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Preface

Statisticians encounter many types of complex data, and among them matrix and
tensor data are currently popular data forms that play a vital role in various anal-
yses. Matrix data constitute an essential data form of multivariate analysis and
tensor data are comprised of a multi-way datum with which statisticians are familiar
in analyzing contingency tables. The difference between matrix and tensor data
forms and contingency tables is that the entries in the tensor data are real values and
that the entries in the contingency tables are integers. Furthermore, tensor data can
treat complex data in more flexible ways.

In this expository book we present both foundations and applications of matrix
and tensor data analysis in six chapters.

Chapter 1 deals with the principal component analysis (PCA) for 3-way tensor
data, popularly referred to as 3WPCA. The author of this chapter, Prof. Adachi of
Osaka University, has conducted extensive research in this field and published
papers in respected journals like Psychometrika and Computational Statistics. His
research emphasizes hierarchical relationships among Tucker2, Tucker3, Parafac,
and the common PCA. He illustrates the theory by applying it to psychological data.

Chapter 2 discusses nonnegative matrix factorization (NMF) and its application
to audio signal data. After the basics, including algorithms, of NMF are explained,
remarkable applications to audio signal data are given. The author of this chapter,
Dr. Kameoka, is a promising award winning young researcher who works at NTT
Communication Science Laboratories and is an adjunct associate professor at the
Graduate School of Information Science and Technology of the University
of Tokyo.

Chapter 3 introduces an application of tensor PCA to image data. The author of
this chapter, Associate Prof. Inoue of Kyushu University, is a specialist of tensor
principal components analysis to image data and has written many papers related to
these topics in journals like Lecture Note of Computer Sciences and others. He
formulated a generalized tensor PCA (GTPCA) and derived multi-linear PCA
(MPCA), robust MPCA, simultaneous low-rank approximation of tensors
(SLART), and robust SLART from GTPCA. Applications for image analysis are
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presented in this chapter such as outlier removal, image compression, and face
recognition.

Chapter 4 focuses on sparse coding theory of image data. The author of this
chapter, Prof. Murata of Waseda University, is one of the founders of Independent
Components Analysis in Japan and has published books about the topic. He has
developed unified treatments of several principles in matrix factorizations.
He shows that the difference between PCA, independent component analysis (ICA),
nonnegative matrix factorization (NMF), and sparse representations are understood
as different constraints when a data matrix is decomposed into a product of two
matrices. Applications to image processing are also given.

Chapter 5 centers on the application of tensor normal distribution to genetic data.
The author of this chapter, Dr. Akdemir, Research Associate at Cornell University,
has published a pioneering paper about tensor normal distribution in the Journal of
Algebraic Statistics. He expounded the estimation of mean and covariance of array
(tensor) under normal distributions with missing data. Applications to real-life data
involving the estimation of genotype and environment interaction and effects on
possible correlated traits are detailed.

Chapter 6 introduces one-sided tests for the mean matrix of a matrix normal
distribution. The late Prof. Kudo of Kyushu University, who was a pioneer of
multivariate one-sided tests in Japan, taught the authors of this chapter, Associate
Prof. Iwasa of Kumamoto University and Prof. Sakata of Kyushu University. Both
authors have published several papers about one-sided tests in statistical journals
such as the Journal of Multivariate Analysis and the Journal of Institute of
Statistical Mathematics. They developed a one-sided test for mean matrix of matrix
normal distributions and constructed a class of similar test statistics that includes
similar tests previously obtained by Sasabuchi, Hu, and Banerjee. These works are
positioned as the starting point to one-sided tests for the mean tensor of a tensor
normal distribution.

All the chapters in this book distinctly develop interesting application fields for
matrix and tensor data. Finally, the authors would like to express their sincere
appreciation to Prof. Akimichi Takemura for his encouragment to write this book,
and to Japan Statistical Society for giving us this opportunity to publish it.
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Chapter 1
Three-Way Principal Component Analysis
with Its Applications to Psychology

Kohei Adachi

Abstract The principal component analysis (PCA) procedures modified for
analyzing three-way data are generally called three-way PCA (3WPCA). Popular
3WPCA procedures are known as the names, Tucker2, Tucker3, and Parafac. We
describe their models and algorithms with an emphasis on a hierarchical relationship
among Tucker2, Tucker3, Parafac, and the ordinary two-way PCA. After introduc-
ing the rotation techniques for Tucker3 solutions, 3WPCA procedures are illustrated
with stimuli × responses × persons data observed in psychology.

Keywords Three-way principal component analysis · Hierarchical relations ·
Alternating least squares algorithm · Rotation · Network representation

1.1 Principal Component Analysis Modified
for Three-Way Data

Principal component analysis (PCA) is a time-honored dimension-reduction tech-
nique for a two-way data matrix. Using Ẍ = (xi j ) for the I × J data matrix, PCA
can be modeled as

Ẍ = ÄB̈′ + Ë =
P∑

p=1

äpb̈′
p + Ë or xi j =

P∑

p=1

äipb̈ jp + ei j , (1.1)

with Ä = (äip) = [ä1, …, äP ] (I × P), B̈ = (b̈ jp) = [b̈1, …, b̈P ] (J × P), Ë = (ei j )

containing errors, and P ≤ min(I, J ) (e.g., ten Berge and Kiers [29]). The PCA
solution is obtained by the least squares method, i.e., minimizing the sum of squared
errors ‖Ë‖2 = ‖X − ÄB̈′‖2 over Ä and B̈, where ‖Ë‖ denotes the Frobenius norm of
Ë. The minimization is attained through the singular value decomposition (SVD) of

K. Adachi (B)
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Osaka 565-0871, Japan
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2 K. Adachi

Ẍ. Although the factor analysis (FA) model can also be written in the form (1.1), but
FA differs from PCA, since the inter-column covariance matrix for Ë are assumed
to be a diagonal matrix in FA (e.g., Mulaik [21]), but PCA does not have such an
assumption and is thus simply formulated as the above least squares problem.

The main subject in this chapter is the modified PCA specialized for a three-way
data array ...

X = {xi jk; i = 1, . . . , I ; j = 1, . . . , J ; k = 1, . . . , K }. (1.2)

Such procedures are generally refereed to as three-way PCA (3WPCA). Its origin
can be found in psychometrics, which is the area for developing methodology for
analyzing data observed in psychology (Kroonenberg [19]; Tucker [33]). An example
of xi jk in (1.2) is the score that examinee i shows for the test item j on occasion k.
Then, (1.2) is the I -examinees × J -items × K -occasions array.

One of the most important psychometricians for 3WPCA is Ledyard, R. Tucker,
who presented a typical procedure of 3WPCA.After his name, the procedure is called
Tucker3 (Tucker [33]), which is modeled as

...
X =

P∑

p=1

Q∑

q=1

R∑

r=1

(ap ◦ bq ◦ cr )gpqr + ...
E or xi jk =

P∑

p=1

Q∑

q=1

R∑

r=1

aipb jqckrgpqr + ei jk

(1.3)
Here, ei jk stands for an error, A = (aip) = [a1, . . . , aP ] (I × P), B = (b jq) =
[b1, . . . , bQ] (J × Q), C = (ckr ) = [c1, . . . , cR] (K × R), and ap ◦ bq ◦ cr denotes
the tensor product providing the array {aipb jqckr ; i = 1, . . . , I ; j = 1, . . . , J ; k =
1, . . . , K } with P ≤ I , Q ≤ J , and R ≤ K . The columns of A, B, and C are
called components and those matrices are referred to as component matrices, while
three-way array

...
G = {gpqr ; p = 1, . . . , P; q = 1, . . . , Q; r = 1, . . . , R} (1.4)

is called a core array. The Tucker3 model (1.3) can be illustrated as in Fig. 1.1: the
data cube

...
X (I × J × K ) is underlain by a smaller cube

...
G (P × Q × R). It

Fig. 1.1 Pictorial representation of the Tucker3 model
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describes the relationships among the P , Q, and R components which correspond
to the columns of A, B, and C, respectively. The three matrices express the links of
the components to the I , J , and K entities which define the three-modes of

...
X.

Another typical 3WPCA procedure is Parafac, which has been presented inde-
pendently by Carroll and Chang [5] and Harshman [8] in psychometrics. Though the
former authors called their presented procedure CANDECOMP, we use the name
Parafac. Its model is a version of (1.3) in which gpqr is constrained so that gpqr = 1
for p = q = r and gpqr = 0 otherwise, with P = Q = R: Parafac is modeled as

...
X =

P∑

p=1

ap ◦ bp ◦ cp + ...
E or xi jk =

P∑

p=1

aipb jpckp + ei jk . (1.5)

The origin of Parafac can also be found inmathematics (Hitchcock [10]). The remain-
ing popular 3WPCA procedure is Tucker2 (Tucker [33]), which is introduced in the
next section.

In some literatures, 3WPCA is referred to as three-way factor analysis (FA). But,
such naming is misleading. As described above, FA is characterized by the special
assumption for error variances, but 3WPCA does not have such an assumption.

Besides psychometrics, chemometrics (for chemical data analysis) is also the area
in which a number of techniques for 3WPCA have been developed. It is shown by the
fact that two seminal books on 3WPCAhave recently been published in chemometric
field [25] and psychometric area [19], respectively.

1.2 Hierarchy in PCA and 3WPCA

Let us rearrange
...
X = {xi jk} in a horizontal two-way array, i.e., an I × K J block

matrix
X = [X1, . . . , Xk, . . . , XK ]. (1.6)

with its kth block Xk being the I × J matrix whose (i, j) element is xi jk . For (1.6),
we can apply the ordinary PCA (rather than 3WPCA) in three types of procedures.
As explained in the next paragraphs, the three PCA procedures for (1.6) can be called
PCA-SEP, PCA-SUP, and PCA-AVE, and they have the hierarchical relationship

PCA-SEP � PCA-SUP � Tucker2 � Tucker3 � Parafac � PCA-AVE (1.7)

with popular 3WPCA procedures. Here, A � B denotes “B is a constrained ver-
sion of A”. That is, 3WPCA procedures can be viewed as constrained versions of
PCA rather than its extensions (Ceulemans and Kiers [6]; Kiers [14]; Murakami and
Kroonenberg [22]).



4 K. Adachi

PCA-SEP is the abbreviation for the PCA performed SEParately for each block
Xk in (1.6) (Kiers and ten Berge [17]). The replacement of Ẍ, Ä, B̈, and Ë in (1.1)
by Xk , Ak , B′

k , and Ek leads to the PCA-SEP model

Xk = AkB′
k + Ek (1.8)

for k = 1, . . . , K . Constraining Ak to be invariant across k with Ak = A in (1.8)
leads to the PCA-SUP model

Xk = AB′
k + Ek . (1.9)

It is rewritten as X = AB′
# + E, i.e., the PCA model for the SUPer matrix (1.6),

which gives the name PCA-SUP, with B′
# = [B′

1, . . . , B′
K ] (P × K J ) and E =

[E1, . . . , EK ] (I × K J ) (Kiers [14]).
Tucker2 is the least restrictive method in 3WPCA (Tucker [33]), which is intro-

duced by constraining Bk as Bk = BH′
k in PCA-SUP (1.9), where Hk is of order

P × Q. That is, Tucker2 is modeled as

Xk = AHkB′ + Ek, (1.10)

for k = 1, . . . , K . The block matrix H = [H1, . . . , HK ] (P × K Q) is called an
extended core array. A feature of Tucker2 is that the componentmatrices are invariant
among k and the extended core array explains the differences in data setsXk across k.

Tucker3 is a version of Tucker2 with Hk constrained to be the linear combination
of Gr whose (p, q) element is gpqr in (1.4):

Hk = ck1G1 + · · · + ck RGR =
R∑

r=1

ckr Gr (1.11)

with R ≤ K . The Tucker3 model is thus expressed as

Xk = A
R∑

r=1

ckr Gr B′ + Ek, (1.12)

which can be rewritten as (1.3). Further, let Gr in (1.12) be restricted to the matrix
filled with zeros except the r th diagonal element being one with P = Q = R, Then,
we have the Parafac model

Xk = ADkB′ + Ek, (1.13)

which can be rewritten as (1.5), where Dk = diag(ck1, . . . , ck P) denotes the diagonal
matrix whose diagonal elements are ck1, . . . , ck P .

The Parafac model (1.13) with Dk constrained to be the identity matrix IP leads to

Xk = AB′ + Ek . (1.14)
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This can be called a PCA-AVE model, as it is equivalent to the PCA model for
the AVEraged data matrix X̄ = K −1 ∑

k Xk . This equivalence is shown as follows:
the least squares function for (1.14) can be written as f1 = K −1 ∑

k ‖Ek‖2 =
K −1 ∑

k ‖Xk − AB′‖2 = K −1 ∑
k ‖Xk‖2 − 2trX̄′AB′ + ‖AB′‖2, while PCA for X̄

is formulated as minimizing f2 = ‖X̄ − AB′‖2 = ‖X̄‖2 − 2trX̄′AB′ + ‖AB′‖2. That
is, the terms relevant to A and B are identical between f1 and f2.

In (1.7), the least restrictive PCA-SEP (1.8) is found to be the best in the goodness
of fit for data. But, PCA-SEP has crucial indeterminacy shown by the fact that (1.18)
is rewritten as Xk = AkSkS−1

k B′
k + Ek with Sk an arbitrary nonsingular matrix: if

Ak and Bk are the solutions, AkSk and BkS−1
k

′ can also be viewed as the solutions
for Ak and Bk . It implies that the comparison of Ak and Bk across k does not make
sense without identifying Sk in a reasonable manner (Adachi [2, 4]). The Tucker2
and 3 models also have indeterminacy, but it is rather exploited to give interpretable
solutions as described in Sect. 1.4.

1.3 Alternating Least Squares Algorithm

As in the ordinary PCA, the solutions for 3WCA are also obtained byminimizing the
sum of squared errors, but they are not given explicitly. Thus, iterative procedures
are used, which are included in a family of alternative least squares (ALS) algorithm
(e.g., ten Berge [28]). We first describe the Parafac algorithm, which are followed
by those for Tucker3 and 2.

1.3.1 Parafac Algorithm

For Parafac, some different algorithms have been presented (Carroll and Chang [5];
Harshman [8]; Kiers and Krijnen, [15]; ten Berge [28]). Among them, we describe
the algorithm using the block data matrix (1.6) (Smilde et al. [25]). For the matrix,
the Parafac model (1.5) or (1.13) is rewritten as

X = A(C • B)′ + E. (1.15)

Here, E = [E1, . . . , EK ] is an I × K J error matrix and • denotes the Khatri-
Rao product (Rao and Mitra [27]): C • B = [c1, . . . , cP ] • [b1, . . . , bP ] = [c1 ⊗
b1, . . . , cP ⊗ bP ] (KJ × P) with ⊗ denoting the Kronecker product (e.g., Harville
[9]). The Parafac model (1.15) can further be rewritten as X# = B(C • A)′ + E#

and X∗ = C(B • A)′ + E∗, where X# (J × K I ) and X∗ (K × JI ) are obtained by
rearranging (1.2) as

X# = [X′
1, . . . , X′

K ], (1.16)

X∗ = [vec(X1), . . . , vec(XK )]′, (1.17)
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with E# and E∗ the rearranged versions of E, and vec() denoting the vec operator
(e.g., Harville [9]). Thus, the sum of squared errors ‖E‖2 for Parafac is expressed in
three forms as in

fP(A, B, C) = ‖X − A(C • B)′‖2 = ‖X# − B(C • A)′‖2 = ‖X∗ − C(B • A)′‖2 (1.18)

The minimization of (1.18) over A, B, and C can be attained by alternately solving
the following problems:

(1) minA ‖X − A(C • B)′‖2 with B and C kept fixed;
(2) minB ‖X# − B(C • A)′‖2 with A and C kept fixed;
(3) minC ‖X∗ − C(B • A)′‖2 with A and B kept fixed.

Here, we can find every problem to be the regression of data onto the matrix defined
by theKhatri-Rao product. For example, ‖X−A(C•B)′‖2 = ‖X′−(C•B)A′‖2 in (1)
is the loss function for the regression of X′ onto (C • B) with A′ a coefficient matrix.
Its solution is explicitly given by A′ = (C•B)+X′, or equivalently, A = X(C•B)′+,
with (C•B)′+ theMoore-Penrose inverse of (C•B)′. In parallelmanners, the solutions
for (2) and (3) can be obtained. Thus, the Parafac algorithm for minimizing (1.18)
can be described as follows:

Step 1. Initialize B and C.
Step 2. Update A = X(C • B)′+
Step 3. Update B = X#(C • A)′+
Step 4. Update C = X∗(B • A)′+
Step 5. Finish if convergence is reached; otherwise, back to Step 2.

A drawback of Parafac is that it sometimes provides degenerated solutions in
which A, B, or C is nearly rank deficient (Smilde et al. [25]). A remedy for avoiding
such solutions is to impose the column-orthonormality constraints for two of A, B
and C (Kroonenberg [19]; Smilde et al. [25]). Here, let us consider the constraints

A′A = IP , B′B = IP . (1.19)

This version is thus formulated as minimizing (1.18) subject to (1.19). It can be
attained by alternately solving the above problems (1), (2), and (3) with (1.19).

The constrained problem (1) is minimizing fP = ‖X − A(C • B)′‖2 over A under
A′A = IP . Using it, fP can be rewritten as fP = ‖X‖2−2tr(C•B)′X′A+‖(C•B)‖2,
which shows that the problem amounts to maximizing the linear form tr(C • B)′X′A
overA subject toA′A = IP . It can be attained through the SVDdefined asX(C•B) =
K�L′ with K′K = L′L = IP and� a P × P diagonal matrix: the optimal A is given
by A = KL′ (ten Berge [28]). In a parallel manner, the solution of the constrained
problem (2) is given by B = K#L# ′, whose right side hand is obtained through the
SVD X#(C • A) = K#�#L# ′. Since the remaining parameter C is unconstrained, its
solution is obtained in the same manner as in the above Step 4: for given A and B
the optimal C is given by C = X∗(B • A)′+ which is simplified as C = X∗(B • A)

using (1.19). Thus, the Parafac algorithm subject to (1.19) is listed as follows:
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Step 1. Initialize B and C.
Step 2. Update A with A = KL′
Step 3. Update B with B = K#L# ′
Step 4. Update C = X∗(B • A)

Step 5. Finish if convergence is reached; otherwise, back to Step 2.

By substituting C = X∗(B • A) into the loss function (1.18) and using (1.19),
the attained value of (1.18) can be expressed as ‖X∗ − X∗(B • A)(B • A)′‖2 =
‖X∗‖2 − ‖X∗(B • A)‖2 = ‖X‖2(1 − G O FP), with

GOFP = ‖X∗(B • A)‖2
‖X‖2 = ‖C‖2

‖X‖2 (1.20)

the goodness-of-fit index which takes a value within the range [0, 1] and increases
monotonically with the iteration of Steps 2–4. We can use (1.20) for checking the
convergence: it can be defined as the change in (1.20) values from the previous round
being small enough to be ignored.

1.3.2 Tucker3 Algorithm

For Tucker3, Tucker [33] presented only its approximate solution, and an ALS algo-
rithm for finding the exact solution was later developed by Kroonenberg and de
Leeuw [20]. In this algorithm, the Tucker3 model (1.3) or (1.12) is rewritten as

X = AG(C ⊗ B)′ + E (1.21)

for the block data matrix (1.6), Here, E contains errors, and G = [G1, . . . , GR]
(P × RQ) contains the elements of the core array (1.4) with G1, . . . , GR used in
(1.11). Tucker3 is thus formulated as minimizing

fT3(A, B, C, G) = ‖E‖2 = ‖X − AG(C ⊗ B)′‖2. (1.22)

Here, we can constrain A, B, and C as

A′A = IP , B′B = IQ, C′C = IR (1.23)

without loss of generality, since the minimum value of (1.22) is equivalent whether
(1.23) is imposed or not, as explained later in Sect. 1.4.

Let us consider minimizing (1.22) over G for given A, B, and C. This problem
can be solved by Penrose’s [26] regression: the solution is given by

G = A+X(C ⊗ B)′+ = A′X(C ⊗ B), (1.24)
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where (1.23) has been used. By substituting (1.24) into (1.22) and using (1.23), we
have

fT3(A, B, C) = ‖X − AA′X(C ⊗ B)(C ⊗ B)′‖2 = ‖X‖2 − g(A, B, C) (1.25)

with

g(A, B, C) = trA′X(C ⊗ B)(C ⊗ B)′X′A = trA′X(CC′ ⊗ BB′)X′A. (1.26)

It shows that the minimization of (1.25) can be attained by alternately iterating the
steps, in each of which (1.26) is maximized over A, B, or C subject to (1.23) with
the other two matrices kept fixed.

In the step for A, (1.26) is maximized over A subject to A′A = IP with B and C
fixed. It is attained for

A = EVP [X(BB′ ⊗ CC′)X′], (1.27)

where EVP [M] is the function providing the matrix whose P columns are the eigen-
vectors corresponding to the largest P eigenvalues of M.

In the step for B, we arrange the data array (1.2) as (1.16) and the core array (1.4)
as G# = [G′

1, . . . , G′
R] (Q × R P). Then, the model (1.21) can be rewritten as

X# = BG#(C ⊗ A)′ + E# (1.28)

with E# containing errors. It shows that the loss function (1.22) is also rewritten as
f# = ‖X# − BG#(C ⊗ A)′‖2. Here, we can find that (1.22) becomes equivalent to
f#, if X, G, A, and B in (1.22) are replaced by X#, G#, B, and A. This replacement
can also be made for (1.26) and (1.27) to allow us to find that the optimal B to be
obtained in this step is

B = EVQ[X#(AA′ ⊗ CC′)X# ′]. (1.29)

In a parallel manner, the solution in the step for C is obtained as follows: the Tucker3
model (1.21) can be rewritten as

X∗ = CG∗(B ⊗ A)′ + E∗, (1.30)

using (1.17) and G∗ = [vec(G1)
′, . . . , vec(GR)′] (R × Q P), which implies that the

optimal C in this step is given by

C = EVR[X∗(BB′ ⊗ AA′)X∗′]. (1.31)

We can thus list the algorithm for Tucker3 as follows:

Step 1. Initialize B and C.
Step 2. Update A with (1.27)
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Step 3. Update B with (1.29)
Step 4. Update C with (1.31)
Step 5. Finish and obtain (1.24) if convergence is reached; otherwise back to Step 2.

The attained value of the loss function (1.25) can be expressed as f (A, B, C) =
‖X‖2(1 − G O FT3) with

G O FT3 = g(A, B, C)

‖X‖2 = ‖G‖2
‖X‖2 . (1.32)

Here, we have used (1.24) in (1.26) to have g(A, B, C) = ‖G‖2. The value of (1.32),
which iswithin the range [0, 1], expresses the goodness-of-fit for theTucker3 solution
and is convenient for checking the convergence.

Other versions of the Tucker3 algorithm have been developed: ten Berge et al. [30]
proposed the algorithm without the constraints in (1.23); Kiers et al. [16] proposed
the algorithm inwhich the inter-column covariancematrix forX is used rather thanX.

1.3.3 Tucker2 Algorithm

The Tucker2 model (1.10) can be rewritten in the following two forms:

X = AH(IK ⊗ B)′ + E (1.33)

X# = BH#(IK ⊗ A)′ + E# (1.34)

with H = [H1, . . . , HK ] (P × K Q) and H# = [H′
1, . . . , H′

K ] (P × K Q). Tucker2
is thus formulated as minimzing ‖X − AH(IK ⊗ B)′‖2 = ‖X# − BH#(IK ⊗ A)′‖2
over A, B, and H subject to A′A = IP and B′B = IQ . This problem is the one for
Tucker3 with G, G#, and C replaced by H, H#, and IK , respectively. Applying the
replacements to the Tucker3 algorithm can thus lead to the Tucker2 one.

1.4 Rotation of Components

The Tucker3 model has rotational freedom. It is described in Sect. 1.4.1 and the
rotation techniques are described in Sects. 1.4.2 and 1.4.3 in which the freedom is
exploited for transforming the Tucker3 solution into an interpretable one. Though
the Tucker2 model also has the rotational freedom, we do not treat it in this section,
as the freedom and the rotation for Tucker2 can be described by those for Tucker3
with the replacements of G, G#, and C by H, H#, and IK which were written finally
in the last section. The rotational freedom is not possessed by the Parafac model.
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1.4.1 Rotational Freedom

The indeterminacy of Tucker3 solutions is shown by that its model (1.21) can be
rewritten as

X = AG(C ⊗ B)′ + E = (AS){S−1G(U−1 ⊗ T−1)′}{(CU) ⊗ (BT)}′ + E (1.35)

with S (P × P), T (Q × Q), and U (R × R) arbitrary nonsingular matrices. That is,
if A, B, C, and G are the optimal solution, then their transformed Ã = AS, B̃ = BT,
C̃ = CU, and G̃ = S−1G(U−1 ⊗ T−1)′ are also the optimal. This freedom of
nonsingular transformation is restricted to that of orthogonal rotation by considering
constraint (1.23): Ã, B̃, and C̃ can be substituted into A, B, and C in (1.23) only for

S′S = IP , T′T = IQ, U′U = IR . (1.36)

Then, G̃ = S−1G(U−1 ⊗ T−1)′ is simplified as in

Ã = AS, B̃ = BT, C̃ = CU, G̃ = S′G(U ⊗ T). (1.37)

However, rotational indeterminacy still remains: A, B, C, and G can be trans-
formed into Ã, B̃, C̃, and G̃ as in (1.37) with the rotation matrices S, T, and U
satisfying (1.36).

This indeterminacy can rather be exploited so as to produce interpretable Ã, B̃, C̃,
and G̃. The procedures for obtaining such solutions are called orthogonal rotation,
which is generally formulated as

Optimize a function of (1.37) over S, T, U subject to (1.36), (1.38)

where the function stands for to what extent the argument matrices are interpretable.
This interpretability can be defined by that a number of their elements are close to
zero, as we may only focus on the elements of large absolute values. Such matrices
are said to have simple structure in psychometrics (Thurstone [31]; Trendafilov and
Adachi [32]).

A number of orthogonal rotation methods have been proposed, in which the func-
tion in (1.38) are defined in different manners (Kroonenberg [19]; Smilde et. al.
[25]). Among them, the two methods developed in psychometrics are introduced in
Sects. 1.4.2 and 1.4.3. Beside the above orthogonal rotation, a family of the methods
called oblique rotation exists, in which (1.36) is relaxed as S, T, U yielding the com-
ponent matrices Ã, B̃, and C̃ with their columns of unit-length. But, we introduce
only the two orthogonal rotation methods which are presented by Kiers [12, 13].
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1.4.2 Joint Orthomax Rotation

Kiers [13] has proposed a joint orthomax rotationmethod. This method is formulated
using the orthomax criterion (Crawford and Ferguson [7]) defined for an L × M
matrix V = (vi j ) as

hτ (V) =
L∑

l=1

M∑

m=1

v4
lm − τ

L

M∑

m=1

(
L∑

l=1

v2
lm

)2

. (1.39)

In particular, (1.39) is called a varimax criterion for τ = 1 (Kaiser [11]). Then, (1.39)
stands for the sum of the column variances of squared elements v2

lm . Its maximization
provides the matrix V which has simple structure in that v2

lm are variant and a number
of elements are close to zero.

In the joint orthomax rotation, the function for (1.38) is defined as a weighted
sum of (1.39):

fJO(S, T, U) = w1hτ (G̃′) + w2hτ (G̃# ′) + w3hτ (G̃∗′) + w4hτ (Ã) + w5hτ (B̃) + w6hτ (C̃).

(1.40)

Here, w1, . . . , w6 are nonnegative weights to be prespecified, and

G̃# = T′G#(U ⊗ S) and G̃∗ = U′G∗(T ⊗ S) (1.41)

are the rotated versions of thematricesG# andG∗ in the expressions (1.28) and (1.30)
for the Tucker3 model. That is, the rotation method is formulated as maximizing
(1.40) over S, T, and U subject to (1.36), in order to jointly give simple structure
to component matrices (Ã, B̃, C̃) and three matrix-expressions of the core array
(G̃, G̃#, G̃∗). As standard weights, Kiers [12] has suggestedw1 = v1w/(Q R),w2 =
v2w/(P R), w3 = v3w/(P Q), w4 = I/P , w5 = J/Q, and w6 = K/R, with
v1 = 1/(Q R), v2 = 1/(P R), v3 = 1/(P Q), and w = P Q R/{(v1 + v2 + v3)‖G‖4}.

The solution of S, T, and U is obtained by alternately iterating the steps, in each
of which (1.40) is maximized over each of the three matrices with the other two
ones kept fixed. In the step for S, the part of (1.41) relevant to S, i.e., gJO(S) =
w1hτ (G̃′) + w2hτ (G̃# ′) + w3hτ (G̃∗′) + w4hτ (Ã), is maximized over S with T and
U fixed, where gJO(S) can be simplified as

gJO(S) = w∗hτ ∗(G̃′) + w4hτ (Ã) = w∗hτ ∗(G′
UTS) + w4hτ (AS), (1.42)

withw∗ = w1+w2 +w3, τ ∗ = τw1/w
∗, and GUT = G(U⊗T) (Kiers [12]). For the

maximization of (1.42), the fact is used that any orthonormal S is reparameterized as

S =
Y∏

y=1

Z∏

z=y+1

Syz (1.43)
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Here, Y < Z ≤ P , and Syz is the P × P identity matrix with its (y, y), (z, z),
(y, z), and (z, y) elements replaced by cos θ, cos θ, − sin θ, and sin θ, respectively:
Syz is determined by a single angle θ. Equation (1.43) shows that (1.42) increases
monotonically by repeating

max
θ

gJO(θ) = w∗hτ∗(G′
yzSyz) + w4hτ (AyzSyz) (1.44)

with increasing y and z as [y, z] = [1, 2], [1, 3], . . . , [Y, Z − 1], [Y, Z ], . . . , [P −
1, P]. Here, Gyz = G̃′

12

∏
[y′,z′]∈Φ Sy′z′ , and Ayz = Ã12

∏
[y′,z′]∈Φ Sy′z′ with Φ denot-

ing a set of [y, z]′s preceding the current [y, z], G̃12 being the matrix G̃ before the
start of repeating (1.44), and Ã12 the matrix Ã before the start. By iterating the repeti-
tion of (1.44) until convergence is reached, (1.42) can be maximized. The procedure
for (1.44) is described in Kiers [12]. Shiba [24] has also detailed the maximization
of hτ (AyzSyz) over θ. In parallel manners, the algorithms in the steps for T and U
can be formed.

1.4.3 Three-Way Simplimax Rotation

This rotation method has also been developed by Kiers [13]. In the method, only
simple structure of core array is considered, and G̃ is obtained so as to be matched
with a P × RQ target matrixGT which includes a specified number of zero elements.
The method has both orthogonal and oblique versions. Here, we only describe the
former, i.e., the orthogonal three-way simplimax rotation. It is formulated as

min
S,T,U,GT

‖G̃ − GT‖2 subject to (1.36) and N0(GT) = κ (1.45)

where N0(GT) denotes the number of zero elements in GT and κ is a specified
integer. An interesting feature of the problem (1.45) is that the target GT is also to
be estimated: only its number of zero elements N0(GT) is known to be κ, thus the
locations of those elements are to be estimated with the values of nonzero elements.

The problem (1.45) can be attained by alternately iterating the steps, in each of
which ‖G̃−GT‖2 is minimized over S,T,U, orGT with the remaining threematrices
fixed. The solution in the step for GT, i.e., the optimal GT = (g[T]

pn ) that minimizes

‖G̃ − GT‖2 with S, T, and U fixed, is given by g[T]
pn = 0 if |g[T]

pn | ≤ |gκ| and by

g[T]
pn = g̃pn otherwise. Here, g̃pn is the (p, n) element of G̃ and |gκ| denotes the κth

smallest one among the absolute values of the elements in G̃ = (g̃pn). The solution
in the step for S, i.e., the S that minimizes ‖G̃ − GT‖2 = ‖S′G(U ⊗ T) − GT‖2 =
‖G(U ⊗ T)‖2 + ‖GT‖2 − 2trS′(U ⊗ T)G′

T for given GT, T, and U, is obtained by
S = ��′, where � and � are obtained through the SVD (U ⊗ T)G′

T = ���′ with
� the diagonal matrix including singular values. In parallel manners, the steps for T
and U can be formed.
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1.5 Applications to Stimulus-Response Data

In this section, we illustrate 3WPCA with stimulus-response data observed in psy-
chology. In general, a set of those data takes the form of an I -stimuli × J -responses
× K -persons array {xi jk} with xi jk indicating the strength of response j evoked by
person k against stimulus i (Adachi [3]; Kiers and VanMechelen [18]). For example,
stimuli are various auditory signals, responses are bodily reactions and impression
ratings. We first introduce the graphical representation of 3WPCA models for such
a data set, which is followed by the illustration of 3WPCA with a real data example.

