tensor p-space matrix element. Figure 2 presents p2 e(p) for

the 3s orbital of Xe. The non-relativistic density shows a marked shift to

smaller p, corresponding to a spatial expansion to larger r. The difference

between the relativistic and non-relativistic profiles is readily accessible to

experimental discrimination. 

RB |, R = (R, θR, ϕR), Q = m –m', and 〈κ, m|C
Q
L (θp, ϕp)|κ', m'〉 is a two-

Figure 2. Free-particle momentum transform for the 3s level of neutral Xe. The plots 

are of angle-averaged values of p2e(p) in the Schrödinger and Dirac representations.

The horizontal axis is in atomic units of momentum, and the vertical axis denotes 

the relative density of the non-relativistic and relativistic approximations. 
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6.4. CHEMICAL EFFECTS OF THE BREIT INTERACTION 

The Breit interaction, bij is the lowest-order quantum electrodynamic cor-

rection to the electron-electron interaction

It comprises the Gaunt interaction, b1
ij, and a correction characteristics Of 

the choice of Coulomb gauge, b2
ij.

The calculation of G-spinor integrals involving the Breit interaction nec-

essarily involves more cost than a Coulomb integral. In Table 5 we see that 

the effect of the Breit interaction is almost 2 a.u. for the core molecular 

orbital corresponding to the 1s spinor of atomic silver, but that the ef-

fect on the outermost molecular orbital falls to 0.1 millihartree. For the 

valence molecular orbitals the relativistic corrections including Coulomb 

interactions is, however, 6 millihartree, indicating that the Dirac-Coulomb

hamiltonian represents the most important relativistic effects on chemical 

properties, to which magnetic corrections are small. 

If one considers relativistic correlation effects, the magnetic corrections 

on pair correlations involving core orbitals are the largest relativistic many-

body effects, as we have considered in detail for the argon atom [26]. But 

from a chemical perspective, Breit interaction effects are localised in core 

orbitals, which implies that their impact on chemical properties such as 

bond lengths and vibrational frequencies will be comparatively small. 

The localised nature of the Breit interaction is reflected in the results of 

Table 6 where it is revealed that the total Breit interaction correction to the 

electronic energy of AgCl is well-approximated by the sum of ionic contri-

butions from Ag+ and C1–. Since both Ag+ and Cl– are closed-shell ions, 

the Breit interaction enters into their electronic structures only in contribu-

tions of exchange type, since the direct interaction vanishes identically for 

closed-shell systems. The concentration of small-component density near 

nuclei effectively extinguishes all exchange contributions involving small 

components of either the Coulomb or exchange interactions except those 

involving amplitudes centred on a single nucleus. In order to generate a sig-

nificant multi-centre matrix element of the Breit interaction, there would 

need to be a direct current-current interaction involving delocalised un-
paired electrons. Long-range multi-centre Breit interaction corrections can 

be expected to be of importance in the electronic band structures of met-

als, and would be amplified for heavy elements. In an isolated molecule, 

however, one requires paramagnetic interactions involving two heavy cen-

tres before a direct matrix element of the Breit interaction can contribute 

significantly to its valence electronic structure. 



| MO | HF 

1 -913.86228

2 -134.90976

3 -125.21282

4 -125.21282

5 -125.21130

6 -104.68603

7 -25.94690

8 -21.97600

9 -21.97600

10 -21.97227

11 -14.70534

12 -14.70534

13 -14.70242

14 -14.70242

15 -14.70076

10 -10.41507

17 -7.87199

18 -7.86974 

19 -7.86974

20 -4.03428 

21 -2.71349

22 -2.70985

23 -2.70985

24 -0.95179

25 -0.58035

26 -0.57938

27 -0.57938

28 -0.57225

29 -0.57225

30 -0.34798 

31 -0.34423

32 -0.34423

6.5. RELATIVISTIC MANY-BODY PERTURBATION THEORY 

In Table 7 we present Dirac-Hartree-Fock and second-order many-body per-

turbation theory results for HC1, using uncontracted correlation consistent 

| DHF | DHFB | 

-943.12139 -941.23497

-142.02639 -141.86422

-131.53099 -131.23901

-125.09647 -124.89743

-125.09533 -124.89629

-105.10631 -105.03931

-27.41891 -27.39353

-23.20375 -23.15903

-22.03354 -22.00567

-22.03116 -22.00327

-14.65160 -14.63783

-14.64850 -14.63474

-14.41927 -14.41295

-14.41690 -14.41058

-14.41504 -14.40873

-10.49815 -10.49503

-7.92786 -7.92225

-7.86612 -7.86310 

-7.86463 -7.86161

-4.31193 -4.30721

-2.91536 -2.90823

-2.72195 -2.71776

-2.71876 -2.71458

-0.96779 -0.96758

-0.57416 -0.57313

-0.56708 -0.56604

-0.55210 -0.55190

-0.54809 -0.54778

-0.54061 -0.54037

-0.35657 -0.35823

-0.35351 -0.35330

-0.35041 -0.35031
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TABLE 5. Orbit energies (in a.u.) for AgCl us-
ing a Hartree-Fock (HF), Dirac-Coulomb Hamil-
tonian (DHF) and Dirac-Coulomb-Briet Hamilto- 
nian (DHFB). 
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TABLE 6. Total electronic energies of AgCl in a.u. E(HF) denotes 
the Hartree-Fock energy, E(DHF) is the Dirac-Hartree-Fock energy, 

E(DHF)+E(B) includes the first-order Breit interaction energy as a per-

turbation, and E(DHFB) includes the Breit interaction self = consistently, 

| E(HF) | E(DHF) | E(B) | E(DHF)+E(B) | E(DHFB) | 

| -5657.00309 | -5775.07031 | 3.67885 | | -5771.39440 | -5771.39146

Method

DHF

DHF†

DHF+MBPT2

DHF+MBPT2†

Experiment

cc-pVDZ (+) cc-pVTZ( +)

de (a.u.) v (cm–1) de (a.u.) v (cm–1)

2.411 3123 2.395 3135

2.413 3124 2.394 3132

2.428 3030 2.406 3041

2.434 3019 2.409 3041

2.409 2991

The agreement with the results in [27] is excellent for the cc-pVTZ(+)

basis and good for the cc-pVDZ(+) basis. The label (+) denotes that basis 

set has been used in an uncontracted form, which accounts entirely for 

the apparent differences in the results (Visscher et al. adopted the original 

contraction scheme). We find much less variation in the cc-pVDZ(+) and 

cc-pVTZ(+) results as a consequence of the greater degree of variational 

freedom in an uncontracted basis set but the contraction plays only a minor 

role in any event. 

basis sets. In addition, equilibrium bond lengths and vibrational freuen-

cies are calculated, and compared with results obtained by Visscher et al. 
[27]. The calculations were performed using our own direct implementation 

of many-body-perturbation theory, based on the non-relativistic formula- 

tion of White and Head-Gordon [28]. It is simular in general content to the 
approach adopted in the program DIRAC, except that our impementation

benefits from the shorter integral list afforded by the choice of a G-spinor

basis set. 

TABLE 7. A comparison of vibrational frequencies and equilibrium

bond lengths for 1H35C1 calculated with a variety of basis sets. The 

results labelled † are from Vischer et al. 1996
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6.6. RELATIVISTIC DENSITY FUNCTION THEORIES 

In the formulation of Engel, Keller and Dreizler [29], the Feynman-gauge

representation of the relativistic exchange-correlation energy, Exc [ jµ], is a

functional of the four-current, j µ = (e,j),

In the absence of external magnetic fields and with the neglect of ra-

diative corrections requiring renormalization, Dirac-Kohn-Sham equations 

are obtained 

with eigenvalue, Ek, The external field potential, vext (r) and the Coulomb

potential between electrons, vc (r), are classical scalar quantities. The cost

of calculating matrix elements of vc(r) may be reduced to an effectively

non-relativistic level using J-matrix methods because e(r) is a scalar. not 

a spinor. 

The precise form of the exchange-correlation potential, vxc (r), is un-

known, but it is defined by the functional derivative 

We assume published non-relativistic charge-density functionals of (e, |∇e|)

in the first instance. However, we note that we wish also to investigate 

charge-current functionals which include j.
Multicentre integrals over functionals of e(r) and |∇e (r) are evaluated 

using methods described by Becke [30]. The molecule is divided into nuclear-

centred cells, and Voronoi polyhedra constructed which extinguish the cusp 

in e(r) at all other nuclei. The contribution from each cell is evaluated by 

numerical quadrature in a spherical polar coordinate system. We employ a 

radial mapping 

where ξ is chosen according to an empirical prescription linked to the atomic 

radius. The integration over x is with Nr-point Gauss-Legendre or Gauss-

Chebyshev quadrature. The angular integrals are performed using tabu-

lated angular weights, {wi} and abscissae, {θ i ,ϕ i} in the Lebedev solid an-

gle formulae. The solid angle integral centred at each nucleus is performed 

according to 
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where NL = {50, 86, 110, 146, 194, 302, 590, 770}. In order to demonstrate

that this approach is successful, we evaluate

where x =

TABLE 8. Sample calculations of Fi using a Dirac-Hartree-

Fock wavefunction for CO. The atomic basis set for both C

and O was 13s8p. The exact value of F1 is 14.0. No use of
axial symmetry has been made in the angular integrations.
The number of nucleuscentred quadrature points is indicated

as (Nr, NL)

(32,50) (48,50) (48,110) (64,194)

F1 14.0001485 14.0001877 13.9999835 13.9999978

F2 16.2992512 16.2993715 16.2992262 16.2992489

F3 329.327409 329.356448 329.320408 329.289413

The essential conclusion conveyed by the results in Table 8 is that we

can adapt quantum chemical DFT methods to relativistic DFT with little

change. The reason for this is that the construction of densities eliminates

the spinor structure in favour of scalar quantities at all stages of the calcu-

lation, except in the final diagonalisation of the matrix representations of

the Dirac-Kohn-Sham equations. Our conclusion based on this observation

is that the use of quasi-relativistic methods in density functional theories

conveys little or no advantage, and one may just as well enjoy the conve-

nience afforded by a four-component representation if a relativistic density

functional theory is required. This point of view has already been adopted

by Liu and his collaborators [31] in the construction of the Beijing Density

Functional program, BDF, a development of the non-relativistic ADF pro-

gram from Amsterdam. Compared to the development of efficient methods

for the evaluation of multi-centre G-spinor integrals, the extension of our

techniques to relativistic DFT has proved rather straightforward. 
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7. Conclusion

The distinguishing feature of our formulation of the relativistic electronic

structure problem is the use of explicit representations of the charge-current

densities in a G-spinor basis set. This approach hides most of the relativis-

tic features of the problem in a few key numerical procedures, so that

subsequent steps, such as the evaluation of electric and magnetic inter-

action matrix elements, and the calculation of many-body corrections, is

almost identical to the practices of non-relativistic quantum chemistry. For

a given set of Gaussian parameters, the G-spinor set which forms our pri-

mary computational basis offers the atomic basis of irreducible dimension,

and the kinetic balance prescription transfers the advantages of a non-

relativistic “family basis” set to the evaluation of relativistic integrals and

matrix elements. A link has been established with non-relativistic methods,

through the explicit use of the identity (σ p)(σ . p) = p2I, so that we can

generate spin-orbitals directly in a G-spinor basis, and extract the exact

non-relativistic limit of our calculations as a special case of our relativistic 

formulation.

In dealing with relativistic many-body problems, and with electric and 

magnetic properties, some appreciation of the role of how the negative-

energy states are handled in relativistic QED seems to be essential if funda-

mental errors are to be avoided. Given a discrete basis of four-spinors, direct 

implementation of the rules of relativistic QED appears to be simpler than

the incorporation of relativistic corrections to non-relativistic spin-orbitals

and the prescriptions of non-relativistic QED. Of course there are always 

questions of personal taste and the computational efficiency of particular 

computer programs to consider, and others may favour the non-relativistic

formulation for a combination of these reasons. But our choice is to adopt 

the Dirac equation, relativistic QED, four-spinors, the charge-current rep-

resentations embodied in BERTHA, and all the simplifying features that go 

with them. Given the breadth of territory which one can cover when start-

ing from this point of view, it would be misleading to suggest that this will 

always be the most efficient approach from a computational point of view, 

particularly when a non-relativistic spin-independent description suffices: 

our non-relativistic formulation, for example, makes no use of the separation 

of spatial and spin coordinates, but it proves to be convenient for our pur-

poses. The heavy elements, however, bring with them both computational 

and physical complexity, and a four-component approach is appropriate in 

this case, both to simplify the treatment of many competing relativistic 

and electrodynamic effects, and to offer a greater insight into how they 

operate at the molecular level. We remain convinced that our vigorous de-

fence of this position at the 1997 meeting of QSCP [3] was justified, and 

. 
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look forward to participating in future developments in relativistic quantum 

chemistry.
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VARIATIONAL PRINCIPLE IN THE DIRAC THEORY:
SPURIOUS SOLUTIONS, UNEXPECTED EXTREMA 
AND OTHER TRAPS

MONIKA  STANKE AND JACEK KARWOWSKI 

Instytut Fizyki, Uniwersytet Mikotaja Kopernzka 
ul. Grudziadzka 5, 87-100 Torun, Poland 

Abstract. The dependence of the Rayleigh-Ritz Dirac energy of several

states of one-electron atoms on nonlinear parameters is analyzed in detail.

It is shown that, if the kinetic balance condition is not fulfilled by the trial

functions, then the energy hypersurfaces in the space of the nonlinear pa-

rameters (the exponents of the basis functions) contain multiple extrema

which may easily be taken for solutions of the corresponding variational

minimax problems. Also the problem of spurious solutions is addressed.

In particular we demonstrate that in different ranges of the nonlinear pa-

rameters the same eigenvalue of the Hamiltonian matrix may approximate

different states of the atom. Close analogy between the Dirac and the cor-

responding Lévy-Leblond variational problems leads us to the conclusion

that in relativistic variational calculations establishing correct relations be-

tween the components of the wavefunction is, in general, more important

and more difficult to maintain than the eliminating of the influence of the

negative-energy solutions on the bound-state wavefunctions.

1. Introduction

TheRayleigh-Ritz variational procedure, when applied to solving the Schrö-

dinger eigenvalue problem, leads to rather simple and well established com-

putational procedures. Its generalization to the case ofthe relativistic Dirac-

Coulomb eigenvalue equation, although it has resulted in many successful1

implementations (a complete set of references may be found in ref. [1]). is

far from being trivial and there are still many questions to be addressed.

The main source of the difficulty is the unboundedness from below of the

Dirac Hamiltonian and the multi-component character of the wavefunction.
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A proper construction of the basis sets, so that they fulfil boundary 

conditions selected to make the variational space orthogonal to the neg- 

ative continuum, gives probably the most powerful tool allowing to avoid 

instabilities and the variational collapse [2-11]. The importance of retaining 

certain relations between the components of the wavefunction has led to

the so called kinetic balance condition [2-6]. Combining these two kinds of

restrictions, Grant and his coworkers formulated a set of sufficient condi-

tions to be fulfilled by a basis set in order to avoid the variational collapse 

[2-4].

The presence of spurious solutions in the algebraic Dirac-Coulomb prob- 

lem stimulated a series of works aimed at their elimination [10-12]. As a

consequence of these studies, a variational approach to the Dirac-Coulomb 

eigenvalue problem in which electron and positron states are simultaneously

included and which is free of the spurious solutions and avoids variational 

collapse has been formulated [11]. 

The question how to control the behaviour of the variational energy 

with not too strictly constrained variational trial functions motivated the 

formulation of a number of minimax principles [13-17]. In our recent paper 

[18], hereafter referred to as I, we analyzed the behaviour of the variational

Dirac energies of the ground-states of one-electron atoms as functions of 

the basis function nonlinear parameters. In particular, we studied the in-

fluence of the non-exact fulfilment of either the boundary conditions or the 

relationship between the large and small components of the trial functions 

on the results of the variational calculations. As a consequence, we have 

found several examples of violation of some of the minimax principles. As a

side-effect of this study we have obtained an infinite number of variational 

solutions for which the variational energies are strictly degenerate with the 

exact ground-state energies but the corresponding wave-functions, though

square-integrable, are completely wrong (they may even be orthogonal to 

the exact ones). We have also demonstrated that the same applies to all 

one-electron maximum angular momentum states (1s1/2 , 2p3/2 , 3d5/2 , . . .).

In the present work we extend our previous study to excited states. In 

particular, we analyze the structure of the energy hypersurfaces in the space 

of the nonlinear parameters showing the existence of multiple extrema and 

spurious solutions. We demonstrate that, depending upon the choice of the 

nonlinear parameters, the same eigenvalue of the energy matrix may ap-

proximate energies of different states of the atom. Besides, we found a close 

analogy between the Dirac and the corresponding non-relativistic Lévy- 

Leblond [19] variational problems. This has led us to the conclusion that 

in relativistic variational calculations establishing the correct relations be- 

tween the components of the wavefunction is, in general, more important 

(and also more difficult to maintain) than eliminating the influence of the 
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negative-energy solutions on the bound-state wavefunctions. In this paper, 

we concentrate on discussing the basis sets which are being used mainly 

(but not only) in the context of studies on implementations of mini-max 

principles [13], [20] and which do not fulfil the kinetic balance condition. 

One should expect that these kinds of trial functions may lead to some 

pathological behaviour of the corresponding variational problems. In par-

ticular, we do not discuss the basis sets which are known to be "safe" such

as the one designed by the Oxford Group [2], [3] or the one fulfilling the

condition of Goldman [11]. 

Atomic units are used in this paper. In some cases, in order to make 

equations more transparent, the electron mass m is written explicitly. The 

velocity of light is taken to be c = 137.0359895. 

2. Formulation of the problem

Similarly as in I, we are concerned with the Dirac equation for an electron 

in the field of a stationary potential V = –Z/r:

(1)

where κ = ±(j + for = j ± is the Dirac angular momentum quantum

number,Φ LD and Φ SD are the radial parts of the large and small components 

of the wavefunction and E is the energy relative to mc2 We compare vari-

ational solutions of the Dirac equation with the these of the Schrodinger 

equation in the Lévy-Leblond form [19]: 

(2)

(3)

where H stands for either the Dirac or Lévy-Leblond Hamiltonian, 

(4)

(5)

We define the Rayleigh quotient as 

and

1–
2
) 1–

2
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are, respectively, large and small components of the wavefunction. The

angular and spin parts of the trial functions, A (Ω), are equal to the exact

ones. The radial functions are selected in the form

(6)

where C L
k C S

k are variational parameters and φ L, φ S are the basis functions.

The basis functions are taken as

(7)

where α and β are the nonlinear parameters, while g and t define the type

of the radial basis set. In this study three kinds of the basis sets have been

used:

– Drake and Goldman [7], if g = γ and t = 1, where

(8)

– Slater, if g = 1 and t = 1,

– Gaussian, if g = 1 and t = 2.

Let us note that even with α = β none of these basis sets fulfils the kinetic 

balance condition and, consequently, does not belong to the class defined 

by Grant as physically acceptable [4].

Variation of K[Ψ] with respect to the linear parameters leads, in the

case of the Dirac equation, to the algebraic 2N × 2N eigenvalue problem: 

(9)

where



where
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is the corresponding eigenvector. The highest N eigenvalues of the matrix

are supposed to approximate the corresponding Dirac energies. However, as

discussed byseveral authors [7],[8],[10-12],[21], in some cases the so called

spurious roots (matrix eigenvalues which do not correspond to any of the

eigenvalues of the Dirac Hamiltonian) may appear. The remaining N eigen-

values of the matrix are located by approximately 2mc2 below the highest

N eigenvalues, i.e. in the negative continuum.

In the Lévy-Leblond case the following N × N matrix eigenvalue equa-

tionisobtained [2],[3]:

(10)

This set of equations is equivalent to the corresponding Schrodinger al-

gebraic problem if (and only if) the basis set fulfils the kinetic balance

condition [2],[3]. However, contrary to Eq. (9), Eq. (10) is derived from a

pseudo-eigenvalue equation (2), for which the set of energies is bounded

frombelow.

..

3. Results and discussion

The energy obtained by solving the algebraic Dirac (9) and Lévy-Leblond

(10) equations depends upon the nonlinear parameters α and β and upon

the type of the basis set (i.e. upon the values of N, g and t). In this section

we present results of an analysis of this dependence for several s1/2 and p1/2

states of one-electron atoms obtained using basis sets with N = 1, 2, 3.

In the first subsection, theeigenvalues of theDirac (9) andLévy-Leblond

(10) Hamiltonian matrices in N-function bases (N = 1, 2), (α, β, g, t)

and (α, β, g, t) respectively, are plotted versus α and β in a number

of figures. The plots are composed of a set of equi-energetic lines drawn in 

the (α, β) coordinate plane and are identified as           Dirac) and 

(Lévy-Leblond). Maxima, saddle points and minima in the energy surfaces 

are marked, respectively, as 

where the arrows show dirkctions of the gradient. 

In the second subsection, the highest eigenvalue (for N = 1) and two 

highest eigenvalues (for N = 2, 3) of the Hamiltonian matrix, corresponding 

to the extrema of the energy surfaces for N = 1,2 are, collected in a table 

and their mutual relations are discussed. 
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3.1. GEOMETRICAL STRUCTURE OF THE ENERGY SURFACES

In the case of N = 1 the Dirac and Lévy-Leblond energy may both be

expressed analytically as a function of α and β [2],[20]. The energy surface

always contains exactly one extremum and this extremum is always a saddle

point. For all the states described by nodeless wavefunctions, i.e. for the

states with κ = –n, the trial functions which fulfil the exact boundary

conditions for r → 0 and for r → ∞ (Drake and Goldman in the Dirac

case and Slater in the Lévy-Leblond case) give the exact energy at the

saddle point. A detailed analysis of the geometrical structure of the energy

surfaces and for (g, t) = (γ, 1), (1, 1), (1,2) has been given

in I. Qualitatively, the description of all other κ = –n states is very similar.

The remaining (i.e. |κ| < n) states can never be described exactly with

N = 1 in any of the basis sets used in this paper. If N = 1, the overall

structure of the energy surfaces is, for these states, quite similar to that for

κ = –n ones, although there are some significant differences. In figure 1

the highest eigenvalue of N = 1 Hamiltonian matrix corresponding to the

2p1/2 (i.e. to κ = 1) state of a Z = 90 hydrogen-like atom is plotted versus

α and β. As for κ = –n (c.f. I), also in this case, the Dirac and the Lévy-

Leblond surfaces are very similar [one has to remember that the Dirac

case of g = γ (g = 1) should be compared with the Lévy-Leblond case

of g = 1 (g = γ)]. The root of the secular equation corresponding to the

saddle point parameters (α0, β0), depending upon the case, approximates 

either the Dirac 2p1/2 or Schrodinger n = 2 energy. The only feature which

may cause some surprise is that the approximation given by the saddle-

point energy resulting from a trial function with an incorrect behaviour at 

the origin is, in some cases, significantly better than the one given by the 

function which for r → 0 is asymptotically exact.

In figure 2 differences between either the 2p1/2 Dirac or 2p Schrodin-

ger energy and the saddle point energies obtained using several different 

trial functions are plotted versus Z. As one can see, there is no simple rule 

which would link the type of the boundary conditions fulfilled by the basis 

functions and the accuracy of the resulting energy. In the case of a single 

basis function with the correct boundary conditions at the nucleus the 

Dirac saddle point is always above the exact energy (c.f [4], [10]), contrary 

to the case when the boundary conditions are not fulfilled. For the Slater- 

type basis the Dirac saddle point may be located above (small Z) as well

as below (large Z) the exact energy. For the Gaussian trial functions the

saddle point is always below the exact energy. The behaviour of the Lévy- 

Leblond solutions is quite similar. Let us note, that the Dirac and Lévy- 

Leblond energies behave in a similar way when either in both cases the trial 
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function at the origin is exact (g = γ for Dirac, g = 1 for Lévy-Leblond)

or in both cases g is larger than the exact value (g = 1 for Dirac, g = 2

for Lévy-Leblond). Then, in this case we have another example of when 

the “variational collapse” is related to incorrect boundary conditions and 

to wrong relations between the components of the trial function rather

than to the unboundedness from below of the Dirac Hamiltonian. Another 

instructive feature of this example is showing that in this case the correct

upper-bound solution may give a poorer approximation to the energy than 

a solution without any bound properties. 

The structure of the energy surfaces becomes considerably more com- 

plex when the basis set is enlarged. The two highest eigenvalues of the 

Hamiltonian matrices of s1/2 and p1/2 states of the one-electron Z = 90
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Figure 2. In the first-row subfigures differences between the exact Dirac 2p1/2 energies

and the saddle point values are plotted versus Z. The cases of g = γ, t = 1 (Goldman

and Drake) and g = 1, t = 1 (Slater) are displayed in the left subfigure (open circles

and asterisks, respectively). The case of g = 1, t = 2 (Gaussian) functions is shown in

the right subfigure. In the second-row and in the third-row subfigures similar differences

between the exact Schrödinger 2p energies and the ones derived from the Lévy-Leblond

equation are displayed. The open-circle curves correspond to g = 1, t = 1 basis functions.

The asterisk curves in the second-row left subfigure correspond to g = γ, t = 1; in the

second-row right – to g = 1, t = 2; in the third-row left – to g = 2, t = 1; in the third-row

right – to g = 2, t = 2.
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Figure 3. Plots (upper left), (upper right), (middle left), 

(middle right), (lower right) for a Z = 90 hydrogen-like 

atom in the (α,β ) coordinate plane. The saddle points at α = β = 90 in the upper-left

figure and at α = β = 48.1 in the upper-right figure correspond to the exact Dirac 

energies of respectively, 1s1/2 and 2s1/2 states.

(lower left) and 

atom obtained with various N = 2 basis sets are plotted as functions of the 

non-linear parameters α and β in figures 3-5
l
. The most striking difference 

1

Let us note that the Dirac algebraic eigenvalue problem (9), for a given κ, is identical
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Figure 4. Plot s: (upper left), (upper right), (middle left),

(middle right), : (lower right) for a Z = 90 hydrogen-like

1/2” is used for the second highest

(“spurious”) root of the N = 2 eigenvalue problem. The saddle point at α = β = 48.1 in

the upper-right figure corresponds to the exact Dirac 2p1/2 energy.

[lower left) and 

when compared to the analogous plots for N = 1, is a multitude of all kinds 

of extrema spread over a large range of non-linear parameter values. The

to the one for –κ, as long as α = β. However the energy surfaces in the (α, β) coordinate
plane are, for these two states, different if α ≠ β 

atom in the áa, b) coordinate plane. The designation “1p
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Figure 5. Plots (upper left), 2 (upper right), (middle left), 

(middle right), (lower right) for a Z = 90 hydrogen-like

atom in the (α, β) coordinate plane. The designation ‘‘1p1/2” is used for the second highest

(“spurious”) root of the N = 2 eigenvalue problem. The saddle point at α = β = 45 in 

the upper-right figure corresponds to the exact Schrodinger 2p energy.

(lower left) and 

energy surfaces corresponding to the Dirac ground state in the Drake and 

Goldman and in the Slater basis sets look entirely different. The extremum 

giving the exact Dirac 1s1/2 energy (the saddle point α = β = 90 in the 

upper-left subfigure of fig 3) splits to three different saddle points when 
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the Slater basis is used (middle-left subfigure of fig. 3). On the contrary,

the energy surfaces for 2s1/2 are in these two basis sets nearly identical

(upper-right and middle-right subfigures of fig, 3).

The close similarity between the Dirac and the Lévy-Leblond matrix

eigenvalue problems is best seen when one compares the corresponding

subfigures of fig. 4 (Dirac) and fig. 5 (Lévy-Leblond). The energy surfaces

for these two equations remain nearly identical, independent of the kind of

basis set as well as upon the range of the nonlinear parameters. In order to

get the best analogy between the Dirac and the Lévy-Leblond basis sets,

we have chosen the following correspondence: (1) the exact behaviour at

the origin, i.e. g = γ for Dirac and g = 1 for Lévy-Leblond (the first-row

subfigures); (2) the lowest power r in the basis set is larger by ≈ 0.25

than the exact one, i.e. g = 1 for Dirac and g = 1.25 for Lévy-Leblond (the

second-row subfigures); (3) the Gaussian functions with g = 1 in both cases

(the third-row subfigures).

The plots corresponding to the Gaussian basis are, in general, very much dif-

ferent and they contain fewer extrema (there may be more extrema outside

the range of the nonlinear parameters investigated in this work). Perhaps

the only exception is the ground-state Gaussian surface which is

similar to (fig. 3).

3.2. THE ENERGY VALUES

The highest eigenvalues of the Dirac Hamiltonian matrices for κ = –1 (s1/2

states) and for κ = 1 (p1/2 states) in the bases with t = 1 and g = γ, 1 are

collected in table 1. In the case of N = 1 the highest eigenvalue, and in the

cases of N = 2 and N = 3 two highest eigenvalues have been displayed.

The calculations have been performed at all (α, β) points which correspond

to extrema in either ns1/2 or np1/2 with n = 1, 2; g = γ, 1 and N = 1,2.

The energies may be compared with the exact Dirac values: –4618 (1s1/2),

–1192 (2s1/2, 2p1/2), –512 (3s1/2, 3p1/2). It is interesting to note that in

the majority of cases in a given (α,β) point two extrema appear, usually

(but not always) in the matrices corresponding to the values of N differing

by 1.

In order to stress some similarities between the different energy sur-

faces, the energies in table 1 have been divided into 9 groups numbered

by the index q = 1,2,. . . ,9. Among these groups, 7 are “complete” (they

contain one extremum from each of the energy surfaces considered) and 2

are “incomplete”. Here is a brief characterization of these groups:

q = 1 : This group contains energies evaluated at the N = 1 saddle point

values of (α,β). In all cases 1E1 = 2E1 with 2E1 also corresponding to an

extremum. The case of κ = -1, g = γ gives the exact 1s 1/2 solution and, 
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TABLE 1. Values of the nonlinear parameters corresponding to the extrema in

the energy surfaces and the corresponding energy values for two lowest states of

the Z = 90 hydrogen-like atom obtained using Drake and Goldman (g = γ) and

Slater (g = 1) basis functions. In the consecutive columns the case number q, the

identification of the state (κ) and of the basis functions (g), the coordinates (α, β ) 
of the extremum and the Hamiltonian matrix eigenvalues (NEm) are given. The

designation NEm means the m -th eigenvalue of the matrix corresponding to the

N -element basis set. The energy corresponding to an extremum is given in boldface

and the subscript (s, n or x) identifies the kind of extremum (saddle, minimum or

maximum, respectively)

q κ g α β 1E1 2E1 2E2 3E1 3E2

1 –1 γ 90 90 –4618s –4618s 123 –4618s –966

–1 1 114 99 –4527s –4527s 528 –4571 –568

1 γ 22 112 –1125x –1125x –438 –1148 –587

1 1 31 119 –1197s –1197x –485 –1219 –670

2 –1 γ 135 85 –4917 –4611s 2013 –4617 –720

–1 1 179 93 –5305 –4461s 712 –4678 –1332 

1 γ 50 120 –922 –1220s 2296 –1220s –387

1 1 52 117 –1289 –1225s 1005 –1225s –397

3 –1 γ 148 59 –7615 –4567n –4567x –6246 –4542

–1 1 172 71 –7010 –4396x –4396n –6691 –4209

1 γ 42 61 –2604 –1599 –1198n –1198x –732

1 1 51 74 –2378 –1215x –1215n –1239 –500

4 –1 γ 156 55 –8566 –6783 –4561s –9355 –4561n

–1 1 189 62 –8986 –9310 –4357s –13611 –4357s

1 γ 48 48 –3804 –4430 –1192s –4585 –1192n

1 1 59 50 –4055 –5467 –1169s –6666 –1169n

5 –1 γ 59 129 –4875 –4621 –1643n _4613 –1512

–1 1 73 138 –4917 –4364 –1749n –4458 –1495 

1 γ 18 156 –1180 –1166 –552n –1107 –552s

1 1 25 191 –1367 –1272 –681n –1203 –680

6 –1 γ 56 191 –5394 –5063 –1578s –4677 –1578s

–1 1 66 205 –5293 –4838 –1587s, –4481 –1587s

1 γ 18 181 –1235 –1196 –552s, –1128 –549

1 1 25 202 –1396 –1290 –681s –1215 –681s

7 –1 γ 48 48 –3804 –4430 –1192s –4585 –1192s

–1 1 56 52 –3511 –4124 –1166s –4369 –1166n

1 γ 18 65 –1149 –1206 –500s –1172 –500s

1 1 23 68 –1196 –1257 –539s –254 –539x

8 –1 114 76 –4806 –4512s –315 –4566 –953 

1 γ 15 109 –1057 –1149s –527 –1102 –547 

1 1 22 115 –1143 –1215s –631 –1195 –608 

9 –1 1 112 146 –5168 –4479s –565 –4581 –921

1 1 47 85 –1814 –1222s –206 –1222x –441
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consequently, this energy value is also an extremum for all NE1. There are

no spurious roots in this case. The second root (NE2), with enlargement of

the basis, seems to converge to the next Dirac eigenvalue.

q = 2 : Similar to the case of q = 1, except that the nonlinear parameters

correspond to an extremum of 2E1.
q = 3 : A very strange case. The extrema in 2E1 and 2E2 coincide and

these two energies are degenerate. In this point the energy surfaces merge

(a maximum in the lower surface coincides with a minimum in the upper

surface). The energy values corresponding to κ = –1 and to κ = 1 are

close, respectively, to the Dirac 1s1/2 and 2p1/2 energies, except that the

Dirac energies do not exhibit this kind of degeneracy.

q = 4 : Another troublesome case. Spurious roots appear for both s1/2 and

p1/2 symmetries. The matrix eigenvalues corresponding to the extrema give

rather good approximation to the Dirac energies (the one with κ = 1 and

g = γ gives the exact 2p
1/2

energy) however the presence of the spurious

roots creates the well known difficulty.

q = 5 – q = 7 : Three cases interesting and similar to each other. The

extrema correspond to the second roots (2E2). Both first and second roots

reasonably well approximate the Dirac eigenvalues and there are no spu-

rious roots. The case q = 7, κ = –1, g = γ gives the exact 2s 1/2 Dirac

energy.

The “incomplete” cases (q = 8 and q = 9) are, in a way, similar to the cases

q = 1 and q = 2.

Another very interesting feature of the energy surfaces which may be

deduced from a comparison of table 1 and figures 3-5 is their multi-level

structure. As one can see, the same eigenvalue of the Hamiltonian matrix,

depending upon the range of the nonlinear parameter values, may approxi-

mate different eigenvalues of the Hamiltonian operator. In all n = 2 surfaces

each extremum is located on one of two “terraces” linked to each other by

steep steps (the equienergetic lines are there so dense that they appear in

the plots as black areas). A “terrace” corresponding to a given eigenvalue

contains one or several extrema separated by rather shallow valleys.

The structure of the energy surfaces becomes more complicated for

larger N and for an increasing number of nonlinear parameters. There-

fore, a general classification scheme of the extrema and the formulation of 

criteria which would allow the identification of those extrema which are

physically meaningful seems to be desirable.

4. Conclusions 

– As it is known [2-4],[11], establishing correct relations between the com- 

ponents of the wavefunction leads to a numerically stable and (“safe”
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variational procedure for a Dirac-Coulomb eigenvalue problem. Incor-

rect relations between the two components may produce quite unex-

pected results, as e.g. exact energies with completely wrong wavefunc-

tions. This feature of the equations, when misunderstood, may lead

to serious mistakes; however, when consciously used, may lead to new

simple methods for the estimation of the energy values.

– Contrary to the case of the Schrodinger-equation-based variational

principle, in variational calculations with two-component wavefunc-

tions a “good” energy does not imply that the corresponding wave-

function is correct. In particular, a mysterious disappearing of spurious

solutions when using the minimax principle [13] does not constitute a

feature of this principle but is a consequence of a fortuitous selection

of the extremum in the space of the nonlinear parameters for which

such a root does not appear.

– In the case of two-component variational problems the energy surfaces

as functions of nonlinear parameters contain a multitude of different

kinds ofextrema. Most of them reasonably well approximate the eigen-

values but not the wavefunctions. The number of these extrema grows

up very fast with the number of the linear variational parameters. The

selection of the correct extremum must be associated with an analy-

sis of the resulting wavefunctions by at least checking its asymptotic

behaviour(c.f.[10], [11]).

– The structure of the energy surface drastically changes when the num-

ber of the basis functions is enlarged. Therefore a frequently advocated

strategy: “Choose the nonlinear parameters variationally for a simple

problem and then enlarge the basis” , may lead to erroneous results.
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RELATIVISTIC MULTIREFERENCE MANY-BODY PERTUR-
BATION THEORY
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Department of Chemistry, University of Puerto Rico, 
P.O. Box23346, San Juan, PR 00931-3346, USA

Abstract. Our recently developed relativistic multireference MØller-Plesset

(MR-MP) perturbation theory has been applied, using Gaussian spinors,

to low-lying even- and odd-parity states of a carbon isoelectronic sequence

up to Z = 60. We have analysed quantitatively the way relativity alters

asymptotic configuration interaction.

1. Introduction

Accurate calculations of heavy atoms, heavy-atom-containing molecules,

and highly ionized ions must include relativistic, electron correlation and

QED effects. To accurately account for relativistic and electron correlation

effects, an intense effort in the last decade has been directed toward devel-

oping relativistic many-body theories. Among the relativistic many-body

techniques developed recently are muiticonfiguration Dirac-Fock (MC DF)

self-consistent field (SCF) method [1, 2] , single-reference relativistic many-

body perturbation theory [3, 4, 5], relativistic coupled cluster theory [6, 7],

and the relativistic configuration interaction method [8, 9].

For a large number of atomic and molecular systems, near-degeneracy

in the valence spinors gives rise to a manifold of strongly interacting con-

figurations, i.e., strong configuration mixing within a complex [10], and

makes a niulticonfigurational treatment mandatory. The classic examples

in atomic physics are the near-degene- racy effects in ground-state beryl-

lium [10, 11, 12, 13] and open-shell atoms with two or more open valence

shells [10, 14, 15, 16, 17]. For reactive and excited-state energy surfaces
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of molecules, correlated methods based on single configuration SCF the-

ory also fail to properly describe the separated fragments because of the

near-degeneracy which follows the separation process [18].

In recent studies [19], we have developed a relativistic multireference

MØller-Plesset (MR-MP) perturbation theory that combines the strengths

of both MC DF SCF and many-body perturbation methods in application 

to a general class of quasidegenerate systems with multiple open valence

shells. We have extended the single-reference relativistic many-body pertur-

bation theory [5] to a relativistic MR-MP perturbation theory for systems 

with a manifold of strongly interacting configurations. The relativistic MR-

MP perturbation theory for electron correlation is designed to treat a gen-

eral class of openshell systems with two or more valence electrons that often 

exhibit quasidegeneracies. The essential feature of the theory is its treat-

ment of the state-specific nondynamic correlation in zero order through

quadratically convergent matrix MC DF SCF [20], and recovery of the re-

maining correlation, which is predominantly dynamic pair correlation, by 

second-order MR-MP perturbation theory. 

In this study, relativistic MR-MP perturbation calculations are per-

formed on low-lying J=0, 1, 2, 3 even and odd-parity states of carbon and 

carbon isoelectronic sequence up to Z=60 (Z is nuclear charge). We examine 

quantitatively the way relativity alters asymptotic configuration interaction 

(CI) [10]. It is inappropriate to use relativistic many-body perturbation the-

ory based on a single-configuration reference state (1s2s22p2
1/2 J=0) for 

low-Z members of the isoelectronic sequence due to strong mixing among 

several configuration states (i.e., quasidegeneracy). The results of relativis-

tic multireference many-body perturbation calculations demonstrate that 

it can be applied equally successfully to low-Z members in which configu-

ration mixing is strong through higher-Z members in which mixing tends 

to weaken due to asymptotic CI [10]. The implementation of relativistic 

MR-MP procedure, using G spinors (G for ”Gaussian”), is reviewed in the 

next section. In Sec. 3, results of relativistic MR-MP calculations on carbon 

and carbonlike ions will be presented. 

2. Theory 

2.1. THE RELATIVISTIC NO-PAIR DIRAC-COULOMB-BREIT
HAMILTONIAN

The effective N-electron Hamiltonian (in atomic units) for the development 

of our MC DF SCF and MR-MP algorithms is taken to be the relativistic 

” no-pair” Dirac-Coulomb (DC) Hamiltonian [21, 22], 
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(1)

+ = L+(1)L+(2). . . L+(N), where L+(i) is the projection operator onto

the space D(+) spanned by the positive-energy eigenfunctions of the ma-

trix DF SCF equation [22]. + is the projection operator onto the positive-

energy space D
(+)

spanned by the N-electron configuration-state functions

(CSFs) constructed from the positive-energy eigenfunctions (∈ D(+) ) of

the matrix DF SCF. It takes into account the field-theoretic condition that

the negative-energy states are filled and causes the projected DC Hamil-

tonian to have normalizable bound-state solutions. This approach is called 

the no-pair approximation [21] because the formulas of many-body per-

turbation theory includes only excitation to positive-energy virtual states

from positive-energy bound states and virtual electron-positron pairs are

not permitted in the intermediate states in many-body perturbation sum-

mation.

The eigenfunctions of the matrix DF SCF equation clearly separate

into two discrete manifolds, D(+) and D(–) , respectively, of positive-energy

and negative-energy states. As a result, the positive-energy projection op

erators can be accommodated easily in many-body calculations. The for-

mal conditions on the projection are automatically satisfied when only the

positive-energy spinors (∈ D(+) ) are employed. hD is the Dirac one-electron

Hamiltonian (in a.u.)

(2)

Here α and β are the 4×4 Dirac vector and scalar matrices, respectively.

Vnuc (r) is the nuclear potential, which for each nucleus takes the form

(3)

The nuclei are modeled as spheres of uniform proton-charge distribution;

Z is the nuclear charge. R is the radius of that nucleus and is related

to the atomic mass, A , by R= 2.2677. 10–5A 1/3. Adding the frequency-

independent Breit interaction, 

(4)

to the electron-electron Coulomb interaction, in Coulomb gauge, results

in the Coulomb-Breit potential which is correct to order α2 (α being the

fine structure constant ) [21]. Addition of the Breit term yields the no-pair

Dirac-Coulomb-Breit (DCB) Hamiltonian [21, 22]



194 MARIUS JONAS VILKAS ET AL.

(5)

which is covariant to first order and increases the accuracy of calculated

fine-structure splittings and inner-electron binding energies. 

The effective Hamiltonian approach is a viable one for atoms and molecu-

les because it translates into mathematical formalism the idea that atoms 

and molecules are weakly-bound inhomogeneous systems in which pair pro-

duction processes are absent. In atoms and molecules, particle numbers are

conserved and one can treat particle number nonconserving terms as a 

small perturbation. Higher-order QED effects appear first in order α3 . To

evaluate the higher-order QED effects one needs to go beyond the no-pair

approximation [23, 24]. 

2.2. THE MATRIX MULTICONFIGURATION DIRAC-FOCK SCF METHOD 

N-electron eigenfunctionsof the no-pair DC Hamiltonian areapproximated

by a linear combination of M configuration-state functions, {Φ(⊥)
I (γIℑπ)

;I = 1,2, . . . ,M}, constructed from positive-energy eigenfunctions of the

matrix DF SCF equation. The M configuration-state functions form a sub-

space P(⊥) of the positive-energy space D(⊥) 

(6)

Here the MC DF SCF wave function ψK(γKℑπ) is an eigenfunction of the

angular momentum and parity operators with total angular momentum ℑ
and parity π. γ denotes a set of quantum numbers other than ℑ and π nec-

eccary to specify the state uniquely. In the following, CγKℑπ
I  is abbreviated

as CγK
I . The total DC energy of the general MC DF state |ψK(γKℑπ) >

can be expressed as

(7)

Here it is assumed that ψK(γKℑπ) and Φ(+)

I  (γIℑπ) are normalized.

The hermiticity of the Hamiltonian has been employed to reduce the

number of terms in the summation, and the total energy can be expressed 

in terms of the unique elements of  the one- and two-particle radial integrals, 
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(8)

where Nt and NV are the numbers of nonzero tα and Vβ coefficients. The 

short notation for the radial integrals has been used:

(9)

(10)

The generalized Coefficients tα and Vβ are expressed in terms of nonzero

angular coefficients and Vβ
IJ

(11)

(12)

The angular coefficients and V
β
IJ account for the symmetries of the

radial integrals I(aαbα) and Rv (aβ bβ , cβdβ
), and the notations α = {a α bα}

and β = {vβ , aβ bβ , cβ dβ } have been used.

The following notations are used: the indices e and f denote occupied

spinors, the indices p, q, r and s denote any of the occupied or virtual

spinors (both positive and negative energy spinors), the indices I, J and K
denote CI coefficients and the indices a, b, c, d, v are reserved for the sets

α and β describing unique radial integrals.

Given a trial orthonormal set of one-particle radial spinors 

the optimum occupied electronic radial spinors 

can be found by a unitary transformation U = 1 + T

(13)

Here, the summation extends over both Nk negative- and Nk positive-

energy spinors. The summation involving negative-energy spinors may not 

(∈D(+) ⊂ D )  (
_

)

)

{φ(+)
n eke(r)}(∈ D(+)

)

{φ (0)
n p kp

(r)}

tα
IJ

tα
IJ
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be excluded [20, 25] because the negative-energy spinors form part of the 

complete set of eigenfunctions of MC DF mean-field equations and account 

for the polarization of the vacuum due to mean-field potential. Pnk (r) and

Qnk (r) are the large and small radial components and are expanded in Nκ
G spinors, and that satisfy the boundary conditions associated 

with the finite nucleus, 

(14)

Here and are linear variation coefficients. 

In terms of the powers of the spinor variation parameters T =

the energy EMC(γKℑπ) in Eq. (8) is a fourth-order function of rotation

matrix elements Tpe . Inserting the optimum spinor expression (13) into Eq. 

(8) and collecting the terms of the same power of T, the energy expression

to second-order E(2)(T) in Tpe is obtained 

(15)

Variation of the approximate energy E(2)
(T) with respect to parameters

Tpe leads to the Newton-Raphson (NR) equations:

(16)

(17)

where the gradient with respect to Tpe is

and the Hessian matrix with respect to Tpe and Tqf is

{χL
k i } {χS

ki }

{ξ L
ki }                        {ξ S

ki }

{Tpe },
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(18)

To account for the orthogonality constraints, terms involving Lagrange

multipliers must be added to the energy functional: 

(19)

where Sef = 〈 φ(0)
neκe (r) | φ(0)

nfκf
(r)〉 = δef is the overlap between spinors e

and f (an orthonormal trial set of radial spinors was assumed) and {λef}

are the Lagrange multipliers. 

The CI coefficients C γK
I  (Eq.6) are not constant, and variations over

them must also be incorporated in the second-order energy. Consider two 

sets of CI coefficients - C
γ 
= {CI

γ } (optimum) and C(0)γ = (approxi-

mate). Using Taylor expansion of the energy and expansion of DCIg in terms 

of the CI vectors 

with

(20)

the second-order energy can be expressed in terms of ∆ C I
γ 

or Bγ' . Let us

define

(21)

{CI

(0) γ '
}

  {CI
(0) γ }
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and

(22)

(23)

(24)

(25)

If we add B γ ' to our set of variational parameters, we obtain the second-

order Newton-Raphson equations 

(26)

As with the spinor orthogonality constraints, the normalization condi-

tion Σγ ’ A γ A γ ’
= 1 of the CI vectors must be incorporated:

(27)

For the ground electronic state, the Hessian matrix possesses Nk positive

and Nk negative eigenvalues corresponding to a minimum and a maximum, 

respectively, in the space of large and small component parameters. There-

fore, the energy functional is minimized with respect to spinor rotations 

between the occupied electronic spinors and the positive energy virtual 

spinors. The functional is maximized with respect to spinor rotations be-

tween the occupied electronic spinors and the negative energy spinors. By 

maximazing the vacuum charge-current density polarization contribution, 

the MC DF mean-field potential defines its dressed vacuum. 

The quadratically convergent NR algorithm for relativistic MC DF SCF 

calculations has been discussed in detail in previous work [20]. To remove 

the arbitrariness of the MC SCF spinors and density weighting, the canoni-

cal SCF spinors are transformed into natural spinors for subsequent

perturbation calculations [26]. The key to successful implementation of the 

subsequent MR-MP perturbation theory calculations is rapid convergence 

{ω (+)

n p kp }
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of our quadratically convergent matrix MC DF SCF method [20] for a gen-

eral class of MC DF wave functions for openshell quasidegenerate systems. 

2.3. RELATIVISTIC MULTIREFERENCE MANY-BODY PERTURBATION
THEORY

The no-pair DC Hamiltonian H +

DC is partitioned into an unperturbed

Hamiltonian and a perturbation term following MØller and Plesset [27],

where

(28)

where the unperturbed model Hamiltonian H0 is a sum of "average" DF

operators Fav 

(29)

Here, the one-body operator Fav diagonal in {ω(+)
npκp} may be defined by

(30)

(31)

The generalized fractional occupation np is related to diagonal matrix el-

ements of the first-order reduced density matrix constructed in natural 

spinors by

~

(32)

where nnp k p[I] is the occupation number of the npkp shell in the CSF

ΦI(γIℑπ). Jp and Kp are the usual Coulomb and exchange operators con-

structed in natural spinors. 

The unperturbed Hamiltonian H0 may be given in second quantized

form,
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(33)

where is a normal product of creation and annihilation opera-

but should be chosen as close to the full Hamiltonian H +
DC as possible so

that the perturbation series converges rapidly in low order. The zero order 

Hamiltonian is usually chosen to bs a sum of effective one-electron oper 

ators (MØller-Plesset partitioning [27]). For closed-shell systems, the best

results have been obtained with MØller-Plesset partitioning, i.e. the sum

of closed-shell Fock operators as H0. An effective one-body operator for

general MC DF SCF closely related to the closed-shell Fock operator is the 

"average" DF operator Fav , a relativistic generalization of a nonrelativistic 

average Fock operator [26]. The theory provides a hierarchy of well-defined

(+)

algorithms that allow one to calculate relativistic correlation corrections 

in non-iterative steps and, in low order, yields a large fraction of the dy-

namieal correlation. ln this form of partitioning perturbation corrections

describe relativistic electron correlation, including cross contributions be-

tween relativistic and correlation effects. 

Many-electron wave functions correct to α2 may be expanded in a 

set of CSFs that spans the entire N-electron positive-energy space D (+),

vidual CSFs are eigenfunctions of the total angular momentum and par-

ity operators and are linear combinations of antisymmetrized products of 

positive-energy spinors (∈ D (+) ). The one-electron spinors are mutually

orthogonal so the CSFs {                  } are mutually orthogonal. The un-

perturbed Hamiltonian is diagonal in this space: 

ap +ap{ }
tors, a p

+ and ap, respectively. The zero-order Hamiltonian, H0 is arbitrary

constructed in terms of Dirac one-electron spinors. Indi-

(34)

so that 

(35)

Since the zero-order Hamiltonian is defined as a sum of one-electron oper-

ators Fa v  (Eq. 29), EICSF is a sum of the products of one-electron energies 

defined by εq
+ and an occupation number nnqkq[I] of the nqkq shell in the

CSF

ΦI (γIℑπ),

(+)ΦI (γIℑπ)

(+)ΦI (γIℑπ):
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(36)

The subset, {Φ(+)

I (γIℑπ); I = 1, 2, .., M}, with which we expand the

MC DF SCF function ψK(γKℑπ) (Eq. 6) also defines an active subspace

P(+) spanned by and its M-1 orthogonal complements,

{ψK(γKℑπ); K = 1, 2, ..., M}. The matrix of H+
DC in this subspace is

diagonal

(37)

where

and

The residual space in the positive-energy subspace is Q(+) = D(+) – P(+),

which is spanned by CSFs I = M + 1, M + 2,. . .}.