1.5.1 Network Representations of Three-Way PCA

TheTucker2model for I -stimuli× J -responses× K -persons data can be represented
as a network diagram (Adachi [3]) with its constrained versions the diagrams for
Tucker3 and Parafac.

Recall the Tucker2 model (1.10), i.e., Xk = AHkB′ + Ek . In this section, Xk =
(xi jk) is an I -stimuli × J -responses data matrix containing the response strengths
for person k. The network representation for the model is illustrated in Fig. 1.2 with
I = 6, J = 5, P = 3, and Q = 2. The equivalence of the diagram to the Tucker2
model (1.10) is explained in the next paragraph.

As indicated by the links in the figure, the (i, p) element of A = (aip) represents
the association of stimulus i to stimulus component p, the ( j, q) element ofB = (b jq)

represents that of response component q to response j , and the (p, q)th element of
Hk = (h pqk) expresses the association of stimulus component p with response
component q. Here, let i-p-q- j express the route starting at stimulus i to reach
response j by way of components p and q, and let η[k]

i-p-q- j denote the effect that

Fig. 1.2 Network representation of the Tucker2 model for person k with I = 6, J = 5, P = 3,
and Q = 2
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stimulus i causes through the route i-p-q- j on the response j of person k. The
equivalence of the network and the model (1.10) follows from assuming that (1) the
effect η[k]

i-p-q- j is given by the product of the associations indicated by the links of i
to p, p to q, and q to j on the route i-p-q- j and that (2) the total effect of stimulus i
on response j for person k, which approximates xi jk , is expressed as the sum of the
effects corresponding to all the routes connecting stimulus i to response j , that is,
the sum of η[k]

i-p-q- j over p = 1, . . . , P and q = 1, . . . , Q. Assumption (1) leads to

η[k]
i-p-q- j = aiph pqkb jq and (2) leads to xi jk

∼= ∑
p

∑
q η[k]

i-p-q- j = ∑
p

∑
q aiph pqkb jq ,

which is written as (1.10) in a matrix form.
In (1.10), Hk = (h pqk) has subscript k, while it is not attached to A = (aip) and

B = (b jq). Thus, the links of stimuli to their components and those of responses in
Fig. 1.2 are invariant across persons,while the strengths (h pqk ) of the inter-component
links vary across persons k = 1, . . . , K . It implies that K inter-component links
with different h pqk must be considered. However, Parafac and Tucker3 which are
the version of Tucker2 with Hk constrained lead to inter-component links easily
interpreted, which is illustrated in Sects. 1.5.3 and 1.5.4 using the data set described
next.

1.5.2 Color-Adjective Data

The stimulus-response data {x (R)
i jk } available at the web page http://bm.hus.osaka-u.

ac.jp/data/ is used as an example. In this data set, stimuli and responses are eleven
color names and nine adjectives, respectively, (see Table1.2) with the number of
persons thirty: x (R)

i jk is the rating value indicating how strongly color i gives the
impression expressed by adjective j , with the rating made by person k. As found in
the web page, x (R)

i jk being four stands for a neutral impression, and thus we subtracted

four from x (R)
i jk to have the data set {xi jk; xi jk = x (R)

i jk − 4} to be analyzed. Parts of the
resulting Xk = (xi jk) for k = 1, 30 are presented in Fig. 1.3. There, for example, the
(brown-blight) element in X1 is found to be−2, which implies that brown impressed
person 1 as rather “not blight” or “dark”. We perform Parafac and Tucker3 for those
Xk , k = 1, . . . , 30.

Fig. 1.3 Stimuli × responses data matrices Xk for persons k = 1, . . . , 30

http://bm.hus.osaka-u.ac.jp/data/
http://bm.hus.osaka-u.ac.jp/data/
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1.5.3 Parafac Solution

Recall the Parafacmodel (1.13), i.e.,Xk = ADkB′+Ek : thematrixHk are constrained
to equal a P × P diagonal matrix Dk = diag(ck1, . . . , ck P) with P = Q. We fitted
the Parafac model to the color-adjective data with P = Q = 3. This number was
chosen, as it is facilitated to compare the Parafac solution with the Tucker3 one
described in the next section, where P = Q = 3 is chosen according to the results
of preliminary analysis. As described in Sect. 1.3, Parafac without constraint (1.19)
tends to provide a degenerated solution. Indeed, such a solution was also obtained
for the color-adjective data. We thus reported only the solution subject to constraint
(1.19). The resulting GOF value of (1.20) was 0.50. Table1.1 presents the resulting
A and B, whose columns, i.e., components, are indicated by the labels, pale, …,
impact, standing for the interpretations of the components. Why such interpretation
can be made would be explained later. On the other hand, the solution for ck1, ck2,
and ck3 (k = 1, . . . , 30) is shown in Fig. 1.4, where c1p, . . . , c30p are connected by
lines for each p.

Table 1.1 Parafac solution of A and B

A (colors× components) B (adjectives× components)

Color Pale Blue Primary Adjective Good Inactive Impact

Brown −0.41 −0.02 0.01 Heavy −0.44 0.17 0.24

Yellow green 0.32 0.03 0.00 Bright 0.45 −0.31 0.21

Pink 0.38 −0.16 0.04 Beautiful 0.44 0.10 0.53

Yellow 0.25 −0.28 0.12 Muddy −0.44 −0.18 −0.20

Sky blue 0.58 0.37 −0.01 Noisy −0.13 −0.59 −0.04

Navy −0.28 −0.31 0.21 Hot −0.10 −0.60 0.09

Purple −0.24 0.32 0.31 Distant −0.12 0.24 −0.04

Blue 0.18 0.44 0.45 Deep −0.37 0.16 0.53

Green 0.06 0.19 0.38 Strong −0.21 −0.19 0.54

Orange 0.14 −0.30 0.18

Red −0.04 −0.49 0.68

Fig. 1.4 Parafac solution for ckp as a function of person k = 1, . . . , 30
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Fig. 1.5 Network representation of the Parafac solution

Since of P = Q and Hk being a diagonal matrix Dk , the network diagram in
Fig. 1.2 is simplified in Parafac so that the number of stimulus components are equal
to the number of response ones and they are simply connected by parallel links. The
Parafac solution in Table1.1 can be represented as in Fig. 1.5, where the links are
depicted with the following rules:

(R1) The links are omitted that correspond to the parameters with their absolute
values less than 0.3.

(R2) The widths of the links for colors and adjectives are proportional to the absolute
values of the corresponding parameter values.

(R3) The real and dashed lines indicate positive and negative values, respectively.
(R4) Each inter-component link is proportional to the average K −1 ∑K

k=1 ckp of
K = 30 persons.

First, let us note the links of colors to stimulus components in Fig. 1.4. Pale colors
are found to be positively associated with the first component, which allows us to
interpret it as the “sensor” that senses pale colors. In a parallel manner, the second
component can be interpreted as the sensor for bluish colors. The third one can be
named as the component sensing primary colors, as it is associated strongly with red
and positively with blue that is also primary as red.

Next, let us note the response components. They can be interpreted in line with
Osgood et al. [23] psychological theory on adjectives: they have argued that every
adjective can be classified into one of the three groups G1, G2, and G3, where
the adjectives in G1 involve evaluation, i.e., the goodness of impression, the ones
in G2 expresses activity, and the adjectives in G3 stand for potency. The first and
second components clearly correspond toG1 andG2, respectively. But, the adjectives
related to activity are negatively related to the second component, thus we label it
as inactive. Though G3 can be related to the third component, we rather name it
impact, as the adjective beautiful, which seems not to involve potency, also shows
strong association.
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The inter-component links in Fig. 1.5 show that pale, bluish, and primary colors
evoke good, inactive, and impact-inducing impressions, respectively. Among those
associations,pale-good is the strongest andprimary-impact is theweakest in average.
But, the strengths of the associations are found to differ across persons in Fig. 1.4:
for example, in the 15th person, bluish-inactiveis rather the strongest.

1.5.4 Tucker3 Solution

Recall (1.11), i.e., Hk = ck1G1 + · · · + ck RGR in Tucker3. We set R = 2 and
P = Q = 3 following the results of the preliminary analysis by Adachi [1] and
carried out Tucker3 for the color-adjective data. The resulting GOF value of (1.33)
was 0.52. The solution was rotated by Kiers’ [12] joint orthomax method with τ = 1
and wl set to the standard weights. The resulting A, B, G1, and G2 are shown in
Table1.2, while the ck1 and ck2 values for k = 1, . . . , 30 are connected by lines in
Fig. 1.6. Since of R = 2, (1.11) is simplified as Hk = ck1G1 + ck2G2: the matrix
Hk describing the inter-component links for person k is a weighted sum of G1 and
G2 which are invariant across k. With taking it in account, the weights ck1 for G1

should be noted in Fig. 1.6: ck1 are positive for all k. It implies that G1 stands for
the inter-component links common over persons. On the other hand, the persons
are split by the signs of the weights ck2 for G2, which implies that G2 stands for

Table 1.2 Tucker3 solution of A, B, and Gr

A (colors × components) B (adjectives × components)

Pale Blue Red Good Inactive Impact

Brown −0.39 −0.11 0.00 Heavy −0.47 0.11 0.22

Yellow green 0.30 0.10 −0.06 Bright 0.50 −0.13 0.28

Pink 0.40 −0.03 0.07 Beautiful 0.41 0.33 0.44

Yellow 0.30 −0.13 0.22 Muddy −0.38 −0.30 −0.13

Sky blue 0.48 0.44 −0.23 Noisy 0.01 −0.61 0.11

Navy −0.36 0.33 0.09 Hot 0.06 −0.57 0.23

Purple −0.32 0.33 0.10 Distant −0.15 0.17 −0.11

Blue 0.05 0.61 0.16 Deep −0.40 0.19 0.49

Green −0.01 0.39 0.29 Strong −0.18 −0.07 0.59

Orange 0.21 −0.13 0.28

Red 0.04 −0.12 0.83

G1 (color-components × adj-components) G2 (color-components × adj-components)

Good Inactive Impact Good Inactive Impact

Pale 47.94 0.16 −1.61 Pale −2.25 −3.91 5.62

Blue 0.04 34.22 2.90 Blue 12.47 6.82 −6.20

Red 1.56 −11.26 25.03 Red 10.39 −3.88 0.40
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Fig. 1.6 Tucker3 solution for ckp as a function of person k = 1, . . . , 30

Fig. 1.7 Network representation of the Tucker3 solution

individual differences across persons. Those arguments allow us to represent the
Tucker3 solution as in Fig. 1.7. There, the upper diagram in which inter-component
links correspond to G1 stands for the network common over persons, while the lower
diagram, the links corresponding to G2, expresses the individual differences in inter-
component links. The rules by which Fig. 1.7 was depicted are the same as (R1),
(R2), (R3) in Sect. 1.5.3, except the following point: the links have been omitted that
correspond to the elements of G1 and G2 less than five in Fig. 1.7.

The stimulus and response components in Fig. 1.7 can be given the same labels as
those for the Parafac solution, except for that the third stimulus component in Fig. 1.7
is interpreted simply as the sensor for red, as only that color is strongly associated
with the third component. The inter-component links corresponding to G1 are found
to be similar to the Parafac one, in that parallel links are dominant, except for that
the unparallel (negative) link of red to inactive is also found.

As described above, the matrix G2 in Hk = ck1G1 + ck2G2 stands for the indi-
vidual differences in inter-component links. For example, in Fig. 1.6, |c72| for person
7 is found to be large with c71 = 0.17 and c72 = −0.38, the links for that person
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are expressed as Hk = 0.17G1 − 0.38G2 . On the other hand, ck2 for k = 1, 2, 3 are
close to zero, thus Hk is almost proportional to G1.

1.6 Conclusions

In this chapter, we described the popular 3WPCA procedures, Tucker2, Tucker3,
and Parafac, which are designed for analyzing a three-way data array

...
X = {xi jk; i =

1, . . . , I ; j = 1, . . . , J ; k = 1, . . . , K } . This array can be rearranged in an I × J K
block matrix X = [X1, . . . , XK ] whose kth block Xk includes xi jk as its (i, j)
element. According as how to express three-way data, the models for 3WPCA can
be written in different forms. In Table1.3, the four forms used in this chapter are
listed. There, ◦, ⊗, and • denote the tensor, Kronecker, and Khatri-Rao products,
respectively, with hpq = [h pq1, . . . , h pq K ]′ (K × 1).

The four forms in Table1.3 were used for different purposes in this chapter. The
scalar and tensor forms were used for introducing Tucker3 and Parafac in Sect. 1.1.
On the other hand, thematrix expressionswithXk weremainly used for describing the
hierarchical relationships among 3WPCA and the ordinary PCA in Sect. 1.2. Those
expressions were also used for the network representations of 3WPCA models in
Sect. 1.5. The other matrix expression is the one with a block matrix X, which is
useful for describing the algorithms for 3WPCA and rotation methods, as found in
Sects. 1.3 and 1.4.

In Sect. 1.5, we illustrated the network representations of 3WPCA models for
“stimuli × responses × persons” data. Here, the data description can be replaced by
“inputs × outputs × black-boxes” to extend the areas in which 3WPCA is useful. In
various areas includingmedicine and engineering, the data are observed that describe
the outputs of black-boxes against input signals. 3WPCA allows us to visually cap-
ture the components and their mutual links in the black-boxes with the network
representations as in Figs. 1.2, 1.5, and 1.7. The data for which 3WPCA is usefully
performed are not restricted to such inputs× outputs× black-boxes ones. The appli-
cations to other types of data have been illustrated in Kroonenberg [19] and Simlde
et al. [25].

Table 1.3 Four expressions of data and the corresponding model parts

Data Tucker2 Tucker3 Parafac

1. Scalar xi jk

P∑

p=1

Q∑

q=1

aipb jq h pqk

P∑

p=1

Q∑

q=1

R∑

r=1

aipb jq ckr gpqr

P∑

p=1

aipb jpckp

2. Tensor
...
X

P∑

p=1

Q∑

q=1

ap ◦ bq ◦ hpq

P∑

p=1

Q∑

q=1

R∑

r=1

(ap ◦ bq ◦ cr )gpqr

P∑

p=1

ap ◦ bp ◦ cp

3. Matrix Xk AHkB′ A
R∑

r=1

ckr Gr B′ ADkB′

4. Matrix X AH(Ik ⊗ B)′ AG(C ⊗ B)′ A(C • B)′
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Chapter 2
Non-negative Matrix Factorization
and Its Variants for Audio Signal
Processing

Hirokazu Kameoka

Abstract In this chapter, I briefly introduce a multivariate analysis technique called
non-negative matrix factorization (NMF), which has attracted a lot of attention in the
field of audio signal processing in recent years. I will mention some basic properties
of NMF, effects induced by the non-negative constraints, how to derive an iterative
algorithm for NMF, and some attempts that have been made to apply NMF to audio
processing problems.

Keywords Non-negative matrix factorization · Majorization-minimization
algorithm · Bregman divergence · Bayesian nonparametrics · Audio signal
processing

2.1 Introduction

There are many kinds of real-world data given by non-negative values, such as power
spectra, pixel values and count data. In a way similar to multivariate analysis tech-
niques such as Principal Component Analysis (PCA) and Independent Component
Analysis (ICA), decomposing non-negative data into the sum of the underlying com-
ponents can be useful in many situations: For example, if we can extract the power
spectra of the underlying sources in a mixture signal, they may be useful for noise
reduction and source separation. If we can decompose face images into components
corresponding to facial features such as the eyes, nose and mouth, they may be use-
ful for face recognition, identification and synthesis. If we can decompose the word
histograms of text documents into components associated with latent topics such as
politics, sport and economy, they may be useful for document indexing and retrieval.
Similarly, if we can extract patterns reflecting users’ preferences from purchase logs,
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they may be useful for making recommendations. A multivariate analysis technique
enabling the decomposition of non-negative data into non-negative components is
called Non-negative Matrix Factorization (NMF) [1]. In this chapter, I will mention
some basic properties of NMF, how to derive an iterative algorithm for NMF, and
some attempts that have beenmade to applyNMF and its variants to audio processing
problems.

2.2 What Is NMF?

In the following, we will represent data by vectors. For image data, each pixel value
will correspond to a single element of the data vector. For power spectrum data, the
power at each frequency point will correspond to a single element of the data vector.
Let us assume that we are given a set of N non-negative data vectors y1, . . . , yN ∈
R

≥0,K . We refer to each of them as an observed vector. Here, R≥0,K is used to
represent an entire set of K -dimensional non-negative vectors. The aim of NMF is
to decompose each of y1, . . . , yN into the sum of M non-negative components: The
problem is to find the linear combinations of M basis vectors h1, . . . , hM ∈ R

≥0,K

that best approximate y1, . . . , yN :

yn �
M∑

m=1

hmum,n (n = 1, . . . , N ), (2.1)

subject to the non-negativity constraints on both the basis vectors hm and the coef-
ficients um,n . Here, it is important to note that the observed data are assumed to be
quantities that are additive in nature. Although neither a pixel value nor a power
spectrum is strictly an additive quantity, we must be aware of the fact that when
applying NMF, the additivity of the data of interest will be implicitly assumed to
hold, regardless of whether this assumption is true or only approximately true. The
non-additivity of power spectra will be discussed in detail in Sect. 2.7. In addition to
the additivity assumption as regards the data, the non-negativity constraint is one of
themost important features of NMF. As explained later, the non-negativity constraint
contributes to inducing sparsity of both the basis vectors and the coefficients.

Now, if we let Y = [ y1, . . . , yN ] = (yk,n)K×N , H = [h1, . . . , hM ] = (hk,m)K×M

and U = (um,n)M×N , Eq. (2.1) can be rewritten as Y � HU . NMF can thus be seen
as a problem of factorizing an observed matrix into the product of two non-negative
matrices, which gives NMF its name. To understand NMF intuitively, see Fig. 2.1
for an example of NMF applied to the spectrogram of an audio signal, interpreted as
a non-negative matrix.
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Fig. 2.1 NMF applied to the
spectrogram of an audio
signal. Each column of H
and each row of U can be
interpreted as a spectral
template and the
corresponding temporal
activation, respectively. HU
can thus be viewed as the
sum of the spectral templates
scaled by time-varying
amplitudes

2.3 Basic Properties of NMF

The number M of basis vectors is usually set smaller than the dimension K and
the number N of data vectors. This is because when M ≥ K or M ≥ N , there are
trivial solutions to the factorization Y = HU . For example, when M = K , we have
Y = IU and when M = N , we have Y = H I , where I denotes an identity matrix.
Obviously, neither of these decompositions provides information about the latent
components underlying the data. When M < min(K , N ), the factorization amounts
to approximating the data matrix using a lower rank matrix, which provides mean-
ingful information about the latent components. Geometrically, while PCA (singular
value decomposition) tries to find a linear subspace towhich observed vectors belong,
NMF can be interpreted as finding a convex cone (see Fig. 2.2) that is closest to the
entire set of observed vectors. The number M of basis vectors corresponds to the
dimension of the convex cone, which depends on the data and is usually unknown.
Thus, determining M is an important issue in NMF. Recent techniques for determin-
ing M will be mentioned in Sect. 2.8.

With NMF, the elements of the coefficient matrix U tend to become sparse as
a side effect of the non-negativity constraint. The intuitive reason for this can be
explained as follows. First, let us consider an unconstrained optimization problem
û = argmin

u
D( y|Hu) where D(·|·) is a measure of the difference between two

vectors. Hû corresponds to the closest point from y in the subspace spanned by
h1, . . . , hM . If D is defined as an �2 norm, for example, this point simply corre-
sponds to the orthogonal projection of y onto the subspace. Now, let us denote
the solution to this optimization problem under the non-negativity constraint by ũ.
Except for a coincidental case where the unconstrained optimal solution û satisfies
the non-negativity constraint, Hũ will be a closest point to û in the convex cone
shown in Fig. 2.2, namely some point on the boundary of the cone. This means at
least one of the elements of the coefficient vector becomes 0. Therefore, the con-
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Fig. 2.2 Geometric understanding of NMF. Because of the non-negativity of H , all basis vectors
lie in the first quadrant. Because of the non-negativity of U , Hun can only cover the area enclosed
by the extended lines of all the basis vectors. Thus, NMF can be interpreted as finding a convex
cone that is closest to the entire set of observed vectors

strained optimal solution ũ becomes relatively sparser (with a larger number of zero
entries) than the unconstrained optimal solution û. This explains why NMF tends to
produce sparse representations. It is important to note that sparsity is related to sta-
tistical independence (non-Gaussianity). Thus, roughly speaking, producing sparse
representations implies that each row of the coefficientmatrix tends to become uncor-
related. The above property also applies to the transposition of Y � HU , i.e., YT �
UT HT, meaning that H also tends to become sparse owing to the non-negativity
constraint on H .

2.4 NMF Algorithms

2.4.1 Positive Matrix Factorization and NMF

The original concept of NMFwas first introduced by Paatero and Tapper in 1994 [2].
Within their formulation, they used the Frobenius norm of Y − HU as a measure of
the difference between Y and HU and a logarithmic barrier function

B(H, U) = −
∑

k,m

log hk,m −
∑

m,n

log um,n (2.2)

as a penalizing term for violations of the non-negativity constraint, which approaches
infinity as hk,m or um,n approaches zero. They proposed a gradient-based optimization
algorithm for minimizing the cost function defined as a weighted sum of these two
terms.
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Because of the property of the logarithmic barrier function, the elements of the
matrices given by this method must always be positive (they never become zero).
Thus, it is usually called “PositiveMatrix Factorization (PMF)”, which distinguishes
it from NMF. Several years later, Lee and Seung proposed an iterative scheme called
the multiplicative update algorithm, which ensures the non-negativity of H and
U without using barrier functions [1]. Owing to the simplicity of its implemen-
tation, NMF has subsequently gained considerable momentum in a wide range of
research areas.

2.4.2 Divergence Measures

NMF leads to different optimization problems according to the definition of the
measure of the difference betweenY and HU . Lee and Seung have proposed deriving
NMF algorithms using the Frobenius norm and the generalized Kullback-Leibler
(KL) divergence (also known as the I divergence) [3] as the goodness-of-fit criteria.
Of course, the optimal values of H and U depend on the choice of these criteria.
It is desirable that the goodness-of-fit criterion be set according to the underlying
generative process of the data Y . For example, the Itakura-Saito (IS) divergence is
often used as themodel-fitting criterion forNMFwhen it is applied to power spectrum
data [4, 5]. This is actually based on an assumption about the generative process of
time-domain signals (as explained in Sect. 2.7.3).

For y, x ∈ R, the Euclidean distance (squared error), the generalized KL diver-
gence and the IS divergence of x from y are defined as

DEU(y|x) = (y − x)2, (2.3)

DKL(y|x) = y log
y

x
− y + x, (2.4)

DIS(y|x) = y

x
− log

y

x
− 1, (2.5)

respectively. All of these metrics become 0 only when x = y and increase monoton-
ically as x and y become more distant. Figure2.3 shows the graph of each of these
measures seen as a function of x . While the Euclidean distance is symmetric about
x = y, the generalized KL divergence and the IS divergence are asymmetric and
impose larger penalties when x is below y than when x is above y. It is also impor-
tant to note that the IS divergence is invariant under the scaling of x and y since it is
represented using only the ratio of x to y. By using these metrics, we can measure
the difference between HU and Y with

D·(H, U) =
∑

k,n

D·
(

yk,n

∣∣∣
∑

m

hk,mum,n

)
,

where · indicates EU, KL or IS.
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Fig. 2.3 Graph of
DEU/KL/IS(y|x) as a
function of x
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2.4.3 Auxiliary Function Approach

The goal of NMF is to find optimal values for H and U that minimize one of these
kinds of measures subject to the non-negativity constraint. Although it is usually
difficult to obtain an analytical expression of the global optimum solution, one of
the local optimum solutions can be searched for numerically using the “auxiliary
function approach” (also known as the “Majorization-Minimization algorithm”)
[7, 25]. As explained later, the auxiliary function approach makes it possible to
locally minimize an objective function by iteratively minimizing an auxiliary func-
tion whose lower bound is exactly equal to the objective function value. It should be
noted that the Expectation-Maximization (EM) algorithm [8], a popular technique
for maximum likelihood estimation from incomplete data, is a special case of this
approach.

InNMF, the non-negativity constraintmust be considered. If the objective function
were given as the sumof individual terms, each relating to onematrix element, solving
the constrained optimization problem would be relatively simple. But of course this
is not the case. If we can use such a function as an auxiliary function, the constrained
optimization problemofNMFcan be solved in an iterativemanner using the auxiliary
function approach.

The definition of the auxiliary function and the principle of the auxiliary function
approach are as follows.

Definition 2.1 Given an objective function D(θ) with the parameter θ = {θi }1≤i≤I ,
G(θ,α) is defined as an auxiliary function of D(θ) if it satisfies
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D(θ) = min
α

G(θ,α), (2.6)

where we refer to α as auxiliary variables.

Theorem 2.1 D(θ) is non-increasing under the updates:

α ← argmin
α

G(θ,α), (2.7)

θi ← argmin
θi

G(θ,α) (i = 1, . . . , I ). (2.8)

Proof Let us set θ at an arbitrary value θ(�) and define

α(�+1) = argmin
α

G(θ(�),α), θ(�+1) = {
argmin

θi

G(θ,α(�+1))
}
1≤i≤I . (2.9)

First, it is obvious that D(θ(�)) = G(θ(�),α(�+1)). Next, we can confirm that G(θ(�),

α(�+1)) ≥ G(θ(�+1),α(�+1)). By definition, it is clear that G(θ(�+1),α(�+1)) ≥
D(θ(�+1)) and so we can finally show that D(θ(�)) ≥ D(θ(�+1)). A sketch of this
proof can be found in Fig. 2.4.

Fig. 2.4 Sketch of process
of auxiliary function method
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2.4.4 NMF Algorithm with Euclidean Distance

By employing the principle of the auxiliary function approach, we first derive an
NMF algorithm using DEU(H, U) as the goodness-of-fit criterion. By using

z= to
denote equality up to a term independent of z, we can write DEU(H, U) as

DEU(H, U)
H,U=

∑

k,n

(−2yk,n xk,n + x2
k,n), (2.10)

where

xk,n =
∑

m

hk,mum,n. (2.11)

We want to design an auxiliary function such that the matrix elements are sep-
arated into individual terms. Note that x2

k,n is a term involving hk,1, . . . , hk,M and
u1,n, . . . , uM,n . Since a quadratic function is convex,we can employ Jensen’s inequal-
ity to construct a desired auxiliary function.

Theorem 2.2 (Jensen’s inequality for convex functions with non-negative argu-
ments (Fig. 2.5)) For an arbitrary convex function g with I non-negative arguments
z1, . . . , zI , we have

g
( ∑

i

zi

)
≤

∑

i

λig

(
zi

λi

)
, (2.12)

where λ1, . . . ,λ1 are non-negative weights satisfying
∑

i λi = 1. Equality in this
inequality holds when

λi = zi∑
j z j

. (2.13)

Fig. 2.5 Jensen’s inequality
for functions with
non-negative arguments for
I = 2 case
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Since hk,mum,n ≥ 0, we can apply this to x2
k,n

x2
k,n ≤

∑

m

λk,m,n

(
hk,mum,n

λk,m,n

)2

, (2.14)

where λk,m,n ≥ 0,
∑

m λk,m,n = 1. Here, we notice that the right-hand side of this
inequality is given as the sum of terms each relating to hk,m and um,n . It is also
important to note that the equality holds when hk,1u1,n

λk,1,n
= · · · = hk,M uM,n

λk,M,n
, namely

λk,m,n = hk,mum,n

xk,n
. (2.15)

Hence, the function obtained by replacing the term x2
k,n in DEU(H, U) with the

right-hand side of Eq. (2.14)

GEU(H, U,λ) =
∑

k,n

(
y2k,n − 2yk,n

∑

m

hk,mum,n +
∑

m

h2
k,mu2

m,n

λk,m,n

)
(2.16)

satisfies the requirement of an auxiliary function for DEU(H, U). Here, λ =
{λk,m,n}K×M×N . By using GEU(H, U,λ), we can develop an iterative algorithm
for locally minimizing DEU(H, U), that consists of performing

λ ← argmin
λ

GEU(H, U,λ), (2.17)

H ← argmin
H

GEU(H, U,λ), U ← argmin
U

GEU(H, U,λ). (2.18)

First, Eq. (2.17) is given as Eq. (2.15) as mentioned above. Next, Eq. (2.18) must
be solved subject to non-negativity. GEU(H, U,λ) is a quadratic function of each
matrix element hk,m , which can be minimized when

ĥk,m =

∑

n

yk,num,n

∑

n

u2
m,n/λk,m,n

. (2.19)

In the same way, GEU(H, U,λ) can be minimized with respect to um,n when

ûm,n =

∑

k

yk,nhk,m

∑

k

h2
k,m/λk,m,n

. (2.20)



32 H. Kameoka

If these values become negative, the minimizers of GEU(H, U,λ) within the non-
negativity constraint will obviously be hk,m = 0 and um,n = 0. Thus, Eq. (2.18) is
given as hk,m = max{ĥk,m, 0} and um,n = max{ûm,n, 0}. Note, however, that when
all the elements of H , U and λ are non-negative, both (2.19) and (2.20) necessarily
become non-negative. Hence, if the initial values of H and U are set at non-negative
values, hk,m and um,n will always be updated to non-negative values. In such a
situation, the update equations for hk,m and um,n can bewritten simply as hk,m = ĥk,m

and um,n = ûm,n . By substituting Eq. (2.17) into Eq. (2.18), we obtain the following
algorithm:

NMF algorithm with the Euclidean distance

1. Set H and U at non-negative values.
2. Repeat the following updates until convergence.

hk,m ← hk,m

∑

n

yk,num,n

∑

n

xk,num,n

um,n ← um,n

∑

k

yk,nhk,m

∑

k

xk,nhk,m

Since each variable is updated bymultiplying the value at the previous iteration by
a non-negative factor, this kind of algorithm is often referred to as a “multiplicative
update algorithm” [1].

2.4.5 NMF Algorithm with I Divergence

An NMF algorithm using DKL(H, U) as a goodness-of-fit criterion can be derived
in a similar way. DKL(H, U) is equal up to a constant term to

DKL(H, U)
H,U=

∑

k,n

(−yk,n log xk,n + xk,n). (2.21)

Here, −yk,n log xk,n is a nonlinear term involving hk,1, . . . , hk,M and u1,n, . . . , uM,n .
By using the fact that a negative logarithmic function is convex and hk,mum,n ≥ 0,
we can apply Theorem 2.2

− log xk,n ≤ −
∑

m

λk,m,n log

(
hk,mum,n

λk,m,n

)

to construct a desired auxiliary function, from which we obtain the following
algorithm:
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NMF algorithm with generalized KL divergence (I divergence)

1. Set H and U at non-negative values.
2. Repeat the following updates until convergence.

hk,m ← hk,m

∑

n

yk,num,n
/

xk,n

∑

n

um,n

um,n ← um,n

∑

k

yk,nhk,m
/

xk,n

∑

k

hk,m

2.4.6 NMF Algorithm with IS Divergence

Here, we show an NMF algorithm using the IS divergence as a goodness-of-fit
criterion developed by the author in 2006 [9]. By omitting the terms that do not
depend on H and U , DIS(H, U) is written as

DIS(H, U)
H,U=

∑

k,n

(
yk,n

xk,n
+ log xk,n

)
. (2.22)

In a way similar to that described in the previous subsection, we want to design an
auxiliary function such that the matrix elements are separated into individual terms.
First, by using the fact that the reciprocal function is convex on a positive half-axis,
hk,mum,n ≥ 0 and yk,n ≥ 0, we can apply Theorem 2.2 to the term 1/xk,n

1

xk,n
≤

∑

m

λk,m,n

(
1

/
hk,mum,n

λk,m,n

)
, (2.23)

where λk,m,n is a positive weight satisfying λk,m,n > 0 and
∑

m λk,m,n = 1. Next,
let us focus on the term log xk,n . Since the positive logarithmic function is concave
(not convex), the strategy using Jensen’s inequality cannot be used. However, we
can apply a different inequality as described below. Given a differentiable concave
function g, we can show that a tangent line to g at an arbitrary tangent point α ∈ R

lies entirely above the graph of g, namely for all x ∈ R,

g(x) ≤ g(α) + (x − α)g′(α). (2.24)
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Obviously, the equality of this inequality holds if and only if α = x . By applying
this to log xk,n , we obtain

log xk,n ≤ logαk,n + 1

αk,n
(xk,n − αk,n), (2.25)

where αk,n is an arbitrary real number. It is important to note that the right-hand side
of this inequality is given as a first order function of the matrix elements. Hence, the
function obtained by replacing the terms 1/xk,n and log xk,n in DIS(H, U) with the
right-hand sides of Eqs. (2.23) and (2.25), such that

GIS(H, U,λ,α)=
∑

k,n

( ∑

m

yk,nλ
2
k,m,n

hk,mum,n
+

∑

m

hk,mum,n

αk,n
− log yk,n + logαk,n − 2

)
,

(2.26)

satisfies the requirement of an auxiliary function for DIS(H, U) [9]. Note that the
equalities of Eqs. (2.23) and (2.25) hold if and only if

λk,m,n = hk,mum,n

xk,n
, αk,n = xk,n. (2.27)

By applying Theorem 2.1 and deriving each update equation, we obtain the following
algorithm:

NMF algorithm with the IS divergence

1. Set H and U at non-negative values.
2. Repeat the following updates until convergence.

hk,m ← hk,m

⎛

⎜⎜⎝

∑

n
yk,num,n

/
x2k,n

∑

n
um,n/xk,n

⎞

⎟⎟⎠

1/2

um,n ← um,n

⎛

⎜⎜⎝

∑

k

yk,nhk,m
/

x2k,n

∑

k

hk,m/xk,n

⎞

⎟⎟⎠

1/2

2.4.7 NMF Algorithm with β Divergence

The three divergence measures given in Eqs. (2.3)–(2.5) can be described in a unified
manner using a criterion called the β divergence [10]
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Dβ(y|x) = y
yβ−1 − xβ−1

β − 1
− yβ − xβ

β
, (2.28)

where β is a real number such that β �= 0 and β �= 1. By using the fact that
limβ→0(xβ − yβ)/β = log(x/y), it can be confirmed that Eq. (2.28) reduces to the IS
divergence when β → 0, the I divergence when β → 1 and the Euclidean distance
when β = 2, respectively. Here, we show a generalized NMF algorithm using the
β divergence as a goodness-of-fit criterion, that we have previously developed [11].
The first term (yβ−1 − xβ−1)/(β − 1) of Eq. (2.28) is convex in x when β ≤ 2 and
is concave otherwise. On the other hand, the second term −(yβ − xβ)/β is concave
in x when β ≤ 1 and is convex otherwise. In a way similar to the idea of [9], we
can construct an auxiliary function by applying Eq. (2.12) to the convex term and
Eq. (2.24) to the concave term. By using this auxiliary function, we can derive update
equations given in closed form in the same way as in the previous subsections. The
NMF algorithm derived using this idea is summarized as follows:

NMF algorithm with the β divergence

1. Set H and U at non-negative values, choose β and set ϕ(β) at

ϕ(β) =

⎧
⎪⎨

⎪⎩

1/(2 − β) (β < 1)
1 (1 ≤ β ≤ 2)
1/(β − 1) (β > 2)

.

2. Repeat the following updates until convergence.

hk,m ← hk,m

⎛

⎜⎜⎝

∑

n
yk,n xβ−2

k,n um,n

∑

n
xβ−1

k,n um,n

⎞

⎟⎟⎠

ϕ(β)

um,n ← um,n

⎛

⎜⎜⎜⎝

∑

k

yk,n xβ−2
k,n hk,m

∑

k

xβ−1
k,n hk,m

⎞

⎟⎟⎟⎠

ϕ(β)

It can be readily verified that the above algorithm reduces to the multiplicative
update algorithmswith the IS divergence, the I divergence and theEuclidean distance
presented in Sects. 2.4.4, 2.4.5 and 2.4.6 when β = 0, 1, 2, respectively.

2.5 Interpretation of NMF as Generative Model

2.5.1 β Divergence Versus Tweedie Distribution

The optimization problems of NMF with the Euclidean distance, I divergence,
IS divergence and β divergence are equivalent to the problems of the maximum
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likelihood estimation of H and U , where each element ykn of Y is assumed to have
been generated independently from the normal distribution, Poisson distribution,
exponential distribution and Tweedie distribution with the mean xk,n

yk,n ∼ N (yk,n; xk,n,σ
2), (2.29)

yk,n ∼ Poisson(yk,n; xk,n), (2.30)

yk,n ∼ Exponential(yk,n; xk,n), (2.31)

yk,n ∼ Tweedie(yk,n; xk,n,φ), (2.32)

respectively, where

N (z;μ,σ2) = 1√
2πσ2 e−(z−μ)2/2σ2

, (2.33)

Poisson(z;μ) = μze−μ/z! (z ≥ 0), (2.34)

Exponential(z;μ) = 1
μ

e−z/μ (z ≥ 0), (2.35)

Tweedie(z;μ,φ) = a(z,φ)e
1
φ (zρ(μ)−κ(μ))

, (2.36)

ρ(μ) =
{

μβ−1−1
β−1 (β �= 1)

logμ (β = 1)
, κ(μ) =

{
μβ−1

β
(β �= 0)

logμ (β = 0).

This can be confirmed as follows. All the log-likelihoods L(xk,n) = log p(yk,n|xk,n)

defined by Eqs. (2.29)–(2.32) are maximized when xk,n = yk,n . Thus, L(yk,n) ≥
L(xk,n). Hence, the log-likelihood differences L(yk,n) − L(xk,n) can be regarded as
non-negative measures of the dissimilarity between yk,n and xk,n that become 0 only
when xk,n = yk,n . We can see that the log-likelihood differences L(yk,n) − L(xk,n)

for Eqs. (2.29)–(2.32) are equal to Eqs. (2.3)–(2.5) and (2.28), respectively.

2.5.2 Bregman Divergence Versus Natural Exponential
Family

Aswe have seen in the four examples above, an assumption regarding the divergence
measure for a certain model-fitting problem is associated with a probability density
function assumption regarding the observed data. In this subsection, I show that
the class of probabilistic distributions belonging to the natural exponential family is
associated with the class of goodness-of-fit criteria called the Bregman divergence
and that theβ divergence is a special case of theBregmandivergence. In the following,
I will omit the subscripts k, n for simplicity and assume that an element y of the
observedmatrix follows aprobability distributionbelonging to the exponential family

y ∼ exp
{
ηT (y) − ψ(η) + c(y)

}
, (2.37)
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where ψ is an infinitely differentiable, strictly convex function. η is called a natural
parameter and is a function of the parameters characterizing the distribution.Here,we
consider the case T (y) = y, whose distribution class is called the natural exponential
family.

First, we introduce the Legendre transform of ψ

φ(z) = max
v

(vz − ψ(v)). (2.38)

Sinceψ is a convex function, φ also becomes a convex function due to the property of
the Legendre transform. By using v∗ to denoteφ(z), i.e., v thatmaximizes vz − ψ(v),
v∗ satisfies (vz − ψ(v))′ = 0, namely

ψ′(v∗) = z. (2.39)

Next, by using the fact that the cumulant generating function of y ∼ exp
{
ηy −

ψ(η) + c(y)
}
is given as K (t) = logE[eyt ] = ψ(t + η) − ψ(η), we can write x :=

E[y] = K ′(0) as

x = ψ′(η). (2.40)

Since ψ is a convex function, ψ′ is a one-to-one function. Thus, there is a one-to-one
correspondence between η and x . By comparing Eq. (2.40) with Eq. (2.39), we can
show that η = argmax

v

(vx − ψ(v)). φ(x) can thus be written as

φ(x) = η(x)x − ψ(η(x)). (2.41)

Note that here η is written as η(x) to emphasize that it is a function of x . Here, by
differentiating both sides of Eq. (2.41) with respect to x , we have

φ′(x) = η(x) + η′(x)x − ψ′(η(x))η′(x). (2.42)

By plugging Eq. (2.40) into Eq. (2.42), the second and third terms cancel each other
out, thus resulting in φ′(x) = η(x).

By substituting the two relationships φ(x) = ηx − ψ(η) and φ′(x) = η(x) given
above into the probability density functionof the natural exponential family exp{ηy −
ψ(η) + c(y)} = exp{ηx − ψ(η) + η(y − x) + c(y)}, we obtain

p(y|x) = exp{φ(x) + φ′(x)(y − x) + c(y)}. (2.43)

Here, it is important to note that the log-likelihood of x , L(x) = log p(y|x) = φ(x) +
φ′(x)(y − x) + c(y), is maximized when x = y, since (φ(x) + φ′(x)(y − x))′ =
φ′′(x)(y − x). Thus, L(y) ≥ L(x). Hence, the log-likelihood difference
L(y) − L(x)
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Fig. 2.6 Bregman
divergence

Dφ(y|x) = φ(y) − φ(x) − φ′(x)(y − x), (2.44)

can be regarded as a non-negative measure of the dissimilarity between x and y that
becomes 0 only when x = y. This measure is called the Bregman divergence [12].
As shown in Fig. 2.6, Dφ(y|x) corresponds to the difference between the convex
function φ and its tangent line at point x . We can see from this figure that Dφ(y|x)

is always non-negative and that Dφ(y|x) becomes 0 only when x and y are equal.
The β divergence introduced in Sect. 2.4.7 is a special case of the Bregman diver-

gence with

φ(x) =

⎧
⎪⎨

⎪⎩

−logx + x − 1 (β = 0)

x log x − x + 1 (β = 1)
xβ

β(β−1) − x
β−1 + 1

β
(otherwise)

[13]. (2.45)

Thus, the Euclidean distance, I divergence, and IS divergence, which are special
cases of the β divergence, are also special cases of the Bregman divergence.

An attempt was made by Dhillon and Sra to derive a multiplicative update algo-
rithm forNMFwith theBregman divergence under a limited class ofφ [14].However,
its generalization to an arbitrary φ has yet to be proposed.

2.6 Relation to Probabilistic Latent Semantic
Analysis (pLSA)

The concept of probabilistic Latent Semantic Analysis (pLSA) [15], which is a
technique that was originally developed for document clustering and indexing, is
closely related to NMF. This section describes the relationship between these two
techniques.

Let yk,n be the number of times word k occurs in document n. The histogram of
all possible words yn = (y1,n, . . . , yK ,n)

T in document n is called a document data.
The number of times a particular word occurs may depend heavily on the topic of
the document such as politics, economy, sports, entertainment, and culture. The aim
of pLSA is to estimate topics from document data based on this dependence.
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Let p(k|m) be the probability that word k occurs when the topic is m and p(m|n)

be the probability that the topic of document n is m. Then, the probability p(k|n)

that word k occurs in document n can be written as

p(k|n) =
∑

m

p(k|m)p(m|n). (2.46)

Byputting xk,n = p(k|n), hk,m = p(k|m) andum,n = p(m|n), and by arranging them
in matrices X = (xk,n)K×N , H = (hk,m)K×M and U = (um,n)M×N , Eq. (2.46) can
be written in matrix notation as X = HU . If each word in a set of document data
is assumed to be generated independently according to the distribution p(k|n), the
probability that all the document data are generated becomes

∏
k,n p(k|n)yk,n . Since

both Hk,m = p(k|m) and Um,n = p(m|n) are unknown, the maximum likelihood
estimation of H and U can be formulated as an optimization problem of maximizing

log p(Y |H, U) =
∑

k,n

yk,n log xk,n, (2.47)

with respect to H and U subject to non-negativity and sum-to-one constraints:
hk,m ≥ 0,

∑
k hk,m = 1, um,n ≥ 0,

∑
m um,n = 1. By comparing Eqs. (2.47) and

(2.21), we notice that the above log-likelihood is exactly opposite to the first term of
Eq. (2.21). Furthermore, as the second term of Eq. (2.21) can be seen as correspond-
ing to a Lagrange multiplier term for xk,n , the pLSA optimization problem has the
same form as that of NMF with the I divergence criterion. Indeed, it turns out that
the optimization algorithm described in Sect. 2.4.5 is equivalent to the expectation-
maximization (EM) algorithm obtained by treating the topic index m as a latent
variable up to the normalization of H and U .

As described above, the way in which the likelihood function of pLSA is defined
is different from NMF described in Sect. 2.5. While pLSA treats hk,m and um,n as
probability distributions over k andm, NMF treats themas randomvariables.Namely,
pLSA is categorized as mixture models (models defined as the sum of probability
distributions) whereas NMF is categorized as factor models (models defined as the
distribution of the sum of random variables). The Bayesian extension of pLSA is
called the latent Dirichlet allocation (LDA) [16] and the Bayesian extension of NMF
with the I divergence criterion is discussed for example in [17].

2.7 Applications to Audio Signal Processing Problems

2.7.1 Audio Source Separation and Music Transcription

Smaragdis and Brown proposed an automatic music transcription method that
uses NMF to decompose the magnitude (or power) spectrograms of music signals
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into spectrograms associated with individual pitches [18]. With this approach, the
magnitude (or power) spectrogram of a mixture signal, interpreted as a non-negative
matrix Y , is factorized into the product of two non-negative matrices H and U
(See Fig. 2.1). This can in turn be interpreted as approximating the observed spectra
at each time frame as a linear sum of basis spectra scaled by time-varying ampli-
tudes, and amounts to decomposing the observed spectrogram into the sum of rank-1
spectrograms. As described in Sect. 2.3, an important feature of NMF is that its non-
negativity constraint usually induces sparse representations, i.e., U with a relatively
large number of zero entries. This means that each observed spectrum is parsimo-
niously represented using only a few active basis spectra. In such situations, the
sequence of observed spectra can be approximated reasonably well when each basis
spectrum expresses the spectrum of an underlying audio event that occurs frequently
over the entire observed range. Thus, withmusic signals, each basis spectrum usually
becomes the spectrum of a frequently used pitch in the music piece under analysis.

This approach is based on two assumptions; one is that magnitude (or power)
spectra are additive and the other is that the magnitude spectrum of each sound
source is constant up to the scale over time (i.e., only the scale of the spectrum
is time-variant). However, these assumptions do not hold in reality. This section
introduces some of the attempts that have been made to develop variants of NMF
that aim to relax these assumptions.

2.7.2 Complex NMF

Audio signals in the time domain (sound waves) are additive. Since typical methods
for time-frequency decomposition, such as the short-time Fourier transform (STFT)
and the wavelet transform, are linear, complex spectrograms of audio signals are also
additive. However, since the transformation of complex spectrograms into magni-
tude (or power) spectrograms is nonlinear, magnitude spectrograms are non-additive.
Namely, the magnitude spectrum of the sum of two waveforms is not equal to the
sum of the magnitude spectra of the two waveforms. This implies that decomposing
a magnitude spectrogram into the sum of additive components does not necessarily
lead to an appropriate decomposition of the audio signal.

To address this shortcoming of the NMF approach, I previously proposed a frame-
work called the “Complex NMF” [19], which makes it possible to realize NMF-like
signal decompositions in the complex spectrogram domain. The key idea behind the
NMF approach was to model the magnitude spectrogram of a mixture signal as the
sum of rank-1 magnitude spectrograms. By contrast, the key idea behind the pro-
posed approach is to model the complex spectrogram of a mixture signal as the sum
of complex spectrograms each having a rank-1 structure in the magnitude domain.
This idea can be formulated as follows.
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Let am,k,n ∈ C denote the complex spectrogram of source m. The complex
spectrogram of a mixture signal consisting of M sources is given as

fk,n =
M∑

m=1

am,k,n =
∑

m

|am,k,n|e jφm,k,n , (2.48)

where φm,k,n denotes the phase spectrogram of source m. Here, if we assume that
the magnitude spectrogram of each source has a rank-1 structure, we can write
|am,k,n| = hk,mum,n . This leads to a complex spectrogram model of the form:

fk,n =
∑

m

hk,mum,ne jφm,k,n . (2.49)

It is important to emphasize that φm,k,n is indexed by n, meaning that this model
allows the phase spectrum of each source to vary freely over time. The aim of
Complex NMF is to fit this model to an observed complex spectrogram through the
estimation of H , U and φ. It should be noted that unlike NMF, this model allows
the components to cancel each other out (since the real and imaginary parts of the
complex spectrum of each source can take either positive or negative values), and so
when there are no constraints, it does not naturally produce sparse representations.
Thus, to obtain sparse representations similar to NMF, some constraint is needed to
induce the sparsity ofU . In [19], I formulated an optimization problem ofminimizing

I (H, U,φ) :=
∑

k,n

∣∣yk,n − fk,n

∣∣2 + 2γ
∑

m,n

|um,n|p, (2.50)

with respect to H ,U and φwhere the second term is a sparse regularization term, and
derived an iterative algorithm based on the auxiliary function approach. Here, 0 <

p < 2 and γ ≥ 0 are constants. The main difficulty with this optimization problem
lies in the nonlinear interdependence ofφ1,k,n, . . . ,φM,k,n and the discontinuity of the
gradients with respect to um,n . The nonlinear interdependence of φ1,k,n, . . . ,φM,k,n

arises from the “square-of-sum” form in the first term of Eq. (2.50). To derive closed-
form update equations using the auxiliary function approach in a similar way to
Sect. 2.4.4, it is desirable to design an upper bound function that has a “sum-of-
squares” form for this term. However, unlike Sect. 2.4.4, Theorem 2.2 cannot be
applied in this case, since hk,mum,ne jφm,k,n is a complex number. Instead, in [19] I
proposed invoking the following inequality:

Theorem 2.3 (Jensen’s inequality for convex functions with complex arguments)
For an arbitrary convex function g with complex arguments y and z1, . . . , zI ,
we have

g
(

y −
∑

i

zi

)
≤

∑

i

βig

(
αi − zi

βi

)
, (2.51)
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where α1, . . . ,α1 are complex variables satisfying
∑

i α = y and β1, . . . ,β1 are
positive weights satisfying

∑
i β = 1. Equality in this inequality holds when

αi = zi + βi

(
y −

∑

i

zi

)
. (2.52)

Proof Since
∑

i α = y, we can write g(y − ∑
i zi ) = g(

∑
i (αi − zi )). By using

arbitrary positive weights β1, . . . ,β1 that sum to one, we obtain

g
( ∑

i

(αi − zi )
)

= g

(
∑

i

βi
αi − zi

βi

)

≤
∑

i

βig

(
αi − zi

βi

)
, (2.53)

where the second line follows from Jensen’s inequality. Note that equality in this
inequality holds when

α1 − z1
β1

= · · · = αI − zI

βI
. (2.54)

Letting Z denote the value of Eq. (2.54), αi is given as αi = zi + βi Z . Since αi

must sum to y, i.e.,
∑

i αi = ∑
i zi + Z = y, Z is given by Z = y − ∑

i zi . By
substituting this into αi = zi + βi Z , we finally obtain Eq. (2.52).

As for the second term of Eq. (2.50), which is non-differentiable with respect to
um,n , we can use the fact that, when 0 < p ≤ 2,

|um,n|p ≤ p|vm,n|p−2

2
u2

m,n + 2 − p

2
|vm,n|p, (2.55)

to construct an upper bound function. Altogether, we obtain an auxiliary function

I +(H, U,φ,α, V ) :=
∑

k,n,m

1

βm,k,n

∣∣∣αm,k,n − hk,mum,nejφm,k,n

∣∣∣
2

+ γ
∑

m,n

{
p|vm,n|p−2um,n

2 + (2 − p)|vm,n|p
}
, (2.56)

which has a “sum-of-squares” form. Here, βm,k,n is a positive weight that can be set
arbitrarily subject to

∑
m βm,k,n = 1.αm,k,n and vm,n are auxiliary variables satisfying∑

m αm,k,n = yk,n . By using this, we can develop a convergence-guaranteed iterative
algorithm with closed-form update equations.
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2.7.3 Itakura-Saito NMF

Although the additivity of power spectra does not generally hold asmentioned above,
it holds in the expectation sense if the signals are assumed to be samples drawn
independently from stochastic processes.

If each underlying source signal in a mixture signal within a short-term segment
is assumed to have been generated from a zero-mean circularly-stationary Gaussian
process, each frequency component of the discrete Fourier transform of that segment
independently follows a zero-mean complex normal distribution. Namely, if we let
sm,k,n be a component of frequency k of source signal m within segment n (i.e.,
the complex spectrogram of source m), sm,k,n follows a zero-mean complex normal
distribution

sm,k,n ∼ NC

(
sm,k,n; 0, νm,k,n

)
, (2.57)

with variance νm,k,n , whereNC(z;μ, ν) = 1
πν

e−|z−μ|2/ν . Note that νm,k,n corresponds
to the expectation of the power spectrogram of source m, i.e., νm,k,n = E[|sm,k,n|2].
Now, if we assume that the complex spectrogram yk,n of an observed signal is given as
yk,n = ∑

m sm,k,n , and that sm,k,n and sm ′,k,n (m �= m ′) are statistically independent,
yk,n also follows a zero-mean complex normal distribution

yk,n ∼ NC

(
yk,n; 0,

∑

m

νm,k,n

)
, (2.58)

with variance
∑

m νm,k,n . By putting xk,n = ∑
m νm,k,n , the log-likelihood of xk,n

given an observation yk,n can be written as

L(xk,n) = − logπxk,n − |yk,n|2
xk,n

. (2.59)

Since this log-likelihood reaches maximum only when xk,n = |yk,n|2, we have
L(|yk,n|2) ≥ L(xk,n).Wenotice that the log-likelihooddifferenceL(|yk,n |2) − L(xk,n)

≥ 0 is actually equal to the IS divergence between |yk,n|2 and xk,n , i.e., DIS(|yk,n|2
|xk,n). Thus, if we assume the expectation of the power spectrogram of each source to
have a rank-1 structure, i.e., νm,k,n = hk,mum,n , the maximum likelihood estimation
of H = (hk,m)K×M and U = (um,n)M×N is equivalent to the problem of NMF with
the IS divergence criterion applied to the observed power spectrogram |yk,n|2 [4, 5].

2.7.4 NMF with Time-Varying Bases

When applying NMF to music spectrograms, we may expect the magnitude spec-
tra of a single musical note produced by an instrument to be represented using a
single basis spectrum scaled by time-varying amplitudes. However, its variations in
time are actually much richer. For example, a piano note would be more accurately
characterized by a succession of several basis spectra corresponding to, for example,
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“attack,” “decay,” “sustain” and “release” segments. As another example, singing
voices and string instruments have a particular musical effect, vibrato, which can be
characterized by its “depth” (the range of pitch variation), and its “speed” (the rate
at which the pitch varies). Several variants of NMF have been proposed to represent
time-varying spectra by introducing the concept of time-varying bases [20–22].

One approach involves extending NMF to a convolutional version, which finds a
decomposition of Y as

yk,n � xk,n =
∑

m

∑

l

hk,m,lum,n−l , (2.60)

where hk,m,l can be interpreted as the local time-frequency pattern of the mth audio
event and um,n represents its temporal activation. Since the problem at hand is to
decompose the convolutive mixture, this approach is called “non-negative matrix
factor deconvolution (NMFD)” [20].

NMFD assumes that the spectrum of each audio event evolves in time in exactly
the sameway every time it occurs. However, the speeds of the temporal variations are
unlikely to be the same all the time. To cope with the varying speeds of the temporal
variations of spectra, we proposed modeling the magnitude spectrogram of a mixture
signal based on a factorial hiddenMarkovmodel (FHMM) formulation [22]. The idea
is to model the spectrogram of a mixture signal as the sum of the outputs emitted
from multiple HMMs, each representing the spectrogram of an underlying audio
event (see Fig. 2.7). Thus, the problem is to find a decomposition of Y as

Fig. 2.7 Illustration of the factorial HMM approach [22]. The spectrogram of a mixture signal is
modeled as the sum of the outputs emitted frommultiple HMMs, each representing the spectrogram
of an underlying audio event
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yk,n � xk,n =
∑

m

h(zm,n)

k,m um,n, (2.61)

where h(i)
k,m denotes the basis spectrum at state i and zm,n ∈ {1, . . . , Im} denotes

a state variable indicating which basis spectrum is activated at time n. The path
of the state variables zm,1, . . . , zm,N is governed by a state transition probability
p(zm,n = a|zm,n−1 = b) = πm,a,b.

2.7.5 Other NMF Variants

Anumber of constrained and regularized variants ofNMFhave been proposed specif-
ically with the aim of solving audio source separation problems. Some examples are
as follows. Virtanen proposed incorporating a temporal continuity constraint in the
factorization process [23]. Raczyński proposed constraining each basis spectrum so
that it had a harmonic structure [24]. Several groups (including mine) independently
proposed combining the source-filtermodelwith theNMFmodel [25–28]. I proposed
incorporating a subprocess that involved clustering timbrally similar basis spectra in
the factorization process [29].

2.7.6 Other Applications

NMF has found several interesting audio-related applications including speech
enhancement [30], bandwidth extension [31], singing voice separation [32], drum
sound extraction [33], formant tracking [35], echo cancellation [36], and the temporal
decomposition of speech [37]. I proposed a blind dereverberation method inspired
by the NMF algorithm in [27]. Multichannel extensions of NMF have been proposed
independently by several groups (including mine) with an expectation that the mod-
eling concept of NMF can also be useful for multichannel audio source separation
problems [39–43].

2.8 Bayesian Nonparametric NMF

2.8.1 Determination of Basis Number

The determination of the number of bases is an important issue in NMF. Cemgil and
Schmidt proposed formulating the problem of the basis number estimation for NMF
as a model selection problem [17, 44]. By using H (M) and U (M) to denote the basis
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and coefficient matrices with M bases, the marginal likelihood can be thought of as
the likelihood function of M , since

p(Y |M) =
∫∫

p(Y |H (M), U (M))p(H (M)|M)p(U (M)|M)dH (M)dU (M). (2.62)

As the exact marginal likelihood involves intractable integrals, some approximation
of the log marginal likelihood is usually used as a criterion for model selection.
The Bayesian Information Criterion (BIC) [45] and the variational Bayesian lower
bound [46] are examples of such approximations. To determine the number of bases
with model selection, we need to perform NMF with all possible M settings and
find the best model structure by comparing the values of model selection criteria.
Although this approach is indeed principled and well founded, such procedures can
be time-consuming. By contrast, a framework called the Bayesian nonparameteric
approach allows us to avoid performing an explicit model selection procedure and
instead reduce this task to a single run of a parameter inference algorithm. In the
following, we briefly show some examples of attempts that have been made to apply
the Bayesian nonparameteric approach to NMF.

2.8.2 Beta Process NMF and Gamma Process NMF

A Bayesian nonparametric model is a Bayesian model on an infinite-dimensional
parameter space. The Bayesian nonparameteric approach refers to a parameter infer-
ence framework for Bayesian nonparametricmodels, whichmakes it possible to infer
the model complexity along with the model parameters by finding a minimal subset
of parameters that can explain given observed data.

Bayesian nonparametric models (also known as infinite models) are typically
described using stochastic processes. Up to now, many types of infinite models
including infinitemixturemodels and infinite factormodels have been proposed in the
literature. For instance, infinite counterparts of mixture models, such as the Gaussian
mixture model (GMM), hidden Markov model (HMM), probabilistic context-free
grammar (PCFG), and probabilistic Latent Semantic Analysis (pLSA), can be con-
structed using a stochastic process called the Dirichlet process (DP) or its variants.
While a Dirichlet distribution is a probabilistic distribution over a finite set of non-
negative numbers that sum to 1, the Dirichlet process can be thought of as an exten-
sion of it to an infinite set. Thus, the Dirichlet process is a generative model of a
categorical distribution (probabilities of discrete random variables) with an infinite
dimension, i.e., π1,π2, . . . π∞ ∈ [0, 1] satisfying ∑∞

i=1 πi = 1, which can be used,
for example, as a prior distribution over the mixture weights of mixture models.
An important property of the Dirichlet process is its sparsity-inducing effect. The
categorical distributions generated from a Dirichlet process tend to become sparse.
Owing to this property, we can find a minimal subset of mixture components with
non-zero weights that explains given observed data through parameter inference.
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This is why the use of an infinite mixture model allows us to infer the adequate
model complexity (the number of mixture components) from observed data. As
mentioned in Sect. 2.6, pLSA can be understood as a particular case of NMF, where
the number of mixture components (i.e., the latent topics) corresponds to the basis
number. Thus, in a way similar to the NMF approach, it is technically possible to
apply pLSA to a magnitude spectrogram by regarding it as document data, where
the frequency and time indices are interpreted as the word and document indices,
respectively [47], and an infinite counterpart of this approach can be constructed
using a Dirichlet process [48]. On the other hand, infinite counterparts of factor
models, such as NMF and Independent Component Analysis (ICA), can be con-
structed using stochastic processes called the beta process (BP) or gamma process
(GP). Simply put, the beta process is a generative model of infinitely many variables
within the range [0, 1], π1,π2, . . . ,π∞ ∈ [0, 1], and the gamma process is a gen-
erative model of infinitely many non-negative variables, θ1, θ2, . . . , θ∞ ∈ [0,∞).
An infinite extension of NMF can be constructed using these stochastic processes.
When using the beta process, we introduce a binary variable zm,n ∈ {0, 1} indicating
whether them-th basis exists in data n, with zm,n = 1 if data n has a basism and 0 oth-
erwise. By using zm,n , we define xk,n as xk,n = ∑∞

m=1 zm,nhk,mum,n and place a beta
process prior πm,n = p(zm,n = 1) over z1,n, . . . , z∞,n [49, 50]. An important feature
of the beta process is its sparsity-inducing effect. The variables generated from a
beta process tend to become sparse (most of the variables become almost 0). Owing
to this property, we can find a minimal subset of bases that explains given observed
data through parameter inference. When using the gamma process, we introduce a
non-negative variable θm ∈ R

≥0 indicating the contribution made by basis m. By
using θm , we define xk,n as xk,n = ∑∞

m=1 θmhk,mum,n , put some constraint on the
scales of hk,m and um,n (e.g., E[hk,m] = 1 and E[um,n] = 1), and place a gamma
process prior over θ1, . . . , θ∞ [22, 51]. An important feature of the gamma process
is its sparsity-inducing effect as with the beta process. The variables generated from
a gamma process tend to become sparse (most of the variables become almost 0).
Owing to this property, we can find a minimal subset of bases that explains given
observed data through parameter inference.

2.9 Summary

This chapter described some basic properties of NMF, effects induced by the non-
negative constraints, how to derive an iterative algorithm for NMF, some attempts
that have been made to apply NMF to audio processing problems, and extensions to
the Bayesian nonparametric framework. Readers are referred to other review articles
such as [52–55] for further details.
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Chapter 3
Generalized Tensor PCA and Its Applications
to Image Analysis

Kohei Inoue

Abstract Recently, principal component analysis (PCA) has made remarkable
progress in some research areas including computer vision and pattern recognition.
The objects handled byPCAhave been extended fromvectors to higher-order tensors,
also known as multidimensional or N-way arrays including vectors (first order) and
matrices (second order). A number of methods for tensor PCA have been proposed
so far. In this chapter, we proposed a generalized formulation for dimensionality
reduction of tensors and derive several state-of-the-art techniques for tensor PCA
and low-rank approximation of tensors from the proposed general formulation. We
also show experimental results of the applications of the derived methods to image
analysis such as outliers removal, image compression, and face recognition.