Application of Rayleigh-Schrödinger perturbation theory provides order-

by-order expressions of the perturbation series for the state approximated 

by

(38)

where

(39)

and

(40)

(41)

Here, R is the resolvent operator,

The projection operator Q(+) projects onto the subspace Q(+)
 span-

ned by CSFs I = M + 1, M + 2,...}. Using the spectral 

ψK(γKℑπ)

 {Φ(+)

I (γIℑπ)

{ψK(γKℑπ) >,

 {Φ(+)

I (γIℑπ);
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resolution of the resolvent operator acting on >, the second-

order correction may be expressed as

(42)

In this form, all perturbation corrections beyond first order describe rel-

ativistic electron correlation for the state approximated by the MC DF

SCF wavefunction >. When the effective electron-electron in-

teraction is approximated by the instantaneous Coulomb interaction —rij ,
1

relativistic electron correlation is termed Dirac-Coulomb (DC) correlation

[5]. Inclusion of the frequency-independent Breit interaction in the effective

electron-electron interaction yields the no-pair DCB Hamiltonian (Eq. 5),

and relativistic electron correlation arising from the DCB Hamiltonian is

the DCB correlation [5].

Summations over the CSFs in Eqs. 34 through 42 are restricted to

CSFs (∈ D (+)) constructed from the positive-energy branch (D(+)) of

the spinors, effectively incorporating into the computational scheme the

”no-pair” projection operator contained in the DC and DCB Hamil-

tonians. Further, the CSFs (∈ Q (+)) generated by excita-

tions higher than double, relative to the reference CSFs (∈
P(+)), do not contribute to the second- and third-order because for them

Neglecting interactions with the filled negative-energy sea, i.e. neglect-

ing virtual electron-positron pairs in summing the MBFT diagrams, we 

have a straightforward extension of nonrelativistic MBPT. Negative energy 

states (∈ D (+)), as part of the complete set of states, do play a role in

higher-order QED Corrections. Studies have appeared which go beyond the 

’’ no-pair” approximation where negative-energy states are needed to evalu-

ate the higher-order QED effects [28, 23, 29, 24, 30, 31]. Contributions from

the negative energy states due to creation of virtual electron-positron pairs 

are of the order α3 [28, 23, 29, 24, 4, 30, 31], and estimations of the radia-

tive corrections are necessary in order to achieve spectroscopic accuracy for

higher Z. In the present study, the lowest-order radiative corrections were 

estimated for each state to achieve better accuracy. 

V |{Φ(+)
I (γIℑπ)

{ψK(γKℑπ)

Φ(+)
L (γLℑπ)

Φ(+)
I (γIℑπ)

< Φ(+)
I (γIℑπ)|V|Φ(+)

L (γLℑπ) >= 0, < Φ(+)
I (γIℑπ)|H+

DC |Φ(+)
L (γLℑπ) >=

0.
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2.4. COMPUTATIONAL METHOD 

The large radial component is expanded in a set of Gaussian-type functions

(GTF) [32] 

(43)

with n[κ] = =κ for κ < 0, and n[κ] = κ + 1 for κ > 0. Aκi is the normal-
L

ization constant. The small componsnt basis sct, (x S
ki (r)} is constructsd

to satisfy the boundary condition associated with the finite nucleus with

a uniform proton charge distribution [32]. With the finite nucleus, GTFs

of integer power of r are especially appropriate basis functions because the

finite nuclear boundary results in a solution which is Gaussian at the origin

[32]. Basis functions which satisfy the nuclear boundary conditions are also

automatically kinetically balanced. Imposition of the boundary conditions

results in particularly simple forms with spherieal G spinors [32].

For all the systems studied, even-tempered basis sets [33] of Gaussian-

type were used for MC DF SCF. In basis sets of even-tempered Gaussians,

the exponents, {ζκi} are given in terms of the parameters, α and β, accord-

ing to the geometric series

(44)

In MC DF SCF calculations on carbonlike species, the parameters α and

β are optimized until a minimum in the DF total energy is found. The 

radial functions that possess a different κ quantum number but the same

quantum number are expanded in the same set of basis functions (e.g., the

radial functions of p1/2 and p3/2 symmetries are expanded in the same set

of p-type radial Gaussian-type functions). The nuclei were again modeled 

as spheres of uniform proton charge in every calculation. The nuclear model 

has been discussed in detail in Ref. [32]. 

Virtual spinors used in the MR-MP perturbation calculations were gen-

erated in the field of the nucleus and all electrons (VN potential) by employ-

ing the "average" DF operator Fav (Eq. 30). The order of the partial-wave

expansion, Lmax the highest angular momentum of the spinors included in 

the virtual space, is Lmax = 7 throughout this study. All-electron MR-MP

perturbation calculations including the frequency-independent Breit inter-

action in the first and second orders of perturbation theory are based on 

the no-pair Dirac-Coulomb-Breit Hamiltonian, H +
DCB The speed of light 

was taken to be 137.0359895 a.u. Radiative corrections, or the Lamb shifts, 

were estimated for each state by evaluating the electron self-energy and 

vacuum polarization following an approximation scheme discussed by In-

delicate, Gorceix, and Desclaux [31]. The code described in Refs. [31, 34] 

was adapted to our basis set expansion calculations for this purpose. In this 
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scheme [34], the screening of the self energy is estimated by employing the 

charge density of a spinor integrated to a short distance from the origin,

typically 0.3 Compton wavelength. The ratio of the integral computed with

an MC DF SCF spinor and that obtained by using the corresponding hy-

drogenic spinor is used to scale the self-energy correction for a bare nuclear

charge computed by Mohr [28]. The effect on the term energy splittings

of mass polarization and reduced mass are non-negligible. In the present

study, however, we neglect these effects.

3. Results and Discussion

With four valence electrons, ground and low-lying excited states of carbon

and carbonlike ions exhibit the near degeneracy characteristic of a manifold

of strongly interacting configurations within the n = 2 complex [10, 35]. The

carbon isoelectronic sequence provides an extreme example of how relativ-

ity alters asymptotic CI. For neutral carbon, the ground state is nominally

2s2 2p2 3 P0, but it is strongly mixed with the 2s2 2p2 1S0, 2p4 3 P0 and 2p4

1S0 configuration states. At higher Z, however, the 2p4 configurations have

much higher energy than the 2s2 2p2 , and their mixing becomes weak. In

other words, relativity alters the strong CI such that correlation configura-

tions, which are significant in low-Z ions, become negligible in high-Z ions

where relativistic effects are significant [10]. In the present study, we employ

recently developed relativistic MR-MP perturbation theory code [19] based

on expansions in G spinors to examine the effects of strong configuration 

mixing on electron correlation for low-Z through high-Z carbonlike ions.

We first give a detailed account of MC DF SCF and MR-MP calculations

applied to carbonlike ions with Z=10, 20, and 30.

Table 1 displays the computed MC DF SCF energies, EMCDF, of the

lowest J=0 (3 P0), J=l (3 P1), and J=2 (3 P2) even-parity states of Ne + 4

(Z=10), Ca+14 (Z=20), and Zn+24 (Z=30) along with the configuration 

mixing coefficients. The MC DF SCF is a complete active space SCF within 

the n = 2 complex. The second column of the Table indicates the number 

of complete active space CSFs, NCSF , arising from the n = 2 complex. The 

MC DF energy, E MCD F , is given in the third column. In the MC DF SCF

calculations, the 1s spinor was kept doubly occupied, and the remaining

4 electrons were treated as active electrons in generating complete active 

space CSFs within the n = 2 shells. MC DF SCF calculations on the 

carbonlike ions with Z=10, 20, and 30 were performed to obtain a single 

set of spinors for all the J=0, 1, and 2 fine-structure states by optimizing 

the J-averaged MC energies: 
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TABLE 1. MC DF SCF energies and configuration mixing coefficients for the low-
est J = 0, 1, 2 even-parity states of carbonlike ions. Notations 2p1/2 = 2p_ and

2p3/2 = 2p+ were used.

State N CSF EMCDF

Ne+4 (Z=10)

J = 0 (3P0) 4 -120.725767

J = 1 (3P1) 2 -120.723760

J = 2 (3P2) 4 -120.720011

Ca+14 (Z=20)

J = 0 (3P0) 4 -640.771797

J = 1 (3P1) 2 -540.687998

J = 2 (3P2) 4 -540.596945

Zn+24 (Z=30)

J = 0 (3P0) 4 -1270.949137

J = 1 (3P1) 2 -1270.207544

J = 2 (3P2) 4 -1269.907970

State C2s
2
2p

2_ C2s
2
2p_2p+ C2s

2
2p

2+ C2p
2
_2p

2+ C2p–2p
3+ C2p

4+

Ne+4 (Z=10)

J = 0 (3P0) 0.81980 -0.55836 0.07665 -0.10142

J= 1 (3P1) 0.99187 0.12729 

J = 3 (3P2) 0.58663 0.79974 0.10313 0.07530 

Ca+11 (Z=20)

J = 0 (3P0) 0.89796 -0.42628 0.08755 -0.06540

J = 1 (3P1) 0.98424 0.10718 

J = 2 (3P2) 0.74262 0.66060 0.07547 0.08019 

Zn+
24

(Z=30)

J = 0 (3P0) 0.96989 -0.22200 0.09617 -0.02803

J = 1 (3P1) 0 99617 0.08749 

J = 2 (3P2) 0.95158 0.29411 0.03138 0.08373 

(45)

instead of performing state-specific MC DF SCF calculations on each fine-

structure state. The approach is especially effective for computing small 

fine-structure splittings (ie., near degeneracy among the 2p
1/2

and 2p3/2

spinors).

The magnitude of the configuration mixing coefficients is a measure of

configuration interaction. The electronic configurations, 2s2
2p2

1/2 , 2s2
2p2

3/2 ,
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Figure 1. Deviations of the theoretical 2s22p2 fine-structure separations, 3P0 - 3P1, from
the experimental data (in cm–1) as functions of Z. 

TABLE 2. Contributions to the total energies (in a.u.) of 2s22p2 3PJ of some car-
bonlike ions. 

Z EMCDF B(1) E (2)
DC B(2) LS Etot

2s22p2 3P0

10 -120.725767 0.015746 -0.152927 -0.001729 0.010857 -120.864677

20 -540.771797 0.149773 -0.166455 -0.007769 0.126073 -540.796248

30 -1270.949137 0.547108 -0.170089 -0.018812 0.502891 -1270.590929

2s2
2p2 3P1

10 -120.723760 0.015592 -0.152935 -0.001725 0.010861 -120.862828

20 -540.687998 0.145945 -0,166952 -0,007721 0,126306 -540,736726

30 -1270.207544 0.523372 -0.172102 -0.018250 0.504875 -1269.874524

2s22p2 3P2

10 -120.720011 0.014985 -0.152948 -0.001722 0.010869 -120.859697

20 -540.596945 0.138962 -0.167700 -0.007694 0.126450 -540.633378

30 -1269.907970 0.503745 -0.177124 -0.018307 0.505025 -1269.599655

2p2
1/2 2p2

3/2 and 2p4
3/2  give rise to four J=0 even-parity states (two 3P0 states

and two 1S0 states), and they do interact strongly in low-Z species. The

2p
1/2

and 2p3/2 spinors are nearly degenerate in low-Z Ne + 4 ion because rel-
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Figure 2. Contributions of the second-order Dirac-Coulomb, ∆ E (2)

DC and second-order

Breit, ∆B (2), correlation energies to the 2s22p2 fine-structure separations, 3P0 -3P1,2, as
functions of Z (in a.u.).

ativistic effects are small, and the CSFs arising from 2s22p2

1/2 and 2s22p2

3/2

configurations are nearly degenerate, and there is a strong configuration 

interaction between them. Four-configuration MC DF SCF calculations 

yield the configuration mixing coefficients, 0.81980, -0.55836, 0.07665 and 

-0.10142, respectively, for the lowest J=0 (3P0) state of Ne+4, with coeffi-

cients nearly equal in magnitude for the two CSFs arising from the 2s2
2p2

1/2

and 2s22p2

3/2. As Z increases, relativity lifts the near degeneracy and signifi-

cantly weakens the Configuration interaction between the two CSFs because

it induces a large Separation between the 2p1/2 and 2p3/2 spinor energies 

and simultaneously a smaller separation between the 2s1/2 and 2p1/2 spinor

energies (the 2s1/2 and 2p1/2 spinor energies become asymptotically degen-

erate in the hydrogenic limit). Table 1 displays just such a trend as the 

nuclear charge increases. Four-configuration MC DF SCF on the J=0 state

of Zn+24 yields the configuration mixing coefficients, 0.06389 and -0.22200,

respectively, for the two CSFs arising from the 2s2 2p2

1/2
and 2s2 2p2

3/2 The

configuration interaction between the two CSFs for Zn+24
(Z=30) is re-

duced dramatically by relativity, making 2s22p2
1/2 the dominant configura-

tion. The n = 2 complex gives rise to two CSFs for the J=1, even-parity

state. These CSFs come from the electronic configurations 2s2 2p1/22p3/2
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Figure 3.
to the fine-structure separations, 3P0 -3P1,2, as functions of Z (in a.u.).

Contributions of the Lamb shift, ∆ LS, and first-order Breit, ∆ B(1), corrections

and the former being the dominant confguration with a mixing

coefficient 0.99187. Thus the J=l state does not exhibit near-degeneracy in

the low- to high-Z series.  

Within the n = 2 complex, the electronic configurations, 2p
3/2

,

and give rise to J=2, even-parity CSFs

(two 3P2 and two 1D2 states), and these interact strongly. Four-configuration

MC DF SCF calculations on the ground 3P2 state, including the four J=2

CSFs of Ne+4, yield configuration mixing coefficients of 0.58662, 0.79974,

0.10313, and 0.07530, respectively, for the 

and CSFs, indicating near degeneracy, while the con-

figuration mixing coefficients become 0.95158, 0.29411, 0.03138 and 0.08373

for the heavier Zn+24 with the configuration being more dom-

inant. Again, as Z increases, relativity causes a large separation of the 2p1/2

and 2p
3/2

spinor energies and weakens the configuration interaction between 

the 2s22p1/2 2p3/2 and CSF.

The bulk of the experimentally determined fine-structure term energies 

are reproduced by the MC DF calculations within the n = 2 complex.

In Ne+4, the lowest 3P1 (J=1) and 3P
2

(J=2) state energies computed in

two- and four-configuration MC DF SCF calculations are, respectively, 440 

cm–1 and 1263 cm–1 above the ground 3P0 (J=2) state computed in four-

2p
1/2

2p3

3/2

2p
1/2

2p 3

3/2
2s22p2

3/2 ,  2p2

1/2 2p2

3/2

2s2
2p2

2s22p
1/2

2s2
2p1/ 2 2p

3 / 2
, 2s2

2p2

3/ 2

2p2

1/2 2p2

3/2    2p1/ 22p3

3/2

2s2
2p

1/ 2
2p3/2

2s22p2

3 / 2



RELATIVISTIC MULTIREFERENCE MBPT 209 

Figure 4. Contributions from each order of perturbation theory to the term energy

2s22p2 3P0 - 2s2
2p2 1D2 (in a.u.).

configuration MC DF SCF, while experimental values are, respectively, 413 

cm=1 and 1111 cm=1 [36, 37]. For Zn+24, the lowest 3 P
0

(J=0) and 3P1

(J=1) state energies computed in two- and four-configuration MC DF SCF 

calculations are, respectively, 162761 cm–1 and 228510 cm–1 above the

ground 3P
2

(J=2) state computed by four-configuration MC DF SCF, while

the corresponding experimental values are, respectively, 157717 cm–1 and

318009 cm–1 [36, 37]. The residual discrepancy is primarily due to dynamic

correlation and radiative corrections unaccounted for in the MC DF SCF

calculations.

State-specific MR-MP calculations were carried out on the lowest
3

P
J

(J=0, 1, 2) states as well as eleven low-lying excited states of carbon and

sixteen carbonlike ions with Z=7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 25, 30, 

35, 40, 50, 60. The fourteen lowest states consist of two J=0 (
3P0 and

1S
0
),

one J=l (3 P1 ), and two J=2 (
3P2  and

1D
2
) even-parity states arising from

the 2s22p2 configuration, one J=0 (
1S0), two J=2 (

3P
2

and
1D

2
) even-

parity states arising from the 2p4 , and two J=2 (5S°2 and
1 D o

2
), three J=l

(3D o

1 , 3S o

1 , and 1P o

1 ), and one J=0 (3P°0 ) odd-parity states arising from the

2s2p3 . Critically evaluated experimental data are available for these ions

up to Z=35 [36, 37]. Table 2 displays the computed MR-MP second-order

DC energies, E(2)
DC

first- and second-order Breit interaction energies, B (1)

and B(2), and the Lamb shift correction, LS, of the lowest J=0 (
3P0 ), J=l 
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Figure 5. Contributions from each order of perturbation theory to the term energy
2s 22p2 1D2 - 2s22p2 1S0 (in a.u.). 

(
3P1 ), and J=2 (3 P2 ) even-parity states of Ne+4 (Z=10), Ca+14 (Z=20), and

Zn+24 (Z=30). The radiative corrections, or the electron self -energy and 

vacuum polarization, were estimated by employing the method described 

by Indelicato and Kim [31, 34]. The total energies Etot, the sum of the MC 

DF SCF energies, and correlation and radiative corrections, are given in

the last column of the Table. 

In Table 3, a detailed comparison of theoretical and experimental data is

made on the term energies (cm=1) of the thirteen low-lying even- and odd-

parity states of carbonlike ions with Z=10, 20 and 30, relative to the ground 

J=0 (2s2 2p2 3 P0) state. Experimental term energy separations [36, 37] are

reproduced in the second column for comparison. Theoretical term energy 

separations of the low-lying excited states, given in the third column of the

Table, were computed by subtracting the total energy of the ground J=0

(2s2 2p2 3 P0 ) state from those of the excited levels. The last two columns

(denoted NR-SCI and NR-MBPT) contain the term energy separations ob-

tained in previous nonrelativistic correlated calculations for comparison. 

In the NR-MBPT calculations [38], multireference second-order perturba-

tion theory was employed to account for electron correlation for the ions 

with 10≤ Z ≤30. In the NR-SCI calculations [39], combination of perturba-

tion theory and simplified configuration interaction (SCI) was employed to 

account for electron correlation in some carbonlike ions. Relativistic cor-
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TABLE 3. separations obtained by second-order

MR-MP calculations on Ne+4 (Z=10), Ca+14 (Z=20), and Zn+24 (Z=30) with ex-

periment and previous work. Deviations of the theoretical results from experimental

data are given in parentheses. Energies (in cm-') are given relative to the ground

2s22p2 3P0 state.

Comparison of the term energy

Level Experiment MR-MP NR-SCI NR-MBPT

Ne+4

2s2
2p2 3P1 413 405(8) 404(9) 395(18)

30291 29967(324) 30578(-278) 29721 (570) 
1S0 63915 63120(795) 641 13(-198) 63310(605)

2s2p3 5S 0

2
88402 88105(297) 87844(558) 87712(689)

3D 0

1
175926 174580(1346) 176095(-169) 172842(3084)

3P o

0
 208188 207500(688) 209266(-1078) 205788(2400)

3So
1 279372 2784 15( 957) 280252 (-880) 279397(-25)

1 D o
2 270555 269736(819) 271079(-524) 268705(1850)

1P o
1 303815 302688(1127) 306157(-2342) 301656(2159)

2p 4 3P2 412678 413632(-954) 416615(-3937) 40686615812) 
1D2 436582 437974 (- 1392) 440505(-3923) 42 7945 (8637)
1S0 500475 501399(-924) 507417(-6942) 493168(7307) 

Ca+14

2s2
2p2 3P1 17555 17504(51) 17658(-103) 17111(444)

1D2 108595 108448(147) 108326(269) 107860(735) 
1S0 197648 197291(357) 197429(219) 197132(516) 

2s2p3 5 S o
2 275894 275769(125) 276006(-112) 276516(-622)

3D o
1 497583 497057(526) 498304(-721) 495662( 1921) 

3Po
0 581695 581419(276) 583354(-1659) 580113(1582) 

3S o
1 728889 728426(463) 731009(-2120) 727455( 1434) 

1D o
2 729693 729364(329) 731271(-1578) 728002(1691) 

1 Po

1 8 1436 1 813982( 379) 81 6978( -26 17) 81 2348 (201 3) 

2p4 3P2 1107558 1107847(-289) 1111030(-3472) 1105028(2530)
1 D

2
1195159 1195674(-515) 1198527(-3368) 1191802(3357) 

1S0 1350868 1351286(-418) 1356144(-5276) 1347181(3687) 

Zn+24

2s22p2 3P1 157717 157667(50) 159737(-2020) 152482(5235)

1D2 429317 429120(197) 423597(5720) 419114(10203)

1S0 582277 582146(131) 576384(5893) 570101(12176)

2s2p3 5 So
2 704942 703815(1127) 701636(3306)

3 D o
1 1026512 1026282(230) 1021590(4922)

3P o
0 1238573 1237903(670) 1231683(6890)

1D o
2 1514472 1515328(-856) 1504649(9823)

1P o
1 1696908 1696764(144) 1683925( 12983) 

2p4 3P2 2108474 2109188(-714) 2105001(3472) 2091429(-17045)

1 D2 2382294 2382120(174) 2373526(8768) 2358965(22329)

1S0 2701912 2701760(152) 2686041(-15871) 2669546(32366)

3S o
1 1428104 1428266(-162) 1419147(8957) 

1D2
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Figure 6. Contributions from each order of perturbation theory to the term energy 

rections were included in the Breit-Pauli approximation. The deviations 

from experiment of the calculated nonrelativistic term energy separations

are nearly the same as those obtained by our relativistic MR-MP for the 

low-Z Ne+4, but increase in magnitude rapidly as Z increases, manifesting 

the inadequacy of the Breit-Pauli approximation. At low-Z, both nonrela-

tivistic and relativistic multireference perturbation theories disagree with

experiment by 1-2%. The accuracy of both the nonrelativistic and relativis-

tic calculations for the low-Z ions is limited by the approximate treatment 

of electron correlation. 

Figure 1 illustrates the differences Eexp(3P0 - 3 P1 ) - Etheor(3 P0 - 3P1 )

between theoretical and experimental fine-structure energy separations (in 

cm–1), 2s2 2p2 3 P0 – 2s2 2p2 3 P
1
, as functions of the atomic number Z.

The deviations from experiment of the fine-structure separations computed

by NR-MBPT [38], NR-SCI [39], and nonrelativistic multiconfigurational 

Hartree-Fock (MCHF) [40], are also given to illustrate the sharp increases as 

Z increases. Both NR-MBPT and NR-SCI, as well as MCHF, start to show 

significant deviations from experiment for Z>20. The failure to reproduce 

experimental fine-structure separations may be attributed to the absense of 

fully relativistic treatment including QED corrections. The fine-structure

separations computed by MC DF SCF plus first-order Breit interaction cor-

rection (denoted MC DFB in Fig. 1) starts to deviate significantly beyond 

2s2
2p2 3P

0
- 2s2P3 5S

2
(in a.u.).
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Figure 7. Contributions from each order of perturbation theory to the term energy

Z~30, necessitating dynamic correlation and radiative corrections. Figure 

1 illustrates that relativistic MR-MP calculations (curve labeled MR-MP

in the Figure), which include the Breit interaction in the effective electron-

electron interaction, as well as the Lamb shifts, result in significant correc-

tions and yield close agreement between the calculated and experimental 

fine-structure energy separations throughout the 6≤ Z≤ 35 series. 

Figures 2 and 3 illustrate the contributions from each order of perturba-

tion theory to fine-structure energy separations, 2s2 2p2 3 P0 – 2s2 2p2 3 P1

and 2s2 2p2 3 P0 – 2s2 2p2 3P2 as functions of Z. These contributions were

computed by subtracting the energy of the ground J=0 (
3P0 ) even-parity

state from those of the J=1, 2 fine-structure states in each order of per-

turbation theory displayed in Table 2. Besides the zero-order contribution, 

∆ EMCDF = EMCDF (3P0) - EMCDF (3P2,1), the dominant contribution to
the difference in the fine-structure separations is due to the first-order Breit

interaction ∆ B (1) = B (1)(3P0) – B (1) (3P2,1), which is why the MC DF SCF

plus first-order Breit interaction correction predicts the fine-structure sep-

arations accurately up to Z~30. For higher Z, however, the contributions 

from dynamic correlation and QED corrections, ∆ E (2)

DC ∆ B (2), and ∆ LS ,

also become important. None of the higher-order relativistic effects are fully 

accounted for by the nonrelativistic correlated methods, which account for 

relativistic effects solely by employing Breit-Pauli Hamiltonian, and the dif-

2s2
2p2 3P0 - 2p4 1S0 (in a.u.). 
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TABLE 4. Energies (in cm–1) of 2s22p2 3P2,
1D2 and

1 S
0

even-parity

states of carbon and carbonlike ions relative to the ground 2s22p2 3P0

state.

Z 2s22p2 3P2 2s22p2 1 D2 2s22p2 1 S0

Etheor Eexp Etheor Eexp Etheor Eexp

60 4481354 8948917 9326278

50 2003517 3977884 4272264 

40 756050 1484339 1704088

35 423840 423460 827134 828075 1012750 1012339 

30 218027 218009 429120 429317 582146 582277 

25 98698 98804 212235 212320 332904 333240 

20 35828 35917 108448 108595 197291 197648 

15 8989 9031 59506 59681 119531 119960 

14 6378 6415 52734 52927 107319 107792 

13 4388 4419 46516 46729 95718 96243 

12 2907 2933 40716 40957 84573 85163 

11 1839 1858 35232 35506 73750 74423

10 1095 1111 29967 30291 63120 63915 

9 603 615 24847 25236 52509 53538

8 301 306 19747 20274 42458 43186 

7 126 130 14791 15316 31776 32689 

6 40 43 9452 10194 20181 21648 

ference between the calculated and experimental fine-structure separations 

tends to diverge as Z increases. 

In Tables 4, 5, and 6, a detailed comparison of theoretical and experi-

mental data is made on the term energies (cm–1) of the low-lying even- and

odd-parity states of carbon and carbonlike ions with Z=6-60, given relative 

to the ground J=0 (2s2 2p2 3P
0
) state. Theoretical term energy separations,

Etheor, of the low-lying excited states were computed by subtracting the

total energy of the ground J=0 (2s2 2p2 3P0 ) state from those of the excited

levels. Experimental term energy separations Eexp [36, 37, 41] are repro-

duced in an adjacent column for comparison. Experimental data are not 

available for ions with Z=40, 50, 60. 

We see that the theoretical term energy separations differ from exper-

iment by approximately 7% near the low-Z end and by less than 0.1% at 

Z=35. Although the deviation between theory and experiment increases to 

the level of a few percent near the low-Z end, it is consistently below 1% 

in the range 12 ≤ 2 ≤ 35, quite good agreement. 

Figs. 4 and 5, respectively, illustrate the contributions from each order 
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TABLE 5. Energies (cm
–1

) of 2s2p3 odd-parity states of carbon and car-
bonlike ions relative to the ground 2s22p2 3P0 state.

Z 2s2p3 5S o
2 2s2p3 3Do

1
2s2p3 3Po

0

Etheor Eexp Etheor Eexp Etheor Eexp

60 6101989 6653593 10946547 

50 3221623 3675602 5533006 

40 1601310 1978685 2649402 

35 1083711 1087299 1434085 1433398 1811238 1813193

30 703815 704942 1026282 1026512 1237903 1238573 

25 442954 443199 722782 723180 849998 850271 

20 275769 275894 497057 497583 585335 581695 

15 167507 167731 322632 323379 379716 379931 

14 150075 150320 291618 292440 343612 344066 

13 133573 133837 261466 262377 308648 309142 

12 117834 118115 232007 233034 274421 274969 

11 102719 103010 203097 204262 240765 241370 

10 88105 88402 174580 175926 207500 208188 

9 73887 74194 146297 147898 174456 175257 

8 60026 60325 118081 120059 141422 142397 

7 46360 46785 89336 92252 106718 109224 

6 33149 33735 60113 64090 73956 75255 

Z 2s2p3 3S o
0 2s2p3 1 Do

2 2s2p3 1 Po
1

Etheor Eexp Etheor Eexp Etheor Eexp

60 11194685 15280025 15807972 

50 5751916 7434040 7851610 

40 2849826 3367950 3676112 

35 2007318 2006021 2242457 2239520 2490026 2490473

30 1428266 1428104 1515328 1514472 1696764 1696908 

25 1025230 1025564 1048663 1048774 1172479 1172639 

20 728426 728889 729364 729693 813982 814361 

15 489927 490551 484193 484700 541281 541981 

14 446264 446941 439840 440401 491998 492774 

13 403462 404197 396428 397045 443731 444589 

12 361335 362138 353736 354419 396236 397181 

11 319715 320588 311573 312321 349296 350329 

10 278415 279372 269736 270555 302688 303815 

9 237240 238294 228017 228900 256180 257384 

8 195954 197086 186153 187052 209465 210462 

7 153979 155127 143382 144187 160890 149188 

6 110408 105799 99425 113252 119878 
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TABLE 6. Energies (cm–1) of 2p4 3P2,
1D2 and 1S0 even-parity states of

carbon and carbonlike ions relative to the ground 2s22p2 3 P0 state.

Z 2p4 3P2 2p4 1D2 2P4 1S0

Etheor Eexp Etheor Eexp Etheor Eexp

60 13038645 17613316 22253257 

50 7174541 9253656 11371979 

40 3889244 4707889 5557770 

35 2863439 2860683 3345145 3346758 3862279 3865945 

30 2109188 2108474 2382120 2382294 2701760 2701912 

25 1545930 1545721 1698701 1698342 1913393 1912928 

20 1107847 1107558 1195674 1195159 1351286 1350868 

15 742967 742540 793827 793113 902806 902338 

14 675219 674750 720299 719510 820221 819717 

13 608611 608090 648211 647335 739058 738525 

12 542941 542338 577292 576295 659058 658445 

11 478008 477272 507285 506128 579918 579190 

10 413632 412678 437974 436582 501399 500475 

9 349647 348325 369165 367400 423261 421980 

8 285937 283759 300742 298292 345268 343305 

7 222249 220290 232483 266915 

6 158586 164559 187074 

of perturbation theory to the term energy separations, 2s2 2p2 3 P0 – 2s2 2p2

1 D2 and 2s2 2p2 1D2 – 2s2 2p2 1S0 as functions of Z. The largest contribu-

tion to the term energy separations is due to the zero-order contribution, 

∆ B(2) and ∆ LS are small and nearly constant. As Z increases, however,

the contribution from the first-order Breit interaction ∆ B (1) grows rapidly.

The contributions from each order of perturbation theory to the term 

energy separations, 2s2
2p2 3 P0 – 2s2p3 5S2 and 2s2 2p2 3 P0 – 2p4 1S0, are

given, respectively, in Figs. 6 and 7. In the independent particle model, the 

ground 3P0 state arises nominally from the electronic configuration 2s2 2p2 ,

whereas the 5S2 and 1S0 states arise from 2s2p3 and 2p4 , respectively.

As the Lamb shift corrections tend to differ noticeably for states arising 

from different electronic configurations, the contribution to the term energy

separations from the difference in the Lamb shift, ∆ LS , grows as rapidly

as ∆ B (1)
as Z increases while the contributions ∆ E (2)

DC and ∆ B (2)

are small 

and nearly constant. 

∆ EMCDF , of course. Near the low-Z end, the contribution from ∆ E (2)

DC ,
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RELATIVISTIC VALENCE BOND THEORY AND ITS APPLI-
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Abstract. We present a new version of the relativistic configuration in-

teraction valence bond (RCIVB) method. It is designed to perform an

ab initio all-electron relativistic electronic structure calculation for diatomic

molecules. A nonorthogonal basis set is constructed from numerical Dirac-

Fock atomic orbitals as well as relativistic Sturmian functions. A symmet-

ric reexpansion of atomic orbitals from one atomic center to another is

introduced to simplify the calculation of many-center integrals. The elec-

tronic structure of the metastable (5p5 6s + 5p5 6s) Xenon molecule is calcu-

lated and the influence of different configurations on the formation of the

molecule is analyzed.

1. Introduction

Recent years have seen a significant increase of interest in the ab initio va-

lence bond (VB) approach [1, 2]. Early interest in this method started with

Heitler and London [3] who were the first to introduce the valence bond

theory in the late twenties. The basic idea of the method is to construct

the molecular wave function from atomic orbitals localized at the differ-

ent atomic centers. Consequently the covalent bonding between atoms is

described in terms of an ”exchange effect” initiated by the overlap of or-

bitals of participating atoms. At large internuclear separations R the molec-

ular wave function has a pure atomic form that appropriately describes
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the molecular dissociation limit. At short internuclear separations orbitals 

around different centers have considerable overlap or non-orthogonality

which leads to a large exchange effect and creates a bond. Therefore it is cru-

cial for the method to use a formalism incorporating the non-orthogonality

of the basis wave functions. Application of the VB theory for many-electron

molecules only became practical with the advent of large computers. 

An important development for the valence bond theory was the use of

"ionic structures", in which the participating atoms obtain positive and 

negative charges. Coulson and Fischer [4] showed that ionic structures in-

cluded into the calculation lead to deformation of the atomic wave functions 

and hence to more realistic description of molecular formation. 

Development of the VB theory was furhter directed towards optimiza-

tion of the shapes of orbitals in order to introduce correlation effects. These 

models for electronic structure of a molecule were proposed by Goddard [5] 

and Gerratt [6]. The distinctive features of the model are that it takes

into account the different ways of coupling the electron spins together to 

give total electron spin S and that the atomic orbitals are optimized by 

applying a direct minimization procedure. These ideas formed the basis of 

the spin-coupled theory [7] which was applied to the electronic structure 

of several diatomic molecules [8, 9] whose spectroscopic constants showed 

a. 90 - 95 % agreement with observed values. Its concepts have been used 

to develop sophisticated spin-coupled approaches [10, 11, 2, 12, 13, 14, 15]

that take into account a considerable amount of the chemically significant 

electron correlation effects. Another development [5] lead to the so-called

generalized valence bond method[16, 17, 18], which combines features of 

self-consistent field and spin-coupled approaches. 

Fock (HF) non-orthogonal atomic orbitals (19, 20, 21, 22] to construct the

molecular wave function. Unlike many applications of the VB theory where 

analytic atomic orbitals of Gaussian type are used as basis functions, this 

way of constructing molecular wave functions avoids the need for large ba-

sis sets. The analytic functions do not display a correct behavior at the 

nuclei and in the asymptotic region which thus require a large number of 

Gaussians. In our basis it seems sufficient to use a single HF orbital for 

each inner shell and a few additional excited orbitals to describe valence 

electrons. This is true because the atomic HF orbitals already form a good 

representation of the atom. They have the right number of nodes and are 

orthogonal with respect to other HF orbitals localized at the same center. 

More crucial for the success of Refs. [19, 20, 21, 22] is the implementation 

of a full configuration interaction (CI) procedure based on non-orthogonal

basis functions. Each molecular configuration is constructed from atomic 

configurations, covalent or ionic. In turn each atomic configuration is de-

In a recent development of the method we incorporated numerical Hartree-
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scribed by Slater determinants constructed from the numerical HF orbitals. 

In the current paper we introduce a relativistic development in valence 

bond theory. Much of the structure of Refs. [19, 20, 21, 22] is retained in

this relativistic version of VB theory with the primary difference being that 

the basis functions are now constructed from four-component atomic Dirac 

spinors. These functions are numerically obtained by solving the integro-

differential Dirac-Fock (DF) equations for atoms. In addition to using DF 

functions to optimize our basis we use configurations with fractional oc-

cupation. These Configurations are constructed using relativistic version of 

the Hyper-Hartree-Fock method [23]. In this approach every atomic config-

uration is described by a density matrix of mixed states corresponding to 

the configuration average. In the relativistic calculations we average over all 

relativistic configurations which are created from the same non-relativistic

configuration. This averaged configuration has the property that it is the 

solution of non-relativistic HF equations when the speed of light goes to 

infinity in the relativistic DF equations. 

In a CI expansion, excited configurations help to describe the forma-

tion of the molecule. Describing these excited configurations on the basis 

of Dirac-Fock functions has proven to be ineffective because the DF or-

bitals increase rapidly in size with increasing general quantum number n. 

Moreover, a complete set of these functions contains, in addition to discrete 

functions, continuum functions which are clearly impractical computation-

ally.

To improve the characteristics of the excited states we instead use a set 

of Sturmian functions. The idea to use Sturmian functions as virtual states 

to model correlation effects in an atom was first developed by Sherstuk and 

Pavinsky [24, 25]. It was shown that these functions form a complete set 

of discrete functions with similar asymptotic behavior and orbital size as 

the occupied valence orbitals. These characteristics make Sturmian basis 

functions very efficient in describing correlation effects (See section 2). 

The one- and two-electron integrals are calculated using a modified 

Löwdin’s reexpansion procedure [26]. The modification concerns the fact 

that Löwdin’s method is not very efficient when reexpanding strongly lo-

calized orbitals. Instead the integration region is divided in two and in 

each region the slowly varying part of the basis function centered in the 

other region is reexpanded. This symmetric reexpansion has much faster 

convergence characteristics than the method proposed in Ref. [26]. 

Our approach is, in principle, an all-electron calculation, which, for in-

stance:, allows us to evaluate the electronic densities at the nuclear sites 

and to calculate hyperfine structure constants. Hence, the dynamics of all 

electrons in a molecule is accounted for. However, often this is not nec-

essary. Deep lying orbitals do not take part in the molecular formation. 
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Therefore we introduce core and valence orbitals, where core electrons will 

not participate in the CI.

The method is designed to calculate the electronic potential surfaces 

and other electronic properties of dimers composed of atoms with any nu-

clear charge Z, any number of electrons, and any level of excitation. In 

this report, it is applied here to obtaining the electronic potentials for two 

interacting Xe atoms. This method is very suitable for studying collisional 

problems, because it naturally provides the physically realistic description 

of interacting atoms at large internuclear separations. 

There are two reasons for calculating the metastable Xe potentials. 

Firstly, it has been proposed that metastable noble gases such as xenon 

might be good candidates for Bose-Einstein Condensation [27]. Secondly,

the analysis of recent experiment [28] which studied the real-time dynamics 

of ultra-cold collisions with metastable and double excited xenon atoms, re-

quires a theoretical treatment of the potentials over a wide range of internu-

clear separations. This study is a first attempt to obtain ab initio relativis-

tic electronic potentials of metastable Xe atoms. Previous semi-empirical

investigation of metastable xenon gas has focused on the long-range inter-

actions between two distant atoms [27]. However in many situations the 

intermediate and short internuclear separations are essential for a complete 

understanding of cold collisions. For instance, the ability to hold metastable 

atoms with a reasonable density in a magnetic or optical trap depends on 

the full shape of the adiabatic potential curves. The asymptotic descrip-

tion of the potential curves is not sufficient and an ab initio calculation is 

required. Notice that the ability to hold metastable Xe not only depends 

on the adiabatic potentials but also on the “width” of the potentials. This 

width describes Penning and associative ionization of colliding metastable 

Xe. This paper does not address these ionization issues. 

2. Atomic basis functions for occupied and unoccupied orbitals 

The numerical atomic Dirac-Fock wave functions that describe occupied 

molecular orbitals were obtained by solving integro-differential DF equa-

tions for the self-consistent field of the configuration average. The equa-

tions for the self-consistent field were derived by applying the Hartree-Fock

method to the eigenvalue and eigenfunction problem of the relativistic en-

ergy operator 

(1)

for each atom, where hi = + β i c2 – Z/ri is the Dirac operator for

an electron in the field of a nucleus of charge Z and vij  = 1 /|ri – rj | is

the Coulomb operator for the electron-electron interaction; α and β are the   

∧

∧

  

c(αi pi )

 

→ →
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Dirac matrices and c is the speed of light. We express all equations using 

atomic units where h = me = 1. One atomic unit of length is 1 a.u. = 

0.05’29177 nm.

-

In the central-field approximation the single-particle wave function is a 

four-component Dirac spinor 

(2)

where r is the electron coordinate, Pnk (r) and Qnk (r) are the large and

small components of the wave function, respectively; xkµ (θ, ϑ) is the spin-

orbit wave function, corresponding to an eigenvalue κ = + 1) – (j +

1/2)2 , where and j are the orbital and total angular momentum quantum

numbers and µ is the projection quantum number of j.
The antisymmetric N-electron atomic wave functions are obtained in 

Slater determinant form det A = det(ψ1( r1), ..., where the

functions ψ i are of the form given in Eq. (2) and superscript A labels the 

atom. To construct a many-electron wave function which belongs to the

configuration

→

 

we select determinants in which q1 one-electron functions belong to shell 

n1 l1 j1 , and so on. Notice that for convenience we use the notation

instead of nκ to label the orbital ψ nk µ Both notations uniquely define a

relativistic orbital. Note also that every non-relativistic configuration has 

split into several relativistic configurations. 

Atomic configurations with fractional occupation are constructed for the 

orbitals in open shells. Fractional occupation is introduced via a configura- 

tion average. The average of Dirac-Fock orbitals is taken over all states of 

each relativistic configuration and all relativistic configurations belonging 

to the same non-relativistic configuration. This averaging ensures conver- 

gence of Dirac-Fock solutions to the non-relativistic Hartree-Fock solutions 

when the speed of light is infinity. 

The unoccupied or virtual orbitals are described by Sturmian functions. 

These Sturmian orbitals are obtained by solving integro-differential Dirac- 

Fock-Sturm equations. These equations can be derived from the DF equa-

tions for occupied valence orbitals. The Coulomb interaction between elec- 

tron and nucleus in these equations is multiplied with a factor λ. Further-

more, the one-electron energy is held constant at the energy of a valence 

electron. Solving these equations for eigenvalues λ > 1 we obtain a com- 

plete set of eigenfunctions. The complete set of these Sturmian functions is 

discrete arid each orbital has approximately the same radius and the same 

asymptotic behavior as the corresponding valence orbital. These Sturmian 

ψN(rN)) /√ N!    →
__

→
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orbitals help to construct excited configurations and lead to a compact and 

rapidly converging CI procedure. 

3. Molecular wave function 

The total molecular wave function Ψ AB for a N-electron two-atomic molecule

AB is introduced as a linear combination of molecular Slater determinants 

det α 
AB

(3)

where every molecular determinant is the antisymmetrized product of two

atomic determinants 

(4)

The coefficients Cα in (3) are obtained by solving a generalized eigenvalue

niatrix problem described by the equation 

(5)

where HAB is the Hamiltonian matrix of atoms A and B and their mutual

Coulomb interactions. The nonorthogonality matrix SAB , which is a scalar

product of Slater determinants, is given by

∧

∧

 

(6)

where Dα β = det| < αi |βj > |is the determinant of the matrix of overlap

integrals

=< α i |βj > between orbitals ai and β
j

belonging to Slater determi-

nants det α 
AB and det β 

AB , respectively. The αi (β j) stand for atomic orbitals

ψ nk (r) centered at either nucleus A or B.
It is convenient to define one- and two-particle density transition ma-

trices. The one-particle density matrix is given by

(7)

where ψ i (r) and are atomic orbitals and the two-particle density

matrix is

→

(8)

S α β
i , j

ψ j
* (r')→

→



where

where
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(9)

Introducing the Hamiltonian HAB  through one- and two-electron terms

and the Coulomb repulsion uAB between the nuclei,

∧

 

(10)

we describe one-electron matrix elements using Ea. (7) in the form[1] 

(11)

(12)

details.

Two-electron matrix elements are obtained using Eq. (8) in the form [l] 

‘13)

will be where the evaluation of the matrix element 

discussed in Sections 5 and 6. 

4. Wave function reexpansion 

Two-center integrals are calculated using a symmetrical reexpansion proce-

dure when a product of two wave functions localized at different centers ap-

pears in the integrands. The reexpansion procedure is based on techniques 

proposed by Löwdin [26]. Assume that the atomic nuclei are situated at 

position A and B respectively (see Fig. 1). The coordinates can be related 

to an arbitrary origin O and the z-axis is directed along the internuclear 

and where RA , and RB are the nuclear coordinates. See Section 4 for more 

< αi , αj |1/r12 |β k ,β l  >
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axis AB. The nuclear coordinates are RA and RB and the electrons coordi-

nates are ri with i = 1, 2,. . .. The following geometrical relations exist for

any of the electrons

→→

(14)

In the central-field approximation the atomic orbitals from centers A and 

B are Dirac spinors in Eq. (2) which can be written in the form 

(15)

where f(r) describes the large P or small Q component of the radial one-

electron wave function. The spin-orbit wave function xl,j, µ = xk µ in terms

of the spherical harmonics Yl,m (r) is
→

(16)

where are Clebsch-Gordan coefficients and Φσ is a spin function.

To accelerate convergence of the reexpansion we modified the standard

Löwdin reexpansion procedure by dividing the range of integration into two 

exclusive regions VA and VB where we assume that the region V A contains

atom A and the region VB contains atom B. We only apply the reexpansion 

procedure to the "tails" of wave functions occurring in a given region. To

describe this we introduce the step-wise functions: 

(17)

The reexpansion of a wave function centered at B onto center A has the 

form

(18)

where
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Figure 1. Definition of nuclear and electron coordinates. The nuclei are located at A
arid B and the electron is located at i. The integration regions VA arid VB are also shown. 

where Pl
|m| are the standard associated Legendre polynomials, σ = m-µ

and

Using symmetrical reexpansion the product of two wave functions, cal-

culated on the different centers can be described as

(20)

Expression (20) is used to calculate the one- and two-electron two-center

integrals. As an example we present the final expression for the overlap 

integral between orbitalsα
i
and βj from dett

A B
α and det

A B
β , respectively,

(21)

5. Coulomb-type two-center integrals 

In this section we will find expressions for the Coulomb integrals, in a form

convenient for computation, using the reexpanded atomic orbitals. We have 
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extended the notation for the electron coordinates in the following way: 

the Coulomb matrix elements Eq.(22) can be written as 

where the ri and Rα are defined with respect to an arbitrary origin. 

Following Eq. (13) the matrix elements for the Coulomb interaction are

(22)

where ρ a,c (r1A ) = and ρ b,d (r2B ) = are den-
sities of four-component electronic wave functions centered at A and B,
respectively. Since the Coulomb potential for an electron denqity ρ is de-

fined as

→

  

(23)

(24)

Now we expand the densities ρ(r)and Coulomb potentials U(r) that are
→ →

→
 

created by these densities in terms of the spherical harmonics. For ρa,c (r)

we have 

(25)

(27)

A similar expansion can be written for the density ρbd near center B. The

potential Uac (r) can be introduced as
→

(28)

and ρ ac(r) is the radial electronic density:

where gl(jµ , j' ,µ') are reativistic Guant coefficients:

(26

ψ*a (r1A)ψc (r1A)

 

→ →

 

ψ*
b (r2B)ψd(r2B)   

→ →
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where

(29)

A similar expression can be obtained for Ubd.
The integration region of r in Eq. (22) is divided in two half planes VA

and VB and a surface S between the planes. Furthermore using the Laplace 

equation ∆ U (r) =– 4πρ(r) and applying Green's theorem, we rewrite Eq. 

(24) as  

→

 

→

→

(30)

where

(31)

Using Eq. (28) and the symmetrical reexpansion of Eq. (18) for the density 

ρ bd (rB) around center A and for the density rac(rA ) around center B we

obtain for the volume integrals

→ →

For the surface (S) integrals we have

where µ = µa – µc = µd – µb.

(32)

(33)
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6. Exchange-type integrals 

The exchange type interaction matrix element is 

(34)

where ψ(r) is defined by Eq.(2), a,c denote one-electron functions centered  
→

 

at A, and b,d denote functions centered at B.
We can separate the relativistic exchange type integral into a part for 

the large component P and a part for the small component Q:

(35)

Let us consider the integral hP
ac,bd for the large component. Equivalent ex- 

pressions for the small component integrals can be derived. For the product

of functions of different centers we use the two-center expansion formula 

(20). The spatial integrations for the exchange type integral is divided in 

where uk
tions

where the half planes VA, B are defined in Fig. 1. Hence the exchange type 

integral has the four contributions 

(36)

where the first two terms of Eq. (36) correspond to integrals where the 

wave functions of electrons 1 and 2 are in overlapping region and the last 

two terms of Eq. (36) are related to integrals where the wave functions are 

in non-overlapping region. Using an expansion of the Coulomb interaction 

1/r12 around center A in terms of spherical harmonics 

we have for terms with overlapping wave func- 

(37)

four parts via 

(r1 , r2 ) = rk

<
/ r k

>

+ 1
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The integral hP,(BB)
ac,bd

is solved similarly. The integrals h P,(AB)
ac,bd and hP(BA)

ac,bd

are evaluated using techniques similar to those in Section 5. 

The main complexity in evaluating exchange type integrals is that it 

includes infinite sums. These expansions however converge very fast due to 

the symmetrical reexpansion procedure. It is sufficient to use 8 to 10 terms 

in expansion (37) to obtain exchange type integrals with an accuracy of 

10
–6

7. Metastable Xe2

We now use the RCIVB method, described in above sections, to calculate 

the electronic potentials of metastable Xe2. Xe atom has 54 electrons and in 

the calculation we define the 48 electrons in the closed shells 1s22s22p6...5s2

of each Xe atom as the core. An R-dependent all-electron core potential is 

calculated exactly and included in the Hamiltonian. The outer 5p5
and 6s

orbitals of metastable Xe are valence orbitals. Furthermore we use the Stur-

mian 6p, 5d 7s virtual or unoccupied orbitals to enhance the correlation.

Various covalent and ionic configurations are constructed by distributing 

electrons from the 5p56s configuration over the relativistic 5p2
1/2, 5p3

3/2,

6s1/2, 6p1/2, 6p3/2, 5d3/2 5d5/2, and 7s1/2 orbitals. In total there are 97

relativistic configurations in our CI expansion. This particular choice of 

configurations which ignores the 5p1

1/2 5p4

3/2 nl configurations, takes into ac-

count the majority of the correlation and restricts the number of one and 

two electron integrals to a manageable number. In total we construct 1992

molecular determinants from these configurations. The list of configura-

tions is given in Tables 1 and 7. For clarity the molecular configurations 

with atomic configurations interchanged are not listed in Tables 1 and 

7 but they are included in our calculation. This ensures that the gerade 

(“g” )/ungerade (“u” ) symmetry of molecule is satisfied. 

The configurations are divided into several groups on the basis of their 

role in the formation of the molecule. The first line in the table describes 

the core orbitals. The metastable Xe 5p5 6s + 5p5 6s is the leading valence

configuration.