Keywords Principal component analysis · Tensor · Dimensionality reduction ·
Simultaneous low-rank approximation of tensors · Image analysis

3.1 Introduction

Principal component analysis (PCA) [20] is one of the most fundamental techniques
formultivariate data analysis. The original PCA is formulated for reducing the dimen-
sions of vector data. Therefore, matrices and higher-order tensors have to be trans-
formed into vectors for dimensionality reduction by PCA. Yang et al. [28] proposed
two-dimensional PCA (2DPCA) for reducing the dimensions of matrices. 2DPCA
directly reduces the number of columns of matrices without vectorization operation,
while the number of rows is unchanged. Ye et al. [29] proposed generalized PCA
(GPCA) which reduces the dimensions of both rows and columns of matrices. Cai et
al. [4] andYe [30] also proposed similarmethods toGPCA. 2DPCA [28],GPCA [29],
and its variants [4, 30] handle matrices or second-order tensors. Lu et al. [21] pro-
posed amultilinear PCA (MPCA) framework for tensor object feature extraction. The
MCPA framework includes the above PCAvariants as the special cases. For example,
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the relationship between MPCA [21], PCA [20], and 2DPCA [28] is discussed in
[21]. Inoue and Urahama [17] generalized Ye’s generalized low-rank approximation
of matrices (GLRAM) [30] to that of higher-order tensors, and called it simultane-
ous low-rank approximation of tensors (SLRAT). De la Torre [11] proposed another
unified least squares framework to formulate component analysis methods including
PCA, linear discriminant analysis [14], canonical correlation analysis [16], locality
preserving projections [2], and spectral clustering [23]. One drawback of those least
squares estimation techniques based on Euclidean and Frobenius norms is the sensi-
tivity to outliers. De la Torre and Black [13] developed a theory of robust subspace
learning which includes robust PCA [12]. Inoue et al. [18] robustified MPCA [21] in
two ways for two kinds of outliers: sample and intra-sample outliers [13]. Inoue et
al. [19] also robustified SLRAT [17]. Candés et al. [5] proposed another robust PCA
which minimizes a weighted combination of nuclear norm and l1 norm to obtain a
low-rank component and a sparse component of a data matrix.

In this chapter, we propose a generalized tensor PCA (GTPCA), which is a unified
framework for tensor PCA including MPCA [21], robust MPCA [18], SLRAT [17],
and robust SLRAT [19]. These tensor PCA variants are viewed as the special cases
of GTPCA and applied to several image analysis tasks.

The rest of this chapter is organized as follows. Section 3.2 describes GTPCA,
which generalizes several state-of-the-art techniques for tensor PCA. Section 3.3
derives the tensor PCA variants fromGTPCA and summarizes the solution methods.
Section 3.4 shows the experimental results of the applications of the derived tensor
PCA variants to image analysis tasks. Finally, Sect. 3.5 concludes this chapter.

3.2 Generalized Tensor PCA

We use the minimal basic notation of tensor algebra necessary to describe the con-
tents. The more detailed explanation of tensor algebra can be found in [6].

Let A = [ai1i2...iN ] ∈ R
I1×I2×···×IN be an N th-order tensor or N-way array whose

elements ai1i2...iN are indexed by in ∈ {1, 2, . . . , In} for n = 1, 2, . . . , N , where R

denotes the set of real numbers, and In is a positive integer. And let X = [xjnin ] ∈
R

Jn×In be a Jn × In matrix of which the (jn, in) element is denoted by xjnin for jn =
1, 2, . . . , Jn and in = 1, 2, . . . , In. Then, then-mode product [9] ofA andX is denoted
by

A ×n X ∈ R
I1×···×In−1×Jn×In+1×···×IN

of which the (i1, . . . , in−1, jn, in+1, . . . , iN ) element is given by

(A ×n X)i1...in−1jnin+1...iN ≡
In∑

in=1

ai1...in−1inin+1...iN xjnin .
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Let A(n) ∈ R
In×(In+1In+2...IN I1I2...In−1) be the matrix unfolding [9] or the mode-n matri-

cizing [1] ofA. Then A(n) contains the element ai1i2...iN ofA at the position with row
number in and column number equal to

(in+1 − 1)In+2In+3 . . . IN I1I2 . . . In−1 + (in+2 − 1)In+3In+4 . . . In−1 + · · ·
+(iN − 1)I1I2 . . . In−1 + (i1 − 1)I2I3 . . . In−1 + (i2 − 1)I3I4 . . . In−1 + · · · + in−1.

This notation enables us to convert the n-mode product into matrix multiplication:

(A ×n X)(n) = XA(n).

Let Y = {Y (1), Y (2), . . . , Y (N)} be a set of matrices such that Y (n) = [y(n)
jnin

] ∈
R

Jn×In for n = 1, 2, . . . , N . Then, the sequence of the n-mode products A and
Y (1), Y (2), . . . , Y (N) is denoted by

A × {Y} ≡ A ×1 Y (1) ×2 Y (2) · · · ×N Y (N) ∈ R
J1×J2×···×JN .

Related to this notation, the following notation is also useful [1]:

A ×−n {Y} ≡ A ×1 Y (1) · · · ×n−1 Y (n−1) ×n+1 Y (n+1) · · · ×N Y (N)

∈ R
J1×···×Jn−1×In×Jn+1×···×JN .

Let {A1, . . . ,AM} be a set of tensors such that Am = [ami1...iN ] ∈ R
I1×I2×···×IN

for m = 1, . . . , M, where ami1...iN indexed by in ∈ {1, 2, . . . , In} for n = 1, 2, . . . , N
are the elements of Am. Then, generalized tensor PCA (GTPCA) is formulated as
follows:

min
S,{Dm}M

m=1,U

M∑

m=1

f (Am − S − Dm × {U}) (3.1)

subj.to U(n)T
U(n) = IJn×Jn , n = 1, 2, . . . , N, (3.2)

where f : RI1×···×IN → R, S = [si1...iN ] ∈ R
I1×···×IN , Dm = [dmj1...jN ] ∈ R

J1×···×JN for
m = 1, 2, . . . , M andU = {U(1), U(2), . . . , U(N)} is a set ofmatrices such thatU(n) =
[u(n)

injn
] ∈ R

In×Jn for n = 1, 2, . . . , N . The superscript T denotes the matrix transpose
and IJn×Jn denotes the Jn × Jn identity matrix. The constraints in (3.2) have the
element-wise expression as follows:

In∑

i1=1

u(n)
injn

u(n)
inj′n

= δjn,j′n =
{
1 if jn = j′n
0 if jn �= j′n

, n = 1, 2, . . . , N,
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where δjn,j′n denotes the Kronecker delta [8], which can be simply expressed as

δjn,j′n = u(n)
injn

u(n)
inj′n

by using Einstein summation convention [8], which will also be used in the following
derivations.

3.3 Derivation of Tensor PCA Variants

In this section, we derive four tensor PCA variants: multilinear PCA (MPCA) [21],
robust MPCA [18], simultaneous low-rank approximation of tensors (SLRAT) [17],
and robust SLRAT [19] from GTPCA, and summarize the solution methods.

3.3.1 Multilinear PCA (MPCA)

Multilinear PCA (MPCA) proposed by Lu et al. [21] can be derived from the above
GTPCA (3.1) with (3.2) as follows.

Assume that S in (3.1) is the mean tensor Ā of {A1, . . . ,AM};

S = Ā ≡ 1

M

M∑

m=1

Am,

and the function f in (3.1) has the form f (A) = ‖A‖2F for a tensor A ∈ R
I1×···×IN ,

where ‖ · ‖F denotes the Frobenius norm [9] which is defined by

‖A‖F ≡ √〈A,A〉,

where 〈·, ·〉 denotes the scalar product [9] defined for two tensors A = [ai1...iN ] ∈
R

I1×···×IN and B = [bi1...iN ] ∈ R
I1×···×IN by

〈A,B〉 ≡
I1∑

i1=1

· · ·
IN∑

iN =1

ai1...iN bi1...iN = ai1...iN bi1...iN , (3.3)

which is a special case of the contracted product [1] of two tensors E = [ei1...iM j1...jN ] ∈
R

I1×···×IM×J1×···×JN and F = [fi1...iM k1...kP ] ∈ R
I1×···×IM×K1×···×KP given by

〈E,F〉{1,...,M;1,...,M} ≡ ei1...iM j1...jN fi1...iM k1...kP ∈ R
J1×···×JN ×K1×···×KP . (3.4)
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Using this notation, we can express the scalar product (3.3) as follows:

〈A,B〉 = 〈A,B〉{1,...,N;1,...,N}.

Then, the objective function in (3.1) can be written as follows:

EMPCA ≡
M∑

m=1

∥∥Am − Ā − Dm × {U}∥∥2

F =
M∑

m=1

∥∥∥Ãm − Dm × {U}
∥∥∥
2

F
, (3.5)

where Ãm = [ãmi1...iN ] = Am − Ā. The necessary condition for the optimality of
dmj1...jN in Dm is given by

−1

2

∂EMPCA

∂dmj1...jN

=
(

ãmi1...iN − dmj′1...j′N u(1)
i1j′1

· · · u(N)

iN j′N

)
u(1)

i1j1
· · · u(N)

iN jN
= 0,

from which, it follows that

(
ãmi1...iN − dmj′1...j′N u(1)

i1j′1
· · · u(N)

iN j′N

)
u(1)

i1j1
· · · u(N)

iN jN

= ãmi1...iN u(1)
i1j1

· · · u(N)
iN jN

− dmj′1...j′N u(1)
i1j1

u(1)
i1j′1

· · · u(N)
iN jN

u(N)

iN j′N

= ãmi1...iN u(1)
i1j1

· · · u(N)
iN jN

− dmj′1...j′N δj1,j′1 · · · δjN ,j′N = 0,

that is,

dmi1...iN = ãmi1...iN u(1)
i1j1

· · · u(N)
iN jN

or

Dm = B̃m ≡ Ãm × {
UT

}
, (3.6)

where UT = {U(1)T
, . . . , U(N)T }. Substituting (3.6) for (3.5), we have

EMPCA =
M∑

m=1

∥∥∥Ãm − B̃m × {U}
∥∥∥
2

F
=

M∑

m=1

∥∥∥Ãm −
(
Ãm × {UT }

)
× {U}

∥∥∥
2

F

=
M∑

m=1

[
ãmi1...iN −

(
ãmi′1...i′N u(1)

i′1j1
· · · u(N)

i′N jN

)
u(1)

i1j1
· · · u(N)

iN jN

]

[
ãmi1...iN −

(
ãmi′′1 ...i′′N u(1)

i′′1 j′1
· · · u(N)

i′′N j′N

)
u(1)

i1j′1
· · · u(N)

iN j′N

]

=
M∑

m=1

[
ãmi1...iN ãmi1...iN − ãmi1...iN

(
ãmi′′1 ...i′′N u(1)

i′′1 j′1
· · · u(N)

i′′N j′N

)
u(1)

i1j′1
· · · u(N)

iN j′N

−ãmi1...iN

(
ãmi′1...i′N u(1)

i′1j1
· · · u(N)

i′N jN

)
u(1)

i1j1
· · · u(N)

iN jN
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+
(

ãmi′1...i′N u(1)
i′1j1

· · · u(N)

i′N jN

) (
ãmi′′1 ...i′′N u(1)

i′′1 j′1
· · · u(N)

i′′N j′N

)
u(1)

i1j1
u(1)

i1j′1
· · · u(N)

iN jN
u(N)

iN j′N

]

=
M∑

m=1

[
ãmi1...iN ãmi1...iN −

(
ãmi1...iN u(1)

i1j′1
· · · u(N)

iN j′N

) (
ãmi′′1 ...i′′N u(1)

i′′1 j′1
· · · u(N)

i′′N j′N

)

−
(

ãmi1...iN u(1)
i1j1

· · · u(N)
iN jN

) (
ãmi′1...i′N u(1)

i′1j1
· · · u(N)

i′N jN

)

+
(

ãmi′1...i′N u(1)
i′1j1

· · · u(N)

i′N jN

) (
ãmi′′1 ...i′′N u(1)

i′′1 j′1
· · · u(N)

i′′N j′N

)
δj1,j′1 · · · δjN ,j′N

]

=
M∑

m=1

[
ãmi1...iN ãmi1...iN −

(
ãmi1...iN u(1)

i1j1
· · · u(N)

iN jN

) (
ãmi′1...i′N u(1)

i′1j1
· · · u(N)

i′N jN

)]

=
M∑

m=1

(∥∥∥Ãm

∥∥∥
2

F
−

∥∥∥Ãm × {UT }
∥∥∥
2

F

)
=

M∑

m=1

(∥∥∥Ãm

∥∥∥
2

F
−

∥∥∥B̃m

∥∥∥
2

F

)
,

where ΨA ≡ ∑M
m=1 ‖Ãm‖2F = ∑M

m=1 ‖Am − Ā‖2F denotes the total scatter of
{Am}M

m=1 and is a constant independent of U. Therefore, minimizing EMPCA =
ΨA − ΨB is equivalent to maximizing ΨB = ∑M

m=1 ‖B̃m‖2F = ∑M
m=1 ‖(Am − Ā) ×

{UT }‖2F = ∑M
m=1 ‖Am × {UT } − Ā × {UT }‖2F = ∑M

m=1 ‖Bm − B̄‖2F ,whereBm = Am ×
{UT } and B̄ = 1

M

∑M
m=1 Bm = 1

M

∑M
m=1 Am × {UT } = Ā × {UT }. Con-

sequently, the maximization problem of total scatter for MPCA is obtained by

max
U

ΨB

with the constraints in (3.2). This problem can be solved by an iterative method
similar to the higher-order orthogonal iteration [10].

3.3.2 Robust MPCA (RMPCA)

MPCA [21] described in Sect. 3.3.1 is not robust to outliers. In this subsection,
we derive two types of robustification of MPCA (RMPCA) [18] from GTPCA and
summarize the solution methods.

3.3.2.1 RMPCA for Sample Outliers

Assume that the function f in (3.1) has the form

f (A) = ρ(‖A‖F) (3.7)

where ρ is a ρ-function for robust M-estimation. For example, the ρ-function for
Welsch estimator [15] is given by
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ρ(x) = 1 − e−αx2 , (3.8)

where α > 0. Then, the objective function in (3.1) can be written as follows:

ERS ≡ M −
M∑

m=1

e−α‖Am−S−Dm×{U}‖2F .

Since M is a constant, the problem (3.1) for (3.7) with (3.8) is equivalent to

max
S,{Dm}M

m=1,U
ẼRS, (3.9)

where

ẼRS ≡ M − ERS =
M∑

m=1

e−α‖Am−S−Dm×{U}‖2F .

The solution method for RMPCA for sample outliers formulated in (3.9) is sum-
marized as follows. The Lagrange function for (3.9) with (3.2) is given by

LRS ≡ ẼRS + α

N∑

n=1

tr
[
Λ(n)

(
U(n)T

U(n) − IJn×Jn

)]
,

where tr denotes the matrix trace [22] and Λ(n) ∈ R
Jn×Jn for n = 1, . . . , N is a sym-

metric matrix of which the elements are the Lagrange multipliers. Then, we have the
following necessary conditions for optimality:

∂LRS

∂S = 2α
M∑

m=1

(Cm − S) e−α‖Cm−S‖2F = OI1×···×IN , (3.10)

where Cm = Am − Dm × {U} and OI1×···×IN ∈ R
I1×···×IN is the N th-order zero tensor

of which all the elements are zero, and

∂LRS

∂Dm
= 2α

(
Ãm − Dm × {U}

)
× {

UT
}

e
−α

∥∥∥Ãm−Dm×{U}
∥∥∥
2

F = OJ1×···×JN (3.11)

for m = 1, . . . , M, where Ãm = Am − S, and

1

2α

∂LRS

∂U(n)
=

M∑

m=1

[
Ãm(n) − U(n)D(−n)

m(n)

] (
D(−n)

m(n)

)T
e
−α

∥∥∥Ãm−Dm×{U}
∥∥∥
2

F

+U(n)Λ(n) = OIn×Jn (3.12)
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for n = 1, . . . , N , where Ãm(n) and D(−n)

m(n) are the mode-n matricizing [1] of Ãm and
D(−n)

m = Dm ×−n {U}, respectively, and OIn×Jn is the In × Jn matrix of which all the
elements are zero. We also have

1

α

∂LRS

∂Λ(n)
= U(n)T

U(n) − IJn×Jn = OJn×Jn (3.13)

for n = 1, . . . , N .
From (3.10) and (3.11), we have

S =
∑M

m=1 Cme−α‖Cm−S‖2F
∑M

m=1 e−α‖Cm−S‖2F
(3.14)

and

Dm = Ãm × {
UT

}
, (3.15)

respectively. From (3.12), we have

U(n) = P(n)
(
Q(n) − Λ(n)

)−1
, (3.16)

where

P(n) =
M∑

m=1

Ãm(n)

(
D(−n)

m(n)

)T
e
−α

∥∥∥Ãm−Dm×{U}
∥∥∥
2

F ,

Q(n) =
M∑

m=1

D(−n)

m(n)

(
D(−n)

m(n)

)T
e
−α

∥∥∥Ãm−Dm×{U}
∥∥∥
2

F .

By substituting (3.16) into (3.13), we find that

P(n)T
P(n) = (

Q(n) − Λ(n)
)T (

Q(n) − Λ(n)
)
. (3.17)

Let

P(n)T
P(n) = V (n)Σ(n)V (n)T

(3.18)

be a spectral decomposition [22] of P(n)T
P(n), where Σ(n) is a diagonal matrix of

which the diagonal elements are the eigenvalues ofP(n)T
P(n) andV (n) is an orthogonal

matrix of which the columns are the corresponding eigenvectors of P(n)T
P(n). Then,

it follows from (3.17) and (3.18) that

Λ(n) = Q(n) − Σ(n)1/2V (n)T
.



3 Generalized Tensor PCA and Its Applications to Image Analysis 59

Substituting this into (3.16), we have

U(n) = P(n)V (n)Σ(n)−1/2
. (3.19)

Consequently, the problem (3.9) with (3.2) can be solved by iteratively updating
U(n), Dm, and S with (3.19), (3.15), and (3.14), respectively.

3.3.2.2 RMPCA for Intra-Sample Outliers

Assume that the function f in (3.1) has the form

f (A) =
I1∑

i1=1

· · ·
IN∑

iN =1

ρ
(
ai1...iN

)
(3.20)

whereA = [ai1...iN ] ∈ R
I1×···×IN . If we use the ρ-function in (3.8), then the objective

function in (3.1) can be written as

ERI ≡
M∑

m=1

I1∑

i1=1

· · ·
IN∑

iN =1

ρ
(
âmi1...iN

) = Θ −
M∑

m=1

I1∑

i1=1

· · ·
IN∑

iN =1

e−αâ2mi1 ...iN ,

where âmi1...iN = ami1...iN − si1...iN − dmj1...jN u(1)
i1j1

· · · u(N)
iN jN

and Θ = M
∏N

n=1 In.
Since Θ is a constant, the problem (3.1) for (3.20) with (3.8) is equivalent to

max
S,{Dm}M

m=1,U
ẼRI, (3.21)

where

ẼRI ≡ Θ − ERI =
M∑

m=1

I1∑

i1=1

· · ·
IN∑

iN =1

e−αâ2mi1 ...iN .

The solution method for RMPCA for intra-sample outliers formulated in (3.21)
is summarized as follows. The Lagrange function for (3.21) with (3.2) is given by

LRI ≡ ẼRI + α

N∑

n=1

tr
[
Λ̃(n)

(
U(n)T

U(n) − IJn×Jn

)]
,

where Λ̃(n) ∈ R
Jn×Jn for n = 1, . . . , N is a symmetric matrix of which the elements

are the Lagrange multipliers. Then, we have the following necessary conditions for
optimality:

∂LRI

∂S = 2α
M∑

m=1

(Cm − S) 
 Em = OI1×···×IN , (3.22)
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where Em = [e−αd2
mi1 ...iN ] ∈ R

I1×···×IN for m = 1, . . . , M and
 denotes the Hadamard
product or element-wise product [22] of tensors, and

∂LRI

∂Dm
= 2α

[(
Ãm − Dm × {U}

)

 Em

]
× {

UT
} = OJ1×···×JN (3.23)

for m = 1, . . . , M, and

1

2α

∂LRI

∂U(n)
=

M∑

m=1

〈(
Ãm − Dm × {U}

)

 Em,D(−n)

m

〉

{Ω;Ω}
+ U(n)Λ̃(n) = OIn×Jn

(3.24)

for n = 1, . . . , N , where Ω = {1, . . . , n − 1, n + 1, . . . , N} and 〈·, ·〉{...;...} denotes
the contracted product [1] of tensors as described in (3.4), and

1

α

∂L̃

∂Λ̃(n)
= U(n)T

U(n) − IJn×Jn = OJn×Jn

for n = 1, . . . , N .
From (3.22) and (3.23), we have

S =
(

M∑

m=1

Cm 
 Em

)

 H,

where H = [1/∑M
m=1 e−αâ2mi1 ...iN ] ∈ R

I1×···×IN and (3.15), respectively. From (3.24),
we have

U(n) = P̃(n)
(

Q̃(n) − Λ̃(n)
)−1

, (3.25)

where

P̃(n) =
M∑

m=1

〈
Ãm 
 Em,D(−n)

m

〉

{Ω;Ω}
,

Q̃(n) =
M∑

m=1

〈D(−n)
m 
 D(−n)

m , Em
〉
{Ω;Ω} .

Since (3.25) is analogous to (3.16), we can derive the following equation in the same
manner as the derivation of (3.19):

U(n) = P̃(n)Ṽ (n)
(
Σ̃(n)

)−1/2
,
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where Σ̃(n) is a diagonal matrix of which the diagonal elements are the eigenval-
ues of (P̃(n))T P̃(n) and Ṽ (n) is an orthogonal matrix of which the columns are the
corresponding eigenvectors of (P̃(n))T P̃(n).

3.3.3 Simultaneous Low-Rank Approximation of Tensors
(SLRAT)

Assume that S in (3.1) is a zero tensor of which all the elements are zero, and the
function f in (3.1) has the form f (A) = ‖A‖2F for a tensor A ∈ R

I1×···×IN . Then, the
problem (3.1) becomes that of the simultaneous low-rank approximation of tensors
{Am}M

m=1 (SLRAT [17]) as follows:

min
{Dm}M

m=1,U

M∑

m=1

‖Am − Dm × {U}‖2F . (3.26)

Let ESLRAT be the objective function in (3.26), then, from ∂ESLRAT/∂Dm =
OJ1×···×JN , we have

Dm = Am × {
UT

}
. (3.27)

Substituting this for ESLRAT, we have

ESLRAT =
M∑

m=1

‖Am‖2F −
M∑

m=1

∥∥Am × {
UT

}∥∥2

F
.

Since the first term of the right side of this equation is a constant, the minimization
problem (3.26) can be reduced to

max
U

M∑

m=1

∥∥Am × {
UT

}∥∥2

F . (3.28)

Let LSLRAT be the Lagrange function for (3.28) with (3.2), then, from ∂LSLRAT/

∂U(n) = OIn×Jn , we have

M∑

m=1

A(−n)

m(n)A
(−n)

m(n)

T
U(n) = U(n)Λn, n = 1, . . . , N, (3.29)

where A(−n)

m(n) is the mode-n matricizing [1] of Am ×−n {UT }, and Λn is a diagonal
matrix of which the diagonal elements are the Lagrange multipliers. The Eq. (3.29)
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can be solved in an iterative manner as follows:

Algorithm 1.

Step 0: Initialize U(n) as U(n,t) = U(n,0) = [IJn×Jn , OJn×(In−Jn)]T ∈ R
In×Jn for n =

1, . . . , N , where t denotes the number of iterations and is initialized as
t = 0.

Step 1: Let U(t)
n = {U(1,t+1), . . . , U(n−1,t+1), U(n,t), . . . , U(N,t)} for t ≥ 0, and let

A(−n)

m(n,t) be the mode-n matricizing [1] of Am ×−n {U(t)
n

T }. Then compute

U(n,t+1) of which the columns are the eigenvectors of
∑M

m=1 A(−n)

m(n,t)A
(−n)

m(n,t)

T

corresponding to the largest Jn eigenvalues for n = 1, . . . , N .
Step 2: For m = 1, . . . , M, compute D(t+1)

m by (3.27) into which U(t+1)
N is substi-

tuted.
Step 3: Let RMSE(t+1) =

√
1
M

∑M
m=1 ‖Am − D(t+1)

m × {U(t+1)
N }‖2F be the root-

mean-squared error at the tth iteration. Note that the initial value of RMSE(t)

is given by RMSE(0) =
√

1
M

∑M
m=1 ‖Am − D(0)

m × {U(0)
N }‖2F . If, for ε > 0,

[RMSE(t) − RMSE(t+1)]/RMSE(t) < ε, then stop, otherwise increase t by
1 and go to Step 1.

Instead of the initialization in Step 0, the full projection truncation [21] may also
be used for initializing U(n).

For a fixed U(t)
n , (3.29) is analytically solved for U(n,t+1) by the spectral decom-

position [22] of
∑M

m=1 A(−n)

m(n,t)A
(−n)

m(n,t)

T
. Therefore, ESLRAT monotonically decreases as

t increases in Algorithm 1.
The generalized low-rank approximations of matrices (GLRAM) proposed by

Ye [30] can be derived from SLRAT as follows: Let N = 2. Then, we have

ESLRAT =
M∑

m=1

∥∥Am − Dm ×1 U(1) ×2 U(2)
∥∥2

F

=
M∑

m=1

∥∥∥Am(1) − U(1)Dm(1)U
(2)T

∥∥∥
2

F
, (3.30)

whereAm(1) andDm(1) denote themode-1matricizing [1] ofAm andDm, respectively.
The Eq. (3.30) coincides with the objective function of GLRAM [30].

3.3.4 Robust SLRAT

Assume that S in (3.1) is a zero tensor of which all the elements are zero, and
the function f in (3.1) has the form f (A) = ρ(‖A‖F) as in (3.7), where ρ is the
ρ-function for Welsch estimator [15] given by (3.8). Then, the objective function in
(3.1) can be written as follows:



3 Generalized Tensor PCA and Its Applications to Image Analysis 63

ERSLRAT ≡ M −
M∑

m=1

e−α‖Am−Dm×{U}‖2F , (3.31)

which is the objective function of the robust version of SLRAT [19]. Since M is a
constant, the minimization of (3.31) is equivalent to

max
U, {Dm}M

m=1

ẼRSLRAT, (3.32)

where

ẼRSLRAT ≡ M − ERSLRAT =
M∑

m=1

e−α‖Am−Dm×{U}‖2F .

Then, it follows from ∂ẼRSLRAT/∂Dm = OJ1×···×JN that

Dm = Am × {
UT

}
.

Also, we have

∂ẼRSLRAT

∂U(n)
= 2α

M∑

m=1

(
Am(n) − U(n)D(−n)

m(n)

) (
D(−n)

m(n)

)T
e−α‖Am−Dm×{U}‖2F ,

where Am(n) denotes the mode-n matricizing [1] of Am. From ∂ẼRSLRAT/∂U(n) =
OIn×Jn , we have

U(n) =
M∑

m=1

Am(n)

(
D(−n)

m(n)

)T
e−α‖Am−Dm×{U}‖2F

(
M∑

m=1

D(−n)

m(n)

(
D(−n)

m(n)

)T
e−α‖Am−Dm×{U}‖2F

)−1

. (3.33)

Since the right side of (3.33) contains U(n) in {U}, we cannot solve (3.33) with
respect to U(n) analytically. Instead, we solve (3.33) by an iterative method. First, we
initialize U(n) as U(n,0) = [v(n)

1 , . . . , v
(n)
Jn

]where v
(n)
1 , . . . , v

(n)
Jn

are the eigenvectors of∑M
m=1 Am(n)AT

m(n) corresponding to the largest Jn eigenvalues. Next, we update U(n)

as
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Ũ(n,t+1) =
M∑

m=1

Am(n)

(
D(−n)

m(n,t)

)T
e
−α

∥∥∥Am−Â(t)
m

∥∥∥
2

F

(
M∑

m=1

D(−n)

m(n,t)

(
D(−n)

m(n,t)

)T
e
−α

∥∥∥Am−Â(t)
m

∥∥∥
2

F

)−1

, (3.34)

where t is the number of iterations, Â(t)
m = D(t)

m × {U(t)} for D(t)
m = Am × {U(t)T }

and U(t) = {U(1,t), . . . , U(N,t)}, and D(−n)

m(n,t) is the mode-n matricizing [1] ofD(t)
m ×−n

{U(t)}. Since (3.34) can be written as

Ũ(n,t+1) = U(n,t) + 1

2α

∂ẼRSLRAT(t)

∂U(n,t)

(
M∑

m=1

D(−n)

m(n,t)

(
D(−n)

m(n,t)

)T
e
−α

∥∥∥Am−Â(t)
m

∥∥∥
2

F

)−1

,

(3.35)

this iterative algorithm can be interpreted as a gradient method [25]. Lastly, we
orthogonalize Ũ(n,t+1) as U(n,t+1) = orth(Ũ(n,t+1)), where orth(·) is an orthogonal-
ization function, in order to satisfy the constraints in (3.2). The above procedure is
repeated until it converges.

3.4 Applications to Image Analysis

In this section, we apply the above tensor PCA variants to some image analysis
tasks and show the experimental results on outliers removal, hyperspectral image
compression, and face recognition.

3.4.1 Removing Outliers

In this subsection, we experimentally evaluate the performance of MPCA [21] and
RMPCA [18], described in Sects. 3.3.1 and 3.3.2, on the ORL face image database
[26]. The ORL database [26] contains face images of 40 persons. For each person,
there are 10 different face images. That is, the total number of the images in the
database is 400. The size of each image is 112 × 92 pixels, i.e., I1 = 112, I2 = 92,
and N = 2. An example of face images in the database is shown in Fig. 3.1, where
five images of a person are arranged along with an example of sample outliers (the
rightmost image).

Reconstructed images with MPCA and RMPCA for sample outliers are shown
in Fig. 3.2. Five reconstructed images from outlier-free data are shown in Fig. 3.2a,
i.e., the clean reconstruction, where the rightmost image is the mean image of 10
face images of the person shown in Fig. 3.1. Reconstructed images with MPCA
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Fig. 3.1 Input images: the first five images of the 27th person in the ORL database [26] and a
sample outlier. c© 2009 IEEE

Fig. 3.2 Reconstructed images and (robust) mean images: a outlier-free reconstruction by MPCA,
b MPCA, c RMPCA. In each row, the left five images are the reconstructed ones, and the rightmost
image is the mean one. c© 2009 IEEE

and RMPCA for data including sample outliers are shown in Fig. 3.2b, c, respec-
tively. In Fig. 3.2b, the left five reconstructed images and the rightmost mean image
are disturbed by the sample outliers. On the other hand, in Fig. 3.2c, the left five
reconstructed images are less sensitive to the outliers and the rightmost robust mean
image is close to the outlier-free mean image in Fig. 3.2a. In this example, we
set J1 = J2 = 30 for both MPCA and RMPCA, and α = 10−6 and ε = 10−6 for
RMPCA. Although we selected the value of α manually in our experiments, some
self-tuning algorithms [7, 27] might work well.

Let M̃ be the number of sample outliers per person. Then, we set M = 10 + M̃
for each person. Reconstructed images are computed as Âm = Dm × {U} + S for
m = 1, . . . , 10. Sample outliers are numbered from 11 to M. Reconstruction errors
calculated with all face images in the ORL database [26] are shown in Fig. 3.3, in
which we evaluated the errors by the root-mean-squared error (RMSE) defined as

RMSE =
√√√√ 1

M

M∑

m=1

∥∥∥Am − Âm

∥∥∥
2

F
. (3.36)
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Fig. 3.3 Reconstruction
errors. The horizontal and
vertical axes denote the
number of sample outliers
per person and RMSE,
respectively. Solid and
broken lines denote MPCA
and RMPCA, respectively.
c© 2009 IEEE
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Fig. 3.4 Input images
including intra-sample
outliers. c© 2009 IEEE

In this figure, the horizontal axis denotes the number of sample outliers per person
and the vertical axis denotes the RMSE. MPCA and RMPCA are denoted by solid
and broken lines, respectively. The RMSE for RMPCA is lower than that for MPCA.
Although the RMSE for MPCA increases with the number of sample outliers, that
for RMPCA is almost constant.

An example of face images including intra-sample outliers is shown in Fig. 3.4.
In each image, 2%of pixels are outliers. In this experiment, we used theMATLAB

function ‘imnoise’ with ‘salt & pepper’ option to generate intra-sample outliers.
Reconstructed images with MPCA and RMPCA for intra-sample outliers are shown
in Fig. 3.5a, b, respectively.

In Fig. 3.5a, the left five reconstructed images and the rightmost mean image
are disturbed by the intra-sample outliers. On the other hand, in Fig. 3.5b, the left
five reconstructed images and the rightmost robust mean image are less sensitive to

Fig. 3.5 Reconstructed images and (robust) mean images: a MPCA, b RMPCA. In each row, the
left five images are the reconstructed ones, and the rightmost image is the mean one. c© 2009 IEEE
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Fig. 3.6 Reconstruction
errors. The horizontal and
vertical axes denote the ratio
of intra-sample outliers in all
pixels and RMSE,
respectively. Solid and
broken lines denote MPCA
and RMPCA, respectively.
c© 2009 IEEE
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the outliers. In this example, we set α = 10−3 and M = 10. Reconstruction errors
evaluated by the RMSE in (3.36) are shown in Fig. 3.6, in which the horizontal axis
denotes the ratio of intra-sample outliers in all pixels and the vertical axis denotes
the RMSE. In this figure, MPCA and RMPCA are denoted by solid and broken lines,
respectively. The RMSE for RMPCA is lower than that for MPCA. In contrast to the
RMSE for RMPCA in Fig. 3.3, which is almost constant, that in Fig. 3.6 increases
with the ratio of intra-sample outliers.

This result demonstrates the difficulty in detecting and removing the intra-sample
outliers compared to the sample outliers.

3.4.2 Hyperspectral Image Compression

In this subsection, we show experimental results on Hyperspectral Image Com-
pression with SLRAT [17] described in Sect. 3.3.3. We used a part of the Bear
and Fruit Gray images in Hyperspectral Image Data provided by Brainard [3].
A hyperspectral image is a set of 31 monochromatic images corresponding to
wavelengths between 400 and 700nm in 10nm steps. The provided image with
2020 × 2020 pixels is divided into 4 × 4 = 16 blocks each of which has 505 × 505
pixels. We clipped the top left 150 × 150 region from each block image and
selected 30 images corresponding to wavelengths between 400 and 690nm, that
is, I1 = I2 = 150, I3 = 30, and M = 16. We compared SLRAT with two kinds of
GLRAM[30], i.e., the one reshapes a 150 × 150 × 30 tensor into a 750 × 900matrix
by putting the 30 images of I1 × I2 pixels into 5 × 6 blocks, and compresses 16
images of 750 × 900 pixels with GLRAM (GLRAM1). Another one deals with each
I1 × I2 image as a matrix and compresses 30 × 16 = 480 matrices with GLRAM
(GLRAM2). The reconstruction errors are shown in Fig. 3.7, where the vertical
axis denotes RMSE and the horizontal axis denotes the compression ratio defined
by [(I1 + I2 + I3)p + Mp3]/(I1I2I3M) where p = J1 = J2 = J3, and we varied the
value of p as p = 10, 20, . . . , 150 for SLRAT, p = 50, 100, . . . , 750 for GLRAM1,
and p = 10, 20, . . . , 150 for GLRAM2. The solid, broken, and dotted (with +)
lines denote SLRAT, GLRAM1, and GLRAM2, respectively. CPU times for solving
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Fig. 3.7 Reconstruction
errors. The horizontal and
vertical axes denote the
compression ratio and
RMSE, respectively. Solid,
broken and dotted (with +)
lines denote SLRAT,
GLRAM1 and GLRAM2,
respectively. c© 2006 IEICE 100
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Fig. 3.8 CPU time. The
horizontal and vertical axes
denote the compression ratio
and CPU time, respectively.
Solid, broken and dotted
(with +) lines denote
SLRAT, GLRAM1 and
GLRAM2, respectively.
c© 2006 IEICE
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SLRAT, GLRAM1, and GLRAM2 problems are shown in Fig. 3.8. The performance
of SLRAT is similar to that of GLRAM2.

3.4.3 Face Recognition

In this subsection, we apply SLRAT [17] and robust SLRAT [19] described in
Sects. 3.3.3 and 3.3.4 to face recognition. The method for training and classifica-
tion is summarized as follows.

LetAmc ∈ R
I1×···×IN for mc = 1, . . . , Mc and c = 1, . . . , C be a set of tensors for

training, where C is the number of classes. Then, for each class c, we solve the
following optimization problem:

max
Uc, {Dmc }Mc

mc=1

Mc∑

mc=1

e−α‖Amc −Dmc ×{Uc}‖2
F (3.37)

subj.to U(n)
c

T
U(n)

c = IJn×Jn , n = 1, . . . , N, (3.38)

where Uc = {U(1)
c , . . . , U(N)

c } is a set of U(n)
c ∈ R

In×Jn for n = 1, . . . , N , and Dmc ∈
R

J1×···×JN . Let U∗
c = {U(1)

c∗ , . . . , U(N)
c∗ } be the solution of (3.37) with (3.38). Then,

we store U∗
c for c = 1, . . . , C and use them for classifying test sets of tensors to be

classified.
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Let Am ∈ R
I1×···×IN for m = 1, . . . , M be a set of tensors to be classified. Then,

we solve the optimization problem in (3.32) with (3.2). Let U∗ = {U(1)∗ , . . . , U(N)∗ }
be the solution of the optimization problem. Then, we classify the set of tensors into
the c∗th class selected by the following rule:

c∗ = arg max
c∈{1,...,C} S(U∗

c , U∗), (3.39)

where S(U∗
c , U∗) is a similarity between U∗

c and U∗ and is defined as follows:

S(U∗
c , U∗) = max{pjn },{qjn }

N∑

n=1

Jn∑

jn=1

pT
jn

∣∣∣U(n)
c∗

T
U(n)

∗
∣∣∣
abs

qjn (3.40)

subj.to pT
jn pj′n = δjn,j′n , qT

jn qj′n = δjn,j′n , (3.41)

pinjn ∈ {0, 1}, qinjn ∈ {0, 1}, (3.42)

where pjn = [pinjn ] ∈ R
Jn×1 and qjn = [qinjn ] ∈ R

Jn×1 for in = 1, . . . , Jn and jn =
1, . . . , Jn, and |A|abs denotes the absolute value of a matrix A [22]. The optimization
problem in (3.40), (3.41), and (3.42) is no less than the assignment problem. We
compute the optimal solution using Munkres algorithm [24].

An advantage of this method is that this method can accept various numbers
of tensors in each set for training and testing, because the sizes of Uc and U are
independent of Mc and M, respectively.
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Fig. 3.9 Recognition rates: a K = 1, b K = 2, c K = 3. The horizontal and vertical axes denote the
reduced dimension and the recognition rate, respectively. Solid lines with “+” marks and Broken
lines with “×” marks denote robust SLRAT and SLRAT, respectively. c© 2009 Springer
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We next show the experimental results of face recognition by the above method.
From the ORL face image database [26], we select the first five images per person for
training and the remaining five images for testing. The number of classes coincides
with that of persons in the database, i.e., C = 40. In the training phase, for each
class c, we compute U∗

c for c = 1, . . . , C and store them. In the testing phase, in
order to verify the robustness of robust SLRAT, we include noise images in the set
of test images. For each person, we add K = 1, 2, 3 noise images and then compute
U∗. Each set of test images with several noise images is classified on the basis of
the classification rule described in (3.39). The recognition rates for K = 1, 2, and
3 are shown in Fig. 3.9a, b, and c, respectively. In each figure, the horizontal axis
denotes the reduced dimension J0 of each mode. We set J1 and J2 as J1 = J2 = J0
for simplifying our experiments. The vertical axis denotes the recognition rate. The
robust and the conventional SLRATs are denoted by solid lines with “+” marks
and broken lines with “×” marks, respectively. The recognition rates for the robust
SLRAT are higher than that for the conventional SLRAT.

3.5 Conclusion

In this chapter, we formulated a generalized tensor PCA (GTPCA) and derived mul-
tilinear PCA (MPCA), robust MPCA, simultaneous low-rank approximation of ten-
sors (SLRAT), and robust SLRAT from GTPCA. We also showed the examples of
applications of them to some image analysis tasks.

The derived tensor PCA variants optimize the corresponding objective functions
including the Frobenius norm of tensors. In the proposed GTPCA formulation, other
norms may also be used for other applications. Future work will include the devel-
opments of other tensor norm-based formulations and their optimizations for tensor
variate data analysis.
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Chapter 4
Matrix Factorization for Image Processing

Noboru Murata

Abstract Some of important methods for signal processing, such as principal com-
ponent analysis (PCA), independent component analysis (ICA), non-negative matrix
factorization (NMF), and sparse representation (SR), can be discussed in a unified
frameworkwhere a datamatrix is decomposed into a product of two specificmatrices.
Differences of those methods are understood as different constraints on decomposed
matrices. Characteristics of those methods are discussed and compared by giving
examples of image processing.

Keywords Principal component analysis · Independent component analysis ·
Non-negative matrix factorization · Sparse representation · Image processing

4.1 Introduction

In image processing aiming at such as noise reduction, restoration, and recognition,
there are two important models of image generative process: probabilistic model
and example-based model. Probabilistic models describe relationship among pixels
of images in a stochastic way such as Markov random fields. With a small number
of parameters, those models can capture intrinsic properties of real-world images,
and they are applied on various image analysis such as texture modeling and image
segmentation [23]. On the other hand, example-based models assume that images
are represented by simple combinations of specific components or parts of objects.
Those basic components can be extracted from a large amount of real-world images
with appropriate learning methods.

Principal component analysis (PCA) [17] is one of the typical statistical tools for
extracting common features from a set of observations and is used as an example-
based model in image processing. PCA assumes that a datum is well approxi-
mated by a linear combination of orthogonal components. Since the procedure of
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estimating orthogonal components is reduced to the eigenvalue problemof the sample
covariance matrix, it can be utilized in the analysis of a huge amount of data effi-
ciently. For example, a method of “eigenfaces” [33] has been proposed in the field
of face recognition, and many researchers have tried to improve and extend it.

Instead of simple computation, PCA does not always work properly because of its
strong assumption on data. For example, let us consider the following two different
processes of data generation:

• model A

xA =
(

xA1

xA2

)
=

(
0.37
0.37

)
z1 +

(−0.11
0.11

)
z2,

• model B

xB =
(

xB1

xB2

)
=

(
0.35
0.20

)
z1 +

(
0.20
0.35

)
z2.

Both models assume observed signal x is a linear combination of two components
weighted by unseen source signals z1 and z2, and two components are orthogonal in
model A, while not in model B. Suppose z1 and z2 are independently distributed with
zeromean and unit variance. In this case, the distributions of xA are different from that
of xB in general; however, the covariancematrices of xA and xB coincide. Particularly,
when z1 and z2 are subject to standard normal distributions, the distributions of xA

and xB themselves coincide, and we cannot distinguish that x comes from model A
or model B. In general, PCA estimates model A even though x comes from model
B because of the orthogonal assumption on the components.

For image analysis, this assumption of PCA is sometimes too strong; therefore,
various example-based models for image processing have been proposed and dis-
cussed so far. In this chapter, we briefly summarize such models from a viewpoint
of matrix factorization and then focus on a sparse representation method. The rest
of this chapter is organized as follows. In Sect. 4.2, we give a unified framework of
data representation with products of matrices and discuss specific constraints of data
analysis methods such as PCA, ICA, NMF, and sparse representation. In Sect. 4.3,
we discuss characteristics of the sparsity condition which is imposed on decomposed
matrices. Particularly, we consider relation between sparsity and robustness of rep-
resentation. In Sect. 4.4, we review typical algorithms for coefficient estimation and
dictionary optimization for sparse matrix factorization. In Sect. 4.5, we present typi-
cal applications of sparse matrix factorization to image processing such as denoising,
recognition, and super-resolution.

4.2 Data Representation by Matrix Factorization

In this section, we discuss several methods from a unified view of factorization of a
data matrix, column vectors of which are multiple observations. First, we introduce
some symbols and terms used in the following sections.
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Let x be an observation which is an m-dimensional column vector:

x = (x1, . . . , xm)T ∈ R
m .

When a dataset consists of n observations, they are indexed by a subscript as

xi , i = 1, . . . , n.

Let X be a data matrix which is an expression of a dataset in matrix form:

X = (x1, . . . , xn) ∈ R
m×n (4.1)

We note that the above definition of X is often used in signal processing, but in
statistics, XT is defined as a data matrix instead.

We assume that observations are composed of common components and we call
such a component atom. Atoms are denoted by m-dimensional vectors:

d = (d1, . . . , dm)T ∈ R
m .

A set of atoms, which is indexed by a subscript, is called dictionary, and its matrix
form is expressed as

D = (d1, . . . , dk) ∈ R
m×k . (4.2)

We assume that an observation is represented by a linear combination of atoms
and combination coefficients are expressed with a k-dimensional vector as

z = (z1, . . . , zk)
T ∈ R

k .

We note that depending on the context of analysis, those coefficients are called by
the name of unseen source signals, explanatory variables, hidden features, and so
on. Coefficient vectors corresponding to observations are also indexed by the same
subscript:

zi , i = 1, . . . , n,

and a coefficient matrix is defined by a set of coefficient vectors in matrix form as

Z = (z1, . . . , zn) ∈ R
k×n. (4.3)

When we deal with rows of Z , row vectors are indexed by a superscript as

Z = (z1, . . . , zk)T ∈ R
k×n. (4.4)

Using those symbols, our problem is simply stated as follows: find good D and
Z which approximate X by

X � DZ .
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Depending on constraints imposed on matrices D and Z , different multivariate
analysis methods are derived:

• Principal Component Analysis (PCA)
• Independent Component Analysis (ICA)
• Non-negative Matrix Factorization (NMF)
• Sparse Representation (SR)

In the following subsections, we discuss individual constraints.

4.2.1 Principal Component Analysis

Principal component analysis (PCA; also known asKarhunen-Loéve expansion) [17]
is a method of decomposing a data matrix with linearly uncorrelated (orthogonal)
atoms. At the request of orthogonality, the size of dictionary, i.e., the number of
atoms, k is less than or equal to the dimension of data m. Each atom represents a
direction of the corresponding principal component, and D is called loading matrix.
Coefficients are called scores and scores for individual principal directions are also
uncorrelated.

Factorization constraints for PCA are summarized as follows:

m

n

X m

k

D × k

n

Z

• D is full column rank (m ≥ k),
• any column vectors di and d j in D are unit and orthogonal,
• any row vectors zi and z j in Z are orthogonal.

The solution of PCA is given by the singular value decomposition of X . Let
UΣV T be the singular value decomposition of X :

U = (u1, . . . , um) ∈ R
m×m,

Σ = diag(σ1, . . . ,σr , 0, . . . , 0) ∈ R
m×n,

V = (v1, . . . , vn) ∈ R
n×n,

where r is the rank of X . Consider the k-largest singular values, and let Uk , Σk and
Vk be the sub-matrices of the corresponding singular values as

Uk = (u1, . . . , uk) ∈ R
m×k,

Σk = diag(σ1, . . . ,σk) ∈ R
k×k,

Vk = (v1, . . . , vk) ∈ R
n×k .
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Then D and Z are given by

D = Uk, Z = Σk V T
k . (4.5)

An important variant of PCA is factor analysis (FA) [14]. In FA, D is also called
loading matrix, and elements of Z is called factors. FA assumes that observations
are contaminated by independent noises and that the structure of D is as simple as
possible for the interpretation of analysis. Constraints of FA are summarized as

• D is full column rank (m ≥ k),
• D has a simple structure,
• any row vectors zi and z j in Z are orthogonal.

Many kinds of criteria for structure simplicity of D are proposed (for more details,
see [14]). In order to solve the problem under these constraints, iterative algorithms
are usually employed.

4.2.2 Independent Component Analysis

Independent component analysis (ICA) [16] is a method for recovering statistically
independent signals from observations. In ICA, observations are assumed to be linear
mixtures of source signals, andmixing ratios correspond to atoms. This linearmixture
assumption is similar to PCA, but ICA does not require the orthogonality of atoms.
Each row vector of Z corresponds to n observations from a certain source, and a
characteristic assumption of ICA is statistical independence of those sources. Inmost
of ICAalgorithms, D is assumed to be invertible, and objective functions are designed
by estimating Z by D−1X . Row vectors of Z are called independent components, and
D and D−1 (if exists) are called mixing matrix and de-mixing matrix, respectively.

Constraints of ICA are summarized as follows.

m

n

X m

k

D × k

n

Z

• D is full column rank (m ≥ k),
• row vectors zi in Z are generated from independent distributions.

Since it is difficult to measure statistical independence empirically, various
approximated independence measures are proposed such as nonlinear decorrelation
of rows of Z and entropy minimization of Z . Moreover, constraints are highly
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nonlinear in general; therefore, iterative algorithms and greedy algorithms are often
utilized (for more details, see [16]).

4.2.3 Non-negative Matrix Factorization

Non-negativematrix factorization (NMF) [21, 22] is amethod of approximating non-
negative observations with products of non-negative atoms and coefficients. The idea
of factorizing with positive matrices [28] is not new, but it becomes quite popular in
image analysis after a fast algorithm based on multiplicative optimization has been
proposed in [22]. In the optimization objective, there is no specific requirement for
sparsity of D and Z , but the non-negative constraints on both of D and Z naturally
make coefficients sparse, and also help interesting interpretation of estimated D and
Z [21].

Constraints of NMF are simply summarized as follows.

m

n

X m

k

D × k

n

Z

• all the elements in D and Z are non-negative.

There aremany variants ofNMF. For example, l1-norm regularization is applied in
sparse NMF [15] because original NMF does not guarantee the sparsity of D and Z ,
the notion of Non-negative tensor factorization (NTF) is introduced in [31] in order
to deal with array-structured data, and product rules of D and X are generalized in
[13]. See [6] for recent advances.

4.2.4 Sparse Representation

Sparse representation (SR) or sparse coding [26, 27] is a method of representing
observations with a linear combination of as few atoms as possible. For each obser-
vation, atoms are adaptively chosen from a sufficiently large size of dictionary, thus
only a few coefficients have significant values and the rest are zero, i.e., coefficients
are sparse. SR is inspired by visual processing of biological systems. In the visual
system of animals, images acquired by the retina are once decomposed into simple
components by receptive fields in visual cortex and again reconstructed to complex
images hierarchically. In this process, reconstructed images are represented by as
few components as possible in order to achieve robust recognition.
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PCA ICA

NMF SR

Fig. 4.1 Dictionaries learned from face images

Constraints of SR are summarized as follows.

m

n

X = m

k

D × k

n

Z

• D is full row rank (m ≤ k),
• column vectors zi in Z are sparse.

As for example, dictionaries learned from face images (the FERET database [30])
by PCA, ICA, NMF, and SR are shown in Fig. 4.1. Figure4.2 shows samples of face
images.

In the following sections,we consider the decomposition under the SR constraints.

4.3 Characteristics of Sparseness

A general problem of sparse representation is written as follows: for a given data
matrix X , find a dictionary D and a corresponding coefficient matrix Z as

minimize
D,Z

R(Z) subject to C(X, D, Z) ≤ ε, ε > 0, (4.6)
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Fig. 4.2 Samples of face images from the FERET database

where C measures the cost (or loss) for approximating X by DZ and R measures or
regularizes the goodness of Z . We note that in some cases specific conditions on D
are imposed and the term R(D, Z) is used instead of R(Z). However, in this chapter,
we only focus on the case that Z is regularized. Another formulation is given as

minimize
D,Z

C(X, D, Z) subject to R(Z) ≤ τ , τ > 0, (4.7)

where the roles of C and R are converted. By using the Lagrange multiplier method,
those formulations are rewritten as

minimize
D,Z

C(X, D, Z) + λR(Z), λ > 0. (4.8)

Depending on the target problem, C and R should be carefully designed. In image
processing, simple vector norms are commonly used for constructingC and R mainly
because of computational simplicity. First, we introduce vector norms and related
notation which we use in the following sections.

For a positive real number p > 0, the l p-norm of a vector z, ‖z‖p, is defined as

‖z‖p
p =

∑

i

|zi |p. (4.9)
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Special cases are p = 2 and p = 1 which are the Euclidean norm and the Manhattan
norm, respectively. For 0 < p < 1, ‖ · ‖p is not a proper norm in a mathematical
sense, but we use the term “l p-norm” even for 0 < p < 1. We also define “l0-norm”
as follows. Let supp(z) be a index set of nonzero elements in a vector z, i.e.,

supp(z) = {i |zi �= 0}.

Then the l0-norm of z is defined by

‖z‖0 = |supp(z)|, (4.10)

where | · | denotes the cardinality of a set. In other words, the l0-norm of z is the
number of nonzero elements in z.

A common choice of the cost C is the l2-norm of the residual vectors, i.e.,

C(X, D, Z) = ‖X − DZ‖22 =
n∑

i=1

‖xi − Dzi‖22.

On the other hand, there are many possibilities for the choice of the regularization
R. In order to control sparsity of z, a natural choice might be the l0-norm, i.e.,

R(Z) = ‖Z‖0 = max
i

‖zi‖0.

However, strict optimization with the l0-norm is known to be NP-hard [25]. To
overcome this difficulty, several practical relaxations to the l p-norm are proposed.
The most popular choice is the l1-norm, i.e.,

R(Z) = ‖Z‖1 = max
i

‖zi‖1 or
n∑

i=1

‖zi‖1.

The relaxation of the l0-norm to the l1-norm is intensively investigated in terms of
compressed sensing [8], and it is guaranteed that l1-sparse representation can be
appropriately estimated under mild conditions [3].

In the following subsections, we discuss the properties of sparsity fromviewpoints
of robustness and shrinkage estimation.

4.3.1 Robustness

Let us consider the following approximation problem in an m-dimensional space.

• We have a dictionary D of k (> m) atoms di , i = 1, . . . , k.
• We consider the subspaces spanned by τ atoms.
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• One of the subspaces generates a datum, i.e., Dz, ‖z‖0 = τ .
• We estimate the target subspace from a contaminated observation x = Dz + ξ.
• What is the optimal size of τ?

Estimating the target subspace is equivalent to estimating which elements of z are
nonzero from a observation x.

In the first place, let us count the number of subspaces spanned by τ atoms out of
k atoms. This number is given by

(
k
τ

)
= k!

τ !(k − τ )! , (4.11)

which is equivalent to the number of k-dimensional {0, 1}-vectors whose τ elements
are 1. As well known, this quantity is maximized at τ = k/2 as shown in Fig. 4.3a.

Then, let us count the number of subspaces confused by noise ξ. Such subspaces
have overlapped atoms with the target subspace. As an example, let us consider
subspaces with 50%-overlap. This number is given by a sum over two quantities,
i.e., more than half of τ atoms coincide and the rest of atoms are chosen from k − τ
unused atoms.

τ∑

i=τ/2

(
τ
i

)(
k − τ
τ − i

)
. (4.12)

This quantity is also maximized at τ = k/2 as shown in Fig. 4.3b.
From these calculations, we can consider the number of subspaces which are not

affected by the contamination:

(the number of robust subspaces)

= (the number of subspaces)

(the number of confusing subspaces)
= Eq. (4.11)

Eq. (4.12)
.

This quantity is not maximized at τ = k/2 as shown in Fig. 4.3c. When the observa-
tion is contaminated by smaller noise, the number of confusing subspaces becomes
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Fig. 4.3 Numbers of considered subspaces for k = 100
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smaller. In consequence, the number of robust subspaces is maximized at around
τ = k/2.Conversely, smaller τ is preferable for larger noise. From this consideration,
we see that sparse representation is efficient for dealing with highly contaminated
data.

4.3.2 Shrinkage Estimation

The effect of regularization R can be also seen from a viewpoint of optimization
process. Let us consider the gradient flow of the objective function. Figure 4.4a-c
shows the contour and gradient flow of regularization terms deduced from the
l2-, l1- and l1/2-norms, respectively. Since our objective function is a sum of C
and R, the total gradient is also a sum of individual gradients. That means the total
gradient flow drastically changes depending on the property of R. The gradient flow
of the l2-regularization directs the origin as shown in Fig. 4.4a, and the coefficients
diminish by adding this regularization. This effect is called shrinkage estimation
which will suppress the over-fit to outliers and reduce the fluctuation of estimates.
On the other hand, as shown in Fig. 4.4b, the gradient flow of the l1-regularization
directs the nearest coordinate axis; therefore, some small coefficients vanish and the
rest diminish. Namely, the l1-regularization will remove redundant coefficients and
will reduce the effective degree of freedom. This phenomenon clearly appears in
Fig. 4.4c for the l1/2-regularization. Therefore, the l p-regularization with small p
conducts sparse representation naturally.

4.4 Algorithms for Dictionary Learning

As discussed in the previous section, the simple formulation of sparse representation
is written as follows: For a given data matrix X , find an appropriate dictionary D
and a corresponding coefficient matrix Z

Fig. 4.4 Contours and gradient flow of l2-, l1- and l1/2-regularization terms
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minimize
D,Z

‖X − DZ‖22 + λ‖Z‖s, λ > 0,

where ‖ · ‖s is a certain norm imposing sparsity.
This basic problem is solved by the following two procedures repeatedly:

• estimate coefficients for a fixed dictionary,
• optimize atoms in dictionary for fixed coefficients.

In the following subsections, we discuss each procedure in detail.

4.4.1 Coefficient Estimation

The problem of estimating sparse coefficients z for an observation x is formulated
as a constraint optimization problem:

minimize
z

‖z‖s subject to ‖x − Dz‖2 ≤ ε. (4.13)

Alternatively, we can consider the following formulation:

minimize
z

‖x − Dz‖2 subject to ‖z‖s ≤ τ . (4.14)

As well known, the solution of the above optimization problems is characterized by
a saddle point of the Lagrange function

L(z,λ) = ‖x − Dz‖22 + λ‖z‖s, λ > 0. (4.15)

As discussed in the previous section, there are several possibilities for ‖ · ‖s . Depend-
ing on the choice of sparse norms, many algorithms are proposed as follows.

Orthogonal Matching Pursuit (OMP) [29] is an iterative algorithm for finding an
approximate solution of l0-sparse representation. In each step of the algorithm, OMP
selects one atom which has the largest correlation with the residual vector x − Dz
in a greedy manner until desired accuracy is achieved as Eq. (4.13) or a sufficient
number of atoms are collected as Eq. (4.14).

A pseudo code for solving

minimize
z

‖z‖0 subject to ‖x − Dz‖2 ≤ ε

is summarized as follows.
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Orthogonal Matching Pursuit

procedure OMP( D ∈ R
m×k , x ∈ R

m , ε > 0)
z ← 0 ∈ R

k 	 initialize coefficients
r ← x − Dz = x 	 initialize residuals
S = supp(z) ← ∅ 	 initialize support set
while ‖r‖2 > ε do

δ(i) ← minzi ,i /∈S ‖r − di zi‖22 	 calculate fitness of atoms
S ← S ∪ {argmini /∈S δ(i)} 	 update support set
z ← argminz,supp(z)⊂S ‖x − Dz‖22 	 update coefficients
r ← x − Dz 	 calculate residuals

end while
return z

end procedure

The problem of l1-sparse representation is equivalent to Lasso (least absolute
shrinkage and selection operator) [32], and the problem is written in quadratic pro-
gramming (QP) by introducing positive auxiliary variables as pointed out in [32].
If the size of the problem is quite large, QP works rather slowly; therefore, other
effective methods making use of l1-norm properties are also proposed, such as least
angle regression [9], Feature Sign Search [20], and Dantzig selector [4].

A pseudo code for solving

minimize
z

‖x − Dz‖22 + λ‖z‖1, λ > 0.

by QP with positive auxiliary variables z+ and z− is written as follows.

Quadratic Programming for Lasso

procedure QPLasso(D ∈ R
m×k , x ∈ R

m , λ > 0)
function L(z+ ∈ R

k+, z− ∈ R
k+) 	 define objective

‖x − D(z+ − z−)‖22 + λ‖z+‖1 + λ‖z−‖1
end function
z+, z− ← argminz+,z− L(z+, z−) 	 solve by QP
z ← z+ − z− 	 calculate coefficients
return z

end procedure

Amethod for solving l p-sparse representation for general p is using an interesting
relationship between the l p-norm and l2-norm [5, 7]. For any p > 0, the following
simple relation holds:

‖z‖p
p = ‖Q−1/2z‖22, (4.16)
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where
Q = diag(|z1|2−p, . . . , |zk |2−p).

Using this relation, the optimization problem

minimize
z

‖z‖p subject to x = Dz

is rewritten as
minimize

z
‖Q−1/2z‖2 subject to x = Dz.

The solution of the latter problem is given by

z = Q DT(DQ DT)−1x. (4.17)

Since Q is a function of z, this is not a closed form and the solution is given by the
stationary point of this equation.

The following pseudo code finds the stationary point for the optimization prob-
lem of

minimize
z

‖z‖p subject to ‖x − Dz‖2 ≤ ε.

Iterative Reweighted Least Squares

procedure IRLS(D ∈ R
m×k , x ∈ R

m , p > 0, ε > 0)
z ← DT(DDT)−1x 	 initialize coefficients
while ‖x − Dz‖2 > ε do

Q ← diag(|z1|2−p, . . . , |zk |2−p) 	 calculate weights
z ← Q DT(DQ DT)−1x 	 update coefficients

end while
return z

end procedure

4.4.2 Dictionary Optimization

For given datamatrix X and coefficientmatrix Z , the dictionary optimization problem
is simply stated as

minimize
D

‖X − DZ‖22.

This objective is regarded as finding a good set of atoms for not specific data but all
data xi , i = 1, . . . , n on average. There are many approaches adopting the gradient
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methods such as original sparse coding [26, 27] and method of optimal directions
[11]. Gradient methods sometimes need a lot of iterations for satisfactory conver-
gence and are not always computationally effective. Recently, the following fast
algorithms are commonly used in image analysis.

One is called K-SVD [1], which can be regarded as an extension of the k-means
method for vector quantization. K-SVD updates atoms one by one in order to reduce
the residuals. Corresponding coefficients are also updated during dictionary opti-
mization. Updates of atoms are based on the singular value decomposition of resid-
uals; therefore, the computation is fast and efficient. Let Ω be the index set of
observations, i.e., Ω ⊂ {1, . . . , n}, and let XΩ be a sub-matrix of X with the index
set Ω , i.e., XΩ = (xi , i ∈ Ω). Then the pseudo code is summarized as follows.

K-SVD

procedure KSVD(D ∈ R
m×k , X ∈ R

m×n , Z ∈ R
k×n)

for i = 1, . . . , k do
Ωi ← supp(zi ) 	 collect data using atom di

Ri ← XΩi − ∑k
j=1, j �=i d j z jT 	 calculate residuals

UΣV T ←SVD(Ri ) 	 calculate SVD
di ← u1 	 update atom di

zi ← σ1v1 	 updates coefficients
end for
return D

end procedure

Another method is proposed by [20], which utilizes the Lagrange dual of the
objective. In this method, the objective is defined as

minimize
D

‖X − DZ‖22 subject to ‖di‖22 ≤ τ , i = 1, . . . , k

and the Lagrange function of this problem is given by

L(D,λ) = trace(X − DZ)T(X − DZ) +
k∑

i=1

λi (‖di‖22 − τ ) (4.18)

whereλ = (λ1, . . . ,λk)
T. Byminimizing L(D,λ) over D analytically, the Lagrange

dual is obtained as

L(λ) = min
D

L(D,λ) = trace(XTX − X ZT(Z ZT + diag(λ))−1Z XT − τdiag(λ)).

(4.19)
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The optimal Lagrange multiplier λ is obtained by maximizing the Lagrange dual
L(λ), then the optimal dictionary D is analytically solved. The pseudo code is as
follows.

Lagrange Dual

procedure LD(D ∈ R
m×k , X ∈ R

m×n , Z ∈ R
k×n , τ > 0)

function L(λ ∈ R
k+) 	 define Lagrange dual

trace(XTX − X ZT(Z ZT + diag(λ))−1Z XT − τdiag(λ))

end function
λ ← argmaxλ L(λ) 	 solve by, e.g., Newton method
D ← X ZT(Z ZT + diag(λ))−1 	 update dictionary
return D

end procedure

4.5 Applications to Image Processing

In signal processing, there are many applications of matrix factorization technique
such as

• noise reduction and restoration [10, 24],
• face recognition [34],
• super-resolution [18, 35],
• image decomposition and separation [12],
• biological signal processing [6],
• recommendation system [19],
• text categorization [2].