The next group of configurations include configurations where one Xe 

atom is in the metastable state and the other Xe atom is in a higher excited 

state that has the same parity as the metastable atom. These configura-

tions serve to obtain a correct description of the metastable atom and 

consequently a correct dissociation limit for the molecule. The group of 

configurations with “opposite parity” include two atomic configurations of 

opposite parity and contribute to the formation of a molecule at short and 

intermediate internuclear separation. 

Two groups of configurations contribute to the long-range polarization 
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TABLE 1. List of molecular configurations used in the calcula-
tions

Atom A Atom B Description

1s2
1/2...5s2

1/2 + 1s2
1/2...5s2

1/2 core

5p2
1/25p3

3/26s1/2 + 5p2
1/25p3

3/26p1/2 metastable

5p2
1/25p3

3/26s1/2 + 5p2
1/25p3

3/25d5/2 same parity

5p2
1/25p3

3/26p1/2 + 5p2
1/2 5p3

3/27s1/2

5p2
1/25p3

3/25d3/2 + 5p2
1/25p3

3/25d3/2

5p2
1/25p3

3/25d3/2 + 5p2
1/25p3

3/25d5/2

5p2
1/25p3

3/25d5/2 + 5p2
1/25p3

3/27s1/2

5p2
1/25p3

3/27s1/2 + 5p2
1/25p3

3/27s1/2

5p2
1/25p3

3/26s1/2 + 5p2
1/25p4

3/2

5p2
1/25p3

3/25d3/2 + 5p2
1/25p4

3/2

5p2
1/25p3

3/25d5/2 + 5p2
1/25p4

3/2

5p2
1/25p3

3/26p1/2 + 5p2
1/25p4

3/2

5p2
1/25p3

3/26p3/2 + 5p2
1/25p4

3/2

5p2
1/25p4

3/2 + 5p2
1/25p4

3/2

5p2
1/2 5p3

3/25d5/2 + 5p2
1/25p3

3/25d5/2 other neutral

5p2
1/25p3

3/25d3/2 + 5p2
1/25p3

3/27s1/2

5p2
1/25p2

3/26s2
1/2 + 5p2

1/2 5p4
3/2

5p2
1/25p3

3/27s1/2 + 5p2
1/25p4

3/2

5p2
1/25p3

3/26p1/2 + 5p2
1/25p3

3/27s1/2

5p2
1/25p3

3/26p3/2 + 5p2
1/25p3

3/27s1/2

5p2
1/25p3

3/26s1/2 + 5p2
1/25p3

3/26p1/2 opposite parity

5p2
1/25p3

3/26p1/2 + 5p2
1/25p3

3/26p3/2

5p2
1/25p3

3/26s1/2 + 5p2
1/25p3

3/26p1/2 C6

5p2
1/25p3

3/26p3/2 + 5p2
1/25p3

3/26p3/2

5p2
1/25p3

3/26p1/2 + 5p2
1/25p3

3/26p3/2

5p2
1/25p3

3/25d3/2 + 5p2
1/25p3

3/26p3/2 C8

5p2
1/25p3

3/2 5d3/2 + 5p2
1/25p3

3/2 6p1/2

5p2
1/25p3

3/25d5/2 + 5p2
1/25p3

3/26p1/2

5p2
1/25p3

3/2 5d5/2 + 5p2
1/25p3

3/26p3/2

5p2
1/25p3

3/2 + 5p2
1/25p3

3/26s1/25d3/2 ionic
5p2

1/25p3
3/2 + 5p2

1/2 5p3
3/25d3/2 5d5/2

5p2
1/25p3

3/2 + 5p2
1/25p3

3/26s1/25d5/2

5p2
1/25p3

3/2 + 5p2
1/2 5p3

3/26s 1/2 6p1/2

5p2
1/25p3

3/2 + 5p2
1/25p3

3/25d3/26p1/2

5p2
1/25p3

3/2 + 5p2
1/25p3

3/25d5/26p3/2

5p2
1/2 5p3

3/2 + 5p2
1/25p3

3/26s1/26p3/2

5p2
1/2 5p3

3/2

5p2
1/25p3

3/2

5p2
1/25p3

3/2 + 5p2
1/25p3

3/25d3/26p3/2

5p2
1/2

5p
3/2
6s

1/2
       +          5p2

1/25p3
3/25d3/2

5p2
1/25p3

3/25d3/26p3/2

5p2
1/25p3

3/25d3/26p3/2

+

+
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TABLE 2. List of molecular configurations. Continued 

Atom A Atom B Description

5p2
1/25p3

3/2
+ 5p2

1/2
5p3

3/2
6s2

1/2
ionic

5p2
1/25p3

3/2 + 5p2
1/25p3

3/25d2
3/2

5p2
1/2 5p3

3/2 + 5p2
1/25p3

3/25d2
5/2

5p 2
1/2 5p3

3/2 + 5p2
1/25p3

3/27s2
1/2

5p2
1/25p3

3/2 + 5p2
1/25p4

3/26p1/2

5p2
1/25p3

3/2 + 5p2
1/25p4

3/27s1/2

5p2
1/25p3

3/2 + 5p2
1/25p4

3/25d3/2

5p2
1/25p3

3/2 + 5p2
1/25p4

3/25d5/2

5p2
1/25p3

3/2 + 5p2
1/25p3

3/26p2
1/2

5p2
1/2 5p3

3/2 + 5p2
1/25p3

3/26p2
3/2

5p2
1/25p3

3/2 + 5p2
1/25p3

3/26s1/27s1/2

5p2
1/25p3

3/2 + 5p2
1/25p4

3/26s1/2

5p2
1/25p3

3/2 + 5p2
1/25p4

3/26p3/2

interactions between metastable atoms. These are the “C6” and “C8” con-

figurations, which give rise to the induced dipole-dipole –C6/R6 and to

the induced dipole-quadrapole –C8/R8 interactions, respectively. The next

group are the so called “ionic” configurations, where participating atoms 

have positive and negative charges. These configurations contribute at short 

internuclear separation. The last group of configurations presents so called 

“(other neutral” configurations and include configurations which do not play 

a significant role in the molecular formation. Some of these configurations 

contribute to the atomic structure. 

The use of physically realistic configurations in the CI ensures that 

molecular quantities such as dissociation energies, exchange and Coulomb 

type interactions and dipole-dipole long-range interactions are introduced 

correctly. Later we demonstrate our ability to analyze the influence of each 

group of configurations on the formation of the molecule by plotting the 

configuration weights as function of internuclear separation. The configu-

ration weights are sensitive indicators of the molecular wave function. 

The configuration weights for each state of the seven groups are deter-

mined by diagonilizing the matrix HAB . Since there are many eigenstates 

which have a lower energy than the metastable potentials we applied direct 

diagonalization instead of a Davidson iterative procedure. 

For the present calculation we focus on the lowest metastable potentials

of Xe
2

which are accessible in experiments with ultra-cold metastable Xe

[28]. These potentials dissociate to the three limits (5p5 6s + 5p5
6s) [3/2]2 

+ [3/2]2, [3/2]2 + [3/2]1 and [3/2]1 + [3/2]1 and have a projection of their 

total electron angular momentum along the internuclear axis Ω = 0, 1, 2, 3,
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4. The atomic notation is explained in Ref. [29]. The metastable potentials

are identified from a comparison with experimental atomic energies [29], 

the degeneracy at the dissociation limit for a given Ω and the CI weights. 

The potentials are used to obtain molecular constants of metastable

Xe2. The equilibrium distance, Re, rotational, we, and vibrational, Be, fre-

quencies at Re, and the dissociation energy, De , are shown in Table 3.

Potentials in Table 3 are ordered with increasing total energy. The sec-

ond column numbers the potentials. The first column of Table 3 indicates

the symmetry labels of the potentials. In relativistic notation these corre-

spond to the projection quantum number Ω and “g” and “u” symmetry.

Table 4 describes the molecular dissociation limits of the potentials shown 

in Table 3. 

As an example of the structure of the metastable potentials, we show

in Fig. 2 the potentials with Ω=0, that dissociate to the lowest metastable

atomic 5p56s levels. The potentials create three groups of curves with Re

between 10 a.u. and 13.3 a.u., 12.5 a.u. and 14.1 a.u., and 12.4 a.u. and 13.7

a.u.. The curves do not exhibit strong avoided crossings. For Ω = 0 there

are eight “g” potentials and six “u” potentials. The splittings between the 

three dissociation limits are related to the J = 1 and J = 2 fine-structure

splitting of the 5p56s [3/2] term. These splittings are in a good agreement

(7%) with experimental atomic data [29] where the experimental difference 

between the two metastable atomic levels [3/2]2 and [3/2]1 is ∆ Eexp =

977.6 cm –1 which is compared to the energy distance between the two 

lowest molecular dissociation limits in Fig. 2. The energy difference between 

the first and the third limit in Fig. 2 agrees to the same level of accuracy 

with twice the atomic energy difference ∆ Eexp .
Along with the potential energy surfaces we evaluated the CI weights of

the potentials. These weights are the square of the CI amplitudes of Eq. (3). 

Figures 3 and 4 show the summed weights of the groups of configurations 

defined in Tables 1 and 7 for the g and u lowest Ω = 3 curves as function

of internuclear separation. The weight of each group is obtained as the sum 

of all CI weights of determinants that belong to the configurations of this 

group. The two Ω = 3 potentials are quantitively different. From Table 3 we 

see that the lowest curve is much deeper and has an equilibrium distance 

at approximately 10 a.u. The second potential has an equilibrium distance 

of 13.5 a.u. For both figures the metastable configuration has the largest 

C1 weight. Figs. 3 and 4 also show there exist two distinctive regions of 

internuclear separations where the curves are qualitatively different. For R ≤ 
14 a.u. there is very “strong” configuration interaction. Many configurations 

contribute to the formation of the molecule. Except for the metastable 

configuration the CI weights of different groups have similar values. 

This situation changes for larger internuclear separations. The CI weights
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TABLE 3. Molecular constants of Xe2 potentials dissociating to

(5p56s + 5p56s) states (The energy equivalent 1 cm 1 is 29.9792458 GHz )

Ω g/u Index Re (a.u.) ωe (cm 1) Be (cm 1) De (cm 1)

0g 1 10.0 18.3 0.0046 1650

0u 2 10.0 19.0 0.0046 1636

0u 3 10.4 23.4 0.0043 1533

0g 4 10.4 24.0 0.0042 1517

0g 5 13.3 7.6 0.0026 314

0u 6 12.5 12.8 0.0029 856

0u 8 13.2 8.6 0.0026 366

0g 9 13.5 7.3 0.0025 296

0u 10 13.5 7.3 0.0025 295

0g 11 14.1 6.7 0.0023 239

0g 12 12.4 6.6 0.0030 649

0u 13 12.6 6.7 0.0029 566

0g 14 13.7 10.7 0.0024 348

0g 7 12.6 11.0 0.0029 579

1u 1 10.4 18.8 0.0042 1606

1g 2 10.2 20.6 0.0044 1576

1u 3 10.3 22.0 0.0042 1525

1g 4 13.3 7.1 0.0026 306

1u 5 12.5 12.8 0.0029 855

1g 6 12.6 11.2 0.0029 581

1u 7 13.1 8.8 0.0027 365

1g 8 13.6 6.7 0.0025 278

1u 9 13.6 7.5 0.0025 278

1g 10 14.1 6.6 0.0023 235

1u 11 13.0 10.5 0.0027 514

1g 12 13.4 7.1 0.0026 381

2g 1 10.2 20.4 0.0044 1596

2u 2 10.2 20.6 0.0044 1515

2g 3 13.4 7.2 0.0025 284

2u 4 12.4 13.0 0.0030 851

2g 5 12.6 11.6 0.0029 585

2g 6 13.7 6.7 0.0024 254

2u 7 14.0 6.5 0.0023 227

2g 8 13.1 7.0 0.0027 412

3u 1 9.93 20.41 0.0046 1521

3g 2 13.5 6.85 0.0025 255

3u 3 12.3 13.44 0.0030 844

3g 4 13.6 6.81 0.0025 258

4g 1 13.6 6.43 0.0025 228
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TABLE 4. Dissociation limits of Xe2 potentials from
Table 3

Ω Indices from Table 3 Dissociation limit

0 1 - 5 [3/2]2 + [3/2] 2

6 - 11 [3/2]2 + [3/2] 1

12 - 14 [3/2]1+ [3/2] 1

1 1 - 4 [3/2]2 + [3/2] 2

5 - 10 [3/2]2 + [3/2] 1

11, 12 [3/2]1 + [3/2]1

2 1-3 [3/2]2 + [3/2]2

4-7 [3/2]2 + [3/2]1

8 [3/2]1 + [3/2]1

3 1,2 [3/2]2 + [3/2] 2

3,4 [3/2]2 + [3/2] 1

4 1 [3/2]2 + [3/2]2

have a more smooth and predictable behaviour as function of R. For ex-

ample, the “opposite” parity configurations show an exponential behaviour 

consistent with the fact that these configurations can only contribute when 

the atomic wave function overlap. The “C6” and “C8” weights have a 1/R 6

and 1 /R8 behaviour, respectively. Notice also the “other neutral” group

includes configurations which contribute to the atomic structure, and the 

CI weight of this group has a finite value at large internuclear separations. 

8. Relativistic effects 

An important check on any relativistic theory is its convergence to a non-

relativistic limit when the speed of light goes to infinity. In fact, the differ-

ence between the relativistic and the “c → ∞ potentials shows the value of

relativistic effects embedded in the Dirac equations including the spin-orbit

interaction. The knowledge of these relativistic effects for core and valence 

electrons can be used in semiempirical and effective potential approaches 

to construct realistic potentials. 

To provide this data we performed three calculations: relativistic, ap-

plying the RCIVB method, non-relativistic, using the relativistic code with 
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Figure 2. 
separation.

The Ω = 0 metastable 5p56s + 5p56s Xe potentials as a function of internuclear

the speed of light set to 10 4 × c, and a non-relativistic based on a CIVB 

method [22] using Hartree-Fock orbitals. We find that the total relativistic 

core energy is 430.06 a.u. (1 a.u.= 4.359743 × 10–18 J ) lower than the to-

tal non-relativistic core energy. The valence energies are different as well. 

Fig. 5 presents the valence energies of the two lowest Ω = 3 potentials,
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Figure 3. The configuration interaction weights of the lowest level of Ω=3 as a function 
of internuclear separation. The six lines correspond with 1) the metastable configuration, 

2) configurations with the same parity as a metastable, 3) “C
6
” configurations, 4) “C8”

configurations”, 5) “ionic” configurations, 6) configurations with “opposite parity”, 7) 

“other neutral’’ configurations. 

calculated in the three different approximations: relativistic, “c→ ∞ ” , and

non-relativistic as function of a internuclear separation. Comparing these 

results shows that when c → ∞ the relativistic code converges to the non-

relativistic limit (see the top four solid and dotted curves in Fig. 5). We 

explain the small difference between the two results by the fact that our 

C1 expansion does not include configurations with 5p1
1/2 5p4

3/2 shells in our

calculation in order to avoid unacceptably large matrices. This means that 

we do not provide a complete set of relativistic configurations belonging 

to non-relativistic configurations with a 5p5 shell, which is the necessary 

condition for a complete convergence. 

Moreover, comparison of relativistic and non-relativistic curves in Fig. 

5 shows that the contraction of relativistic orbitals leads to a shorter equi-
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Figure 4. 
of internuclear separation. The lines have the same interpretation as those of Fig. 3. 

The configuration interaction weights of the second level of Ω=3 as a function 

librium distance. For example, for the lowest potential Re is smaller by 

0.21 a.u.. For the same potential the non-relativistic dissociation energy is 

bigger by 230 cm–1.

9. Conclusions 

We presented a new version of the ab initio relativistic configuration interac-

tion valence bond method. The method uses nonorthogonal four-component

Dirac-Fock orbitals and relativistic Sturmian wave functions. To further op-

timize these functions we introduced fractional occupation of the orbitals 

arid density matrices of mixed states that correspond to the configuration 

average. The physically realistic atomic orbitals in our model lead to a com-

pact description of a molecule and to an efficient configuration interaction 

procedure.

For a long time it has been thought that the use of numerical atomic 



240 S. KOTOCHIGOVA ET AL. 

Figure 5. The valence energy calculated in relativistic (bottom two solid lines), 

"c → ∞ ” (upper two solid lines), arid non-relativistic (dotted lines) approximations for

the two lowest Ω = 3 potentials of metastable Xe2.

wave functions in a molecular basis leads to a complex calculation of the 

many-center integrals. Here we develop a symmetric reexpansion procedure 

which ensures a fast convergence of the reexpansion. 

We apply our method to a calculation of the electronic potentials of 

metastable Xe2 dimer which is relevant for ultra-cold collisions. This ap-

plication demonstrates the ability of the valence bond theory to provide a 

physically realistic description of interacting atoms. 

We investigated the reliability of the model by comparing the electronic 

structure near the molecular dissociation limits with the corresponding en-
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wave functions in a molecular basis leads to a complex calculation of the 

many-center integrals. Here we develop a symmetric reexpansion procedure 

which ensures a fast convergence of the reexpansion. 

We apply our method to a calculation of the electronic potentials of 

metastable Xe2 dimer which is relevant for ultra-cold collisions. This ap-

plication demonstrates the ability of the valence bond theory to provide a 

physically realistic description of interacting atoms. 

We investigated the reliability of the model by comparing the electronic 

structure near the molecular dissociation limits with the corresponding en-
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ergy structure of metastable Xe atom which is known experimentally. The 

structures are found to be in good agreement. The difference between rel- 

ativistic and non-relativistic total energies of metastable Xe2 is large and 

highlights the importance of a non-perturbative relativistic approach. Rel- 

ativistic effects on the shape of the potentials show a contraction of bond 

lengths and a slight decreasing of the binding energies.
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RELATIVISTIC QUANTUM CHEMISTRY OF SUPERHEAVY 
TRANSACTINIDE ELEMENTS 

GULZARI L. MALLI 

Department of Chemistry, Simon Fraser University
Burnaby, B.C., Canada VSA IS6 

Abstract. In this paper we report relativistic coupled-cluster calculations for 

tetrahedral RfCl4 We assumed the Gaussian nuclear model implemented in

MOLFDIR and our universal basis set was contracted with the atomic balance 

and kinetic energy constraint as implemented in MOLFDIR. In our most exten- 

sive calculation 24 electrons were correlated and 144 virtual spinors were in-

cluded in the active space. The correlation and total energies obtained for RfCl4 

in this calculation were -0.2001 and -40538.3441 hartrees, respectively. Exten- 

sive calculations that correlate 30-40 electrons and include much larger active 

spinor spaces are in progress. 

1. Introduction 

Recently the chemistry and physics of man-made superheavy transactinide elem- 

ents with atomic number Z > 103 have been vigorously investigated [1-26], both

experimentally and theoretically. It is well-established [21-28] that Dirac’s rela- 

tivistic quantum mechanics (RQM) is mandatory for a proper understanding of 

electronic structure of atoms and molecules of heavy actinides and superheavy 

transactinide elements. Furthermore, it is well recognized [17, 21, 24-27] that the 

relativistic effects are expected to be so large in transactinide chemistry (TAC) 

that the dynamics of even the valence electrons of atoms of the transactinide 

elements (TAE) would be significantly affected, so that extrapolation of the 

chemical properties of these heaviest elements from their lighter homologs may 

be untrustworthy. 

Moreover, due to both the direct and indirect relativistic effects, the electron 

configuration of the superheavy Lawrencium (Z=103) and some of the translaw-

rencium elements may turn out to be different from what would be expected

from their position in the periodic table. Needless to say, the consequences of 

the pronounced relativistic effects would be clearly manifested in the chemistry 

and physics of the superheavy elements (SHE). Therefore, in order to study the 

atomic and molecular systems of the superheavy elements, it is appropriate to 
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develop generalization of Dirac's relativistic equation for an electron to many-

electron atomic and molecular systems. Although the relativistic Hamiltonian for 

a many-electron system cannot be written down exactly, the principal effects of

relativity can be described reasonably well by the so-called relativistic or Dirac-

Fock Hamiltonian, which consists of a sum of one-electron Dirac Hamiltonians 

(HD) plus the electron-electron Coulomb interaction amongst electrons.

The relativistic or DF-SCF theory for molecular systems was developed by

Malli and Oreg [29]. It has been used extensively in the investigation of the rela-

tivistic effects for molecules of the heavy actinide as well as superheavy trans-

actinide elements [21-28]. Due to very large effects of relativity in systems of 

SHE, there is an obvious need for the experimentalists in this area of research to 

rely on theoretical ab initio fully relativistic calculations which may help and 

even guide them in their research in the translawrencium chemistry (TLC). We

have reported ab initio all-electron fully relativistic Dirac-Fock-Coulomb (DFC) 

and Dirac-Fock-Breit (DFB) calculations for the molecules of the actinides, viz. :
thorium tetrafluoride [22], uranium hexafluoride [23] and the tetrachloride of the 

superheavy element rutherfordium [27]. In addition, we have presented the dis-

sociation energy calculated from the first ab initio all-electron Dirac-Fock-Cou-

lomb (DFC), Dirac-Fock-Breit (DFB) and non-relativistic (NR) Hartree-Fock

(HF) wavefunctions for these systems. 

Recently [26] we have discussed the effects of relativity on bonding, dissoci-

ation energy, bond length, electronic structure, gap between the highest occupied 

and lowest unoccupied molecular spinors (HOMS and HUMS, respectively), the

Mulliken population analysis for a large number of molecules of the superheavy 

transactinide elements Rf Db Sg, ekaplatinum El 10, ekagold El 11, ekamercury 

El 12, etc. 

I shall discuss here the results of our first ab initio fully relativistic (four-com-

ponent) coupled-cluster (RCC) calculations for RfCl4 a polyatomic of the super-

heavy transactinide, and I hope that the calculations based upon our molecular
spinor self-consistent field (MS-SCF) theory [29], which include simultaneously
relativistic and correlation effects, may lead to an understanding of the electron-

ic structure and bonding in these novel, very short-lived species of superheavy 

transactinide elements. 

2. Dirac-Fock-Breit treatment for molecules of superheavy transactinide 
elements

We present here only a brief outline of the Dirac-Fock-Breit (DFB) formalism 

for molecules and refer the reader to more extensive accounts for details [21-23,

The approximate relativistic Dirac-Fock-Coulomb Hamiltonian (HDC ) for an

N-electron molecular system containing n nuclei, under the Born-Oppenheimer 

26-30].
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approximation (omitting the nuclear repulsion terms which are constant for a 

given molecular configuration) can be written (in atomic units): 

(1)

In Eq. (1), the HD (i) consists of the Dirac's kinetic energy operator, mass ener-

gy and nuclear attraction of the i-th electron and has the well-known expression,

viz.:

(2)

where Dirac's matrix operators α and β have the usual 4x4 matrix representa- 

tion.

The rest-mass energy of an electron has been subtracted in Eq. (2), in order to 

get its binding energy, and the potential Vnuc due to n finite nuclei of the molec-

ular system is taken as the sum of their nuclear potentials: (3),

and for molecular systems involving heavy atoms (with Z > 70) a finite nuclear 

model is invariably used. We shall use the Gaussian nuclear model [30] in which 

a single Gaussian function is used for each nuclear charge distribution. The ad- 

vantage of using this nuclear model in basis-set calculations on polyatomics with 

finite nuclei is that all multicentre integrals can be calculated analytically, with a 

Gaussian basis set, in a straightforward way. It should be pointed out, however, 

that for heavy atoms the total relativistic Dirac-Fock electronic energy obtained 

with the Gaussian nuclear model is, in general, higher than that obtained with 

either the spherical-ball, point nucleus or the Fermi nuclear model. The overall 

higher total atomic energy obtained with the Gaussian nuclear model is mostly 

reflected in the higher energies of the lowest angular momenta atomic spinors 
(AS), viz.: 1s1/2 2s1/2 and 2p1/2 which are closest to the nucleus; however, the 

energies of all other atomic spinors of an atom are calculated to be almost iden-

tical using the various finite nuclear models. 

The instantaneous Coulomb repulsion between the electrons is treated non-
relativistically in the Dirac-Coulomb Hamiltonian and the magnetic and retard-

ation corrections to it are generally included perturbationally as discussed later. 

The N-electron wavefunction Φ for the closed-shell molecular system is ta-

ken as a single Slater determinant (SD), also called an antisymmetrized product 

(AP) of one-electron 4-component molecular spinors (MS) [29], viz.: 
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(4)

The molecular spinors (MS) φ i are generally taken to form an orthonormal set 

and can be constructed so as to transform like the extra or additional irreducible 
representations (EIR) of the double symmetry group of the molecule under in-

vestigation [29]. The energy expectation value E can then be Written as: 

(5)

The molecular spinors φ i are expressed in terms of the large and small compo-

nents

(6)

ThexL
q and φ i can be symmetry adapted; however, we shall ignore the double 

group symmetry labels. for the molecular spinors. The basis spinors xX
q will be 

constrained to obey the kinetic balance relation, viz. : 

(7)

Then following Malli and Oreg [29] the Dirac-Hartree-Fock- Roothaan (DHFR) 

or relativistic Hartree-Fock-Roothaan (RHFR) SCF equations for closed-shell

molecules can be written as: 

(8)

where F is the Dirac-Fock matrix operator, ε i is the orbital energy of molecular

spinor (MS) φ i, and S is the overlap matrix. All matrix elements occurring in

DHFR-SCF calculations for polyatomics in general can be expressed [29] in 

terms of the types of matrix elements that arise in nonrelativistic (NR) Hartree-

Fock-Roothaan (HFR) SCF calculations for polyatomic molecules, and well-

developed techniques for the evaluation of these matrix elements, using Gauss-

ian type functions, have been in existence for decades. 

The electron-electron Coulomb interaction is treated nonrelativistically, as 

mentioned earlier in this section, in H DC. The Breit interaction [31] consisting of 

the magnetic and retardation terms was proposed to remedy partially this defect 
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of HDC and the addition of Breit interaction (Bij) to HDC leads to the Dirac-

Coulomb-Breit (DCB) Hamiltonian HDCB, which has the form:

(9)

(10)

Twice the first term in Eq. (10), called the magnetic or Gaunt interaction, is the 

dominant part of the Breit interaction; the retardation term is about 10% of the 

Gaunt interaction, and in general the contribution of the Breit interaction is fairly 

marginal compared to the Coulomb interaction term. The use of HDCB as a

starting point for variational molecular calculations.leads to the Dirac-Fock-Breit

(DFB) SCF equations. The Dirac-Fock-Breit matrix operator occurring in the 

DFB-SCF equations involves the matrix elements of the magnetic and retard-

ation interactions. The expressions of the matrix elements of the magnetic or 

Gaunt interaction are given in Malli and Oreg [29]. We have recently included 

the Gaunt interaction perturbationally, with HDC as the unperturbed Hamilton-

ian, in relativistic calculations on ThF4 [22], UF6 [23], RfCl4 [27]. The retard-

ation term, however, has not been included in relativistic molecular calculations

for heavy and superheavy elements. 

3. Universal Gaussian basis set for relativistic coupled-cluster calculations 
on superheavy transactinide elements 

Recently we have developed [32-34] a generator-coordinate Dirac-Fock method 

(GCDF) for closed and open-shell systems, and we have reported an accurate 

relativistic universal Gaussian basis set (RUGBS) for atomic systems up to E 113 

(ekathallium, with Z=113). We have used our RUGBS in all of our Dirac-Fock

(DF) SCF and Dirac-Fock-Breit (DFB) calculations on numerous molecules of 

the transactindes with the MOLFDIR package [30], assuming the Gaussian nuc- 

lear model. The RUGBS was contracted using the general contraction scheme 

along with the atomic balance procedure as implemented in the MOLFDIR code 

[30]. The RUGBS for the small (S) component of atoms used in our calculations 

were obtained from the RUGBS of the corresponding large (L) component, such 

that the L and S components of each atom satisfy the so-called kinetic balance 

condition as implemented in MOLFDIR [30]. 
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The exponents of the L component of the RUGBS used in our calculations 

are given in our earlier papers, and the DF-SCF total energies obtained with our 

contracted relativistic RUGBS for various atoms (using the Gaussian nuclear 

model) up to Sg (Z=106) are in excellent agreement with those obtained with the 

numerical finite difference scheme [35]. It should be pointed out that the total

DF-SCF average of configuration energy for the transactinides, obtained by Des- 

claux [35] using numerical finite difference methodology with the spherical ball 

nuclear model is about 7-10 hartree (1 hartree=27.2 1 1 eV) lower than that obtai- 

ned by us using the MOLFDIR [30] code, which, however, as mentioned above,

uses the Gaussian nuclear model. This difference is due mostly to the different 

nuclear models used in these two calculations, and the energy difference, as ex-

pected, is reflected mostly in the energies of the 1s and 2s atomic spinors of the 

transactinide under investigation. 

These differences in total energy as well as in the energies of the innermost 

atomic spinors should be kept in mind while comparing the total relativistic 

DFC as well as non-relativistic HF atomic energies calculated with the basis-set 

expansion method using different nuclear models, especially for systems invol-

ving the heaviest transactinide atoms. However, for the light atoms: 0, F, C1,

etc., the difference in nuclear model is not very significant and the total DF-SCF

energies for such atoms reported by Desclaux [35] are in excellent agreement 

with those obtained by us using the MOLFDIR code [30].

The contracted RUGBS for all the atoms of a molecule under study is used in 

all of our calculations. However, the contracted RUGBS for the L components 

only, were used in the nonrelativistic (NR) limit Hartree-Fock (HF) calculations, 

which were also performed with the MOLFDIR [30] package using the Gaussian 

nuclear model. The total NR HF energies for point nucleus Rf (6d2 average) and 

other transactinides reported in Desclaux [35], however, are in general lower by 

about 3–4 hartrees than that reported here as expected, since it is well-known

that point nucleus calculations yield lower total energy for an atom than that ob-

tained from the corresponding finite nuclear model calculation, in accord with 

our results reported here. 

4. Dirac-Fock-Breit calculations for molecules of the superheavy trans-
actinide elements 

We have investigated a large number of molecular systems of superheavy trans-

actinide elements and a partial list of the systems that have been investigated

includes the following: RfBr, RfCI, ZrCl4, HfCl4, RfF4, RfCl4, RfBr
4
, DbC1, 

DbO, DbBr, NbCl5, TaCl5, DbC15, NbOCl3, TaOCl3, DbOCl3, NbBr5, TaBr5,

Cl2, SgOCl4, W02C12, WOCl4, BhBr, BhCl, BhCl6, ReCl6, BhOC14, HsO4,

DbBr5, SgBr, SgCI, SCO, SgCl6, WC16, MoC16, SgF6, WF6, MoF6, SgBr6, SgO2-

HsC16, OsO4, OsCl6, E110C16, E110F6, E111H, E111C1, E111Br, E112C12,
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El12Cl4, El12F2, El12F4, HgF4, El14Cl2, El14Cl4, E117C1, El18F2, E118F6

....
We have discussed in our earlier papers [21-23,25-28] the salient results of 

our ab initio all-electron fully relativistic Dirac-Fock (Breit) SCF calculations 

for numerous molecules of the actinide and superheavy transactinides listed 

above; and we refer the reader to our papers for further details. We next discuss

the relativistic coupled-cluster (RCC) treatment for molecules of the superheavy 

transactinide elements and present here the results of the first RCC calculations 

[36] for a polyatomic involving the superheavy element Rutherfordium, viz.: 

RfCl4.

5. Relativistic coupled-cluster methodology 

The coupled-cluster (CC) method [37] has emerged as a very powerful tool for 

calculating the correlation effects in atomic and molecular systems, as it includes 

electron correlation to high order and is size extensive, a property of particular 

importance for heavy systems, for which relativistic effects are also very signi-

ficant. In order to treat both the relativistic and electron correlation effects simul-
taneously, the relativistic coupled-cluster (RCC) has been developed [38,39] by 

interfacing the relativistic Dirac-Fock (Breit) SCF theory with the CC method, 

and results have been reported for a number of atoms and the hydrides CdH and 

SnH4[40].

Very recently, we have performed extensive RCC calculations on molecules 

of heavy and superheavy elements: gold hydride (AuH), thorium tetrafluoride 

(ThF4) [28] and RfCl4 , the tetrachloride of the superheavy element rutherford- 

ium [36] The RCC method and its recent applications to atomic and molecular 

systems [28,36,38-40] are summarized below. 

Although the relativistic many-body Hamiltonian for atomic and molecular 

systems cannot be expressed in closed potential form; nonetheless the nonrelati- 

vistic many-body formalism can be extended to the relativistic domain by using 

the formalism based on effective potentials and derived with arbitrary accuracy 

from quantum electrodynamics (QED) as described by Lindgren [37,41]. The 

transition from the nonrelativistic to the fully relativistic case requires two major 

modifications: (1) two-component Pauli-Schrodinger spinorbitals are replaced 

byfour-component Dirac spinors, (2) instantaneous electron-electron Coulomb 

interactions are supplanted by the irreducible multiphoton interactions with the 

radiative and renormalization counter terms. 

The starting point for the RCC method (with single and double excitations) 

which includes relativistic and electron correlation effects simultaneously to high 

order for molecules, is the projected Dirac-Coulomb (or Dirac-Coulomb-Breit)

Hamiltonian [42,43]: 
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(11)

where

(12)

(13)

and

(14)

An arbitrary potential U is included in the unperturbed Hamiltonian H 0 and

subtracted from the perturbation V, and this potential is chosen to approximate 

the effect of electron-electron interaction and it may be the Dirac-Fock self-con- 

sistent field potential. The Λ+ is a product of projection operators onto the posi- 

tive energy states of the Dirac Hamiltonian HD , and because of the projection 

operators, the Hamiltonian H+ has normalizable bound state solutions. This ap-

proximation is known as the no-virtual-pair approximation since virtual electron 

positron pairs are not allowed in intermediate states. The form of the effective 

potential Veff depends upon the gauge used and, in the particular Coulomb gauge

(in atomic units, correct to the second order in the fine structure constant α), it

has the form: 

(15)

where B12 is the frequency-independent Breit interaction that is defined in Eq.

(10) above. 

The no-pair Dirac-Coulomb-Breit Hamiltonian H+ may be rewritten [42,43], 

in the second-quantized form, in terms of normal-ordered products of the spinor

operators {r + s} and {r +s +ut } :

(16)
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where frs and 〈 rs|| tu〉 are elements of one-electron Dirac-Fock and antisym-

metrized two-electron Coulomb-Breit interaction matrices over Dirac four-com-

ponent spinors, respectively. 

The effect of the projection operators Λ+ is now taken over by the normal 

ordering, denoted by the curly braces in the equation above, which requires an-

nihilation operators to be moved to the right of the creation operators as if all 

anticommutation relations vanish. 

The Fermi level is set at the top of the highest occupied positive energy state, 

and the negative energy state is ignored. The no-pair approximation leads to nat-

ural and straightforward extension of the nonrelativistic coupled-cluster theory. 

The multireference valence-universal Fock space coupled-cluster approach, 

however, defines and calculates an effective Hamiltonian in a low-dimensional

model (or P) space, with eigenvalues approximating some desirable eigenvalues 

of the physical Hamiltonian. According to Lindgren's formulation of the open 

shell CC method [44], the effective Hamiltonian has the form 

(17)

where Ω is the normal-ordered wave operator: 

Ω = {exp( S)} (18)

The excitation operator S is defined in the Fock-space coupled-cluster approach 

with respect to a closed-shell reference determinant. In addition to the traditional 

decomposition into terms with different total (l) number of excited electrons, S
is partitioned according to the number of valence holes (m) and valence particles

(n) to be excited with respect to the reference determinant:

(19)

The upper indices in the excitation amplitudes reflect the partitioning of the Fock 

space into sectors, which correspond to the different numbers of electrons in the 

physical system. This partitioning allows for partial decoupling of the open shell 

CC equations, since the equations in each sector do not involve excitation ampli-

tudes from higher sectors. The eigenvalues of the effective Hamiltonian given 

above in a sector directly yield the correlated energies in that sector with respect 

to the correlated (0,0) reference state. The transition energies may be ionization 

potentials, electron affinities or excitation energies, according to the presence of 

valence holes and / or valence particles. 
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The lower index l in Eq. (19) is truncated at l = 2. The resulting coupled clus-

ter with single and double excitations (CCSD) scheme involves the fully self- 

consistent, iterative calculation of all one- and two-body virtual excitation am-
plitudes, and sums all diagrams with these excitations to infinite order. Negative 

energy states are excluded from the Q space, and the diagrammatic summations

in the CC equations are carried out only within the subspace of the positive ener-

gy branch of the Dirac-Fock spectrum. 

The implementation of the 4-component matrix Dirac-Fock and relativistic

CC calculations is done by expansion of atomic or molecular spinors in basis 

sets of Gaussian 4-component spinors. Kinetic and atomic balance conditions 

are imposed on the basis of avoiding variational collapse. The four-component

method involves generating the orbitals or spinors by Dirac-Fock calculations, 

followed by applying the coupled-cluster scheme at the singles-and-doubles

(CCSD) level. The DF functions and matrix elements are calculated using the 

MOLFDIR package [30]. 

The coupled-cluster stage is more complicated in the four-component case 

than in the non-relativistic or two-component cases, due to the appearance of

complex orbitals or complex spin-orbit integrals. Explicit complex algebra is
avoided, but the necessary real algebra is heavier than in the one-component

coupled-cluster case. The full double-group symmetry is used at the Dirac-Fock

level, while only Abelian subgroups are considered in the RCC code. 

6. Relativistic coupled-cluster calculations for molecules of superheavy 
elements: RfCl4

Recently we have reported [27] ab initio all-electron fully relativistic molecular

spinor Dirac-Fock (DF) self-consistent field (SCF) and nonrelativistic limit Har-

tree-Fock (HF) SCF calculations at four Rf-CI bond distances for the ground 

state of tetrahedral (Td) rutherfordium tetrachloride (RfCl4). The dominant mag-

netic part (also called the Gaunt interaction) of the Breit interaction correction 

for RfCl4 was calculated perturbationally to be 66.85 hartree (1 hartree=27.2 11 

eV). We have investigated [27] the effects of relativity on the bond length, dis-

sociation energy, volatility, etc. for RfCl4. However, both the relativistic (four-

component) and electron correlation effects have not been included so far for 

any polyatomic involving a superheavy transactinide element. The RfCl4. is a

prototype of a polyatomic of a superheavy element and is a good candidate for 

the investigation of both the relativistic and electron correlation effects (which 

may not be additive) simultaneously via the relativistic coupled-cluster method. 

We report here the first RCC calculations [36] for tetrahedral RfCl4, at the 

Rf-CI bond length of 2.385 Angstrom, optimized at the DF level by us [27]. It 

should be mentioned that in our calculations of electron correlation energy the 

CCSD approximation is used. Dirac–Fock–Breit, Dirac–Fock and nonrelativistic 
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limit HF calculations were performed with the MOLFDIR package [30] as des-

cribed in our earlier paper [27] at four distances assuming a tetrahedral geometry 

for RfCl4. We assumed the Gaussian nuclear model implemented in MOLFDIR

[30] and our universal Gaussian basis set (UGBS) [32-34]. The UGBS was con-

tracted with the atomic balance and kinetic energy constraint as implemented in

MOLFDIR to make the calculations feasible with the computer facilities avail-

able to us. The contracted basis set for the large (L) and small component (S) of 

Rf is [12s 15p 12d 7f (L) | 17s 22p 22d 15f 9g (S)], while for C1, the correlation 

consistent basis set of Dunning given in MOLFDIR [30] was used, viz., C1: [4s

4p 1d | 3s 5p 4d 1f (S)]. We realize that much larger contracted basis may be

necessary for accurate CCSD calculations; however as is well known the number 

of integrals increases as ~ N
4
, where N is the number of basis functions. Hence a

judicious choice has to be made as to the size of the contracted basis sets to be

used in CCSD calculations, which require hundreds of hours of CPU on medium

size computers and about 30 gigabyte of disk space (except where direct SCF 

approach is used) for a medium size molecule like RfCl4.

In our preliminary CCSD calculations, 24 electrons were correlated in 4 cal-

culations differing in the number of active virtual spinors. The molecular CCSD 

calculations for closed-shell ground state of tetrahedral RfCl4 were performed 

with the MOLFDIR code [30], while the calculations for the Rf and C1 atoms

with open-shell ground states were performed with the Fock-space coupled-clus-

ter (FSCC) code [38]. In our most extensive calculation, 24 electrons were cor-

related and 144 virtual spinors with energies up to 1.5 hartree were included in

the active space. The correlation and total energies obtained for RfCl4 in this

calculation are -0.2001 and –40538.3441 hartrees, respectively. Extensive cal-

culations that correlate 30-40 electrons and include much larger active spinor 

spaces are in progress. 

In conclusion, very extensive relativistic coupled-cluster calculations would 

be mandatory to take into account simultaneously the effects of relativity and of 

electron correlation, which are very significant for superheavy systems with a 

large number of electrons such as those involving transactinide elements. We 

have just made a start in this area of research and the future holds many challen- 

ges and promises. 
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Abstract. For the first time the nature of binding in HrgY compounds (Rg = Ar, 

Kr, Xe; Y = F, Cl) is elucidated on the ground of the topological analysis of the

electron localisation function (ELF). The binding between rare gas (Rg) and 

halogen (Y) is classified as an unshared-electron interaction type due to the lack 

of a bonding attractor between the C(Rg) and C(Y) atomic cores. The partial 

charge transfer from rare gas to halogen ranges between 0.6 and 0.7 e, in agree-

ment with values from Bader’s Atoms-in-Molecules decomposition technique 

and Mulliken's Population Analysis. The contribution of the V(Rg) basin to the 

delocalisation of the V(Y) basin is by 10-20% larger than that from V(Y) to 

V(Rg), as revealed by the contribution to the population variance parameter, 

and this effect corresponds to the direction of charge transfer. A set of valence-

bond structures is proposed. The largest contribution (55-75%) comes from the 

HRg+Y- ionic limit. The minimum of the electron localisation function between 

halogen and rare-gas atoms ranges between 0.25 and 0.35. 

1. Introduction 

The inertness of the rare gases (Rg) toward chemical bond formation has been 

attributed to the «stable octet» outer electron structure typical for the group 18 

elements. In 1962, the first rare-gas compound Xe
+
[PtF6]- was observed by Bart-

lett [ 1]. Today, the chemistry of Xe comprises compounds with Xe-Y (Y = N, C, 

F, O, C1, Br, I and S) bonds [2]. The chemistry of krypton is mainly confined to 

krypton difluoride (KrF2) and its derivatives. No stable neutral ground state mo-

lecules are known for the lighter rare-gas atoms: helium, neon and argon. 
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Recently, Pettersson et al. [3,4] reported and characterized by means of 

matrix-isolation infrared spectroscopy several novel rare-gas compounds includ-

ing HXeC1, HXeBr, HXeI, HKrCl and XeH2. These molecules have in common 

an Rg-H fragment, which is bound to an atom with a negative partial charge. 

Calculations at the MP2 level [2-4] suggested that these HRgY molecules in 

their neutral ground state are linear. The Xe-H distance vary between 1.66 and 

1.86 Å which is much less than deduced from the Xe-H pair potential van der

Waals minimum (3.8 Å [5]). For Kr-H bonds the calculated bond distances are

close to 1.45 Å [2]. According to the Mulliken Population Analysis the HRgY

molecules are charge transfer species. Most of the positive partial charge is cen- 

tered on the rare-gas atoms, while the other fragments possess the counterbalan-

cing negative partial charges, the hydrogen in a lower extent than, for example, 

the halogen in the halogen containing HRgY species. 

In this paper the topological analysis of the Electron Localisation Func- 

tion is adopted to study on the nature of binding in HRgY compounds (Rg = Ar,

Kr, Xe; Y = F, Cl). The mean electron populations, the atomic populations ob-

tained from the Mulliken’s population analysis and Bader’s atoms-in-molecules

decomposition technique are compared. 

2 . Computational details 

Molecular properties of the HRgY molecules were studied in the framework of 

density functional theory using the gradient-corrected correlation functional by 

Lee, Yang and Parr [6], combined with the Becke3 exchange functional [7,8].

The GAUSSIAN 94 [9] package of computer codes was used for ab initio cal-

culations. The B3LYP-calculated wave functions were used as an input for the 

topological analysis of the Electron Localization Function (ELF), as implemen-

ted in TopMoD [10]. Bader’s Atoms-in-Molecules (AIMS) decomposition tech-

nique for the electron density was performed using the program implemented in 

GAUSSIAN 94. 

The all-electron, split-valence 6-3 11++G(d,p) basis set was used for all

calculations on HRgY (Rg = Ar, Kr; Y = F, Cl) species. To study the effect of 

the basis set enlargement on the ELF analysis, the larger basis sets 6-3 1 1++G 

(2d,2p) and 6-311++G (3df,3pd) including several polarization functions on

each atom was tested. For the Xe-compounds the Stuttgart effective core poten-

tials [11], denoted as SECP, was used. This basis set includes 8 valence elect-

rons in the valence space of Xe. The standard Pople-type 6-3 11++G(d,p) basis

set was used for lighter atoms in the calculations of the HXeY species. To test 

the pseudopotential effect additional calculations on HXeY were performed 

with all electron basis set of Huzinaga (Huz)[12]. The optimized structures of 

the HRgY species, at various levels of theory, are collected in Table 1. 
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TABLE 1. Ab-initio calculated properties of HRgY species at different computational levels 

Molecule Method r(Rg-H) / Å r(Rg-Y) / Å
HArF UMP2/5-3 1 G(d,p) 1.393 1.941

HArCl UMP2/6-3 1G(d,p) 1.394 2.501

HKrF UMP2/433 3/43 3/4 1.526 2.038

(Kr)

/6-3 1G(d,p) (F) 

(Kr)
/533/51 11 (Cl) 

/43333/4333/43 (Xe) 

/6-3 1 1G(d,p) (H) 

HKrCl UMP2/4333/433/4 1.534 2.687

/6-3 1 1G(d,p) (H) 

HXeF UMP2 1.669 2.139 

/6-3 1G(d,p) (Cl) 

J 6-3 1 1G(d,p) (H) 

HXeCl UMP2 1.674 2.852 

/43 3 3 3 /43 3 3/43 (Xe) 

/533/511 (Cl) 

/ 6-3 1 1G(d,p) (H) 

3. Topological analysis of the Electron Localisation Function (ELF) 

Current analysis of the bonding in molecules and crystals are performed by pro-

jection techniques on atomic basis functions (Mulliken, Löwdin, Mayer, Natural 

Population Analysis). This yields scattered results for the same system, which 

depend upon the basis set quality [13]. An alternative approach is provided by 

the topological interpretation of the gradient field of a local, well defined func- 

tion such as the theory of Atoms in Molecules [14] by Bader, which is based on

the analysis of the electron density. The topological analysis of the Becke and 

Edgecombe [15] electron localisation function has been recently proposed. This

takes advantage of the ELF as a measure of the Pauli repulsion as shown recent-

ly by Silvi and Savin [16]. The ELF function is defined as:

and for a single determinental wave function built from Hartree-Fock or Kohn-
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Sham orbitals ϕ i,

and

Dσ (r) has the physical meaning of the excess local kinetic energy density due

to Pauli repulsion [17] and D0
σ (r) is the Thomas-Fermi kinetic energy density

which can be regarded as a «renormalizatiom» factor. The CF is the Fermi con- 

stant with a value of 2.871 a. u.. The range of values of the ELF function is 0 ≤ 
η ≤ 1. Where electrons are alone, or form pairs of antiparallel spins, the Pauli

principle has little influence on their behavior and the excess local kinetic ener-

gy has a low value, whereas at the boundaries between such regions the proba- 

bility of finding parallel spin electrons close together is rather high and the ex-

cess local kinetic energy has a large value. 

The gradient field of ELF provides a partition of the molecular space 

into basins of attractors having a clear chemical meaning. A gradient dynamical 

system is a field of vectors x= ∇η (r) defined on a manifold (M). By integrating 

over all vectors one can build trajectories which start at their α-limit and end at 

their ω-limit. The ω-limits are always sets of critical points at which ∇η (r) = 0. 

The α-limits are not always critical points (asymptotic behavior). Critical points 

that are only the ω -limit of trajectories are called attractors whereas the set of 

points defining the trajectories ending at a given attractor is the basin of the at-

tractor. The boundary between two basins is called separatrix. In the case of the 

gradient field of the ELF function, the attractors may be single points, circles or 

spheres, according to the symmetry of  the system, since ELF transforms as the 

totally symmetric representation of the system point group. Note that, actually, 

cases "almost" circle or "almost" sphere attractors occur in regions of space do-

minated by a local cylindrical or spherical electron -nucleus potential. There are 

two kinds of basins, at the one hand are the core basins which encompass nuclei 

(with Z>2) and on the other hand are valence basins, which form the outermost 

shell of electron density. These latter are characterized by their synaptic order 

which is the number of core basins with which the given valence basin share a 

common boundary. The nomenclature of the valence basins has been given in 

ref 18. It is important to note that this description of the chemical bond allows 

to adopt a point of view which is complementary of that of valence. In the stan- 

dard valence picture a bond is considered as a link joining one atom to another. 

Here we have the number of cores and a given piece of glue (the valence basin)

by means of which core basins are stuck on. 



THE NATURE OF BINDING IN HRgY COMPOUNDS 263

The classification of chemical bonds from the ELF analysis was based 

on the presence of point, ring and spherical attractors. From chemical point of 

view there are three types of attractors (i.e. local maxima of the electron densi- 

ty): core, bonding which is located between the core attractors and non-bonding.

Following Bader, there are basically two kinds of bonding interaction: shared-

electron interaction and closed-shell interaction. In the topological theory of the 

ELF gradient field the shared electron interaction is characterized by occurrence 

of a di or polysynaptic basin which is missing in the closed-shell/unshared inter-

action. Covalent, dative and metallic bonds are subclasses of the shared electron 

interaction whereas ionic, hydrogen, electrostatic and van der Waals belong to 

the other class. The case of hydrogen is special because it has no core attractor 

and the above classification criteria can not be applied. Thus, the topological 

analysis maps the basic chemical ideas onto a rigorous mathematical model and 

therefore removes the ambiguities and uncertainties in the standard definitions 

of bonds. Furthermore, this new topological analysis is in accord with the gene-

ral ideas of chemical bonding. 

The population of a basin is defined as the integral of the one-electron

density over the basin: 

The quantum mechanical uncertainity of the basin population (the stan-

dard deviation σ(Ni ) ) can be calculated from the population variance ( σ2 (Ni ) ).

The variance is expressed in terms of the diagonal elements of the first ( ρ (r) )
and second order (π (r1,r2)) density matrices as

__

where ri denotes the space and spin coordinates of the electron labeled i. 

the sum of contributions arising: from the other basins:

_
As remarked by Noury et al. [ 19], the variance σ 2( N) can be written as 

in which Nij is the actual number ofpairs between the Ω i and Ω j basins:
_
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The variance of the basin population has been recognized long time ago

by Bader and Stephens [20] as a measure of the delocalization within the frame-

work of Daudel’s loge theory [21]. Therefore, for the sake of usefulness, the rel-

ative fluctuations parameter [20] has been introduced: 

4. Results and Discussion 

Figure 1 presents the reduction of localisation domains of the HArF molecule. 