We present noise reduction and restoration, face recognition, and super-resolution
as typical applications of sparse matrix factorization.

Noise Reduction and Restoration

Noise reduction or denoising is a basic and popular application of sparse represen-
tation in image processing [10, 24].

First, we prepare an appropriate dictionary D learned from a plenty of real-world
images which belong to the same category of the target image, such as natural scenes
and human faces. Then, the target image x is approximated by

minimize
z

‖x − Dz‖2 subject to ‖z‖s ≤ τ ,

where τ is defined in the dictionary learning stage. If the noise level ε is known
beforehand, we can apply
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minimize
z

‖z‖s subject to ‖x − Dz‖2 ≤ ε.

In any cases, because of the nature of coefficient sparsity, it is expected that Dz
does not include unusual components, namely noisy components, which cannot be
represented by usual atoms learned from real-world images.

In the case that the observed image lacks some of the pixels, we can apply sparse
representation with a small modification. Let Rx be an operator that removes missing
elements of x. Then, the above noise reduction procedure is rewritten as

minimize
z

‖Rx(x − Dz)‖2 subject to ‖z‖s ≤ τ .

In this formulation, the coefficient vector z is estimated only from the observed part,
and the missing part is complemented by atoms with the estimated coefficients.

Face Recognition

For discriminative task such as face recognition, design of the dictionary is quite
important. There are many approaches, but a simple one is using sample images of
target users as atoms [34]. Suppose U users have registered their face images. Let
du

i be the i th face image of user u, and ku be the number of u’s face images. Then,
we construct a dictionary as

D = (d1
1, . . . , d1

k1 , . . . , du
1, . . . , du

ku
, . . . , dU

1 , . . . , dU
kU

).

If the target image x is a registered user’s face image, then its sparse representation
z for D is expected to have nonzero elements at the index of the corresponding user.
Therefore, the estimated coefficients can be used as features for various kinds of
classifiers.

Super-Resolution

Super-resolution is a technique for recovering an original high-resolution image
xH from an observation xL degraded to low-resolution. The key idea is that if we
prepare a proper pair of high-resolution dictionary DH and low-resolution dictionary
DL , the original image xH and degraded image xL can be represented by the same
coefficients z as

xH = DH z,

xL = DLz.

In the case of single-frame super-resolution, where a high-resolution image is recov-
ered from only one single low-resolution image, both of the dictionaries are simul-
taneously trained by a set of high-resolution images and low-resolution images
sustained by the same degradation process [35]. In the case of multi-frame super-
resolution, where differently degraded several low-resolution images are given for
recovering a high-resolution image, we need an additional process of image patch
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Fig. 4.5 Concept of image patch alignment

degraded image recovered image

Fig. 4.6 Super-resolution of degraded image

alignment as shown in Fig. 4.5. By stacking well-aligned low-resolution images
xL

i , i = 1, . . . , l and corresponding dictionaries DL
i , i = 1, . . . , l as

x̃L =
⎛

⎜⎝
xL
1
...

xL
l

⎞

⎟⎠ , D̃L =
⎛

⎜⎝
DL

1
...

DL
l

⎞

⎟⎠ ,

we can use the above single-frame strategy [18]. Figure4.6 shows an example of
super-resolution with sparse representation.
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Chapter 5
Array Normal Model and Incomplete Array
Variate Observations

Deniz Akdemir

Abstract Missing data present an important challenge when dealing with
high-dimensional data arranged in the form of an array. Themain purpose of this arti-
cle is to introduce methods for estimation of the parameters of array variate normal
probability model from partially observed multiway data. The methods developed
here are useful for missing data imputation, estimation of mean, and covariance
parameters for multiway data. A review of array variate distributions is included. A
multiway semi-parametric mixed-effects model that allows separation of multiway
mean and covariance effects is also defined, and an efficient algorithm for estimation
based on the spectral decompositions of the covariance parameters is recommended.
We demonstrate our methods with simulations and real-life data involving the esti-
mation of genotype and environment interaction effects on possibly correlated traits.

Keywords Array normal distribution · Missing data · Imputation · Kronecker
covariance structure · Mixed models · Kernel-based learning

5.1 Introduction

A vector is a one-way array, a matrix is a two-way array, by stacking matrices,
we obtain three way arrays, etc. Array variate random variables up to two dimen-
sions have been studied intensively in [13] and by many others. For array observa-
tions of 3, 4 or in general i dimensions, probability models with Kronecker delta
covariance structure have been proposed very recently in [1, 24, 33]. The estima-
tion and inference for the parameters of the array normal distribution with Kro-
necker delta covariance structure, based on a random sample of fully observed arrays
{X̃1, X̃2, . . . , X̃N }, can be accomplished by maximum-likelihood estimation [1, 24,
33, 34] or by Bayesian estimation [18].

Array variate randomvariables aremainly useful formultiply labeled randomvari-
ables that can naturally be arranged in array form. Some examples include response
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from multifactor experiments, two- to three-dimensional image–video data, spatial–
temporal data, and repeated measures data. For example, in a typical plant breeding
experiment, a four-way array data can be obtained by considering the varieties ×
attributes × locations × years. It is true that any array data can also be represented
uniquely in vector form, and a general covariance structure can be assumed for this
vector representation. However, the models with Kronecker covariance structure are
relatively more parsimonious.

The array variate data models and the estimation techniques we have mentioned
above assume that we have a random sample of fully observed arrays. However, in
practice, most array data come with many missing cells. The main purpose of this
article is to develop methods for estimation and inference for a class of array random
variables when we only have partially observed arrays in the random sample.

Another novelty in this article involves the definition and development of a mul-
tiway mixed-effects model. This model is useful for analyzing multiway response
variables that depend on separable effects, and through it, we can incorporate the
known covariance structures along some dimensions of the response and we can
estimate the unknown mean and covariance components.

The array variate mixed models can be used to fit Gaussian process regression
models with multiway data. Using the explanatory information that describes levels
related to the dimension of an array, we can calculate a kernel matrix for that dimen-
sion. The shrinkage parameters related to a kernel along a dimension can be estimated
using likelihood-based methods. Similarly, the covariance for the dimensions with
no explanatory information can also be estimated. We illustrate this with two exam-
ples where we calculate and use kernel matrices based on genetic information in the
form of genomewide markers.

The remaining of the article is organized as follows: In Sects. 5.2 and 5.3, we
introduce the normalmodel for array variables. In Sect. 5.4,we introduce the updating
equations for parameter estimation andmissing data imputation. InSect. 5.5, the basic
algorithm is introduced. In Section 5.6, we define a semi-parametric array variate
mixed model with Kronecker covariance structure, and an efficient algorithm for the
estimation of variance components is described. In Sect. 5.7, we study the principal
component analysis for the array case. Section 5.8 includes a brief discussion of
classification.Examples illustrating the use of thesemethods are provided inSect. 5.9,
followed by our conclusions in Sect. 5.10.

5.2 Arrays and Array Variate Random Variables

In this paper, we will only study arrays with real elements. We will write X̃ to say
that X̃ is an array. When it is necessary, we can write the dimensions of the array
as subindices, e.g., if X̃ is a m1 × m2 × m3 × m4 dimensional array in Rm1×m2×...×mi ,
then we can write X̃m1×m2×m3×m4 . To refer to an element of an array X̃m1×m2×m3×m4 ,

we write the position of the element as a subindex to the array name in parenthesis,
(X̃)r1r2r3r4 .
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Arrays can be constant arrays, i.e., if (X̃)r1r2...ri ∈ R are constants for all rj, j =
1, 2, . . . , mj and j = 1, 2, . . . , i, then the array X̃ is a constant array.

Array variate random variables are arrays with all elements (X̃)r1r2...ri ∈ R random
variables. If the sample space for the randomoutcome s isS, (X̃)r1r2...ri = (X̃(s))r1r2...ri

where each of (X̃(s))r1r2...ri is a real-valued function from S to R.

If X̃ is an array variate random variable, its density (if it exists) is a scalar function
fX̃(X̃) such that:

• fX̃(X̃) ≥ 0;
• ∫

X̃ fX̃(X̃)dX̃ = 1;
• P(X̃ ∈ A) = ∫

A fX̃(X̃)dX̃, where A is a subset of the space of realizations for X̃.

A scalar function fX̃,Ỹ (X̃, Ỹ) defines a joint (biarray variate) probability density
function if

• fX̃,Ỹ (X̃, Ỹ) ≥ 0;
• ∫

Ỹ

∫
X̃ fX̃,Ỹ (X̃, Ỹ)dX̃dỸ = 1;

• P((X̃, Ỹ) ∈ A) = ∫ ∫
A fX̃,Ỹ (X̃, Ỹ)dX̃dỸ , where A is a subset of the space of real-

izations for (X̃, Ỹ).

The marginal probability density function of X̃ is defined by

fX̃(X̃) =
∫

Ỹ
fX̃,Ỹ (X̃, Ỹ)dỸ ,

and the conditional probability density function of X̃ given Ỹ is defined by

fX̃|Ỹ (X̃|Ỹ) = fX̃,Ỹ (X̃, Ỹ)

fỸ (Ỹ)
,

where fỸ (Ỹ) > 0.
Two random arrays X̃ and Ỹ are independent if and only if

fX̃,Ỹ (X̃, Ỹ) = fX̃(X̃)fỸ (Ỹ).

It is well known that a matrix equation

AXB′ = C

can be rewritten in its monolinear form as

A ⊗i Bvec(X) = vec(C). (5.1)
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Furthermore, the matrix equality

A ⊗i BXC′ = E

obtained by stacking equations of the form (5.1) can be written in its monolinear
form as

(A ⊗i B ⊗i C)vec(X) = vec(E).

This process of stacking equations could be continued, and R-matrix multiplication
operation introduced by Rauhala [26] provides a compact way of representing these
equations in array form:

Definition 1 R-matrix multiplication is defined elementwise:

((A1)
1(A2)

2 . . . (Ai)
iX̃m1×m2×...×mi)q1q2...qi

=
m1∑

r1=1

(A1)q1r1

m2∑

r2=1

(A2)q2r2

m3∑

r3=1

(A3)q3r3 . . .

mi∑

ri=1

(Ai)qiri(X̃)r1r2...ri .

R-matrix multiplication generalizes the matrix multiplication (array multiplica-
tion in two dimensions) to the case of k-dimensional arrays. The following useful
properties of the R-matrix multiplication are reviewed by Blaha [6]:

• (A)1B = AB.

• (A1)
1(A2)

2C = A1CA′
2.• Ỹ = (I)1(I)2 . . . (I)iỸ .

• ((A1)
1(A2)

2 . . . (Ai)
i)((B1)

1(B2)
2 . . . (Bi)

i)Ỹ = (A1B1)
1(A2B2)

2 . . . (AiBi)
iỸ .

The operator rvec describes the relationship between X̃m1×m2×...×mi and its mono-
linear form xm1m2...mi×1.

Definition 2 rvec(X̃m1×m2×...mi) = xm1m2...mi×1 wherex is the columnvector obtained
by stacking the elements of the array X̃ in the order of its dimensions; i.e.,
(X̃)j1j2...ji = (x)j where j = (ji − 1)ni−1ni−2 . . . n1 + (ji − 2)ni−2ni−3 . . . n1 + . . . +
(j2 − 1)n1 + j1.

Let L̃m1×m2×...×mi = (A1)
1(A2)

2 . . . (Ai)
iX̃ where (Aj)

j is an mj × nj matrix for j =
1, 2, . . . , i and X̃ is an n1 × n2 × . . . × ni array.Write l = rvec(̃L) and x = rvec(X̃).

Then, l = A1 ⊗i A2 ⊗i . . . ⊗i Aix. Therefore, there is an equivalent expression of the
array equation in monolinear form.

Definition 3 The square norm of X̃m1×m2×...×mi is defined as

‖X̃‖2 =
m1∑

j1=1

m2∑

j2=1

. . .

mi∑

ji=1

((X̃)j1j2...ji)
2.
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Definition 4 The distance of X̃1m1×m2×...×mi
from X̃2m1×m2×...×mi

is defined as

√
‖X̃1 − X̃2‖2.

Example 5.2.1 Let Ỹ = (A1)
1(A2)

2 . . . (Ai)
iX̃ + Ẽ.Then ‖Ẽ‖2 isminimized for ̂̃X =

(A−
1 )1 (A−

2 )2 . . . (A−
i )i Ỹ .

Theorem 5.2.1 Let (A1)
1, (A2)

2, . . . , (Ai)
i be m1, m2, . . . , mi dimensional positive

definite matrices. The Jacobian J(X̃ → Z̃) of the transformation X̃ = (A1)
1(A2)

2 . . .

(Ai)
iZ̃ + M̃ is

(|A1|
∏

j �=1 mj |A2|
∏

j �=2 mj . . . |Ai|
∏

j �=i mj )−1.

Proof The result is proven using the equivalence of monolinear form obtained
through the rvec(X̃) and array X̃. Let L̃m1×m2×...mi = (A1)

1(A2)
2 . . . (Ai)

iZ̃ where
(Aj)

j is an mj × nj matrix for j = 1, 2, . . . , i and X̃ is an n1 × n2 × . . . × ni array.
Write l = rvec(̃L) and z = rvec(Z̃). Then, l = A1 ⊗i A2 ⊗i . . . ⊗i Aiz. The result
follows from noting that J(l → z) = |A1 ⊗i A2 ⊗i . . . ⊗i Ai|−1 and using induction
with the rule |A ⊗i B| = |A|m|B|n for n × n matrix A and m × m matrix B to show
that |A1 ⊗i A2 ⊗i . . . ⊗i Ai|−1 = (|A1|

∏
j �=1 mj |A2|

∏
j �=2 mj . . . |Ai|

∏
j �=i mj )−1.

Corollary 5.2.1 Let Z̃ ∼ fZ̃(Z̃).Define X̃ = (A1)
1(A2)

2 . . . (Ai)
iZ̃ + M̃ where (A1)

1,

(A2)
2, . . . , (Ai)

i are m1, m2, . . . , mi dimensional positive definite matrices. The pdf
of X̃ is given by

fX̃ (X̃; (A1)
1, (A2)

2, . . . , (Ai)
i, M̃) = f (A−1

1 )1(A−1
2 )2 . . . (A−1

i )i(X̃ − M̃))

|A1|
∏

j �=1 mj |A2|
∏

j �=2 mj . . . |Ai|
∏

j �=i mj
.

5.3 Array Normal Random Variable

The family of normal densities with Kronecker delta covariance structure is given
by

φ(X̃;M̃,A1,A2, . . .Ai) = exp (− 1
2‖(A−1

1 )1(A−1
2 )2 . . . (A−1

i )i(X̃ − M̃)‖2)
(2π)

(
∏

j mj)/2|A1|
∏

j �=1 mj |A2|
∏

j �=2 mj . . . |Ai|
∏

j �=i mj
(5.2)

where A1,A2, . . . ,Ai are non-singular matrices of orders m1, m2, . . . , mi.

The construction of this density follows mainly from the relationship of the arrays
to their monolinear forms described by Definition 2. For the scalar case, the density
of the standard normal variable z ∈ R1 is given as

φ1(z) = 1

(2π)
1
2

exp(−1

2
z2).
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For the m1 dimensional standard normal vector z ∈ Rm1 , the density is given by

φm1(z) = 1

(2π)
m1
2

exp(−1

2
z′z).

Finally, the m1 × m2 standard matrix variate variable Z ∈ Rm1×m2 has the density

φm1×m2(Z) = 1

(2π)
m1m2

2

exp(−1

2
trace(Z ′Z)).

With the above definition, we have generalized the notion of normal random variable
to the array variate case.

Definition 5 We write

X̃ ∼ Nm1×m2×...×mi(M̃,Λm1m2...mi)

if rvec(X̃) ∼ Nm1m2...mi(rvec(M̃),Λm1m2...mi). Here, M̃ is the expected value of X̃,
and Λm1m2...mi is the covariance matrix of the m1m2 . . . mi-variate random variable
rvec(X̃).

The family of normal densities with Kronecker delta covariance structure is obtained
by considering the densities obtained by the location-scale transformations of the
standard normal variables.

Other array variate densities in the elliptical family are easily constructed using
Corollary 5.2.1. For example, the following definition provides a generalization of
the Student’s t distribution to the array variate case.

Let A1, A2, . . . , Ai be non-singular matrices with orders m1, m2, . . . , mi and M̃
be a m1× m2 × . . . ×mi constant array. Then, the pdf of an m1× m2 × . . . ×mi array
variate t random variable, T̃ , with degrees of freedom k given by

f (T̃; M̃, A1, A2, . . . Ai) = c
(1 + ‖(A−1

1 )1(A−1
2 )2 . . . (A−1

i )i(T̃ − M̃)‖2)−(k+m1m2...mi)/2

|A1|
∏

j �=1 mj |A2|
∏

j �=2 mj . . . |Ai|
∏

j �=i mj
(5.3)

where c = (kπ)m1m2 ...mi/2Γ ((k+m1m2...mi)/2)
Γ (k/2) .

Distributional properties of an array normal variable with density in the form
of Eq. 5.2 can be obtained by using the equivalent monolinear representation. The
moments, the marginal and conditional distributions, and independence of variates
should be studied considering the equivalent monolinear form of the array variable
and the well-known properties of the multivariate normal random variable.

An important operationwith an array is thematricization (also known as unfolding
or flattening) operation, and it is the process of arranging the elements of an array
in a matrix. Matricization of an array of dimensions m1,×m2, . . . , mi along its kth
dimension is obtained by stacking the mk dimensional column vectors along the
kth in the order of the levels of the other dimensions and results in a mk × ∏

j �=k mj

matrix.
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The operator rvec describes the relationship between X̃m1×m2×...×mi and its mono-
linear form xm1m2...mi×1. rvec(X̃m1×m2×...×mi) = xm1m2...mi×1 where x is the column
vector obtained by stacking the elements of the array X̃ in the order of its dimensions;
i.e., (X̃)j1j2...ji = (x)j where j = (ji − 1)mi−1mi−2 . . . m1 + (ji − 2)mi−2mi−3 . . . m1 +
. . . + (j2 − 1)m1 + j1.

The following are very useful properties of the array normal variable with Kro-
necker delta covariance structure [1]. Property 5.2 describes the relationship of the
multilinear array normal distribution to the multivariate normal distribution.

Property 5.1 If X̃ ∼ φ(X̃; M̃, A1, A2, . . . Ai), then rvec(X̃) ∼ φ(rvec(X̃);
rvec(M̃), Ai ⊗ . . . ⊗ A2 ⊗A1).

Property 5.2 If X̃ ∼ φ(X̃;M̃,A1,A2, . . .Ai), then E(rvec(X̃)) = rvec(M̃) and
cov(rvec(X̃)) = (Ai ⊗ . . . ⊗ A2 ⊗ A1)(Ai ⊗ . . . ⊗ A2 ⊗ A1)

′.

Inference about the parameters of the model in (5.2) for the matrix variate case
has been considered in the statistical literature [22, 28, 29, 34], etc. The flip-flop
algorithm [34] is proven to attain maximum-likelihood estimators of the parameters
of two-dimensional array variate normal distribution. In [1, 18, 24], the flip-flop
algorithm was extended to general array variate case.

The following is similar to the flip-flop algorithm. First, assume {X̃1, X̃2, . . . , X̃N }
is a random sample from a N(M̃, A1, A2, . . . Ai) distribution with j − 1 of the last
diagonal elements of matrices AjA′

j equal to 1 for j = 1, 2, . . . , i. Further, we assume
that all A′

js are square positive definite matrices of rank at least j. Finally, assume

that we have N
∏i

j=1 mj > m2
r for all r = 1, 2, . . . , i.

Algorithm for estimation is as follows:

1. Estimate M̃ by ̂̃M = 1
N

∑N
l=1 X̃l.

2. Start with initial estimates of A2, A3, . . . , Ai.

3. On the basis of the estimates of A2, A3, . . . , Ai, calculate an estimate of A1 by first
scaling the array observations using

Z̃l = (I)1(A−1
2 )2(A−1

3 )3 . . . (A−1
i )i(X̃l − ̂̃M),

and setting

Σ1 = 1

N
∏

j �=k mj

N
∏

j �=k mj∑

q=1

Z(k)qZ ′
(k)q

and then calculating the square root of covariance along the 1st dimension of the
arrays Z̃l, l = 1, 2, . . . , N .

4. On the basis of the most recent estimates of the model parameters, estimate Aj

j = 2, . . . , i. by first scaling the array observations using

Z̃l = (A−1
1 )1(A−1

2 )2 . . . (A−1
j−1)

j−1I(A−1
j+1)

j+1 . . . (A−1
i )i(X̃l − ̂̃M),
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and then calculating the square root of covariance along the jth dimension of the
arrays Z̃l’s for j = 2, . . . , i. Scale the estimate of Σ j so that the first diagonal is
equal to 1.

5. Repeat steps 3 and 4 until convergence is attained.

In the remaining of this paper, we will assume that the matrices Ai are unique
square roots (e.g., eigenvalue or Cholesky decompositions) of the positive definite
matrices Σ i for i = 1, 2, . . . , i and we will put Λ = Σ i ⊗ . . . ⊗ Σ2 ⊗ Σ1 = (Ai ⊗
. . . ⊗ A2 ⊗ A1)(Ai ⊗ . . . ⊗ A2 ⊗ A1)

′ for the overall covariance matrix.
We also use the following notation:

•
(A)kX̃ ≡ (I)1(I)2 . . . (I)k−1(A)k(I)k+1 . . . (I)iX̃.

• For vectors ak, k = 1, 2, . . . , i,

(a1)1(a2)2 . . . (ai)
i1 ≡ (a1)1(a2)2 . . . (ai)

ĩ11×1×...×1.

• Matricization of X̃ along the kth dimension: X(k)

• For ease of notation, when the dimensions are evident from the context, we have
used 0 to stand for the zero matrix with appropriate dimensions.

• A vector of ones: 1.

5.4 Dealing with Incomplete Arrays

Using linear predictors for the purpose of imputing missing values in multivariate
normal data dates back at least as far as [3]. The EM algorithm [8] is usually utilized
for multivariate normal distribution with missing data. The EM method goes back
to [5, 25]. Hartley and Hocking [15, 35] developed the Fisher scoring algorithm for
incomplete multivariate normal data. The notation and the algorithms described in
this section were adopted from [19].

Let x be a k-dimensional observation vector which is partitioned as

[
R
M

]
x =

[
xr

xm

]

where xr and xm represent the vector of observed values and themissing observations
correspondingly. Here,

[
R
M

]
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is an orthogonal permutation matrix of zeros and ones and

x =
[

R
M

]′ [
xr

xm

]
.

The mean vector and the covariance matrix of

[
xr

xm

]
are given by

[
R
M

]
E(x) =

[
µr

µm

]

and [
R
M

]
cov(x)

[
R
M

]′
=

[
Σ rr Σ rm

Σmr Σmm

]

correspondingly.
Let X̃1, X̃2, . . . , X̃N be a random sample of array observations from the distribution

with density φ(X̃;M̃,A1,A2, . . .Ai). Let the current values of the parameters be
M̃t,At

1,At
2, . . .At

i .

The mean of the conditional distribution of rvec(X̃l) given the estimates of para-
meters at time t (t = 0, 1, 2, . . .) can be obtained using

rvec(̂̃Xl
t+1

) = rvecM̃t + ΛtR′
l(RlΛ

tR′
l)

−1(Rlxl − Rlrvec(M̃t)) (5.4)

where xl = rvec(X̃l) and Rl is the permutation matrix such that xrl = Rlxl. The
updating equation of the parameter M̃ is given by

rvec(M̃t+1) = 1

N

N∑

l=1

rvec(̂̃Xl
t+1

). (5.5)

To update the covariance matrix along the kth dimension, calculate

Z̃ = (A−1
1 )1(A−1

2 )2 . . . (A−1
k−1)

k−1(Imk )
k(A−1

k+1)
k+1 . . . (A−1

i )i(̂̃X
t+1 − M̃)

using the most recent estimates of the parameters. Assuming that the values of the
parameter values are correct, we can write Z̃ ∼ φ(Z̃; 0̃, Im1 , Im2 , . . . , Imk−1 , Ak,

Imk+1 ,. . . , Imi), i.e., Z(k) ∼ φ(Z(k); 0mk×∏
j �=k mj , Ak, I∏

j �=k mj ) where Z(k) denotes the

mk × ∏
j �=k mj matrix obtained by stacking the elements of Z̃ along the kth dimension.

Therefore, (Z(k)1, Z(k)2, . . . , Z(k)N ) = (z1, z2, . . . zN
∏

j �=k mj ) can be treated as a random
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sample of size N
∏

j �=k mj from the mk-variate normal distribution with mean zero
and covariance Σk = AkA′

k . An update for Σk can be obtained by calculating:

Σ̂k
t+1 = 1

N
∏

j �=k mj

N
∏

j �=k mj∑

q=1

(
Z(k)qZ ′

(k)q

+ ωM ′
q

[
RqΣkR′

q − RqΣkM ′
q(MqΣkM ′

q)
−1MqΣkR′

q

]
Mq

)
(5.6)

where Rq and Mq are the design matrices for the observed and missing values for the
qth column of (X(k)1, . . . , X(k)N ), and 0 < ω ≈ 1 is a hyperparameter.

The term

1

N
∏

j �=k mj

N
∏

j �=k mj∑

q=1

M ′
q

[
RqΣkR′

q − RqΣkM ′
q

(
MqΣkM ′

q

)−1
MqΣkR′

q

]
Mq

is the conditional expectation of

1

N
∏

j �=k mj

N
∏

j �=k mj∑

q=1

Z(k)qZ ′
(k)q

given the observed values and the current values of the parameters under the
assumption that the location of the missing values in (Z(k)1, Z(k)2, . . . , Z(k)N ) and
(X(k)1, . . . , X(k)N ) is the same. This term is added to the usual covariance estimator to
account for the fact that some cells are not observed but estimated quantities, and ω
is used to account for the fact that the adjustment is not exact. In our applications, we
have used ω = 1, and it might be possible to improve the estimates for parameters
by selecting a different value.

5.5 Flip-Flop Algorithm for Incomplete Arrays

For the incomplete matrix variate observations with Kronecker delta covariance
structure, parameter estimation and missing data imputation methods have been
developed in [2].

The following is a modification of the flip-flop algorithm for the incomplete array
variable observations:

Algorithm 1 Given the current values of the parameters, repeat steps 1–3 until
convergence:

1. Update ̂̃Y i using (5.4),
2. Update M̃ using (5.5),
3. For k = 1, 2, . . . , i, update Σk using (5.6).
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5.6 A Semi-parametric Mixed-Effects Model

A semi-parametric mixed-effects model (SPMM) for the n × 1 response vector y is
expressed as

y = Xβ + Zg + e (5.7)

where Xβ is the n × 1 mean vector and Z is the n × q design matrix for the random
effects; the random effects (g′, e′)′ are assumed to follow a multivariate normal
distribution with mean 0 and covariance

(
σ2

gK 0
0 σ2

e In

)

whereK is a q × q kernelmatrix. In general, the kernel matrix is a k × k non-negative
definitematrix thatmeasures the knowndegree of relationships between the k random
effects. By the property of the multivariate normal distribution, the response vector y
has a multivariate normal distribution with mean Xβ and covariance σ2

g(ZKZ ′ + λI)
where λ = σ2

e /σ
2
g .

The parameters of this model can be obtained maximizing the likelihood or the
restricted likelihood (defined as the likelihood function with the fixed-effect parame-
ters integrated out [9]). The estimators for the coefficients of the SPMM in (5.7) can
be obtained via Henderson’s iterative procedure. Bayesian procedures are discussed
in detail in the book by Sorensen and Gianola [31]. An efficient likelihood-based
algorithm (the efficient mixed-models association (EMMA)) was described in Kang
et al. [20].

When there are more than one sources of variation acting upon the response
vector y, we may want to separate the influence of these sources. For such cases,
we recommend using the following multiway random-effects model based on the
multiway normal distribution in Definition 2.

Definition 6 Amultiway random-effects model (AVSPMM) for them1 × m2, . . . ×
mi response array Ỹ can be expressed as

Ỹ ∼ φ(Ỹ; ˜M(x),σ(K1 + λ1Im1 )
1/2, (K2 + λ2Im2 )

1/2, . . . , (Ki + λiImi )
1/2) (5.8)

where M̃(x) is an m1 × m2, . . . × mi dimensional mean function of the observed fixed
effects x, and K1, K2, . . . , Ki are m1 × m1, m2 × m2, . . . , mi × mi dimensional
known kernel matrices measuring the similarity of the m1, m2, . . . , mi levels of the
random effects. If the covariance structure along the jth dimension is unknown, then
the covariance along this dimension is assumed to be an unknown correlation matrix,
i.e., we replace the term (Kj + λjImj ) by a single covariance matrix Σ j.

The parameter σ is arbitrarily associated with the first variance component and mea-
sures the total variance in the variable Ỹ explained by the similarity matrices K1,

K2, . . . , Ki. λk represents the error-to-signal variance ratio along the kth dimension.
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For the identifiability of the model, additional constraints on the covariance parame-
ters are needed. Here, we adopt the restriction that the first diagonal element of the
unknown covariance matrices is equal to one.

It is insightful to write the covariance structure for the vectorized form of the
two-dimensional array model: In this case,

cov(rvec(Ỹ)) = σ2(K2 + λ2Im1) ⊗ (K1 + λ1Im2)

= σ2(K2 ⊗ K1 + λ1K2 ⊗ Im1 + λ2Im2 ⊗ K1 + λ1λ2Im1m2). (5.9)

If the covariance structure along the second dimension is unknown, then the model
for the covariance of the response becomes

cov(rvec(Ỹ)) = σ2(K2 + λ2Im1) ⊗ Σ2

= σ2(Σ2 ⊗ K1 + λ1Σ2 ⊗ Im1). (5.10)

It should be noted that the SPMM is related to the reproducing kernel Hilbert
spaces (RKHS) regression so as the AVSPMM. The similarity of the kernel-based
SPMMs and reproducing kernel Hilbert spaces (RKHS) regression models has been
stressed recently [12]. In fact, this connection was previously recognized by [16, 21,
27, 32]. RKHS regression models use an implicit or explicit mapping of the input
data into a high-dimensional feature space defined by a kernel function. This is often
referred to as the “kernel trick” [30].

Akernel function, k(., .),maps a pair of input points x and x′ into real numbers. It is
by definition symmetric (k(x, x′) = k(x′, x)) and non-negative. Given the inputs for
the n individuals, we can compute a kernelmatrixK whose entries areKij = k(xi, xj).

The linear kernel function is givenby k(x; y) = x′y.Thepolynomial kernel function is
given by k(x; y) = (x′y + c)d for c and d ∈ R. Finally, the Gaussian kernel function is
given by k(x; y) = 1√

2πh
exp(−(x′ − y)′(x′ − y)/2h)where h > 0.Taylor expansions

of these kernel functions reveal that each of these kernels corresponds to a different
feature map.

RKHS regression extends SPMMs by allowing a wide variety of kernel matrices,
not necessarily additive in the input variables, calculated using a variety of ker-
nel functions. The common choices for kernel functions are the linear, polynomial,
Gaussian kernel functions, though many other options are available.

We also note that the AVSPMM is different than the standard multivariate mixed
model for thematrix variate variables [17], in which the covariance for the vectorized
form of the response vector is expressed as

cov(rvec(Ỹ)) = (Σ21 ⊗ K1 + Σ22 ⊗ Im1) (5.11)

where Σ21 and Σ22 are m2 dimensional unconstrained covariance matrices and the
structure in (5.10) can be obtained by the restrictionΣ21 = Σ22.Amodel in the sprit
of the multivariate mixed model for the matrix variate variables can be extended to
the array case by writing
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Ỹ = M̃(x) + G̃ + Ẽ (5.12)

where M̃(x) is the fixed-effects term and G̃ and Ẽ are random-effects terms which
are assumed to have independent array variate normal distributions, i.e., G̃ ∼
φ(0, K1/2

1 ,Σ
1/2
21 ,Σ

1/2
31 , . . . ,Σ

1/2
i1 ) and Ẽ ∼ φ(0, I,Σ1/2

22 ,Σ
1/2
32 , . . . ,Σ

1/2
i2 ). It is

straightforward to extend this last model to incorporate known relationship matrices
along more than one dimension.

5.6.1 Models for the Mean

5.6.1.1 Model 1

A simple model for the mean is given by

M̃ = (β1)
111×m2×m3×...×mi + (β2)

21m1×1×m3×...×mi + . . . + (βi)
i1m1×m2×m3×...×1

(5.13)
where the βk ∈ Rmk for k = 1, 2, . . . , i are the coefficient vectors and the notation
1m1×m2×m3×...×mi refers to an m1 × m2 × m3 × . . . × mi dimensional array of ones.
Note that this can also be written as

M̃ = (β1)
1(1m2)

2 . . . (1mk )
k1

+ (1m1)
1(β2)

2(1m3)
3 . . . (1mk )

k1

+ . . . + (1m1)
1(1m2)

2 . . . (1mk−1)
k−1(βk)

k1.

Elementwise, this can be written as

(M̃)q1q2...qi = (β1)q1 + (β2)q2 + . . . + (βi)qi .

This generalizes the model for the mean of two-dimensional arrays recommended in
Allen and Tibshirani [2] to the general i dimensional case. For this model, the fixed-
effects variables x are implicitly the effects of levels of the separable dimensions and
some of which might be excluded by fixing the corresponding coefficient vector at
zero during the modeling stage.

5.6.1.2 Model 2

If an explanatory variable in the form of an q dimensional vector x is observed along
with each independent replication of the response variable, we can write a more
general mixed model by modeling the mean with
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M̃(x; B1, . . . , Bi) = (B1)
1(1m2)

2 . . . (1mi)
ix̃1

+ (1m1)
1(B2)

2(1m3)
3 . . . (1mi)

ix̃2

+ . . . + (1m1)
1(1m2)

2 . . . (1mi−1)
i−1(Bi)

ix̃i. (5.14)

where Bk is mk × q for k = 1, 2, . . . , i and x̃k stands for the 1 × . . . × 1 × q × 1 ×
1 . . . × 1 dimensional array with q elements of x aligned along the kth dimension.
This model encompasses the model for mean in (5.13). Elementwise, this can be
expressed as

(M̃)q1q2...qi =
q∑

p=1

(B1)pq1 + (B2)pq2 + . . . + (Bi)pqi
xp.

At the modeling stage, some of Bk can be excluded from the model by fixing it at 0.

Let Ỹ1, Ỹ2, . . . , ỸN be a random sample of array observations from the distribution
with density φ(Ỹ; M̃(x; B1, . . . , Bi),A1,A2, . . .Ai). Assuming that all parameters
except Bk are known, the variable

Z̃� = (Ỹ� − M̃(x�; B1, . . . , Bk−1, Bk = 0, Bk+1, . . . , Bi)

has density φ(Z̃�; M̃(x�; B1 = 0, . . . , Bk−1 = 0, Bk, Bk+1 = 0, . . . , Bi = 0), A1,

. . . , Ai). Let Z(k)� denote the mk × ∏
j �=k mj matrix obtained by matricization of

Z̃� along the kth dimension. Z(k)� = (z1�, z2�, . . . z∏
j �=k mj�) has a matrix variate

normal distribution with mean Bkx�1′∏
j �=k mj

and covariances Ak and A−k where

A−k = Ai ⊗ Ai−1 ⊗ . . . ⊗ Ak−1 ⊗ Ak+1 ⊗ . . . ⊗ A1.Let Z∗
(k)� = Z(k)�A−1

−k andX∗
(k)� =

x�1′∏
j �=k mj

A−1
−k . Using the results that are already available for the multivariate regres-

sion [4], we can obtain the maximum-likelihood estimator of Bk;

B̂k =
[

N∑

�=1

Z∗
(k)�X∗′

(k)�

] [
N∑

�=1

X∗
(k)�X∗′

(k)�

]−1

. (5.15)

5.6.1.3 Model 3

Let an explanatory variable in the form of a 1 × . . . × mj × 1 × . . . × 1 × q dimen-
sional array X̃ in i + 1 dimensions be observed with each independent replication
of the response variable. In this scenario, the fixed-effects variable X̃ measures q
variables that change along the jth dimension. We can write a more general mixed
model by modeling the mean with
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M̃(X̃�; {B1, . . . , Bi}/Bj) = (B1)
1(1m2 )

2 . . . (1mj−1 )
j−1(Imj )

j(1mj+1 )
j+1 . . . (1mi )

iX̃1
�

+ (1m1 )
1(B2)

2(1m3 )
3 . . . (1mj−1 )

j−1(Imj )
j(1mj+1 )

j+1 . . . (1mi )
iX̃2

�

+ . . .

+ (1m1 )
1(1m2 )

2(1m3 )
3 . . . (Bj−1)

j−1(Imj )
j(1mj+1 )

j+1 . . . (1mi )
iX̃ j−1

�

+ (1m1 )
1(1m2 )

2(1m3 )
3 . . . (1mj−1 )

j−1(Imj )
j(Bj+1)

j+1 . . . (1mi )
iX̃ j+1

�

+ . . .

+ (1m1 )
1(1m2 )

2 . . . (1mj−1 )
j−1(Imj )

j(1mj+1 )
j+1 . . . (1mi−1 )

i−1(Bi)
iX̃ i

�.

(5.16)

where Bk is mk × q for k = 1, 2, . . . , i and X̃k
� stands for the q × . . . × mj × 1 ×

. . . × 1 dimensional array obtained by stacking q × . . . × 1 × 1 × . . . × 1 arrays x̃k
�c

c = 1, 2, . . . , mj along the jth dimension. Suppose Ỹ is a three-dimensional response
variable with dimensions 2 × 2 × m3 and X = [

x0 = 1m3 , x1
]
is a 2 × m3 dimen-

sional explanatory variable which we can organize into a 1 × 1 × m3 × 2 array X̃.

Then, M̃(X̃; B1, B2) is 2 × 2 × m3 with the jth slice along the third dimension equal
to

[
(B1)11 + (B2)11 + ((B1)12 + (B2)12)Xj2 (B1)11 + (B2)21 + ((B1)12 + (B2)22)Xj2
(B1)21 + (B2)11 + ((B1)22 + (B2)12)Xj2 (B1)21 + (B2)21 + ((B1)22 + (B2)22)Xj2

]
.

Let Ỹ1, Ỹ2, . . . , ỸN be a random sample of array observations from the distribution
with density φ(Ỹ; M̃(X̃; B1, . . . , Bi),A1,A2, . . .Ai). Assuming that all parameters
except Bk are known, the variable

Z̃� = (Ỹ� − M̃(X̃�; B1, . . . , Bk−1, Bk = 0, Bk+1, . . . , Bi)

has density φ(Z̃�; M̃(x�; B1 = 0, . . . , Bk−1 = 0, Bk, Bk+1 = 0, . . . , Bi = 0),
A1, . . . , Ai). Let Z(k)� denote the mk × ∏

j �=k mj matrix obtained by matricization

of Z̃� along the kth dimension. Z(k)� = (z1�, z2�, . . . z∏
j �=k mj�) has a matrix variate

normal distribution with mean BkX̃k
� B−k where B−k = 1′

mi
⊗ 1′

mi−1
⊗ . . . ⊗ 1′

mk−1
⊗

1′
mk+1

⊗ . . . ⊗ 1′
mj−1

⊗ Imj ⊗ 1′
mj+1

⊗ . . . ⊗ 1′
m1

. Row and column covariances of Z(k)�

are given by Ak and A−k where A−k = Ai ⊗ Ai−1 ⊗ . . . ⊗ Ak−1 ⊗ Ak+1 ⊗ . . . ⊗ A1.

Let Z∗
(k)� = Z(k)�A−1

−k and X∗
(k)� = X̃k

� B−kA−1
−k . The maximum-likelihood estimator of

Bk is given by

B̂k =
[

N∑

�=1

Z∗
(k)�X∗′

(k)�

] [
N∑

�=1

X∗
(k)�X∗′

(k)�

]−1

. (5.17)

B̂k is an unbiased estimator for Bk , and the covariance of it is given by

cov(vec(̂Bk)) =
[

N∑

�=1

X∗
(k)�X∗′

(k)�

]−1

⊗ Ak .
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A natural generalization of tests of significance of regression coefficients in uni-
variate regression for Bk is

H0 : l′kvec(Bk) = 0

H1 : l′kvec(Bk) �= 0.

A test statistic for testing this hypothesis is given by

Tk = (l′kvec(̂Bk))
2/l′kcov(vec(̂Bk))lk .

Under the null hypothesis, Tk has χ2(1) distribution asymptotically.
Note that Model 1 and Model 2 are special cases of Model 3. Model 3 can be

extended to incorporate input variables that change along more than one dimensions
of the response variable.

5.6.1.4 Model 4

The generalization of the growth curve model to multiway data is obtained by con-
sidering the form

M(X1, X2, . . . , Xi; B̃) = (X1)
1(X2)

2 . . . (Xi)
iB̃. (5.18)

In (5.18), Xk for k = 1, 2, . . . , i are mk × pk known design matrices and B̃ is the
unknown parameter array of dimensions p1 × p2 × . . . × pi. For example, if the
levels of the kth dimension of a m1 × m2 × . . . × mi dimensional response variable
Ỹ is reserved for placing observations taken at points {xk1, xk2, . . . , xkmi}, Xk might
be chosen as the design matrix of the p1 − 1 degree monomials, i.e.,

Xk =

⎡

⎢⎢⎣

1 xk1 x2k1 . xp1−1
k1

1 xk2 x2k2 . xp1−1
k2

. . . . .

1 xkmi x2kmi
. xp1−1

kmi

⎤

⎥⎥⎦ .

Let Ỹ1, Ỹ2, . . . , ỸN be a random sample of array observations from the distribu-
tion with density φ(M(X1, X2, . . . , Xi; B̃),A1,A2, . . .Ai). The density of the ran-
dom sample Ỹ = [Ỹ1, Ỹ2, . . . , ỸN ] written in the form of a m1 × m2 × . . . × mi × N
array is φ(M(X1, X2, . . . , Xi, 1N ; B̃),A1,A2, . . .Ai, IN ).Assuming that all parame-
ters except B̃ are known, the variable Ỹ∗ = (A−1

1 )1 (A−1
2 )2 . . . (A−1

i )i (IN )i+1 Ỹ has
a φ(M(A−1

1 X1, A−1
2 X2, . . . , A−1

i Xi, 1N ; B̃), Im1 , Im2 , . . . , Imi , IN ) distribution. Letting
X∗
1 = A−1

1 X1, X∗
2 = A−1

2 X2, . . . , X∗
i = A−1

i Xi, the log-likelihood function is of the
form
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�(̃B) ∝ − (
rvec(Ỹ∗) − rvec(M(X∗

1 , X∗
2 , . . . , X∗

i , 1N ; B̃))
)′

(
rvec(Ỹ∗) − rvec(M(X∗

1 , X∗
2 , . . . , X∗

i , 1N ; B̃))
)

= − (
rvec(Ỹ∗) − 1N ⊗ X∗

i ⊗ X∗
i−1 ⊗ . . . ⊗ X∗

1 rvec(̃B))
)′

(
rvec(Ỹ∗) − 1N ⊗ X∗

i ⊗ X∗
i−1 ⊗ . . . ⊗ X∗

1 rvec(̃B))
)

= −rvec(Ỹ∗)′rvec(Ỹ∗) + 2rvec(Ỹ∗)′1N ⊗ X∗
i ⊗ X∗

i−1 ⊗ . . . ⊗ X∗
1 rvec(̃B)

−rvec(̃B)′(1′
N 1N ⊗ X∗′

iX
∗
i ⊗ X∗′

i−1X∗
i−1 ⊗ . . . ⊗ X∗′

1X∗
1 )rvec(̃B)

Taking the derivatives of �(̃B)with respect to rvec(̃B) and setting it to zero, we arrive
at the normal equations

(1N ⊗ X∗
i ⊗ X∗

i−1 ⊗ . . . ⊗ X∗
1 )′rvec(Ỹ∗) = (N ⊗ X∗′

iX
∗
i ⊗ X∗′

i−1X∗
i−1 ⊗ . . . ⊗ X∗′

1X∗
1 )rvec(̃B).

A solution of the normal equations can be expressed as

B̃ = ((X∗′
1X∗

1 )
−1X∗′

1)
1, (X∗′

2X∗
2 )

−1X∗′
2)

2, . . . , (X∗′
iX

∗
i )−1X∗′

i)
i(1′

N/N)i+1)Ỹ∗.
(5.19)

Since the Hessian matrix

∂2�(̃B)

∂rvec(̃B)∂rvec(̃B)′
= −(N ⊗ X∗′

iX
∗
i ⊗ X∗′

i−1X∗
i−1 ⊗ . . . ⊗ X∗′

1X∗
1 )

is negative definite, ̂̃B maximizes the log-likelihood function. Note that ̂̃B is a linear
function of Ỹ and also has also normal distribution given by

φ(̃B, (X∗′
1X∗

1 )
−1/2, (X∗′

2X∗
2 )

−1/2, . . . (X∗′
iX

∗
i )−1/2, 1/

√
N).

A test of significance for regression coefficient B̃ is

H0 : l′rvec(̃B) = 0

H1 : l′rvec(̃B) �= 0.

A test statistic for testing this hypothesis is given by

T = (l′rvec(̂̃B))2/l′cov(rvec(̂̃B))l.

Under the null hypothesis, T has χ2(1) distribution asymptotically.

5.6.1.5 Model 5

If an explanatory variable X̃ of dimensions p1 × p2 × . . . × pi is observed with the
m1 × m2 × . . . × mi dimensional response Ỹ , a model for the mean is written as
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M(X̃; B1, B1, . . . , Bi) = (B1)
1(B2)

2 . . . (Bi)
iX̃

where Bj is mj × pj for j = 1, 2, . . . , i. Estimators of Bj can be obtained with an
iterative algorithm similar to the flip-flop algorithm in Chap.4.

5.6.2 Models for the Covariance

We can model the covariance structure along each dimension independently. Several
models for the covariances are mentioned below.

5.6.2.1 Model 1

We can assume that Ak is unstructured. If all parameters except Ak are known, the
maximum-likelihood estimator of Ak under the unstructured covariance assumption
is given by (5.6).

5.6.2.2 Model 2

Now, we turn our attention to estimation of the covariance parameters {σ2,λk} for
k = 1, 2, . . . , i.Assume that themean and all variance parameters other than {σ2,λk}
are known. By standardizing the centered array variable in all but the kth dimension
followed bymatricization along the same dimension and finally vectorization (denote
this n∗ = N

∏i
j=1 mj vector by z(k)), we obtain a multivariate mixed model for which

estimates for {σ2,λk} can be obtained efficiently by using a slight modification of
EMMA algorithm [20]. The distribution of the z(k) is

φN
∏i

j=1 mj
(0,σ2(IN

∏
j �=k mj ⊗ Kk + λkI)).

Let Hk = (IN
∏

j �=k mj ⊗ Kk + λkI). The likelihood function is optimized at

σ̂2 = z′
(k)H

−1
k z(k)

N
∏i

j=1 mj

for fixedvalues ofλk .Using the spectral decompositionofHk = Udiag(ε1 + λk, ε2 +
λk, . . . , εN

∏i
j=1 mj

+ λk)U ′ and letting η = U ′y, the log-likelihood function for λk at

σ̂2 can be written as

http://dx.doi.org/10.1007/978-4-431-55387-8_4
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l(λ) = 1

2

[
−n∗log

2πz′
(k)

H−1
k z(k)

n∗ − log|Hk | − n∗
]

= 1

2

⎡

⎣n∗log
n∗

2π
− n∗ − n∗log(

n∗∑

i=1

η2i
εi + λk

) −
n∗∑

i=1

log(εi + λk)

⎤

⎦ (5.20)

which can be maximized using univariate optimization. An additional efficiency is
obtained by considering the singular value decomposition of a Kronecker product:

A ⊗ B = (UADAV ′
A) ⊗ (UBDBV ′

B) = (UA ⊗ UB)(DA ⊗ DB)(VA ⊗ VB)′.

That is, the left and right singular vectors and the singular values are obtained as
Kronecker products of the corresponding matrices of the components. Therefore, we
can calculate the eigenvalue decomposition of Hk efficiently using

Hk = (I ⊗ Uk)(I ⊗ (Dk + λkI))(I ⊗ Uk)
′ (5.21)

where Uk(Dk + λI)U ′
k is the eigenvalue decomposition of Kk + λkI and UkDU ′

k is
the eigenvalue decomposition of Kk .

Note that our estimation procedure for σ and λk ignores that fact that the response
variable zk is composed partially of estimated quantities.

5.6.2.3 Model 3

If there are two sources of inputs along a dimension of an array resulting in two
kernel matrices K1 and K2, then a simple model for the covariance parameter along
that dimension is given by considering a combination of these matrices and a product
term

w1K1 + w2K2 + w3K1 � K2

where the “�” stands for the Hadamard product operator, wj ≥ 0 for j = 1, 2, 3 and∑3
j=1 wj = 1. It is easy to extend this idea to more than two sources of input, and a

rich family of models is possible by considering only subsets of these terms.

5.6.2.4 Other Models

Consider the following covariancemodel for the vectorized formof am1 × m2 dimen-
sional array Ỹ :

cov(rvec(Ỹ)) = σ2(K2 ⊗ K1 + λ1K2 ⊗ Im1 + λ2Im2 ⊗ K1 + λ3Im1m2).

Since λ3 = λ1 ∗ λ2 is not imposed, the array model for the array Ỹ cannot be
expressed as in Definition 6. The model parameters can be estimated, for example,
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using maximum likelihood. However, the estimation is computationally demanding
since the efficiencies due to theKronecker delta covariance structure are not available
here.

5.6.3 A Flip-Flop Algorithm for Estimating the AVSPMM

Algorithm 1 can be adopted for the AVSPMM as follows:

Algorithm 2 Given the current values of the parameters, repeat steps 1–3 until
convergence:

1. Update ̂̃Y � using (5.4) for � = 1, 2, . . . , N .

2. For k = 1, 2, . . . , i update mean parameters along the kth dimension.
3. For k = 1, 2, . . . , i update covariance parameters along the kth dimension.

5.7 Principal Component Analysis for Array Variate
Random Variables

Principal component analysis (PCA) is a useful statistical technique. The end prod-
ucts of PCA are a set of new set of uncorrelated variables (principal components)
obtained from a linear combination of the original variables and the correspond-
ing variances for these variables. It is customary to list the principal components in
decreasing order of their variances.

Definition 7 For them1 × m2 × . . . × mi dimensional array variate randomvariable
Ỹ , the principal components are defined as the principal components of the d =
m1m2 . . . mi-dimensional random vector rvec(Ỹ).

For an array normal random variable Ỹ with E(rvec(Ỹ)) = 0 and covariance
cov(rvec(Ỹ)) = Λ, the principal components can be obtained by considering the
eigenvalue decomposition of the covariance, Λ = UDU ′. The columns of U are
called the principal components. And cov(U ′rvec(Ỹ)) = D is diagonal and the jth
diagonal element ofD corresponds to the variance of the random variableU ′

j rvec(Ỹ).

When a random sample Ỹ1, Ỹ2 . . . ỸN is observed andΛ is unknown, the principal
components are calculated using the sample covariance of rvec(Ỹ1), rvec(Ỹ2) . . .

rvec(ỸN ) instead of Λ since for N >
∏i

k=1 mi the sample covariance matrix is a
consistent estimator of the covariance parameter. However, for high-dimensional
arrays, usuallyN <

∏i
k=1 mi, and the sample covariance is not a consistent estimator

of Λ since it has at least one zero eigenvalue, whereas the parameter Λ is positive
definite.

If we assume that the variable Ỹ has a Kronecker delta covariance structure,
i.e., Ỹ ∼ φ(̃0, A1, A2, . . . Ai), then {λ(Ar)rj } are the mj eigenvalues of ArA′

r with
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the corresponding eigenvectors {(xr)rj } for r = 1, 2, . . . , i and rj = 1, 2, . . . , mr,

and then Λ = (A1A′
1 ⊗ A2A′

2 ⊗i AiA′
i) will have eigenvalues {λ(A1)r1λ(A2)r2 . . .

λ(Ai)ri} with corresponding eigenvectors {(xi)ri ⊗ (x2)r2 ⊗ . . . ⊗ (xi)ri}.
If the covariance parametersA1, A2, . . . Ai are unknown, we can obtain sample-

based estimates of themwhenN
∏

j �=k mj > mk (assuming there are nomissing cells)
using Algorithm 1. When covariance components along some of the dimensions are
assumed to be known, the criterion for the sample size is further relaxed. We can
estimate the eigenvalues and eigenvectors of the covariance of rvec(X̃) by replacing
the parameters by their estimators.

5.8 Classification

Suppose the array variable is generated by a mixture of two densities, i.e., X̃ ∼
π N(A1, A2, . . . , Ai, M1) +(1 − π) N(B1, B2, . . . , Bi, M2). Based on a set of
trainingobservations, the classificationof a newobservation to the component density
N(A1, A2, . . . , Ai, M1) or N(B1, B2, . . . , Bi, M2) can be done using the Bayes rule
using estimators of the parameters.

Let the training estimates of parameters be π̂, Â1, Â2, . . . , Âi, M̂1, B̂1, B̂2, . . . ,

B̂i, M̂2. Then, the posterior probability of an observation with value X̃ to come from
the first component N(A1, A2, . . . , Ai, M1) is given by

P̂(X̃ ∼ N(A1, A2, . . . , Ai, M1)) = π̂φ(X̃; Â1, Â2, . . . , Âi, M̂1)

π̂φ(X̃; Â1, Â2, . . . , Âi, M̂1) + (1 − π̂)φ(X̃; B̂1, B̂2, . . . , B̂i, M̂2)
.

(5.22)

According to this, we would classify the observation X̃ to the first component if the
posterior probability is large (e.g., if the probability is more than 0.5); otherwise,
we classify it to the second component. The extension to the case of more than two
component densities is straightforward.

5.9 Illustrations

Three real and two simulated data sets are used in this section to illustrate ourmodels.
These examples also serve to show the effects of changing sample size, missing data
proportion, and array dimensions on the performance of methods.

Example 5.9.1 This data set was first given in [11] and was also studied in [10]. The
data consist of skull length and breadth measured on siblings in 25 families. For each
replication of this experiment, we randomly select n families from the 25 families
available in the data set resulting in a n × 4 data matrix. This matrix is centered by
subtracting the columnmeans from each row of the data. Next, we introducemissing-
ness at random by deleting each cell of this matrix with probability p. The resulting
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data are then imputed using three different models. The first model (m1) is obtained

by assuming y1, y2, . . . , yn
iid∼ φ(0,Σ1/2) where Σ is a 4 × 4 unstructured positive

definite covariance matrix. The standard EM algorithm is used for the inference and

imputation. The second model (m2) assumes Ỹ1, Ỹ2, . . . , Ỹn
iid∼ φ(0, A1, A2) where

the 2 × 2 dimensional arrays Ỹi for i = 1, 2, . . . , n are obtained by organizing yi into
an array with first dimension for the siblings and the second dimension for the skull
length and breadth measurements and the positive definite matrices A1 and A2 are the
corresponding covariance parameters. The third model (m3) uses the genetic infor-
mation that full-siblings in a randomly mating population are expected to be 50%

similar, i.e., we assume Ỹ1, Ỹ2, . . . , Ỹn
iid∼ φ(0,σ(K + λI)1/2, A2)where σ,λ > 0, K

is given by [
1 0.50

0.50 1

]
.

For n = 10, 15, 20, 25 and p = 0.5, 0.3, 0.2, we have calculated the correlation
between the imputed and measured values with each model for 30 replications
(30 replications where all three models gave solutions) and the results are sum-
marized in Fig. 5.1. In addition, the estimates of the four eigenvalues (variances of
the four principal components) of the covariance of y based on the three models
for n = 10, 15, 20, 25 and p = 0.5, 0.3, 0.2 over 30 replications are summarized in
Fig. 5.2. In all settings, the accuracies are higher (and the standard errors are lower)
for the models with Kronecker delta covariance structure (m2, m3) compared to the
accuracies for the model with unstructured covariance (m1). The accuracies from
model m1 were the least robust to the increase in missing cells and small samples.
Estimates of eigenvalues based on these models differed slightly.

Example 5.9.2 In this example, we have generated a random sample of 10 × 4 × 2
dimensional array random variables according to a known array variate distribution.
After that, we have randomly deleted a given proportion of the cells of these arrays.
The algorithm for estimation 1 was implemented to estimate the parameters and
to impute the missing cells. Finally, the correlation between the observed values
of the missing cells and the imputed values and the mean-squared error (MSE) of
the estimates of the overall Kronecker structured covariance matrix is calculated.
We have tried sample sizes of 20, 50, and 100 and the missing data proportions
of 0.4, 0.3, 0.2, and 0.1. The correlations and the MSEs were calculated for 30
independent replications, and these results are presented in Fig. 5.3. As expected,
the solutions from our methods improve as the sample size increases or when the
proportion of missing cells decreases.

Example 5.9.3 In an experiment conducted in Aberdeen during 2013, 524 barley
lines from the North American Small Grain Collection were grown using combi-
nations of two experimental factors. The levels of the first factor were the low and
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Fig. 5.1 The accuracies for the scenario in Example 1 summarized with the barplots and error
bars for standard errors. In all settings, the accuracies are better for the models with Kronecker
delta covariance structure (m2, m3) compared to the accuracies for the model with unstructured
covariance (m1)

normal nitrogen, and the levels of the second experimental factor were dry and irri-
gated conditions. The low nitrogen and irrigation combination was not reported. Five
traits, i.e., plant height, test weight, yield, whole-grain protein, and heading date
(Julian), were used here. We have constructed an incomplete array of dimensions
524 × 2 × 2 × 5 from these data and induced additional missingness by randomly
selecting a proportion (0.6, 0.4, 0.1) of the cells and deleting the recorded values in
these cells (regardless of whether the cell was already missing). In addition, 4803
SNP markers were available for all of the 524 lines which allowed us to calculate
the covariance structure along this dimension, and the covariance structure along the
other dimensions was assumed unknown. An additive mean structure for the means
of different traits was used, and all the other mean parameters related to the other
dimensions were assumed to be zero. For each trait, the correlation between the
observed and the corresponding estimated values was calculated for 30 independent
replications of this experiment with differing proportion of missing values, and these
are summarized in Fig. 5.4. The results indicate that our methods provide a means
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Fig. 5.2 The eigenvalues for the scenario in Example 1 summarized with the boxplots. Estimates
of eigenvalues based on models m1, m2, and m3 differed slightly

to estimate the traits that were generated by the combined effect of genetics and
environment.
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Fig. 5.5 The accuracies for the scenario in Example 3 summarized with the boxplots. The number
of missing cells decreases from left to right, and p1 increases from top to bottom

Example 5.9.4 In this example, we have used the data from an experiment conducted
over two years. 365 lines from the spring wheat association mapping panel were
each observed for three agronomical traits (plant height, yield, and physiological
maturity date) in two separate year/location combinations under the irrigated and dry
conditions. A 365 × 365 relationship matrix was obtained using 3735 SNP markers
in the same fashion as Example 2. However, since we wanted to study the effect
of the number of different genotypes on the accuracies, we have selected a random
sample of p1 genotypes out of the 365 where p1 was taken as one of 50, 100, 200.
The phenotypic data were used to form a p1 × 2 × 2 × 3 array. The entry in each
cell was deleted with probabilities 0.4, 0.2 and 0.1. Finally, within-trait correlations
between the missing cells and the corresponding estimates from the AVSPMM over
30 replications of each of the settings of this experiment are summarized by the
boxplots in Fig. 5.5.

In addition, for a subset of 147 lines with complete yield measurements in both
years and under both experimental settings, we have calculated the test statistic
associated with the effects of 227 markers on the 3B chromosome in each of the four
conditions by using Model 3 for the mean, fitted with a marker at a time. We have
also obtained the results from a standard univariate EMMA-based association results
obtained from a model that used the environments and a marker as fixed effects and a
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Fig. 5.6 Effects of 227 markers on the 3B chromosome in each of the four conditions by using
Model 3 for the mean, and the trait is yield

genomewide kinshipmatrix for control of population structure used as the covariance
structure for the lines. These results are summarized in Fig. 5.6. In general, the effects
follow the same pattern in each of the four environments. There are regions close to
both ends of the chromosome that have large effects in experimental conditions (dry,
irrigated) and not in locations (Davis-Imperial), pointing to markers that respond to
experimental conditions. The association results for different environments from the
array model were slightly different than corresponding standard univariate results.

Example 5.9.5 These data involve simulations from a known AVSPMM model for
a p1 × 6 × 2 array, sample size 1. We demonstrate that the MSE for the overall
covariance decreases with increasing p1 where p1 stands for the number of levels
of the dimension for which the covariance structure is available in the estimation
process. After generating the array variate response, we have deleted cells with
probability 0.4, 0.2, or 0.1. This was replicated 30 times. The correlations and MSE
between the estimated response and the corresponding known (but missing) cells and
the MSE between the estimated and the known covariance parameters are displayed
in Fig. 5.7.
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Fig. 5.7 The figures on the left display the MSE between the estimated and the known covariance
parameters, and the figures on the right display the correlations between the estimated response
and the corresponding known (but missing) cells for p1 = 50, 100, 200 increasing downward and
probability of missingness 0.4, 0.2, 0.1 decreasing toward the right

5.10 Discussion

We have formulated a parametric model for array variate data and developed suitable
estimation methods for the parameters of this distribution with possibly incomplete
observations. The main application of this paper has been to multiway regression
(missing data imputation), and once the model parameters are given, we are able
to estimate the unobserved components of any array from the observed parts of the
array. We have assumed no structure on the missingness pattern; however, we have
not explored the estimability conditions.

The proposed estimation algorithms can in some cases exhibit extremely slowcon-
vergence, and it did not always converge to a solutionwhen the percentage ofmissing
values in the array was large. In addition to large percentage of missing values, some
other possible reasons for non-convergence include poor model specification, the
missingness pattern, small sample size, and poor initial values for the parameters. In
some of the instances of non-convergence, it might be possible to obtain convergence
by combining the levels of one or more dimensions and decreasing the order of the
array.

Extensions of the AVSPMM are possible by considering other models for the
mean and the covariance parameters. Another possible model for the mean array
can be obtained by the rank-R decomposition of the mean array parallel factors
(PARAFAC) [7, 14] where an array is approximated by a sum of R rank one arrays.
For a general ith order array of dimensions,m1 × m2, . . . × mi rank-R decomposition
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can be written as

M̃ =
R∑

k=1

ρkμr1 ◦ μr2 ◦ . . . ◦ μri

where μrk ∈ Rmk and ||μrk||2 = 1 for k = 1, 2, . . . , i. This can be written as

(M̃)q1q2...qi =
R∑

k=1

ρkμr1q1μr2q2 . . . μriqi .

The AVSPMM is a suitable model when the response variable is transposable and
allows us to separate the variance in the array variate response into components along
its dimensions. This model also allows us to make predictions for the unobserved
level combinations of the dimensions as long as we know the relationship of these
new levels to the partially observed levels along each separate dimension.
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Chapter 6
One-Sided Tests for Matrix Variate Normal
Distribution

Manabu Iwasa and Toshio Sakata

Abstract In this chapter, we consider one-sided tests of the mean matrix M for a
matrix variate normal distribution Np,q(M,Σ,Ψ ). When Σ is unknown and Ψ is
known, we construct a class of similar test statistics. The class includes similar test
statistics obtained by Sasabuchi [8] and Hu and Banerjee [2].

Keywords Matrix variate normal distribution · One-sided test · Similar test ·
Inequality constraints

6.1 Introduction

The study of one-sided test under an order restriction for several means of one-
dimensional normal distributions was originated by Bartholomew [1], and it was
generalized to multivariate normal distributions by Kudo [4]. Then, they were con-
cerned mainly with the likelihood ratio tests(LRTs) under a known covariance struc-
ture in a multivariate setting. See, for example, Robertson et al. [7] and Silvapulle
and Sen [11].