For small value of ELF one can observe a large basin encompassing whole mo-

lecule, which is splitted at ELF of 0.17 into a single basin over halogen V(F) 

and second basin surrounding the ArH moiety. The second bifurcation occurs at 

ELF of 0.78 giving rise to the non-bonding attractor basin of argon V(Ar) and 

large domain over hydrogen V(Ar,H). Figure 1c illustrates the topology of at-

tractor basins localised in the HArF molecule and this picture corresponds to all 

HRgY systems investigated with the all-electron basis set. In the case of the 

pseudopotential approximation used a core attractor of a rare gas is missing. 

The schematic representation of attractors associated with localisation basins is 

shown in Figure 2. 

There is one core attractor of halogen C(Y) for Y = F, C1 and one core 

attractor of rare-gas atom C(Rg) for Rg = Ar, Kr, Xe. When the effective core 

potential approximation is used the core attractor of Xe is missing. The valence 

electrons are reflected by monosynaptic attractors V(Rg) and V(Y) correspond-

ing to the non-bonding electron density. Due to the axial symmetry of all mole-

cules - the point group is C∞ v - the V(Rg) and V(Y) attractors are of a circular

shape. In the case of hydrogen the topology of ELF yields one protonated, disy-

naptic attractor V(Rg, H), which is of a point type. The values of the basin pop-

ulation (N), the relative fluctuation (λ) and the percentage contribution to the

variance (σ2 (N)) of the various HRgY spe-cies are collected in Tables 2 to 4.

_

_

According to Silvi and Savin [ 16], the interaction between two atoms is 

of covalent, dative or metallic type if at least one bonding attractor is localised 

between two core attractors. The bonding attractor means the polysynaptic at-

tractor, which basin has a common separatrix with two or more core basins. In 

the case of the HRgY molecules the topology of ELF yields only one such at-

tractor localised between C(Rg) and C(Y). However, its basin possesses only 

one common separatrix with C(Rg), hence it can be interpreted as a monosynap-

tic basin of the non-bonding electron density of the rare gas. Therefore, this at-

tractor is not a bonding one and the interaction between rare-gas and halogen is 

classified as unshared-electron interaction. Additionally, it is not due to pairing 

of electrons and is presumably of the electrostatic origin. 
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The nature of the interaction between rare-gas and halogen is also eluci- 

dated using Bader's Atoms-in-Molecules decomposition technique [ 14], which

divides the continuos electron distribution into non-overlapping atomic basins. 

Table 5 contains the properties of the charge density at critical points (CP) loca-

lised for the Rg-H and X-Rg bonds. The binding between rare-gas and halogen 

atoms has properties typical of ionic or closed-shell interactions - low r and 

positive ∇2ρ, whereas the bonding between rare-gas and hydrogen atoms has

features typical of a covalent interaction. Therefore, the interpretation of the 

nature of binding in the Rg-Y bonds, based on the topological analysis of ELF, 

is supported by AIMs method. 

Figure I. The reduction of localisation basins in HArF. At low values of ELF ("a") there are three 

localisation basins: two core (not visible in the picture) and one valence encompassing the whole 

molecule. The bifurcation at ELF=0 17 ("b") splits the common valence basin into the fluorine 

atomic one and the basin encapsulating the ArH moiety A further bifurcation occurs at ELF=0.79 

("c"), giving rise to non-bonding atractor basins for fluorine V(F) and argon V(Ar) as well as a 

large basin over hydrogen V(Ar,H). 
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Figure 2. The comparison of attractors localised in (Ne)2 and HRgY (Rg = Ar, Kr, Xe; Y = F, C1) 

systems according to the topological analysis of the Electron Localisation Function. Note the dif-

ferent Iocations of the circular attractors of the non-bonding electron density of halogen V(Y) in

HRgY and of neon V2(Ne1) in (Ne)2 in respect to the position of V(Rg) and V2(Ne2). For the sake 

of simplicity cores of Ne as well as rare-gas and halogen atoms are placed at the same distance.

The core, bonding and non-bonding point attractors are represented by white, black and grey dots, 

respectively, valence attractors by solid lines. 

TABLE 2. The mean electron population (in e.) of the HRgY compounds obtained by the topolo- 

gical analysis of the ELF 

Molecule Basis set C(Rg) C(Y) V(Rg) V(Y) V(Rg,H) 

HArCl 6-311++G(d,p) 10.06 10.07 6.73 7.51 1.61

HArF 6-311++G(d,p) 10.07 2.16 6.61 7.48 1.69

HKrF 6-311++G(d,p) 27.81 2.14 6.64 7.51 1.89

6-311++G(2d,2p) 27.76 2.20 6.97 7.46 1.55

HKrC1 6-311++G(d,p) 27.76 10.08 7.09 7.51 1.49 

6-311++G(2d,2p) 27.76 10.08 7.06 7.54 1.50 

6-311++G(3df,3pd) 27.81 10.07 6.63 7.56 1.91 

6-311++G(3df,3pd) 27.81 2.16 6.54 7.51 1.98 

HXeF Huz/6-311G(d,p) 45.81 2.18 6.84 7.48 1.65

SECP/6-3 1 1 G(d,p) - 2.16 6.66 7.49 1.66

HXeCl Huz/6-311G(d,p) 45.79 10.08 6.93 7.54 1.60

SECP/6-3 1 1G(d,p) - 10.07 6.77 7.54 1.59
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TABLE 3. The relative fluctuation λ of electron density within basins localised in the HRgY 

compounds obtained by the topological analysis of the ELF 

Molecule Basis set C(Rg) C(Y) V(Rg) V(Y) V(Rg,H) 

HArF 6-311++G(d,p) 0.06 0.18 0.21 0.10 0.53

HArCl 6-311++G(d,p) 0.06 0.06 0.20 0.13 0.57

HKrF 6-311++G(d,p) 0.05 0.18 0.29 0.10 0.50

6-311++G(2d,2p) 0.05 0.18 0.28 0.11 0.48

6-3 1 1++G(3df,3pd) 0.05 0.18 0.30 0.10 0.49

HKrC1 6-311++G(d,p) 0.05 0.06 0.27 0.13 0.51

6-311++G(2d,2p) 0.05 0.06 0.27 0.12 0.51

6-311++G(3df,3pd) 0.05 0.06 0.28 0.12 0.52

SECP/6-311G(d,p) - 0.17 0.17 0.10 0.40

SECP/6-3 1 1 G( d,p) - 0.06 0.13 0.14 0.44

HXeF Huz/6-311G(d,p) 0.03 0.18 0.31 0.11 0.45

HXeCl Huz/6-311G(d,p) 0.03 0.06 0.30 0.13 0.49

Figure 2 shows a comparison between the topology of attractors in the 

exemplary non-bonding system (Ne)2 previously studied by Silvi and Savin [16]

and the HRgY compounds. The neon atoms were placed at a distance of 1.0Å 

and calculations were carried out at the B3LYP / 6-3 11++G (2d,2p) computatio-

nal level, One can notice that in (Ne)2 the monosynaptic attractors of Ne non-

bonding electron densities are of point (V1(Ne1), V1(Ne2)) and circular shapes

(V2(Ne1), V2(Ne2)) and the latter ones are localised between two C(Ne) attrac-

tors with a «face to face» orientation. Presumably an accumulation of the elect-

ron density (ρ) at very small distance results in a large spatial deformation of p,

which is well reflected by circular attractors. Figure 3 presents the reduction of

the localisation basins found in (Ne)2. For ELF=0.5 (Figure 3b) there are two, 

well separated basins associated with the non-bonding electron density of the 

Ne atoms, which is maximally delocalised. At higher values of ELF both basins 

undergo bifurcations yielding two valence basins: V2(Ne) of circular attractors 

associated with «outer» electron density and V1(Ne) of the point attractors asso-

ciated with the «inner» electron density. The mean electron populations compu- 

ted for the V2(Ne
1
) and V2(Ne2) basins yield large values of 7.39e in comparison

to rather small N found for a V1(Ne1) or V1(Ne2) of 0.29e. An inspection of the 

relative fluctuation parameter reveals that the electron density in the V1(Ne1)

and V1(Ne2) basins is almost entirely delocalised, with λ equal to 0.89, while for 

the V2(Ne1) and V2(Ne2) basins a small delocalisation is predicted with a value 

for λ of 0.14. 
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TABLE 4. The contribution to the variance σ2 obtained by the ELF. Percentage contributions 

lower than 10% are omitted 

Contribution analysis [%] 

HArF

C(F) 95% V(F) 

C(Ar) 17% V(Ar,H), 81% V(Ar) 

V(Ar)

V(F1

V(Ar,H)

HArC1

19% V(F), 35% C(Ar), 45% V(Ar,H) 

15% V(Ar,H), 33% V(Ar), 47% C(F) 

12% C(Ar), 13% V(F), 71% V(Ar) 

C(C1) 97% V(C1) 

C(Ar)

V(Ar)

V(C1)

V(Ar,H)

HKrF

C(F)

C(Kr)

V(Kr)

16% V(Ar,H), 82% V(Ar) 

17% V(Cl), 37% C(Ar), 44% V(Ar,H) 

14% V(Ar,H), 24% V(Ar), 57% C(C1) 

11% C(Ar), 16% V(Cl), 68% V(Ar) 

96% V(F) 

16% V(Kr,H), 82% V(Kr) 

15% V(F), 3 1% V(Kr,H), 54% C(Kr) 

13% V(Kr,H), 36% V(Kr), 47% C(F) 

11% V(F), 22% C(Kr), 64% V(Kr) 

V(F)

V(Kr,H)

HKrC1

C(C1)

C(Kr)

V(Kr)

97% V(C1) 

13% V(CI), 27% V(Kr,H), 60% C(Kr) 

90% V(Kr) 

V(C1)

HXeF

C(F)

C(Xe)

V(Xe)

V(F)

V(Xe,H)

HXeC1

14% V(Kr,H), 26% V(Kr), 58% C(C1) 

V(Kr,H) 15% C(Kr), 18% V(C1), 66% V(Kr) 

96% V(F) 

89% V(Xe) 

12% V(F), 23% V(Xe,H), 65% C(Xe) 

17% V(Xe,H), 32% V(Xe), 48% C(F) 

18% V(F), 18% C(Xe), 63% V(Xe) 

97% V(C1) 

10% V(Xe,H), 89% V(Xe) 

11% V(CI), 23% V(Xe,H), 66% C(Xe) 

16% V(Xe,H), 24% V(Xe), 58% C(C1) 

19% C(Xe), 19% V(Cl), 61% V(Xe) 

C(C1)

C(Xe)

V(Xe)

V(C1)

V(Xe,H)
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Figure 3. The reduction of localisation basins in the repulsive neon dimer, (Ne)2. At low values of 

ELF ("a") there is one valence localisation basin surrounding the whole molecule and two core 

domains of neon - C(Ne1) and C(Ne2) (not visible on the picture). The bifurcation at ELF=0.3 1 

splits the common valence basin into two well separated basins encapsulating Ne1 and Ne2 atoms

("b"). A further bifurcation occurs at ELF=0.60, giving rise to two valence non-bonding basins, 

V1(Ne) and V2(Ne), localised for each neon atom ("c"). The circular shape of the V2(Ne1) and 

V2(Ne2) basins is well represented in “d”. 

In the HRgY compounds the V(Y) attractor is separated from V(Rg) by 

presence of the core attractor C(Y), and the binding in the HRgY species differ 

essentially from the situation found in the (repulsive) neon dimer. The different 

position of V(Y) in respect to V(Rg) suggest that possible accumulations of the 

electron density, described by approximate (-Y+ -Rg +) H polarisation scheme, 

yields an additional stabilisation by dipole-dipole interaction. 
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TABLE 5. Selected bond critical properties a of molecules obtained 

by the topological analysis of the charge density (AIMS)

ρ [e] ∇2ρ r1 [Å ] r2[Å ]

HArF-B3LYP/6-311++G(d,p)

Ar-H 0.190 -0.348 1.898 0.713

F - Ar 0.098 +0.398 1.754 1.914

Ar - H 0.183 -0.320 1.911 0.702

C1- Ar 0.048 +0.136 2.428 2.299

Kr-H 0.166 -0.251 1.976 0.888

F - Kr 0.092 +0.307 1.828 2.024

Kr-H 0.164 -0.245 1.974 0.888

F - Kr 0.092 +0.312 1.832 2.019

Kr-H 0.159 -0.232 2.009 0.871

C1-Kr 0.043 +0.083 2.564 2.513

Kr - H 0.158 -0.223 2.004 0,874 

C1- Kr 0.044 + 0.086 2.582 2.495 

HXeF-B3LYP/Huz/6-311G(d,p)

Xe-H 0.133 -0.006 1.982 1.153 

F-Xe 0.083 +0.280 1.883 2.160 

HXeC1-B33LYP/Huz/6-311G(d,p)

Xe-H 0.133 -0.062 2.022 1.121 

C1- Xe 0.035 +0.089 2.632 2.758 

HArC1-B3LYP/6-311++G(d,p)

HKrF-B3LYP/6-311++G(d,p)

HKrF-B3LYP/6-311++G(24,2p)

HKrCl-B3LYP/6-311++G(d,p)

HKrCl-B3LYP/6-311++G(2d,2p)

a) ρ is the value of the charge density at the critical point, ∇2ρ is the second derivative of the

charge density there, r1 and r2 are the approximate distances from the critical point to attractor A 

and attractor B in the bond A-B. 

The tree-diagrams of (Ne)2 and HArF presented in Fig. 4 illustrate the 

reduction of localisation basins caused by an increase of value of the electron 

localisation function. One can notice that values associated with bifurcations are 

different in both systems. Furthermore, basins of the valence electron density 

V(Ne) in the neon dimer are split into V1(Ne) and V2(Ne), in contrast to HArF, 

where only one basin associated with the non-bonding electron density of fluor 

V(F) is observed. 

The populations of the C(F) and C(Ar) core basins with N of 2.16e and 

10.07e, respectively, are slightly larger than the formal values predicted on the

_



THE NATURE OF BINDING IN HRgY COMPOUNDS 271

basis of   the 2n
2

formula, where n is principal quantum number. As it was shown 

previously by Noury et al. [ 19], it can be associated with frequent visits of val- 

ence electrons into a core region. For the HKrY species the mean electron pop- 

ulation of C(Kr) is about 0.2e less than the formal value of 28e due to the [Kr] = 

non-negligible contribution of the 3d core electrons to the valence shell. The 

analysis of C(Rg) and C(Y) using the larger 6-3 1 1++G (2d,2p) and 6-31 1++G 

(3df,3pd) basis sets reveal only small (0.05e) differences in N compared to the 

value using the 6-3 11++G (d,p) basis set. In the case of HXeY molecules the 

population of the xenon core C(Xe) presents an effect similar to that observed 

for C(Kr). The mean electron population is about 0.2e less than the formal value 

of 46e expected on the basis of an [Xe] = [Kr4d10]5s25p6 electron configuration. 

We may assume an explanation analogous to that proposed for the Kr core, due 

to a contribution of 4delectrons to the valence shell. 

_

[Ar3d10]4s24p6 electron configuration. Presumably it may be explained by the 

Figure 4. Comparison of tree-diagrams presenting a reduction of localisation basins in the (Ne)2

and HArF systems. The values of the ELF correspond to catastrophes when a basin undergoes a 

bifurcation.
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The hydrogen atom is described by a protonated, disynaptic attractor

_

V(Rg,H) with the mean electron populations of basin equal to 1.69e and 1.61e 

for HArF and HArC1, respectively. The computations performed for HKrF anf 

HKrCl with the same basis set [6-311++G(d,p)] give values of 1.89e and 1.49e,

respectively, which suggests that relatively large difference (about 0.4e) is asso-

ciated with the exchange of F by C1. Adding one set of polarization functions on 

HKrF induces lowering of N from 1.89e to 1,55e, whereas for HKrCl no chan-

ges are observed. Using the highly polarized 6-311++G(3df,3pd) basis set rises

the values to 1.98 and 1.91e for HKrF and HKrCI, respectively. It is obvious 

that the population of the V(Rg,H) basin depends on the quality of an adopted 

basis set, and this effect should be carefully investigated in the future. Further- 

more, it is possible that a large alteration of the V(Rg,H) basin set is related to 

the phenomenon of a contribution of the 3d electrons to the valence shell. For 

HXeF and HXeC1, the mean electron population of the V(Xe,H) basin (the ECP 

approximation), 1.66e and 1.59e respectively, does not differ essentially from 

the N values found for HArF and HArC1.
_

The mean electron population of V(Rg) basins in HArF and HArCl are 

6.61e and 6.73e, respectively. For HKrF and HKrCl the calculations at the 6-

311++G(d,p) basis set estimate values of 6.64e and 7.09e, and for HXeF and 

HXeCl values of 6.66e and 6.77e, respectively. Thus, when fluorine is replaced 

with C1 in the HRgY species the population of V(Rg) rises by slightly (0.1-0.4e) 

for all the chlorine-containing compounds. No big changes between various ba- 

sis sets are seen, even though the 6-311++G(242p) basis estimate slightly larger

values than the two other basis sets. The mean electron population of the V(Rg) 

basin, which deviates between 6.6e and 7.1e depending on the considered sys-

tem and the quality of the basis set, suggests that, respective to the isolated atom 

consisting of 8 valence electrons, the valence shell of the rare gas is essentially 

missing one electron. 

Because the V(Rg,H) basins have an electron population less than 2.0e 

the missing electron density is transferred to regions of the non-bonding elect-

ron density of halogen V(Y). In fact, the computed N of V(Y) basins are bet-

ween 7.46e and 7.56e. The compounds with C1 atoms show a slight increase of 

the mean electron population V(Y) compared to the fluorine compounds being 

0.05e for HArF and 0.06e for HXeF and this effect can be explained by larger 

electron affinity of Cl than F. 

_

The use of the pseudopotential approximation for xenon reveals nomi-

nal changes for C(Y), V(Y) and V(Rg,H) basins in comparison to calculations 

with all-electron basis set. However, the mean electron population of V(Rg) is 

diminished by 0.18e and 0.16e for HXeF and HXeCI, respectively. The relative 

fluctuations λ are presented in Table 3 for all studied HRgY molecules. Accord- 

ing to the topological analysis, there are only minor fluctuations of the electron 

density within the core basins C(Ar), C(Kr) and C(Xe), ranging between 0.03e 
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(Xe) and 0.06e (Ar). Furthermore, the electron density of the core basins is 

mainly exchanged with the non-bonding electron density V(Rg), about 81-90%, 

and the V(Rg,H) basin, about 17-10% (Table 4). Comparable small λ values of 

0.06 are obtained for C(CI) but for C(F) values almost three times larger (0.18) 

are found. As was predicted for the C(Rg) basins the electron density is mainly 

exchanged with non-bonding electron densities V(Y). Comparison of λ compu-

ted for the monosynaptic, valence basins V(Rg) and V(Y) shows slightly larger 

values for rare gases than for halogens, and the relative fluctuations range bet- 

ween 0.13 and 0.30 for V(Rg) and 0.10 and 0.14 for V(Y). The largest relative 

fluctuations are observed for the V(Rg,H) basins, which range between 0.45 and 

0.57. The pseudopotential effect in the HXeY cases reveals a λ of V(Rg,H) de- 

creased by about 0.05. 

The percentage contributions to the variance (σ2) for the Ar, Kr and Xe- 

containing molecules are shown in Table 4. Results of the contribution analysis 

reveal some differences in delocalisation of the electron density for the HArY 

and HKrY compounds. The largest contribution to delocalisation of the V(Ar) 

basin (about 45%) comes from V(Ar,H). However, for the krypton-containing

molecules the largest exchange of the V(Kr) electron density appears with the 

C(Kr) basin, being 54% in HKrF and 60% in HKrC1. The observed difference 

can be understood by a large contribution of the 3d core electrons to the valence 

shell for the Kr-atom. Additionally, both basins of the non-bonding electron 

densities V(Rg) and V(Y) presents mutual delocalisation of the electron density, 

i.e. V(F) ⇔ V(Ar), V(Cl) ⇔ V(Ar) in HArF and HArCl and V(F) ⇔ V(Kr),

V(Cl)⇔ V(Kr) in HKrF and HKrC1. The percentage contributions of the V(Kr)

basin to the delocalisation of V(Cl) or V(F), and of V(Ar) either to V(Cl) or 

V(F) are about 20% and 10%, respectively, larger than observed in opposite 

way, i.e. the contribution of V(Y) to the delocalisation of V(Rg). The analyzes 

performed for HXeF and HXeCl support this picture, thus the V(Xe) and V(F) 

or V(Cl) basins mutually delocalise the electron density. The percentage contri-

bution of V(Xe) to the delocalisation of V(F) is 20% larger than contribution of 

V(F) to V(Xe). Therefore, this effect can be associated with the observed result 

that the rare-gas atoms donate the electron density to the halogen atoms. 

The large depopulation of the V(Rg) basins and the increased electron 

population of V(Y) suggest that the formation of the HRgY molecules is asso- 

ciated with a transfer of the electron density. The corresponding sums of mean 

electron populations for basins V(Rg)+V(RgH)+C(Rg) and V(Y)+C(Y) result 

in polarisations of the molecules: [HAr]+0.6 F-0.6, [HAr]+0.6 Cl-0.6 , [HKr]+0.7 F-0.7,

basis sets (HArY and HKrY) and the ECP approximation (HXeY). The satur-

ation of basis set to 6-311++G(2d,2p) or 6-3 11++G(3df,3pd) yields [HKr]+0. 7F-

0.7and [HKr]+0. 7Cl-0.7. The magnitude of the partial charge transfer (∆ q) is rather

stable along the series of studies molecules and the difference between F and C1 

isomers appears only for HKrY and HXeY compounds. The value of ∆ q increa-

[HKr]+0 6Cl-0 6, [HXe]+07 F-07, [HXe]+0.6Cl-0 .6 computed with the 6-3 11++G(d,p)
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ses by 0.l e in cases of HKrF and HXeF what can be explained by larger electro-

negativity of fluorine, which stronger polarises the valence shell of the rare-gas 

atom. On the contrary, the argon-containing species indicate the Ar-atom to be a 

«hard» rare-gas with a very small static polarisation and only nominal charge 

transfer is predicted by the ELF method. We must emphasize that generally the 

results achieved by the topological analysis of the ELF correspond to the values

found on the basis of the Mulliken Population Analysis. For HArF and HArCl

the electron density is transferred to the halogen and Aq is equal to 0.571e and 

0.573e, respectively. For HKrF(Cl) the value of Aq rises to 0.652e (0.665e) and 

for HXeF(Cl) to 0.707e (0.704e). On this basis we may suggest that a relatively 

simple MPA analysis yields a reasonable description of charge transfer effects

in the HRgY systems. 

A satisfactory discussion of the charge transfer effects as investigated 

above on the basis of the topological analysis of ELF and the Mulliken Popul-

ation Analysis may be complemented by the topological analysis of the electron 

density done in line of Bader [14]. In Table 6 there are collected the integrated

atomic populations computed for all studied molecules. The Ar and Kr contain-

ing species possess the net positive charge on hydrogen being in range from 

+0.233e (HArC1) to +0.085e (HKrF) obtained at the B3LYP / 6-311++G (d,p)

level. Interestingly, going to HXeF and HXeCl the hydrogen atom becomes 

negatively charged with net atomic charges equaled to -0.252e and -0.126e, 

respectively. The comparison of the atomic populations computed for the rare-

gas and halogen (Y) atoms presents that in all molecules Rg is positively and Y

negatively charged. Assuming the charge-transfer formula of the [HRg]+δ Y-δ

type the computations based on the integrated atomic populations [B3LYP / 6-

311++G (d,p)] results in the respective polarisation schemes: [HAr] +0.64 F-0.64,

[HAr]+0.5 6Cl-056,[HKr] + 0.6 6F-0.6 6, [HKr]+0.5 7 Cl-0.57 Forxenoncontainingsystems

the [HXe] +0.71 F-0.71 and [HKe]+0.63 Cl-0.63 formulas are predicted. The adoption of 

the 6-311++G (2d,2p) basis set for HKrF and HKrCl leads to a ∆q of 0.672 and 

0.589e, respectively. The achieved picture of charge-transfer effects is similar to 

that predicted on the basis of topological analysis of the ELF, which presented a 

transfer of about 0.6e-0.7e from the rare gas to the halogen. 

As surveyed by Coulson [22] the nature of binding in xenon compounds 

having an even number of fluorine atoms (XeF2, XeF4, XeF6, XeF8) may be des-

cribed by a valence-bond resonance model. For XeF2 a resonance between the 

ionic limits F(XeF)+ ↔ (FXe)+F- yielded an approximate charge distribution of 

F-0.5 -Xe
+1

-F-0.5 Adopting this idea for the binding in HRgY compounds allows 

us to identify three valence-bond structures resonating together: 

(I)H+RgY ↔ (II)H-Rg+ Y- ↔ (III)H-Rg-Y+

All mesomeric structures illustrate the possible localisation of the positive char-

ge, i.e. on the naked proton in structure I and on the rare gas or halogen in struc-
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tures II and III, respectively. A simple calculation using the data obtained from

the topological analysis of ELF yields the approximate percentage weights for 

the three mesomeric structures of the various HRgY molecules: 

HArF: I - 16%, II - 66%, III - 18%;

HArCl: I - 19%, II - 60%, III - 21%;

HKrF: I - 7%, II - 75%, III - 18%;

HKrCI: I - 25%, II - 56%, III - 19%;

HXeF: I - 17%, II - 59%, III - 25%;

HXeCl: I - 20%, II - 6 1 %, III - 19%.

TABLE 6. Integrated atomic populations computed on the basis of the topological 

analysis of the charge density (AIMS)

Molecule Basis set H Rg Y

HArF 6-311++G(d,p) 0.781 17.581 9.638

HArCl 6-311++G(d,p) 0.768 17.677 17.556

HKrF 6-311++G(d,p) 0.915 35.421 9.664 

6-311++G(2d,Zp) 0.918 35.410 9.672

HKrCl 6-311++G(d,p) 0.878 35.548 17.574

6-311++G(2d,2p) 0.879 35.532 17.589

HXeF Huz/6-311G(d,p) 1.252 53.037 9.711

HXeCl Huz/6-311G(d,p) 1.126 53.245 17.629

It appears that the largest approximate weight is on the H-Rg+F- form,

and the positive charge is mainly localised on the rare-gas atom. Furthermore, 

this implies that the H-Rg bond is mostly covalent. Structures I and III possess 

weights which range between 7% (HKrF) and 25% (HKrCl) for structure I and 

between 18% (HArF, HKrF) and 25% (HXeF) for structure III. Comparison

with HarY shows that H-Rg+F- structures possess larger weights than H-Rg+Cl
-

species. As pointed out by Coulson [22], the F atom has the advantage over 

chlorine as a ligand. The electron affinities are nearly equal but F is smaller, so 

that the electrostatic energy for the creation of charges Rg+Y- will be consider-

ably larger for larger halogens like chlorine. The Cl-containing HRgCl molec-

ules have larger approximate weights in the ionic limit H+ Rg Cl. In conclusion,

the H-Rg bond is more ionic in the HRgCl compounds than in the HRgF isom-

ers. This, however, results also in a less ionic Rg-Y bond for the larger halogen 

species compared to the fluorine ones. 

From the topological analysis of ELF it is obvious that bonding between 

rare-gas and halogen atoms is of unshared-electron type. Furthermore, addition-

al stability may be gained due to electrostatic effects and the predicted electron 
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density transfer supports this. Comparison of the total electron density (ρ) and

the ELF along the axis of HArF is presented in Figure 5. The shell structure of 

atomic cores is reflected by one maximum for F corresponding to K-shell and

two maxima of K and L core shells in the case of Ar. The inspection of ELF 

between the V(F) and V(Ar) maxima reveals one minimum with the ELF value 

about 0.25. The largest values of 0.35 were found for HXeF and HXeCl. 

5. Conclusions 

The following conclusions can be drawn from the present study.

1. The topological analysis of the electron localisation function adopted 

for HRgY compounds (Rg = Ar, Kr, Xe; Y = F, Cl) reveals two core attractors 

C(Rg) and C(Y) associated with the electron density of the atomic cores, two 

monosynaptic, valence attractors V(Rg) and V(Y) of non-bondmg electron den-

sity for Rg and Y, and one protonated disynaptic attractor of hydrogen V(Rg,H). 

2. There are no bonding, disynaptic attractors between rare-gas C(Rg) 

and halogen C(Y) cores. Thus, the binding is classified as an unshared-electron

interaction type, and is presumably of electrostatic origin. 

3. Comparison between an exemplary repulsive system (Ne)2 and the 

neutral HRgY compounds presents a different localisation of the V2(Ne2) and 

V(Rg) attractors with respect to the position of the second attractor of the non-

bonding electron density, i.e. V2(Ne1) and V(Y).

4. The mean electron population of the C(Kr) basin is about 0.2e less 

ron configuration. This is presumably caused by participation of underlying the 

3d core electrons to the valence shell. This effect is missing for Ar core basins, 

where the 3s and 3p orbitals form the valence space. 

5. The mean electron populations of the V(Rg,H) basins are similar for 

HArY and HXeY molecules and vary between 1.60e and 1.70e. For the HKrY

compounds, N depends on the adopted basis set and varies between about 1.5e 

and 2.0e, which may be associated with saturation of the valence space when 

multiple sets of polarisation functions are used and with the contributing 3d
core electrons to V(Kr).

_

6. There is partial charge transfer from the rare-gas to the halogen atom, 

about 0.6e for HArF, HArCl, HKrCl and HxeCl, and slightly larger (0.7e) for 

HKrF and HXeF. Generally the achieved values correspond to those computed 

by the Mulliken Population Analysis, and the rather simple MPA method gives 

reasonable estimates of charge-transfer effects in the HRgY systems.

7. The observed distribution of electron density from rare gas to halo-

gen is also reflected by the contribution to the population variance parameter, 

which represents the mutual exchange of the electron density of the V(Y) and 

V(Rg) basins. The variance is about 20% larger from V(Rg) to V(Y) than from 

V(Y) to V(Rg). 

than the formal value of 28e predicted on the basis of the [Ar3d10]4s24p6 elect-
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Figure 5. Comparison of the total electron density (dashed line) and electron localisation function 

ELF (solid line) along the axis of HarF, computed at the B3LYP / 6-3 1 1++G (d,p) level. The total 

electron density, for the sake of simplicity, was cut at the value of 1.0. 

8. Among the proposed set of three resonating valence-bond structures, 

H+Rg F, H-Rg+ Y- and H-Rg- Y+, the largest approximate weight is obtained for 

the H-Rg+ Y ionic limit, Therefore, the positive charge is mainly localised on 

the rare-gas atom. 

9. The analysis of the ELF along the molecular axis carried for HArF 

revealed a minimum localised between maxima corresponding to rare-gas (Rg) 

and halogen non-bonding electron densities with an ELF value of 0.25. 
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Abstract. This is the first of two papers providing a modern valence bond explanation, 

within the framework of spin-coupled theory, of the general tendencies and character-

istics of chemical bonding in the monocationic molecular systems MCH2,+ (M=Sc–Co). 

The present paper concentrates on a general study of two alternative representations of 

the metal-ligand double bond, namely the σ+π and bent (Ω) bond descriptions. The close 

equivalence of these two models is established both within the valence and core parts of 

the wavefunction. Our results show that the spin degrees of freedom influence the prefer-

ence for a bonding model to a much greater extent than do different choices for the core 

orbitals or variations in orbital flexibility. The presence of nonbonding electrons on the 

metal is found to reduce the size of the spin space for the Ω bond wavefunction relative 

to its σ+π alternative; this favours energetically the σ+π construction. In contrast, sys-

tems deprived of nonbonding electrons, such as ScCH+,2, TiCH
2+

,2 and VCH
3+

, 2, prefer

the bent bond model. Extensionof the active space is found to advantagethe σ+π repre-

sentation as a consequence of an escalation of the difference between the spin flexibilities 

of the two models, and this can lead to an inversion of the hierarchy of the two descrip-

tions (as in the case of ScCH2, +). We find that modest variations of the molecular geo-

metry do not modify the main conclusion of this survey: The classical σ+π bond model 

offers the more appropriate description of the metal-methylene interaction. We discuss 

also the triplet character of the metal-carbon π bond, which is found to stem from the 

presence of unpaired nonbonding electrons on the metal and can be viewed as the result 

of a compromise between the preservation of some metal d–d exchange energy and the 

formation of a strong purely singlet-coupled covalent bond. 
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1. Introduction 

Over the past decade, the first-row transition metal methylene species have been the sub-

ject of an increasing number of experimental studies [1], mainly because they are consid-

ered to act as possible intermediates in many important catalytic reactions. The main aim 

of the experimental work has been to obtain reliable thermodynamic data for the metal-

ligand bond strength, which is required in order to provide an accurate assessment of the 

energetics of elementary reaction steps involving bond-making and bond-breaking pro-

cesses. In parallel, the moderate sizes of these molecules have made them an attractive

target for the theoretical chemistry community [2–6]. Although the bonding mode in the

first-row transition metal methylene molecules is relatively simple, it is known to be very 

difficult to treat at low levels of theory. As pointed out by Carter and Goddard [3], the 

Hartree-Fock (HF) method leads to very poor descriptions of these systems because of

the weakness of the π interaction. Thus, MCH2,+ systems define a challenging research 

area which is very suitable for testing the capabilities of various quantum chemical meth-

ods. There is little evidence about how valence bond (VB) based approaches would per-

form in this area - only very few VB theoretical studies on transition metal compounds 

have been published so far. Until now, our own studies have been concerned exclusively 

with relatively small hydride and/or hydrogen compounds [7–10]. A number ofquestions

of chemical interest concerning the MCH2,+ complexes remain to be answered. For in-

stance, a complete rationalization and explanation of the observed bonding strength and 

dipole moment variation trends still does not exist. The consecutive filling of nonbonding 

metal orbitals within the series and the importance of the alternative description in terms 

of Lewis resonance structures have not been analyzed in sufficient detail. Our experience 

indicates that, in most cases, questions of this type can be answered in a straightforward 

manner by the results ofab initio spin-coupled (SC) calculations, which utilize a highly

visual and yet sufficiently quantitative modem variant of VB theory. These questions will 

be addressed fully in the second part of this work [11], which focuses on the chemical 

characteristics of the MCH2,+ (M=Sc–Co) complexes. 

In this first part, we begin with a discussion of the chemical relevance of the two al-

ternativebondingmodelscapableofdescribingthemetal-methyleneinteraction.Within a 

VB-style formalism, a double bond can be represented using either the classical separated 

bond scheme, or as a pair of bent bonds [12,13], as shown below for the case of a homo-

nuclear double bond: 
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According to the variational principle, the better model is expected to be the one in-

corporating the more spin and/or orbital variational degrees of freedom. Preliminary SC 

calculations performed by Loades [10] suggest that, most probably, there is no single 

description suitable for all MCH2,+ (M=Sc–Co) complexes. Loades found that the Ω 
bond wavefunction of ScCH2,+ is lower in energy than its σ+π alternative although, on

the contrary, TiCH2,+ opts clearly for the classical σ+π scheme [10]. Recently, we rein-

vestigated this problem using fully-variational SC calculations allowing core relaxation. 

The new results, which were partially presented elsewhere [13], are in very good agree-

ment with Loades' conclusion that a universal lowest-energy bonding model does not

exist. For inorganic complexes, these results also indicate that spin flexibility may be

more important than orbital flexibility. Here we give a complete account of this work 

which has been extended to include the MCH2,
+ (M=Sc–Co) series. The features of the

two types of SC wavefunctions for multiple bonds are discussed in detail. Their core 

components are treated with special attention. In particular, fully-optimized sets of core 

orbitals are compared with cores taken from analogous 'N in N' complete active space 

self-consistent field (CASSCF) calculations [14]. The importance of this comparison 

follows from the fact that for other systems [15], CASSCF doubly-occupied orbitals 

have been found to provide core descriptions for frozen-core SC calculations, which are

almost as accurate as their fully-optimized counterparts. Next, we present a thorough 

explanation ofthe contraction ofthe spin space occurring in the bent bond solution. The

increase of the degree of this contraction in parallel with the increase of the number of 

SC orbitals is discussed in detail, together with its influence on the energy difference (∆ E)
between the two bonding models. Additional insights into this issue are introduced by the

parallel between the magnitude of the energy separation and the extent to which the 

wavefunction makes use of any available additional spin flexibility. In order to be able to 

make confident conclusions, we also carried out several calculations on species such as 

TiCH
2+
, 2, the hypothetical VCH3+,2, and on excited states of TiCH2,+ and VCH2,+. For

the same purpose, we then examined the influence of small distortions of the molecular 

geometry on ∆ E. In order to establish the relative merits of the two rival bonding models, 

the SC wavefunctions were compared to their more elaborate CASSCF counterparts. In 

our survey, the CASSCF wavefunctions provide the criteria for the extent to which the 

SC approach recovers nondynamical correlation energy, defined here as the energy se-

paration between the CASSCF and HF energies. 

Another point of interest is that the metal-ligand π bond of ScCH2,+ has been obser-

ved to have a considerable open-shell character. Using the modified coupled-pair func-

tional (MCPF) formalism, It has been found [6] that the occupation numbers of two na-

tural orbitals representing the π interaction are unexpectedly similar, and close to unity. 

This suggests that the π bond may contain a certain amount of triplet character. We ad-

dress this question and provide a simple SC explanation for the origin of this triplet char-

acter and the reasons for its increase on passing from ScCH2,+ to MnCH2,
+,

2. Spin-coupled model 

This work is based on the SC approximation to the solution of the nonrelativistic Schrö- 

dinger equation [16]. The SC (or full-GVB [17]) wavefunction incorporates a significant 
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amount of nondynamical correlation energy and has the distinct advantage of employing 

a single-configuration ansatz that is easy to handle and to interpret. It incorporates just 

one product of singly-occupied nonorthogonal active orbitals φ µ

(1)

The core space Ψ core is usually expressed as the product of doubly-occupied orbitas (i.e.
and a perfect-pairing (PP) core spin function Θcore

(2)

The spin function for theNactive electrons Θ N,SM is expressed as a linear combination of

simultaneous S,^2 and S,z spin eigenfunctions with quantum numbers S and M,

(3)

where the summation over the index k runs over all linearly independent spin eigenfunc-

tions of this type. The expression for the spin space dimension f N,s, which is well-known

from the literature [18], depends only on N and S. The construction of complete sets of 

spin eigenfunctions (spin bases) has received much attention, since it can be done in a

number of different ways highlighting different features of the way in which the indivi-

dual electron spins are coupled together to achieve the overall value of S. The more com-

mon construction methods are those due to Kotani [18], Rumer [19] and Serber [20]. 

The last one of these has often been able to provide the most detailed information about 

the symmetry properties of the total wavefunction. 

In the Kotani basis, starting with the spin function for the first electron, the spin 

eigenfunctions are built up by successive addition, one by one, of the spins of the remain-

ing electrons. The overall spin values at each stage of the construction process provide a 

convenient way oflabelling the individual spin terms. For example the sequence (½)0(½)

for a singlet system Of 4 electrons (S=0) indicates that the spins ofthe first two electrons

are singlet coupled and addition of the third electron results in a 3-electron doublet. The 

required final spin is achieved with the fourth electron and it is not necessary to indicate

its value, as it is the same for all 4-electron singlet spin eigenfunctions. The Serber basis 

spin basis is built up in a similar fashion, but this time the main construction elements are 

provided by all two-electron singlet and triplet spin eigenfunctions. The first electron pair 

is used as starting point, and the remaining pairs are added one by one (plus an eventual 

final unpaired electron, ifN is odd). In order to define a Serber spin eigenfunction, it is

necessary to indicate the spin of each pair and the overall spin at each stage of the cons-

truction process. For example, the sequence (01)1(½) for a five-electron doublet shows 

that the first and the second pairs, a singlet and a triplet, respectively, are coupled to an 

overall triplet, while addition of the fifth electron leads to the required total spin of ½ 

The Rumer spin basis is generated by choosing f N
, s linearly independent spin eigenfunc-

tions in which N–2S electrons form singlet pairs, and the remaining 2S electrons are

assigned spin α. A convenient notation for a spin function of this type is provided by the 

list of its singlet pairs. For example for a five-electron doublet system the label (1–4, 2–3)

corresponds to a product of two two-electron spin singlet pairs and an α spin fbnction

for the last electron, 5. When the spin bases are ordered in the ‘standard’ way [21], the 

ψ
1

2 ψ
2

2..

Θ Nk,SM
^
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first spin function in the Rumer spin basis coincides with the last spin functions in the 

Kotani and Serber bases. This spin function, common to these three bases, is of the PP 

type.

The antisymmetrized product of the spatial part of the SC wavefunction with a part-

icular spin eigenfunction defines a VB-type structure. It is possible to evaluate the

contribution of each VB structure to the total SC wavefunction directly. However, in

most cases it is sufficient to analyze instead the composition of the active-space spin 

function (Eq. (3)). The occupation number Wk of each spin function within 

can be evaluated using one of several different schemes [22–25]. One of them, due to

Chirgwin and Coulson [22], defines these occupation numbers as

ΘN
k, SMΘN

k, SM

(4)

In the Kotani and Serber bases, the spin eigenfunctions are orthogonal by construction, 

and their weights within are given simply by the squares of the corresponding spin-

coupling coefficients Csk (i.e. Wk = C 2

,sk ).

Θ N
k, SM

An alternative way of interpreting the optimal spin-coupling pattern is to examine

the values of calculated over the active-space spin function [26]. These spin 

correlation matrix elements depend on the coupling ofthe electron spins associated with

orbitalsφ  i and φ  i: the limiting cases are –¾ and ¼ for pure singlet and pure triplet coup-

lings, respectively, whereas zero values indicate completely uncoupled spins. Values of

provide the same type of information, but this time the special values are 2 

for a triplet coupled pair, ¾ for two uncoupled electrons and zero for a singlet coupled 

pair [27]. The two spin-correlation scales are linked by the simple relation: 

(5)

which can be generalized to groups ofelectrons. In the case of two groups GA, and GB of

nA and nB electrons, respectively, we obtain the expression

(6)

in which the last term on the right-hand side accounts for the coupling between the two 

groups. When divided by the number of electron pairs, this term gives the average coup-

ling between two electrons belonging to GA and to GB, respectively, 〈 s,^(GA).s,(GB )〉 .
Typically, theactive SC orbitals {φ µ } and the core orbitals { ψ v} are expressed as lin-

ear combinations ofatom-centred functions {xi} as

(7a)

(7b)

and

ΘN
k ,S M

〈 (s,
∧
i+s,

∧
j)

2〉

〈s,
∧

i.s,
∧
j〉
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A fully variational ab initio SC calculation would involve simultaneous optimization of 

the three sets of coefficients {Csk}, {cµ i}, {cvi } which appear in the Eqs. (3) and (7). In

contrast to classical VB theory, the SC formalism imposes no preconceptions on the sha-

pes of the orbitals and on the degree of their localization. Thus, SC orbitals represent a

unique outcome of the use of the variational principle to optimize the SC wavefunction 

of Eq. (1). 

The fact that, in most cases, the optimized SC orbitals turn out to be well-localized

about different atomic centres makes the analysis of spatial symmetry of the SC wave-

function different from that for molecular orbital wavefunctions built from delocalized 

orbitals. If Ψ SC is nondegenerate, the effect of a symmetry operation R on the SC wave-

function can be expressed as 

(8)

where xR is the character of R in the irreducible representation characterizing the spatial

symmetry of Ψ SC As a rule, the core space Ψcore transforms according to the totally sym-

metric irreducible representation of the point group of the molecule, so that we do not 

need to consider it in the spatial symmetry analysis. Let us assume that if any of the SC 

orbitals belong to definite irreducible representations ofthe point group ofthe molecule,

then all of these irreducible representations are one-dimensional. The the right-hand side 

of Eq. (Erreur! Source du renvoi introuvable.) can be expanded as 

(9)

where PRdenotes the permutation of (some of) the SC orbitals caused by R and NR stands

for the number of SC orbitals that change sign under R. If PR is a permutation of the elec- 

tron coordinates, defined analogously to PR,

(10)

where ε pR denotes the parity ofPR. As a direct consequence of Eq. (Erreur! Source du 
renvoi introuvable.), the active space spin function Θ N,SM has to satisfy the symmetry 

requirement

(11)

which can effectively decrease the number offree variational spin-coupling coefficients

Csk [see Eq. (3)]. 
There are several possibilities for further refinement of the SC wavefunction. By ana-

logy with the CASSCF formalism, a multiconfigurational SC wavefunction can be built 

by adding ionic configurations to the covalent structures. Such an MCSC formalism is 

capable to recover all nondynamical correlation energy included in the CASSCF wave-

function, provided all possible ionic structures are explicitly included (a small difference 

may arise in the case when the core and SC orbitals come from a preliminary single-con-

figuration SC calculation and are not re-optimized). If the goal is to include further cor-

relation effects, especially of the dynamical type, it is also possible to augment the SC 

wavefunction with excited structures [15,28–30]. For high accuracy, it is usual to follow 

a SC or MCSC optimization with nonorthogonal CI calculation (SCVB approach [31]), 

which can produce results comparable to those obtained with CASSCF-CI calculations 

and is particularly suitable for treating excited states [8a]. 
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3. Details of the calculations 

The ions ScCH2,+ and TiCH2,+ were found by Ricca and Bauschlicher to adopt Cs sym-

metry [4], but the C2v forms were calculated to be less stable by only 2 kcal/mol at the 

B3LYP level of theory. This small difference allows us to assume, in order to facilitate 

comparisons between results, that all the species we have chosen to study have C2vsym-

metry (according to the standard spectroscopic orientation, all atoms lie in the σ, yz plane

and the metal-carbon bond is aligned with the z, → axis), the CH bond lengths are fixed at 

2.078 bohr and the HCH bond angles at 125º. The metal-carbon bond distances we used 

(in bohr, Sc–C=3.729, Ti–C=3.646, V–C=3.502, Cr–C=3.407, Mn–C=3.471, Fe–C= 

3.434, Co–C=3.386), were taken from C2v-symmetry ground state geometry optimiz-

ations [5] performed in the MCPF formalism (1A1 for ScCH2 ,+,
2

A1forTiCH2,+,
3

B2for

VCH2,+,
4B1 for CrCH2,+, 5B1 for MnCH2,+, 4B1 for FeCH2,+, 3A2 for CoCH2,+). The true 

ground state of   the vanadium species is most probably 
3
B1, rather than 

3
B2. However, the 

energy separation between the two states computed at the B3LYP level oftheory is very

small (~0.5 kcal/mol), and this inversion in the ordering originates from the zero-point

correction [4]. Here we consider the 3B2 state of VCH2,+ in order to have a simple sequ-

ential filling ofthe nonbonding orbitals throughout the MCH2,
+

series [11]. The calcul-

ations on di- and tri-cation species TiCH2+,2 and VCH3+, 2 were performed at the equi-

librium geometries of the corresponding monocations. The same holds for the various 

excited states treated in this survey. 

For consistency, we employed a high quality Gaussian-type basis set very similar to 

the one used in Ref. [5] to optimize the molecular geometries. It includes polarization 

functions which are known to be required for the proper description of bent bond solu-

tions: As a result of the fact that the Ω bond wavefunction incorporates a larger number 

of orbital degrees of freedom than its σ+π counterpart, use of a poor-quality basis set 

could constitute a bias in favour of the σ+π construction. For metal atoms we employed 

an [8s4p3d] contraction of the (14s9p5d) primitive set of Wachters [32], supplemented 

by the set of polarization functions (3f)/[2f] developed by Bauschlicher et al. [33], and 

leading to a final basis set of the form (14s9p5d3f)/[8s4p3d2f]. The classical correlation-

consistent Dunning [34] valence triple-x (cc-pVTZ) basis set, which corresponds to (10s

5p2d1f)/[4s3p2d1f] for C and (5s2p1d)/[3s2p1d] for H, was used for light atoms. Only

the pure spherical harmonic components of the basis functions were utilized. 

The minimal SC and CASSCF active spaces involve the σ and π metal-carbon elec-

tron pairs (i.e. two a1 orbitals and two b1 orbitals), augmented if necessary with orbitals 

holding nonbonding electrons on the metal atom. From TiCH2,+ to MnCH2,+, the addi-

tional electrons are placed in nonbonding a1 (dδ=dx2 –y2 ), b2 (d=dyz), a2 (dδ =dxy,), a1 (s+λdσ

=σ+λd2z
2–x

2–y
2) metal orbitals, respectively, designatedby For FeCH2

,+ the

orbital becomes doubly occupied, while in CoCH2,+ the extra electron is in the orbital,

which makes it necessary to add one a
1

and one b
2

orbital in order to perform an 'N inN’
CASSCF calculation. Additional calculations were carried out with the standard active

space, which includes all six valence electrons of CH2. In this case, the active space is 

extended with the two a
1
 and two b 2 orbitals required to describe the two CH bonding 

pairs.
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Two types of symmetry adaptation were used in the SC calculations. The σ/π separ-

ation was achieved simply by insisting that certain orbitals should be of pure σ (a1) and 

pure π (b1) symmetry, respectively. In the Ω bond wavefunctions, the SC orbitals were 

constrained to transform into one another under appropriate operations of the C2v point

group: there are only two symmetry-unique SC orbitals describing the metal-methylene

bond, the other two orbitals represent symmetry partners of the first two with respect to 

the molecular plane σ, yz The reflection of a pair of SC orbitals describing one CH bond 

through the σ, xz plane bisecting the HCH angle produces the pair of orbitals associated 

with the second CH bond. The orbitals occupied by unpaired electrons are constrained to 

belong to certain C2v irreducible representations (see above). Except where stated expli-

citly, the spin analysis is performed on SC wavefunctions in which the orbitals are order-

ed so as to maximize the PP contribution. For example, the orbital ordering within the

wavefunctions for MnCH2,+ exploiting the standard active space is assumed to be: 

If there are no nonbonding electrons in the complex, or their number is less than 4, the 

corresponding orbitals are omitted from the product. The same holds for the orbitals

describing CH bonds which are not present in the wavefunctions used in minimal active

space calculations. 

All calculations were carried out with the MOLPRO package [35], which incorpor-

ates a very efficient modern VB module [9,15,30]. Except where otherwise stated, the
SC wavefunctions were determined through full simultaneous optimization of the core 

and valence subspaces. The transformation ofthe spin-coupling weights (Wk) and coef-

ficients (Csk) between the Rumer, Serber and Kotani spin bases was performed using the

SPINS program [36]. 

4. Results and Discussion

4.1. BENT BOND VS  SEPARATED BOND MODELS

A. Common features of the two models. At the SC level of theory, the metal-meth-

ylene double bond is described by four orbitals which closely resemble deformed hybrid 

atomic orbitals and have no contributions from the metal 4p valence shell. Throughout

the MCH2,+ (M=Sc–Co) series, these orbitals remain very similar qualitatively, regardless 

of the type of metal atom. For example, the orbitals for CrCH2,+ shown in Fig. 1 bear 

strong resemblance to those for TiCH2,+ presented elsewhere [13] (see also Ref. [11]).

This confirms an earlier observation on the transferability of the SC model of metal-lig-

and interactions, made for MH and MH+ (M = Sc–Cr, Y–Mo) systems [7,10]. Within the

separated σ+π bond framework the bonding orbitals, each ofwhich is localized about a

unique atomic site, form two pairs that are clearly associated with two-centre σ and π 
bonds, respectively. The axial interaction is described by a s+ λ dσ -like hybrid orbital on 

the metal atom σ M, deformed towards the methylene fragment, and a spx-like hybrid orb-

ital σ C , centred on the carbon atom. The π bond pair consists ofan almost pure dπ orbital

π M and a π C orbital which is deformed in the direction of the metal atom, but remains
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distinctly C(2pπ)-based. The equivalent bond description uses two symmetry-related

pairs. The two predominantly C-based orbitals Ω c resemble deformed well-localized sp
x
-

hybrids, but theirM-based partners Ω M extend considerably towards the carbon atom. In

both models the electron spins of the orbitals within bonding pairs are predominantly

singlet-coupled, which suggests markedly covalent interactions [11]. The values of the 

indicates that the triplet character of the metal-carbon bond does not exceed 20%. 

The unpaired electrons, if any, occupy the almost exclusively metal orbitals l,. There

are no obvious differences between nonbonding orbitals associated with the σ+π and Ω 
bond wavefunctions. The same observation holds for the orbitalsφ candφ H which descri-

be the carbon-hydrogen interactions. The shapes of these orbitals are strongly reminis-

cent of the typical spin-coupled CH bond descriptions in various organic and inorganic 

systems [13]. The obvious differences in the shapes and in the degrees of localization of 

the four orbitals engaged in the metal-carbon double bonds within the σ+π and W bond

schemes do not necessarily imply that the corresponding SC wavefunctions should be 

entirely dissimilar. In fact, any observable property depends on the overall wavefunction 

only, which suggests that a meaningful comparison of the σ+π and Ω bond models 

should analyze not only the orbitals directly involved in multiple bonds, but also the 

many-electron wavefunctions which incorporate these orbitals. 

As a first step in the comparison between the overall SC wavefunctions correspond-

ing to the σ+π and Ω bond schemes, we examined the impact of the core treatment on 

the energy characteristics ofthe two bonding models. Our objectives were (i) to establish

that the core orbitals computed within the σ+π and Ω bond frameworks are almost com-

pletely equivalent, and (ii) to demonstrate the very close similarity between these core

orbitals and those taken from a matching CASSCF calculation. The results of the SC 

calculations employing different choices ofcore orbitals are shown in Table 1 and sug-

gest the following conclusions [the notation used to distinguish between different SC 

wavefunctions can be explained on the example of (Ω)/(σ+π) which indicates that the 

valence part of the SC wavefunction involves Ω bond orbitals, while the core orbitals 

come from a fully-variational σ+π SC calculation which, in turn, is denoted as (σ+π) /

i) The core orbitals taken from fully-variational equivalent and separated bond SC cal-
culations are very similar. They can be used interchangeably in order to discuss the 

energy separation between the two bonding models. Indeed, the wavefunction hier-

archies established by the energies obtained using the same set of SC core orbitals 

[i.e. either the (Ω)/(Ω) and (σ+π)/(Ω) energies, or the (Ω)/(σ+π) and (σ+π)/(σ+π) 
energies] are in harmony with the fully-variational results [i.e. the (Ω)/(Ω) and (σ+π) 
/ (σ+π) energies]. Naturally, the use of SC core orbitals calculated within the σ+π 
framework favours the separated bond model while, on the contrary, the Ω bond

constructions are put to some advantage by core orbitals taken from bent bond cal- 

culations. The largest energy variations upon change of the set of core orbitals are 

observed for ScCH2,+: frozen core orbitals originating from Ω bond and σ+π bond

calculations produce ∆ E, values of 0.89 and 3.27 mH, respectively, while fully varia-

tional calculations including core relaxation yield an energy separation of 1.90 mH. 

σ+π)]  :

correlation matrix elements 〈 s,is, j〉 range from –0.732 to –0.442 (see Table 1) which
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(a)

Figure I. Fully-variational symmetry-unique SC orbitals for CrCH2,+ calculated with a standard
active space for (a) the σ+π model (b) the Ω model. Orbital is shown only for the W model: it is 

practically indistinguishble between the two calculations. 
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ii) The use of identical frozen CASSCF core orbitals within the two SC wavefbnctions 
as a replacement for the corresponding fully-variational SC core orbitals does not 

lead to significant changes in the energy separations between the two bonding mod-

els. It does not affect the ordering of the σ+π and Ω bond solutions in any of the 

MCH2,+ systems listed in Table 1 [compare the (σ+π) /(CAS) and (Ω) /(CAS) ener-

gies with their (Ω)/(Ω) and (σ+π)/(σ+π) counterparts]. Nor does the use of CAS-

SCFcore orbitals favour one ofthe two bonding models in a systematic fashion. For

example, in the case of CrCH2,+ the CASSCF core creates a better environment for 

the bent bond solution (∆ E decreases from 1.59 to 1.54 mH), whereas in the case of

MnCH2,+ its use has an exactly opposite effect (∆ E increases from 3.20 to 3.29 mH). 

The biggest change is observed for VCH2,+: the energy separation increases from

1.81 to 2.29 mH as a result of switching to CASSCF core orbitals. 

The similarity between the three types of core orbitals (taken from fully-variational

Ω bond and σ+π SC wavefunctions, and from a CASSCF calculation within an analog-

ousactive space) increases aswemovefromleft to right in Table 1. This follows directly

from the observation that the changes in the energy separation between the two multiple 

bond models resulting from different choices of the core orbitals become smaller in com-

parison to its magnitude. For example, in the case of MnCH2,+ the ∆ E variation caused by 

different core treatments is just 0.1 mH, which is negligible given the fact that ∆E is close 

to 3.3 mH. 

The second step in the comparison between the overall SC wavefunctions 

corresponding to the σ+π and Ω bond schemes focuses on their valence (or active)

components. One standard way of examining these valence components as a whole, 

withoutgoingdownto individual orbitals, istoperform Mullikenpopulation analyseson

the corresponding active spaces. The gross active-space populations of the basis 

functions on the metal atoms are given in Table 1. We observe a classical mixing of 

3dn4s1 and 3dn+1asymptotes which will be discussed in detail in the forthcoming paper

[11]. Clearly, inboth SC solutions the metal atoms participate in the M–C doublebonds

with very much the same selections of basis functions: The largest differences between 

populations derived from σ+π and Ω bond SC wavefunctions do not exceed 0.03 

electrons (see the s orbital populations of ScCH2,+and TiCH2,+). The SC and CASSCF 

values are in very good agreement, as well. This shows that not only the core 

components, but also the valence parts of the two types of SC wavefbnctions are 

remarkably similar. As a result, the σ+π and Ω bond constructions can be considered as 

two ways of representing essentially one and the same wavefunction. Moreover, both SC 

wavefbnctions are found to resemble very closely their multiconfigurational CASSCF 

counterpart. In this way, the metal-methylene systems studied in this paper provide 

further examples of the close analogy between SC and CASSCF wavefunctions which 

represents a cornerstone of the CASVB formalism [9,37]. 



TABLE 1. Summary of main SC and CAS(SCF) results for the MCH2,+ (M=Sc–Mn) seriesa

ScCH+,2 TiCH+,2 VCH+,2 CrCH+,2 MnCH+,2

(HF)/(HF)b 0(0) 0(0) 0(0) 0(0) 0(0)
(CAS)/(CAS) 85.31 (100) 100.79( 100) 113.74(100) 136.20(100) 147.33 ( 100) 

Relative (σ+π)/ (CAS) 71.98 (84.4) 89.45 (88.7) 102.32(89.9) 124.20(91.2) 141.46(96.0)

energies, (Ω)/ (CAS) 73.75 (86.4) 88.14 (87.5) 100.03(88.2) 122.66 (90.0) 13 8.17(93.8) 

expressed (σ+π)/(σ+π) 72.41 (84.9) 89.82 (89.1) 102.65(90.2) 124.50(91.4) 141.49(96.0) 

in mH (and (Ω)/(σ+π) 73.30 (85.9) 88.41 (87.7) 100.76(88.6) 122.9 1 (90.2) 138.13 (93.8) 

percentages) (σ+π)/(Ω) 71.04 (83.3) 89.77 (89.1) 100.25(90.3) 124.44(91.3) 141.42(96.0)

(Ω)(Ω) 74.31 (87.1) 88.45 (87.7) 100.84(88.7) 122.9 1 (90.4) 13 8.29(93.8) 

(σ+π)/(σ+π) PPc 71.30 (83.6) 82.33 (77.9) 85.98 (75.6) 91.14 (66.7) 90.38 (61.3) 

(Ω)/(Ω) PPc 74.22 (87.0) 87.37 (79.3) 87.91 (77.3) 93.70 (68.9) 99.72 (67.6) 

Perfect-pairing Wpp σ+π 98.2 88.8 80.0 68.9 59.7 

81.9 88.1 79.8 66.0 50.5

s0.10 d4.53

s0.12d4.47

s0.10d4.49

s0.51d5.10

s0.50d5.08

s0.12d3.45

s0.15d3.39

weightd Wpp Ω 

analysis (Ω)/(Ω) 

s0.15 2.41 

s0.18d2.34s0.16d1.34

s0. 13d1.34 s0. .15d2.36 s0.51d5.10

s0.15d1.38 d

s0.13d3.41

Mulliken (CAS)/(CAS)

population (σ+π)/(σ+π) 

Spin σc and σ
M

–0.732 –0.722 –0.711 –0.669 –0.618

correlation πc and πM –0.732 –0.644 –0.565 –0.477 –0.422

elements 〈S,
∧

i.S,∧ 〉 Ω candΩ M –0.569 –0.672 –0.634 –0.550 –0.441

aMinimal active space calculations 
bThis notation indicates: (valence treatment)/(core treatment) 
c Calculations carried out within the perfect-pairing restriction 
d Within the Serber basis 
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B. Is there a preference for a particular bonding scheme? It was first suggested in 

Ref [38], on the examples of SC wavefunctions for ethene and ethyne, that the prefer-

ence for one or other ofthe bonding schemes comes as the result ofa rather delicate bal-

ance between the variational freedom associated with the sets of spatial ({cµi }, {cvi}) and

spin parameters (Csk ) included in the SC wavefunction (see Eqs. (1), (3), and (6)). It can

easily be demonstrated, using simple overlap considerations [13], that the Ω bond model

always incorporates more orbital degrees of freedom than its σ+π counterpart. Assuming 

the predominant importance of orbital flexibility, the bent bond solution can be expected

to be favoured energetically. Most of the earlier computational VB-style studies of multi-

ple bonds have, indeed, reached the conclusion that the preferred multiple bond descrip-

tion is based on the bent bond model or, alternatively, that orbital degrees of freedom are 

more important than the degrees of freedom within the spin-coupling pattern. The results 

of our SC calculations on the MCH2,+ (M=Sc–Mn) series provide much evidence that 

contradicts this assumption, and seriously question the wide-spread belief [39–45] in the 

superiority of the bent bond model. The bent bond model provides a lower-energy wave-

function only in the case of ScCH2,
+, whereas the σ+π construction proves to be energet-

ically superior for all the remaining MCH2,
+ systems (see Table 1). This gives us grounds

to assume that the presence ofnonbonding electrons favours the separated σ+π solution.

Two further observations come to support this conjecture: 

i) Although their monocationic predecessors opt for the σ+π bond model, di- and tri-
cationic systems deprived of unpaired electrons, such as TiCH2+,2 and VCH3+,2, are 

better described in the equivalent bond context: the corresponding ∆ E values are 

–11 .0 and–13.8 mH, respectively. 

ii) Within the PP approximation [which provides an efficient way of removing all coup-

ling between the nonbonding electron(s) on the metal atom and the two bonding 

pairs], the equivalent bond solution is always lower in energy than its σ+π bond alt-

ernative (see Table 1). By comparing the percentages of correlation energy recov-

ered, it can be seen that the PP approximation is a much more drastic restriction than

is the use of fixed CASSCF instead of fully-variational SC core orbitals. 

The first ofthese observations (i) shows in an unambiguous way that the preference for

the separated bond model originates in these systems from the presence of nonbonding 

electrons on the metal atom. The second observation (ii) identifies the presence ofnon-

PP spin-coupling patterns associated with the orbitals accommodating the nonbonding

electron(s) and the orbitals involved in the metal-carbon bonds as the factor responsible

for the lowering of the energy of the σ+π solution.

Within the MCH2,+ series, the number of spin degrees of freedom turns out to be 

more important than orbital flexibility. This can be shown by analyzing the relationship

between the magnitude and the sign of ∆ E and the dimension of the spin space. For the 4-

electron problem ScCH+,2 the size of the spin space remains the same in both wavefunc-

tions and, due to the different orbital flexibilities, the energetic advantage is with the bent 

bond solution. The same argument applies also to the 4-electron systems TiCH2+,2 and

VCH3+,2 for which the computed ∆ E values are distinctly negative (see above). On the 

contrary, in the 5-electron treatment of TiCH+,2 (f 5, ½=5), the numbers of independent

spin parameters are different in the two bond models. This can be seen from Table 2, 

which reports the composition of the optimal active-space spin function in different spin 
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bases. Not all of the five Serber or Rumer spin eigefunctions contribute to the bent 

bond spin-coupling pattern, which can be explained using symmetry considerations. The 

five spin eigenfunctions making up the Rumer basis can be sketched as 

TABLE 2. Chirgwin-Coulson weights of spin functions for the SC wavefunction of TiCH2,+

(f½,5=5), expressed in the Kotani, Serber and Rumer spin basesa,b

k Kotani σ+π Ω Serber σ+π Ω Rumer σ+π Ω 

1 ((½)1(3/2)) 0.003 0.027 ((10)1;(½)) 0.006 0.041 (1–2,3–4,5)c 0.856 0.842 

2 ((½)1(½)1) 0.004 0.013 ((11)1;(½)) 0.001 0.000 (1–4,2–3,5) 0.036 0.049 

3 ((½)0(½)1) 0.084 0.041 ((01)1;(½)) 0.084 0.041 (1–2,4–5,3) 0.102 0.055

4 ((½)l(½)0) 0.021 0,037 ((11)0;(½)) 0.021 0.037 (2–3,4–5,1) 0.001 0.000 

5 ((½)0(½)0)c 0.889 0.881 ((00)0;(½))c 0.889 0.881 (2–5,3–4,1) 0.005 0.055

a
Minimal active space calculations

b Orbitals are ordered as follows :or

c Perfect-pairing term 

Spin functions and remain unchanged under the electron coordinate per-

mutation PR= (1 3)(2 4) associated with the reflection σ, yz and, as a consequence [see 

KΘ
1/25,

5

SΘ
1 /2 ,

5
;k

RΘ
1/25,

5
;k

(σcσM πcπM l1) (Ω1
.c Ω1

,M Ω2
,cΩ2

,Μ l
1

R Θ5

,1/2;1
R Θ5

,1/2;2
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Eq. (10) and the accompanying discussion], the corresponding spin-couplingcoefficients
R Θ5

,1/2;3represent independent variational parameters. Spin functions and are inter-  R Θ5

,1/2;5

changed by the permutation (1 3)(2 4), and so the associated spin-coupling coefficients 

must be equal (see Table 2). It is straightforward to show that (1 3)(2 4)RΘ 5,½4≡ (4–

1,2–5,3) may be expressed as the sum ofall five spin terms (including this can;
RΘ5

,1/2;4

only be consistent with Eq. (10) if has no contribution to the active-space spinRΘ5

,1/2;4

function. A similar contraction of the active spin space of the bent bond solution is ob-

served within the Serber basis. The second spin function that corresponds to tri-
SΘ 5

,1/2;2

plet couplings of the two bonding pairs of orbitals, which are then combined to yield an 

overall triplet (see Table 2), does not participate in the overall spin function for the Ω 
bond solution. Thus, the active-space spin function for the separated bond solution 

incorporates 4 independent variational parameters ( i. e. five non-zero spin-coupling

coefficients subjected to a normalization condition), instead of only two independent

variational parameters (i. e. four non-zero spin-coupling coefficients, two of which must 

be equal) for the bent model. This leads to a difference ∆ s= –2 between the numbers of 

spin degrees of freedom for the bent bond and σ+π models. In comparison with the scan-

dium system, the preference for the bent bond representation observed in the titanium

complex, despite its lower orbital flexibility, is a clear manifestation of the predominant 

significance of the spin degrees of variational freedom. The results obtained for the other 

systems provide further confirmation ofthis observation. Additionally, these results illus-

trate the evolution of the spin coupling pattern throughout the series. 

TABLE 3. Spin-coupling coefficients (C) and Chirgwin-Coulson weights (W ) of spin functions for

the SC wavefunction of VCH2,+

Function C(σ+π) W(σ+π) C(Ω) W(Ω) 

((1 1)2;1) 0.023 0.001 0.038 0,001 

(( 10) 1 ;0) –0.005 0.000 –0.003 0.000

((11)1;0) 0.002 0.000 0.000 0.000

((0 1) 1 ;0) –0,001 0.000 –0.003 0.000 

((10)1;1) 0.113 0.013 0.293 0.085

((01)1;1) 0.400 0.160 0.293 0.085

((00)0;1) 0.894 0.800 0.893 0.797

((11)1;1) –0.033 0.001 0.000 0.000

((11)0;1) –0,158 0.025 –0,171 0.029

aMinimal active space calculations 

b Serber basis 

c Orbitals are ordered as follows: 

The composition of the active space spin-coupling patterns within the two SC wave-

functions for VCH+,2 (f 6, 1=9) in the Serber spin basis are given in Table 3. The spatial

symmetry analyses of these spin-coupling patterns [see Eq. (10) and the accompanying 

discussion] indicate the presence of 8 independent spin variational parameters within the 

(f1,6=9)
a,b,c

(σcσM πcπM l1 l2 ) or (Ω1
,cΩ1

,M Ω2
,cΩ2

,M l1 l2 )
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separated bond model, against just 4 within its bent bond rival. It is useful to mention 

that the two spin eigefunctions which do not contribute to the active space spin-coup-

ling pattern in thebent bond wavefunction, ≡ ((11)1;0) and ≡ ((11)1;1), are

direct descendants of the spin eigenfunction which was found to be inactive in the bent 

bond wavefunction for TiCH+,2, ≡ ((11)1;(½)). The contraction of the spin varia-

tional space that occurs when passing from the σ+π to the Ω bond solution in VCH+,2,

∆ s= –4, can be shown to arise from symmetry constraints analogous to those discussed in 

the case of TiCH+,2. Having this feature in mind, it is not surprising that the vanadium 

complex is found to opt for the σ+π model (see Table 1). Similar contractions of the spin 

variational space are observed in the CrCH+,2 (f 7,3/2=14) and MnCH+,2 (f 8, 2=20) com-

plexes. The corresponding values of ∆ s –6 and –8, respectively, suggest that these com-

plexes should also prefer the separated bond description, which is confirmed by the com-

putational results (see Table 1).

s Θ5

,1/2;2

s Θ5

,1/2;2

s Θ6

,1;2

s Θ6

,1;6

 s Θ6
,1;3

sΘ5
,1/2;2

A careful examination of Tables 2 and 3 shows that several spin eigenfunctions, al-

though allowed by symmetry, do not contribute much to the overall active space spin-

coupling pattern. Examples are provided by in the s+p wavefunction for TiCH+,2

(see Table 2), and and in both wavefbnctions for VCH+,2 (see Table 3). In 

the case of the σ+π wavefunction for TiCH+,2, ≡((1 1)1;(½)) provides unfavour-

able triplet couplings of the spins of the orbitals engaged in both the σ and π bonds.

and for VCH
+
,2 are associated with a singlet coupling of the spins of the

unpaired electrons in orbitals and The negligible weights ofthese spin eigenfunc-

tions indicate that the metal centre prefers to keep these electrons triplet coupled so as to 

preserve a maximum of atomic d–d exchange energy. The existence of spin eigefunc- 

tions with very small weights suggests that it would be fairer to compare the numbers of 

spin degrees of freedom in the σ+π and bent bond models by taking into account only the 
spin eigenfunctions that have non-negligible contributions to the overall active space 

spin-coupling pattern. Thus, although for TiCH+,2 and VCH+,2 ∆ s takes values of –2 and 

–4, respectively, the σ+π wavefunctions for these complexes have effectively just one

and two, respectively, significant spin degrees of freedom more than their bent bond 

rivals. The corresponding 'effective' spin space contractions for CrCH+,2 and MnCH+,2

are –4 and –6, respectively. The spin eigefunctions with negligible contributions to the 

active spin space in these complexes can be shown to be descendants of and

for VCH+,2.

s Θ6

,1;2
s Θ6

,1;4

s Θ6
,1;4

s Θ6
,1;

Our analysis ofthe active space spin functions in the SCCH+,2–MnCH+,2 series indi-

2

cates a progressive increase of the difference between the numbers of symmetry-allowed

spin degrees of freedom within the σ+π and bent bond constructions, as well as of the 

difference between the numbers of spin eigenfunctions that have non-negligible contribu-

tions to the corresponding overall spin-coupling patterns. There are also clearly express-

ed inheritance patterns observed throughout the series of complexes which relate the 

structures of the symmetry-forbidden spin eigenfunctions, as well as of the spin eigen-

functions with very low weights. 

The next step is to establish to what extent the difference between the spin degrees 

of freedom within the wavefunctions in the two bonding models can influence the ener-

getic preference for one of them. In SCCH+,2, where the two bonding models have the 

same numbers of spin degrees of freedom (∆ s = 0), the preferred bond model, as we have 

 s Θ6

,1;4
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seen already, is the bent bond one (∆ E = -1.19 mH). In TiCH+,2, the unpaired electron 

occupies the nonbonding orbital This leads to a spin space contraction when passing 

from the σ+π to the bent bond solution (∆ s = –2), which puts the former to an advantage 

(∆ E = 1.37 mH). In VCH+,2, the placement of the second unpaired electron in another 

nonbonding orbital, leads to a decrease of ∆ s to –4. However, as we have shown

above, this additional spin space contraction does not follow from the appearance of a 

new symmetry constraint, but rather from the propagation of a specific spin-coupling

pattern that already exists in TiCH+,2. This suggests that the energy separation should

not be expected to change too much in comparison to that found for the titanium species. 

Indeed, in VCP+,2 we observe only a very small increase of DE to 1.81 mH. Similar ar-

guments canbe applied to CrCH+,2 (∆ s = –6), for which the energy separation (DE= 1.61

mH) is very close to those for TiCH+,2 and VCH+,2.

In MnCH+,2 (∆s = –6) the fourth nonbonding electron occupies orbital which is of

a1 symmetry. In a certain sense, this provides some extra orbital flexibility for describing

the metal-methylene interaction: in MnCH+,2 the four bonding electrons have access to 

six active (4a1 + 2b1) orbitals instead of only five (3a1 + 2b1) or four (2a1 + 2b1) for the 

other complexes (see section 0). This should, in principle, lead to increased orbital flexi-

bility and favour the bent bond model, since it is the representation that possesses the

greater number of orbital degrees of freedom. However, on the contrary, we observe in 

MnCH+,2 a sharp increase of ∆E to 3.21 mH, which obviously provides a strong piece of

evidence for the predominance ofspin variational freedom over orbital flexibility. In fact,

extension of the active space does not necessarily have to favour the equivalent bond 

model in all situations. In some cases, the additional orbital flexibility may require addi-

tional spin degrees of freedom, so that the active space spin-coupling pattern could 

adjust itself better to the changes in the orbital shapes. One example in which an impro-

vement in orbital flexibility favours the σ+π solution is provided by the comparison

between the SC descriptions of the ground state of TiCH+,2 (
2
A1) and the 

2
A2 excited

state obtained by placing the lone electron in the nonbonding orbital (which is of a2

symmetry). The dimension of the spin space is the same for these two states. In analogy 

with the ground state, the fourth Rumer spin eigefunction can also be shown to

be symmetry-forbidden in the
2
A2 excited state. The difference between the numbers of

independent spin variational parameters in the bent bond and σ+π models for the 2A2

excited state is the same as in the ground state, ∆s = –2, but the four bonding electrons

have access to four active orbitals (2a1 +2b1) in the 2A2 state, against five (3a1 +2b1)

active orbitals in the ground state. However, the energy separation ∆E between the two
models for the 

2
A2 excited state is just 0.64 mH, about two times smaller than that in the

ground state (∆E = 1.37 mH). Thus, the increased orbital flexibility in the ground state

favours not the bent bond, but the σ+π model in this case. 

It is interesting to find out how the difference between the two bonding models

would be influenced by the engagement of two nonbonding orbitals, which normally are 

unpaired, inasingletnonbondinglonepair. ForVCHC+
,2, it ispossible to construct a1A1

excited state (f 6,0 =5) by placing the two unpaired electrons in two δ− type orbitals.

The difference between the numbers of independent spin variational parameters in the 

bent bond and σ+π models for this excited state is ∆ s = –2, which follows from an anal-

ysis similar to that for VCH+,2: the symmetry-forbidden terms in the bent bond solution,

RΘ5
,1/2;4
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ss Θ6
,0;2

R Θ6

,1/2;4

R Θ6

,0;4
Θ6

,1/2;2
≡ ((11)1;1) and ≡ (1–6,2–3,4–5) are direct descendants of and

in Table2. The energy separation between the two models increases from 1.81

mH in favour of the σ+π model in the 
3
B2 ground state of VCH+,2 to 2.37 mH in the 1A1

excited state. This increase is related to the fact that, in comparison to the 
3
B2 ground

state, the 1A1 excited state makes one extra a1 orbital accessible to the electrons involved

in the metal-methylene bond. 

Our results strongly suggest the existence of a direct relationship between the differ-

ence in the spin degrees of freedom incorporated in the two bonding models and the 

energetic preference for one of them. In most cases, just this difference, expressed by the 

parameter Ds, is sufficient to predict which bonding description will be favoured at the 

equilibrium geometry. In all examples studied in this paper, the decrease of the spin 

flexibility ofthe bent bond solution is due to the presence ofnonbonding metal electrons

which may be either singlet or triplet coupled. However, ∆s on its own does not provide

sufficient information for an estimate of the magnitude of the energy separation between 

the two models. Our calculations on excited states indicate that for an estimate of this 

type one should also take into account the actual use that the wavefunction makes of all 

available spin degrees of freedom. This observation is confirmed by the results presented 

in the following subsections. 

C. Influence of extension of the active space. In our standard active space calcula-

tions, the four electrons involved in the two CH bonds which were previously placed in 

the core are now treated explicitly at the SC level of theory. Just as in the case of the

minimal active space calculations, the PP approximation systematically favours the bent

bond model over its σ+π bond alternative. The calculated values of DE for the MCH+,2 

(M = Sc–Cr) series are -2.69,–1.29, –1.78 and –2.39 mH, respectively. In fact, the op-

posite outcome would have been very surprising since, as we have mentioned earlier, 

when the non-PP spin-coupling patterns are neglected the bent bond solution immediate-

ly becomes the better model because of its greater orbital flexibility. According to the

results of the full spin space calculations, the extension of the active space consistently 

benefits the σ+π bond model. In the case of ScCH+,2, the preference for the bent bond 

construction is reduced to only -0.30mH, in comparison to -1.9mH within the minimal
active space. In systems, for which the minimal active space calculation indicates that the 

σ+π bond model is lower in energy, the standard active space calculation leads to a fur-

ther increase of ∆E. Within the standardactive space calculations, the σ+π bond descrip-

tions for the MCH+,2 (M=Ti–Cr) complexes are favoured by energy differences of 1.90, 

2.21 and 1.96 mH, respectively, against just 1.37, 1.81 and 1.61 mH, respectively, within 

the minimalactive space. 

The explicit inclusion of the electrons from the CH bonds in the active space widens 

the gap between the spin flexibilities of the two bonding models by introducing more new 

symmetry constraints within the Ω bond wavefunction than within its σ+π counterpart.

This is well-illustrated by the 8-electron (f 8,0=14) active space for ScCH+,2. The indivi-

dual contributions of the spin eigefunctions making up the overall active space spin-

coupling pattern are collected in Table 4. Three spin coupling modes and 

are symmetry-forbidden in the σ+π, as well as in the bent bond model. The 

reason for the appearance of these constraints is easier to comprehend when the CH 

bonding orbitals are taken in the order Then all Serber spin eigenfunc- 

(s Θ8

,0;3,

s Θ8

,0;6

s Θ8

,0;6 )

φ1 ,cφ2 ,cφ1 ,Hφ2 ,H .
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tions originating from the four-electron triplet patterns (10)1 and (01)1, irrespective of 

the bonding model and of the metal-carbon part of the wavefunction, are forbidden by 

symmetry because they change their signs when subjected to the electron coordinate per-

mutation associated with the reflection in the σ, xz plane [see Eq. (10) and the accompa-

nying discussion]. 

Two additional spin eigenfunctions and see Table 4) are symmetry-

forbidden only within the bent bond context. They both correspond to simultaneous tri-

plet couplings of the two metal-carbon bonding pairs leading to an overall triplet. It is 

not difficult to establish that both and can be derived from the symmetry-

forbidden spin eigefunction present in the five-electron spin space for TiCH+,2

(see Table 2). Thus, for ScCH+,2 (f 8,0=14) Ds decreases from 0 to –2 on passing from

the minimal to the standard active space. Such additional symmetry constraints are also

present in the standard active space wavefunctions for TiCH
+
,2 (f 9,½=42), VCH+,2

(f 10, 1=90) and CrCH+,2 (f 11,3/2=165), and can be rationalized using the inheritance

patterns relating the structures of the symmetry-forbidden spin eigefunctions discussed 

in the previous subsection. As a result, the ∆s values for TiCH+,2, VCH+,2 and CrCH+,2

within the standard active space decrease to –7, –16 and –27, respectively, in compar-

ison to –4, –6 and –8, respectively, within the minimal active space.

s Θ5

,1/2;2

s Θ8

,0;7

s Θ8

,0;5

s Θ8

,0;7
( s Θ8

,0;5

TABLE 4. Spin-coupling coeffcients (C and Chirgwin-Coulson weights (W ) of spin functions for

the SC wavefunction of ScCH2,+ f0, 8=14)
a,b,c

Function C(σ+π) W (σ+π) C(Ω) W (Ω) 

((11)2;1)1;1) 0.042 0.002 0.042 0.002 

((10)1;0)=1;1) –0,107 0.012 –0.078 0.006 

((1 1)1;0)1;1) 0.000 0.000 0.000 0.000 

((10)1;1)1;1) –0.020 0.001 0.000 0.000

((11)1;1)1;1) 0.000 0.000 0.000 0.000 

((01)1;1)1;1) –0.020 0.001 0.000 0.000 

((01)1;0)1;1) –0.107 0.012 –0.078 0.006 

((1 1)0;1)1;1) 0.045 0.002 0.016 0.001 

((00)0;1)1;1) –0.138 0.019 –0.167 0.028

((10)1;1)0;0) –0.123 0.015 –0.078 0.006 

((11)1;1)0;0) 0.000 0.000 0.000 0.000 

((01)1;1)0;0) –0.123 0.015 –0.078 0.006 

((1 1 )0;0)0;0) 0.127 0.016 –0.097 0.009 

((00)0;0)0;0) –0.952 0.906 0.967 0.935 

aStandard active space calculations 

b Serber basis 

c Orbitals are ordered as (φ1,Cφ1,Hφ2,Cφ2,H)(σCσMπCπM) or (φ1,Cφ1,Hφ1,Hφ2,H)(Ω1,CΩ1,MΩ2,CΩ2,M)

As can be shown with the use of simple overlap-based reasoning [ 13], the extension 

of the active space does not provide extra orbital degrees of freedom for the bent bond 
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As can be shown with the use of simple overlap-based reasoning [ 13], the extension 

of the active space does not provide extra orbital degrees of freedom for the bent bond 

solution. This suggests that the additional energy lowering observed for the separated 

bond model within the standard active space is not related to orbital flexibility but comes 

entirely from the increased differences between the numbers of spin degrees of freedom 

in the two models within the larger active space.

It is reasonable to inquire whether the trends observed upon passing from the mini-
mal to the standard active space will be preserved upon further extension of the active 

space. This is particularly important in the case of ScCH+,2, for which the energy separ-

ation between the two bonding models decreases sharply when the electrons within the 

CH bonds are transferred to the active space (see above). In order to address this ques-

tion, we carried out additional calculations on the ScCH+,2 using a 10-electron active

space (f 10, 0=42) obtained by adding two core M(3p) electrons to the standard active

space. This choice of the active space is, of course, arbitrary to some extent, but it can 

still furnish some useful qualitative indications. The calculations were carried out by 

means of the nonvariational version of the CASVB formalism, which provides a close

approximation to the fully-variational SC solution. The nonvariational CASVB strategy 

described in Refs. 9 and 37 transforms the CASSCF wavefunction to a form dominated 

by a single covalent SC-like construction, which can be achieved using either overlap- or

energy-based considerations. On passing from the 8-electron to the 1 O-electron calcul-

ation, Ds for ScCH+,2 decreases from –2 to –8. In parallel with this, according to the

energy-based CASVB calculations, DE increases to 1.16 mH which clearly suggests that 

this further extension of the active space may establish a preference for the separated 

bond scheme. There are good reasons to expect that a fully-variational SC treatment 

would confirm this result and reverse the wavefunction hierarchy for ScCP+,2. Thus, the 

preference for the W bond solution found with minimal active space calculations may

turn out to be a computational artefact of rather limited importance. 

D. Moleculardistortions. The choice to work with the symmetric equilibrium molec-

ular geometries only (C2v point group for all molecules) can introduce an artificial bias in

favour of one of the two bonding models. In fact, the bent bond scheme can be extremely 

sensitive to changes in the interatomic distances which is demonstrated by results presen-

ted in this subsection and in Ref. [10]. Moreover, the geometries used in our calculations 

were taken from theoretical structure optimizations [5], the accuracy of which may be 

limited: Recent B3LYP calculations [4] suggest that ScCH+,2 may prefer to adopt a Cs

geometry, in which the CH2 group rotates to allow some back donation into empty Sc d 

orbitals of b2 pseudo-symmetry. It is also necessary to establish whether small atomic dis-

placements (for instance, due to molecular vibrations or solvent effects) could influence 

the description of bonding in our systems and modify the energy separation ∆E to an ap-

preciable extent. In order to address this points, we revisited the 5-electron treatment of 

TiCH+,2 and considered five different types ofgeometry distortions, numbered from I to

V as illustrated below. Except for distortion V (see below for an explanation), our results

are summarized in the Fig. 2, in which the energy separation ∆E and the weights ofthe

PP terms Wpp
are plotted against the parameters characterizing the distortions. 
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The totally symmetric (A1) distortions, namely, the TiC stretch (I), the CH stretch

(II), and the CH2 valence bond angle bending (III) all preserve the C2v symmetry. Mo-

tions II and III which do not involve the TiC bond directly have very little impact on the 

energy separation. The displacement of the two hydrogen atoms by 0.1 bohr away from 

the equilibrium CH distance modifies DE by ~0.3 mH (see Fig. 2-II), The deviation ofthe

CH2 valence bond angle by ±10º from its equilibrium value leads to approximately the 

same variation of the energy separation (see Fig. 2-III). The modification of the TiC

internuclear distance has a more pronounced effect on the value of ∆E(see Fig. 2-1). The 

shortening of the TiC bond length is accompanied by a decrease of ∆E. For very short

interatomic separations the bent bond model even becomes the lower in energy. For 

example, when the equilibrium TiC bond length is reduced by 0.2 bohr, the Ω bond

solution is placed ~1.4 mH below its σ+π rival. In contrast to this, large interatomic

separations favour the separated bond model which is demonstrated by the increase of ∆E

with the increase of the TiC interatomic distance. Fig. 2 shows that the spin-coupling

pattern within the Ω bond model is more sensitive to small distortions than the spin-

coupling pattern within the σ+π bond scheme: Along distortion paths I, II and III, W pp,Ω 
changes much faster than W pp, σ+π 

The pairs of plots for distortions I, II and III indicate a well-defined correlation bet-

ween the energy separation and the weight of the PP term, especially within the bent 

bond wavefunction. An increase of the weight of this term always favours the bent bond 

solution. At very short TiC bond distances the PP term dominates the active space spin-

coupling pattern, the σ+π model cannot make much use of its extra spin degrees of free-

dom, and the greater orbital flexibility of the bent bond construction makes it lower in 

energy. On the contrary, when the TiC bond is stretched, spin flexibility gains in signi-

ficance, as the active space spin functions have to incorporate more significant contri-

butions from non-PP spin eigenfunctions. Logically, this favours the model which offers 

a higher number of spin degrees of freedom, the σ+π construction.
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The rotation of the methylene group IV takes place in the molecular plane σ,^ yz,

about an axis perpendicular to this plane and passing through the methylene carbon. 

Since σ,^ yz is preserved, this rotation does not change the difference between the orbital

degrees of freedom in the two bonding representations observed at the C2v geometry

and, once again, cannot participate in the active space spin function for the Ω 
bond solution. Thus, distortion IV preserves the differences between the orbital and

spin flexibilities for the two models found at the C2v symmetry. As a consequence, the 

impact of this distortion on the energy separation is very small (see Fig. 2-IV). A 

clockwise or anticlockwise rotation of the methylene group by 7° away from its 

equilibrium position changes ∆ Eby only ~0.04 mH and brings about minor variations of 

weights of the PP terms.

R Θ5
,1/2;4

Figure 3. The four fully-variational SC orbitals from the metal-methylene bond for the distorted 

form V of TiCH2,+ calculated within a minimal active space, without any symmetry constraints, 

and for a distortion angle of 30°. 

In summary, our study of distortions I to IV shows that there is a direct correlation 

between the weights of the PP spin eigenfunctions (which demonstrate the extent to 

which the σ+π and bent bond wavefunctions are capable of making use of spin flexi-

bility) and the calculated energy separations between two models. In fact, a correlation 
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of this type can be expected to apply to the whole metal-methylene series. Indeed, on

moving fiom left to right in Table 1, the improved spin flexibility of the separated bond 

wavefunction, which leads to a uniform decrease of W pp, is accompanied by a uniform 

increase ofthe energy separation between the two models. The only exception occurs

for the chromium complex, for which ∆E is slightly inferior to the value for VCH
+

,2.

This small deviation is not very significant: For example, an increase of the CrC inter-

nuclear distance by just 0.1 bohr, which is not too much, bearing in mind that we are 

using theoretically optimized geometries of possibly limited accuracy, restores the uni-

formity of the ∆E sequence. 

Distortion V destroys the symmetry plane σ,^yz, but retains σ,^xz With σ,^yz gone, it 

is not possible to impose a rigorous σ/π separation any longer, and all four orbitals des-

cribing the TiC interaction become different and can overlap freely between themsel-

ves. In these circumstances, it becomes meaningless to speak of separate σ+π and bent 

bond wavefunctions. However, it is interesting to mention that the valence orbitals

from the filly-optimized SC wavefinction, calculated at a relatively large value of the

bending angle, 30°, retain a strong resemblance to those from the σ+π solution at the

C2v equilibrium geometry (seeFig. 3).

4.2. TRIPLET CHARACTER OF THE π BOND

A. Significance of the non-PP terms. As mentioned in the introduction, the metal-

carbon interactions are generally considered to involve a certain degree oftriplet char-

acter, especially within the π bond. This is confirmed by the results of our calculations 

(see Table 1). It is obvious that the triplet characters of both the σ and π interactions

increase significantly when moving towards the complexes in the right-hand side of

Table 1. The values of the spin correlation matrix elements associated with σ c
and sM exhibit a moderate growth from –0.732 to –0.618, but their counterparts for π c 

and pM increase sharply from–0.732 to –0.422. There is no triplet character within the

PP approximation since, by definition, the electrons participating in the bonds are enti-

rely singlet-coupled. The partial triplet bond character depends entirely on the inclusion 

of non-PP spin eigenfunctions in the active space spin-coupling pattern. One particular 

non-PP spin coupling mode turns out to be specially important throughout the MCH2,+

series. It appears for the first time in the active space spin function for TiCH2,+ and

corresponds to the third spin eigenfunction, with the second largest weight, within the 

Kotani and Serber spin bases (see Table 2). In the remaining part of this section we use 

the Serber spin basis, which shows explicitly the singlet and triplet pairs making up the

individual spin eigenfunctions.

s Θ6
1;4

s Θ6

1;4

s Θ6

1;7

s Θ5
1/2;3

s Θ6
1;7

〈s,∧

i.s,
∧

j〉

As we mentioned when discussing the structure of its symmetry-forbidden com-

ponents, the spin coupling pattern in VCH2,+ is very similar to that for the titanium 

complex. There are two non-PP terms, ≡ ((01)1;0) and ≡ ((01)1;1) (see

Table 3), which are direct descendants of the non-PP spin eigenfunction ≡ 
((01)1;(½)) for TiCH2,+. The weight of (0.160) makes it the second most im-

portant component in the active space spin-coupling pattern. The negligibly small 

contribution from follows from the fact that it couples the spins of the two 

nonbonding electrons to a sing-let, while VCH2,+ very much prefers to have them 
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coupled to a triplet. Similar situations are also observed in the chromium and manga-

nese complexes as a result of inheritance of the spin coupling pattern within the metal-

methylene bond.

s Θ5

1/2;3

The most important non-PP spin eigenfunction can be shown to be responsible for 

nearly all ofthe energy γap separating solutions restricted to the PP term and solutions

utilizing the full spin space. One way of doing this is to perform calculations involving 

only a few selected spin eigenfunctions with fixed active and core orbitals taken direct-

ly from the corresponding optimized fill spin space wavefbnction. Such calculations

indicate, in the case of TiCH2,+, that including with the PP term can account for 

approximately ¾ of the energy improvement. For VCH2,+, use of the PP term and the 

predominant non-PP term, sΘ6 ,l:7, captures approximately 83% of the correlation ener-

gy included in full spin space SC wavefunction. These results show that much of the 

stabilization energy ofthe metal-methylene complexes is due to an off-diagonal hamil-

tonian matrix element which corresponds to the interaction between two VB-style

structures, one of which involves the PP spin eigenfunction, while the π bond orbitals 

within the spin-coupling pattern for the other one are coupled to a triplet. 

B. Overall σ/ π decoupling. As a next step, we need to assess the extent of coup-

ling between the group of electrons involved in the s metal-methylene bond, Gσ, and

the group of electrons defined by the π bond and the metal unpaired electrons, Gp+l.
One way to achieve this is to perform calculations in which the active space is deprived 

of the σ electrons, i.e. it consists only of the π and li, orbitals. In the case of TiCH2,+,

for example, we find that the spin coupling situation depicted by a 3-electron calcul-

ation is in close agreement with that resulting from the corresponding 5-electron cal-

culation. The spin correlation matrix elements for πc and πM πc and l1, and πM 

and are found to be equal to -0.668,-0.278 and 0.196, respectively; these values 
are very close to those observed for a minimal active space calculation (see Table 5).

Alternatively, the weak coupling can be quantified with the help of the last term on the 

right-hand side of Eq. (5) (see Section 0). In the case of the titanium species, the

Gσ /Gp+l spin coupling is given by the sum of the six elements of the 3×2 block in the

left lower corner of Table 5: the value is very close to zero, indicating that there is 

almost no interaction between the two groups. In order to compare the whole MCH2,+

(M=Ti–Mn) series, it is more convenient to report the Gs /Gp+l couplings as average

spin couplings defined for one electron from each group. The values

obtained in this way are –0.009, –0.008, –0.011, –0.014, –0.015, respectively. These 

values are all very small and indi-cate negligible coupling between the electrons from 

the Gσ and Gp+l groups.

〈s,∧

i.s,
∧

j〉

〈s, ∧

i.s,
∧

j〉  

〈s∧ (Gσ ).s,∧(Gπ+l)〉

C. Overall triplet character of the π bonds. As a consequence of the fact that the

two groups of electrons Gσ  and Gπ+l are almost completely uncoupled, the triplet char- 

acter of the π interaction can be rationalized using simple arguments involving only the

electrons of the Gπ+l  group. In the case of 3-electron treatment of TiCH2,+ (f 3, ½=2),

analyzed in the Serber spin basis, it is possible to draw the following scheme (the num-

bers in parentheses are the corresponding spin correlation matrix elements): 
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full spin space 

In the perfect-pairing case, electron spins associated with the three orbitals π M, and 

π c participate in pure singlet and uncoupled interactions, so as to produce the required

total net spin of 0.5. Within the full spin space the 3-electron system is allowed to relax 

through the mixing of sΘ ½,3;1 and sΘ ½,3;2 It is surprising, at first sight, to observe that 

the mixing of two spin patterns which are symmetric with respect to the and π M–

interactions does not result in a symmetric spin coupling mode. In fact, by writing 

correlation matrix elements as functions of the spin-coupling coefficients Csk (Eq. (3)), 

it can be shown that this asymmetry arises from off-diagonal terms [46].The full spin 

space calculation exhibits the following three interesting features: (i) a triplet coupling

mode between π M and (ii) a unexpected singlet character in the π c interaction;

(iii) a certain triplet character in the metal-carbon π bond.

〈s,
∧
i .s,

∧
j〉TABLE 5. Spin correlation matrix elements for the wavefunction of TiCHf+

2 (f½
5=5)a

aMinimal active space calculations 
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This picture has a clear physical interpretation. As hinted by Carter and Goddard 

[3], it seems plausible that the metal-methylene interaction in the MCH2,+ (M=Ti–Mn)

series is the result of a balance between two competitive effects, namely the preserv-

ation ofthe high-spin d–d exchange energy present in the isolated metal atom, and the 

formation of a singlet-coupled covalent bonding pair. Our simple scheme shows that, 

when comparing to the PP case, the only way in which the system could retain some

triplet character between the bonding and the nonbonding metal electrons is to make 

use of the non-PP term, even if this weakens the π interaction by introducing some

triplet character. The appearance of an unexpected singlet character in the interaction

is a side effect following from the requirement to the preserve the overall spin of 

the system. 

Several observations provide additional confirmation of the validity of our descrip-

tive model. In the first place, the triplet character of the π bond increases on moving 

towards the right-hand side of the periodic table, in parallel with an increase in the 

number of unpaired electrons. Indeed, as we have already demonstrated, the mainly 

triplet interactions are very similar irrespective of the choice of  M and the nature 

of the unpaired electron. The related values of vary only between 0.189 and 

0.201 throughout the whole MCH2,+ series studied in this paper. On the basis of the 
arguments presented in the preceding paragraph we can expect that, with the increase 

of the number of unpaired electrons for which the exchange energy with the metal π M
bonding electron has to be preserved, the π bond will be forced to lose more of its 

singlet character. Indeed, the triplet character of the π bond decreases again beyond 

MnCH2,+ [ 11], which is filly consistent with our model. For systems beyond MnCH2,+,

certain nonbonding orbitals on the metal centre become doubly occupied. The electrons 

in these orbitals are singlet coupled and, as a consequence, they do not contribute to 

the metal d–d exchange energy involving high-spin pairs. Further evidence comes from 

calculations carried out on the 1A1 excited state of VCH2,+. The triplet character of the 

π bond is found to be very small, = -0.708, and much closer to the value for a 

species deprived of odd electrons, ScCH2,+ (–0.732), than to those for the ground sta-

tes of TiCH2,+ (–0.644) and VCH2,+ (–0.565) that incorporate one and two unpaired 

electrons, respectively. We will show in the second paper [ 11] that the differences bet-

ween the triplet character present in the σ and in the π interactions can also be ration-

alized using this model.

〈s,∧

i.s,
∧

j〉

〈s,∧

i.s,
∧
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5. Concluding remarks 

The ab initio modern valence bond investigations of the nature of the metal-ligand

double bond in the MCH2,+ (M = Sc-Mn) series, performed in this paper using the 

formalism of spin-coupled theory, provide detailed information on several important 

issues:

i) The wavefunctions based on the two rival bond models using either σ+π or bent 
bond orbitals are found be essentially the same. They are also very close to the 

corresponding CASSCF wavefunctions, which is a general feature of the SC ap-

proach. This allows the use of frozen CASSCF core orbitals inside the SC wave-



308 F. OGLIARO ET AL. 

function as an alternative to the simultaneous optimization of the core and valence 

subspaces without significant impact on the quantitative nature of the results. 

Our calculations indicate that, at the SC level of theory, the metal-methylene

double bond is described by two predominantly singlet-coupled pairs of bonding 

orbitals, When the molecule contains nonbonding electrons on the metal centre 

[examples are provided by the MCH2,+ (M=Ti–Mn) series and by the 1A1 singlet

excited state of VCH2,+], the better description of the metal-methylene interaction 

is achieved through the σ+π construction. On the other hand, complexes deprived 

of nonbonding electrons, such as ScCH2,+, TiCH2,2+ and VCH2,3+, opt for the bent 

bond scheme. These two trends can be rationalized on the basis of the differences 

between the numbers of free spin variational parameters allowed by the two bond 

models. The presence of nonbonding electrons on the metal centre reduces the 

spin flexibility of the bent bond solutions in comparison to their separated bond 

alternatives. Consequently, the latter become the lower in energy. This effect is 

independent of the coupiing of the spins of the orbitals occupied by the nonbond-

ing electrons, which can be singlet or triplet. From the viewpoint of the total ener-

gy, orbital flexibility proves to be a factor of very minor importance at the equi-

librium geometries. The indepth analysis of the relationship between spin space 

flexibility and the preference for a bonding model also has to account for the fact 

that some spin-degrees of freedom, although allowed by symmetry, are not effect-

ively used by the wavefunction. 

iii) The study of small molecular distortions reveals the existence of a very good cor-

relation between the magnitude of the energy gap separating the two bond models 

and the weights of the corresponding PP terms. Higher-weight PP terms favour 

the bent bond wavefunctions while, on the contrary, the presence of significant 

non-PP terms, which are associated with extra spin flexibility, is of greater benefit 

for the σ+π construction. The bent bond description is found to be much more 

sensitive than is its σ+π counterpart to small variations of the distance between 

the metal atom and the methylene carbon. 

iv) Extension of the SC active space increases the difference between the spin flexibil-

ities of the two bond models and, as a consequence, favours the σ+π construction.

As has been shown on the example of ScCH2,+, for systems in which the bent 

bond model is lower in energy, the use of a larger number of active orbitals can 

lead to a sharp decrease in the energy separation between the two models, which 

suggests that this difference could be completely eliminated, or even reversed 

upon further extension of the SC active space. 

Apart from these findings, the σ+π bond model offers one very significant concept-

ual and computational advantage over its bent bond counterpart: For symmetry reasons 

an MCSC or a non-orthogonal CI construction on top of the σ+π wavefunction would 

involve a much smaller number of ionic configurations than an equivalent-quality con-

struction based on the bent bond wavefunction. Of course, from a purely philosophical 

point of view, the question of which model is 'better' ultimately makes no sense at a 

full-CI limit, simply because such a wavefunction is invariant to nonsingular transform-

ations of the active orbitals. 

The present work provides the link between the weight of the PP term and the im-

portance of spin flexibility for the stabilization of the wavefunction, which we could not 

ii)
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establish on the basis of the results reported in our previous paper [13]. In fact, the 

previous study [13] involved a set of very different molecules, such as C2H2, C2H4, N2,

CN, ScCH2,+ and TiCH2,+. Within a set of unrelated molecules of this type, a subtle 

correlation can easilybe obscured bylarger differences betweenthewavefunctions for

the individual molecules. For example, as the spin coupling pattern in each of these 

molecules was found to have little in common with those of the other molecules, the 

energy improvements related to non-PP terms could also be very different. The situ-

ation observed in the results from the present paper is entirely different: As we have

shown, there is a well-defined inheritance ofthe spin-coupling patterns throughout the 

whole ScCH2,+–MnCH2,+ series. In particular, the symmetry constraint that prevents 

certain spin functions from contributing to the bent bond solution, which appears for

the first time in TiCH2,+, is inherited by all remaining systems. The same is true of the 

most important non-PP term in TiCH2,+, which is responsible for the emergence of a 

VB-style resonance and thus has a strong stabilizing effect on the wavefunction. 