In general, the covariance structure is unknown in multivariate analysis, and Perl-
man [6] discussed one-sided testing problems in a multivariate normal distribution
with completely unknown covariance matrix. He derived the LRT and showed that
there exist similar tests which are uniformly more powerful than the LRT. Sasabuchi,
Tanaka and Tsukamoto [9] and Sasabuchi [8] studied order-restricted testing prob-
lems for mean vectors of several multivariate normal distributions with a common
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unknown covariance matrix. In this setting of several normal distributions, it is diffi-
cult to derive the LRT statistic, and thus, they introduced a test statistic other than the
LRT statistic. Furthermore, they showed that there exist similar test statistics which
are more powerful than the proposed test statistic. Hu and Banerjee [2] developed
the similar argument for more general order restrictions.

One-sided testing problem in a matrix (and tensor) variate normal distribu-
tion has not been discussed in any literature. A matrix variate normal distribution
Np,q(M,Σ,Ψ ) has a density function

f (X, M,Σ,Ψ ) = (2π)−
pq
2 |Σ |− q

2 |Ψ |− p
2 exp

{1
2
trΣ−1(X − M)Ψ −1(X − M)′

}
,

(6.1)

where M = (μi j ) is a p × q mean matrix and Σ and Ψ are p × p and k × k
positive definite matrices, respectively. It is well known that a matrix variate nor-
mal distribution Np,q(M,Σ,Ψ ) is rewritten as a vector variate normal distribu-
tion Npq(vec(M), Ψ ⊗ Σ) by vectorization. See Kollo and von Rosen [3] for
a theory of matrix variate normal distributions. Srivastava et al. [12] discussed
statistical inferences in general multivariate linear model for matrix variate nor-
mal distributions. Our interest is in one-sided testing problems for matrix vari-
ate normal distributions and is to extend results in Sasabuchi [8] and Hu and
Banerjee [2].

In Sect. 6.2, we give preliminary results on a linear space of matrices. We summa-
rize some properties concerning the projection onto a cone in the space of matrices.
In Sect. 6.3, we briefly discuss the LRT when both Σ and Ψ are known. In Sect. 6.4,
we consider the case where Σ is unknown and Ψ is known. We present a class
of similar test statistics which is wider than those by Sasabuchi [8] and Hu and
Banerjee [2].

6.2 Preliminaries

Throughout this chapter, for any vectors x, y we consider the standard inner product
and the induced norm defined by x′ y and ||x|| = √

x′x, respectively. On the other
hand, we introduce a following extended inner product and norm for p ×q matrices.
R

p,q denotes the linear space of all p × q matrices with real valued elements.

Definition 6.2.1 For positive definite matrices G ∈ R
p,p and H ∈ R

q,q , we define
an inner product (X, Y )G,H and a norm of ||X ||G,H on R

p,q as follows.

(X, Y )G,H = tr(G−1X H−1Y ′), ||X ||G,H = √
(X, X)G,H .

The following lemma is obvious from Definition 6.2.1.
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Lemma 6.2.1 Suppose G, Γ ∈ R
p.pare positive definite and H,Λ ∈ R

q,q are
nonsingular. Then, for any A, B ∈ R

p,q , it holds that

(A, B)Γ GΓ ′,Λ′ HΛ = (Γ −1AΛ−1, Γ −1BΛ−1)G,H ,

||A||Γ GΓ ′,Λ′ HΛ = ||Γ −1AΛ−1||G,H .
(6.2)

For a positive definite matrix A, A1/2 denotes a symmetric square root of A and
A−1/2 denotes the inverse of A1/2. The density function (6.1) is written as

f (X, M,Σ,Ψ ) = (2π)−
pq
2 |Σ |− q

2 |Ψ |− p
2 exp{−1

2
||X − M ||2Σ,Ψ }. (6.3)

Definition 6.2.2 For A ∈ R
p,q and a closed convex set R ⊂ R

p,q , ΠG,H (A|R)

denotes the matrix B ∈ R minimizing ||A − B||G,H . That is, ΠG,H (A|R) =
argminB∈R ||A − B||G,H .

ΠG,H (A|R) is called the projection of A onto R with respect to || · ||G,H . Since
R ⊂ R

p,q is closed and convex, ΠG,H (A|R) is determined uniquely. For a set
R ⊂ R

p,q , we define

ΓRΛ = {Γ BΛ ∈ R
p,q | B ∈ R}.

When R is closed and convex, ΓRΛ is also closed and convex.

Lemma 6.2.2 When Γ ∈ R
p,p and Λ ∈ R

q,q are nonsingular, for any A ∈ R
p,q

and a closed convex set R ⊂ R
p,q , we have

ΠG,H (Γ AΛ|ΓRΛ) = Γ {ΠΓ −1GΓ ′−1,Λ′−1HΛ−1(A|R)}Λ,

||ΠG,H (Γ AΛ|ΓRΛ)||G,H = ||ΠΓ −1GΓ ′−1,Λ′−1HΛ−1(A|R)||Γ −1GΓ ′−1,Λ′−1HΛ−1 .

Proof From Definition 6.2.1 and Lemma 6.2.1, we have

ΠG,H (Γ AΛ|ΓRΛ) = arg min
B∗∈ΓRΛ

||Γ AΛ − B∗||G,H

= Γ (arg min
B∈R

||Γ AΛ − Γ BΛ||G,H )Λ

= Γ (arg min
B∈R

||A − B||Γ −1GΓ ′−1,Λ′−1HΛ−1)Λ

= Γ ΠΓ −1GΓ ′−1,Λ′−1HΛ−1(A|R)Λ,

and

||ΠG,H (Γ AΛ|ΓRΛ)||G,H

= ||Γ ΠΓ −1GΓ ′−1,Λ′−1HΛ−1(A|R)Λ||G,H

= ||ΠΓ −1GΓ ′−1,Λ′−1HΛ−1(A|R)||Γ −1GΓ ′−1,Λ′−1HΛ−1 . �
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In one-sided testing problems, we consider hypotheses constrained by linear
equalities and inequalities. Let V and W be an s × p matrix and a q × t matrix,
respectively. We define a subspace L(V, W ) and a convex cone C(V, W ) on Rp,q as
follows.

L(V, W ) = {M ∈ R
p,q | V MW = O},

C(V, W ) = {M ∈ R
p,q | V MW ≥ O},

where O is an s × t zero matrix and the inequality V MW ≥ O implies that all
elements of V MW are nonnegative. Throughout this chapter, we consider the case
where the convex cone C(V, W ) is not degenerate; that is, C(V, W ) has interior
points.

Moreover, we define subspaces and cones in vector spacesRp andRq as follows.

L(V, •) = {x ∈ R
p | V x = 0}, C(V, •) = {x ∈ R

p | V x ≥ 0},
L(•, W ) = { y ∈ R

q | y′W = 0}, C(•, W ) = { y ∈ R
q | y′W ≥ 0}.

Lemma 6.2.3 If x ∈ R
p and y ∈ R

q are interior points of C(V, •) and C(•, W )

respectively, x y′ ∈ R
p,q is an interior point of C(V, W ).

Proof Since V x > 0 and y′W > 0 by the assumptions, we have V (x y′)W =
(V x)( y′W ) > O . This implies that x y′ is interior points of C(V, W ). �

We give two important examples of C(V, W ) and L(V, W ).

Example 6.2.1 Sasabuchi et al. [9] discussed testing homogeneity of multivariate
normal mean vectors under simple ordering. The cone discussed by them is repre-
sented by

C = {M = (μi j ) | μi1 ≤ μi2 ≤ · · · ≤ μiq , i = 1, 2, . . . , p}.

In our formulation, C = C(V, W ) for

V = Ip (s = p), W =

⎛

⎜⎜⎜⎜⎜⎜⎝

−1 0 · · · 0 0
1 −1 · · · 0 0

0 1
. . . 0 0

...
...

. . .
. . .

...
0 0 · · · 1 −1
0 0 · · · 0 1

⎞

⎟⎟⎟⎟⎟⎟⎠
(t = q − 1).

When V = Ip, each row of M has an identical constraint induced by W , and
such constraints are said to be synchronized by Hu and Banerjee [2]. They studied
one-sided tests under general synchronized constraints. The next example gives a
non-synchronized constraint.
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Example 6.2.2 Set s = p − 1, t = q − 1 and

V =

⎛

⎜⎜⎜⎜⎝

−1 1 0 · · · 0 0
0 −1 1 · · · 0 0
...

...
. . .

. . .
...

0 0 0
. . . 1 0

0 0 0 · · · −1 1

⎞

⎟⎟⎟⎟⎠
, W =

⎛

⎜⎜⎜⎜⎜⎜⎝

−1 0 · · · 0 0
1 −1 · · · 0 0

0 1
. . . 0 0

...
. . .

. . .
. . .

...
0 0 · · · 1 −1
0 0 · · · 0 1

⎞

⎟⎟⎟⎟⎟⎟⎠
.

Then, we have

C(V, W ) = {M = (μi j ) | μi ′ j + μi j ′ ≤ μi j + μi ′ j ′ , 1 ≤ i < i ′ ≤ p; 1 ≤ j < j ′ ≤ q}.

When M ∈ L(V, W ), M is additive; that is, μi j is decomposed as μi j = μ +
αi + β j . On the other hand, when M ∈ C(V, W ), all submatrices

(
μi j μi j ′
μi ′ j μi ′ j ′

)
have

nonnegative interactions in the sense that μi j + μi ′ j ′ − μi ′ j − μi j ′ ≥ 0.

When Γ ∈ R
p,p and Λ ∈ R

q,q are nonsingular, we have

ΓL(V, W )Λ = {Γ AΛ | V AW = O}
= {Γ AΛ | V Γ −1Γ AΛΛ−1W = O} = L(V Γ −1,Λ−1W ).

Thus, we obtain the next lemma.

Lemma 6.2.4 If Γ ∈ R
p,p and Λ ∈ R

q,q are nonsingular, it holds that

ΓL(V, W )Λ = L(V Γ −1,Λ−1W ), Γ C(V, W )Λ = C(V Γ −1,Λ−1W ).

Lemma 6.2.5 When Γ ∈ R
p,p is nonsingular, we have the following.

(i) L(V, •) = L(V Γ, •) implies L(V Γ, W ) = L(V, W ).
(ii) C(V, •) = C(V Γ, •) implies C(V Γ, W ) = C(V, W ).

Proof Let wi be the i th column vector of W , that is, W = (w1,w2, . . . ,wt ). Then,
since V AW = (V Aw1, V Aw2, . . . , V Awt ), if L(V, •) = L(V Γ, •), we obtain the
following.

A ∈ L(V, W ) = {A ∈ R
p,q | V AW = O}

⇐⇒ Awi ∈ L(V, •) (∀i = 1, . . . , t)

⇐⇒ Awi ∈ L(V Γ, •) (∀i = 1, . . . , t)

⇐⇒ A ∈ L(V Γ, W ) = {A ∈ R
p,q | V Γ AW = O}.

This completes the proof of (i). Proof of (ii) is proved similarly. �

Let vi be the transpose of the i th row of V , that is, V = (v1 v2 · · · vs)
′. Then we

define a linear space L〈V 〉 and a convex cone C〈V 〉 in Rp by
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L〈V 〉 = {c1v1 + c2v2 + · · · + csvs | ci ∈ R (i = 1, 2, . . . , s)},
C〈V 〉 = {c1v1 + c2v2 + · · · + csvs | ci ≥ 0 (i = 1, 2, . . . , s)}.

Note that L〈V 〉 is the orthogonal complement of L(V, •) and C〈V 〉 is a dual cone of
C(V, •).

Lemma 6.2.6 For any u ∈ C〈V 〉, we have C(V, W ) ⊂ C(u′, W ).

Proof Suppose that A ∈ C(V, W ). Then it holds that V AW ≥ O , which implies
that v′

i AW ≥ 0 for all i = 1, 2, . . . , s. Since u = c1v1 + · · · + csvs for ci ≥ 0
(i = 1, 2, . . . , s), we have u′ AW = ∑s

i=1 ci (v
′
i AW ) ≥ 0, which implies that

A ∈ C(u′, W ). �

For any fixed u ∈ C〈V 〉, let {u1, u2, . . . , up} (where u1 = u
||u|| ) be an orthonor-

mal basis of Rp. We define a sequence of nonsingular matrices Ξn by

Ξn = ΔnΔ
−1
1 (n = 1, 2, . . .) (6.4)

where Δn (n = 1, 2, . . .) is a nonsingular matrix defined by (nu1 u2 · · · up). Note
that Δ−1

1 = Δ′
1 because Δ1 is an orthogonal matrix.

Theorem 6.2.1 Suppose that u ∈ C〈V 〉 satisfies v′
i u > 0 for all i = 1, 2, . . . , s.

Then, for Ξn defined by (6.4), we have

C(V Ξ1, W ) ⊂ C(V Ξ2, W ) ⊂ · · · ⊂ C(V Ξn, W ) ⊂ · · · (6.5)

and the closure of
⋃∞

n=1 C(V Ξn, W ) is equal to C(u′, W ).

Proof Noting that C(V, W ) ⊂ C(u′, W ) and C(V, W ) = ⋂s
i=1 C(v′

i , W ), we have

C(V, W ) = C(V, W ) ∩ C(u′, W )

= {
s⋂

i=1

C(v′
i , W )} ∩ C(u′, W ) =

s⋂

i=1

{C(v′
i , W ) ∩ C(u′, W )}.

Putting vi = ∑p
j=1 αi j u j for the orthonormal basis {u1, u2, . . . , up}, we have

v′
iΞn = v′

iΔnΔ
−1
1 = v′

i (nu1, u2, . . . , up)(u1, u2, . . . , up)
′

= nαi1u′
1 +

p∑

j=2

αi j u′
j . (6.6)

If A ∈ C(u′, W ) (i.e., u′
1AW ≥ 0), it holds that for all n = 2, 3, . . .
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v′
iΞn AW = nαi1u′

1AW +
p∑

j=2

αi j u′
j AW

= αi1u′
1AW + v′

iΞn−1AW ≥ v′
iΞn−1 AW,

because αi1 = v′
i u1 > 0. Thus, for all i = 1, 2, . . . , s, we have

C(v′
iΞ1, W ) ∩ C(u′, W ) ⊂ C(v′

iΞ2, W ) ∩ C(u′, W )

⊂ · · · ⊂ C(v′
iΞn, W ) ∩ C(u′, W ) ⊂ · · · . (6.7)

On the other hand, since

u′Ξn = u′(nu1, u2, . . . , up)(u1, u2, . . . , up)
′ = nu′,

we have C(u′Ξn, W ) = C(u′, W ). Therefore, we obtain (6.5) from (6.7) because

C(V Ξn, W ) = Ξ−1
n C(V, W ) = Ξ−1

n {C(V, W ) ∩ C(u′, W )}

= Ξ−1
n {

s⋂

i=1

C(v′
i , W ) ∩ C(u′, W )}

= Ξ−1
n

s⋂

i=1

{C(v′
i , W ) ∩ C(u′, W )}

=
s⋂

i=1

{C(v′
iΞn, W ) ∩ C(u′, W )}.

Since (6.6) implies that
1

n
v′

iΞn → αi1u′
1 as n → ∞, we have C(v′

iΞn, W ) →
C(u′, W ) as n → ∞ for all i = 1, 2, . . . , s. Thus, the second statement follows. �

We present several properties of the projection Π onto L(V, W ) and C(V, W ).

Lemma 6.2.7 For any A ∈ R
p,q and B ∈ L(V, W ), we have

(i) ΠG,H (A + B|L(V, W )) = ΠG,H (A|L(V, W )) + B,
(ii) ΠG,H (A + B|C(V, W )) = ΠG,H (A|C(V, W )) + B.

Lemma 6.2.8 For any A ∈ R
p,q , we have

(i) ||A||2G,H = ||ΠG,H (A|L(V, W ))||2G,H + ||A − ΠG,H (A|L(V, W ))||2G,H ,
(ii) ||A||2G,H = ||ΠG,H (A|C(V, W ))||2G,H + ||A − ΠG,H (A|C(V, W ))||2G,H ,
(iii) ||A − ΠG,H (A|L(V, W ))||2G,H − ||A − ΠG,H (A|C(V, W ))||2G,H

= ||ΠG,H (A|C(V, W )) − ΠG,H (A|L(V, W ))||2G,H .

For A ∈ R
p,q , G ∈ R

p,p, H ∈ R
q,q , V ∈ R

s,p, W ∈ R
q,t , we define

TV,W (A, G, H) = ||ΠG,H (A|C(V, W )) − ΠG,H (A|L(V, W ))||2G,H . (6.8)
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Lemma 6.2.9 For any A ∈ R
p,q , we have the following statements.

(i) TV,W (A + B, G, H) = TV,W (A, G, H) if B ∈ L(V, W ).
(ii) TV,W (Γ AΛ, G, H) = TV Γ,ΛW (A, Γ −1GΓ ′−1

,Λ′−1HΛ−1) if Γ ∈ R
p,p and

Λ ∈ R
q,q are nonsingular.

Proof (i) It is obvious from Lemma 6.2.7 and (6.8). (ii) By Lemmas 6.2.1, 6.2.2 and
6.2.4, we have

TV,W (Γ AΛ, G, H)

=||ΠG,H (Γ AΛ|C(V, W )) − ΠG,H (Γ AΛ|L(V, W ))||2G,H

=||Γ {ΠΓ −1GΓ ′−1,Λ′−1HΛ−1(A|C(V Γ,ΛW ))

− ΠΓ −1GΓ ′−1,Λ′−1HΛ−1(A|L(V Γ,ΛW ))}Λ||2G,H

=||ΠΓ −1GΓ ′−1,Λ′−1HΛ−1(A|C(V Γ,ΛW ))

− ΠΓ −1GΓ ′−1,Λ′−1HΛ−1(A|L(V Γ,ΛW ))||2
Γ −1GΓ ′−1,Λ′−1HΛ−1

=TV Γ,ΛW (A, Γ −1GΓ ′−1
,Λ′−1HΛ−1).

�

6.3 The LRT when both Σ and Ψ are known

For a sample X1,X2, . . . ,Xn from a matrix variate normal population Np,q(M,

Σ,Ψ ), we consider testing a hypothesis H0 against a one-sided alternative H1 defined
by

H0 : M ∈ L(V, W ), H1 : M ∈ C(V, W ) \ L(V, W ). (6.9)

In this section, we briefly summarize the likelihood ratio test (LRT) when both Σ

and Ψ are known. Noting that

n∑

i=1

||Xi − M ||2Σ,Ψ =
n∑

i=1

||Xi − X||2Σ,Ψ + n||X − M ||2Σ,Ψ

forX = 1

n

n∑

i=1

Xi , we derive theLRT statistic from (6.3) andLemma6.2.8 as follows.
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2 log
supH1

∏n
i=1 f (Xi , M,Σ,Ψ )

supH0

∏n
i=1 f (Xi , M,Σ,Ψ )

= n||X − ΠΣ,Ψ (X|L(V, W ))||2Σ,Ψ − n||X − ΠΣ,Ψ (X|C(V, W ))||2Σ,Ψ

= n||ΠΣ,Ψ (X|C(V, W )) − ΠΣ,Ψ (X|L(V, W ))||2Σ,Ψ

= nTV,W (X,Σ,Ψ ). (6.10)

It iswell known that the null distribution of theLRTstatistic (6.10) is aχ2 distribution,
which is a weighted sum of χ2 distributions with different degrees of freedom. See
Robertson et al. [7] and Silvapulle and Sen [11] for details of theχ2 tests. Theweights
depend on the geometrical property of the alternative cone C(V, W ). It is important
but difficult to evaluate the weight of a χ2 distribution. See also Shapiro [10] and
Miwa et al. [5] for extended arguments of derivation of weights of χ2 distribution.

We denote by PX|M,Σ,Ψ (E) the probability of an event E when Xi ∼ Np,q

(M,Σ,Ψ ) (i = 1, 2, . . . , n). The next theorem implies that the probability does
not depend on M under the null hypothesis.

Theorem 6.3.1 If M ∈ L(V, W ), for any real c

PX|M,Σ,Ψ (TV,W (X,Σ,Ψ ) ≥ c) = PX|O,Σ,Ψ (TV,W (X,Σ,Ψ ) ≥ c).

6.4 When Ψ Is Known but Σ Is Unknown

In this section, we consider testing the hypotheses (6.9) when Ψ is known but Σ is
unknown. The problem is amatrix variate version of problems discussed in Sasabuchi
et al. [9], Sasabuchi [8], and Hu and Banerjee [2]. Our purpose is to extend their
results.

LetX1,X2, . . . ,Xn be a sample of size n from a matrix variate normal population
Np,q(M,Σ,Ψ )D. Under the assumption that Ψ is known and M has no constraints,
the maximum likelihood estimators of M and Σ are as follows:

X = 1

n

n∑

i=1

Xi , (6.11)

S = 1

nq

n∑

i=1

(Xi − X)Ψ −1(Xi − X)′, (6.12)

and X and S are independently distributed as

X ∼ Np,q(M,Σ,
1

n
Ψ ), S ∼ W (q(n − 1),Σ).
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See Kollo and von Rosen [3] and Srivastava et al. [12] for statistical inferences on
matrix variate normal distributions.

For the hypotheses (6.9), we consider the following test statistic constructed by
substituting Σ in (6.10) by its estimator S.

TV,W (X, S, Ψ ) = ||ΠS,Ψ (X|C(V, W )) − ΠS,Ψ (X|L(V, W ))||2S,Ψ . (6.13)

The statistics TV,W (X, S, Ψ ) is a generalization of that studied by Sasabuchi et al.
[9] but not the LRT statistics for (6.9).

In order to determine critical values or p values for the test statistic, we consider
the probability

PX|M,Σ,Ψ (TV,W (X, S, Ψ ) ≥ c) (6.14)

for arbitrary c under H0. Since X and S are independent, the probability (6.14) does
not depend on M ∈ L(V, W ) when Σ is fixed.

To evaluate the probability (6.14) when Σ varies, we consider a linear transfor-
mation X

∗
i = ΓXi . Then, Xi ∼ Np,q(M,Σ,Ψ ) is equivalent to

X
∗
i ∼ Np,q(M∗,Σ∗, Ψ ) where M∗ = Γ M,Σ∗ = Γ ΣΓ ′. (6.15)

if Γ ∈ R
p,p is nonsingular. The hypotheses H0 and H1 are rewritten as

H∗
0 : M∗ ∈ L(V Γ −1, W ) and H∗

1 : M∗ ∈ C(V Γ −1, W ) \ L(V Γ −1, W ) (6.16)

by Lemma 6.2.4. The maximum likelihood estimators of M∗ and Σ∗ are given by

X
∗ = 1

n

n∑

i=1

X
∗
i = ΓX,

S∗ = 1

nq

n∑

i=1

(X∗
i − X

∗
)Ψ −1(X∗

i − X
∗
)′ = Γ SΓ ′,

respectively, and we consider a test statistic defined by

TV Γ −1,W (X∗, S∗, Ψ ) = ||ΠS∗,Ψ (X
∗|C(V Γ −1, W )) − ΠS∗,Ψ (X

∗|L(V, W ))||2S∗,Ψ

The following invariant property of the test statistic is shown by Lemmas 6.2.1,
6.2.2 and the Eq. (6.2).

Lemma 6.4.1 When X
∗
i = ΓXi , TV Γ −1,W (X∗, S∗, Ψ ) = TV,W (X, S, Ψ ).

Lemma 6.4.2 If L(V Γ, W ) = L(V, W ) and C(V, W ) ⊂ C(V Γ, W ),

PX|M,Σ,Ψ {TV,W (X, S, Ψ ) ≥ c} ≤ PX|M,Σ,Ψ {TV Γ,W (X, S, Ψ ) ≥ c}

for any c.
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Theorem 6.4.1 Suppose that Γ ∈ R
p,p is a nonsingular matrix satisfying Σ1 =

Γ Σ2Γ
′ for Σ1,Σ2. If L(V Γ, W ) = L(V, W ) and C(V, W ) ⊂ C(V Γ, W ),

PX|M,Σ1,Ψ {TV,W (X, S, Ψ ) ≥ c} ≥ PX|M,Σ2,Ψ {TV,W (X, S, Ψ ) ≥ c}.

Proof For Xi ∼ Np,q(M,Σ1, Ψ ), we put X
∗
i = Γ −1

Xi . Then, X∗
i ∼ Np,q

(M∗,Σ2, Ψ ), and from Lemmas 6.4.1 and 6.4.2 we have

PX|M,Σ1,Ψ {TV,W (X, S, Ψ ) ≥ c} = PX∗|M∗,Σ2,Ψ {TV Γ,W (X∗, S∗, Ψ ) ≥ c}
≥ PX∗|M∗,Σ2,Ψ {TV,W (X∗, S∗, Ψ ) ≥ c}. �

Roughly stating, to evaluate the supremum of PX|M,Σ,Ψ {TV,W (X, S, Ψ ) > c}
when Σ varies, it is sufficient to find maximal sets of C(V Γ, W ) when Γ varies. We
shall recall Theorem 6.2.1.

Let u be anonnegative combinationofv1, v2, . . . , vs (i.e., u ∈ C〈V 〉).Weconsider
another test statistic defined by

T̃u,W (X, S, Ψ ) = ||ΠS,Ψ (X|C(u′, W )) − ΠS,Ψ (X|L(V, W ))||2S,Ψ . (6.17)

Note that L(V, W ) ⊂ C(u′, W ).

Theorem 6.4.2 For any positive definite Σ ∈ R
p,p, we put

Σn = ΞnΣΞ ′
n (n = 1, 2, . . .), (6.18)

where Ξn is defined in (6.4). Then, if u′vi > 0 for all i = 1, 2, . . . , s,
(i) PX|O,Σn ,Ψ {TV,W (X, S, Ψ ) ≥ c} is increasing in n, and
(ii) limn→∞ PX|O,Σn ,Ψ {TV,W (X, S, Ψ ) ≥ c} = PX|O,Σ,Ψ {T̃u,W (X, S, Ψ ) ≥ c}.
Proof From Theorem 6.2.1, for Ξn (n = 1, 2, . . .), we have

C(V Ξ1, W ) ⊂ C(V Ξ2, W ) ⊂ · · · ⊂ C(V Ξn, W ) ⊂ · · ·

and L(V Ξn, W ) = L(V, W ) for all n = 1, 2, . . .. Therefore, the probability
PX|O,Σ,Ψ {TV Ξn ,W (X, S, Ψ ) ≥ c} is increasing in n by Theorem 6.4.1. Putting
X

∗
i = ΞnXi , since X∗

i ∼ Np,q(O,Σn, Ψ ), we have

PX|O,Σ,Ψ {TV Ξn ,W (X, S, Ψ ) ≥ c} = PX∗|O,Σn ,Ψ {TV,W (X∗, S∗, Ψ ) ≥ c}
= PX|O,Σn ,Ψ {TV,W (X, S, Ψ ) ≥ c}.

by Lemma 6.4.1. Moreover, Theorem 6.2.1 implies

lim
n→∞ TV Ξn ,W (X, S, Ψ ) = T̃u,W (X, S, Ψ ),

which completes the proof. �
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Before we prove the similarity of the test statistic T̃u,W (X, S, Ψ ), we give a simple
lemma.

Lemma 6.4.3 When u ∈ L〈V 〉, Γ ′u is orthogonal to the subspace L(V Γ, •) ⊂ R
p

for any nonsingular Γ ∈ R
p,p.

Proof When x ∈ L(V Γ, •), it holds that v′
iΓ x = 0 for all i = 1, 2, . . . , s. Since

u = ∑s
i=1 civi , we have (Γ ′u)′x = ∑x

i=1 civ
′
iΓ x = 0. �

Theorem 6.4.3 For any u ∈ L〈V 〉 and any positive definite Σ ∈ R
p,p,

PX|O,Σ,Ψ (T̃u,W (X, S, Ψ ) ≥ c) = PX|O,Ip,Ψ (T̃u,W (X, S, Ψ ) ≥ c).

Proof Suppose Xi ∼ Np,q(M,Σ,Ψ ). Putting X
∗
i = Σ−1/2

Xi , X
∗
i ∼ Np,q

(M∗, Ip, Ψ ). Then, we have

PX|O,Σ,Ψ (T̃u,W (X, S, Ψ ) ≥ c) = PX∗|O,Ip,Ψ (T̃Σ1/2u,W (X∗, S∗, Ψ ) ≥ c).

If there exists an orthogonal matrix U ∈ R
p,p such that

L(V Σ1/2U, W ) = L(V, W ) and C(u′Σ1/2U, W ) = C(u′, W ),

we have for X∗∗
i = U ′

X
∗
i ∼ Np,q(M∗∗, Ip, Ψ )

PX∗|O,Ip,Ψ (T̃Σ1/2u,W (X∗, S∗, Ψ ) ≥ c) = PX∗∗|O,Ip,Ψ (T̃u,W (X∗∗, S∗∗, Ψ ) ≥ c),

and the proof will be completed. From Lemma 6.4.3, u and Σ1/2u are orthogonal to
L(V, •) and toL(V Σ1/2, •), respectively. This implies that there exists an orthogonal
matrix U ∈ R

p,p such that U ′L(V Σ1/2, •) = L(V, •) and U ′Σ1/2u = ku (k >

0), that is, L(V Σ1/2U, •) = L(V, •) and C(u′Σ1/2U, •) = C(u′, •). Therefore,
from Lemma 6.2.5, we have L(V Σ1/2U, W ) = L(V, W ) and C(u′Σ1/2U, W ) =
C(u′, W ). This completes the proof. �

Corollary 6.4.1 For any u1, u2 ∈ L〈V 〉 and any positive definite Σ ∈ R
p,p,

PX|O,Σ,Ψ (T̃u1,W (X, S, Ψ ) ≥ c) = PX|O,Σ,Ψ (T̃u2,W (X, S, Ψ ) ≥ c).

Proof By considering X∗
i = ΓXi where Γ ∈ R

p,p satisfies u2 = Γ u1, it is obvious
from Theorem 6.4.3. �

The following is the main result in this chapter.

Theorem 6.4.4 Suppose u ∈ C〈V 〉. Then
(i) PX|M,Σ,Ψ {TV,W (X, S, Ψ ) ≥ c} ≤ PX|M,Σ,Ψ {T̃u,W (X, S, Ψ ) ≥ c} for any M and
Σ ,
(ii) supH0

PX|M,Σ,Ψ {TV,W (X, S, Ψ ) ≥ c} = PX|O,I,Ψ {T̃u,W (X, S, Ψ ) ≥ c}.
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Proof (i) Since C(V, W ) ⊂ C(u′, W ) by Lemma 6.2.6, we accomplish the proof in
the same manner as Lemma 6.4.2. (ii) Since C(V, W ) has an interior point, there
exists u∗ ∈ L〈V 〉 satisfying v′

i u
∗ > 0 for i = 1, 2, . . . , s. Then, from Theorem 6.4.2

and (i), we have

sup
H0

PX|M,Σ,Ψ {TV,W (X, S, Ψ ) ≥ c} = PX|O,I,Ψ {T̃u∗,W (X, S, Ψ ) ≥ c}.

From Corollary 6.4.1, we have

sup
H0

PX|M,Σ,Ψ {TV,W (X, S, Ψ ) ≥ c} = PX|O,I,Ψ {T̃u,W (X, S, Ψ ) ≥ c}. �

Theorem 6.4.4 suggests a class of similar test statistics which are more powerful
than TV,W (X, S, Ψ ). Sasabuchi [8] and Hu and Banerjee [2] also give a class of
similar and more powerful test statistic, but their class is more restrictive than our
class.

Their similar test statistic corresponds to T̃vi ,W (X, S, Ψ ) (abbreviated by T̃i below)
for i = 1, 2, . . . , s in our notation. As noted by Sasabuchi [8], the statistic T̃i is
sensitive only for subrestriction C(v′

i , W ), and we cannot choose an optimal one
among {T̃1, T̃2, . . . , T̃s}. Sasabuchi [8] recommended to use an omnibus test statistic
given by Tmin = min

1≤i≤s
T̃i instead of T̃i , although Tmin is not similar and thus is

inadmissible.
By Theorem 6.4.4, we can propose an alternative similar test statistic which is

equally sensitive for all subrestrictions C(v′
1, W ), . . . , C(v′

s, W ). That is, we choose a
vector u which indicates a center direction of C(V, •), and construct the test statistics
T̃u,W (X, S, Ψ ). For example, if V = Ip (i.e., C(V, •) is a positive orthant), it may be
reasonable to choose u = (1, 1, . . . , 1)′.
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