Finally, we have also established the existence of a direct link between the triplet 

character of the metal-carbon π bond and the radical nature of complexes. Only un-

paired electrons can instill some triplet character into the π interaction, and our results

indicate that this triplet character increases in parallel with the number of unpaired

electrons. The exact amount of triplet character depends on the interplay betweentwo

competing effects: the preservation of the high-spin d–d exchange energy present in the 

isolated metal atom, and the formation ofa singlet-coupled covalent bonding pair bet-

ween the metal- and carbon-centredπ orbitals.

Based on our various findings in the present work, the second paper in this series 

[11] will concentrate on calculations for ScCH2,+–CoCH2,+ using only the symmetry-

separated (σ+π) model. The particular order of sequentially filling the nonbonding orb-

itals as utilized here, will be rationalized in terms ofa compromise between minim-

izing repulsive electrostatic interactions and maximizing the exchange energy. The 

relative importance ofmetal→ ligand and ligand→ metal charge transfer intheσ and π 
interactions will be quantified, and trends in the dipole moments rationalized. We will

also examine trends in the metal-ligand dissociation energy, and link the intrinsic bond 

strengthsto theinfluenceofunpairedelectrons.
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Abstract. The Roothaan equations have been recently modified for computing 

molecular interactions between weakly bonded systems at the SCF level in order 

to avoid the introduction of the basis-set superposition error (BSSE). Due to the 

importance that nucleic-acid base interactions play in DNA and RNA, which are

3-D structures, we present applications of this approach of Self Consistent Field 

for Molecular Interactions (SCF-MI) to the study of several hydrogen-bonded

DNA bases. Nucleic-acid pairs are extensively investigated: structures and ener-

gies for both isolated and paired molecules are thoroughly studied. Cs-symmetry

equilibrium geometries and binding energies are calculated in the framework of 

the SCF-MI formalism by using standard basis sets. SCF-MI/3-2 1G stabilisation 

energies for the studied base pairs lie in the range - 22.5 / -8.0 kcal/mol, in good 

agreement with previous, high-level theoretical values. The hydrogen bonding 

potential energy surface (PES) and propeller twist potentials are also calculated 

for some of the molecular complexes. The SCF-MI interaction density is used to 

interpret the nature of the interactions involved in the hydrogen bond formation: 

structure and stabilisation of the base pairs turn out to be determined mostly by 

electrostatic interactions. Preliminary calculations on stacked cytosine dimer are

also reported. The SCF-MI/3-21G results show agreement with the counterpoise 

corrected SCF/6-3 1G** calculations. 

1. Introduction 

Accurate ab initio calculations on large van der Waals molecular clusters are one 

of the most challenging tasks of theoretical chemistry. In spite of a number of 

theoretical and experimental studies [1] employing more and more sophisticated
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techniques, the unambiguous characterisation of these systems is still not practi-

cal. The significance of the theoretical contribution has been widely recognised, 

emphasising that only a close cooperation between theory and experiment can 

provide the full description of van der Waals molecule properties [2]. The study 

of these systems can be considered as one of the fields of chemistry where quan-

tum chemical methods have increased our understanding both in a quantitative 

and qualitative way. In fact, while experimental techniques can provide inform- 

ation on average equilibrium geometries and corresponding binding energies of 

the molecular complexes and clusters, quantum chemical ab initio methods can 

cover the entire potential surface, providing valuable information for a deeper 

understanding of the nature of these interactions. 

Hydrogen-bonded van der Waals molecular clusters represent undoubtedly 

one of the most important class of van der Waals systems. The great interest to 

the subject is emphasised by the impressive number of reviews, monographs and 

books that have recently appeared [3]. Hydrogen bond interactions play a funda- 

mental role in the life sciences. These interactions are in fact responsible of bio-

molecular structures and related chemical processes: it would be practically im-

possible to find important biological phenomena in which these interactions do 

not play an important role [2]. 

The structure of one of the most important biomolecules, the DNA molecule, 

is determined by nucleic acid base interactions. In fact, although the unique 3-D

double helix DNA structure is influenced by various contributions, the hydrogen 

bonding and stacking interactions of DNA bases are prominent. A complete elu-

cidation of these interactions as well as the comprehension of the mechanistic 

aspects of genetic information encoding and trasduction is undoubtedly one of 

the most fascinating and ambitious goals of scientific research. Due to the diffi-

culties connected to obtaining gas phase experimental data for isolated bases and 

base pairs characterisation (only a limited number of reliable experimental stu-

dies are available [4]) quantum chemical calculations can represent a useful tool 

to obtain reference data on the structure, properties and interactions of nucleic 

acid pairs, It is necessary to mention that there are not experimental results on 

the structure of hydrogen bonded or stacked DNA base pairs in the gas phase. 

Theoretical studies can provide an help to properly understand the functions and 

properties of nucleic acids and are fundamental for verification (validation) and 

parameterisation of empirical potential for molecular modelling of larger bio-

macromulecules and their interactions. 

Although a considerable computational effort is required to describe the fun- 

damental components of nucleic acids by ab initio methods [5], the application 

of quantum chemistry to biodisciplines is nowadays feasible and reliable [2]. A 

number of systematic and accurate studies have been accomplished on hydrogen 

bonding of DNA bases [6-8]. Among these, the paper by Sponer, Leszczynski 

and Hobza [7] represents the most extended study. In the present work we wish 

to compare these studies with the SCF-MI (Self Consistent Field for Molecular 
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Interactions) [9-13] results when a small basis set, namely 3-21G, is employed 

to realise a computational saving for such extended molecular systems. 

Differences with standard SCF/3-2 1 G calculations are also reported. Special 

attention is paid to the basis-set superposition error (BSSE) [14-15], which can 

be of the same order of magnitude of the interaction itself and represents a well

known problem in the study of the potential of weakly interacting fragments. 

Although several approaches for avoiding this error have been discussed in the

literature [15-16], the Boys and Bernardi [17] formulation of the function coun-

terpoise principle (CP) is the most prominent mean for correcting BSSE. The 

function counterpoise has been a subject for debate and a considerable amount 

of literature concerning the accuracy of CP correction is available [2,15,18-26].

Different results and conclusions have been reported which will not be discussed 

here in detail. It is out of questions that the CP correction requires extra compu-

tational costs because n+l calculations in the composite basis (or full basis set), 

rather than a single one, have to be performed for a cluster consisting of n mole-

cules. Moreover, since the composite basis set does not possess the symmetry of

the individual monomers, the partner functions not only lower the energy, in ac- 

cordance with the variational principle, but also introduce spurious multipole 

components [18]. The contamination of the resulting energy by the so-called

"secondary superposition error" can be particularly significant for charged sys-

tems [19]. It should also be pointed out that geometry relaxation effects require 

a more complex definition of the interaction energy [27-29]. Very recently, a

general straightforward method for computing geometries on the corrected pot-

ential energy surface (PES) has been developed [28-29]. However, normally, CP 

correction is added as a single point calculation on geometry optimised in the 

presence of the BSSE [30]. Recent results show that BSSE removal is essential

to correctly predict the "quasi linear" structure of the (HF)2 system [29] and the

experimentally observed planar dimer of pyrimidine and p-benzoquinone [31]. 

The SCF-MI method used here is a modification of the Roothaan equations 

for computing molecular interactions between weakly-bonded systems at the 

SCF level. The BSSE is avoided in an a priori fashion and the resulting scheme 

is compatible with the usual formulation of the analytic derivatives of the SCF 

energy; this allows an efficient implementation of BSSE free gradient optimisa-

tion algorithms in both the direct and conventional SCF approaches into several 

quantum chemistry packages (GAMESS-US, PC-GAMESS and MOLPRO). In 

the next section we report an introduction to the most relevant elements of the 

SCF-MI approach; a more detailed account can be found elsewhere [9-13]. The 

validity of the method extends from the long range to the region of the minimum 

and of short distances. 

2. Theoretical background 
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According to the SCF-MI strategy, the supersystem AB formed by two interact-

ing monomers A and B, consisting of N=2NA+2NB electrons, is described by the 

one-determinantwavefunction:

(1)

where A is the usual total antisymmetrizer operator. The key of the method is

the partitioning of the total basis set x = {x k } , so that the MOs of fragments 

are expanded in two different subsets 

centred respectively on fragments A and B: 

and B 

and xB

(2a)

(2b)

where M=MA+MB is the basis-set size. The orbitals of different fragments are 

free to overlap with each other, although this non orthogonality does not involve 

any particularly severe computational problem. With this partitioning the (MxN) 

matrix of molecular orbital coefficients assumes a block diagonal form: 

(3 ) 

(4)

(5)

The energy corresponding to the SCF-MI wavefunction is 

while its variation becomes 

M

 k=1.,

A (ΦA

1 ...ΦA

NA ) ( ΦB

1 ...Φ B

NB  )

x A

 ={x A

p }MA
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= {x B

q }
MB
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where F and h are the usual Fock and one-electron integral matrices expressed in 

the atomic orbitals basis set. The density matrix defined as 

D = T(T†sT)-1T+ (6)

satisfies the general idempotency condition 

DSD=D (7)

The occurrence of BSSE is avoided by assuming and maintaining the orbital 

coefficient variation matrix in block diagonal form: 

(8)

As a result, the general stationary condition δ E = 0 yields the following coupled

secular problems 

(9)

in terms of "effective" Fock and overlap matices F'A, FB and S'A , S'B . It is sub-

stantial to recognise that matrices F'
A, F'

B, and S'
A

are Hermitian and have 

the correct asymptotic behaviour: that is, in the limit of infinite separation of the 

fragments A and B, F'
A

F'
B, and S'

A , S'
B

become exactly the Fock and overlap

matices of the individual systems A and B. 

The dimerisation energy is 

(10)

and takes properly account of the geometry relaxation effects. Following the 

scheme proposed by Gerratt and Mills [32] (see also Pulay [33,34] and Yama- 

guchi et al. [35]) the calculation of first and second derivatives was easily im-

plemented [10-11, 36].

The version of the SCF-MI code implemented into GAMESS-US package 

[11,36] can perform single point conventional and direct SCF-MI energy calcul-

ation, analytic gradient, numerical Hessian evaluation and geometry optimisa- 

tion; vibrational analysis is also available. Increase in complication and comput- 

ation time with respect to standard SCF algorithms is minimal. The SCF-MI 

option is also incorporated in the particularly efficient PC GAMESS version 
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[37] of the GAMESS-US [36] quantum chemistry package. Another version 

[38] adopting the CASVB algorithm [39] is being incorporated into MOLPRO 

code [40]. 

3. Computational details 

All calculations were performed ab initio with the SCF and SCF-MI procedures 

implemented in the GAMESS-US package [11,36]. Several standard split valen-

ce Cartesian basis sets (namely 3-21G, 4-31G, 6-31G and 6-3 1G(p,s) [36]) were 

employed, with all the electrons considered explicitly. The structures were fully 

gradient-optimised by imposing severe convergence criteria (norm of gradient 

less than 3*10-6 a.u.). The single bases turn out planar in all optimisations; cal-

culations performed including polarisation functions (6-31G**) revealed a slight

piramidalisation of the exocyclic nitrogen of isolated guanine confirming pre- 

vious literature results [7]. It is to be noted, however, that the energy difference 

between this distorted minimum structure and the planar conformation is very 

small, around 0.35 kcal/mol. We conclude that the use of planar structures does 

not introduce significant errors from a numerical point of view; in addition, the 

question on the planarity of isolated bases remains undecided, even experiment- 

ally [7,41]. 

4. Calculations and results 

4.1. SCF-MI/3-2 1G EQUILIBRIUM GEOMETRIES AND BINDING ENER-

GIES

To cover a sufficiently large range of DNA base pairs, the calculations were car-

ried out for several possible combinations of the neutral major tautomers of ade-

nine (A), cytosine (C), guanine (G), thymine (T) and uracil (U) bases. Figure 1 

reports the atomic structure of DNA base pairs optimised at the SCF-MI/3-21G 

level. The abbreviations WC and H are used for Watson-Crick and Hoogsteen 

respectively. The structures of the isolated systems were found to possess Cs 

symmetry; the planarity of the aromatic rings of the bases was maintained upon 

hydrogen bond formation. Table 1 summarises the SCF-MI/3-21G interaction 

energies of the pairs. SCF-MI results are compared with those obtained by stan- 

dard SCF/3-2 1G calculations. The values reported demonstrate that standard 

SCF approach predict too high binding energies if BSSE is not properly taken 

into account. The stabilisation energies are in the range -22.51-8.0 kcal/mol. The 

GCWC pair with three hydrogen bonds is the most stable pair while the AA pair 

with two hydrogen bonds is the weakest one. SCF-MI interaction energies are 
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consistent with the MP2 results reported by Sponer, Leszczynski and Hobza [7], 

confirming the electrostatic nature of the base pairs. 

TABLE 1. Interaction energies (m kcal/mol) of hydrogen-bonded DNA base pairs obtained for the 

SCF-MI/3-21G optmised geometries (see figure 1)

Base pairs ∆ E SCF ∆ ESCF-MI Ref. [7]

GCWC -39.8 -22.5 -23.4

ATWC -22.0 -9.5 -9.6

CC -25.5 -15.6 -15.9

GCH -35.1 -19.1 -20.6

AA -16.9 -8.0 -8.1

GG -37.4 -20.7 -22.5

UA -22.0 -9.5

TT -17.6 -8.9 -8.5

AG -22.1 -10.7 -1 1.5 

TAH -20.2 -9.5 -10.2

Selected SCF-MI geometrical parameters for the lnvestigated base pairs are reported in Table 2 

TABLE 2. Selected optimised SCF-M/3-21G lntermolecular geometry parameters - distances in Å 

/ angles in degrees - for the mvestigated base pairs (see figure 1) 

Base pairs parameters SCF-MI Literature(*)

GCWC N2(H)...O2, 2.971171.9 3.02/178.1

N1(H)...N3 3.041173.8 3.041176.1

O6...(H)N4 2.941172.4 2.921177.0

ATWC N6( H). . .O4, 3,09/170.2 3.091172.0

N3,(H)...N1 3.011176.7 2.991178.8

cc N3 ...(H)N4 3.051174.2 3.05/173.2

N4(H)...N3’ 3.051 174.2 3.051173.2

GCH N1,(H)...O2 2.831177.2 2.821175 .0

O6,...(H)N1 2.95/170.1 2.921179.0 

AA N6(H)...N1, 3.141179.1 3.16/179.4

N1...(H)N6 3.14/179.2 3.56/179.4

GG N1(H)...O6 2.87/ 1 77.7 2.8711 78.1

O6 ...( H)N1. 2.90/ 177.7 2.871178.1

UA N6(H)...O4 3.0911 70.2

N3.(H)...N1 3.011176.7

TT O2...(H)N3 2.951159.1 2.981166.2

O2...(H)N3 2.96/ 1 5 8.8 2.981166.6

AG O6’...( H)N6 2.95/175.2 2.951179.9

N1...(H)N1 3.19/176.4 3.191179.3

TAH O4’...(H)N6 3.11/171.8 3.141170.1

N3,(H) ... N7 2.9611 76.5 2.9511 75.6 

(*) The data reported here are obtained at the SCF/6-3 1G** level by adding the counterpoise 

correction and the fragment relaxation terms [7] 

-
-






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Figure 1. SCF-MI/-21G optimised geometries of hydrogen bonded DNA base pairs. For GCWC 

and ATWC pairs, broken lines represent hydrogen-bond bridges. 
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In Tables 3 and 4, additional, extensive SCF-MI calculations on ATWC and

GCWC, performed with 6-3 1G and 6-3 1G(p,s) basis sets, confirm the accuracy 

and reliability of this approach, both for interaction energies and geometric para-

meters.

TABLE 3. Selected SCF and SCF-MI geometrical parameters and binding energies ofATWC base 

pair for several standard basis sets

Basis set N3(H) ... N3 N3(H) ... N3 DE SCF-MI ∆ E SCF

Å deg. kcal/mol kcal/mol 

3-21G 3.01 176.7 -9.50 -22.01

6-3 1G 3.04 176.9 -10.32 -15.19

6-31G(ps) 3.08 176.9 -9.78

TABLE 4. Selected SCF and SCF-MI geometrical parameters and binding energies of GCWC base 

pair for several standard basis sets 

Basis set N1(H) ... N3 N1(H) ... N3 DE SCF-MI ∆ E SCF

Å deg kcal/mol kcal/mol 

3-21G 3.04 173.8 -22.5 1 -39.81

6-3 1G 3.09 178.4 -24.80 -31.61

6-3 1G(ps) 3.10 172.9 -24.56 -

4.2. POTENTIAL ENERGY CURVES 

The SCF and SCF-MI potential energy curves for thymine approaching aden- 

ine was computed as a function of the distance R between the H(N3) of thymine 

and N1 of adenine. The same kind of calculations have been performed for uracil 

approaching adenine (with R equal to the distance between the H(N3) of uracil 

and N1 of adenine) and for guanine approaching cytosine (with R equal to the 

distance between N3 of cytosine arid H(N1) of guanine). Figures 2-4 show the 

effect of the basis-set quality on the potential energy surfaces. 
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Figure 2. SCF and SCF-MI potential interaction energy surfaces for ATWC system. The standard 

3-21G, 4-31G and 6-31G basis sets are used. Distances are in Å and energies in kcal/mol. The ex-

perimental interaction energy is also reported. 

Figure 3. SCF and SCF-MI potential interaction energy surfaces for UA the system. The standard 

3-21G, 4-31G and 6-31G basis sets are used. Distances are in Å and energies in kcal/mol. The ex-

perimental interaction energy is also reported. 
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Figure 4. SCF and SCF-MI potential interaction energy surfaces for GCWC system. The standard 

3-21G, 4-31G and 6-31G basis sets are used. Distances are in Å and energies in kcal/mol. The ex- 

perimental interaction energy is also reported. 

4.3. SCF-MI INTERACTION DENSITY 

The SCF-MI orbitals and interaction density maps for ATWC and GCWC base 

pairs have been used to interpret the nature of the interactions involved in the 

hydrogen bond formation. The SCF-MI orbitals describing the electrons directly 

involved in the interaction are shown in figure 5 for the ATWC and in figure 6 

for the GCWC base pairs and can be clearly identified. In figures 7 and 8 we 

report the plots of the SCF-MI interaction density. The density difference ∆ρ= 
ρ dimer - ρ monomers , plotted in the plane of the molecules, shows that the effect of 

the hydrogen bond is not restricted to the bonding region alone. The hydrogen 

bond increases the polarity of the monomers involving intramolecular as well as 

intermolecular rearrangements: the hydrogen atom becomes more positive, while 

the electron density on the heteroatom increases. See [43] for a more detailed 

analysis of this point. 
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Figure 5. SCF-MI/6-31G orbitals for ATWC base pair shown as contours of |ϕ 
µ
(r)|2

in

the plane of the interacting molecules. 

Figure 6. SCF-MI/6-31G orbitals for GCWC base pair shown as contours of |ϕ 
µ
(r)|2

in the 

plane of the interacting molecules. 
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Figure 7. SCF-MI/6-31G interaction densities (∆ρ = ρ dimer -ρ monomers) in ATWC base pair. Dashed

contours denote negative and solid contours positive values of ∆ρ. 

Figure 8. SCE-MI/6-31G interaction densities (∆ρ=ρdimer - ρmonomers) in GCWC base pair. Dashed

contours denote negative, solid contours positive values of ∆ρ. 
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4.4. THE PROPELLER TWIST ANGLE 

Single crystal X-ray analysis of nucleic acids shows that base pairs in DNA are 

not planar. Arnott, Dover and Wanacott [44] found that the angle of rotation of 

one molecular plane with respect to the other around the roll axis of the referen-

ce system - propeller twist angle - is 15 degrees. As hydrogen bond interaction 

favours planarity, packing effects probably accounts for the deviation. We have 

evaluated such destabilisation by the SCF-MI method and compared it with the 

corresponding value obtained with the standard SCF procedure. 

Starting from the most stable planar dimer structure SCF-MI and SCF destab-

ilisation energies were calculated for different values of the Arnott, Dover and 

Wanacott's propeller twist angle. Figures 9-11 report the results obtained with

the 3-21G, 4-31G and 6-31G basis sets for ATWC, UA, and GCWC base pairs.

Due to the relative low rigidity of the potentials around the minimum it is con- 

firmed that small deviations from planarity [45] are allowed. 

Figure 9. SCF and SCF-MI interaction energy variations of the ATWC hydrogen base pair as a 

function of propeller twist angle α. The standard 3-21G, 4-31G and 6-31G basis sets are used. 

Angles are in degrees and energies in kcal/mol. 
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4.5, STACKING EFFECTS : PARALLEL INTERACTION BETWEEN NUC-

LEIC-ACID BASES 

In the double helix structure of real nucleic acids, bases are parallelly stacked, at 

a distance of about 3.4 Å; as a complete turn of the double helix is 34 Å long 

and contains 10 base pairs, each one is found to be rotated by 36 degrees around 

the double helix axis. The stabilisation of stacked complexes of DNA bases ori-

ginates from both dispersion effects and electrostatic dipole-dipole interactions. 

The importance of the use of a proper geometry optimisation procedure is de- 

monstrated by the PES reported in figure 12 where a fixed ring approach of two 

cytosine bases perfectly superimposed turn out fully repulsive. A proper station-

ary point was found only after a fill optimisation of the CC stacked base pair 

without any constraint. The SCF-MI/3-21G equilibrium structure (see figure 13) 

was found at an average interring distance of 3.9 Å with an interaction energy of 

-3.0 kcal/mol, in accordance with literature results [7] obtained at the MP2 cor- 

related level. It is to be noted that stacking interactions induce pyramidalisation 

of the ammonia groups of the bases so that the planar geometry of cytosine is 

deformed.

Figure 10. SCF and SCF-MI interaction energy variations of the UA hydrogen base pair as a func-

tion of propeller twist angle α. The standard 3-21G, 4-31G and 6-31G basis sets are used. Angles

are in degrees and energies in kcal/mol. 
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Figure 11. SCF and SCF-MI interaction energy variations of the GCWC hydrogen base pair as a 

function of propeller twist angle α. The standard 3-21G, 4-31G and 6-31G basis sets are used. 

Angles are in degrees and energies in kcal/mol. 

4.6. BADER ANALYSIS AND CHARGE TRANSFER EFFECTS 

The ATWC and GCWC systems in their minimum-energy planar geometries 

obtained with the 6-31G basis set at the SCF and SCF-MI levels (Tables 3 and 

4) were analysed using Bader’s procedure. The analysis of the charge density

confirms that two H-bonds are formed in the ATWC and three in the GCWC 

system. The data regarding net atomic charges reported in Table 5 provide evid-

ence that the SCF-MI method, while eliminating the BSSE contributions to the 

interaction potential, does not prevent a proper description of all main physical 

effects even when employing modest 6-31G basis sets,
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TABLE 5. Bader’s net charges on each fragment for nucleic-acid base pairs ATWC and GCWC at 

the equilibrium geometries. The 6-31G basis set is used

Base pairs Bases SCF SCF-MI

ATWC A +0.021 +0.016 
T -0.02 1 -0.016

GCWC G -0.030 -0.018
C +0.030 +0.0 18 

Figure 12. SCF and SCF-MI parallel interaction energies between nucleic-acid bases: Cytosine-

Cytosine case. The standard 6-31G basis set is used. Interring distances (d) are in Å and energies in

kcal/mol.
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Figure 13. Optimised SCF-Ml/3-21G structure of stacked CC pair. 

5. Conclusions 

The present paper provides the first geometry determination for several hydro-

gen-bonded DNA base pairs performed using an a priori BSSE-free gradient

optimisation SCF algorithm. The effect of the overlap between the orbitals of 

the fragments is naturally taken into account. SCF-Ml/3-21G stabilisation ener- 

gies range from -22.5 to -8.0 kcal/mol, in good agreement with reliable literature 

theoretical values. It was gratifying to find that, for the systems studied, the a
priori exclusion of BSSE reproduces accurate results by employing a small basis 

set. The hydrogen bonding PES and the propeller twist potentials are also calcul- 

ated for some of the molecular complexes. The SCF-MI interaction density is 

used to interpret the nature of the interactions involved in hydrogen-bond for-

mation in adenine.. . thymine and guanine.. . cytosine pairs in the Watson-Crick

configuration, confirming that the structure and stabilisation of the base pairs are 

determined mostly by electrostatic interactions. Preliminary calculations on the 

stacked cytosine dimer are also reported. 

It may be questioned whether the SCF-MI procedure is able to take into con- 

sideration the possibility of a charge transfer. As the basis functions of the two 

fragments A and B are kept strictly partitioned, there is the justifiable doubt that 

the electrons of one fragment cannot delocalise over the other. However, as the 
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functions centred on fragment A have tails extending to the space of fragment B 

and vice versa, it is to be expected that electronic transfer will not be strictly for- 

bidden. Bader analysis has confirmed this, demonstrating that, even in the unfa- 

vourable case of employing the 6-31G basis set, the computed total charge loc-

ated on A and B is of the same order of magnitude for both the SCF and SCF-

MI wave functions. 

The natural development of the present work, which is in progress in our lab-

oratory, is the investigation of the interaction of the DNA base pairs with ionic 

molecules or fragments that show citotoxic effects on biological systems. In par-

ticular, we have studied the coordination of metal cations to the N7 and 06 sites 

GCWC pair that can generate a non-Watson-Crick hydrogen-bonding pattern 

[46]. Inclusion of dispersion terms will be attempted along the BSSE-free pro- 

cedure already tested in the case of water properties [47], with the aim of veri-

fying the present results when correlation is included. 
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Abstract. Hypersurfaces for proton transfer processes have been studied at the

non-empirical level for model molecules, including hydrogen-bonded systems. 

Non-dynamical correlation energies were evaluated and analyzed with different 

basis sets. It has been shown that the barrier heights calculated with CASPT2 are 

not very different from those of single-determinantal methods, e.g. MP2. There- 

fore we conclude that hydrogen-bonded systems may be treated at a good accur- 

acy with single-determinantal wavefunctions. The inclusion of zero-point energy 

corrections and crystal-field effects enables for a reasonable interpretation of the 

low potential barriers observed in NMR experimental studies on some molecular 

crystals involving carboxylic dimers. 

1. Introduction 

Proton transfer reactions are the simplest but very important in many chemical 

problems as well as in some biological processes. It appears that the low-barrier

hydrogen bond (LBHB) for this displacement may play a fundamental role in 

stabilizing intermediates in enzymatic reactions and in energy lowering of tran- 

sition states [1]. There is considerable evidence that a LBHB may be important

in the reaction catalyzed by ∆ 5-3-ketosteroid isomerase [2]. Recent computation-

al and gas phase experimental studies [3] have also shown that LBHB can exist 

in gas phase systems. On the other hand, the multiple proton transfer seems to 

play an important role in quantum chemical interpretation at molecular level of 

some biological processes like mutations, aging and cancerogenic action [4]. As 

the evaluation of the potential energy surface with good accuracy is of great im-

portance for dynamics and interpretation of the proton transfer mechanism, these 

processes have recently been intensively studied in many groups, by using both 

semi-empirical and non-empirical quantum chemical methods [5-9]. Unfortuna-

tely, in spite of recent progress in computational chemistry and more rigorous 
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treatment of correlation energy corrections, reliable results are still very difficult 

to obtain by quantum mechanical calculations on hydrogen-bonded systems. The 

aim of our calculations is to improve the accuracy in the evaluation of potential 

energy surfaces and to estimate the role of basis set, geometry optimization and 

correlation energy. It should be emphasized that an appropriate accuracy in the 

evaluation of potential hypersurfaces is of crucial importance in quantum chem- 

ical studies of the mechanism and dynamics of proton transfer. 

2. Basis-set problem 

It was found that the lowering of the potential barrier for the proton transfer is 

dependent on the correlation energy taken into account in the calculation and its 

some limiting value is reached when more than 60 % of this energy is taken into 

account [10]. On the other hand, experimental geometry of the formic acid [11]

and other carboxylic acids may be well reproduced [12] within the 6-31G**

basis at the MP2 correlation level (Table 1) where theoretical results concerning 

hydrogen bond length very well resemble those of experimental ones. 

TABLE 1. Hydrogen bond length [Å] for the formic acid 

dimer within the different basis sets evaluated at the MP2 

level with full geometry optimization 

Basis set Hydrogen bond length 

6-3 lG* 2.704 

6-3 1 1G** 2.704 

CBS 2.670 

It should be noted that not so good results were obtained even with the complete 

basis set (CBS) [13]. In this situation we decided to perform extensive studies on 

the proton transfer for a number of carboxylic acid dimers within the 6-31G**

basis set at the second-order Moeller-Plesset level. 

The effect of basis set superposition error (BSSE) in the proton displacement 

potential has been studied by Latajka et al. [14]. It was concluded that within the 

counterpoise scheme, the BSSE is comparable for the endpoint and midpoint of 

the proton position and therefore has only a negligible effect upon the barrier to 

proton movement. 
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3. Non-dynamical correlation energy 

According to the generally accepted Löwdin’s definition, the electron correlation 

energy ECORR is the difference between the exact non-relativistic energy eigen-

value of the electronic Schrodinger equation EEXACT and the basis limit energy of

the single configuration state function approximation, i.e. the Hartree-Fock ener- 

gy EHF :

E
CORR

=E
EXACT

-EHF

While this definition is satisfactory near molecular equilibrium, it becomes less 

adequate as molecular bonds are stretched when a single configuration is not 

sufficient.

TABLE 2. Non-dynamical correlation energy (a.u.) for the water monomer in differ-

ent basis sets 

Basis set No. of functions Non-dynamical correlation energy 

DZV 13 -0.05440

TZV 20 -0.05 509 

TZV+P 60 -0.05362 

CBS 80 -0.05420

CBS+F 100 -0.05355

Non-dynamical correlation is associated with the lowering of the molecular 

energy as a result of interaction of the Hartree-Fock configuration with low- 

lying excited states. It may be evaluated from the relationship 

END = ECASSCF - EHF

where ECASCF  is the total energy with the relevant multireference wavefunction.

An unambiguous definition is to include in the secular matrix CFS’s which arise 

from all possible occupancies of the valence orbitals. The number of such orbit-

als is the same as that of basis functions within a minimal basis set. However, in 

order to obtain a unique definition of the non-dynamical correlation energy, the 

orbitals should be optimized to self-consistency [ 15]. 

Non-dynamical correlation energies for the water monomer, calculated accor- 

ding to the above-mentioned definition, are given in Table 2 for different basis 
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sets. All atomic orbitals are taken into account without freezing. It appears that, 

in general, the respective values are not strongly dependent on the basis choice 

and, therefore, it is difficult to estimate the basis set quality in that way. 

TABLE 3. Non-dynamical correlation energy (a.u.) for the two extrema1 protons positions within 

the hydrogen bond 

System Basis set Equilibrium Middle 

HF2
- (TZV) -0.022 1147 -0.02756 12 

(H2O)2 (Duijneveld t) -0.0528120 -0.0836097

H2O2
+ (TZV -0.1068028 -0.10 16403 

(HF)3 (TZV) -0.033 5 594 -0.03 5 5322 

(HCOOH)2 (DZV) -0.0955092 -0.0850460

NH4
+ (CBS) -0.3777727 -0.13060 17 

4. Model molecular systems with possible proton transfer 

In Figure 1, there are depicted the model hydrogen-bonded systems for which 

the calculations of potential hypersurfaces for proton transfer have been carried 

out. In the case of the formic acid dimer, the reactant C2h is transformed to its 

symmetry related product via a transition state D2h (Figure 2 ). In this case, it is 

assumed that in the gaseous state the hydrogen-bond protons displace between 

the two symmetrical potential minima of the equivalent tautomers. In condensed 

phases, however, because of interactions with the environment, the initial and 

final states may be trapped in one configuration [16]. Thus, the role of crystal 

field in proton transfer reactions may be important, but it is still not clearly un-

derstood. In this situation, a comparison of the potential energy hypersurfaces 

for isolated gaseous dimers with those for the crystal lattice may enable deeper 

understanding of the proton transfer mechanism. 

In all cases full geometry optimization has been carried out, at the MP2 level, 

for both the equilibrium and the transition states. It is worth noticing that the op-

timization essentially influences the final results of the calculations. 
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Figure I. Geometry of model hydrogen-bonded systems: the dotted lines denote the respective 

hydrogen bonds. 

Figure 2. Stationary points: C2V (equilibrium geometry) and D2h (transition state) on the potential 

energy hypersurface for synchronous double proton transfer in the formic acid dimer. The potential 

barrier height is denoted by V0.
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Figure 3. Geometry of dissociating H3O+ and NH4
+ systems. The dotted lines denote the 

interatomic O . . . O and N . . . N distances, respectively. 

5. Results and Conclusions

For the above-described, model hydrogen-bonded systems ( Figure 1), all CAS- 

SCF and CASPT2 calculations were performed with frozen 1s and 2s orbitals. 

The non-dynamical correlation energies were evaluated for the two extremal, i.e. 

equilibrium and middle, proton positions of the model systems within the hydro-

gen bond (Table 3). 

It is only in the NH4
+ case that the non-dynamical correlation energy value is 

much greater than those for hydrogen-bonded systems. This fact is in agreement 

with the Hartree-Fock potential curve behaviour when stretching the N.. .H bond 

(Figure 4). The dependence of the dynamical and non-dynamical correlation en-

ergies for the H3O+ cation is shown in Figure 5, where the latter is rather small 

for the equilibrium proton position and much larger for shorter and longer O...H 

distances.

As non-dynamical correlation energies are rather small for the equilibrium 

geometry of the systems ( Figure 5), the difference in these correlation energies 

for the two extremal proton positions is not very large, except for NH4
+ where

this quantity assumes its largest value. This result, given in Table 4, is in agree-

ment with our previous calculations, which showed that this system is a typical 

multiconfigurational one [ 17]. 
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Figure 4. Dependence of the potential energy of the H3O+ system at the Hartree-Fock level 

(EHF
+75.0) [a.u.] on the O ... H distance [A] (to the left) and for the NH4

+ cation (EHF+56.0) [a.u]

on the N ... H distance [A] (to the right) within the aug-cc-pVTZ basis set. 

TABLE 4. Hydrogen bond lengths [A] and potential barriers [kcal/mole] for the double proton 

transfer in carboxylic acid dimers within the 6-31G** basis set without (BH) and with (BH-ZPE)

zero-point energy corrections (full geometry optimization at the MP2 level) 

Dimer HB length BH BH-ZPE

Formic acid 2.704 8.08 4.62 

Acetic acid 2.694 9.43 2.76 

Oxalic acid 2.674 8.98 2.5 1 

Malonic acid 2.700 9.85 1.41 

Benzoic acid 2.675 7.07 1.10 

o-Cl-Benzoic acid 2.682 14.98 8.56 

On the other hand, this means that for hydrogen-bonded systems calculations 

with one-determinantal functions may be reliable. In fact, there is reasonable 

agreement of potential barriers for proton transfer between MP2 and CASPT2 

calculations (Table 5). Thus, the ground state of hydrogen-bonded systems may 
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be, with good accuracy, considered as single-determinantal. These results are 

consistent with Roszak et al. calculations [18] for the [H3N ... H...OH2]+ cation.

However, this is not the case when the improper dissociation limit takes place, 

e.g. for NH4
+, characteristic for computational schemes based on the restricted 

Hartree-Fock wavefunction. 

Figure 5. Dependence of the CCSD(T) correlation energy (left side) and non-dynamical correlation 

energy (right side) on the O ... H distance of the H3O+ system within the aug-cc-pVTZ basis set.

With the above encouraging results we extended our calculations to more 

complicated systems. In the case of the simultaneous double proton transfer the 

potential energy barrier for the gaseous dimeric system of the malonic acid cal-

culated within the 6-31G** basis set at the MP2 correlation level amounts to 

9.85 kcal/mole [19]. 

The difference in the zero-point energies resulting from our calculations is of 

the order of 8.44 kcal/mole, lowering the potential barriers by this value. With 

this correction the potential barrier for the synchronous double proton transfer in 

the malonic acid crystal was found to be 2.21 kcal/mole. 

The role of crystal lattice effects in molecular lattices is still a moot point. In 

the case of the malonic acid dimer the simulation of the surrounding effects have 

been taken into account by using monopole atomic charges taken from ab initio 

calculations. It should be noted that the estimated field effect on the potential 

barrier in case of the simultaneous double proton transfer is of the order of 0.80 

kcal/mole (lowering the barrier). Thus, the final barrier for the above-mentioned

mechanism is 1.4 1 kcal/mole, respectively. Therefore, taking into account the 

zero-point energy, it shows that the barrier height of the malonic acid dimer is 

quite close to the experimental result of 1.33 kcal/mole [20]. 
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TABLE 5 . Potential barriers [kcal/mole] for the proton 

transfer in model systems calculated at the MP2 level and 

with the CASPT2 method 

System MP2 CASPT2

HF2
- 21.41 22.19

(H2O)2 46.12 5 1.27 

(HF)3 29.19 31.11

H5O2
+ 11.11 8.87

Formic acid 8.08 8.02

The following final conclusions can be drawn from our calculations: 

- An important influence of correlation effects is documented and the most 

accurate results are obtained by using multiconfigurational wavefunctions 

(coupled-cluster methods lead to correct results as well). 

- An estimation of the non-dynamical correlation energy may be a test for 

the quality of proton-transfer quantum-chemical calculations. 

- The ground state of simple hydrogen-bonded systems is approximately 

single-determinantal.

- Results of DFT calculations depend essentially on the functional used. In 

general, they give a qualitatively correct potential energy hypersurface. 

However, they underestimate the proton transfer barrier height [21]. 

- Except for basis set and correlation energy, full geometry optimization is 

essential in potential energy hypersurface calculations. 

The numerical calculations were performed using the GAMESS package. 
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Abstract. The S1 ← S0 electronic band system in the formic acid was simulated

from RHF I UHF ab initio calculations for the two electronic states. The torsion-

wagging energy levels were evaluated by the variational method using free-rotor

basis functions for torsional coordinates and harmonic-oscillator basis functions 

for wagging coordinates. A comparison of the calculated band spectrum to the 

jet-cooled excitation spectrum allowed for the assignments of a number of clear-

ly defined bands. Along with these simulations of the overall spectrum there is

also the prediction that the individual bands contain a complex mixture of rota-

tional hybrid bands. For the 00 origin band the calculations predict that there

should be three components within the band cluster. The allowed component of 

the electronic transition attaches to the 0+, v=0 zero-point level of the S1 state as 

a c-type band, and is referred to as the Franck-Condon component, whereas the 

electronically forbidden but vibronically allowed a / b-type Herzberg-Teller

bands terminate on the 0- first excited level of the torsion-wagging manifold. 

The calculated separation between these bands is very small, 0.00 cm-1. Relative

intensities of the a / b / c components within the 0
0

origin band are predicted to 

appear with ratios of about 0.02 /1.24 /0.67. 

1. Introduction 

In general, higher electronic states of molecules exhibit greater structural flexi-

bility than do the structures of the corresponding ground electronic states. This 

nonrigidity is a direct consequence of the excitation process, whereby an elec-

tron is lifted from a bonding or nonbonding orbital to a molecular orbital that is 

ostensibly antibonding. Thus, the n → π∗ excitation process in the carbonyl chro-

mophore that places an electron in the π∗ orbital of the C=O group has the effect
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of reducing the C=O bond order from 2 to 1.5 while at the same time increasing 

the length of the bond by 0.08-0.11 Å. Even more dramatic changes occur in the

bond angle relationships. In the case of the molecular prototype [1] constituted

by formaldehyde, CH2O, the rigid planar conformation of the S0 ground electro-

nic state converts into a pyramidal structure on excitation to the S1 excited state. 

The out-of-plane motion inverting the pyramidal S1 structure is described by a 

double minimum potential function that contains a central barrier of 350 cm-1.

The barriers to molecular inversion are found to be sensitive to the nature of the 

attached group. For example, while the first excited singlet and triplet states of 

the sulphur analogue, CH2S, are found to be pseudo-planar, the fully fluorinated

species, CF2O is observed to have a barrier of 3100 cm-1.

Additional large-amplitude information is introduced into these systems 

when more complex groups are attached to the carbonyl center. In the case of

formic acid, the HCOO frame is rigidly planar in the S0 state, and the internal 

rotation of the hydroxy group is the sole large-amplitude mode [2-7]. As would 

be expected, the molecular frame in the singlet S1 excited state is pyramidal and,

as a result, the molecular structure is highly flexible in both aldehyde wagging 

and hydroxy torsion coordinates [8]. The low frequency vibrational dynamics of 

the excited state are thus governed by two large amplitude modes, a torsion of

the hydroxy group and a wagging-inversion of the aldehyde hydrogen. 

It is the Franck-Condon principle that makes electronic spectroscopy an

ideal tool for investigating large amplitude motions in polyatomic molecules. 

This principle relates the activity of the observed band progressions to the nor-

mal coordinates that most closely correspond to those changes in molecular con-

formations that occur on electronic excitation. It would be expected that the CH 

wagging and the OH torsion would be active in forming band progressions in the 

spectrun. As each band in a given progression is a suborigin for every other pro-

gression, the band spectrum very quickly becomes complex at ever increasing 

energies from the electronic origin. As a result, the UV spectra of these simple 

systems are highly congested and satisfactory vibrational assignments are often 

difficult to achieve. 

The present studies were undertaken to provide information about the 

structure and dynamics of the S1 first excited state of formic acid. In particular, a 

knowledge of the inversion-torsion hypersurface for the two combining states, 

along with maps of the electronic transition moments should be of value in the 

interpretation assignments of the 260-200 nm spectrum that is attributed to the 

n →π∗ excitation process within the monomer molecule.

2. The S0 ground electronic state 

To describe the torsion-wagging motion, it is necessary to express the potential 

energy as a function of the two internal coordinates θ (torsion) and α (wagging)

that are defined in Figure 1. The two-dimensional potential may be described as 
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a V( θ, α) surface. The form of this plot, Fig. 2, follows without difficulty. The 

S0 ground state contains two minima, corresponding to the wells created by the

planar syn and anti conformers. In the a direction the hydrogen wagging poten- 

tial has a single minimum and is harmonic (quadratic in α). The very slight tilt to 

the elliptical contours at the bottom of the wells is the result of a small coupling

between the θ and α internal coordinates. 

Fully optimized MP2 / 6-31G (d,p) calculations with the GAUSSIAN 

program were used to establish the potential surfaces [9]. In this method, the 

total energy was calculated for a set of molecular conformations defined by sel-

ected values of θ andα, forming grid points on the V(θ, α) surface. These ab
initio data points were reduced to analytical form by fitting the energy calculated 

at the grid points to a series expression containing polynomic, exponential and 

Fourier terms: 

(1)

where the V's are the coefficients in the expansion for the potential energy ob-

tained from the fitting procedure and the fkj represent trigonometric (torsion) /

polynomic (wagging) terms. Nv is the number of terms in the series expansion. 

Figure I. The formic acid structure, 

the b and c principal axes and defi-

nitions of the θ and α internal coor-

dinates.

Figure 2. The morphed potential 

energy surface V (θ, α) for the SO

ground state. Contour intervals 

at 2000 cm-1.
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Expansion coefficients f
kj

for the S
0

electronic state were obtained from

fitting the energy calculated at 70 different conformations to the analytical pot-

ential given by Eq. (1). A Fourier series of 3 terms was used for the sinusoidal 

potential generated by the OH internal rotation, and powers α 2 
and α 4 

for the an-

harmonic wagging potential. The coupling between the two internal coordinates

was accounted for by 4 cross terms for Nv = 10. 

The kinetic terms, B
ij

were treated in a somewhat similar way. Kinetic

energies were evaluated from fully optimized molecular geometries calculated at 

grid points in θ and α as elements of the rovibrational G matrix, using the KICO

program [10]. In thismethod, the kinetic energy parameters were obtained by in-

version of the inertial matrix 

(2)

where I is the inertial tensor corresponding to the overall rotation, Y is the vibra-

tional submatrix, X represents the interaction between the external and internal 

motions, and 

(3 ) 

(4)

Here the mass of atom a is given by ma and its displacement vector by ra. The Bij

are the coefficients obtained from fitting Eq. (2) to points on the grid. NB is the

number of terms in the expansion for the kinetic energy, while 

(5)

A general Hamiltonian [11] was used for the treatment of the multidimensional 

vibrational problem: 

(6)

where the number of vibrations, n, is two. 
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The two-dimensional Hamiltonian is solved variationally for the eigen-

values and eigenvectors, using a hybrid free-rotor + harmonic-oscillator basis set 

for the hydroxy-torsion and hydrogen-wagging coordinates, respectively. Non-

rigid group theory was used for the labeling of the energy levels, factorization of 

the Hamiltonian matrix and generation of the selection rules. The existence of a 

single plane of symmetry allows the S0
and S

1
structures to be classified by the S

switch operation: 

S f (z, θ)= f(–z,–θ)
∧

 (7)

creating a nonrigid group G2 that is isomorphous to the point group Cs [12].

Thus, the torsion-wagging functions classify into the symmetry species a' (in-

plane) and a" (out-of-plane). The calculated energy levels are adjusted to fit the 

observed levels by morphing the potential energy surface that was initially ob-

tained from the ab initio procedure. The refinement was carried out by minim-

izing the differences between the calculated and observed levels with a quasi-

Newton method [13]. Throughout the fitting procedure, the kinetic energy coef-

ficients were fixed at their optimized values. The S0 expansion coefficients for 

the morphed potential and kinetic energy functions are collected together in 

Table 1. 

TABLE 1. Potentiala and kineticb energy expansion coefficients for the S0 ground electronic 

state (in cm-1)

coeff. V B θ,θ Bθ,α Βα,α 

constant 0.36549+04 0.24447+02 0.65430+0 1 0.245 85+02 

α2 0.25424+01 -0.10620-02 -0.40400-07 -0.81244-04

α4 
0.19043-05 0.66000-07 0.22500-07 0.81173-08

cos (θ) -0.40268+03 -0.19010-02 0.17939+02 0.23183+01

COS(2θ) -0.29300+04 0.26649+00 0.19074+00 0.42686+00

Cos(3θ) -0.32224+03

α sin(θ) -0.13143+02 -0.46790-02

α 2cos(θ) 0.57425-01 -0.63085-04

α sin(2θ) 0.22303+02

a) from the morphed potential surfaces. 

b) from the MP2 / 6-31G (d,p) optimized structures.

α2
cos(2θ )   -0.44351-02
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3. The S1 excited electronic state 

On an n →π∗ electron excitation, antibonding density is introduced into the C=O

bond, with the result that the HCOO group distorts into a pyramidal conforma-

tion with the aldehyde hydrogen projecting out of the plane. Thus, the T
1

and S
1

states are nonplanar in the frame, and the potential function describing the wag-

ging motion contains two minima separated by a central barrier. To further com-

plicate the picture the OH group undergoes a conformational change on excita-

tion, and rotates from its planar syn and anti forms to a staggered conformation. 

Thus, for the excited state, the positions of the minima on the S0 surface now be-

come maxima for the S1 potential that is illustrated in Fig. 3, For one full revolu-

tion of the hydroxy group, the V( θ, α) surface contains four separate wells. The 

double minimum nature of the S1 wagging potential for the upper state required

the use of the Coon function.14 This is constructed from a Gaussian term that 

describes the central barrier while the outer edges of the two wells are formed 

from the addition of quadratic-quartic terms. 

To obtain a starting point for the analysis of the torsion-wagging level 

structure of the S1 state, MP2 / 6-31G (d,p) calculations were carried out on the

companion nπ∗ triplet state, T1. As only a few thousand wavenumbers separate

the singlet and triplet states, it would be expected that the V( θ, α) potential sur-

face of the T1 state would resemble that of the S1 state. Thus, the T1 surface was 

used to generate a manifold of levels that became a starting point for the fitting 

procedure. In all, 15 expansion coefficients yield an adequate fit to the ab initio 
data points. The excited-state expansion coefficients for the morphed potential 

and kinetic energy terms are given in Table 2. 

Figure 3. The morphed potential energy 

surface V (θ, α) for the S1 first electro-

nic state. Contour intervals: 500 cm-1.
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TABLE 2. Potential
a
and kinetic

b
energy expansion coefficients for the S1 excited electronic 

state (in cm-1)

coeff.c V Bθ,θ B θ,α Bα,α 

constant -0.29182+04 0.21900+02 0.41 527+01 0.23799+02 

α2 
0.69532+00 -0.891 00-04 -0.28600-03 -0.43900-04

α4 
0.67900-04 0.56300-07 0.15100-07

cos(θ) -0.12436+02 -0.17450-02 0.16290+01 0.15609+01 

cos(2θ) -0.13731+03 0.20287+00 0.12251+00 0.41449+00 

cos(3θ) -0.22865+03

α sin(θ) -0.26475+0 1 -0.52862-02

α sin(2θ) 0.94358+0 1 

exp(-cx
2
) 0.76 105+04 

exp(-cx2)cos(θ) -0.9777 1+02 

exp(-cx2)cos(2θ) 0.58683+03

exp(-cx2)cos(3θ) -0.8 58 5 5+02 

α 3sin (θ) -0.54 5 76-02

α 3sin (2θ) 0.3 1249-03

α 2cos(θ) -0.50800-04

(a) from the morphed potential surfaces. 

(b) from the MP2 / 6-3 1 G (d,p) optimized structures. 

(c) c was fixed at 6.5 x 10-4.

4. Vibronic transitions 

The intensities of the various transitions were determined from the transition 

dipole moments between an n and m pair of torsion-wagging vibronic states 

belonging to electronic states e' and e":
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(8)

where µ represents the dipole moment operator. The electronic transition mo-

ments are obtained directly from the GAMESS package with the CI / 6-31G

(d,p) basis set and the length approximation, using double excitations for the

lower state and triple excitations for the upper state [15]:

(9)

The electronic transition moments were then expanded as a series expression 

derived from the same θ and α grid points as those selected for the potential 

surface:

(10)

Transition dipole moments were calculated with the above procedure

from the geometry of the ground state, using the assumption that the absorp-

tion of the photon and excitation to the upper state is an adiabatic process. The 

results are shown, in Fig. 4, as contour maps that depend on the torsional and 

wagging angles for each projection on the a, b and c principal axes. The µc

component is perpendicular to the O-C=O frame and belongs to the a' repre-

sentation, while µa and µb lie in the molecular plane and are of a" species. The

selection rules were derived from the symmetry of the torsion-wagging wave 

functions and the components of the transition dipole moment. The transition 

moment expansion coefficients along the a, b and c directions are displayed in 

Table 3. The relative intensities of the transitions within the manifold of S0 and

S1 levels were obtained from 

(1 1) 

where the gn represent the populations of the levels. 

The allowed a' ↔ a' component of the transition between the S0 (v = 0)

and S1 (0+, v = 0) levels of formic acid is directed out of the O-C=O molecular

plane and entails c-type polarization. Transitions to the higher inversion level, 

0
-
, are electronically forbidden, but indeed allowed through a Herzberg-Teller

vibronic coupling generating a and b in-plane polarized components. 
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TABLE 3. Transition moment expansion coefficients resolved along the 

principal a, b and c-type axes (in Debye) 

coeff, µa µb µc

constant 0.2905 8+00 

sin(θ) -0.76768-01 0.90750-02

sin(2θ) 0.53 163-01 -0.54520-02

cos(θ) -0.18930-02

cos(2θ) -0.54658-01

α -0.48400-02 0.20216-01

α2 -0.91 580-04

α3 
0.34334-06 -0.11034-04

α4 0.56 15 7-07

ασ 
0.22940-08

α cos(θ) 0.56579-03 0.70768-03

α 2cos (θ) 0.13263-04

α 3cos (θ) -0.15935-07 -0.18944-06

α 4cos (θ) -0.92085-08

α cos(2θ) 0.19490-02 0.32450-02

α 2cos(2θ) 0.11028-03

α 3cos( 2θ) 0.94377-06 -0.10842-05

α 4cos (2 θ) -0.25997-07

a b c

Figure 4. Transition moment 

maps resolved along the a, b 

and c principal axes. Contour 

lines are spaced by 0.1 Debye 

Transition moments are cal-

culated for SO -state geometry. 
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TABLE 4. Relative band positions and band intensities for the a, b and c-type 

transitions from the morphed S0 and S1 potential energy surfaces 

a-type b-type c-type

v'S1 v"S0 displ.a int.
b

displ." int.
b

displ.a int
b

0 0 0.0 0.02 0.00 1.24 0.00 0.67

1 0 250.49 0.07 250.49 5.50 250.49 2.91

2 0 376.56 0.07 376.56 5.95 376.41 3.10

3 0 512.94 0.22 512.94 22.05 512.71 11.40

4 0 670.10 0.51 670.10 53.13 669.85 27.35

5 0 808.70 1.04 808.70 100.00 808.54 51.66

6 0 865.19 0.00 865.19 1.38 865.33 0.63

7 0 983.79 0.70 983.79 76.72 983.73 39.26

8 0 1037.0 0.22 1037.0 14.45 1037.1 9.27

9 0 1094.9 0.20 1094.9 11.71 1095.0 6.24

a) in cm-1.

b) scaled from 100. 

Figure 5 shows the simulated and observed UV spectra of HCOOH. 

The upper panel shows the computed spectra where the calculated positions

and intensities of the vibronic bands are illustrated as histograms. The inten-

sities of the c-type bands are given by the heights of the open rectangles and 

the a/b-hybrid bands as hatched rectangles. While the location of the bands 

came from the energy data of Table 4, the rectangles were offset from each 

other for clarity. The lower panel is a low resolution excitation spectrum of

HCOOH that we have recently recorded under jet-cooled conditions [16]. The 

notation given to the vibronic bands labels the active mode Q9 (OH torsion) as 

upper case 9, with the subscripts and superscripts designating the vibrational 

excitation. It is clear that the gross vibrational features in the spectrum are 

accounted for. The interval between the c and a/b-type bands measures the

inversion-doubling splitting, 0--0+, imposed by the conditions of the S switch

operation. This interval attaches to the quanta of the torsional levels to form 

sets of doublets in the spectrum. From the calculations of Table 5 these split-

tings are vanishingly small for the 00
0, 90

1 and 90
2 torsional bands. Thus, under 

this resolution, each band is predicted to have a mixed a/b/c rotational band 
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character. The contributions of each band type to the overall band profile can

be obtained from Table 4, For the 00
0 origin band, the a/b/c contributions to 

the intensity based on the foregoing calculations are predicted to appear in the 

ratio 0.02 / 1.24 / 0.67. Similar ratios are predicted for the 90

1
and 90

2
torsional

bands. Thus, the rotational structure within the origin band should be complic-

ated by the appearance of three separate bands. Very high rotational resolution 

will be required to disentangle the different contributions. The torsion-wagging 

bands within the envelopes of the Franck-Condon and Herzberg-Teller prog-

ressions have very similar intensity profiles. This is perhaps not too surprising 

since the separation between the (-) and (+) levels is very small and the asso-

ciated vibrational wavefunctions are similar, but for their symmetry character-

istics.

Figure 5. The observed and calculated band progressions in the S1 ← S0 electronic transition in

formic acid. The upper panel shows histograms of the FC (Franck-Condon) and HT (Herzberg- 

Teller) induced transitions. The lower panel is the LIF (laser-induced excitation) spectrum of 

formic acid under jet-cooled conditions. The calculated intensities of the first three bands are 

magnified 10x for the sake of clarity. 

The c-type component of the vibronic transition moment results from

the out-of-plane electronic transition that connects the combining S0(a') and 

S1(a") electronic states. These transitions are allowed by electronic selection

rules and form the Franck-Condon components to the overall electronic tran- 

sition. The a/b-band types come from the in-plane moments and they are for-

bidden as electric dipole transitions but are allowed as vibronic transitions. The

sum of the two components a/b is referred to as the Herzberg-Teller transition. 

For formic acid, the allowed and forbidden components of the S1 → S0 transi-

tion roughly have the same strength. This result can be traced back to the exci-
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tation process. An examination of the molecular orbitals of formic acid shows 

that the n and π∗ orbitals project at right angles from the sides of the oxygen 

atom. As a result the promotion of the n-orbital electron involves more of a 

rotation than a translation of the electronic charge. The consequence of a lack 

of charge translation is that the system has low electric dipole strength. Formic 

acid is thus a textbook example of an electronic transition that is allowed by

the overall selection rules but forbidden by local symmetry of the C=O chro-

mophore. The relative intensity of the vibronically induced Herzberg-Teller

bands in the spectrum is not so much a consequence of their absolute strength,

but rather is related to the weakness of the allowed Franck-Condon bands. 
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Abstract. At relatively low pressures, dimerization of ethanol yields three different

structures trans-gauche, trans-trans and gauche-gauche, each of them with different 

minimum energy conformations. The energy differences among the stable structures 

are relatively low. All of them may be present in the same sample.Dimerization

shifts the whole spectrum to higher frequencies. The six new intermolecular modes 

push up the remaining vibrational modes which become constrained by the presence 

of the second molecule. The normal modes involving the hydrogen bonded atoms 

show the largest vibrational shifts. Five of the additional modes lies below 100 cm-1
 

and confer some non-rigidity to the dimer. The harmonic fundamental of the hydro- 

gen bond stretching is located at 173.6, 155.3 and 189.4 cm-1 for the different con- 

formers of the trans-gauche structure, i.e., quite below the OH torsion thaf located at 

305.7 cm-1 in the molecule and moves up to 700 cm-1 in the dimers. For the trans-

trans and gauche-gauche, this transition lies at 164.8 and 188.7 cm-1 respectively.

The pattern observed between 150 and 190 cm-1
 may be assigned to this stretching. 

1. Introduction 

Ethanol is a well known molecule of chemical and astrophysical interest. Relatively 

high concentrations of the isolated species have been detected in interstellar clouds. 

At high pressures, it forms dimers and even polymers bonded by hydrogen bonds. 

The structure ofthe dimer was recently studied experimentally [1-2] and theoretic-

The full vibrational spectrum of ethanol has been recorded in gas phase at low 

pressures or trapped in argon or nitrogen matrices [5-9]. In the electronic ground 

ally [3,4].
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state, the molecule shows two stable conformers, trans and gauche, which are almost 

isoenergetic and interconvert to each other by the internal rotation of the hydroxyl 

group. In addition, the molecule presents a second large amplitude mode that also 

confers non-rigidity, the torsion of the methyl group. In gas phase, the two fundam-

ental torsion fiequencies of the OH and CH3 groups for the non-deuterated isotopic

variety have been observed at 305.7 cm-1 and 244.4 cm-1, respectively [5]. 

In argon matrices, somebands correspondingto the dimers and polymers can be

observed near to the torsional bands of the isolated molecule [7]. Dimerization pro- 

vides six additional transitions involving hydrogen bonds, that produce a displace- 

ment of the whole spectrum to higher fiequencies. The six additional transitions lie 

in the far infrared zone close to the molecular torsion bands give rise to patterns that 

are not easy to assign. For example, Barnes and Hallam [7] have assigned the low 

resolution branch observed at 213 cm-1 to a superposition of hydrogen-bond stret-

ching and OH torsion. Both modes may lie approximately at the same fiequencies

making the spectrum analysis arduous. For this reason, in this paper we compare the 

structures and the vibrations of the two conformers trans and gauche as well as those 

of the dimer by using ab initio calculations. We hope that this analysis may be of 

assistance in the assignment of ethanol spectra. 

The analysis of the Fourier infrared (FIR) vibrational spectra of the dimer is also 

of interest for establishing the properties of ethanol in the condensed phase [ 10-13]. 

The crystal packing shows hydrogen bonds in which the molecules are linked form-

ing infinite chains. The unit cell of the monoclinic crystal phase shows four molec- 

ules per unit cell. There are two independent molecular configurations in the unit cell 

which are not related by symmetry. Half of the molecules show a gauche structure 

and half a trans structure. The large isotopic effects in the excess contributions to the 

specific heat of the disordered phases of ethanol may be correlated with the low-fre- 

quency spectra [ 13]. As it appears on the solid phase, we shall put special emphasis 

on the trans-gauche dimer. 

2. Computational details 

The isolated ethanol molecule exhibits two minimal energy conformations, trans and 

gauche, of Cs,andC1 symmetries. From the spectroscopic experimental data [14,15],

it may be inferred that the most stable geometry is the planar trans-conformer where 

the two dihedral angles HCCO and CCOH are equal to 180°. 

The energies and geometries ofthe two conformers have been determined with

the Mp2 approach (Möller-Plesset perturbation theory up to second order) with the 

program Gaussian 94 [ 16], All the core and valence electrons have been taken into 

account. The calculations have been performed with Dunning's double-zeta correl-

ation-consistent basis set, cc-pVDZ [ 17], adding some diffise functions for descri-

bing the hydrogen bond of the dimers (s, p and d diffise functions on the oxygen

atom and s and p on the hydroxyl group hydrogen, AUG on OH). They appear to be 
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indispensable for reproducing the experimental relative energies. The structural para-

meters of both conformations are shown in Table 1. Table 2 shows the total energies 

and several spectroscopic and electrostatic properties. With MP2(full) / cc-pVDZ

(AUG on OH), the energy difference between conformers has been determined to

be ∆ H=73.1 cm-1, which is in the range of experimental data (45.0 cm-1 in Ref [5];

39.2 cm-1 in Ref [15]). The total energies of the two conformers are -154.600852

ax. (trans-ethanol) and -154.6005 19 a.u. (gauche-ethanol). Without diffuse func-

tions the order of stability is reversed [18].
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TABLE 1. Structural parameters for the two confomers of ethanol
a

trans-ethanol gauche-ethanol

C1C2 1.5 1681 5 1.52213 1 

O3C2 1.441018 1.439301 

H4C1 1.102 177 1.103343

H5C1 1.101425 1.104057 

H6C1 1.101420 1.101 582 

H7C2 1.106010 1.106392 

H8C2 1.106010 1.100944 

H9O3 0.966233 0.967708

O3C2Cl 106.981 112.346 

H4C1C2 114.413 110.550 

H5C1C2 110.171 1 10.764 

H6C1C2 110.219 1 10.45 1 

H7C2C1 110.514 110.730 

H8C2C1 110.487 110.703 

H9O3C2 108.020 107.406 

H4C1C2O3 180.0 178.0 

H5C1C2H4 120.2 119.5

H7C2C1O3 120.1 123.8

H9O3C2C1 180.0 60.4

a) distances in Å; angles in degrees 

The two minima (Figs. 1 and 2) conespond to <H9O3C2Cl= 180° and 60.4°. 

O3C2Cl is the internal coordinate that shows the largest OH internal rotation dep-

endence. It shifts approximately 5° during the torsion (O3C2C1 is 106.981° in the 

trans and 112.346° in the gauche geometries), in good agreement with microwave

measurements [14]. With torsion the methyl group loses the C3v symmetry and the 

central bond C1C2 lengthens from 1.51682 Å(trans) to 1.52213 Å(gauche), mini-

mizing the steric interactions. The rotational constants have been calculated to be 

H6C1C2H4 -120.2 -120.4

H8C2C1O3 -120.1 -116.7
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34.3110568, 9.3587363 and 8.1158306 MHZ in trans-ethanol, and 33.8185519, 

9.1259165 and 8.0515401 MHz in gauche-ethanol (Table 2). The dipole moment 

displays a significant fluctuation from the gauche form (1.9292 Debyes) to the trans 

form (1.786 1 Debyes), with possible consequences on band intensities. Hyperconju- 

gation induces a negative charge that increases on the carbon of the methyl group 

during the OH-torsion.

Figure 2. The gauche-conformer of ethanol. 
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TABLE 2. Total energies, O-H distances, atomic charges and dipole moment of trans and gauche-ethanol, and the dimers

Trans-Gauche Dimers
trans gauche A-dimer B-dimer C-dimer trans-trans gauche-gauche

Energy -154.600852 -154.600519 -309.229335 -309.228216 -309.229240 -309.228289 -309.229469

Structural parameters (Å /degrees)'
Og-Ht 1.8670 1.8814 1.8664 1.8951 1.8698 

Og-Ht-Ot 167.1 165.4 167.9 169.6 168.8 

Ht-Ot 0.9662 0.9750 0.9743 0.9753 0.9740 0.9751

Rotational Constants (MHz)
A 34.3110568 33.8185519 6.9841463 12.7934180 6.1258724 5.8766496 5.1464216

B 9.3587363 9.1259165 1.0888570 0.8485763 1.2306146 1.2237822 1.3760997 

C 8.1158306 8.0515401 0.9940642 0.8204907 1.1158718 1.1482287 1.2785301

Atomic charges (a. u.)g

Ht 0.1649 0.2662 0.2634 0.2753 0.2573 0.2666

Ot -0.5226 -0.5453 -0.5544 -0.5704 -0.5540 -0.573 1 

C2t 0.2546 0.2269 0.2328 0.2416 0.2192 0.2453 

Hg 0.1658 0.1979 0.1904 0.2019 0.1932 0.2072 

O8 -0.5288 -0.6204 -0.5973 -0.6313 -0.5997 -0.6373

C28 0.2566 0.2187 0.1968 0.2163 0.23 12 0.2169 

µ(Debyes) 1.7861 1.9292 2.1594 2.1894 2.2122 3.8328 2.3758

a) Xt are the atoms of the molecule that confers the H for the hydrogen bond; Xg are the second molecule atoms 

C1t -0.0626 -0.0583 -0.0558 -0.0888 -0.0351 -0.0894

C1g -0.0829 -0.0783 -0.0511 -0.0765 -0.0790 -0.0751
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The MP2 total energies of the three 

possible dimers, trans-gauche (E = -

309.229335 a.u.), trans-trans (E = -

309.228289 a.u.) and gauche-gauche

(E = -309.229469 a.u.), are shown on 

Table 2. The relative energies are 

0.08, 0.74 and 0.00 kcal/mol. Sur-

prisingly, the gauche-gauche dimer 

appears as the most stable confor-

mation, although in the solid phase

the trans-gauche conformer is the

most stable form [12]. In the case of

the trans-gauche formthe hydrogen

bond connects the OH hydrogen of 

the trans form through the oxygen

atom of  the gauche form (Figure 3). 

The trans-trans conformer appears to 

be less stable than it was reported by 

Ehbrecht and Huisken [4]. In that 

paper, the gauche-gauche conformer 

appears to be less stable. 

Figure 3. The trans-gauche-dimer of ethanol. 

All the forms show a rather similar stability. For this reason it is difficult to assert 

which is the absolute minimal structure on the dimer potential energy surface. Taking 

into account that the energy difference between the trans and gauche monomers is very

small (∆ G(trans → gauche)=0.17 kcal/mol), the possible existence ofgauche-gauche and

trans-trans forms of lower energy was carefully investigated. 

On the basis of the relevance of the trans-gauche conformer, a carefull search for all 

the possible minimal energy conformation was performed with the MP2(full) / cc-pVDZ

(AUG on OH) procedure. As a result, three stable geometries were localized that we call 



LARGE-AMPLITUDE MOTIONS IN ETHANOL DIMERS 365

A-dimer, B-dimer and C-dimer (Figure 4). They have been determined by optimizing 

the geometry from different starting points, in which the relative positions of the two 

components, the trans and gauche molecules, were different. The initial positions were 

defined using different distances between the two centers of mass and different relative 

orientations of the components. The orientations were defined by the three Euler angles 

connecting the principal axis of the two molecules. 

Figure 4. The three stable trans-gauche dimers of ethanol. 

The three total electronic energies: E (A-dimer) = -309.229335 a.u.; E (B-dimer) = 

-309.228216 a.u., E (C-dimer) = -309.229240 a.u., are shown in Table 2. Table 2 also 

shows the rotational constants, dipole moments and Mulliken atomic charges and the 

structural parameters related to the hydrogen bond. 

The A-dimer represents the most stable conformer we have found. The correspond-

ing rotational constants are 6.1258724, 1.2306146 and 1.1158718 MHz and the dipole 

moment, 2.1594 Debyes, is the lowest of the three trans-gauche dimers (Table 2). The 

hydrogen-bond distance is 1.8670 Å. The Og-H-Ot angle and the Ot-Ht distance are 

167.1° and 0.9753 Å. The Ot-Ht bond is slightly larger than in the isolated molecule 

(0.9662 Å). 
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The relative energies of the B and C forms with respect to the A form were calcul-

ated to be about 0.70 and 0.06 kcal/mol. The B-dimer is the least stable and shows the 

largest hydrogen bond, 1.8814 Å The structural parameters <O
g-H-Ot and O

t
-H

t
of the 

C-dimer approximately coincide with those of the A-form, although the orientation of 

the two molecules is different in the two conformers, which have different rotational 

constants (Table 2). 

The molecular properties ofthe trans-gauche, trans-trans and gauche-gauche dimers

are also given in Table 2. X
t
(O

t
or H

t
) represents the atom ofthe molecule that supplies

the H atom to the hydrogen bond. Og is the atom of the second molecule involved in the

hydrogen bond. The trans-trans dimer displays the largest dipole moment of 3.8328 De-

byes, whereas the gauchegauche dimer exhibits 2.3758 Debyes. The largest separation 

between the two molecules is found in the trans-gauche dimer (O
g
-H

t
).

The formation probability of the dimers was evaluated from the Gibbs energies. The 

thermodynamic potentials for the dimer formation process 

x-ethanol + y-ethanol → dimer (x=t,g; y=t,g) 

are reported in Table 3. 

The enthalpies of the trans-gauche dimers have been calculated to be -19.5988 kcal/ 

mol (A-dimer), -18.7871 kcal/mol (B-dimer) and -19.5247 kcal/mol (C-dimer), which 

is in good agreement with previous quantum cluster equilibrium (QCE) results of Lud-

wig et al. [ 1,2]. In the case of the trans-trans and gauche-gauche dimers, they are -18.600

kcal/mol and -19.967 kcal/mol respectively. The free energies of the trans-gauche, trans-

trans and gauchegauche dimers were determined to be -11.252, -10.4063 and -11.3025

kcal/mol, respectively, using the ideal-gas model to determine the entropies and volume 

increments at P=l atm and T=298.15°K. The formation probabilities of the A and C 

dimers appear to be similar (Table 3) while those of the trans-trans and gauche-gauche

dimers are slightly lower. 

TABLE 3. Enthalpy, entropy and free-energy variations of the dimer formation processes 

(in kcal/mol; T=298°K) 

Trans-Gauche Trans-Trans Gauche-Gauche 
A-dimer B-dimer C-dimer

-19.5988 -18.7871 -19.5247 -18.6000 -19.9670

T∆ S -8.3366 -7.4678 -8.3032 -8.1937 -8.6645

∆ G -11.2622 -11.3193 -11.2215 -10.4063 -11.3025 

∆ H
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It may be concluded that dimerization of ethanol yields three different structures: 

trans-gauche, trans-trans and gauche-gauche, each of them showing several conformers 

of minimum energy. Although the gauche-gauche dimer appears to be the most stable, 

the energy differences between the conformers are relatively small. Thus, the formation 

of all of them is plausible. They can all coexist in the same sample, and have to be con-

sidered simultaneously for an understanding of the spectra. In solution, the probabilities 

may change as a result of the different electric dipole moments. 

3. Assignments 

Tables 4, 5,6 and 7 show the harmonic frequencies corresponding to the 21 vibrational 

modes of the monomers and to the 48 modes of the dimers. They have been calculated 

with MP2(full) / cc-pVDZ (AUG on OH). 

The harmonic frequencies of the trans- and gauche-ethanol are shown in Table 3. In 

the case of the trans-conformer, the frequencies are assigned to the symmetry vibrations 

and are classified in the Cs point group representation. Five vibrational modes lie below 

1000 cm-1
 the two torsions, the CCO bending, the CCO stretching and that of the asym-

metric rocking mode. The calculated frequencies of the skeletal modes have been calcul-

ated to be 413.3,822.4 and 907.6 cm-1. The experimental bands are observed nearby at

419,801 and 885 cm-1
 which attest the harmonic character of these vibrations. However 

there is a significant disagreement between the experimental and calculated values for 

the torsions. The torsional normal modes appear as combinations of the two torsional 

internal coordinates. The weight of each internal coordinate in the normal mode fluctu-

ates between 40% to 60%. The contribution of the methyl group to the mode at 250.4 

cm-1 is slightly large than that ofthe OH torsion, whereas it is smaller for the mode at

305.5 cm-1 . In the case of the gauche conformer, the relative order of these modes is 

reversed.

The band calculated at 250.4 cm-1 can be assigned to the band observed at 243 cm-1

but the difference between the calculated position for the OH-torsion (305.5 cm-1) and 

the observed frequency (202.6 cm-1) is unacceptable. The rigorous study of the torsional 

spectra of ethanol requires a more sophisticated two dimensional model for non-rigid

molecules that is able to describe the interactions between the torsional coordinates and 

torsional motions hindered by low barriers [ 19-20]. The harmonic normal coordinates 

model represents only a first approach and is more suitable for the methyl torsion than 

for the OH torsion in taking into account the barrier heights (402.8 and 399.1 cm-1 for

the OH group and 1185 and 1251 cm-1 for the CH3 goup [5]).
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Dimerization generates six additional modes of low frequency from the external mo-

des. They represent relative motions of the two molecules, the torsion around the hydro-

gen bond (υ48), the hydrogen-bond stretching (υ43)~ and four skeletal modes. The calcul-

ated harmonic frequencies, υ48, υ47, υ46, υ45, υ44 and υ43 of the A-dimer are 30.2, 39.9,

51.4, 80.9, 97.9 and 173.6 cm-1 (Table 5). Most of the remaining frequencies can be 

assigned to internal motions of each one of the molecules trans (t) and gauche (g) of the 

dimer. With dimerization, the whole ethanol spectrum shifts up to higher frequencies. 

In the dimer the two torsion modes of trans-ethanol have been calculated at 269 cm-1
 

(methyl group) and 725 cm-1 (OH group). The methyl torsion shifts by 16.8 cm-1 with

dimerization. The OH torsion appears at 725.0 cm-1, above the COC bending modes. 

The formation of the hydrogen bond hinders the internal rotation, which becomes an 

oscillation. It may be drawn that the OH trans-torsion of the dimer lies around 700 cm-1

(itwas found at 721.9 and 720.2 cm-1 for the B and C-dimers) sincetheharmonic model

appears to be more adequate. In the trans-trans and gauche-gauche dimers, the OH tor-

sion corresponding to the H atom involved in the hydrogen bond appears at 709.6 and 

716.5cm-1, respectively. 

The stretching of the hydrogen bond was calculated at 173.6, 155.3 and 189.4 cm-1

for the trans-gauche dimers A, B and C. It lies at 164.8 and 188.7 cm-1 for the trans-trans

and gauche-gauche dimers, respectively. The correct assignment of this band is essential 

for a proper assignment of the ethanol spectrum, because it is close to the OH torsion. 

Barnes et al. [7] have assigned the low resolution band observed at 213 cm-1 in an argon 

matrix to a superposition of the OH trans-torsion and stretchmg. It should be noted that 

the argon matrix spectrum is displaced to higher frequencies when compared with the 

pure-gas spectrum. The OH-torsion shifts to 211 cm-1.

However, the 213 cm-1 value is too large to be assigned to the stretching hydrogen 

bond. The stretching can be associated with the pattern observed between 160 and 180 

cm-1 [7]. In addition, the harmonic analysis used in these calculations overestimates the 

frequency values. 

The theoretical Calculations for the low frequencies of several isotopic species may 

help in the assignment. Table 7 shows the low frequencies of four isotopic species: tEt- 

OH-gEtOH, tEtOD-gEtOH, tEtOH-gEtOD and tEtOD-gEtOD. The isotopic effect al-

lows the torsional frequencies in trans and gauche modes to be classified. The stretching 

of the hydrogen bond appears at 173.6, 172.3, 167.3 and 166.0 cm-1, respectively. Al-

though Barnes et al. [7] place the stretching of Et-OH and Et-OD at 215 and 214 cm-1,

we found them at 173.6 and 166.0 cm-1. The isotopic effect predicts a shift of only 7.6 

cm-1..
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TABLE 4. Harmonic analysis of trans- and gaucheethanol (units are cm-1)

trans-ethanol gauche-ethanol
assignments calc. exp . calc. 

υ21 OHtorA" 305.5 201 273.5

υ20 CH3 torA" 250.4 243 287.6 

υ19 CCO bend A' 413.3 419 416.6 

υ18 CH2 rocA" 822.4 801 805.9

υ17 CCOstretchA' 907.6 884.6 894.8

υ16 CH3rocA ' 1061.2 1032.6 1065.6

CCO stretch A' 1099.5 1089.2 1096.0

υ14 CH3 roc A" 1179.2 1062.1 1133.4

υ13 OH bend A' 1270.0 1241.3 1280.0

υ12 CH2 torA" 1298.1 1364.8

υ11 CH3defA' 1395.5 1393.7 1395.7

υ10 CH2 rocA ' 1454.8 1425.0

υ9 CH3 def A" 1480.6 1451.6 1484.5

υ8 CH3 def A' 1500.3 1451.6 1492.6

υ7 CH2 def A ' 1524.1 1490 1511.7

υ6 CH2 stretch A' 306 1.4 2900.5 3074.6

υ5 CH3stretchA' 3092.6 2943.4 3079.2

υ4 CH2 stretch A" 3116.3 2948.5 3 160.6 

υ3 CH3stretch A' 3 194.2 2989.4 3178.1

υ2 CH3 stretch A' 3202.4 3676.1 3195.5

υ1 OH stretch A" 3836.3 2989.4 3822.7

υ15 



TABLE 5. Harmonic analysis. Low frequency modes (units are cm-1)

A-tg B-% C-tg tg gg trans gauche assignment 

υ48 30.2 19.4 20.7 28.0 25.3

υ46 51.4 34.5 58.5 54.6 63.7

υ45 80.9 62.3 77.8 75.3 88.5

υ44 97.9 92.1 94.1 86.7 100.8

υ43 173.6 155.3 189.4 164.8 188.7 H-bondstreching
CH3 torsion υ42 269.0 268.2 283.3 264.5 287.0 250.4

287.6 CH3 torsion υ41 285.8 277.2 286.4 268.9 288.1

υ40 329.7 337.4 333.8 346.0 333.6 273.5 OH torsion 
415.1 420.4 413.3 COC bending υ39 423.5 419.9 422.9

431.1 427.5 434.6 416.6 COC bending υ38 438.9 441.9

OH torsion υ37 725.0 721.9 720.2 709.6 716.5 305.7

υ47 39.4 29.9 43.7 41.0 47.3
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TABLE 6. Harmonic analysis ofthe dimers (units are cm-1)

A-dimer B-dimer C-dimer t-t g-g 

υ36 810.9 g-CH2 roc 807.0 g 808.1 g 820.9 809.5

υ35 820.0 t-CH2 roc 820.3 t 811.0 t 824.3 810.3

υ34 891.9 g-CCOstretch 892.6 g 891.8 g 903.3 891.9

υ33 913.7 t-CCOstretch 914.1 t 900.8 t 915.3 900.6

υ32 1066.6 g-CH3 roc 1065.5 g 1065.9 g 1067.0 1065.4

υ31 1087.3 g-CCOstretch 1086.4 tg 1087.0 g 1086.9 1087.0

υ30 1090.4 t-CH3 roc 1094.6 tg 1102.9 t 1088.8 1101.6

υ19 1116.7 t-CCO stretch 11 17.2 t 1104.7 t 1117.9 1104.1

υ28 1142.4 g-CH3 roc 1137.1 g 1140.8 g 1179.3 1140.6

υ27 1182.3 t-CH3 roc 1182.2 t 1148.8 t 1182.0 1147.8

υ26 1278.4 g-OH bend 1277.1 g 1278.1 g 1269.5 1277.9

υ25 1298.0 t-OH bend 1299.5 t 1299.9 t 1297.7 1299.1 

υ24 1337.7 t-CH2 tor 1338.0 t 1360.8 g 1299.9 1360.5

υ23 1361.0 g-CH2 tor 1365.2 g 1381.6 t 1333.6 1380.7

υ22 1398.6 tg-CH3 def 1399.0 t 1399.8 g 1398.9 1399.5

υ11 1401.2 tg-CH3 def 1399.7 g 1412.5 t 1399.5 1411.3

υ20 1430.5 g-CH2 roc 1430.8 g 1429.3 g 1453.4 1428.9

υ19 1480.4 t-CH2 roc 1481.7 t 1454.5 t 1478.0 1454.9

υ18 1482.1 tg-CH3 def 1482.2 t 1487.5 tg 1482.0 1487.5

υ17 1491.8 tg-CH3 def 1488.6 g 1493.0 tg 1484.5 1492.5

υ16 1498.2 tg-CH3 def 1495.2 g 1494.9 tg 1500.7 1496.8

υ15 1501.2 tg-CH3 def 1501.3 t 1498.8 tg 1504.0 1499.2

υ14 1513.5 g-CH2 def 1514.3 g 1512.6 tg 1523.0 1512.7

υ13 1525.1 t-CH2 def 1525.5 t 1513.3 tg 1525.6 1514.4 

υ12 3052.6 t-CH2 stretch 3051.4 t 3063.8 t 3036.1 3065.3 

υ11 3082.4 g-CH2 stretch 3085.8 g 3081.4 t 3076.5 3080.3 

υ10 3093.6 t-CH3 stretch 3093.7 t 3082.4 g 3086.5 3082.6 

υ9 3095.9 g-CH3 stretch 3099.7 g 3096.0 g 3094.4 3096.0 

υ8 3104.0 t-CH2 stretch 3102.7 t 3153.0 t 3097.4 3153.7 

υ7 3171.6 g-CH2stretch 3174.4 g 3171.7 g 3135.2 3171.7 

υ6 3188.1 g-CK3 stretch 3190.7 g 3180.1 t 3195.9 3179.9

υ5 3194.9 t-CH3 stretch 3195.1 t 3188.0 g 3200.8 3187.8 

υ4 3203.4 t-CH3 stretch 3203.7 t 3195.8 t 3205.1 3192.9 

υ3 3207.4 g-CH3 stretch 3204.9 g 3207.1 g 3209.9 3206.6

υ2 3651.3 t-OH stretch 3661.0 t 3642.2 t 3672.7 3647.1 

υ1 3812.6 g-OH stretch 3808.5 g 3811.4 g 3828.2 3812.1 
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TABLE 7. Large amplitude frequencies of theA-dimer isotopic varieties (units are cm-1)

tEtOD-gEtOD tEtOD-gEtOD tEtOD-gEtOD tEtOD-gEtOD 

υ48 30.2 30.0 30.2 30.0

υ47 39.4 39.1 38.9 38.7

υ46 51.4 50.9 51.2 50.8

υ45 80.9 80.9 80.3 80.2

υ44 97.9 96.8 97.6 96.6

υ43 173.6 172.3 167.3 166.0
υ42 269.0 268.9 248.8 246.3

υ41 285.8 285.0 269.9 269.9

υ40 329.7 322.0 284.8 284.8

υ39 423.5 417.3 417.4 413.6

υ38 438.9 432.7 435.9 429.3

υ38 725.0 542.6 715.6 525.3

The remaining modes of the trans-gauche, trans-trans and gauche-gauche dimers are 

shown in Table 6. In the case of the trans-gauche dimer they may be assigned to the gau-

che and trans components. With the formation of the dimer, the shifts of the frequencies

in the gauche component are below 10 cm-1. In the case of the trans-component the most 

significant changes correspond to the OH bending (υ25) and OH stretching (υ1) modes

where the contribution of the trans-OH hydrogen atom is quite important. Both modes 

lie at 1270.0 and 3826.3 cm-1 in the isolated molecule and at 1298.0 and 365 1.3 cm-1 in

the dimer. Likewise, when the trans and gauche frequencies are close together, a large

shift is observed in the trans-modes. In this case, both molecules show similar contribu-

tions. In the trans-trans and gauche-gauche dimers the largest shifts affect the component 

containing the H atom of the hydrogen bond. 

It may be concluded that dimerization produces a displacement of the spectrum to 

high frequencies. The additional 6 modes push up the remaining vibrations which are 

constrained by the presence of the second molecule. The normal modes associated with 

the hydrogen bond show the largest shifts. Five of the additional modes lie below 100

cm-1 and confer non-rigidity to the dimer. The harmonic fundamental of the hydrogen 

bond stretching lies at 173.6, 155.3 and 189.4 cm-1 in the different conformers of the 

trans-gauche structure, below the OH torsion which lies at 202.6 cm-1 in the molecule 

and moves up to 700 cm-1 in the dimers. For the trans-trans and gauche-gauche dimers, 
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this transition lies at 164.8 and 188.7 cm-1. These results have to be considered simultan-

eously as all conformers coexist in the same sample. 
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VIBRATIONAL FIRST HYPERPOLARIZABILITY OF 
METHANE AND ITS FLUORINATED ANALOGS 

Q. QUINET AND B. CHAMPAGNE
1

Laboratoire de Chimie Théorique Appliquée 
Facultés Universitaires Notre-Dame de la Paix 
rue de Bruxelles, 61, B-5000 Namur, Belgium 

Abstract. The vibrational first hyperpolarizability of methane and its flu-

orinated analogs has been computed ab initio at the Hartree-Fock and 

Møller-Plesset second-order levels of approximation by adopting the pertur-

bation approach due to Bishop and Kirtman. Both the pure vibrational and

the zero-point vibrational averaging contributions have been determined. In 

the static limit, it turns out that the pure vibrational term is at least of the

same order of magnitude as its electronic counterpart and the ratio |βv

/βe

|

increases with the fluorine content. The first-order anharmonicity correc-

tion to this pure vibrational term increases also with the fluorine content 

whereas the zero-point vibrational averaging is one/two order of magnitude 

smaller and decreases with the fluorine content. The suitability of the bond 

additivity scheme and of the infinite optical frequency approximation is as-

sessed as well as the consistency between experimentally derived dc-Pockels

and second harmonic generation first hyperpolarizability values. 

1. Introduction 

Methane and its fluorinated derivatives have been the subject of several 

experimental [1-10] and theoretical [11-25] determinations of their nonlinear

optical (NLO) properties. On the one hand, their simple chemical structure 

is well-suited for comparing these complementary approaches. On the other 

hand, as early as thirty years ago, these five molecules have been used to 

assess the validity of the bond additivity model [1], the simplest model to 

establish structure-property relationships. 
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The linear polarizability (α), first (β) and second (γ) hyperpolarizabi-

lities describe the linear and nonlinear dependences of the dipole moment 

with respect to static and dynamic external electric fields. The amplitudes 

of α, β, and γ are related to the importance of the field-induced rear-

rangements of both the electronic and nuclear charges. Whereas rotations, 

phase transitions and temperature effects are slow and of little interest

for our purpose, the electronic and vibrational effects can be substantial 

and of considerable interest when optimizing the NLO responses [26]. The 

clamped-nucleus (CN) approximation [27] is generally adopted to calculate 

the (hyper)polarizabilities. In this approximation, one assumes that the

external electric fields act sequentially rather than simultaneously upon 

the electronic and nuclear motions : the field-dependence of the electronic 

distribution - which is associated to the electronic contribution to the (hy-

per)polarizabilities, (Pe, with P = α, β or γ) - modifies the potential energy

surface (curvature contribution) and provokes nuclear displacements (nu- 

clear relaxation (NR) contribution). In the time-dependent perturbative

approach due to Bishop and Kirtman [28, 29] the separation into elec-

tronic and vibrational terms leads to expressions given in terms of elec- 

trical and mechanical anharmonicities. The electronic (Pe) and zero-point

vibrational average (∆ PZPVA) contributions are treated together whereas

the remaining terms form the so-called pure vibrational contribution (Pv).

Such separation into electronic (Pe + ∆PZPVA) and vibrational contribu-

tions is appealing when analyzing the frequency dispersion. On the one 

hand, the dispersion of the Pe + ∆ PZPVA contribution follows a power

series expansion in the square of the optical frequencies : 

(1)

(2)

where ωi (i = 1,2,3) are the circular frequencies of the ingoing waves.

ωσ = Σi ω i the frequency of the outgoing wave and ω 2

L = ω 2
σ + Σ i ω 2

i

The expansion coefficients (A, B, . . . , A', B', . . .) are molecule-dependent 

but, for all-diagonal or orientationally-averaged components, A and A' do

not depend upon the NLO process. For other A and A' tensor components

as well as for the B and B' coefficients, additional relations have been 

highlighted for some NLO processes (see for instance Ref. [30]). On the other 

hand, since their poles are linear combinations of normal mode vibrational 

frequencies, the vibrational contribution presents large variations in the 

infrared region. As a result, when the frequency increases it becomes less 

and less frequency-dependent. This fact justifies the interest for the simple

infinite optical frequency approximation (ω → ∞) [31].
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The separation between Pv and Pe + ∆ PZPVA combined with their

different dispersion relations enable therefore to deduce the response as-

sociated with a given NLO process from another process or to check the 

consistency between different NLO measurements [10]. For instance, in or-

der to deduce either mean electric field-induced second harmonic generation 

[ESHG ; γ//( – 2ω; ω, ω, 0)] or anisotropic dc-Kerr [γ K(– ω; ω, 0, 0)] total sec-

ond hyperpolarizability values of CH4 from the dispersion curve of the other

one, both γv,K(– ω; ω, 0, 0) and γv

//(– 2ω; ω, ω, 0) are necessary. Since the A'

coefficient for γ// and γ⊥ are not exactly identical and γ K = (γ// – γ⊥), 
other informations could also be needed to reach sufficient accuracy. If, like

in the infinite optical frequency approximation. one can assume negligible 

dispersion for γ v,K( –ω; ω, 0,0) and γ v( –2ω; ω, ω, 0) only their difference

∆ω→∞ = γ v,K(– ω; ω, 0, 0)ω→∞ – γ v//(– 2ω; ω, ω, 0)ω→∞ is needed. Similarly, 

∆ can be determined from the knowledge of both ESHG and dc-Kerr dis-

persion curves while taking care, if necessary, of its dispersion. In the same

way, the mean second harmonic generation (SHG : β// (–2ω; ω, ω)) and the

anisotropic dc-Pockels (β K (–ω; ω, 0)) total first hyperpolarizabilities can

be related to each other through frequency dispersion of their electronic + 

ZPVA component (Eq. (1)) and the knowledge of their vibrational counter- 

part. In particular, β v//(–2ω; ω, ω) tends towards zero in the infinite optical

frequency limit. Consequently, β v,K(– ω; ω, 0)ω→∞ is expected to explain

most of the difference between β K(– ω; ω, 0) and β// (–2ω; ω, ω) after re-

moving the frequency dispersion of the electronic part. 

In a recent study [25] we have determined the static and dynamic vibra-

tional second hyperpolarizabilities for methane and its fluorinated analogs 

by including electron correlation effects and taking into account the first- 

order electrical and mechanical anharmonicity corrections. Svstematic vari- 

ations of the different contributions have been obtained w.r.t. the number 

of nyarogen (fluorine) atoms and analysis of the potential energy surface 

of the C-H and C-F bonds has enabled us to understand some of these γ 
variations. In particular, it permits us to improve the agreement with the 

experimental data for ∆ = γ v,K(–ω;ω,0,0) –γ v//(–2ω;ω,ω,0) of CF4 [10].

On the other hand, in the case of methane, the inclusion of electron cor- 

relation and first-order anharmonicity corrections did not help to close the 

gap between theory and experiment. 

In this paper we determine the vibrational (pure vibrational + ZPVA) 

first hyperpolarizabilities of these five compounds and compare them to 

their static electronic counterpart as a function of the NLO process. Fre- 

quency - dispersion is only considered for the pure vibrational term. As 

in Ref. [25], electron correlation effects are considered within the Møller- 

3–
2
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Plesset perturbation theory limited to second order (MP2) and first-order

electrical and mechanical anharmonicity contributions are evaluated. By 

comparing these results to available [1, 2] experimental data, we discuss 

the consistency between these values obtained for different NLO processes. 

For the pure vibrational component, we also explore the replacement of 

the optical frequency (ω) by ω → ∞, i.e. within the so-called enhanced

[5] or infinite optical frequency [31] approximation. Then, we address the 

validity of the bond additivity scheme for the different β contributions.

Section 2 describes the methodological and computational approaches we

have adopted. The results and subsequent discussions are given in Sections 

3 and 4 while our conclusions are drawn in Section 5. 

2. Method 

Static/dynamic electric fields applied on a molecule force the system to 

rearrange its charges in order to minimize its energy. The field-induced

dipole moment is described by a Taylor series expansion in the static and/or

dynamic (of circular frequency ωi) electric fields (E),

(3)

where the K (2) factor is such that the first-order nonlinear responses con-

verge towards the same static limit, and the summations run over the field 

indices η and ξ associated with the Cartesian coordinates. The total CN 

first hyperpolarizability is given by the sum of the electronic contribution, 

the ZPVA correction and the pure vibrational contribution,

(4)

From the exact sommation-over-states (SOS) expressions, Bishop and Kirtman 

[28, 29, 32] have derived the CN expressions of β v and ∆β ZPVA
as summa-

tions of harmonic and anharmonic terms, 

(5)

(6)
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where, for instance, [µα  ]II = [µα]2,0 + [µα]1,1 + [µα]0,2 . The notation [X]n,m

means nth order electrical anharmonicity [(n – j) is the number of times

a (2 + j)th derivatives of an electric property appears, with j ranging be-

tween 0 and n – l] and mth order mechanical anharmonicity [(m – j) is the

number of times a cubic (j = 0) (Fabc), a quartic (j = 1) (Fabcd), ... force

constant appears, with j ranging between 0 and m - 1]. In this study, we

have only considered the lowest-order non-vanishing terms of each type, i. e.
[µα ]0 = [µα ]0,0, [µ 3]I = [µ 3]1,0 + [µ 3]0,1 and [β]I = [β]1,0 + [β]0,1 . When ne-

glecting the electrical and mechanical anharmonicity corrections, the only

[µα]0,0 term remains : it defines the so-called double harmonic oscillator

approximation. In addition to [µα ]0,0 , the static nuclear relaxation con-

tribution to β v = ( β NR) includes also the [µ
3
]I term [23, 31]. Expressions

for the square bracketed contributions are given in Refs. [28, 29] under the

form of summations over modes (SOM), 

(7)

(8)

(9)

where, the sums run over the 3N-6 (3N-5 for linear molecules) vibrational 

normal modes, Σ P–σ,1,2 is the summation over the 6 permutations of the

pairs ( –ωσ , ζ), (–ω1,η) and (–ω2, ξ) and Qa is the normal mode coordinate

having the frequency ωa = 2π va . Higher-order terms involve higher-order

derivatives of the electronic properties and higher-order anharmonic force 

constants. Like the pure vibrational terms, the ZPVA terms is also described 

by SOM expressions, 

(10)

(11)

The evaluation of Eqs. (7)-(11) requires the determination of several partial 

derivatives of the energy with respect to the electric field and/or the normal 
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coordinates. These are performed either analytically by adopting coupled-

perturbed procedures [33] or numerically by using finite difference methods. 

Table 1 summarizes how the different intermediate properties have been 

com pu t ed .

TABLE 1. Methods used to 

compute the different quantities 

involved in the evaluation of the

first hyperpolarizability contri-

butions

Properties RHF MP2

A A

A A 

N N 

A A 

A A 

A N 

A A

A N 

N N 

N N

N N 

N N 

A = analytic determination

N = numerical determination 

For instance, at the RHF levels the (∂β e/∂ Qa)0
quantities were eval-

uated by calculating β e for different structures obtained by the addition 

of different fractions of the normal coordinate Qa to the equilibrium ge-

ometry. In order to reach a sufficient accuracy (of the order of 0.01 - 0.1

a.u.) it was sufficient to use distortions such that the amplitude of the 

Cartesian displacements is 0.050 Å and 0.025 Å [34] together with one 

Romberg iteration [35]. This Romberg procedure is used to remove higher 

order contamination. At the MP2 level, in addition to the finite distortion 

procedure used to perform the derivative w.r.t Q, the β e values are ob-

tained numerically from the field-dependent αe. All the calculations have

been done by using the GAUSSIAN94 program [36]. Since the various dipole 

and (hyper)polarizability derivatives are very sensitive to the geometry, a 

very tight convergence threshold was chosen in the geometry optimization: 

limiting the residual forces on the atoms at 1.5 × 10–6 hartree/bohr or 

hartree/rad. The RHF and MP2 calculations were performed by using the 

Fa

ωa

Fabc

 

µ
α

 

e

βe

∂µ/ ∂Q
 ∂αe

/∂Q
∂βe

/∂Q

 ∂
2

µ /∂Q
2

∂
2

αe
/∂Q

2

∂
2

βe
/∂Q

2
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Sadlej atomic basis set[37]. Its use provides results that are in good agree-

ment with other theoretical results obtained with more extended basis sets.

Indeed. by using the series of the aug-cc-pvdz. aug-cc-pvtz and aug-cc-pvqz

basis sets, one can see. for instance. that RHF/Sadlej values for CH4 are

always within 10% of the largest basis set values: the variation on the total

β e + β v being less than 2% [38].

3. Results and discussions 

3.1. PRELIMINARY REMARKS 

The ground state optimized geometrical parameters and the vibrational 

normal mode frequencies have been takenfrom Ref. [25]. Because, CH
4
and

CF4 are of Td symmetry, β  xyz (x, y and z are the coordinates of the cube

which circumscribes the tetrahedron) is the unique non-zero first hyperpo-

larizability tensor component, and moreover only two vibrational modes of 

F
2

representation (degenerate three times) contribute to the pure vibra-

tional terms. For the sake of compactness. we have only listed experiment-

related quantities. In SHG experiment, all applied fields have parallel po-

larization and the measured quantity is β //. It corresponds to the vector

component of the tensor β in the direction of the permanent dipole moment 

µ which defines the molecular z axis. It is given by, 

which for SHG reduces tc 

(12)

(13)

where we have assumed Einstein summation. In the static limit, this reduces 

further to, 

(14)

For the dc-Pockels effect –– dc-Kerr experiment –– the measured quan-

tity is the anisotropy of the refractive index and the related NLO pa-

rameter is βK = – β⊥). Since for dc-Pockels effect β ζηξ  (–ω;ω,0) = 

β
 ηζξ ( –ω;ω, 0)

(15)

(16)

3_

2 (βK

//
K
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and therefore,
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Again, in the static limit,

(17)

(18)

Tables 2-4 list the RHF and MP2 the electronic and vibrational static

first hyperpolarizability contributions for the CH3F, CH2F2 and CHF3

molecules whereas the RHF and MP2 xyz tensor component of the elec-

tronic and vibrational static first hyperpolarizability contributions for me-

thane and tetrafluoromethane are given in Tables 5 and 6, respectively.

Since β // and β ⊥ are zero, only hyper-Rayleigh scattering measurements

can probe β xyz [39]. Figs. 1(2) shows at the RHF(MP2) level of approxima-

tion the evolution with the number of fluorine atoms of the electronic and

vibrational β// contributions as well as of the dipole moment.

3.2. CH
3
F, CH2 F2 AND CHF3

In the static limit, the electronic and the pure vibrational contributions

ratio is 0.96(0.81), 1.47(1.37) and 2.12(2.07) for CH3F, CH2F2 and

CHF3, respectively. In fact, the ratio increases with the number of

fluorine atoms. In any case the double harmonic term dominates the vibra-

tional reponse but thefirst-orderanharmonic contributions is not negligible.

[µ 3]
1,0

// is smaller than[µ 3]
0,1

// and ofopposite sign to [µα]
0

// .The importance

of ranges between 49% and 72% of the double harmonic contribution. 

As observed in Ref. [25] for the second hyperpolarizability, the higher the 

fluorine content, the higher the anharmonicity contributions. The ZPVA 

correction is small compared to the pure vibrational term but still repre-

sents 10-14 percents of the electronic term. 

We observe similar trends among the studied quantities at both levels 

of approximation (Figs. 1-2). µ and[µ α]
0

// ;ω=0 show a maximum amplitude

for the CH2F2 molecule. In fact, there is a good linear relationship between 

µ  and (the square of the correlation coefficient (R2) = 0.997 

at the RHF level and 0.996 at the MP2 level). On the other hand, the 

electronic and the ZPVA contributions present a minimum amplitude for 

the CH3F molecule whereas for the anharmonic contributions the maximum 

is obtained for the CH
2
F

2
(CHF

3
) molecule at the RHF(MP2) level of 

approximation.

    [µ α ]0
//;w =0

([µα]
0

//+[µ 3
]

I

//) are of similar amplitude but of opposite sign. The RHF(MP2)

|βv
// /β e

// |

|βv

// /βe
// |

[µ3

]
0,1

//
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Number of fluorine atoms

Figure 1. Evolution with the number of fluorine atoms of the electronic and vibrational 

contributions to β//  as well as of the dipole moment computed at the RHF level of 

approximation.

Number of fluorine atoms 

Figure 2. Evolution with the number of fluorine atoms of the electronic and vibrational 

contributions to β// as well as of the dipole moment computed at the MP2 level of

approximat ion. 
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TABLE 2. Dipole moment, electronic and vibrational static first hyperpolarizability 

contributions of CH3F calculated at the RHF and MP2 levels of approximation. All the

values are given in a.u. (1.0 a.u. of electric dipole moment = 8.4784358 ×10
–30

Cm = 

2.5418 × 10
–18

esu ; 1.0 a.u. of first hyperpolarizability = 3.206361 ×10
–53

C
3
m

3
J

–2
=

8.6392 × 10
–33

esu)

CH3F RHF MP2 Other theoretical work

-0.77 -0.74

-37.9 -45.0 -25.6a

-40.3
b

24.6 29.9 

-4.1 -8.3

15.9 14.8 

36.4 36.4 

-1.1 -1.0

-3.3 -3.6

-4.4 -4.6

a RHF results due to Sekino and Bartlett [12]. 

b MP2 results due to Rice et al [13].

TABLE 3. Dipole moment, electronic and vibrational static first hyperpolarizability 

contributions of CH2F2 calculated at the RHF and MP2 levels of approximation. All the 

values are given in a.u. 

CH2F2 RHF MP2 Other theoretical work

-0.82 -0.79

-30.0 -35.0 -25.1a

28.6 34.7 

-3.7 -9.4

19.1 22.6 

44.0 48.0 

-0.9 -0.8

-3.0 -3.3

-3.9 -4.2

a
RHF results due to Sekino and Bartlett [12].










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TABLE 4. Dipole moment, electronic and vibrational static first hyperpolarizability

contributions of CHF3 calculated at the RHF and MP2 levels of approximation. All the

values are given in a.u.

CHF3 RHF MP2 Other theoretical work

µ -0.69 -0.65

β// ;w=0 -18.0 -21.1 -20.0a

-17.2b

23.4 28.0

-0.8 -4.8

15.5 20.4

38.2 43.7

-0.6 -0.6

-1.8 -1.9

-2.4 -2.5

a RHF results due to Sekino and Bartlett [12].

b RHF results due to Karna and Dupuis [14].

3.3. CH4 AND CF4

When including the first-order anharmonicity correction, the pure vibra-

tional contribution to the static β xyz of CH4 amounts to 53.3% and 39.2%

of the static electronic part at the RHF and MP2 levels of approximation,

respectively. The double harmonic term dominates the pure vibrational re-

sponse. On the other hand, due to the substantial term, β vxyz of CF4

is 7.9 times larger than β exyz in the static limit. However, in the dynamic

limit the β Vxyz of both CH4 and CF4 will become more similar (see next

paragraph). Indeed, in the infinite optical frequency limit, the β Vxyz associ-

ated to the dc-Pockels effect tends towards and amounts to

about - 2au. (- 3au.) for CH4 (CF4). The ZPVA term is small for CH4

and negligible for CF4. It is interesting to point out that the main effect

of including electron correlation corrections is a general decrease (increase)

of all the contributions for CH4 (CF4) (except of CH4). Taking into

account differences in basis set and the inclusion of at the RHF

level, a general good agreement between our results and those of Bishop et
al.[24] is obtained both at RHF and MP2 levels.

[µα]II
xyz

  [µ 3]
0,1

xyz

 [µα]
0, 0
xyz; w =0 / 3

[µ
3
]

1,0

xyz



386 O. QUINET AND B. CHAMPAGNE 

TABLE 5. xyz tensor component of the electronic and vibrational static first hyperpo-

larizability contributions of methane calculated at the RHF and MP2 levels of approxi-

mation. All the values are given in a.u. 

CH4 RHF MP2 Other theoretical work

β exyz ;ω =0 -11.8 -9.7 -5.9 a

-10.9b

[µα] 0,0
xyz ;ω =0 -7.0 -4.7 -7.7b

[µ3]0.1
xyz;ω=0 -0.1 –3.8 × 10–2 -0. 1b

β v
xy z;ω =0

-6.3 -3.7 -9.1b,d

-8.1c

-7.3
c

[µ3]1,0
xyz ;ω =0 0.8 1.0 0.8 b

-7.3c,e

[β] 0,1
xyz;ω=0 -0.6 -0.5

[β] 1,0
xyz;ω=0 -0.9 -0.7

∆β ZPVA

xyz;ω=0 -1.5 -1.2 -1.5b

-1.1c

a RHF results due to Sekino and Bartlett [12].
b

RHF results due to Bishop et al. [24].
c MP2 results due to Bishop et al. [24].

d β v 
= [µ α]

o
+ [µ α] II + [µ 3 ]

1
.

e β v = [µ α]°.

TABLE 6. xyz tensor component of the electronic and vibrational static first hyperpo-

larizability contributions of tetafluoromethane calculated at the RHF and MP2 levels of 

approximation. All the values are given in a.u. 

CF4 RHF MP2 Other theoretical work 

β ex y r ;ω =0 -4.8 -6.1 -3.1a

-3.7
b

-4.2c

[µα] 0,0
xyz;ω=0 -9.8 -11.4 -10.7b

[µ3]
1,0
xyz;ω =0 3.5 8.0 3.2

b

[µ3]0,1
xyz;ω=0 -31.3 -44.4 -25.9 b

-10.7
c,e

-10.7
c

β vxyz;ω=0 -37.7 -47.9 -34.4b,d

[β] 0,1

xyz;ω=0 2 × 10–2 –1 × 10–2

[β] 1,0
xyz;ω=0 9 × 10–2 3 × 10–2

∆β ZPVA

xyz;ω =0
1.1 × 10–1 2

×

10–2 0.1b

-0.1c

a RHF results due to Sekino and Bartlett [12]. b RHF results due to Bishop et al. [24]. 
c MP2 results due to Bishop et al. [24]. d β v = [µα]0 + [µα]II + [µ3]l. e β v = [µα]0.
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3.4. FREQUENCY-DEPENDENT VIBRATIONAL FIRST

HYPERPOLARIZABILITY

dc-Pockels and SHG vibrational first hyperpolarizabilities are given in Ta-

bles 7-11 for four common laser wavelengths and for the infinite optical 

frequency approximation (ω → ∞). As expected, when w increases. β v
tends toward and zero for the dc-Pockels and SHG phenom-

ena, respectively. For the all five molecules the difference between the true 

frequency-dependent and the ω → ∞ values is of the order or less than

1 au. The maximum relative differences appear for the CH
4

molecule due

to its larger normal mode vibrational frequencies whereas they get much 

smaller for the CF4 of which all the frequencies are smaller than 1500 cm–1.

Consequently, it turns out that the infinite optical frequency approximation

is also a suitable approximation scheme for evaluating the β of CH4–nFn

(n = 0 – 4) in the UV-visible frequency domain.

CHF3 (13.7 au.) can be compared with the values determined by Bishop[11] 

(CHF3 : ±31 au.) and by Elliot and Ward [5] (CH2F2 : 28.1 au. ; CHF3

: 50.2 au.) using spectroscopic data. Since the sign of the individual nor-

mal mode contributions to β v is undetermined in these experiment-based

calculations, the agreement is rather good.

    [µα]
0,0

w =0 /3   

[µα]
0,0
ω =0,

  (√ 3/2)β//

_

3.5. BOND ADDITIVITY SCHEME

Together with the atom additivity scheme, the bond additivity scheme 

aims at providing transferable parameters for describing any new set of 

compounds[1, 2, 40, 41]. Their success has rather been limited to the polar-

izability whereas for the hyperpolarizabilities, it failed in several instances 

[2. 25]. Within the bond additivity scheme, the β// of CHF3, CH2F2 and

CHF3 satisfies the relation,

β // (CH3F) = (CH
2
F

2
) = β // (CHF3) = β // (C-H) –β // (C-F) (19)

which accounts for the vector nature of β // and assumes exact tetrahedral

angles. Analysis of the results in Tables 2-6 shows that at the exception 

of µ and this scheme fails: the contributions from the bond in-

teractions can not be neglected. Similar conclusion was also drawn for the 

corresponding term whereas for and (the

three are γ v// contributions), it performs well [25].

[µβ]0
/ /;w = 0   [α2]0

/ /;w =0   [µ2α]Ι
// ;w =0  

Our best estimates for the β v,K(–ω;ω,0) of CH2F2 (17.3 au.) and
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TABLE 7. Vibrational contribution to the dynamic first hyperpolarizability 

(dc-Pockels and SHG) of CH4 calculated at the RHF and MP2 levels of ap-

proximation for common laser wavelengths and for the infinite optical frequency 

approximation (ω → ∞). All the values are given in a.u.

CH4 β vxyz (–ω;ω,0) β vxyz (–2ω;ω,ω)

RHF MP2 RHF MP2 

λ = 1064 nm, hw = 1.165 eV -1.7 -1.1 0.8 0.5 

λ = 694.3 nm, hw = 1.786 eV -2.1 -1.4 0.3 0.2 

λ = 632.8 nm, hw = 1.959 eV -2.1 -1.4 0.3 0.2 

λ = 514.5 nm, hw = 2.410 eV -2.2 -1.5 0.2 0.1

ω→ ∞ -2.4 -1.6 0.0 0.0

-

  -

  -

  -

TABLE 8. Vibrational contribution to the dynamic first hyperpolarizability

(dc-Pockels and SHG) of CH3F calculated a t the RHF and MP2 levels of ap-

proximation for common laser wavelengths and for the infinite optical frequency

approximation (ω → ∞). All the values are given in a.u.

CH3F β v,K( –ω; ω, 0) β v// (– 2ω; ω, ω) 
RHF MP2 RHF MP2

λ = 1064 nm, hw = 1.165 eV 15.5 15.7 0.7 0.7

λ = 694.3 nm, hw = 1.786 eV 14.8 15.1 0.3 0.2

λ = 632.8 nm, hw = 1.959 eV 14.7 15.1 0.2 0.2

λ = 514.5 nm, hw = 2.410 eV 14.6 15.0 0.1 0.1

ω→ ∞ 14.4 14.8 0.0 0.0   

-

  

-

  -

-

TABLE 9. Vibrational contribution to the dynamic first hyperpolarizability

(dc-Pockels and SHG) of CH2F2 calculated a t the RHF and MP2 levels of ap-

proximation for common laser wavelengths and for the infinite optical frequency

approximation (ω → ∞). All the values are given in a.u.

CH2F2 β v,K
(–ω;ω,0) β v// (–2ω;ω,ω) 

RHF MP2 RHF MP2

λ = 1064 nm, hw = 1.165 eV 16.0 17.8 0.7 0.5

λ = 694.3 nm, hw = 1.786 eV 15.5 17.4 0.2 0.2 

λ = 632.8 nm, hw = 1.959 eV 15.4 17.3 0.2 0.2

λ = 514.5 nm, hw = 2.410 eV 15.3 17.3 0.1 0.1

ω→ ∞ 15.2 17.3 0.0 0.0

-

  

-

-

-
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TABLE 10. Vibrational contribution to the dynamic first hyperpolarizability

(dc-Pockels and SHG) of CHF3 calculated at the RHF and MP2 levels of ap-

proximation for common laser wavelengths and for the infinite optical frequency

approximation (ω → ∞). All the values are given in a.u.

CHF3 β v,K
( –ω; ω, 0) β v// (–2ω; ω, ω)

RHF MP2 RHF MP2 

λ = 1064 nm, hw = 1.165 eV 12.2 13.8 0.3 0.2

λ = 694.3 nm, hw = 1.786 eV 12.0 13.7 0.1 0.1

λ = 632.8 nm, hw = 1.959 eV 11.9 13.7 0.1 0.1 

λ = 514.5 nm, hw = 2.410 11.9 13.7 0.1 0.1 

ω→ ∞ 11.8 13.6 0.0 0.0

-

  

-

  

-

  

-

  

-

  

-

  

-

  

-

TABLE 11. Vibrational contribution to the dynamic first hyperpolarizability 

(dc-Pockels and SHG) of CF4 calculated at the RHF and MP2 levels of ap-

proximation for common laser wavelengths and for the infinite optical frequency 

approximation (ω → ∞). All the values are given in a.u.

CF4 β 
v
xyz (–ω; ω, 0) β vxyz (–2ω;ω,ω)

RHF MP2 RHF MP2 

λ = 1064 nm, hw = 1.165 eV -3.1 -3.6 0.3 0.3

λ = 694.3 nm, hw = 1.786 -3.2 -3.7 0.1 0.1 

λ = 632.8 nm, hw = 1.959 -3.2 -3.7 0.1 0.1 

λ = 514.5 nm, hw = 2.410 eV -3.3 -3.7 0.1 0.1 

ω → ∞ -3.3 -3.8 0.0 0.0

4. Comparison with experiment 

Table 12 lists β values deduced from Kerr (βK
(–ω;ω,0), λ = 632.8 nm)

and SHG (β // (–2ω;ω,ω ) λ = 694.3 nm) gas phase experiments on CH3F,

CH
2
F

2
and CHF

3
together with the theoretical estimates for the static

electronic + ZPVA and dynamic vibrational responses. Provided one ap-

proximately accounts for the frequency-dispersion of β e// + ∆β ZPVA

// (larger

for β (–2ω;ω,ω) than β (–ω;ω,0)), the negligible β v// (–2ω;ω,ω) value, and

one considers the error bars on the experimental values as well as the limit 

of our theoretical estimates, one can check the consistency between the dif-

ferent NLO measurements. In the case of the CH3 F, the values obtained

for the two NLO processes are consistent. For CH
2
F

2
the much smaller
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β K(–ω;ω,0) value w.r.t. β // (–2ω;ω, ω) can partly be explained by the β  
vibrational contribution which is ofopposite sign to β e// . However, it is not

sufficient whereasβ e// (CH2F2) is in close agreement with the experimental

β // (–2ω; ω, ω) values. In the case of CHF3, our theoretical values cannot ex-

plain the large (and of different sign) experimentally-derived β K(–ω; ω, 0)

value whereas the SHG result matches again our theoretical estimates. Re-

finement of the Kerr experimental data, which has to be isolated from 

several other electrical properties (µ , α and γ) defining the measured Kerr 

constant, is probably needed for a better agreement between theory and

experiment.

TABLE 12. Comparison between theory and experiment. Experimental results are 

provided for the dc-Pockels effect (λ = 632.8 nm) and the second harmonic generation 

(λ = 694.3 nm). The theoretical results are given for the electronic + ZPVA static first 

hyperpolarizability and the vibrational dynamic first hyperpolarizability for the same

processes and the same wavelengths. All the values are given in a.u. [Note that in the 

static limit, β e,K + ∆  β ZPVA,K = β e// + ∆ β ZPVA

// ]

β  K(–ω;ω,0) β  // (–2ω;ω,ω) β  e
// (0;0,0)+ β  v,K(–ω;ω,0) β  v// (–2ω;ω,ω)

(632.8 nm) (694.3 nm) ∆βZPVA

//  (0 0,0) (632.8 nm) (694.3 nm)

CH3F –59 ± 31a –57.0 ± 4.2b -49.6 15.1 0.2 

CH2F2 –12.8 ± 3.1a –42.1 ± 1.9b -38.9 17.3 0.2 

CHF3 84 ± 31a –25.2 ± 0.9b -23.6 13.7 0.1 

–58.2 ± 1.2c

–27.8 ± 0.6b

a experimental results due to Buckingham and Orr [1]. 

b experimental results due to Ward and Bigio [2]. 
c experimental results due to Shelton and Buckingham [4]. 

5. Conclusions 

The vibrational first hyperpolarizability of methane and its fluorinated 

analogs has been computed ab initio at the Hartree-Fock and MP2 lev-

els of approximation by adopting the perturbation approach due to Bishop 

and Kirtman. By including the lowest-order non vanishing terms of each 

type, both the pure vibrational and the zero-point vibrational averaging 

contributions have been determined. In the static limit, it turns out that 

the pure vibrational term is at least of the same order of magnitude as its 

electronic counterpart and the ratio | β v / β  e| increases with the fluorine con-

tent. The first-order anharmonicity correction to this pure vibrational term 

K
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increases also with the fluorine content whereas the zero-point vibrational 

averaging is one/two order of magnitude smaller and decreases with the flu- 

orine content. The study of the frequency dispersion for the five molecules 

reveals that the infinite optical frequency approximation is a satisfactory

approximation for evaluating the vibrational dc-Pockels responses. 

Since the bond additivity scheme is only valid for the vibrational part 

within the double harmonic oscillator approximation, it turns out that bond 

interactions are important for the anharmonicity corrections and the elec- 

tronic counterpart. 

These theoretical determinations of β v,K(–ω; ω, 0) and β v// (–2ω; ω, ω)

on one side and of βe

// + 0,0) on the other side have enabled to

address the consistency between dc-Pockels- and SHG-derived experimental 

β values for CH3F, CH2F2 and CHF3. It turns out that for CH2F2 and,

more obviously, for CHF3, refined experimental data are needed.

   (0; ∆β ZPVA

//
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Abstract. It is shown that the recently observed ∆ J = 2 staggering effect

(i.e. the relative displacement of the levels with angular momenta J, J + 4,

J+ 8, . . . , relatively to the levels with angular momenta J+ 2, J + 6, J + 10,
. . . ) seen in superdeformed nuclear bands is also occurring in certain elec-

tronically excited rotational bands of diatomic molecules (YD, CrD, CrH, 

CoH), in which it is attributed to interband interactions (bandcrossings).

In addition, the ∆ J = 1 staggering effect (i.e. the relative displacement of 

the levels with even angular momentum J with respect to the levels of the 

same band with odd J) is studied in molecular bands free from ∆ J = 2

staggering (i.e. free from interband interactions/bandcrossings). Bands of 

YD offer evidence for the absence of any ∆ J = 1 staggering effect due to 

the disparity of nuclear masses, while bands of sextet electronic states of 

CrD demonstrate that ∆ J = 1 staggering is a sensitive probe of deviations 

from rotational behaviour, due in this particular case to the spin-rotation

and spin–spin interactions. 
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1. Introduction 

Several staggering effects are known in nuclear spectroscopy [1]: 

1) In rotational γ bands of even nuclei the energy levels with odd angular 

momentum I (I=3, 5, 7, 9, . . . ) are slightly displaced relatively to the levels 

with even I (I=2, 4, 6, 8, . . .), i.e. the odd levels do not lie at the energies

predicted by an E(I) = AI(I + 1) fit to the even levels, but all of them lie

systematically above or all of them lie systematically below the predicted 

energies [2]. 

2) In octupole bands of even nuclei the levels with odd I and negative

parity (Ip=1
–

, 3
–

, 5
–

, 7
–

, . . .) are displaced relatively to the levels with 

even I and positive parity (Iπ=0+, 2+, 4+, 6+, . . .) [3, 4, 5, 6].

3) In odd nuclei, rotational bands (with K = 1/2) separate into signa-

ture partners, i.e. the levels with 1=3/2, 7/2, 11/2, 15/2, . . . are displaced

relatively to the levels with I=1/2, 5/2, 9/2, 13/2, . . . [7].

In all of the above mentioned cases each level with angular momentum

I is displaced relatively to its neighbours with angular momentum I ± 1.

The effect is then called ∆ I = 1 staggering. In all cases the effect has

been seen in several nuclei and its magnitude is clearly larger than the 

experimental errors. In cases 1) and 3) the relative displacement of the 

neighbours increases in general as a function of the angular momentum I
[2, 7], while in case 2) (octupole bands), the relevant models [8, 9, 10,11,12]

predict constant displacement of the odd levels with respect to the even 

levels as a function of I, i.e. all the odd levels are raised (or lowered) by 

the same amount of energy. 

A new kind of staggering (∆ I = 2 staggering) has been recently ob-

served [13, 14] in superdeformed nuclear bands [15, 16, 17]. In the case in

which ∆ I = 2 staggering is present, the levels with I=2, 6, 10, 14, . . . , for 

example, are displaced relatively to the levels with I=0, 4, 8, 12, . . . , i.e.

the level with angular momentum I is displaced relatively to its neighbours

with angular momentum I ± 2.

Although ∆ I = 1 staggering of the types mentioned above has been 

observed in several nuclei and certainly is an effect larger than the relevant 

experimental uncertainties, ∆ I = 2 staggering has been seen in only a few 

cases [13, 14, 18, 19] and, in addition, the effect is not clearly larger than 

the relevant experimental errors. 

There have been by now several theoretical works related to the possible 

physical origin of the ∆ I = 2 staggering effect [20, 21, 22, 23, 24, 25, 26],

some of them [27, 28, 29, 30, 31, 32] using symmetry arguments which could 

be of applicability to other physical systems as well. 

On the other hand, rotational spectra of diatomic molecules [33] are

known to show great similarities to nuclear rotational spectra, having in

DENNIS BONATSOS, N. KAROUSSOS ET AL. 
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addition the advantage that observed rotational bands in several diatomic 

molecules [34, 35, 36, 37] are much longer than the usual rotational nuclear 

bands. We have been therefore motivated to make a search for ∆ J = 1 

and ∆ J = 2 staggering in rotational bands of diatomic molecules, where

by J we denote the total angular momentum of the molecule, while I has 

been used above for denoting the angular momentum of the nucleus. The

questions to which we have hoped to provide answers are: 

1) Is there ∆ J = 1 and/or ∆ J = 2 staggering in rotational bands of 

diatomic molecules? 

2) If there are staggering effects, what are their possible physical origins? 

In Sections 2 and 3 the ∆ J = 2 staggering and ∆ J = 1 staggering 

will be considered respectively, while in Section 4 the final conclusions and 

plans for further work will be presented. 

2. ∆ J = 2 staggering 

In this section the ∆ J = 2 staggering will be considered. In subsection 

2.1 the ∆ I = 2 staggering in superdeformed nuclear bands will be briefly 

reviewed. Evidence from existing experimental data for ∆ J = 2 staggering

in rotational bands of diatomic molecules will be presented in subsection

2.2 and discussed in subsection 2.3, while subsection 2.4 will contain the 

relevant conclusions. We mention once more that by J we denote the total 

angular momentum of the molecule, while by I the angular momentum of 

the nucleus is denoted. 

2.1. ∆ I = 2 STAGGERING IN SUPERDEFORMED NUCLEAR BANDS 

In nuclear physics the experimentally determined quantities are the γ -ray

transition energies between levels differing by two units of angular momen-

tum (∆ I = 2). For these the symbol 

E2,γ (I) = E(I + 2) – E(I) (1)

is used, where E(I) denotes the energy of the level with angular momentum

I. The deviation of the γ -ray transition energies from the rigid rotator 

behavior can be measured by the quantity [14]

(2)

(3)

Using the rigid rotator expression 

E(I) = AI(I + 1),
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one can easily see that in this case ∆ E2,γ (I) vanishes. In addition the

perturbed rigid rotator expression 

E(I) = AI(I + 1) + B(I(I + 1))
2
, (4)

gives vanishing ∆ E2,γ (I). These properties are due to the fact that Eq.

(2) is a (normalized) discrete approximation of the fourth derivative of the

function E2,γ (I), i.e. essentially the fifth derivative of the function E(I).
In superdeformed nuclear bands the angular momentum of the observed 

states is in most cases unknown. To avoid this difficulty, the quantity ∆ Ε2,γ 

is usually plotted not versus the angular momentum I. but versus the an-

gular frequency 

(5)

whichfor discrete states takes the approximate form

(6)

For large I one can take the Taylor expansions of the square roots in the 

denominator, thus obtaining 

(7)

Examples of superdeformed nuclear bands exhibiting staggering are 

shown in Figs 1–2 [13, 14]. We say that ∆ I = 2 staggering is observed 

if the quantity ∆ E2(I) exhibits alternating signs with increasing w (i.e.

with increasing I, according to Eq. (7)). The following observations can be 

made:

1) The magnitude of ∆ E2(I) is of the order of 10–4–10–5 times the size

of the gamma transition energies. 

2) The best example of ∆ I = 2 staggering is given by the first superde-

formed band of 149Gd, shown in Fig. la. In this case the effect is almost 

larger than the experimental error. 

3) In most cases the ∆ I = 2 staggering is smaller than the experimental

error (see Figs lb, 2a, 2b), with the exception of a few points in Fig. lb. 

2.2. ∆ J = 2 STAGGERING IN ROTATIONAL BANDS OF DIATOMIC 
MOLECULES

In the case of molecules [38] the experimentally determined quantities

regard the R branch ((vlower, J) → (vupper, J + 1)) and the P branch

((vlower, J) → (vupper, J – 1)), where vlower is the vibrational quantum
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Figure 1. ∆ E2(I) (in keV), calculated from Eq. (2), versus the angular frequency ω (in

MeV), calculated from Eq. (7), for various superdeformed bands in the nucleus 149Gd

[13]. a) Band (a) of Ref. [13]. b) Band (d) of Ref. [13]. 

number of the initial state, while vu pp e r is the vibrational quantum num-

ber of the final state. They are related to transition energies through the 

equations [38] 

(8)

, (9) 

where in general 

DE2,v(J) = Ev(J + 1) – Ev(J – 1). (10)

∆ J = 2 staggering can then be estimated by using Eq. (2), with E2,γ (I)

replaced by ∆ E2,v(J):

(11)
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Figure 2. ∆ E2(I) (in keV), calculated from Eq. (2), versus the angular frequency ω
(in MeV), calculated from Eq. (7), for various superdeformed bands in the nucleus 194Hg

[14]. a) Band 1 of Ref. [14]. b) Band 2 of Ref. [14]. 

Results for several rotational bands in different electronic and vibra-

tional states of various diatomic molecules are shown in Figs 3-9. We say 

that ∆ J = 2 staggering is observed if the quantity ∆ E2(J) exhibits alter-

nating signs with increasing J (J is increased by 2 units each time). The 

magnitude of ∆ E2( J) is usually of the order of 10–3–10–5 times the size of

the interlevel separation energy. In Figs 7 and 8, which correspond to sex-

tet electronic states, the rotational angular momentum N is used instead 

of the total angular momentum J, the two quantities been connected by 

the relation J = N + S, where S is the spin. Several observations can be 

made:

1) In all cases shown, the “upper” bands (which happen to be elec-

tronically excited) exhibit (Figs 3, 4, 7-9) ∆ J = 2 staggering (or ∆ N = 2

staggering) which is 2 to 3 orders of magnitude larger than the experimental 

error, while the corresponding “lower” bands (which, in the cases studied, 

correspond to the electronic ground state of each molecule), show (Figs 5, 

6) some effect smaller than the experimental error.

2) There is no uniform dependence of the ∆ J = 2 staggering on the

angular momentum J. In some cases of long bands, though, it appears that 
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Figure 3. ∆ E2(J) (in cm–1), calculated from Eq. (11), for various bands of the YD

molecule [34]. a) Odd levels of the v = 1 C1Σ+ band calculated from the data of the

1–1 C
1Σ+

–X
1Σ+

transitions. b) Even levels of the previous band. c) Odd levels of the

v = 1 C
1Σ+

band calculated from the 1–2 C
1Σ+

–X
1Σ+

transitions. d) Even levels of the

previous band. 
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Figure 4. ∆ E2(J) (in cm–1), calculated from Eq. (11), for various bands of the YD

molecule [34]. a) Odd levels of the v = 2 C1S+ band calculated from the data of the 

2–2 C
1Σ+

–X
1Σ+

transitions. b) Even levels of the previous band. c) Odd levels of the

v = 2 C1Σ+ band calculated from the 2–3 C
1Σ+

–X
1Σ+

transitions. d) Even levels of

the previous band. The experimental error in all cases is ±0.006 cm–1 and therefore is 

hardly or not seen.



STAGGERING EFFECTS IN NUCLEAR AND MOLECULAR SPECTRA 401 

Figure 5. ∆E 2(J) (in cm–1), calculated from Eq. (11), for various bands of the YD 

molecule [34]. a) Odd levels of the v = 1 X
1Σ+

band calculated from the data of the 1–1

C
1Σ+

–X
1Σ+

transitions. b) Even levels of the previous band.

the pattern is a sequence of points exhibiting small staggering, interrupted

by groups of6 points each time showing large staggering. The best examples

can be seen in Figs 3a, 3b, 7a, 7b. In Fig. 3a (odd levels of the v = 1 

C
1Σ+ 

band of YD)) the first group of points showing appreciable ∆ J = 2

staggering appears at J = 13–23, while the second group appears at J =

27–37. In Fig. 3b (even levels of the v = 1 C
1Σ+ 

band of YD) the first

group appears at J = 12–22, while the second group at J = 26–36. In Fig. 

7a (odd levels of the v = 0 A
6Σ+ 

band of CrD) the first group appears at 

N = 15–25, while the second at N = 27–37. Similarly in Fig. 7b (even levels 

of the v = 0 A
6Σ+ 

band of CrD) the first group appears at N = 14–24, 

while the second group at N = 26–36. 

3) In all cases shown, the results obtained for the odd levels of a band 

are in good agreement with the results obtained for the even levels of the 

same band. For example, the regions showing appreciable staggering are 

approximately the same in both cases (compare Fig. 3a with Fig. 3b and 

Fig. 7a with Fig. 7b, already discussed in 2) ). In addition, the positions of 

the local staggering maxima in each pair of figures are closely related. In 

Fig. 3a, for example, maximum staggering appears at J = 19 and J = 31, 
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Figure 6. ∆E2(J) (in cm–1), calculated from Eq. (11), for various bands of the YD 

molecule [34]. a) Odd levels of the v = 2 X
1Σ+

band calculated from the data of the

1–2 C
1Σ+

–X
1Σ+

transitions. b) Even levels of the previous band. c) Odd levels of the

v = 2 X
1Σ+

band calculated from the 2–2 C
1Σ+

–X
1Σ+

transitions. d) Even levels of the

previous band. 



STAGGERING EFFECTS IN NUCLEAR AND MOLECULAR SPECTRA 403 

Figure 7. ∆ E2(N ) (in cm–1), calculated from Eq. (11), for various bands of the CrD

molecule [35]. a) Odd levels of the v = 0 A
6Σ+ 

band calculated from the data (R2, P2 

branches) of the 0–0 A
6Σ+

–X
6Σ+

transitions. b) Even levels of the previous band. The

experimental error in all cases is ±0.006 cm–1 and therefore is not seen. 

while in Fig. 3b the maxima appear at J = 18 and J = 32. 

4) In several cases the ∆ J = 2 staggering of a band can be calculated 

from two different sets of data. For example, Figs 3a, 3b show the ∆ J = 2 

staggering of the v = 1 C
1Σ+ 

band of YD calculated from the data on the 

1–1 C
1Σ+ 

–X
1Σ+ 

transitions, while Figs 3c, 3d show the staggering of the 

same band calculated from the data on the 1–2 C
1Σ+ 

–X
1Σ+ 

transition.

We remark that the results concerning points showing staggering larger 

than the experimental error come out completely consistently from the two 

calculations (region with J = 13–23 in Figs 3a, 3c; region with J = 12–22 in 

Figs 3b, 3d), while the results concerning points exhibiting staggering of the 

order ofthe experimental error come out randomly (in Fig. 3a, for example,

J = 11 corresponds to a local minimum, while in Fig. 3c it corresponds to 

a local maximum). Similar results are seen in the pairs of figures (3b, 3d), 

(4a, 4c), (4b, 4d), (6a, 6c), (6b, 6d), (Sa, 9c), (9b, 9d). The best example of 

disagreement between staggering pictures of the same band calculated from 

two different sets of data is offered by Figs 6b, 6d, which concern the v = 2 

X
1Σ+ 

band of YD, which shows staggering of the order of the experimental 
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Figure 8. ∆ E2(N ) (in cm–1), calculated from Eq. (11), for various bands of the CrH

molecule [36]. a) Odd levels of the v = 0 A
6

Σ+

band calculated from the data (R2, P2

branches) of the 0–0 A
6Σ +–X

6Σ+ 
transitions. b) Even levels of the previous band. The 

experimental error in all cases is ±0.004 cm–1 and therefore is not seen. 

error.

5) When considering levels of the same band, in some cases the odd 

levels exhibit larger staggering than the even levels, while in other cases 

the opposite is true. In the v = 1 C
1Σ+ 

band of YD, for example, the odd 

levels (shown in Fig. 3a, corroborated by Fig. 3c) show staggering larger 

than that of the even levels (shown in Fig. 3b, corroborated by Fig. 3d), 

while in the v = 2 C
1Σ+ 

band of YD the odd levels (shown in Fig. 4a, 

corroborated by Fig. 4c) exhibit staggering smaller than that of the even 

levels (shown in Fig. 4b, corroborated by Fig. 4d). 

2.3. DISCUSSION 

The observations made above can be explained by the assumption that the 

staggering observed is due to the presence of one or more bandcrossings 

[39, 40]. The following points support this assumption: 

1) It is known [41] that bandcrossing occurs in cases in which the inter-

band interaction is weak. In such cases only the one or two levels closest to 

the crossing point are affected [42]. However, if one level is influenced by the 
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Figure 9. ∆ E2(J) (in cm–1), calculated from Eq. (11), for various bands of the CoH

molecule [37]. a) Odd levels of the v = 0 A’3 Φ4 band calculated from the data (Ree, Pee 

branches) of the 0–1 A
'3Φ4 –X3Φ4 transitions. b) Even levels of the previous band. The

experimental error in all cases is ±0.01 cm–1 and therefore is not seen. 

crossing, in the corresponding staggering figure six points get influenced.

For example, if E(16) is influenced by the crossing, the quantities DE2(15)

and DE2(17) are influenced (see Eq. (10) ), so that in the corresponding

figure the points ∆ E2(J) with J = 11, 13, 15, 17, 19, 21 are influenced,

as seen from Eq. (11). This fact explains why points showing appreciable 

staggering appear in groups of 6 at a time. 

2) It is clear that if bandcrossing occurs, large staggering should appear

in approximately the same angular momentum regions of both even levels 

and odd levels. As we have already seen, this is indeed the case. 

3) It is clear that when two bands cross each other, maximum staggering

will appear at the angular momentum for which the energies of the relevant

levels ofeach band are approximately equal [42]. If this angular momentum

value happens to be odd, then ∆ E2(J) for even values of J in this region

(the group of 6 points centered at this J) will show larger staggering than

the ∆ E2(J) for odd values of J in the corresponding region, and vice versa.

For example, if the closest approach of two bands occurs for J = 31, then

∆ E2(J) for even values of J in the J = 26–36 region will show larger
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staggering than ∆ E2(J) for odd values of J in the same region. This is

in agreement with the empirical observation that in some cases the odd 

levels show larger staggering than the even levels, while in other cases the 

opposite holds. 

4) The presence of staggering in the “upper” (electronically excited)

bands and the lack of staggering in the “lower” (electronic ground state) 

bands can be attributed to the fact that the electronically excited bands 

have several neighbours with which they can interact, while the bands built 

on the electronic ground state are relatively isolated, and therefore no band-

crossings occur in this case. In the case of the CrD molecule, in particular, 

it is known [35] that there are many strong Cr atomic lines present, which 

frequently overlap the relatively weaker (electronically excited) molecular 

lines. In addition, Ne atomic lines are present [35]. Similarly, in the case of

the YD molecule the observed spectra are influenced by Y and Ne atomic 

lines [34], while in the case of the CrH molecule there are Ne and Cr atomic 

lines influencing the molecular spectra [36]. 

5) The fact that consistency between results for the same band calcu-

lated from two different sets of data is observed only in the cases in which

the staggering is much larger than the experimental error, corroborates 

the bandcrossing explanation. The fact that the results obtained in areas 

in which the staggering is of the order of the experimantal error, or even 

smaller, appear to be random, points towards the absence of any real effect 

in these regions. 

It should be noticed that bandcrossing has been proposed [43, 44, 45] 

as a possible explanation for the appearance of ∆ I = 2 staggering effects

in normally deformed nuclear bands [26, 43, 45] and superdeformed nuclear 

bands [44]. 

The presence of two subsequent bandcrossings can also provide an ex-

planation for the effect of mid-band disappearance of ∆ I = 2 staggering

observed in superdeformed bands of some Ce isotopes [18]. The effect seen

in the Ce isotopes is very similar to the mid-band disappearance of stag-

gering seen, for example, in Fig. 3a. 

2.4. CONCLUSION 

In conclusion, we have found several examples of ∆ J = 2 staggering in elec-

tronically excited bands of diatomic molecules. The details of the observed 

effect are in agreement with the assumption that it is due to one or more

bandcrossings. In these cases the magnitude of the effect is clearly larger 

than the experimental error. In cases in which an effect of the order of the 

experimental error appears, we have shown that this is an artifact of the 

method used, since different sets of data from the same experiment and for 
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the same molecule lead to different staggering results for the same rota-

tional band. The present work emphasizes the need to ensure in all cases 

(including staggering candidates in nuclear physics) that the effect is larger 

than the experimental error and, in order to make assumptions about any

new symmetry, that it is not due to a series of bandcrossings. 

3. ∆ J = 1 staggering

In this section the ∆ J = 1 staggering effect (i.e. the relative displacement 

of the levels with even angular momentum J with respect to the levels of 

the same band with odd J) will be considered in molecular bands free from 

∆ J = 2 staggering (i.e. free from interband interactions/bandcrossings), in 

order to make sure that ∆ J = 1 staggering is not an effect due to the same 

cause as ∆ J = 2 staggering. 

The formalism of the ∆ J = 1 staggering will be described in subsection 

3.1 and applied to experimental molecular spectra in subsection 3.2. Finally, 

subsection 3.3 will contain a discussion of the present results and plans for 

further work. 

3.1. FORMALISM 

By analogy to Eq. (2), ∆ I = 1 staggering in nuclei can be measured by the 

quantity

(12)

(13)

where

The transition energies Ε1,γ (I) are determined directly from experiment. 

In order to be able to use an expression similar to that of Eq. (12) for the 

study of ∆ J = 1 staggering in molecular bands we need transition energies 

similar to those of Eq. (13), i.e. transition energies between levels differing 

by one unit of angular momentum. However, Eqs (8) and (9) can provide 

us only with transition energies between levels differing by two units of 

angular momentum. In order to be able to determine the levels with even 

J from Eqs (8) or (9), one needs the bandhead energy E(0). Then one has

(14)

(15)

(16)
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(17)

In order to be able to determine the levels with odd J from Eqs (8) and 

(9) in an analogous way, one needs E(1). Then

(18)

(19)

(20)

(21)

For the determination of E(0) and E(1) one can use the overall fit of

the experimental data (for the R and P branches) by a Dunham expansion 

[46]

(22)

which is usually given in the experimental papers.

After determining the energy levels by the procedure described above, 

we estimate ∆ J = 1 staggering by using the following analogue of Eq. (12), 

(23)

(24)

where

Using Eq. (24) one can put Eq. (23) in the sometimes more convenient form 

(25)

In realistic cases the hrst lew values of ER(J) and E P
(J) might be 

experimentally unknown. In this case one is forced to determine the first few 

values of E(J) using the Dunham expansion of Eq. (22) and then continue

by using the Eqs (14)–(21) from the appropriate point on. Denoting by Jio

the “initial” value of odd J, on which we are building through the series 

of equations starting with Eqs (18)–(21) the energy levels of odd J, and

by Jie the “initial” value of even J, on which we are building through the 

series of equations starting with Eqs (14)–(17) the energy levels of even J,
we find that the error for the levels with odd J is

Err( E( J)) = D( Jio ) + (J – Jio ) ∋, (26)
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while the error for the levels with even J is

(27)

where D(Jio ) and D(Jie ) are the uncertainties of the levels E(Jio ) and

E(Jie ) respectively, which are determined through the Dunham expansion

of Eq. (22), while E is the error accompanying each ER
(J) or Ep

(J) level,

which in most experimental works has a constant value for all levels. 

Using Eqs (26) and (27) in Eq. (25) one easily sees that the uncertainty 

of the ∆J = 1 staggering measure ∆ E1,v ( J) is

(28)

This equation is valid for J ≥ max{Jio, Jie} + 3. For smaller values of J
one has to calculate the uncertainty directly from Eq. (25). 

3.2. ANALYSIS OF EXPERIMENTAL DATA 

3.2.1. YD
We have applied the formalism described above to the 0–1, 1–1, 1–2, 2–2 

transitions of the C1Σ+ –X1 Σ+ system of YD [34]. We have focused atten-

tion on the ground state X1Σ+, which is known to be free from ∆ J = 2 

staggering effects (see subsection 2.2), while the C
1 Σ+

 state is known to 

exhibit ∆ J = 2 staggering effects, which are fingerprints of interband in-

teractions (bandcrossings), as we have seen in subsection 2.2. Using the 

formalism of subsection 3.1, we calculated the ∆ J = 1 staggering measure

∆ E1(J) of Eq. (23) for the v = 1 band of the X1Σ+ state (Fig. 10a, 10b)

and for the v = 2 band of the X1Σ+ state (Fig. 10c, 10d). At this point the

following comments are in place: 

1) In all cases the levels E(0), E(1), E(2), E(3) have been determined

using the Dunham expansion of Eq. (22) and the Dunham coefficients given 

in Table II of Ref. [34]. This has been done because ER(1) is missing in the

tables of the 1–1 and 2–2 transitions [34], so that Eq. (20) cannot be used for 

the determination ofE(3). In the cases of the 0–1 and 1–2 transitions, ER(1)

is known, but we prefered to calculate E(3) from the Dunham expansion

in these cases as well, in order to treat the pairs of cases 0–1, 1–1 and 1–2, 

2–2 on equal footing, since we intend to make comparisons between them.

2) For the calculation of errors we have taken into account the errors of 

the Dunham coefficients given in Table II of Ref. [34], as well as the fact

that the accuracy of the members of the R- and P-branches is ∋ = ±0.002 

cm–1 [34]. It is clear that the large size of the error bars is due to the 

accumulation of errors caused by Eqs (14)–(21), as seen in Eqs (25)-(28).

3) In Figs 10a and 10b the ∆ J = 1 staggering measure ∆ E1(J) for the

v = 1 band of the X1Σ+ state of YD is shown, calculated from two different 
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Figure 10. ∆ E1(J) (in cm–1), calculated from Eq. (23), for various bands of the YD

molecule [34]. a) Levels of the v = 1 X
1Σ+ 

band calculated from the data of the 0–1

C
1Σ+ 

–X
1 Σ+ 

transitions. b) Levels of the v = 1 X
1Σ+ 

band calculated from the data of 

the 1–1 C
1Σ+ 

–X
1 Σ+ 

transitions. c) Levels of the v = 2 X
1Σ+ 

band calculated from the 

data of the 1-2 C
1Σ+ 

–X
1 Σ+ 

transitions. d) Levels of the v = 2 X
1Σ+ 

band calculated 

from the data of the 2–2 C
1Σ+ 

–X
1 Σ+ 

transitions.
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sources, the 0–1 and 1–1 transitions. If a real ∆ J = 1 staggering effect were 

present, the two figures should have been identical, or at least consistent 

with each other. However, they are completely different (even the maxima 

and the minima appear at different values of J in each figure), indicating 

that what is seen is not a real physical effect, but random experimental 

errors (buried in the large error bars, anyway).

4) Exactly the same comments as in 3) apply to Figs 10c and 10d, where 

the ∆J = 1 staggering measure for the v = 2 band of the X1Σ+ state of YD

is shown, calculated from two different sources, the 1–2 and 2–2 transitions.

We conclude therefore that no ∆ J = 1 staggering effect appears in the

v = 1 and v = 2 bands of the X1Σ+ state of YD, which are free from 

∆ J = 2 staggering, as proved in subsection 2.2. 

This negative result has the following physical implications. It is known 

in nuclear spectroscopy that reflection asymmetric (pear-like) shapes give 

rise to octupole bands, in which the positive parity states (Iπ = 0+, 2+,

4+, . . .) are displaced reletively to the negative parity states (Iπ = 1–, 3–,

5–, . . .) [3, 4, 5, 6, 47, 48, 49]. Since a diatomic molecule consisting of two 

different atoms possesses the same reflection asymmetry, one might think 

that ∆ J = 1 staggering might be present in the rotational bands of such 

molecules. Then YD, because of its large mass asymmetry, is a good testing 

ground for this effect. The negative result obtained above can, however,

be readily explained. Nuclei with octupole deformation are supposed to 

be described by double well potentials, the relative displacement of the 

negative parity levels and the positive parity levels being attributed to 

the tunneling through the barrier separating the wells [47, 48, 49]. (The

relative displacement vanishes in the limit in which the barrier separating

the two wells becomes infinitely high.) In the case of diatomic molecules the 

relevant potential is well known [33] to consist of a single well. Therefore 

no tunneling effect is possible and, as a result, no relative displacement of 

the positive parity levels and the negative parity levels is seen. 

3.2.2. CrD
The formalism of subsection 3.1 has in addition been applied to a more 

complicated case, the one of the 0–0 and 1–0 transitions of the A
6 Σ+–

X
6 Σ+ 

system of CrD [35]. We have focused our attention on the ground

state X
6Σ+, which is known to be free from ∆ N = 2 staggering effects 

(see subsection 2.2), while the Α6Σ+ state is known from subsection 2.2 

to exhibit ∆ N = 2 staggering effects, which are fingerprints of interband 

interactions (bandcrossings). The CrD system considered here has several 

differences from the YD system considered in the previous subsection, which 

are briefly listed here: 

1) The present system of CrD involves sextet electronic states. As a
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result, each band of the A
6Σ+ 

–X
6 Σ+ 

transition consists of six R- and six

P-branches, labelled as R1, R2, . . . ,  R6 and P1, P2, . . . ,  P6 respectively 

[35]. In the present study we use the R3 and P3 branches, but similar results

are obtained for the other branches as well.

2) Because of the presence of spin-rotationinteractions and spin-spin

interactions, the energy levels cannot be fitted by a Dunham expansion

in terms of the total angular momentum J, but by a more complicated

Hamiltonian, the N 2
Hamiltonian for a

6Σ state [50, 51]. This Hamiltonian,

in addition to a Dunham expansion in terms of N (the rotational angular

momentum, which in this case is different from the total angular momentum

J = N + S, where S the spin), contains terms describing the spin–rotation

interactions (preceded by three γ coefficients), as well as terms describing

the spin-spin interactions (preceded by two λ coefficients [35, 50]). 

In the present study we have calculated the staggering measure of Eq.

(23) for the v = 0 band of the X
6Σ+ 

state of CrD, using the R3 and

P3 branches of the 0–0 (Fig. 11a) and 1–0 (Fig. 11b) transitions of the

A
6 Σ+ 

–X
6 Σ+ 

system. Since in this case the Dunham expansion involves the

rotational angular momentum N, and not the total angular momentum

J, the formalism of subsection 3.1 has been used with J replaced by N
everywhere. This is why the calculated staggering measure of Eq. (23) is in

this case denoted by ∆ E1(N) and not by ∆ E1(J), the relevant effect being

called ∆ N = 1 staggering instead of ∆ J = 1 staggering. At this point the

following comments are in place: 

1) In both cases the levels E(0), E(1), E(2), E(3), E(4) have been

determined using the Dunham expansion of Eq. (22) (with J replaced by

N) and the Dunham coefficients given in Table V of Ref. [35]. This has

been done because E R
(2) is missing in the tables of the 0–0 transitions

[35], so that Eq. (17) cannot be used for the determination of E(4). In the

case of the 1–0 transitions, ER
(2) is known, but we prefered to calculate 

E(4) from the Dunham expansion in this case as well, in order to treat the

cases 0–0 and 1–0 on equal footing, since we intend to make comparisons 

between them. 

2) For the calculation of errors we have taken into account the errors of 

the Dunham coefficients given in Table V of Ref. [35], as well as the fact 

that the accuracy of the members of the R- and P- branches is 

∋ 

= ±0.001 

cm–1 for the 0–0 transitions and ∋ = ±0.003 cm–1 for the 1–0 transitions 

[35]. In this case it is clear, as in the previous one, that the large size of the 

error bars is due to the accumulation of errors caused by Eqs (14)–(21), as 

seen in Eqs (25)–(28). 

3) In Figs lla and llb the ∆ N = 1 staggering measure ∆ E1(N) for

the v = 0 band of the X6Σ+ state of CrD is shown, calculated from two 

different sources, the 0–0 and 1–0 transitions. The two figures are nearly 
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Figure 11. ∆ E1(N) (in cm–1), calculated from Eq. (23), for various bands of the CrD

molecule [35]. a) Levels of the v = 0 X
6Σ+ 

band calculated from the data of the 0–0 

A
6 Σ+ 

–X
6 Σ+ 

transitions (R3, P3 branches). b) Levels of the v = 0 X
6Σ+ 

band calculated 

from the data of the 1–0 A
6Σ+ 

–X
6Σ+ 

transitions (R3, P3 branches). The error bars in 

case (b) have been divided by a factor of 3, in order to be accommodated within the 

figure.

identical. The maxima and the minima appear at the same values of N
in both figures, while even the amplitude of the effect is almost the same 

in both figures. It should be pointed out, however, that the error bars 

in Fig. 11b have been made smaller by a factor of three, in order to the 

accommodated in the figure. 

We conclude therefore that in the v = 0 band of the X
6Σ+ 

state of 

CrD the two different calculations give consistent results, despite the error 

accumulation mentioned above. The result looks like ∆ N = 1 staggering

of almost constant amplitude. The reason behind the appearance of this 

staggering is, however clear: It is due to the omission of the spin-rotation

and spin-spin terms of the N 2
Hamiltonian mentioned above [35, 50, 51]. 

As a result, we have not discovered any new physical effect. What we have 

demonstated, is that Eq. (23) is a very sensitive probe, which can uncover 

small deviations from the pure rotational behaviour. However, special care 

should be taken when using it, because of the accumulation of errors, which 

is inherent in this method. This problem is avoided by producing results 
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for the same band from two different sets of data, as done above. If both

sets lead to consistent results, some effect is present. If the two sets give

randomly different results, it is clear that no effect is present.

It should be pointed out at this point that the appearance of ∆J = 1

staggering (or ∆ N = 1 staggering) does not mean that an effect with

oscillatory behaviour is present. Indeed, suppose that the energy levels of 

a band follow the E(J) = AJ (J + 1) rule, but to the odd levels a constant

term c is added. It is then clear from Eq. (25) that we are going to obtain

∆ E1(J) = +c for odd values of J, and ∆ E1(J) = –c for even values of J,
obtaining in this way perfect ∆ J = 1 staggering of constant amplitude c, 

without the presenceofanyoscillatoryeffect. This comment directly applies

to the results presented in Fig. 11. The presence of ∆ N = 1 staggering of

almost constant amplitude is essentially due to the omission of the rotation-

spin and spin–spin interactions in the calculation of the E(3) and E(4)

levels. The difference of the omitted terms in the N = 3 and N = 4 cases

plays the role of c in Fig. 11.

3.3. DISCUSSION 

In this section we have addressed the question of the possible existence

of ∆ J = 1 staggering (i.e. of a relative displacement of the odd levels

with respect to the even levels) in rotational bands of diatomic molecules,

which are free from ∆ J = 2 staggering (i.e. free from interband interac-

tions/bandcrossings). The main conclusions drawn are:

1) The YD bands studied indicate that there is no ∆ J = 1 staggering,

which could be due to the mass asymmetry of this molecule.

2) The CrD bands studied indicate that there is ∆ N = 1 stagger-

ing, which is, however, due to the spin–rotation and spin–spin interactions

present in the relevant states.

3) Based on the above results, we see that ∆ J = 1 staggering is a

sensitive probe of deviations from the pure rotational behaviour. Since the

method of its calculation from the experimental data leads, however, to

error accumulation, one should always calculate the ∆ J = 1 staggering

measure for the same band from two different sets of data and check the

consistency of the results, absence of consistency meaning absence of any

real effect. 

It is desirable to corroborate the above conclusions by studying rota-

tional bands of several additional molecules. 

4. Conclusions 

In this work we have examined if the effects of ∆ J = 2 staggering and ∆J =

1 staggering, which appear in nuclear spectroscopy, appear also in rotational 
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bands of diatomic molecules. For the ∆ J = 2 staggering it has been found

that it appears in certain electronically excited rotational bands ofdiatomic

molecules (YD, CrD, CrH, CoH), in which it is attributed to interband

interactions (bandcrossings). The ∆ J = 1 staggering has been examined

in rotational bands free from ∆ J = 2 staggering, i.e. free from interband

interactions (bandcrossings). Bands of YD offer evidence for the absence

of any ∆ J = 1 staggering effect due to the disparity of nuclear masses,

while bands of sextet electronic states of CrD demonstrate that ∆ J = 1

staggering is a sensitive probe of deviations from rotational behaviour, due

in this particular case to the spin-rotation and spin-spin interactions. We

conclude therefore that both ∆ J = 2 staggering and ∆ J = 1 staggering are

sensitive probes ofperturbations in rotational bands of diatomic molecules

and do not constitute any new physical effect.

The number of rotational bands of diatomic molecules examined in the

case of the ∆ J = 2 staggering is satisfactory. For the case of the ∆ J = 1

staggering it is desirable to corroborate the findings of the present work

through the examination of rotational bands of more diatomic molecules.
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